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Abstract
The Lake Victoria ecosystem in East Africa is known to support the world’s largest
small-scale freshwater fishery. Economically, the most valuable fish in this ecosystem
is the Nile perch, whose population plays a vital role for ecosystem stability. The
question of the optimal regulatory paradigm for harvesting Nile perch is subject to
considerable debate. Theoretical concepts such as ‘balanced harvesting’ with little
size selectivity coexist with a practice of size-based instruments, targeting gear and
catch sizes.

This thesis develops, analyzes and simulates a new bio-economic model of the
Nile perch fishery that couples a bio-energetic fish population model to an economic
model of the fishery, incorporating the size structure of the fish population and gear
selectivity.

The existence of a unique, non-negative and regular solution of the model is
proven. After validating the model against the empirical population size structure,
we show that the current fishery is a steady state solution and that the effort is 2.0%
above the optimal effort for fixed fleet selectivity. An alternative fleet selectivity that
spares fish below 50 cm increases yield, income and stock biomass. The numerical
optimization shows that the optimal fleet selectivity spares fish below at least 70 cm.
Optimizing the fleet selectivity increases yield by 94.6% and income by 151.9%. The
dynamic fishers response model shows that boat owners switch to using 6”, 7” and
8” gillnets because of the high profitability.

The results indicate significant gains in yield and income from sparing small fish
and allow three conclusions to be drawn: First, there is not necessarily a trade-off
between harvest and stock biomass, but both can be increased through improved
fishing. Second, sparing small fish is not a loss of catch, but exploits the growth
potential of fish and increases reproduction and stock biomass. Third, our model
suggests that fishing should be selective, focusing on larger fish. This result questions
the dominant paradigm of balancing harvest across sizes in proportion to productiv-
ity, which implies targeting smaller fish more intensively. The novel size structured
bio-economic fishery model therefore challenges the current understanding and sug-
gests new directions for modeling the fishery of Lake Victoria.
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Zusammenfassung
Vom Ökosystem des Viktoriasees in Ostafrika ist bekannt, dass es die weltweit
größte handwerkliche Süßwasserfischerei beherbergt. Der wirtschaftlich wertvoll-
ste Fisch in diesem Ökosystem ist der Nilbarsch, dessen Population eine entschei-
dende Rolle für die Stabilität des Ökosystems spielt. Die Frage nach dem optimalen
Regulierungsparadigma für den Nilbarschfang ist Gegenstand erheblicher Debatten.
Theoretische Konzepte wie “Ausgewogene Befischung” mit geringer Größenselektivi-
tät existieren neben einer Praxis größenbasierter Instrumente, die auf Fanggeräte
und Fanggrößen abzielen.

In dieser Arbeit wird ein neues bioökonomisches Modell der Nilbarschfischerei ent-
wickelt, analysiert und simuliert, das ein bioenergetisches Fischpopulationsmodell
mit einem wirtschaftlichen Modell der Fischerei verbindet und dabei die Größenstruk-
tur der Fischpopulation und der Fangselektivität berücksichtigt.

Die Existenz einer eindeutigen, nichtnegativen und regulären Lösung des Modells
wird bewiesen. Nach der Validierung des Modells anhand der empirischen Popu-
lationsgrößenstruktur wird aufgezeigt, dass die derzeitige Fischerei eine Gleichge-
wichtslösung darstellt und dass der Fischereiaufwand 2,0% über dem optimalen Wert
bei festgehaltener Flottenselektivität liegt. Eine alternative Flottenselektivität, die
Fische unter 50 cm verschont, steigert Ertrag, Einkommen und Bestandsbiomasse.
Die numerische Optimierung zeigt, dass die optimale Flottenselektivität Fische un-
terhalb von mindestens 70 cm Größe verschont. Die Optimierung der Flottenselek-
tivität erhöht den Ertrag um 94,6% und das Einkommen um 151,9%. Das dynami-
sche Reaktionsmodell der Fischer zeigt, dass die Bootseigner aufgrund der höheren
Rentabilität auf 6”-, 7”- und 8”-Kiemennetze umsteigen.

Die Ergebnisse deuten auf erhebliche Ertrags- und Einkommenssteigerungen durch
die Schonung kleiner Fische hin und erlauben die folgenden drei Schlussfolgerun-
gen: Erstens besteht nicht unbedingt ein Zielkonflikt zwischen Fangmenge und Be-
standsbiomasse, sondern beide können durch eine verbesserte Fischereiselektivität
gesteigert werden. Zweitens bedeutet die Schonung kleiner Fische nicht einen Fang-
verlust, sondern sie nutzt das Wachstumspotential der Fische aus und erhöht die
zudem die Reproduktion und damit die Bestandsbiomasse. Drittens legt unser
Modell nahe, dass die Fischerei selektiv erfolgen und vorwiegend auf größere Fi-
sche abzielen sollte. Dieses Ergebnis stellt das vorherrschende Paradigma in Frage,
nach dem Fische proportional zu ihrer biologischen Produktivität gefangen werden
sollen, was eine intensivere Ausrichtung auf kleinere Fische impliziert. Das neuar-
tige größenstrukturierte bioökonomische Fischereimodell stellt daher das derzeitige
Verständnis in Frage und zeigt neue Wege für die Modellierung der Fischerei im
Viktoriasee auf.
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1 Introduction

1.1 Aims of the thesis

The aim of this thesis is to build, analyze and simulate a model of the Nile perch
fishery to assess the consequences of size-related fishing regulations.

The importance of the fishery at Lake Victoria for food security and income implies
that the high exploitation level poses a serious threat to the livelihood of three to
four million people in the region. The Lake Victoria ecosystem is a system that has
historically seen a tipping point in the 1980s, when the complex, original food web
with 500 native species collapsed, simultaneously with an explosion of the Nile perch
population [193]. Therefore, Nile perch as top level predator plays a particularly
important role and has the potential to drastically transform the ecosystem of the
whole lake.

It is a common theme among scholars and policymakers dealing with Lake Vic-
toria to suggest that Nile perch is substantially overfished and that the population
will soon collapse if the fishing is not drastically reduced [124, 143]. While many
ecosystem models of the lake have been developed, little focus has been laid so far
on size structured bio-economic models.

As the Nile perch exploitation has many characteristics of an open access fishery,
the fishery managers and policymakers have to design simple tools to regulate the
fishery and avoid the degradation of the resource which could in this case lead to
both ecologically and socially devastating results. It is key to develop tools that
allow an evaluation of management options before they are implemented to predict
the consequences of each scenario and to rank them with respect to appropriate
metrics like the annual harvest or aggregate income of the the fishery. To do so, the
size structured stock-fishery model is used to address the following four questions
regarding the Nile perch fishery of Lake Victoria.

1



1 Introduction

1. Sustainability of the current exploitation
Can the current exploitation of the Nile perch fishery be sustained over time?

Which level of fishing intensity would produce the maximum sustainable yield (keep-
ing the size selectivity of the fleet fixed)?

2. Alternative size and gear based exploitation patterns
Which modifications of the current fishing pattern would improve steady state

yield and income? When does a perturbation of the pattern increase the yield?
What size based and gear based exploitation patterns are superior to the current
situation?

3. Optimal fishing selectivity
If a sole-owner managed the fishery and wanted to maximize steady state yield

or income, respectively: What size selectivity should his fleet have? How does this
compare to the current exploitation and to the regulation of minimum legal fish size
and minimum mesh size? What gain in yield and income is possible from optimizing
the fleet selectivity?

4. Fishers’ response
How do fishers respond to the fish stock in a dynamic coupled stock-fishery model?

Which state would the fishery naturally tend to, from fishers’ proper profit interest?
Can this explain the observed behavior of fishers around the lake?

The four questions are addressed in the following order and connection. After
the development of the size structured model and its mathematical analysis, we
first assess whether the current exploitation scheme is sustainable and whether the
level of exploitation is optimal (Question 1). Then we assess alternative exploitation
schemes, similar to the proposals currently discussed among Lake Victoria managers
- corresponding to the question ”what if?”1 (Question 2). Afterwards we take the
perspective of a sole-owner who seeks to maximize yield or income of the fishery.
Which is the optimal fleet selectivity pattern he should aim for, that produces the
largest yield or income in steady state - this corresponds to the question ”what’s
best?” (Question 3). Finally, we simulate the dynamic model including the fishers’
response to the stock and analyze the behavior in the model compared to reality

1As suggested in [172], bio-economic models can be categorized as simulations addressing ”what
if?” questions, and optimizations addressing ”what’s best?”.
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1.2 Methods and results

(Question 4), together with an application to an ongoing theme in Lake Victoria’s
fishery management around panelling. This approach provides a systematic assess-
ment of the current exploitation scheme and the possible improvements.

1.2 Methods and results

The Social-Ecological Systems (SES) approach allows to systematically identify the
model components and their interactions (Fig. 1.1) [163, 91, 177, 128, 32]. The
resource system is the Lake Victoria ecosystem as a whole, in which the resource
units (individual Nile perch) are produced. The users (fishers) interact with the fish
population to generate outcomes (harvest), while being regulated by the governance
system. The model itself focuses on the fish population and the fishers, while the reg-
ulator comes in when alternative size and gear restrictions are analyzed. Variations
of the ecosystem are studied in the sensitivity analysis with respect to variations of
the parameters of somatic growth and natural mortality. With the sensitivity ana-
lysis we quantified the impact of uncertainty in the parameter values on the relevant
outcome variables.

Lake Victoria 
ecosystem

Nile perch

Fishery 
regulation

Fishers

Figure 1.1: The components and their connections in the Social-Ecological Systems
approach with the respective specifications for the Nile perch fishery
model in the white boxes. Adapted from [163].
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1 Introduction

The mathematical model incorporates the relevant components of the SES. Math-
ematical models, in particular population models, are highly capable tools to de-
scribe, analyze and predict biological phenomena across all fields from fisheries to
epidemiology and cell biology [62, 126, 140, 39, 40, 41]. Dynamics of heterogeneous
populations can be appropriately described by structured population models (SPM)
that include a transport equation in the form of a first order hyperbolic partial
differential equation (PDE) with a nonlocal boundary condition. In SPMs, the het-
erogeneous population is structured by a functionally relevant feature, such as age,
size or another trait dimension of the population [104, 197, 95, 84, 54, 83, 85, 96].
Building on previous work on size structured population models [96], we prove the
existence of unique, non-negative solutions of the stock model both for the time
dependent case with exogenous fishing mortality and for the steady state case. If
the initial condition fulfills a compatibility condition, the solutions are regular.

We derive a general condition by which it can be assessed whether perturbations
of the fishing pattern increase or decrease the steady state yield. In the model vali-
dation, it is found that the model prediction agrees with the size structure from the
bottom trawl and the catch assessment survey, but disagrees from the hydroacoustic
survey data. In the analysis we find that the effort (if one keeps the fleet selectivity
fixed) is 2.0% above the value that produces the maximum sustainable yield (MSY),
thus the stock is fished at a mostly appropriate level, provided that only effort (and
not size selectivity) is variable. With a sensitivity analysis we found that the MSY
fishing mortality and the recruitment are most sensitive to the parameter of phys-
iological mortality, which parametrizes the density of predators in the ecosystem.
Therefore, future biological studies need to determine this parameter as precisely as
possible.

In a comparison with eight hypothetical fleet selectivities we find that patterns
which shift the focus to targeting larger fish lead higher steady state yield and to
a more healthy fish stock with more fecund females. Completely sparing fish below
50 cm would, ceteris paribus, increase steady state yield by 17.7% and spawning
stock biomass by 31.9%.

This finding is corroborated by a numerical optimization procedure to maximize
steady yield or income, respectively. The optimal fishing pattern targets exclu-
sively fish above 70 cm or 90 cm, respectively, dependent on the assumptions about
senescent mortality. Thus the optimal minimum catch size is at least 20 cm above
the lower bound of the slot size (50 cm) and also larger than the range that is
targeted with the smallest legal gillnet mesh size (5”, targeting fish in the range

4



1.3 Outline of the thesis

47.69 ± 7.90 cm). Therefore, from the model’s perspective, the minimum size regu-
lation is too low when compared to the optimal minimum catch size.

In the final chapter, the previous model is coupled to a gear based model of
fishers’ response to the fish stock level, mediated through the profits. We find that
within the first year, all unprofitable gears are abandoned, leaving a state where only
gillnets with 6”, 7” and 8” mesh size are used because of their profitability. Even
though longlines catch also large fish, they cannot compete with gillnets because
they have additional bait costs. An application of the dynamic model shows that
there are two regimes of the fishery (high and low value) and that changes in the
gear efficiency and in the opportunity costs can induce a transition from one regime
to the other.

Our findings with the size structured model challenge the common theme of over-
fishing and suggest a rather sustainable exploitation pattern. However, sustainable
does not necessarily mean that the population is harvested optimally. Quite the
contrary, we find that substantial increases in harvest are possible from shifting the
exploitation toward larger fish. This also contests the conception that improvements
of the fish stock level necessarily require reductions in harvest. With the size struc-
tured model we can give new indication that an appropriate size structure of the
catch can simultaneously increase the abundance of fish (especially the large spawn-
ers) while not impairing (and even increasing) harvest. This challenges a common
theme among Lake Victoria managers and scientists [147], opens new directions
for modeling the Lake Victoria fisheries and calls for more research to develop and
investigate alternative proposals for fishery regulations.

1.3 Outline of the thesis

Here we explain the outline of the thesis (Fig. 1.2). Chapter 2 explains the context
and the characteristics of the Nile perch fishery at Lake Victoria. The following
first part of the thesis (Chapters 3-6) develops, explains and analyses the size
structured model of the Nile perch fishery. Chapter 3 explains the biological com-
ponent of the model, which includes the functional form of all processes within the
life history of individual fish, starting from the egg through hatching, recruitment
growth and maturation to the adults that are fecund and reproduce. Chapter 4
builds the economic component of the model, including the size selectivity of gillnets
and longlines. It also explains how fishers’ adaptation is represented in the model
and introduces relevant concepts from fisheries sciences like the fisheries reference

5



1 Introduction

points. Chapter 5 provides an overview of the experimental fish population sur-
vey techniques and the processing of the survey data. Chapter 6 analyzes the
mathematical properties of the bio-economic model. The existence of unique, non-
negative solutions is proven for the time dependent case with exogenous constant
fishing mortality and for the steady state case.

The second part (Chapters 7-10) contains the application of the model to
recent questions in the regulation of the Nile perch fishery. In Chapter 7, the
numerical procedure is explained together with a validation of the model against the
experimental surveys. The sensitivity of the results to the uncertain key parameters
is assessed. Chapter 8 studies the effect of the size selectivity on steady state yield
and income. The sustainability of the current exploitation pattern is evaluated and
in a first study, the current fleet selectivity is compared to three hypothetical slot size
related scenarios. Additionally, five gear related scenarios are simulated and ranked
with respect to steady state yield and income. Chapter 9 is an optimization study
where steady state yield or income, respectively, is maximized. This functions as a
benchmark to assess other scenarios. Chapter 10 simulates how fishers would adapt
the effort given the profits they make from fishing. We simulate the development
without exogenous regulations and compare the final state with the current fishery.
In an application we analyze how panelling or changes in opportunity costs would
impact the state of the fishery and compare the results to an agent-based model.
Chapter 11 involves an integrating discussion and directions for future research.
Chapter 12 summarizes the thesis.

6



1.3 Outline of the thesis

Introduction
(Chapter 1)

Overview of the Nile perch 
fishery (Chapter 2)

Integrating discussion and 
conclusions (Chapter 11)

Summary
(Chapter 12)

Size structured model of the Nile perch fishery

Biological model 
(Chapter 3)

Economic model 
(Chapter 4)

Mathematical analysis 
(Chapter 6)

Experimental survey data 
(Chapter 5)

Nov 16, 2023

Application to the regulation of the Nile perch fishery

Alternative exploitation schemes

Model validation and 
sensitivity analysis 
(Chapter 7)

Sustainability of the 
current exploitation 
(Chapter 8)

Optimal fleet 
selectivity 
(Chapter 9)

Simulations of the 
coupled stock-fishery 
model (Chapter 10)

Q1

Q3

Q4

Alternative fleet 
selectivity scenarios 
(Chapter 8)

Q2

Nov 16, 2023

Figure 1.2: Outline of the thesis together with the four main questions Q1-Q4.

7





2 Overview of the Nile perch fishery

2.1 Fisheries at Lake Victoria
Lake Victoria (LV) is the world’s second largest freshwater lake with 68,000 km2

surface area, shared by the three riparian countries Tanzania (51%), Uganda (43%)
and Kenya (6%) (Fig. 2.1). Situated at an altitude of 1,134 m above sea level,
it is a shallow lake with 40 m mean depth, 68 m maximum depth and 3,450 km
shoreline [99, 193, 102, 124]. Until the 1970s, the fish fauna was dominated by
more than 500 extremely diverse, endemic haplochromine cichlid (Haplochromini)
species [193]. In the 1950s, Nile perch (Lates niloticus) was introduced to replace
the bony haplochromines which were of low value to the fisheries [160, 159, 154].
It took around 25 years for Nile perch to reach a high population level - until the
1980s, when rapid eutrophication, a Nile perch boom and a haplochromine collapse
coincided [150]. Within few years, from 1982-1985 in Uganda and from 1983-1987 in
Tanzania, Nile perch replaced most of the indigenous species in the lake and became
of major relevance to the fisheries [60]. While the destruction of the food web is
generally seen as an ecological catastrophe, the annual fish production increased
from about 100,000 t in 1980 to almost one million tonnes today [193, 133, 127].

The reasons and the dynamics of the dramatic changes in the ecosystem are highly
debated, with explanations ranging from the top-down hypothesis (Nile perch killing
haplochromines through predation pressure) via the simple hypothesis of slow lo-
gistic growth to the bottom-up hypothesis, where an externally (climate or eutro-
phication) induced perturbation temporarily increased the haplochromine mortal-
ity, enabling Nile perch eggs and fry to escape the predation by haplochromines
in large numbers [60, 199, 127]. Eventually, in the 2000s, the dagaa population
(Rastrineobola argentea, Silver cyprinid) increased strongly and haplochromines re-
appeared, but are still far below the original levels.

The lake supports the largest small-scale fresh water fishery in the world [106].
The high nutritional and commercial value of Nile perch lead to a growth of the
fishing industry in the 1990s, with the lake now being the most important source of

9



2 Overview of the Nile perch fishery

Figure 2.1: Map of the Lake Victoria region. From [141].

protein to the riparian population [158]. In the 1980s and 1990s, processing facilities
were established around the lake, and Nile perch is today exported to Europe, Asia,
and North America [65]. For Nile perch, the two main commercially relevant gears
are gillnets (GN) and longlines (LL) with hooks (Fig. 2.2).

There are about 200,000 fishers involved in the fisheries, with three to four million
livelihoods connected to the fisheries [150]. The Nile perch fishery is the most
valuable one, contributing around 52% to the value of the fisheries, estimated at
550 million USD for the catch at beach level [164]. The export value (260 million
USD) comes mainly from Nile perch. In terms of catch weight, dagaa plays also an
important role. The fisheries provide a total catch of 900,000 tonnes per year, of
which around 200,000 t are from Nile perch and 500,000 t from dagaa [121].

Given the complex nature of the Lake Victoria fisheries, various attempts have
been made to understand the socio-economic feedbacks [58], the limnological drivers
[193] and the impact of the fisheries [148, 156]. Surveys among fishers and stake-
holders have shown that the main factors driving the development of the Nile perch
stock are considered to be the fishing effort, illegal fishing gears and methods as well
as limnological parameters like the eutrophication of the lake [106, 108, 119, 133,
135].
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2.1 Fisheries at Lake Victoria

Figure 2.2: The two main gears in the Nile perch fishery are gillnets (top) and long-
lines with hooks (bottom). From [36, 37].
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2 Overview of the Nile perch fishery

2.2 Fishers’ communities and stakeholders’
perceptions

Lake Victoria is a center point of the social, economic and demographic dynamics in
the region. Regional migration and demographic patterns add to the growth of the
local population. In the Nile perch fishery, the boats go on the lake in the morning
and during the daytime, with the crew consisting of typically two to three persons
per boat. The fishers in a small-scale fishing community on the eastern shores of
Lake Victoria in Kenya reported that the catch value is shared between the crew
(60%) and the boat owner (40%) [98]. Commuting is rare, and most fishers spend
their daily lives in the community of the landing site where they fish [98]. Due to
the economic pressures, many fishers work additionally in agriculture [42].

Multiple surveys have studied how stakeholders, including members of the fishing
community, governmental institutions, NGOs and fish processors, perceive the de-
velopment of the Nile perch fish stock and the main impact factors [19, 20, 22, 106,
21]. Many stakeholders perceive a decline in the Nile perch stock and agree strongly
about the drivers of the decline: fishing in breeding grounds, overfishing and the
use of destructive fishing gear and methods. They assume that a lack of awareness
of sustainable fishing practices and monitoring, as well as corruption exacerbate the
situation [21]. The fact that fishers tend to acknowledge the role of fishing activities,
in particular gear choice and (non-)compliance with regulations, as main driver of
the fish stock, could be a leverage point for effective regulations [21].

In practice, however, illegal fishing practices are still wide spread. Tanzanian ar-
tisanal fishers stated that the decisions to violate the regulations are influenced by
the probability of detection and punishment, but also depend on whether the regu-
lations and the management institutions are perceived as legitimate and on personal
characteristics and social factors [65]. A lab-in-the-field experiment with Tanzanian
fishers found that risk taking of fishers increases the rate of risky decisions of the
peers, while risk avoiding behavior is not imitated [42]. Concerning the behavior
of fishers, one has to consider that the reaction to adverse events tends to depend
on the perceived cause of the event: If the event is attributed to an anthropogenic
cause (as opposed to a natural cause), participants in an experimental study were
found to respond by reducing the exploitation, even at a cost to themselves [46].
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2.3 Institutions, regulations and enforcement

The formal institutions around Lake Victoria have low effectiveness in combating
violations of the fishing regulations due to weakened state capacity and limited re-
sources for monitoring and enforcement [48]. In the 1990s, the World Bank initiated
and funded coordination and management efforts resulting in the re-establishment
of the Lake Victoria Fisheries Organization (LVFO) in 1997, under the remit of
the East African Community (EAC), with the mandate to promote the sustainable
management and development of fisheries and aquaculture [152]. With the following
establishment of local, community-based Beach Management Units (BMUs) in the
late 1990s, the regulators aimed to enhance the participation of the fishers’ commu-
nities in the surveillance and enforcement of the fishing rules [65, 157]. Today, there
are BMUs at most landing sites of the lake which provide information and enforce
the regulations. In Kenya, fishers must be registered at the local BMU to land and
sell the catch. The BMUs are obliged to report illegal fishing practices, but often
omit to do so. Furthermore, they are subject to practices of corrupt fisheries offi-
cers, and they are occasionally involved in conflicts with village governments [152].
While the BMUs successfully reduced the use of poison and dynamite fishing and
lead to an increase in the efficiency of the fisheries through knowledge exchange,
their overall effectiveness is contested [65, 157].

The regulation of the Nile perch fishery is in the form of restrictions of the inputs
(legal fishing gears) and outputs (minimum catch size and the slot size for industrial
processing) [65, 80]. There are no quotas or restrictions on the number of boats [78].
Fishers have to pay a small annual fee (approximately 20 US dollars, equivalent to
the gross revenue from one to two days of fishing), but apart from that, there is no
entry restriction [65]. For gill nets, the minimum legal mesh size is 5” in Kenya, 6”
in Tanzania and 7” in Uganda, respectively, and for longline hooks, the sizes 4-9 are
legal1 [122]. The minimum catch size is 50 cm and the slot size range is 50-85 cm
[157, 124].

The rules are enforced through visits at landing sites and patrols on the lake.
Fishing officers carry out patrols on the lake and inspect landing sites with random
sampling of vessels. If a violation is detected, the illegal gear is destroyed, the catch
is confiscated, and the fishers may be fined [65]. This direct enforcement is intended
to deter illegal gear use as fishers would incorporate the monetary damage from

1To each longline hook size, a number is assigned, with the main sizes ranging from numbers 4
to 14 [122, 80]. Smaller numbers indicate larger hooks.

13



2 Overview of the Nile perch fishery

the risk of detection and punishment into their decision about (non-)compliance.
In practice, however, the result is infrequent, but harsh enforcement that leads to
the destruction of fishers’ livelihoods and to serious conflicts between fishers and
officers. Therefore, the approach is criticized for creating limited deterrence at a
high societal cost [109, 157, 29, 156]. Subsidizing legal gears instead of the detect-
and-punish approach might be an alternative [47].

Despite the regulation of fishing gears, there is still vast non-compliance around
Lake Victoria, which has various reasons, primarily the wish for better catches and
higher income [29].

2.4 Previous modeling approaches

With regard to the population structure, the models of the Nile perch fishery at Lake
Victoria can be classified into single compartment models [60, 195], stage models
that distinguish between juvenile and adult Nile perch [57, 146] and models with an
age structure [105, 153] or size structure [59, 199]. With respect to the number of
species, one can distinguish between single species models [105, 59, 60], predator-
prey models [195, 199] and ecosystem models like Ecopath with Ecosim (Ewe) [57,
146, 144] or Atlantis [153, 155].

Several studies in the recent years have built and analyzed ecosystem models of
Lake Victoria [144]. The two leading ecosystem model frameworks are EwE [30] and
Atlantis [73], which comply with the idea of ecosystem-based fisheries management
(EBFM) [118, 142]. A study from 2017 assessed the usage of the two leading ecosys-
tem models EwE and Atlantis in the Great African Lakes and found that half of
the 14 EwE models were built for Lake Victoria, but (until then) no Atlantis model
had been developed [142]. Of the EwE models, only four included an extension of
the steady state Ecopath model with the Ecosim component to derive predictions
of different management options. None of the models included the spatial compo-
nent Ecospace and only one of the Lake Victoria models studied a period after the
year 2000 [57], and this one was criticized for ecologically unrealistic outputs due to
inappropriate parameter estimates [107, 56].

In the meantime, the first Atlantis ecosystem model for Lake Victoria has been
developed [153]. It is the first end-to-end whole ecosystem model for the lake, being
spatially resolved into 12 areas, including 38 functional groups and four fishing
fleets, and the simulation running from 1985 to 2015. The dynamics are captured
by differential equations which are solved by a simple forward difference scheme
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2.4 Previous modeling approaches

[73]. It includes the biological processes of consumption, production, migration,
predation, recruitment and mortality, among others. The parameters are initially
tuned simultaneously in such a way that no functional group goes extinct, and, in a
second step, to reproduce the biomass and catch observations across time. After the
validation, the model was used to simulate various fishing scenarios and found that
reducing the harvest of the main prey species (haplochromines) would result in the
best ecosystem performance, providing the highest yield at minimal socio-economic
cost [155].

However, for many of the parameters in the EwE and Atlanis models, there are no
measurements available. These parameters have to be estimated and, with various
heuristic checks, one seeks to reduce the risk of inaccurate parameter values. The
complex nature of the whole-ecosystem models like EwE and Atlantis implies the
difficulty to calculate how the uncertainty of the model parameters translates to
the uncertainty of the output results. Using multiple ecosystem models for the
same scenarios and comparing the results can, to some degree, reduce the potential
defects of each single model. A comparison between EwE and Atlantis models under
several fishing scenarios showed that the direction of change (increase/decrease) in
the abundance of major harvested groups was in agreement, but the magnitude
of the change revealed substantial differences [145]. Therefore, using structurally
different models and comparing the results is key to giving robust policy advice.

Studies that explicitly model the dynamics of the economic component are rather
seldom. A study from 2009 combined a Nile perch growth model (however, without
size or age structure) together with a harvest and cost function to find the optimal
path of fishing effort over time and to estimate the optimal effort, harvest and rents
[9]. They find that a 40% reduction in effort (number of vessels) would increase the
harvest by 10% and the economic rents by 227%. An Atlantis study [155] simulates
six alternative scenarios of fishing effort with size selective gears, but without explicit
adaptation of individual gears.
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Part I

Size structured model of the Nile
perch fishery
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3 Biological model

3.1 Why use a size structured model?

When one designs a model for a fish population, one has to find the most appropriate
way to represent the population, while requiring the model to be mathematically
tractable, numerically solvable and still able to capture the characteristic variables
that determine how the population will evolve over time. Size structured models,
which belong to the more general class of physiologically structured models, offer
a mechanistic description of the processes of feeding, growth, predation, mortality,
reproduction, spawning and hatching and, quantitatively, the rates at which the
processes take place. The size of the fish determines which other organisms it can
eat, by which predators it is attacked, how many eggs a female lays, and to which
fishing gears the fish is susceptible. The model assumes that size (wet weight) is the
determinant trait variable, this means that fish of the same size behave in the same
way. Thus we have the following assumptions of the biological model:

Assumptions of the biological model

1. The development of the population can be derived from the growth and
death rates of individual fish.

2. Each fish has a bio-energetic budget that is supplied from its food and
spent on standard metabolism, activity, assimilation, growth and repro-
duction.

3. The rates of growth, predation mortality and reproduction can be de-
rived from the rates of predator-prey interactions and from the bio-
energetic budget of the fish.

4. The rates scale with the size in the form of a power-law relationship.
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Weight, rather than age, proved to be the most convenient variable for the for-
mulation of the model for the following reasons. First, the revenue from selling fish
is connected to the weight, not the age of the fish. While there are tables of the
per-kg price of fish of each weight class, no one pays for a fish dependent on its age.
Second, while in most surveys the weight or length of the fish is measured, age is
(if at all) much more complicated to measure and surely not possible remotely (like
the weight in the hydroacoustic surveys). Third, length and weight can be easily
converted into one another with a robust and common conversion formula, whereas
the conversion between size and age requires already a model of the growth (e.g.
the van Bertalanffy growth equation). Additionally, size/weight structured models
are frequently used for fish populations [15, 117, 43, 44, 93, 116, 112, 115, 170, 169,
113, 27, 114], including Nile perch [59, 199] 1.

3.2 Biological processes

3.2.1 Growth

Larger fish can search a larger volume for food and thus have a higher (maximum)
ingestion rate. Observations show that the maximum ingestion rate scales as a
power-law function of weight with the exponent being around 3/4 (Fig. 3.1), which
also holds for the maximum consumption [2].

A fish receives energy from consumption, which is then is invested into stan-
dard metabolism, activity, reproduction and growth. What is left after standard
metabolism, assimilation losses and activity is called the ”available energy”. We
assume that this energy also follows a power-law function in the form

C(w) = ACw
n (3.1)

with fish weight w, the metabolic exponent n and some coefficient AC . The power-
law form and its exponent can be understood through the following considerations.
The food has to be assimilated through the surfaces of the digestive tract. The
surface of a cube or a ball would scale quadratic with its length, therefore like

1To augment the robustness of the conclusions, we have also built and simulated an age structured
model in the form of a discrete matrix population model, including an optimization of the
fishing pattern to maximize the net present value of yield over a time period of 30 years, which
demonstrated the superiority of sparing small fish, in qualitative agreement with the results
from this thesis (not shown here).
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Figure 3.1: The maximum ingestion rate as a function of the body weight for a wide
range of fish species (gray points) and other marine organisms (black
points). The dashed line is the power-law relationship (fit) of all points,
the solid white line has exponent 3/4. Adapted from [2].

∝ w2/3 with the weight w of the object. However, the surface of the digestive
tract is strongly folded which increases the exponent. Data show that the exponent
n = 3/4 conforms best with data, making it the ”canonical value” of the metabolic
exponent [8]. Dependent on the availability of food in the ecosystem, only some
fraction, called the feeding level, of the maximum consumption is actually achieved.
The consumed energy is invested also into standard metabolism, assimilation losses
and activity, such that the available energy is a fraction of the consumption rate.
For the moment it is only relevant that the scaling ∝ wn is also valid for the available
energy.

For juveniles that do not reproduce yet, we assume that the available energy is
invested into somatic growth. Therefore, the juvenile growth rate is

gJ(w) = Awn (3.2)
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with the metabolic exponent n from (3.1) and the growth parameter A that depends
on the availability of food in the ecosystem and on the investments into activity and
metabolism.

Mature fish tend to invest a certain fraction of the body weight into reproduction.
Let ψm(w) denote the probability that an individual with weight w is mature, then
the energy available for growth is, on average:

gbp(w) = Awn − ψm(w)kw, (3.3)

where the parameter k is a coefficient of the reproduction investment. This model
distinguishes between the two phases in the fish life before and after maturation
with the transition determined by the maturation function ψm(w). Therefore this
model is a ”biphasic growth model” [2]. As derived in [2], the fraction invested into
reproduction k = AW n−1

∞ is related to the growth parameter and the asympototic
weight W∞, therefore the biphasic growth rate can be re-formulated:

gbp(w) = Awn

(
1 − ψm(w)

(
w

W∞

)1−n
)
. (3.4)

Later the results from the biphasic model will be compared to the van Bertalanffy
(vB) growth curve [188]


dL(t)

dt
= K(L∞ − L(t))

L(t0) = 0,
(3.5)

where L is the length of the fish, L∞ the asymptotic length, t0 the time of zero
length and K the curvature parameter. This differential equation has the solution

L(t) = L∞
(
1 − e−K(t−t0)

)
. (3.6)

The length-at-age curve describes a deterministic, density independent life history,
where K measures the curvature of the length-at-age function and L∞ the asymp-
totic length at which the growth rate vanishes. As fish start their life with a finite
size, one has to introduce the hypothetical (negative) time t0, where the fish would
have zero length. The van Bertalanffy growth formula is used frequently, also for
Nile perch [196]. Later it is shown that the growth curve which emerges from the
growth rate (3.4) is not identical to the vB growth curve, but reproduces its shape.
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3.2 Biological processes

Figure 3.2: The van Bertalanffy growth curve connects the length of a fish to its age.
Here the curve for Nile perch with the parameters from Table 3.1.

3.2.2 Reproduction

During the lifetime, fish become mature, but not all fish mature at the same size.
Therefore one measures the likelihood that a fish with weight w is mature. An
example of the maturation curve is provided in Fig. 3.3. We adopt the common
assumption that there are always enough males to fertilize the eggs such that the
reproduction is only limited through the eggs that are laid by the females. The
maturation curve is modeled through the likelihood ψm(w) that a female is mature:

ψm(w) = 1
1 +

(
w

wm

)−κ (3.7)

where wm is the weight at which the likelihood is 50% and the exponent κ = 5
determines the steepness of the maturation curve.

As mentioned before, the investment into reproduction is proportional to the
weight, so the average investment is ψm(w)kw. The investment is transformed into
egg weight with the reproductive efficiency ϵegg, such that the relative reproductive
output (egg weight divided by spawner weight) of a female with size w is

Regg = ϵeggk = ϵeggAW
n−1
∞ . (3.8)
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Figure 3.3: The percentage of mature males (filled circles) and females (empty cir-
cles) of Nile perch in Lake Kyoga from measurements between 1978 and
1982. Arrows indicate the length at 50% maturity. From [160].

The spawning stock biomass of the population is the expected value of the biomass
of the mature fish in the stock:

SSB(t) =
∫ W∞

w0
wψm(w)u(w, t)dw, (3.9)

where u(w, t) is the number density of individuals with weight w at time t. Then
the total reproductive output (weight of eggs) is

Begg = ReggSSB, (3.10)

which contains

Negg = 1
w0
ReggSSB (3.11)

individuals eggs, where where w0 is the average egg weight. The fact that only
females lay eggs, while the SSB is calculated from both males and females, is
compensated for in the numerical value of ϵegg.

3.2.3 Recruitment

In fish population models, it is often assumed that most processes of growth and
mortality are density independent [26]. This means that the rates do not depend on
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3.2 Biological processes

the number of individuals in the population2. If the population is larger or smaller,
the rates stay still the same. This presupposes that the individuals act independently
of each other and do not compete for resources, shelter or prey in a way that would
influence the growth rate or the mortality rate [190]. Density dependence, on the
contrary, means that the growth rate or the mortality rate is influenced by the
number of fish in the population (the population size). To simplify the modeling
of fish populations, it is common to assume that the density dependent processes
are concentrated in one phase of the life (typically the early stage) and only in that
stage somatic growth and natural mortality are influenced by the population size.
This assumption seems to be valid in large habitats (like large lakes and marine
systems), while in small lakes, density dependent regulation can also occur late in
life [6].

The first phase in life, where the mortality is strongly influenced by the density
of individuals, is called the recruitment phase. The fish that survive are called
”recruits” or ”recruited fish”. During the recruitment phase, it is assumed that
the fish compete strongly and that the mortality increases with a higher density of
individuals. This means that a smaller proportion of fish survives if more eggs are
laid (and fertilized). Conversely, if the number of fertilized eggs is reduced (e.g. by
a reduced number of spawning adults), the density dependent mortality is also lower
due to a reduction in competition, consequently the number of surviving recruits is
reduced less strongly. In this way, the density dependent mortality ”compensates”
for the reduction in the spawning stock, therefore the density dependence is referred
to as ”compensatory” [26].

There are various shapes that are used for the recruitment function (a list can be
found in [92]). One of the most common is the Beverton-Holt recruitment function
which has two parameters: the ”shape parameter” α of the slope of the recruitment
function in the origin that describes the coefficient of proportionality between eggs
and recruits for low densities, and secondly, the ”scale parameter” β that determines
that maximal recruitment [45]. If the number of fertilized eggs tends to infinity, the
number of recruits goes to the ratio α/β. The functional form of the Beverton-Holt
recruitment is R = αSSB

1+βSSB
, where SSB denotes the spawning stock biomass.

Assuming that a fraction ϵR would survive in the density independent case, the
”shape parameter” is α = ϵRRegg/w0. Defining the maximum recruitment propor-

2In general, the numbers per volume are relevant (therefore the term density dependence), but
for a lake with a well-mixed population, numbers and density are equivalent.
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tion α/β as Rmax, the Beverton-Holt recruitment function can be re-written as

RBH(SSB) =
RmaxϵR

Regg

w0
SSB

Rmax + ϵR
Regg

w0
SSB

. (3.12)

Figure 3.4: Recruitment survival probability decreases with the number of eggs due
to competition (compensatory density dependence, top). The process is
modeled in the form of a Beverton-Holt recruitment function, where the
(absolute) recruitment (number of recruits) converges toward the max-
imum recruitment (bottom). Curves from the model with parameters
from Table 3.1.

3.2.4 Mortality

Individual fish experience various forms of mortality. They can die from being eaten
by other fish (predation mortality), from being harvested (fishing mortality) or from
other natural causes, e.g. dying of age (senescent mortality). Fishing mortality is
the technical term used in the biological modeling, which simply represents the
consequences of harvesting from the perspective of the fish population. The fish
killed from fishing (if not discarded) constitute the harvest (also called catch or
yield) which is the prime variable in bio-economic modeling.
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3.3 Size spectrum

As most fish die from predation or fishing and only very few ones from mere age
or other deceases, the main model does not include other causes of mortality besides
fishing and predation. To test the robustness of the results, however, also a model
with a senescent mortality is simulated.

From considerations of the community size spectrum [7], it can be shown that
the predation mortality scales like µp(w) ∝ wn−1 With the introduction of a new
parameter, the physiological mortality a, the predation mortality reads [2]:

µp(w) = aAwn−1. (3.13)

For the cases with a senescent mortality, two different shapes are used: First,
increasing linearly with weight ,

µs = 2w
W∞

, (3.14)

and second, a hyperbolic shape,

µs(w) = αs

a† − age(w) , (3.15)

where αs ∈ {1, 3} parametrizes the strength of the mortality, a† = 16yr is the maxi-
mum age [181] and age(w) the age at weight w, respectively. As little is known about
the senescent mortality of Nile perch, we set the parameters to produce roughly re-
alistic values. The hyperbolic senescent mortality has the purpose that the integral
of the mortality up to any age below the maximum age is finite, but it diverges at
the maximum age, which will be used in Chapter 6 for the mathematical proofs.

3.3 Size spectrum

The size structure of a population is a function of length or weight that describes
how many fish of each size there are in the population. It can be represented in
numbers or as biomass contribution. The number spectrum indicates how many
fish of the population have a specific size. As the size dimension is continuous, the
respective quantity is the number density u(w), such that the number of fish with
weight between w1 and w2 is

∫ w2
w1
u(w)dw. If multiplied with weight, the number

spectrum turns into the biomass spectrum. We give the definition of two basic
concepts (for a glossary with detailed explanations, see [183]).
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Size structure

Definition 3.1. The size structure of a population is a function of size (length,
weight) and it describes how frequent the fish of each size appear in the pop-
ulation. It can be represented in numbers or as biomass contribution. In a
continuous setting, it is technically a density: numbers (or biomass) divided
by the width of the size bin.

Size spectrum

Definition 3.2. The size spectrum is the diagram that displays the size struc-
ture of a population: the number density as a function of size (weight). When
it shows the biomass density, it is called a biomass spectrum.

Later it will be useful to consider the quantity called cohort biomass. In the
equilibrium, the distribution of cohorts over size is identical to the development of
one cohort over time [50]. If the survival probability from birth to size w is given
by P (w), then the biomass of one cohort at weight w is [2]

Bcoh(w) = P (w)w. (3.16)

3.4 Parameters

The parameters are informed from biological studies, official landings statistics and
catch assessment surveys [102]. Limnological data, length frequency assessments,
grow parameters estimations and catch assessment surveys have been conducted
over the years around LV [105, 149]. Here we explain the biological parameters used
in the simulations (Table 3.1). The length-weight conversion of Nile perch in LV,

w = cLb, (3.17)

was established in [103] with the parameters c = 0.0042, b = 3.26. The van Berta-
lanffy growth constant comes from [196], the age-at-zero-length from [69]. The
asymptotic weight and the weight at maturation come from [199]. The growth co-
efficient is calculated from the life history parameters according to (B.7). The adult
mortality M is calculated using the formula from [165] with K and L∞. The phys-
iological mortality is hard to measure directly, but there are two ways to estimate
it: First, from the life history parameters, second from theoretical feeding consid-
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erations (see Appendix B.2). As the estimates from the two ways disagree (0.244
and 0.522, respectively), but the first estimate is more closely related to measur-
able parameters of Nile perch, we use a = 0.3 as standard throughout the thesis,
and additionally we test how the results would change with a ∈ {0.2, 0.3, 0.4, 0.5}.
Furthermore, we calculate the sensitivity of results with respect to a (section 7.4).

Table 3.1: The species-specific standard parameters used in the model simulations,
if not stated otherwise.

parameter value explanation source

c 0.0042 length-weight-coefficient [103]
b 3.26 length-weight-exponent [103]
K 0.22 van Bertalanffy growth constant [196]
t0 -0.37 van Bertalanffy age-at-zero-length [69]
W∞ 60,000 g asymptotic weight [199]
L∞ 156.6 cm asymptotic length from W∞

wmat 4400 g weight at maturation [199]
ηm 0.0733 relative maturation size wmat/W∞

A 13.02 growth coefficient (B.7)
M 0.39/yr adult mortality [165]
a 0.3 physiological morality model standard (see text)

Table 3.2: The species-independent parameters used in the model simulations from
[4].

parameter value explanation

n 0.75 metabolic exponent
ϵegg 0.22 reproductive efficiency
w0 0.001 g egg weight
ϵR 0.03 recruitment efficiency
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4.1 Open access fishery

A fish stock without access restrictions is a common pool resource with a rival, but
non-excludable good: Each fish can only be caught by a single fisher (rival), but
it is not possible to prevent fishers from catching fish (non-excludable) [34]. These
properties are captured in the concept of an open access fishery that is defined by
three characteristics.

Open access fishery

Definition 4.1. A fishery is called open access if it fulfills the following prop-
erties [166].

1. The fishery is exploited by a large number of independent fishing ‘firms’.

2. There are no impediments to entry into or exit from the fishery.

3. There are no property rights over the resource in situ, i.e. the fish in
the water.

The first two conditions are contained in the standard perfect competition model,
while the third property is characteristic of the open access situation and is connected
to the fact that the fish are spatially mobile within the lake.

In the Nile perch fishery, there are approximately 40,000 vessels targeting Nile
perch [122], acting independently without the existence of monopolistic firms, there-
fore the first condition is fulfilled for LV. There is no restriction on the total number
of boats and apart from a license fee there is no entry impediment. The annual
license fee is not a serious impediment as it is around 20 US dollars, corresponding
to the gross revenue from one to two days of fishing [65]. In addition, at LV, there
is no scheme in place that would assign property rights to individual boat owners,
therefore LV can be effectively considered an open access fishery.
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The consequence is that the exploitation of the resource forms an externality,
where the individual fishers do not incorporate the stock externality of their activities
- the reduction in the resource level - into their economic decisions [110]. This
situation would lead to the dissipation of all rents, as has been famously derived
by Gordon [81] and Scott [178] and popularized as the ”tragedy of the commons”
by Hardin [90]. The individually rational agents act collectively in a way that can
eventually bring about the destruction of the resource, in this case the collapse of
the fish stock.

A common solution to mitigate the stock externality is the allocation of individual
transferable quotas (ITQ). The owner of the ITQ has the right to harvest a specified
quantity of the stock, and the right is divisible and transferable across the resource
users [34]. At LV, there is no quota scheme implemented, and it is not among
the realistic options in the range of policies that are currently broadly discussed
among the LV managers. Due to the weak institutional power, no entity could
currently implement and enforce an ITQ scheme. Rather the realistic and widely
discussed policy options focus on restrictions of the fishing gears and techniques,
together with protected areas or closed seasons. The analysis of restrictions on the
legal gears requires an understanding of the size selectivity of the gears which is
developed in the following sections.

4.2 Size selectivity

Two notions of overfishing can be distinguished. ”Recruitment overfishing” describes
a situation where the fish are harvested before maturation such that the fraction
reaching the reproductive age is not sufficient to replenish the stock. The other
notion, ”growth overfishing” means that the fish are harvested when the growth
potential is not efficiently utilized, i.e. before they reach the economically optimal
size for harvest [50, 135]. Models without a size or age structure like the standard
Schaefer production model capture only recruitment overfishing. In order to incor-
porate both types of overfishing, the model of this thesis is size structured both on
the biological and the economic side.

In addition, this relates closely to the current and proposed regulations of the Nile
perch fishery that focus on size restrictions of the gears and the landed fish. The
size structured model is therefore suited to assess the fishery regulations of the Nile
perch fishery.
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4.2 Size selectivity

In this section, concepts around the selectivity are introduced [192, 131, 191]. We
begin with the exploitation pattern.

Exploitation pattern

Definition 4.2. The exploitation pattern is the ”distribution of fishing mor-
tality over the length or age composition” of the fish population [67].

Fishing mortality is here the technical term describing the effect of harvesting on
the fish population. The fishing mortality is a function of the size of the fish. The
size selectivity of a gear is described by the retention probability, here in the sense
of the contact selection curve1.

Retention probability

Definition 4.3. The retention probability is proportional to the probability
that a fish of size w is entangled in the net once it has touched the net. It
determines the size selectivity of a gear. Often, the retention probability is
normalized such that the maximum equals one.

The cumulative result of the retention curves in a fishery, weighted by the fre-
quency and effectiveness of each gear, is the ”exploitation pattern”, also, typically
if normalized, it is called ”fleet selectivity”.

Gear selectivity, fleet selectivity, yield and income

Definition 4.4. The gear selectivity ψj
F (w) is the retention probability of a

specific gear j (e.g. a gillnet with a particular mesh size or a longline with
a particular hook size). The fleet selectivity ψF (w) is the sum of the fishing
selectivities of all gears uses in the fishery, weighted by the frequency Ej and
catchability qj of each gear.

ψF (w) =
∑

j

Ejqjψ
j
F (w) (4.1)

1Because of the lack of detailed data, we assume that the availability (which part of the fish
population is available to a gear) and the avoidance (whether fish avoid a gear when they are
close to it) is independent of the fishing gear. Consequentially, there is no need to differentiate
between the ”contact-selection-curve” (relative probability that a fish is captured once it has
touched the gear), the ”available-selection-curve” (relative probability that a fish is captured if
it is available) and the ”population-selection-curve” (relative probability that a fish from the
population is captured) [131].
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The aggregate harvest of the vessels using gear j from a fish population u(w)
is

Y j =
∫ W∞

w0
u(w)ψj

F (w)dw. (4.2)

If ψF (w) is the normalized fleet selectivity and F the level of fishing intensity,
then the fleet induces the fishing mortality

µF (w) = FψF (w) (4.3)

on the population u(w). This leads to aggregate harvest

Y =
∫ W∞

w0
u(w)µF (w)dw (4.4)

and fishery income

I =
∫ W∞

w0
p(w)wu(w)µF (w)dw, (4.5)

where p(w) is the per-kg price of a fish with weight w.

There are two important categories of gears with respect to the shape of the
selectivity function. With gillnets, the fish get entangled in the net with their gills.
These nets only catch in a specific size range: Smaller fish can pass through the mesh
holes and can escape, while larger fish are too big to get entangled with the gills.
Therefore, gillnets belong to the gears with a unimodal selectivity curve (Fig. 4.1).
Dependent on the type, construction, employment and operation of the gears, the
peak can be broader or more narrow, which has to be determined empirically. The
selectivity curve ψGN of gillnets is modeled with a normal (Gaussian) function,

ψGN(L) = exp
(

−(L− µ)2

2σ2

)
, (4.6)

where µ is the mean and σ the standard deviation (4.6) [131]. The standard deviation
and the variance σ2 determine the width of the curve, while µ marks the point of
the largest selectivity, i.e. the peak of the selectivity function, where L is the total
length of fish.
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4.2 Size selectivity

Figure 4.1: Gillnets have a selectivity curve that is unimodal with one peak that
marks the point of highest catch probability. Smaller fish can escape
(left), while larger fish do not get entangled in the net (right). The
curve can be more narrow (black) or broader (gray) depending on the
gear specifications and the fishing methods. Adapted from [67].

In the second category, the selectivity function has a sigmoidal shape (Fig. 4.2).
Small fish escape through the mesh, while all larger fish are caught. Typically, trawl
fishing is modeled with a sigmoidal retention curve, even though also here some of
the larger fish could escape due to having a higher swimming speed than the speed
of the trawl boat [108].

For longline hooks, it is not a priori clear to which category they are most similar,
and, what is more, the selectivity depends in large parts on the bait type [80].
Therefore, for longlines, we derive the fishing selectivity only from empirical data
and do not prescribe a specific shape of the function.
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4 Economic model

Figure 4.2: The selectivity (catch probability) of trawl-like gears has a sigmoidal
shape. The transition between the non-selective range (left) and selective
range (right) can be more or less steep (black to gray). Adapted from
[67].

4.3 Bio-economic fishery model

In this section we explain the fishery model. First we briefly introduce the classic
thinking about the relationship between harvest and effort, followed by the transla-
tion to the size structured case with a gear-differentiated fishery.

4.3.1 Harvest and effort

The fishery production model determines the harvest in each period, and it depends
on two factors: First, on the resources devoted to fishing by the boat owners, which
is called fishing effort E, measured as number of boat trips (vessel-days) during the
respective period. Second, the harvest depends on the biomass S of fish in the lake
that is susceptible to the gear. Then harvest Y (also called yield or catch) is [166]

Y = Y (E, S). (4.7)
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4.3 Bio-economic fishery model

Often it is assumed that the catch is proportional to both effort and stock level,

Y = qES, (4.8)

where q is the ”catchability coefficient”. In that case, F = qE is the ”fishing mortal-
ity”, with units of 1/time. This linear2 form is also called the catch-per-unit-effort
(CPUE) production function because the value Y/E = qS is proportional to the
stock level S with a fixed coefficient of proportionality q. The assumptions behind
the CPUE production function are (1) the uniform distribution of the fish popu-
lation in the water, (2) non-saturation of fishing gears and (3) non-congestion of
fishing vessels [31].

Schaefer develops the rate of change of fishing effort, dE/dt, by assuming ”that
the incentive for new investment is proportional to the return to be expected” [176],
in other words a linear relationship between the rate of change and the profit Π =
pY −cE (revenue), which is the difference between the income I = pY (catch weight
times average per-kg price p) and the fishing cost C = cE, where c is the cost per
unit of effort [81, 176]. If one assumes that the harvest function is linear in stock
and effort, and that the costs are linear in effort, the model reads [182, 166]

dE

dt
∝ E(pqS − c). (4.9)

4.3.2 Fishery production function

Now we need to develop a fishery production function with size selective gears. To
capture the fact that the fishery is composed of vessels using different gears, we
disaggregate the fishery into sub-fleets. A sub-fleet consists of all vessels using a
particular gear. Therefore, if there are J gears (gillnets with different mesh sizes
and a generalized longline gear), there will be J sub-fleets in the model. We assume
that the hooks do not differ in their selectivity as most hook sizes produce a similar
catch distribution (Fig. 4.3). As we have no data available on the baits, the effect
of bait type is not included here. Furthermore, we assume for simplicity that all
vessels in a sub-fleet are identical in the catchability coefficient.

2Next to the linear form, Y = qES, one often encounters other forms of the harvest function like
Y = S(1 − e−qE) [33, 184], or a Cobb-Douglas function Y = SαE1−α [187, 186] or a function
with a schooling parameter d, Y = qESd [9].
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Each gear type j is characterized by the size selectivity ψj
F (w) and the catchability

coefficient cj, which summarizes the characteristics of the gear as well as the skills
of fishers. The governing variable is the number of vessels Ej (effort) of each gear j.

In addition, we assume that the fish stock is well-mixed, this means that a spatial
dimension is not included, neither is the heterogeneity of fishers in terms of location
or skills. We also assume that each vessel uses only one gear.

Going beyond the basic bio-economic models without age or size structure, Bever-
ton and Holt [16] developed a fundamental framework for the study of age structured
fish populations. In recent years, the framework has been systematically extended
and analyzed with a focus on age structures fish populations [52, 53, 45, 50, 51,
185]. For example, in the case of [185], the harvest Yt in period t is

Yt = Bχ
t Et, t = 0, 1, ... (4.10)

with an exponent 0 < χ ≤ 1 taking the role of a schooling parameter, where Et

is effort, and Bt the ”efficient biomass”, which is the fish biomass weighted by the
age-specific catchability factor. A similar approach was taken in [53], where the
harvest Ya,t of fish in age group a at time t from the sub-fleet using gear j is

Ya,t = Ba,tFa(Ej
t , E

−j
t ,m), (4.11)

where Ba,t is the biomass of fish in age group a at time t and Fa(Ej
t , E

−j
t ,m) is the

fishing mortality in that age group, dependent on the effort Ej
t of the sub-fleet j

from a gear with selectivity m and on the effort of other gears, E−j
t . The aggregate

harvest from all age classes is then

Yt =
∑

a

Ya,t =
∑

a

Ba,tFa(Ej
t , E

−j
t ,m). (4.12)

In order to find the corresponding formula for our model, we have to consider that
the model has not, like the one in [53], discrete age classes, but a continuous weight
structure with number density u(w, t) such that the number of fish with weight
between w1 and w2 at time t is

∫ w2
w1
u(w, t)dw. As a consequence of the continuous

size structure, we have to use an integral over the weight domain instead of the sum
over the age classes.

Therefore, the annual yield Yj of sub-fleet j ∈ J is the catch of all vessels in the
fleet (Definition 4.4) with the integral over the population biomass and the fishing
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4.3 Bio-economic fishery model

mortality Ejqjψ
j
F (w),

Yj =
∫ W∞

w0
Ejqjψ

j
F (w)wu(w)dw, (4.13)

where u(w) is the number density of fish with weight w. The yield is measured in
kg/yr.

The aggregate fishing mortality is then

µF (w) =
∑

j

Ejψ
j
F (w) (4.14)

and the aggregate yield of the fishery is

Y =
J∑

j=1
Yj =

∫ W∞

w0
u(w, t)wµF (w,E)dw. (4.15)

The annual income Ij of sub-fleet j is the monetary value of the annual yield, in
the unit US dollars per year,

Ij =
∫ W∞

w0
Ejqjψ

j
F (w)wp(w)u(w)dw, (4.16)

where p(w) is the per-kg price of a fish with weight w. The aggregate income I of
the fishery is

I =
J∑

j=1
Ij =

∫ W∞

w0
p(w)u(w, t)wµF (w)dw. (4.17)

The variable (operation) costs of sub-fleet j are assumed to be linear in effort,

Cj(Ej) = cjEj, (4.18)

where cj are the costs per unit of effort using gear j. The aggregate costs of the
fishery are

C =
J∑

j=1
Cj. (4.19)
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The aggregate profit of the sub-fleet j is the difference between annual income
and annual costs [166],

Πj = Ij − Cj. (4.20)

and the profit of the fishery is Π = I − C.

4.3.3 Fishers’ response

In Chapter 10, the scenario will be studied where boat owners respond to the level
of profit through entry and exit decisions. We follow the assumption in [182, 166]
that the effort will increase as long as the economic profits are positive, and that
the rate of entry into or exit from the fishery is proportional to the profit with the
coefficient k, where we use k = 10−3 in the unit vessels per US dollar.

The assumption that the boat owners of each sub-fleet adapt the number of vessels
Ej on the lake to the (aggregate) profit Πj with the rate k can be formulated as an
ordinary differential equation,


dEj(t)

dt
= kΠj(Ej(t), t)

Ej(0) = E0
j ,

(4.21)

where E0
j is the initial effort in sub-fleet j. In the simulation, Ej(t) is, after each

time step, rounded to integer values (numbers of vessels).

4.4 Fisheries reference points
In fisheries management, reference points play a crucial role as guide for sustainable
harvesting. There are two types: target reference points that act as management
goals, and limit reference points that can be understood as thresholds beyond which
the stock is depleted in such a way that the fishery is at risk. Each type can have
one of two forms: (1) level of biomass or spawning stock biomass (SSB) and (2) level
of the exploitation, i.e. the fishing mortality [2]. In general, both types are involved
in the analysis of the state of a given stock. If, for example, the target biomass
level is reached, but the fishing mortality exceeds the limit reference point and is
expected to do so for a substantial time, then the biomass will become impaired
with time and will finally fall below the biomass limit reference point. Probably
the most famous reference point is the maximum sustainable yield (MSY). Here
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the fish stock is regarded as a production facility where one seeks to maximize the
steady state output (yield). As Andersen [2] pointed out, ’sustainable’ in ’maximum
sustainable yield’ actually rather means ’sustained’, i.e. in steady state, and does
not necessarily refer to other, broader concepts of sustainability.

Maximum sustainable yield (MSY)

Definition 4.5. Maximum sustainable yield is the ”maximum average annual
catch that can be removed from a stock over an indefinite period without
having any negative effect on resource potential production under prevailing
environmental conditions.” [124] The fishing mortality that leads to MSY is
referred to as FMSY .

Fishing has in two aspects negative impacts on the stock. First, it depletes the
current stock, and second, it reduces the stock’s reproduction and thus the future
stock. The recruitment connects the first effect to the second. In many cases,
however, only the first effect is considered. This is equivalent to an analysis of the
’yield per recruit’, Y/R, i.e. the yield normalized by recruitment. If the recruitment
of a stock is not impaired by fishing, it is a legitimate approximation to the actual
steady state yield, but it is not applicable if the recruitment is notably affected by
fishing.

The idea of maximum sustainable yield also translates to size structured models of
the fishery, but here the situation becomes more complicated: not only the amount
of biomass extracted from the stock matters - but also which fish are harvested,
i.e. the size distribution of the harvest. Therefore, an optimal situation implies
that both the level of fishing effort and the target size of fish are chosen optimally
[49]. As the fishery consists of a range of gears, it is possible to optimize the effort
(number of vessels) of each sub-fleet.

4.5 Gear selectivity

The size selectivity was derived in the following way (see [80] for more details). The
data sources are the catch assessment surveys (CAS) from 2005-2015 and the frame
surveys (FS) 2010 and 2020. In the CAS, for each boat the weight of the catch
and the number of fish in the catch are reported. After filtering the data for vessels
that only use one type of gear and one size, the dataset contains 16,549 observations
for gillnets and 11,225 for longline hooks. For each vessel, the average weight and
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length of the fish are calculated. Then, for each gear type and size, the distribution
of the average length is calculated.

Assuming that the fishing operation represents a Poisson process [132] and further
assuming that the average length scales proportional to the mesh size, the param-
eters can be fitted to the distribution, for each gear type and size [80]. For hooks,
the data show that the average length does not scale with the hook size (Fig. 4.3,
compare also to [139, Figs. 5 and 6]). From the size distribution of the catch and
the gear selectivity of gillnets, the supposed size distribution of the fish in the lake
is calculated. Then the selectivity of hooks can be derived directly from the catch
distribution without requiring an assumption on the shape of the hook selectivity
curve. The catch distribution of longline hooks is shown in Fig. 4.3.

Figure 4.3: The (frequency) distribution of the average length (cm) of the catch per
boat, for gillnets 3” to 8” (left) and for hooks of size 7-14 (right). From
[80].

The results, the selectivity curves, are depicted in Fig. 4.4 and given in Table 4.1.
The peak of the selectivity curve of 3” gillnets is at 28.6 cm and for larger mesh sizes
it increases in proportion3.

It is important to note that the smallest legal mesh size, 5”, has the peak of the
selectivity curve at 47.7 cm, i.e. outside of the slot size range 50-85 cm. This means
that even strict adherence to the gear regulation would produce a significant share
of the catch being below 50 cm. In fact, 56.6% of the area under the selectivity curve

3It is important to mention that the selectivity curve is not necessarily identical to the size distri-
bution of the catch, in fact they disagree in general. They are related by the size distribution
of the fish population in the lake. For a uniform distribution (equal numbers of all sizes in
the lake), selectivity curve and catch distribution are identical. For a population that has a
decreasing population density (more small than large fish), the peak of the catch is distribution
is, in general, to the left of the peak of the selectivity curve (cf. also [175]).
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are below 50 cm for 5” gillnets (Table 4.2). For gillnets with 7”, only 5.3% of the
area are below 50 cm.

Figure 4.4: The fishing selectivity curves of gillnets 3”-8” (thin) and longline hooks
(bold). The kink at the left of the longline curve comes from sparse data
(very few small fish in the catch of longlines).

4.6 Fleet selectivity

From the selectivity curves of individual gears, one can construct the fleet selectivity
using the frequency of each gear in the fishery. Using the frame surveys and the rel-
ative fishing power of gillnets versus longlines [80], the fleet selectivity is constructed
for 2010 and 2020. Fig. 4.5 depicts the aggregated fishing selectivity for longlines
and gillnets as well as the fleet selectivity, together with the respective prediction of
the catch distribution. Note that other gears like beach seines or small seines are not
included here. The selectivity of 2020 is referred to as the ”current fleet selectivity”
in the following text.

From 2010 to 2020, the fraction in the catch from gillnets which is below 50 cm
has decreased (Fig. 4.5, middle row). This is the result from a shift to a more
prominent use of larger gillnets. Whether this comes from the strict enforcement in
Uganda [137, 138, 156], the increased demand for large Nile perch through the fish
maw (swim bladder) trade [12, 14, 161], or from other causes is still to be discussed.
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Table 4.1: Selectivity parameters of gillnets derived from CAS data from 2020 [80].
Values are the mean µ and standard deviation σ of a normal distribution.
The values of the mesh sizes 4”-7” were determined from the data, the
other values (3”, 3.5”, 7.5”, 8”) from a linear extrapolation both of µ and
σ.

Gillnet mesh size µ (cm) σ (cm)
3 ” 28.6 4.7
3.5” 33.4 5.5
4 ” 38.2 6.3
4.5” 42.9 7.1
5 ” 47.7 7.9
5.5” 52.5 8.7
6 ” 57.2 9.5
6.5” 62.0 10.3
7 ” 66.8 11.1
7.5” 71.5 11.9
8 ” 76.3 12.6

There was also a change in the size composition of the longline hooks, but this has
not lead to a major change in the selectivity or the catch distribution because of the
limited effect of the hook size on the selectivity [80].

Table 4.2: The fraction of the area under the selectivity curve that is below 50 cm,
for gillnets 3”-8” and longline hooks.

Gear Fraction below 50 cm (%)

GN 3” 100.0
GN 4” 95.7
GN 5” 56.6
GN 6” 19.3
GN 7” 5.3
GN 8” 1.4
LL 10.2
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Figure 4.5: The aggregated selectivity of longlines (top left), gillnets (middle left)
and the fleet selectivity (bottom left) of the Nile perch fishery in the years
2010 (yellow) and 2020 (blue). The right column shows the predicted
catch distribution. The bottom left figure shows that the empirical fleet
selectivity peaks at around 60.2 cm (2659.2 g). From [80].

4.7 Parameters

The fishery in the model is assembled from a (generalized) longline hook and from
six gillnets with mesh sizes ranging from 3” to 8” in steps of 1”. The frequency of
each gear comes from the frame survey 2016 [122]. The gears with half-integer mesh
sizes were assigned to the next lower integer gear (i.e. 3.5” to 3” etc.). Gears below
3” and above 8” are added to the numbers of 3” or 8” gears, respectively. There
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are 39,551 vessels in total that target Nile perch [122]. We take the ratio between
gillnet and longline vessels from [80] which makes 23,566 gillnet boats and 15,985
longline boats.

Table 4.3: Numbers of vessels in the standard model derived from [122, Table 2].
gear numbers

GN3 3,182
GN4 1,562
GN5 4,307
GN6 10,627
GN7 2,295
GN8 1,594
LL 15,985

Total 39,552

Larger gillnets (≥ 5.5”) typically use motorized vessels, while the paddle boats
dominate for small mesh sizes [137]. As there are only integer-valued mesh sizes in
the model, we assume that the boats with gillnets ≥5” are operated with motors,
the ones <5” with paddles. We assume that all vessels with longline hooks are
motorized.

The catchability factors qj of the gears were chosen such that, for each gear, the
simulated catch-per-unit-effort (CPUE) agrees with the empirical CPUE [121]. We
assume that motorized gillnets vessels have twice the CPUE of vessels with paddles
[137].

The crew wage is 17.36 USD per day (or 6335.76 USD/yr), the remaining part
is the revenue of the boat owner [125, 162]. The fuel costs (for the boats with
motor) are 14.2 USD per day, the bait costs (only for boats with longline hooks)
are 37.5 USD per day4. We assume the opportunity costs at 2000 USD/yr, which is
around twice the minimum wage for unskilled labor in Kenya [162]. The price per
kg of Nile perch (beach value) depends on the size of the fish (Table 4.4). The data
come from a survey among Tanzanian fishers collected in March 20215.

For the standard estimate of biomass stock and yield we use the most recent year
for which both values are available, which is 2015. The biomass is B = 683.18 kt
(1 kt=106 kg) [120], and, because of the large fluctuation, for the yield, we use the
average of 2014 and 2015, which is Y = 208 kt [121]. Using the model simulation of

4A survey among a limited number of Ugandan fishers found that bait costs are in the range
17-58 USD (S. Gómez, pers. comm., Oct. 2022). We use the median of that range.

5S. Gómez, pers. comm., 05.10.2022
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Table 4.4: Fish price of Nile perch in US dollar per kg.
fish weight (kg) price per kg (US-Dollar)
<1.0 0.83
1.0 to 2.5 2.086
2.5 to 5.0 2.504
5.0 to 10.0 2.921
10.0 to 15.0 3.338
>15.0 3.548

the current fleet selectivity, maximum recruitment Rmax and ”pristine” biomass B0

(biomass in steady state without fishing) are calculated (Table 4.5).

Table 4.5: Standard values of biomass, catch and recruitment in the model.

parameter value explanation

B 683.18 kt stock biomass
Y 208 kt annual yield
Rmax 6.904·109/yr maximum recruitment
B0 3788.4 kt pristine stock biomass
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5.1 Fish population measurements

Bottom trawl surveys

The fisheries research institutes (NaFIRRI, TAFIRI and KMFRI) and the Lake Vic-
toria Fisheries Organization (LVFO) regularly conduct bottom trawl (BT) surveys,
where measurements at up to 80 stations are taken. The stations are distributed
over various depth ranges with a focus on the shallow locations [102, 130]. At each
station, a 30 minutes sample is measured using the bottom trawl technique (Fig. 5.1).
The operation procedures prescribe a mesh size of 25 mm, and in more recent studies
a finer cod end (4 mm) was added [120]. The catch rates (in kg/h) are interpreted
as an indicator of the true population density at the sampling location. The speed
of the boat during the sampling is typically between 2.5 and 3.5 knots1. The trawls
are fully selective for fish from about 10 cm to 40 cm [108]. It is subject to a current
discussion whether the trawl technique has a lower selectivity for fish larger than
40 cm because they might be capable of escaping the trawl as their swimming speed
is comparable to (or higher than) the trawl speed. Indeed, the number of large
specimen in the trawl surveys is very low [130]. For more information, the reader is
referred to [108].

Catch assessment surveys

The Catch assessment surveys (CAS), regularly conducted by the LVFO, provide
information about the catch, the catch distribution, the effort, and the catch per
unit of effort (CPUE). From 2005 to 2015, fifteen CAS were carried out in Kenya,
Tanzania and Uganda at 143 landing sites - which are approximately 10% of the
landing sites at the lake [121]. The CAS surveys provide monitoring of the fisheries
to the partner states within the East African Community (EAC).

1R. Kayanda, pers. comm., Sep. 2020
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Frame surveys

The harmonized fisheries data collection conducted by EAC through the LVFO
also includes also bi-annual Frame surveys (FS). The results indicate the effects
of the fisheries management and provide baseline data for fisheries planning and
development, including the number of landing sites, of fishers, and of gear and
craft combinations by target species [122]. Craft/gear combinations are randomly
sampled at each location by the field enumerator in harmonized data forms. For
each species and each craft-gear combination, the CPUE (kg per boat per day) is
estimated.

Hydroacoustic surveys

A widely used, non-destructive method to estimate stock densities in marine and
freshwater systems are hydroacoustic (HA) surveys [66]. The method uses under-
water sound to detect and measure the size and the distribution of fish (Fig. 5.1).
Its advantage is that the surveys can easily cover large spatial scales with a high
area covered per time, a fast data acquisition and high cost effectiveness while being
non-destructive [120]. The difficulty of the method lies in its limited capacity to
measure fish close to the surface and the bottom and in differentiating the species.
Therefore, it is often combined with bottom net hauls to gather species-specific
information. At Lake Victoria, the acoustic surveys are part of routine stock as-
sessments to survey large areas of the lake at high spatial resolution. The surveys
sample four groups: Nile perch, dagaa, haplochromines and Caridina nilotica (a
freshwater prawn). Nile perch, a strong acoustic target, is detected as individual
fish (’single targets’, i.e. not in schools) by echo counting, which measures individual
fish ≥10 cm total length (TL) [123, 120]. The acoustic survey tracks (’transects’)
are done with the research vessel at a constant speed around 9 knots in deep (>40 m
depth), coastal (20-40 m) and inshore (<20 m) strata. Raw data are processed with
the software Echoview [61]. The weight of single targets is estimated by the target
strength (TS) to weight/length relationship developed in [103].

5.2 Data processsing

Most empirical spectrum measurements are designed as length measurements, e.g.
bottom trawl and hydroacoustic surveys. For example, the result from the hydro-
acoustic surveys is a list of single targets with the respective length. The spectrum in
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Figure 5.1: The bottom trawl technique (top) and the hydroacoustic method (bot-
tom) are used to conduct fish population surveys. From [35, 97].
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the length domain is, however, not identical to the spectrum in the weight domain,
as they are related by the non-linear relationship (3.17) which must be considered
in the analysis and interpretation of length-frequency data [64, 63].

In the Appendix A.6.2, it is demonstrated how the density can be converted from
length to weight. Our algorithm to process the length frequency measurements has
two steps.

1. The single target data files are read and converted to a histogram with 1 cm
bins (centered), defining how many single targets had a length in that bin.

2. The centered length values are converted to the corresponding weight (3.17)
and the number density from the length domain to the weight domain (A.53).

The algorithm was validated against the established method LBNbiom [64].
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6 Mathematical analysis of the size
structured population model

6.1 Time dependent model

In Chapters 3 and 4, we have described and explained the mathematical, size
(weight) structured model of the Nile perch fishery (Fig. 6.1) that includes the
biological processes of growth, reproduction, recruitment and mortality , and which
is connected to the fishery through the fishing mortality µF (4.3). Mathematically,

Figure 6.1: The model describes the life history of individual fish in a population
that grow, mature, reproduce and die.

the model has the form of a first order hyperbolic partial differential equation equa-
tion with a non-local, non-linear boundary condition. We can write the model in
the following form of the McKendrick-von Foerster equation [129, 71]:

53



6 Mathematical analysis of the size structured population model

Time dependent model



(i) ∂
∂t
u(w, t) + ∂

∂w
(g(w)u(w, t)) = −µ(w)u(w, t) on [w0,W∞) × [0, T ],

(ii) u(w, 0) = u0(w) on [w0,W∞),

(iii) u(w0, t) = 1
g(w0)

ϵ0SSB(t)
1+ϵ1SSB(t) on [0, T ],

(iv) SSB(t) =
∫W∞

w0
β(w)u(w, t)dw.

(6.1)

Here, the population density of weight w at time t is denoted u(w, t), such that
the number of fish at time t with weight in [w1, w2] is

∫ w2

w1
u(w, t) dw. (6.2)

The first equation (6.1)(i) describes the ’transport’ of fish along the weight dimen-
sion. The life of a fish starts at the minimum weight w0 and the fish grows toward
the (finite) maximal weight W∞

1. The domain [w0,W∞) ends at the point where
the growth function vanishes, such that g(W∞) = 0. We restrict ourselves to the
finite time range [0, T ] as we will always consider limited time horizons of the fishery
managers. We set the maximum age a† in line with the biological estimate as 16
years [181]. Individual fish grow with growth rate g(w) from (3.4) dependent on the
weight w at age a:

dw(a)
da

= g(w(a)). (6.3)

In the appendix A.3 (Lemma A.15), we prove that the maximal weight W∞ is
asymptotically approached, but not reached in finite time. The total mortality,

1Biologists tend to label the parameter W∞ that appears in (3.4) the ”asymptotic weight”. This
comes from the derivation of formula (3.4), where, for the juvenile growth function, the param-
eter is indeed the asymptotic weight where the growth rates vanishes. In the biphasic model,
this is however not exactly right because in the formula, the function of maturation probability
approaches one but never takes exactly the value one for finite size. Therefore, the parameter
W∞ in (3.4) is not any more exactly the ”asymptotic” weight, where g(w) = 0. It is true
that the difference is so small that for all biological or numerical purposes one makes no big
mistake when interpreting the parameter from (3.4) as asymptotic weight. Yet to be precise in
the mathematical analysis and at the same time to avoid needless confusion, we distinguish in
this chapter between the true asymptotic weight W∞, where g(W∞) = 0, and the parameter
in (3.4), and therefore denote the parameter from (3.4) as W†, and keep the label ”asymptotic
weight” in the other chapters for the parameter appearing in (3.4).
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6.1 Time dependent model

both biological and from fishing, µ(w), is also dependent on the weight w. The
population density at t = 0 is given by the initial population density u0 (6.1)(ii).
The Dirichlet boundary condition (6.1)(iii) determines the recruitment u(w0, t) of
newborn fish into the population at time t. The recruitment is a function of the
spawning stock biomass SSB(t), which is the aggregate biomass of the mature fish
in the population (6.1)(iv), where the function β(w) denotes the expected fecun-
dity2 of a fish with weight w. The parameters ϵ0 and ϵ1 = ϵ0

Rmax
in (6.1) capture

the reproductive efficiency, where the biological quantity Rmax is the maximum re-
cruitment (see Section 3.2.3). The relationship between the spawning stock biomass
and the recruitment has the shape of a Holling type II functional response, which
is a concave function that starts linear in the origin and then converges toward the
finite cap ϵ0

ϵ1
= Rmax for SSB → ∞ (Fig. 3.4).

In this section, we will proceed in the following way: First, we show that, for
the weight of an individual fish, the solution w(a) to (6.3) exists uniquely in [0,∞)
(Lemma 6.1). Then we show that we can apply the theorems from [96], summarized
in Proposition A.12, to proof that there exists a unique and regular solution to (6.1).
To do so, we first have to show that (6.1) can be transformed to an equivalent system
based on age instead of weight. Then, from the solution to the age-based system
guaranteed by Proposition A.12, we can deduce the existence of a unique solution
to (6.1) with analogous properties.

Lemma 6.1. The growth curve w(a) of the individual fish is the solution to the
ordinary differential equation (ODE)


dw(a)

da
= g(w(a)) = Aw(a)n

(
1 − 1

1+(w(a)
wm

)−κ

(
w(a)
W†

)1−n
)

in [0,∞),

w(0) = w0.

(6.4)

Given the parameters3 A, n, κ, wm ∈ (0,∞), 0 < w0 < W† < ∞, the ODE has a
unique, continuously differentiable solution w(a) in [0,∞).

Proof. The absolute value of the derivative of g(w) has an upper bound in [0,∞).
The weight W∞ is defined as the solution of g(w) = 0, thus g(w) > 0 for w ∈
[w0,W∞). Hence w(a) is a monotonous function, moreover it is bounded by W∞

due to the fact that g(W∞) = 0. Furthermore, as g(w) consists of products and
sums of continuously differentiable functions, it follows that g(w) is continuously

2The fact that only females produce eggs is accounted for in the parameter ϵ0.
3For W†, see the footnote on the previous page.
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6 Mathematical analysis of the size structured population model

differentiable for w ∈ [w0,W∞). Additionally, the derivative is bounded:

|g′(w)| = |nAwn−1

1 − 1
1 +

(
w

wm

)−u

(
w

W†

)1−n


+ Awn
− u

w

(
w

wm

)−u

(
1 +

(
w

wm

)−u
)2

(
w

W†

)1−n

+ Awn 1
1 +

(
w

wm

)−u

1 − n

w

(
w

W†

)1−n

|

≤ |nAW n−1
∞ |

+ | − uAwn−1
(
wm

w0

)u

|

+ |(1 − n)Awn−1|

≤ L < ∞.

(6.5)

with some L < ∞. Therefore g(w) is also Lipschitz continuous in [w0,W∞]. Due to
the Picard-Lindelöf theorem, there exists a local (in a) unique solution to (6.4). This
solution may be extended to [0,∞) by a continuation argument. The expression on
the right-hand side of the first equation in (6.4) is continuous, thus the solution to
(6.4) is continuously differentiable.

Remark 6.2. Note that the fact that g(w) ∈ C∞([w0,W∞]) implies

w(a) ∈ C∞((0,∞)). (6.6)

Remark 6.3. As W∞ is not reached in finite time (Lemma A.15) and therefore

w′(a) = g(w(a)) ̸= 0 (6.7)

in [0,∞), it follows that w(a) is invertible to a function w−1 : [w0,W∞) → [0,∞)
with

w−1(w(a)) = a ∀a ∈ [0,∞). (6.8)

In the next step, we show now that there is a unique mapping between the repre-
sentation of the population in the weight and in the age domain, respectively.
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6.1 Time dependent model

Lemma 6.4. The representation of the population in the age domain is related to
the weight domain by

p(a, t) = u(w(a), t)dw(a)
da

= u(w(a), t)g(w(a)). (6.9)

The regularity of p(a, t) translates to u(w, t).

Proof. The growth rate g(w) from (6.4) is continuously differentiable with w′(a) =
g(w(a)) ̸= 0 in [0,∞). Then, as is shown in the appendix A.6.1, the representations
of the population in the age domain, p(a, t), and in the weight domain, u(w, t), are
related by (6.9). Because g(w) is continuously differentiable with w′(a) = g(w(a)) ̸=
0 in [0,∞), the regularity of one representation translates to the other.

Now we show that (6.1) can be transformed to a system of equations of the
corresponding age density p(a, t), that fulfills the requirements of Proposition A.12.
Then, a unique solution exists to the system (A.1) and, correspondingly, this yields
the existence of a unique solution u(w, t) to (6.1) with the same regularity. We make
two assumptions.

Assumptions

• We assume that the initial population density belongs to L∞ and non-
negative,

u0 ∈ L∞((w0,W∞)), u0 ≥ 0. (6.10)

• We assume that predation mortality µpred and fishing mortality µF are
continuously differentiable and bounded,

µpred, µF ∈ C1((w0,W∞)), 0 ≤ µpred, µF ≤ µ+ < ∞ in (w0,W∞).
(6.11)
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6 Mathematical analysis of the size structured population model

Existence of a unique non-negative solution to the time dependent model

Theorem 6.5. Under the assumptions (6.10) and (6.11), there exists a
unique, non-negative solution to (6.1). If in addition, the compatibility condi-
tion between the initial age density and the fertility function,

u(w0, 0) = 1
g(w0)

ϵ0SSB(0)
1 + ϵ1SSB(0) , (6.12)

is fulfilled, then the solution is regular.

Proof. First, we transform (6.1) to the age domain through the transformation from
u(w, t) to p(a, t) from Lemma 6.4. This yields the equivalent system for p(a, t):



(i) ∂
∂t
p(a, t) + ∂

∂a
p(a, t) = −µ(w(a))p(a, t) on [0, a†) × [0, T ],

(ii) p(a, 0) = p0(a) on [0, a†),

(iii) p(0, t) = ϵ0SSB(t)
1+ϵ1SSB(t) on [0, T ],

(iv) SSB(t) =
∫ a†

0 β(w(a))p(a, t)da.

(6.13)

Here p(a, t) : [0, a†] × R+ → R+ is the population density dependent on age a and
time t with maximum age a† < ∞. We will now show that this system corresponds
to (A.1). Obviously, (6.13)(i) and (A.1)(i) are equivalent, as well as (6.13)(ii) and
(A.1)(ii), respectively. To see that (6.13)(iii) is the equivalent to (A.1)(iii), we define

Φ(SSB) = Rmax

Rmax + ϵ0SSB
, (6.14)

R0 = ϵ0

ϵ̃
, (6.15)

β̃0(a) = ϵ̃β(w(a)), (6.16)

where we have introduced the dimensionsless parameter ϵ̃ to assure the normalization
in (A.4)(ii). With these definitions, the conditions (A.2) are fulfilled. Finally, it can
directly be seen that (6.13)(iv) corresponds to (A.1)(iv) if we set γ̃(a) = β(w(a))
and identify S with SSB.

We will now show that each of the five conditions of (A.4) are fulfilled for our
model, such that we can apply Proposition A.12 to solve (6.13).
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6.1 Time dependent model

(i) β̃0 ∈ Cb((0, a†)), 0 ≤ β̃0(a) ≤ β̃+ a.e. in [0, a†]:
As 0 < β(w(a)) = w(a)ψm(w(a)) = w(a)

1+(w(a)
wm

)−κ < ∞ in [0, a†] with w(a) being

continuously differentiable (Lemma 6.1), the condition is fulfilled.

(ii)
∫ a†

0 β̃0(a)Π0(a)da = 1:
Π0(a) = e−

∫ a

0 µ̃(σ)dσ is the baseline survival probability. Note that we can set
the normalization parameter ϵ̃ > 0 arbitrarily. If we define

I =
∫ W∞

w0
wψm(w) 1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃dw (6.17)

and set

ϵ̃ = 1
I
, (6.18)

then the condition is fulfilled as it holds:
∫ a†

0
β̃0(a)Π0(a)da = ϵ̃

∫ W∞

w0
wψm(w) 1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃dw = ϵ̃I = 1, (6.19)

where the integrals were transformed using the relation dw
da

= g(w).

(iii) p0 ∈ L∞(0, a†), p0(a) ≥ 0 a.e. in [0, a†]:
This condition is fulfilled by assumption (6.10).

(iv) µ̃ ∈ L1
loc([0, a†)); µ̃(a) ≥ 0 a.e. in [0, a†];

∫ a†
0 µ̃(a)da = +∞:

We show that the condition is fulfilled for the case with the senescent mortality

µ(w(a)) = µpred(w(a)) + µF (w(a)) + µs(w(a)) (6.20)

with

µs(w(a)) = αs

a† − a
(6.21)

with some αs > 0. This ensures that no fish lives longer than to the age
a† (indeed that all fish die before a†), because

∫ a†
0 µ̃(a)da = +∞, while still

maintaining that on each compact subset of [0, a†), the integral over the mor-
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6 Mathematical analysis of the size structured population model

tality is finite, such that µ̃ ∈ L1
loc([0, a†)). Thus (6.20) with (6.21) assures that

condition (iv) is fulfilled4.

(v) γ̃ ∈ Cb((0, a†)), 0 ≤ γ̃(a) ≤ γ̃+ a.e. in [0, a†]:
As γ̃ = β(w(a)) and 0 < ϵ̃ < ∞, conditions (i) implies also condition (v).

As all the conditions in (A.2) and (A.4) are fulfilled, Proposition A.12 guaran-
tees that there exists a unique, non-negative solution to (6.13). From Lemma 6.4,
together with Remarks 6.2 and 6.3, it follows that a unique, non-negative solution
u(w, t) to the original system (6.1) exists. If the compatibility condition (6.12) is
fulfilled, then the solution is regular (cf. Remark A.13).

6.2 Steady state model

Next we will consider the steady state of the system (6.1), which reads as follows:

Steady state model

The steady state model is

i) d

dw
(u(w)g(w)) = −µ(w)u(w) on [w0,W∞)

ii) u(w0) = 1
g(w0)

ϵ0SSB
1+ϵ1SSB

,

iii) SSB =
∫W∞

w0
β(w)u(w)dw

(6.22)

with the steady state density u(w), and the variables and parameters from
(6.1).

Note that the spawning stock biomass SSB is no more time dependent. Then we
can make the following statement:

4In the simulations we will not always use the senescent mortality. As we can set αs arbitrarily,
we can always guarantee that the effect of the additional mortality is sufficiently small and late
in life such that it has no noticeable impact on the simulations in the time range [0, T ] of (6.1).
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6.2 Steady state model

Solution to the steady state model

Theorem 6.6. The steady state model (6.22) has a unique non-trivial solu-
tion, if and only if ϵ0I > 1. In this case, the solution is given by

 u(w) = Rmax

(
1 − 1

ϵ0I

)
1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃ on [w0,W∞)

I =
∫W∞

w0
wψm(w) 1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃dw

(6.23)

Otherwise if ϵ0I ≤ 1, there is only the trivial solution u(w) ≡ 0.

Proof. Under the assumptions of Theorem 6.5 one can apply Proposition A.14, which
guarantees that the system (A.1) has a unique non-trivial steady state solution, if
and only if R0 > 1. The uniqueness of the solution is shown using Picard iterations
of the birth rate function from the renewal equation [96]. As demonstrated in
Theorem 6.5, this implies also a solution of the steady state (6.22) of the u-system
(6.1). In the proof of Theorem 6.5, it was also shown that the condition (A.4)(iv)
yields ϵ̃ = 1

I
, therefore the condition for the existence of the non-trivial solution

reads R0 = ϵ0
ϵ̃

= ϵ0I > 1.
We guess the solution (6.23) and show that inserting (6.23) into (6.22)(i) solves

the equation for ϵ0I > 1:

d

dw
(u(w)g(w)) = Rmax

(
1 − 1

ϵ0I

)
d

dw

(
e

−
∫ w

w0
µ(w̃)
g(w̃) dw̃

)
= Rmax

(
1 − 1

ϵ0I

)(
e

−
∫ w

w0
µ(w̃)
g(w̃) dw̃

)(
−µ(w)
g(w)

)
= −µ(w)u(w)

(6.24)

The prefactor Rmax

(
1 − 1

ϵ0I

)
is determined by the boundary condition (6.22)(ii).

It can be calculated by first inserting the general solution of (6.22)(i),

u(w) = u(w0)g(w0)
1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃ (6.25)

into (6.22)(iii), yielding

SSB =
∫ W∞

w0
β(w)u(w, t)dw

= u(w0)g(w0)
∫ W∞

w0
wψm(w) 1

g(w)e
−
∫ w

w0
µ(w̃)
g(w̃) dw̃dw = u(w0)g(w0)I.

(6.26)
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Inserting that into (6.22)(ii) yields an implicit equation for u(w0):

u(w0) = 1
g(w0)

ϵ0u(w0)g(w0)I
1 + ϵ1u(w0)g(w0)I

= u(w0)
ϵ0I

1 + ϵ0
Rmax

u(w0)g(w0)I
. (6.27)

If u(w0) ̸= 0, this is equivalent to

1 + u(w0)
g(w0)
Rmax

ϵ0I = ϵ0I (6.28)

The solution of that equation is

u(w0) = 1
g(w0)

Rmax

(
1 − 1

ϵ0I

)
. (6.29)

and it exists if ϵ0I > 1. Otherwise, if ϵ0I ≤ 1, it follows from A.14 that the unique
solution is the trivial solution, u(w) ≡ 0.

6.3 Perturbations of the fleet selectivity

As we are interested in size based policies, an important question is whether a
perturbation of the fleet selectivity (increasing the fishing mortality at some ŵ)
would increase or decrease the aggregate yield of the fishery in steady state. In
other words, does the additional yield from more intensive fishing at size ŵ outweigh
the negative effect of the decrease in the population, and hence of less yield at the
larger sizes w > ŵ? In this section we will develop a criterion from which it can
be predicted whether increasing the exploitation of fish with size ŵ would increase
or decrease the aggregate, steady state yield of the Nile perch fishery. First, we
will develop the condition for finite increments, and second, for infinitesimally small
increments, in the sense of small perturbations of the fleet selectivity. The second is
helpful to policymakers as they are often interested in gradual changes around the
current fishing pattern due to the lower risk of small changes.

Let us assume the policymakers can determine a size ŵ and get the fishers by
some policy to increase the fishing intensity around that size ŵ. For the purpose of
our consideration we can think of the limit case of perfect selectivity where fishers
can perfectly target a single fish size. Then the policymaker’s regulation would
bring the fishers to increase the fishing mortality at size ŵ. Let the mortality rate
F̂ determine the scale (amount) of the increase such that the additional term has
the unit of a mortality rate, 1/yr. Let us model this with a δ-distribution, such that
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6.3 Perturbations of the fleet selectivity

the fishing mortality receives an additional summand F̂ δ(w − ŵ) so that it reads:

µF (w) = FψF (w) + F̂ δ(w − ŵ) (6.30)

Let us define the yield dependent on F̂ as Ŷ (F̂ ). The general yield equation is

Y =
∫ W∞

w0
wu(w)µF (w)dw (6.31)

and thus the yield in status quo is

Y0 := Ŷ (0) =
∫ W∞

w0
wu(w)FψF (w)dw (6.32)

Introducing the notation for the yield within the size range w ∈ [w1, w2] as

Y
[w1,w2]

0 :=
∫ w2

w1
wu(w)FψF (w)dw, (6.33)

we can state the following improvement condition.

Improvement condition

Proposition 6.7. If the fishing mortality around the weight ŵ is increased by
F̂ according to (6.30), then the new situation (in steady state) provides more
yield than previously, if the following condition is fulfilled,

F̂ u0(ŵ)ŵ > (1 − e− F̂
g(ŵ) )Y [ŵ,W∞]

0 . (6.34)

Proof. Let us define the survival probability from w0 to w:

Π(w) = e
−
∫ w

w0
µ(σ)
g(σ) dσ

. (6.35)

Let this survival probability in status quo (before the additional mortality) be de-
noted by Π0(w).

The population density is related to the survival probability by

u(w) = R

g(w)Π(w). (6.36)
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Therefore the population density in status quo is

u0(w) = R

g(w)Π0(w). (6.37)

We re-write (6.32):

Y0 = Ŷ (F̂ = 0) =
∫ W∞

w0
w

R

g(w)Π0(w)FψF (w)dw. (6.38)

The new population has the fishing mortality (6.30) and thus the survival probability
from (6.35) becomes now

Π̂(w) = e
−
∫ w

w0
µ(σ)+F̂ δ(w−ŵ)

g(σ) dσ =

Π0(w), if w < ŵ

Π0(w)e− F̂
g(ŵ) , if w > ŵ.

(6.39)

Inserting this result into the yield equation (6.31) provides the new yield:

Ŷ (F̂ ) =
∫ W∞

w0
wu(w)µF (w)dw =

∫ W∞

w0

R

g(w)Π̂(w)wFψF (w)dw

=
∫ ŵ

w0

R

g(w)Π0(w)wFψF (w)dw + u0(ŵ)ŵF̂ +
∫ W∞

ŵ

R

g(w)Π0(w)e− F̂
g(ŵ)wFψF (w)dw.

(6.40)

To understand the result, we compare it with the status quo yield, conveniently split
at ŵ.

Y0 = Y
[w0,ŵ]

0 + Y
[ŵ,W∞]

0

=
∫ ŵ

w0

R

g(w)Π0(w)wFψF (w)dw +
∫ W∞

ŵ

R

g(w)Π0(w)wFψF (w)dw
(6.41)

Comparing (6.40) with (6.41), it becomes clear that the new yield obeys the
equation

Ŷ (F̂ ) = Y
[w0,ŵ]

0 + F̂ u0(ŵ)ŵ + e− F̂
g(ŵ)Y

[ŵ,W∞]
0 . (6.42)

The first term simply states that the yield of sizes below w stays the same as these
are not impacted by the additional mortality. The second term F̂ u0(ŵ)ŵ is the
yield that comes from the additional fishing mortality at size ŵ. And the third term
e− F̂

g(ŵ)Y
[ŵ,W∞]

0 states that the yield of sizes larger than ŵ is decreased by a factor
e− F̂

g(ŵ) which is the impact of fishing at size ŵ leading to a decrease in the population
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6.3 Perturbations of the fleet selectivity

density of all sizes w > ŵ. The higher the additional mortality value F̂ , the stronger
is the effect on the population. A low value of g(ŵ) means that the fish of size ŵ
have a slow growth rate, indicating that they spend more time being subject to the
additional fishing mortality, which implies a stronger impact on (decrease in) the
population and thus the yield.

Now we can derive the general condition whether the perturbation of the fleet
selectivity, i.e. the additional fishing mortality, increases or decreases the yield,
compared to the status quo, by comparing (6.41) and (6.42).

Ŷ (F̂ ) − Y0 = F̂ u0(ŵ)ŵ + (e− F̂
g(ŵ) − 1)Y [ŵ,W∞]

0 (6.43)

This provides the improvement condition.

Remark 6.8. The improvement condition depends only on the size ŵ, the strength
of the additional mortality F̂ and the growth rate g(ŵ).

In order to illustrate the answer to the question, ’which sizes should be targeted
more strongly?’, also in another way, let us think of a sole-owner of the fishery who
could decide to increase (or decrease) the fishing mortality at any size ŵ by an
infinitesimally small value. To analyze the impact on the total yield, let us consider
the derivative of Ŷ (F̂ ) in (6.42) with respect to F̂ around the status quo F̂ = 0, as
a function of the target size ŵ.

∂Ŷ (F̂ )
∂F̂

∣∣∣∣
F̂ =0

= u0(ŵ)ŵ − 1
g(ŵ)

∫ W∞

ŵ
u(w)wFψF (w)dw (6.44)

= u0(ŵ)ŵ − 1
g(ŵ)Y

[ŵ,W∞]
0 (6.45)

We see that the derivative is positive if the benefit from getting more yield at size
ŵ outweighs the loss from decreased yield of sizes larger than ŵ.

The numerical value of the derivative (6.45) is depicted in Fig. 6.2 for the standard
Nile perch parameters (see Tables 3.1 and 3.2). For easier applicability in the context
of Lake Victoria policies, we have transformed weight w to length L, using (3.17).
The derivative is negative for a target size below Ld = 67.19 cm. This means the
total yield would decrease if the sizes below Ld were targeted more strongly. Corre-
spondingly, the derivative is positive for sizes larger than Ld = 67.19 cm. Targeting
these sizes more strongly would increase the yield. It is important to remember that
the derivative provides a ’local’ information in the sense that it is valid for small
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changes around the current fishing mortality. Larger changes require the use of the
general improvement condition (6.34).

Figure 6.2: Derivative of yield with respect to the additional fishing mortality F̂ from
(6.45), in dependence of the size ŵ, here converted to the equivalent fish
length L using (3.17) for easier comparison to policies. The numerical
value of the derivative is calculated for the standard parameters (see
Tables 3.1 and 3.2). The gray shaded area indicates the slot size range
50-85 cm. The derivative is positive for L > 67.19 cm.
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Part II

Application to the regulation of the
Nile perch fishery
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7 Model validation and sensitivity
analysis

With this chapter we begin the application of the size structured model to analyze
the regulation of the Nile perch fishery. We start by validating the model against
the van Bertalanffy growth curve and the measured population size structure.

7.1 Numerical procedure

The equilibrium of the McKendrick-von Foerster equation (6.22) is numerically
solved with the following scheme. Starting from (6.22) and defining the flux

ϕ(w) = g(w)u(w), (7.1)

one arrives at the following equation for the flux in steady state:

d lnϕ(w)
dw

= −µ(w)
g(w) (7.2)

with the boundary condition

ϕ(w0) = R. (7.3)

This can directly be solved, and the solution is

u(w)
R

= 1
g(w) exp

(
−
∫ W∞

w0

µ(σ)
g(σ)dσ

)
= 1
g(w)Pw0→w, (7.4)

where u(w)/R is the number density per recruit, which is necessary to calculate
common quantities like the ”yield-per-recruit”. In the last step of the equation,
Pw0→w denotes the survival probability from w0 to w.
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Solving for the survival function involves a numerical discretization scheme with
the following steps [5, 2]:

1. The range [w0,W∞) is discretized into m logarithmically distributed weight
classes wi,

wi = exp (ln(w0) + (i− 1)∆), where

∆ = ln(W∞) − ln(w0)
m− 1 .

(7.5)

In the simulations, the default value m = 1000 is used.

2. At each grid point, the mortality µ(wi) is calculated and then the physiological
mortality ai:

ai = µ(wi)
g(wi)

wi (7.6)

3. The survival probability is approximated

Pw0→wi
≈ exp

−∆
i∑

j=2
aj−1

 =
i∏

j=2
e−∆·aj−1 . (7.7)

4. The population density can then be calculated from (7.4)

The scheme is implemented in the library fishsizespectrum [3] in R [173].

7.2 Validation

7.2.1 Growth curve

The numerical solution of the growth equation produces the curve of weight-at-
age. This is compared to the classical van Bertalanffy growth curve for empirical
parameters of Nile perch (Fig. 7.1). For young ages, both curves are flat because
young fish are small and have a low growth rate. After around one year, the slope
becomes steeper and reaches a maximum, where the growth rate is maximal due to
large food consumption while still having moderate energy losses from reproduction
and other sources. At higher ages, the curves become flatter again, until they
converge to the asymptotic weight, where weight gains and losses are balanced.
The biphasic growth curve predicts a lower weight until around 2.5 years and after
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around 4 years. The van Bertanlanffy curve has in its construction the parameter
t0 that is the interpreted as the “age at zero length” and has a negative value, such
that the individuals’ growth curve actually starts before birth. The biphasic growth
model avoids this construction.

Figure 7.1: Van Bertalanffy growth curve (gray) vs integration of the differential
equation dw/dt with biphasic growth (black).

This can also be illustrated with length instead of weight. Fig. 7.2 depicts the
length-at-age curve with the van Bertanlanffy equation and the integration of the
biphasic growth model. Partly, the difference comes from the fact that in the van
Bertalanffy equation, fish start at t = 0 with a positive weight due to the negative
value of “age at zero length”, t0.

7.2.2 Size spectrum

To understand how the model functions and predicts the catch, the fishery was
simulated in the steady state model for different levels of peak fishing mortality
with the empirical fleet selectivity (Fig. 7.3) from [80]. As predicted from theory
and observations [2], the biomass spectrum is similar to a flat spectrum in the
unfished part of the spectrum (solid curves in Fig. 7.4). The upper black curve
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Figure 7.2: Van Bertalanffy growth curve (gray) vs integration of the differential
equation dw/dt with biphasic growth (black). The left figure uses t0 =
−0.37yr [69], the right figure t0 = 0.

Figure 7.3: Empirical fleet selectivity (2020). The gray-shaded rectangle marks the
legal slot size (50-85 cm).

represents the simulation with peak fishing mortality F=0.5/yr (i.e. the value of the
fishing mortality at the maximum of the selectivity curve). At around 600 g, the
fishing pressure becomes stronger, and the biomass spectrum begins to decline. It
would further decline until and beyond the peak of the selectivity at 2000-3000 g.
However, parallel to the increase in selectivity, fish start to maturate in this range.
As they become mature, they start to reproduce and put energy into reproduction
which leaves less energy for growth, therefore the growth rate slows down. The fish
“pile up” around the point of 50% maturity (70 cm or 4348 g). This counteracts
the fishing pressure and leads to an increasing population density in the range 3000-
8000 g. At around 8000 g, the growth rate has become so small that fish spend much
time in each “weight bin”. Therefore, the mortality rate exceeds the growth rate
and thus the spectrum decreases strongly.

As will be shown later, the results are sensitive to the uncertain parameter of
physiological mortality a for which no direct experimental data exist. Therefore,
we include the range of uncertainty of a, assuming a to be drawn randomly from
a normal distribution with mean µ = 0.3 and standard deviation σ = 0.1. The
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Figure 7.4: Bottom trawl survey (2019, dashed) compared to simulations of Nile
perch biomass spectrum (solid) for F=0.5 (upper solid curve) and 1.5/yr
(lower solid curve). The dark gray range indicates the sensitivity to the
uncertainty in the value of physiological mortality (see text). The light
gray shaded rectangle marks the legal slot size (50-85 cm).

gray uncertainty range in the figures shows the range between the 25th and 75th
percentile from 100 simulations with a drawn from the normal distribution.

For a higher fishing mortality, the biomass density decreases faster the in fished
range, i.e. the slopes are more negative. At F=1.5/yr, the fishing mortality coun-
teracts the effect of fish “piling up” around maturation, resulting in a strictly
monotonously decreasing curve. The bottom trawl survey is shown for compari-
son (dashed in Fig. 7.4). It has a small negative slope until around 50 cm (1451.75 g,
begin of the gray rectangle that spans the range 50-85 cm), where it suddenly breaks
down. At this point, two effects would coincide. First, the actual decreasing pop-
ulation density and, secondly, the impaired selectivity of bottom trawl surveys for
larger fish. Currently, the exact selectivity of bottom trawl surveys, in particular
the exact point at which the selectivity drops, is not studied well enough, but future
studies could provide the selectivity curve and allow to disentangle the two effects.

In Fig. 7.5, the three simulations are compared with the hydroacoustic survey and
the spectrum estimate from the CAS. The hydroacoustic curve shows a different
behavior pattern that the other curves. For sizes above 200 g, the slope is more
negative than for CAS and the simulations. This could relate to the TS-weight
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Figure 7.5: Hydroacoustic survey (2019, dotdash) and catch assessment survey
(CAS, 2020, dotted) compared to simulations of Nile perch biomass spec-
trum (solid) for F=0.5 (upper solid curve) and 1.5/yr (lower solid curve).
The dark gray range indicates the sensitivity to the uncertainty in the
value of physiological mortality (see text). The light gray shaded rect-
angle marks the legal slot size (50-85 cm).
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conversion (see section 5.1). The conversion could be the reason for a steeper slope.
However, this needs further investigation and a re-analysis of the raw data of the
hydroacoustic surveys. The curve of the CAS estimate is similar to the simulations
until around 3000 g and afterwards it drops steeply. However, in the CAS data there
were very few observations of larger fish (above 75 cm or 5444 g) from gillnets and
few above 85 cm (8188 g) from longline hooks. Because of the few data points of
larger fish, the right part of the CAS spectrum has lower confidence.

Table 7.1 shows the sum of squared residuals (SSR) (cf. Appendix A.4) between
the logarithm of the simulated biomass spectrum (F=1.0/yr) and the respective
survey (normalized, linearly interpolated, logarithmic, 141 data points each) over
the range 200 g-2500 g where all are comparable. A value of zero would indicate
perfect agreement, and the larger the disagreement, the larger is the SSR. We use
the logarithm because otherwise the SSR would be biased towards the lower part
of the size range, as the biomass density drops over multiple orders of magnitude.
The results confirm that the simulation, the bottom trawl survey and the catch
assessment survey agree mutually, while the hydroacoustic survey describes a very
different population structure.

Table 7.1: Sum of squared log-residuals over 200 g-2500 g between the simulated
biomass spectrum (F=1.0/yr) and the respective survey (normalized, lin-
early interpolated, 141 data points).

survey SSR-log

BT2019 3.385286
HA2019 51.16156
CAS2020 2.979331

In Fig. 7.6, all three surveys are compared in one figure to the model simu-
lation with F=1.0/yr. The observations described above also apply here. The
(dis)agreement between the surveys can also be seen clearly, when depicting the
length instead of the weigh density (Fig. 7.7). To corroborate the results, we also
compare the slopes. The model predicts that in the part of the spectrum where fish-
ing does not contribute to the total mortality, the slope should follow a power-law
relation (for the parameters, see Chapter 3).

B(w) = const · w−a−n+1 (7.8)
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Figure 7.6: Three surveys together with the model simulation: bottom trawl survey
(2019, dashed), hydroacoustic survey (2019, dotdash) and catch assess-
ment survey (CAS, 2020, gray) compared to simulations of Nile perch
biomass spectrum (solid) for F=1.0.

Figure 7.7: Left: bottom trawl survey (2019, dashed) compared to simulations of
Nile perch biomass spectrum (solid) for F=0.5 (black), 1.0 (dark gray)
and 1.5/yr (gray). Right: hydroacoustic survey (2019, dotdash) and
catch assessment survey (CAS, 2020, gray).

76



7.2 Validation

In a double logarithmic diagram this should correspond to a linear relation, which
can be measured with a linear regression. The model would predict a straight line
with slope −a − n + 1. With n = 0.75 and the estimates of the physiological
mortality ranging from a = 0.244 to a = 0.522, this would imply a slope in the
range [−0.006,−0.272]. For each of the three surveys, the coefficients of the linear
regression (cf. Appendix A.4) are compared in the part of the spectrum where (1)
the length is smaller than 40 cm (here one can assume that the fishing mortality does
not play a major role) and (2) where the slope is negative. The second condition
is necessary because in the data of the hydroacoustic survey the number density
increases up until around 30 cm which is biologically not meaningful. Table 7.2
shows the results. The bottom trawl survey and the CAS survey are in agreement
with the predicted range, while the slope of the hydroacoustic survey is out of the
range.

Table 7.2: The linear regression results concerning the slope in the range where
the survey spectrum has negative slope and is not heavily influenced by
the fishing mortality. Table shows the slope estimate together with the
standard error (s.e.) and the residual standard error (i.e. weighted by
number of data points).

dataset range slope s.e. residual s.e.

BT2019 10-40 cm -0.141 0.026 0.072
HA2019 30-40 cm -1.086 0.057 0.019
CAS2020 10-40 cm -0.256 0.099 0.090

The residuals to the model, i.e. the difference between the (interpolated) survey
data and the model prediction is depicted in Fig. 7.8. The reason for the deviation
of the hydroacoustic survey both from the model prediction and the other surveys
is not obvious. The analysis of the HA survey involves an intricate calibration
which might be susceptible to errors. Apart from that, it is (again) visible that the
spectrum of both BT and CAS drops suddenly after around 55 cm (BT) and around
60 cm (CAS). For the CAS, the data are not so reliable here due to sparse data
for larger fish in the catch assessment survey and the BT survey has an unknown
retention function after 40 cm (see above).

Summarizing, the validation indicates that with a high probability, the model
replicates the size structure correctly because it agrees with the BT and the CAS
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Figure 7.8: Distribution of residuals after subtracting model prediction from BT
(black), HA (dark gray, bottom) and CAS (light gray, middle). For HA,
residuals have a clear trend.

spectrum in the size range where the data are accurate. The HA surveys is incom-
patible with the BT, the CAS and the simulated spectrum.

7.3 Fishing mortality

In the literature, two distinct notions of the term “fishing mortality” are in use.
Some use the term in the sense of the ratio between annual yield and biomass. It
is important to emphasize that this notion is a mortality that is averaged, typically,
over time (e.g. one year) and, more importantly, averaged across the population or
at least across a major part of the population (e.g. all adults). We could refer to
this notion as the percent (annual) removal as it is, in most cases, calculated from
the ratio of annual yield (catch) to biomass.

The other notion of “fishing mortality” refers to an instantaneous rate and it
depends, in general, on the size of the fish (e.g. in [196]). This is the notion of
mortality rate that is used in this paper. It is important to note that the values of
the two notions need not necessarily be the same or not even be similar to each other.
As the second notion, the instantaneous rate, can vary across the fish population,
some fish sizes could experience a very low or a very high mortality rate. Therefore,
for comparison, the instantaneous rate can be translated to an annual mortality
by building the ratio of annual catch to biomass. Here, the information on how
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the mortality is distributed across the population, is completely lost. If the fishing
mortality is applied equally across all fish sizes, then the two notions agree. Please
note that the mortality that appears throughout the equations of Chapter 6, is the
instantaneous mortality rate, as can be seen from its use in the McKendrick-von-
Foerster equation (6.1).

Hence, in the case of the size structured model used in this paper, the actual
fishing mortality rate is not the same for all fish, but depends on the fish size. For
the purpose of comparing various fishing levels, therefore, it is necessary to define a
reference fishing mortality. In the following this will be the “peak fishing mortality”,
defined as the instantaneous mortality rate at the size of the maximum of the fleet
selectivity curve, with the unit 1/yr.

To compare the results to estimates of the fishing mortality from the literature,
the following approach is used. Across the range of admissible peak fishing mortality
values, from F=0 to the point, where the stock collapses, at Fcrash = 5.52/yr, the
ratio between annual yield and the stock biomass is calculated (Fig. 7.9). This ratio,
equivalent to the widely used first definition of fishing mortality, and the peak fishing
mortality are in direct relation to each other - and the mapping between the two
quantities is unique in the range of admissible peak fishing mortality values. This
means that the conductor of a survey, when he would observe the simulated stock in
the reality, would interpret this yield/biomass ratio as the fishing mortality. Because
of the unique mapping, the peak fishing mortality rates of the model simulations
can uniquely be compared to conventional fishing mortality values.

With the mapping, the result of this paper - the value of FMSY under the current
fleet selectivity, FMSY = 1.015/yr (see next chapter) - can be compared to empirical
estimates from the literature and to other model simulations. In simulations of an
Atlantis and an EwE model, the fishing mortality of Nile perch (approximated by the
annual catch per biomass) was 0.312/yr (Atlantis) and 0.340/yr (EwE), respectively
[145]. This value corresponds, in our model, to a peak fishing mortality of 1.05/yr
and 1.11/yr, respectively, thus similar to our estimate. From an empirical analysis
of commercial catch samples from two Kenyan landing sites, another study [196]
estimates a fishing mortality of 0.54/yr, corresponding to a peak fishing mortality
of 1.50/yr, somewhat higher than our finding. However, the value of the study [196]
is likely to be biased, as it was derived not from the actual population in the lake,
but only from catch samples, whose size structure differs systematically, due to the
selectivity of the fishery.
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Figure 7.9: The relationship between the peak fishing mortality (an instantaneous
mortality rate) and the annual fishing mortality (yield per biomass). The
stock collapses at Fcrash = 5.52/yr.

7.4 Sensitivity analysis

The sensitivity of the results to the input parameters is evaluated by quantifying the
marginal effect of small parameter changes [171]. Two model results are considered
here as most relevant: The fishing mortality that maximizes yield, FMSY , and the
relative recruitment, which denotes the recruitment relative to the maximal possible
value, R∗ = R/Rmax.

The recruitment is a significant indicator of the state of the fish population. The
smaller the value, the greater is the impairment of the stock from fishing. A value
of R∗ = 1 means that there is no impairment at all (unfished case). Limit reference
points indicate at which fishing mortality the recruitment is impaired (e.g. at R∗ = 1

2

as used in [2]).
We calculate the sensitivity with respect to three parameters: the growth pa-

rameter A, the physiological mortality a, and the size at maturation wm. The first
two parameters can only be inferred, but not measured directly. The third param-
eter can be measured [160], but the measurement is costly, therefore it is not done
frequently.

The evaluation is done in two ways: first, the change in absolute values:

• ∂R∗

∂qi
for qi ∈ {A, a, wmat}
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• ∂FMSY

∂qi
for qi ∈ {A, a, wmat}

Second, the relative change, which can be interpreted as the elasticity of the output
variable with respect to the parameter:

• ∂R∗

∂qi

/
R∗

qi
= qi

R∗
∂R∗

∂qi
for qi ∈ {A, a, wmat}

• ∂FMSY

∂qi

/
FMSY

qi
= qi

FMSY

∂FMSY

∂qi
for qi ∈ {A, a, wmat}

The partial derivatives are approximated with the difference quotient using ∆qi =
0.01, the elasticity with ∆qi/qi = 1%. The basis parameter values are: A =
13.02g1/4yr−1, a = 0.3, wmat = 4400 g. The results are given in Table 7.3. In
each column, the largest (absolute) value is marked bold. The largest impact on R∗

comes from the parameter a, both in absolute and relative terms.

Table 7.3: Relative and absolute sensitivity of R∗ and FMSY to the parameters A, a
and wmat.

parameter (qi) ∂R∗

∂qi
(qi) qi

R∗
∂R∗

∂qi
(qi) ∂FMSY

∂qi
(qi) qi

FMSY

∂FMSY

∂qi
(qi)

A 0.00030 0.0038 0.078 1.0
a -0.049 -0.014 1.6 0.48
wmat 2.8·10−7 0.0012 2.1·10−5 0.089

For FMSY , one sees that the elasticity is largest for the parameter A and is approx-
imately one. This means that a faster growing population can tolerate a larger fishing
mortality, in almost linear proportion to the growth rate. That implies that it is difficult
to estimate both A and F simultaneously from an empirical population spectrum, as a
linear scaling of both keeps the spectrum nearly unchanged which we also observed in
the numerical simulations (not shown here). In absolute values, the crucial parameter for
FMSY is a. The table has to be interpreted in the sense that a change of 0.01 in a changes
FMSY by 1.6/yr · 0.01 = 0.016/yr. Because of the sensitivity of the results with respect
to the physiological mortality a, in future research the important role of the physiologi-
cal mortality should be considered, and more biological research and measurements are
critical to determine the value accurately.

7.5 Catch size distribution
In addition to the population spectrum, the size distribution of the catch was simulated
for three levels of fishing mortality (0.5, 1.0, 1.5/yr) which is shown in Fig. 7.10. The top
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Figure 7.10: Simulations of Nile perch biomass spectrum (top) and catch distribution
(bottom) with the empirical fleet selectivity (2020) for F=0.5 (black),
1.0 (dark gray) and 1.5/yr (gray). The gray shaded rectangle indicates
the slot size range (50-85 cm).

row shows the biomass spectrum, normalized at w = 1 mg. The bottom row of Fig. 7.10
displays the spectrum of the catch for the three levels of fishing mortality. The major part
of the selectivity curve left of the minimum legal size 50 cm reveals the non-compliance of
fishers with the size regulation.

The following aspects can be observed: First, the peak of the catch curve is not equal
to the peak of the selectivity curve, but is left of it. The reason is that the spectrum
is declining, therefore the density of fish is higher at smaller sizes. The catch, being the
product of biomass density and selectivity, is thus shifted to the left. For F=0.5/yr, where
the biomass spectrum is almost flat in the legal range and even has a positive slope when
fish pile up around maturation (70 cm), the catch curve has, next to the peak, a second
hump right of it - at the position where the biomass density has a local maximum.

Second, the peak of the catch spectrum moves further to the left with increasing fishing
intensity, from 2388.2 g (0.5/yr, black) to 1825.6 g (1.5/yr, light gray). The reason is
found in the biomass spectrum: for F=0.5/yr, the spectrum is almost flat up until around
10,000 g. For F=1.0/yr and 1.5/yr, the spectrum declines earlier, already in the range of
legal fishing, 50-85 cm. Therefore, the peak catch weight moves also towards lower sizes.

Third, the catch rates in the range up to around 4000 g increase with increasing fishing
mortality. Beyond 4000 g, however, the catch rates with 1.5/yr (light gray) are lower than
the rates with 1.0/yr (gray). The reason is: under the the higher fishing pressure less fish
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survive such that the density of fish is now so low that it is not even compensated by the
higher mortality. It is visible that a smaller fishing mortality can lead to higher catch
rates of large fish (even in absolute numbers).

A full representation of the fishery includes both the selectivity ψF (w) and the level
(intensity) of fishing, F . While the first one has been derived from the catch assessment
survey [80], the level can be estimated by the yield to biomass ratio. From yield and
biomass data from 2014 and 2015 [121, 120], the yield-to-biomass ratio is 0.304/yr, as-
suming the biomass of 2015, B=683.18kt [120]. This is similar to the results of the Atlantis
(0.312/yr) and EwE (0.340/yr) simulations in the previously mentioned study [145] and
it is lower than the value 0.44/yr, reported in [102] for the period 2005-2007. Given the
empirical selectivity in the model, the yield-to-biomass 0.304/yr ratio is achieved with a
peak fishing mortality F=1.036/yr.

The fishing level comes from fishers’ decisions on their individual effort, and can there-
fore be subject to ongoing change. To predict how the fish stock and the yield would react
to various fishing levels, the fishery is simulated for the range of peak fishing mortality
from 0/yr to 6/yr (Fig. 7.11). Initially, from 0 to 1/yr, the yield increases rapidly, as
fishing increases while the stock recruitment is not impaired yet. It is not impaired be-
cause the non-linearity buffers the additional fishing mortality, i.e. here fishing replaces
the mortality early in life which is modeled by the non-linearity. At F=1.015/yr, the
fishery reaches the maximum sustainable yield (MSY). Between 1/yr and 4.5/yr, the
yield descreases almost linearly with fishing mortality. It is remarkable that the yield
at F=2/yr is still high (around 85.2% of MSY), while the SSB has already decreased to
3.0% of the unfished state. This is possible because the recruitment is still at 98.9% and it
demonstrates the enormous effect (and potential) of the non-linearity in recruitment which
models the density-dependent effects early in life and which is particularly strong for large
fish like Nile perch [2]. At F=4.83/yr, the recruitment is reduced to 50% or recruitment
of the unfished population. Afterwards, the yield drops quickly, and at 5.52/yr, the stock
is collapsed completely.
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Figure 7.11: Steady state yield (black), stock biomass (dark gray), SSB (light gray)
and recruitment (dotted) as a function of the peak fishing mortality up
to 6/yr. The curves are normalized to the maximum.
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8 Alternative fleet selectivity
scenarios

While in the previous chapter we analyzed the actual situation of the fishery with fixed fleet
selectivity, now we turn to possible alternatives in the exploitation pattern: Whereas in the
previous chapter, only the level was free and the size selectivity was fixed, in this chapter
we try to find better shapes of the fleet selectivity. To contribute to the management of the
fishery, we orient this discussion along current proposals that are lively and controversially
discussed by the fishery managers and fishery scientists of Lake Victoria. We seek to test
and challenge the current understanding and question the narrative that harvesting should
be ”balanced” across all sizes, i.e. be proportional to the productivity at each size [147].
This would imply targeting smaller fish much stronger than larger ones. We will therefore
simulate various alternative patterns of the selectivity inspired from the current proposals.
Fishery managers want to achieve high yield without bringing the stock to deterioration
or collapse, i.e. they want to keep the stock in an equilibrium. Therefore we assess the
steady state solution and rank the scenarios by yield and income.

In the first section we test three scenarios around the current slot size regulation. In
the second section we test whether a reduction in the number of vessels using small gears
(targeting small fish) would decrease or increase the steady state yield of the fishery, which
directly connects to the concerns of managers about lower yield from sparing young fish.

8.1 Slot size scenarios
We study the effect of three alternative fleet selectivities. The study is inspired by recent
discussions about modifications of the legal fishing range. As we are interested only in how
a given fleet selectivity translates into a stock size distribution, optimal fishing mortality
(FMSY ), annual yield, and catch size distribution, we exclude, for now, the effects of the
re-distribution of fishing pressure in the respective range of legal fishing. This means that,
in each scenario, inside the respective legal range the fishing selectivity is identical to the
observed selectivity, and outside of the range it is zero. Due to the fact that the gears
are not perfectly selective, a smooth transition is implemented at the edges of the fishing
range. This helps to avoid sharp edges that would be unrealistic in the fishery setting.
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Figure 8.1: Top: empirical fleet selectivity. Second and third row: cropped fleet
selectivities (>50 cm and <85 cm). Bottom: fleet selectivity within slot
size (50-85 cm). Due to the imperfect selectivity of gears, a smooth
transition around the edge is assumed in each case.

The fishing selectivity is thus multiplied with one switching function for each edge in the
form

ψsw(L;L0) = 1

1 +
(

L
L0

)−u , (8.1)

where u = 25 determines the sharpness of the transition, L is the fish length and L0 the
position of the edge (length in cm). For the lower bound at Ll=50 cm, the selectivity was
multiplied with ψsw(L;Ll), while for the upper bound at Lu=85 cm, the selectivity was
multiplied with 1 − ψsw(L;Lu).

The four scenarios (Fig. 8.1) are:

1. empirical fleet selectivity: ψ1(w) = ψF (L(w))

2. fishing only above 50 cm: ψ2(w) = ψsw(L(w);Ll)ψF (L(w))

3. fishing only below 85 cm: ψ3(w) = (1 − ψsw(L;Lu))ψF (L(w))

4. fishing only from 50-85 cm: ψ4(w) = ψsw(L(w);Ll)(1 − ψsw(L;Lu))ψF (L(w))

The results of this section should not be interpreted as predictions about how fishers
would comply to various regulations. Rather, they are simulations how a given pattern
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of the fleet selectivity translates to steady state yield and income. Under different policy
regulations or under a stricter enforcement of the bounds of the slot size, fishers’ would
re-distribute their fishing effort to sizes that are more profitable to them, either because
of higher yield, higher per-kilo price (for larger fish) or to avoid penalties for using illegal
gear sizes, but this is not studied here. The response of fishers to the profit from fishing
is investigated later in Chapter 10.

Like in the previous chapter, we keep the level (peak fishing mortality) variable, and
therefore the four scenarios are simulated as the solution of (7.4) over the range of F=0 to
F=6/yr. From the population and the fishing mortality, the steady state yield (6.32) was
calculated across the entire range (Fig. 8.2). The four scenarios can be compared from
two perspectives.

First, they can be compared at the current level of fishing mortality (black vertical line
in Fig. 8.2). This corresponds to a situation where the fishing level of the legal range
50-85 cm stays the same, but, depending on the scenario, there is no fishing below 50 cm,
above 85 cm, or both.

Figure 8.2: Yield dependent on fishing mortality for the four selectivity scenarios.
The black vertical line is the empirical fishing mortality.

In the open scenario (with the empirical fleet selectivity), the annual steady state yield
at the peak fishing selectivity Femp = 1.036 is 207.6 kt and the annual income is 532.6
million USD. The second scenario, catching no fish below 50 cm while keeping the fishing
mortality above 50 cm the same, increases the annual yield by 17.7.% from 207.6 kt to
244.4 kt (Table 8.1). Catching not fish above 85 cm (scenario 3), however, decreases yield
by 28.8% from 207.59 kt to 149.90 kt, with scenario 4 being somewhat better, but still
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Table 8.1: Yield, percentage increase and yield and SSB at empirical peak fishing
mortality Femp = 1.036 together with maximum sustainable yield MSY
(kt) and best fishing mortality FMSY (1/yr) for each of the four scenarios.

scenario YF emp (kt) ±% SSBF emp (kt) FMSY (1/yr) MSY (kt)

open 207.6 +0% 537.3 1.02 207.8
> 50 cm 244.4 +17.7% 708.4 1.37 250.3
< 85 cm 149.9 -27.5% 926.0 1.57 159.1
50 − 85 cm 168.2 -19.0% 1221.1 2.43 205.6

inferior to the open scenario. The SSB increases in each scenario because the fishing
pressure, in total, is reduced.

Second, the scenarios can be compared at the fishing level that is optimal in each
respective case. This MSY level is the point of the maximum in each curve in Fig. 8.2. At
the empirical fleet selectivity, the MSY value is 207.8 kt (Table 8.1), which is similar to the
predictions in [102, 143] (212 kt and 246 kt, respectively), and lower than earlier estimates
from two to three decades ago [111, 168]. Again, the best scenario is fishing above 50 cm,
where the maximum sustainable yield is 250.25 kt. Scenario 3 is inferior and scenario 4
has a similar MSY like the open scenario.

For small values of the peak fishing mortality, scenarios 1 and 2 are similar and have
a steeper initial slope than scenarios 3 and 4. The reason is that the latter restrict from
fishing large fish, which, at the unfished, “pristine” level of the fishing stock, are most
abundant and therefore provide high yields. At the other end, for large values of the peak
fishing mortality, scenarios 2 and 4 still provide moderate yield levels, because juveniles
below 50 cm are spared and thus some individuals can still reach maturity and reproduce.
Contrarily, in scenarios 1 and 3, juveniles are subject to fishing, which leads, for a high
fishing mortality, to fewer survivors, very low yield, and eventually to the collapse of the
stock.

An important result is that, under the empirical fleet selectivity, the FMSY value is
1.015/yr and thus the empirical fishing mortality Femp = 1.036/yr is only 2.0% above
FMSY , which would mean that the current (2020) fishing level is close to what is the best
level, for the fleet selectivity being as it is. This is different from various other studies,
who suggest an overfished, and hence unsustainable, state [196], but would explain the
relatively stable population of Nile perch in the last decade [120, 145, 130, 127]. Of course,
dynamical factors from the interaction with other species [199, 155] or the ecosystem or
fluctuations in the fishing level can never be excluded, but at least this single species
model hints towards a rather appropriate level of fishing mortality. Improvements in yield
could, however, be achieved if the fishing pressure below 50 cm were reduced, as scenario
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2 suggests. This case is also more stable in the sense that the curvature of the yield curve
(Fig. 8.2) is smaller around the maximum, i.e. the maximum is broader and the curvature
smaller which points toward a situation that is more resilient with respect to fluctuations
in the level of fishing mortality.

Keeping fleet selectivity fixed, there is a trade-off between yield and the biomass. With
increasing yield, the steady state biomass decreases. In the beginning this decrease follows
roughly a straight line (Fig. 8.3). There is a second branch at the bottom, where the stock
still exists, but is highly depleted. Note that for a broad range of yield values, two steady
state SSB values, i.e. two different situations of the fish stock and the fishery exist, that
would produce the same value of yield - either with a large stock (upper branch) or a
heavily depleted stock (lower branch).

Figure 8.3: The figures depicts the SSB in steady state in dependence of the yield.
Note the two ”branches” in each curve, where the same yield value can
be achieved in a situation with high or low SSB. Dots mark the situation
at Femp = 1.036/yr (current empirical peak fishing selectivity).

As the parameter a (physiological mortality) is rather uncertain and the results are
sensitive to that parameter (cf. Section 7.4), it was tested to which degree the ranking of
the four slot size scenarios with respect to the maximum sustainable yield depends on the
parameter value (Table 8.2). The values a = 0.2 and a = 0.3 yield the same ranking of
the scenarios, where the >50 cm scenario produces the highest MSY, followed by the open
scenario, the slot size and, finally, the <85 cm scenario. In the cases a = 0.4 and a = 0.5,
the physiological mortality is so strong that the slot size scenario is superior to the open
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scenario. Independently of the value of a, however, is the >50 cm scenario always the best
and <85 cm the worst scenario.

Table 8.2: Maximum sustainable yield MSY in each scenario for four different values
of the parameter a. Note that the unit here is not kt, but g/Rmax (because
the conversion to the unit of kt would itself depend on the scenario).

scenario a = 0.2 a = 0.3 a = 0.4 a = 0.5

open 159.82 30.09 6.05 1.15
> 50 cm 190.12 36.22 7.26 1.35
< 85 cm 102.95 23.00 5.09 1.03
50 − 85 cm 135.03 29.78 6.43 1.24

To test the robustness, we additionally vary the three parameters a,A, Femp (= Yemp/B)
in the range a ∈ {0.2, 0.3, 0.4}, A ∈ {10, 13.02, 16}, Femp ∈ {0.1, 0.304, 0.5, 0.7} and find
that the magnitude of the increase/decrease in yield and income (at Femp) in the three
alternative scenarios (>50 cm, <85 cm and slot size) compared to the open scenario varies,
but the direction of change (increase/decrease) does not depend on the parameter values.
Thus the ranking of the results is the same independent of the parameter values.

In addition, we test scenarios where the fishing mortality is increased or decreased by
50%, below 50 cm and analogously above 85 cm, and find that the direction of change
(increase/decrease) in both yield and income at the current peak fishing mortality is the
same independent of the values of the parameters a,A, Femp (= Yemp/B) in a wide range
(a ∈ {0.2, 0.3, 0.4}, A ∈ {10, 13.02, 16}, Femp ∈ {0.1, 0.304, 0.5, 0.7, 0.9}), such that we
can conclude that the qualitative results are robust within these ranges of the parameter
values.

8.2 Gillnet scenarios
From discussions with research partners at LVFO and the associated fisheries research
institutes it became evident that, next to the slot size, it is of high importance to regard
the mesh size of gillnets as a tool for regulation. The reason is that the usage of gillnets can
be directly controlled on the lake, e.g. with control boats. This is corroborated by the fact
that the mesh size restrictions play an important role both in the concrete enforcement of
the fishery regulations and the everyday life of fishers as well as in the discussion in the
general public regarding the legitimacy and efficiency of the regulations and of a potentially
strict enforcement. This discussion is not only undertaken by scientists, but reaches into
the general public with various reports on the typical ”punishment” for using illegal mesh
sizes, namely the destruction of the nets.
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The regulation via gear sizes allows also, in principle, for other government inference
apart from gear destruction, but in the form of taxes or subsidies which has e.g. been
tested in a small-scale field experiment for dagaa nets [47]. This thesis restricts itself
to studying the effect of a change in the fishing selectivity, instead of the tools to the
enforce a given regulation. In other words, the questions is, which fleet selectivity should
a regulation aim for. Therefore, for simplicity, the scenarios are simplified in the following
manner:

First, the fishery in the model is assembled from a (generalized) longline hook and from
gillnets with mesh sizes ranging from 3” to 8” in steps of 1”, as described in chapter 4.
Then in each of the five additional scenarios, some gears are not employed in the fleet, i.e.
those gears are not included in the fleet selectivity. To test the robustness, we have also
tested the case where fishers move to the next larger legal gear (see below).

In the first scenario, all gears with mesh size 3” drop out of the fishery, such that the
fishing fleet is now composed only of longline hooks and the gillnets with mesh sizes 4” and
above (in unaltered numbers). This scenario is referred to as ”GN4-8” or, equivalently,
”GN4+”. In the second scenario, the 4” gillnet vessels drop out, so that the fleet is
composed of longlines and mesh sizes ≥5”. The scenarios three, four and five follow
analogously such that in the fifth scenario only the 8” gillnets are left, again together with
the longline hooks. It is important to emphasize that this study is primarily asking for
the effect of a particular fleet selectivity on the steady state yield or income. A different
question, which we cannot address here, is whether banning small gillnets would actually
lead to those fishers exiting the market, whether they would leave or switch to larger gears,
in general all topics concerning the compliance to restrictions and the reaction of fishers or
boat owners to gear regulations. To some degree, these questions can be addressed with
the coupled model from Chapter 10, but generally the compliance is out of the scope of
this thesis because we focus on the impact of a given fleet selectivity on stock, yield and
income.

It is also important to note that there exist two distinct effects: the effect of less vessels
on the lake (from boats leaving) and the shift of the fleet selectivity. By letting the vessel
exit the fishery, we disentangle the effects and have only a reduction, but no movement
to larger nets. We study the combined effect afterwards in a setting where fishers will
shift towards the next larger legal net. With this simplistic representation we want to
show primarily that the idea of the previous section - a comparison of fleet selectivity
alternatives - need not be restricted to the slot size, but can be studied with respect to
gears as well.

In this chapter and throughout the thesis we assume that the price which the boat
owners achieve on the fish market are fixed and do not depend on supply. Thus an
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increase in supply of large Nile perch does not impact the price in our model1. This
assumption comes from the consideration that Nile perch (especially the larger fish) are
primarily exported to Europe and East Asia. Those markets are also supplied with fillets
from many other fish species, whose stocks are independent of the fishery at Lake Victoria.
If we can reasonably assume a certain substitutability between fillets from Nile perch and
from other fish species, we can work, for the purpose of our model, with retail prices for
large fillets independent of the supply.

Now for each scenario, the steady state yield and income are compared to the results of
the standard model with the empirical fleet selectivity. The income is calculated by using
the price per kg of Nile perch provided in Table 4.4. Table 8.3 shows the yield and income
increase relative to the status quo, Table 8.4 the increase in biomass and SSB. The same
data are depicted in Figures 8.4 and 8.5, respectively.

Table 8.3: Increase in steady state yield and income, relative to the current situation,
in five selectivity scenarios.

scenario yield increase income increase
GN4-8 4.55 % 5.33 %
GN5-8 6.87 % 8.44 %
GN6-8 12.45 % 16.58 %
GN7-8 21.81 % 33.44 %
GN8-8 21.49 % 34.86 %

Table 8.4: Increase in steady state biomass and SSB, relative to the current situation,
in five selectivity scenarios.

scenario biomass increase SSB increase
GN4-8 5.59 % 5.70 %
GN5-8 9.10 % 9.39 %
GN6-8 21.23 % 22.65 %
GN7-8 65.96 % 74.38 %
GN8-8 81.65 % 93.43 %

These results indicate that steady state yield, income, stock biomass and SSB increase
in each of the scenarios, relative to the status quo. With a single exception (yield in
GN8-8), each scenario produces higher values than the previous one. E.g. in scenario
GN5+, yield is 6.87% higher than in status quo, income 8.44%, biomass 9.10% and SSB
9.39%. The highest increase between two scenarios is from GN6+ to GN7+, where in the

1However the price depends on the size of the fish: larger fish achieve a higher per-kg price than
smaller ones, mainly because they can be better used for filleting (see Table 4.4).
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latter yield is 21.81% higher than in status quo, income 33.44%, biomass 65.96% and SSB
74.38%. What is the reason for the jump from GN6+ to GN7+? It is caused by the fact
that 6” is the gear with highest frequency in the fishery (see Table 4.3). When this gear
drops out, the fishing mortality decreases strongly, leaving (in steady state) a higher fish
stock with more adults that produces more yield and income. The increase in income is
more pronounced than the increase in yield because the price per kg of Nile perch increases
with the weight of the fish (Table 4.4).

Figure 8.4: Increase in steady state yield and aggregate income of the fishery for five
selectivity scenarios, relative to the current situation.

We have also tested variations of the three parameters a,A, Femp (= Yemp/B) in the
range a ∈ {0.2, 0.3, 0.4}, A ∈ {10, 13.02, 16}, Femp ∈ {0.1, 0.304, 0.5, 0.7}, for the scenarios
GN4+, GN5+, GN6+. We have found that the ranking of the scenarios did not change.
In each case, the reduction of the lower-sized gears increases yield and income.

Now we test whether the results change if, from one scenario to the next, the fishers
with the now illegal gear not simply exit the fishery, but rather switch to the next larger
legal net. In the standard case (without senescent mortality), if fishers do not exit, but
rather move to the next larger legal size, the yield increases stronger than otherwise, while
the income increase is either stronger or less strong in GN7+ and GN8+. The conjecture
about this observation is that the current fishing effort of large gears is currently lower
than optimal (concerning yield).
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Figure 8.5: Increase in steady state biomass and SSB of the fish stock for five selec-
tivity scenarios, relative to the current situation.

Furthermore, we test three different kinds of senescent mortality as described in 3.2.4.
First, a mortality that increases linear in weight

µ1
s(w) = 2w

W∞
, (8.2)

and second a hyperbolic shape

µ2
s(w) = αs

a† − age(w) , (8.3)

where a† = 16yr is the maximum age [181] and age(w) the age at weight w, respectively.
We test two different values of the parameter αs ∈ {1, 3}, which determines the strength
of the mortality. The trend of increasing yield and income in each subsequent scenario
also holds if fishers move, for all three senescent mortality cases. We conclude a robust
trend that sparing small fish increases yield, income and spawning stock biomass. These
results challenge a common perception among LV fishery managers that sparing small fish
would only mean forgone harvest, neglecting the positive effects of fish surviving to larger
sizes both because the growth potential is then fully utilized and because more fecund fish
increase the reproduction of the stock.
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In Section 6.3, a criterion was provided to compare the steady state yield of the current
fishing pattern with the one from a modified fishing pattern, and an equation to analyze
where (at which sizes) a higher fishing mortality would in increase the steady state yield
of the fishery. In the previous chapter we have studied how alternative shapes of the
fleet selectivity would impact the steady state yield and income of the fishery. In this
chapter, we address the question how yield and income can be maximized and which
fishing pattern would be the one that maximizes yield or income, respectively, this means
asking the question about the optimal fleet selectivity, using a numerical optimization.

Before taking the approach described below, we had first optimized the number of
vessels of each gear, and had found that the solutions indicated that all available vessels
would use 8” gillnets, i.e. the gear with the largest target size. Only if there was a cap
on the number of vessels that can employ the same gear, then, to the remaining vessels,
longlines were assigned and, consecutively, 7” gillnets.

Beyond this simple and straightforward result, we decided to go into more details be-
cause the gears with their large target range seem to be a rather coarse variable in the
optimization, leading to a sort of corner solution where everybody uses 8” gillnets. To get
a finer resolution, we decide to abstract from gears and instead optimize the size selectivity
itself. To do so, we split the size range into 10 cm bins, where the optimization variables
correspond to the fishing mortality in each of the bins. This corresponds to the assumption
that a sole-owner of the fishery could effectively reach any size selectivity he wishes by an
appropriate combination of perfectly selective gears in the fleet. What pattern should he
then aim for?
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9.1 Optimization problem
To reach a feasible maximization, the axis of fishing mortality is separated into 16 bins.
There are correspondingly 16 optimization variables, which can be written as the vector

X =



f1

f2

f3
...
f16


. (9.1)

Each component determines the fishing mortality in a bin of width 10 cm. The first
variable f1 indicates the value of the fishing mortality in the bin [0,10 cm], and the others
analogously. The total fishing mortality is composed of the 16 bins. Formally, we can
write this:

ψF (w(L)) =
16∑

i=1
fiδi,bin(L), (9.2)

where δi,bin(L) is the characteristic function, that is 1 if L is in the bin i and 0 otherwise:

δi,bin(L) =

1, if L ∈ [10(i− 1), 10i)

0, otherwise.
(9.3)

The objective function is the steady state yield of the fish stock from the fishing mortality,
given the variable vector X.

max
X

Y =
∫ W∞

w0
wu(w;ψF (w))FψF (w)dw, s.t. (9.2) (9.4)

The optimization problem is solved using the function optim with the method L-BFGS-B

(see A.5.4) in R [173]. In order to avoid that the optimization gets trapped in a local
maximum, the optimization is repeated 100 times. Each optimization has random initial
values of the 16 variables, independent and identically distributed in [0,1] with units of
1/yr.

9.2 Maximizing yield
Fig. 9.1 shows the outcome of the 100 optimization runs maximizing yield. The results are
as follows: The fishing mortality is zero for L<90 cm. The peak of the fishing mortality
is around 1.73/yr in the bin 110-120 cm. Between 0 and 120 cm, the variance across
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optimization runs is extremely small (e.g. 2.616·10−4/yr in the bin 110-120 cm). As the
100 optimization runs started from random initial conditions, it is therefore very likely
that the results are globally optimal, as otherwise all runs would have converged to the
same local maximum. Only beyond 130 cm, and especially in the two last bins in the
range 140-160 cm, the variance becomes somewhat larger. The supposed reason is the fact
the few fish left in this size range have a negligible impact on the total yield. The results
corroborate the conclusion of the previous section, that the optimal fishing mortality
is disproportionately targeting large fish while sparing the younger ones. If the fishery
employed the median values of the 100 optimization runs, the steady state yield would
be 404.87 kt/yr, which serves as a benchmark to asses the current situation. The optimal
fishing pattern would hence provide a 94.6% increase in the steady state yield compared
to the current situation (see Table 4.5).

Figure 9.1: Maximizing steady state yield with 16 optimization variables, each one
determining the fishing mortality in a bin of 10 cm width. The figure
shows, for each bin, the result from 100 optimization runs with random
initial conditions: the boxplots indicate the mean (center black line),
the first and the third quartile (25th and 75th percentile, respectively)
(hinges of the white box), the minimum and the maximum (besides
outliers) (whiskers) and, if existent, outliers which are defined by being
more than 1.5*IQR from the hinge of the white box, where IQR denotes
the inter-quartile range, i.e. distance between the first and the third
quartile.
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It was also tested whether the model with an additional senescent mortality for large
fish would lead to different conclusions. The senescent mortality is linear in the fish weight

µs(w) = 2w
W∞

(9.5)

It was found that the optimal fishing mortality would then begin earlier, namely at 70 cm,
which is still 20 cm more than the current lower bound of the slot size. The peak would be
in the range 100-120 cm (Fig. 9.2). Note that the median optimal fishing mortality values
are much higher than in the case without senescent mortality. Because of the additional
mortality of large fish, it is necessary to harvest them at a higher rate, otherwise they
would be lost due to the natural senescent mortality.

Figure 9.2: Maximizing steady state yield with 16 optimization variables, each one
determining the fishing mortality in a bin of 10 cm width, in a model
with an additional senescent mortality for large fish. The figure shows,
for each bin, the result from 100 optimization runs with random initial
conditions. For the meaning of the hinges, whiskers and outliers, see the
caption of Fig. 9.1.

9.3 Maximizing income
The income was maximized from the optimization problem with the following objective
function

max
X

I =
∫ W∞

w0
p(w)wu(w;ψF (w))FψF (w)dw, s.t. (9.2) (9.6)
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where p(w) is the per-kg price of Nile perch with size w (Table 4.4). The overall pattern
is similar to the yield maximization, just the shape is slightly shifted towards the larger
fish, due to their achieving a larger per-kg price at the market (Table 4.4). Here again, the
fishing would start at 90 cm and the peak would be at F=1.72/yr in the bin 110-120 cm.
Between 90 and 140 cm the variance of the 100 optimization runs with random initial
conditions is almost non-existent, therefore one can conclude again with high confidence
that the maximum is a global optimum. Between 140-160 cm, the results scatter for the
same reason as before, because only few large fish are left such that the level of fishing
has little influence on the total income. If one sets the fishing mortality in each bin to
the median level of the optimization results, then the income is 1341.4 million USD/yr.
This is 151.9% above the annual income with the empirical fleet selectivity (532.6 million
USD), thus providing a substantial increase.

Figure 9.3: Maximizing steady state income with 16 optimization variables, each one
determining the fishing mortality in a bin of 10 cm width. The figure
shows, for each bin, the result from 100 optimization runs with random
initial conditions. For the meaning of the hinges, whiskers and outliers,
see the caption of Fig. 9.1.

Introducing a linear senescent mortality like previously in the yield maximization has
a similar effect (Fig. 9.4). As the natural mortality is higher, the fish have to be caught
earlier, otherwise they get lost from senescence. Therefore the fishing patterns shifts
towards smaller fish and exerts a higher fishing mortality. The smallest fish in the catch
have 80 cm length and the highest fishing mortality is experienced by fish in the size range
110-120 cm with 4.43/yr. The variance until 120 cm is very low and even beyond that
comparably small.
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Figure 9.4: Maximizing steady state income with 16 optimization variables, each one
determining the fishing mortality in a bin of 10 cm width, in a model
with an additional senescent mortality for large fish. The figure shows,
for each bin, the result from 100 optimization runs with random initial
conditions. For the meaning of the hinges, whiskers and outliers, see the
caption of Fig. 9.1.

9.4 Discussion

What is the interpretation of the result that the optimal fleet selectivity spares the ju-
veniles? To understand this fact, one has to look at the curve of the cohort biomass
(Fig. 9.5). A cohort is the group of fish that have been born in the same time period
(in the continuous case this means fish that are born in the time interval [t; t+ dt]). The
number of fish in a cohort is non-increasing with time, as the only relevant process is mor-
tality which reduces the numbers. The cohort biomass, the sum of the biomass (weight)
of all individuals in the cohort, however, has a more complex development. As long as
the biomass increase from the growth of the individuals outweighs the biomass loss from
mortality, the cohort biomass increases. At some point, typically beyond the maturation
size, the mortality becomes so large that it dominates and the cohort biomass decreases.
This gives a unimodal curve.

Fig. 9.5 shows the cohort biomass (3.16) across the lifespan for the case without fishing
(black). The maximum of the cohort biomass lies at 100.9 cm (14318.6 g). It was pointed
out in [50] for a similar scenario that under perfect selectivity (i.e. where the target size
of fish can be selected with perfect accuracy and precision) the optimal management is to
target the fish at the size where the cohort biomass peaks. This explains the optimization
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Figure 9.5: Cohort biomass (normalized to the maximum) in the case without fishing
(black) and under the empirically observed fleet selectivity with F =
1.0/yr.

results of this section, as even with the not perfectly selective gears a range similar to the
point of maximum cohort biomass is targeted.

Fig. 9.5 depicts also the cohort biomass of the population subject to the empirical fleet
selectivity (gray) with F = 1.0/yr (similar to the empirical value). The maximum is at
66.8 cm. As derived in [50], a sole-owner with perfectly selective gear and zero costs would
harvest all fish at the size of the maximum in the cohort biomass. In this sense, the
location of the maximum at 66.8 agrees well with the results from section 6.3 where we
have found that, given the current fleet selectivity, small increases in the fishing mortality
increase the steady state yield if they target fish above 67.19 cm (Fig. 6.2).

We can conclude that large improvements are possible from an optimized size selec-
tivity: Up to 94.6% increase in steady state yield and up to 151.9% increase in income
compared to the current fishery. This demonstrates the high relevance of the size selec-
tivity and emphasizes the importance to revise the paradigm among fishery stakeholders
and managers that sparing small fish means only forgone harvest and that fishing should
focus on targeting small fish with the highest intensity.
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10 Simulations of the coupled
dynamic stock-fishery model

Until now, we have considered steady state scenarios and compared the yield and income
of the scenarios. This chapter introduces the time dimension and it includes the response
of boat owners that adapt the number of vessels which they operate. Thus, this chapter
”closes the loop” by including two mutual dependencies simultaneously in the model: how
the temporal development of the fish stock depends on the actions of the fishers, and vice
versa how the fishers adapt their fishing behavior to their profits, which depend on the
fish stock. By closing the loop, the novel model opens up a new direction of research at
LV as it provides the tool to simulate the economic side, the fishery, simultaneously with
the ecological side, the stock.

10.1 Response of fishers in the dynamic model
We assemble the fishery from the sub-fleets, where each sub-fleet consists of the vessels
using a particular gear. We use the economic model and the parameters from Chapter 4.
The catchability factors qj of each gear j are calibrated such that the catch per unit of
effort (CPUE) of the simulation agrees with the empirical catch values [121]. After a burn-
in period (100 years) with constant effort, sufficient to reach the steady state, we start
the full model including the response of boat owners. The numerical simulation is imple-
mented in R [173] using the library deSolve [101] which is specialized on solvers for initial
value problems of differential equations. The function ode.1D is designed to integrate par-
tial differential equations resulting from 1-dimensional reaction-transport problems with a
method-of-lines approach after transforming the PDE to an ODE using finite differences.
The simulation procedure is depicted in Fig. 10.1. The dynamic system is simulated for a
period of 30 years with 0.1 yr time steps. After each time step with 0.1 yr, the sub-fleets
evaluate their profit and adapt the effort in the next period accordingly.

Fig. 10.2 depicts the results of the simulation where each sub-fleet adapts the fishing
effort (vessel-days) in relation to their profits (or losses). Due to the fast adaptation of
vessels, the effort fluctuates strongly, until the amplitude of the oscillations decreases and
the curves converge toward the equilibrium. The period of the oscillation is around 1.5 yr.
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The biomass follows the curve of the effort with around 1/4 period delay and it increases
initially, then it converges. The amplitude of the oscillations in biomass is smaller than in
effort.

Harvest (yield) is in phase with effort and income and shows a similar development
of initial decrease, oscillations and eventual convergence (Fig. 10.3). The yield of each
sub-fleet, i.e. disaggregated per gear, is given in Fig. 10.4. The figure features the same
oscillations as seen before for the total yield. The vessels using 7” gillnets have the highest
initial spike and the highest amplitude of the oscillations. After a short initial period of
less than one year, only three gears have a substantial number of vessels on the lake, the
gillnets with mesh sizes 6”, 7” and 8”. The sub-fleet with 7” gillnets achieves the highest
aggregate yield at the end of the simulation, and it also has the highest income and most
vessels. In accordance with the theory for an open access fishery, in the final state all rents
are dissipated and each sub-fleet makes zero profit (Fig. 10.5).

These simulations explain the attractiveness to catch large fish that is observed around
the lake in the form of a trend of fishers to shift to targeting larger fish. The simulations
do not explain, why, at least currently still, the fishery is dominated by small gillnets. In
a different version of the model with modified catchability factors and an equal sharing of
revenue between boat owners and employed fishers (instead of fixed wage costs), we found
that the current small gillnet dominated state can be reproduced. However, in that case,
the small gillnets are so profitable that the observed tendency to target larger fish cannot
be explained. For this chapter, we stick with the original model version that explains the
profitability to catch large fish.

Why are longline vessels phased out rather quickly within the first years in the simula-
tions, why are they not competitive? Vessels with longlines are the only ones that have
bait costs - additional to the labor and fuel costs. The amount of bait costs depends on
the species and the quality of the bait [134]. Self-reported values of bait costs from fishers
in Uganda were in the range range of 17-58 USD/day and in the simulations we use the
middle of the range, 37.5 USD/day (see Section 4.7). Now the vessels with longlines and
with gillnets of mesh sizes 7” and 8” target fish in a similar size range (even though the
range for longlines is broader) and have labor and fuel costs, but only the longline vessels
have the additional bait costs. Therefore, they are not competitive with gillnets of the
similar size range and their numbers decrease rapidly in the simulations.
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Figure 10.1: Sketch of the simulation procedure.
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10 Simulations of the coupled dynamic stock-fishery model

Figure 10.2: Stock biomass (black) and the effort (number of vessels, gray) in the
simulation over a period of 30 years with the standard parameters.

Figure 10.3: Total annual yield (black) and the income (gray) in the simulation over
a period of 30 years with the standard parameters.
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Figure 10.4: The yield, disaggregated per sub-fleet, for longline hooks (LL) and the
gillnets with mesh sizes 3” (GN3) to 8” (GN8). The simulation runs
over 30 years with the standard parameters.

Figure 10.5: The profit, disaggregated per sub-fleet, for longline hooks (LL) and the
gillnets with mesh sizes 3” (GN3) to 8” (GN8). The simulation runs
over 30 years with the standard parameters.
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10.2 Application: Impact of panelling and
opportunity costs

10.2.1 Hypotheses
The analysis of this section aims to test three hypotheses: The first hypothesis is motivated
by the ongoing discussion of Lake Victoria managers and stakeholders about the so-called
”panelling” of gillnets where multiple nets are combined to increase the catchment area.
In the model, this behavior can be represented by the multiplication of (4.13) with an
additional panelling factor qp.

µj
F (w,Ej(t)) = qpqjEj(t)ψj

F (w) (10.1)

This model is designed to reveal the impact of panelling or from other ways to increase
the catchability, e.g. by more efficient gears or techniques.

The second topic is the role of opportunity costs: More job opportunities in the region
with a higher salary would increase the opportunity costs of fishing. We ask how this would
impact the fishery and the outcomes of the fishery, the yield and the income (Hypothesis 2).
We have identified the opportunity costs as a relevant variable as many people who are
involved in the fishery also have additional jobs outside: In a surveys with BMU leaders
and boat owners, more than 70% of the respondents stated to be involved in other income-
generating activities [157].

The third aim is to understand the relationship between the number of boats employed
in the fishery, the preference of fishers to target either small or large fish and the value
of the fishery, measured through the total yield or the aggregated income of the fishery
(Hypothesis 3). We seek to understand which properties of the stock and the fishery lead
to a high or low values regime, respectively.

High and low value regime

Definition 10.1. The high value regime is a situation, where, given fixed parameter
values, the response of the fishers to the stock, and the stock’s development subject
to fishing lead, without exogenous forces, to a state where the fishery achieves a
high value, measured as high yield and high income. In the low value regime, the
endogenous development leads to the opposite state of low yield and low income.

The case of less panels per boats is represented through a lower qp factor in the model.
Keeping the stock fixed, this would imply less catch per vessel and therefore less profits.
As a consequence, the boat owners will decrease the total effort (number of vessel-days)
(4.21). This reduces the fishing mortality further, leading to a higher stock. Due to the
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reduced mortality, more fish survive to greater age and the percentage of large fish in the
stock increases. This leads to a higher aggregate yield and income. However, the fishers
are expected to adapt again by increasing the vessels until the equilibrium is reached. The
hypothesis is that the equilibrium is still more valuable than the initial state. For a higher
qp value, the argument follows vice versa (Hypotheses 1).

Higher opportunity costs decrease the profits (4.20). As a consequence, the number of
vessels decreases. Analogous to the previous case, the stock replenishes, the survival rate
of fish increases, but, again, the fishers adapt. The hypothesis is that the yield and the
income are still higher than in the status quo (Hypothesis 2). The opposite case with
lower opportunity costs is vice versa, again.

Hypothesis 3 summarizes and generalizes those ideas. A low number of boats is expected
to correlate with a high stock, high survival rate of fish (implying a larger fraction of large
fish), more boats targeting large fish, and a higher total yield and income. Beside the
desirable state concerning the economic aspect (the income) and the food security (yield),
also the ecological state can be considered to be improved because of the higher biomass
of the fish stock and in particular because of the stock being assembled of more large
fish which increases the fecundity of the stock and also produces more robust eggs with a
higher chance of survival [53, 13]. Therefore we hypothesize that the mentioned features
characterize a ”high value regime”, both economically and ecologically. The high value
regime is opposed by the ”low value regime” with the opposite characteristics. We are
also interested in the transition between the two regimes.

Hypothesis 1

(a) A higher panelling factor qp leads to a lower stock biomass and a smaller
average length of fish in the lake.

(b) A higher panelling factor qp leads to less total yield and income.

Hypothesis 2

(a) Higher opportunity costs lead to less boats on the lake.

(b) Higher opportunity costs lead to a larger stock biomass with a higher average
fish length in the population.

(c) Higher opportunity costs lead to a higher total yield and income.
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10 Simulations of the coupled dynamic stock-fishery model

Hypothesis 3

The high value regime is characterized by

(a) a high stock biomass,

(b) a low number of boats,

(c) which primarily target large fish.

The low value regime is characterized vice versa by a low stock biomass, less total
yield and income, and a high number of boats which primarily target small fish.

10.2.2 Panelling
In the first simulation the panelling factor qp was varied in the range 0.8 to 1.6 in steps
of 0.2. Each point in the figures corresponds to the simulation state at the end of a
30 yr period. Over this range, the stock biomass (at the end of the 30 yr period in each
simulation) decreases from 835.6 kt to 407.6 kt. The mean total length (TL) of the fish in
the stock decreases from 16.8 cm to 13.5 cm (Fig. 10.6), together with the decrease in the
abundance of large fish (Fig. 10.7).

The number of vessels decreases from 40,099 to 24,436 with the doubling of qp, while
the composition shifts from 0.03% of vessels targeting small fish to a majority of 67.8%
(Fig. 10.8). From q = 0.8 to q = 1.6, the yield decreases by 22.0% from 210.0 kt to 163.8 kt.
Over the same range, the annual income decreases by 29.8% from 542.0 million USD to
380.8 million USD.

Figure 10.6: Stock biomass (top) and mean total lenght (TL) (bottom) after 30 years
as a function of the panelling factor qp.
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Figure 10.7: Biomass for q = 0.8 (dark gray) and q = 1.2 (black) after 30 years. The
gray rectangle indicates the slot size range (50-85 cm).
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10 Simulations of the coupled dynamic stock-fishery model

Figure 10.8: From top to bottom: (1) number of vessels, (2) percentage of vessels
with mesh size 3-6” (gray) and vessels with mesh size 7-8” or longlines
(black), (3) fishery yield and (4) fishery income. Each point in the figure
is the final state of a 30 year simulation with the respective panelling
factor.
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10.2.3 Opportunity costs
Similarly, the influence of the opportunity costs was tested through six simulation runs,
each one over a period of 30 yr, with the value of the opportunity cost ranging from
0 to 1250 USD/yr in steps of 250. This range is lower than the standard value of the
opportunity costs, and was selected to include the transition between the high and the
low value regime.

With opportunity costs going from 0 to 1250 USD/yr, the biomass increases by 10.7%
from 565.8kt to 626.2kt and the mean total length slightly from 14.8 cm to 15.3 cm
(Fig. 10.9) because the abundance of large fish is higher (Fig. 10.10). The total num-
ber of vessels decreases only slightly from 38,968 to 37,271 and a transition from targeting
small fish to targeting large fish appears (Fig. 10.11), but the effect is less pronounced
than in the simulations where the qp factor is varied. The annual yield increases by 4.2%
from 184.3kt to 192.0kt, and the income from 448.9 million USD to 475.9 USD (+6.0%).

Figure 10.9: Stock biomass (top) and mean total length (TL) (bottom) after 30 years
as a function of the opportunity costs.
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Figure 10.10: Biomass for opportunity costs 0 USD (dark gray) and 1250 USD
(black) after 30 years. The gray rectangle indicates the slot size range
(50-85 cm).

114



10.2 Application: Impact of panelling and opportunity costs

Figure 10.11: From top to bottom: (1) number of vessels, (2) percentage of mesh size
3-6” (gray) and mesh size 7-8” or longline (black), (3) fishery yield and
(4) fishery income. Each point in the figures is the state after 30 years
simulation with the respective value of opportunity costs.
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These results allow to confirm or reject the hypotheses.

Review of hypothesis 1

(a) Confirmed. The higher qp factor leads to a smaller stock biomass which has
on average smaller fish (Fig. 10.6).

(b) Confirmed. The higher qp factor leads to less total yield and a lower aggregate
income (Fig. 10.8).

Review of hypothesis 2

(a) Confirmed. Higher opportunity costs lead to less vessels (Fig. 10.11). The
magnitude of the effect is rather small.

(b) Confirmed. Higher opportunity costs lead to a larger biomass and higher
value of average length. The effect is only small or moderate (Fig. 10.9).

(c) Confirmed. Higher opportunity costs lead to more total catch and income
(Fig. 10.11). The magnitude of the effect is only moderate.

Review of hypothesis 3

(a) Confirmed. The high-value regime correlates with a higher stock biomass and
a larger average length of the fish population in the lake.

(b) Rejected (not generally true). The hypothesis is not generally valid, but it
depends on the underlying causes. If the transition between the regimes is
caused by a change in the catchability, then it is found: In the high value
regime, there are more vessels on the lake, virtually all of which use large nets
or hooks. If, on the other hand, the opportunity costs are the driver, then
the high-value regime (under high opportunity costs) correlates with a lower
total number of vessels.

(c) Confirmed. The high-value regime correlates with a higher percentage of large
nets.
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10.2.4 Comparison to an agent-based model
In this section we will compare the results of the dynamic model with an agent-based
model1 [79, 87, 86]. That model shares the biological model with the one of the previous
sections, but takes a structurally different modeling approach for the economic part. The
fishery is modeled with an agent-based model (ABM), which constitutes a structurally
different modeling approach compared to the more analytical approach of the previous
sections based on differential equations (DEQ). In the ABM, the fishery consists not of
sub-fleets, but the basis is the individual boat owner. The boat owners are modeled as
individual agents, which, in each round, decide whether they exit the fishery (if they are
active), whether they enter the fishery (if they are inactive), and which gear they will use
in the following round (if active). They make their decisions based both on their individual
profit as well as based on observations of other fishers’ profits to decide which gear seems
most profitable to them. In this model there are only two gears available to the fishers.
The fishing selectivity of the first gear resembles the one of the 5” gillnet and the one of
the second gear is similar to a (generalized) longline hook. The two gears are selected such
that the first one targets smaller fish and the second gear targets larger fish (Fig. 4.4).

There were multiple scenarios simulated until a stationary state was reached, similar to
the previous section. In the first case study the gear efficiency was multiplied with a factor
from the range 1.0 to 3.0 in steps of 0.2, analogous to the previous panelling scenarios.
Fig. 10.12 depicts the percentage of vessels targeting small or large fish, respectively, once
the stationary state is reached. Between the values 1.4 and 1.6, a sharp transition happens
between a majority of vessels targeting small fish (left of the transition) and the majority
targeting large fish (right of the transition). Notably, the transition is much sharper than
in Fig. 10.8, and also at a slightly higher value of the factor. The ABM has a more complex
structure than the DEQ model: As the fishers can observe the other fishers’ gears and
profits, they adapt more quickly to the gears that are most profitable. The observation
of others’ behaviors and the deliberate gear choice based on observed profits induce a
non-linear dynamic that leads to a rather abrupt transition.

Also in this model, the second case, the variation of the opportunity costs, induces a
shift in the fishery (Fig. 10.13). The shift is less abrupt than for the variation of gear
efficiency, but still more non-linear than in the DEQ model (Fig. 10.11). Also here, larger
opportunity costs lead to a state with fewer vessel on the lake (Fig. 10.14).

Thus the results can be represented as a non-linear transition between two regimes
(Fig. 10.15). The first regime is characterized by a high value of the fishery income (green
curve in the figure), which correlates with a majority of vessels targeting large fish and,
correspondingly, a minority targeting small fish (red curve). The second regime is marked

1The agent-based model was developed during the work on this thesis together with Santiago
Gómez-Cardona, Grigori Shapoval and Hamsa Zazai.
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Figure 10.12: Each bar is the results of one simulation of the agent-based model, with
the respective coefficient of gear efficiency, where the dynamics where
simulated until no more change was observed (quasi-steady state).
The bars show the percentage of vessels targeting large (blue) or small
(gray) fish, respectively. From [86].

by a low income and more vessels targeting small fish than large fish. Between the two
regimes, there is a non-linear transition. Note that the curves represent (quasi-)steady
state points (i.e. after no more changes in the fishery were visisble in the simulations).
This means that the ”instability” depicted in Fig. 10.15 is not an instability in time (each
point of the curves is the end point of a simulation), but an instability with respect to
variations in the number of gear on the lake. If for instance, the fishery is in a state in
the blue shaded area, then a small variation in the number of gear on the lake can shift
the system to a new steady state belonging to the other regime. This is a high risk and
a chance at the same time: A high risk, because a small increase in vessels can strongly
reduce the fishery income; a chance, because if a reduction in the number of vessels can be
achieved, then the fishery becomes much more profitable and fishers switch to targeting
larger fish, given the stock being more dominated by larger fish.

In the DEQ model, the transitions between the two regimes (both in the case of the
panelling factor and of variations in opportunity cost) are not exactly linear, but visibly
less abrupt than in the ABM. This is an important observation both for modellers and
for policymakers. For modellers, because the agent-based structure, together with the
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Figure 10.13: Each bar is the results of one simulation of the agent-based model with
the respective factor of opportunity costs, where the dynamics where
simulated until no more change was observed (quasi-steady state).
The bars show the relative number of vessels targeting large (blue) or
small (gray) fish, respectively. From [86].

swarm-like behavior of fishers (observing the others’ behavior and, if successful, copying
it) leads to similar situations, but a more abrupt transition between the two regimes,
resembling more a ”tipping point”. For policymakers, it is important to know that the
interaction between the fishers plays a major role for the transition between the states of
the fishery and makes the situations more extreme. This is valid both in the aggravation
case (towards the low value regime) as well as in the amelioration case (towards the high
value regime).

10.2.5 Management implications
The two studies, using a DEQ model and an ABM, have policy-relevant implications for
the management of the Lake Victoria Nile perch fishery, which are summarized in the
following [87].

1. Two exploitation regimes of the Nile perch fishery can be distinguished, one with
a high and one with a low value (income) of the fishery. The high value regime is
characterized by a fish stock with a higher average fish size and by the majority of
fishers targeting larger fish.
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Figure 10.14: The number of fishing boats in quasi-steady state as a function of
the opportunity costs. The values on the x-axis and the y-axis are
normalized to the values of the standard scenarios (marked in yellow).
From [86].

2. At least two factors can induce a transition between the two regimes. If the fishers
increase the net area by panelling, the consequence can be a shift from the high
to the low value regime. If, on the other hand, fishers find more profitable job
opportunities outside the fishery, the number of vessels and the lake is reduced,
yielding more income, not only per vessel, but also in total.

3. The model simulations suggest that the underlying dynamics are: A low fishing
pressure decreases the mortality and lets fish survive longer and grow larger. With
more large fish in the lake, the gears that target large fish become more profitable
and more fishers choose to use these gears. This further decreases the mortality of
juveniles. The fishery dominated by large fish in the catch is more profitable, as
the increase in the average weight of fish outweighs the losses from reduced juvenile
mortality. The fish stock dominated by larger fish is also more healthy because large
fish lay more eggs, and eggs from large fish are more robust to adverse environmental
conditions.

4. Dependent on the dynamics of the fishers’ behavior, the transition between the
high and low value regimes can be more linear or more abrupt (non-linear). If the
fishers are homogeneous such that average values are sufficient and if they make the
decisions only based on their own profit in each period, then the transition between
the high and low value regimes is more linear, meaning that small changes in the
gear efficiency or in the opportunity costs have only small effects on the income.
Otherwise, if the fishers observe their peers’ behavior and profits, and if they make
their decisions (whether to go fishing and which gear to use) based on the observed
profit of other fishers, then the transition between the two regimes can be more
sharply. A small change in the gear efficiency or the opportunity costs can bring
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Figure 10.15: Summary of the simulations. With a low number of gears in the lake
(left part), the quasi-steady state points of the simulations have a low
proportion of vessels targeting small (red curve) fish and a high value
of the fishery (green curve). In the scenarios with a high number of
gears, the situation is reversed (right part). There is a sharp transition
between the two regimes (blue shaded area). If the fishery is in the
situation marked by the dashed vertical line (edge of blue area), it
is in an unstable situation: a small increase in the number of gears
brings about the transition to the low value regime. From [87].

the system from either regime to the other one - both in the beneficial and the
deteriorating direction.

5. Therefore it is important to understand accurately how fishers make their economic
decisions, how the boat owners decide on whether to stay in the fishery or not, and
when to increase or reduce the number of boats, and which gears to use.

6. The simulations indicate that the percentage of fishers targeting large fish correlates
strongly with the state of the fish stock (abundance in terms of biomass and structure
in terms of the average fish size). Therefore the close monitoring of the composition
of the gears in the fishery and the real-time analysis of the trend provides the decision
makers with an indicator whether the fish stock is improving or deteriorating. Strict
survey schemes could ensure regular data on the gear composition.

7. The situation of the fishery can be influenced by opportunity costs and by the gear
efficiency. Profitable job opportunities outside the fishery would increase the op-
portunity costs, leading to less vessels and more fishery income. The effect of the
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opportunity costs is, however, less pronounced than for case of the gear efficiency.
A reduced number of gears on the lake can induce the transition toward the high
value regime, which would provide higher income and yield of the fishery and, si-
multaneously, produce a larger fish stock with higher average fish size.
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11 Integrating discussion and
conclusions

11.1 Social-ecological systems modeling
The strongly interdependent system of the Nile perch stock and fishery at Lake Victoria
poses a strong challenge for researchers to model the sub-systems and their interactions,
to understand the drivers of the system and to find and characterize the conditions of
a sustainable exploitation pattern. In this thesis, we make use of the Social-ecological
systems (SES) framework. A social-ecological system (cf. Fig. 1.1) includes the societal
and the ecological sub-systems and their interactions.

We have identified the following main components of the SES that the model must
address: the resource units (individual fish in the stock), the resource system (how the
development of the stock depends on ecological parameters), the resource users (how fishers
respond to the fish stock level) and the governance system (restricting the use of gears
and legal fish sizes).

The interaction between the resource units (fish) and the users (fishers) is defined by
the size-resolved fishing mortality. The analysis of the regulations that are established in
Lake Victoria (mesh size, hook size and slot size regulations) implied the requirement that
the model must represent the complete size structure of both the stock and the fishery.
Therefore we choose the approach of a size structured fish population model and develop,
from catch data, the size selectivity of the main gears in the Nile perch fishery.

In order to model the mutual interaction between the fishery and the stock, we build
a size structured model of the Nile perch fishery at Lake Victoria based on an advanced
biological framework [2], together with a model describing how the fishers respond to the
level of the fish stock. By dividing the vessels into sub-fleets according to the gear, the
response of each sub-fleet is modeled as a function of the profit. In the dynamic effort
model, we assume that the increase in fishing effort is proportional to the profit from
fishing [182], such that in the steady state nobody makes profit, in line with the expected
result of the dissipation of all rents in an open access resource system [81, 90]. Thus we
”close the loop” between the stock and the fishery where the development of the stock and
the fishery are modeled as endogenous variables of a single, coupled system.
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11.2 Discussion of the results

1. Sustainability of the current exploitation

The model is used to understand the effect of the size selectivity of the fishery, and,
with it, the potential of size-based policies. The existence of a unique, non-negative and
regular solution of the stock model is proven for the time dependent case with constant
fishing mortality and for the steady state case. Then the model is validated by comparing
the emergent simulated growth curve with the van Bertalanffy curve and by comparison
to the population size structure from three different experimental surveys.

Using the empirical fleet selectivity as an input into the model, the simulations of
the size structure of the fish population in steady state are similar to the empirical size
distribution from the bottom trawl and the catch assessment survey. The size distribution
of the hydroacoustic survey, however, differs from the other surveys and from the model
simulation. A potential reason could be the target-strength-to-size relationship in the
calibration of the hydroacoustic survey, but more research is needed to investigate the
cause.

We find that, under the current fleet selectivity, the empirical annual yield (207.6 kt)
is close to the maximum sustainable yield (207.8 kt). Correspondingly, also the empirical
peak fishing mortality rate, F=1.04/yr, is only 2.0% above the rate that leads to the
maximum sustainable yield (F=1.02/yr). This result is in line with the finding from an
Atlantis model, where - in the scenario where the current fishing mortality is maintained
(status quo) - the landings of Nile perch remain stable within the simulation period of 20
years [155], but the result differs from previous propositions that the stock is substantially
overfished [135, 136].

The results of our model indicate that, contrary to a common perception among both
fishers and policymakers of Lake Victoria, the fishery is not overfished, but the fishing
pattern could be sustained over time as a steady state solution of the governing equation,
and that, for fixed fishing pattern, the level of exploitation is almost optimal. However,
this requires a stable ecological environment: The model assumes fixed parameters of
predation mortality and growth, therefore the predictions are only valid as long as (1) the
interaction between Nile perch and other species, (2) the interaction within the Nile perch
population (cannibalism) and (3) other ecosystem parameters do not change. Extending
the model for the cannibalistic behavior of Nile perch and for inter-species interactions
(predation) would allow to extend the range of robust predictions.

We test the sensitivity of the results and find that the results are most sensitive to
the parameter of physiological mortality. The value of the growth parameter and of the
maturation size have less influence on the results. Future biological research is needed to
determine the value of predation mortality more precisely and accurately.
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2. Alternative size and gear based exploitation patterns

We develop a criterion to assess whether the increase of fishing mortality at a given size
by a specific amount will increase or decrease the total fishery yield in steady state (Section
6.3). The additional mortality has two counteracting effects: Increasing the harvest at the
specific size, but decreasing harvest of all larger sizes, because once a fish is caught, it
cannot be harvested later at a larger size. The criterion depends only on the growth rate,
the size and the amount of additional mortality. Furthermore, we calculate numerically
the amount of increase or decrease of the total yield for a small perturbation in the fishing
mortality around the current exploitation pattern.

In addition, we simulate eight hypothetical fleet selectivity shapes to predict the effect
of selectivity on the fish stock and on steady state yield. For the comparison, each slot size
scenario is simulated as the solution of the steady state of the McKendrick-von-Foerster
equation across a wide range of fishing levels. We find that sparing all fish below 50 cm,
while keeping the fishing mortality above 50 cm the same, increases the annual yield by
17.7.% from 207.6 kt to 244.3 kt. Catching no fish above 85 cm, decreases yield by 28.0%
from 207.6 kt to 149.5 kt. The maximum sustainable yield is highest in the scenario where
only fish above 50 cm are harvested, and lowest in the scenario where only fish below 85 cm
are caught.

Next to the slot size scenarios, five gear-related scenarios are simulated, where the
scenarios sequentially exclude smaller gillnets, from the fishery with longlines and only
gillnets with mesh size above 4” to the last scenario with longlines and only gillnets with
8” mesh size. In each case, it is assumed that the vessels with abandoned nets exit the
fishery. We find that each scenario with less small nets increases steady state yield (up to
21.5%), income (up to 34.9%), stock biomass (up to 81.7%) and spawning stock biomass
(SSB) (up to 93.4%). The effect comes from the reduced fishing pressure on small fish
(exit of vessels with small nets), increasing the number of survivors and leading to a larger
reproduction of the stock, therefore a higher stock level in total.

This result contests the common perception among stakeholders that sparing young fish
would reduce the yield of the fishery. On the contrary, sparing small fish increases not
only the catch from larger nets (in the short run) from the survivors, but (in the long run)
also the whole stock level as the survivors increase the reproduction of the stock (SSB).
Both effects are included in the modeled steady state. Assuming that fishers do not exit,
but switch to the next larger legal gear in each scenario, does not change the results
qualitatively. To test the robustness of the results, we compare the results additionally
to the case with a senescent mortality. Only for the case where fishers do not switch and
with a linear senescent mortality, we find that the scenario with mesh sizes at or above 6”
produces the highest yield and income. This is plausible because with the high senescent
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mortality the fish would simply die naturally if they are not harvested early enough. In
all other cases, the scenario with only 8” gillnets ranks highest.

Thus this thesis provides a study of the effect of one empirical and multiple hypothetical
slot size and gear related scenarios of fleet selectivity. The results give an understanding
of the relationship between fleet selectivity and steady state yield. Our study depicts the
significant potential improvement in steady state yield that could emerge from reducing
the fishing pressure on juvenile fish.

3. Optimal fishing selectivity
An overwhelming branch of literature about Lake Victoria emphasizes the importance

of the catch for food provision and thus food security for the regional population [75,
74, 68, 38, 76, 10, 11]. Therefore, a part of the study was to find the fleet selectivity
that maximizes the annual yield (catch weight) in steady state. As Nile perch is also to
a significant share exported to other countries, creating monetary income beyond food
supply, the maximization of income is analyzed, too.

Early in fishery economics, Scott distinguished between the case of competing fishers
and the case of a single management of the fishery by a ”sole owner” [178]. He showed that,
particularly in the long-run, the single ownership is, in terms of efficiency, superior to the
open access case. In his seminal textbook, Clark [31] further substantiated this distinction
between the case of the open access fishery and the case of a sole-owner who has property
rights of the whole resource. While the open access situation leads to the dissipation of
all rents [81, 90], a sole-owner can enforce the level and the fleet size selectivity he wishes,
so he is interested in the question of the optimal exploitation. We approach the question
of the optimal fleet selectivity through numerical maximization of steady state yield and
income, respectively.

In the optimization of the fleet selectivity to maximize steady state yield, we find that
the fishing mortality would be focused only on the larger fish sizes: In the standard scenario
without senescent mortality, there would be no fishing mortality below 90 cm. The same
holds if the income is maximized. With additional senescent mortality, the lower bound
of fishing is at 70 cm which is still 20 cm above the current lower bound of the slot size
(50 cm) and above the range of selectivity of the lowest legal mesh size (5”) which targets
fish in the range 47.69 ± 7.90 cm.

The yield from the optimal fleet selectivity is 94.6% above the current value, thus
providing a substantial improvement. With an optimized fleet selectivity the income
would be 151.9% above the current value. These findings are opposed to the common
suggestion to aim for ”balanced harvesting” (harvesting each size in proportion to its
productivity), which would imply to force a strong fishing mortality on the smallest fish and
a proportionally reduced one on the larger sizes [116, 112, 115, 113, 169, 170]. However, our
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11.2 Discussion of the results

results are in line with the call to spare the ”BOFFs” (big old female fish) in order to sustain
a healthy population with a large SSB that is more robust to pernicious environmental
events1 [53, 94, 13, 72].

The theoretical basis for that result is developed in Section 6.3. There we shown that
a small perturbation of the current fleet selectivity (a small increase in fishing mortality)
above 67 cm would increase steady state yield, while a perturbation below 67 cm would
decrease yield. To this ”local” information (in the sense that it is only valid sufficiently
close to the current fleet selectivity), Chapter 9 adds the ”global” information about the
optimal fleet selectivity.

4. Fishers’ response

In the final chapter, the previous model is coupled to an economic model of fishers’
dynamic decisions about entry into or exit from the fishery, represented through the boat
owners’ decisions about the number of vessels they operate. The model is a gear related
dynamic effort model, where the sign of the profit determines whether the number of
vessels is increased or reduced, and the absolute value determines the rate at which new
vessels are added or operating vessels exit.

After an extended burn-in period, we simulate 30 years of the coupled model. Within the
first year, vessels with unprofitable gears exit the fishery, leaving a state where only gillnets
with 6”, 7” and 8” mesh size are employed. After an initial period of larger oscillations,
these three sub-fleets approach constant catch levels. At the end of the simulation period,
no sub-fleet makes profit, in line with the theoretical prediction for an open access fishery.

We find that panelling and the state of the non-fishery economy (through the level
of opportunity costs) have an impact on the equilibrium of the fishery. Panelling would
decrease yield, income, stock biomass and the average size of fish in the stock. Higher
opportunity costs (favorable jobs outside the fishery) would increase yield, income, stock
biomass and average length, but the magnitude of the effect is only small or moderate
(compared to panelling). We find that the fishery can be either in a high value (high
income and yield) or low value regime, and that e.g. panelling can induce a transition
between the two. Whether the transition is rather abrupt or smooth, depends on specific
characteristics of the behavior of fishers, for example how strongly their behavior is coupled
(fishers imitating the behavior of their peers). We conclude that fishery managers should
monitor the percentage of vessels targeting larger fish, and encourage the usage of nets
and hooks that catch primarily large fish.

1Already in 1997 it was suggested from the simulation of a bio-energetic model, that a strictly
regulated fishery of large mesh size gill nets provides the greatest fishery yield, while simulta-
neously reducing the predation pressure of Nile perch on other species like haplochromines and
cannibalism of young Nile perch [105].
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11.3 Limitations and future research

This thesis develops a size structured model of the Nile perch population together with
the size selectivity of the relevant fishing gears. In order to keep the results tractable,
we focus on Nile perch as a single species. Therefore, the model in this thesis assumes
that Nile perch lives in a fixed environment and its feeding rates depend only on the
size. However, the ecosystem is interdependent with multiple interactions between the
species, mainly mediated through predator-prey relationships. The structure of our model
has the advantage that, in future research, the predation can be neatly incorporated as
a relationship that depends on the size ratio between predator and prey. In that way,
one can include the cannibalistic behavior of Nile perch and, moreover, it is possible to
connect multiple interdependent species within the same model. This would provide an
advanced representation of the feeding processes in the ecosystem [117, 17, 179, 199, 194,
27].

Furthermore, this extension would comply with the ”Ecosystem Approach to Fisheries
Management” (EBFM) that has been suggested as the new paradigm for sustainable man-
agement of the African inland lakes [142, 118]. EBFM ”considers the ecosystem in totality
in order to maintain its resilience rather than advancing single species-specific manage-
ment measures” [142]. The approach emphasizes that one must ”manage target species in
the context of the overall state of the system, habitat, protected species, and nontarget
species. Single-species target and limit reference points are still appropriate, but will need
to be modified in the context of these other factors.” [167] The multispecies approach,
where the predation is directly modeled through the size structure of the fish populations,
would incorporate more of the ecosystem dynamics and could detect dependencies between
the fish species [199].

The decision process of the fishers is modeled in this thesis in a simplistic matter as a
gear based dynamic effort model, assuming free entry/exit in proportion to the profit/loss.
Each sub-fleet, i.e. the vessels that employ the same gears, is modeled as a single actor
that increases or decreases the number of boats on the lake dependent on the profits, hence
the model averages over the boat owners in each sub-fleet. Extensions of the research of
this thesis can apply more complex decision models of the boat owners that include more
heterogeneities among the fishers and boat owners like in [79]. It has been suggested that
simple adaptive decision rules might predict the behavior of fishers better than assuming
perfectly rational profit-maximizing agents [28]. Furthermore, in the application to the
panelling case there is no cost linked to panelling, which one should include in future
simulations.

Another important factor, which is not included yet, is the strategic dimension between
the three riparian countries Tanzania, Uganda, and Kenya. As the lake is shared as a
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common pool resource among the countries, each of the countries’ actions influences the
resource availability for the other two countries. The international strategic situation of
rational players (nations) can be analyzed as a non-cooperative exploitation [50]. In the
strategic setting of an age or size structured fish population, each country has an incentive
to harvest fish smaller than in the cooperative optimum, which can lead to serious loss of
rents and deterioration of the fish stock. The concepts developed for other locations with
a fish stock shared between multiple countries [52] can also be applied to Lake Victoria.

11.4 Conclusions

In this thesis we develop a size structured model of the Nile perch fishery. This involves
the development of the size selectivity of each relevant gear in the fishery, together with a
biological model and the economic model of the fishers’ economic response to the profit.
The results of the simulations suggestion consistently that improvements in the value of
the fishery (both for yield and for income) come from shifting the fishing pattern towards
larger fish. Reducing smaller gillnets increases yield and income. Targeting large instead
of small fish maximizes yield and income - a result which is robust with respect to the
particularities of the model settings and parameters. In the coupled dynamic stock-fishery
model we find that gillnets with 6”, 7” and 8” mesh size provide positive profits and
dominate the fishery after the 30 year simulation period. This state provides more yield
and income than the current state of the fishery. Other factors like net panelling and the
level of opportunity costs can induce a transition between a high value and a low value
regime of the fishery.

The results of this thesis include the mathematical analysis of the new size structured
Nile perch model, where the existence of a unique, non-negative and regular solution for the
time dependent and the steady state fish stock model is proven. Additionally it provides
concrete, decision-relevant research outputs. As the regulators at Lake Victoria tend to
focus on determining the appropriate rules about which fish should be caught (and not
how many vessels should be allowed or how many quotas be issued), the research of this
thesis centers on assessing the value of the fishery (annual yield or income) under various
fishing patterns and gear restrictions - answering the question, which fish to catch, i.e.
which fish size to target. We find that optimizing the size dimension of the fishing effort
can provide substantial increase in yield (up to 94.6%) and in income (up to 151.9%).
Hence significant increases in the catch are possible from mere adaptation of the fishing
selectivity, thus increasing the food supply while simultaneously making the fish stock
more resilient to shocks or environmental fluctuations. These results are opposite to the
overfishing hypothesis and to the supposed trade-off between increasing yield and stock
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biomass, and challenge the notion of balancing harvest proportional to the productivity
across the size dimension.
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12 Summary

Motivation: Lake Victoria is the world’s second largest freshwater lake and is widely
understood to support the livelihood of three to four million people in the three neighboring
countries Kenya, Uganda and Tanzania. The most profitable fish species is Nile perch,
a top predator which has played a dominant role in the tipping point of the ecosystem
in the 1980s, when the stocks of 500 native fish species collapsed. The fishery managers’
discussions today center on restrictions of gears and fish size in the catch to regulate the
exploitation of the stock. A ruling paradigm suggests to catch fish in proportion to their
productivity, which implies targeting smaller fish more intensely than larger ones. This
paradigm is controversially debated.

Approach: In this thesis a new bio-economic model of the Nile perch fishery is developed,
analyzed and simulated. The key idea is the incorporation of the size structure of the fish
population and of the gear selectivity. This is achieved through coupling a bio-energetic
fish population model to a bio-economic model of the fishery with size selective gears. The
model is based on the McKendrick-von Foerster equation and has the form of a first order
hyperbolic partial differential equation with a non-local boundary condition.

Results: We show the existence of a unique, non-negative and regular solution to the
model for the time dependent case with constant fishing mortality and for the steady state
case. After validation of the model against the empirical population size structure and the
van Bertalanffy growth curve, the assessment shows that the current state of the fishery
is a steady state solution to the governing equation, indicating a ”sustainable” fishing
pattern, and that the effort is 2.0% above the optimal effort for fixed fleet selectivity.

Improvements of fishery yield and income come from modifications of the fleet selectivity,
where we find from three alternative slot size related scenarios and five gear based scenarios
that the scenarios which primarily target the largest possible fish rank highest with respect
to steady state yield, income and stock biomass. Sparing fish below 50 cm increases, ceteris
paribus, steady state yield by 17.7% and spawning stock biomass by 31.9%.

A numerical optimization study demonstrates that the sole-owner’s optimal fleet selec-
tivity spares fish below at least 70 cm, which is 20 cm above the minimum legal size of
50 cm. Optimizing the fleet selectivity increases yield and income substantially (by 94.6%
and 151.9%, respectively).
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Coupling the fish population to the dynamic model of fishers’ response to the fish stock,
mediated through profits, a 30 year simulation shows that boat owners shift to using 6”,
7” and 8” gillnets because of the high profitability. An application to net panelling and
changes in opportunity costs reveals two regimes of the fishery where changes in the use
of panelling can induce a transition from the high value to the low value regime.

Conclusions: The results of this thesis highlight that a substantial gain in harvest and
income of the Nile perch fishery is possible from a modified fishing pattern that spares
small fish and instead primarily targets large fish. This, at the same time, conserves the
reproductive potential of the stock and leads to an increase in stock biomass. The results
challenge the current understanding in three ways: First, shifting the fishing pattern
towards targeting larger fish increases both steady state yield and stock biomass, hence
there is not necessarily a strict trade-off between harvest and stock biomass in steady state,
as is often suggested. Second, sparing young fish and catching them only beyond the point
of maximum cohort biomass utilizes the growth potential of fish and leads to a larger steady
state stock from increased reproduction of large fish. Hence the interpretation of sparing
small fish as simply forgone catch misses crucial positive short term and long term effects.
Third, the ranking of alternative selectivity scenarios and the numerical optimization of the
fleet selectivity to maximize yield or income, respectively, suggest that the fishery should
spare small fish below at least 50 cm and primarily target large fish. This result questions
the ’balanced harvesting’ paradigm, where it is suggested to distribute fishing mortality
across the widest possible range of species, functional groups, trophic levels and body sizes
in proportion to biological productivity, which would imply harvesting smaller fish more
intensely then large ones. The novel size structured bio-economic fishery model therefore
challenges current paradigms and proposes new directions for modeling and analyzing the
Nile perch fishery and its regulation in Lake Victoria.
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[80] Santiago Gómez-Cardona, Johannes Kammerer, and Hillary Mrosso. “Fishing
Fleet Selectivity in Lake Victoria’s Nile Perch Fishery”. In: AWI discussion
paper series (2022).

[81] H Scott Gordon. “The economic theory of a common-property resource: the
fishery”. In: Classic Papers in Natural Resource Economics. Springer, 1954,
pp. 178–203.

[82] Damodar N Gujarati. Basic econometrics. Prentice Hall, 2022.

139

https://www.fishbase.se/popdyn/KeyfactsSummary_1.php?ID=347&GenusName=Lates&SpeciesName=niloticus&vStockCode=361&fc=631
https://www.fishbase.se/popdyn/KeyfactsSummary_1.php?ID=347&GenusName=Lates&SpeciesName=niloticus&vStockCode=361&fc=631
https://www.fishbase.se/popdyn/KeyfactsSummary_1.php?ID=347&GenusName=Lates&SpeciesName=niloticus&vStockCode=361&fc=631


Bibliography

[83] Piotr Gwiazda, Grzegorz Jamroz, and Anna Marciniak-Czochra. “Models
of discrete and continuous cell differentiation in the framework of transport
equation”. In: SIAM Journal on Mathematical Analysis 44.2 (2012), pp. 1103–
1133.

[84] Piotr Gwiazda, Thomas Lorenz, and Anna Marciniak-Czochra. “A nonlinear
structured population model: Lipschitz continuity of measure-valued solu-
tions with respect to model ingredients”. In: Journal of Differential Equations
248.11 (2010), pp. 2703–2735.

[85] Piotr Gwiazda et al. “Analysis of particle methods for structured popula-
tion models with nonlocal boundary term in the framework of bounded Lip-
schitz distance”. In: Numerical Methods for Partial Differential Equations
30.6 (2014), pp. 1797–1820.
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A Mathematical methods

A.1 Ordinary differential equations

A.1.1 Existence
In the following we give a very brief primer on the theory of ordinary differential equations.
For more details, the reader is referred to the introductions [174, 100, 189].

Definition A.1 (Ordinary Differential Equation (ODE), [100]). Let u(t) be a function
defined on an interval I ⊂ R with u : I → R.

An (implicit) ordinary differential equation (ODE) of order n is an equation for u(t) of
the form F (t, u(t), u′(t), ..., u(n)(t)) = 0.

If it can be formulated as u′(t) = f(t;u(t)), it is called an explicit ODE. If the right hand
side f does not explicitly depend on t, so u′(t) = f(u), the equation is called autonomous.

Definition A.2 (Initial value problem (IVP) (Definition 1.2.7 in [100])). Given an initial
point (t0, u0) ∈ R × Rd and the function f(t, u), defined in a neighbourhood of (t0, u0),
I × U ∈ R × Rd, with the values of f in Rd. The task to find a function u(t) such that
u′(t) = f(t, u(t)) and u(t0) = u0, is called an initial value problem.

Theorem A.3 (Peano’s local existence theorem, [174]). Let α, β > 0 and let the function
f(t;x) be continuous on the (d+1)-dimensional cylinder D = {(t, x) ∈ R × Rd : |t −
t0| ≤ α, ||x − u0|| ≤ β}. Then there exists a solution u(t) of the IVP on the interval
I := [t0 − T, t0 + T ], where T := min(α, β/M),M := max(t,x)∈D ||f(t, x)||.

The proof is given in [174, Satz 1.1].

Remark A.4. Note that the Peano existence theorem guarantees only local existence of
the solution, but not the uniqueness.

Theorem A.5 (Peano’s continuation theorem, [100, 174]). Let the function f(t, x) be
continuous on some set D ⊂ R × Rd that contains the point (t0, u0). Let u be a local
solution of the IVP in the neighbourhood of t0, then there exists an interval I = (t−, t+)
such that the local solution u can be extended to the left and the right of t0 to a continuously
differentiable solution u ∈ C1(I), as long as the graph of u does not touch the boundary

159



A Mathematical methods

of D. The interval I may be unbounded and the graph(u) := {(t, u(t)), t ∈ I} may be
unbounded for t → t+ or t → t−.

The proof is given in [100, Theorem 1.2.15] and [174, Satz 1.2].

Corollary A.6 (Global Existence, [174]). Let the function f(t, x) of the IVP (Definition
A.2) be defined on R × Rd and continuous. If, for each local solution u(t) from Theorem
A.3, it holds that ||u(t)|| ≤ β(t), t ∈ [t0 −T, t0 +T ], with some fixed continuous function
β : R × R, then one can extend u to a global solution on R.

The proof is given in [174, Korollar 1.19].

A.1.2 Uniqueness
Definition A.7 (Lipschitz condition, [174, 100]). The function f(t, x) satisfies a uniform
Lipschitz condition on the domain D ⊂ R × Rd, if it holds with a continuous function
L(t) > 0 that: ||f(t, x) − f(t, x′)|| ≤ L(t)||x − x′||, (t, x), (t, x′) ∈ D. f(t, x) is said to
satisfy a local Lipschitz condition, if the inequality holds for all compact subsets of D.

Lemma A.8 (Grönwall’s Lemma, [174]). Let the piecewise continuous function w(t) ≥ 0
satisfy, with two constants a, b ≥ 0, the integral inequality w(t) ≤ b+a

∫ t
t0
w(s)ds, t ≥ t0.

Then it holds: w(t) ≤ bea(t−t0) t ≥ t0.

The proof is given in [174, Hilfssatz 1.19].

Corollary A.9 (Uniqueness, [174]). An IVP with Lipschitz continuous function f(t, ·)
has at most one solution. If Peano’s theorem guarantees the existence of a solution, the
solution is then unique.

The proof is given in [174, Korollar 1.2].

Theorem A.10 (Existence theorem of Picard-Lindelöf, [100]). Let f(t, x), f : D → Rd

be continuous and satisfy a local Lipschitz condition on a domain D which contains the
closed set D0 = {(t, x) ∈. Then, for every (t0, y0) ∈ R × Rd : |t − t0| ≤ α, |y − y0| ≤ β},
there exists a T > 0 and a unique, local solution u : I = [t0 − T, t0 + T ] → Rd of the IVP
u′(t) = f(t, u(t)), t ∈ I = [t0, t0 + T ], u(t0) = u0. The function f is then also bounded
on D0 with M := max(t,x)∈D0 |f(t, x)| < ∞ and T = min(α, β/M).

The proof is given in [100, Theorem 1.4.6].

Definition A.11 (Well-posedness of an IVP, [100]). An initial value problem is well-posed
if the three Hadamard conditions are fulfilled:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.
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A.2 Solution to the age structured population model

Let us consider the following age structured model [96],


∂
∂tp(a, t) + ∂

∂ap(a, t) + µ̃(a)p(a, t) = 0 on [0, a†) × [0, T ],

p(a, 0) = p0(a) on [0, a†),

p(0, t) = R0Φ(S(t))
∫ a†

0 β̃0(a)p(a, t)da on [0, T ],

S(t) =
∫ a†

0 γ̃(a)p(a, t)da,

(A.1)

where p(a, t) : [0, a†] × [0, T ] → R+ is the population density dependent on age a and
time t with maximum age a† < ∞, µ̃ : [0, a†] → R+ is the mortality rate, R0 ∈ R+

the intrinsic net reproduction number, β̃0 : [0, a†] → R+ the baseline fertility, and p0

the initial population density. The recruitment depends on the density of the population,
characterized by the reproductive population S : [0, T ] → R+. The impact of the size of
the reproductive population on the fertility is modeled through the function Φ : [0,∞) →
R+, continuous on [0,∞) and continuously differentiable on (0,∞), that decreases the
reproduction with increasing population, with the following properties:

Φ(0) = 1, Φ(x) ≥ 0, Φ′(x) < 0, lim
x→∞

Φ(x) = 0. (A.2)

In the following the term baseline means without the effect of the density dependence,
i.e. at S = 0. Defining the baseline survival probability

Π0(a) = e−
∫ a

0 µ̃(σ)dσ, (A.3)

we have then the following basic assumptions:

i) β̃0 ∈ Cb((0, a†)), 0 ≤ β̃0(a) ≤ β̃+ a.e. in [0, a†],

ii)
∫ a†

0 β̃0(a)Π0(a)da = 1,

iii) p0 ∈ L∞(0, a†), p0(a) ≥ 0 a.e. in [0, a†],

iv) µ̃ ∈ L1
loc([0, a†)); µ̃(a) ≥ 0 a.e. in [0, a†];

∫ a†
0 µ̃(a)da = +∞,

v) γ̃ ∈ Cb((0, a†)), 0 ≤ γ̃(a) ≤ γ̃+ a.e. in [0, a†].

(A.4)

Further we require the compatibility condition between the initial age density and the
fertility function [96]:

p0(0) = R0Φ(S(0))
∫ a†

0
β̃0(a)p(a, 0)da. (A.5)
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Proposition A.12 (Existence of a unique, non-negative solution with regularity). Under
the assumptions (A.2)-(A.5), there exists a unique, non-negative solution p that satisfies
the logistic model (A.1). The solution is continuous and the partial derivatives pt and pa

exist a.e. in [0, a†] × [0, T ].

Proof. The proof is given in [96, Theorem 5.2, Proposition 5.2 and Section 5.4].

Remark A.13. The compatibility condition (A.5) is only necessary to guarantee that the
solution p is continuous across the characteristic line a = t, where the initial condition
and the boundary condition concur [96].

Proposition A.14 (Steady state solution). Under the assumptions (A.2)-(A.5), the lo-
gistic model (A.1) has a unique non-trivial steady state solution, if and only if R0 > 1.

Proof. The proof is given in [96, Theorem 5.4].

A.3 Convergence of the growth function
The growth rate of fish is given by

g(w) = Awn

1 − 1

1 +
(

w
wm

)−κ

(
w

W†

)1−n
 in [0,∞) (A.6)

with the parameters from Chapters 3 and 6. The growth curve w(a) of the individual fish
is the solution to the ordinary differential equation

dw(a)
da = g(w(a)) = Aw(a)n

(
1 − 1

1+
(

w(a)
wm

)−κ

(
w(a)
W†

)1−n
)

in [0,∞),

w(0) = w0

(A.7)

with the growth function g(w) and the other parameters and variables from the Chapters 3
and 6. Let us define the maximal weight W∞ > 0 as the positive weight where the growth
function vanishes, such that g(W∞) = 0. We will now show that this maximal weight is
not reached in finite time, i.e. not at a finite age of the fish.

Lemma A.15. The maximal weight W∞ with w0 < W† < W∞ < ∞, where the growth
rate from (A.6) vanishes, is not reached at finite age a.

Proof. From the definition of W∞,

g(W∞) = AWn
∞

1 − 1

1 +
(

W∞
wm

)−κ

(
W∞
W†

)1−n
 = 0, (A.8)
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we can directly derive that

W† = W∞(
1 +

(
W∞
wm

)−κ
) 1

1−n

. (A.9)

Introducing the new variable x = w
wm

allows to re-write g(w) in the following way:

g(x) = Awn
mx

n

1 − 1
1 + x−κ

(
wmx

W†

)1−n


= Awn
mx

n

(
1 − x1−n

1 + x−κ

(
wm

W∞

)1−n
(

1 +
(
W∞
wm

)−κ
))

= Awn
mx

n

(
1 − x1−n

1 + x−κ

(
wm

W∞

)1−n

wκ
m

(
W−κ

∞ + w−κ
m

))
.

(A.10)

Next we introduce

f(x) = 1 − x1−n

1 + x−κ

(
wm

W∞

)1−n

wκ
m

(
W−κ

∞ + w−κ
m

)
(A.11)

such that

g(x) = Awn
mx

nf(x). (A.12)

Now, using separation of variables we can write for the solution of (A.7):

∫ W∞

w0

dw

g(w) =
∫ a∞

0
da = a∞, (A.13)

where the maximal age a∞, defined as the age when the maximal weight W∞ is reached,
could, until now, be finite or infinite. In order to prove that a∞ = ∞, we have to show
that ∫ W∞

w0

dw

g(w) = ∞. (A.14)

As it holds for the prefactor Awn
mx

n that

0 < Awn
0 < Awn

mx
n < Awn

∞ < ∞, (A.15)

we know that ∫ x∞

x0

dx

f(x) = ∞ =⇒
∫ W∞

w0

dw

g(w) = ∞, (A.16)
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where x0 = w0
wm

and x∞ = W∞
wm

. The first integral can (if at all) only diverge around its
pole x∞, where f(x∞) = 0, and it is sufficient to prove the divergence in a neighborhood
of the pole. Therefore, one has to find a function p(x) with p(x) > f(x) around the pole,
for which it holds that ∫ x∞

x0

dx

p(x) = ∞. (A.17)

This would be a lower bound for
∫ x∞

x0
dx

f(x) and hence imply the divergence of the latter.
Let us define

ζ =
(
wm

W∞

)1−n

wκ
m

(
W−κ

∞ + w−κ
m

)
, (A.18)

where 0 < ζ < ∞. Then

f(x) = 1 − x1−n

1 + x−κ
ζ, (A.19)

and the derivative of f(x) is

f ′(x) = −ζ (1 − n)x−n + (1 − n+ κ)x−n−κ

(1 + x−κ)2 . (A.20)

With the values n = 0.75 and κ = 5, the fraction is strictly positive at the pole x∞. As
ζ and the fraction are bounded, it follows that f ′(x) is negative and bounded from above
and below in a neighborhood of x∞:

−∞ < −C1 ≤ f ′(x) ≤ −C2 < 0. (A.21)

Let us define the function

h(x) := f(x) − ϵ(W∞ − w) (A.22)

in some neighborhood of x∞. As

h′(x) = f ′(x) + ϵ (A.23)

and f ′(x) is bounded from above and below in the neighborhood of x∞, we can surely find
some 0 < ϵ < ∞, such that

h′(x) = f ′(x) + ϵ > 0 (A.24)
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As h(x∞) = f(x∞) = 0 and f ′(x) < 0 near the pole, this implies that

h(x) = f(x) − ϵ(W∞ − w) < 0 (A.25)

in some neighborhood of x∞. Then

p(x) := f(x) − h(x) = ϵ(x∞ − x) > f(x) (A.26)

in the neighborhood. At the same time, it holds with some point x∞ − δ in the neighbor-
hood fo x∞ that∫ x∞

x∞−δ

dx

p(x) =
∫ x∞

x∞−δ

dx

ϵ(x∞ − x) =
[
−1
ϵ

log (ϵ(x∞ − x))
]x∞

x∞−δ
= ∞. (A.27)

Therefore it follows that∫ x∞

x0

dx

f(x) >
∫ x∞

x0

dx

p(x) = ∞ =⇒
∫ W∞

w0

dw

g(w) = ∞, (A.28)

thus the maximal age from (A.13) is infinite:

a∞ = ∞. (A.29)

A.4 Ordinary least squares

Consider a data set of N data pairs, where xi is the independent variable (the predictor)
and yi the dependent variable (the response variable) with i = 1, ..., N . Suppose the data
shall be fitted with a function f(x, β) that has the parameter vector β. The goal is to
determine the parameters β such that the model represents the data as best as possible.
This implies minimizing some measure of the distance between the data points and the
model. The distance at each data point is the residual ri = yi−f(xi, β). The ”goodness” of
the model can be specified as the sum of the squared residuals (SSR) with SSR = ∑N

i=1 r
2
i .

In the case of the ordinary least squares method, the model has the following form:

yi = β0 + β1xi + ϵi, (A.30)
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where ϵi is the error term that is assumed to be a random variable (independent and
identically distributed, i.i.d.). The task is now to find β0, β1 to minimize the SSR:

min
β0,β1

SSR =
N∑

i=1
(yi − (β0 + β1xi))2 . (A.31)

Furthermore, one can define the coefficient of variation, R2, a measure of the ”good-
ness of fit” capturing the percentage of the variation in the dependent variable that is
”explained” from the linear model [82, 89]. With the mean value ȳ = 1

N

∑N
i=1 yi one can

write:

R2 =
∑N

i=1(f(xi, β) − ȳ)2∑N
i=1(yi − ȳ)2

. (A.32)

A.5 Optimization methods
In this section, we introduce the algorithm of the method L-BFGS-B which will be used
in the thesis to optimize the fishing pattern. This method belongs to the class of Quasi-
Newton methods. To provide the background for understanding the concept of the method,
we begin with a brief overview of optimization methods, to the degree to which it is relevant
for the idea of the Quasi-Newton method.

A.5.1 Newton-Raphson methods
Assume that f(x), f ∈ R is a multivariate function of the input vector x ∈ Rn. Now one
seeks to find the vector x∗ that minimizes the function value:

x∗ = arg min
x
f(x). (A.33)

The idea is an iterative approach that aims to generate a sequence of estimates, xn, n =
0, 1, 2, ... that approaches the ”true” global minimizer x∗. So, given an estimate, one wants
to use the algorithm to find an improved estimate such that f(xn+1) < f(xn). The Newton
method is based on the idea to find a quadratic approximation of the problem that is valid
in a neighborhood of xn. Let us assume that f is twice-differentiable. Then, in some
region ”close” to a fixed point, one can build the Taylor approximation:

f(x+ ∆x) = f(x) + ∆xT ∇f(x) + 1
2∆xT ∇2f(x)∆x. (A.34)

where ∇f(x) denotes the gradient and ∇2f(x) the Hessian matrix of f [88].
As an iterative procedure, one starts from an initial guess x0 and, in each step, finds a

step direction and step width, tk∆xk+1, such that the function after the step, at xk+1 =
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xk + tk∆xk+1, is minimized. The quadratic approximation of the function f is given by
the Taylor approximation, therefore the increment ∆xk comes from solving the quadratic
problem (QP):

min
∆x

1
2∆xTHk∆x+ ∇f(xk)T ∆x, (A.35)

where Hk denotes the Hessian matrix [18].

A.5.2 Quasi-Newton methods

Similar to the Newton method, the Quasi-Newton methods use a second-order approx-
imation, however the Hessian H is not calculated directly, but rather given by some
approximation.

Given an estimate xk, the second order approximation of the function at the next iterate,
xk+1 = xk + ∆xk, is:

f(xk + ∆xk) ≈ f(xk) + ∇f(xk)T ∆xk + 1
2∆xT

kH(xk)∆xk. (A.36)

A necessary condition of the next iterate to be (approximately) optimal, is that the gra-
dient, given by

∇f(xk + ∆xk) ≈ ∇f(xk) +H(xk)∆xk, (A.37)

vanishes at the next iterate:

∇f(xk + ∆xk) = 0. (A.38)

This condition provides, if H is invertible, the Newton step:

∆xk = H−1(xk)∇f(xk) = 0. (A.39)

The approximation of the Hessian has to fulfill the ”secant equation”

∇f(xk + ∆xk) = ∇f(xk) +H(xk)∆xk. (A.40)
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A.5.3 BFGS method
In the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [24, 23, 70, 77, 180, 18],
which is widely used [1], the next iterative of the approximation of the Hessian is given by

Hk+1 = Hk + yky
T
k

yT
k ∆xk

− Hk∆xk∆xT
kH

T
k

∆xT
kHk∆xk

, (A.41)

where ∆xk is the solution of the secant equation (A.40) (in the literature also referred to
as sk) and yk = ∇f(xk+1) − ∇f(xk).

This construction has the property thatH−1
k+1 is positive definite, if H−1

k is. By induction
it follows that, if H−1

0 is positive definite, each iterate also is. The condition can always be
satisfied by choosing the unit matrix as the initial matrix. Additionally, one can formulate
a recurrence formula for H−1

k+1, such that the sequence of iterates yj and ∆xj (j = 1, ..., k)
is sufficient to construct H−1

k+1 and one does not require the knowledge of H−1
k . This allows,

in another step, to calculate H−1
k+1∇f(xk+1) without explicitly calculating H−1

k+1 [88]. The
method is also well described in [151].

A.5.4 L-BFGS-B method
The BFGS method has the advantage that the Hessian need not be calculated explicitly,
but it still requires to store the complete sequence of yj and ∆xj . For a high dimensional
problem, this can require a large memory space. For this, the Limited-memory BFGS
algorithm (L-BFGS) was constructed that only requires the last m iterates of ∆x and of
y, namely ∆xk,∆xk−1, ...,∆xk−m−1 and yk, yk−1, ..., yk−m−1 to compute the next iterate
[88].

In order to handle simple box constraints, one has to extend the L-BFGS algorithm.
For each component xi ∈ R of x = (x1, x2, ..., xi, ..., xn)T , the user can prescribe an upper
and a lower bound, such that li ≤ xi ≤ ui. For each component, no bound, one bound, or
both lower and upper bound can be prescribed [25, 198, 151, 55].

A.6 Density conversion

A.6.1 Age and weight
As explained in Chapter 3, many of the relevant biological processes scale as a power-law
function of the weight. Therefore, the main part of the model is formulated using the
weight density, this means the number density in the weight domain. The density has the
unit of numbers per gram. However, much of the mathematical literature is formulated in
the age domain, i.e. in terms of the age density in units of numbers per year. The reason
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is that, for the mathematical analysis, the age density is more convenient because the
partial time derivative of age is simply one. Independent of its size, a fish has become one
year older after one year, while the weight increment in one year depends on the weight
itself, thus the time derivative of the weight is not simply constant.

As can be seen in the following, there is a direct (and unique) translation between the
weight density and the age density. This implies that the mathematical results obtained
using the age density carry over to the model formulated in the weight density.

The inverse function theorem states that, if f is a continuously differentiable function of
one variable and its derivative does not vanish in the point x, then there exists a neighbor-
hood of x where f is injective and near y = f(x), the inverse is continuously differentiable.
The derivative of the inverse function f−1 at the point y equals the reciprocal of the
derivative of f at x:

(f−1)′(y) = 1
f ′(x) = 1

f ′(f−1(y)) . (A.42)

This translates to the case of the fish model as follows: The function w(a) is the weight of
a fish at age a. If it is continuously differentiable in a domain where w′(a) = g(w(a)) ̸= 0,
then for the derivative of the inverse function, a = h(w) it holds:

h′(w) = 1
w′(a) = 1

g(a(w)) , (A.43)

or, equivalently,

dw(a)
da

=
(
da(w(a))

dw

)−1
. (A.44)

This leads to the following equation:

∫ w2

w1
u(w, t)dw =

∫ a(w2)

a(w1)
u(w(a), t)dw

da
da =

∫ a2

a1
p(a, t)da, (A.45)

where u(w, t) is the density in the weight domain, p(a, t) the density in the age domain,
and a1 = a(w1), a2 = a(w2). In the first step of the equation, dw is replaced by dw

da da

in accordance with the inverse function theorem, and the boundaries of the integral are
replaced accordingly. The second step holds because the integral equals the total number
of fish with size between w1 and w2, or, equivalently, with age between a1 and a2, which
must be the same number irrespective of the representation of the integral in weight or
age. Thus, this equation allows to identify p(a, t) with u(w(a), t)dw

da , which provides the
formula for the conversion of the density from one domain to the other [54]:

p(a, t) = u(w(a), t)dw(a)
da

= u(w(a), t)g(w(a)). (A.46)
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Without the proper conversion, one risks errors because of the non-linearity of the
length-weight conversion (Fig. A.1).

Figure A.1: Length-weight relationship for two example fish species (lemon sole in
blue and common ling in red). Equidistant bins in the length domain
correspond to non-equidistant bins in the size domain due to the non-
linear length-weight relationship. From [63].

A.6.2 Length and weight
We can apply the same line of thought of the conversion between age and weight density
also to the conversion between length and weight. A fish population can be represented
with a length spectrum or a weight spectrum. The number spectrum can be converted
between the two representations from the following considerations. Let nL(L) denote the
number density in the length spectrum, such that the number of fish in the interval [L1, L2]
is:

N =
∫ L2

L1
nL(L)dL. (A.47)

This number must not differ from the number in the weight representation:

N =
∫ w(L2)

w(L1)
nw(w)dw, (A.48)
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where w(L) denotes the length-weight relationship, and nw(w) is the number density of
the weight spectrum. As the equations are true for any pair L1,L2 and the respective pair
w(L1), w(L2), it holds that

N =
∫ L2

L1
nL(L)dL =

∫ w(L2)

w(L1)
nw(w)dw =

∫ L2

L1
nw(w(L))dw

dL
dL, (A.49)

and thus
nw(w)

(
dw

dL

)
= nL(L), (A.50)

where
dw

dL
= d

dL
w(L) = cbLb−1 (A.51)

is the derivative of the length-weight relationship

w(L) = cLb, (A.52)

which is commonly applied in fisheries sciences.
Hence the density conversions is:

nw(w) = nL(L)(cbLb−1)−1, (A.53)

and, analogously,
nL(L) = nw(w)bc1/bw(b−1)/b, (A.54)

where we used the inverse length-weight relationship L(w) = (w/c)1/b and its derivative
dL(w)

dw = bc1/bw(b−1)/b. This length-to-weight conversion was validated against the method
LBNbiom, which uses the logarithmically binned biomass [64].
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B.1 Growth parameter

In [2, eq. (3.10)], it is shown how the growth parameter A can be estimated from the
Bertalanffy parameters K and L∞ for n = 3/4 and b = 3. We extend the derivation for
arbitrary values of n and b. From the length-weight relationship

w = cLb, (B.1)

it follows that
dL

dt
= 1
b
c−1/bw1/b−1dw

dt
. (B.2)

Inserting the van Bertalanffy equation

dL

dt
= KL∞ (B.3)

and the juvenile growth model
dw

dt
= Awn, (B.4)

one gets
KL∞ = A

b
c−1/bw1/b−1+n. (B.5)

Following [2], let us assume the two are identical at w = wm = ηm W∞ = ηm cL∞
b. Then

KL∞ = c−1/b

b
(ηmcL∞

b)1/b−1A(ηmcL∞
b)n. (B.6)

Therefore:
A = bc1−nηm

1−1/b−nKL∞
b(1−n). (B.7)

For n = 3/4 and b = 3 one gets the special case shown in [2, eq. (3.10)]:

A = 3c1/4ηm
−1/12KL∞

3/4. (B.8)

With the standard parameter values (Table 3.1), one gets here A = 13.02.
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B.2 Physiological mortality
There are two different ways to calculate the parameter a which represents the physio-
logical mortality [2, eqs. (4.41) and (4.42)]. The first method builds on the size spectrum
theory and the energy budget. Using the parameters from [2], we can write the estimate
of the physiological mortality a from the predator-prey interactions in the marine size
spectrum and the metabolism as

a = a(β, σ, n, q, f0, ϵa, fC) = Φpf0
ϵa(f0 − fc)

, (B.9)

where the constant Φp, describing the predator-prey size preference, is

Φp = β2n−q−1exp((2n− q − 1)(q − 1)σ2/2) (B.10)

and comes from the feeding kernel for a community spectrum. With the standard param-
eter values (Table 3.1) one gets here a = 0.522.

The advantage of this approach is that is derived from very general principles and thus
applies broadly, the disadvantage is that there are no direct observations of the parameters
q, f0, ϵA, fc. Therefore general species-unspecific and not directly observable values have
to be used.

The second method to estimate a is from empirical observations of the van Bertalanffy
parameters M and K with the advantage of using species-specific values which are often
measured or estimated in the literature. However, as the natural mortality depends on
the weight, M is not actually a constant. Therefore, one has to set, rather arbitrarily, a
weight at which the size-based natural mortality equals M . Following [2] in setting this
point at the size of maturation, one gets:

a = a(M,K, ηm, b) = M

K

ηm
1/b

b
. (B.11)

With the standard parameter values (Table 3.1) one gets here a = 0.244.
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