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Abstract

Graphene-based materials (GBMs) represent one of the most promising and sustainable alterna-
tives to metal- and silicon-based systems in a plethora of practical applications, from sensing to
catalysis. However, the structural variability and lack of standard testing conditions make the
efficient development of candidates for specific applications challenging. Nowadays, computational
chemistry and materials science can aid experiments by providing crucial understanding of the be-
haviour of GBMs, but the choice of in silico models and theoretical methods is critical to achieve
reliable and insightful results. Furthermore, compositional and structural variety and a broad
range of sizes of GBMs and their molecular (nano-) variants challenge the applicability of highly
accurate ab initio methodologies. Clearly, better guidance is needed when deciding how to simulate
these functional organic materials accurately and efficiently.

The aim of this thesis is to address this need by studying how the choice of in silico model
and of the level of theory influence computed properties of GBMs, from adsorption energetics to
redox transformations. A large set of computational methods is employed, including semiempirical
tight-binding, hybrid, and range-separated density functional theory in finite and periodic settings,
symmetry-adapted perturbation theory and many other wavefunction theory implementations, as
well as several energy and density decomposition approaches. The results are used to benchmark
the performance of these methods, formulate the guidelines for the best-practice techniques, un-
derstand the chemical behaviour of the GBMs, and, ultimately, distil the design principles for new
and improved materials.

The results and discussion of this work are provided in three chapters:
• In Chapter 3 we present an extensive benchmarking of diverse theoretical approaches for

the adsorption of carbon dioxide on pristine graphene across model sizes and derive a simple yet
powerful extrapolation scheme for accurate estimates of the adsorption energies on infinite GBMs.

• In Chapter 4 we present a study on nitroaromatic compounds adsorbed on diverse graphene-
based sensing materials, highlighting the relationship between computed properties and experimen-
tally determined limits of detection, and analysing how the size-dependency of these properties
varies with the chemical nature of the adsorbent.

• In Chapter 5 we transfer the established extrapolation scheme to the redox properties of
GBMs, namely, ionisation energy, electron affinity, and redox potentials. Given complex electronic
structures of the systems involved, we probe the reliability of single-reference approaches. We also
show that, in contrast to adsorption energies, the size-dependencies of these properties are not
affected by the material’s functionalisation.

This works illustrates that choosing an appropriate theoretical methodology for modelling the
chemistry of graphene-based materials is defined by both the balance between cost and accuracy
and by the questions the simulations aim to answer.





Kurzzusammenfassung

Materialien auf Graphenbasis (GBMs) sind eine der vielversprechendsten und nachhaltigsten Al-
ternativen zu Systemen auf Metall- und Siliziumbasis für eine Vielzahl praktischer Anwendungen,
von der Sensorik bis hin zur Katalyse. Allerdings stellen die strukturelle Variabilität und mangel-
nde Standardtestbedingungen eine Herausforderung für die effiziente Entwicklung von Kandidaten
für spezifische Anwendungen dar. Heutzutage können computergestützte Chemie und Materialwis-
senschaften Experimente unterstützen, indem sie ein entscheidendes Verständnis für das Verhalten
von GBMs liefern, jedoch ist die Wahl der theoretischen Methoden und in silico Modelle entschei-
dend, um zuverlässige und aufschlussreiche Ergebnisse zu erzielen. Darüber hinaus stellen die
Vielfalt der Zusammensetzungen und Strukturen sowie das breite Spektrum an Größen der GBMs
und ihren molekularen (Nano-)Varianten eine Herausforderung für die Anwendbarkeit hochpräziser
ab initio Methoden dar. Erkennbar ist eine bessere Führung nötig, um zu entscheiden, wie diese
funktionellen organischen Materialien akkurat und effizient simuliert werden können.

Ziel dieser Arbeit ist es diesen Bedarf zu decken, indem untersucht wird, wie die Wahl
des in silico Modells und des Theorieniveaus die berechneten Eigenschaften von GBMs bee-
influssen, von Adsorptionsenergetiken bis zu Redoxumwandlungen. Es wird eine große Zahl
computergestützter Methoden angewandt, einschließlich semiempirischer Tight-Binding-, hybrider
und reichweiten-separierter Dichtefunktionaltheorie in endlichen und periodischen Umgebungen,
symmetrieangepas-ster Störungstheorie und viele andere Implementierungen der Wellenfunk-
tionstheorie, sowie verschiedene Energie- und Dichtebeitragsansätze. Die Ergebnisse werden
verwendet, um die Leistung dieser Methoden zu vergleichen, Richtlinien für die besten Ver-
fahren zu formulieren, das chemische Verhalten der GBMs zu verstehen und schließlich die
Konstruktionsprinzipien für neue und verbesserte Materialien herauszuarbeiten.

Die Ergebnisse und Diskussionen dieser Arbeit werden in drei Kapiteln dargestellt:

• In Kapitel 3 präsentieren wir ein umfassendes Benchmarking verschiedener theoretischer
Ansätze für die Adsorption von Kohlenstoffdioxid an unverändertem Graphen über ver-
schiedene Modellgrößen hinweg und leiten ein einfaches, jedoch leistungsfähiges Extrapo-
lationsschema für präzise Schätzungen der Adsorptionsenergien an unendlich großen GBMs
ab.

• In Kapitel 4 stellen wir eine Studie über nitroaromatische Verbindungen, die an verschiede-
nen Graphen-basierten Sensormaterialien adsorbiert werden, vor. Wir zeigen die Beziehung
zwischen den berechneten Eigenschaften und den experimentell ermittelten Nachweisgrenzen
auf und analysieren, wie die Größenabhängigkeit dieser Eigenschaften mit der chemischen
Natur des Adsorbens variiert.

• InKapitel 5 übertragen wir das etablierte Extrapolationsschema auf die Redoxeigenschaften
von GBMs, namentlich Ionisierungsenergie, Elektronenaffinität und Redoxpotentiale. An-
gesichts der komplexen elektronischen Strukturen der beteiligten Systeme untersuchen wir die
Zuverlässigkeit von Einzelreferenzansätzen. Wir zeigen auch, dass die Größenabhängigkeit
dieser Eigenschaften, im Gegensatz zu den Adsorptionsenergien, nicht von der Funktional-
isierung des Materials beeinflusst wird.

Diese Arbeit veranschaulicht, dass die Wahl einer geeigneten theoretischen Methode für die Mod-
ellierung der Chemie von Materialien auf Graphenbasis sowohl durch das Gleichgewicht zwischen
Kosten und Genauigkeit als auch durch die Fragen, die die Simulationen beantworten sollen, bes-
timmt wird.
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Chapter 1

Introduction

1.1 Background and motivation

Climate change and the depletion of natural resources are among the most pressing challenges
facing humankind [1]. Science plays an essential role in ensuring sustainable development towards
new and more efficient green technologies and in remediating the anthropological damage to the
environment. Nowadays, the majority of industrial processes rely on inorganic materials - metals
and silicon - to catalyse reactions, shuttle electrons in energy applications, etc. Yet many metals,
particularly rare and noble ones, can be expensive, the raw material is of low availability, and
the associated waste can be dangerous and polluting. Furthermore, inorganic compounds present
safety hazards since their large scale utilisation requires robust reactors operating under harsh
reaction conditions and undergoing frequent maintenance. The use of metalloids, such as silicon,
is also not sustainable, because of the limited resources available and the conditions necessary for
production and processing. For these reasons, there has been an extensive search for sustainable
and industrially-viable alternatives. Examples of such approaches include enzymes [2] and organic
molecules [3] to catalyse industrial processes.

Carbon-based materials have been employed across chemical sciences for almost a century. For
example, the oxidation of oxalic acid by charcoal was reported in 1926 [4]; the use of graphite
as a lubricant is another long-standing example. Diverse carbon allotropes entered the chemical
domain with the synthesis of carbon nanotubes [5], which comprise a cylindrical honeycomb lattice
of carbon atoms. But the greatest breakthrough in the practical applications of carbon-based
materials arrived in 2004 with the first synthesis of pristine graphene [6], a planar hexagonal
lattice of sp2-hybridised carbons. Graphene can be created by mechanically exfoliating graphite or
by depositing methane or polycyclic molecules on metallic substrates. Pristine graphene is a zero-
gap semiconductor characterised by excellent mechanical properties that can be broadly exploited
in materials science and electronics. While its high stability makes it difficult to apply pristine
graphene in chemistry, its versatility, which arises from the possibility of functionalising [7] or
doping [8] the material (Fig.1.1) and thus generating an entire class of graphene-based materials
(GBMs), unlocks an extensive tunability of properties and, therefore, a variety of applications.

GBMs are currently considered to be one of the most promising and sustainable alternatives
to metal- and metalloid-based compounds for catalysis, sensing, electronics, and many other ap-
plications [9]. The waste from their use in industry is less polluting than that from inorganic
alternatives. Moreover, with GBMs not only it is not necessary to extract, purify, and transform
metals, but graphene and its derivatives can be obtained from organic raw materials [10], ensuring
sustainability of large-scale production and processing.

Depending on the chemical nature of the functionalisation GBMs can be separated into three
main classes, which also correspond to their respective synthetic approaches:

• graphene oxide (GO): prepared by oxidation and exfoliation of graphite, it contains several
oxygenated functional groups, such as epoxides and hydroxyls. The aromaticity, with respect
to pristine graphene, is partially lost because of the presence of sp3-hybridised carbons,
defects, and vacancies;

• heteroatom-doped graphene: usually contains N, P, S and/or B atoms that are incorpo-
rated during the synthesis; their presence alters the electronic and chemical properties of the

1
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Figure 1.1: Examples of graphene-based materials and their many modifications.

graphene sheet;

• covalently functionalised graphene: functional groups, such as sulfonate, are attached to the
surface during synthesis.

The process of obtaining GO via oxidation and exfoliation of graphite is a top-down approach.
The exfoliation is eased by the repulsion between oxygenated groups. The oxidation can be per-
formed with sodium nitrate, sulfuric acid, and potassium permanganate (the so-called Hummers
and Offeman method [11]), sulfuric and/or nitric acids with potassium chlorate (the Staudenmaier
method [12]), or nitric acid and sodium chloride oxide (the Brodie method [13]). Oxidation in-
troduces functional groups along with various defects and vacancies. The most accurate model of
GO, capturing the distribution of oxygenated groups and defects, is the Lerf-Klinowski model [14]
(see Figure 1.2).

Introducing heteroatoms into the lattice through doping induces polarisation of the carbon
network and affects various physico-chemical properties of the material. Among many approaches
to the synthesis of doped graphene [15], chemical vapor deposition (CVD) is one of the most widely
used methods. It is a bottom-up synthesis of graphene that allows controlling the quantity of
heteroatoms by depositing methane and dopant-containing gas (e.g., ammonia to obtain N-doped
GBMs) on a metallic film in the desired stoichiometric ratio. Alternative synthetic procedures
involve substitution of carbon atoms in the lattice by annealing or plasma treatment in the presence
of a gas containing dopant atoms.

Functional groups can be attached to the surface of graphene to increase its solubility, to
introduce new properties (e.g., adding chromophores for colour), and/or to open the band gap of
the material. There are two main approaches to perform covalent functionalisation of graphene
[7]:

• free radicals (e.g., obtained by heating diazonium salts of aryls), or dienophiles (e.g. azome-
thine ylide), attack the double bonds of a pristine graphene lattice;

• organic functional groups are attached to the oxygenated groups of GO, e.g., via formation
of amides if the functional group to be attached contains a terminal amine.
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Figure 1.2: The Lerf-Klinowski model of graphene oxide.

GBMs can include a single or a few layers. They can also be distinguished by the size of
individual layers, as follows:

• infinite (extended) GBMs, represented by a repeating primitive unit cell;

• fragments of graphene under 100 nm in diameter, considered to possess ”molecular nature”.
Depending on the field of research, application, etc., these molecular graphene fragments
are variously called graphene nanoparticles, graphene nanoflakes, nanographenes, graphene
quantum dots (GQDs), and polyaromatic hydrocarbons (PAHs).

The ability to tailor graphene’s properties and to synthesise new GBMs is an immense advantage
of this class of materials. However, it hinders efficient development of an optimal material for a
specific application, given the excess of possible graphene derivatives [16]. Furthermore, the lack
of standard testing and characterisation approaches [17, 18] complicates the comparison between
measured performance indicators reported by different research laboratories. Establishment of
guidelines, insights, and descriptors predictive of GBMs’ performance is crucial to enable fast and
efficient development of new materials. Computational chemistry offers a solution to the lack of
more standardised data and the insufficient quantity of experimental results. Increase in computing
power and improvement of algorithms continuously push the capabilities of in silico modelling.
Simulations have proven an efficient tool to design materials for specific applications, to predict
their properties, and to screen large databases of potential candidates. However, the accuracy and
reliability of in silico predictions greatly depend on the computational protocol employed; for this
reason, we cannot consider computational chemistry a black box, but have to carefully think about
our choices of methods and models.

1.2 State of the art

Computational chemistry has been used extensively to study GBMs to resolve experimental chal-
lenges and provide design guidelines. It helped gain insights into how GBMs are synthetised,
understand their structures, predict their properties, and design new derivatives for specific appli-
cations in silico[19, 20, 21].

Simulating GBMs synthesis is challenging because of the complexity of both the material’s
structure and its growth mechanism. The growth of graphene on copper by CVD was studied with
molecular dynamics (MD) to identify the key mechanistic steps and understand how to tune the
temperature and deposition rate to increase the quality of the GBM[22]. A similar study of CVD-
based graphene synthesis, in which the substrate was semi-molten copper, compared the results of
classical and ab initio molecular dynamics (AIMD), illustrating the general agreement between the
two approaches and the role that simulations can play in finding ideal conditions for a controlled
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synthesis of graphene[23]. Experiments and molecular dynamics simulations on the growth of
graphene from carbon nanoclusters, combined with the density functional theory (DFT) modelling
of the adsorption of the initial clusters on the substrate, in this case strontium titanate, elucidated
the growth mechanism and identified other materials that can be grown in a similar manner
[24]. Kinetic Monte Carlo (KMC) was employed to model the growth of graphene on iridium
and to identify a kinetic-dominated mechanism for the growth of N-doped graphene on copper
[25]. Effects of pyrolysis and annealing on the formation of graphene oxide were also investigated
in silico. Given the evolution of the chemical nature and the formation of defects and vacancies
under extreme conditions, a reactive force field (ReaxFF) had to be used in molecular dynamics
simulations [26]. DFT was employed to elucidate the mechanism and identify the structure of
reduced graphene oxide (rGO), obtained via reduction of GO [27].

Precise composition and structure of GBMs are rarely known in experiment, because defects
and impurities are introduced during the synthesis and detailed characterisation of the material
is challenging. Simulations can be used to predict stable structures and rationalise experimental
data. Yet, when designing models for in silico studies, one by necessity introduces bias as to which
functional groups to place, and where; manual construction of various structural possibilities is
long and laborious. For this reason, several methods for automatic generation of GBM structures
have been developed. Random forest algorithm using a small set of features corresponding to
chemical functionalities has been successfully employed to generate and analyse diverse graphene
oxide structures [28]. In the case of GO nanoflakes, machine learning allowed finding 25 archetypal
structures that capture full compositional and structural diversity and variability of this material
[29]. Another approach to generate GO structures of different complexity and with defined features
is the modular tiling strategy, which creates large structures from small subunits [30]. Other
tools to generate a variety of GBMs, including features such as covalent functionalisation and
vacancies, exist as well [31]. Yet another key bias introduced in materials simulations is the
choice of the model - infinite/periodic versus finite (Fig.1.3). While periodic models are more
realistic, it might sometimes be desirable to work with simple finite models, either to gain deeper
insights into particular properties, or to perform more accurate and, consequently, more expensive
computations. Molecular (finite) models are sometimes used to model extended systems simply
because particular computational methods are not yet developed or implemented for periodic
simulations [21, 19].

Figure 1.3: Examples of graphene models: (a) a circumcoronene molecule, used as a nanoflake
model for pristine graphene; (b) a periodic model of pristine graphene with a supercell of 32
carbon atoms (in red) obtained from a primitive unit cell containing two carbon atoms (in blue).
Taken from Ref. [21]

.

Computational modelling of GBMs allows simultaneous investigation of their chemistry and
finding descriptors with predictive power, and therefore facilitates the design of GBMs for target
applications, such as sensing [21], energy storage and conversion [32, 33], filtering [34], and catalysis
[35, 36]. For example, computations of optical and electric field properties, i.e. electric field



1.2. STATE OF THE ART 5

enhancement and the effective localization area of the field, were employed to design graphene-
based plasmonic hot spots (nanostructures with strong localised electromagnetic fields) [37]. These
systems are able to detect single molecules with a performance similar to metal-based compounds.

Computational chemistry can be used to evaluate an extensive set of material properties, from
enthalpy of formation to band gap and beyond. In this thesis, we focus on the following properties,
relevant to the application of GBMs as electrochemical sensors [21] and catalysts [38, 39]:

• interaction energy (Eint): contribution to the total energy of an A-B complex due to an
interaction between A and B;

• electron affinity (EA): amount of energy released when an additional electron is attached to
a molecule or an atom [40];

• ionization energy (IE):amount of energy required to remove an electron from a molecule or
an atom [40];

• solvation free energy (∆GSolv): the change in free energy due to a molecule or ion being
transferred from the gas phase into solvent [40].

In this thesis, several Chapters describe the non-covalent interactions (NCIs) between a graphene-
based material and a small molecule, i.e., CO2 (Chapter 3) and nitroaromatic compounds
(Chapter 4). Quantification and analysis of non-covalent interactions has been extensively ad-
dressed by the computational chemistry community, yet a complete and accurate understanding
of these forces is not easily achieved [41]. This is because computing the interaction energy itself
is often insufficient to understand the chemical behaviour or to design better materials; the nature
of these interactions, their geometrical features, and the ways to tune them can be just as crucial.
A number of computational studies on the non-covalent interactions involving GBMs have been
published in the last 15 years. Various flavours of DFT (see Chapter 2) were used to study
interactions between GBMs and nitrocompounds [42, 43], benzene [44], drug candidates [45], and
volatile organic compounds [46]. Given the variety of computational approaches applicable to the
quantification of interaction energy, benchmarking studies are critical to select appropriate in silico
methodology. For example, a series of increasingly large graphene nanoflakes were used as models
of infinite graphene, and their interaction with benzene was computed with different DFT methods
[47]. The PW6B95-D4 hybrid meta-GGA functional enabled the reproduction of experimental data
and, as could be expected, large models better represented infinite graphene [47]. Lazar et al. [48]
compared DFT, wavefunction theory (WFT), and empirical approaches for computing the interac-
tion energies for a set of organic molecules, confirming that accurate computational methods, such
as ab initio molecular dynamics employing the non-local optB88-vdW functional, can reproduce
experimental adsorption enthalpies. The authors also showed that these interactions are always
dominated by dispersion, even in the case of polar adsorbates. When modelling adsorption, it is
important to identify the adsorption site on the extended material [21]. This can be achieved by
relaxing the structure of the complex [46, 42, 47] or with a more extensive search of the adsorption
site, e.g. through ab initio molecular dynamics [48]. Furthermore, in order to better understand
the nature of the adsorption, methods for decomposing energies, densities, and wavefunctions, such
as Quantum Theory of Atoms In Molecules [45] or Symmetry-adapted perturbation theory (SAPT)
[48] (Chapter 2), can be employed.

Redox properties, such as IE and EA, are crucial to understand the behaviour of GBMs in
electrochemistry [49], sensing [21], energy storage and conversion [50], as well as under extreme
conditions such as in the interstellar space [51]. In line with the topic of this thesis, several studies
demonstrated how the size of the GBM affects its redox properties [52, 53, 54, 55]. Chai et al.
[52] used thermally-assisted-occupation density functional theory (TAO-DFT) to compute singlet-
triplet gaps, IEs, and EAs for increasingly large circular graphene nanoflakes, up to hundreds of
atoms, showing the convergence of the electronic properties and the appearance of polyradicalic
character with increasing size of the nanoflake. The same approach was used to study triangulenes
(triangle-shaped graphene nanoflakes) [53], showing similar convergence for IE and EA and an
even stronger polyradical character than in the circular counterparts. The latter was attributed to
the fact that active orbitals tend to become more localised at the periphery of the molecules when
their size increases. Azulene-based allotropes of graphene containing 5-membered unsaturated
rings arranged in a rhomboidal shape also show a decrease in the singlet-triplet gap and IP and
increase in EA with the increasing size of the molecule [54]. A good agreement between computed
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(SMD/B3LYP/6-31G+(d) level of theory) and experimental redox potentials was achieved for
diverse nanoflakes across a wide range of external potentials [55].

Finally, in many practical applications, such as electrochemical sensing, the GBM is solvated
(e.g., in water), and the corresponding effects have to be included in in silico models if the goal
is to reproduce experimental adsorption energies or redox properties [21]. The solvent can be
treated implicitly as a continuum, or explicitly with a relatively small number of solvent molecules
(see Chapter 2). The former approach can be used to approximate experimental conditions in a
cost-efficient manner [56], while the latter affords a more realistic representation but often comes
at a of prohibitive computational cost [57].

1.3 Aims and scope

The central goal of this thesis is to aid a more efficient development of high-performance graphene-
based materials for electrochemical sensing and, more generally, environmental remediation. Key
to these applications are the interactions of GBMs with common pollutants (such as carbon dioxide
and nitroaromatic compounds), as well as their redox properties. Specifically, we investigate how
computable properties can be employed as descriptors to qualitatively or quantitatively predict
the performance of GBMs and deduce the key structure-property relationships facilitating rational
design of these materials. Correspondingly, significant research effort in this thesis is dedicated to
establishing reliable yet affordable computational methodologies that provide in-depth insights into
the pertinent physico-chemical properties of the GBMs. To fulfil this aim, a broad range of compu-
tational techniques, from semiempirical tight-binding and DFT to symmetry-adapted perturbation
theory, was applied to investigate graphene and its many variants featuring functionalisation and
(co-)doping, across a series of finite and periodic models.

1.4 Content of the thesis

This thesis is organised across the following chapters:
Chapter 2: Theory framework presents an overview on the theories upon which the methods

used in this thesis are based.
Chapter 3: Carbon dioxide on graphene describes an extensive benchmarking study

performed to simulate the adsorption of carbon dioxide on graphene nanoflakes of different shapes
and sizes and on periodic graphene models. The Chapter also presents an extrapolation scheme
for predicting adsorption energies at low cost but with high accuracy.

Chapter 4: Adsorption of nitroaromatic compounds on graphene-based materials
provides insights into the adsorption of nitroaromatic contaminants on a diverse set of graphene-
based materials in the context of their use in electrochemical sensors. The Chapter explores the
effect of chemical functionalisation, model size, and theoretical methodology on the computed
properties.

Chapter 5: Redox properties of graphene-based materials shows how electronic prop-
erties, such as IE, EA, and solvation energies depend on the model size and chemical composition
of the material. The Chapter also explores how the quality of the electronic structure (i.e., the
extent of spin contamination) in conjunction with the chosen single-reference methodology affects
computed properties.

Chapter 6: Conclusions summarises the findings of this thesis and outlines the future per-
spectives in this field of science.

While a general introduction into the topic of graphene-based materials and an overview of
key modelling approaches are provided in the Introduction above and in Chapter 2 below,
Chapters 3, 4, and 5 include dedicated introductory, prior art, and methodological sections that
relate to their specific research areas.



Chapter 2

Theoretical framework

Modelling methods and their underlying theoretical frameworks, used in computational chemistry,
must be appropriate, i.e., afford balance between accuracy and cost, to the tackled scientific prob-
lems and investigated chemical systems. In this thesis, we aim to predict accurately and efficiently
and to analyse in an insightful manner the adsorbent and electronic properties of graphene-based
materials. The nature of the studied properties requires an explicit treatment of electrons, afforded
by ab initio electronic structure theory methods (Section 2.1). Since investigated phenomena occur
in the ground state, here we focus on the time-independent implementations of the Hartree-Fock
(Section 2.1.2), post-Hartree-Fock (Section 2.1.3), and DFT (Section 2.1.3). The adsorption of
small molecules on graphene or its derivatives entails non-covalent interactions, which need to
be carefully evaluated and analysed (Section 2.3). The choice of the adsorption site is critical,
necessitating detailed exploration of the potential energy surface (PES) of the system (Section
2.2). The inclusion of solvent effects, which are present in most real-world applications, is equally
important (Section 2.4). In the case of GBMs, another challenge arises from the choice between
the finite (molecular) and periodic (infinite) models. The latter represent extended materials more
realistically, but pose significant computational challenges, i.e., introduction of the periodic bound-
ary conditions and limited selection of implementations (Section 2.1.5). In this Chapter, the key
aspects of these theoretical frameworks and their implementations are concisely introduced and
discussed in the context of GBMs modelling.

2.1 Electronic structure theory

2.1.1 Wavefunction theory

The probability of finding a particle in a given position in space, as well as information about the
state of the particle, can be obtained from the time-dependent Schrödinger equation:

ĤΨ(t) = ih̄
d

dt
Ψ(t), (2.1)

where Ĥ is the Hamiltonian operator, Ψ the wavefunction, t time, and h̄ the Plank constant.
The Born postulate states that |Ψ(x, t)|2 represents the probability that the particle is in the

position defined by x at a time t. In practical chemical scenarious, to simplify the calculations,
only the solutions of Eq.(2.1) that can be written as

Ψ(x, t) = f(t)ψ(x) (2.2)

are considered. f(t) is a function of time and ψ(x) represents the spatial amplitude of the wave-
function.

From Eq.(2.2), in a one-dimensional system, we obtain:

f(t) = e−
2πiEt

h , (2.3)

and therefore the time-dependent wavefunction is

Ψ(x, t) = e−
2πiEt

h ψ(x), (2.4)

7
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where E represents the total energy. The states described by this equation are called stationary
states, because the probability density does not depend on time:

|Ψ(x, t)|2 = |ψ(x)|2 . (2.5)

We can rewrite the Schrödinger equation as

Eψ(x) =

[
− h2

8π2m

d2

dx2
+ V (x)

]
ψ(x) = Ĥψ(x) (2.6)

where Ĥ is the Hamiltonian operator, V (x) the potential energy, and ψ(x) is the wavefunction.
The eigenvalues of the Hamiltonian operator (see Eq.(2.6)) are the possible values of the sys-

tem’s energy, while the eigenfunctions represent the wavefunctions ψ. Considering the Born-
Oppenheimer approximation, that allows decoupling electronic and nuclear motion, the electronic
Hamiltonian is:

Ĥel = T̂ + V̂ne + V̂ee, (2.7)

where

T̂ = −h
2

8π

∑
α

1

mα
∇̂2

α, (2.8)

V̂ne =
∑

α

∑
i

zαe
′2

riα
, (2.9)

V̂ee =
∑

j

∑
i>j

e′2

rij
. (2.10)

Here, ∇̂ is the Laplacian operator,mα the mass of the atom α, zα the atomic number of the atom α,
riα the distance between electron i and nucleus α, rij the distance between electron i and electron
j, and e′ the electron charge. The nuclear energy, constant for a fixed nuclear configuration, is
added to the electronic energy to arrive at a purely electronic Schrödinger equation:

Ĥelψel = Eelψel. (2.11)

2.1.2 The Hartree-Fock method

The Hartree method is based on the assumption that the electronic wavefunction can be expressed
as a product of one-electron molecular orbitals (MOs, ϕ), each dependent on the coordinates of a
single electron (ri):

Ψ(r1, r2, ..., rn) =
n∏

i=1

ϕiri. (2.12)

However, this formalism violates the Pauli exclusion principle, which states that the many-electron
wavefunction must be antisymmetrical with respect to the exchange of two particles. To resolve
this problem, the Hartree-Fock (HF) method was developed. In it, the total wavefunction is
approximated as a Slater determinant Φ:

Φ = Ψ(r1, r2, ..., rn) =
1√
n!

∣∣∣∣∣∣∣
ϕ1(e1) · · · ϕn(e1)

...
. . .

...
ϕ1(en) · · · ϕn(en)

∣∣∣∣∣∣∣ = |ϕ1, · · · , ϕn| . (2.13)

With this approach, the Hamiltonian operator can be separated into n one-electron operators,
where n is the number of electrons in the system, as follows:

Ĥel =

n∑
i=1

(−1

2
∇̂2

i −
nuclei∑

A

zA
riA

) +
∑
i<j

V̂i,j + Vnn =
∑
i

ĥ(i) +
∑
i<j

V̂i,j + Vnn, (2.14)

where V̂i,j is the two-electron potential energy operator, ĥ(i) is the one-electron Hamiltonian
operator, and Vnn is the nuclear-repulsion potential, constant for a fixed set of nuclear coordinates.

The Hartree formalism of the one-electron Schrödinger equation (Eq.(2.15)) can be written as:

ĥiϕi = ϵiϕi. (2.15)
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The corresponding molecular orbitals, denoted HF-MOs, are the eigenfunctions of the Fock
operators (f̂i), which are one-electron operators similar to ĥi in the Hartree formalism:

f̂i = −1

2
∇̂2

i −
j∑

nuclei

zj
rij

+ V̂ HF
i . (2.16)

Here, V HF
i is the mean potential term including the electron exchange contribution. It includes

the Coulomb operator Ĵi, which describes the repulsion between two electrons in the orbital j, and
the exchange operator K̂i that describes the electron exchange contribution arising from the Pauli
exclusion principle.
A set of eigenfunctions corresponding to the MOs is obtained through a self-consistent field (SCF)
procedure:

i. A set of guess MOs is used to obtain the corresponding set of Fock operators;

ii. The obtained Fock operators are used to compute a new set of molecular orbitals;

iii. The procedure is reiterated until the calculated energy is converged, i.e., does not change
beyond a chosen threshold value (convergence criterion).

2.1.3 Post-Hartee-Fock methods

In the HF method the electron-electron repulsive potential is approximated by a mean potential,
the Fock operators are one-electron operators, and the wavefunction is approximated as a Slater
determinant. These approximations result in the lowest achievable Hartree-Fock energy of the
system (the HF limit) still being higher than the true, or exact energy. The difference between
these two values, i.e., the error due to the approximations in the HF method, is called electron
correlation:

Ecorr = Etrue − EHF. (2.17)

The value of E

The electron wavefunction is not a physical observable; it is a function of both spatial and spin
(angular momentum) coordinates:

Ψ(x, y, z, σ) = ψ(x, yz)α(σ), (2.18)

or
Ψ(x, y, z, σ) = ψ(x, y, z)β(σ), (2.19)

where ψ(x, y, z) is the spatial orbital, α and β are spin eigenfunctions, and σ is the spin variable.
In contrast, the electron density (ρ(r)) is a physical observable, defined as∫

ρ(−→r )d−→r = n, (2.20)

where n is the number of electrons in the system, and −→r are their positions. The relative simplicity
and physical interpretability of the electron density prompted the development of DFT, which, is
based upon the two Hohenberg-Kohn theorems:

••HK 1 Proof of existence: The external potential, and therefore the total energy of the system, is a
unique functional of the electron density. As a corollary, the ground state density determines
the potential and thus all the properties of the system.

HK 2 Variational principle: This functional will yield the lowest bound for the ground-state energy
of the system if and only if the input electron density is the true ground state density.

The first theorem can be expressed as follows:

E0 = Eν [ρ0] = T [ρ0] + Eee [ρ0] + Eext [ρ0] , (2.21)

where T is the kinetic energy, Eee is the repulsion between the electrons, and, in the case of an
isolated and field-free molecule, Eext corresponds to the interaction between electrons and nuclei.
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The last term is constant for a fixed nuclear configuration and can be evaluated exactly. The
other two terms are independent of the system and are collected into the Hohenberg-Kohn (HK)
functional:

EHK [ρ0] = T [ρ0] + Vee [ρ0] . (2.22)

The explicit form of the functional for the kinetic energy is not known. The functional for the
electron-electron interaction can be separated into two contributions:

Vee [ρ] = J [ρ] + Encl [ρ] , (2.23)

where J [ρ] is the classical and Encl [ρ] the non-classical parts of the contribution.
The Kohn-Sham approach does not regard the treatment of wavefunctions or electronic orbitals, but
the resolution method treats a fictitious system, composed by n non-interacting electrons. These
electrons experience the same external potential v(−→r ), such that the fictitious electron density
ρs(

−→r ) equals the ground state density for the real system ρ0(
−→r ). With this approximation,

the Hamiltonian can be expanded as the sum of one-electron Kohn-Sham operators ĥKS
i . The

eigenfunctions of these operators (χKS
i ) are the spatial parts of the Slater determinant of the

Kohn-Sham spin-orbitals; the corresponding eigenvalues are the Kohn-Sham orbital energies ϵKS
i

ĥKS
i χKS

i = ϵKS
i χKS

i . (2.24)

The difference between the kinetic energy of the real system and the reference system (described
exactly by the Kohn-Sham treatment) is given by ∆T̄ [ρ]. The sum of ∆T̄ [ρ] and Encl [ρ], which
represent the non-classical part of the electron-electron interaction (see Eq.(2.25)), corresponds to
the intrinsic error of the Kohn-Sham method and is called the exchange-correlation energy, EXC :

EXC = ∆T̄ [ρ] + ∆V̄ee [ρ] . (2.25)

Unfortunately, the form of the exact exchange-correlation functional remains elusive, resulting
in a plethora of density functional approximations (DFAs). These methods are usually classified
according to the Jacob’s ladder [61], which ranks DFAs by how elaborately they represent the
EXC and how close the accuracy of the resulting energy is to the chemical accuracy (see Fig.2.1).
Computational cost also increases from the bottom to the top of this ladder.

Figure 2.1: Jacob’s ladder for the five rungs of DFAs [61]. Common DFT functionals for each
level are shown on the right, additional information that is included to the functional increase its
accuracy is shown on the left of the ladder.

The five rungs on the Jacob’s ladder correspond to:
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• local density approximation (LDA): the system is divided into infinitesimal volumes, inside of
which the electron density is treated as constant. Only the electron density (ρ(r)) is included
in the functional. Within this approach, the exchange term has an analytical expression and
the correlation term is fitted to experimental data;

• generalised gradient approximation (GGA): to account for the rapid variation of the electron
density, the gradient of ρ is introduced;

• meta-GGA: a second derivative of the electron density reflecting the dependence on the
kinetic energy density (the Laplacian) is introduced;

• hybrid methods: a fixed fraction of the exact Hartree-Fock exchange is added to pure LDA,
GGA, or meta-GGA functionals;

• double hybrid: on top of the exact Hartree-Fock exchange, a component of perturbation
theory-like correlation is introduced. Range-separated functionals can be thought of as mix-
tures from higher rungs of the ladder. In them, the exchange functional is flexibly partitioned
into DFT exchange at short-range and HF exchange at long-range with respect to the inter-
electronic separation.

In this thesis, to assess the performance of various electronic structure theory methods for eval-
uating adsorbent and redox properties of GBMs, DFAs from various rungs were tested: GGA
(PBE), hybrid-GGA (B3LYP, PBE0, TPSSh, M062-X), double hybrid (DSD-BLYP), and long-
range-corrected (ωB97X-D). The choice of the functional was guided by the balance between ac-
curacy and computational cost.

Dispersion constitutes a significant, at times even the dominant part, of the non-covalent inter-
actions between neutral compounds [62]. However, it has been historically neglected in DFT, and
a number of approaches has been developed in the past 20 years to account for dispersion directly
in the functional (non-local DFAs), either during the parametrisation (Minnesota functionals) of
the functional, or as a posteriori empirical correction to it. DFT-Dx corrections, developed by the
Grimme group, are among the most famous such corrections. In DFT-D3 [63], dispersion energy
is expressed as:

Edisp = −1

2

Natoms∑
i=1

Natoms∑
j=1

∑′

L
(fd,6(rij,L)

C6ij

r6ij,L
+ fd,8(rij,L)

C8ij

r8ij,L
), (2.26)

where i and j are two atoms of the system, L is the reference cell, f a damping function, and
C is a dispersion coefficient. The last two parameters are obtained empirically and optimised for
different functionals.

While most DFAs come at a lower computational cost than the post-HF methods, they still
scale up with the size of the system, becoming unaffordable in practical terms for systems con-
taining hundreds of atoms. The so-called semiempirical methods address this limitation, albeit
often sacrificing accuracy for efficiency. They are still based on the HF formalism, but involve
further approximations and include parameters obtained by fitting to empirical data. A sub-class
of semiempirical methods is represented by tight-binding methods, in which electrons are consid-
ered tightly bound to the atoms to which they formally belong. In the case of density functional
tight-binding (DFTB), the total energy is expressed in terms of density fluctuations around su-
perposition of the reference atomic densities. GFN2-xTB [64] is one such method, and is used
extensively in this thesis. This method is parameterised to account for electrostatic, dispersion,
and exchange-correlation contributions, and, in contrast to other tight-binding methods, does not
rely on parameters obtained from classical mechanics. The GFN2-xTB energy is expressed as

EGFN2-xTB = Erep + Edisp + EEHT + EIES+IXC + EAES + EAXC +GFERMI, (2.27)

where Erep is the repulsiion energy, Edisp the dispersion energy (calculated using the DFT-D4
scheme), EEHT the energy given by the extended Hückel theory, EIES+IXC the energy of the
isotropic electrostatics and exchange-correlation, EAES the anisotropic electrostatic component,
EAXC the anisotropic exchange-correlation, and GFERMI the entropic contribution to the electronic
free energy at finite electronic temperature due to Fermi smearing. A typical DFTB computation
is orders of magnitude faster than DFT and is thought to yield results of comparable accuracy for
geometries and some of the properties.
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2.1.4 Basis sets

A molecular orbital (one-electron wavefunction) can be approximated within the basis set as a
linear combination of functions, called basis functions:

|ϕi⟩ ≈
k∑

µ=1

ciµχµ, (2.28)

where ϕi is the orbital, χµ are the basis functions, and ciµ their coefficients.
Common basis sets can be classified according to the nature of χµ as follows:

• a linear combination of atomic orbitals (LCAO) is the most common choice for quantum
chemistry calculations on molecules.

• plane waves are typically used for treating periodic systems (see Section 2.1.5).

• a real space approach that allows efficiently parallelising the DFT computations.

In the LCAO approach, basis functions are typically constructed as linear combinations of either the
Gaussian-type orbitals (GTOs), or, less commonly, the Slater-type orbitals (STOs). In a so-called
minimal basis, a single basis function is used for each orbital. Such a minimal description naturally
lacks accuracy, and therefore it is typically extended with more basis functions added per atom
and furnished with various corrections. The latter include diffuse functions, which add flexibility
to the electron density far from the nucleus (and are therefore crucial when describing non-covalent
interactions and anionic species), and polarisation and high angular momentum functions to add
flexibility in the proximity of the nuclei.

The basis sets employed in this thesis in conjunction with the DFT computations, namely
def2-TZVP and def2-QZVPPD, belong to the Karlsruhe (or Ahlrichs) family [65]. These basis sets
are built from contracted GTOs and belong to the so-called split-valence basis sets. In such basis
sets, the inner electrons are modeled with effective core potentials, reducing the basis set size and
accounting for scalar relativistic effects. Valence electrons occupy orbitals represented by one or
more functions each. The number of these basis functions, Z (or ζ), can be single, double, triple,
quadruple, etc.; e.g., def2-TZVP is a triple-zeta valence basis set. Here, P and D represent sets of
polarisation and diffuse functions added, respectively. In general, these basis sets are characterised
by rapid convergence of energy, applicable to the full periodic table, considered well balanced, and
can also be coupled with the so-called auxiliary basis sets that further speed up computations.

A separate family of basis sets is conventionally used in conjunction with the symmetry-adapted
perturbation theory computations. SAPT results are known to be highly sensitive to the basis set
[66], and in this thesis the so-called ”bronze” level of SAPT, i.e., SAPT0/jun-cc-pVDZ, is used.
The jun-cc-pVDZ belongs to the so-called ”calendar” version of Dunning’s correlation consistent
basis sets [67], developed by Truhlar [68]. It is a double-zeta basis set, from which the redun-
dant functions have been removed to increase efficiency, while diffuse and polarisation functions
were adjusted. Specifically, H and He atoms have no diffuse functions, while the highest angular
momentum diffuse functions are removed for all other elements.

Semiempirical methods, such as GFN2-xTB [64], also come with a dedicated basis set, which is
a minimal valence basis set of atom-centered contracted Gaussian functions approximating Slater
functions (STO-nG). Polarisation functions for most main group elements (typically, second row
or higher) are added. In the case of a dimer, if the monomers do not have associated infinite basis
sets, more basis functions are employed to describe the dimer than used for each of the monomers.
Therefore, the basis set of the dimer is more flexible, causing artificial lowering of the energy.

2.1.5 Periodic computations

Periodic computations refer to a set-up describing ordered infinitely extended two- or three-
dimensional systems, such as graphene. In this set-up, a primitive unit cell is repeated in space,
creating the lattice (see Figure 1.3). All points in the lattice are identified by a lattice vector; a
linear combination of primitive lattice vectors. The atoms in each cell are the basis of the lat-
tice. A periodic boundary condition (PBC) is introduced to remove boundary effects between
cells. We can define a reciprocal lattice, emerging from the Fourier transform of the real lattice in
the physical space, in which the Fourier transform of a spatial function is represented in terms of
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wavevectors of plane waves. In this lattice, the 1st Brillouin zone is defined as the most symmetric
unit cell of the reciprocal lattice. Periodic systems are characterised by k-points, used to sample
the Brillouin zone and, according to the Bloch theorem (see Equation (2.29)), at each k-point the
electronic wavefunction can be expressed as a linear combination of plane waves:

ψ
i
−→
k
(−→r ) = ei

−→
k ·−→r u

i
−→
k
(−→r ), (2.29)

where −→r is the position, u a periodic function with the same periodicity as the crystal that needs

to be normilised within one unit cell, and
−→
k the crystal momentum vector.

The plane waves basis expansion includes infinite terms, but can be truncated according to a
certain cutoff to include only the dominant plane waves, lower than a threshold kinetic energy.
These plane waves constitute the basis set for periodic DFT. Pseudopotentials – substitutions of
core electrons and strong Coulomb potentials by weaker pseudopotentials that act on a set of
pseudo wavefunctions – are used to work with the lowest cutoff possible, since the full Coulomb
potential of the electron-ion interaction decays too slowly to be accurately represented by a small
number of components. In periodic DFT

Ĥ−→
k
u
i
−→
k
(−→r ) = ϵ

i
−→
k
u
i
−→
k
(−→r ), (2.30)

and the total DFT energy per unit cell is:

Eel [ρ] =
∑
i

∫
BZ

d
−→
k

ΩBZ
f
i
−→
k
ϵ
i
−→
k
−

[
EH +

∫
d−→r Vxc(−→r )ρ(−→r )− Exc

]
, (2.31)

where ΩBZ is the volume of the Brillouin zone, and f
i
−→
k

the occupation number of orbital i at

k -point
−→
k .

The ϵ
i
−→
k
eigenvalues are called bands. From the band structure – ϵ

i
−→
k
as a function of

−→
k – the

allowed and forbidden levels for the electrons in the material can be identified. This information
can be used to explain the physical and chemical behaviour in the solid state, such as electrical
conductivity and optical absorption. Within the periodic lattice, points Γ, M, and K are the
special highly symmetric points of the Brillouin zone. In this thesis, DFAs from the lower rungs
of the Jacob’s ladder, particularly PBE, were used for periodic computations, which tend to be
considerably more demanding than modelling small finite small molecules.

2.2 Potential energy surface

Under the Born-Oppenheimer approximation, motions of nuclei and electrons can be treated sepa-
rately. This enables constructing a surface where every point represents the energy at a given fixed
nuclear arrangement (e.g., different conformers, reactants and products, etc.), called the potential
energy surface (PES). In a non-linear molecule with N atoms, the potential energy is a function
of 3N-6 internal coordinates: three for every atom minus three rotational and three translational
coordinates. These 3N-6 coordinates are chosen to be linearly independent and correspond to
angles, dihedrals, and bonds. PES is a hyper-surface with 3N-5 dimensions (3N-6 internal coordi-
nates plus energy). To visualise the PES, 2- or 3-dimensional cross-sections are typically used (see
Fig.2.2). In this case, the energy is expressed as a function of a single coordinate of interest, such
as a dihedral angle in a conformer or a step in a reaction sequence.

Stable conformations of a molecule are critical points on the PES: at these points, first-order
derivatives of potential energy are equal to zero

∂E

∂xi
= 0 for i = 0, 1, .., 3N − 6, (2.32)

and second-order derivatives are positive for every internal coordinate xi. The most stable con-
formation of a molecule is the absolute minimum on the hyper-surface. A transition state (TS)
connecting the minima is a first-order saddle point: the first-order derivatives of the potential
energy are still equal to zero but the second order derivatives are positive for every xi except one,
along which the TS is the maximum. The analytical expression of a PES for any meaningful chem-
ical system is unobtainable, hence coordinates of the critical points are also not known a priori .
To locate a critical point, its guess coordinates are changed iteratively until convergence in energy
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Figure 2.2: Schematic representation of a potential energy surface in two dimensions.

and derivatives is reached. For an N-atomic molecule, the procedure of geometry optimisation is
difficult, because 3N-6 coordinates must be considered. Therefore, a matrix formalism is employed;
the (3N − 6)× (3N − 6) second-order derivatives are arranged in a matrix called Hessian (H) that
corresponds to the force constants matrix

H =


∂E2

(∂x1x1)0
· · · ∂E2

(∂x1x(3N−6))0
...

. . .
...

∂E2

(∂x(3N−6)x1)0
· · · ∂E2

(∂x(3N−6)x(3N−6))0
.

 (2.33)

The nature of the stationary points found in optimisation can be verified by vibrational frequency
calculations. For an N-atomic molecule, 3N-6 normal modes can be identified, each described by
a vibrational frequency ν̃:

ν̃(cm−1) =
1

2πc

√
k

µ
. (2.34)

In Equation (2.34), c is the speed of light, k the force constant of the vibration, and µ the reduced
mass. The 3N-6 values of k can be obtained via diagonalisation of the Hessian matrix. Com-
mon optimiser procedures include the steepest-descent, conjugate gradient, and Newton-Raphson
methods. The most accurate algorithms perform the optimisation using both the gradient vector
and the Hessian matrix, while simpler algorithms are based only on the gradient vector.

However, such optimisation procedures starting from a single guess structure explore only a
fraction of the PES between the guess and the nearest (local) minima. A more thorough PES
exploration, which is necessary for systems with multiple local minima that are close in energy
(e.g., physisorption complexes on a GBM surface), entails sampling the PES along the coordinate
of interest with a chosen step size. Each generated structure along this coordinate serves as a
guess for subsequent geometry optimisation. Metadynamics (MTD) is an alternative technique for
sampling the PES by adding a bias potential to the Hamiltonian of the system. This bias potential
prevents the system from returning to the earlier state and allows overcoming energy barriers to
reach other minima. In this thesis, metadynamics is used at the GFN2-xTB level of theory [69]
and the bias potential is given by

ERMSD
bias =

n∑
i=1

ki exp(−α∆2
i ), (2.35)

where n is the number of reference structures associated with the pushing or pulling strength k,
∆ the collective variable (set of variables describing the system), and the parameter α determines
the width (in space and time) of the bias potential.
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2.3 Non-covalent interactions

Non-covalent interactions are fundamental to many chemical phenomena, from conformational
changes to catalysis and sensing. Given the comparative weakness of these interactions (usu-
ally less than 100 kJ mol−1 [70]), high accuracy is required in their computation and prediction.
NCIs can occur both intra- and intermolecularly, and can be broadly classified depending on their
physical nature: ionic, van der Waals, π-stacking, hydrophobic, etc. Intermolecular non-covalent
interactions of various origins are central to this thesis.

The energy of the NCIs in a two-component complex AB is commonly defined as

∆Eint = E(A,B) − (EA + EB), (2.36)

where ∆Eint is the interaction energy, E(A,B) the energy of the complex AB, and EA, EB are the
energies of A and B in isolation. This approach is an approximation, as it neglects the structural
changes occurring in the fragments upon complex formation. The total interaction energy is not
only insightful in its own right, but it can be further split into various components corresponding
to diverse physical origins of the interaction. This can be achieved by means of various energy de-
composition analysis (EDA) schemes, which can be quantitative and qualitative [41]. Quantitative
EDAs can be:

• variational: associate a specific interaction with a lowering of the energy due to a specific
aspect of the wavefunction relaxation. One of the most famous schemes of this type is the
Kitaura-Morokuma method [71]. However, this scheme often overestimates the induction
energy, because the underlying wavefunctions are not fully antisymmetric. To address this
issue, exchange and electrostatic terms are not separate in other variational approaches, yet
this results in a less detailed description of the interaction;

• perturbative: consider the Hamiltonian associated with the complex of interacting fragments
as a perturbation to the sum of the unperturbed Hamiltonians of the fragments. SAPT is
the most popular perturbative EDA, however, its limitations include high computational cost
and applicability only to finite compounds (and not periodic materials).

Symmetry-adapted perturbation theory (see Section 2.1.3 for more details) [72] simultaneously
offers the gold-standard quality of the NCI energy and its decomposition into physically meaningful
components:

• Eel: electrostatic (Coulombic) interaction;

• Eexch: exchange-correlation (also called Pauli repulsion) contribution, which is always repul-
sive;

• Eind: induction (polarisation), including change transfer;

• Eel: dispersion, which is always attractive.

In this thesis, the SAPT(DFT) version of SAPT is used, in which the Hamiltonian of the dimer is
expressed as:

H = KA +WA +KB +WB + V, (2.37)

where KA and KB are the Kohn-Sham operators for the fragments,WA andWB are the fluctuation
potentials of the fragments, and V is the interaction potential. The SAPT(DFT) interaction energy
is

ESAPT(DFT) = E1,0
el +E1,0

exch+E
2,0
ind,resp+E

2,0
exch-ind,resp+E

2,0
disp,resp+E

2,0
exch-disp,resp(est.)+δ

(2)
HF (2.38)

where Ev,w indicates the order in V and inWA+WB, the subscript ”resp” indicates that the orbital

relaxation effects are included, δ
(2)
HF takes into account higher-order induction effects, and ”(est.)”

means that the E2,0
exch-disp,resp term is estimated by scaling the uncoupled exchange-dispersion en-

ergy.
The Non-Covalent Interaction index (NCI index) is an example of qualitative EDA schemes [73].

The index, based on electron density and its derivatives, allows the visualisation of the position
and intensity of the established non-covalent interactions. Bader’s Quantum Theory of Atoms in
Molecules (QTAIM) [74], another popular qualitative EDA, provides a mathematical description of
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covalent and non-covalent bonds together with the visualization of the interactions. In the QTAIM
framework, the molecular structure arises from the critical points in the electron density connected
by the paths along the gradient of the electron density.

In this thesis, the Density Overlap Region Indicator (DORI) [75], based on the electron locali-
sation function (ELF) and unique in its ability to describe covalent and non-covalent interactions
simultaneously, is employed to analyse and visualise the NCIs. The DORI is defined as

DORI(r) =
θ(r)

1 + θ(r)
, (2.39)

where

θ(r) =
(∇(∇ρ(r)

ρ(r) )2)2

(∇ρ(r)
ρ(r) )6

. (2.40)

DORI values can vary between 0 and 1, and can be plotted on a chosen isosurface to provide
intuitive visualisation of the location and type of interaction (see Fig.2.3 for an example). Such
visualisation requires four dimensions (scalar field in three-dimensional space), and therefore a
specific function value has to be chosen for the isosurface. Individual closed isosurfaces are called
DORI basins. Integrating electron density within a given basin provides a quantitative measure of
the corresponding interaction.

Figure 2.3: Example of a DORI = 0.98 isosurface for dinitrotoluene adsorbed on a B-doped
graphene nanoflake, view from above the basal plane of the GBM model. Isosurfaces are colour-
coded in the range from -0.01 au (red) to 0.01 au (blue).

2.4 Solvent effects

In a typical experimental setting of catalysis or sensing with a GBM, the latter is surrounded by
a solvent. While in vacuo modelling is insightful (and often sufficient) when analysing the elec-
tronic structure features, inclusion of solvent effects is required for comparison with experimental
observables, such as redox potentials. Models for simulating the solvent phase can be classified as:

• implicit (continuum) methods: the solvent molecules are replaced with a homogeneous polar-
isable medium with equivalent properties. Commonly used methods in this category are the
polarisable continuum model (PCM)[76] and its variants [77], and the conductor-like screen-
ing model (COSMO) [78]. Continuum solvent models are a somewhat crude approximation to
the real systems based on parametrisation, but they are the most affordable computationally.
Such models are used when the solvent-solute interactions are relatively weak;

• explicit solvation: a certain number of solvent molecules is explicitly included in the system.
In microsolvation, a small number of solvent molecules is placed around the solute; in macro-
solvation, the full first (and sometimes even the second) solvation shell is included. These
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models offer a much more realistic representation, but come at a significantly higher compu-
tational cost due to a large number of atoms treated quantum-mechanically. Consequently,
ab initio methods become prohibitively expensive and the condensed phase is usually treated
with semiempirical and/or classical mechanics approaches.

• hybrid solvation models: a combination of the previous two approaches, where a small number
of solvent molecules are included explicitly and the rest of the condensed phase is represented
by a polarisable continuum.

In this thesis, the SMD/IEF-PCM implicit solvent model is employed [79]. SMD (solvation
model based on density) is a global method because it can be applied to any solvent provided its
empirical parameters, necessary to solve the Poisson-Boltzmann equation describing the distribu-
tion of the electric potential in solution, are available. Additionally, SMD allows the decomposition
of the total solvation energy into contributions from the solute-solvent dispersion, solute cavitation,
and the solute-solvent repulsion. The total solvation energy from a continuum solvent model is
given by

∆G◦
S = ∆GENP +GCDS +∆G◦

conc, (2.41)

where GENP represents the electronic, nuclear, and polarisation components of the free energy
computed as the difference between the gas-phase total energies of the gas-phase and liquid-phase
equilibrium structures, CDS represents the change in the free energy due to solvent cavitation,
possible changes in local solvent structure and changes in dispersion energy, and ∆G◦

conc is the
concentration change between the gas and the liquid phase, i.e., the phase change correction term.
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Chapter 3

Carbon dioxide on graphene

3.1 Introduction

Carbon dioxide (CO2) is one of the main culprits of the greenhouse effect. To remediate the
associated negative environmental impacts, it is fundamental to detect, monitor, and remove CO2

from the atmosphere. Two-dimensional materials are ideal candidates for these tasks [80, 81]
because of their high surface-to-volume ratio and tunability of adsorbent and electrical/mechanical
properties. GBMs in particular are well suited since their production is more sustainable compared
to such alternatives as metal-organic frameworks [82], metal halide perovskite nanostructures, and
quantum dots [83]. Therefore, graphene is extensively used to adsorb, detect, and transform CO2

[84, 85, 86, 87, 88, 89, 90].

Development of efficient graphene-based adsorbents necessitates in-depth insights into the struc-
ture, strength, and nature of the associated non-covalent interactions [21]. While such insights are
in principle obtainable from simulations, choosing an appropriate model of the adsorbate-GBM
complex and in silico methodology, affording an efficient sampling of adsorption geometries, poses
a major challenge. Periodic representations of the surface have the advantage of being free of
defects and edge effects; yet, at the ab initio level it is usually feasible only at the local density
or generalised gradient approximations of DFT, which cannot describe dispersion without em-
pirical corrections or non-local functional extensions. Higher level density functionals, periodic
second-order perturbation theory, random phase approximation (RPA), and the GW approach are
available and able to address the previously described limitations of LDA and GGA DFT, yet
they often come at a prohibitive computational cost [21]. These computations become particularly
demanding when modeling adsorption in the low-coverage regime, where large surface slab models
are needed, in addition to large vacuum gaps between surfaces. Finite nanoflake models, on the
other hand, can be treated with a broad spectrum of wavefunction-based methods, as well as den-
sity functionals belonging to the higher rungs of the Jacob’s ladder (Fig. 2.1) [61]. Unfortunately,
finite models suffer from heavy size dependence of the resulting computed properties and artifi-
cial edge effects. Several studies compared finite and periodic models for studying adsorption on
graphene. Specifically, Lazar et al. [48] computed adsorption enthalpies of small organic molecules
on coronene and infinite graphene with methods ranging from empirical and density functional
theory to wavefunction theory methods. For the coronene model, the best agreement with the ref-
erence CCSD(T) interaction energies was reached with a non-local optB88-vdW functional (mean
error of 2.5 kJ mol-1) and SCS(MI)-MP2 method (mean error of 1.7 kJ mol-1). However, all tested
methods were able to reproduce qualitatively the ordering of experimentally measured adsorption
enthalpies. The latter were best reproduced with the ab initio molecular dynamics at the optB88-
vdW level in conjunction with a periodic model. Haldar et al. [91] demonstrated the convergence
of interaction energies for two organic electron acceptor molecules adsorbed on graphene with the
size of coronene-based models, justifying the use of finite models. Considering the levels of theory,
the SCS-MP2/CBS, BLYP-D3, and AMBER force field showed modest accuracy (within ca. 10 kJ
mol-1) compared to the reference MP2.5/CBS/6-31G*(0.25) values. Recently, Stachová et al. [92]
compared the performance of several DFT methods for predicting adsorption energies of monolay-
ers of noble gases (Ar, Kr, and Xe) and small molecules (N2, O2, CO, CH4, C2H6, and C3H8) on
both free-standing and Pt(111)-supported graphene. Both high-level RPA and fixed-node diffu-
sion Monte Carlo computations, as well as previously published experimental results, were used for
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method benchmarking. For unsupported graphene, the authors recommended optB86b for geome-
tries and PBE-D3 for adsorption energies. In the case of graphene on Pt(111), the best approach
was found to depend on the magnitude of the interactions: PBE-D3 for weakly interacting systems
(<20 kJ mol-1), and optB86b-vdW for stronger physisorptions (>20 kJ mol-1).

To establish reliable approaches for simulating adsorbate-GBM complexes, we focus on the
CO2 adsorption on pristine graphene. This system provides a rare opportunity to benchmark the
theoretical methodology for computing interaction energies, as it is the only system for which ad-
sorption enthalpies have been measured experimentally. In a combined temperature programmed
desorption and X-ray photoelectron spectroscopy study of CO2 adsorbed on a monolayer graphene
deposited on a SiC(0001) surface [93], the adsorption energy was estimated at 30.1 ± 1.5 kJ mol−1

at low coverage and at 25.4 ± 1.5 kJ mol−1 at high coverage. Using van der Waals density func-
tional (vdW-DF) theory, parallel orientation of the carbon dioxide molecule on graphene surface
was proposed. In another recent study [94], temperature programmed desorption and reflection
absorption infrared spectroscopy were used to measure the adsorption enthalpy for CO2 on a
graphene-covered Pt(111) surface, resulting in an adsorption enthalpy of 26.1 ± 2 kJ mol−1 at
low coverage. Moreover, analyses of the obtained reflection adsorption infrared spectra suggested
tilted geometry for the adsorbate on the surface.

In this Chapter, we assessed for carbon dioxide adsorbed on graphene in a low-coverage regime
how various simulation approaches for predicting adsorption energies and geometries fared, and
compared our findings to reported experimentally measured results. The methodological ap-
proaches explored ranged from the smallest possible graphene model, benzene, treated at various
levels of DFT and with highly accurate wavefunction theory-based methods, to a realistic periodic
representation of an unsupported graphene monolayer.

3.2 Computational methods and models

3.2.1 Finite models

The structures for finite models of graphene investigated here were classified based on their shapes:
circular (benzene, coronene, and circumcoronene), zigzag (rhomboid), and armchair (rectangular,
see Fig.3.1a). For each shape, three nanoflake sizes were considered. For each model, three principal
adsorption sites - top, hollow, and bridge (shown in Fig.3.1b) – were each considered in conjunction
with the parallel or orthogonal orientations of the CO2 molecule (shown in Fig.3.1c). In the larger
systems, CO2 was positioned either above the central C–C bond (for 2×2-zigzag, 4×4-zigzag,
3×2-armchair), or above the ring center. Constrained optimisations were performed to preserve
the initial adsorption geometries, since they do not necessarily correspond to local minima on the
potential energy surface. The resulting structures were then compared to the fully relaxed ones,
obtained by unconstrained optimisations, and confirmed by normal mode analysis. Interaction
energies were computed as the difference between the energies of the optimised complex and the
CO2 and GBMmodel separately and in their complex geometries. Computations for CO2 and GBM
models were performed in the basis set of their complex to correct for the basis set superposition
error. We note that interaction energies evaluated in this manner neglect structural relaxation
upon complex formation, although this is relatively small in non-covalently bound complexes of
small and/or rigid molecules.

In the case of finite systems, the following DFT methods including appropriate dispersion
corrections were used:

• GGA functional PBE-D3 [95, 96, 63];

• hybrid-GGA functional B3LYP-D3 [97, 98, 63];

• long-range separated functional ωB97X-D [99] and its non-local version ωB97X-V [100] for
single-point energies;

• double-hybrid functional DSD-BLYP-D3 [101].

All DFT computations were performed with the Orca software, version 4.0 [102]. Convergence
thresholds were set as very tight and the largest DFT grid was employed. Two basis sets belonging
to the Karlsruhe family were used (see Section 2.2.1.4).
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Figure 3.1: a) Models and notations of pristine graphene nanoflakes with various shapes and sizes.
b) From left to right: bridge, hollow, and top adsorption sites, shown for parallel (top row) and
orthogonal (bottom row) orientations. c) Lateral view of parallel (left) and orthogonal (right)
orientation, shown for the hollow site.

For the smallest model system of a GBM – benzene – coupled-cluster with singles, doubles, and
perturbative triples (CCSD(T)) computations were performed using the CFOUR software [103].
A variation of the coupled-cluster theory, the domain local-pair natural orbital coupled-cluster
method (DLPNO-CCSD(T)) [104, 105], was also used as implemented in the Orca program. SAPT
computations at SAPT0/jun-cc-pVDZ level (see Section 2.2.1.4) in conjunction with DFT (PBE-
D3) geometries were performed with the resolution-of-the-identity (RI) approximation using the
Psi4 program [106]. DLPNO-CCSD(T) results extrapolated to complete basis set (CBS) limit were
taken as a reference.

3.2.2 Periodic models

To model a single layer of pristine graphene, a 7×7 supercell (see Fig.3.2) containing 98 carbon
atoms was chosen. Periodic simulations were performed using Quantum Espresso [107] with PBE-

Figure 3.2: Top view of a 7×7 graphene periodic model.

derived pseudopotentials from the PSLibrary [108]. An energy cutoff of 90 Ry was selected after
evaluating the dependence of the interaction energy on the cutoff. In all systems, a 3×3×1 k -point
grid was used. The adsorption geometry was preserved throughout optimisations and therefore no
constraints was needed. Computations were performed with PBE-D3 [95, 96, 63] and B86BPBE-
XDM [109] GGA functionals, vdW-DF1 [110], vdW-DF2 [111], optB88-vdW [112], and optB86b-
vdW [113] functionals. Nudged elastic band (NEB) [114, 115] simulations were performed to
find minimum energy paths between adsorption sites, as implemented in the Atomic Simulation
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Environment (ASE) package [116].

3.3 Results and discussion

3.3.1 Method benchmark on CO2-benzene

Initial assessment of electronic structure theory methods was performed for the smallest model, a
CO2-benzene complex, using the DLPNO-CCSD(T)(TightPNO)/CBS as a reference (Table 3.1).
In DFT computations, the same level of theory was used for geometry optimisations and single-
point energy computations; interaction energies with post-HF methods were obtained in conjunc-
tion with CCSD(T)/def2-TZVP geometries.

Table 3.1: Computed interaction energies (in kJ mol−1) for CO2 on benzene at various adsorption
sites and orientations. The mean absolute deviation (MAD) is calculated with respect to the
DLPNO-CCSD(T)(TightPNO)/CBS results and averaged across all orientations.

Method Global minima
Constrained optimization

MADParallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Method // CCSD(T)/def2-TZVP

DLPNO-CCSD(T)(TightPNO)/CBS -10.0 -9.7 -9.3 -9.1 -1.6 -1.7 -2.2 0.0
CCSD(T)/def2-TZVP -7.6 -7.2 -6.9 -7.1 -0.4 -0.4 -0.5 1.9
SAPT0/jun-cc-pVDZ -9.0 -8.4 -8.0 -8.2 0.1 0.0 0.2 1.5

Method/def2-TZVP // Method/def2-TZVP

PBE-D3 -10.2 -9.9 -9.6 -9.5 -1.7 -1.7 -2.1 0.2
B3LYP-D3 -10.9 -10.5 -10.2 -10.0 -0.9 -0.9 -1.3 0.8
ωB97X-D -11.3 -10.9 -10.5 -10.3 -1.0 -1.0 -1.5 1.0
ω B97X-V -10.6 -10.2 -9.8 -9.8 -1.2 -1.2 -1.8 0.5

DSD-BLYP-D3 -9.2 -8.8 -8.4 -8.4 -0.8 -0.8 -1.1 0.9

Method/def2-QZVPPD // Method/def2-TZVP

PBE-D3 -10.2 -9.9 -9.7 -9.4 -2.0 -2.0 -2.4 0.3
DSD-BLYP-D3 -10.1 -9.8 -9.5 -9.2 -1.4 -1.3 -1.9 0.2

Our results in Table 3.1 indicate the following:

• at all tested levels of theory, parallel orientations are significantly more stable than the
orthogonal ones;

• computed interaction energies are notably higher (weaker) compared to experiments. This
suggests, unsurprisingly, that benzene might not be a good model for extended graphene;

• very similar interaction energies correspond to different adsorption sites (top, bridge, hollow),
especially in the orthogonal orientation;

• all DFT methods and SAPT0 predict the same relative order of interaction strengths across
considered adsorption sites. CCSD(T) results for the parallel orientation slightly deviate
from this trend;

• CCSD(T) predicts the weakest interaction, and SAPT0 the strongest. We attribute this
to basis set effects in the coupled cluster computations, since SAPT0 results are in good
agreement with the DLPNO-CCSD(T) results in complete basis set limit;

• trends in DFT results are in line with those obtained in a previously reported benchmarking
[117], with better performance being achieved with double hybrid and non-local functionals.
Interestingly, PBE-D3 - a GGA functional from the lower rungs of the Jacob’s ladder – seems
to outperform other, more sophisticated DFT methods in terms of matching reference results.
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To further rationalise these results, we compared the geometries obtained with different methods
(Table 3.2). In the structures obtained from unconstrained optimisations, i.e., the global minima,
we considered several geometrical parameters: (1) the distance between the benzene plane and
either the carbon (for parallel orientations) or the closest oxygen atom (for orthogonal orientations)
of the CO2 molecule, (2) the tilt angle between the axis of CO2 and the benzene plane, and (3)
an angle between the carbon atom of CO2 and its projection onto the benzene plane (see Fig.3.3).
Since relative orientations were kept frozen in constrained optimisations, only the distance between
carbon dioxide and benzene was considered here. CCSD(T) geometry was used as a reference. We
found that all methods yield the same qualitative trends. However, PBE-D3 overestimates the
adsorption distance, which can be explained by its neglect of HF-like exchange [118] or by many-
body effects. The shortest distances were obtained with ωB97X-D for parallel orientations and
with DSD-BLYP-D3 for orthogonal orientations. The latter method most closely reproduces the
reference geometries.

Figure 3.3: Geometrical parameters of the CO2-benzene complex: tilt angle (α), distance between
the benzene plane and the center of mass of carbon dioxide (d), and the angle between the adsorp-
tion site, center of mass of CO2, and its projection onto benzene plane (β).

Table 3.2: Geometrical parameters (see Fig.3.3) for adsorption sites of CO2 on benzene, com-
puted with different methods.

Method/def2-TZVP Global minima
Constrained optimisation

Parallel Orthogonal
αa βb d [Å]c Bridged Topd Hollowd Bridged Topd Hollowd

CCSD(T) 92.5 3.8 3.25 3.24 3.24 3.40 3.41 3.42 3.27
PBE-D3 93.8 1.6 3.30 3.30 3.29 3.47 3.46 3.46 3.36

B3LYP-D3 93.3 2.1 3.25 3.25 3.24 3.40 3.44 3.43 3.29
ωB97X-D 93.2 2.2 3.21 3.22 3.21 3.38 3.45 3.46 3.33

DSD-BLYP-D3 92.5 3.2 3.24 3.23 3.23 3.39 3.40 3.40 3.26

a tilt angle α.
b angle between the adsorption site, center of mass of CO2, and its projection onto benzene plane β.
c distance between the benzene plane and the center of mass of carbon dioxide of global minimum.
d distance between the benzene plane and the center of mass of carbon dioxide d [Å] of constrained
optimisations of each interaction type.

Considering the accuracy in both the interactions energies and adsorption geometries, the
best performance amongst the DFT methods is achieved with the double-hybrid DSD-BLYP-D3,
in agreement with previous benchmarks [117]. However, high computational cost precludes its
application to more realistic (larger) models of pristine graphene. At the same time, the humble
PBE-D3 method yields excellent results for energies and good quality of predictions for geometries.

3.3.2 Size dependence of the interaction energies

To probe the transferability of the CO2-benzene results to larger models of graphene, we computed
Eint for a range of model sizes and shapes (see Fig.3.1) up to periodic models using various DFAs
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(see Appendix for details). For simplicity, only the PBE-D3/def2-TZVP results are discussed
further (Table 3.3).

Table 3.3: Size dependency of the PBE-D3/def2-TZVP interaction energies (in kJ mol−1) of
CO2 on various graphene nanoflakes models. Size is expressed as the number of carbon atoms
in the model.

Model Size Global minima
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Benzene 6 -10.2 -9.9 -9.6 -9.5 -1.7 -1.7 -2.1
Coronene 24 -13.9 -13.9 -13.2 -12.8 -6.0 -5.8 -6.9

Circumcoronene 54 -15.4 -15.4 -14.6 -14.0 -7.6 -7.5 -8.2
2×2-zigzag 16 -13.1 -13.1 -12.3 -11.4 -5.1 -4.9 -4.9
3×3-zigzag 30 -14.3 -14.2 -13.6 -13.1 -6.3 -6.4 /a

4×4-zigzag 48 -15.2 -15.2 -14.5 -13.8 -7.4 -7.4 -7.8
2×2-armchair 20 -13.3 -13.3 -13.0 -12.2 -5.2 -5.2 -6.2
3×2-armchair 28 -14.4 -14.4 -13.7 -12.8 -6.6 -6.4 -6.9
5x3-armchair 66 -15.5 -15.5 -14.8 -14.0 -7.7 -7.6 -8.3

a no minima

These results (Table 3.3) show that carbon dioxide is adsorbed more strongly on larger
nanoflakes, for all orientations and adsorption sites. Furthermore, for all model sizes the interac-
tion energies follow the same relative order of adsorption sites; the bridge parallel adsorption is
always the most stable one.

With respect to the dependence of the geometry of the CO2 adsorption on benzene on the
model size (Table 3.4), we can infer that:

• the increase in the stability of CO2-graphene complexes with the increase of the model size
is accompanied by shorter interaction distances. Extent of this decrease in distance depends
on the adsorption site. The decrease is relatively small for the bridge parallel adsorption
(from 3.30 Å for benzene to 3.24 Å for the 5×3-armchair model), but larger for the hollow
orthogonal (from 3.36 Å for benzene to 3.10 Å for the 5×3-armchair model);

• larger models (circumcoronene, 4×4 zigzag, and 5x3 armchair) converge to similar geometries;

• all global minima have similar geometry independent on the model, and this geometry is in
turn very close to that of the bridge parallel adsorption site.

Furthermore, we find that that the interaction energy is approximately linearly dependent on
the inverse of the size of the graphene nanoflake, expressed as the reciprocal of the number of
carbon atoms in the model (see Fig.3.4). The linear fit intercepts the vertical axis for x=0, which
corresponds to the infinite number of carbons in the model, i.e., an infinite graphene sheet. Such
extrapolation schemes have been reported in literature for several other adsorbates and GBMs
[119, 120, 121, 122]. An extensive benchmark, including such high-level methods as coupled-
cluster, diffusion Monte Carlo, and random phase approximation by Brandendurg et al. [123] on
the physisorption of water on graphene questioned the reliability of these schemes. However, a
good agreement between highly accurate methods and extrapolated results has been achieved once
the latter included long-range effects [124]. Crucially, the key advantage of these extrapolation
schemes is that a given property, e.g., the interaction energy, can be predicted for an arbitrarily
large (even infinite) graphene model from values obtained for much smaller systems. This allows
accurately estimating Eint without the limitations of the computational cost given by the scaling
of the method with the size. The extrapolated interaction energies obtained here with different
methods are reported in Table 3.5.

Previously established trends in the relative stability of adsorption sites are retained in ex-
trapolated Eint, with the bridge parallel being the most stable geometry, very close to the global
minima. Among the DFT methods, PBE-D3 yields the highest (weakest) interaction energy and
B3LYP-D3 – the lowest (strongest). Interaction energies obrained with SAPT0 are even lower and
are relatively insensitive to the underlying geometries. We also assessed several DFT methods on
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Table 3.4: Geometrical parameters (see Fig.3.3) for adsorption sites of CO2 on benzene, computed
for different sizes and shapes of models at the PBE-D3/def2-TZVP level of theory.

Model Global minima
Constrained optimisation

Parallel Orthogonal
αa βb d [A]c Bridged Topd Hollowd Bridged Topd Hollowd

Benzene 93.8 1.6 3.30 3.30 3.29 3.47 3.46 3.46 3.36
Coronene 87.8 2.2 3.28 3.27 3.32 3.37 3.20 3.21 3.12

Circumcoronene 89.4 1.1 3.25 3.25 3.29 3.35 3.18 3.19 3.11
2×2-zigzag 90.0 0.1 3.29 3.29 3.34 3.39 3.21 3.23 3.19
3×3-zigzag 87.9 2.8 3.27 3.27 3.31 3.36 3.20 3.20 /e

4×4-zigzag 90.0 0.1 3.25 3.25 3.30 3.35 3.18 3.18 3.11
2×2-armchair 87.2 4.3 3.28 3.28 3.32 3.39 3.22 3.23 3.13
3×2-armchair 89.5 0.1 3.26 3.26 3.31 3.37 3.18 3.20 3.12
5×3-armchair 89.6 0.1 3.24 3.24 3.29 3.35 3.18 3.20 3.10

a tilt angle α.
b angle between the adsorption site, center of mass of CO2, and its projection onto benzene plane β.
c distance between the benzene plane and the center of mass of carbon dioxide of global minimum.
d distance between the benzene plane and the center of mass of carbon dioxide d [Å] of constrained
optimisations of each interaction type.
e no minima found for this model and constrained optimisation

Figure 3.4: PBE-D3/def2-TZVP interaction energies of CO2 as a function of the inverse of the
number of carbon atoms in the finite surface model (circles), as well as linear regression fits of the
finite model data points (dashed lines), and corresponding PBE-D3 Eint for the periodic model
(diamonds).

the periodic model of pristine graphene (Table 3.6), establishing that dispersion-corrected GGA
functionals, PBE-D3 and B86BPBE-XDM, predict Eint 4 to 9 kJ mol−1 weaker than the vdW
functionals. At the PBE-D3 level, the periodic results are only 0.8 and 1.8 kJ mol−1 higher for
parallel and orthogonal orientations, respectively, than the extrapolated values (Table 3.5), further
validating the reliability of the extrapolation scheme. Considering experimentally measured ad-
sorption enthalpies [93, 94], our predicted energies are still higher (weaker interactions), suggesting
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Table 3.5: Extrapolated Eint (kJ mol−1) of carbon dioxide adsorbed on an artificial infinite
graphene model computed with different DFAs and SAPT0.

Method Global minima

Constrained optimisation
Parallel Orthogonal

Bridge Top Hollow Bridge Top Hollow

Method/def2-TZVP // Method/def2-TZVP

PBE-D3 –16.3 –16.3 –15.6 –14.9 –8.6 –8.6 –9.4
B3LYP-D3 –19.8 –19.8 –18.8 –18.0 –9.5 –9.5 –10.6
ωB97X-D –17.9 –17.8 –16.6 –15.8 –8.4 –8.4 –9.5
ω B97X-V –18.6 –18.6 –17.4 –16.7 –9.7 –9.7 –10.4

DSD-BLYP-D3 –18.9 –18.9 –18.0 –17.3 –10.3 –10.3 –11.6

SAPT0/jun-cc-pVDZ // Method/def2-TZVP

PBE-D3 –20.7 –20.6 –19.3 –18.4 –12.7 –12.7 –14.0
B3LYP-D3 –20.9 –20.9 –19.5 –18.5 –12.9 –12.9 –14.4
ωB97X-D –20.8 –20.7 –19.3 –18.5 –12.7 –12.7 –14.1

DSD-BLYP-D3 –21.4 –21.2 –20.0 –18.9 –13.2 –13.2 –14.9

that vibrational effects and support materials might be providing additional stabilisation.

Table 3.6: Interaction energies (in kJ mol−1) of CO2 adsorbed on periodic graphene.

Method
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

PBE-D3 –15.2 –13.8 –13.2 –7.8 –7.8 –8.3
B86BPBE-XDM –13.0 –12.3 –11.1 –6.0 –6.0 –6.6

vdW-DF-1 –21.0 –20.6 –20.0 –12.9 –12.9 –13.4
vdW-DF-2 –17.7 –17.2 –16.3 –10.1 –10.0 –10.5
optB88-vdW –21.5 –20.9 –19.4 –12.5 –12.4 –13.2
optB86b-vdW –22.5 –21.7 –20.4 –12.7 –12.6 –13.3

3.3.3 Orientation of CO2 and nature of the interactions

Parallel or tilted?

The orientation of the carbon dioxide molecule, different between the two supports, is another
important experimental observation. All of our results suggest that bridge parallel orientation is
always preferred over tilted geometries. To further explore the two orientations, we performed a
potential energy scan from the parallel orientation to orthogonal using the nudged elastic band
approach, with three intermediate adsorption geometries. SAPT energy decomposition analysis
(see Fig.3.5a) of interaction energies along this path shows that all four energy contributions –
dispersion, electrostatics, exchange, and induction – undergo significant changes along this transi-
tion. More precisely, all energy contributions become smaller in absolute terms. The most drastic
reductions are found for the attractive contributions, leading to a weaker interaction for the or-
thogonally oriented CO2. All three adsorption sites – bridge, hollow and top – show the same trend
when transitioning from parallel to orthogonal orientation (see Fig.3.5b), although the intermediate
geometries are less stable (and even repulsive) than in the other two sites.

That none of the models and methods employed here reproduce the tilted CO2 geometry,
experimentally observed for graphene deposited on a Pt(111) support, is open to interpretation.
Support material likely modulates the electronic structure of graphene and can potentially prompt
a reorientation of the CO2 molecule. Inclusion of structural defects, dynamic, concentration, and
pressure effects in the simulations can further change the trends in computed energetics. On the
other hand, experimental data for this system is limited to only two studies, and would benefit
from careful reexamination.
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Figure 3.5: SAPT0/jun-cc-pVDZ results for the minimum energy path between parallel and or-
thogonal orientation. a) Energy decomposition analysis along the rotation coordinate for the bridge
adsorption site; b) Total interaction energy along the rotation coordinate for all adsorption sites.

Nature of the interactions

Symmetry adapted perturbation theory was employed to elucidate the driving physical forces
behind CO2 adsorption on graphene. We decomposed SAPT0 interaction energies at the most
stable adsorption geometry (Fig.3.6a) for all investigated graphene nanoflakes, establishing that,
with the exception of benzene, the induction and electrostatic components are practically constant
and independent on the system size and shape. Benzene shows a different behaviour because of
the hydrogen bond, with a strong electrostatic component, established between carbon dioxide and
the edge hydrogens (see Fig.3.6b).

Figure 3.6: a) SAPT0/jun-cc-pVDZ interaction energy decomposition for CO2 adsorption on
graphene nanoflakes at the global minimum adsorption geometry. b) Side view of the PBE-
D3/def2-TZVP global minima adsorption geometry for CO2 on benzene (top) and on a 5×3 model
(bottom).

On the other hand, exchange and dispersion interactions show significant size dependence,
both becoming more important in larger nanoflakes. Between these two components of the total
interaction energy, the effect of the nanoflake size on dispersion is stronger and is thus the main
reason behind the increasing stability of larger systems.

3.4 Conclusions

We have modelled the adsorption of carbon dioxide on graphene, aiming to assess the impact
the chemical model and the level of theory have on the computed interaction energies, and to
establish a simulation approach most accurately reproducing the experimental adsorption ener-
gies in the low-coverage regime. For benzene, the smallest molecular approximation to pristine
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graphene considered, comparison with the gold standard of quantum chemistry, CCSD(T), iden-
tified double-hybrid DSD-BLYP-D3 as the best performing density functional, in accordance with
previous benchmarking studies. However, all computed interaction energies for CO2 on benzene
were notably higher (weaker) compared to experiment, indicating the need for larger, more re-
alistic models. We also found that the relative order of different adsorption sites is generally
independent on the method and model size. However, good agreement with experimental adsorp-
tion energies could not be achieved even with large models, suggesting that other factors (support
material, vibrational effects, etc.) play additional stabilising roles. Considering adsorption ge-
ometries, the longest intermolecular distances were predicted by PBE-D3, followed by B3LYP-D3
and ωB97X-D3. The double hybrid DSD-BLYP-D3 predicted the shortest interaction distances,
and, combined with SAPT0, lead to the most stable clusters. For a series of increasingly larger
graphene models, a linear fit extrapolating computed interaction energies of CO2 from nanoflakes
to infinity accurately reproduced the results of periodic computations. This scheme represents a
simple yet powerful tool for predicting high-quality interaction energies of periodic materials from
computations on several finite models, which can be performed with more sophisticated electronic
structure theory methods and analysed using diverse energy and density decomposition analyses.
Overall, qualitatively reliable adsorption energies can be obtained with medium-sized graphene
models using the computationally inexpensive PBE-D3 method. For accurate absolute energetics,
geometries should be obtained with higher-level functionals, such as DSD-BLYP-D3, and SAPT0
energies should be extrapolated to the infinite size limit. Furthermore, we found that all parallel
adsorption geometries were more stable than the orthogonal ones, in contrast to the experimental
observations for CO2 on a platinum-supported graphene. Energy decomposition analysis revealed
dispersion to be the driving force behind the increasing stabilisation in larger systems. Dispersion
is also the reason for the destabilisation of the orthogonal adsorption compared to parallel orien-
tation. In periodic computations, vdW functionals predicted interaction energies ca. 10 kJ mol−1

lower than dispersion-corrected GGA functionals.
In this Chapter, we have demonstrated that even for simple systems, such as carbon dioxide

adsorbed on graphene, computed interaction energies significantly depend on the chosen level
of theory and computational model of graphene. While highly accurate methods can be used
as benchmarks for small, molecular systems, choosing reliable approaches for periodic systems
ultimately calls for more experimental data.

The results reported herein were obtained in collaboration with Dr. Christopher Ehlert, who
further expanded the project by testing additional post-HF methods and including the effects of
temperature and supports. Nonetheless, inclusion of these factors was found to introduce only
small changes to the computed interaction energies, in the order of a few kJ mol−1. Even in
the presence of the Pt(111) support, parallel orientation of carbon dioxide remained energetically
preferred at all tested levels of theory and graphene models, thus we were still unable to reproduce
in silico the experimentally detected tilted geometry. The results of this work were published as
Ref. [125].



Chapter 4

Adsorption of nitroaromatic
compounds on graphene-based
materials

4.1 Introduction

Nitroaromatic compounds (NACs) (Fig.4.1) are common contaminants found in soil and water
because of their large-scale use as explosives in mining and military applications, and as building
blocks in industrial production of many systems, from dyes to polymers. NACs are extremely
hazardous since they persist in the environment for decades, are not biodegradable [126], and pose
serious risk to human health due to their facile absorption through skin and high bioaccumulation
rates [127]. In this thesis, we focus on 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT)
(Fig.4.1), which are among the most commonly used and extensively studied representatives of the
NAC family.

Figure 4.1: Structures of common NACs.

Detecting minute amounts of NACs in soil and water is of great importance to public health and
safety, forensics, and anti-terrorism operations [128]. Common detection methods include surface-
enhanced Ramanspectroscopy [129], high-performance liquid chromatography (HPLC) [130], and
numerous others [131, 132]. Among them, electrochemical detection based on the reduction of
nitro-groups to amino-groups [133] enables real-time on-site analysis [134] with low limits of de-
tection (LOD) and large linear range, using a relatively low cost and compact sensor [135].1 For

1The (LOD) of a sensor is the minimal concentration of the analyte that generates a signal significantly different
from the blank [40].

29



30 CHAPTER 4. ADSORPTION OF NACS ON GBMS

these reasons, electrochemical sensors are among the state-of-the-art methods for detecting NACs.
GBMs in particular, given their excellent mechanical [136] and electrochemical properties [137],
high surface-to-volume ratio, and biocompatibility, are attractive candidates for these efficient and
sustainable sensors.

In 2014, the first GBM-based sensor for NACs, in which graphene was decorated with palladium
nanoparticles and 1,3,6,8-pyrenetetrasulfonic acid sodium salt, was developed [138]. However, the
reliance on the precious metal hinders economically viable large-scale production. Subsequently,
cheaper and more sustainable graphene-based alternatives were developed since to detect nitroaro-
matics, including electrochemically exfoliated graphene [134], hydrogenated graphene [139], re-
duced graphene oxide [140], N,S-codoped graphene nanoribbons [141], N-doped graphene[142],
and others [143, 144, 145]. We have assembled an extensive overview of the published experi-
mental literature (Table 4.1) to analyse potential structure-sensitivity relationships, pertinent to
GBM-based electrochemical sensors. The information collected refers not only to the limits of de-
tection of DNT and TNT in various saline aqueous environments, but also, where available, to the
analytical characterisation of the GBM structure and composition, used in this work to construct
the model systems. Analysis of this literature data suggests the following:

• Graphene obtained by electrochemical exfoliation [134]:the limit of detection is generally
lower for the GBMs obtained with the lithium perchlorate compared to sodium sulphate.
This trend is attributed to the higher content of oxygen-containing functional groups in GO-
LiClO4 (C/O ratio = 4) than in GO-Na2SO4 (C/O ratio = 8.8), which gives rise to stronger
interactions between the sensor and the NAC and, ultimately, a lower LOD;

• Graphene nanosheets and nanoribbons [139]: detectors utilising nanoribbons, rich in sp2-
hybridised carbon, are more sensitive than those based on nanosheets;

• Reduced graphene oxide (rGO) and hydrogenated rGO [139]: sensors employing non-hydro-
genated rGO enable improved detection relative to their hydrogenated analogues, highlighting
the importance of sensor’s planarity and π-conjugation, leading to stronger π-π stacking with
the nitroaromatic analytes;

• rGO obtained through different experimental procedures [140]: the sensitivity of the sensor
appears to depend on the oxygen content in the GBM. Specifically, for rGO-HO, rGO-HU,
and rGO-ST (where HO, HU, and ST stand, respectively, for Hofmann, Hummers, and
Staudenmaier synthetic procedures, see Chapter 1), the sensitivity of the detector is higher
in less oxygenated GBMs;

• Single-, few-, and multi-layered nanoribbons and graphite nanoparticles [144]: the sensitivity
of these materials weakly depends on the number of graphene layers, and the linear range of
response is larger for graphite nanoparticles;

• N-doped graphene [142]: these sensors show low limits of detection, possibly due to additional
non-covalent interactions between the electrophilic nitroaromatic analyte and the electron-
rich GBM containing pyridinic nitrogen atoms;

• N,S-codoped-nanoribbons [141]: demonstrate the best performance, potentially due to such
additional interactions as hydrogen bonding between sensor and analyte. However, synthesis
of these materials can be challenging and not sustainable on a large scale.

Table 4.1: Reported performance and experimental conditions for GBMs-based sensors for DNT
and TNT.

Ref. NAC Electrode a Experimental
conditions b

LOD (ppm) Features

[134] DNT GC BBS 11.26 /
[134] DNT GC 9:1 sea water

and BBS
3.17 /

[139] DNT rGO 9:1 sea water
and BBS

/ /

Continued . . .
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. . . Continued

Ref. NAC Electrode a Experimental
conditions b

LOD (ppm) Features

[139] DNT rGO-Hydr. 9:1 sea water
and BBS

/ Loss of aromaticity

[140, 145] DNT rGO-ST BBS / C/O =24.1
[140, 145] DNT rGO-HU BBS / C/O =19.27
[140, 145] DNT rGO-HO BBS / C/O =18.22

[134] DNT GO-LiClO4 9:1 sea water
and BBS

4.35 high in hydroxyls and
carbonyls

[134] DNT GO-LiClO4 BBS 2.73 high in hydroxyls and
carbonyls

[134] DNT GO-Na2SO4 9:1 sea water
and BBS

5.97 epoxies, hydroxyls, car-
boxyls and carbonyls

[134] DNT GO-Na2SO4 BBS 5.43 epoxies, hydroxyls, car-
boxyls and carbonyls

[143] TNT G-sheet 9:1 sea water
and BBS

0.52 50×50 nm

[143] TNT G-sheet BBS / 50×50 nm
[143] TNT G-ribbon 9:1 sea water

and BBS
0.14 5000×300nm

[143] TNT G-ribbon BBS / 5000×300nm
[144] TNT G-SL Artificial sea

water
∼1 100×100nm

[144] TNT G-FL Artificial sea
water

∼1 100×100nm

[144] TNT G-ML Artificial sea
water

∼1 100×100nm

[144] TNT Graphite Artificial sea
water

∼1 Diameter= ∼10–20µm

[139] TNT rGO 9:1 sea water
and BBS

0.40

[139] TNT rGO-Hydr. 9:1 sea water
and BBS

0.50 Loss of aromaticity

[140, 145] TNT rGO-ST BBS / C/O =24.1
[140, 145] TNT rGO-HO 9:1 sea water

and BBS
/ C/O =18.22

[140, 145] TNT rGO-HO BBS / C/O =18.22
[140, 145] TNT rGO-HU BBS / C/O =19.27

[134] TNT GO-LiClO4 9:1 sea water
and BBS

2.03 high in hydroxyls and
carbonyls

[134] TNT GO-LiClO4 BBS 6.74 high in hydroxyls and
carbonyls

[134] TNT GO-Na2SO4 9:1 sea water
and BBS

3.85 epoxies, hydroxyls, car-
boxyls and carbonyls

[134] TNT GO-Na2SO4 BBS 6.54 epoxies, hydroxyls, car-
boxyls and carbonyls

[142] TNT N-doped
graphene

Artificial sea
water

0.03 rich in pyridine-like N

[141] TNT N,S-codoped
rGO nano-
ribbon

0.1M PBS
with 0.4M KCl

0.0001 Oxygen-containing
groups, pyridinic and
pyrrolic N, thiophene
and oxidised thiophene

a Electrode notations: GC – glassy carbon electrode; GO-LiClO4 – graphene obtained by electrochemical
exfoliation with lithium perchlorate; GO-Na2SO4 – graphene obtained by electrochemical exfoliation
with sodium sulphate; rGO – obtained by thermal reduction of graphite oxide in an argon atmosphere;
rGO-Hydr. – obtained by thermal reduction of graphite oxide in a saturated H2 atmosphere; rGO-
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ST – thermally reduced graphene oxide obtained with Staudenmaier procedure; rGO-HO – thermally
reduced graphene oxide obtained with the Hofmann procedure;rGO-HU – thermally reduced graphene
oxide obtained with Hummers procedure; G-SL – single-layered graphene nanoribbons; G-FL – few-
layered graphene nanoribbons; G-ML – multi-layered graphene nanoribbons.
b Experimental conditions notations: BBS – borate-buffered saline; artificial sea water – 0.5 M NaCl
solution; PBS – phosphate-buffered saline.

A direct comparison between the sensing performance measures of different materials is compli-
cated by the lack of standard testing conditions (see Table 4.1), hindering efficient development of
improved sensors. Therefore, clear design guidelines based on a systematic understanding of the
GBMs chemistry involved in sensing are needed. In the case of NO2 detection, a sensor’s LOD
was shown to be quantitatively correlated with the computed adsorption energies and band gap
of graphene oxide [146]. Non-covalent interactions are thought to be crucial in sensing organic
molecules with GBMs, influencing the transport properties of a sensor [147, 148], determining sen-
sitivity and selectivity of the analysis [80], and defining the design principles for high-performance
carbon-based sensors [80, 134]. As already discussed above, the nature of the NCIs is defined by
the structures and compositions of the sensor material and the contaminant being detected [80]:
pristine graphene and derivatives with a high degree of aromaticity interact with nitroaromatic ana-
lytes primarily through π−π stacking, while less or non-aromatic variously functionalised graphene
derivatives (e.g., reduced graphene oxide and heteroatom-doped graphene) can form additional hy-
drogen bonds and other electrostatic interactions [149]. According to a Fourier transform infrared
spectroscopy study, the adsorption of nitroaromatic compounds is weaker on graphene oxide (given
its hydrophilicity and reduced aromaticity) and stronger on reduced graphene oxide (due to the
combination of π-stacking and electrostatic interactions with its numerous oxygenated functional
groups) [149]. Computational studies of the interactions between organic molecules and graphene
derivatives (see Table 4.2 for an overview) lead to similar observations and showcase the variety of
computational methods used to simulate these systems.

Table 4.2: Prior computational studies on the adsorption of aromatic substrates on GBMs.

Ref System Model Level of theory

[150] Benzene/toluene on single- and
multi-layered defective

graphene

Periodic vdW-corrected DFT

[151] Methylbenzenes on graphene Periodic vdW-corrected DFT
[148] Aminoacids on graphene Periodic DFT-D3
[152] Aminoacids on graphene Nanoflake M06-2X
[153] Organic dyes on graphene

oxide
Periodic (GGA)AIMD + DFT-D3

[154] Aromatic organic molecules Periodic Dispersion-corrected DFT
[155] Biomolecules on graphene Nanoflake, periodic M06-2X, Dispersion-corrected

DFT
[48] Small organic molecules on

graphene
Nanoflake, periodic Empirical, DFT, and WFT

[56] Aromatic organic molecules on
graphene

Nanoflake B3LYP

Once a nitroaromatic compound is adsorbed on a sensor’s surface, its electrochemical detection
proceeds via a stepwise four-electron reduction of NO2 groups to amines [134]. The electrochem-
ical signal is therefore largely determined by the redox characteristics and conductivity of the
sensor material. Overall, both the initial adsorption (this Chapter) and the subsequent reduction
(Chapter 5) of a NAC on the GBM define the sensor’s performance. However, the specific weight
that each of these steps plays in the sensing efficiency is yet to be clarified. In this Chapter, we test
computational protocols for quantifying and analysing NCIs between NACs and GBMs in the con-
text of electrochemical sensing. We also probe the ability of the extrapolation scheme, developed
in Chapter 3, to predict the strength of the adsorption for an arbitrarily large surface model.
Finally, we aim to determine how functionalisation of the GBM impacts its adsorbent properties
with respect to NACs.
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4.2 Computational methods and models

4.2.1 GBM models

Interaction energies between nitroaromatic compounds DNT and TNT and model graphene-based
materials were computed for circular-shaped nanoflakes across a range of sizes: from the smallest,
coronene, to the largest, C384H48 (see Fig.4.2a). In addition to pristine graphene, G, we investigated
two variants of reduced graphene oxide, rGO-ST and rGO-HU-HO, several combinations of boron
and nitrogen (co-)doping, and hexagonal boron nitride (hBN) (see Fig.4.2b). hBN is another
important two-dimensional material; it has similar properties and the same structure as pristine
graphene, but its lattice is composed of alternating boron and nitrogen atoms [156, 157]. In this
work, it was selected as an ”fully codoped” graphene in order to explore the effect of increasing
the number of dopant atoms. The amount of functional groups or dopant atoms per model is
the same independent of the model size. The size of the models was increased by adding sp2-
hybridised carbon atoms around the smaller models, maintaining the circular shape and keeping the
functionalised area in the center of the nanoflake. This was done to study the size-dependency for a
fixed number of dopant atoms and functional groups, and to minimise the edge effects. For periodic
models, a pristine graphene supercell containing 98 carbon atoms was chosen. Functional groups
and doping atoms were then introduced to produce models for all other investigated materials, and
the functionalised/doped are was again positioned at the center of the model (see Fig.4.2c).

Figure 4.2: a) Investigated model sizes: size 0 – dark blue, size 1 - dark blue plus lighter blue, and
so on up to size 6. b) Models of investigated GBMs, shown for size 1 and colour-coded according
to their chemical nature. This colour code is used for all the plots in this Chapter. c) Supercell of
pristine graphene, used to model periodic GBMs.

4.2.2 Theoretical procedures

For the model size 1 (circumcoronene) of each GBM, GFN2-xTB was used in the framework of
metadynamics [69] with the root mean square deviation (RMSD) as a metric for collective variables
to find stable analyte-sensor complexes and compute their relative energies. Simulations were
performed at 298 K for 20 picoseconds with a 1 femtosecond step using the xtb software.[69] 400
frames were obtained for each complex. Nanoflake models were constrained with a force constant of
10 Hartree; spherical logfermi potential was applied to avoid the dissociation of the non-covalently
bound complexes. RMSDs were evaluated for 20 structures with a scaling factor of 0.02. These
parameters were chosen as a good compromise between an extensive sampling of the potential
energy surface and a reasonable computational time [69]. For each complex, structures within 20
kJ mol-1 of the lowest energy conformation at the MTD(RMSD)/GFN2-xTB level were chosen for
a subsequent energy refinement at a PBE0-D3 /def2-TZVP level of theory with the resolution of
identity approximation (RIJCOSX) approximation in ORCA [102]. For each GBM with model
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size 1, structure with the lowest PBE0-D3-RIJCOSX//GFN2-xTB energy was assumed to be the
lowest-energy adsorption complex and used for subsequent investigation.

For each GBM, other model sizes were constructed from the obtained lowest-energy adsorption
complexes of size 1 by removing (size 0) or consecutively adding (sizes 2-6) outer benzene rings
and relaxing these structures at the GFN2-xTB level of theory. For all model sizes using relaxed
GFN2-xTB geometries, interaction energies were then computed at the GFN2-xTB level of theory
[64] as implemented in DFTB+ [158]. For model sizes 0-3, interaction energies were also computed
at the PBE-D3-RIJCOSX/def2-TZVP level using ORCA; these single-point PBE computations
for larger models were prohibitively computationally expensive, particularly in terms of required
random access memory. In all cases, interaction energy was computed as the difference between
the energy of the complex and the energies of its isolated components.

For the model size 1, we also performed full geometry relaxation at the PBE0-D3-RIJCOSX
level of theory to assess the quality of semiempirical geometries. Correspondingly, for both the
GFN2-xTB and PBE0-D3 geometries of this model size, we computed the interaction energies at
several levels of theory, namely

• GFN2-xTB geometry: GFN2-xTB [64] as implemented in DFTB+ [158],
PBE-D3-RIJCOSX/def2-TZVP and B3LYP-D3-RIJCOSX/def2-TZVP using ORCA
[102], and SAPT0/jun-cc-pVDZ with the density fitting approximation [159] as implemented
in the Psi4 package [106];

• PBE0-D3-RIJCOSX/def2-TZVP geometry: PBE-D3-RIJCOSX/def2-TZVP and PBE0-D3-
RIJCOSX/def2-TZVP using ORCA, and SAPT0/jun-cc-pVDZ in Psi4.

Periodic models of GBMs were constructed using a 7×7 supercell approach. Computations
were performed at the PBE-D3 level of theory with pseudopotentials from the PSLibrary [108]
using Quantum Espresso [107]. An energy cutoff of 90 Ry for the plane wave expansion of the
wavefunction was selected together with a 3 ×3×1 k -point grid.

For model size 1, the non-covalent interactions were additionally studied with a density-
dependent scalar field, i.e., the density-overlap regions indicator, which allows simultaneous char-
acterisation and quantification of both covalent and non-covalent interactions [75]. DORI was
computed at the PBE0-D3/DZP level of theory in conjunction with the PBE0-D3-RIJCOSX/def2-
TZVP geometries using ADF [160].

Finally, solvent effects in water were evaluated for model size 1 using a continuum solvent
model at the PCM-UAKS/PBE0/6-31G(d) level of theory in conjunction with the PBE0-D3-
RIJCOSX/def2-TZVP geometries using Gaussian 16 [161]. Solvent correction to the interaction
energy for a given system was computed as the difference between the solvation energy of the
complex and solvation energies of its isolated components, and corrected for the phase change.

4.3 Results and discussion

4.3.1 Adsorption geometry

To assess the impact the chosen level of theory has on the adsorption geometry, we compared the
shortest distances between the C-atom of the NAC phenyl ring and the closest non-hydrogen atom
of the GBM in the optimised GFN2-xTB and PBE0-D3 geometries in model size 1 and in the
PBE-D3 geometries on the periodic model (Table 4.3). We note that the results from PBE0-D3
on model size 1 and PBE-D3 on periodic model are in good quantitative agreement with each
other. However, semiempirical geometries across all studied GBMs feature significantly smaller
intermolecular separations, i.e., 0.4-1.0Å shorter than the corresponding PBE0-D3 values. This
is somewhat surprising considering that GFN2-xTB was developed to, among other reasons, fix
the tendency to overbind non-covalent interactions in GFN1-xTB [64]. Yet, similar overbinding
by GFN2-xTB compared to pure DFT was recently reported for the corannulene-fullerene system
[162].

4.3.2 Interaction energies: method assessment

The relationship between a bond’s length and its strength is the subject of a long-standing debate
in chemistry, relevant also to the non-covalent interactions. Considering the overbinding of the
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Table 4.3: Intermolecular distances in the obtained geometries of NAC-GBM complexes.

System
Distance (Å)

System Periodic (PBE-D3) size 1 (PBE0-D3/def2-TZVP) size 1 (GFN2-xTB)
DNT TNT DNT TNT DNT TNT

pristine graphene 3.48 3.52 3.43 3.41 3.00 2.91
rGO-ST 3.47 3.43 3.62 3.37 2.89 2.81

rGO-HU-HO 3.43 3.47 3.37 3.24 2.63 2.54
BH-doped 3.54 3.58 3.55 3.49 2.82 2.80
NH-doped 3.55 3.45 3.42 3.54 3.02 2.98

B,N-codoped 3.46 3.48 3.37 3.35 2.88 2.77
hBN 3.52 3.66 3.41 3.48 2.92 2.87

investigated complexes at the GFN2-xTB level compared to DFT, we next examined whether
this translates to the interaction energies (Figure 4.3). Obtained results lead to the following
observations:

• somewhat counter-intuitively, when the same level of theory, e.g., PBE-D3, is applied to
GFN2-xTB and PBE0-D3 geometries, the former, despite featuring significantly shorter in-
termolecular interactions, results in notably weaker (by as much as 80 kJ mol-1) interaction
energies;

• when the same method is used for both the energy and geometry, i.e., PBE0-D3-
RIJCOSX/def2-TZVP//PBE0-D3-RIJCOSX/def2-TZVP or GFN2-xTB//GFN2-xTB, the
interaction energies from the two methods are much closer to each other for most systems,
although deviations as high as 37 kJ mol-1 do occur in several cases;

• interestingly, SAPT0 interaction energies appear to be relatively insensitive to the underlying
geometries, with the exception of the rGO-ST system.

Figure 4.3: Interaction energies for model size 1 of the investigated GBMs, computed using several
combinations of the levels of theory and GFN2-xTB and DFT geometries. The Table contains the
legend and the mean and maximum absolute deviations in interaction energies between the two
methods (kJ mol-1).

While PBE0-D3 geometries should, in principle, be more reliable than the GFN2-xTB ones,
they also come at steeper computational cost. At least three model sizes are required to probe
the extrapolation scheme. Model size 0 (coronene) is subject to strong edge effects, therefore
sizes 1-3 would satisfy this minimal requirement. Yet, PBE0-D3 geometry optimisations become
prohibitively expensive and essentially impossible above model size 2. In other words, we can only
explore the size dependency of the non-covalent interaction energies in the NAC-GBM systems
if we resort to GFN2-xTB geometries. Results in Figure 4.3 indicate that SAPT0 energies for
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the GFN2-xTB geometries provide reasonable accuracy, followed by GFN2-xTB. However, the
same bottleneck of insurmountable computational cost applies to performing SAPT0 on larger
model sizes. As is further shown in Figure 4.4, DFT energies, computed with GFN2-xTB, are in
complete disarray with respect to SAPT0/jun-cc-pVDZ//GFN2-xTB data. Consequently, GFN2-
xTB//GFN2-xTB approach appears to be the only affordable and to some extent reliable method
to explore the size dependency of the interaction energy via the extrapolation scheme.

Figure 4.4: Interaction energies for model size 1 of the investigated GBMs, computed in conjunction
with the GFN2-xTB using various methods. The Table contains the legend and the mean and
maximum absolute deviations in interaction energies between the two methods (kJ mol-1).

4.3.3 Adsorption on periodic GBMs

Using the extrapolation scheme, established in Chapter 3, we have estimated interaction energies
of DNT and TNT with the infinitely large GBMs at the GFN2-xTB level (Fig.4.5, top panel).
We note that all linear regressions have high coefficients of determination (R2 >0.75), with the
exception of DNT on rGO-ST (R2 = 0.34). As could be expected, for all investigated graphene-
based materials, the interaction energy decreases, i.e., the NCIs strengthen with the increasing size
of the nanoflake. However, the rate of this change varies with the chemical nature of the material.
In B- and N-containing systems specifically, stabilisation grows much faster with size (i.e., larger
slope of the linear regression fit) than in pristine and oxidised graphenes. If these results are to be
trusted, they would imply that competitive (selective) adsoption can be modulated through the
nanoflake size.

However, GFN2-xTB extrapolated interaction energies do not follow the same trend as those
obtained from the periodic PBE-D3 computations (Fig.4.5, bottom panel). Estimates from ex-
trapolation reveal a steady, and, arguably, chemically intuitive increase in stabilisation with the
increasing extent of B,N-doping, i.e., pristine G < BH-doped G < NH-doped G < B,N-codoped
G < hBN. Periodic simulations also predict the strongest interactions with the hBN, followed,
however, by rGO-ST, with the rest of the materials affording adsorptions of similar strengths.

4.3.4 Solvent effect

In real-life practical applications, i.e., electrochemical detection of nitroaromatic pollutants in
waste or ground water, the sensor is submerged in water. Thus, the analyte-sensor interactions are
subject to solvent effects. To gain the first insight into the magnitude and direction of these effects,
we have estimated them for model size 1 using the continuum solvent model (Fig. 4.6). We find
that for all GBMs, the solvent destabilises their complexes with NACs by ca. 20-80 kJ mol-1. This
destabilisation is greater in pristine and B-doped graphene than in O- and N-containing derivatives.

4.3.5 Physical origins of the physisorption

To further explore the physical nature of the non-covalent interactions between investigated GBMs
and nitroaromatic compounds, we performed the energy decomposition analysis of the total inter-
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Figure 4.5: Top panel: GFN2-xTB interaction energy as a function of the model size (circles), as
well as linear extrapolations (y = m×x + b, dashed lines) to an infinite material for adsorption of
DNT (left) and TNT (right). Bottom panel: Interaction energies of DNT (left) and TNT (right)
with infinitely large GBMs, as predicted from extrapolated GFN2-xTB results (solid) and from
periodic PBE-D3 computations (striped).

Figure 4.6: Solvent effects on interaction energies (kJ mol-1), computed from PCM-
UAKS/PBE0/6-31G(d)//PBE0-D3-RIJCOSX/def2-TZVP free energies of solvation in water at
25°C for DNT (left) and TNT (right).

action energies in the model size 1 complexes using symmetry-adapted perturbation theory (Fig.
4.7). We find for all systems that exchange is the only repulsive component to the interaction
energy. Electrostatic effects can be largely attributed to the interactions of the polar NO2 groups
of DNT and TNT with the GBMs; yet, the largest stabilisation arises from dispersion. Compar-
ing investigated graphene derivatives, all contributions to the interaction energy are amplified in
rGO-ST compared to rGO-HU-HO, and are diminished in hexagonal boron nitride compared to
pristine and B-,N-doped graphene.

The density overlap region indicator (DORI) was employed to gain further insights into the
investigated interactions (Fig. 4.8). With DORI, the intermolecular interactions can be (1) visu-
alised as DORI domains, (2) analysed by colouring the corresponding isosurfaces with sgn(λ2)ρ(r)
to distinguish between attractive and repulsive forces, and (3) indirectly quantified by integrating
the electron density within a given DORI domain. In all studies systems, a single large DORI
domain between the NAC and the basal plane of the material fully captures the intermolecular
interaction. The most pronounced feature of the B,N-codoped complexes is the electron density
overlap between the methyl group of the NAC and the GBM surface, greater compared to that in
pristine graphene and hBN complexes. This suggests that the propensity to establish dispersion-
driven CH–π interactions is enhanced in systems involving particular B–N–C patterns.



38 CHAPTER 4. ADSORPTION OF NACS ON GBMS

Figure 4.7: Total interaction energies and their components in model size 1 for DNT (left) and
TNT (right), computed at the SAPT0/jun-cc-pVDZ//GFN2-xTB level of theory.

Figure 4.8: DORI = 0.98 isosurfaces for selected NAC-GBM complexes with model size 1, views
from above and along the basal plane of the GBM model. Isosurfaces are colour-coded with
sgn(λ2)ρ(r) in the range from -0.01 au (red) to 0.01 au (blue). Bold italic numbers are electron
density integrals over VDORI=0.98 intermolecular interaction domains.

4.4 Conclusions

The non-covalent interactions responsible for the physisorption of nitroaromatic pollutants on the
surface of graphene-based electrochemical sensors are crucial to detector performance. Employing
a combination of semiempirical density functional tight-binding in the framework of metadynamics
to explore the structural space of physisorption with DFT, and symmetry-adapted perturbation
theory to assess its energetics, we have analysed these interactions for a series of finite and periodic
models of various graphene-based materials with two prototypical nitroaromatic contaminants,
dinitro- and trinitrotoluene. This study heads toward a deeper understanding of the chemistry
and physics underlying electrochemical sensing with GBMs, with the ultimate aim to deduce the
guidelines for the design of better sensors applicable to a wider scope of analytes. As a first step on
this path, we tested a range of theoretical approaches, from semiempirical tight-binding and ”pure”
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DFT to symmetry-adapted perturbation theory in finite and periodic settings. Our results revealed
concerning disagreements between these various methods, in particular, large deviations in DFT
interaction energies depending on the underlying geometry, i.e., DFT versus DFTB. We note that
the latter yielded noticeably overbound complexes, as quantified by the intermolecular distances.
On the other hand, SAPT results were found to be largely independent on the geometries - an
observation that, to the best of our knowledge, has not been addressed in the published literature
so far. Overall, the issue of how to simulate the adsorbent properties of graphene-based materials
both accurately (at least on a qualitative level) and efficiently (given that SAPT and hybrid-GGA
DFT are only applicable to small nanoflake models) warrants continued investigation.

Using the best affordable methodologies, we next tested the extrapolation scheme for predicting
adsorption energetics on infinitely large graphene derivatives. Obtained results are in agreement
with those from the periodic DFT in terms of the weakest and strongest binding. Surprisingly,
the size dependency of the interaction energy was found to be dependent on the chemical nature
of the substrate. Specifically, stabilisation grows ”faster” with increasing graphene nanoflake size
in B- and N-doped materials, and slower in oxidised graphene. We stress that nanoflakes of
various sizes used in this work differ only by the amount of outer benzene rings around a single
chemical functionality within a flake. In other words, only the edge effects and the extent of
electron delocalisation vary across model sizes. This peculiar phenomenon, which can potentially
be utilised in size-selective nanographene-based sensors and catalysts, has not been reported yet.

Finally, among several graphene-based materials explored, the strongest interactions are con-
sistently predicted for B,N-codoped graphene and hexagonal boron nitride. These materials have
not been tested in electrochemical sensing and transformation of nitroaromatics pollutants yet.
Provided these systems can efficiently reduce NACs (we investigate these properties in Chapter
5), our findings suggest they can be promising new materials for nitroaromatics detection.

Overall, this study demonstrated concerning discrepancies in the performance of computational
methods, revealed unexpected trends in the size dependence of the interaction energies, and shed
light on the role and the nature of non-covalent interactions in the sensing process. However, our
conclusions are subject to several limitations. On the one hand, more homogeneous experimental
data is necessary to benchmark computational methods. On the other, further theoretical assess-
ments are needed to simulate materials with a realistic content of functional groups and dopant
atoms in the graphene lattice, evaluate the contribution of environmental effects (e.g., solvation
beyond continuum solvent models, loadings of analyte, etc.) and elucidate the importance of the
subsequent steps in electrochemical sensing.

A manuscript reporting the findings of this Chapter is currently in preparation. A preprint
version is available at https://doi.org/10.26434/chemrxiv.14364800.v2.





Chapter 5

Redox properties of
graphene-based materials

5.1 Introduction

Recent developments in materials engineering enable accurate synthesis of systems with desired
size, functionalisation, and defects [163, 164, 165]. The only practically viable way to explore this
vast chemical space is through computation [166]. Electronic structure theory [167], multiscale
modelling [168], machine learning [169], and several other approaches are used to understand and
predict properties of materials. The obtained information is then employed to design in silico new
materials or to screen large databases to select good candidates for a certain application [166,
50], reducing the amount of lengthy and expensive experimental testings. Carbon-based materi-
als, including nanotubes, fullerenes, and graphene, are promising and sustainable candidates to
substitute transition metals and other inorganic counterparts not only as sensors, but also as cat-
alysts [170] and electronic components [171]. Graphene nanoflakes, defined as nanoparticles of less
than 100 nm in diameter comprising a single or few layer graphene, were discovered shortly after
graphene itself, in 2008 [172]. Graphene nanoflakes already play an important role in the carbon-
based materials family. They are characterised by non-zero band gaps and good dispersability, and
their properties are easily tunable via functionalisation. In graphene nanoflakes, quantum confine-
ment and edge effects [173] arise because of their nanometer dimensions. The unique features of
graphene nanoflakes are responsible for their various applications in solar cells, batteries, catalysis,
imaging, and sensing [9].
Electronic structure of materials and molecules is crucial in the development of more efficient and
sustainable batteries [174, 175] and catalysts [176, 177]. For example, the detection of nitroaromat-
ics by GBM-based sensors (Chapter 4) involves a sequence of electrochemical transformations.
These processes are also relevant to GBM-based electrocatalytic systems, in which the NO2 groups
are converted to NH2 groups by a reducing agent. The GBM is assumed to facilitate the catalysis
by adsorbing the NAC molecule and shuttling the electrons throughout the system (Fig.5.1) [178,
179]. In both electrochemical sensing and catalysis, the first electron transfer is considered to
be the rate-determining step [180]. Therefore, understanding how electronic (i.e., ionisation en-
ergy and electron affinity) and redox (e.g., reduction potential) properties of graphene nanoflakes
depend on their size, functionalisation, and doping is crucial for enhancing their performance in
electrochemical applications.

Electronic properties of graphene nanoflakes and similar nanoparticles have been explored in
silico, with the focus on how these properties vary with the size of the system [52, 53, 54, 55] or with
the functionalisation [181]. For coronene, an EA of 0.47±0.09 eV was measured via photoelectron
spectroscopy [55]. An overview of computed and experimental values reported in the literature for
grpahene nanoflakes is presented in Table 5.1.

In extended conjugated polycyclic molecules, presence of numerous degenerate or near-
degenerate states can lead to strong static electronic correlation [184, 185], posing considerable
challenge for modeling electronic properties of graphene nanoflakes. While the wavefunction
theory based-methods such as configuration interaction [186], many-body perturbation theory
[187], multiconfiguration self-consistent field [188], quasidegenerate perturbation theory [189], and
multireference configuration interaction [188] or coupled cluster [190] methods have been developed
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Figure 5.1: General scheme of the reduction of NACs by GBMs.

Table 5.1: Summary of computed electronic properties of graphene nanoflakes, reported in the
literature.

Ref. GBM Method Properties

[52] Pristine graphene size 0 TAO-LDA/6-31G
Vertical IP=6.72 eV
Vertical EA=0.58 eV

[52] Pristine graphene size 1 TAO-LDA/6-31G
Vertical IP=5.81 eV
Vertical EA=1.70 eV

[52] Pristine graphene size 2 TAO-LDA/6-31G
Vertical IP=5.30 eV
Vertical EA=2.35 eV

[52] Pristine graphene size 3 TAO-LDA/6-31G
Vertical IP=4.99 eV
Vertical EA=2.77 eV

[51] Pristine graphene size 0 B3LYP/6-31+G Vertical IE=7.08 eV
[51] Pristine graphene size 1 B3LYP/6-31+G Vertical IE=6.35 eV

[182] Boron-nitrogen codoped coronenea B3LYP/6-31+G

Vertical EA (circle)=0.75 eV
Vertical EA (stripe)=1.52 eV
Vertical IE (circle)=6.67 eV
Vertical IE (stripe)=5.57 eV

[183] Single graphitic nitrogen coronene B3LYP/DND Fundamental gap= 4.20 eV

a the heteroatoms substitute the central benzene ring (circle) or 3 adjacent rings (stripe)

to treat strongly correlated systems, their high computational costs makes them applicable to
only relatively small compounds [191]. Instead, thermally-assisted-occupation DFT [192] provides
a more reliable description of complex electronic structure at a computational cost similar to that
of DFT. In classical DFT, the error due to static correlation was found to either be independent
of the functional [193], or to display an ”erratic behaviour” [194]. When simulating graphene
nanoflakes it is therefore necessary to find a good balance between an acceptable computational
cost, given the large size of the molecules, and an accurate description of the electronic behaviour
to avoid large errors.

Many metrics have been developed to analyse and quantify electron correlation and to evaluate
the quality of the wavefunction [195]. The eigenvalues of the spin operator Ŝ2 are habitually used to
assess the extent of spin contamination present in the system [196]. Grimme et al. [197] developed
a tool based on fractional occupation number weighted density (FOD) and finite-temperature
DFT calculations with pre-defined electronic temperature that allows both the quantification and
visualization of static electron correlation effects. An electron correlation diagnostic for single-
reference coupled-cluster methods is the T1 value [198], which corresponds to the Frobenius norm
of the single substitution amplitudes t1 vector of the closed-shell CCSD wavefunction, normalised
by the number of correlated electrons.

In Chapter 4, we have explored the adsorbent properties of GBMs in the context of their
applications in electrochemical sensing. Completing this picture, in this Chapter we investigate
the other part of the sensing process, i.e., the capability of the sensor material to shuffle electrons.
Specifically, we examine how ionisation energies, electronic affinities, and solvation energies (which
convert EAs and IEs into redox potentials) vary with the size and chemical composition of graphene-
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based nanoflakes using range-separated DFT and the SMD continuum solvent model. As before,
we aim to identify reliable modelling protocols and arrive at structure-property relationships,
which can guide subsequent design and experimental testing of new and improved graphene-based
materials for electrochemical applications.

5.2 Computational methods and models

IEs, EAs, and solvation energies were computed for six graphene-based materials, namely:

• Pristine graphene;

• Epoxide-functionalised graphene (epoxide rGO);

• Boron-doped graphene (BH-doped G);

• Graphene codoped with boron and nitrogen (1,1-B,N-codoped G);

• Nitrogen-doped graphene (NH-doped G);

• Phosphorus-doped graphene (PH-doped G).

These systems were modelled as circular nanoflakes of four sizes, coronene being the smallest
(Fig.5.2). In the case of doped and functionalised graphene nanoflakes, the number of functionali-
ties was increased with the size of the system so as to maintain experimentally observed elemental
composition.

Figure 5.2: a) Investigated model sizes illustrated for NH-doped graphene: size 0 – light blue, size
1 - size 0 plus light blue, size 2 - size 1 plus light green, size 3 - size 2 plus red. b) Models of
investigated GBMs, shown for size 1 and colour-coded according to their chemical nature. This
colour code is used for all the plots in this Chapter.

All computations were performed with the Gaussian 16 software [161] using the range-separated
ωB97X-D functional with the def2-TZVP basis set. This DFT method includes 22% Hartree-Fock
exchange at short range and 100% Hartree-Fock at long range [199, 200]. To examine the role
of exact exchange within the functional formulation, EAs and IEs were also computed at the
PBE-D3BJ (0% of HF exchange) [95, 96, 201], TPSSh-D3BJ (10% HF exchange) [202], B3LYP-
D3BJ (20% of HF exchange)[97], and M06-2X (54% of HF exchange) [203] levels of theory, all
with the def2-TZVP basis set. All computations on open-shell species were performed within an
unrestricted formalism. We chose the SMD/IEF-PCM implicit model for solvation in water [79]
with an electrostatic scaling factor of 1.2; this method additionally allows decomposing solvation
energy into solute-solvent dispersion interaction, solute cavitation, and solute-solvent repulsion.
For all computations, a tight self-consistent field optimisation and a fine integration grid were
employed, except for M06-2X which requires an ultra-fine grid setting [204]. Wavefunction stability
analysis was also performed for all systems.
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We computed both the vertical (the energy of the radical ion is computed in the geometry of
the neutral state) and the adiabatic (the geometry of the radical ion is fully relaxed) IE and EA
values, defined according to the following one-electron reactions:

GBM → GBM+· + e− (5.1)

GBM+ e− → GBM−· (5.2)

Correspondingly,

IE = Ecation − Eneutral (5.3)

EA = Eneutral − Eanion (5.4)

The quality of the wavefunction for all systems was monitored through the expectation value
of the Ŝ2 operator in conjunction with the geometry of the parent neutral closed-shell state. The
extent of static electron correlation was quantified and visualised with the fractional occupation
density number (NFOD) [197] at the TPSS/def2-TZVP level of theory with a smearing temperature
of 5000K, as implemented in ORCA 5.0.3 [102].

5.3 Results and discussion

5.3.1 Ground-state electronic structure of nanographenes

In polycyclic conjugated molecules, such as linear acenes, the ground-state multiplicity tends to
switch from closed-shell to open-shell diradical with an increasing number of rings [205]. Since the
same can take place in nanographenes, we first focused on exploring their ground-state electronic
structure. We used the fractional occupation density number (NFOD) to quantify the extent of static
correlation, symptomatic of the multireference character of the parent nanographenes (neutral and
closed-shell). While there is no fixed threshold for NFOD, values below ca. 1.0 signify that a single
determinant is reasonably reliable. Our results, reported in Table 5.2, show that static electronic
correlation rises with the increasing model size, suggesting increasing diradical character in model
sizes 2 and 3 [206].

Visualisation of the FOD results for pristine graphene models (Fig. 5.3) confirms the increase in
electron correlation with the nanoflake size. For model sizes 0 and 1, there is no visible FOD and,
therefore, the electronic structure can be well-represented by single-reference methods. Instead,
small FOD lobes can be seen in model sizes 2 and 3, and their location suggest that static correlation
occurs primarily at the edges of the large nanoflakes.

Figure 5.3: FOD plots (in yellow) with an isovalue of 0.005 e/Bohr3 across model sizes of pristine
graphene.

DFT partially captures the electron correlation via its exchange term. To demonstrate this,
we have compared results obtained with ωB97X-D, which is a range-separated DFT including
22% of Hartree-Fock exchange at short distance and 100% at long distance, with PBE (0% exact
exchange), TPSSh (10% exact exchange), B3LYP (20% exact exchange), and M06-2X (54% exact
exchange), in conjunction with the def2-TZVP basis set. The effect that a growing amount of HF
exchange plays in capturing correlation can be traced in the eigenvalues of the Ŝ2 operator (see
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Table 5.2: Fractional occupation density number (NFOD), computed at the TPSS/def2-TZVP level
of theory with 5000K smearing temperature.

Material Size NFOD

pristine graphene

0 0.3
1 0.9
2 2.0
3 3.5

epoxide rGO

0 0.4
1 1.0
2 2.4
3 3.7

BH-doped graphene

0 0.4
1 1.1
2 2.4
3 4.1

1,1-B,N-codoped graphene

0 0.4
1 1.0
2 2.2
3 3.6

NH-doped graphene

0 0.6
1 1.2
2 2.7
3 4.6

PH-doped graphene

0 0.6
1 1.2
2 2.7
3 4.7

Table 5.3). For doublet radicals, the expectation value of this operator should be exactly equal to
0.75 if the system is strictly single-reference. Our results illustrate that the more exact exchange
is included in the functional, the more the expectation value of the Ŝ2 operator deviates from 0.75
(Fig. 5.4). In several cases, complete lack of HF exchange in PBE even resulted in unconverged
computations. In line with the FOD diagnostic, model sizes 0 and 1 feature insignificant spin
contamination, yet 〈Ŝ2 〉 eigenvalues consistently exceed 10% deviation from 0.75 in radical ions
of model sizes 2 and 3.

Figure 5.4: Eigenvalue of the Ŝ2 operator as a function of the model size obtained with different
functionals and def2-TZVP basis set for the radical anions of pristine (left) and PH-doped (right)
graphene, in the vertical process.
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Table 5.3: Comparison of ⟨Ŝ2⟩ eigenvalues, computed using various DFT functionals with the
def2-TZVP basis set in the vertical scheme for radical ions across sizes and functionalisations of
graphene models.

GBM Species Functional Size 0 Size 1 Size 2 Size 3

pristine graphene

Cation

PBE-D3BJ 0.75 0.76 \a \a
TPSSh-D3BJ 0.76 0.77 0.77 0.79
B3LYP-D3BJ 0.77 0.77 0.78 0.82

M06-2X 0.78 0.78 0.80 0.84
ωB97X-D 0.80 0.84 0.88 0.99

Anion

PBE-D3BJ 0.75 0.75 \a \a
TPSSh-D3BJ 0.76 0.77 0.77 0.78
B3LYP-D3BJ 0.76 0.77 0.77 0.81

M06-2X 0.77 0.78 0.79 0.81
ωB97X-D 0.79 0.82 0.87 0.97

epoxide rGO

Cation

PBE-D3BJ 0.76 0.75 0.76 0.76
TPSSh-D3BJ 0.77 0.77 0.78 0.78
B3LYP-D3BJ 0.77 0.77 0.79 0.79

M06-2X 0.78 0.79 0.81 0.80
ωB97X-D 0.80 0.84 0.94 0.94

Anion

PBE-D3BJ 0.75 0.75 0.76 0.76
TPSSh-D3BJ 0.76 0.76 0.78 0.78
B3LYP-D3BJ 0.76 0.77 0.78 0.78

M06-2X 0.77 0.78 0.80 0.80
ωB97X-D 0.79 0.82 0.90 0.91

BH-doped graphene

Cation

PBE-D3BJ 0.76 0.76 0.76 0.76
TPSSh-D3BJ 0.77 0.77 0.77 0.81
B3LYP-D3BJ 0.77 0.77 0.78 0.82

M06-2X 0.79 0.79 0.80 0.85
ωB97X-D 0.81 0.85 0.88 1.22

Anion

PBE-D3BJ 0.75 0.75 0.75 0.76
TPSSh-D3BJ 0.76 0.77 0.77 0.80
B3LYP-D3BJ 0.77 0.77 0.78 0.82

M06-2X 0.77 0.78 0.79 0.84
ωB97X-D 0.79 0.84 0.91 0.95

1,1-B,N-codoped graphene

Cation

PBE-D3BJ 0.76 0.76 0.76 0.76
TPSSh-D3BJ 0.77 0.77 0.78 0.79
B3LYP-D3BJ 0.77 0.77 0.79 0.80

M06-2X 0.78 0.79 0.81 0.81
ωB97X-D 0.80 0.84 0.95 0.99

Anion

PBE-D3BJ 0.75 0.75 0.76 0.76
TPSSh-D3BJ 0.76 0.77 0.77 0.79
B3LYP-D3BJ 0.77 0.77 0.78 0.80

M06-2X 0.77 0.78 0.80 0.82
ωB97X-D 0.80 0.83 0.94 1.05

NH-doped graphene

Cation

PBE-D3BJ 0.76 0.76 0.76 0.76
TPSSh-D3BJ 0.78 0.77 0.78 0.79
B3LYP-D3BJ 0.78 0.78 0.79 0.79

M06-2X 0.78 0.79 0.81 0.82
ωB97X-D 0.81 0.86 0.99 1.11

Anion

PBE-D3BJ 0.75 0.75 0.76 0.76
TPSSh-D3BJ 0.77 0.77 0.78 0.79
B3LYP-D3BJ 0.77 0.77 0.79 0.81

Continued . . .
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. . . Continued

GBM Species Functional Size 0 Size 1 Size 2 Size 3

M06-2X 0.79 0.79 0.82 0.85
ωB97X-D 0.82 0.84 0.97 1.18

PH-doped graphene

Cation

PBE-D3BJ 0.75 0.75 0.75 0.76
TPSSh-D3BJ 0.76 0.77 0.77 0.80
B3LYP-D3BJ 0.76 0.77 0.78 0.80

M06-2X 0.78 0.78 0.80 0.80
ωB97X-D 0.79 0.83 0.92 0.90

Anion

PBE-D3BJ 0.75 0.75 0.75 0.76
TPSSh-D3BJ 0.76 0.76 0.77 0.79
B3LYP-D3BJ 0.76 0.77 0.77 0.79

M06-2X 0.77 0.78 0.80 0.80
ωB97X-D 0.79 0.82 0.89 1.23

a unconverged computation

The presence of strong static electron correlation in larger nanoflakes is confirmed by visualising
both the fractional occupation number weighted density and spin density, as shows in Figure 5.5
for size 2 of PH-doped graphene. Small localised FOD domains reside on the edge carbon atoms
and close to the dopant atoms, while the spin densities are localised only on the latter sites. We
can also clearly see how DFT functionals treat static correlation differently based on the amount
of exact exchange (Table 5.3) by comparing the spin density plots at the PBE-D3BJ and ωB97X-D
levels of theory (Figure 5.5b-c).

Figure 5.5: Static correlation in PH-doped graphene, model size 2: a) FOD plot with isovalue of
+0.005 e/Bohr3, b) spin density plots (±0.002 isovalue) computed at the PBE-D3/def2-TZVP and
c) wB97x-D/def2-TZVP levels of theory, all in the vertical process.

Surprisingly, despite the varying extent of exact exchange and thus the static correlation, com-
puted EAs and IEs are in an excellent qualitative agreement between all tested methods across
model sizes (Fig.5.6). Functionals with less or no exact exchange tend to overestimate the EAs
and underestimate the IEs, although these errors appear to be systematic. This suggests that
the infamous error cancellation, to which the success of DFT is often attributed, is at play when
computing the reaction energies of one-electron addition or removal, even in the case of complex
electronic structures plagued by significant multi-reference character.

5.3.2 Structure-property relationships

Computing EAs and IEs from the vertical process alone saves computational time compared to
the full adiabatic process, since no geometry relaxations are necessary for the product radical ions.
This is an approximation neglecting the structure relaxation effects. To confirm the validity of
this approximation, a comparison between results obtained in the vertical and in the adiabatic
schemes was performed (see Fig.5.7). These results show that in the case of one-electron addition
to or removal from the investigated graphene-based nanoflakes, structural variation in the product
radical ions is minimal. This is not surprisingly considering the rigid structures of these species
comprised of condensed conjugated rings. Therefore, for simplicity we discuss the vertical values
below, but the same conclusions can be drawn based on the adiabatic computations.
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Figure 5.6: Vertical electronic affinities (left) and ionisation energies (right) for GBM model sizes
0 and 3, computed using various DFT functionals and plotted versus the ωB97X-D/def2-TZVP
results. Dashed line represents the x=y function.

Figure 5.7: Comparison between vertical and adiabatic electron affinities (left) and ionisation
energies (right), computed at the ωB97X-D/def2-TZVP level of theory across all model sizes.
Dashed line represents the x=y function.

The EA of a molecule is defined as the amount of energy released when an electron is added to
it (see Equation (5.4)); high EA indicates that the molecule accepts an electron easily. Computed
vertical EAs for investigated graphene nanoflakes (Fig. 5.8) show that increasing the size of the
nanoflake leads to an increase in the EA. Better electron-accepting behaviour of larger systems
arises from the greater delocalisation and thus stabilisation of the negative charge and unpaired
spin.

Ionisation energy (also called ionisation potential, IP, in the past) is the energy required to
remove an electron from a molecule (see Equation (5.3)), and lower IE values correspond to a
stronger electron acceptor character. Our results for the graphene nanoflakes (Fig. 5.8) indicate
that bigger molecules have smaller IEs. Similar to the EA values, the bigger the system, the
easier it is to remove a single electron from it, since the resulting radical cation is more efficiently
stabilised by electron delocalisation.

According to Koopmans theorem in the closed-shell Hartree–Fock formalism, the first IE of a
molecule is exactly equal to the negative of the orbital energy of its highest occupied molecular
orbital (HOMO) [207]. A parallel is often made to connect the first electron affinity to the energy
of the lowest unoccupied molecular orbital (LUMO). Its analogue in DFT, Janak’s theorem [208],
states that similar relationships exist, although in practice large errors can often be observed
depending on the functional used [209]. To probe these relationships, we compared vertical EA
and IE values to the LUMO and HOMO energies, respectively (Fig. 5.9). For small model sizes,
there is a clear linear relationship between EA or IE and the respective orbital energies. However,
large static electron correlation in large model sizes is also reflected in poor (if any) correlations.

Comparing electronic properties of the studied GBMs, we note that doping and functionalisa-
tion generally improve both the electron-accepting (higher EAs) and electron-donating (lower IEs)
ability compared to pristine graphene. However, considering the size dependence of these prop-
erties, we note that the chemical composition of the GBM does not have a strong effect on these
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Figure 5.8: Top: Vertical electron affinities (left) and ionisation energies (right), computed at
ωB97X-D/def2-TZVP level of theory for various GBMs as a function of the size of the nanoflake,
expressed as the reciprocal to the number of non-hydrogen atoms contained in it. Dashed lines are
2nd order polynomial fits. Bottom: EA and IE values, extrapolated to the infinitely large material
from the ωB97X-D/def2-TZVP computations on finite nanoflakes.

values, especially at larger model sizes (Fig. 5.8). Moreover, this dependence appears to be polyno-
mial rather than linear with respect to the model size. This is particularly interesting considering
that adsorption energies (see Chapter 4) instead follow a linear relationship with the model size
and, most importantly, show a much greater variation depending on the chemistry of the material.
These findings suggest that to boost the efficiency of graphene-based materials for sensing appli-
cations, a greater weight should be placed on the adsorbent properties, while reasonable electron
shuffling can be expected with almost any doped graphene. This is reminiscent of the findings of
the study by Pumera et al. fittingly titled ”Will Any Crap We Put into Graphene Increase Its
Electrocatalytic Effect?”, in which doped GBM electrocatalysts performed much better than the
pristine counterpart in the oxygen reduction and hydrogen evolution reactions independent on the
dopant’s chemical nature [16].

5.3.3 Solvent effects

Accurate redox potentials of molecules can be obtained in silico via thermodynamic cycles
(Fig.5.10) [210]. Apart from accurate thermodynamic values for protons, electrons, and reference
electrode, which can be found in the literature, the only other quantities required to evaluate
the redox potentials are the EA (for reduction) or IE (for oxidation) and the corresponding
solvent effects on these reaction energies. To estimate these solvent effects in water, we computed
Gibbs free energies of solvation of the parent nanoflakes and their radical anions and cations,
respectively, using the SMD solvent model at the ωB97X-D/def2-TZVP level of theory (see Table
5.4). We note that while most parent nanoflakes are either insoluble in water or their solvation is
very slightly exergonic, products of their one-electron reduction or oxidation are charged, and are
therefore associated with large negative free energies of solvation in a polar solvent (water). As a
result, solvation in water further amplifies both the electron-donating and electron-withdrawing
tendencies of the graphene nanoflakes. Comparing results for model sizes 0 and 1, we note that
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Figure 5.9: Left: vertical electron affinities plotted versus LUMO energies for model size 0 (di-
amonds) and 3 (circles). Right: vertical ionisation energies plotted versus HOMO energies for
model size 0 (diamonds) and 3 (circles). Dashed lines are linear regression fits. All values were
computed at the ωB97X-D/def2-TZVP level of theory.

the magnitude of these solvent effects decreases, which is consistent with the fact that larger
polycyclic hydrocarbons are more hydrophobic.

Figure 5.10: Thermodynamic cycle for computing the redox potential according to Ref.[210].

Finally, solvent effects on the oxidation and reduction are relatively similar for all studied GBMs
(Fig. 5.11). Together with very similar gas-phase EA and IP values (Fig. 5.8), this suggests that
doping and functionalisation do not result in significant variation of the redox properties of GBMs
in water. This observation again contrasts with our results for interaction energies in Chapter
4, solvent effects on which were found to vary across a broader range depending on the chemical
nature of the materials (Fig. 4.6).
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Table 5.4: Free energies of solvation for neutral and reduced/oxidised GBMs, as well as the corre-
sponding solvent corrections to EA and IE. All computations were performed in water at 298K at
the SMD/ωB97x-D/def2-TZVP level of theory.
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pristine graphene
0 0.11 -1.36 -1.20 1.47 -1.30
1 0.18 -0.99 -0.79 1.17 -0.97

epoxide rGO
0 0.06 -1.48 -1.26 1.55 -1.33
1 0.13 -1.13 -0.85 1.26 -0.98

BH-doped graphene
0 0.11 -1.33 -1.25 1.44 -1.37
1 0.10 -1.09 -0.91 1.18 -1.01

1,1-B,N-codoped graphene
0 0.12 -1.35 -1.20 1.47 -1.32
1 0.20 -0.99 -0.78 1.20 -0.98

NH-doped graphene
0 0.00 -1.45 -1.49 1.45 -1.49
1 0.04 -1.13 -1.07 1.17 -1.11

PH-doped graphene
0 -0.02 -1.47 -1.44 1.45 -1.42
1 0.03 -1.16 -0.99 1.19 -1.02

a Referring to the radical anionic and cationic species.
b The reduction ∆∆GRed corresponds to the solvent effect on the EA, as defined in Equation (5.4).
c The oxidation ∆∆GOx corresponds to the solvent effect on the IE, as defined in Equation (5.3).
All ∆G values were corrected for the phase change.

Figure 5.11: Solvent corrections to EA (left) and IE (right) for model size 1. All computations
were performed in water at 298K at the SMD/ωB97X-D/def2-TZVP level of theory. The y-axis
scale is set to the same range as that for computed EAs and IEs in Fig. 5.8, bottom panel.

5.4 Conclusions

In this Chapter, we explored how IE, EA, and solvation effects on the corresponding redox prop-
erties depend on the size and chemical composition of nanographenes. Large acenes and other
extended polyaromatic hydrocarbons feature small singlet-triplets gaps and often have diradical
ground states. To characterise the static electron correlation (spin contamination) associated with
the multi-reference character of these systems, we employed the fractional occupation number
weighted density and explored how the amount of Hartree-Fock exchange included in the chosen
DFT functional influences resulting electronic properties. We found that despite the strong multi-
reference character of the larger nanoflakes (model sizes 2 and 3), computed properties are hardly
affected by the choice of the DFT functional, and even inexpensive PBE-D3BJ (lacking any ex-
act exchange) produces EA and IE values in close qualitative agreement with the range-separated
ωB97X-D. For pristine graphene, computed values are also in line with those reported in prior com-
putational studies (Table 5.1). However, a definitive ruling on the quality of these predictions is
impossible without either more experimental data or computations with multi-reference methods,
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which, at present, are prohibitively expensive for larger nanoflakes.
In Chapter 4, we discovered the strong dependence of the interaction energies between GBMs

and nitroaromatic molecules on the chemical nature of the material and the size of the nanoflake
model. In contrast, computed electronic properties appear to be less dependent on the doping
and functionalisation of graphene, and their variation with size is essentially constant across all
studied chemistries. Increasing the size of the graphene nanoflakes makes the one-electron addi-
tion and removal easier, as the resulting radical anion or cation is increasingly more stabilised in
larger conjugated systems. Furthermore, computed Gibbs free energies of solvation reveal that
increasing the size of the graphene derivative increases its hydrophobic character, even for radical
ions. Therefore, while solvation in water further facilitates the redox transformations, this effect
decreases for larger nanoflakes.

Overall, in this Chapter we established that, unlike the adsorbent energetics, electronic (redox)
properties of graphene-based materials show only little variation with the computational method-
ology, the size of the model, and the chemical composition of the material. On the one hand, these
findings simplify the development of alternative electrochemical sensors and catalysts, since a ma-
terial can be tailored toward other relevant properties without sacrificing its redox performance.
On the other hand, there is seemingly little ”wiggle room” for modulating the redox properties
of graphene-based materials via chemical modification alone. This limitation presents an enticing
challenge for future materials design.



Conclusions

Graphene-based materials are attracting growing attention as sustainable and efficient alternatives
to inorganic systems in sensing, catalysis, among many other practical applications. The vast
chemical space of graphene derivatives, stemming from endless functionalisation, doping, and de-
fect engineering possibilities, together with the sizes - ranging from small nanoflakes to extended
periodic sheets - cannot be mapped efficiently in an experimental setting. Exploring this space
and selecting the best candidate materials for specific applications calls for structure-property-
performance relationships to be established and applied in rational design. In this thesis, we set
out to elucidate such relationships, focusing on the applications of GBMs in capture and transfor-
mation of environmental pollutants. We explored how their adsorbent properties, quantified via
the energetics of the non-covalent interactions, and their ability to shuttle electrons in an electro-
chemical settings, reflected by the EAs and IEs, vary depending on the chemical composition and
size of the material, as well as how these properties relate to the observed performance in practical
uses. Crucially, our findings are relevant to applications far outside this particular scope, and can
be applied to any scenario involving physisorption and reduction/oxidation of GBMs.

The unique chemical nature of graphene and its derivatives brings about an array of method-
ological challenges in simulating their properties. While computational chemistry and physics offer
many sophisticated and insightful modelling tools and techniques, the gap between the accuracy of
predictions and realism in representing investigated systems and processes remains unbridged even
today. Specifically, highly accurate electronic structure theory approaches, such as multi-reference
post-Hartree-Fock theory or DFT functionals from the upper rungs of the Jacob’s ladder, are
largely impractical for molecules containing more than several dozen atoms and are completely
unavailable for extended materials. These large systems can instead be treated with classical or
semiemppirical approaches and LDA and GGA DFT, although these lack precision in describing
the electronic structure. This is particularly pressing in the case of extended polycyclic conjugated
molecules and materials burdened with potentially strong static electron correlation. Therefore,
a substantial part of this thesis was dedicated to benchmarking a broad spectrum of in silico
approaches in an effort to identify reliable and affordable modelling protocols.

This task has proven to be non-trivial. We discovered that even for very simple systems, such
as CO2 interacting with benzene, computed interaction energies already deviate between the levels
of theory. As we moved to large models of pristine graphene, the spread in the computed energetics
broadened while the range of available methods shrank. We also observed unsettling discrepancies
in the performance of computational methods when modelling interactions between GBMs and
nitroaromatic compounds: semiempirical density functional tight-binding greatly overbinds these
complexes but predicts interaction energies qualitatively similar to those obtained with SAPT,
while the results of pure DFT are in disarray. On the other hand, the electronic (redox) properties
of graphene-based nanoflakes showed little variation with the computational methodology, notwith-
standing the complicated and potentially multi-reference electronic structure of these species. De-
spite these challenges, we were able to deduce methodological approaches to the adsorbent and
redox properties that provided qualitative insights into how these properties depend on the mate-
rial’s structures.

We have discovered that properties of extended materials can be approximated via an extrapola-
tion scheme, which relies on computations on finite, moderately-sized systems. These computations
can in turn be performed with more accurate methods, and the obtained results can be rationalised
by means of insightful energy and density decomposition analyses, largely unavailable for periodic
computations. We found that while the adsorbent properties of the studied GBMs, both in the gas
phase and in water, vary greatly depending on their doping, chemical functionalisation, and model
size, their redox features remain essentially uniform across the explored structural and composi-
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tional ranges. These findings not only pave the way toward rational application-guided materials
design, but also pose several tantalising research questions:

• Can the discovered size-dependence of the adsorbent properties of GBMs on their chemistry
be incorporated into size-selective practical applications, such as sorting of the quantum dots
by sorbents?

• Why are the redox properties of the GBMs so insensitive to their composition? Could these
properties be pushed outside the narrow range, observed in this thesis, by greater dopant
loadings or more exotic functionalisations?

These questions undoubtedly warrant addressing in follow-up studies. Another target for future
research is the expansion of the in silico models employed in this thesis toward realistic systems
under real-life conditions. This entails incorporating structural defects, altering analyte loadings,
applying external potentials, introducing support materials, including thermal corrections, and so
on. In large part, methodological foundation for these investigations has already been established
in this thesis. This foundation can equally be utilised in setting-up high-throughput screenings of
many more GBMs and analytes. However, true validation of such computational studies can only
come from experiment. Our research has clearly demonstrated that, at present, there is not enough
consistent and homogeneous experimental data to conduct reliable and extensive methods bench-
marks. Until this data is available, methodological protocols and structure-property relationships,
established herein, serve to qualitatively guide the chemical design and exploratory testing of new
graphene-based materials for catalysis and sensing.
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Appendix

Additional data, including molecular structures, is available in the Supporting Information of the
paper and preprints corresponding to the relative chapters of this thesis. References to these data
are included in the Conclusions section of each Chapter.

A.1 Chapter 3

Table A.1: Size dependency of the B3LYP-D3/def2-TZVP interaction energies (in kJ mol−1) of
CO2 on various graphene nanoflakes models. Size is expressed as the number of carbon atoms in
the model.

Model Size Global minima
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Benzene 6 -10.9 -10.5 -10.2 -10.0 -0.9 -0.9 -1.3
Coronene 24 -15.3 -16.4 -15.5 -14.9 -6.4 -6.1 -7.6

Circumcoronene 54 -15.6 -18.5 -17.5 -16.7 -8.3 -8.2 -9.1
2×2-zigzag 16 -16.5 -15.3 -14.2 -12.9 -5.3 -5.1 -4.9
3×3-zigzag 30 -17.1 -16.8 -16.1 -15.7 -6.7 -6.9 \
4×4-zigzag 48 -17.0 -18.3 -17.4 -16.2 -8.1 -8.0 -8.6

2×2-armchair 20 -18.3 -15.6 -15.1 -14.0 -5.4 -5.3 -6.7
3×2-armchair 28 -18.5 -17.1 -16.3 -15.0 -7.2 -6.9 -7.5
5×3-armchair 66 -18.7 -18.6 -17.7 -16.5 -8.4 -8.3 -9.3
Extrapolated -19.8 -19.8 -18.8 -18.0 -9.5 -9.5 -10.6
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Table A.2: Size dependency of the ωB97X-D3/def2-TZVP interaction energies (in kJ mol−1) of
CO2 on various graphene nanoflakes models. Size is expressed as the number of carbon atoms in
the model.

Model Size Global minima
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Benzene 6 -11.3 -10.9 -10.5 -10.3 -1.0 -1.0 -1.5
Coronene 24 -15.6 -15.6 -16.0 -13.6 -5.7 -5.5 -6.9

Circumcoronene 54 -16.9 -16.9 -15.7 -15.0 -7.3 -7.3 -8.1
2×2-zigzag 16 -15.0 -15.0 -13.6 -12.3 -4.8 -4.6 -4.6
3×3-zigzag 30 -16.1 -15.9 -14.7 -14.3 -6.0 -6.1 -7.2
4×4-zigzag 48 -16.9 -16.9 -15.7 -14.7 -7.2 -7.1 -7.7

2×2-armchair 20 -15.1 -15.0 -14.6 -13.2 -4.9 -4.8 -6.3
3×2-armchair 28 -16.1 -16.1 -15.1 -13.6 -6.5 -6.1 -6.9
5×3-armchair 66 -17.2 -17.2 -16.0 -14.6 -7.5 -7.4 -8.5
Extrapolated -17.8 -16.6 -15.8 -8.4 -8.4 -9.5 -17.8

Table A.3: Size dependency of the ωB97X-D/def2-TZVP interaction energies (in kJ mol−1) of CO2

on various graphene nanoflakes models. Size is expressed as the number of carbon atoms in the
model.

Model Size Global minima
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Benzene 6 -10.6 -10.2 -9.8 -9.8 -1.2 -1.2 -1.8
Coronene 24 -15.7 -15.6 -14.6 -13.8 -6.6 -6.3 -7.8

Circumcoronene 54 -17.4 -17.3 -16.2 -15.7 -8.5 -8.4 -8.5
2×2-zigzag 16 -14.7 -14.7 -13.5 -12.2 -5.5 -5.3 -5.5
3×3-zigzag 30 -16.2 -16.0 -15.0 -14.6 -6.9 -7.0 -8.1
4×4-zigzag 48 -17.3 -17.3 -16.1 -15.3 -8.3 -8.2 -8.8

2×2-armchair 20 -15.0 -14.9 -14.5 -13.3 -5.6 -5.5 -7.1
3×2-armchair 28 -16.3 -16.3 -15.3 -13.9 -7.5 -7.0 -7.9
5×3-armchair 66 -17.7 -17.7 -16.5 -15.3 -8.7 -8.5 -9.7
Extrapolated -18.6 -18.6 -17.4 -16.7 -9.7 -9.7 -10.4

Table A.4: Size dependency of the DSD-BLYP-D3/def2-TZVP interaction energies (in kJ mol−1)
of CO2 on various graphene nanoflakes models. Size is expressed as the number of carbon atoms
in the model.

Model Size Global minima
Constrained optimisation

Parallel Orthogonal
Bridge Top Hollow Bridge Top Hollow

Benzene 6 -9.2 -8.8 -8.4 -8.4 -0.8 -0.8 -1.1
Coronene 24 -14.8 -14.7 -13.9 -13.3 -6.4 -6.2 -7.7

Circumcoronene 54 -17.1 -17.1 -16.2 -15.3 -8.7 -8.6 -9.7
2×2-zigzag 16 -13.5 -13.5 -12.5 -11.3 -5.2 -4.9 -4.9
3×3-zigzag 30 -15.4 -15.2 -14.6 -14.2 -6.9 -7.0 -8.7
4×4-zigzag 48 -17.0 -17.0 -16.5 -15.3 -8.5 -8.5 -9.2

2×2-armchair 20 -13.8 -13.7 -13.3 -12.2 -5.4 -5.2 -6.8
3×2-armchair 28 -15.6 -15.5 -14.7 -13.4 -7.8 -7.1 -7.8
5×3-armchair 66 -17.9 17.9 -16.7 -15.9 -10.1 -8.9 -10.1
Extrapolated -18.9 -18.9 -18.0 -17.3 -10.8 -11.6 -18.9
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A.2 Chapter 4

Table A.5: SAPT0/jun-cc-pVDZ//GFN2-xTB interaction energies (in kJ mol-1).

GBM Size DNT TNT

pristine graphene
1 -104.6 -110.6
2 -117.4 -123.9

B,N-codoped graphene
1 -114.9 -120.5
2 -130.3 -154.0

BH-doped graphene
1 -89.5 -97.4
2 -101.6 -123.2

NH-doped graphene
1 -85.9 -82.8
2 -96.5 -111.1

hBN
1 -58.4 -58.8
2 -58.3 -60.3

rGO-HU,HO
1 -88.6 -102.0
2 \ \

rGO-ST
1 -112.0 -125.3
2 \ \

Table A.6: PBE-D3/def2-TZVP//GFN2-xTB interaction energies (in kJ mol-1).

GBM Size DNT TNT

pristine graphene

0 -16.2 -13.6
1 -28.0 -13.2
2 -30.5 -20.4
3 -33.4 -20.3

B,N-codoped graphene

0 -28.5 -17.9
1 -33.6 -17.4
2 -35.7 -24.1
3 -43.9 -33.4

BH-doped graphene

0 -31.7 -30.0
1 -34.6 -21.3
2 -34.8 -21.1
3 -35.3 -30.7

NH-doped graphene

0 -3.6 -20.3
1 -27.6 -16.3
2 -29.7 -25.7
3 -42.4 -26.9

hBN

0 -14.5 1.3
1 -26.0 -10.8
2 -26.0 -8.9
3 -30.8 -16.1

rGO-HU,HO

0 -20.1 -25.7
1 -32.5 -26.9
2 -35.1 -23.8
3 -31.7 -25.3

rGO-ST

0 -34.4 -42.0
1 -47.7 -34.7
2 -47.2 -6.6
3 -31.0 -16.0
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Table A.7: B3LYP-D3/def2-TZVP//GFN2-xTB interaction energies (in kJ mol-1).

GBM Size DNT TNT

pristine graphene
0 -30.77 -30.27
1 -48.43 -35.15
2 -52.07 -43.13

B,N-codoped graphene
0 -40.83 -29.88
1 -52.90 -36.66
2 -55.94 -44.92

BH-doped graphene
0 -38.86 -40.49
1 -42.11 -28.33
2 -47.09 -33.64

NH-doped graphene
0 4.13 -28.36
1 -37.97 -21.91
2 -40.79 -35.56

hBN
0 -28.52 -14.35
1 -46.39 -33.05
2 -46.19 -31.70

rGO-HU,HO
0 -27.87 -37.26
1 -47.85 -45.39
2 -53.05 -41.95

rGO-ST
0 -41.11 -57.12
1 -61.38 -50.67
2 -69.14 -30.08

Table A.8: Interaction energies of DNT with GBMs computed at different levels of theory in
conjunction with B3LYP-D3/def2-TZVP (size 0) and PBE0-D3/def2-TZVP (size 1) geometries
(in kJ mol-1).

GBM Size PBE-D3/def2-TZVP B3LYP-D3/def2-TZVP SAPT0/jun-cc-pVDZ

pristine graphene
0 -78.4 -89.5
1 -72.6 -85.9 -104.8

B,N-codoped graphene
0 -81.7 -94.3
1 -78.7 -94.8 -114.3

BH-doped graphene
0 -72.6 -75.1
1 -70.0 -80.1 -107.7

NH-doped graphene
0 -66.6 -72.3
1 -70.7 -81.6 -80.1

hBN
0 -67.7 -55.9
1 -60.9 -73.0 -73.7

rGO-HU,HO
0 -53.6 -56.3
1 -75.7 -74.6 -111.2
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Table A.9: GFN2-xTB interaction energies (in kJ mol-1).

GBM Size DNT TNT

pristine graphene

0 -65.95 -75.87
1 -75.67 -89.90
2 -78.15 -97.49
3 -80.78 -101.97
4 -81.96 -95.14
5 -82.32 -101.89
6 -82.95 -106.20

B,N-codoped graphene

0 -74.40 -86.30
1 -81.30 -97.50
2 -85.00 -115.20
3 -98.90 -126.00
4 -104.00 -134.60
5 -103.60 -134.30
6 -104.80 -136.50

BH-doped graphene

0 -49.87 -68.83
1 -61.46 -82.21
2 -70.37 -84.62
3 -86.02 -111.67
4 -85.19 -122.13
5 -87.49 -122.80
6 -89.14 -127.40

NH-doped graphene

0 -77.02 -96.40
1 -82.14 -102.30
2 -93.02 -119.20
3 -98.22 -125.10
4 -93.46 -127.50
5 -95.54 -130.60
6 -96.66 -131.10

hBN

0 -81.96 -98.63
1 -101.44 -123.81
2 -107.50 -132.17
3 -113.86 -137.82
4 -116.90 -141.93
5 -120.86 -145.83
6 -122.12 -147.23

rGO-HU,HO

0 -56.53 -75.03
1 -71.07 -86.07
2 -83.15 -93.69
3 -86.49 -98.24
4 -88.72 -101.08
5 -88.76 -99.60
6 -90.89 -103.10

rGO-ST

0 -72.20 -88.00
1 -90.80 -98.40
2 -97.40 -98.30
3 -79.80 -100.10
4 -87.00 -106.90
5 -85.40 -106.10
6 -89.14 -110.30
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Table A.10: Periodic PBE-D3 interaction energies (in kJ mol-1).

GBM DNT TNT
Pristine G -66.1 -72.5
rGO-ST -83.9 -89.4

rGO-HU-HO -68.7 -73.0
B-doped -74.6 -80.0
N-doped -72.7 -64.1

B,N-codoped -64.1 -65.0
hBN -132.9 -136.5

Table A.11: PCM- UAKS/PBE0/6-31G(d)//PBE0-D3-RIJCOSX/def2-TZVP free energies of sol-
vation in water at 25°C for size 1 models (in kJ mol-1).

GBM ∆G

DNT

pristine graphene 7.59
rGO-ST -1.24

rGO-HU-HO -0.26
BH-doped 8.47
NH-doped 5.82

B,N-codoped 8.66
hBN 11.54

TNT

pristine graphene 9.60
rGO-ST -1.91

rGO-HU-HO 2.26
BH-doped 9.97
NH-doped 8.45

B,N-codoped 10.01
hBN 14.99

ISOLATED

DNT -4.86
TNT -5.37

pristine graphene -3.41
rGO-HU-HO -7.76
B-N-codoped -0.62

rGO-ST -6.53
BH-doped -4.14
NH-doped -5.75

hBN 9.74
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Table A.12: Vertical EAs and IEs computed at the ωB97X-D/def2-TZVP level of theory (in eV).
# atoms represents the number of non-hydrogen atoms in the nanoflake.

GBM Size # atoms EA IE

Pristine graphene

0 24 0.2 7.3
1 54 1.1 6.5
2 96 1.7 6.0
3 150 2.2 5.6

Epoxide rGO

0 25 0.9 7.1
1 55 1.5 6.4
2 98 2.1 5.8
3 153 2.3 5.7

BH-doped graphene

0 24 0.8 7.0
1 54 1.6 6.3
2 96 2.1 5.9
3 150 2.2 5.4

1,1-B,N-codoped graphene

0 24 0.5 6.9
1 54 1.3 6.3
2 96 1.9 5.7
3 150 2.2 5.5

NH-doped graphene

0 24 0.4 6.0
1 54 1.2 5.8
2 96 2.0 5.3
3 150 2.2 5.1

PH-doped graphene

0 24 0.8 6.8
1 54 1.4 6.2
2 96 2.0 5.7
3 150 2.4 5.4
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Table A.13: Vertical IEs computed at different level of theory (in eV), with def2-TZVP basis set.

GBM Size PBE-D3BJ TPSSh-D3BJ B3LYP-D3BJ MO6-2X

Pristine graphene

0 7.0 7.0 7.1 7.5
1 6.1 6.1 6.2 6.6
2 no convergence 5.6 5.7 6.1
3 no convergence 5.3 5.3 5.8

Epoxide rGO

0 6.8 6.8 6.9 7.2
1 6.1 6.0 6.1 6.6
2 5.6 5.5 5.6 6.0
3 5.3 5.3 5.4 5.9

BH-doped graphene

0 6.8 6.8 6.9 7.2
1 6.0 6.0 6.1 6.5
2 5.6 5.6 5.6 6.0
3 5.2 5.2 5.3 5.7

1,1-B,N-codoped graphene

0 6.8 6.7 6.8 7.1
1 6.0 6.0 6.1 6.5
2 5.5 5.5 5.6 5.9
3 5.2 5.2 5.3 5.7

NH-doped graphene

0 6.0 5.9 6.0 6.3
1 5.6 5.6 5.7 6.0
2 5.1 5.0 5.1 5.4
3 5.0 4.9 5.0 5.3

PH-doped graphene

0 6.4 6.4 6.6 7.0
1 5.9 5.9 6.0 6.4
2 5.4 5.4 5.5 5.9
3 5.2 5.1 5.2 5.6

Table A.14: Vertical EAs computed at different level of theory (in eV), with def2-TZVP basis set.

GBM Size PBE-D3BJ TPSSh-D3BJ B3LYP-D3BJ MO6-2X

Pristine graphene

0 0.6 0.4 0.4 0.3
1 1.6 1.4 1.4 1.3
2 no convergence 2.0 2.0 2.0
3 no convergence 2.4 2.4 2.4

Epoxide rGO

0 1.1 1.0 1.0 0.9
1 1.8 1.7 1.7 1.6
2 2.4 2.3 2.3 2.3
3 2.7 2.5 2.5 2.5

BH-doped graphene

0 1.0 0.8 0.9 0.9
1 1.8 1.7 1.7 1.7
2 2.3 2.2 2.2 2.2
3 2.6 2.5 2.5 2.5

1,1-B,N-codoped graphene

0 0.8 0.6 0.7 0.6
1 1.7 1.5 1.5 1.4
2 2.3 2.1 2.1 2.1
3 2.6 2.5 2.4 2.4

NH-doped graphene

0 0.8 0.6 0.6 0.5
1 1.6 1.4 1.4 1.4
2 2.3 2.2 2.2 2.2
3 2.6 2.5 2.4 2.4

PH-doped graphene

0 1.2 1.0 1.0 0.9
1 1.8 1.6 1.6 1.6
2 2.4 2.2 2.2 2.2
3 2.7 2.6 2.6 2.6
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Table A.15: ωB97X-D/def2-TZVP vertical and adiabatic EAs and IEs (in eV).

GBM Size Vertical EA Adiabatic EA Vertical IE Adiabatic IE

Pristine graphene

0 0.2 0.3 7.3 7.2
1 1.1 1.2 6.5 6.4
2 1.7 1.8 6.0 5.9
3 2.2 2.3 5.6 5.5

Epoxide rGO

0 0.9 1.2 7.1 6.9
1 1.5 1.6 6.4 6.3
2 2.1 2.2 5.8 5.7
3 2.3 2.4 5.7 5.6

1,1-B,N-codoped graphene

0 0.5 0.7 6.9 6.7
1 1.3 1.4 6.3 6.2
2 1.9 2.0 5.7 5.7
3 2.2 2.3 5.5 5.4

NH-doped graphene

0 0.4 0.6 6.0 5.8
1 1.2 1.3 5.8 5.7
2 2.0 2.1 5.3 5.1
3 2.2 2.4 5.1 5.0

Table A.16: ωB97X-D/def2-TZVP HOMO and LUMO energies (in eV).

GBM Size HOMO LUMO

Pristine graphene

0 -7.0 -0.6
1 -6.5 -1.1
2 -6.1 -1.7
3 -5.9 -2.0

Epoxide rGO

0 -7.2 -0.7
1 -6.6 -1.2
2 -6.1 -1.8
3 -6.0 -2.0

BH-doped graphene

0 -7.2 -0.6
1 -6.6 -1.3
2 -6.2 -1.7
3 -5.8 -2.0

1,1-B,N-codoped graphene

0 -7.1 -0.4
1 -6.5 -1.1
2 -6.0 -1.7
3 -5.8 -1.9

NH-doped graphene

0 -6.3 -0.2
1 -6.1 -1.0
2 -5.6 -1.7
3 -5.5 -1.8

PH-doped graphene

0 -7.0 -0.6
1 -6.5 -1.1
2 -6.1 -1.7
3 -5.9 -2.0


