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Abstract
In the past decades, the optimal control of partial differential equations governed by

partial differential equations has made significant progress. This work concerns optimal
control of nonlocal partial differential equations, raising the natural question as to why
this type of partial differential equations are of interest and relevance. Nonlocal partial
differential equations abound in modeling of various physical and biological phenomena.
In contrast to classical partial differential equations, nonlocal partial differential equations
take not only the local spatial or time variables into consideration, but also any possible
dependence of the involved quantities on neighboring points as well as preceding times in
the evolution of the process under consideration. This type of non-local reliance typically
arises from interactions over a distance or from multiple conservation laws.

In this thesis, our primary emphasis was placed on two significant nonlocal partial differ-
ential equations: one originating from the field of physics and the other from the biology. In
our first study we consider an optimal control problem for the steady-state Kirchhoff equa-
tion, a prototype for nonlocal partial differential equations, different from fractional powers
of closed operators. Existence and uniqueness of solutions of the state equation, existence of
global optimal solutions, differentiability of the control-to-state map and first-order neces-
sary optimality conditions are established. The aforementioned results require the controls
to be functions in H1 and subject to pointwise lower and upper bounds. In order to obtain
the Newton differentiability of the optimality conditions, we employ a Moreau-Yosida-type
penalty approach to treat the control constraint and study its convergence. The first-order
optimality conditions of the regularized problems are shown to be Newton differentiable, and
a generalized Newton method is detailed. A discretization of the optimal control problem
by piecewise linear finite elements is proposed and numerical results are presented.

In our second study, we delve into an optimal control problem involving a coupled
parabolic-elliptic chemotaxis system with a nonlocal logistic growth term. We establish
the existence and uniqueness of the state equation. By constructing the corresponding
logistic Ordinary Differential Equation (ODE), we determine the maximal existence time
to prevent blow-up. Depending on the sign coefficient of the nonlinear term in the ODE,
it either blows up in finite time or in infinite time. We demonstrate that the solution y
of the Partial Differential Equation (PDE) is bounded above by the solution of the ODE.
Subsequently, we provide an a-priori estimate for the solution of the chemotaxis system
and establish the existence of an optimal solution. Finally, we demonstrate the Fréchet
differentiability of the control-to-state map and derive first-order necessary conditions using
the Lagrangian method.





Zusammenfassung
In den letzten Jahrzehnten hat die optimale Steuerung von partiellen Differentialglei-

chungen, die durch partielle Differentialgleichungen beschrieben werden, erhebliche Fort-
schritte gemacht. Diese Arbeit befasst sich mit der optimalen Steuerung nichtlokaler parti-
eller Differentialgleichungen und stellt die natürliche Frage, warum diese Art von partiellen
Differentialgleichungen von Interesse und Relevanz ist.

Nichtlokale partielle Differentialgleichungen sind reichlich vorhanden bei der Modellie-
rung verschiedener physikalischer und biologischer Phänomene. Im Gegensatz zu klassischen
partiellen Differentialgleichungen berücksichtigen nichtlokale partielle Differentialgleichun-
gen nicht nur die lokalen räumlichen oder zeitlichen Variablen, sondern auch jede mögliche
Abhängigkeit der beteiligten Größen von benachbarten Punkten sowie vorangegangenen Zei-
ten im Verlauf des zu betrachtenden Prozesses. Diese Art der nicht-lokalen Abhängigkeit
entsteht typischerweise durch Wechselwirkungen über eine Entfernung oder durch mehrere
Erhaltungsgesetze.

In dieser Arbeit lag unser Hauptaugenmerk auf zwei bedeutenden nichtlokalen partiel-
len Differentialgleichungen: eine stammt aus dem Bereich der Physik und die andere aus
der Biologie. In unserer ersten Studie betrachten wir ein Optimalsteuerungsproblem für die
stationäre Kirchhoff-Gleichung, einen Prototypen für nichtlokale partielle Differentialglei-
chungen, die von den Bruchteilen geschlossener Operatoren abweicht. Existenz und Ein-
deutigkeit der Lösungen der Zustandsgleichung, Existenz global optimaler Lösungen, Diffe-
renzierbarkeit der Abbildung von der Steuerungs-Zustands-Operator und notwendige Opti-
malitätsbedingungen erster Ordnung werden etabliert. Die genannten Ergebnisse erfordern,
dass die Steuerungen Funktionen in H1 sind und punktweise untere und obere Schranken
unterliegen. Um die Newton-Differenzierbarkeit der Optimalitätsbedingungen zu erhalten,
verwenden wir einen Ansatz mit Strafterm im Stil von Moreau-Yosida, um die Steuerungsbe-
schränkung zu behandeln, und untersuchen ihre Konvergenz. Die Optimalitätsbedingungen
erster Ordnung der regularisierten Probleme zeigen sich als Newton-differenzierbar, und
eine verallgemeinerte Newton-Methode wird detailliert. Es wird eine Diskretisierung des
optimalen Steuerungsproblems durch stückweise lineare Finite-Elemente vorgeschlagen und
numerische Ergebnisse werden präsentiert.

In unserer zweiten Studie vertiefen wir uns in ein Optimalsteuerungsproblem, das ein
gekoppeltes parabolisch-elliptisches Chemotaxis-System mit einem nichtlokalen logistischen
Wachstumsterm betrifft. Wir etablieren die Existenz und Eindeutigkeit der Zustandsglei-
chung. Durch die Konstruktion der entsprechenden logistischen gewöhnlichen Differential-
gleichung (ODE) bestimmen wir die maximale Existenzzeit, um ein Blowup zu verhindern.
Abhängig vom Vorzeichen des nichtlinearen Terms in der ODE entsteht ein Blowup entweder
in endlicher Zeit oder in unendlich lange Zeit. Wir zeigen, dass die Lösung y der partiellen
Differentialgleichung (PDE) von oben durch die Lösung der ODE begrenzt ist. Anschließend
geben wir eine a-priori-Abschätzung für die Lösung des Chemotaxis-Systems und etablieren
die Existenz einer optimalen Lösung. Schließlich zeigen wir die Fréchet-Differenzierbarkeit
der Abbildung von der Steuerung zum Zustand und leiten notwendige Bedingungen erster
Ordnung mit Hilfe der Lagrange-Methode her.
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1 Introduction
Optimal control problems governed by partial differential equations progressed quickly

in the past decade. Among these, nonlocal partial differential equations are of crucial impor-
tance. They provide essential aspects of real-world phenomena by incorporating all available
information in the evolution of the observed process. Therefore, one can make more use-
ful and accurate predictions in various application areas through the mathematical study of
these equations. An enormous range of such equations has emerged in the literature, finding
notable applications initially in physics and later expanding into engineering, astrophysics,
and biology. Among the earliest instances of nonlocal equations are those encountered in
the filed of phase transitions, connected to theories introduced by Chen, Fife, 2000. Models
incorporating nonlocal spatial terms are encountered in various contexts, such as Ohmic
heating production Lacey, 1995; Quittner, Souplet, 2007, the theory of gravitational equi-
librium of polytropic stars Lacey, 1983, population dynamics Furter, Grinfeld, 1989, and
the modeling of cell aggregation through interaction with a chemical substance (chemotaxis)
Wolansky, 1997.

1.1 Main Contributions
In this Thesis we study the optimal control of two different nonlocal nonlinear partial

differential equations:

• optimal control of stationary Kirchhoff equation
• optimal control a nonlocal chemotaxis system.

1.1.1 Optimal Control of Stationary Kirchhoff Equation
In this work we study an optimal control problem governed by a nonlinear, nonlocal

partial differential equation (PDE) of Kirchhoff-type{
−M

(
x, ∥∇y∥2L2(Ω);u

)
∆y = f in Ω,

y = 0 on ∂Ω.
(1.1.1)

Here, Ω ⊂ RN is an open and bounded set and the right-hand side f belongs to L2(Ω).
We focus on the particular case M(x, s;u) = u(x) + b(x) s, which has been considered
previously, e. g., in Figueiredo et al., 2014; Delgado, Figueiredo, et al., 2017. Here u and
b are strictly positive functions and u serves as the control. The full set of assumptions is
given in section 4.1. We mention that in case u and b are positive constants, (1.1.1) has a
variational structure; see Figueiredo et al., 2014.

Equation (1.1.1) is the steady-state problem associated with its time-dependent variant
ytt −M

(
x, ∥∇y∥2L2(Ω);u

)
∆y = f in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(x, 0) = y0(x), yt(x, 0) = y1(x) in Ω.

(1.1.2)

In one space dimension, problem (1.1.2) models small vertical vibrations of an elastic string
with fixed ends, when the density of the material is not constant. Specifically, the control u is
proportional to the inverse of the string’s cross section; see Ma, 2005; Figueiredo et al., 2014.
A physical interpretation of the multi-dimensional problems (1.1.1) and (1.1.2) appears to
be missing in the literature.
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As mentioned before, PDEs with nonlocal terms play an important role in physics and
technology and they can be mathematically challenging. Although in some cases variational
reformulations are available, the models (1.1.1), (1.1.2) do not allow this in general. Thus,
despite the deceptively simple structure, (1.1.1) requires a set of analytical tools not of-
ten employed in PDE-constrained optimization. Existence and uniqueness of solutions for
(1.1.1) have been investigated in Figueiredo et al., 2014 and Delgado, Figueiredo, et al.,
2017; see also the references therein. For further applications of nonlocal PDEs, we refer
the reader to Eringen, 1983; Ahmed, Elgazzar, 2007; Kavallaris, Suzuki, 2018.

The authors in Delgado, Figueiredo, et al., 2017 studied an optimal control problem for
(1.1.1) with the following cost functional

J(y, u) =
1

2
∥y − yd∥2L2(Ω) +

λ

2
∥u∥2L2(Ω) (1.1.3)

with an admissible set Uad = {u ∈ L2(Ω) |u ≥ ua > 0 a.e. in Ω}. However we believe
that the proof of existence of an optimal solution in this work has a flaw. We give further
details in the appendix. Moreover, the proof in Delgado, Figueiredo, et al., 2017 is explicitly
tailored to such tracking type functionals. In the present work we see it necessary to modify
the control cost term to contain the stronger H1-norm. We also allow for a more general
state dependent term, which leads to the objective

J(y, u) =

∫
Ω
φ(x, y(x)) dx+

λ

2
∥u∥2H1(Ω) (1.1.4)

and a set of admissible controls in H1(Ω). In this setting, we prove the weak-strong con-
tinuity of the control-to-state operator into H1

0 (Ω) ∩W 2,q(Ω) for any q ∈ [1,∞) and the
existence of a globally optimal solution. Moreover, we work with a pointwise lower bound
on admissible controls. This bound has an immediate technological interpretation, repre-
senting an upper bound on the string’s cross section. On the other hand, we also impose an
upper bound on the controls. This is to be able to use the topology of L∞(Ω) in the proof
of the Fréchet differentiability of the control-to-state map so that we can derive optimal-
ity conditions in a more straightforward way than by the Dubovitskii-Milyoutin formalism
utilized in Delgado, Figueiredo, et al., 2017.

The first-order optimality conditions obtained when minimizing (1.1.4) subject to (1.1.1)
involve a variational inequality of nonlinear obstacle type in H1. We choose to relax and
penalize the bound constraints via a Moreau-Yosida regularization, which amounts to a
quadratic penalty of the bound constraints for the control. In this setting, we can prove
the generalized (Newton) differentiability of the optimality system. A similar philosophy,
albeit for a different problem, has been pursued by Adam, Hintermüller, Surowiec, 2018.
We also mention Ulbrich, 2011, Chapter 9.2 for an approach via a regularized dual obstacle
problem. A recent alternative is offered by Christof, Wachsmuth, 2023, where the Newton
differentiability of the solution map for unilateral obstacle problems is shown, without the
need to penalize the constraint. Indeed, relaxing the lower and upper bounds adds new
difficulties, since the existence of a solution of the Kirchhoff equation (1.1.1) can only be
guaranteed for positive controls. Therefore, we compose the control-to-state map with a
smooth cut-off function. We then study the convergence of global minimizers as the penalty
parameter goes to zero, see theorem 3.2.6 for details. We can expect a corresponding result
to hold also for locally optimal solutions under an assumption of second-order sufficient
optimality conditions, but this is not investigated here.

To summarize our contributions in comparison to Delgado, Figueiredo, et al., 2017, we
consider a more general objective, present a simpler proof for the existence of a globally
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optimal control, prove the differentiability of the control-to-state map and generalized dif-
ferentiability of the optimality system for a regularized version of the problem as well as
the applicability of a generalized Newton scheme. We also describe a structure preserving
finite element discretization of the problem and the discrete counterpart of the generalized
Newton method.

1.1.2 Optimal Control a Nonlocal Chemotaxis Model
Taxis refers to the motion of an organism towards or away from an external stimulus.

Specifically, when the stimulus is a chemical, it is termed chemotaxis. Positive chemotaxis
occurs, if the cell movement is toward a higher concentration of the chemical in question,
while negative chemotaxis occurs if the movement is in the opposite direction.

To address specific aspects of chemotaxis, numerous mathematical models have been
proposed. One of the most crucial and interesting models is the Keller-Segel model, intro-
duced in 1970. This model consists of two equations, forming a parabolic-parabolic system,
see Keller, Segel, 1970. This model describes the evolution of the population density y(x, t)
of motile cells (or other living organisms) and the concentration w(x, t) of a chemically at-
tracting substance (chemoattractant), which is produced by the cell population itself. In a
bounded domain Ω ⊂ RN and a time interval [0, T ]

∂ty = ∆y − χdiv (y∇w) + g(y) in Ω× (0, T ),

∂tw = ∆w + f(w, y) in Ω× (0, T ),

∂y

∂n
=
∂w

∂n
= 0 on ∂Ω× (0, T ),

y(x, 0) = y0, w(x, 0) = w0 in Ω.

(1.1.5)

The chemotactic coefficient χ is a positive constant. The term g(y) represents the growth
term for the cells and f(w, y) is the kinetics/source term, which may depend on w and y.
There is no flux of cells or chmoatractans across the boundary of the domain. The initial
concentrations y0 and w0 are non-negative functions.

We refer the reader to Hillen, Painter, 2008 for a review of a number of variations of the
original Keller-Segel model from a biological perspective. The review article Horstmann,
2004 provides a detailed introduction into the mathematics of the Keller-Segel model for
chemotaxis. Arumugam, Tyagi, 2021 discussed some of the most important analytical meth-
ods and blow-up criteria for analyzing the solutions of Keller-Segel chemotaxis models. Quite
a few of the known results on numerical methods have been discussed in this review. In
Egger, Pietschmann, Schlottbom, 2015 a parameter identification of a nonlinear parabolic-
elliptic system has been investigated. The existence of global bounded classical solutions
has been proved in Tello, Winkler, 2007.

There are some studies for optimal control of Keller-Segel models and chemotaxis equa-
tions, see for instance Ryu, Yagi, 2001; Fister, McCarthy, 2003; Rodríguez-Bellido, Rueda-
Gómez, Villamizar-Roa, 2018 and the references therein. Recently Liu, Yuan, 2022 ad-
dressed a distributed optimal control problem for an attraction-repulsion chemotaxis system,
which describes the process of cells interacting with a combination of repulsive and attractive
signal chemicals. A numerical investigation of optimal control of self-organisation dynamics
in a chemotaxis reaction diffusion system carried out in Lebiedz, Maurer, 2004. Dolgov,
Pearson, 2019 considered the efficient numerical solution of an optimal control formulation
for the Keller–Segel model, specifically addressing bacterial chemotaxis. A chemotaxis equa-
tion can arise in cancer models, such as angiogenesis. Optimal control of such equations has
been studied in Delgado, Gayte, Morales Rodrigo, 2021. In Belmiloudi, 2017 a mathemati-
cal model describing the dynamics of interaction between tumor and normal cells has been
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presented. The paper also delved into an optimal control problem, emphasizing the role of
drugs in treating brain tumors.

In this work we study an optimal control problem governed by a nonlinear, nonlocal
system of partial differential equations (PDEs) under nonlocal chemotactic effects

∂ty −∆y = −χ div (y∇w) + y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
in Ω× (0, T ),

−∆w + λw = y in Ω× (0, T ),

∂y

∂n
= 0 and

∂w

∂n
= u on ∂Ω× (0, T ),

y(x, 0) = y0(x) in Ω.

(1.1.6)

where all the constants χ, a0, a1, λ are positive and a2 belongs to R. This equation has
been proposed in Negreanu, Tello, 2013 to study of single-species and two-species system in
competition for the case where the chemical is also introduced in the system from outside,
i. e., in the elliptic equation is an artificial external chemical force imposed. For further
application of nonlocal PDEs, we refer the reader to Eringen, 1983; Ahmed, Elgazzar, 2007;
Kavallaris, Suzuki, 2018.

The first equation represents the rate of change of the cell density ∂ty, where −∆y
and −χdiv (y∇w) describe the diffusion and chemotactic contribution, respectively. The
reaction term, namely logistic population growth y

(
a0 − a1 y − a2 −

∫
Ω y dx

)
, counteracts the

blow-up tendency produced by chemotaxis. The nonlocal term −
∫
Ω y dx := 1

|Ω|
∫
Ω y dx, which

describes the total mass of the population, has a balancing effect. In fact, this type of
logistic growth describes the competition among cells for environmental resources and their
cooperation to survive. The impact of the nonlocal term evidently depends on the sign of
a2. If a2 > 0, individuals of the species compete, hindering the growth of the population.
However, when a2 < 0 the effects of both a1 y and a2 −

∫
y balance the system. In this case,

individuals compete locally but cooperate globally.
The second equation, a stationary version of the reaction-diffusion equation for chemoat-

tractant, models that the attractant w diffuses as a chemical and is produced by the cells.
It will be assumed that the chemoattractant diffuses much faster than the cell population.
This results in an interesting case with ∂tw = 0. The first term in the kinetics/source term
y − λw represents the spontaneous production of the chemoattractant and is proportional
to the number of cells, while −λw represents decay of attractant activity; see Murray, 1989,
Chapter 11 and Negreanu, Tello, 2013. In this model, we impose a positive flux of the
chemoattractant on the boundary of the domain.

Existence and uniqueness of solutions for a chemotaxis system with a local logistic
source have been investigated in Tello, Winkler, 2007; see also the references therein. See
for instance Ryu, Yagi, 2001; Fister, McCarthy, 2003; Rodríguez-Bellido, Rueda-Gómez,
Villamizar-Roa, 2018.

In this work we study an optimal control problem for (1.1.6) with the following standard
tracking-type cost functional

J(y, u) :=
1

2

∫
Ω
|y(x, T )− yd(x)|2 dx+

γ

2

∫ T

0

∫
∂Ω

|u(x, t)|2 ds dt.

The first term measures the discrepancy between the cell density y and and desired density
yd at final time T , while the second models the control effort.

1.2 Outline of the Thesis
The thesis is structured as follows.
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Chapter 2 – Fundamentals of Optimal Control of PDEs
gives a mathematical background into both PDEs and optimal control problems gov-

erned by PDEs. This chapter consists of two sections. In section 2.1 we give the main
related results about the existence of solutions of linear and nonlinear elliptic and parabolic
PDEs. Section 2.2 is devoted to the introducing of the main concepts of optimal control
problems governed by PDEs.

Chapter 3 – Optimal Control of the Stationary Kirchhoff Equation
focuses on optimal control of a nonlocal nonlinear elliptic equation, namely the Kirch-

hoff equation. In section 3.1, we demonstrate the existence and uniqueness of solutions to
the Kirchhoff equation, as well as the existence of a solution to the optimal control prob-
lem. Fréchet differentiability of the control-to-state map is proved in section 3.2. We also
derive a system of necessary optimality conditions for a regularized problem and construct
an analytical solution for the optimal control problem. We devote section 3.3 to showing
the Newton differentiability of the optimality system and devising a locally superlinearly
convergent scheme in appropriate function spaces. We discretize the optimal control prob-
lem, its optimality system and the generalized Newton method by a finite element scheme
in section 3.4. This chapter ends with describing some numerical experiments in section 3.5.

Chapter 4 – Optimal Control a Nonlocal Chemotaxis Model
focuses on optimal control of a nonlocal nonlinear system of PDEs, namely a parabolic-

elliptic chemotaxis system. In section 4.1 we address the existence and uniqueness of solu-
tions to the chemotaxis equation and the existence of an optimal control. Fréchet differen-
tiability of control-to-state map is proved in section 4.2. A first-order optimality system is
also derived in this section.

Chapter 5 – Conclusions and Outlook
summarizes the primary results of the thesis and outlines potential avenues for future

research.





2 Fundamentals of Optimal
Control of PDEs

Contents

2.1 Fundamentals of PDEs 7
2.2 Fundamentals of Optimal Control of PDEs 22

All definitions and results in this chapter, without reference, are based on Evans, 1998;
Tröltzsch, 2010; Manzoni, Quarteroni, Salsa, 2022. Throughout this chapter, we mention
the connection between these and our works in chapter 3 and chapter 4.

This chapter is structured as follows. Section 2.1 provides the fundamentals of partial
differential equations and the corresponding spaces employed for the analysis of these equa-
tions. In section 2.2 we discuss the general framework for theoretical and numerical analysis
of optimal control problems governed by partial differential equations.

2.1 Fundamentals of PDEs
All definitions and theorems in this section are based on Evans, 1998; Tröltzsch, 2010.

Our comprehension of the fundamental processes in the natural world relies significantly on
partial differential equations. Illustrative examples encompass the vibrations of solids, the
flow of fluids, the diffusion of chemicals, the spread of heat, the interactions of photons and
electrons, and the radiation of electromagnetic waves.

In the exploration of optimal control problems governed by partial differential equations
(PDEs), our initial step involves the introduction of these foundational equations.

Throughout this chapter, Ω ⊂ RN is a domain, i. e., an open and connected set,whose
boundary is generally denoted by ∂Ω.

2.1.1 Partial Differential Equations

Definition 2.1.1. Let F : Ω× R× RN × · · · × RNk → R be given. An equation of the form

F (x, u(x), Du(x), . . . , Dku(x)) = 0 x ∈ Ω (2.1.1)

is called a kth-order partial differential equation, where Dku is defined in definition B.1.6
and u : Ω → R is the unknown. Solving the PDE means to find all u satisfying (2.1.1).

There are different classes of PDEs:
Definition 2.1.2. (i) Let α be a multiindex of order |α| as defined in definition B.1.6.

The partial differential equation (2.1.1) is said to be linear if it is of the form∑
|α|≤k

aα(x)D
αu = f(x)

for given functions aα and f . It is called homogeneous if f ≡ 0.
(ii) The partial differential equation (2.1.1) is called semilinear if it is of the form∑

|α|=k

aα(x)D
αu+ a0(x, u,Du, . . . ,D

k−1u) = f(x)
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(iii) The partial differential equation (2.1.1) is quasilinear if it is of the form∑
|α|=k

aα(x, u,Du, . . . ,D
k−1u)Dαu+ a0(x, u,Du, . . . ,D

k−1u) = f(x)

(iv) The partial differential equation (2.1.1) is called nonlinear if it depends nonlinearly
upon the highest derivative.

The theory of partial differential equations requires the spatial domains to have suffi-
ciently smooth boundary.

2.1.2 Sobolev Spaces
The Hölder spaces, unfortunately, do not frequently serve as appropriate settings for

a theoretical analysis of partial differential equations as well as for the analysis of some
numerical methods for solving such equations. This is due to our typical difficulty to estab-
lish adequately accurate analytic estimates, which would demonstrate that our constructed
solutions belong to such spaces. Instead, what is required are alternative types of spaces
including functions with less smoothness, namely Sobolev spaces.
Weak Derivative

At first, we give the notion of weak derivatives and aim to extend the definition of
derivatives.

Let Ω be a bounded Lipschitz domain. The classical integration by parts formula reads∫
Ω
u(x)Dαv(x) dx = (−1)|α|

∫
Ω
Dαu(x)v(x) dx

for u ∈ Ck(Ω), v ∈ Ck
0 (Ω) and |α| ≤ k.

The weak derivative is defined in such a way that the integration by parts formula
holds, where ∂α is now a weak differential operator applied to less smooth functions. To
this end, we denote by L1

loc(Ω) the set of all locally integrable functions in Ω, meaning they
are Lebesgue integrable on every compact subset of Ω.

Now we are ready to introduce the definition of a weak derivative.
Definition 2.1.3. Let u ∈ L1

loc(Ω) be given and α be some multi index. w ∈ L1
loc(Ω) is

termed a weak αth- weak partail derivative of u, provided∫
Ω
u(x)Dαv(x) dx = (−1)|α|

∫
Ω
w(x)v(x) dx for all v ∈ C∞

0 (Ω),

and we write Dαu = w.
The function v : Ω → R, which is infinitely differentiable with compact support in Ω, is

called a test function. We denote the space of all test functions with C∞
0 (Ω).

Lemma 2.1.4. A weak derivative of u, if it exists, is uniquely defined up to a set of measure
zero.
Lemma 2.1.5. If u ∈ Ck(Ω), then the classical partial derivative Dαu, for each α with
|α| ≤ k, coincides with the αth- weak partial derivative of u.
Sobolev Spaces

Let 1 ≤ p ≤ ∞ and k be a nonnegative integer. In the following we give the definition
of a function space, including functions with weak derivative of various orders in Lp spaces.

A certain degree of regularity of the boundary ∂Ω of the domain Ω is required for some
properties of Sobolev spaces.
Definition 2.1.6. Suppose that Ω is a bounded domain in RN and V denotes a function
space on RN−1. ∂Ω is said to be of class V if for every point x0 ∈ ∂Ω, there exists an r > 0
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and some function g ∈ V such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) |xn > g(x1, . . . , xn−1)},

upon, if necessary, a relabeling and reorienting the coordinate system. Here, B(x0, r) denotes
the n-dimensional open ball centered at x0 with radius r.

When V particularly comprises Lipschitz continuous functions, namely C0,1 functions,
and Ck functions, Ω is called Lipschitz domain and Ck domain, respectively.

When V consists of Ck,α functions, 0 < α ≤ 1, ∂Ω is called a Hölder boundary of class
Ck,α.

As ∂Ω is a compact set in RN , we we can identify a finite number of points {xi}Ii=1 on
the boundary such that there exist positive numbers {ri}Ii=1 and functions {gi}Ii=1 ⊂ V ,

Ω ∩B(xi, ri) = {x ∈ B(xi, ri) |xn > gi(x1, . . . , xn−1)}

upon a transformation of the coordinate system if necessary, and

∂Ω ⊂
I⋃

i=1

B(xi, ri).

Definition 2.1.7. Let k be a nonnegative integer, p ∈ [1,∞]. The Sobolev space W k,p(Ω)
consists of all functions u ∈ Lp(Ω) such that the weak derivatives Dαu, for all multiindices
α of length |α| ≤ k, exist and belong to Lp(Ω). If u ∈W k,p(Ω), its norm is defined by

∥u∥Wk,p(Ω) :=



 ∑
|α|≤k

∥Dαu∥pLp(Ω)

1/p

1 ≤ p <∞,

max
|α|≤k

∥Dαu∥L∞(Ω) p = ∞.

When p = 2, we write Hk(Ω) =W k,2(Ω).
Theorem 2.1.8. The Sobolev space W k,p(Ω) is a Banach space.

A simple consequence of the theorem is the following result.
Corollary 2.1.9. The Sobolev space Hk(Ω) is a Hilbert space with the inner product

(u, v)Hk(Ω) =

∫
Ω

∑
|α|≤k

Dαu(x)Dαv(x) dx, u, v ∈ Hk(Ω).

It is easy to show that the Sobolev space W k,p(Ω) is reflexive if 1 < p <∞.
The space C∞

0 (Ω) does not need to be dense in W k,p(Ω). So we introduce the following
definition.
Definition 2.1.10. W k,p

0 (Ω) is defined as the closure of C∞
0 (Ω) in W k,p(Ω), that means,

u ∈W k,p
0 (Ω) if and only if there exist functions un ∈ C∞

0 (Ω) such that un → u in W k,p(Ω).
When p = 2, we denote the Hilbert space Hk

0 (Ω) ≡W k,2
0 (Ω).

The functions in W k,p
0 (Ω) can be interpreted as functions u ∈W k,p(Ω) with the following

property

Dαu = 0 on ∂Ω for all αwith |α| ≤ k − 1.

The meaning of this statement will be made clear later after introducing the definition of
trace operator in theorem 2.1.20.
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Sobolev Spaces of Real Order
Definition 2.1.11. Let Ω be a bounded domain and let s = k + λ be a positive non-integer,
with k = [s] and 0 < λ < 1. The Slobodetskii space W s,p(Ω) is defined as the set{

v ∈W k,p(Ω)

∣∣∣∣∣ |Dαv(x)−Dαv(y)|
|x− y|λ+n/p

∈ Lp(Ω× Ω) for all α,with |α| = k

}
,

having the norm

∥v∥W s,p(Ω) =

∥v∥p
Wk,p(Ω)

+
∑
|α|=k

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|p

|x− y|n+λp
dx dy

1/p

.

The space W s,p(Ω) is a Banach space. It is reflexive if and only if p ∈ (1,∞). When
p = 2, we denote Hs(Ω). This a Hilbert space, equipped with the inner product

(u, v)Hs(Ω) = (u, v)Hk(Ω) +
∑
|α|=k

∫
Ω

∫
Ω

[Dαu(x)−Dαu(y)] [Dαv(x)−Dαv(y)]

|x− y|n+2λ
dx dy.

The space C∞
0 (Ω) is not, in general, dense in W s,p(Ω), therefore it is useful to bring the

following definition.
Definition 2.1.12. Let s ≥ 0. W s,p

0 (Ω) is defined as the closure of C∞
0 (Ω) in W s,p(Ω).

When p = 2, we denote the Hilbert space Hs
0(Ω) ≡W s,2

0 (Ω).
With the spaces W s,p

0 (Ω), spaces with negative order can be defined.
Definition 2.1.13. Let s ≥ 0, either an integer or a non-integer. Let p ∈ [1,∞) and p∗ be
its conjugate exponent defined by 1/p+ 1/p∗ = 1. W−s,p∗(Ω) is defined as the dual space of
W s,p

0 (Ω). In particular, we denote H−s(Ω) ≡W−s,2(Ω).
Occasionally, we need to use the dual space of H1

0 (Ω).
Definition 2.1.14. The dual space of H1

0 (Ω) is denoted by H−1(Ω). If f ∈ H−1(Ω), a
bounded linear functional on H1

0 (Ω), we define the norm

∥f∥H−1(Ω) := sup{⟨f , u⟩H−1(Ω),H1
0 (Ω) |u ∈ H1

0 (Ω), ∥u∥H1
0 (Ω) ≤ 1}.

We have the following Gelfand triplet, which is defined in appendix B.2.3

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

Then, any function f ∈ L2(Ω) defines a bounded linear functional f ∈ H−1(Ω) by the
relation

⟨f , u⟩H−1(Ω),H1
0 (Ω) =

∫
Ω
fu dx for all u ∈ H1

0 (Ω).

Sometimes even when f belong to H−1(Ω), but not to L2(Ω), we write the duality pairing
⟨f , u⟩H−1(Ω),H1

0 (Ω) as integral
∫
Ω fu dx, although integration in this situation does not make

sense.
Sobolev Spaces over Boundaries
Definition 2.1.15. Let k ≥ 0 be an integer, α ∈ (0, 1], s ∈ [0, k+α] and p ∈ [1,∞). Assume
a set of local representations of the boundary given by

∂Ω ∩B(xi, ri) = {x ∈ B(xi, ri) |xn = gi(x1, . . . , xn−1)},

where gi, i = 1, . . . I, is defined on the open domain Di ⊂ RN−1. We assume that every
point of ∂Ω lies in at least one of these local representations. In addition, we assume
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gi ∈ Ck,α(Di). The Sobolev space W s,p(∂Ω), s ≤ k + α is defined as follows

W s,p(∂Ω) = {v ∈ L2(∂Ω) | v ◦ gi ∈W s,p(Di), i = 1, . . . , I},

endowed with the norm

∥v∥W s,p(∂Ω) = max
i

∥v ◦ gi∥W s,p(Di)
.

Sobolev Inequalities
There are embeddings of various Sobolev spaces into other spaces, which are the powerful

analytic tools for the regularity of a weak solution of a boundary value problem.
Theorem 2.1.16 (General Sobolev inequalities). Assume Ω is a Lipschitz domain and ∂Ω ∈
C1. Suppose u ∈ W k,p(Ω). The we have the following compact embeddings, defined in
definition B.2.5

(i) If kp < n, then

W k,p(Ω) ↪→↪→ Lq(Ω) for p ≤ q ≤ np

n− kp
.

(ii) If kp = n, then

W k,p(Ω) ↪→↪→ Lq(Ω) for p ≤ q <∞.

(iii) If kp > n, then
W k,p ↪→↪→ C(Ω).

The embedding also result hold for non-integer m > 0, see Adams, 1975, theorem 7.57.
A direct consequence of this theorem is the following compact embedding result.
Theorem 2.1.17 (Rellich). Assume that Ω is a nonempty bounded Lipschitz domain. Let k
and l be nonnegative integers with k > l, and let p ∈ [1,∞]. Then

W k,p(Ω) ↪→↪→W l,p(Ω).

We can infer the following results from Adams, 1975:
Theorem 2.1.18. Let 1 < q ≤ p ≤ ∞ and s − n

q ≥ t − n
p . Then the following continuous

dense embedding holds:
W s,q(Ω) ↪→W t,p(Ω) s, t ≥ 0.

Theorem 2.1.19. Suppose that 0 ≤ s < σ. The Sobolev- Slobodetskii space Hσ(Ω) is con-
tinuously, compactly, and densely embedded in Hs(Ω).
Traces

It is evident that the values of a function u ∈ C(Ω) on boundary of domain ∂Ω are
understandable in the usual sense. Since a typical function u ∈ W 1,p(Ω) is only defined
almost everywhere in Ω and the boundary ∂Ω has measure zero, the question arises how we
can assign boundary values along ∂Ω to the function u.

This question is resolved by the notion of trace operator.
Theorem 2.1.20 (Trace Theorem). Suppose Ω is a Lipschitz domain and let 1 ≤ p < ∞.
There exists a continuous linear operator

τ : W 1,p(Ω) → Lp(∂Ω)

with the following properties
(i) τu = u

∣∣
∂Ω

if u ∈W 1,p(Ω) ∩ C(Ω).
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(ii) < For every u ∈W 1,p(Ω)

∥τu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω) ,

where the positive constant C depends only on p and Ω.
(iii) The mapping τ : W 1,p(Ω) → Lp(∂Ω) is compact.

Definition 2.1.21. We call τu the trace of u on ∂Ω.
The trace operator is neither an injection nor a surjection form W 1,p(Ω) to Lp(∂Ω). Its

range is smaller than Lp(∂Ω), namely W 1−1/p,p(∂Ω), a positive order Sobolev space over
the boundary.
Theorem 2.1.22. Let 1 < p < ∞, k ≥ 1 and suppose that Ω is a bounded domain of
class Ck,1. Then there exist unique bounded linear and surjective mappings W k,p(Ω) →
W k−1/p,p(∂Ω).
Theorem 2.1.23. If s > 1

2 , then there exists a bounded trace operator which maps each
function in Hs(Ω) to its boundary value in Hs−1/2(∂Ω).

A function can have zero trace in the following sense:
Theorem 2.1.24. Suppose Ω is a bounded domain with C1 boundary ∂Ω. Furthermore,
assume that u ∈W 1,p(Ω). Then

u ∈W 1,p
0 (Ω) if and only if u = 0 on ∂Ω.

Integration by Parts Formula
Here we collect some facts employed for calculus.
Suppose that the boundary of the domain ∂Ω is of class C0,1. As already mentioned,

the outward pointing unit normal vector is defined along ∂Ω denoted by

ν = (ν1, . . . , νn)
T .

Theorem 2.1.25 (Gauss-Green Theorem). Let u ∈ C1(Ω). Then we have∫
Ω
uxi dx =

∫
∂Ω
u νi ds,

where νi denotes the ith component of the outward unit normal vector ν to the boundary.
We can apply the Gauss-Green theorem to a vector-valued function and obtain the

following variant, which is also called Divergence Theorem:
Theorem 2.1.26 (Divergence Theorem). Let u ∈ C1(Ω). Then we have∫

Ω
div u dx =

∫
∂Ω
u · ν ds,

where div u =
∑n

i=1
∂ui
∂xi

.
Applying the Gauss-Green Theorem to a function product results in the following the-

orem.
Theorem 2.1.27. Suppose u, v ∈ C1(Ω). Then we have∫

Ω
uxiv dx = −

∫
Ω
uvxi dx+

∫
∂Ω
uvνi ds.

The classical Gauss’s formula can be extended to functions from certain Sobolev spaces
so that the smoothness of the function is quite enough for the welldefinedness of the integrals
in the Lebesgue sense, which can be proved by so-called density argument.
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Proposition 2.1.28. Let Ω be a Lipschitz domain. Then∫
Ω
uxiv dx = −

∫
Ω
uvxi dx+

∫
∂Ω
uvνi ds for all u, v ∈ H1(Ω).

For analyzing nonlinear problems, it is beneficial to extend this formula even further.
Indeed, we have∫

Ω
uxiv dx = −

∫
Ω
uvxi dx+

∫
∂Ω
uvνi ds for all u ∈W 1,p(Ω), v ∈W 1,p∗(Ω),

where p, p∗ ∈ (1,∞) and p∗ is the conjugate exponent, defined by 1
p∗ + 1

p = 1.
Various other useful formulas can be derived. One of them is∫

Ω
∆uv dx =

∫
∂Ω
∂nuv ds−

∫
Ω
∇u · ∇v for all u ∈ H2(Ω), v ∈ H1(Ω).

Here

∆u :=
n∑

i=1

uxixi = div∇u

is the Laplacian operator,
∇u := (ux1 , . . . , uxn)

T

is the gradient of u, and

∂nu :=
∂u

∂ν
= ∇u · ν

is the outward normal derivative.

2.1.3 Spaces Involving Time
This sort of Sobolev spaces, which are essential in linear and nonlinear parabolic PDEs,

consist of functions mapping time into Banach spaces.
Definition 2.1.29. Any mapping from a subset of R or RN into a Banach space is termed
a vector-valued function.

First, we give a generalization of an integrable real-valued functions to vector-valued
functions.

Let X and Y be Banach spaces.
Definition 2.1.30. (i) A vector-valued function s : X → Y is said to be simple if there

exist finitely many functions ui ∈ Y, 1 ≤ i ≤ k such that

s(t) =
k∑

i=1

χEi(t)ui, t ∈ X,

where each Ei is a Lebesgue measurable subset of X.
(ii) A function f : X → Y is called measurable if there exists a sequence {sn}∞n=1 of

simple functions sn : X → Y such that

sn(t) → f(t) for a.e. t ∈ X.

Definition 2.1.31. (i) If s(t) =
∑k

i=1 χEi(t)ui is simple, we define∫
X
s(t) dt :=

k∑
i=1

|Ei|ui.
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(ii) The measurable function is said to be integrable if there exists a sequence of simple
functions {sn}∞n=1 such that∫

X
f(t) dt = lim

n→∞

∫
X
sn(t) dt.

Definition 2.1.32. The linear space

Lp(0, T ;X)

comprises all measurable vector-valued functions u : [0, T ] → X having the properties
(i) For 1 ≤ p <∞

∥u∥Lp(0,T ;X) :=

(∫ T

0
∥u(t)∥pX

)1/p

<∞.

(ii) For p = ∞
∥u∥L∞(0,T ;X) := ess sup

0≤t≤T
∥u(t)∥X <∞.

Definition 2.1.33. We denote by
C([0, T ];X)

the linear space of all continuous functions u : [0, T ] → X with

∥u∥C([0,T ];X) := max
0≤t≤T

|u(t)| <∞.

Definition 2.1.34. Let u ∈ L1(0, T ;X). w ∈ L1(0, T ;X) is called the weak derivative of u
denoted by

∂tu = w,

if ∫ T

0
∂tv(t)u(t) dt = −

∫ T

0
v(t)w(t)

for all real valued test functions v ∈ C∞
0 (0, T ).

When u and ∂tu belong to different spaces u ∈ L2(0, T ;H1
0 (Ω)) and ∂tu ∈ L2(0, T ;H−1(Ω)),

respectively the following statements hold:
Theorem 2.1.35. Let Ω be a bounded Lipschitz domain, u ∈ L2(0, T ;H1

0 (Ω)) and ∂tu ∈
L2(0, T ;H−1(Ω)).

(i) We have
u ∈ C([0, T ];L2(Ω))

(ii) The mapping
t 7→ ∥u(t)∥2L2(Ω)

is absolutely continuous, with

d

dt
∥u(t)∥2L2(Ω) = 2⟨∂tu(u) , u(t)⟩

for a.e. 0 ≤ t ≤ T .
(iii) There exists some constant C such that

max
0≤t≤T

∥u(t)∥L2(Ω) ≤ C
(
∥u∥L2(0,T ;H1

0 (Ω)) + ∥∂tu∥L2(0,T ;H−1(Ω))

)
where C depends only on T .
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Definition 2.1.36. We define the parabolic cylinder

ΩT := Ω× (0, T ),

and the parabolic boundary of ΩT

∂ΩT := ∂Ω× (0, T ).

2.1.4 Second Order Elliptic Equations
Let Ω be a bounded domain and f : Ω → R be given. A linear second order boundary

value problem is of the following form
Lu = f in Ω,

∂νAu = g on ∂Ω1,

u = h on ∂Ω2,

(2.1.2)

where the boundary ∂Ω = ∂Ω1∪∂Ω2 is split into two disjoint measurable sets ∂Ω1 and ∂Ω2,
being relatively closed and open subsets of ∂Ω.

L denotes a second-order partial differential operator having either the divergence form

Lu = −
n∑

i,j=1

(
aij(x)uxj

)
xi
+

n∑
i=1

bi(x)uxi + c(x)u (2.1.3)

or the nondivergence form

Lu = −
n∑

i,j=1

aij(x)uxjxi +

n∑
i=1

bi(x)uxi + c(x)u. (2.1.4)

The values of u prescribed at each point on ∂Ω2 are called Dirichlet condition and the values
of normal derivative of u prescribed at each point on ∂Ω1 are called Neumann conditions.

We note, an operator given in divergence form can be transformed into nondivergence
form and vice versa, provided that the highest-order coefficients aij , i, j = 1, . . . , n are C1

functions.
We denote the first term in (2.1.3) and (2.1.4) by

Au = −
n∑

i,j=1

(aij(x)uxj )xi and Au = −
n∑

i,j=1

aij(x)uxixj ,

respectively. The conormal vector is denoted by νA = Aν, with the matrix function A =
(aij), that means ∂νAu is given by

∂νAu =
n∑

i,j=1

aij uxi νj .

We henceforth assume the coefficient functions aij , bi, c, i, j = 1, . . . , n belong to L∞(Ω).
Definition 2.1.37. The partial differential operator L is said to be (uniformly) elliptic if
there exists some constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ |ξ|2

for a.e. x ∈ Ω and all ξ ∈ RN .
That means the symmetric matrix A(x) = (aij(x)) is positive definite for almost every

point x ∈ Ω, with the smallest eigenvalue greater than or equal to θ.
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Weak Solution
For a Banach space V , let us first explore the relation between a linear operator L : V →

V ∗ and a continuous bilinear form a : V × V → R.
Theorem 2.1.38. There exists a one-to-one correspondence between linear continuous op-
erators L : V → V ∗ and continuous bilinear form a : V × V → R, related by

⟨Lu , v⟩V ∗,V = a(u, v).

We consider the boundary-value problem{
Lu = f in Ω,

u = 0 on ∂Ω,
(2.1.5)

with the divergence form of the elliptic operator L.
Definition 2.1.39. (i) The bilinear form a(·, ·) associated with L is defined by

a(u, v) :=

∫
Ω

(
−

n∑
i,j=1

aij(x)uxivxj +
n∑

i=1

bi(x)uxiv + c(x)uv
)

dx (2.1.6)

for u, v ∈ H1
0 (Ω).

(ii) Let f ∈ H−1(Ω) be given. u ∈ H1
0 (Ω) is said to be a weak solution of the boundary-

value problem (2.1.5) provided

a(u, v) = ⟨f , v⟩ (2.1.7)

for all v ∈ H1
0 (Ω), where ⟨· , ·⟩ is the duality pairing of H−1(Ω) and H1

0 (Ω).
The identity (2.1.7) is termed the variational formulation of (2.1.5).

Existence of Weak Solutions
Let H be a real Hilbert space and ⟨· , ·⟩ denote the pairing of H with its dual.

Theorem 2.1.40 (Lax-Milgram Theorem). Suppose that

a : H ×H → R

is a bilinear mapping, for which there exist constants α, β > 0 such that
(i) a is H-bounded, that is

|a(u, v)| ≤ α ∥u∥H ∥v∥H for all u, v ∈ H,

(ii) a is H-coercive, that is

a(u, u) ≥ β ∥u∥2H for all u ∈ H.

Furthermore, assume that
f : H → R

is a bounded linear functional on H, i. e. f ∈ H∗.
Then there exists a unique element u ∈ H such that

a(u, v) = ⟨f , v⟩H∗,H

for all v ∈ H. Moreover, there exists some positive constant c, independent on f , such that

∥u∥H ≤ c ∥f∥H∗ .

The aforementioned specific bilinear form (2.1.6) satisfy the hypothesis of the Lax-
Milgram Theorem.
Theorem 2.1.41 (Energy Estimates). Let a(·, ·) be the bilinear form (2.1.6). There exists
constants α, β > 0 and γ ≥ 0 such that
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(i)

|a(u, v)| ≤ α ∥u∥H1
0 (Ω) ∥v∥H1

0 (Ω) for all u, v ∈ H1
0 (Ω),

(ii)

β ∥u∥H1
0 (Ω) ≤ a(u, v) + γ ∥u∥2L2(Ω) for all u ∈ H1

0 (Ω).

For γ > 0, where the hypotheses of Lax-Milgram Theorem can not be precisely satisfied,
the following statement verifies the existence of weak solutions.
Theorem 2.1.42. There exists a number γ ≥ 0 such that for every µ ≥ γ and every pre-
scribed function f ∈ H−1(Ω), there exists a unique weak solution u ∈ H1

0 (Ω) of the following
boundary-value problem {

Lu+ µu = f in Ω,

u = 0 on ∂Ω.

Regularity
The regularity problem for weak solutions addresses the question concerning whether

the weak solution u of the PDE
Lu = f in Ω

is in fact smooth.
Let Ω be a bounded domain. Assume that u ∈ H1

0 (Ω) is a weak solution of the above
PDE, where L has the divergence form

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+

n∑
i=1

bi(x)uxi + c(x)u

Suppose also L is uniformly elliptic.
Theorem 2.1.43 (Boundary H2-Regularity). Let aij ∈ C1(Ω) and bi, c ∈ L∞(Ω), i, j =
1, . . . , n. Assume that the boundary-value problem{

Lu = f in Ω,

u = 0 on ∂Ω.

possesses a weak solution u ∈ H1
0 (Ω) for a right hand side f ∈ L2(Ω). Furthermore, let

∂Ω ∈ C1,1. Then u ∈ H2(Ω) and we the following estimate holds

∥u∥H2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥u∥L2(Ω)

)
where the constant C depends only on Ω and the coefficients of L.

We observe that the above estimate reduces to

∥u∥H2(Ω) ≤ C ∥f∥L2(Ω)

provided that u ∈ H1
0 (Ω) is the unique weak solution of the PDE.

The Weak Maximum Principle

Let Ω be a bounded domain of class C1. We consider the bounded bilinear form (2.1.6)
on H1(Ω), defining a bounded linear operator L : H1(Ω) → H1(Ω)∗

⟨Lu , v⟩H1(Ω),H1(Ω)∗ = a(u, v)

for u, v ∈ H1(Ω).
We say the weak maximum principle holds for L : H1(Ω) → H1(Ω)∗ if any function

u ∈ H1(Ω), satisfying
Lu ≤ 0 in Ω, u ≤ 0 on ∂Ω,
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is nonpositive. The condition Lu ≤ 0 means that

a(u, v) ≤ 0 for all 0 ≤ v ∈ V.

We have the following result, see Troianiello, 2013, Theorem 2.3.
Theorem 2.1.44. If the bilinear form (2.1.6) is H1-coercive, then the weak maximum prin-
ciple holds for L.

2.1.5 Nonlinear PDEs
Different methods are available for solving nonlinear PDEs, and one notable approach

is the monotone operators method. This method serves as a generalization of Lax-Milgram,
specifically applied to nonlinear operators. Another approach is the sub-super solution
method, where the idea is to utilize the maximum principle and construct an increasing
sequence of subsolutions. The limit of this sequence converges to the solution of the problem
under consideration. One of the most important methods applied in this work for analyzing
the solvability of such equations is the Banach fixed-point theorem.
Weak Solution

Kirchhoff Equation: The first PDE of interest in our work is a nonlocal nonlinear
elliptic equation, namely, the stationary Kirchhoff equation:

{
−
(
u+ b ∥∇y∥2L2(Ω)

)
∆y = f in Ω,

y = 0 on ∂Ω,
(2.1.8)

where b ≥ b0, f ≥ f0, for some positive numbers b0 and f0 and they belong to L∞(Ω).
If u ≥ ua > 0 and belongs to L2(Ω), u + b ∥∇y∥2L2(Ω) is strictly positive, we can write

(2.1.8) in the form

−∆y =
f

u+ b ∥∇y∥2
L2(Ω)

. (2.1.9)

We note that
1

u+ b ∥∇y∥2L2(Ω)

≤ 1

ua

and therefore, 1/
(
u+ b ∥∇y∥2L2(Ω)

)
belongs to L∞(Ω).

We define the operator E

E : H1
0 (Ω)× L2(Ω) → H−1(Ω)

(y, u) 7→ −∆y − f

u+ b ∥∇y∥2
L2(Ω)

,

where

⟨E(y, u) , v⟩H−1(Ω),H1
0 (Ω) =

∫
Ω
∇y · ∇v dx−

∫
Ω

f

u+ b ∥∇y∥2
L2(Ω)

v dx

for all v ∈ H1
0 (Ω). y ∈ H1

0 (Ω) is called a weak solution of this PDE if

E(y, u) = 0 in H−1(Ω).
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Chemotaxis System: The second PDE we focus on is a system of PDEs, namely, a system
of nonlocal, nonlinear parabolic-elliptic chemotaxis equations.

∂ty −∆y = −χ div (y∇w) + y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
in ΩT ,

−∆w + λw = y in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω,

where 0 ≤ u ∈ L∞(∂ΩT ).
We have the initial value y(0) = y0, therefore y must be continuous in time. A formu-

lation of the weak solution is the following:
For given functions y0 ∈ L∞(Ω) and u ∈ L∞(∂Ω), to find (y, w) satisfying

y ∈ L2(0, T ;H1(Ω)), ∂ty ∈ L2(0, T ;H1(Ω)∗), w ∈ L∞(0, T ;H1(Ω))

with ∫
Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = χ

∫
Ω
y∇w · ∇φ dx− χ

∫
∂Ω
u y φ dx

+

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx

(2.1.10)

and ∫
Ω
∇w · ∇φ dx−

∫
∂Ω
uφ ds+ λ

∫
Ω
wφ dx =

∫
Ω
y φ dx (2.1.11)

for all φ ∈ C∞(Ω) and for a.a. t ∈ [0, T ] and y(x, 0) = y0(x).
Obviously, the test function φ can be chosen from H1(Ω), due to the density of C∞(Ω) ⊂

H1(Ω).
If y merely belongs to L2(0, T ;H1(Ω)) the condition y(x, 0) = y0(x) need not make sense.

The following result will help, see e. g. Temam, 1984, Chapter 3, Section 2.2, Theorem 2.1.
Theorem 2.1.45. Let X0, X, X1 be three Banach spaces such that

X0 ↪→ X ↪→ X1,

where the embeddings are continuous, X0 and X1 are reflexive and the embedding X0 ↪→↪→ X
is compact.

Let T > 0 be a fixed finite number, and let α0, α1 be two finite numbers such that
αi > 1, i = 1, 2. We consider the space

Y = Y(0, T ;α0, α1;X0, X1) = {v ∈ Lα0(0, T ;X0) | ∂tv ∈ Lα1(0, T ;X1)}.
The space Y is a Banach space with the norm

∥y∥Y = ∥v∥Lα0 (0,T ;X0)
+ ∥∂tv∥Lα1 (0,T ;X1)

.

Moreover, Y is continuously embedded in C([0, T ];X1) and the embedding Y into Lα0(0, T ;X)
is compact.

With α0 = α1 = 2 and considering the following Gelfand triple

V ↪→ H ↪→ V ∗

the space Y will be denoted by W (0, T ;V, V ∗), that is

W (0, T ;V, V ∗) := {y ∈ L2(0, T ;V ) | ∂ty ∈ L2(0, T ;V ∗)}.
This space is composed of functions, which belong to L2(0, T ;H1(Ω)) and whose partial
derivatives with respect to time belong to L2(0, T ;H1(Ω)∗).
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We note that
W (0, T ;V, V ∗) ↪→ C([0, T ];H).

A special case of this space, where V = H1(Ω) and H = L2(Ω) is the well-known space
W (0;T ), that is

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) | ∂ty ∈ L2(0, T ;H1(Ω)∗)}.
Existence of Weak Solution

After we defined a weak solution, we have to analyze existence of such solutions.
Fixed Point Theorems

Let K be a subset of a Banach space X. We consider operator

T : K → X

The solutions of the equation
u = T (u), u ∈ K

are termed fixed points.
The first question is why we are interested in the solving of the fixed-point problem

u = T (u), u ∈ K. (2.1.12)

Consider the operator f : K ⊂ X → X. For solving an equation

f(u) = 0 (2.1.13)

we can set
T (v) = v − F (f(v))

with an operator F : X → X satisfying

F (y) = 0 if and only if y = 0.

Therefore, (2.1.13) can be regarded as a fixed-point problem.
The resolution of a nonlinear partial differential equation can be reduced to solving a

nonlinear equation in R.
Before introducing the Banach fixed point theorem in Banach spaces, we present a

finite-dimensional version of a particular fixed-point theorem.
Theorem 2.1.46 (Brouwer’s Fixed Point). Suppose that K ⊂ RN is a bounded, closed and
convex set. Suppose, further that the operator T : K → K is continuous. Then T has a fixed
point in K.

Kirchhoff Equation: The existence of a solution of the Kirchhoff equation can be
shown by applying Brouwer’s fixed point theorem.

We define g(s) := s−
∫
Ω |∇ys|2 dx, where ys is the unique solution of the Poisson problem−∆ys =

f

u+ b s
in Ω,

ys = 0 on ∂Ω.
(2.1.14)

Multiplying (2.1.14) with ys as test function, we obtain∫
Ω
|∇ys|2 dx =

∫
Ω

f

u+ b s
ys dx.

Since g(s) = 0 if and only if ys solves (2.1.14), then the problem of solving g(s) = 0 can
be reduced to finding a fixed point for the following operator

T (s) =

∫
Ω

f

u+ bs
ys dx.
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However, the defined function g(s) = s − ∥∇ys∥2 has as many solutions as the Kirch-
hoff equation. Therefore, for the existence and uniqueness of the solution of the Kirchhoff
equation we will directly use a monotonicity argument to show that g has a unique root in
theorem 3.1.6.

Chemotaxis System: In this case Banach’s fixed point theorem is applied to nonlinear
PDEs with a perturbation. First, we indicate the definition of a contractive operator.
Definition 2.1.47. Let V be a Banach space. The mapping A : K ⊂ V → V is said to be a
strict contraction if there exists some constant 0 ≤ γ < 1 such that

∥Au1 −Au2∥V ≤ γ ∥u1 − u2∥V for all u1, u2 ∈ K.

We note that contractivity implies Lipschitz continuity.
Theorem 2.1.48 (Banach Fixed Point). Assume that X is a nonempty closed set in a Banach
space V and

A : X → X

be a nonlinear mapping. Furthermore, suppose that A is a strict contraction. Then A has a
unique fixed point.

To analyze the existence of the solution of the chemotaxis system we apply Banach
Fixed-Point theorem. We consider the following perturbed problem



∂ty −∆y = −χ∇y · ∇w + y

(
−χλw + χ ỹ + a0 − a1 ỹ − a2−

∫
Ω
ỹ dx

)
in ΩT ,

−∆w + λw = ỹ in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω,
(2.1.15)

with ỹ ∈ {z ∈ C([0, T ];L2(Ω)) | 0 ≤ z ≤ M}, and we show that operator A : ỹ 7→ y is a
strict contradiction in theorem 4.1.13.
Regularity

At times, the regularity of a function may not be sufficient for our optimal control
problem. In such cases, we need to attain a higher regularity.

Kirchhoff Equation: To have a weak solution y ∈ H1
0 (Ω) it suffices that f belongs to

L2(Ω), by virtue of theorem 2.1.42. However, if f belongs to Lp(Ω), then the right-hand
side in (2.1.14) belongs also to Lp(Ω). In this case we can have an intermediate situation of
solutions, namely strong solution, provided that the domain is sufficiently smooth. While
a weak solution need only be once weakly differentiable a strong solution is twice weakly
differentiable satisfying (2.1.14) almost everywhere in Ω. Indeed, we have the following
result, see e. g. Gilbarg, Trudinger, 1977, Theorem 9.15, Theorem 9.17.
Theorem 2.1.49. Suppose that Ω is a bounded C1,1 domain and A is an elliptic differential
operator of the form

Ay(x) = −
n∑

i,j=1

(aij(x)yxj (x))xi x ∈ Ω. (2.1.16)

The coefficient functions aij of A are assumed to belong to C0,1(Ω) and satisfy the symmetric
condition aij(x) = aji(x) for all i, j ∈ {1, . . . , n} and x ∈ Ω.
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If the right-hand side function f ∈ Lp(Ω), then the weak solution to the following Dirich-
let problem {Ay = f in Ω,

y = 0 on ∂Ω,

belongs to W 2,p(Ω).
By virtue of this theorem, Kirchhoff equation has a strong solution y ∈W 2,p(Ω).
Chemotaxis System: In the following we assume that A is a symmetric elliptic op-

erator of the form (2.1.16) and aij ∈ C0,1(Ω). Moreover, λ ∈ R is prescribed. We have the
following result as a consequence of Grisvard, 1985, Theorem 2.4.2.7:
Theorem 2.1.50. Let Ω be a bounded C1,1 domain, λ > 0 and y ∈ Lp(Ω) be given. The
following Neumann problem {Aw + λw = y in Ω,

∂νAw = u on Ω,

has a unique weak solution w ∈W 2,p(Ω), provided that u ∈W 1−1/p,p(∂Ω).
If the control u belongs to H1(∂Ω), we can employ theorem 2.1.18 resulting in u ∈

W 1−1/p,p(∂Ω).
However, we preferred to work with the controls from L∞(∂Ω). Fortunately, there is

another result from Morrey, 1966, Chapter 5, Section 5.5.
Theorem 2.1.51. Let Ω be a bounded C1 domain. For given right-hand side functions
y ∈W 1,6/5(Ω)∗ and u ∈ L6(∂Ω), the following PDE{−∆w + λw = y in Ω,

∂nw = u on ∂Ω,

possesses a unique weak solution w ∈W 1,6(Ω).
We note that, we cannot define a normal trace for a first-order Sobolev function without

further information, in general. This only works if the Laplacian of the function (defined
as a distribution) is an integrable function. This would then be the solution w from the
equation. Then you can use it to define a normal trace in a negative Sobolev space, per
Gauss theorem. With the weak formulation of the equation for w it then turns out that this
normal trace coincides with the u pointwise.

There is also the following result that will help and can be deduced from Grisvard, 1985,
Theorem 2.2.2.5.
Theorem 2.1.52. Let Ω be a C1,1 domain, λ > 0 and y ∈ L2(Ω) be given. The following
Neumann problem {Aw + λw = y in Ω,

∂νAw = 0 on Ω,

has a unique weak solution w ∈ H2(Ω).

2.2 Fundamentals of Optimal Control of PDEs
All definitions and results without reference in this section are based on Tröltzsch, 2010;

Manzoni, Quarteroni, Salsa, 2022.
Problems arising from applied sciences are frequently represented by PDEs, depending

on a set of input data. This data includes physical or material coefficients, boundary and
initial conditions, source terms, as well as the geometrical configuration describing the do-
main where the problem is formulated, which can be regarded as input itself. Frequently,
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a problem governed by PDEs, typically referred to as the state system, needs to be con-
trolled or optimized by acting on (one, or more of) these input variables. This is a difficult
mathematical task that can involve significant computational challenges.

2.2.1 Optimal Control of PDEs
In the context of addressing a forward problem, the goal is to compute the solution to

a specified PDE, referred to as the state system. Conversely, solving an optimal control
problem governed by a PDE entails the minimizing (or maximizing) of a physical quantity
known as the cost functional. This functional depends on the PDE solution itself, and is
influenced by some suitable control variables; these latter are some of the data required by
the PDE.

An optimal control problem has the following essential features:

• a cost functional to be minimized
• a control function exerted on the system under consideration
• a state problem (forward problem) explaining the relation between the control and

the state variables
• possibly, some constraints on the control (and state).

The solution of the state problem, denoted by y, depends on the control variable u. In this
way, the state problem associates to every control a state solution y = y(u). We aim to
choose the control u in such a way that the observed variable y approximates a desired value
yd, so-called desired state. An additional (optional) element involves constraints that may
act on the control and/or the state, referred to as control constraints or state constraints,
respectively. The latter will depend on the problem at hand and will be made precise from
case to case.

An illustrative example is the optimal control for heat transfer, represented by a body
occupying a region (the domain) Ω ⊂ R3 that requires heating or cooling. In this scenario,
the state variable y represents the temperature, and the stationary heat equation models the
state system. To regulate the temperature, a heat source u is applied to the volume, serving
as the control function. The objective is to select u in a way that the resulting temperature
distribution y = y(u) in the domain closely approximates a specified target temperature,
while minimizing the effort required for heating or cooling the system. Clearly, the state y,
the control u and the target yd are all functions of the spatial coordinates x ∈ Ω.

This problem can be modeled by seeking for the solution of the following minimization
problem for the cost function

Minimize J(y, u) =
1

2
∥y − yd∥2L2(Ω) +

λ

2
∥u∥2L2(Ω)

subject to
{−∆y = u in Ω,

y = 0 on ∂Ω,

(2.2.1)

given by a Dirichlet boundary problem for the stationary heat equation.

2.2.2 Optimal Control of Linear Elliptic Equations
Let Y and U be two Hilbert spaces for the state variables and control variables, respec-

tively and Uad ⊂ U be a convex and closed set of admissible controls.
An elliptic boundary value problem can be transformed into an abstract variational

problem: find y = y(u) ∈ Y such that

a(y, φ) = ⟨f , φ⟩Y ∗,Y for all φ ∈ Y, (2.2.2)



24 2 Fundamentals of Optimal Control of PDEs

where a(·, ·) : Y × Y → R is a continuous bilinear form and f ∈ Y ∗. Then, there exists a
continuous linear mapping A : Y → Y ∗ satisfying

⟨Ay , φ⟩Y ∗,Y = ⟨f , φ⟩Y ∗,Y .

Thus, the variational equality (2.2.2) can be written as

Ay = f in Y ∗.

Suppose that a is additionally coercive. Thanks to the Lax-Milgram theorem, for each
u ∈ U , this equation has a unique solution y ∈ Y , which means A is bijective. Furthermore,
there exist some constant c > 0, independent of f , such that

∥y∥Y ≤ c ∥f∥Y ∗ (2.2.3)

showing the continuity of A. The inverse operator A−1 : Y ∗ → Y is continuous as well, by
virtue of open mapping theorem.

We consider the following optimal control problem
Minimize J(y, u)

subject to Ay −Bu = 0

and u ∈ Uad,

where J : Y ×U → R, and B : U → Y ∗ is a linear operator, so-called control operator. Since
A is invertible, the state can be expressed uniquely in terms of the control

y = A−1Bu.

The mapping S : U → Y
u 7→ y = S(u) = A−1Bu

is called control-to-sate operator.
The well-posedness of the control-to-state operator means that to every given control

u ∈ Uad ⊂ U there exists a unique solution of the state equation, called the associated state.
After showing the well-posedness of control-to-state map we have to prove the existence

of an optimal solution.
Definition 2.2.1. The pair (ȳ, ū) is said to be optimal solution provided that ū ∈ Uad with
the associated state ȳ = ȳ(ū) satisfy

J(ȳ, ū) ≤ J(y(u), u).

We call ū optimal control and ȳ = y(ū) the associated optimal state.

Optimality System
If the control-to-sate map is well-defined we can rewrite the cost functional as follows

j(u) := J(y, u) = J(S(u), u) = J(A−1Bu, u),

which is called the reduced cost functional. We can thus transform the optimal control
problem into an optimization problem

min
u∈Uad

j(u). (2.2.4)

There is the following fundamental result to derive the optimality condition in the
presence of control constraints.
Theorem 2.2.2. Let C be a nonempty and convex subset of a Banach space U and U be an
open set, with C ⊂ U ⊂ U . Moreover, let j : U → R be Gâteaux differentiable in U . If ū ∈ C
is a solution of

min
u∈C

j(u),
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then ū satisfies the variational inequality

⟨j′(ū) , u− ū⟩U∗×U ≥ 0 for all u ∈ C. (2.2.5)

Conversely, ū is a solution of the above minimization problem, provided that ū satisfies the
variational inequality (2.2.5) and j is convex.

In the case of convexity the first-order necessary optimality condition is sufficient.
Taking derivative of j(u) = J(A−1Bu, u), we obtain

⟨j′(u) , v⟩U∗,U = ⟨Jy(y, u) , A−1Bv⟩Y ∗,Y + ⟨Ju(y, u) , v⟩U∗,U .

Let fy ∈ Y ∗ be given. To A−1 : Z → Y we correspond the mapping (A−1)∗ : Y ∗ → Z∗

such that
⟨(A−1)∗fy , z⟩Z∗,Z = ⟨fy , A−1z⟩Y ∗,Y .

Then
⟨j′(u) , v⟩U∗,U = ⟨(A−1)∗Jy(y, u) , Bv⟩Z∗,Z + ⟨Ju(y, u) , v⟩U∗,U .

The operator (A−1)∗ is referred to as adjoint operator and p := (A−1)∗Jy(y, u) ∈ Z∗ is
called adjoint state.

For an optimal solution (ȳ, ū), together with the adjoint state p, the first-order optimality
system reads 

A∗p = Jy(ȳ, ū),

Aȳ = Bū,

⟨B∗p+ Ju(ȳ, ū) , u− ū⟩U,U∗ ≥ 0 for all u ∈ Uad.

2.2.3 Optimal Control of Nonlinear Elliptic Equation
So far we have considered linear-quadratic Optimal Control Problems for elliptic Partial

Differential Equations (PDEs) in a Hilbert space framework. The well-posedness analy-
sis and derivation of first-order necessary optimality conditions have been achieved. This
involved expressing the reduced cost functional as a quadratic functional and exploiting
fundamental properties like the continuity and coercivity of certain bilinear forms.

To address a wider range of applications, we need to develop a more general framework
for the analysis of optimal control problems where the state equation may comprise a non-
linear PDE, or the cost functional is no longer quadratic. Typical examples of nonlinear
PDEs arise, e. g., in fluid dynamics (Navier-Stokes equations) and in structural mechanics
(non-elastic materials).

Consider the following general optimal control problem

min J(y, u)

subject to E(y, u) = 0,

and u ∈ Uad.

Where J : Y ×U → R, E : Y ×U → Z, and Y , U , Z are reflexive Banach spaces and Uad is
a closed and convex set and represents a control constraint. A point (y, u) is called feasible
if it belongs to Y × Uad and E(y, u) = 0.

Exploring the behavior of the control-to-state map S : u 7→ y, when it involves a non-
linear term, poses a significant challenge in investigating these types of problems. To deal
with the aforementioned challenge we have to be able to answer the following questions:

(i) Is the control-to-state map S well-defined?
(ii) If the answer to the first question is positive the next question will be whether S

is differentiable or not?
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In linear problems S is linear and continuous, thereby being differentiable, and its de-
rivative coincides with the operator itself.
Welldefindness of Control-to-State Map

To answer the first question we have to prove that the control-to-sate map

S : Uad → Y

u 7→ y(u) = S(u)

assigns to each u ∈ Uad a unique weak solution y(u) to E(y, u) = 0.
Optimal Control of KE: We consider the following optimal control problem

Minimize J(y, u) :=

∫
Ω
φ(x, y(x)) dx+

λ

2
∥u∥2H1(Ω)

subject to

{
−
(
u+ b ∥∇y∥2L2(Ω)

)
∆y = f in Ω,

y = 0 on ∂Ω

and u ∈ Uad = {u ∈ L2(Ω) |ua(x) ≤ u(x) a.e. in Ω}.

(2.2.6)

The welldefindness of the control-to-state map means for a given control u ∈ Uad, there
exists a unique weak solution y ∈ H1

0 (Ω) ∩W 2,q(Ω) of the Kirchhoff problem.
As mentioned before the existence of the solution can be shown by means of a mono-

tonicity argument for the controls u ∈ Uad. That means the control-to-state map

S : Uad → H1
0 (Ω) ∩W 2,q(Ω)

is well-defined.
Optimal Control of CS: We consider the following optimal control problem

Minimize J(y, u) :=
1

2

∫
Ω
|y(x, T )− yd(x)|2 dx+

γ

2

∫ T

0

∫
∂Ω

|u(x, t)|2 ds dt

subject to



∂ty −∆y = −χ div (y∇w) + y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
in ΩT ,

−∆w + λw = y in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω

and u ∈ {u ∈ L∞(∂ΩT ) | 0 ≤ u(x, t) ≤ ub(x, t) a.e. on ∂ΩT }.

(2.2.7)

As mentioned earlier, the existence of the solution of the chemotaxis system can be demon-
strated through the Banach Fixed-Point theorem for controls u ∈ Uad. This implies the
well-definedness of the control-to-state map

S : Uad →W (0, T )× L∞(0, T ;W 1,6(Ω)).

Existence of Optimal Controls
After finding a unique weak solution, we must address the fundamental question: Does

the optimal control problem possess a solution, specifically, an optimal control with an
associated optimal state?
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We consider again the following constrained optimization problem for proving the exis-
tence of an optimal solution:

min J(y, u)

subject to E(y, u) = 0

and u ∈ Uad,

The main steps in proving the existence an optimal solution are as follows:
(i) To show the existence of a minimizing sequence {(yn, un)} of feasible points, that

is
lim
n→∞

J(yn, un) = inf
u∈Uad

J(y, u),

where yn = S(un). We can achieve this by showing the boundedness of the cost
functional J from below.

(ii) To find some candidate (ȳ, ū) for optimal solution. Here we need to show the
boundedness of the minimizing sequence {(yn, un)} in Y × U .

(iii) To show that ū is admissible and ȳ = S(ū). At this point, it is required to show
that the set of feasible points is weakly sequentially closed in Y × U .

(iv) To show the weakly lower semi continuity of J , that is

J(ȳ, ū) ≤ lim inf
n→∞

J(yn, un).

Optimal Control of KE: In optimal control of the Kirchhoff equation we face a
challenge when the controls belong to L2(Ω). Indeed, un ⇀ u in L2(Ω) does not imply
S(un)⇀ S(u) in W 2,q(Ω).

That is the point why we switch from L2(Ω) to H1(Ω). Indeed, when {un} ⊂ Uad with
un ⇀ u in H1(Ω) there exists a subsequence, denoted by the same indices, with un → u in
L2(Ω). The continuity of the control-to-state map with the L2(Ω)-topology for the controls
can be proved, see theorem 3.1.7.

In what follows, we bring some helpful definitions and results:
Definition 2.2.3. Let X be a real Banach space and M be a subset of X.

(i) Let M be a subset of X. M is called sequentially compact if every sequence
{un}∞n=1 ⊂M contains a convergent subsequence, with limit in M .

(ii) The set M is called sequentially relatively compact if it has compact closure in X.
In a finite-dimensional space, it is well-known that a bounded sequence has a convergent

subsequence. In an infinite-dimensional space, we expect only a weaker property; but even
the weaker property is still useful in proving many existence results.
Definition 2.2.4. Let X be a real Banach space and M be a subset of X.

(i) The set M is called weakly sequentially closed if for every weakly convergent se-
quence {un}∞n=1 ⊂M to some u ∈ X, we can imply u ∈M .
Any weakly sequentially closed set is also strongly closed.

(ii) The set M said to be weakly sequentially relatively compact if every sequence {un}∞n=1 ⊂
M contains a weakly convergent subsequence in X.

(iii) The weakly sequentially relatively compact set M is called weakly sequentially com-
pact, if it is weakly sequentially closed.

Theorem 2.2.5. Every bounded subset M of a reflexive Banach space X is weakly sequen-
tially relatively compact. That means, for any bounded sequence {un}∞n=1 ⊂ M there exists
a subsequence {unk

}∞k=1 ⊂ {un}∞n=1 such that

unk
⇀ u,

where u ∈ X.
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In particular, this statement holds for a Hilbert space.
Theorem 2.2.6. Let X be a Banach space and M ⊂ X some closed and convex subset of
X. Then M is weakly sequentially closed. If X is reflexive and M is additionally bounded
in X, then M is weakly sequentially compact.
Theorem 2.2.7. Let X be a Banach space and M ⊂ X. Suppose f : M → R is a continuous
and convex function. Then f is weakly sequentially lower semicontinuous, that is, any weakly
convergent sequence {un}∞n=1 ⊂M , un ⇀ u ∈M implies

f(u) ≤ lim inf
k→∞

f(un).

It is easily seen that if a function is weakly lower semicontinuous, then it is lower
semicontinuous.

Since the cost functional in (2.2.6) is comprised of a Nemytskii operator, we need to
study the well-definedness, continuity, and differentiability of such functions.

Nemytskii Operator
All materials about Nemytskii operator are based on Tröltzsch, 2010.

Definition 2.2.8 (Nemytskii Operator). Let Ω be a bounded and measurable set and assume
the function φ = φ(x, y) : Ω× R → R. The mapping

Φ: y(·) 7→ φ(·, y(·)),

which assigns to a function y(·) : Ω → R the function φ(·, y(·)) : Ω → R is said to be a
Nemytskii operator or superposition operator.

Here we intend to address this question between which spaces this mapping is well-
defined or rather continuous and differentiable.
Definition 2.2.9. We consider the function φ = φ(x, y)

(i) φ is called Carathéodory if it is for any fixed y ∈ R measurable with respect to x
and for almost every fixed x ∈ Ω continuous with respect to y.

(ii) φ is said to satisfy the boundedness condition if there exist some constants K > 0
such that

|φ(x, 0)| ≤ K for a.e. x ∈ Ω. (2.2.8)
(iii) φ is called locally Lipschitz continuous with respect to y if for any positive constant

M there exists some positive constant L(M) such that the estimate

|φ(x, y)− φ(x, z)| ≤ L(M) |y − z| , (2.2.9)

holds, for almost every x ∈ Ω and all y, z ∈ [−M,M ].
Example 2.2.10. Each function in the form φ(x, y) = a(x) + b(x)h(y), where a, b ∈ L∞(Ω)
and h ∈ C1(R), satisfy the all above conditions.

In the following, we assume that φ meet the requirements concerning definition 2.2.9.
These conditions imply the following property for the Nemytskii operator Φ(y).
Theorem 2.2.11. Φ is well-defined and continuous in L∞(Ω).

We note this result doesn’t hold for a Nemytskii operator Φ: Lp(Ω) → Lp(Ω) for p ∈
[1,∞). For instance, to have the function Φ(y) = y3 in Lp(Ω), y must belong to L3p(Ω),
which is not necessarily correct for every y ∈ Lp(Ω). However, for all p ∈ [1,∞], it holds

∥Φ(y)− Φ(z)∥Lp(Ω) ≤ L(M) ∥y − z∥Lp(Ω) (2.2.10)

for all ∥y∥L∞(Ω) ≤ M and ∥z∥L∞(Ω) ≤ M , which is an evident result of the local Lipschitz
continuity of φ(x, y).
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If φ is in addition globally Lipschitz continuous (not only locally Lipschitz continuous)
with respect to y, that is

|φ(x, y)− φ(x, z)| ≤ L |y − z| for all y, z ∈ R,
then Φ: Lp(Ω) → Lp(Ω) is well-defined and Φ is Lipschitz continuous in Lp(Ω), which means
the inequality (2.2.10) holds, for all y, z ∈ Lp(Ω). For instance Φ(y) = sin(y(·)) has this
property.
Differentiability of the Nemytskii Operator

First, we introduce the concept of differentiability in Banach spaces:
Differentiability in Banach Spaces

In the following, U and V will denote two Banach spaces and U an open subset of U .
Definition 2.2.12. We say that the mapping F : U → V has the directional derivative
δF (u, h) at u ∈ U in the direction h ∈ U , if the limit

δF (u, h) := lim
t→0

F (u+ th)− F (u)

t

exists in V . The mapping h 7→ δF (u, h) is called the first variation of F at u, if this limit
exists for all h ∈ U .

We know that the first variation is not necessarily a linear mapping. Therefore, there is
a stronger definition as Gâteaux differentiability:
Definition 2.2.13. Assume that the first variation of F at u exists. F is said to be Gâteaux
differentiable at u, if there exists a continuous linear mapping A : U → V such that

δF (u, h) = Ah for all h ∈ U,

then A is termed the Gâteaux derivative of F at u and we denote A = FG(u)

A function defined in Banach spaces can have even better differentiability property,
namely Fréchet differentiability.
Definition 2.2.14. The mapping F : U → V is called Fréchet differentiable at a point u ∈ U
if there exists an operator A ∈ L(U, V ), such that, for all h ∈ U ,

lim
h→0

∥F (u+ h)− F (u)−Ah∥V
∥h∥U

= 0 as ∥h∥U → 0.

In this case A is said to be the Fréchet derivative of F at u and denoted by A = F ′(u).
If A is Fréchet differentiable at every point u ∈ U , then A is called Fréchet differentiable in
U .
Theorem 2.2.15 (Chain Rule). Let U , V , and Z be Banach space and U and V be the
open subsets of U and V respectively. Suppose that F : U → V and G : V → Z are Fréchet
differentiable at u ∈ U and at F (u) ∈ V respectively. The the composition

E := G ◦ F : U → Z

E(u) = G(F (u))

is Fréchet differentiable at u, and

E′(u) = G′(F (u))F ′(u).

Definition 2.2.16. Suppose that F : U → V be a Fréchet differentiable mapping in an open
neighborhood U of ū ∈ U . F is called continuously Fréchet differentiable at ū if the mapping
u 7→ F ′(u) from U into L(U, V ) is continuous at ū,that is

∥u− ū∥U → 0 implies
∥∥F ′(u)− F ′(ū)

∥∥
L(U,V )

→ 0.
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If F is continuously Fréchet differentiable at every point in U , then it is called continuously
Fréchet differentiable in U .

For the Gâteaux differentiability of the Nemytskii operator we have to check the existence
of the following limit:

Φ′(y)h = lim
t→0

Φ(y + th)− Φ(y)

t
.

Let this limit exist in L∞(Ω) and call it z, then
1

t
lim
t→0

∥Φ(y + th)− Φ(y)− tz∥L∞(Ω) → 0,

which means

(Φ′(y)h)(x) =
1

t
lim
t→0

|φ(x, y(x) + th(x))− φ(x, y(x))− tz(x)| for a.e.x ∈ Ω.

Therefore, we expect at least the differentiability of φ(x, y) with respect to y and for
almost every x ∈ Ω. If φ is differentiable with respect to y, then for every fixed x we have
z(x) = φy(x, y(x))h(x).

This means we found a candidate for the Fréchet derivative, namely
DΦ(ȳ) : L∞(Ω) → L∞(Ω)

h 7→ φy(·, ȳ(·))h(·).
For the Fréchet differentiability we must have

∥Φ(ȳ + h)− Φ(ȳ)−DΦ(ȳ)h∥L∞(Ω) = o(∥h∥L∞(Ω)),

where DΦ(ȳ) = φy(·, ȳ(·)) is itself a Nemytskii operator. In order for the function φy to
be well-defined it must satisfy the aforementioned conditions in definition 2.2.9.
Theorem 2.2.17. Suppose that the function φ is Carathéodory and for almost every x ∈ Ω
is differentiable with respect to y. Furthermore, suppose that φy satisfy both the bounded-
ness and local Lipschitz condition. Then the Nemytskii Φ: L∞(Ω) → L∞(Ω) is Fréchet
differentiable and we have

(Φ′(y)h)(x) = φy(x, y(x))h(x)

for almost every x ∈ Ω and all h ∈ L∞(Ω). Moreover, Φ is continuously Fréchet differen-
tiable in L∞(Ω).

We note that every function φ ∈ C2(R), which depends only on y, satisfies the conditions
in above theorem.
Remark 2.2.18. Let Ω be a bounded and measurable set and suppose that φ : Ω×R → R is
Carathéodory and satisfies the growth condition

|φ(x, y)| ≤ α(x) + β(x) |y|p/q ,
where α, β ∈ L∞(Ω) and 1 ≤ q ≤ p <∞, then the Nemytskii operator

Φ: Lp(Ω) → Lq(Ω)

Φ(y) = φ(·, y(·))
is well-defined.

Furthermore, if the operator Φ is well-defined it is automatically continuous.
In addition, if φy(x, y) exists for almost every x ∈ Ω and its corresponding Nemytskii

operator is a mapping from Lp(Ω) into Lr(Ω), where 1 ≤ q < p < ∞ and 1
r + 1

p = 1
q , then

Φ: Lp(Ω) → Lq(Ω) is Fréchet differentiable, and we have

(Φ′(y)h)(x) = φy(·, y(·))h.
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Indeed,∫
Ω
|φy(x, y(x))h(x)|q dx ≤

(∫
Ω
|φy(x, y(x))|q×

p
p−q

)1− q
p
(∫

Ω
|h(x)|p dx

)q/p

≤
(∫

Ω
|φy(x, y(x))|r dx

)1− q
p
(∫

Ω
|h(x)|p dx

)q/p

<∞.

We observe the following example from Tröltzsch, 2010, Page 205.
Example 2.2.19. Let Ω be a bounded domain and k ≥ 1 an integer. The Nemytskii operator
generated by φ(y) = yk is for k ≤ 5, Fréchet differentiable form L6(Ω) into L6/5(Ω).

2.2.4 Fréchet Differentiability of Control-to-State Map
After explaining the general framework it is time to address the second question, namely

the differentiability of the control-to-state map.
We assume that J : Y ×U → R, E : Y ×U → Z are continuously Fréchet differentiable.

If the partial derivative of E is additionally boundedly invertible with respect to y at (ȳ, ū),
then existence of a locally unique solution y(u) to the state equation E(y, u) = 0 in a
neighborhood of (ȳ, ū) is established by the implicit function theorem. Moreover, S is
Fréchet differentiable and we have

S′(ū) = −(Ey(ȳ, ū))
−1Eu(ȳ, ū). (2.2.11)

Theorem 2.2.20 (Implicit Function Theorem). Suppose that X, Y and Z are Banach spaces
and U ⊂ X × Y is an open set and

G : U → Z

is a Ck(U,Z) mapping. In addition, we assume for a suitable point (x0, y0) ∈ U , G(x0, y0) =
0 and

Gy(x0, y0) ∈ L(Y,Z),

is a bijection. Then there exists a unique function, defined on a neighborhood B(x0) of y0

g : B(x0) → Y

such that g ∈ Ck(B(x0), Y ) and

g(x0) = y0,

G(x, g(x)) = 0 in B(x0),

g′(x) = −(Gy(x, g(x)))
−1(Gx(x, g(x)).

Optimal Control of KE: We observe that in optimal control problem (2.2.6) the
control-to-state map S is well-defined and continuous if the controls belong to H1(Ω) with
ua ≤ u. That is an obstacle problem, and we are not able to achieve Fréchet differentiability
of S with respect to topology of H1(Ω). That is the reason why we impose an upper bound
ub to controls. Indeed, we can utilize the upper bound in admissible set and work with
topology H1(Ω) ∩ L∞(Ω).

We define the corresponding operator to KE

E : (H1
0 (Ω) ∩W 2,q(Ω))× L∞(Ω) → Lq(Ω)

E(y, u) = −∆y − f

u+ b ∥∇y∥2
,
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This operator is continuously Fréchet differentiable. To apply the implicit function theorem
we need to show invertibility (bijectivity) of Ey at an arbitrary point (ŷ, û)

Ey(ŷ, û) y = −∆y +
2 b f (∇ŷ,∇y)
(û+ b ∥∇ŷ∥2)2

,

where û ∈ Uad and ŷ is the solution of Kirchhoff equation.
This is equivalent to that the following PDE has a unique solution:−∆y − 2 b (∇ŷ,∇y)∆ŷ

(û+ b ∥∇ŷ∥2)
= h in Ω,

y = 0 on ∂Ω.

This will be shown in proposition 3.2.1.
Optimal Control of CS: The corresponding operator to the coupled chemotaxis sys-

tem reads as follows:

E : Y × L∞(∂ΩT ) → Z

(y, w, u) 7→ (E1(y, w, u), E2(y, w, u), E3(y, w, u)) .

where, Y :=W (0, T )×L∞(0, T ;W 1,6(Ω)) and Z := L2(0, T ;H1(Ω)∗)×L∞(0, T ;W 1,6/5(Ω)∗)×
L2(Ω)). Furthermore E1, E2 and E3 are defined as follows:

⟨E1(y, w, u) , φ⟩ :=
∫ T

0

∫
Ω
∂ty φ dx dt+

∫ T

0

∫
Ω
∇y · ∇φ dx dt

− χ

∫ T

0

∫
Ω
y∇w · ∇φ dx dt+ χ

∫ T

0

∫
∂Ω
u y φ ds dt

−
∫ T

0

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx dt, φ ∈ L2(0, T ;H1(Ω)),

⟨E2(y, w, u) , ψ⟩ :=
∫ T

0

∫
Ω
∇w · ∇ψ dx dt−

∫ T

0

∫
∂Ω
uψ ds dt+ λ

∫ T

0

∫
Ω
wψ dx dt

−
∫ T

0

∫
Ω
y ψ dx dt, ψ ∈ L2(0, T ;H1(Ω)),

and

E3(y, w, u) = y(x, 0)− y0(x) in Ω.

These operators are well-defined: y ∈ H1(Ω) ↪→ L6(Ω), ∇w ∈ L3(Ω) and ∇φ ∈ L2(Ω).
Hence,

∫ T
0

∫
Ω y∇w · ∇φ dx dt is well-defined. We also need to check the nonlinearity term,

namely φ 7→
∫ T
0

∫
Ω y

2 φ dx dt. y ∈ W (0, T ) results in y ∈ L4(0, T ;L3(Ω)) for N ≤ 3, by
virtue of DiBenedetto, 1993, Proposition 3.4.
Theorem 2.2.21. For every function y ∈W (0, T ) we have

∥y∥Lp(0,T ;Lq(Ω)) ≤ c ∥y∥W (0,T )

for some positive constant c depending on Ω, where the numbers p, q ≥ 1 are linked by

1

p
+
N

2q
=
N

4
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and their admissible range is
q ∈ (2,∞], p ∈ [4,∞); if N = 1,

q ∈ [2,∞), p ∈ (
4

N
,∞]; if N = 2,

q ∈ [2,
2N

N − 2
], p ∈ [2,∞]; if N ≥ 3.

That means y2 ∈ L2(0, T ;L3/2(Ω)) ≡ L2(0, T ;L3(Ω)∗). Since φ ∈ L2(0, T ;H1(Ω)) ↪→
L2(0, T ;L6(Ω)) for N ≤ 3 and L2(0, T ;H1(Ω)) is dense in L2(0, T ;L3(Ω)) we may extend
φ 7→

∫ T
0

∫
Ω y

2 φ dx dt to a continuous functional on L2(0, T ;H1(Ω)), which concludes the
well-definedness of E1.

The well-definedness of E2 is obvious. E3 benefits W (0, T ) ↪→ C([0, T ];L2(Ω)) to be
well-defined.

Fréchet differentiability of these operators can be confirmed simply. We note that the
Nemytskii operator y2 is Fréchet differentiable from L6(Ω) into L6/5(Ω), by virtue of (2.2.19).
Since H1(Ω) ↪→ L6(Ω) is dense, we have L6(Ω)∗ ≡ L6/5(Ω) ↪→ H1(Ω)∗. Therefor, y2 is
Fréchet differentiability from H1(Ω) into H1(Ω)∗.

2.2.5 Optimality Condition
If ū ∈ Uad is a local optimal solution of the optimization problem in the reduced form

min
u∈Uad

j(u) = J(y(u), u),

then it satisfies the variational inequality

⟨j′(ū) , u− ū⟩U∗,U ≥ 0 for all u ∈ Uad,

by virtue of theorem 2.2.2. j′(ū) we can be computed by applying the chain rule

j′(ū) = Jy(ȳ, ū) ◦ S′(u) + Ju(ȳ, ū).

This means for a direction h ∈ U

⟨j′(ū) , h⟩U∗,U = ⟨Jy(ȳ, ū) , S′(ū)h⟩Y ∗,Y + ⟨Ju(ȳ, ū) , h⟩U∗,U .

By means of the definition of adjoint operator we compute

⟨Jy(ȳ, ū) , S′(ū)h⟩Y ∗,Y + ⟨Ju(ȳ, ū) , h⟩U∗,U = ⟨(S′(ū))∗Jy(ȳ, ū) , h⟩U∗,U + ⟨Ju(ȳ, ū) , h⟩U∗,U

and consequently
j′(ū) = (S′(ū))∗Jy(ȳ, ū) + Ju(ȳ, ū) ∈ U∗.

As in linear case we need to make the optimality condition more effective, to exploit it
numerically. Furthermore, we introduce an appropriate adjoint problem to reexpress the
derivative j′(ū) in a more convenient form.

Exploiting (2.2.11) we obtain

j′(ū)h = ⟨(S′(ū))∗Jy(ȳ, ū) , h⟩U∗,U + ⟨Ju(ȳ, ū) , h⟩U∗,U

= ⟨Eu(ȳ, ū)
∗(Ey(ȳ, ū)

−1)∗Jy(ȳ, ū) , h⟩+ ⟨Ju(ȳ, ū) , h⟩.

Defining a Multiplier, or adjoint state, p := (Ey(ȳ, ū)
−1)∗Jy(ȳ, ū) ∈ Z∗ we obtain

j′(ū)h = ⟨Eu(ȳ, ū)
∗p , h⟩+ ⟨Ju(ȳ, ū) , h⟩.

Consequently, the optimality condition reads

j′(ū)(u− ū) = ⟨Eu(ȳ, ū)
∗p+ Ju(ȳ, ū) , (u− ū)⟩ ≥ 0



34 2 Fundamentals of Optimal Control of PDEs

Definition 2.2.22. An element p ∈ Z∗ is called the adjoint state associated to ū if it fulfills
the following adjoint equation

Ey(ȳ, ū)
∗p = −Jy(ȳ, ū), (2.2.12)

where Ey(ȳ, ū)
∗ denotes the adjoint operator of Ey(ȳ, ū).

Then the optimality system reads as follows
E(ȳ, ū) = 0 state equation,
Ey(ȳ, ū)

∗p = −Jy(ȳ, ū) adjoint equation,
⟨Eu(ȳ, ū)

∗p+ Ju(ȳ, ū) , (u− ū)⟩U∗,U ≥ 0 for all u ∈ Uad variational inequality.
(2.2.13)

Optimal Control of CS: We have

S : L∞(∂ΩT ) →W (0, T )× L∞(0, T ;W 1,6(Ω))

S(u) = (S1(u), S2(u)).

Substituting this into J , we obtain the reduced cost functional j,

j(u) := J(S(u), u).

J is Fréchet differentiable and S is also Fréchet differentiable, by virtue of theorem 4.2.3.
Therefore, j is Fréchet differentiable in L∞(∂Ω).

Since Uad is convex, every locally optimal control ū satisfies the variational inequality

j′(ū)(u− ū) ≥ 0 for all u ∈ Uad,

see Tröltzsch, 2010, lemma 5.10. Using the chain rule

j(ū)(u− ū) = Jy(ȳ, w̄, ū)S
′
1(ū)(u− ū) + Jw(ȳ, w̄, ū)S

′
2(ū)(u− ū) + Ju(ȳ, w̄, ū)(u− ū),

we can calculate j′, where (y, w) = (S′
1(ū)(u − ū), S′

2(ū)(u − ū)) is the solution of the
linearized problem (4.2.3).

The state variable (y, w) can be eliminated by means of an adjoint variable (p, q), which
is the solution to the adjoint problem defined by

E(y,w)(ȳ, w̄, ū)
∗(p, q) = −J(y,w)(ȳ, w̄, ū), (2.2.14)

which in our case amounts to (4.2.4).
Lagrangian Method

There is also a formal way to derive the optimality system called Lagrangian method.
We define the Lagrangian function

L : Y × U × Z∗ → R
L(y, u, p) = J(y, u) + ⟨p ,E(y, u)⟩Z∗,Z .

The variable p is referred to as Lagrange multiplier.
We expect the optimal solution (ȳ, ū), together with the Lagrange multiplier p, to satisfy

the optimality conditions associated with the problem

min
u∈Uad

L(y, u, p), y unconstrained.

Taking derivative of L(y, u, p) with respect to y in direction h, we obtain
Ly(y, u, p)h = ⟨Jy(y, u) , h⟩Y ∗,Y + ⟨p ,Ey(y, u)h⟩Z∗,Z

= ⟨Jy(y, u) , h⟩Y ∗,Y + ⟨Ey(y, u)
∗p , h⟩Y ∗,Y

and therefore, the adjoint equation in (2.2.13) can be written as

Ly(ȳ, ū, p) = 0.
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In a similar manner, taking derivative of L(y, u, p) with respect to u in direction v, we obtain
Lu(y, u, p)v = ⟨Ju(y, u) , v⟩U∗,U + ⟨p ,Eu(y, u)h⟩Z∗,Z

= ⟨Ju(y, u) , v⟩U∗,U + ⟨Eu(y, u)
∗p , v⟩U∗,U .

Applying theorem 2.2.2 the variational inequality in (2.2.13) can be expressed as

Lu(ȳ, ū, p)(u− ū) ≥ 0 for all u ∈ Uad.

In summary, the first-order optimality system (2.2.13) can be expressed in the following
form 

Ly(ȳ, ū, p) = 0 (adjoint equation),
Lp(ȳ, ū, p) = 0 (state equation),
Lu(ȳ, ū, p)(u− ū) ≥ 0 for all u ∈ Uad (variational inequality).

Optimal Control of KE: We define the Lagrangian function as follows:

L : H1
0 (Ω)× Uad ×H1

0 (Ω) → R

L(y, u, p) :=
∫
Ω
φ(x, y) dx+

λ

2
∥u∥2H1(Ω) +

∫
Ω
∇y · ∇p dx−

∫
Ω

f

u+ b ∥∇y∥2
p dx

(2.2.15)

and the optimality system will be derived in subsection 3.2.2. Since we have a box constraint
for controls in Kirchhoff problem we obtain a variational inequality in optimality system.
We intend to have a system of operator equations, which is Newton differentiable. There-
fore, we relax the lower and upper bounds in admissible set and apply the Moreau-Yosida
approximation. This will be explained later in subsection 3.2.4.

Finite Element Discretization
After deriving the optimality system, the next step involves discretizing the partial

differential equations. This approach, known as optimize-then-discretize, contrasts with
discretize-then-optimize, where the equations and the cost functional are initially discretized
before being solved using large-scale optimization tools.

One of the most popular method for discretization of partial differential equation is finite
element method. Initially, we need a weak formulation of the boundary value problem. The
domain is then subdivided by a regular triangulation into finitely many triangles (N = 2)
or tetrahedra (N = 3), each with disjoint interiors, referred to as elements. Additionally,
we define a finite element space associated with the triangulation and select basis functions
for this finite element space. These basis functions are designed to have small supports,
ensuring that the resulting stiffness matrix is sparse.

In unconstrained control case the optimality system (2.2.13) reduces to the following
form 

E(ȳ, ū) = 0,

Ey(ȳ, ū)
∗p+ Jy(ȳ, ū) = 0,

Eu(ȳ, ū)
∗p+ Ju(ȳ, ū) = 0.

(2.2.16)

Below we detail the construction of a discretized system of (2.2.16). We start with the
discretization of the nonlinear adjoint equation and assume Z = V ∗

E(y, u) = 0 in V ∗.

We first recall its weak formulation: given u ∈ U , find y = y(u) ∈ V such that

⟨E(y, u) , φ⟩V ∗,V = 0 for all φ ∈ V.

The variational form e(·, u; ·) : V × U × V → R can be defined as

e(y, u;φ) = ⟨E(y, u) , φ⟩V ∗,V for all y, φ ∈ V,
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and therefore
e(y, u;φ) = 0 for all φ ∈ V. (2.2.17)

For the numerical approximation of (2.2.17) we introduce two suitable finite-dimensional
subspaces Vh ⊂ V and Uh ⊂ U of dimension NV and NU , respectively. Here the same
space Vh is used to approximate both state and adjoint variables. Moreover, Vh is used
to approximate the trial space (where we seek the solution) as well as the test space, thus
yielding a Galerkin problem for both the state and the adjoint system.

The Galerkin formulation reads as follows: given uh ∈ Uh, find yh = yh(uh) ∈ Vh such
that

e(yh, uh;φ) = 0 for all φ ∈ Vh (2.2.18)

solving a nonlinear system of NV equations.
Indeed, we set

yh =

NV∑
j=1

yh,jφj , uh =

NU∑
j=1

uh,jψj ,

where {φj}NV
j=1, {ψj}NU

j=1 are a basis for Vh, Uh, respectively.
Denoting the vectors having as component the unknown coefficients yh,j and uh,j by y

and u, respectively, (2.2.18) is equivalent to: u ∈ RNU , find y = y(u) ∈ RNV such that

e(y,u) = 0,

where the residual vector e(·,u) ∈ RNV is given by

(e(y,u))i = e(yh, uh;φi) i = 1, . . . , NV .

To discretize the adjoint equation, let us assume that the same space is used to discretize
both state and adjoint variable. We define the Jacobian matrix ey(ȳ,u) ∈ RNV ×NV as

(ey(ȳ,u))ij = ey(ȳh)(φj , φi) i, j = 1, . . . , NV ,

where the partial Fréchet derivative of g with respect to y at ȳ ∈ V and in the direction z
is denoted by

ey(ȳ)(z, u;φ) = ⟨Ey(ȳ, u)z , φ⟩V ∗,V for all z ∈ V, φ ∈ V,

with Ey : V → L(V, V ∗). The vector (Jy(y,u)) ∈ RNV as,

(Jy(y,u))i = Jy(yh, uh)φi i = 1, . . . , NV .

Finally, if we don’t have any control constraint the optimality condition turns to the following
discrete equation

Ju(y,u) + eu(y,u)
Tp.

The matrix eu(y,u) ∈ RNV ×NU is given by

(eu(y,u))ij = eu(ūh)(y, ψj ;φi) i = 1, . . . , NV , j = 1, . . . , NU

and the partial Fréchet derivative of g, with respect to u at ū ∈ U in the direction w, by

eu(ū)(y;w,φ) = ⟨Eu(y, ū)w ,φ⟩V ∗,V for all w ∈ U,φ ∈ V,

where Eu : U → L(U, V ∗).
Finally, Ju(y,u) ∈ RNU is a vector, whose components are defined as

(Ju(y,u))i = Ju(yh, uh)ψi i = 1, . . . , NU .
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In summary, the optimal solution (ȳ, ū,p) satisfies the following system of optimality con-
ditions: 

e(y,u) = 0 state equation,

(ey(y,u))
Tp = −Jy(y,u) adjoint equation,

Ju(y,u) + (eu(y,u))
Tp = 0 variational equality.

(2.2.19)

A system akin to (2.2.19) would also be obtained by employing the discretize-then-optimize
approach.

To introduce some discretization matrices we consider the optimal control of the sta-
tionary heat source and carry the discretize-then-optimize approach out.

Minimize J(y, u) =
1

2

∫
Ω
(y − yd)

2 dx+
λ

2

∫
Ω
u2 dx (2.2.20a)

subject to
{−∆y = u in Ω,

y = 0 on ∂Ω,
(2.2.20b)

We have already observed the optimize-then-discretize approach in abstract form, re-
covering first a system of optimality condition at continuous level, in the abstract from.
Alternatively to the previous strategy we may first discretize problem (2.2.20) by substitut-
ing all functional spaces by finite dimensional ones. That is

Minimize J(yh, uh) =
1

2

∫
Ω
(yh − yd)

2 dx+
λ

2

∫
Ω
u2h dx (2.2.21a)

subject to (∇yh,∇φh)L2(Ω) = (uh, φh)L2(Ω) φh ∈ Vh. (2.2.21b)

We introduce stiffness matrix K ∈ RNV ×NV and the control matrix B ∈ RNV ×NU as follows:

Kij = (∇φj ,∇φi)L2(Ω) and Bij = (ψj , φi)L2(Ω).

This results in the discrete state problem

Ky = Bu.

For the cost functional we have

J(y,u) =
1

2

∫
Ω
(y − yd)

2 dx+
λ

2

∫
Ω
u2 dx

=
1

2
(y − yd)

TM(y − yd) +
λ

2
uTDu,

where yd ∈ RNV with
(yd)i = (yd, φi)L2(Ω)

and the mass matrices M ∈ RNV ×NV and D ∈ RNU×NU for state and control respectively,
are given by

Mij = (φj , φi)L2(Ω), and Dij = (ψj , ψi)L2(Ω).

In summary, we obtain the following discretized optimal control problem

Minimize
1

2
(y − yd)

TM(y − yd) +
λ

2
uTDu

subject to Ky = Bu.

The Lagrangian of our discretized problem becomes

L(y,u,p) = 1

2
(y − yd)

TM(y − yd) +
λ

2
uTDu+ pT (Ky −Bu).

Therefore, the first-order derivatives of L with respect to y and u are given by

Ly(y,u,p) = M(y − yd) +KT p, and Lu(y,u,p) = λDu−BTp.
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Therefore, the associated discretized optimality system reads
Ky = Bu,

KTp = −M(y − yd),

λDu = BTp.

Numerical Method
One of the most popular strategies to address nonlinear optimal control problems are

the sequential quadratic programming (SQP) method. In unconstrained case Uad ≡ U ,
the SQP method can be obtained by applying the Newton method to solve the nonlinear
system of optimality conditions (2.2.5); for this reason, the SQP method is also referred to
as Lagrange-Newton method.

In this case, the variational inequality in (2.2.5) reduces to an equality and the optimality
system can be written as 

E(ȳ, ū) = 0,

Ly(ȳ, ū, p) = 0,

Lu(ȳ, ū, p) = 0.

(2.2.22)

By applying a Newton method for solving this system of equations, we obtain the following
linearized system:Lyy(yk, uk, pk) Lyu(yk, uk, pk) Ey(yk, uk)

∗

Luy(yk, uk, pk) Luu(yk, uk, pk) Eu(yk, uk)
∗

Ey(yk, uk, pk) Eu(yk, uk, pk) 0

δyδu
δp

 = −

Ey(yk, uk)
∗pk + Jy(yk, uk)

Eu(yk, uk)
∗pk + Ju(yk, uk)

E(yk, uk)


(2.2.23)

yk+1 = yk + δy, uk+1 = uk + δu, pk+1 = pk + δp.

Let us now highlight the structure of the linear-quadratic problem that is indeed gener-
ated, and solved, at each step. Introducing the abridged notation

L′′ =

[
Lyy Lyu

Luy Luu

]
, L′ =

[
Ly

Lu

]
system (2.2.23) corresponds to the optimality conditions of the following linear-quadratic
problem:

Minimize
1

2
L′′(yk, uk, pk)(δy, δu)

2 + L′(yk, uk)(δy, δu)

subject to Ey(yk, uk)δy + Eu(yk, uk)δu+ E(yk, uk) = 0.
(2.2.24)

Solving a sequence of quadratic programs under the form (2.2.24) leads to the Sequential
Quadratic Programming (SQP) method, which is equivalent to applying a Newton method
on the optimality system. Consequently, SQP is also referred to as the Lagrange-Newton
method. This method offers a locally quadratic convergent approach for identifying station-
ary points in constrained optimization problems. This technique will be employed for the
solution of Optimal Control Problems involving nonlinear Partial Differential Equations.

Note that, unlike the Newton method, the iterates (yk, uk) produced by the SQP method
are infeasible for the nonlinear state equation. In other words, the SQP method generates
control/state pairs that satisfy the state equation only in the limit.

We also note that system (2.2.23) is well-posed provided the second order sufficient
condition (2.2.25) is verified. Indeed, under this assumption, the Newton method generates
a unique sequence of iterates converging quadratically to (ȳ, ū, p).
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Theorem 2.2.23. Let J : Y × U → R and E : Y × U → Z be twice continuously Fréchet
differentiable and let (ȳ, ū, p) be a solution to the optimality system (2.2.13). If there exists
some constant δ > 0 such that

⟨L′′(ȳ, ū, p)(y, u) , (y, u)⟩Y ∗×U∗,Y×U ≥ δ ∥u∥2U (2.2.25)

for all y = y(u) ∈ Y and u ∈ U that satisfy the linearized equation

Ey(ȳ, ū)y + Eu(ȳ, ū)u = 0 in Z,

then there exists two constants ε, σ > 0 such that

J(y, u) ≥ J(ȳ, ū) + ∥u− ū∥2U

for all u ∈ U with ∥u− ū∥U ≤ ε.
In particular, (ȳ, ū) is a local minimizer of J .
After we obtained a system of operator equations we need to check a kind of differen-

tiability of these operators.

Semismooth Newton Method

The optimality system (2.2.16) can be considered as an operator equation

F : X → Y

F (x) = 0,
(2.2.26)

where X and Y are Banach spaces. Assuming F is Fréchet differentiable, we can use a
classical Newton method for solving (2.2.26).

In the optimality system of the relaxed Kirchhoff problem, namely (3.2.13), a max
function will appear. However, the max function is not Fréchet differentiable, and a standard
Newton scheme cannot be applied. This prompts the question: Is it possible to define a
weaker differentiability notion for such a function that allows the formulation of a Newton-
type iterative scheme.

First, we introduce the definition of a Newton differentiable mapping, see Hintermüller,
Ito, Kunisch, 2002, Definition 1, Ito, Kunisch, 2008, Definition 8.10.
Definition 2.2.24. Let X and Y be two Banach spaces and D be an open subset of X. The
mapping F : D ⊂ X → Y is called Newton differentiable on the open subset V ⊂ D if there
exists a map G : V → L(X,Y ) such that, for every x ∈ V ,

lim
h→0

1

∥h∥X
∥F (x+ h)− F (x)−G(x+ h)h∥Y = 0.

In this case G is said to be a Newton derivative of F on V .
Theorem 2.2.25. Let x̄ be a solution to (2.2.26). Suppose that F is Newton differentiable
in an open neighborhood V containing x̄. If∥∥G(x)−1

∥∥
L(Y,X)

≤ C

for some constant C > 0 and all x ∈ V , then the semismooth Newton iteration

xk+1 = xk −G(xk)
−1F (xk)

converges superlinearly to x̄, provided that, for the initial value x0, ∥x0 − x̄∥X is sufficiently
small.
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Second Order Derivatives
Here we recall the concept of second derivative.
Suppose that F : U ⊂ U → V is Fréchet differentiable on the open set U . Then

F ′ : U → L(U, V )

which means F ′(u) ∈ L(U, V ), for u ∈ U . If the mapping u 7→ F ′(u) is again Fréchet
differentiable at u ∈ U , then F is twice Fréchet differentiable at u and

F ′′(u) := (F ′)′(u) ∈ L(U,L(U, V )).

For given ū ∈ U and u1, u2 ∈ U this means∥∥F ′(ū+ u1)− F ′(ū)− F ′′(ū)u1
∥∥
L(U,V )

= o(∥u1∥U )

or equivalently

lim
u1→0

sup
u2∈U

∥F ′(ū+ u1)(u2)− F ′(ū)(u2)− F ′′(ū)(u1)(u2)∥V
∥u1∥U ∥u2∥U

= 0,

and we have
F ′′(ū)(u1) ∈ L(U, V ) and F ′′(ū)(u1)(u2) ∈ V.

That is the reason why we observe F ′′(ū) as bilinear form on U and use the notation

F ′′(ū)[u1, u2] := F ′′(ū)(u1)(u2) and F ′′(ū)u2 := F ′′(ū)[u, u].

We can easily calculate

F ′′(ū)[u1, u2] =
d2

dt ds
F (ū+ tu1 + su2)|(t,s)=0

and

F ′′(ū)[u, u] =
d2

dt2
F (ū+ tu1)|t=0.

Second-Order Derivatives of Nemytskii Operators
Suppose that the function φ = φ(x, y) : Ω × R → R is Carathéodory. Moreover, as-

sume that φyy exist and satisfy the boundedness and local Lipschitz condition. Then the
associated Nemytskii operator Φ is twice continuously differentiable in L∞(Ω), and we have

(Φ′′(y)[h1, h2])(x) = φyy(x, y(x))h1(x)h2(x).

Let 1 ≤ 2q < p < ∞. The Nemytskii operator Φ: Lp(Ω) → Lq(Ω) has the second
derivative, provided that y(·) 7→ φyy(·, y(·)) maps Lp(Ω) into Lr(Ω) with

r =
pq

p− 2q
.

In this case, we have

(Φ′′(y)[h1, h2])(x) = φyy(x, y(x))h1(x)h2(x),

since h = h1h2 belongs to L
p
2 (Ω) for h1, h2 ∈ Lp(Ω), the formula for r is evident.
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In this chapter we study an optimal control problem governed by a nonlinear nonlocal
elliptic partial differential equation (3.1.1b). As explained in subsection 1.1.1, the equation
(3.1.1b) is the steady-state problem corresponding to its time-dependent counterpart, given
by (1.1.2). In one space dimension (1.1.2) models small vertical vibrations of an elastic
string with fixed ends, when the density of the material is not constant. Specifically, the
control u is proportional to the inverse of the string’s cross section; see Ma, 2005; Figueiredo
et al., 2014.

This chapter is organized as follows. In section 3.1, we review existence and uniqueness
results for solutions of the Kirchhoff equation (1.1.1) and prove the existence of a globally
optimal control. Subsequently, we prove the Fréchet differentiability of the control-to-state
operator and derive a system of necessary optimality conditions for a regularized problem
in section 3.2. We also presented an analytical solution in this section. In section 3.3, we
prove the Newton differentiability of the optimality system and devise a locally superlinearly
convergent scheme in appropriate function spaces. Section 3.4 addresses the discretization
of the optimal control problem, its optimality system and the generalized Newton method
by a finite element scheme. The chapter concludes with numerical results in section 3.5.

We remark that main part of this chapter has been taken from the following published
paper.

• Hashemi Masoumeh, Herzog Roland, Surowiec Thomas M.;
Optimal Control of the Stationary Kirchhoff Equation;
Computational Optimization and Applications;
https://doi.org/10.1007/s10589-023-00463-6.

Here, we provide a list of what is additional to the papar.

(i) Proof of theorem 3.1.6
(ii) Proof of proposition 3.2.1
(iii) An analytical solution of the optimal control problem, example 3.2.4
(iv) Construction of a cut-off function for penalization of the optimal control problem,

example 3.2.5
(v) Proof of theorem 3.2.6, statement (i)
(vi) Investigation of the influence of the control cost parameters, as a numerical exper-

iment in subsection 3.5.4

https://doi.org/10.1007/s10589-023-00463-6
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For convenience, we have included the essential results mentioned in the chapter 2 but
relevant to the current chapter.

3.1 Optimal Control Problem: Existence of a Solution
In this work we are interested in the study of the following optimal control problem for

a stationary nonlinear, nonlocal Kirchhoff equation:

Minimize J(y, u) :=

∫
Ω
φ(x, y(x)) dx+

λ

2
∥u∥2H1(Ω) (3.1.1a)

subject to

{
−
(
u+ b ∥∇y∥2L2(Ω)

)
∆y = f in Ω,

y = 0 on ∂Ω
(3.1.1b)

and u ∈ Uad. (3.1.1c)

The set of admissible controls is given by

Uad = {u ∈ H1(Ω) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω}. (3.1.2)

The following are our standing assumptions.
Assumption 3.1.1. We assume that Ω ⊂ RN is a bounded domain of class C1,1 with 1 ≤
N ≤ 3; see for instance Tröltzsch, 2010, Chapter 2.2.2. The control cost parameter λ is a
positive number. The right-hand side f is a given function in L∞(Ω) satisfying f ≥ f0 a.e.,
where f0 is a positive real number. The bounds ua and ub are functions in C(Ω) such that
ub ≥ ua ≥ u0 holds for some positive real number u0. Finally, we assume b ∈ L∞(Ω) with
b ≥ b0 a.e. for some positive real number b0.

The integrand φ in the objective is assumed to satisfy the following standard assump-
tions; see for instance Tröltzsch, 2010, Chapter 4.3:
Assumption 3.1.2. (1) φ : Ω× R → R is Carathéodory and of class C2, i. e.,

(i) φ(·, y) : Ω → φ(x, y) is measurable for all y ∈ R,
(ii) φ(x, ·) : R → φ(x, y) is twice continuously differentiable for a.e. x ∈ Ω.

(2) φ satisfies the boundedness and local Lipschitz conditions of order 2, i. e., there
exists a constant K > 0 such that∣∣Dℓ

yφ(x, 0)
∣∣ ≤ K for all 0 ≤ ℓ ≤ 2 and for a.e. x ∈ Ω,

and for every M > 0, there exists a Lipschitz constant L(M) > 0 such that∣∣D2
yφ(x, y1)−D2

yφ(x, y2)
∣∣ ≤ L(M) |y1 − y2|

holds for a.e. x ∈ Ω and for all |yi| ≤M , i = 1, 2.
Assumption 3.1.2 implies the following properties for the Nemytskii operator Φ(y)(x) :=

φ(x, y(x)).
Lemma 3.1.3 (Tröltzsch, 2010, Lemma 4.11, Lemma 4.12).

(i) Φ is continuous in L∞(Ω). Moreover, for all r ∈ [1,∞], we have

∥Φ(y)− Φ(z)∥Lr(Ω) ≤ L(M) ∥y − z∥Lr(Ω)

for all y, z ∈ L∞(Ω) such that ∥y∥L∞(Ω) ≤M and ∥z∥L∞(Ω) ≤M.
(ii) Φ is twice continuously Fréchet differentiable in L∞(Ω), and we have(

Φ′(y)h
)
(x) = φy (x, y(x))h(x),(

Φ′′(y) [h1, h2]
)
(x) = φyy (x, y(x))h1(x)h2(x)

for a.e. x ∈ Ω and h, h1, h2 ∈ L∞(Ω).
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We now proceed to define the notion of weak solution of the Kirchhoff problem. Since
for any pair (u, y) ∈ Uad×H1(Ω), u+ b ∥∇y∥2L2(Ω) is strictly positive, we can write equation
(3.1.1b) in the form

−∆y =
f

u+ b ∥∇y∥2
L2(Ω)

. (3.1.3)

Here and in the following, we occasionally write ∥·∥ instead of ∥·∥L2(Ω). The L2(Ω)-inner
product is denoted by (·, ·). Moreover, we denote by L(U, V ) the space of bounded linear
operators from U to V .

Multiplication of (3.1.3) with a test function v ∈ H1
0 (Ω) and integration by parts yields

the following definition.
Definition 3.1.4. A function y ∈ H1

0 (Ω) is called a weak solution of (3.1.3) if it satisfies∫
Ω
∇y · ∇v dx =

∫
Ω

f v

u+ b ∥∇y∥2
dx for all v ∈ H1

0 (Ω). (3.1.4)

The existence of a unique weak solution as well as its W 2,q(Ω)-regularity has been shown
in Delgado, Figueiredo, et al., 2017, Theorem 2.2. Nevertheless, we briefly sketch the proof
since its main idea is utilized again later on.

To achieve W 2,q(Ω)-regularity we need the following result, which can be deduced from
e. g., Gilbarg, Trudinger, 1977, Theorem 9.15, Theorem 9.17:
Theorem 3.1.5. Suppose that Ω is a bounded C1,1 domain and A is an elliptic differential
operator of the form

Ay(x) = −
n∑

i,j=1

(aij(x)yxj (x))xi , x ∈ Ω.

The coefficient functions aij of A are assumed to belong to C0,1(Ω) and satisfy the condition
of symmetry aij(x) = aji(x) for all i, j ∈ {1, . . . , n} and x ∈ Ω.

If the right-hand side function f ∈ Lq(Ω), 1 < q < ∞, then the weak solution to the
following Dirichlet problem {Ay = f in Ω,

y = 0 on ∂Ω,

belongs to W 2,q(Ω) and it holds

∥y∥W 2,q(Ω) ≤ C ∥A(y)∥Lq(Ω) for some C > 0.

Theorem 3.1.6. For any u ∈ Uad, there exists a unique weak solution y ∈ H1
0 (Ω) of the

Kirchhoff problem (3.1.3). Moreover, y ∈ W 2,q(Ω) holds for all q ∈ [1,∞), so it is also a
strong solution.

Proof. Suppose that u ∈ Uad and let g : [0,∞) → R be the function defined by

g(s) = s− ∥∇ys∥2,

where ys is the unique weak solution of the Poisson problem−∆ys =
f

u+ b s
in Ω,

ys = 0 on ∂Ω.
(3.1.5)

A monotonicity argument can be used to show that g has a unique root.
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Step (1): First, we show that g is continuous. Given s ∈ [0,∞). The function u + b s is
strictly greater than zero, consequently f

u+b s belongs to L∞(Ω). That means,
(3.1.5) possesses a unique weak solution ys ∈ H1

0 (Ω), by virtue of Lax-Milgram
Theorem, theorem 2.1.40.
Now, we consider a non-negative number sequence {sk}, k ∈ N, its elements fulfill
(3.1.5) and converges to s̄, which means |sk − s̄| → 0, as k → 0. We have

|g(sk)− g(s̄)| =
∣∣∣sk − ∥∇ysk∥

2 − s̄+ ∥∇ys̄∥2
∣∣∣

≤ |sk − s̄|+
∣∣∣∥∇ysk∥2 − ∥∇ys̄∥2

∣∣∣ (3.1.6)

Set wk := ysk − ys̄. Inserting this into (3.1.5) results in

∆wk = ∆ysk −∆ys̄ = − f

u+ b sk
+

f

u+ b s̄

= f

(
1

u+ b s̄
− 1

u+ b sk

)
.

By means of Lax-Milgram Theorem and embeddings theorem in Lp spaces we
obtain the following estimate

∥wk∥H1
0 (Ω) ≤ c1

∥∥∥∥f ( 1

u+ b s̄
− 1

u+ b sk

)∥∥∥∥
L2(Ω)

≤ c1 ∥f∥L2(Ω)

∥∥∥∥ 1

u+ b s̄
− 1

u+ b sk

∥∥∥∥
L∞(Ω)

≤ c2

∥∥∥∥ b (sk − s̄)

(u+ b s̄) (u+ b sk)

∥∥∥∥
L∞(Ω)

≤ c3 |sk − s̄|
∥∥∥∥ b

u2a

∥∥∥∥
L∞(Ω)

≤ c |sk − s̄| .

Passing to the limit as k → 0, we find ∥wk∥H1
0 (Ω) = ∥ysk − ys̄∥H1

0 (Ω) → 0. Since∣∣∣∥ysk∥H1
0 (Ω) − ∥ys̄∥H1

0 (Ω)

∣∣∣ ≤ ∥ysk − ys̄∥H1
0 (Ω)

we obtain ∥ysk∥H1
0 (Ω) → ∥ys̄∥H1

0 (Ω). This shows the continuity of g, due to (3.1.6).
Step (2): As next step, we prove that g is strictly monotonically increasing. To this end,

let s1 and s2 be two elements in [0,∞), with s1 < s2. Then

f

u+ b s1
≥ f

u+ b s2
≥ 0,

which means −∆ys1 ≥ −∆ys2 ≥ 0. By the maximum principle, we obtain ys1 ≥ 0
and ys2 ≥ 0.
On the other hand −∆ys1 ≥ −∆ys2 results in −∆(ys1 − ys2) ≥ 0 and again
by the maximum principle ys1 − ys2 ≥ 0. Accordingly, we obtain −∆ys1 ys1 ≥
−∆ys2 ys2 , hence (−∆ys1 , ys1) ≥ (−∆ys2 , ys2). Using Green’s formula, we can
infer ∥∇ys1∥

2 ≥ ∥∇ys2∥
2. From s1 < s2, follows s1 − ∥∇ys1∥

2 < s2 − ∥∇ys2∥
2,

which means g(s1) < g(s2).
Step (3): As last step, we show that g changes its sign between zero and some s > 0, and it

can occur merely one time, due to the strict monotonicity of g. g(0) = −∥∇y0∥2 <
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0, where y0 solves (3.1.5). Multiplying this equation by a test function ys and
integrating by parts, we obtain

∥∇ys∥2 =
∫
Ω
|∇ys|2 dx =

∫
Ω

f

u+ b s
ys dx.

The term
∫
Ω

f
u+b s ys dx is bounded above by

∫
Ω

f
ua
y0, which results in the bound-

edness of ∥∇ys∥2, for all s > 0. Therefore, lims→∞ g(s) = lims→∞

(
s− ∥∇ys∥2

)
=

+∞ and this concludes the assertion that g has a unique root.
Since ys solves (3.1.3) if and only if g(s) = 0 holds, the uniqueness of the solution of the
Kirchhoff equation is guaranteed. Furthermore, due to the boundedness of u from below, the
right-hand side f/(u+b s) of the Poisson problem above belongs to L∞(Ω). Hence, by virtue
of regularity results for the Poisson problem, y ∈W 2,q(Ω) holds for any q ∈ [1,∞). □

For the proof of existence of a globally optimal control of (3.1.1), we show next that the
control-to-state operator S : Uad → H1

0 (Ω) ∩W 2,q(Ω) is continuous.
Theorem 3.1.7. The control-to-state map S is continuous from Uad (with the L2(Ω)-topology)
into H1

0 (Ω) ∩W 2,q(Ω) for all q ∈ [1,∞).

Proof. The control-to-state map S : Uad → H1
0 (Ω)∩W 2,q(Ω) is well-defined as a conse-

quence of theorem 3.1.6. To show its continuity, let {un} ⊂ Uad be a sequence with un → u
in L2(Ω). Set yn := S(un), that means

−∆yn =
f

un + b ∥∇yn∥2
,

then we have the a-priori estimate, by virtue of theorem 3.1.5

∥yn∥W 2,q(Ω) ≤ c1

∥∥∥∥ f

un + b ∥∇yn∥2

∥∥∥∥
Lq(Ω)

≤ c2

∥∥∥∥ f

un + b ∥∇yn∥2

∥∥∥∥
L∞(Ω)

≤ c2

∥∥∥∥ fun
∥∥∥∥
L∞(Ω)

≤ c2

∥∥∥∥ fua
∥∥∥∥
L∞(Ω)

≤ C.

From now on, suppose without loss of generality that q ∈ [2,∞) holds. Since W 2,q(Ω) is
a reflexive Banach space and every bounded subset of a reflexive Banach space is weakly
relatively compact, there exists a subsequence yn, denoted by the same indices, satisfying
yn ⇀ ŷ in W 2,q(Ω). The compactness of the embedding W 2,q(Ω) ↪→ W 1,q(Ω) implies the
strong convergence yn → ŷ in W 1,q(Ω) and thus ∇yn → ∇ŷ in Lq(Ω). From

|∥∇yn∥ − ∥∇ŷ∥| ≤ ∥∇yn −∇ŷ∥ ≤ ∥∇yn −∇ŷ∥Lq(Ω)

follows ∥∇yn∥ → ∥∇ŷ∥.
On the other hand, un → u in L2(Ω) implies the existence of a further subsequence un,

still denoted by the same indices, with un(x) → u(x) for a.e. x ∈ Ω. Consequently,

f

un + b ∥∇yn∥2
→ f

u+ b ∥∇ŷ∥2
a.e. in Ω.

Since f
un+b ∥∇yn∥2 is dominated by f

ua
, we have∣∣∣∣ f

un + b ∥∇yn∥2
− f

u+ b ∥∇ŷ∥2

∣∣∣∣ ≤ ∣∣∣∣ f

un + b ∥∇yn∥2

∣∣∣∣+ ∣∣∣∣ f

u+ b ∥∇ŷ∥2

∣∣∣∣
≤

∣∣∣∣ fua
∣∣∣∣+ ∣∣∣∣ fua

∣∣∣∣ = 2

∣∣∣∣ fua
∣∣∣∣ ,
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hence ∣∣∣∣ f

un + b ∥∇yn∥2
− f

u+ b ∥∇ŷ∥2

∣∣∣∣q ≤ ∣∣∣∣2fua
∣∣∣∣q .

By virtue of the dominated convergence theorem,

−∆yn =
f

un + b ∥∇yn∥2
→ f

u+ b ∥∇ŷ∥2
in Lq(Ω).

On the other hand, from yn ⇀ ŷ in W 2,q(Ω), it follows that ∆yn ⇀ ∆ŷ holds in Lq(Ω).
The uniqueness of the weak limit yields

−∆ŷ =
f

u+ b ∥∇ŷ∥2

and from the uniqueness of the solution of (3.1.3) we obtain ŷ = S(u). Therefore, ∆yn → ∆ŷ
holds in Lq(Ω) and thereby yn → ŷ in W 2,q(Ω).

We note that we have proved that for any sequence {un} ⊂ Uad with un → u in L2(Ω)
there exists a subsequence {un}, denoted by the same indices, so that S(un) → S(u) in
W 2,q(Ω). Thus, we can easily conclude convergence of the entire sequence S(un) → S(u) in
W 2,q(Ω). Indeed, if S(un) ̸→ S(u), then there exist δ > 0 and a subsequence with indices nk
such that

∥S(unk
)− S(u)∥W 2,q(Ω) > δ for k → ∞.

Since unk
→ u in L2(Ω), there exists a further subsequence {unkℓ

} such that S(unkℓ
) → S(u),

which is a contradiction. Consequently, we obtain S(un) → S(u) as claimed. □

The compact embedding H1(Ω) ↪→ L2(Ω) immediately leads to the following corollary.
Corollary 3.1.8. The control-to-state map S is weakly-strongly continuous from Uad (with
the H1(Ω)-topology) into H1

0 (Ω) ∩W 2,q(Ω) for all q ∈ [1,∞). That is, when {un} ⊂ Uad
with un ⇀ u in H1(Ω), then S(un) → S(u) in W 2,q(Ω).

We can now address the existence of a global minimizer of (3.1.1).
Theorem 3.1.9. Problem (3.1.1) possesses a globally optimal control ū ∈ Uad with associated
optimal state ȳ = S(ū) ∈ H1

0 (Ω) ∩W 2,q(Ω) for all q ∈ [1,∞).

Proof. The proof follows the standard route of the direct method, so we can be brief.
Step (1): We show that the reduced cost functional

j(u) :=

∫
Ω
Φ(S(u)) dx+

λ

2
∥u∥2H1(Ω)

is bounded from below on the set Uad. To this end, recall

∥S(u)∥W 2,q(Ω) = ∥y∥W 2,q(Ω) ≤ c1

∥∥∥∥ f

u+ b ∥∇y∥2

∥∥∥∥
Lq(Ω)

≤ c2

∥∥∥∥ f

u+ b ∥∇y∥2

∥∥∥∥
L∞(Ω)

≤ c

∥∥∥∥fu
∥∥∥∥
L∞(Ω)

≤ c

∥∥∥∥ fua
∥∥∥∥
L∞(Ω)

≤ C.

That means, S(Uad) is bounded in W 2,q(Ω). Due to the embedding W 2,q(Ω) ↪→
C(Ω) for q > N/2, there exists M > 0 such that ∥S(u)∥L∞(Ω) ≤ M holds for all
u ∈ Uad. From Assumption 3.1.2 we can obtain the estimate

|φ(x, S(u)(x))| = |φ(x, S(u)(x))− φ(x, 0) + φ(x, 0)|
≤ |φ(x, 0)|+ |φ(x, S(u)(x))− φ(x, 0)|
≤ K + L(M) |S(u)(x)| ≤ K + L(M)M.
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This implies ∫
Ω
Φ(S(u)) dx ≥ −

(
K + L(M)M

)
|Ω| (3.1.7)

for all u ∈ Uad. The assertion follows.
Step (2): We construct the tentative minimizer ū. Since j is bounded from below on Uad,

there exists a minimizing sequence {un} ⊂ Uad so that

j(un) ↘ inf
u∈Uad

j(u) =: β.

{un} is bounded in H1(Ω). Consequently, there exists a subsequence, denoted by
the same indices, such that un ⇀ ū in H1(Ω). Uad is convex and closed in H1(Ω)
and therefore weakly closed in H1(Ω), thus ū ∈ Uad. Now corollary 3.1.8 implies
S(un) → S(ū) in W 2,q(Ω).

Step (3): It remains to show the global optimality of ū. Set F (y) :=
∫
ΩΦ(y) dx, thus F

is composed of a Nemytskii operator and a continuous linear integral operator
from L1(Ω) into R. By virtue of lemma 3.1.3, Φ is continuous in L∞(Ω). Since
W 2,q(Ω) ↪→ L∞(Ω) holds, Φ ◦ S is weakly-strongly continuous on Uad w.r.t. the
topology of H1(Ω). Therefore, F ◦ S =

∫
ΩΦ ◦ S dx is weakly-strongly continuous

on Uad.
In summary, exploiting the weak sequential lower semicontinuity of ∥·∥H1 we have

β = lim
n→∞

j(un) = lim
n→∞

F (S(un)) +
λ

2
lim
n→∞

∥un∥2H1

≥ lim
n→∞

F (S(un)) +
λ

2
lim inf
n→∞

∥un∥2H1

≥ F (S(ū)) +
λ

2
∥ū∥2H1(Ω) = j(ū).

By definition of β and since ū ∈ Uad∩H1(Ω), we therefore must have β = j(ū). □

Remark 3.1.10. An inspection of the existence theory shows that these results remain valid
in the absence of an upper bound ub on the control. However, the upper bound is of essen-
tial importance in the following section, where we prove the Fréchet differentiability of the
control-to-state map.

3.2 Optimality System
In this section we address first-order necessary optimality conditions for local minimizers.

We need to overcome several obstacles. First of all, the control-to-state operator

S : Uad → H1
0 (Ω) ∩W 2,q(Ω)

is well-defined and continuous on Uad with respect to the topology of H1(Ω), but this
operator is not Fréchet differentiable in the H1(Ω)-topology. The reason is that Uad has
empty interior w.r.t. this topology except in dimension N = 1, which means we cannot
define S on any open set with respect to the H1(Ω)-topology. More precisely, every H1(Ω)-
neighborhood of any control u ∈ Uad contains functions which are arbitrarily negative on
sets of small but positive measure. However, the proof of theorem 3.1.6, which establishes
the well-definedness of the control-to-state map, is contingent upon the controls to remain
positive. In order to overcome this issue, we work with the topology of H1(Ω) ∩ L∞(Ω).
Therefor, it is essential that the controls belong to L∞(Ω), which is evident in the presence
of an upper bound.

With regard to an efficient numerical solution method in function spaces, we are aiming
to arrive at an optimality system which is Newton differentiable. To this end, we propose
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to relax and penalize the control constraint. Notice that this is not straightforward since we
need to ensure positivity of the relaxed control in the state equation. We achieve the latter
by a smooth cut-off function. The optimality system of the penalized problem then turns
out to be Newton differentiable, as we shall show in section 3.3.

The material in this section is structured as follows. In subsection 3.2.1, we prove the
Fréchet differentiability of the control-to-state map. We establish the system of first-order
necessary optimality conditions for the original problem (3.1.1) in subsection 3.2.2. An
analytical solution is constructed in subsection 3.2.3. In subsection 3.2.4 we introduce the
penalty approximation and show that for any null sequence of penalty parameters, there
exists a subsequence of global solutions to the corresponding penalized problems which con-
verges weakly to a global solution of the original problem; see theorem 3.2.6. subsection 3.2.5
addresses the system of first-order necessary optimality conditions for the penalized problem.

3.2.1 Differentiability of the Control-to-State Map
In this subsection we show the Fréchet differentiability of the control-to-state map S by

means of the implicit function theorem. To verify the assumption of the implicit function
theorem, we need the following result about the linearization of the Kirchhoff equation
(3.1.3).
Proposition 3.2.1. Suppose that û ∈ Uad and ŷ ∈ H1

0 (Ω)∩W 2,q(Ω) is the associated unique
solution of the Kirchhoff equation (3.1.3) for any q ∈ [1,∞). Then, for any h ∈ Lq(Ω), the
linearized problem −∆y − 2 b (∇ŷ,∇y)∆ŷ

(û+ b ∥∇ŷ∥2)
= h in Ω,

y = 0 on ∂Ω,

(3.2.1)

has a unique solution y ∈ H1
0 (Ω) ∩W 2,q(Ω).

Proof. For a given h ∈ Lq(Ω), we set h := h+ − h−, where h+ := max{0, h} and
h− := −min{0, h} are the positive part and negative part of h, respectively. We use Green’s
formula for (∇ŷ,∇y) in (3.2.1) and obtain (∇ŷ,∇y) = (−∆ŷ, y). That means, (3.2.1) is
modified in the following form−∆y − 2 b (−∆ŷ, y)∆ŷ

(û+ b ∥∇ŷ∥2)
= h+ − h− in Ω,

y = 0 on ∂Ω.
(3.2.2)

We consider the following subproblems−∆y − 2 b (−∆ŷ, y)∆ŷ

(û+ b ∥∇ŷ∥2)
= h+ in Ω,

y = 0 on ∂Ω,
(3.2.3)

and −∆y − 2 b (−∆ŷ, y)∆ŷ

(û+ b ∥∇ŷ∥2)
= −h− in Ω,

y = 0 on ∂Ω.
(3.2.4)

Let g+ : [0,∞) be the function defied by

g+(s) = s− (−∆ŷ, ys),

where ys solves −∆ys −
2 b∆ŷ s

(û+ b ∥∇ŷ∥2)
= h+ in Ω,

ys = 0 on ∂Ω,
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and g− : (−∞, 0] be the function defied by

g−(s) = s− (−∆ŷ, ys),

where ys solves −∆ys −
2 b∆ŷ s

(û+ b ∥∇ŷ∥2)
= −h− in Ω,

ys = 0 on ∂Ω.

We use a monotonicity argument again to show that g+ and g− have unique roots on their
respective domains.
Step (1): We show that g+ and g− are continuous. Let {sk} be a number sequence in each

case. We have∣∣g±(sk)− g(s)
∣∣ = |sk − (−∆ŷ, ysk)− s+ (−∆ŷ, ys)|
≤ |sk − s|+ |(∆ŷ, ysk − ys)|
≤ |sk − s|+ ∥∆ŷ∥ ∥ysk − ys∥ (Cauchy-Schwarz)
≤ |sk − s|+ ∥∆ŷ∥ ∥ysk − ys∥W 2,q(Ω) .

Since

−∆(ysk − ys) =
2 b∆ŷ(

û+ b ∥∇ŷ∥2
) (sk − s) ,

we obtain

∥ysk − ys∥W 2,q(Ω) ≤ c

∥∥∥∥∥∥ 2 b∆ŷ(
û+ b ∥∇ŷ∥2

) (sk − s)

∥∥∥∥∥∥
Lq(Ω)

≤ c′ |sk − s| ,

by virtue of theorem 3.1.5, which results in∣∣g±(sk)− g(s)
∣∣ ≤ |ysk − ys|+ c′ |ysk − ys| ≤ c |ysk − ys| .

Passing to the limit as k converges to zero, we obtain g±(sk) → g±(s).
Step (2): We show that g+ and g− are strictly monotonically increasing in each case with

s1 < s2. We have

−∆(ys1 − ys2) =
2 b∆ŷ(

û+ b ∥∇ŷ∥2
) (s1 − s2) .

Since s1 − s2 < 0 and ∆ŷ ≤ 0, we obtain −∆(ys1 − ys2) ≥ 0. By the maximum
principle, we can infer ys1 − ys2 ≥ 0, which results in

g±(s1) = s1 − (−∆ŷ, ys1) < s2 − (−∆ŷ, ys2) = g±(s2).

Step (3): We show that g+ and g− change their sings at least one time on (0,−∞) and
(−∞, 0), respectively. We have g+(0) = −(−∆ŷ, y0), where y0 solves{

−∆y0 = h+ in Ω,

y0 = 0 on ∂Ω.

This means, −∆y0 > 0. By the maximum principle we obtain y0 > 0 and thus
g+(0) < 0. Therefor, for all s > 0 (ys ≤ y0), we obtain −∆ŷ ys ≤ −∆ŷ y0 and
hence (−∆ŷ, ys) ≤ (−∆ŷ, y0). That means

lim
s→+∞

g+(s) = lim
s→+∞

(s− (−∆ŷ, ys)) = +∞.
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On the other hand, We have g−(0) = −(−∆ŷ, y0), where y0 solves{
−∆y0 = −h− in Ω,

y0 = 0 on ∂Ω.

This means, −∆y0 < 0. By the maximum principle we obtain y0 < 0 and thus
g−(0) > 0. Therefor, for all s < 0 (ys ≥ y0), we obtain −∆ŷ ys ≥ −∆ŷ y0 and
hence (−∆ŷ, ys) ≥ (−∆ŷ, y0). That means

lim
s→−∞

g+(s) = lim
s→−∞

(s− (−∆ŷ, ys)) = −∞.

Now by monotonicity of g±, we can conclude that g+ and g− possess unique roots
s+ and s−, respectively.

ys+ solves (3.2.3) and ys− (3.2.4) if and only if g+(s+) = 0 and g−(s−) = 0 hold, respectively.
Therefore, the uniqueness of solutions y+ and y− for the respective subproblems (3.2.3) and
(3.2.4) is guaranteed. At the end, we show that y := y+ + y− solves (3.2.2).

−∆(y+ + y−)− 2 b (−∆ŷ, y+ + y−)∆ŷ

(û+ b ∥∇ŷ∥2)

= −∆y+ − 2 b (−∆ŷ, y+)∆ŷ

(û+ b ∥∇ŷ∥2)
−∆y− − 2 b (−∆ŷ, y−)∆ŷ

(û+ b ∥∇ŷ∥2)
= h+ − h−.

□

Theorem 3.2.2. Suppose that û ∈ Uad. Then the control-to-state operator

S : Uad → H1
0 (Ω) ∩W 2,q(Ω)

is continuously Fréchet differentiable on an open L∞(Ω)-neighborhood of û for all q ∈ [1,∞).

Proof. Suppose that û ∈ Uad is arbitrary and that ŷ ∈ H1
0 (Ω)∩W 2,q(Ω) is the associ-

ated state. The map E :
(
H1

0 (Ω) ∩W 2,q(Ω)
)
× L∞(Ω) → Lq(Ω) defined by

E(y, u) := −∆y − f

u+ b ∥∇y∥2

is continuously Fréchet differentiable with

E′(ŷ, û)(y, u) = −∆y +

(
u+ 2 b (∇ŷ,∇y)

)
f

(û+ b ∥∇ŷ∥2)2
,

It remains to show that Ey(ŷ, û) ∈ L
(
H1

0 (Ω) ∩W 2,q(Ω), Lq(Ω)
)

has a bounded inverse. To
this end, consider

Ey(ŷ, û) y = −∆y +
2 b f (∇ŷ,∇y)
(û+ b ∥∇ŷ∥2)2

. (3.2.5)

The existence and uniqueness of y ∈ H1
0 (Ω)∩W 2,q(Ω) satisfying (3.2.1), i. e., Ey(ŷ, û) y =

h, is established by virtue of proposition 3.2.1. This implies the bijectivity of Ey(ŷ, û).
The open mapping/continuous inverse theorem now yields that the inverse of Ey(ŷ, û) is
continuous. Notice that E(y, u) = 0 ⇔ E(S(u), u) = 0 holds for all u ∈ Uad. Invok-
ing the implicit function theorem, we obtain that S is continuously differentiable in some
L∞(Ω)-neighborhood of û. Since û ∈ Uad was arbitrary, S actually extends into an L∞(Ω)-
neighborhood of Uad and it is continuously differentiable there. Moreover, we obtain that
δy = S′(û) δu satisfies Ey(ŷ, û) δy = −Eu(ŷ, û) δu, i. e.,

−∆δy +

(
δu+ 2 b (∇ŷ,∇δy)

)
f

(û+ b ∥∇ŷ∥2)2
= 0.
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□

3.2.2 First-Order Optimality Conditions

The optimality system can be derived by using the Lagrangian L : H1
0 (Ω) × Uad ×

H1
0 (Ω) → R, defined by

L(y, u, p) :=
∫
Ω
φ(x, y) dx+

λ

2
∥u∥2H1(Ω) +

∫
Ω
∇y · ∇p dx−

∫
Ω

f

u+ b ∥∇y∥2
p dx (3.2.6)

and taking the derivative with respect to the state and the control. In the first case, we
obtain

Ly(y, u, p) δy =

∫
Ω
φy(x, y) δy dx+

∫
Ω
∇δy · ∇p dx+

∫
Ω

2 b f p (∇y,∇δy)
(u+ b ∥∇y∥2)2

dx

for δy ∈ H1
0 (Ω) ∩W 2,q(Ω). Integration by parts yields

Ly(y, u, p) δy =

∫
Ω
φy(x, y) δy dx+

∫
Ω
∇δy · ∇p dx+

(
∇y

∫
Ω

2 b f p

(u+ b ∥∇y∥2)2
dx,∇δy

)
=

∫
Ω
φy(x, y) δy dx−

∫
Ω
∆p δy dx−

(
∆y

∫
Ω

2 b f p

(u+ b ∥∇y∥2)2
dx, δy

)
.

Notice that Ly(y, u, p) δy = 0 for all δy ∈ H1
0 (Ω) ∩W 2,q(Ω) represents the strong form of

the adjoint equation, which reads−∆p−∆y

∫
Ω

2 b f p

(u+ b ∥∇y∥2)2
dx = −φy(x, y) in Ω,

p = 0 on ∂Ω.
(3.2.7)

We point out that (3.2.7) is again a nonlocal equation. Given u ∈ Uad and y ∈ H1
0 (Ω) ∩

W 2,q(Ω), (3.2.7) has a unique solution p ∈ H1
0 (Ω) ∩W 2,q(Ω). This can be shown either by

direct arguments as in proposition 3.2.1, or by exploiting that the bounded invertibility of
Ey implies that of its adjoint, see the proof of theorem 3.2.2.

The derivative of the Lagrangian with respect to the control is given by

Lu(y, u, p) δu = λ (u, δu)H1(Ω) +

∫
Ω

f p

(u+ b ∥∇y∥2)2
δu dx

for δu ∈ H1(Ω).
It is now standard to derive the following system of necessary optimality conditions.

Theorem 3.2.3. Suppose that (y, u) ∈
(
H1

0 (Ω) ∩W 2,q(Ω)
)
×Uad is a locally optimal solution

of problem (3.1.1) for any q ∈ [1,∞). Then there exists a unique adjoint state p ∈ H1
0 (Ω)∩

W 2,q(Ω) for all q ∈ [1,∞) such that the following system holds:−∆p−∆y

∫
Ω

2 b f p

(u+ b ∥∇y∥2)2
dx = −φy(x, y) in Ω,

p = 0 on ∂Ω,

(3.2.8a)

λ
∫
Ω
∇u · ∇(v − u) dx+

∫
Ω

( f p

(u+ b ∥∇y∥2)2
+ λu

)
(v − u) dx ≥ 0

for all v ∈ Uad,

(3.2.8b)

−∆y =
f

u+ b ∥∇y∥2
in Ω,

y = 0 on ∂Ω.
(3.2.8c)
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3.2.3 Analytical Solution
At this point we intend to construct some analytical solution for our optimal control

problem:
Example 3.2.4. We consider the following optimal control problem

Minimize J(y, u) =
1

2
∥y − yd∥2L2(Ω) +

λ

2
∥u∥2H1(Ω)

subject to

−∆y =
f

u+ b ∥∇y∥2
in Ω,

y = 0 on ∂Ω.

Let the problem domain be Ω = (0, 1)2. We choose the desired state as yd = sin(πx1) sin(πx2)
and set y = yd. First, we compute the gradient of y and obtain

∇y =

[
∂y
∂x1
∂y
∂x2

]
=

[
π cos(πx1) sin(πx2)
π sin(πx1) cos(πx2)

]
,

which results in

∥∇y∥2L2(Ω) =

∫ 1

0

∫ 1

0
(π cos(πx1) sin(πx2))

2 + (π sin(πx1) cos(πx2))
2 dx1 dx2

=

∫ 1

0

∫ 1

0
π2 cos2(πx1) sin

2(πx2) dx1 dx2 +
∫ 1

0

∫ 1

0
π2 sin2(πx1) cos

2(πx2) dx1 dx2.

Applying Fubini’s Theorem, we obtain

∥∇y∥2L2(Ω) = 2π2
∫ 1

0

∫ 1

0
cos2(πx1) sin

2(πx2) dx1 dx2.

Computing the inner integral, we obtain∫ 1

0
cos2(πx1) sin

2(πx2) dx1 = sin2(πx2)

∫ 1

0
cos2(πx1) dx1 = sin2(πx2)

∫ 1

0

1 + cos(2πx1)

2
dx1

= sin2(πx2)

(
1

2
x1 +

1

4
sin(2πx1)

)]1

0

=
1

2
sin2(πx2)

and with that

∥∇y∥2L2(Ω) = 2π2
∫ 1

0

1

2
sin2(πx2) dx2 = π2

∫ 1

0

1− cos(2πx2)

2
dx2

= π2
(
1

2
x2 −

1

4
sin(2πx2)

)]1

0

=
π2

2
.

Next, we compute the Laplacian of y. The Hessian amounts to

D2y =

[
−π2 sin(πx1) sin(πx2) π2 cos(πx1) cos(πx2)
π2 cos(πx1) cos(πx2) −π2 sin(πx1) sin(πx2)

]
and the Laplacian

∆y = trace(D2y) = −π2 sin(πx1) sin(πx2)− π2 sin(πx1) sin(πx2)

= −2π2 sin(πx1) sin(πx2).
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Putting u = ua ≡ 1, ub ≡ 2 and b ≡ 2
π2 and inserting all this in

−∆y =
f

u+ b ∥∇y∥2
L2(Ω)

we obtain
2π2y =

f

1 + 2
π2 · π2

2

=
f

2
,

which results in
f = 4π2y = 4π2 sin(πx1) sin(πx2).

We observe that p = 0 as the unique adjoint sate together with (y, u) satisfying the first
order necessary optimality conditions (3.2.8) for this example. Since u = ua, this solution
is obviously a local minimizer. Since p = 0, for all u ∈ Uad we have

j′(u)(u− ū) = Ju(ȳ, ū)(u− ū) = λ( ū︸︷︷︸
≡1

, u− ū︸ ︷︷ ︸
≥0

)L2(Ω) + λ(∇ū︸︷︷︸
=0

,∇(u− ū))L2(Ω) ≥ 0.

Notice that (4.2.5b) is a nonlinear obstacle problem for the control variable u originating
from the bound constraints in Uad and the presence of the H1-control cost term in the
objective. Until recently, the Newton differentiability of the associated solution map was
not known. In order to apply a generalized Newton method, we therefore chose to relax and
penalize the bound constraints via a quadratic penalty in the following section. This is also
known as Moreau-Yosida regularization of the indicator function pertaining to Uad.

Recently, the authors in Christof, Wachsmuth, 2023 proved a Newton differentiability
result for the solution map of unilateral obstacle problems, which also is applicable to the
other obstacle-type variational inequalities. This approach offers an alternative route to
solving (4.2.5) numerically. It would amount to introducing a fourth unknown satisfying
z = −f p

(u+b ∥∇y∥2)2 and replacing (4.2.5b) by u = G(z), where G stands for the solution map
of the obstacle problem

λ

∫
Ω
∇u · (∇v − u) + u (v − u)− z (v − u) dx ≥ 0 for all v ∈ Uad.

We leave the details for future work.

3.2.4 Moreau-Yosida Penalty Approximation

The Moreau-Yosida penalty approximation of problem (3.1.1) consists of the following
modifications.

(1) We remove the constraints ua ≤ u ≤ ub from Uad and work with controls in H1(Ω)
which do not necessarily belong to L∞(Ω).

(2) We add the penalty term 1
2ε

∫
Ω (ua − u)2+ + (u− ub)

2
+ dx to the objective. Here

v+ = max{0, v} is the positive part function and ε > 0 is the penalty parameter.
(3) We replace the control-to-state relation y = S(u) by

y = S
(
ua/2 + ηε(u− ua/2)

)
,

where ηε is a family of monotone and convex C3 approximations of the positive part
function satisfying ηε(t) = t for t > ε, ηε(t) = 0 for t < −ε for some 0 < ε < u0/2
and η′ε ∈ [0, 1] everywhere.

Notice that modification (3) is required since the control-to-state map S is guaranteed to be
defined only for positive controls; compare theorem 3.1.6. Therefore, we use ua/2 + ηε(u−
ua/2) ≥ ua/2 as an effective control. In addition, ua/2 + ηε(u − ua/2) = u holds for all
u ∈ Uad, provided that ε is small enough.
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Next, we give an example of such a cut-off function:
Example 3.2.5. An example of such a function is ηε(t) = ε η( tε), where

η(t) =


0 for t ≤ −1,

15
(

t4

12 + t5

10 + t6

30

)
+ 1+t

2 − 1
4 for − 1 < t < 0,

15
(

t4

12 − t5

10 + t6

30

)
+ 1+t

2 − 1
4 for 0 ≤ t < 1,

t for t ≥ 1.

To construct such cut-off function, we begin by considering the following function

η(t) =

{
0 for t < −1,

t for t > 1,

satisfying the following properties

η ∈ C3, η(−1) = 0, η(1) = 1, 0 ≤ η′ ≤ 1, η′′ ≥ 0. (3.2.9)

Defining the cut-off function ηε by ηε(t) = ε η( tε), we obtain

ηε(t) =

{
0 for t < −ε,
t for t > ε,

and it inherits the following properties

ηε ∈ C3, ηε(−ε) = 0, ηε(ε) = ε, 0 ≤ η′ε ≤ 1, η′′ε ≥ 0,

by means of (3.2.9) and η′ε(t) = ε η′( tε). We have to find a function rule for η(t), for
−1 < t < 1. We set ϕ(t) := η′(t). Taking (3.2.9) into consideration, ϕ has to fulfill ϕ ∈ C2,
0 ≤ ϕ ≤ 1, and ϕ′ ≥ 0. Since η(t) =

∫ t
−1 ϕ(s) ds, we intend to have

∫ 1
−1 ϕ(s) ds = 1 and

ϕ′′(0) = 0. We can construct a function ψ, such that

ψ(t) =

{
1
2 for t > 1,

0 for t ≤ 0,

such that, ψ ∈ C2, ψ′ ≥ 0, ψ′′(0) = 0 and ψ(t) =
∫ t
0 ξ(s) ds, for 0 < t ≤ 1. That means, ξ

have to satisfy

ξ(t) =

{
0 for t > 1

0 for t < 0,

with ξ ∈ C1 and ξ ≥ 0. We intend to have
∫ 1
0 ξ(s) ds = 1

2 . In this case, we can define ϕ as
following

ϕ(t) =

{
1
2 + ψ(t) for t ≥ 0,
1
2 − ψ(−t) for t < 0.

We note that ∫ 1

−1
ϕ(t) dt =

∫ 0

−1

1

2
− ψ(−t) dt+

∫ 1

0

1

2
+ ψ(t) dt

=

∫ 1

−1

1

2
dt+

∫ 0

−1
ψ(t) dt+

∫ 1

0
ψ(t) dt = 1.

Taking ξ(t) = αt2 (1− t)2, we obtain

ψ(t) =

∫ t

0
ξ(s) ds = α

(
1

3
t3 − 1

2
t4 +

1

5
t5
)
.
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Consequently,

ϕ(t) =

{
1
2 + α

(
1
3 t

3 − 1
2 t

4 + 1
5 t

5
)

for t ≥ 0,
1
2 + α

(
1
3 t

3 + 1
2 t

4 + 1
5 t

5
)

for t < 0.

Now, η(t) =
∫ t
−1 ϕ(s) ds results in

η(t) =

∫ t

−1
ϕ(s) ds =

1

2
(t+ 1)− α

60
+ α

(
1

12
t4 − 1

10
t5 +

1

30
t6
)

for t < 0,

and

η(t) =

∫ 0

−1
ϕ(s) ds+

∫ t

0
ϕ(s) ds =

1

2
− α

60
+
t

2
+ α

(
1

12
t4 − 1

10
t5 +

1

30
t6
)

for t ≥ 0,

and eventually,

η(t) =


0 for t ≤ −1,

α
(

t4

12 + t5

10 + t6

30

)
+ 1+t

2 − α
60 for − 1 < t < 0,

α
(

t4

12 − t5

10 + t6

30

)
+ 1+t

2 − α
60 for 0 ≤ t < 1,

t for t ≥ 1.

From
∫ 1
0 ξ(s) ds = 1

2 , follows α = 15 and this yields (3.2.5).
We now consider the following relaxed problem:

Minimize Jε(y, u) := J(y, u) +
1

2ε

∫
Ω
(ua − u)2+ + (u− ub)

2
+ dx

where y = S (ua/2 + ηε(u− ua/2))

and u ∈ H1(Ω).

(Pε)

The relation between (Pε) and the original problem (3.1.1) is clarified in the following
theorem.
Theorem 3.2.6.

(i) For all ε > 0, problem (Pε) possesses a globally optimal solution
(ȳε, ūε) ∈

(
H1

0 (Ω) ∩W 2,q(Ω)
)
×H1(Ω) for all q ∈ [1,∞).

(ii) For any sequence εn ↘ 0, there is a subsequence of (ȳεn , ūεn) which converges
weakly to some (y∗, u∗) in W 2,q(Ω)×H1(Ω). Moreover, u∗ ∈ Uad holds and (y∗, u∗)
is a globally optimal solution of (3.1.1).

Proof. Statement (i): The proof of statement (i) is divided into several steps.
Step (1): Since

y = S (ua/2 + ηε(u− ua/2))

we have

∥y∥W 2,q(Ω) = ∥S (ua/2 + ηε(u− ua/2))∥W 2,q(Ω) ≤ c1

∥∥∥∥ f

ua/2 + ηε(u− ua/2)

∥∥∥∥
Lq(Ω)

≤ c2

∥∥∥∥ f

ua/2 + ηε(u− ua/2)

∥∥∥∥
L∞(Ω)

≤ c

∥∥∥∥ f

ua/2

∥∥∥∥
L∞(Ω)

≤ C

that means y = S (ua/2 + ηε(u− ua/2)) is bounded in W 2,q(Ω). Due to the em-
bedding W 2,q(Ω) ↪→ C(Ω) for q > N/2, there exists M > 0 such that ∥y∥L∞(Ω) ≤
M holds. From Assumption 3.1.2 we can obtain the estimate

|φ(x, y(x))| = |φ(x, y(x))− φ(x, 0) + φ(x, 0)|



56 3 Optimal Control of the Stationary Kirchhoff Equation

≤ |φ(x, 0)|+ |φ(x, y(x))− φ(x, 0)|
≤ K + L(M) |y(x)| ≤ K + L(M)M.

This implies∫
Ω
Φ(S (ua/2 + ηε(u− ua/2))) dx ≥ −

(
K + L(M)M

)
|Ω| (3.2.10)

for all u ∈ H1(Ω). Taking also ∥u∥2
H1

0 (Ω)
≥ 0 and 1

2ε

∫
Ω (ua − u)2++(u− ub)

2
+ dx ≥

0 into consideration, we can infer that the penalized problem

Jε(y, u) := J(y, u) +
1

2ε

∫
Ω
(ua − u)2+ + (u− ub)

2
+ dx

is also bounded from below.
Step (2): We construct the tentative minimizer (ȳ, ū). Since Jε is bounded from below,

there exists a minimizing sequence {(yn, un)}, un ∈ H1(Ω) so that

Jε(yn, un) ↘ inf
u∈H1(Ω)

Jε(y, u) =: β.

The boundedness of {un} in H1(Ω) follows from the radial unboundedness of Jε.
Consequently, there exists a subsequence, denoted by the same indices, such that
un ⇀ ū in H1(Ω). As we observed {yn} is bounded in W 2,q(Ω). Since W 2,q(Ω)
is a reflexive Banach space and every bounded subset of a reflexive Banach space
is weakly relatively compact, there exists a subsequence yn, denoted by the same
indices, satisfying yn ⇀ ȳ in W 2,q(Ω).
We now aim to show that ȳ is the weak solution associated with ū. Form un ⇀ ū
in H1(Ω) follows un → ū in L2(Ω) and consequently ua/2 + ηε(un − ua/2) →
ua/2 + ηε(ū − ua/2). Since ua/2 + ηε(un − ua/2) ≥ ua/2, the sequence {ua/2 +
ηε(un − ua/2)} belongs to Uad, now theorem 3.1.7 implies

yn = S(ua/2 + ηε(un − ua/2)) → S(ua/2 + ηε(ū− ua/2)).

From the uniqueness of the weak limit, we can infer that

ȳ = S(ua/2 + ηε(ū− ua/2)).

Step (3): It remains to show the global optimality of ū. Set F (y) :=
∫
Ω φ(x, y(x)) dx, thus

F is composed of a Nemytskii operator Φ(y) = φ(x, y(x)) and a continuous linear
integral operator from L1(Ω) into R. By virtue of lemma 3.1.3, Φ is continuous
in L∞(Ω). Since W 2,q(Ω) ↪→ L∞(Ω) holds, F is continuous in H1(Ω). Therefore,
F ◦ S =

∫
ΩΦ ◦ S dx is weakly-strongly continuous on Uad.

In summary, exploiting the weak sequential lower semicontinuity of ∥·∥H1 we have

β = lim
n→∞

Jε(yn, un)

= lim
n→∞

J(yn, un) +
1

2ε
lim inf
n→∞

(
∥(ua − u)+∥2L2(Ω) + ∥(u− ub)+∥2L2(Ω)

)
= lim

n→∞
F (yn) +

λ

2
lim inf
n→∞

∥un∥2H1 +
1

2ε
lim inf
n→∞

(
∥(ua − u)+∥2L2(Ω) + ∥(u− ub)+∥2L2(Ω)

)
≥ F (ȳ) +

λ

2
∥ū∥2H1(Ω) +

1

2ε

(
∥(ua − ū)+∥2L2(Ω) + ∥(ū− ub)+∥2L2(Ω)

)
= J(ȳ, ū).

By definition of β and since ū ∈ Uad ∩H1(Ω), we therefore must have β = j(ū).
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Statement (ii): The proof of statement (ii) is also divided into several steps. As in the
proof of theorem 3.1.9, we define β to be the globally optimal value of the objective in (Pε).
Similarly, we let βε denote the globally optimal value of the objective in (Pε). Suppose that
εn ↘ 0 is any sequence.
Step (1): We show that {(ȳεn , ūεn)} is bounded in W 2,q(Ω)×H1(Ω).

Suppose that (ȳ, ū) is a globally optimal solution of (3.1.1). Owing to the definition
of βε, we have

βε ≤ Jε(ȳ, ū) = J(ȳ, ū) +
1

2ε

∫
Ω
(ua − ū)2+ + (ū− ub)

2
+ dx = J(ȳ, ū) = β. (∗)

The next-to-last equality is true since ū ∈ Uad holds and therefore, the penalty
term vanishes. Moreover, we obtain

J(ȳεn , ūεn) ≤ J(ȳεn , ūεn) +
1

2εn

∫
Ω
(ua − ūεn)

2
+ + (ūεn − ub)

2
+ dx = βεn ≤ β,

where the last inequality follows from (∗). Since

ȳεn = S (ua/2 + ηεn(ūεn − ua/2))

holds, we obtain ∥ȳεn∥W 2,q(Ω) ≤ C as in the proof of theorem 3.1.7. Therefore,
ȳεn is also bounded in C(Ω) and consequently,

∫
Ω φ(x, ȳεn) dx is bounded below,

see (3.1.7). Finally,

J(ȳεn , ūεn) =

∫
Ω
φ(x, ȳεn) dx+

λ

2
∥ūεn∥2H1(Ω) ≤ β

implies that ∥ūεn∥H1(Ω) is bounded.
Step (2): From Step (1) it follows that there exists a subsequence {(ȳεn , ūεn)}, denoted with

the same subscript, such that (ȳεn , ūεn)⇀ (y∗, u∗) in W 2,q(Ω)×H1(Ω). We show
that u∗ ∈ Uad holds.
We have already shown that βεn ≤ β holds, therefore∫

Ω
(ua − ūεn)

2
+ + (ūεn − ub)

2
+ dx ≤ 2εn [β − J(ȳεn , ūεn)] .

Taking the lim sup in this inequality as n→ ∞, we find

0 ≤ lim sup
n→∞

∫
Ω
(ua − ūεn)

2
+ + (ūεn − ub)

2
+ dx ≤ 0− 2 lim inf

n→∞
εn J(ȳεn , ūεn). (∗∗)

From (ȳεn , ūεn) ⇀ (y∗, u∗) in W 2,q(Ω) × H1(Ω) we conclude ūεn → u∗ in L2(Ω)
and

J(y∗, u∗) ≤ lim inf
n→∞

J(ȳεn , ūεn) (∗∗∗)

as in the proof of theorem 3.1.9. Passing with n→ ∞ in (∗∗) yields∫
Ω
(ua − u∗)2+ + (u∗ − ub)

2
+ dx = 0

and consequently, u∗ ∈ Uad follows.
Step (3): To obtain the convergence ηεn(ūεn−ua/2) → u∗−ua/2 in L2(Ω), it suffices to note

that the assumptions on ηε imply that, for all t ∈ R, ηεn(t) → max{0, t} holds
as n → ∞ and that ηεn has a Lipschitz constant of 1 for all n. In combination
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with u∗ ≥ ua, the triangle inequality, and the dominated convergence theorem,
this gives

∥ηεn(ūεn − ua/2)− (u∗ − ua/2)∥L2(Ω)

≤ ∥ηεn(ūεn − ua/2)− ηεn(u
∗ − ua/2)∥L2(Ω)

+ ∥ηεn(u∗ − ua/2)− (u∗ − ua/2)∥L2(Ω)

≤ ∥ūεn − u∗∥L2(Ω)

+ ∥ηεn(u∗ − ua/2)−max{0, u∗ − ua/2}∥L2(Ω) → 0

as desired. The continuity of S on Uad w.r.t. the L2(Ω)-topology now implies

ȳεn = S (ua/2 + ηεn (ūεn − ua/2)) → S (u∗) .

From Step (2) we have the weak convergence of ȳεn to y∗. The uniqueness of the
weak limit shows y∗ = S(u∗).

Step (4): Since J(ȳεn , ūεn) ≤ β holds, we obtain J(y∗, u∗) ≤ β by invoking (∗∗∗). Moreover,
since (y∗, u∗) is admissible for (3.1.1), the definition of β implies J(y∗, u∗) = β,
which completes the proof. □

3.2.5 First-Order Optimality Conditions for the Penalized Problem

The derivation of optimality conditions for (Pε) proceeds along the same lines as in
subsection 3.2.2 and the details are omitted. Notice that the use of the cut-off function in
the control-to-state map resolves the difficulty with differentiability of this map with respect
to H1(Ω)-topology in appropriate function spaces. For simplicity, we drop the index ·ε from
now on and denote states, controls, and associated adjoint states by (y, u, p).

The optimality system can be derived by using the Lagrangian L : H1
0 (Ω) × H1(Ω) ×

H1
0 (Ω) → R, defined by

L(y, u, p) :=
∫
Ω
φ(x, y) dx+

λ

2
∥u∥2H1(Ω) +

1

2ε

∫
Ω
(ua − u)2+ + (u− ub)

2
+ dx

+

∫
Ω
∇y · ∇p dx−

∫
Ω

f

ua/2 + ηε(u− ua/2) + b ∥∇y∥2
p dx

(3.2.11)

and taking the derivative with respect to the state and the control. In the first case, we
obtain

Ly(y, u, p) δy =

∫
Ω
φy(x, y) δy dx+

∫
Ω
∇δy · ∇p dx+

∫
Ω

2 b f p (∇y,∇δy)
(ua/2 + ηε(u− ua/2))

2 dx

for δy ∈ H1
0 (Ω) ∩W 2,q(Ω). Integration by parts yields

Ly(y, u, p) δy =

∫
Ω
φy(x, y) δy dx+

∫
Ω
∇δy · ∇p dx

+
(
∇y

∫
Ω

2 b f p

(ua/2 + ηε(u− ua/2) + b ∥∇y∥2)2
dx,∇δy

)
=

∫
Ω
φy(x, y) δy dx−

∫
Ω
∆p δy dx

−
(
∆y

∫
Ω

2 b f p

(ua/2 + ηε(u− ua/2) + b ∥∇y∥2)2
dx, δy

)
.
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Notice that Ly(y, u, p) δy = 0 for all δy ∈ H1
0 (Ω) ∩W 2,q(Ω) represents the strong form of

the adjoint equation, which reads−∆p−∆y

∫
Ω

2 b f p

(ua/2 + ηε(u− ua/2) + b ∥∇y∥2)2
dx = −φy(x, y) in Ω,

p = 0 on ∂Ω.
(3.2.12)

We point out that (3.2.12) is again a nonlocal equation. Given u ∈ H1(Ω) and y ∈ H1
0 (Ω)∩

W 2,q(Ω), (3.2.12) has a unique solution p ∈ H1
0 (Ω)∩W 2,q(Ω). This can be shown either by

direct arguments as in proposition 3.2.1, or by exploiting that the bounded invertibility of
Ey implies that of its adjoint, see the proof of theorem 3.2.2.

The derivative of the Lagrangian with respect to the control is given by

Lu(y, u, p) δu = λ (u, δu)H1(Ω) −
1

ε

∫
Ω

(
(ua − u)+ − (u− ub)+

)
δu dx

+

∫
Ω

f p η′ε(u− ua/2)

(ua/2 + ηε(u− ua/2) + b ∥∇y∥2)2
δu dx

for δu ∈ H1(Ω).
We obtain the following regularized system of necessary optimality conditions.

Theorem 3.2.7. Suppose that (y, u) ∈
(
H1

0 (Ω) ∩W 2,q(Ω)
)
× H1(Ω) is a locally optimal

solution of problem (Pε) for any q ∈ [1,∞). Then there exists a unique adjoint state
p ∈ H1

0 (Ω) ∩W 2,q(Ω) for all q ∈ [1,∞) such that the following system holds:−∆p−∆y

∫
Ω

2 b f p

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
dx = −φy(x, y) in Ω,

p = 0 on ∂Ω,

(3.2.13a)


λ

∫
Ω
∇u · ∇v dx+

∫
Ω

( f p η′ε(u− ua/2)

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
+ λu

)
v dx

− 1

ε

∫
Ω

(
(ua − u)+ − (u− ub)+

)
v dx = 0 for all v ∈ H1(Ω),

(3.2.13b)

−∆y =
f

ua/2 + ηε (u− ua/2) + b ∥∇y∥2
in Ω,

y = 0 on ∂Ω.
(3.2.13c)

Remark 3.2.8. We note that under a second-order sufficient condition, which is not investi-
gated in this work, every solution of (3.2.13) is a strict local minimizer of (Pε). According
to theorem 3.2.6, applied to a modified problem with a suitable localization term, the local
minimizer of the penalized problem under consideration converges to a local minimizer of the
original optimal control problem as ε → 0. This technique is well known; see for instance
Casas, Mateos, Raymond, 2007, Section 4. Therefore, under second-order sufficient opti-
mality conditions, the solutions of the optimality system of (Pε) converge to the solutions
of the optimality system of (3.1.1).
Corollary 3.2.9. The terms(

f p η′ε(u− ua/2)

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
+ λu

)
− 1

ε

(
(ua − u)+ − (u− ub)+

)
in (3.2.13b) belong to L∞(Ω) and therefore, any locally optimal control of (Pε) belongs to
W 2,q(Ω) for any q ∈ [1,∞).
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Proof. We only elaborate on the case N = 3 since the cases N ∈ {1, 2} are similar. We
first consider the numerator of the first term. Here f ∈ L∞(Ω) holds by Assumption 4.1.1
and p ∈ L∞(Ω) by virtue of the embedding W 2,q(Ω) ↪→ L∞(Ω) for q > 3/2. Moreover, η′ε
maps into [0, 1] and therefore η′ε(u − ua) belongs to L∞(Ω) as well. The denominator is
bounded below by ua/2, and therefore, the first term belongs to L∞(Ω).
The second term, 1

ε

(
(ua − u)+−(u− ub)+

)
, belongs to L6(Ω) due to the embeddingH1(Ω) ↪→

L6(Ω). Inserting this into (3.2.13b) with the differential operator λ (−∆ + id) and the re-
maining terms on the right-hand side shows u ∈W 2,6(Ω), which in turn embeds into L∞(Ω).
Repeating this procedure one more time implies u ∈W 2,q(Ω). □

3.3 Generalized Newton Method
In this section we show that the optimality system (3.2.13) of the penalized problem

is differentiable in a generalized sense, referred to as Newton differentiability. This allows
us to formulate a generalized Newton method. Due to its similarity with the concept of
semismoothness, see Ulbrich, 2011, such methods are sometimes referred to as a semismooth
Newton method.
Definition 3.3.1 (Hintermüller, Ito, Kunisch, 2002, Definition 1, Ito, Kunisch, 2008, Defini-
tion 8.10). Let X and Y be two Banach spaces and D be an open subset of X. The mapping
F : D ⊂ X → Y is called Newton differentiable on the open subset V ⊂ D if there exists a
map G : V → L(X,Y ) such that, for every x ∈ V ,

lim
h→0

1

∥h∥X
∥F (x+ h)− F (x)−G(x+ h)h∥Y = 0.

In this case G is said to be a Newton derivative of F on V .
We formulate the optimality system (3.2.13) in terms of an operator equation F = 0

where

F : X :=
(
W 2,q(Ω) ∩H1

0 (Ω)
)
×W 2,q

⋄ (Ω)×
(
W 2,q(Ω) ∩H1

0 (Ω)
)
→ Lq(Ω)3 =: Y (3.3.1)

and q ∈ [max{1, N/2},∞) is arbitrary but fixed.
Here W 2,q

⋄ (Ω) is defined as

W 2,q
⋄ (Ω) :=

{
u ∈W 2,q(Ω)

∣∣∣∣ ∂u∂n = 0 on ∂Ω
}
,

which is directly motivated by the integration by parts of equation (3.2.13b). The component
F1 represents the adjoint equation (3.2.13a) in strong form, i. e.,

F1(y, u, p) = −∆p−∆y

∫
Ω

2 b f p

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
dx+ φy(x, y).

The continuous Fréchet differentiability of F1 is a standard result, which uses lemma 3.1.3
and the embedding W 2,q(Ω) ↪→ L∞(Ω). The directional derivative is given by

F ′
1(y, u, p) (δy, δu, δp)

= −∆δp−∆δy

∫
Ω

2 b f p

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
dx

−∆y

∫
Ω

2 b f δp

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
dx

+∆y

∫
Ω

4 b f p (η′ε(u− ua/2) δu+ 2 b (∇y,∇δy))
(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)3

dx+ φyy(x, y) δy.
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Similarly, F3 represents the state equation (3.2.13c), i. e.,

F3(y, u, p) = −∆y − f

ua/2 + ηε (u− ua/2) + b ∥∇y∥2

and its continuous Fréchet derivative is given by

F ′
3(y, u, p)(δy, δu, δp) = −∆δy +

f [η′ε(u− ua/2) δu+ 2 b (∇y,∇δy)]
(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2

.

Finally, in order to define F2 we integrate (3.2.13b) by parts, which is feasible due to
corollary 3.2.9. This results in the equivalent formulation F2 = 0, where

F2(y, u, p) = −λ∆u+
f p η′ε(u− ua/2)

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
+ λu

− 1

ε
(max{ua − u, 0} −max{u− ub, 0}) ,

and the boundary conditions ∂u
∂n = 0, which are included in the definition of W 2,q

⋄ (Ω).
In order to establish the Newton differentiability of F2, we invoke the following classical

result.
Theorem 3.3.2 (Hintermüller, Ito, Kunisch, 2002, Proposition 4.1, Ito, Kunisch, 2008, Exam-
ple 8.14). The mapping

max{0, ·} : Lp(Ω) → Lq(Ω), 1 ≤ q < p ≤ ∞
is Newton differentiable on Lp(Ω) with generalized derivative

Gmax : L
p(Ω) → L(Lp(Ω), Lq(Ω))

given by

Gmax(u) δu =

{
δu(x), where u(x) ≥ 0,

0, where u(x) < 0.

Using theorem 3.3.2 and the embedding W 2,q(Ω) ↪→ L∞(Ω), it follows that F2 is Newton
differentiable on the entire space X with generalized derivative

G2(y, u, p)(δy, δu, δp)

= −λ∆δu+
f δp η′ε(u− ua/2) + f p η′′ε (u− ua/2) δu

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)2
+ λ δu

− 2 f p η′ε(u− ua/2) [η
′
ε(u− ua/2) δu+ 2 b (∇y,∇δy)]

(ua/2 + ηε (u− ua/2) + b ∥∇y∥2)3
+

1

ε
χA(u)δu.

Here χA stands for the indicator function of the set

A(u) = {x ∈ Ω |ua − u ≥ 0 or u− ub ≥ 0}.
We are now in a position to state a basic generalized Newton method; see Algo-

rithm 3.3.3. Following well-known arguments, we can show its local well-posedness and
superlinear convergence to local minimizers satisfying second-order sufficient conditions.
We refrain from repeating the details and refer the interested reader to, e. g., Ito, Kunisch,
2008, Chapter 7, Hinze, Pinnau, et al., 2009, Chapter 2.4–2.5 and Ulbrich, 2011, Chapter 10.
It is also possible to globalize the method using a line search approach; see, e. g., Hinze,
Vierling, 2012.
Algorithm 3.3.3 (Basic semismooth Newton method for the solution of problem (Pε)).
Input: initial guess (y0, u0, p0) ∈ X
Output: approximate stationary point of (Pε)
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1: Set k := 0
2: while not converged do
3: Determine the active set A(uk)
4: Solve the Newton system

G1(yk, uk, pk)(δy, δu, δp) = −F1(yk, uk, pk)

G2(yk, uk, pk)(δy, δu, δp) = −F2(yk, uk, pk)

G3(yk, uk, pk)(δy, δu, δp) = −F3(yk, uk, pk)

(3.3.2)

5: Update the iterates by setting

yk+1 := yk + δy, uk+1 := uk + δu, pk+1 := pk + δp

6: Set k := k + 1
7: end while

An appropriate criterion for the convergence of Algorithm 3.3.3 is the smallness of
∥F1(yk, uk, pk)∥Lq(Ω), ∥F2(yk, uk, pk)∥Lq(Ω) and ∥F3(yk, uk, pk)∥Lq(Ω), either in absolute terms
or relative to the initial values.
Remark 3.3.4. We remark that all previous results can be generalized to convex domains
Ω ⊂ RN where 1 ≤ N ≤ 3. In this case, we can invoke the H2-regularity result for the
Poisson problem on convex domains in the proof of theorem 3.1.6, which can be deduced
from Grisvard, 1985, Theorem 3.2.1.2:
Theorem 3.3.5. Let Ω be a bounded and convex domain. If the right-hand side function
f ∈ L2(Ω), then the solution of the Poisson problem{−∆y = f in Ω,

y = 0 on ∂Ω,

belongs to H2(Ω).
Consequently, we have to replace q ∈ [1,∞) by q = 2 in theorem 3.1.6 and all subsequent

results. The requirement N ≤ 3 ensures the validity of the embedding H2(Ω) ↪→ C(Ω).

3.4 Discretization and Implementation
In this section we address the discretization of the relaxed optimal control problem

(Pε). We then follow a discretize–then–optimize approach and derive the associated discrete
optimality system, as well as a discrete version of the generalized Newton method. In order
to simplify the implementation, we employ the original control-to-state map y = S(u). In
other words, we choose ηε = id in (Pε), which no longer approximates the positive part
function. Consequently, the controls appearing in the control-to-state map are no longer
guaranteed to be bounded below by ua. This simplification is justified a posteriori, provided
that the control iterates happen to remain positive and bounded away from zero and thus
still permit the state equation to be uniquely solvable, or rather its linearized counterpart
appearing in the generalized Newton method. We numerically observed this to be the case
for all examples. In addition, we allow the addition of an upper bound on the constraint in
our implementation, which is treated via the same penalty approach as the lower bound.

Our discretization method of choice is the finite element method. We employ piecewise
linear, globally continuous finite elements on geometrically conforming triangulations of the
domain Ω. More precisely, we use the space

Vh := {v ∈ H1(Ω) ∩ C(Ω) | v is linear on all triangles} ⊂ H1(Ω)

to discretize the control, the state and adjoint state variables. We use the usual Lagrangian
basis and refer to the basis functions as {φj}, where j = 1, . . . , NV and NV denotes the
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number of vertices in the mesh. The coefficient vector, e. g., for the discrete control vari-
able u ∈ Vh, will be denoted by u, so we have

u =

NV∑
j=1

ujφj .

In order to formulate the discrete optimal control problem, we introduce the mass and
stiffness matrices M and K as follows:

Mij =

∫
Ω
φi φj dx and Kij =

∫
Ω
∇φi · ∇φj dx.

We also make use of the diagonally lumped mass matrix Mlumped with entries Mlumpedii =∑NV
j=1Mij . Suppose that the right-hand side f and coefficient b have been discretized and

represented by their coefficient vectors f and b in Vh. Using the lumped mass matrix, the
weak formulation (3.1.4) of the state equation can be written in preliminary discrete form
as

Ky = Mlumped

[
fi

ui + bi(yTKy)

]NV

i=1

.

In order to incorporate the Dirichlet boundary conditions, we introduce the boundary pro-
jector PΓ. This is a diagonal NV ×NV -matrix which has ones along the diagonal in entries
pertaining to boundary vertices, and zeros otherwise. We also introduce the interior pro-
jector PΩ := id − PΓ. We can thus state the discrete form of the state equation (3.1.4)
as

PΩKy −PΩMlumped

[
fi

ui + bi(yTKy)

]NV

i=1

+PΓy = 0. (3.4.1)

In order to simplify the notation, we introduce further diagonal matrices

F := diag(f), B := diag(b) and D(y,u) := diag(u) + (yTKy)B.

Using these matrices, we can write (3.4.1) more compactly as

e(y,u) := PΩKy −PΩMlumped FD(y,u)−11+PΓy = 0, (3.4.2)

where 1 and 0 denote column vectors of all ones and all zeros, respectively.
To be specific, we focus on a tracking-type objective and choose φ(x, y) = 1

2(y− yd)
2 in

(1.1.4) and thus also in (Pε). In addition, we distinguish two positive control cost parameters
λ1 and λ2, which leads to discrete problems of the form

J(y,u) =
1

2
(y − yd)

TM(y − yd) +
λ1
2
uTKu+

λ2
2
uTMu

+
1

2ε
(ua − u)T+Mlumped(ua − u)+ +

1

2ε
(u− ub)

T
+Mlumped(u− ub)+ (3.4.3)

and the Lagrangian of our discretized problem becomes

L(y,u,p) = 1

2
(y − yd)

TM(y − yd) +
λ1
2
uTKu+

λ2
2
uTMu

+
1

2ε
(ua − u)T+Mlumped(ua − u)+ +

1

2ε
(u− ub)

T
+Mlumped(u− ub)+

+ pTPΩKy − pTPΩMlumped FD(y,u)−11+ pTPΓy. (3.4.4)
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Before we state the first- and second-order derivatives of the Lagrangian, we address the
nonlinear term D(y,u)−1 first. We obtain
d
dy

D(y,u)−1δy = −2 (yTK δy)BD(y,u)−2 and thus
d
dy

D(y,u)−11 = −2BD(y,u)−21yTK,

d
du

D(y,u)−1δu = −D(y,u)−2 diag(δu) and thus
d
du

D(y,u)−11 = −D(y,u)−2.

Therefore, the first-order derivatives of L (written as column vectors) are given by

Ly(y,u,p) = M(y − yd) +KPΩp+ 2Ky1TD(y,u)−2BFMlumped PΩp+PΓp,
(3.4.5a)

and

Lu(y,u,p) = λ1Ku+ λ2Mu− 1

ε
DA−(u)Mlumped DA−(u) (ua − u)

+
1

ε
DA+(u)Mlumped DA+(u) (u− ub) + FD(y,u)−2Mlumped PΩp. (3.4.5b)

Here DA+(u) and DA−(u) are diagonal (active-set) matrices with entries

[DA+(u)]ii =

{
1 where [ua − u]i ≥ 0,

0 otherwise,
[DA−(u)]ii =

{
1 where [u− ub]i ≥ 0,

0 otherwise,

and we set DA(u) = DA+(u) +DA−(u).
In order to solve the discrete optimality system consisting of (3.4.1) and (3.4.5), we

employ a finite-dimensional semismooth Newton method (Algorithm 3.4.1). This requires
the evaluation of first-order derivatives of the state equation (3.4.1) as well as second-order
derivatives of the Lagrangian (3.4.4). The following expressions are obtained.

ey(y,u) = PΩK+ 2PΩMlumped FBD(y,u)−21yT K+PΓ, (3.4.6a)

eu(y,u) = PΩMlumped D(y,u)−2F, (3.4.6b)

Lyy(y,u,p) = M− 8pTPΩMlumped FB2D(y,u)−31KyyTK

+ 2pTPΩMlumped FBD(y,u)−21K, (3.4.6c)

Lyu(y,u,p) = −4KypTPΩMlumped FD(y,u)−3B, (3.4.6d)

Luu(y,u,p) = λ1K+ λ2M+
1

ε
DA(u)Mlumped DA(u)

− 2 diag(Mlumped p)D(y,u)−3F. (3.4.6e)

Notice that the expression for Luu is the generalized derivative of Lu in the sense of defini-
tion 3.3.1.

The discrete generalized Newton system has the following form:Lyy(y,u,p) Lyu(y,u,p) ey(y,u)
T

Luy(y,u,p) Luu(y,u,p) eu(y,u)
T

ey(y,u) eu(y,u) 0

δyδu
δp

 = −

Ly(y,u,p)
Lu(y,u,p)
e(y,u)

 . (3.4.7)

The well-posedness of the system (3.4.7) can be shown in a neighborhood of a locally op-
timal solution satisfying second-order sufficient optimality conditions, under the additional
assumption that u remains positive. This is a well established technique and it applies both
to the continuous as well as to the discrete setting; see for instance Alt, 1990; Tröltzsch,
1999; Rösch, Wachsmuth, 2008. In contrast to standard optimal control problems which
do not feature a nonlocal PDE, some of the blocks in (3.4.7) are no longer sparse. This
comment applies to ey due to the second summand in (3.4.6a), to Lyy due to the second
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summand in (3.4.6c) as well as to Lyu given by (3.4.6d). For a high performance implemen-
tation, it is therefore important to not assemble the blocks in (3.4.7) as matrices, but rather
to provide matrix-vector products and use a preconditioned iterative solver such as Minres
(Paige, Saunders, 1975) to solve (3.4.7). We defer the design and analysis of a suitable
preconditioner to future work. For the time being we resort to the direct solution of (3.4.7)
using Matlab’s direct solver, which is still feasible on moderately fine discretizations of
two-dimensional domains.

Our implementation of the semismooth Newton method is described in Algorithm 3.4.1.
In contrast to Algorithm 3.3.3, we added an additional step in which we solve the discrete
nonlinear state equation (3.4.2) for yk+1 once per iteration for increased robustness; see
line 6 in Algorithm 3.4.1. Notice that the preliminary linear update to yk+1 in line 5 is still
useful since it provides an initial guess for the subsequent solution of e(yk+1,uk+1) = 0.
We mention that nonlinear state updates have been analyzed in the closely related context
of SQP methods, e. g., in Ulbrich, 2007; Clever et al., 2011. We also added a rudimentary
damping strategy which improves the convergence behavior. In our examples, it suffices to
choose γ = 1/2 when ∥Lu(yk,uk,pk)∥(K+M)−1 > 1/10 and γ = 1 otherwise.

The stopping criterion we employ in line 2 measures the three components of the residual,
i. e., the right-hand side in (3.4.7). Since each component represents an element of the dual
space of H1(Ω), we evaluate the (squared) H1(Ω)∗-norm of all residual components, which
amounts to

R2(y,u,p) := ∥Ly(y,u,p)∥2(K+M)−1 + ∥Lu(y,u,p)∥2(K+M)−1 + ∥e(y,u)∥2(K+M)−1 .

(3.4.8)
Algorithm 3.4.1 is stopped when

R(y,u,p) ≤ 10−6 (3.4.9)

is reached. Moreover, we impose a tolerance of ∥e(y,u)∥(K+M)−1 ≤ 10−10 for the solution
of the forward problem in line 6.
Algorithm 3.4.1 (Discrete semismooth Newton method with nonlinear state update for the
solution of a discretized instance of problem (Pε)).
Input: initial guess (y0,u0,p0) ∈ Vh × Vh × Vh
Output: approximate stationary point of the discretized instance of (Pε)
1: Set k := 0
2: while not converged do
3: Determine the active sets A+(uk) and A−(uk)
4: Solve the Newton system (3.4.7) for (δy, δu, δp), given (yk,uk,pk)
5: Update the iterates by setting

yk+1 := yk + γ δy, uk+1 := uk + γ δu, pk+1 := pk + γ δp

where γ ∈ (0, 1] is a suitable damping parameter.
6: Solve the nonlinear state equation (3.4.2) for the state yk+1, given the control uk+1

7: Set k := k + 1
8: end while

3.5 Numerical Experiments
In the following, we describe a number of numerical experiments. The first experiment

introduce in subsection 3.5.1, serves the purpose of demonstrating the influence of the non-
locality parameter b. In the second experiment subsection 3.5.2, we numerically confirm the
mesh independence of our algorithm. The third experiment presented in subsection 3.5.3, is
dedicated to studying the impact of the penalty parameter ε. The last example presented
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in subsection 3.5.4 is devoted to studying the influence of the control cost parameters λ1
and λ2.

As mentioned in section 3.4, our implementation of Algorithm 3.4.1 employs a direct
solver for the linear systems arising in line 4 and is therefore only suitable for relatively
coarse discretization of two-dimensional domains. Unless otherwise mentioned, the following
experiments are obtained on a mesh discretizing a square domain with NV = 665 vertices
and NT = 1248 triangles. Notice that convex domains are covered by our theory due to
remark 3.3.4. The typical run-time for Algorithm 3.4.1 is around 3 s.

3.5.1 Influence of the Non-Locality Parameter
Our initial example builds on the two-dimensional problem presented in Delgado, Figueiredo,

et al., 2017. The problem domain is Ω = (−0.5, 0.5)2; notice that this is slightly in-
correctly stated in Delgado, Figueiredo, et al., 2017. Moreover, we have right-hand side
f(x, y) ≡ 100 and desired state yd(x, y) ≡ 0. The lower bound for the control is given as
ua(x, y) = −3x − 3y + 10 and the upper bound is ub ≡ ∞. Moreover, the control cost
parameters are λ1 = 0 and λ2 = 4 · 10−5. We choose ε = 10−2 as our penalty parameter.
The coefficient function determining the degree of non-locality is set to b(x, y) = α (x2+y2),
where α varies in {0, 100, 101, 102, 103}. We point out that these settings violate Assump-
tion 4.1.1 due to λ1 = 0, i. e., the cost term is only of L2-type, and since b is not uniformly
positive inside Ω. The lack of an upper bound in this example is of no concern because
we could assign a posteriori a sufficiently large upper bound which does not become ac-
tive. Nonetheless, we present this experiment in order to reproduce the results in Delgado,
Figueiredo, et al., 2017, which correspond to the case α = 1.

For each value of α, we start from an initial guess constructed as follows. We initialize
u0 to the lower bound ua and set y0 to the numerical solution of the forward problem with
control u0. The adjoint state is initialized to p0 = 0.

Figure 3.5.1 shows some of the optimal state and control functions obtained. We notice
that the solution in case of a local problem (α = 0) is visually indistinguishable from
the setting α = 1 considered in Delgado, Figueiredo, et al., 2017. We therefore compare
it to the case α = 103 of significantly more pronounced non-local effects. Clearly, an
increase in the non-local parameter aids the control in this example, so the control effort
can decrease, as reflected in figure 3.5.1. Also, we observe that the number of iterations of
the discrete semismooth Newton method (Algorithm 3.4.1) decreases slightly as α increases;
see table 3.5.1.

α iterations

0.00e+00 10
1.00e+00 9
1.00e+01 7
1.00e+02 7
1.00e+03 6

Table 3.5.1. Number of iterations of the discrete semismooth Newton method
(Algorithm 3.4.1) for various values of the non-locality parameter α in the
example from subsection 3.5.1.
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Figure 3.5.1. Optimal states y (top row), optimal controls u (middle row)
and convergence history (bottom row) obtained for the example from sub-
section 3.5.1 for α = 1 (left column) and α = 103 (right column).
The three norms shown in the convergence plots correspond to the three
terms in (3.4.8), i. e., ∥Ly(y,u,p)∥(K+M)−1 , ∥Lu(y,u,p)∥(K+M)−1 and
∥e(y,u)∥(K+M)−1 .

3.5.2 Dependence on the Discretization
In this experiment we study the dependence of the number of semismooth Newton steps

in Algorithm 3.4.1 on the refinement level of the underlying discretization. To this end, we
consider a coarse mesh and two uniform refinements; see table 3.5.2.
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The problem is similar as in subsection 3.5.1. The domain is Ω = (−0.5, 0.5)2. We use
f(x, y) ≡ 100 as right-hand side and the desired state is yd(x, y) ≡ 0. The lower bound for
the control is now given as ua(x, y) = −10x− 10y+20 and the upper bound is ub = ua+5.
Moreover, the control cost parameters are λ1 = 10−7 and λ2 = 4 ·10−5. We choose ε = 10−2

as our penalty parameter. The coefficient function determining the degree of non-locality is
set to b(x, y) ≡ 10. Notice that Assumption 4.1.1 is satisfied for this experiment.

For each mesh, we start from an initial guess constructed as follows. We initialize u0

to the lower bound ua and set y0 to the numerical solution of the forward problem with
control u0. The adjoint state is initialized to p0 = 0. In this example, both the lower and
upper bounds are relevant on all mesh levels. Nonetheless, we observe a mesh-independent
convergence behavior; see figure 3.5.2.

level NV NT iterations

1 177 312 11
2 665 1248 8
3 2577 4992 8

Table 3.5.2. Number of iterations of the discrete semismooth Newton method
(Algorithm 3.4.1) for various mesh levels in the example from subsec-
tion 3.5.2.
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iteration

10
-10
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Figure 3.5.2. The convergence plot (left column) shows the total residual
norm R(y,u,p) as in (3.4.8) on all mesh levels for the example from sub-
section 3.5.2. The control on the finest level is shown in the right column.
Nodes where u = ub and u = ua holds are shown in red and blue, respec-
tively.

3.5.3 Influence of the Penalty Parameters
In this experiment, we study the behavior of Algorithm 3.4.1 and the solutions to the

penalized problem (Pε) in dependence of the penalty parameter ε. We solve similar problems
as before, with domain Ω = (−0.5, 0.5)2, right-hand side f(x, y) ≡ 100 and desired state
yd(x, y) ≡ 0. The lower bound for the control is ua(x, y) = −10x − 10y + 20 and the
upper bound is ub = ua + 8. Moreover, the control cost parameters are λ1 = 10−7 and
λ2 = 4 ·10−5. The penalty parameter varies in {100, 10−1, 10−2, 10−3, 10−4}. The coefficient
function determining the degree of non-locality is set to b(x, y) ≡ 10.
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The construction of an initial guess is the same as in subsection 3.5.2. The experi-
ment is split into two parts. First, we consider Algorithm 3.4.1 without warmstarts. The
corresponding results are shown in table 3.5.3. As expected, the number of Newton steps
increases as ε ↘ 0 while the norm of the bound violation decreases. Second, we repeat
the same experiment with warmstarts. That is, we use the initialization as described above
only for the initial value of ε. Subsequent runs of Algorithm 3.4.1 are initialized with the
final iterates obtained for the previous value of ε. This strategy is very effective, as shown
in figure 3.5.3 (right column).

ε iterations ∥(ua − u)+∥L∞(Ω) ∥(u− ub)+∥L∞(Ω)

1.00e+00 4 1.32e-03 6.36e-05
1.00e-01 4 1.32e-04 6.37e-06
1.00e-02 6 1.32e-05 6.39e-07
1.00e-03 10 1.32e-06 6.40e-08
1.00e-04 13 1.32e-07 6.40e-09

Table 3.5.3. Number of iterations of the discrete semismooth Newton method
(Algorithm 3.4.1, without warmstart) for various values of the penalty pa-
rameter ε in the example from subsection 3.5.3. The terms ∥(ua−u)+∥L∞(Ω)

and ∥(u − ub)+∥L∞(Ω) refer to the maximal positive nodal values of ua − u
and u− ub, respectively.
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Figure 3.5.3. The convergence plot shows the total residual norm R(y,u,p)
as in (3.4.8) for all values of the penalty parameter ε. In the left plot, the
same initial guess was used for all penalty parameters. With warmstarting,
convergence can be achieved in one semismooth Newton step.

3.5.4 Influence of the Control Cost Parameters
In this final experiment, we study variations of the control cost parameters. Specifically,

we consider λ1 ∈ {0, 10−9} and λ2 ∈ {10−8, 10−7}. The other problem is similar as in
subsection 3.5.1. Specifically, we use Ω = (−0.5, 0.5)2, f(x, y) = 100 and desired state
yd(x, y) = 0. The lower bound for the control is given again as ua(x, y) = −3x − 3y = 10
and we choose ε = 10−2 as our penalty parameter. The coefficient function determining the
degree of non-locality is set to b(x, y) = 100(x2 + y2).
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figure 3.5.4 shows the controls obtained for each choice of λ1, λ2 mentioned above.

Figure 3.5.4. Optimal control u obtained for the example from subsec-
tion 3.5.4 for (λ1, λ2) = (0, 10−8) (top left), (λ1, λ2) = (0, 10−7) (top right),
(λ1, λ2) = (10−9, 10−8) (bottom left) and (λ1, λ2) = (10−9, 10−7) (bottom
right).
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This chapter is dedicated to an optimal control problem governed by a nonlinear nonlocal
parabolic-elliptic chemotaxis system of partial differential equations (4.1.1b). As explained
in subsection 1.1.2, chemotaxis is the directed movement of a motile cell or living organisim
in response to a chemical concentration gradient. The equation (4.1.1b) describes the evo-
lution of a cell population under chemotactic effects with a logistic growth reaction term
defined in terms of the total mass of the population. The variables y and w represent the
cell density and the chemoattractant concentration, which is produced by the cell popu-
lation itself, respectively. The nonlocal term a2 −

∫
Ω y dx, which describes the total mass of

the population, has a balancing effect and its impact depends on the sign of a2. The vari-
able u represents the control imposed on the boundary of the domain as a positive flux of
the chemoattractant. The tracking-type cost functional (4.1.1a) measure the discrepancy
between the cell density y and desired density yd at final time T and the control cost.

This chapter is divided into two sections. In the first section, section 4.1, we establish
the existence and uniqueness of solutions to the chemotaxis system (4.1.1b), as well as the
existence of a solution to the optimal control problem (4.1.1). The first-order necessary
optimality conditions are derived in the second section, section 4.2.

For convenience, we have included the main results discussed in chapter 2 that are
relevant to the current chapter.

4.1 Optimal Control Problem: Existence Theory
The existence theory is divided into two subsections. In subsection 4.1.1, we introduce

a definition of a weak solution to the state equation and prove its existence. The existence
of an optimal solution is demonstrated in subsection 4.1.2.

In this work, we are interested in studying the following optimal control problem for a
nonlocal, nonlinear parabolic-elliptic system

Minimize J(y, u) :=
1

2

∫
Ω
|y(x, T )− yd(x)|2 dx+

γ

2

∫ T

0

∫
∂Ω

|u(x, t)|2 ds dt (4.1.1a)

subject to



∂ty −∆y = −χ div (y∇w) + y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
in ΩT ,

−∆w + λw = y in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω

(4.1.1b)

and u ∈ Uad. (4.1.1c)
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The set of admissible controls is given by

Uad = {u ∈ L∞(∂ΩT ) | 0 ≤ u(x, t) ≤ ub(x, t) a.e. on ∂ΩT }. (4.1.2)

According to definition 2.1.36, ΩT := Ω× (0, T ) and ∂ΩT := ∂Ω× (0, T ).
Throughout this chapter, we maintain the following standing assumptions.

Assumption 4.1.1. We assume that Ω ⊂ RN , N ≥ 1, is a bounded domain of class C1,1

with N ∈ {2, 3}. Furthermore, the initial cell density y0 is a non-negative function in
L∞(Ω) ∩ H1(Ω) and the upper bound ub(x, t) in the set of admissible controls Uad belongs
to L∞(∂ΩT ) for almost every (x, t) ∈ ∂ΩT . Moreover, the chemotactic coefficient χ, the
control cost parameter γ and the reproduction rate λ of the chemoattractant are positive
constants. Finally, the constants a0, a1 in the logistic growth term are positive, and a2 ∈ R
holds. Furthermore, we require

−a1 + [a2]− < 0, (4.1.3)
where [a2]− = −min{a2, 0} ≥ 0 denotes the negative part of a2.

4.1.1 Existence of a Weak Solution

We begin our analysis with the definition of the weak solutions to problem (4.1.1b). We
work with the well-known space

W (0, T ) =
{
y ∈ L2(0, T ;H1(Ω))

∣∣ ∂ty ∈ L2(0, T ;H1(Ω)∗)
}
,

equipped with the norm

∥y∥W (0,T ) :=

(∫ T

0
∥y∥2H1(Ω) + ∥∂ty∥2H1(Ω)∗ dt

)1/2

.

Definition 4.1.2. Let u ∈ L∞(∂ΩT ). The pair (y, w) ∈ W (0, T )× L∞(0, T ;H1(Ω)) is said
to be a weak solution of (4.1.1b) if it satisfies∫

Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = χ

∫
Ω
y∇w · ∇φ dx− χ

∫
∂Ω
u y φ dx

+

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
ydx

)
y φ dx, (4.1.4)

∫
Ω
∇w · ∇φ dx−

∫
∂Ω
uφ ds+ λ

∫
Ω
wφ dx =

∫
Ω
y φ dx, (4.1.5)

y(x, 0) = y0(x) (4.1.6)

for all φ ∈ C∞(Ω) and for a.a. t ∈ [0, T ].
Expanding div (y∇w) = ∇y · ∇w + y∆w in the first equation of (4.1.1b) and inserting

the second equation of (4.1.1b) into the first one, we can rewrite (4.1.1b) as follows:

∂ty −∆y = −χ∇y · ∇w + y

(
−χλw + χy + a0 − a1 y − a2−

∫
Ω
y dx

)
in ΩT ,

−∆w + λw = y in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω.

(4.1.7)

In the following, we define the weak solution to problem (4.1.7) and observe that defi-
nition 4.1.2 and definition 4.1.3 are equivalent.
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Definition 4.1.3. Let u ∈ L∞(∂ΩT ). The pair (y, w) ∈ W (0, T )× L∞(0, T ;H1(Ω)) is said
to be a weak solution of (4.1.7) if it satisfies∫

Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = −χ

∫
Ω
∇y · ∇wφ dx

+

∫
Ω

(
−χλw + χy + a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx, (4.1.8)

∫
Ω
∇w · ∇φ dx−

∫
∂Ω
uφ ds+ λ

∫
Ω
wφ dx =

∫
Ω
y φ dx, (4.1.9)

y(x, 0) = y0(x) (4.1.10)

for all φ ∈ C∞(Ω) and for a.a. t ∈ [0, T ].
Remark 4.1.4. It can be easily proven that the weak solutions of (4.1.1b) and (4.1.7) are
equivalent. The equivalence is demonstrated by establishing the similarity of the first condi-
tions in both definition 4.1.2 and definition 4.1.3. Indeed, multiplying the first equation in
(4.1.1b) with the test function φ ∈ C∞(Ω) and the second one with y φ ∈ H1(Ω) for a.a.
t ∈ [0, T ], we obtain, using integration by parts,∫

Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = χ

∫
Ω
y∇w · ∇φ dx− χ

∫
∂Ω
u y φ ds

+

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx (4.1.11a)

and ∫
Ω
∇w · ∇(y φ) dx−

∫
∂Ω
u y φ ds+ λ

∫
Ω
w y φ dx =

∫
Ω
y2 φ dx. (4.1.11b)

Inserting (4.1.11a) into (4.1.11b) yields∫
Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = χ

∫
Ω
y∇w · ∇φ dx− χ

∫
Ω
∇w · ∇ (y φ) dx

− χλ

∫
Ω
w y φ dx+ χ

∫
Ω
y2 φ dx+

∫
Ω
y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
φ dx

= −χ
∫
Ω
∇w · ∇y φ dx+

∫
Ω

(
−χλw + χy + a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx

and this is exactly definition 4.1.3.
For the reverse direction, we multiply the first equation in (4.1.7) with the test function

φ ∈ C∞(Ω) and the second one with y φ ∈ H1(Ω) and obtain, using integration by parts,∫
Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = −χ

∫
Ω
∇y · ∇wφ dx

+

∫
Ω

(
−χλw + χy + a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx (4.1.12a)

and ∫
Ω
∇w · ∇(y φ) dx−

∫
∂Ω
u y φ ds+ λ

∫
Ω
w y φ dx =

∫
Ω
y2 φ dx. (4.1.12b)

Inserting (4.1.12a) into (4.1.12b) yields∫
Ω
∂ty φ dx+

∫
Ω
∇y · ∇φ dx = −χ

∫
Ω
∇y · ∇wφ dx+ χ

∫
Ω
∇w · ∇ (y φ) dx
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− χ

∫
∂Ω
u y φ ds+

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx

= χ

∫
Ω
y∇w · ∇φ dx+

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx

and this is exactly definition 4.1.2.
We can attain a higher regularity for w, which is also essential for our proofs throughout

this chapter.
The following theorem is a deduced result from Grisvard, 1985, Theorem 2.2.2.5:

Theorem 4.1.5. Suppose that Ω is a bounded C1,1 domain and A is an elliptic differential
operator of the form

Ay(x) = −
n∑

i,j=1

(aij(x)yxj (x))xi , x ∈ Ω.

The coefficient functions aij of A are assumed to belong to C0,1(Ω) and satisfy the symmetric
condition aij(x) = aji(x) for all i, j ∈ {1, . . . , n} and x ∈ Ω.

If λ > 0 and the right-hand side function y ∈ L2(Ω), then the weak solution to the
following Neumann problem 

Aw + λw = y in Ω,

∂w

∂n
= 0 on ∂Ω,

belongs to H2(Ω).
In addition, the following theorem is an inferred result from Morrey, 1966, Chapter 5,

Section 5.5.
Theorem 4.1.6. Let Ω be a bounded C1 domain. For given right-hand side functions y ∈
W 1,6/5(Ω)∗ and u ∈ L6(∂Ω), the following PDE

−∆w + λw = y in Ω,

∂w

∂n
= u on ∂Ω,

possesses a unique weak solution w ∈W 1,6(Ω).
In our work y(t) belongs to H1(Ω) ↪→ L2(Ω). By virtue of theorem 2.1.16, W 1,6/5(Ω)

is densely embedded in L2(Ω), which implies L2(Ω) ↪→ W 1,6/5(Ω)∗. Therefore, the above
result is applicable to our work.

For our purpose, it suffices that w belongs to W 1,4(Ω). Nevertheless, having w ∈
W 1,6(Ω), could simplify some estimates in our proofs.

We now proceed to discuss the well-posedness of (4.1.7). To this end, we rely on some
classical results. First, we introduce the definition of a closed form:
Definition 4.1.7. Let T > 0 and V, H to be Hilbert spaces over R such that V is continuously
and densely embedded in H. We consider

a : [0, T ]× V × V → R.

We say that a is a closed form if the following properties hold:
(i) a is a non-autonomous form, i. e., a(t; ·, ·) is bilinear for all t ∈ [0, T ], and a(·, y, v)

is measurable for all y, v ∈ V .
(ii) a is V -bounded, i. e., there exists some time-independent constant α = α(T ) > 0.

|a(t; y, v)| ≤ α ∥y∥V ∥v∥V for all t ∈ [0, T ] and y, v ∈ V.
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(iii) a is quasi-coercive, i. e., there exist time-independent constants β > 0 and ω ∈ R
such that

a(t; y, y) + ω ∥y∥2H ≥ β ∥y∥2V for all t ∈ [0, T ] and y ∈ V.

We note that for each t ∈ [0, T ] the bounded non-autonomous form a(t; y, v) defines an
operator A(t) ∈ L(V, V ∗)

⟨A(t)y , v⟩ = (a+ ω)(t; y, v) for all y, v ∈ V.

Here ⟨· , ·⟩ denotes the duality between V and its dual space V ∗ and the form (a+ω)(t; y, v)
is defined by

(a+ ω)(t; y, v) := a(t; y, v) + ω(y, v)H .

Now a classical result states the following, see Dautray, Lions, 2000, Chapter XVIII, Sec-
tion 3.

In the following theorem, we suppose that V is dense in H, and we identify H with its
dual H∗, meaning we have

V ↪→ H ↪→ V ∗

and y ∈W (0, T ;V, V ∗) is defined by

W (0, T ;V, V ∗) := {y ∈ L2(0, T ;V ) | ∂ty ∈ L2(0, T ;V ∗)}.
We note that for V = H1(Ω), this space coincide with W (0, T ).
Theorem 4.1.8. Assume that a(t; y, v) to be a closed form with its associated operator A(t).
For every f ∈ L2(0, T ;V ∗) and y0 ∈ H there exists a unique solution y ∈ W (0, T ;V, V ∗)
such that {

∂ty +A(t) y = f(t),

y(0) = y0.
(4.1.13)

We consider the following linear parabolic equation
∂ty −∆y = −χ∇w · ∇y + g y in ΩT ,

∂y

∂n
= 0 on ∂ΩT ,

y(x, 0) = y0(x) in Ω,

(4.1.14)

where ∇w ∈ L∞(0, T ;L4(Ω)), g ∈ L∞(0, T ;L2(Ω)), and y0 ∈ L2(Ω) are given functions and
χ is some given constant.

For T > 0, we set

A(t) := −∆y + χ∇w · ∇y − g y t ∈ [0, T ]

and define
a : [0, T ]×H1(Ω)×H1(Ω) → R

a(t; y, v) =

∫
Ω
∇y · ∇v + χ

∫
Ω
∇w · ∇y v dx−

∫
Ω
g y v dx.

(4.1.15)

Now, we can show the existence of a unique solution to (4.1.14).
Theorem 4.1.9. Let y0 ∈ L2(Ω), ∇w ∈ L∞(0, T ;L4(Ω)) and g ∈ L∞(0, T ;L2(Ω)) be given
functions. Then, (4.1.14) has a unique weak solution y ∈W (0, T ).

Proof. Obviously, it holds

H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)∗.

In the following, we will verify the three properties in definition 4.1.7, asserting that a
is a closed form. As explained in definition B.2.5, we use the notation ≲ to avoid excessive
estimation constants in embeddings.
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(i) Obviously, a(t; ·, ·) is bilinear for each t ∈ [0, T ], and a(·, y, v) is measurable for
every y, v ∈ H1(Ω).

(ii) For each t ∈ [0, T ], a is H1-bounded with t-independent bound: We apply Hölder’s
inequality and Sobolev embeddings, resulting in:

|a(t; y, v)| =
∣∣∣∣∫

Ω
∇y · ∇v dx+ χ

∫
Ω
∇w · ∇y v dx−

∫
Ω
g y v dx

∣∣∣∣
≤ ∥∇y∥L2(Ω) ∥∇v∥L2(Ω) + χ ∥∇w∥L3(Ω) ∥∇y∥L2(Ω) ∥v∥L6(Ω)

+ ∥g∥L2(Ω) ∥y∥L3(Ω) ∥v∥L6(Ω)

≲ ∥y∥H1(Ω) ∥v∥H1(Ω) + ∥∇w∥L∞(0,T ;L3(Ω)) ∥y∥H1(Ω) ∥v∥H1(Ω)

∥g∥L∞(0,T ;L2(Ω)) ∥y∥H1(Ω) ∥v∥H1(Ω)

≲ c ∥y∥H1(Ω) ∥v∥H1(Ω) .

(iii) For each t ∈ [0, T ], a is quasi-coercive: We apply Hölder’s and Young’s inequalities,
as well as Sobolev embeddings, and obtain:

a(t; y, y) =

∫
Ω
|∇y|2 dx+ χ

∫
Ω
∇w · ∇y y dx−

∫
Ω
g y2 dx

≥ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥L4(Ω) − ∥g∥L2(Ω) ∥y∥
2
L4(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

∥y∥3/4
L6(Ω)

− ∥g∥L2(Ω)

(
∥y∥1/4

L2(Ω)
∥y∥3/4

L6(Ω)

)2

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

(
∥y∥L2(Ω) + ∥∇y∥L2(Ω)

)3/4

− ∥g∥L2(Ω) ∥y∥
1/2
L2(Ω)

∥y∥3/2
H1(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

(
∥y∥3/4

L2(Ω)
+ ∥∇y∥3/4

L2(Ω)

)
− ∥g∥L2(Ω) ∥y∥

1/2
L2(Ω)

∥y∥3/2
H1(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥L2(Ω)

− χ ∥∇w∥L4(Ω) ∥∇y∥
7/4
L2(Ω)

∥y∥1/4
L2(Ω)

− ∥g∥L2(Ω) ∥y∥
1/2
L2(Ω)

∥y∥3/2
H1(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω)

[
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

]
− χ ∥∇w∥L4(Ω)

[
ε
(
∥∇y∥7/4

L2(Ω)

)8/7
+ C(ε)

(
∥y∥1/4

L2(Ω)

)8
]

− ∥g∥L2(Ω)

[
ε
(
∥y∥3/2

H1(Ω)

)4/3
+ C(ε)

(
∥y∥1/2

L2(Ω)

)4
]

≳ ∥∇y∥2L2(Ω) − 2χ ∥∇w∥L∞(0,T ;L4(Ω))

[
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

]
− ∥g∥L∞(0,T ;L2(Ω))

[
ε ∥∇y∥2L2(Ω) + (ε+ C(ε)) ∥y∥2L2(Ω)

]
≳ ∥∇y∥2L2(Ω) −

[
2 εχ ∥∇w∥L∞(0,T ;L4(Ω)) + ε ∥g∥L∞(0,T ;L2(Ω))

]
∥∇y∥2L2(Ω)

−
[
2C(ε)χ ∥∇w∥L∞(0,T ;L4(Ω)) + (ε+ C(ε)) ∥g∥L∞(0,T ;L2(Ω))

]
∥y∥2L2(Ω) .



4.1 Optimal Control Problem: Existence Theory 77

Choosing ε = 1/
(
2
[
2χ ∥∇w∥L∞(0,T ;L4(Ω)) + ∥g∥L∞(0,T ;L2(Ω))

])
we obtain

a(t; y, y) ≥ 1

2
∥∇y∥2L2(Ω) −

[
C(χ, ∥∇w∥L∞(0,T ;L3(Ω)) , ∥g∥L∞(0,T ;L2(Ω)))

]
∥y∥2L2(Ω)

and consequently

a(t; y, y) +

[
1

2
+ C(χ, ∥∇w∥L∞(0,T ;L3(Ω)) , ∥g∥L∞(0,T ;L2(Ω)))

]
∥y∥2L2(Ω) ≥

1

2
∥y∥2H1(Ω) .

By setting ω := 1
2 + C(χ, ∥∇w∥L∞(0,T ;L3(Ω)) , ∥g∥L∞(0,T ;L2(Ω))), a is quasi-coercive.

Due to the closed form nature of a, the existence of a unique solution y ∈ W (0, T ) is
readily established by applying theorem 4.1.8 to the problem defined in (4.1.17). □

In what follows, we aim to establish the unique solution to (4.1.14) is both positive and
bounded from above.

First, we recall some standard notations. Given v ∈ L2(Ω), we set

v+ := max{v(x), 0}, v− := −min{v(x), 0}, v ∧ 1 := min{v(x), 1} for a.e. x ∈ Ω.

We write v ≥ 0 as shorthand for v(x) ≥ 0 for a.e. x ∈ Ω and L2(Ω)+ := {v ∈ L2(Ω) | v ≥ 0}.
To ensure the positivity of the solution, we refer to the result presented in Arendt, Dier,

Ouhabaz, 2014, Proposition 3.1.
Proposition 4.1.10. Let a be a closed form and V be a sublattice of L2(Ω), i. e., v ∈ V
implies v+ ∈ V . Assume a(t; v+, v−) ≤ 0 for a.e. t ∈ [0, T ] and all v ∈ V .

We additionally suppose that y0 ∈ V+ := L2(Ω)+ ∩ V and f ≥ 0. Then, the solution of
(4.1.13) satisfies y(t) ≥ 0 for a.e. t ∈ [0, T ].

To establish the boundedness of the solution from above, we refer to the result presented
in Arendt, Dier, Ouhabaz, 2014, Proposition 3.2.
Proposition 4.1.11. Let a be a closed form and v ∧ 1 ∈ V . Assume a(t; v ∧ 1, (v− 1)+) ≥ 0
for all t ∈ [0, T ], v ∈ V .

We additionally suppose that y0 ∈ L2(Ω), such that y0(x) ≤ 1 for a.e. x ∈ Ω and f ≤ 0.
Then, the solution y of (4.1.13) satisfies y(x, t) ≤ 1.

It is noteworthy that if y0(x) ≤ M , where M is a positive number, then y(x, t) ≤ M ,
provided that v∧M ∈ V and a(t; v∧M, (v−M)+) ≥ 0. This is an immediate consequence of
proposition 4.1.11 according to the proof of Arendt, Dier, Ouhabaz, 2014, Proposition 3.2.
and is explicitly stated therein.
Theorem 4.1.12. Suppose that the assumptions in theorem 4.1.9 hold, and y0 ∈ H1(Ω)+ :=
L2(Ω)+ ∩H1(Ω). Then, the solution of (4.1.14) satisfies y(t) ≥ 0 for a.e. t ∈ [0, T ].

Suppose additionally, that g+ ∈ L∞(0, T ;L∞(Ω)) and y0(x) ≤M for a.e. x ∈ Ω. Then,
the solution of (4.1.14) satisfies y(x, t) ≤M for a.e. x ∈ Ω and for all t ∈ [0, T ].

Proof. To show the positivity of the solution we verify the assumption of proposi-
tion 4.1.10. Since v ∈ H1(Ω) implies v+ ∈ H1(Ω), H1(Ω) is a sublattice of L2(Ω).

a(t; v+, v−) =

∫
Ω
∇v+ · ∇v− dx+ χ

∫
Ω
∇w · ∇v+v− dx−

∫
Ω
g v+ v− dx

=

∫
Ω

n∑
k=1

∂kv χ{v>0}
(
−∂kv χ{v<0}

)
dx+

∫
Ω

n∑
k=1

∂kw ∂kv χ{v>0} v− dx

−
∫
Ω
g v χ{v>0} v χ{v<0} dx = 0,

where χ stands for the indicator function.
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This implies that when y0 ∈ H1(Ω)+ := L2(Ω)+ ∩ H1(Ω) and f ≥ 0, the solution of
(4.1.14) satisfies y(t) ≥ 0 for a.e. t ∈ [0, T ], by virtue of proposition 4.1.10.

To show the boundedness of the solution we verify the assumption of proposition 4.1.11.
Obviously v ∧M ∈ H1(Ω). We show (a+ ω)(t; v ∧M, (v −M)+) ≥ 0 for all t ∈ [0, T ], v ∈
H1(Ω).

(a+ ω)(t; v ∧M, (v −M)+) = a(t; v ∧M, (v −M)+) + ω(v ∧M, (v −M)+)L2(Ω)

=

∫
Ω

n∑
k

∂k(v ∧M) ∂k(v −M)+ dx+ χ

∫
Ω

n∑
k=1

∂kw ∂k(v ∧M)(v −M)+ dx

−
∫
Ω
g (v ∧M)(v −M)+ dx+ ω

∫
Ω
(v ∧M)(v −M)+ dx

= −M
∫
Ω
g (v −M)+ dx+ ωM

∫
Ω
(v −M)+ dx

≥
∫
Ω
(ω − g+)(v −M)+ dx ≥ 0

We note that g+ ∈ L∞(0, T ;L∞(Ω)), therefore ω can be calculated in terms of ∥g+∥L∞(0,T ;L∞(Ω))

as follows.

a(t; y, y) =

∫
Ω
|∇y|2 dx+ χ

∫
Ω
∇w · ∇y y dx−

∫
Ω
g y2 dx

≥ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥L4(Ω) − ∥g+∥L∞(Ω) ∥y∥
2
L2(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

∥y∥3/4
L6(Ω)

− ∥g+∥L∞(Ω) ∥y∥
2
L2(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

(
∥y∥L2(Ω) + ∥∇y∥L2(Ω)

)3/4

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

(
∥y∥3/4

L2(Ω)
+ ∥∇y∥3/4

L2(Ω)

)
− ∥g+∥L∞(Ω) ∥y∥

2
L2(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥L2(Ω)

− χ ∥∇w∥L4(Ω) ∥∇y∥
7/4
L2(Ω)

∥y∥1/4
L2(Ω)

− ∥g+∥L∞(Ω) ∥y∥
2
L2(Ω)

≳ ∥∇y∥2L2(Ω) − χ ∥∇w∥L4(Ω)

[
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

]
− χ ∥∇w∥L4(Ω)

[
ε
(
∥∇y∥7/4

L2(Ω)

)8/7
+ C(ε)

(
∥y∥1/4

L2(Ω)

)8
]

− ∥g+∥L∞(Ω) ∥y∥
2
L2(Ω)

≳ ∥∇y∥2L2(Ω) − 2χ ∥∇w∥L∞(0,T ;L4(Ω))

[
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

]
− ∥g+∥L∞(0,T ;L∞(Ω)) ∥y∥

2
L2(Ω)

≳ ∥∇y∥2L2(Ω) −
[
2 ε χ ∥∇w∥L∞(0,T ;L4(Ω))

]
∥∇y∥2L2(Ω)

−
[
2C(ε)χ ∥∇w∥L∞(0,T ;L4(Ω)) + ∥g+∥L∞(0,T ;L∞(Ω))

]
∥y∥2L2(Ω) .
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Choosing an appropriate ε we obtain

a(t; y, y) +

[
1

2
+ C(χ, ∥∇w∥L∞(0,T ;L3(Ω))) + ∥g+∥L∞(0,T ;L∞(Ω))

]
∥y∥2L2(Ω) ≥

1

2
∥y∥2H1(Ω) .

Choosing ε = 1/
(
4χ ∥∇w∥L∞(0,T ;L4(Ω))

)
we obtain

a(t; y, y) ≥ 1

2
∥∇y∥2L2(Ω) −

[
C(χ, ∥∇w∥L∞(0,T ;L3(Ω))) + ∥g∥L∞(0,T ;L2(Ω))

]
∥y∥2L2(Ω)

and consequently

a(t; y, y) +

[
1

2
+ C(χ, ∥∇w∥L∞(0,T ;L4(Ω))) + ∥g+∥L∞(0,T ;L∞(Ω))

]
∥y∥2L2(Ω) ≥

1

2
∥y∥2H1(Ω) .

This implies that a is quasi-coercive with ω := 1
2+C(χ, ∥∇w∥L∞(0,T ;L4(Ω)))+∥g+∥L∞(0,T ;L∞(Ω)).

Now, we can conclude that y(x, t) ≤M , by virtue of proposition 4.1.11 and the remark
after that. □

In proving the existence of a weak solution for (4.1.7), we will employ Banach’s fixed-
point theorem in the space C([0, T ];L2(Ω)) with the norm

∥z∥C(0,T ;L2(Ω)) := max
0≤t≤T

∥z(t)∥L2(Ω) .

Theorem 4.1.13. Let u ∈ Uad. For any initial data 0 ≤ y0 ≤ M , there exists some T > 0
such that (4.1.7) has a unique weak solution (y, w) ∈W (0, T )× C([0, T ];W 1,6(Ω)).

Proof. For T > 0 which will be defined specifically later, we consider

X := {z ∈ C([0, T ];L2(Ω)) | 0 ≤ z ≤M},
with the norm ∥z∥X := ∥z∥C([0,T ];L2(Ω)). To a given function ỹ ∈ X, we define A : X → X

by Aỹ = y, where y solves the following auxiliary problem in the weak sense:

∂ty −∆y = −χ∇y · ∇w + y

(
−χλw + χ ỹ + a0 − a1 ỹ − a2−

∫
Ω
ỹ dx

)
in ΩT ,

−∆w + λw = ỹ in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω.
(4.1.16)

For future reference, let us define g := −χλw + χ ỹ + a0 − a1 ỹ − a2 −
∫
Ω ỹ dx.

Step (1): We prove that A is well-defined. Since ỹ is bounded, it belongs to Lp(Ω), we can
infer from 

−∆w + λw = ỹ in Ω,

∂w

∂n
= u on ∂Ω,

that w(t) belongs to W 1,6(Ω), by virtue of theorem 4.1.6. First, we observe the
regularity of g:

∥g∥L∞(0,T ;L2(Ω)) =

∥∥∥∥−χλw + χ ỹ + a0 − a1 ỹ − a2−
∫
Ω
ỹ dx

∥∥∥∥
L∞(0,T ;L2(Ω))

≲ χλ ∥w∥L∞(0,T ;L3(Ω)) + |χ− a1| ∥ỹ∥L∞(0,T ;L∞(Ω))

+ a0 +
|a2|
|Ω|

|Ω| ∥ỹ∥L∞(0,T ;L∞(Ω))
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≲ χλ+ a0 +M (|χ− a1|+ |a2|) .

Now, we can apply theorem 4.1.9, resulting in the existence of a unique weak
solution y ∈W (0, T ) to the following problem:

∂ty −∆y = −χ∇w · ∇y + g y in ΩT ,

∂y

∂n
= 0 on ∂ΩT ,

y(x, 0) = y0(x) in Ω.

(4.1.17)

On the other hand, we observe that w ≥ 0. Indeed, −∆w + λw = ỹ and ỹ and u
are positive, by virtue of the maximum principle we can deduce the positivity of
w. This results in the following estimate

∥g+∥L∞(ΩT ) =

∥∥∥∥(−χλw + χ ỹ + a0 − a1 ỹ − a2−
∫
Ω
ỹ dx

)
+

∥∥∥∥
L∞(ΩT )

≤
∥∥∥∥χỹ + a0 − a2−

∫
Ω
ỹ dx

∥∥∥∥
L∞(ΩT )

≤ χ ∥ỹ∥L∞(ΩT ) + a0 +
|a2|
|Ω|

|Ω| ∥ỹ∥L∞(ΩT )

≤ a0 +M (χ+ |a2|) .

Therefore, the solution y of (4.1.17) is positive and bounded above by M , by
virtue of theorem 4.1.12. Therefore, A is well-defined.

Step (2): We prove that A is a strict contraction when T is small enough. To this end, let
ỹ1, ỹ2 be given in X, where y1 = A ỹ1, y2 = A ỹ2. We have to show ∥y1 − y2∥X ≤
β ∥ỹ1 − ỹ2∥X , for some positive constant β ∈ [0, 1) independent of ỹ1 and ỹ2.
Let 

−∆wi + λwi = ỹi in Ω,

∂wi

∂n
= u on ∂Ω,

for i = 1, 2. By virtue of theorem 4.1.6, wi(t) ∈W 1,6(Ω) for a.e. t ∈ [0, T ], which
means ∥∇wi(t)∥L6(Ω) ≤ C uniformly for all ỹi ∈ X, i = 1, 2. We set

ȳ := y1 − y2, w̄ := w1 − w2,

gi = −χλwi + χ ỹi + a0 − a1 ỹi − a2−
∫
Ω
ỹi dx.

This setting results in the following equation:

∂tȳ −∆ȳ = −χ (∇y1 · ∇w1 −∇y2 · ∇w2) + y1 g1 − y2 g2

= −χ (∇ȳ · ∇w1 +∇y2 · ∇w̄) + ȳ g1 + y2 (g1 − g2) .
(4.1.18)

with the boundary condition ∂ȳ
∂n = 0 and

−∆w̄ + λw̄ = ỹ1 − ỹ2 in Ω,

∂w̄

∂n
= 0 on ∂Ω.

By virtue of Grisvard, 1985, Theorem 2.2.2.5, w̄ belongs to H2(Ω).
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Similar to g, the regularity of gi is as follows

∥gi∥L2(Ω) =

∥∥∥∥−χλwi + χ ỹi + a0 − a1 ỹi − a2−
∫
Ω
ỹi dx

∥∥∥∥
L2(Ω)

≲ χλ ∥wi∥L3(Ω) + |χ− a1| ∥ỹi∥L∞(Ω) + a0 + |a2| ∥ỹi∥L∞(Ω)

≲ χλ+ a0 +M (|χ− a1|+ |a2|) .

Multiplying (4.1.18) by ȳ, integrating by part with ∂w̄
∂n = 0, we obtain

1

2

∫
Ω
∂t |ȳ|2 dx+

∫
Ω
|∇ȳ|2 dx = −χ

∫
Ω
∇ȳ · ∇w1 ȳ dx− χ

∫
Ω
∇y2 · ∇w̄ ȳ dx

+

∫
Ω
g1 |ȳ|2 dx+

∫
Ω
y2 (g1 − g2) ȳ dx

= −χ
∫
Ω
∇ȳ · ∇w1 ȳ dx+ χ

∫
Ω
y2 div (ȳ∇w̄) dx

+

∫
Ω
g1 |ȳ|2 dx+

∫
Ω
y2 (g1 − g2) ȳ dx

= −χ
∫
Ω
∇ȳ · ∇w1 ȳ dx+ χ

∫
Ω
y2 (∇ȳ · ∇w̄ + ȳ∆w̄) dx

+

∫
Ω
g1 |ȳ|2 dx+

∫
Ω
y2 (g1 − g2) ȳ dx

= −χ
∫
Ω
∇ȳ · ∇w1 ȳ dx+ χ

∫
Ω
y2

(
∇ȳ · ∇w̄ + ȳ (ỹ1 − ỹ2) + λ ȳ w̄

)
dx

+

∫
Ω
g1 |ȳ|2 dx+

∫
Ω
y2 (g1 − g2) ȳ dx.

We observe the following estimate, exploiting interpolation’s inequality equa-
tion (B.1.2) for r = 4, p = 2, q = 6 and choosing θ = 3

4 and Young’s inequalities
equation (B.1.1)

−χ
∫
Ω
∇ȳ · ∇w1 ȳ dx ≤ χ ∥∇w1∥L4(Ω) ∥∇ȳ∥L2(Ω) ∥ȳ∥L4(Ω)

≤ χ ∥∇w1∥L4(Ω) ∥∇ȳ∥L2(Ω) ∥ȳ∥
1/4
L2(Ω)

∥ȳ∥3/4
L6(Ω)

≲ χ ∥∇w1∥L4(Ω) ∥∇ȳ∥L2(Ω) ∥ȳ∥
1/4
L2(Ω)

[
∥ȳ∥3/4

L2(Ω)
+ ∥∇ȳ∥3/4

L2(Ω)

]
≲ χ ∥∇w1∥L4(Ω)

[
ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ȳ∥2L2(Ω)

]
+ χ ∥∇w1∥L4(Ω)

[
ε
(
∥∇ȳ∥7/4

L2(Ω)

)8/7
+ C(ε)

(
∥ȳ∥1/4

L2(Ω)

)8
]

≲ 2χ ∥∇w1∥L4(Ω)

[
ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ȳ∥2L2(Ω)

]
and∫

Ω
g1 |ȳ|2 dx ≤ ∥g1∥L2(Ω) ∥ȳ∥

2
L4(Ω) ≤ ∥g1∥L2(Ω) ∥ȳ∥

1/2
L2(Ω)

∥ȳ∥3/2
L6(Ω)

≲ ∥g1∥L2(Ω)

[
ε
(
∥ȳ∥3/2

H1(Ω)

)4/3
+ C(ε)

(
∥ȳ∥1/2

L2(Ω)

)4
]

≲ ∥g1∥L2(Ω)

[
ε ∥∇ȳ∥2L2(Ω) + (ε+ C(ε)) ∥ȳ∥2L2(Ω)

]
.



82 4 Optimal Control a Nonlocal Chemotaxis Model

Employing Young’s inequality for all other norm products results in
1

2

∫
Ω
∂t |ȳ|2 dx+

∫
Ω
|∇ȳ|2 dx ≤ χ ∥ȳ∥L4(Ω) ∥∇ȳ∥L2(Ω) ∥∇w1∥L4(Ω)

+ χ ∥y2∥L∞(Ω)

(
∥∇w̄∥L2(Ω) ∥∇ȳ∥L2(Ω) + ∥ȳ∥L2(Ω) ∥ỹ1 − ỹ2∥L2(Ω) + λ ∥ȳ∥L2(Ω) ∥w̄∥L2(Ω)

)
+ ∥g1∥L2(Ω) ∥ȳ∥

2
L4(Ω) + ∥y2∥L∞(Ω) ∥g1 − g2∥L2(Ω) ∥ȳ∥L2(Ω)

≲ 2χ ∥∇w1∥L4(Ω)

[
ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ȳ∥2L2(Ω)

]
+ χM

( 1

4 ε
∥∇w̄∥2L2(Ω) + ε ∥∇ȳ∥2L2(Ω) + ∥ȳ∥2L2(Ω)

+ ∥ỹ1 − ỹ2∥2L2(Ω) + λ
(
∥ȳ∥2L2(Ω) + ∥w̄∥2L2(Ω)

))
+ ∥g1∥L2(Ω)

[
ε ∥∇ȳ∥2L2(Ω) + (ε+ C(ε)) ∥ȳ∥2L2(Ω)

]
+M

(
∥g1 − g2∥2L2(Ω) + ∥ȳ∥2L2(Ω)

)
for a.a. t ∈ [0, T ]. Choosing some appropriate ε > 0, we find

d
dt

∫
Ω
|ȳ|2 dx ≤ c

(
∥ȳ∥2L2(Ω) + ∥∇w̄∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω) + ∥w̄∥2L2(Ω) + ∥g1 − g2∥2L2(Ω)

)
,

(4.1.19)
where c depends on M , Ω, a0, a1, a2, χ and λ.
Since −∆w̄ + λ w̄ = ỹ1 − ỹ2 holds with ∂w̄

∂n = 0, we also have

∥w̄∥2H1(Ω) = ∥w̄∥2L2(Ω) + ∥∇w̄∥2L2(Ω) ≤ c1 ∥ỹ1 − ỹ2∥2L2(Ω) .

On the other hand and

g1 − g2 = −χλ (w1 − w2) + χ (ỹ1 − ỹ2)− a1 (ỹ1 − ỹ2)− a2−
∫
Ω
(ỹ1 − ỹ2) dx.

Hence, it follows

∥g1 − g2∥L2(Ω) ≤ χλ ∥w̄∥L2(Ω) + |χ− a1| ∥ỹ1 − ỹ2∥L2(Ω) +
|a2|
|Ω|

∥ỹ1 − ỹ2∥L1(Ω)

≤ c2 ∥ỹ1 − ỹ2∥L2(Ω) .

Now, we can deduce from (4.1.19) that
d
dt

∫
Ω
|ȳ|2 dx ≤ C

(
∥ȳ∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)

)
.

This implies
d
dt

(
exp(−C t) ∥ȳ(t)∥2L2(Ω)

)
≤ C exp(−C t) ∥(ỹ1 − ỹ2) (t)∥2L2(Ω) .

Hence, we find

exp(−C t) ∥ȳ(t)∥2L2(Ω) ≤ C

∫ t

0
exp(−C s) ∥(ỹ1 − ỹ2) (s)∥2L2(Ω) ds

≤ (1− exp(−C t)) ∥ỹ1 − ỹ2∥2X ,

for each 0 ≤ t ≤ T , which results in

max
0≤t≤T

∥ȳ(t)∥2L2(Ω) = ∥ȳ∥2X ≤ (exp(C T )− 1) ∥ỹ1 − ỹ2∥2X .

Consequently, A is a strict contraction, provided T > 0 is sufficiently small, so
that exp(C T ) < 2.
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Now, we can apply Banach’s fixed point theorem to find a weak solution (y, w) of the
problem (4.1.7) existing on the time interval [0, T ].

To show the uniqueness of the solution, consider two solutions y1 and y2 of problem
(4.1.7). From existence proof we have

d
dt

∥A ỹ1 −A ỹ2∥2L2(Ω) =
d
dt

∥y1 − y2∥2L2(Ω) ≤ C
(
∥y1 − y2∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)

)
.

Since y1 and y2 are fixed points, we have y1 = ỹ1, y2 = ỹ2, respectively. Consequently,

∥y1 − y2∥2L2(Ω) ≤ 2C

∫ t

0
∥y1(s)− y2(s)∥2 ds,

for 0 ≤ s ≤ T . According to Gronwall’s inequality, y1 = y2. □

4.1.2 Existence of an Optimal Solution

In the following, we will prove that the function y ∈W (0, T ), as a solution of (4.1.7), is
bounded above by the function Υ (t), which satisfies the following logistic ODE{

Υ̇ = Υ
(
a0 + (χ− a1 + [a2]−)Υ

)
,

Υ (0) = ∥y0∥L∞(Ω) .
(4.1.20)

The solution of this ODE will be computed as follows.
The ODE (4.1.20) is of the form

dΥ
dt

= Υ (a0 + C0 Υ ) ,

where C0 = χ− a1 + [a2]−. This implies(
1/a0
Υ

− C0/a0
a0 + C0 Υ

)
dΥ = dt

Multiplying this equation by a0 and integrating from 0 to t, results in

ln
Υ

a0 + C0 Υ
= a0t+K0,

and consequently
Υ (t) =

a0
K e−a0 t − C0

for some constant K.

Exploiting the initial condition Υ (0) = ∥y0∥L∞(Ω), K amounts to

K = C0 +
a0

∥y0∥L∞(Ω)

.

Remark 4.1.14. The solution of the ODE (4.1.20) is given by

Υ (t) =
a0

K e−a0 t − C0
, where K = C0 +

a0
∥y0∥L∞(Ω)

.

When C0 < 0 holds, then the solution Υ is bounded, so its maximal time of existence is
T∗ = ∞. On the other hand, when C0 ≥ 0 holds (in particular, when −a1 + [a2]− ≥ 0),
there exists a maximal existence time T∗ ∈ (0,∞) such that Υ (t) satisfies

lim
t↗T∗

Υ (t) = ∞.

This shows T∗ = − 1
a0

ln C0
K > 0 is finite in this case.

In the following, we will refer to T∗ ∈ (0,∞] as defined above.
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Theorem 4.1.15. Assume that y ∈W (0, T ) is a solution of (4.1.7) and χ
2 − a1+ [a2]− < 0.

Then y is uniformly bounded by Υ (t),

∥y(t)∥L∞(Ω) ≤ Υ (t) for t ∈ [0, T∗),

where Υ (t) satisfies the logistic ODE (4.1.20).

Proof. First, we consider the ODE (4.1.20). Setting

z(x, t) := y(x, t)− Υ (t),

we obtain

∂tz −∆z = −χ∇y · ∇w + y

(
−χλw + χy + a0 − a1 y − a2−

∫
Ω
y dx

)
− Υ

(
a0 +

(
χ− a1 + [a2]−

)
Υ
)

= −χ∇z · ∇w − χλw y + a0 (y − Υ ) + (χ− a1) (y + Υ ) z − a2 y−
∫
Ω
y dx− [a2]− Υ

2

= −χ∇z · ∇w − χλw (z + Υ ) + a0 z + (χ− a1) (z + 2Υ ) z

− a2 (z + Υ )−
∫
Ω
(z + Υ ) dx− [a2]− Υ

2.

Multiplying this equation with z+, integrating by parts yields
1

2

d
dt

∫
Ω
z2+ dx+

∫
Ω
|∇z+|2 dx ≤ −χ

2

∫
Ω
∇w · ∇(z2+)− χλ

∫
Ω
w (z + Υ ) z+ dx

+ a0

∫
Ω
z2+ dx+ (χ− a1)

∫
Ω
(z + 2Υ ) z2+ dx

+ [a2]−
(
−
∫
Ω
(z + Υ ) dx

) ∫
Ω
(z + Υ ) z+ dx− [a2]− Υ

2

∫
Ω
z+ dx

≤ χ

2

∫
Ω

(
λw − z − Υ

)
z2+ dx−

∫
∂Ω
u z2+ dx− χλ

∫
Ω
w z2+ dx

+ a0

∫
Ω
z2+ dx+ (χ− a1)

∫
Ω
z3+ dx+ Υ

(
2 (χ− a1) + [a2]−

)∫
Ω
z2+ dx

+ [a2]−−
∫
Ω
z+ dx

∫
Ω
z2+ dx+ [a2]− Υ−

∫
Ω
z+ dx

∫
Ω
z+ dx

≤ −λχ
2

∫
Ω
w z2+ dx+ a0

∫
Ω
z2+ dx

+ Υ
(
2 (χ− a1) + [a2]− − χ

2

)∫
Ω
z2+ dx−

(
a1 −

χ

2

)∫
Ω
z3+ dx

+ [a2]−−
∫
Ω
z+ dx

∫
Ω
z2+ dx+ [a2]− Υ−

∫
Ω
z+ dx

∫
Ω
z+ dx.

By means of Hölder’s inequality for the terms
∫
Ω z+ dx and

∫
Ω z

2
+ dx, namely∫

Ω
z+ dx ≤ |Ω|

2
3

(∫
Ω
|z+|3 dx

) 1
3

,∫
Ω
z2+ dx ≤ |Ω|

1
3

(∫
Ω
|z+|3 dx

) 2
3

,∫
Ω
z+ dx ≤ |Ω|

1
2

(∫
Ω
|z+|2 dx

) 1
2

,
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and the negativity of χ
2 − a1 + [a2]− and exploiting the positivity of w, we obtain

1

2

d
dt

∫
Ω
z2+ dx+

∫
Ω
|∇z+|2 dx ≤ a0

∫
Ω
z2+ dx−

(
a1 −

χ

2

)∫
Ω
z3+ dx

+ Υ
(
2 (χ− a1) + [a2]− − χ

2

)∫
Ω
z2+ dx+

[a2]−
|Ω|

|Ω|
∫
Ω
z3+ dx+

[a2]−
|Ω|

|Ω| Υ
∫
Ω
z2+ dx

= a0

∫
Ω
z2+ dx+

(χ
2
− a1 + [a2]−

)∫
Ω
z3+ dx+ 2Υ

(
3χ

4
− a1 + [a2]−

)∫
Ω
z2+ dx

≤ a0

∫
Ω
z2+ dx+ 2χΥ

∫
Ω
z2+ dx.

Finally, the estimate above attains the form

d
dt

∫
Ω
z2+ dx ≤ 2 a0

∫
Ω
z2+ dx+ 4χΥ

∫
Ω
z2+ dx,

and consequently,∫
Ω
z2+(t) dx ≤ exp

[
2 a0 t+ 4χ

∫ t

0
Υ (s) ds

] ∫
Ω
z2+(0) dx.

Since z+(0) = 0 by virtue of Gronwall’s inequality we obtain z+(t) = 0, which results in
y(x, t) ≤ Υ (t). □

Remark 4.1.16. We note that in ODE (4.1.20) the boundedness of Υ is just guaranteed by
the negativity of C0 = χ− a1 + [a2]−. In other words if C0 ≥ 0, in particular when (4.1.3)
fails, the L∞-Norm of the solution of PDE (4.1.7) may blow up.
Remark 4.1.17. We observe that by virtue of theorem 4.1.13 and theorem 4.1.15, there exists
a maximal existence time Tmax ∈ (0,∞] and a unique weak solution (y, w) ∈ W (0, Tmax)×
L∞(0, Tmax;W

1,6(Ω)) of problem (4.1.7). Notice that Tmax ≥ T∗, where T∗ is the maximal
existence time of ODE (4.1.20).

In the following we prove the existence of the solution to the optimal control problem
(4.1.1). For this we require the following a-priori estimate.
Theorem 4.1.18. Assume (y, w) be a weak solution of problem (4.1.7) and T < T∗. If
u ∈ Uad, then the following estimate holds:

ess sup
0≤t≤T

∥∇w∥L6(Ω) + ∥y∥L∞(ΩT ) + ∥y∥L2(0,T ;H1(Ω)) + ∥∂ty∥L2(0,T ;H1(Ω)∗) ≤ CT∗ ,

where CT∗ is a positive constant which depends on u, χ, T and ∥y0∥L∞(Ω).

Proof. The boundedness of y in L∞(0, T ;L∞(Ω)) is a straightforward result from
theorem 4.1.15, namely,

∥y∥L∞(0,T ;L∞(Ω)) ≤ ∥Υ∥L∞(0,T ) .

According to theorem 4.1.15, y is bounded, it belongs then to Lp(Ω). The regularity of w
follows evidently from −∆w + λw = y with ∂w

∂n = u, by virtue of theorem 4.1.6. We have

∥w∥L∞(0,T ;W 1,6(Ω)) ≤ C
(
∥y∥L∞(0,T ;L6(Ω)) + ∥u∥L∞(0,T ;L6(∂Ω))

)
.

In the second step we recall the first equation of (4.1.7) with setting g := −χλw + χy +
a0 − a1 y − a2−

∫
Ω y dx, that is

∂ty −∆y = −χ∇y · ∇w + y g. (4.1.21)
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We observe the following estimate for g

∥g∥L∞(0,T ;L2(Ω)) =

∥∥∥∥−χλw + χy + a0 − a1 y − a2−
∫
Ω
y dx

∥∥∥∥
L∞(0,T ;L2(Ω))

≲ χλ ∥w∥L∞(0,T ;L2(Ω)) + |χ− a1| ∥y∥L∞(0,T ;L2(Ω)) + a0 + |a2| ∥y∥L∞(0,T ;L∞(Ω)

≲ χλ ∥w∥L∞(0,T ;L2(Ω)) + a0 + (|χ− a1|+ |a2|) ∥Υ∥L∞(0,T ) ≤ C1.

Multiplying equation (4.1.21) by y and integrating by parts and using Hölder’s and
interpolation inequalities, we obtain

1

2

d
dt

∫
Ω
|y|2 dx+

∫
Ω
|∇y|2 dx = −χ

∫
Ω
∇y · ∇w y dx+

∫
Ω
g |y|2 dx

≤ χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥L4(Ω) + ∥g∥L2(Ω) ∥y∥2L4(Ω)

≤ χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

∥y∥3/4
L6(Ω)

+ ∥g∥L2(Ω)

(
∥y∥1/4

L2(Ω)
∥y∥3/4

L6(Ω)

)2

≲ χ ∥∇w∥L4(Ω) ∥∇y∥L2(Ω) ∥y∥
1/4
L2(Ω)

[
∥y∥3/4

L2(Ω)
+ ∥∇y∥3/4

L2(Ω)

]
+ ∥g∥L2(Ω) ∥y∥

1/2
L2(Ω)

∥y∥3/2
L6(Ω)

≲ χ ∥∇w∥L4(Ω)

[
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

]
+ χ ∥∇w∥L4(Ω)

[
ε
(
∥∇y∥7/4

L2(Ω)

)8/7
+ C(ε)

(
∥y∥1/4

L2(Ω)

)8
]

+ ∥g∥L2(Ω)

[
ε
(
∥y∥3/2

H1(Ω)

)4/3
+ C(ε)

(
∥y∥1/2

L2(Ω)

)4
]

≲ C2

(
ε ∥∇y∥2L2(Ω) + C(ε) ∥y∥2L2(Ω)

)
+ C3

[
ε ∥∇y∥2L2(Ω) + (ε+ C(ε)) ∥y∥2L2(Ω)

]
.

Choosing some appropriate ε and small enough, we find

1

2

d
dt

∥y∥2L2(Ω) + ∥∇y∥2L2(Ω) ≤
1

2
∥∇y∥2L2(Ω) + C4 ∥y∥2L2(Ω) ,

and therefore
d
dt

∥y∥2L2(Ω) + ∥∇y∥2L2(Ω) ≤ 2C4 ∥y∥2L2(Ω) .

We integrate this inequality from 0 to T to find∫ T

0

d
dt

∥y(t)∥2L2(Ω) dt+
∫ T

0
∥∇y(t)∥2L2(Ω) dt ≤ 2C4

∫ T

0
∥y(t)∥2L2(Ω) dt,

and consequently

∥y(T )∥2L2(Ω) − ∥y0∥2L2(Ω) +

∫ T

0
∥∇y(t)∥2L2(Ω) dt ≤ 2C4

∫ T

0
∥y(t)∥2L2(Ω) dt.

In summary, we can infer

∥∇y∥2L2(0,T ;L2(Ω)) ≤ 2C4 ∥y∥2L2(0,T ;L2(Ω)) + ∥y0∥2L2(Ω)

≤ 2C4 T ∥y∥2L∞(0,T ;L2(Ω)) + ∥y0∥2L2(Ω)

≤ 2C4 T ∥Υ∥2L∞(0,T ) + ∥y0∥2L2(Ω) ≤ C5.

This estimate and taking the boundedness of y in ΩT into account result in its boundedness
in L2(0, T ;H1(Ω)).
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Finally, we multiply (4.1.21) by φ ∈ L2(0, T ;H1(Ω)) and integrate over Ω× (0, T )∫ T

0

∫
Ω
∂ty φ dx dt = −

∫ T

0

∫
Ω
∇y ·∇φ dx dt−χ

∫ T

0

∫
Ω
∇y ·∇wφ dx dt+

∫ T

0

∫
Ω
g y φ dx dt.

That implies∣∣∣∣∫ T

0

∫
Ω
∂ty φ dx dt

∣∣∣∣ ≤ ∥∇y∥L2(0,T ;L2(Ω)) ∥∇φ∥L2(0,T ;L2(Ω))

+ ∥∇w∥L∞(0,T ;L3(Ω)) ∥∇y∥L2(0,T ;L2(Ω)) ∥φ∥L2(0,T ;L6(Ω))

+ ∥g∥L∞(0,T ;L2(Ω)) ∥y∥L2(0,T ;L3(Ω)) ∥φ∥L2(0,T ;L6(Ω))

≲ c1 ∥φ∥L2(0,T ;H1(Ω)) + c2 ∥φ∥L2(0,T ;H1(Ω)) + c3 ∥φ∥L2(0,T ;H1(Ω))

≲ c ∥φ∥L2(0,T ;H1(Ω)) .

That means
∥∂ty∥L2(0,T ;H1(Ω)∗) ≤ C.

This complete the proof. □

Theorem 4.1.19. Suppose T < T∗. Then the optimal control problem (4.1.1) has at least one
optimal solution ū ∈ Uad with associated optimal state (ȳ, w̄) ∈W (0, T )×L∞(0, T ;W 1,6(Ω)).

Proof. We construct the tentative minimizer (ȳ, ū). Since J is bounded from below
on W (0, T )× Uad, therefore the infimum

β := inf
u∈Uad

J(y, u)

is finite. Let {(yn, un)} ⊂W (0, T )× Uad be a minimizing sequence, that means

lim
n→∞

J(yn, un) = β.

Uad is a bounded subset of L∞(∂ΩT ) and thus bounded in L2(∂ΩT ). L2(∂ΩT ) is a reflexive
Banach space, consequently there exists a subsequence, without loss of generality {un} itself,
such that

un ⇀ ū in L2(∂ΩT ).

Uad is closed and convex in L2(∂ΩT ), then it is weakly closed in L2(∂ΩT ), consequently
ū ∈ Uad.

From theorem 4.1.18 we have the following estimate

∥yn∥L2(0,T ;H1(Ω)) + ∥∂tyn∥L2(0,T ;H1(Ω)∗) ≤ C.

From the boundedness of {yn} and {∂tyn} in the corresponding reflexive Banach spaces
follows the existence of subsequences, denoted by the same indices, such that

yn ⇀ ȳ in L2(0, T ;H1(Ω)),

∂tyn ⇀ ∂tȳ in L2(0, T ;H1(Ω)∗).

Since W (0, T ) ↪→ L2(ΩT ) is compact, see e. g. Temam, 1984, Chapter 3, Section 2.2,
Theorem 2.1, then

yn → ȳ in L2(ΩT ).

On the other hand, W (0, T ) is compactly embedded in L2(0, T ;Hs(Ω)). Indeed, H1(Ω) ↪→
Hs(Ω) ↪→ H1(Ω)∗, with s < 1 and H1(Ω) ↪→ Hs(Ω) is a compact embedding by virtue of
theorem 2.1.19. Hence, we can apply the result in Simon, 1986, Theorem 5 to imply that
W (0, T ) is compactly embedded in L2(0, T ;Hs(Ω)). Consequently, for s > 1

2 , the trace
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operator W (0, T ) → L2(0, T ;L2(∂Ω)), which exists by virtue of theorem 2.1.23, is compact.
This results in

yn → ȳ in L2(0, T ;L2(∂Ω)).

Moreover, yn ⇀ ȳ in L2(0, T ;H1(Ω)) results in

∇yn ⇀ ∇ȳ in L2(0, T ;L2(Ω)).

In the same way, we have by virtue of theorem 4.1.18 ∥wn∥L2(0,T ;W 1,6(Ω)) ≤ C. Since
L2(0, T ;W 1,6) is reflexive, there exist a subsequence, denoted by the same indices, satisfying
wn ⇀ w̄ in L2(0, T ;W 1,6(Ω)). This means

∇wn ⇀ ∇w̄ in L2(0, T ;L6(Ω)).

Now, we recall definition of a weak solution for problem (4.1.1) but in the original form
(4.1.2): ∫

Ω
∂tyn φ dx+

∫
Ω
∇yn · ∇φ dx = χ

∫
Ω
yn∇wn · ∇φ dx− χ

∫
∂Ω
un yn φ ds

+

∫
Ω

(
a0 − a1 yn − a2−

∫
Ω
yn dx

)
yn φ dx for all φ ∈ C∞(Ω),

and ∫
Ω
∇wn · ∇φ dx−

∫
∂Ω
un φ ds+ λ

∫
Ω
wn φ dx =

∫
Ω
yn φ dx for all φ ∈ C∞(Ω).

Passing to the limit in each term and employing above convergence results we can
conclude that (ȳ, w̄) is a weak solution of problem (4.1.1) associated with the control function
ū.

In summary, by exploiting the weak sequential lower semicontinuity of the cost functional
we have

J(ȳ, ū) ≤ lim
n→∞

inf J(yn, un) = lim
n→∞

J(yn, un) = β.

By definition of β, we infer that β = J(ȳ, ū). □

4.2 Optimality System
In this section, we derive the optimality system of the chemotaxis system. We first

discuss Fréchet differentiabilty of the linearized problem (4.2.1) to the chemotaxis system
in subsection 4.2.1 and then prove the Fréchet differentiabilty of the control-to-state map.
Subsequently, we apply the Lagrangian method to derive a system of necessary optimality
system in subsection 4.2.2.

4.2.1 Differentiability of Control-to-State Map
In this section we show the Fréchet differentiability of the control-to-state map S by

means of the implicit function theorem. The control-to-state operator

S : Uad →W (0, T )× L∞(0, T ;W 1,6(Ω))

is well-defined according to theorem 4.1.13. To verify the assumption of the implicit function
theorem, we need the following result about the linearization of the chemotaxis equation
(4.1.1b).

Form now on, we assume that T < T∗ to grantee the boundedness of Υ and employ the
estimate in theorem 4.1.18.
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Proposition 4.2.1. Suppose û ∈ Uad and (ŷ, ŵ) ∈ W (0, T ) × L∞(0, T ;W 1,6(Ω)) to be the
associated unique solution of the chemotaxis equation (4.1.1b). Then, for any L2(∂ΩT ) and
h = (h1, h2, y0) ∈ Z := L2(0, T ;H1(Ω)∗) × C([0, T ];W 1,6/5(Ω)∗) × L2(Ω), the linearized
problem

∂ty −∆y = −χ div (y∇ŵ + ŷ∇w) +
(
a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
y

−
(
a1 y + a2−

∫
Ω
y dx

)
ŷ + h1, in ΩT ,

−∆w + λw = y + h2 in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0 in Ω,

(4.2.1)

has a unique solution (y, w) ∈ Y :=W (0, T )× L∞(0, T ;W 1,6(Ω)).

Proof. Inserting −∆ŵ + λ ŵ = ŷ and the second equation of (4.2.1) in the first one,
we obtain

∂ty −∆y =− χ
(
∇y · ∇ŵ +∇ŷ · ∇w

)
+
(
−χλ ŵ + a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
y

+
(
−χλw + 2χy − a1 y − a2−

∫
Ω
y dx

)
ŷ + χh2 ŷ + h1.

We will apply Banach’s fixed point theorem on the space X = C([0, T ];L2(Ω)). Let define
A : X → X by setting A ỹ = y, where y solves

∂ty −∆y =− χ (∇y · ∇ŵ +∇ŷ · ∇w) +
(
−χλ ŵ + a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
y

+

(
−χλw + 2χ ỹ − a1 ỹ − a2−

∫
Ω
ỹ dx

)
ŷ + χh2 ŷ + h1,

with ∂y
∂n = 0, and 

−∆w + λw = ỹ + h2 in Ω,

∂w

∂n
= u on ∂Ω.

Since L2(Ω) ↪→ W 1,6/5(Ω)∗, the right-hand side ỹ + h2 belongs to W 1,6/5(Ω)∗, that means
w ∈W 1,6(Ω), by virtue of theorem 4.1.6. On the other hand, setting

A(t) := −∆y − χ∇ŵ · ∇y +
(
−χλŵ + a0 − a1ŷ − a2−

∫
Ω
ỹ dx

)
y,

and

f(t) := −χ∇ŷ · ∇w +

(
−χλw + 2χ ỹ − a1 ỹ − a2−

∫
Ω
ỹ dx

)
ŷ + χh2 ŷ + h1,

we obtain that y ∈W (0, T ), by virtue of theorem 4.1.8.
We claim if T > 0 is small enough, then A is a strict contraction. Let ỹ1 and ỹ2 to be

two elements in X, with y1 = A ỹ1, y2 = A ỹ2. We define ȳ := y1 − y2 and w̄ := w1 − w2,
with −∆wi + λwi = ỹi + h2, i = 1, 2. This implies

−∆w̄ + λ w̄ = ỹ1 − ỹ2 in Ω,

∂w̄

∂n
= 0 on Ω,
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which results in ∥w̄∥H2(Ω) ≤ C ∥ỹ1 − ỹ2∥L2(Ω), see Grisvard, 1985, Theorem 2.2.2.5
This setting reads

∂tȳ −∆ȳ =− χ (∇ȳ · ∇ŵ +∇ŷ · ∇w̄) +
(
−χλ ŵ + a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
ȳ

+

(
−χλ w̄ + 2χ (ỹ1 − ỹ2)− a1 (ỹ1 − ỹ2)− a2−

∫
Ω
(ỹ1 − ỹ2) dx

)
ŷ.

Multiplying this equation with ȳ and integrating by parts yields, we obtain
1

2

∫
Ω
∂t |ȳ|2 dx+

∫
Ω
|∇ȳ|2 dx = −χ

∫
Ω
(∇ȳ · ∇ŵ) ȳ dx− χ

∫
Ω
(∇ŷ · ∇w̄) ȳ dx

+

∫
Ω

(
−χλ ŵ + a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
ȳ2 dx

+

∫
Ω

(
−χλ w̄ + 2χ (ỹ1 − ỹ2)− a1 (ỹ1 − ỹ2)− a2−

∫
Ω
(ỹ1 − ỹ2) dx

)
ŷ ȳ dx

= −χ
∫
Ω
(∇ȳ · ∇ŵ) ȳ dx+ χ

∫
Ω
(∇ȳ · ∇w̄) ŷ dx+ χ

∫
Ω
ȳ∆w̄ ŷ dx

− χλ

∫
Ω
ŵ ȳ2 +

∫
Ω

(
a0 − a1 ŷ − a2−

∫
Ω
ŷ dx

)
ȳ2 dx

+

∫
Ω

(
−χλ w̄ + 2χ (ỹ1 − ỹ2)− a1 (ỹ1 − ỹ2)− a2−

∫
Ω
(ỹ1 − ỹ2) dx

)
ŷ ȳ dx.

Using the Hölder’s and interpolation inequalities and exploiting ∥w̄∥H2(Ω) ≤ C ∥ỹ1 − ỹ2∥L2(Ω),
we obtain
1

2

∫
Ω
∂t |ȳ|2 dx+

∫
Ω
|∇ȳ|2 dx ≤ χ ∥∇ŵ∥L4(Ω) ∥ȳ∥L4(Ω) ∥∇ȳ∥L2(Ω)

+ χ ∥ŷ∥L∞(Ω) ∥∇ȳ∥L2(Ω) ∥∇w̄∥L2(Ω) + χ ∥ŷ∥L∞(Ω) ∥ȳ∥L2(Ω) ∥∆w̄∥L2(Ω)

+ χλ ∥ŵ∥L2(Ω) ∥ȳ∥
2
L4(Ω) +

∥∥∥∥a0 − a1 ŷ − a2−
∫
Ω
ŷ dx

∥∥∥∥
L∞(Ω)

∥ȳ∥2L2(Ω)

+ ∥ŷ∥L∞(Ω)

∥∥∥∥−χλ w̄ + 2χ (ỹ1 − ỹ2)− a1 (ỹ1 − ỹ2)− a2−
∫
Ω
(ỹ1 − ỹ2) dx

∥∥∥∥
L2(Ω)

∥ȳ∥L2(Ω)

≲ χ ∥∇ŵ∥L4(Ω) ∥∇ȳ∥L2(Ω) ∥ȳ∥
1/4
L2(Ω)

∥ȳ∥3/4
L6(Ω)

+ χΥ ∥∇ȳ∥L2(Ω) ∥ỹ1 − ỹ2∥L2(Ω)

+ χΥ ∥ȳ∥L2(Ω) ∥ỹ1 − ỹ2∥L2(Ω) + χλ ∥ŵ∥L2(Ω) ∥ȳ∥
1/2
L2(Ω)

∥ȳ∥3/2
L6(Ω)

+ (a0 + a1 Υ + |a2| Υ ) ∥ȳ∥2L2(Ω)

+ Υ
(
χλ ∥ỹ1 − ỹ2∥L2(Ω) + 2χ ∥ỹ1 − ỹ2∥L2(Ω)

+ a1 ∥ỹ1 − ỹ2∥L2(Ω) +
|a2|
|Ω|

∥ỹ1 − ỹ2∥L1(Ω)

)
∥ȳ∥L2(Ω) .

In summary, using the Young’s inequality, we obtain
1

2

∫
Ω
∂t |ȳ|2 dx+

∫
Ω
|∇ȳ|2 dx ≲ ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ȳ∥2L2(Ω)

+ ε
(
∥∇ȳ∥7/4

L2(Ω)

)8/7
+ C(ε)

(
∥ȳ∥1/4

L2(Ω)

)8

+ ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ỹ1 − ỹ2∥2L2(Ω) + ∥ȳ∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)
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+ ε
(
∥ȳ∥3/2

H1(Ω)

)4/3
+ C(ε)

(
∥ȳ∥1/2

L2(Ω)

)4
+ ∥ȳ∥2L2(Ω)

+ ∥ỹ1 − ỹ2∥L2(Ω) ∥ȳ∥L2(Ω)

≤ C1

(
ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ȳ∥2L2(Ω)

)
+ C2

(
ε ∥∇ȳ∥2L2(Ω) + C(ε) ∥ỹ1 − ỹ2∥2L2(Ω)

)
+ C3

(
∥ȳ∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)

)
+ C4

[
ε ∥∇ȳ∥2L2(Ω) + (ε+ C(ε)) ∥ȳ∥2L2(Ω)

]
.

Choosing the appropriate ε and small enough, the estimate reads as follows

d
dt

∥ȳ∥2L2(Ω) ≤ C
(
∥ȳ∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)

)
, (4.2.2)

where constant C merely depends on CT∗ in theorem 4.1.18. Consequently,

d
dt

(
exp(−C t) ∥ȳ∥2L2(Ω)

)
≤ C exp(−C t) ∥ỹ1 − ỹ2∥2L2(Ω) .

That implies

exp(−C t) ∥ȳ∥2L2(Ω) ≤
∫ t

0
C exp(−C s) ∥(ỹ1 − ỹ2) (s)∥2L2(Ω) ds

= (1− exp(−C t)) ∥(ỹ1 − ỹ2) (s)∥2L2(Ω) .

Hence,

∥ȳ∥2X ≤ (exp(C T )− 1) ∥ỹ1 − ỹ2∥2X .

We just need to have exp(C T )− 1 < 1 a.e., therefore exp(C T ) < 2.
Let any T > 0 to be given. We choose T1 > 0 such that exp(C T1) < 2. Applying Banach

Fixed Point Theorem we may find a weak solution (ŷ, ŵ) of the problem (4.2.1), which exists
on the time interval [0, T1]. Repeating this argument the solution will be extended to the
time interval [T1, 2T1]. We can continue this finitely many times to construct a weak solution
existing on the full interval [0, T ].

For the uniqueness, let y1 and y2 be two solutions of the problem (4.2.1), from the
existence proof regarding equation (4.2.2) we have

d
dt

∥A ỹ1 −A ỹ2∥2L2(Ω) =
d
dt

∥y1 − y2∥2L2(Ω) ≤ C
(
∥y1 − y2∥2L2(Ω) + ∥ỹ1 − ỹ2∥2L2(Ω)

)
.

Since y1 and y2 are fixed points, then y1 = ỹ1, y2 = ỹ2, respectively. Therefore,

∥y1 − y2∥2L2(Ω) ≤ 2C

∫ t

0
∥y1(s)− y2(s)∥2 ds

for 0 ≤ s ≤ T . According to Gronwall’s inequality, y1 = y2. □

For our next proof we need the following embedding result, which can be deduced from
DiBenedetto, 1993, Proposition 3.4:
Theorem 4.2.2. For every function y ∈W (0, T ) we have

∥y∥Lp(0,T ;Lq(Ω)) ≤ c ∥y∥W (0,T )

for some positive constant c depending on Ω, where the numbers p, q ≥ 1 are linked by

1

p
+
N

2q
=
N

4
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and their admissible range is
q ∈ (2,∞], p ∈ [4,∞); if N = 1,

q ∈ [2,∞), p ∈ (
4

N
,∞]; if N = 2,

q ∈ [2,
2N

N − 2
], p ∈ [2,∞]; if N ≥ 3.

Theorem 4.2.3. The control-to-state map S : Uad →W (0, T )×L∞(0, T ;W 1,6(Ω)) is of class
C1.

Proof. The proof of the theorem is based on the application of the implicit function
theorem. Suppose that u ∈ Uad is arbitrary and that (y, w) ∈W (0, T )×L∞(0, T ;W 1,6(Ω))
is the associated state. We consider the operator E

E : Y × L∞(∂ΩT ) → Z

(y, w, u) 7→ (E1(y, w, u), E2(y, w, u), E3(y, w, u)) ,

where Y :=W (0, T )×C([0, T ];W 1,6(Ω)) and Z := L2(0, T ;H1(Ω)∗)×C([0, T ];W 1,6/5(Ω)∗)×
L2(Ω). Furthermore, E1, E2 and E3 are defined as follows:

⟨E1(y, w, u) , φ⟩ :=
∫ T

0

∫
Ω
∂ty φ dx dt+

∫ T

0

∫
Ω
∇y · ∇φ dx dt

− χ

∫ T

0

∫
Ω
y∇w · ∇φ dx dt+ χ

∫ T

0

∫
∂Ω
u y φ ds dt

−
∫ T

0

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
y φ dx dt, φ ∈ L2(0, T ;H1(Ω)),

⟨E2(y, w, u) , ψ⟩ :=
∫ T

0

∫
Ω
∇w · ∇ψ dx dt−

∫ T

0

∫
∂Ω
uψ ds dt+ λ

∫ T

0

∫
Ω
wψ dx dt

−
∫ T

0

∫
Ω
y ψ dx dt, ψ ∈ L2(0, T ;H1(Ω)),

and
E3(y, w, u) = y(x, 0)− y0(x) in Ω.

The operator E1 is well-defined. Indeed, y ∈ W (0, T ) results in y ∈ L4(0, T ;L3(Ω)) for
N ≤ 3, by virtue of DiBenedetto, 1993, Proposition 3.4. That means y2 ∈ L2(0, T ;L3/2(Ω)) ≡
L2(0, T ;L3(Ω)∗). Since φ ∈ L2(0, T ;H1(Ω)) ↪→ L2(0, T ;L6(Ω)) forN ≤ 3 and L2(0, T ;H1(Ω))

is dense in L2(0, T ;L3(Ω)) we may extend φ 7→
∫ T
0

∫
Ω y

2 φ dx dt to a continuous functional
on L2(0, T ;H1(Ω)), which means E1(y, w, u) ∈ L2(0, T ;H1(Ω)∗).

E is continuously Fréchet differentiable with

E′
1(y, w, u)(δy, δw, δu) =

∫ T

0

∫
Ω
∂tδy φ dx dt+

∫ T

0

∫
Ω
∇δy · ∇φ dx dt

− χ

∫ T

0

∫
Ω
(δy∇w + y∇δw) · ∇φ dx dt+ χ

∫ T

0

∫
∂Ω

(δu y + u δy)φ ds dt

−
∫ T

0

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y dx

)
δy φ dx dt+

∫ T

0

∫
Ω

(
a1 δy + a2−

∫
Ω
δy dx

)
y φ dx dt,

E′
2(y, w, u)(δy, δw, δu) =

∫ T

0

∫
Ω
∇δw · ∇ψ dx dt−

∫ T

0

∫
∂Ω
δuψ ds dt
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+ λ

∫ T

0

∫
Ω
δw ψ dx dt−

∫ T

0

∫
Ω
δy ψ dx dt,

and
E′

3(y, w, u)(δy, δw, δu) = δy(x, 0).

We note that well definedness and differentiability of the operator E3 follows fromW (0, T ) ↪→
C([0, T ];L2(Ω)).

Since for any u ∈ Uad, E(y, w, u) = 0 is equivalent to S(u) = (y, w), the control-to-
state map is C1 provided that E(y,w)(y, w, u) ∈ L(Y, Z) is boundedly invertible. The exis-
tence and uniqueness of (δy, δw) ∈ Y satisfying (4.2.1), i. e., E(y,w)(y, w, u)(δy, δw) = h =
(h1, h2, u, y0), is established by virtue of proposition 4.2.1. This yields that E(y,w)(y, w, u)
is bijective.

It follows from the continuous inverse theorem that the inverse of E(y,w)(y, w, u) is
continuous. By the implicit function theorem, there exists a unique continuous function

S : L∞(∂ΩT ) →W (0, T )× L∞(0, T ;W 1,6(Ω))

S(u) = (S1(u), S2(u)),

such that y = S1(u) and w = S2(u).
In addition, S is differentiable and δy = S′

1(u)δu and δw = S′
2(u)δu satisfies

E(y,w)(y, w, u)(δy, δw) = −Eu(y, w, u)δu.

For any δu ∈ L∞(∂ΩT ) this equation has a unique solution (δy, δw) and this solution satisfies
the following problem

∂tδy −∆δy = −χ div (δy∇w + y∇δw) +
(
a0 − a1 y − a2−

∫
Ω
y dx

)
δy

−
(
a1 δy + a2−

∫
Ω
δy dx

)
y, in ΩT ,

−∆δw + λ δw = δy in ΩT ,

∂δy

∂n
= 0,

∂δw

∂n
= δu on ∂ΩT ,

δy(x, 0) = 0 in Ω.

(4.2.3)
□
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4.2.2 First Order Optimality Condition
In this subsection we aim to derive the first order optimality conditions for a locally

optimal solution (ȳ, w̄, ū) of problem (4.1.1).
We can derive the optimality system by using the reduced cost functional as explained

in subsection 2.2.5. However, we apply the formal Lagrangian method to derive the first
order optimality condition. The Lagrangian function L : Y ×L∞(∂ΩT )× Y → R is defined
by

L(y, w, u, p, q) = 1

2

∫
Ω
|y(x, T )− yd(x)|2 dx+

γ

2

∫ T

0

∫
∂Ω

|u(x, t)|2 ds dt

+

∫ T

0

∫
Ω
∂ty p dx dt+

∫ T

0

∫
Ω
∇y · ∇p dx dt− χ

∫ T

0

∫
Ω
y∇w · ∇p dx dt

+ χ

∫ T

0

∫
∂Ω
u y p ds dt−

∫ T

0

∫
Ω

(
a0 − a1 y − a2−

∫
Ω
y

)
y p dx dt

+

∫ T

0

∫
Ω
∇w · ∇q dx dt−

∫ T

0

∫
∂Ω
u q ds dt+ λ

∫ T

0

∫
Ω
w q dx dt

−
∫ T

0

∫
Ω
y q dx dt+

∫
Ω
(y(x, 0)− y0(x)) p(x, 0) dx.

Taking the derivative with respect to the state y, we obtain

Ly(y, w, u, p, q)δy =

∫
Ω

(
y(x, T )− yd(x)

)
δy(x, T ) dx+

∫ T

0

∫
Ω
∂tδy p dx dt

+

∫ T

0

∫
Ω
∇δy · ∇p dx dt− χ

∫ T

0

∫
Ω
∇w · ∇p δy dx dt+ χ

∫ T

0

∫
∂Ω
u p δy ds dt

+ a1

∫ T

0

∫
Ω
p y δy dx dt+ a2

∫ T

0

∫
Ω
p y

(
−
∫
Ω
δy dx

)
dx dt

−
∫ T

0

∫
Ω
p

(
a0 − a1 y − a2−

∫
Ω
y dx

)
δy dx dt−

∫ T

0

∫
Ω
q δy dx dt

+

∫
Ω
p(x, 0) δy(x, 0) dx.

Integrating by parts and using

∫ T

0

∫
Ω
∂tδy p dx dt =

∫
Ω
p δy dx

∣∣T
0
−
∫ T

0

∫
Ω
∂tp δy dx dt,
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we can infer that

Ly(y, w, u, p, q)δy =

∫
Ω
(y(x, T )− yd(x)) δy(x, T ) dx+

∫
Ω
p δy dx

∣∣T
0
−
∫ T

0

∫
Ω
∂tp δy dx dt

−
∫ T

0

∫
Ω
∆p δy dx dt+

∫ T

0

∫
∂Ω
∂np δy ds dt

− χ

∫ T

0

∫
Ω
∇w · ∇p δy dx dt+ χ

∫ T

0

∫
∂Ω
u p δy ds dt

+ a1

∫ T

0

∫
Ω
p y δy dx dt+ a2

∫ T

0
−
∫
Ω

(∫
Ω
p y dx

)
δy dx dt

−
∫ T

0

∫
Ω
p

(
a0 − a1 y − a2−

∫
Ω
y dx

)
δy dx dt−

∫ T

0

∫
Ω
q δy dx dt

+

∫
Ω
p(x, 0) δy(x, 0) dx

=

∫
Ω

(
y(x, T )− yd(x) + p(x, T )

)
δy(x, T ) dx

−
∫
Ω
p(x, 0) δy(x, 0) dx+

∫
Ω
p(x, 0) δy(x, 0) dx−

∫ T

0

∫
Ω
∂tp δy dx dt

−
∫ T

0

∫
Ω
∆p δy dx dt+

∫ T

0

∫
∂Ω
∂np δy ds dt

− χ

∫ T

0

∫
Ω
∇w · ∇p δy dx dt+ χ

∫ T

0

∫
∂Ω
u p δy ds dt

+ a1

∫ T

0

∫
Ω
p y δy dx dt+ a2

∫ T

0

∫
Ω

(
−
∫
Ω
p y dx

)
δy dx dt

−
∫ T

0

∫
Ω
p

(
a0 − a1 y − a2−

∫
Ω
y dx

)
δy dx dt−

∫ T

0

∫
Ω
q δy dx dt.

We notice that

a2

∫ T

0

∫
Ω
p y

(
−
∫
Ω
δy dx

)
dx dt = a2−

∫
Ω

(∫ T

0

∫
Ω
p y dx dt

)
δy dx

= a2

∫ T

0

∫
Ω

(
−
∫
Ω
p y dx

)
δy dx dt.

Now, we take the derivative of Lagrangian with respect to w and obtain

Lw(y, w, u, p, q)δw

= χ

∫ T

0

∫
Ω
y∇p · ∇δw dx dt−

∫ T

0

∫
Ω
∇q · ∇δw dx dt− λ

∫ T

0

∫
Ω
q δw dx dt

= −χ
∫ T

0

∫
Ω
div (y∇p) δw dx dt+ χ

∫ T

0

∫
∂Ω
y ∂npδw ds dt

+

∫ T

0

∫
Ω
∆q δw dx dt−

∫ T

0

∫
∂Ω
∂nq δw ds dt− λ

∫ T

0

∫
Ω
q δw dx dt.
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In summary, if (y, w, u) is a solution of problem (4.1.1), then there exists a Lagrange mul-
tiplier (p, q) ∈ Y such that:

∂tp+∆p+ χ∇w · ∇p+ q = −
(
a0 − 2 a1 y − a2−

∫
Ω
y dx

)
p+ a2−

∫
Ω
p y dx, in ΩT ,

∆q − λ q = χ div (y∇p) in ΩT ,

∂p

∂n
= −χu p, ∂q

∂n
= −χ2 u p y on ∂ΩT ,

p(x, T ) = y(x, T )− yd(x) in Ω.
(4.2.4)

We note that the existence of a unique solution (p, q) of (4.2.4) follows from Tröltzsch, 2010,
lemma 3.17.

At the end, taking the derivative of Lagrangian with respect to control, we obtain

Lu(y, w, u, p, q)δu =γ

∫ T

0

∫
∂Ω
u δu ds dt+ χ

∫ T

0

∫
∂Ω
y p δu ds dt

−
∫ T

0

∫
∂Ω
q δu ds dt.

Given an optimal control ū and corresponding state (ȳ, w̄), then there exists a solution
(p, q) ∈ Y of (4.2.4) such that:

∫ T

0

∫
∂Ω

(γ ū+ χ ȳ p− q) (u− ū) ds dt ≥ 0 for all u ∈ Uad.

This implies

ū = projUad

(
−1

γ
χ ȳ p+

1

γ
q

)
,

where proj : L1(∂ΩT ) → Uad is the metric Projection operator. We note that 1
γ χ ȳ p−

1
γ q ∈

L1(∂ΩT ).
Now we can derive the following system of necessary optimality conditions.

Theorem 4.2.4. Suppose that (y, w, u) ∈ W (0, T ) × L∞(0, T ;W 1,6(Ω)) × Uad is a locally
optimal solution of problem (4.1.1). Then there exists a unique adjoint state (p, q) ∈
W (0, T )× L∞(0, T ;W 1,6(Ω)) such that the following system holds:

∂tp+∆p+ χ∇w · ∇p+ q = −
(
a0 − 2 a1 y − a2−

∫
Ω
y dx

)
p+ a2−

∫
Ω
p y dx, in ΩT ,

∆q − λ q = χ div (y∇p) in ΩT ,

∂p

∂n
= −χu p, ∂q

∂n
= −χ2 u p y on ∂ΩT ,

p(x, T ) = y(x, T )− yd(x) in Ω.
(4.2.5a){

u = projUad

(
1

γ
χ y p− 1

γ
q

)
, for all u ∈ Uad, (4.2.5b)
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∂ty −∆y = −χ div (y∇w) + y

(
a0 − a1 y − a2−

∫
Ω
y dx

)
, in ΩT ,

−∆w + λw = y in ΩT ,

∂y

∂n
= 0 and

∂w

∂n
= u on ∂ΩT ,

y(x, 0) = y0(x) in Ω.

(4.2.5c)





5 Conclusions and Outlook
In this thesis, we analyzed optimal control problems governed by partial differential

equations with nonlocal terms and focused on two different types of partial differential
equations arising in physics and biology.

We provided a framework for essential concepts of partial differential equations and
optimal control problems governed by such equations in chapter 2. In section 2.1 we collected
the essential definitions and results relevant to our work. Section 2.2 is dedicated to pertinent
results for analyzing optimal control problems governed by partial differential equations.

Chapter 3 and chapter 4 are regarded as the main body of our work. We devoted
chapter 3 to the optimal control of a nonlocal nonlinear elliptic equation, namely a stationary
Kirchhoff equation. In section 3.1 we inspected existence and uniqueness of the solutions of
the Kirchhoff equation in theorem 3.1.6. We proved that the Kirchhoff equation has strong
solution y in W 2,q(Ω). The existence of global optimal solutions of the optimal control
problem was also proved in theorem 3.1.9. It turned out that having controls in H1(Ω) was
of essential importance. We can however omit the upper bound for the existence theory.

We derived the necessary optimality system of first-order for local minimizers in sec-
tion 3.2. We noticed that the control-to-state map is not Fréchet differentiable with respect
the topology of H1(Ω). In the presence of the upper bound for the controls they evidently
belong to L∞(Ω), resolving the issue of differentiability of control-to-state map by working
with the topology of H1(Ω) ∩ L∞(Ω). First, in subsection 3.2.1 we proved Fréchet differ-
entiability of the linearized problem in proposition 3.2.1 which was employed to show the
Fréchet differentiability of the control-to-state map using implicit function theorem in the-
orem 3.2.2. Afterwards, we applied the formal Lagrangian method to derive the optimality
system in subsection 3.2.2. In subsection 3.2.3 we introduced some analytical solution for
optimal control problem, example 3.2.4. We observed that the optimality system contains a
nonlinear obstacle problem for the control variable, which can be explained by the presence
of the bound constraints in H1(Ω) and the H1 control cost term in the cost functional. To
employ an efficient numerical method we required the optimality system to be differentiable
in some sense. We chose to relax the bound constraints, penalize the optimal control prob-
lem employing the Moreau-Yosida penalty approximation in subsection 3.2.4. This followed
some modifications in the optimal control problem. To begin with, we eliminated the bound
constraints from the admissible set. However, due to this omission, specifically in the ab-
sence of the lower bound, the well-definedness of the control-to-state map can no longer be
guaranteed. Additionally, without the upper bound, the controls may not necessarily belong
to L∞(Ω), preventing us from working with the topology of H1(Ω) ∩ L∞(Ω) for the differ-
entiability of the control-to-state map. To address this, we modify the control-to-state map
by employing a cut-off function–a family of approximations of the positive part function
that fulfills specific properties. Overcoming these difficulties is achieved through the use
of the cut-off function. An example of such a cut-off function was given in example 3.2.5.
Finally, we added a quadratic penalty term to the objective, resulting in (Pε). To explore
the relationship between the original optimal control problem and the relaxed problem (Pε),
we demonstrated in theorem 3.2.6 that for any null sequence of penalty parameters, there
exists a subsequence of global solutions to the corresponding penalized problems that con-
verges weakly to a global solution of the original problem. At the end of this section, in



100 5 Conclusions and Outlook

subsection 3.2.5, we derived first order optimality conditions for the penalized problem. It
also turned out in corollary 3.2.9 that the optimal control belongs to L∞(Ω).

In section 3.3, we demonstrated the system of first order optimality system for the pe-
nalized problem is differentiable in generalized sense, referred to as Newton differentiability.
Furthermore, we introduced a basic semismooth Newton algorithm for solving the penalized
problem in Algorithm 3.3.3.

In section 3.4 we discretized the relaxed optimal control problem by means of finite
element method. We followed a discretized-then-optimized approach, that is, we first for-
mulated the discrete optimal control problem and then derived the associated discrete op-
timality system. A discrete semismooth Newton algorithm with nonlinear state update
for the solution of a discretized instance of the penalized problem was also introduced in
Algorithm 3.4.1.

We concluded chapter 3 with section 3.5, which was devoted to numerical experiments.
We investigated the influence of the nonlocality parameter in subsection 3.5.1. It turned out
that as α increases the number of iterations of the discrete semismooth Newton method de-
creases. Furthermore, we studied the dependence of the number of the semismooth Newton
steps on the discretization in subsection 3.5.2. We considered three refinement levels and
observed a mesh-independent convergence behavior. In subsection 3.5.3 we investigated the
behaviour of Algorithm 3.4.1 and observed how the solution to the penalized is affected vy
variation of the penalty parameter. As final experiment, we studied influence of the control
cost parameters in subsection 3.5.4.

Chapter 4 was devoted to the optimal control of a nonlocal nonlinear parabolic-elliptic
system, namely chemotaxis system. The existence theory in section 4.1 was divided into two
subsections. In subsection 4.1.1 we demonstrated the existence and uniqueness of a weak
solution by virtue of Banach fixed point argument in theorem 4.1.13. Indeed, we constructed
a perturbed linear system associated to the nonlinear parabolic-elliptic one and proved the
corresponding operator is a strict contradiction for a specific time. Since the solution y
of the chemotaxis system can blow up we cannot extend this argument to any given time.
We proved the existence of an optimal solution in subsection 4.1.2. First, we constructed
the corresponding ordinary differential equation (ODE), namely (4.1.20), to the parabolic
equation in the chemotaxis system and determined its maximal existence time (blow-up
time of existence) with respect to the initial condition of the PDE. We observed that the
occurrence of finite or infinite time blow-up depends on the coefficient of the nonlinear
term in the ODE, see remark 4.1.14. Subsequently, we demonstrated in theorem 4.1.15
that solution y of the chemotaxis system is uniformly bounded by solution Υ of the ODE.
Finally, we demonstrated some a-priori estimate for the solution of the chemotaxis system
and proved the existence of an optimal solution.

We proceeded by deriving first-order necessary optimality conditions in section 4.2. We
discussed Fréchet differentiability of the control-to-state operator in subsection 4.2.1. To
achieve this, we initially established the Fréchet differentiability of the linearized chemotaxis
system in proposition 4.2.1. Afterwards, we demonstrated in theorem 4.2.3 the Fréchet
differentiability of the control-to-state map. Finally, a first-order optimality system was
derived in subsection 4.2.2.

At the end, we point out some possible future research lines.

(i) Optimal Control of Kirchhoff Equation
Design and analysis of a suitable preconditioner: As mentioned earlier in
section 3.4, unlike standard optimal control problems without a nonlocal PDE, cer-
tain blocks in the discrete generalized Newton system lose sparsity. For an efficient
implementation, it is crucial not to assemble these blocks as matrices. Instead,
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providing matrix-vector products and utilizing a preconditioned iterative solver,
such as Minres (Paige, Saunders, 1975), becomes essential for solving the discrete
generalized Newton system. The design and analysis of a suitable preconditioner
are deferred to future work.

(ii) Optimal Control of Chemotaxis System
Discretization and Implementation: In the future we intend to apply a nu-
merical method to solve the optimality system of the chemotaxis equation. Dis-
cretization and numerical experiments will be deferred to future work.





A Appendix: Comment on the
Proof of Existence of an
Optimal Solution in Delgado,
Figueiredo, et al., 2017

We believe that the proof concerning the existence of an optimal solution in Theorem 2.5
of Delgado, Figueiredo, et al., 2017 contains a flaw. That proof uses the direct method of
the calculus of variations and begins by constructing two sequences {un} and {yn} satisfying
the state equation (3.1.3) and converging weakly in L2(Ω). The proof then proceeds to show
that the weak limit satisfies the state equati on as well. That claim, however, is incorrect.
Indeed, we construct below a counterexample showing that the control-to-state map is not
continuous in any meaningful sense w.r.t. the weak L2-convergence of the controls. We
acknowledge that this argument was suggested by one of the reviewers.

It suffices to consider (3.1.3) in the setting Ω = (0, 1) ⊂ R with data b ≡ 1 and f ≡ 1.
We consider the sequence of controls {un} ⊂ L2(Ω) defined by un(x) := 1 + 2χ(nx), where
χ(x) is 1-periodic function on R defined by

χ(x) :=

{
0, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1.

This sequence clearly satisfies un ⇀ ū := 2 in L2(Ω); see, for instance, Cioranescu, Donato,
1999, Theorem 2.6.

We now show that yn := S(un) does not converge to S(ū) =: ȳ. To this end, we note that
{yn} is bounded in H2(Ω) and thus a subsequence (which we denote the same) converges
weakly in H2(Ω) and strongly in H1

0 (Ω) to some y∗ ∈ H2(Ω) ∩H1
0 (Ω). This implies that∥∥∥∥∥ 1

un + ∥∇yn∥2L2(Ω)

− 1

un + ∥∇y∗∥2
L2(Ω)

∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥ ∥∇y∗∥2L2(Ω) − ∥∇yn∥2L2(Ω)(
un + ∥∇yn∥2L2(Ω)

)(
un + ∥∇y∗∥2

L2(Ω)

)∥∥∥∥∥
2

L2(Ω)

≤ C
(
∥∇y∗∥2L2(Ω) − ∥∇yn∥2L2(Ω)

)2 → 0

for n → ∞. The estimate employs that the terms in the denominator are bounded below
by 1. Consequently,

−∆yn =
1

un + ∥∇yn∥2L2(Ω)

=
1

un + ∥∇y∗∥2L2(Ω)

+ rn (A.0.1)

holds with some ∥rn∥L2(Ω) → 0. Since
(
un + ∥∇y∗∥2L2(Ω)

)−1 oscillates between the values(
1+∥∇y∗∥2L2(Ω)

)−1 and
(
3+∥∇y∗∥2L2(Ω)

)−1, the right-hand side of (A.0.1) converges weakly

in L2(Ω) to the function 1
2

(
1 + ∥∇y∗∥2L2(Ω)

)−1
+ 1

2

(
3 + ∥∇y∗∥2L2(Ω)

)−1. The passage to the
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limit implies

−∆y∗ =
1

2

( 1

1 + ∥∇y∗∥2L2(Ω)

+
1

3 + ∥∇y∗∥2L2(Ω)

)
.

Now if S(ū) = ȳ = y∗ held, then

−∆y∗ =
1

2

( 1

1 + ∥∇y∗∥2L2(Ω)

+
1

3 + ∥∇y∗∥2L2(Ω)

)
=

1

2 + ∥∇y∗∥2L2(Ω)

would follow. This, however, is impossible due to the strict convexity of the function (0,∞) ∋
t 7→ 1/

(
t+ ∥∇y∗∥2L2(Ω)

)
.

Consequently, ȳ ̸= y∗ and we obtain that un ⇀ u in L2(Ω) does not imply S(un) → S(u)
in any meaningful sense. Therefore, the proof of Theorem 2.5 of Delgado, Figueiredo, et al.,
2017 cannot be correct, since it implies the weak L2-continuity of the control-to-state map.
The issues appears to be in step four of the proof on page 779, where the authors conclude
that ∑

i∈In

λiai(xm)− â(xm) ≥ δ

holds for all n ∈ N. This, however, is not the case, and therefore, the desired contradiction
is not obtained.

Given the lack of weak L2-continuity of the control-to-state operator, the direct method
of the calculus of variations cannot be applied in the setting of Delgado, Figueiredo, et
al., 2017, where only an L2-cost term is present. We overcome this issue by choosing a
stronger norm for the control cost term, so that we can use the strong L2-continuity of the
control-to-state map proved in theorem 3.1.7.



B Appendix: Toolbox of
Functional Analysis

This chapter provides a quick outline of some fundamentals of functional analysis and
is based on Atkinson, Han, 2010; Tröltzsch, 2010; Evans, 1998.

This chapter is divided into two sections. Appendix B.1 provides all related defini-
tions and theorems in linear spaces and appendix B.2 collects important results for linear
operators.

B.1 Linear Spaces
In this section, we collect essential concepts and results related to various aspects of

linear spaces, with a particular emphasis on significant linear spaces like Banach spaces,
Hilbert spaces, and specific function spaces used in this work. In appendix B.1.1 we in-
troduce Banach and Hilbert spaces. The definition of continuously differentiable function
spaces and Hölder spaces are presented in appendix B.1.2. Appendix B.1.3 is devoted to
introduce Lp-spaces and some important inequalities applicable in these spaces.

B.1.1 Banach and Hilbert Spaces

Definition B.1.1 (Normed Space). Let X be a linear space over R. A norm on X is a
mapping ∥·∥ : X → [0,∞) such that the following properties hold:

(i) ∥u∥ = 0 if and only if u = 0,
(ii) ∥λu∥ = |λ| ∥u∥ for all u ∈ X,λ ∈ R (homogeneity),
(iii) ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ X (triangular inequality).

A normed space is a linear space X endowed with a norm ∥·∥, denoted by {X, ∥·∥}.
Hereafter we assume X is a normed space.

Definition B.1.2. A sequence {un}∞n=1 ⊂ X is said to be convergent to u ∈ X, denoted by
un → u, provided

lim
n→∞

∥un − u∥ = 0.

Definition B.1.3 (Banach Space). (i) A sequence {un}∞n=1 is said to be a Cauchy se-
quence if

lim
n,m→∞

∥un − um∥ = 0.

(ii) X is said to be complete if every Cauchy sequence in X converges, that is, there
exists u ∈ X such that {un}∞n=1 converges to u.

(iii) A complete normed space is called a Banach space.
Definition B.1.4 (Inner Product Space). Let H be a real linear space. A mapping (·, ·) : H ×
H → R is called an inner (scalar) product on H if the following conditions hold:

(i) (u, u) ≥ 0 for all u ∈ H,
(ii) (u, u) = 0 if and only if u = 0,
(iii) (u, v) = (v, u) for all u, v ∈ H,
(iv) the mapping u 7→ (u, v) is linear for all v ∈ H.

The space H together with the inner product (·, ·) is called an inner product space.
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If (·, ·)H is an inner product, the induced norm is defined by

∥u∥ := (u, u)
1/2
H u ∈ H.

We easily verify this defines a norm on H, using Cauchy-Schwarz inequality

|(u, v)| ≤ ∥u∥H ∥v∥H for all u, v ∈ H.

Definition B.1.5 (Hilbert Space). An inner product space is called a Hilbert space if it is
complete wit respect to the induced norm.

B.1.2 Spaces of Continuously Differentiable Functions
Let Ω denote a bounded domain of Rn and u : Ω → R a function of several variables

u = u(x1, · · · , xn).
For multi-variable functions, it is convenient to use the multi-index notation for partial
derivatives, they are vectors (α1, · · · , αn) having non-negative integer components.
Definition B.1.6. (i) An ordered collection α = (α1, · · · , αn) of non-negative integers

αi is said to be a multiindex of order

|α| = α1 + · · ·αn.

(ii) Given a multiindex α with |α| ≤ k, k ∈ N ∪ {0}, then for a k-times differentiable
function u we define

Dαu(x) :=
∂|α|u(x)

∂α1
x1 · · · ∂αn

xn

= ∂α1
x1

· · · ∂αn
xn
u.

(iii) If k is a nonnegative integer,

Dku(x) := {Dαu(x) | |α| = k},
denotes the set of partial derivative of order k.

A function from C(Ω) consisting of real-valued and continuous functions on Ω may
exhibit non-smooth behavior as the variable approaches the boundary of Ω.

Let C(Ω) be space of continuous functions up to the boundary. This is a Banach space
with norm

∥u∥C(Ω) = sup
x∈Ω

|u(x)| ≡ max
x∈Ω

u(x).

Ck(Ω) denotes the space of functions which together with their derivatives of order less than
or equal to k, are continuous on Ω; that is,

Ck(Ω) = {u ∈ C(Ω) |Dαu ∈ C(Ω) for |α| ≤ k}.
Ck(Ω) denotes the space of functions which are continuous up to the boundary, together
with their derivatives of order less than or equal to k; that is,

Ck(Ω) = {u ∈ C(Ω) |Dαu ∈ C(Ω) for |α| ≤ k}.
This is a Banach space with the norm

∥u∥Ck(Ω) = max
|α|≤k

∥Dαu∥C(Ω) .

Definition B.1.7. (i) The closure of a set E ⊂ X is defined by

E = {x ∈ X | there exists some sequence {xn}∞n=1 ⊂ E,with xn → x}.
The set E ⊂ X is said to be dense in X if E = X.

(ii) Support of a function v on Ω is defined to be

supp(u) = {x ∈ Ω |u(x) ̸= 0}.
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(iii) We say that u has a compact support if supp(u) is a proper subset of Ω.
We denote C∞

0 (Ω) as the space of infinitely differentiable functions having compact
supports.
Hölder Spaces

We continue with the definition of the less complex Hölder spaces:
Definition B.1.8. A function u : Ω → R is called Lipschitz continuous if

|u(x)− u(y)| ≤ c |x− y| for all x, y ∈ Ω.

For some constant c. The smallest constant in the above inequality is called the Lipschitz
constant and is defined by

Lip(u) = sup
x,y∈Ω, x ̸=y

|u(x)− u(y)|
|x− y|

.

We can generalize this definition to the Hölder continuous functions:
Definition B.1.9. A function u : Ω → R is said to be Hölder continuous with exponent
0 < γ ≤ 1, if there exists some constant C > 0 such that

|u(x)− u(y)| ≤ C |x− y|γ , x, y ∈ Ω.

The Hölder space C0,γ(Ω) is referred to as the subspace of C(Ω) functions that are Hölder
continuous with the exponent γ. This is a Banach space with the norm

∥u∥C0,γ(Ω) := ∥u∥C(Ω) + [u]C0,γ(Ω) ,

where

[u]C0,γ(Ω) := sup
x,y∈Ω, x ̸=y

|u(x)− u(y)|
|x− y|

γ

is the γth-Hölder seminorm. Similarly, we can define the Hölder space Ck,γ(Ω) consisting
of all k-times continuously differentiable functions whose kth-partial derivatives are bounded
and Hölder continuous with exponent γ, that is

Ck,γ(Ω) = {u ∈ Ck(Ω) |Dαu ∈ C0,γ(Ω) for all αwith |α| = k}.
This is a Banach space with the norm

∥u∥Ck,γ(Ω) = ∥u∥Ck(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω).

B.1.3 Lp Spaces
We do not introduce formally the concepts of measurable set and measurable function.

Intuitively, the measure of a setD ⊂ Rn is its length, area, volume, or suitable generalization.
To define the measurable function, we begin by introducing a step function:
Definition B.1.10. A real-valued function s defined on a measurable set E is called a step
function if E can be decomposed into a finite number of pairwise disjoint measurable subsets
E1, · · · , Ek such that s is constant s(x) = αi over each Ei, 1 ≤ i ≤ k. That means, s can
be written as

s(x) =
k∑

i=1

αiχEi(x), x ∈ E,

where α1, · · · , αk are scalars and the characteristic function χEi is defined by

χEi(x) =

{
1 x ∈ Ei,

0 x /∈ Ei.



108 B Appendix: Toolbox of Functional Analysis

The function χi is measurable if and only if Ei is a measurable set.
Now, we can introduce the definition of a measurable function:

Definition B.1.11. A function u defined on E is called a measurable function if it is the
pointwise limit of a sequence of step functions sn over E, that means

u(x) = lim
n→∞

sn(x), x ∈ E.

Two measurable functions are said to be equal almost everywhere if the set of points on
which their function values differ is a set of measure zero. We denote that by

u = v a.e.

Given a measurable function u on E. An equivalent class of equivalent functions is
defined by

[u] = {v | v is measurable on E and u = v a.e.}
This chapter primarily focuses on the Lp spaces and Sobolev spaces, which frequently
emerges as the suitable context for employing concepts from functional analysis to extract
insights related to partial differential equations.
Definition B.1.12. The Lebesgue integral of a step function s over E, is defined by∫

E
s(x) dx =

k∑
j=1

αi |Ei| .

The Lebesgue integral of a Lebesgue measurable function u over E, is defined by∫
E
u(x) dx = lim

n→∞

∫
E
sn(x) dx.

In the following, we bring an important property of Lebesgue integration:
Theorem B.1.13. Suppose {fn} is a sequence of Lebesgue integrable functions converging
a.e. to f on a measurable set E. If there exists a Lebesgue integrable function g such that

|fn(x)| ≤ g(x) a.e. in E, n ≥ 1,

then the limit f is Lebesgue integrable and

lim
n→∞

∫
E
fn(x) dx =

∫
E
f(x) dx.

Now, it is time to introduce Lp functions:
Definition B.1.14. We define the essential supremum of a real-valued measurable function
u : Ω → R to be

ess sup
x∈Ω

u(x) := inf{µ ∈ R | |{u(x) > µ}| = 0}

= inf{ sup
x∈Ω\Ω′

u(x) |
∣∣Ω′∣∣ = 0}.

Definition B.1.15. For 1 ≤ p ≤ ∞, we define Lp(Ω) to be the linear space of all measurable
functions u : Ω → R for which the following norm is finite:

∥u∥Lp(Ω) :=


[∫

Ω
|u(x)|p dx

]1/p
if 1 ≤ p <∞

ess sup
x∈Ω

|u(x)| if p = ∞.

If u ∈ L∞(Ω), it called an essentially bounded measurable function.
This is Banach space for 1 ≤ p ≤ ∞ and reflexive for 1 < p <∞.
In the following we summarized some properties of Lp spaces.
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Theorem B.1.16. (i) Every Cauchy sequence in Lp(Ω), 1 ≤ p ≤ ∞ has a subsequence
converging pointwise almost everywhere on Ω.

(ii) If 1 ≤ p ≤ ∞, then Lq(Ω) ⊂ Lq(Ω) and we have

∥u∥Lp(Ω) ≤ |Ω|1/p−1/q ∥u∥Lq(Ω) for all u ∈ Lq(Ω).

Some Elementary Inequalities
There are some fundamental inequalities employed in our work.

Young’s Inequality

Let a, b ≥ 0 and 1 < p, q <∞ with 1
p + 1

q = 1. Then

ab ≤ ap

p
+
bq

q
.

Young’s Inequality with ϵ

Let a, b ≥ 0, ϵ > 0 and 1 < p, q <∞ with 1
p + 1

q = 1. Then

ab ≤ ϵap + C(ϵ)bq, (B.1.1)

where C(ϵ) = (ϵp)−p/qq−1.
For p = q = 2 this inequality reads

ab ≤ ϵa2 +
1

4ϵ
b2.

Hölder’s Inequality

Suppose 1 ≤ p ≤ ∞ with 1
q +

1
q = 1. Then for any u ∈ Lp(Ω) and v ∈ Lq(Ω) we have∫

Ω
|uv| dx ≤ ∥u∥Lp(Ω) ∥v∥Lp(Ω)

for u ∈ Lp(Ω) and v ∈ Lq(Ω).
Here, we adopt the convention 1/∞ = 0. We observe 1 < q <∞ if 1 < p <∞, q = 1 if

p = ∞, and q = ∞ if p = 1.
Minkowski’s Inequality

Suppose 1 ≤ p, q ≤ ∞ and u, v ∈ Lp(Ω). Then we have

∥u+ v∥Lp(Ω) ≤ ∥u∥Lp(Ω) + ∥v∥Lp(Ω) .

Interpolation Inequality
Suppose that 1 ≤ p ≤ r ≤ q ≤ ∞, and we choose 0 ≤ θ ≤ 1 such that

1

r
=
θ

p
+

(1− θ)

q
.

Then for all u ∈ Lq(Ω) we have

∥u∥Lr(Ω) ≤ ∥u∥θLp(Ω) ∥u∥
1−θ
Lq(Ω) . (B.1.2)

Gronwall’s Inequality
Assume that ξ(t) is a nonnegative and integrable function on [0, T ] satisfying

ξ(t) ≤ C

∫ T

0
ξ(s) ds

for a.e. 0 ≤ t ≤ T and some positive constant. Then

ξ(t) = 0 for a.e. t ∈ [0, T ].
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B.2 Linear Operators on Banach Spaces
Numerous fundamental problems in applied mathematics exhibit linearity, and the uti-

lization of linear spaces and operators offers a comprehensive and valuable framework for
the analysis of such problems. While more intricate applications may introduce nonlinear
operators, and a study of linear operators also offers some useful tools for the analysis of
nonlinear operators.

In this chapter we review some basic results on linear operators. In appendix B.2.1 we
present definition of continuous linear operators and the important result of boundedness of
inverse operators. Linear functionals and Riesz representation theorem and adjoint opera-
tors are introduced in appendix B.2.2. Appendix B.2.4 is devoted to the definition of weak
convergence and reflexive space and some characterization of this space.

B.2.1 Continuous Linear Operators
Let X and Y be two real Banach spaces.

Definition B.2.1 (Linear Operator). A mapping L : X → Y is said to be a linear operator if

L(λu+ µv) = λL(u) + µL(v)

for all u, v ∈ X and λ, µ ∈ R.
Definition B.2.2. A linear mapping L : X → Y is called continuous on X if any convergent
sequence un → u in X, implies Lun → Lu in Y

Definition B.2.3 (Bounded Operator). A linear operator L : X → Y is called bounded if
there exist some constant c > 0 such that

∥Lu∥Y ≤ c ∥u∥X for all u ∈ X.

The operator norm of a bounded linear operator is defined by

∥L∥L(X,Y ) := sup{∥Lu∥Y | ∥u∥X ≤ 1},

which is a finite number.
Theorem B.2.4. A linear operator is bounded if and only if it is continuous.
Definition B.2.5. (i) Let V and W be two Banach spaces with V ⊂ W . The space V

is said to be continuously embedded in W , denoted by V ↪→W , if

∥v∥W ≤ c ∥v∥V for all v ∈ V

for some c > 0. To simplify the computation of estimates and avoid excessive
constants, we use the notation ≲.

(ii) The embedding V ↪→W is called compact, denoted by V ↪→↪→W , if every bounded
sequence in V has a subsequence converging in W .

The normed space of all linear and bounded mapping from X into Y is denoted by
L(X,Y ). We write L(X) if X = Y .

The space L(X,Y ) is complete and consequently a Banach space if Y is complete.
The following theorem is widely used in obtaining boundedness of inverse operators.

Theorem B.2.6 (Open Mapping Theorem). Let X and Y be two Banach spaces. If L ∈
L(X,Y ) is bijective, then L−1 ∈ L(Y,X).

B.2.2 Linear Functionals

Definition B.2.7 (Dual Space). Let X be a normed space.
(i) A bounded linear operator u∗ : X → R is said to be a bounded linear functional on

X.
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(ii) The space of all bounded linear functionals on X is called dual space of X and is
denoted by X∗.

(iii) If u ∈ X and u∗ ∈ X∗ we denote the pairing of X∗ and X by ⟨u∗ , u⟩X∗,X , which
is the real number u∗(u). For an element u∗ ∈ X∗ we define

∥u∗∥X∗ := sup{⟨u∗ , u⟩X∗,X | ∥u∥X ≤ 1}.
Since R is a complete space, the dual space X∗ is always a Banach space.

Now let H be a real Hilbert space, with inner product (·, ·). Every u ∈ H defines

fu(v) := (u, v)H ,

which is a linear functional fu ∈ H∗ with ∥fu∥H∗ = ∥u∥H . The converse also holds as the
following theorem states.
Theorem B.2.8 (Riesz Representation Theorem). H∗ can be canonically identified with H.
More precisely, for any bounded linear functional u∗ ∈ H∗ there exists a unique element
u ∈ H such that

⟨u∗ , v⟩H∗,H = (u, v)H for all v ∈ H

and ∥u∗∥H∗ = ∥u∥H . The mapping u∗ 7→ u is a linear isomorphism from H∗ onto H.
Definition B.2.9 (Adjoint Operator). (i) Let X and Y be two Banach spaces and Let

L : X → Y be a bounded linear operator. The mapping L∗ : Y ∗ → X∗ is called dual
operator of L if

⟨v∗ , Lu⟩Y ∗,Y = ⟨L∗v∗ , u⟩X∗,X for all v∗ ∈ Y ∗, u ∈ X.

(ii) Let H1 and H2 be two linear spaces and L : H1 → H2 be a bounded linear operator.
The operator L∗ : H2 → H1 is called the adjoint operator if it satisfies

(Lu, v)H2 = (u, L∗v)H1 for all u, v ∈ H.

L is called symmetric if L∗ = L.

B.2.3 Gelfand triplets
In the analysis of boundary value problems, we frequently encounter a pair of Hilbert

spaces, denoted as V and H, having the following properties.
(i) V is continuously embedded in H, V ↪→ H.
(ii) V is dense in H.

Using Riesz representation, we may identify H with H∗, writing H ≡ H∗. Therefore, H
can be continuously embedded into V ∗, such that any element in H can be considered as
an element of V ∗ through

⟨u , v⟩V ∗,V = (u, v)H for all v ∈ v.

Finally, V and therefore also H is dense in V ∗. In summary, we have

V ↪→ H ↪→ V ∗ (B.2.1)

with dense embeddings. (B.2.1) is called a Gelfand triplet.

B.2.4 Weak Convergence
Let X be a real Banach space.

Definition B.2.10 (Weak Convergence). Let X be a normed space and X∗ its dual space.
We say a sequence {un}∞k=1 ⊂ X converges weakly to u ∈ X, denoted by un ⇀ u, if

⟨u∗ , un⟩X∗,X → ⟨u∗ , u⟩X∗,X

for any u∗ ∈ X∗.
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If a sequence {un}∞n=1 ⊂ X converges strongly to u ∈ X, then it also converges weakly
to u.

For a weakly convergent sequence {un}∞n=1 to u in X we have

sup
n

∥un∥X <∞.

Thus, every weakly convergent sequence is bounded.
Strong convergence implies weak convergence, but not vice versa. A notable exception

is when the space X is finite-dimensional.
Since X∗ is a normed space, actually a Banach space, we can consider its dual X∗∗ :=

(X∗)∗, called bidual of X. This Banach space is normed by

∥u∗∗∥X∗∗ = sup{⟨u∗∗ , u∗⟩X∗∗,X∗ | ∥u∗∥X∗ ≤ 1}.
Between X and X∗∗ there exists a canonical embedding J : X → X∗∗ defined by

⟨u∗∗ , u∗⟩X∗∗,X∗ = ⟨u∗ , u⟩X∗,X for all u∗ ∈ X∗.

J is indeed an isometry, which refers to ∥Ju∥X∗∗ = ∥u∥X .
Definition B.2.11 (Reflexive Space). A normed space is called reflexive if J(X) = X∗∗.

Thus, if X is reflexive we can identify X with X∗∗ through the canonical isometry. An
immediate consequence of this definition is that a reflexive normed space must be complete
i. e. a Banach space.
Theorem B.2.12. A Banach space X is reflexive if and only if any bounded sequence in X
has a subsequence weakly converging to an element in X.
Definition B.2.13. Let X and Y be two real Banach spaces. A mapping T : X → Y is called
weakly sequentially continuous if weakly convergence of a sequence {un}∞n=1 to some u ∈ X
implies that {T (un)}∞n=1 ⊂ Y converges weakly to T (u) ∈ Y , this means

un ⇀ u implies T (un)⇀ T (u)

as n→ ∞.
We can easily verify that every continuous linear operator A : X → Y is weakly sequen-

tially continuous.
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