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Abstract

Singular spaces have gained prominence in diverse applications, generating interest in
investigating stratified structures using methods within the field of topological data
analysis (TDA). While persistent homology is a fundamental concept in TDA, its lim-
itations in distinguishing stratified spaces prompt the need for alternative invariants.

To address this need, we introduce the concept of persistent stratified homotopy
types. We establish a series of properties analogous to those of the ordinary persistent
homotopy type, such as stability, computability, and inference, which are crucial for
TDA applications.

In tackling the challenge of detecting singularities in data, we present methods
to approximate stratifications from non-stratified data, sampled in the vicinity of
sufficiently well-behaved two-strata Whitney stratified spaces.

Our findings enable the formulation of a sampling theorem for approximately infer-
ring (persistent) stratified homotopy types of suitably well-behaved two strata Whit-
ney stratified spaces.

Bridging theory and practical implementation, we introduce two distinct approaches
to measure singularity in data. Leveraging insights from local persistent homology
studies and employing the Hausdorff distance serve this purpose.

Moreover, we delve into the topology of image patch spaces, providing novel in-
sights and reassessing existing models, especially with regard to potential stratified
structures.

v





Zusammenfassung

Singuläre Räume haben in verschiedenen Anwendungen an Bedeutung gewonnen, was
das Interesse an der Untersuchung stratifizierter Strukturen unter Verwendung von
Methoden im Bereich der topologischen Datenanalyse (TDA) geweckt hat. Obwohl
die persistente Homologie ein grundlegendes Konzept in der TDA ist, erfordern ihre
Einschränkungen bei der Unterscheidung stratifizierter Räume die Entwicklung alter-
nativer Invarianten.

Um diesem Bedarf gerecht zu werden, führen wir das Konzept der persistenten
stratifizierten Homotopietypen ein. Wir etablieren eine Reihe von Eigenschaften,
die denen des gewöhnlichen persistenten Homotopietyps ähnlich sind, wie Stabilität,
Berechenbarkeit und Inferenz, die für TDA-Anwendungen entscheidend sind.

Um die Herausforderung der Detektion von Singularitäten in Daten anzugehen,
präsentieren wir Methoden zur Approximation von Stratifizierungen aus nicht strat-
ifizierten Daten, die in der Nähe ausreichend gut verhaltener Whitney stratifizierter
Räume mit zwei Strata abgetastet wurden. Unsere Erkenntnisse ermöglichen die
Formulierung eines Sampling Theorems zur ungefähren Ableitung (persistenter) strat-
ifizierter Homotopietypen in angemessen gut verhaltenen Whitney stratifizierten Räu-
men mit zwei Strata.

Die Verbindung von Theorie und praktischer Umsetzung zeigt sich in der Ein-
führung von zwei unterschiedlichen Ansätzen zur Messung der Singularität in Daten.
Die Nutzung von Erkenntnissen aus Studien zur lokalen persistenten Homologie sowie
die Anwendung des Hausdorff-Abstands dienen diesem Zweck.

Darüber hinaus untersuchen wir die Topologie von Bildflickenräumen, indem wir
neue Erkenntnisse liefern und bestehende Modelle neu bewerten, insbesondere im
Hinblick auf mögliche stratifizierte Strukturen.
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Chapter 1

Introduction

Topological data analysis (TDA) has demonstrated its reliability in extracting qualita-
tive and quantitative data features that are not easily accessible through other meth-
ods. Singular spaces have appeared in several application contexts [LPM03,BMP+08,
CIDSZ08,MW11,FW16,Xia16,STHN20,ESM+21]. The emergence of stratified struc-
tures in these real-world application has also sparked an increasing interest in the
performance of TDA techniques for the exploration of stratified spaces in data. One
widely used method and arguably the most important concept for the development
of the field of TDA is persistent homology ( [ELZ00, ZC05, CSEH07, Ghr08, NSW08,
Car09, Oud15]). Some of the main properties of persistent homology that made it a
powerful tool in applications are the following:

(1): The fact that persistent homology defined through thickenings is computable
by the means of a filtered simplicial complex, e.g. the Čech complex.

(2): The stability of persistent homology with respect to Hausdorff and interleaving
type distances (see [CSEH07,CCSG+09,BL15]).

(3): Persistent homology can retrieve topological information about a space through
data samples from the space. This is usually based on the result that (X)α

≃−→
(X)0 = X for α a sufficiently small thickening parameter and X a sufficiently
well-behaved space (see [NSW08,CCSL09]).

Nevertheless, certain characteristics of persistent homology imply that it may not
be the optimal invariant for distinguishing stratified spaces. To illustrate, consider
the two subspaces within R2 portrayed in Figs. 1.1 and 1.2. These spaces can be
proportionally resized to exhibit identical persistent homology.
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2

Figure 1.1. Lemniscate x4− x2 + y2 = 0 Figure 1.2. Circle with a diameter fila-
ment

However, the spaces themselves exhibit distinct topological characteristics, with
the space depicted in Fig. 1.1 featuring one singularity and the space in Fig. 1.2
possessing two singularities. Depending on the specific application, there may be a
need for an invariant capable of distinguishing between these scenarios. The field of
stratified homotopy theory has recently experienced a resurgence, marked by notable
breakthroughs [Woo09, Lur17, Mil13, Hai18, Dou21a, Dou21b, DW21]. These advance-
ments have opened avenues for effectively applying these concepts in the realm of
topological data analysis.

A declared objective of the collaborative project with Lukas Waas [MW22] was to
establish a notion of persistent stratified homotopy type, demonstrating its fulfillment
of properties akin to those outlined above.

Another challenge encountered when dealing with stratified invariants associated
to point clouds is the absence of information within the data indicating which points
should be classified as singular and which as regular. Consequently, it is imperative
to develop methodologies for detecting singularities in the data. Substantial attention
has been directed towards exploring various approaches to discerning the locations of
singularities, as evident in numerous studies [Mil21, STHN20,Nan20,SW14,BWM12,
FW16]. In the context of our collaborative project with Lukas Waas [MW22], our
specific focus was on investigating the recovery of an approximation of stratifications
from non-stratified data samples.

In the realm of application-focused disciplines such as Topological Data Analysis
(TDA), we feel it is important to bridge the gap between theoretical foundations and
practical implementation. Recognizing that theoretical insights form the backbone of
any scientific endeavor, it is equally vital to delve into the realm of algorithms and
real-world implementations. We therefore discuss algorithms tailored specifically for
approximating the intricate concepts within our theoretical framework. We can report
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on two different approaches. One is leveraging insights from prior studies that tackled
stratification with the concept of local persistent homology [BWM12, SW14, Nan20,
Mil21]. Our second method uses the Hausdorff distance of a local point neighborhood
of every point in a point cloud to linear subspaces of Euclidean space in order to
obtain a measure for singularity.

One of the primary motivators behind our advancement was also to explore the
topology of image patch spaces that arise in various contexts such as natural image
statistics or from single images. The topology of image patch spaces has been studied
before [LPM03, SC04, CIDSZ08, Xia16, CG20] and uncovered a surprising yet incom-
plete picture of what topology the image patch space extracted from an image can
have. We will reinvestigate a model proposed for the image patch space from natural
images with our new methods. We also take a different look at the topology that
can be found in image patch spaces by considering single images. Furthermore, we
attempt to demonstrate the utility of stratification learning and persistent stratified
homotopy type for real-world data analysis by studying a collection of retina artery
images. In the following section we would like to present our results on the aforemen-
tioned topics in a short yet accessible way and also refer the reader to the various
places where to find the respective results.

1.1 Persistent Stratified Homotopy Types
We would like to briefly explain our results regarding the concept of persistent strati-
fied homotopy types by starting with ordinary persistent homotopy types. Recall that
persistent homology can be split into a two-step process

point clouds→ persistence modules→ persistence diagrams.

For instance, consider a finite subset X ⊂ RN where a filtration of topological spaces,
denoted as (Xα)α≥0, is assigned. This is typically achieved by progressively thickening
the data set X into α-thickened spaces. Subsequently, persistence modules, which
are filtered objects, are computed by determining homology at each filtration degree.
Given the homotopy invariance of homology, the pertinent information in this com-
putation is the persistent homotopy type of X, often algorithmically captured using
a Čech complex. Remarkably, the properties outlined in (1), (2), and (3) can be
discerned at this level. However, the limitations in distinguishing stratified spaces,
as illustrated in Figs. 1.1 and 1.2, also emanate from this approach. In order to ad-
vance toward a persistent invariant suitable for investigating stratified spaces from
point clouds, our focus shifted to the initial step of the factorization, leading to the
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identification of a persistent stratified homotopy type.
To begin, according to the findings in [Dou19, DW21], the stratified homotopy

type of a suitably regular stratified space, like a Whitney stratified space W (Recol-
lection 2.1.15) with two strata (or, more broadly, a conically stratified space), can be
equivalently represented (Theorem 2.1.19 and Recollection 2.1.23) by the homotopy
type of a (stratification) diagram of spaces

{D(W )p ← D(W ){p,q} → D(W )q}

where D(W )p and D(W )q correspond to the singular and the regular stratum of W
respectively. The middle part D(W ){p,q} of the diagram corresponds to the homotopy
type of the part that links the singular and the regular strata and is therefore called
the (homotopy) link (Definition 2.1.8).

Depending on a parameter v = (vl, vh), which determines the distance at which
the link part of the diagram is located relative to the singular stratum, a stratification
diagram for the Lemniscate with v = (0.2, 0.3) is illustrated in the following:

Similarly, for the circle with diameter filament:

Besides serving as a discriminant invariant for stratified spaces, observe that compar-
ing the amount of connected components in all the diagram parts distinguishes the
spaces, a diagram also allows for a systematic way of thickening in order to make
it a persistent invariant, i.e. to allow for the construction of a persistent stratified
homotopy type. We construct such an object by thickening the parts of a diagram
separately in an ambient Euclidean space. The following pictures give an illustration
of this process for the previous case of the Lemniscate. For the scale ε = 0.12 we have
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and for ε = 0.24 we have

The first diagram indicates that thickening by a small amount does not change the
type of the diagram while in the second thickened diagram we can see the point at
which the type of the diagram changes.

In general, for a chosen parameter v = (vl, vh), we can associate to a stratified
subset S ⊂ Rn a persistent stratified homotopy type Pv(S). This means for any scale
ε ∈ R+ we have a diagram indexed over {p} ← {p, q} → {q} which corresponds to
a (weak) stratified homotopy type. The anticipated properties of this construction
are captured in several results. For the stratified analogue of (1), the computability
of thickenings of diagrams, see Remark 2.2.15. For the statement that the persistent
stratified homotopy type does not change under small thickenings, i.e. the stratified
version of (3), we included Proposition 2.2.16. Lastly, Theorems 2.2.31 and 2.2.32
provide the stability result, that is the substitution for (2). This implies that for a
sequence of stratified spaces Si ⊂ Rn converging (in a stratified Hausdorff distance)
to a two-strata Whitney stratified space W , the persistent stratified homotopy types
Pv(Si) also converge to Pv(W ). Subsequently, one can associate algebraic invariants
such as persistent homology of the links and strata, which also converge in interleaving
distance. In summary, we arrive at the following result:

Theorem 1.1.1. The persistent stratified homotopy type Pv(S) associated to a strat-
ified subset S ⊂ RN with two strata (depending on a choice of parameter v) fulfills
stratified analogues of (1), (2) and (3).

1.2 Approximating Stratifications
We present a comprehensive and algorithmically executable pipeline designed to pro-
duce a stratification from a provided non-stratified data sample of a specific class of
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Whitney stratified spaces with two strata. Our study notably investigates the essential
conditions for the convergence of such an approximated stratification to the original,
as depicted in Fig. 1.3.

Figure 1.3. A stratified space, a sample with indicated magnifications and an ap-
proximated stratification

Our method demonstrates promising results in situations where singularities can
be effectively identified by its local tangential geometry. It is clear that a stratification
can only be retrieved from a data set if the actual stratification of the underlying space
is recognisable on a (local) geometric level. The spaces for which we are able to apply
our results are spaces whose singularities can be detected by the extrinsic tangent
cones, denoted Tex

x (X) for a space X, a generalisation of the tangent space to the
singular case (see Definition 3.1.5). Such spaces will be referred to as tangentially
stratified. See Fig. 1.4 for an illustrations of a space that is tangentially stratified and
see Fig. 1.5 for one that is not.
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Figure 1.4. A curve and its tangential
cone at the origin

Figure 1.5. Two tangentially touching
circles and the tangent cone at the origin

The tangent cones can not be determined directly from a sample but can be
approximated by local information similar to what is used for the approach taken
by [BWM12,SW14,FW16,Mil21] using local homology. For a space W ⊂ Rn one may
consider the so-called magnifications (see Definition 3.1.3) given by

Mr
x(W ) := r(W − x) ∩ B1(0).

at any point x ∈ W (see also Fig. 1.3). For sufficiently well-behaved Whitney strat-
ified spaces W such magnification converge to the extrinsic tangent cone for r → 0

(when restricted to the unit ball). Such a result can, e.g., be found in [Hir69, BL07].
We prove a global version of this convergence result for the magnifications obtained
from a close enough sample of W in Propositions 3.3.11 and 3.4.4.

Additionally what is needed is a measure to classify the local data contained in
the magnifications at any given point into singular or regular. For this purpose we
introduce continuous functions

Φ : {local data} → [0, 1]

giving a value close to 1 if the data is considered regular or a value close to 0 otherwise.
The local data will usually be given by a magnification. Now, a Whitney stratified
space W with two strata such that the singular stratum Wp agrees with exactly the
set of points x at which Φ(Tex

x (W )) < 1 is called (tangentially) Φ-stratified. We
discuss two specific examples of such functions Φ in detail. One is based on using
local persistent homology (see Example 3.2.3 and Section 4.1.2) and the other is
based on finding the minimal Hausdorff distance of a linear subspace of Rn to a given
magnification (see Example 3.2.2 and Section 4.2.3). One of our main results (see
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Theorem 3.5.8) is on the convergence behaviour in stratified Hausdorff distance of
two strata samples SrΦ,u(X) associated to a non-stratified samples X sampled from a
sufficiently well-behaved Whitney stratified space. The singular stratum of SζΦ,u(X) is
given by

SrΦ,u(X)p = {x ∈ X | Φ(Mr
x(X)) ≤ u}

where u functions as a chosen threshold for the sensitivity of the function Φ. An
illustration of such an object SζΦ,u(X) with Φ based on local persistent homology can
be found in Fig. 1.3 on the right where SrΦ,u(X)p is marked red and u = 0.87, i.e. close
to 1.

Theorem 1.2.1. Let W ⊂ RN be a compact and sufficiently well-behaved (see Defi-
nition 3.3.7) Whitney stratified space with two strata and underlying space denoted X,
which is Φ-stratified with respect to a function Φ. Then there exists u0 ∈ (0, 1) such
that for all u ∈ [u0, 1) we have convergence

SrΦ,u(X)→ W

in stratified Hausdorff distance, for r → 0 and 1
r
d(X, X)→ 0.

In particular, this result can be applied to all compact, subanalytically Whitney
stratified spaces with two strata. For the given space W it states that for any δ > 0

there exists a radius R such that for all radii r > R there exists εr > 0 such that

max{dHd(SrΦ,u(X) = X, X), dHd(SrΦ,u(X)p,Wp)} < δ

for all X with dHd(X, X) < εr. In other words, as X converges to X by assumption,
the statement is really about the convergence of the singular parts SrΦ,u(X)p and Wp

here.

Another thing to observe here is that we assume the samples X to converge to
X faster than r converges to 0. This means, in order to increase the accuracy of
the method by considering more and more local data we also have to increase the
quality of the sample X in the sense that it gets closer to X in Hausdorff distance. To
illustrate this coupled convergence consider the following case.

Example 1.2.2. We generated three sample from the Lemniscate, i.e. the space given
by

V = {x ∈ R2 | x41 − x21 + x22 = 0}.

First, for the sample X1 of the poorest quality, that is the Hausdorff distance of X1

to V is bounded by approximately 0.07, we can see the results for the approximated
stratification first at r = 1

3
in Fig. 1.6 and then at r = 1

6
in Fig. 1.7.
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Figure 1.6. X1 with SrΦ,u(()X1)p marked
red

Figure 1.7. X1 with S
1
6
Φ,u(X1)p marked

red

Here, we used a function Φ based on the Hausdorff distance to 1-dimensional
linear subspaces of R2 (see Example 3.2.2). For a chosen u = 0.4 we observe that the
radius r = 1

3
is too large as we classify also points away from the actual singularity

as singular, as this method is also susceptible to curvature. If we reduce the radius to
r = 1

6
we find no sensible classification anymore as the radius is too small for a coarse

sample such as X1. Moving on, we improve the sample quality further, i.e. Hausdorff
distance bounded by approximately 0.035. The results of our method for X2 with the
radii r = 1

6
and r = 1

9
can be seen in Fig. 1.8 and Fig. 1.9 respectively.

Figure 1.8. X2 with S
1
6
Φ,u(X2)p marked

red
Figure 1.9. X2 with S

1
9
Φ,u(X2)p marked

red

Although we only classifiy the region around the actual singularity of V , i.e. the
origin, as singular we are not able to reduce the radius to r = 1

9
to further improve the

accuracy of the approximation for using X2. Lastly, our best sample X3 has Hausdorff
distance below 0.023 from V . For this sample we are able to reduce the radius to
r = 1

9
and find a close approximation of the singular stratum of V , see Fig. 1.10.

We can also combine our results on stratification learning through a function Φ and
our results on persistent stratified homotopy types to form a complete routine that
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Figure 1.10. X3 with S
1
9
Φ,u(X3)p marked red

X1

r = 1
3

X1

r = 1
6

X2

r = 1
6

X2

r = 1
9

X3

r = 1
9

Figure 1.11. The 14 most persistent cycles of the 0-th homology of the link part of
Pv(SrΦ,u(Xi)), for i ∈ {1, 2, 3} and r ∈ {1

3
, 1
6
, 1
9
}

takes a non-stratified sample as input and puts out a persistent stratified homotopy
type (see Corollary 3.5.9). The convergence of persistent homotopy types associated
to the non-stratified samples we just discussed in Example 1.2.2 can be illustrated by
considering the persistent 0-homology of the the respective link parts, see Fig. 1.11.
For X2 and X3 and radii r = 1

6
and r = 1

9
the persistent homology is close to the result

expected for the link of the singular stratum of V (considered as stratified space).

1.3 Algorithmic Stratification Learning
While our initial foray into theoretical investigations was sparked by preliminary re-
sults on stratification learning from non-stratified point cloud data, employing a heuris-
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tic approach grounded in local homology, the pivotal breakthrough occurred with the
recognition of the capability to identify singularities through tangent cones. This dis-
covery enabled us to establish rigorous conditions for various methods to theoretically
guarantee the successful stratification of a point cloud. These conditions are articu-
lated in Definition 3.2.1, defining Φ-stratifications, and in Examples 3.2.2 and 3.2.3,
which present two principal candidates for Φ functions measuring singularity in prac-
tical applications.

Naturally, a purely theoretical exploration of this subject leaves the crucial ques-
tion unanswered whether the proposed methods are genuinely useful for data analysis.
Hence, we delve into a comprehensive discussion regarding the accuracy and imple-
mentation of two distinct algorithms designed to compute the two aforementioned Φ

functions.

1.3.1 Local Persistent Homology

The general idea is based on the observation that on an n-manifold Mn local homology
is constant, i.e. Hi(M

n,Mn − p) ∼= Hi(S
n) ∀p ∈ Mn which is due to the fact that a

manifold is locally Euclidean. A stratified space such as a conically stratified space
(see Recollection 2.1.17) does not possess this property and for the two strata case
local homology can be used to identify the stratification (see Lemma 3.0.3).

As mentioned before, the idea of using local persistent homology for stratification
learning is certainly not a new one (see e.g. [Mil21, STHN20, Nan20, SW14, BWM12,
FW16]). However, what has not been done before is to describe a method that is
provably able to detect the singular stratum of a two strata space. We intend to
provide an algorithm that is readily implementable and applicable to real-world data
to approximate such a method. For a space W , x ∈ W , radius r and some dimension
d the function Φd

PL at the magnification Mr
x(W ) = 1

r
(W − x) ∩ B1(0) is given by

Φd
PL(Mr

x(W )) = 1− 2max
i≤d

d(PLi(Mr
x(W )),PLi(Rd)).

where the distance on the right-hand side is given by the Bottleneck distance of persis-
tence diagrams and PLi denotes local persistent homology at dimension i. There are
two things that may not be immediately clear regarding the computability of Φd

PL :

(i) How to compute the Bottleneck distance in this case?

(ii) How to compute local persistent homology based on a simplicial complex gener-
ated from point clouds?

The initial question finds a straightforward answer, as the Bottleneck distance has
been explored to some extent, as evidenced by prior studies (cf., e.g., [EH10,KMN17]).
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However, it is worth noting that this distance measure often involves significant com-
putational complexity. In our specific scenario calculating the distance of a given
barcode concerning the barcode provided by PLi(Rd) a notably simpler approach to
compute the Bottleneck distance is available (refer to Remark 4.1.8).

While a response to Section 1.3.1 has been presented (compare with [SW14,BWM12,
BB20]), these solutions predominantly hinge on Delaunay complexes or remain largely
theoretical. In Definition 4.1.26, we introduce a singular filtered simplicial complex
that, once established, facilitates the approximation of local persistent homology by
applying the standard algorithm for computing persistent homology from a filtered
simplicial complex. Notably, it shares a convenient feature with the Vietoris-Rips
filtration, it can be constructed from the 1-skeleton. Our construction builds upon
the groundwork laid by Skraba and Wang [SW14].

We provide pseudocode for a potential implementation of the filtered simplicial
(see Algorithms 1, 3 and 4). Leveraging this, we present a comprehensive routine that
performs all necessary computations for our version of a Φ function, based on the
concept of using local persistent homology as in Φd

PL . This pseudocode is encapsulated
in Algorithm 5. In Section 4.3.2 and Chapter 5, we furnish several practical examples
to demonstrate the utility of our method for stratification learning.

One might choose to compute via a Čech complex, and we briefly discuss this op-
tion (see Remark 4.1.23), providing an avenue to directly compute the function Φd

PL

via simplicial complexes without approximation error. However, in practice, opting
for a Vietoris-Rips type complex is prevalent for computational efficiency, as it can be
constructed efficiently from its 1-skeleton (see [Zom10]) and we therefore also chose
to focus on this. However, the drawbacks of Vietoris-Rips type complexes are also
acknowledged, arising from not being homotopy equivalent to the Čech complex con-
structed from the same point cloud. We delve into this comparison, particularly in the
worst-case scenario, summarized in the following statement (see Proposition 4.1.29).

Proposition 1.3.1. Let X,X ∈ Sam⋆ with X a δ-sample of X. Then, for ΦPL(X, d)
denoting the output of Algorithm 5 and Φd

PL the function described in Example 3.2.3
we have

| ΦPL(X, d)− Φd
PL(X) |≤ 2δ +

1

2
(

√
2(d+ 1)

d+ 2
− 1).

1.3.2 Hausdorff Distance

Although the basic idea to use Hausdorff distances for stratification learning is similar
to the observation that motivated the use of local homology for this purpose, the
second function Φ we studied originated from the developed theory itself. Again, to a
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manifold we can associate a tangent bundle whose fibers are given by Euclidean spaces
of uniform dimension. For spaces that do not admit a well-defined tangent bundle
one can still consider the extrinsic tangent cone at every point. Loosely speaking,
points at which the tangent cone is far from being a linear subspace of some Rn will
be considered singular. The distance is measured in Hausdorff distance. This also
explains the notion of a tangentially stratified space to some extend. For W ⊂ Rn a
q-dimensional Whitney stratified space, the function is given by

Φd
Hd(Mr

x(W )) = 1−min d(Mr
x(W ), V )

whereMr
x(W ) is local data given by the magnification at x ∈ W and we minimize over

all d-dimensional linear subspaces V of Rn. Here the Hausdorff distance is measured
within the Euclidean unit ball in Rn. Note that the magnification tends towards the
tangential cone at x for W a sufficiently well-behaved Whitney stratified space (see
Definition 3.3.7). Rephrasing Φd

Hd leads to the following optimization problem

inf
V ∈Gr(k,n)

max{sup
x∈X

d(x, V ), sup
v∈V,||v||≤1

d(X, v)}. (1.1)

for a given topological space X. This prompts two apparent challenges:

(i) Computing the Hausdorff distance is computationally expansive or even in-
tractable considering general and possibly infinite X and V .

(ii) With Gr(k, n) as search space we have to consider a matrix representation of
the Grassmannians to reformulate the problem or use a randomized approach.

Primarily, our focus is directed towards scenarios where X represents a finite subset
within a Euclidean space, specifically confined within the standard unit ball. To
render the reformulation of 1.1 deterministic, we opt for a simplification by exclusively
considering the one-sided Hausdorff distance. This choice results in a reduction of the
class of Φ-stratified spaces, employing a simpler Φ-function. Additionally, we adopt
a matrix representation of the Grassmannians to formulate a smooth constrained
optimization problem, as detailed in Eq. (4.18).

In our randomized approach, we leverage a uniform distribution on the Grassman-
nians. The Hausdorff distance is approximated by generating controlled samples of
linear subspaces V ∈ Gr(k, n) chosen randomly. Once again, we present a potential
implementation of our approximation of Φd

Hd in the form of pseudocode in Algorithm 7.
The outcome of our approximation for Φd

Hd (see Theorem 4.2.5) is stated as follows:

Theorem 1.3.2. Let X,X ∈ Sam⋆ with X a δ-sample of X. Let γ be the sample
accuracy for the linear subspaces. Then, for any 0 < ε ≤ 1, s ∈ N+ and ΦHd(X, d)
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denoting the output of Algorithm 7 we have that

| ΦHd(X, d)− Φd
Hd(X) |≤ ε+ δ + γ

with probability 1− (1− P(θ < arcsin ε))s.

In this context, P(θ < arcsin ε) signifies the probability of selecting a random
V ∈ Gr(k, n) that is ε close, measured by the Hausdorff distance, to the optimal linear
subspace. Moreover, the parameter s denotes the number of samples drawn, and its
determination is contingent on the desired probability. We expound on the selection of
the sample size to achieve a specified level of accuracy for the approximation of Φd

Hd at
a specific point (refer to Remark 4.2.4) and for a comprehensive global approximation
(refer to Remark 4.2.6).

1.4 Applications in Image Patch Spaces
The preceding literature primarily concentrated on the methodology employed to ex-
tract topological insights from spaces of image patches derived from extensive collec-
tions of natural images, exemplified by the van Hateren collection [vHvdS98]. An
additional layer of statistical information or averaging on image patches was intro-
duced by extracting the upper percentage of the densest subsets. These resulting
spaces were then posited as representations of the most prevalent patches in natural
images, leading to the proposition of various models for such spaces. Among the pro-
posed models, the three circle model, initially introduced in [SC04], stood out as a
stratified space with two strata. In our investigation, we revisited these image patch
spaces, employing more refined invariants, available to us from our developed theory,
to learn their stratification. Subsequently, we analyzed the persistent homology of
the resulting regular, singular, and link components, providing compelling evidence
that strongly supports the validity of the three circle model. See also Fig. 1.12 for a
visualization of the image patch space generated for our analysis to support the three
circle model.
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Figure 1.12. Visualization via PCA of the three circle image patch space X with
coloring by results of ΦPL(X, 1)

Furthermore, we deviated from examining image patch spaces generated from
an array of images and shifted our focus towards the topology of individual image
patch spaces, specifically those constituted by the most frequently occurring patches.
Naturally, this undertaking is susceptible to failure if applied to a diverse array of
images. To address this, we restricted our analysis to images with reduced structure,
specifically a particular type of image patch known as (ideal) step-edge patches (refer
to Definition 5.1.2). Images constructed exclusively from such step-edge patches, and
characterized by a clear topological and stratified structure, are termed cluster images
(refer to Definition 5.1.3). In broad terms, these images lack intricate textures and
are described by dominant colors and the transitions between them. The resulting
topology can be conceptualized as a union of 2-spheres, each capable of intersecting
another 2-sphere at a single point—illustrated in Fig. 1.13.
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Figure 1.13. Image patch spaces X extracted from a cluster image with coloring by
values of ΦPL(X, 2)

We used this observation to conduct an analysis that indicates a measurable topo-
logical difference between different types of images. The selected image groups were
visually very different. One group showing landscapes and the other group of images
showing people and most of the time the upper body. Both groups of images were
taken from the CIFAR-100 dataset [KH09]. We prepared the data by extracting image
patches from every image and projecting each patch to the closest step edge patch (see
Preprocessing). For the resulting spaces we computed ordinary persistent homology
and compared the most persistent cycles in dimension 1 and 2 (see Analysis). We can
report a clear distinction of the groups of images based on these topological invariants.

Finally, we aim to illustrate another application scenario wherein our pipeline,
which associates a persistent stratified homotopy type to a non-stratified point cloud,
can be employed to unveil structures in real-world data. To achieve this, we considered
a dataset comprising manually segmented retina photos. Specifically, the dataset en-
compasses 15 healthy retina images and 15 retinas from glaucoma patients [BBM+13],
as exemplified in Fig. 1.14. Our approach involved approximating stratifications for
the 1 × 1 image patch spaces derived from each image, employing ΦPL(−, 1). In
essence, we treated the pixels in the images as data points. An illustration of how the
values of ΦPL(−, 1) quantify the singularity of areas in the artery images is provided
in Fig. 1.15.

We can discern individuals with glaucoma from healthy test participants with a
high degree of reliability using manually segmented retina images acquired through a
fundus camera. The discriminative factor lies in the number of points in X∗

i for which
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Figure 1.14. Example of a manually seg-
mented retina photo Figure 1.15. ΦPL(−, 1) of a pixel

patches

ΦPL(−, 1) exceeds a specified threshold (refer to Table 5.1), as well as the quantity of
persistent components within the determined singular parts of the patch space (refer
to Table 5.2). A more detailed contextualization of these findings is provided in the
corresponding section (refer to Section 5.2).

Although a complete answer to the topology of image patch spaces remains elusive,
the project has provided insights into the topology of patch spaces. By devising ap-
propriate methods to identify singular and regular points in the dataset, we have been
able to analyze and understand the underlying stratified structure more effectively. In
essence, we have hopes that our newly developed methods have the potential to unlock
opportunities for advancing research in comprehending the topological and especially
stratified structures of image patch spaces and other types of data.

Our contributions in this project, particularly in the collaborative effort with Lukas
Waas, have evolved from the synergies between theoretical insights and practical explo-
ration. These endeavors were facilitated and bolstered by the initiatives encapsulated
within the comprehensive projects 6 and 7 of the excellence cluster STRUCTURES,
emphasizing the integration of theoretical foundations and practical applications to
advance our understanding and methodologies in this research domain.





Chapter 2

Persistent Stratified Homotopy
Types

In this chapter, we provide an overview of stratified spaces and their homotopy theory
as it pertains to our investigations. The presentation of stratified homotopy theory
is aimed to be understandable for readers familiar with fundamental concepts in al-
gebraic topology and category theory. For a more comprehensive understanding of
both the details and the complete model categorical perspective, we direct the reader
to [DW21, Dou21a, Dou21b]. Additionally, one may use sources like [Ban07] to find
more in-depth information on stratified spaces and associated invariants. The results
outlined in this chapter were featured in a collaborative article by the author and
Lukas Waas [MW22]. This chapter approximately aligns with [MW22, Sections 2 and
3], and certain results and definitions are incorporated verbatim.

2.1 Stratified Homotopy Theory
We begin by reviewing some essential concepts that are relevant to the theory of
stratified spaces.

Definition 2.1.1. A stratified space (over a poset P ) is a pair S = (X, s : X → P )

where X is a topological space and s is continuous with respect to the Alexandrov
topology on P . The map s is called the stratification of S. The fiber of the stratifica-
tion over p ∈ P

Sp := s−1{p} = {x ∈ X | s(x) = p}

is called the p-stratum of S. The sub- and superlevel sets of s will be denoted by S≤p

and S≥p respectively.

19
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The above definition of a stratified space is rather general in comparison to e.g.
more classical works on stratified spaces (as in e.g. [GM80,GM83]). According to the
definition given here, simply any filtration (X≤0 ⊂ ... ⊂ X≤n = X) by closed subsets
of a topological space X induces a stratification over the poset [n] = {0 < ... < n}
with the k-stratum given by Xk = X≤k \ X≤k−1 for k ∈ [n]. This makes it a trivial
task to equip a topological space with a stratification. Therefore, let us take a look at
some of the places where stratified spaces arise in a more interesting, non-trivial way.

Example 2.1.2. • Let (M,∂M) be a compact manifold with boundary and let X
be the space obtained by coning off the boundary of M , i.e. X =M∪∂MC(∂M),
where C(Y ) denotes the cone on a space Y . One obtains a stratification of X
by the map

s : X → {p < q};

x 7→ q, for x ∈ X \ {cone point},

x 7→ p, for x = cone point.

The resulting stratified space is locally euclidean away from one isolated singu-
larity, at which arbitrarily small neighborhoods are homeomorphic to the open
cone C̊(∂M).

• Let S = (X, s : X → P ) be a stratified space and let c(P ) = {∗}∪P with ∗ < p

for all p ∈ P . The (stratified) cone on X, C(X), is naturally a stratified space
over c(P ) by setting

X → {p < q};

[(x, t)] 7→ s(x), for t > 0,

[(x, t)] 7→ ∗, for t = 0 .

We always take cones to be equipped with the teardrop topology [Qui88, Defi-
nition 2.1]. Note, however, that for compact Hausdorff spaces, the latter agrees
with the usual quotient space topology on the cone.

• Given a smooth manifold M with a compact Lie group G acting smoothly and
properly on M . A non-trivial stratification for the orbit space M/G can then be
obtained by stratification by orbit types (see, e.g., [Pfl01, Chapter 4] for more
details).

• Any n-dimensional complex algebraic variety X can be equipped with a geomet-
rically meaningful stratification by taking the the filtration by closed subsets
given by iteratively taking singular loci of the variety.
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Figure 2.1. Pinched torus

• Another very important class of stratified spaces are so-called pseudomanifolds.
The class of pseudomanifolds is much more restictive, e.g. the strata of a pseudo-
manifold have to be actual manifolds . Pseudomanifolds have been the subject
of research to recover a form of generalized Poincaré duality for singular spaces
( [GM80,GM83]). One specific example of a pseudomanifold is the pinched torus
PT 2 which we illustrate in Fig. 2.1. Mathematically, PT 2 can be described as
the quotient space of the torus T 2 = S2×S1 by collapsing one circle ∗×S1 to a
point. The structure of a stratified space is then induced by taking the filtration
{s} ⊂ PT 2 where s denotes the image of the collapsed circle in PT 2.

Definition 2.1.3. A stratified map between two stratified spaces X → P and Y → Q

is a commutative square of continuous maps

X Y

P Q .

f

f

For ease of exposition we refer to such a diagram by simply writing f . In case f is
the identity on posets, we call f stratum preserving.

Definition 2.1.4. Let f, f ′ : S = (X, s : X → P )→ S ′ be stratified maps. We call f
and f ′ stratified homotopic, if there exists a stratified map

H: (X × [0, 1], X × [0, 1]→ X
s−→ P )→ S ′
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such that H|X×{0} = f and H|X×{1} = f ′. Furthermore, f is called a strict stratified
homotopy equivalence, if there exists another stratified map g : S ′ → S such that f ◦ g
and g ◦ f are stratified homotopic to idS′ and idS respectively.

Remark 2.1.5. The above definition of strict stratified homotopy equivalence agrees
with the commonly used definition of stratified homotopy equivalence which is a rather
rigid notion. The rigidity, further demonstrated in Example 2.1.6, is one of the is-
sues one has to be aware of when working with stratified spaces in topological data
analysis. It will be one of the main goals of this chapter to define another concept
of stratified homotopy equivalence which is less rigid and therefore suitable for the
use in topological data analysis, as we will see later. Because we will have to refer to
different notions equivalences of stratified spaces, we use the convention of speaking
of strict stratified homotopy equivalences instead of stratified homotopy equivalences.
The class of all stratified spaces strictly stratified homotopy equivalent to a stratified
space S is called the strict stratified homotopy type of S.

Example 2.1.6. Consider the space X = S1 ∨ S1 embedded in R2 as a curve, shown
in Fig. 2.2. It features a singular point at the self-crossing. Denote the resulting
stratified space over P = {0 < 1} with the singularity sent to 0 and the remainder
to 1 by S. While there generally seems to be no canonical way to thicken such a
space, one possibility is to thicken both the total space as well as the singularity as in
Fig. 2.4. The resulting thickened space S ′′ is strictly stratified homotopy equivalent
to the original curve with the singular stratum extended from a point to the crossing,
denoted S ′, see Fig. 2.3. To sketch one way to see this, note that the original curve
separates the space S ′′ into two inner parts and an outer part, decomposing S ′′ into
three parts, all homeomorphic to a space S1 × [0, 1]. One then constructs respective
homotopy equivalences of S1× [0, 1] to S1 relative to the sections of the curve included
in the three parts that we can compatibly glue to a homotopy equivalence between
S ′′ and S ′. However, S and S ′ (and hence S ′′) are not strictly stratified homotopy
equivalent. To see this, note that a stratified homotopy equivalence between S and
S ′ would also have to be a homotopy equivalence of the underlying spaces. Such a
map has to send a circle S1 with degree ±1 onto another circle. But the image of any
stratified map between S and S ′ is (non-stratifiedly) contractible.

Notation 2.1.7. Now that we have defined objects and maps let us fix some nota-
tion. Stratified spaces together with stratified maps define a category which we will
denote by Strat. For the category of stratified spaces over a poset P and stratum
preserving maps we write TopP . Isomorphisms in TopP - i.e. stratum preserving
homeomorphisms - will be denoted by ∼=P .
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Figure 2.2. Singular
curve, S

Figure 2.3. Thickening 1,
S ′

Figure 2.4. Thickening 2,
S ′′

Figure 2.5. Geometric models of homotopy links marked in purple

Definition 2.1.8. Let S be a stratified space and p, q ∈ P with p < q. The homotopy
link of the p-stratum in the q-stratum is the space of so called exit paths

hoLinkp<q(S) = {γ : [0, 1]→ X | γ(0) ∈ Sp, γ(t) ∈ Sq, ∀t > 0}

with its topology induced by hoLinkp<q(S) ⊂ C0([0, 1], X), where the latter denotes
the space of continuous functions, equipped with the the compact open topology. The
induced functors

TopP → Top

come with natural transformations

Sp ← hoLinkp<q(S)→ Sq,

given by the endpoint and beginning point evaluation map.

Example 2.1.9. Let us return to Example 2.1.6 to give an illustration of the homo-
topy link. For the original singular curve and both thickenings, the homotopy links are
all homotopy equivalent to four isolated points (see Fig. 2.5). This can be seen from
Construction 2.1.36, which states that the homotopy links are homotopy equivalent
to the boundary of a cylinder neighborhood of the singular stratum.

Definition 2.1.10. A stratum preserving map f : S → S ′ in TopP is called a weak
equivalence of stratified spaces, if it induces weak equivalences of topological spaces

hoLinkI(S)→ hoLinkI(S
′),
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Figure 2.6. Regular strata, homotopy links and singular strata of the spaces in
Example 2.1.6

for all regular flags I ⊂ P . A stratified map f : S = (X, s : X → P ) → S ′ is
called a weak equivalence of stratified spaces, if f is an isomorphism, and f is a
stratum preserving weak equivalence in TopP , after identifying the target poset with
P through f .

Notation 2.1.11. We denote by hoTopP and hoStrat the categories obtained by
localizing TopP and Strat respectively at the class of weak equivalences. The isomor-
phism class of S ∈ hoStrat is called the stratified homotopy type of S. Isomorphisms
in hoTopP will be denoted by 'P .

It is an immediate consequence of the fact that homotopy links map stratified
homotopy equivalences to homotopy equivalences, that any strict stratified homotopy
equivalence is also a weak equivalence of stratified spaces. The converse is generally
false.

Example 2.1.12. Let us illustrate these concepts for the spaces from Example 2.1.6
where we already discussed that there is no strict stratified homotopy equivalence
between the original curve and any of the described thickenings. However, all the
spaces are weakly stratified homotopy equivalent. Indeed, this is already hinted at by
the fact that we may find a homotopy equivalence between the respective regular and
singular parts as well as the homotopy links as described in Example 2.1.9. Consider
Fig. 2.6 for an illustration.

In the context of topological data analysis it would seem advantageous to work with
a slightly weaker notion of equivalence of stratified spaces where the objects discussed
in Example 2.1.12 are properly equivalent. In order to identify spaces for which the
weaker equivalence agrees with the strict notion we employ the work of [DW21] on
stratified homotopy theory. But first, we need to recall some further definitions from
the field of stratified spaces.
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Notation 2.1.13. Given a stratified space S = (X, s : X → P ) and p ∈ P we write

S≤p := s−1({q ≤ p}),

S<p := s−1({q < p}),

S≥p := s−1({q ≥ p}),

S>p := s−1({q > p}).

For many theoretical as well as for our more applied investigations of stratified
spaces, it is fruitful to impose additional regularity assumptions on the strata (such
as manifold assumptions) and the way they interact. The notion central to this paper
is the notion of a Whitney stratified space. These are characterized by the convergence
behavior of secant lines around singularities.

Notation 2.1.14. Given two vectors v, u ∈ RN such that u 6= v. We denote by l(v, u)
the 1-dimensional subspace of RN spanned by v − u.

Recollection 2.1.15. A stratified spaces W = (X, s : X → P ) with X ⊂ RN locally
closed is called a Whitney stratified space, if it fulfills the following properties.

1. Local finiteness: Every point x ∈ X has a neighborhood intersecting only finitely
many of the strata of W .

2. Frontier condition: Wp is dense in W≤p, for all p ∈ P .

3. Manifold condition: Wp is a smooth submanifold of RN , for all p ∈ P .

4. Whitney’s condition (b): Let p, q ∈ P such that p < q and xn, yn be sequences in
Wq and Wp respectively, both converging to some y ∈ Wp. Furthermore, assume
that the secant lines l(xn, yn) converge to a 1-dimensional space l ⊂ RN and
that the tangent spaces Txn(Wq) converge to a linear subspace τ ⊂ RN . Then
l ⊂ τ . (By convergence of vector spaces we mean convergence in the respective
Grassmannians.)

Example 2.1.16. Whitney’s work ( [Whi65a], [Whi65b]) states that every algebraic
and analytic variety admits a Whitney stratification. More general, Whitney strat-
ifications can even be given to spaces such as semi-analytic sets (see e.g. [Ło65]) or
o-minimally definable sets (see e.g. [Loi98]). Finally, if X is such that it has only
isolated singularities and admits a Whitney stratification, then any stratification of
X, fulfilling frontier and boundary condition, with smooth strata is automatically a
Whitney stratification. In particular, any definable set with isolated singularities and
a dense open submanifold is canonically Whitney stratified with two strata. Another
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class of Whitney stratified spaces arises from G-manifolds, already noted in Exam-
ple 2.1.2. For a proof, see [Pfl01, Theorem 4.3.7].

Whitney’s condition (b) has a series of immanent topological consequences, which
ultimately led to the more general notion of a conically stratified space. The latter
are (with some additional assumptions) one of the main objects of interest in the
algebro-topological study of stratified spaces [Sie72,GM80,GM83,Qui88,Lur17].

Recollection 2.1.17. [Lur17, Def. A.5.5] We call a stratified space S = (X, s : X →
P ) conically stratified, if for every point x that lies in some stratum Sp for p ∈ P there
exists

• a stratified space (L,L 7→ P>p = {q ∈ P | q > p}),

• an open neighborhood U ⊂ X containing x,

• a space Z

• and a stratified homeomorphism Z × C(L) ∼= U with the posets c(P>p) ∼= P≥p

identified.

In addition to the Whitney stratification assumption, we will frequently need ad-
ditional control over how pathological the subsets of euclidean space we allow for can
be. To obtain such additional control, we use the notion of a set X ⊂ RN , defin-
able with respect to some o-minimal structure (see [vdD98] for a definition). For
the reader entirely unfamiliar with these notions it suffices to know that all semialge-
braic or compact subanalytic sets have this property. On the one hand, definability
assumptions guarantee the existence of certain mapping cylinder neighborhoods (see
Example 2.1.33) that allow thickenings that do not change the homotopy type (see
Lemma 2.2.17). At the same time, asserting additional control over the functions
defining a set (polynomially bounded), has several consequences for the convergence
behavior of tangent cones, already noted in [Hir69,BL07]. We will use these to recover
stratifications from samples in accordance to Section 3.5.

Definition 2.1.18. We say that a stratified space S = (X, s : X → P ), with X ⊂ RN

and P finite, is definable (or definably stratified) if all of its strata are definable with
respect to some fixed o-minimal structure.

Moreover, a stratified space is called triangulable, if it admits a triangulation
compatible with the stratification (for details see [DW21]). What suffices for us to
know is that Whitney stratified and (locally compact) definably stratified spaces even
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admit a PL-structure compatible with the stratification and are thus triangulable,
see [Gor78], [Shi05], [Cza12].

We have now all the notation at hand to state a theorem by Douteau and Waas:

Theorem 2.1.19. [DW21, Theorem 1.2] Let ConP ⊂ TopP be the full subcategory
of triangulable conically stratified spaces over P , and ' be the relation of stratified ho-
motopy. Denote by ConP /' the category obtained by identifying stratified homotopic
morphisms in ConP . Then the induced functor

ConP /' → hoTopP

is a fully faithful embedding.

An analogous statement holds for the case of hoStrat.
Loosely speaking, the above theorem identifies a class of stratified spaces for which

no homotopic information is lost by considering the stratified homotopy type over the
strict stratified homotopy type. That means we can study sufficiently regular spaces,
e.g. Whitney stratified spaces, up to their strict stratified homotopy type with meth-
ods of topological data analysis that are well-behaved w.r.t. the stratified homotopy
type. What we mean by well-behaved is captured in our results Proposition 2.2.16
and Theorems 2.2.32 and 3.5.8. What remains for now is to establish how to system-
atically thicken a stratified space without changing the (strict) stratified homotopy
type. We want to illustrate the problem with the following example:

Example 2.1.20. In Fig. 2.7 we exhibit three different thickenings of the original
space from Example 2.1.6. The first thickening is neither weakly nor strictly stratified
homotopy equivalent to the original curve (as can be seen by comparing homotopy
links). The second thickening, being only weakly equivalent to the unthickened space,
was discussed in Example 2.1.12. However, note that the inclusion of the original
curve into it is not a stratified map. Hence, this notion of thickening does not allow
for a persistent approach. For the third thickening, the inclusion of the original curve
is even a strict stratified homotopy equivalence. However, it seems unclear how to
systematically achieve such a thickening, particularly when working with samples.

In analogy to the classical scenario, this should assign to a stratified space S ⊂ RN ,
a functor from the posetal category of (positive) reals with the usual order R+ into
some category representing stratified homotopy types C. In the classical scenario, C
is often taken to be the homotopy category of simplicial complexes (or sets) using
constructions such as the Čech or Vietoris-Rips complex. For now, let us refer to the
image under such a functor P(S) as the persistent stratified homotopy type of S, and
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Figure 2.7. Three possible thickenings

similarly to the non-stratified construction using thickenings or Čech complexes as
the persistent homotopy type. In order to make thickenings of stratified spaces in a
systematic way we represent stratified homotopy types by what are called stratification
diagrams as described in [DW21].

Definition 2.1.21. We denote by R(P ) the category with objects given by regular
(i.e. strictly increasing) flags I = {p0 < · · · < pk} in P and morphisms given by
inclusion relations of flags. We denote by

DiagP := Fun(R(P )op,Top)

the category of R(P )op indexed diagrams of topological spaces. We call elements of
DiagP stratification diagrams.

Definition 2.1.22. A morphism f : D → D′ in DiagP , for which fI is a weak equiv-
alence, at all I ∈ R(P ), is called a weak equivalence of stratification diagrams.

We denote by hoDiagP the category obtained by localizing DiagP at weak equiv-
alences of diagrams. We arrived now at the main feature (at least to us here) of
stratification diagrams and that is we can equivalently describe a stratified homotopy
type by stratification diagrams. This is due to the following result, which is discussed
in more detail [Dou19,DW21]:

Recollection 2.1.23. . (Generalized) homotopy links induce a functor

DP : TopP → DiagP
S 7→ {I 7→ hoLinkI(S)}.

By definition, a stratum preserving map is a weak equivalence, if and only if its image
under DiagP is a weak equivalence. In particular, one obtains an induced functor

DP : hoTopP → hoDiagP

which turns out to be an equivalence of categories. In this sense, the stratification
diagram encodes the same homotopy theoretic information as the original space. We
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will use this equivalence to identify these two homotopy categories and often not
distinguish between a stratified space and its stratification diagram.

So far we collected several results from the field of stratified homotopy theory to
describe a stratified space, up to weak equivalences, by another object, the stratifi-
cation diagram, for which we claimed that it will allow us to define thickenings of
stratified spaces that do not change the stratified homotopy type given sufficiently
regularity conditions on the stratified space. But the reader may doubt that homo-
topy links (and thus also stratification diagrams) defined as subspaces of mapping
spaces are suited to a computational or algorithmic approach. For this case we in-
cluded a geometric description that will allow us to model a stratification diagram
combinatorially. We will also use another equivalent description of stratified homo-
topy types, which occur naturally, particularly when trying to quantitatively recover
stratifications from non-stratified data in Section 3.5. For this, observe that a poset
can naturally be considered a simplicial complex by taking the elements of a poset P
as vertices and its flags as simplices. Since we mostly consider the two strata case,
we will only consider P = {p < q} for the rest of this section and all the definitions
therein will be given for this case. For this specific case the poset P regarded as a
simplicial complex is canonically homeomorphic to the unit interval [0, 1], where p
corresponds to 0 and q corresponds to (0, 1]. We will use this observation to make the
following definition.

Definition 2.1.24. A strongly stratified space (over P = {p < q}) is a pair

S = (X, s : X → [0, 1])

where X is a topological space and s is continuous. A strongly stratum preserving
map f : S = (X, s)→ (X ′, s′) = S ′ is a map of topological spaces f : X → X ′ making
the diagram

X X

[0, 1]

s

f

s′

commute.

Notation 2.1.25. We denote by TopN(P ) the category with objects given by strongly
stratified spaces and morphisms given by strongly stratum preserving maps. Isomor-
phisms in this category - i.e. strongly stratum preserving homeomorphisms - will be
denoted by ∼=N(P ).
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From a strongly stratified space, using the above notation, we can recover a strat-
ification by:

[0, 1]→ {p < q}

t 7→

p t = 0;

q t > 0
.

This may also serve as explanation why a strong stratification is a stronger notion
than a stratification. Strongly stratified spaces are a natural object to consider in the
context of TDA because spaces usually appear equipped with a metric. Then, a strat-
ification naturally induces a strong stratification by using the distance to the singular
stratum as map s which, in some sense, gives a parametrization of the neighborhood
of the singularity. To make things more precise, we have the following example:

Example 2.1.26. Let S = (X, s) be a stratified space equipped with a metric d(−,−)
on X. Then, S can be equipped with the structure of a strongly stratified space,
compatible with the original stratification. The strong stratification map is given by
the minimum of the distance to singularity function and 1, i.e. by

dSp : X → [0, 1]

x 7→ min{d(x, Sp), 1}.

As a hint towards stratification learning, which we will detail in Section 3.5, note
that if we were able to substitute or closely approximate the distance to the singular
stratum by another functions that does not require knowledge about the stratification
we would have a candidate for a method to stratify a given metric space.

In order to equivalently describe stratified homotopy types we need strongly strat-
ified spaces that have the structure of a mapping cylinder close to the singularity (see
Definition 2.1.30). The structure of such spaces near the singularity is specified by
the following example.

Example 2.1.27. Given a map of topological spaces r : L→ X, we can consider the
mapping cylinder of r

Mr := L× [0, 1] ∪L×0,r X

equipped with the teardrop topology [Qui88, Definition 2.1] as a strongly stratified
space via

π[0,1] :Mr → [0, 1]

[(x, t)] 7→ t.
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Note that if the above r is a proper map between locally compact Hausdorff spaces,
then the usual quotient space topology agrees with the teardrop topology on the
mapping cylinder (see e.g. [Hug99] for more details). When working with metric
spaces, there is the following criterion for a map

f :Mr → Z

into a metric space Z to be continuous. The map f is continuous, if and only if its
restrictions to L×(0, 1] and X are continuous, and the family of maps f(−, t) : L→ Z

with t > 0, converges uniformly to f |X ◦r, as t → 0 (compare to [Qui88, Def. 2.1]).
We will use this criterion later on in Example 2.1.33.

Let us now explain how strongly stratified spaces can serve us to describe stratified
homotopy types.

Recollection 2.1.28. Without going into too much detail, note that the category
of strongly stratified spaces can also be equipped with a notion of weak equiva-
lence. Localizing at the weak equivalences then leads to a homotopy category denoted
hoTopN(P ). The forgetful functor

TopN(P ) → TopP ,

obtained by post composing the strong stratification with the stratification of the
interval

[0, 1]→ {p < q}

given by taking 0 as the p-stratum, then (by passing to derived functors with respect
to the model structures explained in [Dou21a]) induces an equivalence of homotopy
categories

hoTopN(P ) → hoTopP .

We will regularly treat strongly stratified spaces as stratified spaces under this forgetful
functor. The fact that we have an equivalence of categories here means that no
homotopy theoretical information is lost by passing from one homotopy category to
the other.

Although we will not be using this result in the following, it may be useful to un-
derstand the occurrences of strongly stratified spaces in our investigations of stratified
homotopy types.

For ease of exposition we introduce some short-hand notation similar to what we
have for the stratified scenario:
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Notation 2.1.29. Let S be a strongly stratified space and v′ ≤ v ∈ [0, 1]. We use
the following notation:

Sv := s−1{v},

S≤v := s−1[0, v],

S≥v′ := s−1[v′, 1],

Sv
′

v := s−1[v′, v].

For values of v, v′ outside of [0, 1] we define these as above, using the closest allowable
value.

It turns out that for particularly nice strongly stratified spaces, these sub- and
superlevel sets can be used to recover the stratification diagram and in particular the
link. Such results can already be found in e.g. [Qui88, Mil94, DW21]. However, to
have such an important result readily available in our notation here we include details
of this behavior with Example 2.1.33. The particularly nice strongly stratified spaces
we are looking for are those for which the strata have cylindrical neighborhoods.

Definition 2.1.30. We say a stratified space S = (X,X → P = {p < q}) is cylin-
drically stratified, if there exists a neighborhood N of Sp in X, a space L and a map
r : L→ Sp, such that

N ∼=P Mr,

where Mr denotes the stratified mapping cylinder of r from Example 2.1.27. We say
a strongly stratified space S = (X, s : X → [0, 1)]) is cylindrically stratified, if it is
cylindrically stratified as a stratified space and the strongly stratified subspace

s−1(0, 1) =
⋃
v<1

S≤v \ S0

is strongly stratum preserving homeomorphic to S 1
2
× (0, 1), i.e. making the the

diagram
s−1(0, 1) S 1

2
× (0, 1)

(0, 1)

s|s−1(0,1)

∼
f

π(0,1)
(2.1)

commute.

Remark 2.1.31. Note, that the definition of a cylindrically stratified space in the
strong case is slightly weaker then assuming a strongly stratified mapping cylinder
neighborhood. We choose this definition for our purposes as it has precisely the
same consequences for us and is much easier to verify. Nevertheless, it follows by



Stratified Homotopy Theory 33

an application of the two-out-of-six property, as in Lemma 2.2.17, that the inclusion
S0 ↪→ S≤v, for v < 1, are homotopy equivalences.

Definition 2.1.32. A cylindrically stratified metric space S over P = {p < q} is a
stratified space equipped with a metric d(−,−), which is cylindrically stratified when
considered as a strongly stratified space, with respect to the strong stratification
induced by the metric (compare to Example 2.1.26).

Example 2.1.33. At this point we owe the reader an argument that the property
of being cylindrically stratified is something that many of the spaces that we are
interested in actually posses. For example, Whitney stratified spaces, equipped with
the metric induced by the inclusion into RN , are cylindrically stratified (up to a
rescaling). They even admit neighborhoods that are strongly stratum preserving
homeomorphic to a strongly stratified mapping cylinder of a fiber bundle (in particular,
they are conically stratified). This is a classical result that can be found, for example,
in [Tho69,Mat12]. We would like to sketch some of the ideas that go into a proof of
this statement to get more familiar with this concept.
Let W = (X,X → {p < q}) be a Whitney stratified space with Wp compact and
X ⊂ RN . By passing to a sufficiently small neighborhood of Wp we may assume Wp

to lie in a (standard) tubular neighborhood N of Wp in RN , such that the retraction
map

r : N → Wp

x 7→ ym,

where ym minimizes d(x, y), is well defined and smooth. Next, consider the distance
to Wp map

dWp : X → R

x 7→ d(x,Wp).

It is then a consequence of Thom’s first isotopy lemma (which in this two strata case
amounts to Ehresmann’s lemma [Ehr51]) see e.g. [Tho69] and [Ban07, Thm. 6.7] for
a modern source), that the map

X ∩N → Wp × R

x 7→ (r(x), dWp(x))

restricts to a fiber bundle over Wp × (0, ε], for ε small enough. If we denote by
Nε(Wp) a closed ε-neighborhood of Wp and set L = d−1

Wp
(ε) this means that there is a

homeomorphism
f : Nε(Wp) \Wp

∼−→ L× (0, ε]
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such that the diagram

Nε(Wp) \Wp L× (0, ε]

Wp × (0, ε]

f

r×dWp
r×π(0,ε]

(2.2)

commutes. By rescaling, we may assume without loss of generality that ε = 1 and let
N = N1(Wp), the closed neighborhood of points with distance ≤ 1 to Wp.
Now, consider the map

g : Mr → N ;

(x, t) 7→ f(x, t), for t > 0,

[(x, 0)] = [y] 7→ r(x) = y, for t = 0.

The map g is clearly bijective and continuous onWp and L×(0, 1]. Furthermore, by the
commutativity of 2.2, for t → 0, we find that f(−, t) : L → N converges uniformly
to r |L. By the alternative characterization of the mapping cylinder topology in
Example 2.1.27 it follows that g is continuous. In total, g is a continuous bijection
from a compactum to a Hausdorff space, and thus a homeomorphism.

Example 2.1.34. Another example of cylindrically stratified spaces are given by
compact definably stratified spaces S = (X, s : X → {p < q}). First, note that they
are cylindrically stratified as topological spaces. This follows from the fact that they
are triangulable in a way that is compatible with the strata (see [vdD98] for more
details). In particular, Sp always admits a mapping cylinder neighborhood given by a
regular neighborhood in the piecewise linear sense. Furthermore, note that the map

dSp : X → R

again is definable. Thus, by Hardt’s theorem for definable sets (see e.g. [vdD98]
for a proof of such a statement), it restricts to a trivial fiber bundle over (0, ε] for
ε sufficiently small. After a possible rescaling, we indeed have a strongly stratum
preserving homeomorphism

s−1(0, 1)→ S 1
2
× (0, 1).

over (0, 1).

Remark 2.1.35. We will generally consider all compact definably or Whitney strat-
ified spaces to be appropriately rescaled, such that they are cylindrically stratified.
Similar assumptions will be made for definably stratified spaces, as we will see, when
using Lemma 2.2.17.
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We arrived at the construction of a geometric model for stratification diagrams
that arises for a cylindrically stratified space by considering level-sets of the map
that comes with a strongly stratified space. Such models, detailed in the following
construction, together with Proposition 2.1.37 will make the concept of stratification
diagrams, and thereby stratified homotopy types, useful for TDA.

Construction 2.1.36. Given a stratified mapping cylinder Mr for r : L→ Y a map
of metrizable spaces. Consider the map

α : L→ hoLinkp<qMr

x 7→ {t 7→ [(x, t)]},

that maps a point x to the corresponding line segment in Mr. A homotopy inverse to
this map is given by

β : hoLinkp<qMr → L

γ 7→ πL(γ(1)).

By construction, β ◦α = idL. A homotopy between α ◦β and idhoLinkp<qMrr is given by

hoLinkp<qMr × [0, 1]→ hoLinkp<qMr

(γ, s) 7→ {t 7→ (πL(γ(s+ (1− s)t), t).

Compare to e.g. [DW21, Fri03, Qui88] for more details on such constructions and
for rigorous arguments for the continuity of such maps. Now, if S is a metrizable,
cylindrically stratified space over P = {p < q} and N ∼= Mr is a stratified mapping
cylinder neighborhood of Sp with boundary L, then the inclusion

hoLinkp<qN ↪→ hoLinkp<qS

is a (weak) homotopy equivalence. Essentially, the idea of the proof is to continuously
retract paths in the underlying space of S into N (see [Fri03, Appendix] for details
under slightly stronger assumptions). In particular, we have a commutative diagram

Sq Sq

L× {v} hoLinkp<q(N) hoLinkp<q(S),

Sp Sp ,

r

≃ ≃

for v ∈ (0, 1] making the homotopy link of S interpretable as the link of Sp.
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Next, we show that the diagram of cylindrically stratified metric space given by
the level-sets of the map that comes with the strong stratification induced by the
metric, denoted {S≤vh ←↩ Svlvh ↪→ S≥vl}, is equivalent to the diagram given by DP (S)

(compare to Recollection 2.1.23).

Proposition 2.1.37. Let S be a compact, cylindrically stratified metric space and
(vl, vh) such that 0 < vl ≤ vh < 1. Then there is an isomorphism

{S≤vh ←↩ Svlvh ↪→ S≥vl} ' DP (S)

in hoDiagP .

Proof. Let s be the strong stratification induced by the metric on S. By assumption,
S admits a mapping cylinder neighborhood N ∼= Mr, for some map r : L → Sp. Let
s̃ : N → [0, 1] denote the alternative strong stratification induced by this choice of
mapping cylinder neighborhood. Since we assume that Sp is compact we may assume,
without loss of generality, that N ⊂ s−1[0, 1). By Construction 2.1.36 (using the same
notation), it suffices to expose a (canonical) zigzag of weak equivalence to the diagram

{Sp ← L× {v} ↪→ Sq},

for some v ∈ (0, 1]. Such a zigzag between diagrams is given as follows:

{S≤vh Svlvh S≥vl}

{s−1[0, 1) s−1(0, 1) s−1(0, 1]}

{s−1[0, 1) L× {v} s−1(0, 1] = Sq}

{Sp L Sq}.

≃

≃

≃

r

(2.3)

We describe the morphisms of diagrams from top to bottom, and show that they are
weak equivalences. The first morphism is given by inclusions. Since we have assumed
that s−1(0, 1) has the shape of an open cylinder L′× (0, 1) for some L′ this morphism
is clearly given by weak equivalences at the {p}, {q} and {p < q} parts respectively.
The next morphism is again given by inclusions. To see that it is a weak equivalence,
we need to show that

L× {v} ↪→ s̃−1(0, 1] ↪→ s−1(0, 1) ∼= L′ × (0, 1)



Persistent Stratified Homotopy Types 37

is a weak equivalence. Since the first of these maps is a weak equivalence, it suffices
to show that the second is one, too. Since Sp is compact we find ε, ε′ > 0 such that

s̃−1(0, ε′) ⊂ s−1(0, ε) ⊂ s̃−1(0, 1) ⊂ s−1(0, 1).

Now, note that since all sets involved are given by open cylinders (on L and L′

respectively), these inclusions fulfill the requirements for the two-out-of-six property
of homotopy equivalences. In particular, all maps involved are weak equivalences
(even homotopy equivalences). Finally, the last morphism is constructed as follows.
Both at q and {p < q} it is given by the identity. Assume that v ∈ (0, 1] was taken
such that

L× {v} ∼= s̃−1{v} ⊂ s−1(0, ε] ⊂ s̃−1(0, 1),

for some ε > 0 sufficiently small. Note that this is indeed possible by the compactness
of Sp. Then, at {p} the morphism is given by the composition

s−1[0, 1)→ s−1[0, ε] ↪→ N ∼= Mr → Sp

where the first of these maps is given by

(x, t) 7→ (x,min{t, ε})

under the identification s−1(0, 1) ∼= L′× (0, 1). By the assumption that L×{v} maps
into s−1[0, ε], this map induces a morphism of diagrams. It remains to show that it
is a weak equivalence. By the cylinder structure of s−1(0, 1), the first map in this
composition is a homotopy equivalence. The same holds true for the second map by a
two-out-of-six argument, completely analogous to the one performed when comparing
L and L′×(0, 1). Finally, the last map is the retraction of a mapping cylinder and thus
also a homotopy equivalence. Combining this, we have shown that the final morphism
is also a weak equivalence of diagrams.

2.2 Persistent Stratified Homotopy Types
In this section, we introduce the concept of persistent stratified homotopy type (Sec-
tion 2.2.1) and delve into its stability properties (Section 2.2.3). The stability analysis
is most pronounced in the case of Whitney stratified spaces with two strata, present-
ing a stronger result compared to (Theorem 2.2.32). Before we delve into the subject
matter, we establish some notation for the remainder of this chapter to simplify the
otherwise extensive discussion of persistent objects. When we initiate computational
considerations at the beginning of Chapter 4, we will reassess some of the objects dis-
cussed in the upcoming sections from an alternative and potentially more recognizable
perspective.
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Notation 2.2.1. Let T denote some category of geometrical and or combinatorial
objects, for example the categories Top, sSet (the category of simplicial sets), TopP ,
DiagP , equipped with a class of morphisms called weak equivalences. Let A denote
some category of algebraic objects, for example, the category of vector spaces over
some fixed field. Then, let

H : T→ A

be a functor that sends weak equivalences to isomorphisms, e.g. the homology functor
in case T = Top.

• We denote by (R+,≤) (or briefly by R+ if the context is clear) the posetal
category of non-negative reals.

• Given any category C and another category U (most prominently R+) denote
by CU the category of functors from U to C with morphisms given by natural
transformations.

• Let S denote some categories of objects representing datasets which contain
geometrical information. A persistent version of the homology functor H =

Hi(−; k) with k a field is constructed by taking a composition

S→ TR+ → AR+ ,

for some functor S→ TR+ turning objects in S into persistent objects in T, i.e.
elements of TR+ . Examples of such functors include sending a subspace of RN

to the family of its ε thickenings, filtered Čech- or Vietoris-Rips complexes. As
an orientation, note that in case A = VectF with F a field, a functor I → A
with I a posetal category associated to some poset is commonly referred to as
persistence module indexed over I.

• hoTR+ denotes the category obtained by localizing TR+ at natural transforma-
tions, given by weak equivalences at each α ∈ R+. Such natural transformations
will be called weak equivalences of functors. We will also refer to isomorphism in
the homotopy category hoTR+ (which are always represented by zigzags of weak
equivalences in TR+) as weak equivalences. The same notation and language is
used when R+ is replaced by a more general indexing category.

The above functor S→ TR+ can then be understood as assigning to an object in
S a persistent homotopy type which we will be referring to as the persistent homotopy
type of X ∈ S. We allow this inaccurate notion and let the type depend on the
choice of a functor S→ TR+ as it is also common to speak of the persistent homology
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although it usually depends on the choices such as Čech or Vietoris-Rips complexes.
Many properties of persistent homology can already be understood at the level of
the persistent homotopy type. Another advantage of this approach is that it quickly
allows to obtain results for different choices of H.

These considerations regarding the persistent homotopy type motivate our de-
clared goal to uncover an analog functor S→ hoTopR+

P with values in the homotopy
category hoTopR+

P (or, by composing, in hoStratR+). Analogous to the non-stratified
case a persistent stratified homotopy type of a space, possibly represented by thicken-
ings or a Čech complex, we want the values of such a functor to fulfill certain properties
(see (1), (2), (3) in the introduction) amongst which is a form of stability stability
with respect to Hausdorff and interleaving type distances similar to the classical re-
sults for persistent homology (see [CSEH07, CCSG+09, BL15]). Our results in that
direction are stated in Theorems 2.2.31 and 2.2.32. Furthermore, we want the persis-
tent stratified homotopy type to be computable, i.e. to be equivalently represented
by a filtered Čech complex (cf. Remark 2.2.15, a consequence of the Nerve Theorem
in the non-stratified case.

2.2.1 Definition of persistent stratified homotopy types

Let us review the steps we have taken thus far to make progress toward our objective.
Start with a Whitney stratified or definably stratified space S ⊂ RN (or later on a
sample of any of the latter) aiming to obtain a persistent version of its stratified ho-
motopy type. By Recollection 2.1.23 the stratified homotopy type of S is equivalently
described by its stratification diagram DP (S). Then, one could employ [Dou21a, Thm.
2.12] (which is a stronger version of Recollection 2.1.23) to see that that the homo-
topy link functor from Recollection 2.1.23 sending a stratified space to a stratification
diagram, induces an equivalence of categories

hoTopR+

P

∼−→ hoDiagR+

P . (2.4)

Thus, we may equivalently work towards a functor valued in hoDiagR+

P . To do so,
we need to obtain a geometric description of the stratification diagram DP (S), which
admits thickenings. By Examples 2.1.33 and 2.1.34, S naturally admits the structure
of a cylindrically stratified space (up to a rescaling). Then, by Proposition 2.1.37, up
to a weak equivalence we may recover the stratification diagram DP (S) of S by the
diagram of sub- and superlevel sets

S≤vh ←↩ Svlvh ↪→ S≥vl .
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The diagram obtained in this fashion has the advantage that it admits an obvious
notion of thickening. One simply thickens the parts of the diagram contained in RN

separately.

Let us now set up the framework to analyze the stability properties of these con-
structions and their interactions with sampling. For the remainder of this subsection
let P = {p < q} be a poset with two elements. we define a series of space of subspaces
of RN . One should mainly think of elements of these spaces as samples, sampled
nearby a continuous space, whose convergence behavior we are investigating. Never-
theless, in the generality below all sorts of complicated, non-finite sets are permitted.
We will follow the naming convention of using blackboard bold letters like X, when
suggesting an object conceptually takes the role of a sample. We use usual letters,
like X, when an objects takes the role of a space nearby which samples are taken.

Notation 2.2.2. Throughout the remainder of this thesis, we will follow the conven-
tion of denoting all distances by the letter d. What metric is meant will be clear from
the specific context. Furhtermore, the Euclidean norm on RN will always be donted
by || − ||. For X ⊂ RN , and α ≥ 0 the α thickening of X, denoted Xα, is given by

{y ∈ RN | ∃x ∈ X : ||x− y|| ≤ α}.

Definition 2.2.3. Denote by Sam the space of subspaces of RN , {X ⊂ RN}, equipped
with the (extended pseudo) metric given by the Hausdorff-distance. That is, for
X,X′ ∈ Sam, we set

d(X,X′) = inf{α > 0 | X ⊂ X′
α,X′ ⊂ Xα}.

We refer to Sam as the space of samples (of RN).

There is an obvious extension to the case where a sample comes equipped with a
stratification, i.e. a sample version of the category TopP with a metric.

Definition 2.2.4. Denote by SamP the space of pairs in RN

{(X,Xp) | Xp ⊂ X} ⊂ Sam2.

For X,X′ ∈ SamP , we set

d((X,Xp), (X′,X′
p)) := max{d(X,X′), d(Xp,X′

p)}

which defines an (extended pseudo) metric on SamP . We also refer to SamP as the
space of (P -)stratified samples (of RN).
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Next, we need an analogous construction for the category DiagP .

Definition 2.2.5. Denote by DPSam the space of triples of subspaces of RN

{(Dp,D{p<q},Dq) | Dq ⊃ D{p<q} ⊂ Dp, } ⊂ Sam3,

equipped with the subspace metric. That is, for D,D′ ∈ DPSam we set

d(D,D′) = max
I∈R(P )

d(DI ,D′
I).

We also refer to DPSam as the space of stratification diagram samples (of RN).

Finally, we repeat a similar process for TopN(P ).

Definition 2.2.6. Denote by SamN(P ) the space

{(X, s : X→ [0, 1]) | X ⊂ RN},

equipped with the (extended pseudo) metric given as follows. Embed SamN(P ) into
the space of subspaces of RN × [0, 1], equipped with the Hausdorff distance on the
product metric, by sending s to its graph. The metric on SamN(P ) is given by the
subspace metric under this embedding.
Equivalently, this comes down to the following. For (X, s), (X′, s′) ∈ SamN(P ), we set

d((X, s), (X′, s′)) := max
X0,X1∈{X,X′}2

{inf{ε > 0 |∀x ∈ X0∃y ∈ X1 :

||x− y||, |s(x)− s′(y)| ≤ ε}}.

We also refer to SamN(P ) as the space of strongly (P -)stratified samples (of RN).

Notation 2.2.7. For the remainder of this work, we denote v = (vl, vh) ∈ (0, 1)2 with
vl < vh, and u ∈ (0, 1). Furthermore, we equip (0, 1)2 with the usual order in the
second, and the opposite order in the first component, that is we write

v ≤ v′ ⇐⇒ v′l ≤ vl and vh ≤ v′h.

We denote by Ω ⊂ (0, 1)2 the subposet of (0, 1)2 with this order, consisting of (vl, vh)
with 0 < vl < vh < 1.

We close this sequence of definitions with constructions that connect stratified
spaces, strongly stratified spaces and stratification diagrams.

Construction 2.2.8. Consider the following three maps.

SamP SamN(P ) DPSam
N

Fu

Dv
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Figure 2.8. The pinched
torus PT as an element of
SamP

Figure 2.9. Illustration of
N (PT ). The colouring in-
dicates the strong stratifica-
tion.

Figure 2.10. Illustration
of Dv(N (PT )).

These are defined via:

(X,Xp)
N7−→ (X,min{dXp , 1}),

S = (X, s) Fu7−→ (X, S≤u),

S = (X, s) Dv7−→ (S≤vh , S
vl
vh
, S≥vl) .

The map N corresponds to the assignment of a strong stratification to a stratified
metric space (see Example 2.1.26. Fu gives a family of models for the forgetful functor,
TopN(P ) → TopP , described in Recollection 2.1.28. Finally, by Proposition 2.1.37,
Dv (composed with N ) provides a model for the functor assigning to a stratified space
its stratification diagram, DP : TopP → DiagP (see Recollection 2.1.23).

Example 2.2.9. Consider the three pictures Figs. 2.8 to 2.10. Fig. 2.8 shows the
pinched torus PT as a stratified subspace of R3, with the singularity marked in red.
Fig. 2.9 shows N (PT ), where the color coding indicated the strong stratification.
Finally, Fig. 2.10 shows the image under Dv for v = (0.2, 0.4). Specifically, the union
of the red and purple part give the p-part of the diagram, the purple part the {p < q}-
part, and the union of the purple and the blue one the q-part.

We will later make use of the following immediate elementary relation between Dv
and Fu.

Lemma 2.2.10. Let v = (vl, u) ∈ Ω. Then,

Fu(S) = (Dv(S)p ∪ Dv(S){p<q} ∪ Dv(S)q,Dv(S)p)

for all S ∈ SamN(P ).

Remark 2.2.11. Note, that all of the described sample spaces naturally admit the
structure of a poset. In the case of Sam, SamP and DPSam it is simply given by
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inclusions. In case of SamN(P ), it is obtained by treating elements of SamN(P ) as their
graph, i.e. as a subset of RN×[0, 1] and then using the inclusion relation. Equivalently,
this means

(X, s) ≤ (X′, s′) ⇐⇒ (x ∈ X =⇒ (x ∈ X′ & s(x) = s′(x))).

In this fashion, the spaces of samples may also be treated as categories and the maps
of Construction 2.2.8 are functors. Furthermore, from this perspective we can treat
SamP as a subcategory of TopP which allows for notation such as SamI , where I is
some indexing category to make sense, and we will use this freely. Furthermore, from
this perspective the metrics on SamP and DPSam are induced by the flow given by
componentwise thickening (see Example 2.2.20 for details).

Remark 2.2.12. In the proof of Proposition 2.1.37 we have first constructed a weak
equivalence of Dv ◦ N (S). Under the equivalence of homotopy categories hoTopP ∼=
hoDiagP , S and Dv ◦ N (S) represent the same stratified homotopy type. As a con-
sequence, to define persistent stratified homotopy types, we can thicken stratification
diagrams instead of stratified spaces.

Construction 2.2.13. Define the thickening of D by α ≥ 0 via:

Dα := ((Dq)α, (D{p<q})α, (Dq)α).

For α ≤ α′ there are the obvious inclusions of diagrams

Dα ↪→ Dα′

We thus obtain a map (functor from the categorical perspective)

DPSam→ DPSamR+

D 7→ {α 7→ Dα}

with the structure maps given by inclusions. Therefore, may treat the diagram samples
as elements of DiagP , ultimately obtaining the composition:

DP : DPSam→ DPSamR+ → hoDiagR+

P ' hoTopR+

P .

With this everything is in position to define persistent stratified homotopy types.

Definition 2.2.14. The persistent stratified homotopy type of a stratified sample
S ∈ SamP (depending on the parameter v) is defined as the image of S under the
composition

Pv : SamP
N−→ SamN(P )

Dv−→ DPSam DP−−→ hoTopR+

P .
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Remark 2.2.15. By construction Pv admits a combinatorial interpretation which
can be stored on a computer given that its finite, i.e. for finite samples. In other
words, we can immediately see that the persistent stratified homotopy type fulfills
an analogue of property (1). Note that the persistent stratified homotopy type of
S ∈ SamP is equivalently represented by the image of S under

Pv : SamP
N−→ SamN(P )

Dv−→ DPSam DP−−→ hoDiagR+

P .

We will not distinguish these two equivalent representation with different notation.
Then, it is a consequence of the classical nerve theorem (see e.g. [Hat02, Prop. 4G.3]
or [Bor48]), that for S ∈ SamP , Pv(S) is equivalently represented by the diagram of
Čech complexes

α 7→ {I 7→ Čα(Dv(N (S))I}

where Čα denotes the Čech complex at scale α. In case S is finite, this is exactly the
finite data that can be used used algorithmically, i.e. it can be stored as three filtered
simplicial complexes and each part can for example be used for persistent homology
calculation providing additional layers of information on the topology extracted from
S.

The following result guarantees that for sufficiently regular stratified spaces the
homotopy type does not change under small thickenings. This is the stratified ana-
logue to the aforementioned property that the homotopy type does not change under
small thickenings, property (3). See also [NSW08] for the smooth case and [CCSL09]
for the case of compact Euclidean subsets. This justifies the use of persistent stratified
homotopy types as a means to investigate the geometry of stratified samples.

Proposition 2.2.16. Let S ∈ SamP be a compact, definable stratified metric space.
Then, for any v ∈ Ω there exists an ε > 0, such that the structure map

Pv(S)(α)→ Pv(S)(α′)

is a weak equivalence, for all 0 ≤ α ≤ α′ < ε. In particular,

Pv(S) |[0,ε)' S.

In other words, the persistent stratified homotopy type of S at v restricted to [0, ε), is
weakly equivalent to the constant functor with value S.

Proof. Note that by definition of a weak equivalence in the category of stratification
diagrams, this statement really just says there exists an ε > 0, such that for each flag
I in P the inclusions

Dv(S)I ↪→ (Dv(S)I)α
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are weak equivalences, for α ≤ ε. Note, however, that by the definability assumption
Dv(S)I is again definable. Hence, this follows from the fact that the homotopy type
of compact definable sets is invariant under slight thickenings (see Lemma 2.2.17 for
the precise statement). For α = 0, we have

Pv(S)(0) ' S

as discussed in Remark 2.2.12.

Lemma 2.2.17. Let X ⊂ Y ⊂ RN be definable with respect to some o-minimal
structure and X compact. Then, there exists ε > 0 such for 0 < α < ε the following
holds:

1. X ↪→ Xα ∩ Y is a strong deformation retract.

2. There is a homeomorphism (Xα∩Y )\X ∼= d−1
X (α

2
)×(0, α], such that the diagram

(Xα ∩ Y ) \X d−1
X (α

2
)× (0, α]

(0, α]

dX

∼

π(0,α]

commutes.

Proof. The claim 2 on the homemomorphism type of the complements is an applica-
tion of Hardt’s theorem for definable sets together with the fact that dX is definable
(see e.g. [vdD98]). It remains to see that the inclusion is a strong deformation retrac-
tion. Note that by the triangulability of definable sets (see for example [vdD98, The-
orem 2.9]), RN may be equipped with a triangulation compatible with X and Y . In
particular, by subdividing if necessary, X has arbitrarily small mapping cylinder neigh-
borhoods in Y , given by piecewise linear regular neighborhoods. Furthermore, this
means that X ↪→ Xα ∩Y is a cofibration. Thus, it suffices to show that X ↪→ Xα ∩Y
is a homotopy equivalence. Let α < α′ < ε with ε such that 2 holds. Then, we have
inclusions

X ↪→ Xα ∩ Y ↪→ N ↪→ Xα′ ∩ Y,

where N is a regular neighborhood with respect to the piecewise linear structure
induced by the triangulation. By the open cylinder structure in 2 of the set (Xα′ ∩
Y ) \ X, the inclusion Xα ∩ Y ↪→ Xα′ ∩ Y is a homotopy equivalence. The same
holds for the inclusion X ↪→ N . It follows by the two-out-of-six property of homotopy
equivalences, that all maps are homotopy equivalences.
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2.2.2 Metrics on categories of persistent objects

One of the fundamental prerequisites for employing persistent homology in appli-
cations lies in its stability concerning Hausdorff and interleaving distance, initially
demonstrated in [CCSG+09]. Metrics in persistent scenarios and the stability of
functors with respect to these metrics have been the subject of ongoing study (
[BW20, HKNU17, Les15, BL21, BSS20]). Remarkably, the stability of persistent ho-
mology with respect to interleaving distance can be expressed at the level of persistent
homotopy types, which also extends to persistent spaces, as will be explained in the
section that follows. Examining the stability properties of the stratified persistent
homotopy type is the aim of Section 2.2.3. We do this by utilizing the idea of flows,
which was first presented in [dSMS18]. Here, we provide a somewhat more condensed
definition for the sake of clarity.

Recollection 2.2.18 ( [dSMS18]). A strict flow on a category C is a strict monoidal
functor (−)− : R+ → End(C). That is, to each ε ∈ R+ we assign an endofunctor (−)ε
and whenever ε ≤ ε′ we assign (functorially) a natural transformation sε→ε′ : (−)ε →
(−)ε′ . Recall that being strict monoidal means that (−)0 = 1C, (−)ε′ ◦ (−)ε = (−)ε+ε′
and (sε≤ε′)δ = sε+δ≤ε′+δ. Generally, one may think of flows as a notion of shift on
C. Then, just as in the scenario of the interleaving distance for persistence modules
[CCSG+09], one says that X,Y ∈ C are ε-interleaved if there are morphisms f : X →
Yε and g : Y → Xε and such that the diagram

X Y

Yε Xε

X2ε Y2ε

f g

gε fε

(2.5)

commutes (all unlabelled morphisms are given by the flow). One then obtains a
(symmetric Lawvere) metric space by setting

dI(X,Y ) = inf{ε ≥ 0 | X,Y are ε-interleaved}. (2.6)

An immediate consequence of this definition is that any functor F : C → D between
categories with a (strict) flow that fulfills (−)ε ◦ F = F ◦ (−)ε for all ε ∈ R+, is
necessary 1-Lippschitz with respect to the interleaving distance. For the specific case
of the functor F being given by homology, we exhibit more detail in Section 4.1.

Example 2.2.19. Let U ⊂ Rk be a generalized interval (i.e. a subset of Rk, such
that u, v ∈ U, u ≤ v ≤ w implies w ∈ U). Furthermore, let T be a category with a
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terminal object ∗. Then, any functor category TU is naturally equipped with a shift
type flow, given by

Xε(u) :=

X(u+ ε(1, . . . , 1)) , for u+ ε(1, . . . , 1) ∈ U ;

∗ , for u+ ε(1, . . . , 1) /∈ U.

If T is equipped with a notion of weak equivalence (which includes all isomorphisms),
then by construction the flow respects weak equivalences in TU . Thus, it descends
to a flow on the homotopy category hoTU obtained by localizing weak equivalences
of functors. In particular, this construction equips the persistent homotopy category
hoTopR+ with a symmetric Lawvere metric, such that the functor

TopR+ → hoTopR+

is 1-Lippschitz. More generally, the same construction works for the cases T =

TopP ,DiagP ,Strat. We call distances of this type interleaving distances. Further-
more, for any functor between two such categories T,T′, which descends to the ho-
motopy category, the induced functors

TR+ → T′R+ ,

hoTR+ → hoT′R+

commute with shifting and are thus 1-Lippschitz. Whenever we refer to a metric on
such a functor category (or its homotopy category), we will mean the interleaving
distance.

Example 2.2.20. Denote by Sam the category of subsets of RN , with morphisms
given by inclusions. If we take

Xε := Nε(X) := {y | ∃x ∈ X : |x− y| ≤ ε},

for ε ∈ R+ then this defines a strict flow on Sam. The distance induced by the flow
is the Hausdorff distance (compare [dSMS18]). Clearly, the functor

Sam→ TopR+

X 7→ {ε 7→ Xε}

commutes with flows. In this notation, persistent homology is the composition

PHi : Sam→ hoTopR+
H

R+
i−−→ VecR+

k (2.7)

where H
R+

i computes homology degree-wise which also commutes with flows. This
is a way to prove the fact that persistent homotopy types are stable with respect
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to Hausdorff and interleaving distance. This implies the stability of persistent ho-
mology (as in [CCSG+09]). Note that the interleaving distance on VecR+

k agrees
with the Bottleneck distance (see Definition 4.1.6 and Eq. (4.2)). More generally,
if we define thickening component-wise, then the distances on SamP and DPSam
(Definitions 2.2.4 and 2.2.5) are also induced by the thickening flow. However the
interleaving distance on hoTopR+ , hoSamR+

P or hoDPSamR+ may look like, i.e. the
distance of their version of persistent homotopy types, we know that objects close
in the interleaving distance will also be close in the interleaving distance in their
associated persistence barcodes or similar invariants.

In the next subsection, the stability results as in Examples 2.2.19 and 2.2.20 are
used repeatedly and often implicitly. For example, from the perspective of flows one
immediately obtains:

Lemma 2.2.21. DP : DPSam→ hoTopR+

P is 1-Lipschitz.

2.2.3 Stability of persistent stratified homotopy types

As illustrated in Section 2.2.2, particularly in Example 2.2.20, the stability of the
persistent homotopy type concerning the Hausdorff distance is almost self-evident.
When commencing with a stratification diagram of samples, the situation remains
comparably straightforward for the stratified scenario, as indicated in Lemma 2.2.21.

However, the scenario becomes more nuanced for persistent stratified homotopy
types in some sense when initiated from a stratified sample. This complexity arises
from the fact that the operation of taking sublevel sets with respect to some func-
tion (or, equivalently, intersecting with a closed subset) is generally not a continuous
operation in terms of the Hausdorff distance.

Example 2.2.22. Let N = 1, i.e. RN = R and A = (−∞, 0]. Let X = {0} and
Xn = { 1

n
}. Xn converges to X in the Hausdorff distance. However, the intersections

A ∩ Xn are empty, while A ∩ X = X. In particular, we have

d(A ∩ Xn, A ∩ X) =∞,

for all n > 0.

The issue highlighted in Example 2.2.22 arises from a lack of homogeneity in X
while transitioning into the interior of A. By replacing X with [−ε, 0], such phenomena
are eliminated, and one can demonstrate the continuity of intersecting withA in [−ε, 0].
Expanding on this phenomenon in a more intricate context, we proceed to establish
the stability of persistent stratified homotopy types when sampling around a compact
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cylindrically stratified metric space as stability of persistent stratified homotopy types
does generally not hold globally, as it does in the non-stratified case. We need a notion
of local Lipschitz continuity for our upcoming exposition.

Definition 2.2.23. Let K ∈ [0,∞). We say that a function of (symmetric Lawvere)
metric spaces f : M → M ′ is K-Lipschitz (continuous) at x ∈ M , if there is a δ > 0,
such that

d(f(x), f(y)) ≤ Kd(x, y),

for all y ∈ M with d(x, y) ≤ δ. We say f is K-Lipschitz (continuous), if it is K-
Lipschitz for δ =∞, at every x ∈M .

At this point it seems advisable to recall that we are still restricted to the two
strata case. Let P = p < q be a poset with two elements, and let v = (vl, vh) ∈ Ω and
u ∈ [0, 1] for the remainder of this section.

Proposition 2.2.24. The map

N : SamP → SamN(P )

is 2-Lipschitz.

Proof. This is immediate from the triangle inequality.

As an immediate consequence of the definition of the metric for strongly stratified
samples, one obtains.

Lemma 2.2.25. Let S, S′ ∈ SamN(P ) and v′ ≤ v ∈ [0, 1]. Then

(S′)v
′

v ⊂ (Sv′−δv+δ )δ,

for any δ > d(S, S′).

The dependency of the persistent stratified homotopy type on v introduces sub-
tleties, primarily due to the absence of diagonal interleavings. Despite this challenge,
the following technical lemma serves as the crucial argument in demonstrating stabil-
ity.

Lemma 2.2.26. Let S, S′ ∈ SamN(P ). Let δ > d(S, S′) and suppose v + δ := (vl −
δ, vh + δ) ∈ Ω and v − δ := (vl + δ, vh − δ) ∈ Ω. Then

d(Dv(S),Dv(S′)) ≤ δ +max{d(Dv(S),Dv±δ(S))}.

Similarly, if u± δ ∈ (0, 1), then

d(Fu(S),Fu(S′)) ≤ δ +max{d(Fu(S),Fu±δ(S))}.
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Proof. We prove the diagram case, the other one can be shown completely analogously.
Let α > d(Dv(S),Dv±δ(S)). We then have inclusions

Dv(S) Dv−δ(S)α Dv(S′)δ+α ,

Dv(S′) Dv+δ(S)δ Dv(S)δ+α .

The upper left and lower right inclusion follow by the assumption on α. The lower
left and upper right inclusions follow by Lemma 2.2.25. Hence, the result follows
by considering the diagram distance as coming from a thickening flow as in Exam-
ple 2.2.20.

A way to interpret Lemma 2.2.26 is as the statement that the continuity of Dv in
a strongly stratified sample S depends on the continuity of Dv(S) in the parameter v.

One consequence of the second part of Lemma 2.2.26 is captured in the next
corollary for the purpose of referencing this result later on.

Corollary 2.2.27. Let δ > 0 such that u ± δ ∈ (0, 1). Let S = (X, s) ∈ SamN(P ) be
such that S≤u = S≤u±δ. Then,

Fu : SamN(P ) → SamP

is 1-Lipschitz in S (on a ball with radius δ).

A handy fact is that the continuity of Dv(S) in v can be argued for by the continuity
of the {p < q} parts of diagrams as stated in the next lemma.

Lemma 2.2.28. Let S ∈ SamN(P ) and v, v′ ∈ Ω and set a = min{vl, v′l}, b =

max{vh, v′h}, then

d(Dv(S),Dv′(S)) ≤ max{d(Svlvh , S
v′l
v′h
), d(Sav′h , S

a
vh
), d(Svlb , S

v′l
b )}.

Proof. This is an immediate consequence of the fact that

d(X,Y) ≤ d(X \ A,Y \ A),

for A ⊂ X,Y ∈ Sam.

For compact cylindrically stratified spaces we are now in position to show that
Dv(S) and Fu(S) vary continuously in v and u respectively.

Proposition 2.2.29. Let S ∈ SamN(P ) be compact and cylindrically stratified. Then

(0, 1)→ SamP

u 7→ Fu(S)
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and

Ω→ DPSam

v 7→ Dv(S)

are continuous.

Proof. Note that it suffices to show the case of Dv, since the nontrivial part of the
continuity for Fu is given by the (Fu)p component, and the latter is defined identically
to the p-component of Dv(S). By Lemma 2.2.28 it suffices to show that for v → v0,
we also have

d(Svlvh , S
v0l
v0h
)→ 0.

Next, note that the topology of the Hausdorff distance on the space of compact sub-
spaces of a space only depends on the topology of the latter. Set L := S

1
2
1
2

. Then by
the cylinder assumption we may without loss of generality compute d in L × (0, 1)

equipped with the product metric. In particular, Svlvh = L× [vl, vh]. We then have

d(Svlvh , S
v0l
v0h
) = d(L× [vl, vh], L× [v0l , v

0
h])

≤ max{|vl − v0l |, |vh − v0h|}
v→v0−−−→ 0.

Invoking Proposition 2.2.29 and Lemma 2.2.26 we obtain the last result before
stating one of our main results.

Corollary 2.2.30. Let S ∈ SamN(P ) be compact and cylindrically stratified. Then

Fu : SamN(P ) → SamP ,

Dv : SamN(P ) → DPSam

are continuous at S.
Furthermore, if S≤− : (0, 1)→ Sam is K-Lipschitz in a neighborhood of u (and respec-
tively S−

− in a neighborhood of v), then Fu (and respectively Dv) is (K + 1)-Lipschitz
at S.

In total, the next statement can be seen as a (slightly weaker) version of the
classical, non-stratified Property (3) generalized to the persistent stratified homotopy
type.

Theorem 2.2.31. Let S ∈ SamP be compact and cylindrically stratified. Then

Pv : SamP → hoTopR+

is continuous at S. Even more, if S−
− : Ω→ Sam is K-Lipschitz in a neighborhood of

v, then Pv is 2(K + 1)-Lipschitz at S.



52 Persistent Stratified Homotopy Types

Proof. Recall that Pv = DP ◦ Dv ◦ N . Therefore, we simply collect that N is 2-
Lipschitz by Proposition 2.2.24, Dv is continuous in N (S) by Corollary 2.2.30 and
DP is 1-Lipschitz by Lemma 2.2.21. The second statement can be deduced in a
similar fashion.

Furthermore, the above statement can be significantly strengthened for the case
of Whitney stratified spaces.

Theorem 2.2.32. Let P = {p < q} and W ∈ SamP be Whitney stratified with Wp

compact. Then, for any C > 1, there exists some R > 0, such that the map

Pv : SamP → hoTopR+

P

is 2(C + 1)-Lipschitz continuous at W , for all v ∈ Ω ∩ (0, R)2.

Showing the above statement requires a detailed investigation of the methods found
in [Hir69] in particular the concept of integral curves. We will discuss the concept of
integral curves briefly at the time they will be necessary for our results in Section 3.3.
The way to strengthen Theorem 2.2.31 for the case of Whitney stratified spaces is by
showing that for any C > 1, there exists an R > 0, such that the function

Ω ∩ (0, R)2 → DPSam

v 7→ Dv(N (W ))

is C-Lipschitz continuous, where W is a Whitney stratified space with compact sin-
gular stratum, and then replace the K-Lipschitz continuity in the proof of Theo-
rem 2.2.31 with the C-Lipschitz continuity. Because we feel we sufficiently demon-
strated the main properties of the concept of persistent stratified homotopy types we
would like to refer the reader to Appendix A.1 to see the technical details that go into
proving Theorem 2.2.32.



Chapter 3

Approximate Stratifications

Clearly, there is no hope to be able to infer every stratification that one can define on
a space. Even a manifold, like S2, can be a stratified space by simply labelling a col-
lection of closed subsets of S2. Consider for example Fig. 3.1 where a little more than
the upper hemisphere of S2 and the whole of S2 serve as strata. In this case the strat-
ification is not based on a local geometric differences of the strata. In order to stratify
a space without a priori knowledge on the actual strata and links, the stratification
has to be measurable by local geometric means as in case of conically stratified spaces.
Another classical example is given by homology stratifications, as used by Goresky
and MacPherson in [GM83]. Because it will be a central concept, especially for the
algorithmic and application chapters, we formally define local homology first. The
results presented in this chapter appeared in an article written by the author together
with Lukas Waas [MW22]. This chapter roughly corresponds to [MW22, Section 4]
and certain results and definitions are incorporated verbatim.

Definition 3.0.1. The local homology groups at a point x of a space X are given by
relative homology

H•(X; x) := H•(X,X \ {x}).

Local homology groups can be computed with direct limits

lim−→H(X,X \ U)

where the limit ranges over the open subsets of X containing x.

Example 3.0.2. For us it suffices to discuss the two strata case here but the concept
of homology stratification is more general. Suppose S = (X, s : X → {p < q})
is conically stratified, such that Sq is locally euclidean of dimension q, and Sp of
dimension p. In particular, x ∈ Sp admits a neighborhood

U ∼=P Rp × C(L)

53
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Figure 3.1. Artificial stratification of S2

for some q − (p + 1) dimensional compact manifold L, called the link of x. Suppose
further that L is not a homology sphere, and that the strata are connected. Then,
the stratification of S can be recovered from the underlying space as follows.

By the assumption on the local geometry of X, for any x ∈ X, there exists a small
open neighborhood Ux such that the natural map

H•(X,X \ Ux)→ H•(X; x)

is an isomorphism. In particular, for each x ∈ X one obtains natural maps

H•(X; x) ∼= H•(X,X \ Ux)→ H•(X; y)

for y ∈ Ux ∼=P Rp × C(L). If x, y are contained in the same stratum, then all of
these maps are given by isomorphisms. By the path connectedness assumption any
two points in the same strata are connected by such a sequence of isomorphisms.
Conversely, since we assumed that L is not a homology sphere, we have

H•(X; x) ∼= H•(Ux; x) ∼= H̃•−(p+1)(L) 6= H•(X; y),

whenever x ∈ Sp and y ∈ Sq. Thus, we can reobtain the stratification of S, by
assigning to points the same stratum, if and only if they are connected through such a
sequence of isomorphisms. Stratifications with the property that all the induced maps
of local homologies on a stratum are isomorphisms are called homology stratifications.
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Local homology as a means to obtain stratifications of point clouds (or combinato-
rial objects) have recently been investigated in several works ( [BWM12,SW14,FW16,
Nan20,STHN20,Mil21]). Both [BWM12] and [Nan20] make use of the structure maps
H•(X; x)→ H•(X; y) to determine the strata. Note however, that in the case of two
strata, it really suffices to study the isomorphism type at each point, and there is no
need to study the maps themselves, as stated by the following lemma.

Lemma 3.0.3. Let S = (X, s : X → {p < q}) be a conically stratified space with
manifold strata of dimension q and p respectively. Then s is a homology stratification.

Furthermore, if the local homology of X is different from H•(Rq; 0), at each y ∈ Sp,
then s is the only homology stratification of X with two strata.

Conversely, one always obtains a homology stratification s̃ : X → {p < q} defined
by:

s̃(x) = q ⇐⇒ H•(X; x) ∼= H•(Rq; 0),

for x ∈ X.

Proof. The first result is immediate from the local conical structure of X. The second
is immediate from the definition of a homology stratification, as clearly X − Sp is a
homology manifold. For the final result, note first that by the local conical structure,
having local cohomology isomorphic to having H̃•(S

q) is an open condition on Sp. In
particular, since this condition holds on all of X − Sp it is an open condition on all of
X. Thus, s : X → {p < q} as defined in the statement is actually a stratification of
X. To see that this is indeed a homology stratification we need to see that the local
isomorphism condition is fulfilled. By construction, we have X−Sp ⊂ s̃−1{q}. Within
Sp∩ s̃−1{p} the local isomorphism condition again holds by the local conical structure
of X. Thus, it remains to consider the case where x ∈ Sp, and H•(X; x) ∼= H̃•(S

q).
We need to show that, for Ux ∼= Rq−p−1 × C̊(Lx), an open neighborhood of x, the
natural map

H•(X; x) ∼= H•(W,W − Ux)→ H•(X; y)

is an isomorphism, for all y ∈ Ux. The only nontrivial degree in this case is q = dimW .
By an application of the Künneth formula Lx is again an orientable manifold. Hence,
up to suspension, from this perspective, the claim reduces to the fact that if Lx is an
orientable, closed manifold. Then, under the natural isomorphism

H•(CLx, Lx) ∼= H̃•−1(Lx)

the fundamental class of Lx induces a fundamental class of CLx.
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This short excursion on local homology and homology stratifications serves as
motivation to take a more in-depth look at conditions that have to be satisfied for
methods such as local homology to distinguish strata. In the following we will also
give a few options to choose from in practice that measure local geometric differences
in a space.

3.1 Extrinsic tangent cones and magnifications
The distinction of singular and regular parts of a space will mostly be based on local
information, such as local homology. As most of the spaces we consider are Whitney
stratified and are thus embedded in Euclidean space we often want to compare spaces
locally, based on intersections with Euclidean balls of some radius and around some
center point. Making this information independent of the radius and location within
ambient spaces would involve tedious spatial shifts, truncations and normalizations.
For convenience and to keep notation neat, we will use the following:

Definition 3.1.1. Denote by Sam⋆ the space of centered subspaces of in RN ,

Sam⋆ := {X | X ⊂ RN , x ∈ RN}

equipped with the (extended pseudo) metric induced by pulling back the metric on
Sam along

Sam⋆ → Sam

X 7→ B1(0) ∩ X.

We call Sam⋆ the space of centered samples (of RN).

Observe that the metric on Sam⋆ is structured in such a way that it inherently
identifies translations of a space, as well as a space with its intersection with the unit
ball centered at the origin. In fact, as per its definition, Sam⋆ is isometric to the
space of subspaces within B1(0) ⊂ RN .

Remark 3.1.2. Let X represent a (potentially noisy) sample from a space X. Initially,
let’s refrain from assuming that either X or X is centered, but we will assume that both
X and X belong to the set Sam. In this context, to derive non-trivial information, one
cannot proceed all the way to the limit when computing (persistent) local homology.
Specifically, for any thickening Xε, where ε > 0, H∗(Xε, p) = H∗(Rn, 0). Instead, one
considers the persistent relative homology of the sample relative to a ball of radius
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r around any chosen point (see [BCSE+07, BWM12, SW14]). In other words, one
computes persistent local homology using the spaces

(Xε,Xε \Br(p)).

For computational reasons, it is beneficial to use the intrinsically local notion of this
structure. By the excision theorem, one may equivalently compute:

(Xε ∩ Br(p), (Xε ∩ Br(p)) \ B̊ r
2
(p)).

Now, at this point, the measurable outcome of the homology of the above space
depends on the chosen radius r and will decrease as r → 0. If we desire a measure of
singularity that is comparable for different scales, then this needs to be normalized.
One may use M = 1

r
(X− p) ∩ B1(0) and compute the homology of the stretched pair

(Mε,Mε \ B̊ 1
2
(0)).

The above excursion is the inspiration for the following definition that will make
the notation more compact. However, we do this so that the center point remains the
same.

Definition 3.1.3. Let X ∈ Sam, x ∈ RN and r > 0. We denote by

Mr
x(X) :=

1

r
(X− x) ∩ B1(0) ∈ Sam⋆

the r-magnification of X at x.

With the next example we want to illustrate the concept we will use to decide
whether or not we are able to infer stratifications on a space.

Example 3.1.4. Consider the two real algebraic varieties

X = {(x, y) ∈ R2 | (x2 + y2)2 + 2x2 + 2y2 − 4x2 = 0}

and
Y = {(x, y) ∈ R2 | (x2 + y2)2 − 4x2 = 0}.

These varieties are Whitney stratified spaces with the singular set containing only the
singular point located at the origin. In Fig. 3.2, we plotted three local magnifications
of X at the origin x = (0, 0), i.e. Mr

x(X) for three different r . We can observe that the
homeomorphism type of the local magnifications stabilize as we decrease r. However,
at the same time, the spacesMr

x(X) converge for r → 0, to a space homeomorphic to
the previous (truncated) magnifications. In contrast, Y shows a different convergence
behavior. Although the spacesMr

x(Y ) share the same homeomorphism type with the
local magnifications of X at the origin for r small enough, Fig. 3.3 illustrates that the
homeomorphism type changes when passing to the limit.
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Figure 3.2. Three magnifications of (x2 + y2)2 + 2x2 + 2y2 − 4x2 = 0 at the origin

Figure 3.3. Three magnifications of (x2 + y2)2 − 4x2 = 0 at the origin

One can immediately make out the limitations of this approach since even a sin-
gular space such as shown in Fig. 3.3 does not fall into the class of stratified spaces
we can reliable investigate by local means. However, the limit spaces as described in
Example 3.1.4 exist and are known as the (extrinsic) tangent cones of X at x, in the
case where X admits a Whitney stratification and fulfills certain extra conditions as
we will see in Proposition 3.4.4. For a more detailed investigation on metric tangent
cones see [Lyt04,BL07]).

Definition 3.1.5. Let X ⊂ RN . The (extrinsic) tangent cone of X at x ∈ X is
defined as

Tex
x (X) := {v ∈ RN | ∀ε > 0∃y ∈ Bε(x) ∩X : v ∈ (R≥0(y − x))ε},

where −ε is to be understood as in Example 2.2.20. The extrinsic tangent cones define
a map

Tex(X) : X → Sam⋆

x 7→ Tex
x (X)

Example 3.1.6. Invoking Taylor’s expansion theorem yields

Tex
x (X) = Tex

x (U) = Tx(U)

when U ⊂ X ⊂ RN an open neighborhood of x such that U is a smooth submanifold
of RN .
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Example 3.1.7. For an (affine) complex algebraic variety X the tangent cone at the
origin coincides with the algebraic tangent cone, i.e. the set of common zeroes of all
polynomials in the ideal generated by the homogeneous elements of lowest degree of
all polynomials that vanish identically on X.

It is a classical result, which can for example be found in [Hir69,BL07], that when
X admits a subanalytic Whitney stratification, then

Mr
x(X)→ Tex

x (X)

in Sam⋆ as r → 0. This already gives an idea of what local geometric information one
can obtain from methods such as local homology. Also, with the concept of tangent
cones at hand we can define the central notion of spaces for which one can hope to
infer stratifications by local geometric information.

Definition 3.1.8. Let P = {p < q}. Let W = (X, s : X → P ) ∈ SamP be q-
dimensional Whitney stratified space. We say that W is tangentially stratified if

d(Tex
x (W ), V ) > 0,

for all x ∈ Wp and for all q-dimensional linear subspaces V ⊂ RN .

The following example illustrates that it is not hard to find Whitney stratified
spaces that are not tangentially stratified.

Example 3.1.9. Consider, again, Y = {(x, y) ∈ R2 | (x2 + y2)2 − 4x2 = 0} from
Example 3.1.4. In this case, the above condition specifies to d(Tex

(0,0)(Y ), V ) > 0,

for all 1-dimensional subspaces V ⊂ RN . The tangent cone of Y at the origin is a
1-dimensional linear space given by

Tex
(0,0)(Y ) = {(x, y) ∈ R2 | x = 0},

see Fig. 3.4 on the right, which already serves as a subspace V ⊂ R2 such that
d(Tex

(0,0)(Y ), V ) = 0. For the space

X = {(x, y) ∈ R2 | (x2 + y2)2 + 2x2 + 2y2 − 4x2 = 0}

on the other hand we find that the tangent cone at the origin is a 1-dimensional space
given by

Tex
(0,0)(X){(x, y) ∈ R2 | (x+ y)(x− y) = 0},

see Fig. 3.4 on the left. Clearly, there is no 1-dimensional subspace V ⊂ R2 such that
d(Tex

(0,0)(X), V ) = 0.
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Figure 3.4. Two curves with their respective tangent cones at their singular stratum

In Section 3.5 we will see that for certain tangentially stratified spaces the stratifi-
cation can be approximated arbitrarily accurate from a sufficiently good sample and
by zooming-in far enough. Therefore, tangentially stratified spaces are the main object
for our theoretical considerations but approximating a stratification from a sample is
feasible also by other means.

3.2 Φ-stratification
To obtain a practical access to stratifying a space we introduce the notion of tan-
gentially Φ-stratified spaces. This extension on the concept of tangentially stratified
space, reflects that in practice there are other local invariants usable to stratify a point
cloud.

Definition 3.2.1. Let Φ : Sam⋆ → [0, 1] be a continuous function, such that Φ(V ) =

1, whenever V is a q-dimensional linear subspace of RN . Let W ∈ SamP be q-
dimensional Whitney stratified space. We say that W is (tangentially) Φ-stratified
if

Φ(Tex
x (W )) < 1,

for all x ∈ Wp.

Let us begin with a series of examples of functions Φ : Sam⋆ → [0, 1] that can
be used (in theory) to detect local singularity. The prime example for the input to a
function Φ are the magnifications of X ∈ Sam⋆ at every point x ∈ X. We can think
of Mr

x(X) ∈ Sam⋆ as zooming into X at x by a magnification parameter r. To such
local data we want to apply a function Φ to determine how far from a q-dimensional
Euclidean unit disk Dq ⊂ Rq ↪→ RN the space Mr

x(X) is.



Φ-stratification 61

Example 3.2.2. Consider the continuous map

Φq
Hd : Sam⋆ → [0, 1] (3.1)

B 7→ 1− inf{d(B, V )}, (3.2)

where V ranges over the q-dimensional linear subspaces of RN . This is a continuous
map as the distance function on domain and target is the Hausdorff distance. We
promised the concept of Φ-stratification to be a practical concept and the reader is
referred to Section 4.2 for the computational consideration of the map Φq

Hd. A q-
dimensional Whitney stratified space W ∈ SamP is tangentially stratified if and only
if it is Φq

Hd-stratified. Thus, Φq
Hd is universal in the sense that if W is Φ-stratified for

some Φ as in Definition 3.2.1, then it is Φq
Hd-stratified.

An example of Φ-stratification that, in some sense, is already frequently considered
in the field of TDA [BWM12, Mil21, Nan20, STHN20] is given by persistent local
homology

Example 3.2.3. Define

PL• :M 7→ {ε 7→ H•(Mε,Mε \ B̊ 1
2
(0))}

to obtain a persistence module indexed over [0, 1
2
). Note that no bar in a persistence

module PLi can be longer than 1
2

as the diameter of a space in Sam⋆ is at most 1.
Therefore, the following map is well-defined:

Φq
PL : Sam⋆ → [0, 1] (3.3)

B 7→ 1− 2max
i≤q

d(PLi(B),PLi(Rq)). (3.4)

where Rq ⊂ RN with a linear embedding in order to ensure Rq ∈ Sam⋆. Let W ∈
SamP be a (definable) q-dimensional Whitney stratified such that for all x ∈ Wp we
have PL•(T

ex
x (W )) 6= PL•(Rq), i.e. the two persistence modules are not isomorphic.

Then, W is a Φ-stratified space.

As indicated before, one of the strengths of the general definition of Φ-stratified
spaces is that in practice one may use a selection of possibly rougher or approximative
invariants that allow algorithmic computation.

Example 3.2.4. Instead of using

B 7→ 1− inf{d(B, V )},

as in Example 3.2.2, one can only use the asymmetric Hausdorff distance, i.e. only
consider

(X, x) 7→ inf{ε | B1(0) ∩ (X− x) ⊂ B1(0)) ∩ Vε}
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While this does narrow down the class of Φ-stratified spaces, the use of the asymmetric
distance not only simplifies the computation itself but also enables the formulation of
a deterministic optimization problem to identify a minimizing linear subspace (refer
to Eq. (4.18)). In contrast to the general problem presented in Eq. (3.1), an approxi-
mation of the infimum can be obtained by randomly generating q-dimensional linear
subspaces and recording the smallest distance (see Section 4.2.3).

Furthermore, rather than computing PL•(B) as illustrated in Example 3.2.3, one
may opt for a Vietoris-Rips version of the latter, as discussed later in Section 4.1.2.
Empirically, this Vietoris-Rips version of Φq

PL has demonstrated its ability to dis-
tinguish a linear subspace from a singular region. We will also provide arguments
supporting its efficacy in approximating the true function Φq

PL (see Section 4.1.2).
Additionally, focusing on specific dimensions of interest may yield further computa-
tional advantages.

Moreover, rather than utilizing the challenging-to-compute interleaving distance
(compare to [BB18]), we will employ the Bottleneck distance. While the Bottleneck
distance theoretically yields the same results as the interleaving distance, it is also
computable and, notably, easily so in the special case of Eq. (3.3) (see Remark 4.1.8).

3.3 Lojasiewicz-Whitney stratified spaces
The preceding section emphasizes the necessity of gaining a more profound under-
standing of the convergence properties of magnification spaces to tangent cones for
the purpose of reconstructing stratifications from sample data. These insights form
the core content of Section 3.4. However, before delving into these aspects, we must
establish a series of results concerning Whitney stratified spaces, which are defined
within particularly well-behaved o-minimal structures.

Our approach heavily relies on the foundational work presented in [Hir69] and
[BL07]. In particular, we will make use of the concept of integral curves. Prior to
delving into this, we need to introduce some notation.

Definition 3.3.1. Let V, U ⊂ RN be linear subspaces. The (asymmetric) distance of
V to U is given by

~d(V, U) = sup
v∈V,||v||=1

inf{||v − u|| | u ∈ U} = sup
v∈V,||v||=1

{||πU⊥(v)||},

where πU⊥ denotes the orthonormal projection to the orthogonal complement of U .

Whitney’s condition (b) can be expressed in terms of a function, which mea-
sures the failure of secants being contained in the tangent space, as follows (com-
pare [Hir69]).
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Construction 3.3.2. Let S = (X, s : X → P ) be a stratified space with smooth strata,
contained in RN . Consider the function

β : X ×X → R;

(x, y) 7→ ~d(l(x, y),Tx(Xs(x))) if x 6= y,

(x, x) 7→ 0 else

where we consider all tangent spaces involved as linear subspaces of RN .

Note that for the time being we will not assume P = {p < q}. We will specifically
say when we make the two strata restriction again. The results presented here and
in Section 3.4 hold for general P . The following proposition basically describes the
properties of what is called integral curves (compare to [Hir69]).

Proposition 3.3.3. Let S = (X, s : X → P ), be as in the assumption of Construc-
tion 3.3.2 and further so that the frontier and local finiteness condition are fulfilled.
Then, S is a Whitney stratified space if and only if

β |(Xq×Xp)∪∆Xp
: (Xq ×Xp) ∪∆Xp → R,

is continuous, for all pairs q ≥ p ∈ P . Here, ∆Xp denotes the diagonal of Xp ×Xp,

Proof. Although this assertion is somewhat of a common understanding within the
field we want to ensure a comprehensive coverage and provide a proof in Appendix A.2.

Next, we need the notion of integral curves, as defined, for example, in [Hir69].

Proposition 3.3.4. [Hir69, Lemma 4.1.1] Let W be a Whitney stratified space over
the poset P and y ∈ Wp, for some p ∈ P . Let B = Bd(y) ⊂ RN be a ball of radius d
around y such that β(−, y) is bounded uniformly by some δ < 1 on W≥p ∩ B. Then,
for any x ∈ W≥p ∩B, x 6= y, there exists a unique curve φ : [0, d]→ W ∩B, fulfilling

1. φ(0) = y and φ(||y − x||) = x,

2. φ is almost everywhere differentiable. At differentiable points, t 6= 0, the differ-
ential is given by

φ′(t) =
||φ(t)− y||

||πϕ(t)(φ(t)− y)||2
πϕ(t)(φ(t)− y),

where πϕ(t) denotes the projection to Tϕ(t)(Ws(ϕ(t))).

Definition 3.3.5. A curve φ as in Proposition 3.3.4 is called the integral curve asso-
ciated to the pair x, y.
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The following result due to Hironaka gives us additional amount of control over
integral curves which we will need in order to control the convergence behavior of
magnifications of samples.

Lemma 3.3.6. Let W be a Whitney stratified space over P , p ∈ P and y ∈ Wp.
Suppose there exists d0 > 0 such that there exists α > 0, with

β(x, y) ≤ ||y − x||α

for all x ∈ W≥p ∩ Bd0(y). Then, for any C > 0 there exists d > 0 only depending
on d0, α (and the dimension of W ), such that for any integral curve φ : [0, d] → W

starting in y and ending in Bd(y), the inequality

||1
t
(φ(t)− φ(0))− 1

s
(φ(s)− φ(0))|| ≤ C|t− s|α

holds for all t, s ∈ [0, d]. In particular, all integral curves starting at y are differentiable
in 0.

Proof. A complete proof of this statement can be found in [Hir69]

Spaces that satisfy a local variant of the condition described above were examined
in [Hir69]. In that work, it was referred to as the strict Whitney condition.

Definition 3.3.7. A Whitney stratified space fulfilling the requirements of Lemma 3.3.6
on any compactum K contained in some pure stratum Wp of W , is called a Lojasiewicz-
Whitney stratified space. That is, W is called Lojasiewicz-Whitney stratified, if the
following condition holds. LetK ⊂ Wp be a compact, definable subset of some stratum
Wp of W . Then there exist α > 0, d > 0 such that

β(x, y) ≤ |y − x|α,

for all y ∈ K and x ∈ W ∩ Bd(y).

Put differently, Lojasiewicz-Whitney stratified spaces are Whitney stratified spaces
where the rate at which secant lines deviate from the tangent spaces is constrained by
a certain root.

Remarkably, the majority of the stratified spaces of interest (our interest), such
as compact subanalytic or semialgebraic spaces, fall in the category of Lojasiewicz-
Whitney stratified (Proposition 3.3.9).

Recollection 3.3.8. Recall that within an o-minimal structure, we refer to it as
polynomially bounded if, for all f : R→ R definable in the structure, there exists an
n ∈ N such that for sufficiently large t,

|f(t)| ≤ |t|n.
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Structures falling into the category of polynomially bounded include the structure
of semialgebraic sets and finitely subanalytic sets (see [vdD86] and [Mil94]). Impor-
tantly, any compact subanalytically definable stratified space is definable within a
polynomially bounded o-minimal structure.

To keep the pace towards our main results, we migrated the proof of the following
statement to the appendix (see Appendix A.5).

Proposition 3.3.9. Let W be a Whitney stratified space which is definable with respect
to some polynomially bounded o-minimal structure. Then, W is Lojasiewicz-Whitney
stratified.

As an almost immediate consequence of Lemma 3.3.6 and Proposition 3.3.9 we
obtain:

Proposition 3.3.10. Let W be a Lojasiewicz-Whitney stratified space. Then, for any
x ∈ W every integral curve starting at x is differentiable in 0. Furthermore, we have

Tex
x (W ) ∩ ∂B1(x) = {φ′(0) | φ is an integral curve starting at x}.

Hence,
Tex
x (W ) = {αφ′(0) | φ is an integral curve starting at x, α ≥ 0.

Proof. Note first, that Tex
x (W ) is closed by definition. The containment of the right

hand side in the left hand side is immediate by definition of the derivative. For
the converse inclusion, let v ∈ Tex

x (W ) ∩ ∂B1(x). For ε > 0 small enough we have
y ∈ W≥p ∩ Bε(x) with p = s(x) such that

||v − λ(y − x)|| < ε

for some λ > 0. We then also obtain∣∣1− λ||y − x||∣∣ < ε.

Now, t = ||y − x|| and let φ : [0, d] → W be the integral curve starting at x and
passing through y. We then have

||v − φ′(0)|| ≤ ||v − λ(y − x)||+ ||λ(y − x)− (y − x)
||y − x||

||+ || (y − x)
||y − x||

− φ′(0)||

= ||v − λ(y − x)||+
∣∣1− λ||y − x||∣∣+ ||φ(t)− x

t
− φ′(0)||

≤ ε+ ε+ Cεα,

for some C, α independent of the choices above. In particular, we can choose φ such
that φ′(0) is arbitrarily close to v and hence it lies in the closure.
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Next, we have a key technical result for to investigate the convergence behavior of
magnifications of samples.

Proposition 3.3.11. Let W be a Lojasiewicz-Whitney stratified space over P . Let
p ∈ P and K ⊂ Wp be a compact subset. Then, there exist d, C, α > 0, such that the
following holds.
For all r, such that 1

r
∈ [0, d] there exists ε0 > 0, such that

d(Tex
x (W ),Mr

w(W)) ≤ C(rα +
ε

r
),

for W ∈ Sam with d(W,W ) = ε ≤ ε0, w ∈ RN and x ∈ K with |x− w| ≤ ε.

Proof. We work with the non-normalized spaces instead, that is instead of working in
the unit ball of Mr

x(W), we work in the ball of radius r in W. Furthermore, without
loss of generality let x = 0 . Again, choose d, C ′, α as in Lemma 3.3.6, possibly slightly
decreasing d, such that the requirements on r still hold for r + 2ε. Let c ∈ Tex

x (W )

with |c| ≤ r. Let c̃ := r−2ε
r
c. We have

|c− c̃| ≤ 2ε.

Next, using Proposition 3.3.10, consider the integral curve starting in 0 with initial
direction c

|c| , φ : [0, d]→ W (or, by passing to the limit if necessary a curve with initial
direction arbitrarily close to c

|c|). We then have

|c̃− φ(|c̃|)| ≤ C ′rα+1

and
|φ(|c̃|)− w| ≤ |c̃|+ ε ≤ r − ε. (3.5)

Choose w′ ∈ W with |w′ − φ(|c̃|| ≤ ε. Then, by, Eq. (3.5) w′ ∈ Br(w) ∩W. Summa-
rizing, we have

|c+ w − w′| ≤ 2ε+ ε+ C ′rα+1 + ε ≤ C(rα+1 + ε),

for appropriate C > 0.

Conversely, let w′ ∈ W with |w − w′| ≤ r. By assumption, we find y ∈ W with
|y − w′| ≤ ε and have |y| ≤ r + 2ε. Thus, for φy the integral curve starting in 0

through y we have
||y|φ′

y(0)− y| ≤ C ′(r + 2ε)α+1.

Take c = (r − ε) |y|
r+2ε

φ′
y(0) ∈ Tex

x (W ) ∩ Br−ε(x). Note, that |c+ w| ≤ |w|+ |c| ≤ r i.e.
c+ w ∈ Br(w) ∩ (Tex

x (W ) + w). We further have

|c− |y|φ′
y(0)| ≤ |y|(1−

r − ε
r + 2ε

) ≤ 3ε.
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Summarizing, for ε < r/2, we have

|c+ w − w′| ≤ ε+ |c− w′| ≤ ε+ |c− |y|φ′
y(0)|+ ||y|φ′

y(0)− y|+ |y − w′|

≤ ε+ 4ε+ C ′(r + 2ε)α+1

≤ C(rα+1 + ε)

for appropriate C > 0. We obtain the result by multiplying with 1
r

to pass to the
magnification.

As a first corollary of Proposition 3.3.11, we obtain that the tangent cones of a
Lojasiewicz-Whitney stratified space vary continuously on each stratum.

Proposition 3.3.12. Let W be a Lojasiewicz-Whitney stratified space over P and
p ∈ P . Then, the map

Tex
− (W ) : Wp → Sam⋆

x 7→ Tex
x (W )

is continuous.

Proof. To see this, note that by Proposition 3.3.11, restricted to any compactum,
Tex

− (X) is the uniform limit of the family of maps given by fr : x 7→ Mr
x(W ). By

exhausting Wp by compacta it suffices to see that the fr are continuous for r small
enough. Let K ⊂ Wp be a compactum and let r be small enough, such that an
r-neighborhood Nr(K) ∩ W of K lies completely in W≥p. In other words, we may
assume without loss of generality that Wp is the minimal stratum of W . Next, note
that

d(Mr
x(W ),Mr

x′(W )) ≤ rd(Br(x) ∩W,Br(x′) ∩W ) + ||x− x′|| (3.6)

for x, x′ ∈ Wp. By an application of Thom’s isotopy lemma, the map

ĝ : W ×Wp → (0,∞)×Wp

(x, y) 7→ (||x− y||, y)

restricts to a fiber bundle over (0, d] for d small enough. In particular, if we set
X = ĝ−1(0, d] ∪∆Wp , we obtain an induced fiber bundle

g : X → Wp

(x, y) 7→ y

with fiber Br(y) ∩W over y. Again, locally using the independence of the Hausdorff-
distance topology of the choice of metric, we obtain that Br(y)∩W varies continuously
in y. Hence, by Eq. (3.6) so does Mr

y(W ).
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Another consequence of Proposition 3.3.11 is that for a Lojasiewicz-Whitney strat-
ified space W we have

Mr
x(W )

r→0−−→ Tex
x (W ),

for all x ∈ W . This result is already present in a similar form in [Hir69]. However,
our objective is to provide a description tailored to practical applications. Specifically,
we aim to analyze the convergence behavior of magnifications for samples of X as
r → 0. Initially, this may seem like an illogical question. For a fixed sample X,
Mr

x(X) has a distance of 0 to a one-point (or empty) space when r is small enough.
Instead, the correct notion of convergence is already suggested by the inequality in
Proposition 3.3.11. What needs clarification is the convergence behavior where the
quality of the sample is allowed to improve simultaneously as r → 0. To be more
precise, if X approaches X at a certain rate. We formalize this statement in the
following corollary to Proposition 3.3.11:

Corollary 3.3.13. Let X ∈ Sam be a Lojasiewicz-Whitney stratifiable space. Let
x ∈ X. Then,

Mr
x(X)→ Tex

x (X)

for r → 0, X → X and 1
r
d(X, X) → 0. Furthermore, this convergence is uniform on

any compactum K contained in a pure stratum.

3.4 Convergence of Tangentbundles
In order to establish a global result regarding the approximation of stratifications, it
is imperative to derive a more global version of Corollary 3.3.13. This necessitates
treating tangent cones not as isolated spaces but rather as a (stratified) bundle of
cones. To articulate the ensuing convergence result, we require a space of samples
corresponding to bundles.

Definition 3.4.1. Denote by BSam the set

{(X, F : X→ Sam⋆) | X ∈ Sam},

equipped with the (extended pseudo) metric given by regarding F as a subset of
RN×Sam⋆, equipping the latter with the product metric, and then using the resulting
Hausdorff distance.
That is, for (X, F ), (X′, F ′) ∈ BSam, we define

d((X, F ), (X′, F ′)) := max
X0,X1∈{X,X′}2

{inf{ε > 0 |∀x ∈ X0∃y ∈ X1 : ||x− y||,

d(F (x), F (y)) ≤ ε}.
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We also refer to BSam as the space of bundle samples (of RN).

Definition 3.4.2. The r-magnification bundle of X ∈ Sam is defined as the image of
X under the map

Mr : Sam→ BSam

X 7→(X, {x 7→ Mr
x(X)}).

The tangent cone bundle of X ∈ Sam is defined as the image of X under the map

Tex : Sam→ BSam

X 7→(X, {x 7→ Tex
x (X)}).

We need to exercise caution regarding this nomenclature, as neitherMr nor Tex(X)
closely resemble a fiber bundle for an arbitrary space X.

Furthermore, it is important to recognize that the convergence asserted in Propo-
sition 3.3.11 does not imply the convergence of magnification bundles in the metric
on BSam. This convergence is only uniform on compact sets contained within pure
strata. Nevertheless, we can endow the spaces BSam with alternative topologies,
enabling the formulation of convergence notions on a compact set. Once again, for
the remainder of this subsection, let P = p < q.

Construction 3.4.3. Let K ∈ Sam and let T be any of the spaces SamN(P ) ,BSam.
For X ∈ Sam let ε : Sam→ R+ be some continuous map. Define a map

gKε : T → T

(X, f) 7→ (X ∩Kε(X), f |Kε(X)).

If K = (E, ε) is a pair consisting of a set E ⊂ Sam, together with a continuous map
ε : Sam → R+, we denote by TK, the space with the same underlying set as T , but
equipped with the initial topology with respect to the maps gKε and T → Sam ε−→ R+.
In particular, with respect to this topology, a sequence Bn = (Xn, Fn) in T converges
to B = (X, F ) ∈ T , if and only if

gKε (Bn)
n→∞−−−→ gKε (B),

for all K ∈ E and
ε(Xn)

n→∞−−−→ ε(X).

We can now rephrase Proposition 3.3.11 as a global convergence result, which is
essential for the our main result of this chapter, Theorem 3.5.8.
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Proposition 3.4.4. Let X ∈ Sam be equipped with a Lojasiewicz-Whitney stratifi-
cation W = (X,X → P ). Let K = (E, ε) with ε := d(X,−) and E a family of
elements of Sam such that for all K ∈ E, there exist a decomposition into compacta
K = Kp tKq, such that Kp ⊂ Wp, Kq ⊂ Wq. Then,

Mr(X)→ Tex(X) in BSamK

as r →∞, X→ X and 1
r
d(X, X)→ 0.

Proof. Recall that for the convergence in BSamK we have to show

gKε (Mr(X))→ gKε (T
ex(X))

for any K ∈ E. Note that since K ⊂ W , gKε (Tex(X)) = Tex(X) |K and we have
gKε (Mr(X)) =Mr(X) |ε(K). By Proposition 3.3.11 we know that

d(Tex
x (W ),Mr

w(W))→ 0

uniformly for all x ∈ K and ||w − x|| ≤ ε (i.e. w ∈ ε(K)) as r → ∞, X → X and
1
r
d(X, X)→ 0.

3.5 The restratification theorem
We now have all the necessary tools to reconstruct stratifications from samples. As
demonstrated in Theorem 2.2.32, the persistent stratified homotopy type is (Lipschitz)
continuous in compact Whitney stratified spaces W over P = p < q. This implies that
we can approximate the persistent stratified homotopy type of W from a stratified
sample W that is close to W in the metric on SamP . However, in practice, we
typically receive non-stratified samples. In our exploration of magnifications and Φ-
stratifications, we hinted at the use of local tangent cones to generate stratifications
that approximate the original one. In this section, we will formalize and prove this
assertion. But first, let us illustrate how the procedure works in the case where one
is provided with a perfect sample, i.e., when working with the entirety of W . Once
again, for the remainder of this section, let P = p < q.

Construction 3.5.1. Let W ∈ SamP be a compact Lojasiewicz-Whitney Φ-stratified
space, with respect to a function Φ as in Definition 3.2.1. Suppose we forget the
stratification of W = (X, s), and only have the data given by X. We can then
associate to X its tangent cone bundle TexX ∈ BSam. Next, we use the function Φ

to decide which regions should be considered singular. We can do so, by applying Φ to
TexX fiberwise. As a result we obtain a strong stratification s̃ of X, given by

x 7→ Tex
x (X) 7→ Φ(Tex

x (X)).
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By Proposition 3.3.12, this map is continuous on all strata. In particular, by as-
sumption, it takes a maximum value m < 1 on Wp. Since Wq is a manifold, we
have

Tex
x (X) = Tex

x (Wq) = Tx(Wq) = Rq

for x ∈ Wq, and thus the strong stratification has constant value 1 on Wq. Therefore,
we may recover the stratification of s by choosing u > m and applying Fu:

Fu(X, s̃) = W.

We now replicate the procedure described in Construction 3.5.1 in case of working
with samples and investigate its convergence behavior.

Lemma 3.5.2. Let Φ : Sam⋆ → [0, 1] be a continuous map. Then, the induced map

Φ∗ : BSam→ SamN(P )

(X, F ) 7→ (X,Φ ◦ F )

is continuous. Even more, if Φ is C-Lipschitz, then so is Φ∗.

Proof. Since Sam⋆ is isometric to the space of compact subspaces of B1(0) ⊂ RN and
thus compact, Φ is a uniformly continuous map. Hence, the result follows immediately
by definition of the metrics on BSam and SamN(P ).

Interestingly, Φ∗ also extends to become a continuous map within the alternative
topologies described in Construction 3.4.3.

Lemma 3.5.3. Let Φ : Sam⋆ → [0, 1] be a continuous map. Let E be a family of
subsets of Sam, ε : Sam → R+ be some continuous function and K = (E, ε). Then,
the map

Φ∗ : BSamK → SamK
N(P )

(X, F ) 7→ (X,Φ ◦ F )

is continuous.

Proof. By definition of the topologies on BSamK → SamK
N(P ) it suffices to show the

claim on every element of E, i.e. we may without loss of generality assume E = {K}.
Continuity of BSamK → SamK

N(P ) → Sam ε−→ R+ holds trivially. Furthermore, note
that the diagram

BSamK SamK
N(P )

BSam SamN(P )

gKε

Φ∗

gKε

Φ∗
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trivially commutes, since the g are given by restricting, i.e. precomposition and Φ∗

by postcomposition. Then, for a sequence Bn ∈ BSamK and B ∈ SamK
N(P ) we have:

Bn
n→∞−−−→ B in BSamK ⇐⇒ gKε (Bn)

n→∞−−−→ gKε (B) in BSam

=⇒ Φ∗(g
K
ε (Bn))

n→∞−−−→ Φ∗(g
K
ε (B)) in SamN(P )

⇐⇒ gKε (Φ∗(Bn))
n→∞−−−→ gKε (Φ∗(B) in SamN(P )

⇐⇒ Φ∗(Bn)
n→∞−−−→ Φ∗(B) in SamK

N(P ),

where the implication in the second line follows by Lemma 3.5.2.

As previously observed, concerning the alternative topologies, the magnification
bundles uniformly converge to the tangent cone bundle. However, this is not the
situation with the regular topologies. Therefore, in order to employ a magnification
version of Construction 3.5.1 for stratification approximation, we must demonstrate
the continuity of Fu within the corresponding tangent cone bundles with respect to
the alternative topology.

Proposition 3.5.4. Let S = (X, s) ∈ SamN(P ), X compact. Let u ∈ [0, 1] be such
that S≤u is closed and such that S≤u±δ = S≤u for δ sufficiently small. Let ε = d(X,−).
Finally, let

K = (E = {K ∈ Sam | K = Kp tKq, Kp, Kq compact, Kp ⊂ Su, Kq ⊂ s−1(u, 1]}, ε).

Then,
Fu : SamK

N(P ) → SamP

is continuous in S.

Proof. Let S = (X, s′) ∈ SamN(P ). First, observe that ε(X) = d(X,X) is continuous
in X by assumption. Hence, it suffices to show convergence in the component S≤u.
We have

d(S≤u, S≤u) ≤ d(S≤u, S≤u ∩Kε(X)) + d(S≤u, S≤u ∩ (S≤u)γ),

whenever K = (X − (S≤u) γ
2
) t S≤u and γ > 0 such that, X ⊂ Kε(X) ∪ (S≤u)γ. Note,

that for this to hold, it suffices that ε(X) ≤ γ
2
. For the left summand we obtain,

d(S≤u, S≤u ∩Kε(X)) = d(Fu(gKε (S)),Fu(gKε (S))) ≤ d(gKε (S), g
K
ε (S)),

by Corollary 2.2.27, for ε(X) sufficiently small and gKε (S) close to gKε (S). For the
other summand we first split the Hausdorff distance into the directed distances

d(S≤u, S≤u ∩ (S≤u)γ) ≤
→
d(S≤u, S≤u ∩ (S≤u)γ) +

→
d(S≤u ∩ (S≤u)γ, S≤u)
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where
→
d(A,B) = inf{δ ≥ 0 | A ⊂ Bδ}. Then, the second summand is bounded by γ

and for the first summand we observe that
→
d(S≤u, S≤u ∩ (S≤u)γ) ≤

→
d(S≤u, S≤u ∩ (S≤u)ε(X)).

This is due to the fact that ε(X) < γ and S≤u ∩ (S≤u)ε(X) ⊂ S≤u ∩ (S≤u)γ. If we set
K ′ = S≤u and invoke Corollary 2.2.27 again we obtain

→
d(S≤u, S≤u ∩ (S≤u)ε(X)) =

→
d(Fu(gK

′

ε (S)),Fu(gK
′

ε (S))) ≤
→
d(gK

′

ε , (S)gK
′

ε (S))

for gK′
ε (S) close to gK′

ε (S). Summarizing, we have:

d(S≤u, S≤u) ≤ d(gKε (S), g
K
ε (S)) +

→
d(gK

′

ε (S), gK
′

ε (S)) + γ.

In particular, we may first fix some γ while the other terms converge to 0 for S→ S in
SamK

N(P ) by assumption. Since γ can be taken arbitrarily small, the result follows.

We arrived at the definition of a map which equips samples with stratifications,
depending on their approximate tangential structure.

Definition 3.5.5. Let Φ : Sam⋆ → [0, 1] be a continuous map and u ∈ [0, 1), r ∈ R+.
Let X ∈ Sam⋆. We call the image of X under the composition

SrΦ,u : Sam Mr

−−→ BSam Φ∗−→ SamN(P )
Fu−→ SamP

the Φ-stratification of X at r (with respect to u). In the case where r = 0, replaceMr

by Tex.

Example 3.5.6. To illustrate the concepts in Definition 3.5.5 let us walk through
every component of the composition defining SrΦ,u for a specific sample. Let X denote
the algebraic variety given by

{(x, y, z) ∈ R3 | (x2 + y2 + z2 + 1.44)2 − 7.84x2 + 1.44y2 = 0}. (3.7)

In the bottom left of Fig. 3.5, a visual representation of X can be found. A finite
sample from this variety, denoted X was obtained by randomly picking points from
an enclosing rectangular cuboid and only keeping points that satisfy 3.7 up to a
small error. Choosing a magnification parameter r = 5 we obtain the magnification
bundle Mr(X) for X, depicted in the top middle of Fig. 3.5. Φ was chosen as in in
Example 3.2.3. Evaluating the fibers ofMr(X) we obtain a strongly stratified sample
Φ∗(Mr(X)), shown on the left of Fig. 3.5. Next, picking the threshold value u ∈ [0, 1)

to be 0.83 induces a stratified sample via Fu. A visual comparison indicates that the
resulting stratified sample is close to the Whitney stratified space given by X with
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two isolated singularity. This already points at the convergence behavior predicted by
Theorem 3.5.8.

Figure 3.5. Illustration of SrΦ,u for a sample from a 2-dimensional algebraic variety

We can then restate the content of Construction 3.5.1 as follows.

Proposition 3.5.7. Let W ∈ SamP be a Lojasiewicz-Whitney stratified space, Φ-
stratified with respect to Φ : Sam⋆ → [0, 1] as in Definition 3.2.1. Then,

sup{Φ(Tex
x (X)) | x ∈ Wp} < 1.

In particular,
SrΦ,u(X) = W,

for sup{Φ(Tex
x (X)) | x ∈ Wp} < u < 1.

Proof. This was already covered in Construction 3.5.1.

Now, we can formally present the primary theorem regarding the retrieval of strat-
ification from samples of a Lojasiewicz-Whitney Φ-stratified space W . Essentially, in
practical terms, it ensures that for sufficiently small r and with a suitably accurate
sample, one can utilize the Φ-stratification at r to approximate the stratified space W .
Notably, this result is applicable to all compact, subanalytically Whitney stratified
spaces with two strata.
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Theorem 3.5.8. Let P = {p < q} and let W = (X,X → P ) ∈ SamP be a compact
Lojasiewicz-Whitney stratified space, Φ-stratified with respect to Φ : Sam⋆ → [0, 1].
Then there exists u0 ∈ (0, 1) such that for all u ∈ [u0, 1) we have convergence

SrΦ,u(X)→ W,

for 1
r
d(X, X)→ 0 as r → 0.

Proof. Let K be as in Proposition 3.5.4. It is the content of the latter, that

Mr(X)→ Tex(X) in BSamK

for r → 0 and 1
r
d(X, X)→ 0. Applying, Φ∗ to this and using Lemma 3.5.3, we obtain

Φ∗ ◦Mr(X)→ Φ∗ ◦ Tex(W ) in SamK
N(P ).

Now, note that Φ∗ ◦ Tex(X) fulfills the requirements of Proposition 3.5.4, if we take
1 > u > max{Φ∗ ◦ Tex(X)(x) | x ∈ X}. Hence,

SrΦ,u(X) = Fu ◦ Φ∗ ◦Mr(X)Fu ◦ Φ∗ ◦ Tex(X) = W,

for r → 0 and 1
r
d(X, X)→ 0, where the equality follows by Proposition 3.5.7.

Using the notation as above, the Theorem makes a statement about the conver-
gence of spaces in SamP . For the given space W it states that for any δ > 0 there
exists a radius R such that for all radii r > R there exists εr > 0 such that

max{dHd(SrΦ,u(X) = X, X), dHd(SrΦ,u(X)p,Wp)} < δ

for all X with dHd(X,Wq) < εr. In other words, as X converges to X by assumption,
the statement is really about the convergence of the singular parts SrΦ,u(X)p and Wp

here. In this sense, Theorem 3.5.8 can be used to approximate or to find singularities
of a stratified space form a good enough sample and one may choose to use this
method on its own for this purpose. However, we can now combine this result with
Theorem 2.2.32 which guarantees us that SrΦ,u can also be used to infer stratified
homotopy types from non-stratified samples. Note that in the following we will not
assume W to be rescaled in such a way that it is cylindrically stratified, hence one
has to choose the parameter v sufficiently small to compensate for the rescaling.

Corollary 3.5.9. Let P = {p < q} and let W = (X,X → P = {p < q}) ∈ SamP be a
compact Lojasiewicz-Whitney stratified space, Φ-stratified with respect to Φ : Sam⋆ →
[0, 1]. Then

Pv ◦ SrΦ,u(X)→ Pv(W ),

for r → 0 and 1
r
d(X, X)→ 0, u < 1 close to 1 and v ∈ Ω sufficiently small.
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This concludes our theoretical investigations on how to approximate the stratifi-
cation of a compact Lojasiewicz-Whitney space W from a given sample space that
lies sufficiently close the to W . At this point we owe the reader some examples that
demonstrate the utility of our results and maybe also help understanding the meaning
of certain statements. However, since we have a full chapter dedicated to the algo-
rithmic implementation of the methods involved in computing Φ-functions and SrΦ,u
with Chapter 4 we decided to post-pone an exhaustive demonstration of our methods
to Section 4.3.2 where we also discuss a longer example in Example 4.3.2 with several
figures.



Chapter 4

Algorithmic Stratification Learning

This chapter is committed to detail the algorithmic aspect of this work. In essence,
we want to take up upon the mathematical concepts we developed in the previous
chapters and describe how to stratify a point cloud sampled from a stratified space
algorithmically. In particular, we implement the computation of different functions
Φ : Sam⋆ → [0, 1] based on local homology and tangential approximations as in
Examples 3.2.2 and 3.2.3.

We provide an introduction to persistent homology in Section 4.1 with a focus on
Vietoris-Rips complexes as we feel this to be necessary to explain the finer details of
the implementation of our methods. The main result of Section 4.1 is the detailed de-
scription of an algorithm that approximates local persistent homology of a topological
space X, that can be used to detect singularities in a given sample. We also provide
theoretical arguments that our algorithm approximates (Xε, Xε−Br(x)), from a good
enough sample of X up to a certain error. These approximations results are based on
the work of Skraba and Wang [SW14].

For the computation of Hausdorff distances of subspaces of Rn, explained in Sec-
tion 4.2, we will need very different mathematical concepts as to before and therefore
included some results on Grassmannians. As a main result we derive an algorithm to
approximate a solution to the problem of finding the k-dimensional linear subspace of
Rn with the minimal Hausdorff distance to a given subspace of Rn.

In Section 4.3, we put together our theoretical and our algorithmic results to a
fully implementable stratification pipeline and apply it to a controlled example, that
is to say having full control over the Hausdorff distance of the sample to the targeted
space, in order to demonstrate the meaning and utility of what we described in the
previous chapter and in particular in Theorem 3.5.8 and Corollary 3.5.9.

77
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4.1 Persistent Homology
We start with a broad recap on the most fundamental concepts involved in persistent
homology and recall some well-known results that we will use in this chapter. For
a thorough introduction into this topic consider e.g. [EH10, CdSGO16]. We already
discussed persistent objects in more general context in Section 2.2.2. However, as we
want to work towards our algorithmic results we chose to include a more specific recap
on the case of persistence modules.

Previously, we referred to general persistent objects as elements of a functor cat-
egory DU with U some poset category. If we take U = (R,≤) with the usual order
and D = Veck with k some field, then we obtain the category of (1-dimensional) per-
sistence modules. Thus, it contains the data of a family of vector spaces V = (Vs)s∈R

together with maps vst : Vs → Vt such that vst ◦ vtu = vsu for s ≤ t ≤ u and vss = idVs .
Accordingly, a morphism of persistence modules φ : V → W , both indexed over R, is
given by a natural transformations, i.e. by a collection of morphisms φs : Vs → Ws

such that the following diagrams commute

Vs Vt

Ws Wt

vst

ϕs ϕt

ws
t

for all s ≤ t.

Definition 4.1.1. Let k be a field and let I denote an interval in R. The module
defined by

Q(Is) =

k if s ∈ I

0 else,

together with vts = id for s ≤ t is called the interval module associated to I.

An interval in R could mean different things, i.e. I = (x, y) or I = [x, y) etc. We
will stick to the bounded below intervals, i.e. [x, y), from hereon out. Note that one
could equivalently work with e.g. the open intervals (x, y) but it is important in this
context that we do not allow an interval I in R to be either or. Furthermore, we call a
persistence module V indexed over R of finite type if it contains only a finite number
of unique finite-dimensional vector spaces.

The following statement is a consequence of [CB14, Theorem 1.1]:

Theorem 4.1.2. Let V be a persistence module of finite type indexed over R. Then,

V '
⊕

I∈B(V )

Q(I)
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where B(V ) denotes a finite multiset of intervals in R.

We will refer to B(V ) as the barcode of V . Although the decomposition in The-
orem 4.1.2 is not unique, the barcode B(V ) associated with V is, at least up to a
reordering of the intervals. A barcode determines the isomorphism type of a persis-
tence diagram up to isomorphism. Therefore, it makes sense to speak of the barcode
of a persistence module under the conditions imposed in the theorem. Note that in
case V is of finite type the barcode is only a finite multiset of intervals. We will mostly
work in this scenario, however the above Theorem can be substantially generalized
(compare to [CB14,BCB20]).

Let us take a look at some common cases where persistence modules and barcodes
arise.

Example 4.1.3. Let X be space together with a function f : X → R. Then, one
naturally obtains a filtration of X given by

· · · ↪→ Xε = f−1(−∞, ε] i
↪→ Xδ = f−1(−∞, δ] ↪→ · · ·

for ε ≤ δ. For such a filtration (Xε, f)ε∈R one obtains a persistence module indexed
over R by applying a functor from Top to Veck. More specifically, let H(−) =

Hd(−) = Hd(−; k) denote d-dimensional singular homology with coefficients in a field
k. One obtains a persistence module

· · · → H(Xε)
iδε→ H(Xδ)→ · · ·

where the maps are induced by inclusions. We denote such a persistence module
by H(XR) or H(fR) in case we would like to stress the dependence on a certain
filtration function f . In many cases the function will be given by the distance to X in
Euclidean space. Furthermore, the function f is called tame if it has a finite number
of homological critical values, i.e. points ε ∈ R where H(Xε−α)→ H(Xε−α) is not an
isomorphism for all sufficiently small α > 0, and all H(Xε) are finite-dimensional in all
homological dimensions dimension which is to say that H(f)R is of finite type. In this
case we can give a very explicit description of the barcode associated to H(fR). We
say a class a ∈ H(Xε) was born at ε if a /∈ im(iεε−α) for any α > 0. Such a class born
at ε is said to die at δ if iδ−αε (a) /∈ im(iδ−αε−α) for all α > 0 but iδε(a) ∈ im(iδε−α). The
barcode of the persistent homology module, also referred to as persistent homology,
is then given by the collections of the intervals ranging from the time of birth to the
time of death of all persistent homology classes.

Example 4.1.4. In application of topological methods it is often the case that X
is a finite simplicial complex and all sublevel sets Xε given by a function on X are
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subcomplexes. This has the consequence that all vector spaces H(Xε) are finite di-
mensional and also as ε increases there are only finitely many value at which the
complexes change and thus there are only finitely many points at which the homology
can change, i.e. at the critical values of the function on X. Assume the critical values
are

ε1 < ε2 < · · · < εn.

Then, the complete information of the persistence module is contained in the finite
diagram

H(Xε1)→ H(Xε2)→ · · · → H(Xεn)

where every vector space is finite-dimensional. Note that in this case we could also
consider the persistence module induced by the sublevel sets of a function on X as a
persistence module indexed over the poset [n] = {1, . . . , n}. We will discuss this more
precisely in the next two following section.

We have already introduced metrics on generalized persistence module in Sec-
tion 2.2.2 and called them interleaving distances there. More specifically, for the
case of persistence modules indexed of R+ we can define a flow (compare to Recol-
lection 2.2.18) by functors −ε : (R+,≤) → (R+,≤) for some ε ∈ R+, together with
natural transformations id(R+,≤) → −ε given by s 7→ s + ε. We say two persistence
modules V,W are ε-interleaved if there are morphisms φ : V → Wε and ψ : W → Vε

such that the diagram
V W

Wε Vε

V2ε W2ε

ϕ ψ

ψε ϕε

(4.1)

commutes. Informally speaking, the definition of an ε-interleaving can be under-
stood as an ε-approximate isomorphism of persistence modules. Then, again, the
interleaving distance of two persistence modules is defined as the infimum of all val-
ues for which an interleaving exists. From hereon out by interleaving distance we
will be referring to the interleaving distance between persistence modules. We will
not work with interleaving distances explicitly and therefore we will not go into more
detail on how interleaving distances can be computed. An important property of the
interleaving distance is that it agrees with the bottleneck distance of the associated
barcodes which we will explain next. In practice interleaving distances are not useful
because computing it is an NP-hard problem, cf. [BB18]. The structure of a barcodes
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makes them much more amenable to measuring a distance between persistent objects
algorithmically. First, we need to introduce the notion of matchings.

Notation 4.1.5. A matching of two multiset of intervals D1 and D2 is a collection of
pairs X = {(I, J) ∈ D1 ×D2} with intervals I, J being only allowed to occur in one
pair. We say I is matched to J if (I, J) ∈ X and we say I is unmatched if I does not
belong to a pair in X . For D1 and D2 multisets of intervals in R we define the cost of
a matching X as

c(X ) = max{ sup
(I,J)∈X

c(I, J), sup
unmatched I∈D1∪D2

c(I)}

with
c(I, J) = max{|c− a|, |d− b|}

and
c(I) =

|b− a|
2

for I = [a, b) and J = [c, d).

Definition 4.1.6. For D1 and D2 multisets of intervals in R the bottleneck distance
is given by

dB(D1, D2) = inf{c(X ) | X a matching of D1 and D2}.

The Bottleneck distance is as informative as the interleaving distance, i.e. one can
show

dB(B(V ), B(W )) = d(V,W ) (4.2)

for V,W persistence modules indexed over R such that Vε and Wε are finite dimen-
sional for all ε ∈ R (compare to [CCSG+09,Les15]).

Remark 4.1.7. The reader may have noticed that the Bottleneck is only perceptive
to the maximum over the matchings and all other matchings and costs are discarded.
Other metrics that are sensitive to a bigger part of the matchings include the so-called
degree p Wasserstein distance defined by

Wp(D1, D2) = inf{cp(X ) | X a matching of D1, D2}.

with
cp(X ) = (

∑
(I,J)∈X

c(I, J)p +
∑

unmatched I∈D1∪D2

c(I)p)
1
p

which is a metric commonly used also in other applications. However, the Wasserstein
distance does not possess the same stability properties for persistence diagrams as the
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Bottleneck distance. In other words, the two distances are generally not equal and
therefore the Wasserstein distance does not equal the interleaving distance in the sense
the Bottleneck distance does.

Remark 4.1.8. If we recall the definition of Φn
PL in Example 3.2.3 we observe that the

computation involves the computation of the interleaving distance of persistent homol-
ogy modules which agrees with Bottleneck distance of the associated barcodes. We will
not discuss the implementation of an algorithm to compute the Bottleneck distance
and the matchings associated with it in general as this has been done in the literature
to some extend [EH10, KMN17] and would lead to far afield at this point. Proba-
bly the most common approach is to approximate these matching distances which is
also common for the computation of Wasserstein distances [Cut13,AWR17,CRL+20].
Apart from that, note that the Bottleneck distances in Φn

PL only ever appeared with
respect to dB(−, B(H(Sn[0,α)))) where α > 0 and Sn denotes the standard Euclidean
sphere and thickened w.r.t. the standard metric. More specifically, we look at the
barcode associated with the persistence module H(Sn[0,α)) induced by

dSn : Rn → R

x 7→ dRn(x, Sn)

is given by
B(H(Sn[0,α))) = {[0,

α

2
)}

for homology in dimensions 0 and n. For reduced homology there will only be one
distinct interval. The Bottleneck distance to any other finite multiset of intervals
B(V ) associated to a persistence module V of finite type as in Theorem 4.1.2 such
that c(I) ≤ α

2
for all I ∈ B(V ) is then given by

dB(B(V ), B(H(Sn[0,α)))) = max{c([a, b), [0, α
2
)), max

B(V ) [a,b)
c(I)} (4.3)

where [a, b) = argminI∈B(V ) c(I, [0, α)) which exists because B(V ) is finite. Note
that [a, b) = argminI∈B(V ) c(I, [0, α)) implies that c(I) ≤ c([a, b)) for all I ∈ B(V ).
The upshot of this remark is the observation that the right-hand side of Eq. (4.3)
gives an easily implementable way to compute all Bottleneck distances involved in the
computation of Φn

PL .

4.1.1 Filtered Simplicial Complexes

In the upcoming section, we provide a brief recap of the elements of filtered simplicial
complexes that are essential for our investigations. We begin by setting the notation
we will be utilizing in most of the parts that follow.
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Definition 4.1.9. Let V be a finite set. A finite (abstract) simplicial complex K is a
collection of finite non-empty sets of V , such that for every set σ ∈ K, and for every
non-empty subset τ ⊆ σ, τ also belongs to K.

The elements of a simplicial complex are called simplices. We often refer to a
simplex {v0, . . . , vn} as an n-simplex. In other words, the dimension of a simplex
is determined by its cardinality minus 1. An element of a simplex is called vertex.
The dimension of a simplicial complex K is defined by dim(K) := maxσ∈K dim(σ).
For σ, τ ∈ K we say τ is a face of α if τ ⊆ σ. If τ is a proper subset of σ it is
a proper face. Also, σ is then called a (proper) coface of β. Furthermore, there is
also a notion of the boundary of a simplex {v0, . . . , vn} which is defined by the set
∂{v0, . . . , vn} := {{v0, . . . , v̂i, . . . , vn} | i ∈ {0, . . . , n}}, where v̂i signifies omitting the
vertex. A subcollection of simplices of K that satisfies the conditions of a simplicial
complex itself is called a subcomplex of K.

Definition 4.1.10. A filtration of a finite simplicial complex K is a collection of
subcomplexes (Ki)i∈I with I a totally ordered set and i < j ⇒ Ki ⊆ Kj.

Example 4.1.11. • Let f : K → R be a function on a simplicial complex K.
For any ε ∈ R, the sublevel set f−1(−∞, ε] of a monotonic function f , i.e. if
σ ⊂ τ ∈ K implies f(σ) ≤ f(τ), is a subcomplex. The sublevel sets constitute a
filtration of K indexed over R. The following example is a special cases of this.

• Let (X, d) be a point cloud, i.e. a finite metric space. The Vietoris-Rips complex
of X at scale ε ∈ R is the abstract simplicial complex given by

Ripsε(X) = {∅ 6= σ ⊂ X | diam(σ) ≤ ε},

with diam(σ) = max{u,v}⊂σ d(u, v). Then, RipsR(X) is a filtration of the complex
given by the full simplex X. We will often refer to this as the Vietoris-Rips
filtration of X. In other words, the Vietoris-Rips filtration arises as the sublevel
sets of the diameter function on simplices.

• The Čech complex of X at scale ε ∈ R is given by

Čε(X) = {∅ 6= σ ⊂ X |
⋂
v∈σ

Bε(v) 6= ∅}.

The Čech filtration of X, denoted ČR(X), is another filtration of the complex
given by the full simplex X.

Vietoris-Rips and Čech filtration are two of the most commonly used filtered sim-
plicial complexes in the field of TDA. While the Vietoris-Rips filtration is considered
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a more computationally efficient method, the Čech filtration guarantees a certain the-
oretical correctness. The specific purpose of a filtered simplicial complex in TDA is
to resemble the topological structure inherent in a given point cloud X. To motivate
the Čech complex as an abstract simplicial complex for the use in TDA (although
this may not have been the original purpose for it), assume X to be a set of randomly
sampled points from an embedded manifold M ⊂ Rn. It can be shown that for certain
ε > 0 the union of all Euclidean ε-balls centered at x for all x ∈ X,

⋃
x∈XBε(x), has

the same homotopy type as M if X is sufficiently close (in Hausdorff distance) to M .
Even more is true, M is a deformation retract of

⋃
x∈XBε(x). A proof of such a result

can be found in [NSW08]. Therefore, the remaining question is whether or not the
Čech complex resembles the topology of the union of ε-balls. To formulate the answer
we need the concept of nerves.

Definition 4.1.12. Let F be a finite collection of sets. Define the nerve of F to consist
of all non-empty subcollections whose sets have a non-empty common intersection,

Nrv F = {S ⊂ F | S 6= ∅}.

The nerve of a finite collection of sets F defines an abstract simplicial complex.

Immediately from the definition we see that the Čech complex of X at scale ε is
the nerve of the collection of all closed ε-balls.

Theorem 4.1.13. Let F be a finite collection of closed, convex sets in Euclidean
space. Then the nerve of F and the union of the sets in F have the same homotopy
type.

Proof. For a proof consider e.g. [Hat02, Corollary 4G.3, p. 459].

Although we referenced [Hat02] as a modern source for the proof, the so-called
Nerve theorem is commonly credited to [Bor48].

With this theorem the Čech complex of X at scale ε is homotopy equivalent to
the union of the balls

⋃
x∈XBε(x). Unfortunately, the Vietoris-Rips complex is in

general not homotopy equivalent to the Čech complex at the same scales. However,
the Vietoris-Rips complex is far more efficient to implement because it is a so-called
flag (or clique) complex. That is, any k + 1 vertices span a k-simplex if and only if
any two of them span a 1-simplex. Consequently, the Vietoris-Rips complex is deter-
mined by its 1-skeleton. The verification of the condition imposed on simplices to be
contained in the Vietoris-Rips also has a favorable complexity when compared to the
Čech complex. It is for these reasons that the Vietoris-Rips complex lends itself to
applications but it also seems appropriate to briefly evaluate the error of alignment
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with the Čech complex:

Remark 4.1.14. For a simplex to be contained in Čε(X) we have to check if the metric
ε-balls around every vertex have a common point of intersection. For a simplex to
satisfy the Vietoris-Rips conditions we only require the same metric balls all to have
pairwise intersection. As a consequence we find that Čε(X) ⊂ Ripsε(X). The inverse
inclusion does not hold in general. But if a finite number of points of X are within
distance ε

2
to each other, then all of them are contained in a metric closed ball of

radius ε. Thus we have the containment Rips ε
2
(X) ⊂ Čε(X). In total we have

Č ε
2
(X) ⊆ Rips ε

2
(X) ⊆ Čε(X).

With this observation we find that if the Čech complexes at scale ε
2

and at scale ε are
good approximations of the underlying space then so is the Vietoris-Rips complex at
scale ε

2
. Also, if a topological feature persists in Čech complexes from scale ε to ε′

such that ε′

ε
> 2 then this feature is also recorded using the Vietoris-Rips complex at

the respective scale. In other words, this brief argument shows that the Čech and the
Vietoris-Rips filtration are ε-interleaved and this interleaving distance value can be
further optimized. The result [SG07, Theorem 2.5] states that the above inclusions
still hold true for ε′

ε
≥

√
2d
d+1

where d is the dimension of the ambient space of X ⊂ Rd.

The interleaving distance is therefore reduced to (
√

2d
d+1
− 1)ε.

We close this recap with some results on the computability of persistent homology
of point clouds by using filtered simplicial complexes. What is needed for persistent
homology computations from a filtered simplicial complex (possibly the Vietoris-Rips
filtration) is an essential and simplex-wise refinement of the filtration.

Notation 4.1.15. A filtration of a filtered simplicial complex (Ki)i∈I is called essen-
tial if i 6= j implies Ki 6= Kj for i, j ∈ I. A simplex-wise filtration of K is a filtration
such that for all i ∈ I with Ki 6= ∅ there is some index j < i ∈ I and some simplex
σi ∈ K such that Ki \ Kj = {σi}. A reindexing of (Ki)i∈I is given by a monotonic
map ρ : I → J of totally ordered sets I, J such that Ki = Kρ(i). Such a reindexing is
called a refinement if ρ is injective.

For the computation of persistent homology a simplex-wise filtration is needed as
this gives rise to a filtration boundary matrix. The fact that we can refine a filtration
to make it simplex-wise and still obtain the same persistence barcodes in due to the
following fact:
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Proposition 4.1.16. [Bau21, Proposition 2.1.] Let f : K → R be a monotonic
function on a simplicial complex K, and let KI = (Ki)i∈I with Ki = {σk | k ∈
I, k ≥ i} be an essential simplex-wise refinement of the sublevel set filtration KR =

(f−1(∞, ε])ε∈R. The persistence barcode of (Ki)i∈I determines the persistence barcode
of (f−1(∞, ε])ε∈R:

B(Hk(KR)) = {r−1[i, j) 6= ∅ | [i, j) ∈ B(Hk(KI))}

for all k. For j <∞, we have r−1[i, j) = [f(σi), f(σj)), and r−1[i,∞) = [f(σi),∞).

Remark 4.1.17. Given a point cloud X = {x0, . . . , xn−1} with a total order on
its elements. Note that such an ordering can be obtained by simply numbering its
elements. The simplices in the full Vietoris-Rips complex associated to X can then be
ordered by the lexicographic order induced by the total order on the vertices (through
the order on {x0, . . . , xn−1}). An essential and simplex-wise filtration of the simplices
in the Vietoris-Rips complex can then be obtained by

• first ordering by diameter of the simplices,

• then by simplex dimension

• and lastly by lexicographic order induced by the total order on the vertices.

4.1.2 Local Persistent Homology

Consider a topological space X, and let X be a sample extracted from X. Our goal is
to quantify topological properties of X through X, specifically focusing on computing
local homology at some point p ∈ X.

In reality, attempting to calculate Hd(X,X \ p) for a discrete space X is destined
to fail. Instead, our approach involves computing Hd(X,X \ Br(p)), equivalent to
local homology of X at p ∈ X for a sufficiently small radius r. A possible strategy
is to approximate Hd(X,X \ Br(p)) by constructing a simplicial approximation of X
and X \ Br(p) from X and subsequently applying an algorithm to compute relative
homology. Algorithms for relative persistent homology are available [BB20, RB21].
In [BCSE+07,BWM12], the authors detailed how to compute local homology directly
from a given point cloud, typically based on Delaunay complexes, considered suitable
primarily for low-dimensional applications. In [SW14], the authors explored the com-
putation of local homology from Vietoris-Rips complexes, providing theoretical ideas
for an algorithmic approach. In the following, we will present the construction and
implementation of a single filtered simplicial complex suitable for approximating local
persistent homology.
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Given our emphasis on computing persistent (local) homology from Vietoris-Rips
complexes, we commence this section with a concise review of flag complexes and neigh-
borhood graphs. A flag complex can be entirely characterized by its one-dimensional
skeleton, represented as an undirected graph denoted as G = (V,E), where V is a set
of vertices and E is a set of edge tuples. Our chosen approach aligns with the method-
ology outlined in [Zom10], presenting a fast iterative algorithm based on representing
the 1-skeleton of a simplicial complex through a neighborhood graph.

Definition 4.1.18. A neigborhood graph is a tuple (G,w) with G = (V,E) an undi-
rected graph and w : E → R a function defined on its edges.

In general, from an undirected graph G = (V,E) we can construct a complex
as the collection of all cliques in the graph, that is all subsets C ⊂ V such that
x, y ∈ C ⇒ {x, y} ∈ E. Having a weight function w on the set of edges, i.e. having a
neighborhood graph (G,w), naturally introduces a filtration. We do not need the full
generality and will focus on more specific cases in the following.

Definition 4.1.19. Let (X, d) be a point cloud and ε > 0. The Vietoris-Rips neigh-
borhood graph at scale ε, denoted (GRips

ε (X) = (X, Eε(X), w), is defined by setting

Eε(X) = {{x, y} | w({x, y}) ≤ ε and x 6= y ∈ X}

and
w({x, y}) = d(x, y) for {x, y} ∈ Eε.

In this case the Vietoris-Rips complex at scale ε is constructed with Eε as 1-skeleton,
i.e.

Ripsε(X) = V ∪ Eε(X) ∪ {σ | {x, y} ⊂ σ ⇒ {x, y} ∈ Eε(X)}

and the function f : Ripsε(X)→ R defined by

f(σ) =


0 if σ = {x},

d(x, y) if σ = {x, y},

max{x,y}⊂σ d(x, y) else.

To keep the notation neat at this stage we will assume that X,X ∈ Sam⋆ and are
centered at 0. We will omit the center point for that reason in the following. Note
that we want to ultimately explain how to calculate Φd

PL∗ ◦Mr and we will therefore
normalize and centralize any input for the function Φd

PL∗. Thus, the aim is to explain
how to calculate H∗(X,X \ int B 1

2
) with the B denoting the standard Euclidean ball,

centered at 0. In other words, X will represent the magnification of a space at a
certain point and X will be the magnification of a sample of X. Note that this also
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assumes that we only look at spaces that live in some Euclidean space. This allows
for the use certain geometric constructions, summarized in the following remark.

Remark 4.1.20. We make the work of Skraba and Wang in [SW14] our stating point,
in the form of Definition 4.1.21 and Theorem 4.1.22. We omit a full discussion and a
proof of their results as this is not our work. However, probably the essential point to
prove the statement we give here in Theorem 4.1.22 is the choice of a weight function
on all edges. Let m = m(x, y) = x+y

2
denote the midpoint for arbitrary x, y ∈ X. Basic

geometric considerations reveal that

∂(x, y) =

√
1

4
−

(mT (x− y)
||x− y||

)2 − ||m||2 − (mT (x− y)
||x− y||

)2
+
||x− y||2

4

is exactly the minimal value α such that (Bα(x)∩Bα(y))\B 1
2
6= ∅ for α < 1

2
. If we this

formula to determine the filtration value of a 1-simplex (for example in a Vietoris-Rips
complex), then we associated to it the length of an edge in the nerve complex of the
union of balls of radius α < 1

2
centered at all points of X \ int B 1

2
. Therefore, this

construction may serve as the simplicial approximation of X \B 1
2

from a point cloud
X close to X.

Definition 4.1.21. Let X ∈ Sam⋆ be a point cloud and 0 ≤ ε < 1
2
. Let (GF

ε (X), v)
be the graph neighborhood given by

V = {x ∈ X | ||x|| ≥ 1

2
− ε},

E = {{x, y} | v({x, y}) ≤ ε and x 6= y ∈ V }

and

v({x, y}) =

||x− y|| if ||m(x, y)|| ≥ 1
2
,

∂(x, y) else.
(4.4)

The flag complex induced by (GF
ε (X), v), denoted Fε(X), is filtered by extending v to

a function f : Fε(X)→ R given by

f(σ) =


1
2
− ε if σ = {x},

v({x, y}) if σ = {x, y},

max{x,y}⊂σ v({x, y}) else.

The upshot of this above construction is the following immediate consequence of
[SW14, Theorem 3.2] and [SG07, Theorem 2.5] (see Remark 4.1.14 for an explanation
of this result):
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Theorem 4.1.22. Let X ∈ Sam⋆ and X ∈ Sam⋆ a δ-sample of X. Then, the
persistence modules Hd(Rips[0, 1

2
)(X),F[0, 1

2
)(X)) and {Hd(X[0, 1

2
), X[0, 1

2
) \ int B 1

2
) are

(2δ + 1
2
(
√

2(d+1)
d+2

− 1))-interleaved.

Remark 4.1.23. It’s important to note that the statement about interleaving primar-
ily stems from the interleaving of the Vietoris-Rips filtration with a Čech filtration, as
discussed in Remark 4.1.14. Therefore, if one opts for a Vietoris-Rips type complex,
one must acknowledge the interleaving distance described above. While it is math-
ematically feasible to construct a similar framework for a Čech type complex, the
challenge lies in the fact that a Čech complex is not a flag complex. This limitation
prevents the extension of the weight function on the edges of a graph neighborhood
to all simplices. Consequently, computing the correct filtration value for simplices of
dimension greater than 1 becomes significantly more intricate both geometrically and
computationally.

Corollary 4.1.24. Let X ∈ Sam⋆ and X ∈ Sam⋆ a δ-sample of X. Additionally,
assume that there exists 0 ≤ γ < 1

2
such that H̃d(Ripsε(X)) = 0 for all γ ≤ ε ≤ 1

2
and

d ≥ 0. Then, the persistence modules H̃d−1(F[γ, 1
2
)(X)) and H̃d(X[γ, 1

2
), X[γ, 1

2
) \ int B 1

2
)

are (2δ + 1
2
(
√

2(d+1)
d+2

− 1))-interleaved for all d > 0.

Proof. This follows directly from Theorem 4.1.22 and the long exact sequence for the
pair (Ripsε(X),Fε(X)).

Remark 4.1.25. The above lemma indicates when it is possible to use the complex
Fε(X) based on the findings in [SW14] directly to approximate local persistent homol-
ogy. But we would like to stress the point that this statement should be taken with
caution. Having H̃d(Ripsε(X)) = 0 for all γ ≤ ε ≤ 1

2
and d ≥ 0 is in general not

a trivial assumption. The assumption is certainly met, for example, if Xε is a con-
tractible space from some scale ε ≥ γ and on-wards. If X here actually plays the role
of a magnification at a given point of a Lojasiewicz-Whitney space which converges
to the tangent cone at the same point (see Section 3.3, then the magnification will,
for sufficiently small radius, be close to a space that is contractible. Here, closeness is
to be understood in Hausdorff distance which implies that the considered persistence
modules are proportionally close in interleaving distance. Then, the persistence mod-
ule H̃d(Rips[γ, 1

2
)(X)) will be close to zero if X is sufficiently close to X. However, this

is not enough to deduct the conditions stated for Corollary 4.1.24 and therefore to
legitimize the use of Fε(X) to approximate local persistent homology.

For cases where the additional assumptions of Corollary 4.1.24 seem unreasonable
or in case the additional step of approximation in form of an interleaving only from
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certain scales on-wards is unacceptable, we provide another, more accurate method
that assumes no vanishing persistence modules to function.

Definition 4.1.26. Let X ∈ Sam⋆, 0 ≤ ε < 1
2

and let {c} be a set disjoint from X.
Let (GLRips

ε (X), e) denote the graph neighborhood given by

V = X ∪ {c},

E = {{x, y} | v({x, y}) ≤ ε and x 6= y ∈ V }

and e : {{x, y} ⊂ X ∪ {c} | x 6= y} → R by

e({x, y}) =


max{0, 1

2
− ||x||} if y = c

max{0, 1
2
− ||y||} if x = c

||x− y|| else,

(4.5)

with v as in Eq. (4.4). The local Vietoris-Rips complex, LRipsε(X), is given by all
simplices σ in the flag complex of the graph neighborhood (GLRips

ε (X), e) such that
g(σ) < ε

2
with g defined on the flag complex by

g(σ) =



0 if σ = {x},

e({x, y}) if σ = {x, y},

max{x,y}⊂σ\{c} v({x, y}) if c ∈ σ,

max{x,y}⊂σ ||x, y|| else.

(4.6)

Furthermore, to this single simplicial complex one could directly apply any avail-
able standard algorithm for persistent homology. It is possible to profit from all the
optimizations done to compute persistent homology such as, e.g., clearing [CK11] in
conjunction with using cohomology [CK11, SMVJ11, Bau21] with this approach and
additionally using simplicial collapses [BMS20, BP20]. This is not clear for the case
of using persistent relative homology.

Lemma 4.1.27. Let X ∈ Sam⋆. Then, the persistence modules H̃d(LRips[γ, 1
2
)(X))

and H̃d(Rips[γ, 1
2
)(X),F[γ, 1

2
)(X)) are isomorphic for any d ≥ 0.

Proof. For ease of exposition let Kε = Ripsε(X), Lε = Fε(X) and Mε = LRipsε(X)
and let 0 ≤ ε < 1

2
in this proof. The main observation here is that our construction

ensures that Mε = Kε ∪i C(Lε) is the simplicial mapping cone with Lε
i
↪→ Kε the

canonical inclusion. To show this, let σ ⊂ X∪{c}. First, if c /∈ σ we can immediately
see that σ ∈ Kε ∪i C(Lε) if and only if σ ∈ Mε as the respective filtration functions
f and g agree on σ. If, however, c ∈ σ we consider two further cases. In case
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σ \ {c} = {x} we know that 1
2
− ||x|| ≤ ε if and only if σ ∈ Mε by definition of e

and in Kε ∪i C(Lε) because {x} ∈ Lε. Now, consider dim σ > 2. The statement
σ ∈ Kε ∪i C(Lε) is equivalent to g(σ − {c}) ≤ ε, i.e. max{x,y}⊂σ\{c}w(x, y) ≤ ε. By
definition of g, this is the case if and only if g(σ) ≤ ε. We now only need the basic
argument that links the homology of the cone and relative homology which we included
at this point for the sake of completeness. We start with the long exact sequence of the
pair (Kε ∪i C(Lε), C(Lε)) and because C(Lε) ∼= {∗} we have a commutative diagram

Hd(C(Lε)) Hd(Kε ∪i C(Lε)) Hd(Kε ∪i C(Lε), c(Lε)) Hd−1(C(Lε))

0 Hd(Kε ∪i C(Lε)) Hd(Kε ∪i C(Lε), C(Lε)) 0

∼= = = ∼=
∼=

asserting H̃d(Kε ∪i C(Lε)) ' H̃d(Kε ∪i C(Lε), C(Lε)) for 0 < ε < 1
2
. Furthermore, by

excising the closed subset {c} of Kε∪iC(Lε) and C(Lε) we see that H̃d(Kε∪iC(Lε)) ∼=
H̃d(Kε ∪i C(Lε)− {c}, C(Lε)− {c}) which in turn is equivalent to H̃d(Kε, Lε) for all
i because C(Lε)− {c} is a deformation retract of Lε for all i and 0 < ε < 1

2
. In total,

we have two sequences of vector spaces

· · · H̃d(Kε, Lε) H̃d(Kε+α, Lε+α) · · ·

· · · H̃d(Mε) H̃d(Mε+α) · · ·

∼= ∼=

where each horizontal morphism is induced by inclusion and every vertical isomor-
phism is constructed as above from the long exact sequence and excision.

Finally, we are ready to quantify the worst case error of approximation of local
persistent homology of a space X at any point from a given sample X of X. with our
construction in Definition 4.1.26.

Proposition 4.1.28. Let X ∈ Sam⋆ and let X ∈ Sam⋆ be δ-sample of X. Then
the relative persistence module H̃d(X[γ, 1

2
), (X[γ, 1

2
) \ B 1

2
)) and the persistence module

H̃d(LRips[γ, 1
2
)(X)) are (2δ + 1

2
(
√

2(d+1)
d+2

− 1))-interleaved for all d > 0.

Proof. By Theorem 4.1.22 we see that the persistence modules H̃d(X[γ, 1
2
), (X[γ, 1

2
) \

int B 1
2
) and H̃d(Rips[γ, 1

2
)(X),F[γ, 1

2
)(X)) are (2δ+1

2
(
√

2(d+1)
d+2
−1))-interleaved. Lemma 4.1.27

tells us that H̃d(Rips[γ, 1
2
)(X),F[γ, 1

2
)(X)) has interleaving distance 0 from H̃d(LRips[γ, 1

2
)(X)).

The triangle inequality for the interleaving distance then implies the desired state-
ment.
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4.1.3 Implementation

We now turn towards the actual implementation of the method we just described. In
the center of the computation of local homology with the Vietoris-Rips complex, a flag
complex, lies the implementation of the graph neighborhood construction. Although
the full complex is constructed from the flag complex of a neighborhood we also have
to take into account that the filtration value of the simplices is not determined by the
highest filtration value of all edge (see Eq. (4.5)) contained in a simplex (see Eq. (4.6)).
Consequently, for a given filtration value it is possible to have constructed simplices
that have higher filtration value than the highest weight of all edges contained in
the simplex from the complete flag complex. More specifically, we will show how
to construct the local Vietoris-Rips graph neighborhood form which one could then
construct the local Vietoris-Rips complex.

For the more algorithmic point of view that we will take now we have to pay at-
tention to the actual implementation of graph neighborhoods. A graph neighborhood
is then given by a so-called adjacency lists, i.e. a hash table G with keys given by the
points of a given space X = {x0, . . . , xn−1} ∈ Sam⋆ (or equivalently by the index for
ordered sets) such that G[xi] contains a sorted list of neighbors with higher index. To
such a list G[xi] we will be referring to as neighborhood of xi.

The algorithm in form of pseudocode is provided in Algorithm 1 in which we will
follow the notation as adjacency list. The neighborhood is constructed to the maximal
scale 1

2
. We iterate through all points of X. At each iteration step we include the

current point xi to its own neighborhood A. For each xi we iterate through all points
xj with i < j and check at each step if we have to add an edge {xi, xj} to the graph
neighborhood. This is true if and only if ||xi − xj|| < ε

2
. If we include the edge we

may safe the edge weight given by ||xi− xj||, compare to Eq. (4.5). After we iterated
through all xj with j > i we included all edges containing xi of the Vietoris-Rips
graph neighborhood at scale 1

2
by adding the neighborhood A to G. At the end of

each iteration step we include the cone point c in the adjacency list of xi if xi has at
distance from the origin greater than 1

2
. We store A in G with xi as key.

Moving on to Algorithm 2, we describe the alternative graph neighborhood to con-
struct F 1

2
. As the routine to determine the graph neighborhood for F 1

2
is very similar

to what we previously described we only highlight the differences. First, we have no
extra point, or cone point included in our point cloud and therefore no additional
edges between points of X and c to be included. The other main difference is in the
weight of an edge and thus the condition to be included in G. Because the edge weight
for F 1

2
depends on the location of the midpoint between the two points of a potential

edge there is an extra condition in line 6-11 as well as a different weight assigned in
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Algorithm 1 GLRips(X)
Input: Vertices V = {c} ∪ X = {x0, . . . , xn−1} ∈ Sam⋆

Output: Local Vietoris-Rips graph neighborhood (GLRips
1
2

(X ∪ {c}), e)
1: G← ∅; e← ∅;
2: for i← 0 to n− 1 do
3: A← {xi};
4: for j ← i+ 1 to n− 1 do
5: if ||xi − xj|| < 1

2
then

6: A← A ∪ {xj}; e({xi, xj})← ||xi − xj||;

7: if max{0, 1
2
− ||xi||} < 1

2
then

8: A← A ∪ {c}; e({xi, c})← max{0, 1
2
− ||xi||};

9: G[xi]← A;

line 11 given by Eq. (4.4).

Algorithm 2 GF(X)
Input: Point cloud X = {x0, . . . , xn} ∈ Sam⋆

Output: Graph neighborhood (GF
1
2

(X), w)
1: G← ∅;
2: for i← 0 to n− 1 do
3: if ||xi|| > 0 then
4: A← {xi};
5: for j ← i+ 1 to n do
6: if ||m(xi, xj)|| ≥ 1

2
then

7: if ||xi−xj ||
2

< 1
2

then
8: A← A ∪ {xj}; w({xi, xj})← ||xi − xj||;

9: else
10: if ∂(xi, xj) < 1

2
then . Compare to Eq. (4.4)

11: A← A ∪ {xj}; w({xi, xj})← ∂(xi, xj);

12: G[i]← A;

In [Zom10], Zomorodian described a fast algorithm to compute the Vietoris-Rips
complex incrementally from a given neighborhood graph. We included a modified
version of Zomorodian’s algorithm suitable for the construction of the simplicial com-
plexes used for local homology computations with Algorithm 3. We will go through
the algorithm to highlight the important adaptations to work for LRips but for the
statement that this incremental algorithm accurately computes the k-skeleton of the
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Vietoris-Rips complex associated with a graph neighborhood consider [Zom10, Theo-
rem2]. Algorithm 3 is essentially a loop over all vertices included in the input graph
neighborhood G. At each iteration we call the function AddCofaces, see Algorithm 4,
and pass a container of all simplicies K to be filled, all the information on neighboring
vertices G and G[v], a simplex {v}, the maximal diameter of a simplex ε allowed to
be included in K and the maximal dimension of simplices k. The routine AddCofaces
can be found in Algorithm 4. Before we turn to that routine we want to note that
in the end of Algorithm 3 we order all simplices in K. This is done as described in
Remark 4.1.17 first by dimension, then by diameter and finally by the order on the
vertices so the output is an essential and simplex-wise filtration. This is necessary to
compute persistent homology algorithmically, compare to Proposition 4.1.16.

Algorithm 3 IterativeRips((G,w), d)
Input: Neighborhood graph (G,w), maximal dimension d

Output: Filtered simplicial complex K
1: K ← ∅;
2: for v ← 0 to G.size do
3: AddCofaces(K, (G,w), G[v], {v}, d); . See Algorithm 4

4: sort(K); . Create essential simplex-wise filtration (Remark 4.1.17)

Moving on to Algorithm 4, the given neighborhood N represents the intersection
of all vertex neighborhoods of all vertices in s. Therefore, the simplex τ = s∪ {v} for
any v ∈ N constitutes a simplex in the flag of G. We call AddCofaces(−) for any τ

and v ∩N as neighborhood. Again, check [Zom10] for more details on the theoretical
considerations. We want to focus on the addition of lines 4 and 5. Here we check
whether or not the diameter of the given simplex s is smaller the prespecified scale ε.
This would be an unnecessary step if we actually wanted to compute the Vietoris-Rips
complex associated with G because the diameter of a simplex is then the maximal
weight of all its edges and are therefore below the scale imposed on G. In the case of
LRips the diameter of a simplex is not given by the maximal weight of all its edges.
Instead LRips is given by the flag complex of G minus all simplices that lie above the
scale imposed in G. Thus the additional condition in Algorithm 4. We will not detail
an algorithm to compute the simplex diameter but it should be noted that in order to
compute it we actually do not have to parse the geometrical information included in
X ∈ Sam⋆ as the diameter can still be completely determined by the weight of all its
edges which is included with w in case of a standard Vietoris-Rips complex or LRips.
In case of F we have to be able to compute the distance to the central point, i.e. the
origin for X ∈ Sam⋆.
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Algorithm 4 AddCofaces(K, (G,w),N,s, d);
Input: Simplicial complex K, neighborhood graph (G,w), neighborhood N , simplex

s, dimension d

1: if dim(s) ≥ d then
2: Return;

3: if diam(s) < 1
2

then . Not always necessary
4: K ← K ∪ {σ}

5: for v ∈ N do
6: if v /∈ s then
7: τ ← s ∪ {v};
8: AddCofaces(K, (G,w), G[v] ∩N, τ, d);

With Algorithm 1 and Algorithm 2 at hand, we are in position to apply Algorithm 3
in order to construct LRips and F . The only point that is missing from the full picture
are the specific filtration functions, compare to Eq. (4.6) and Eq. (4.4) respectively.
However, we feel that computing these values is sufficiently clear so we omit the
discussion of further pseudocode sequences.

Putting all the previously presented algorithms together we have Algorithm 5
which described how to approximate the Φd

PL . We record the closeness of approxima-
tion in Proposition 4.1.29.

Algorithm 5 ΦPL(X, d)
Input: Point cloud X ∈ Sam⋆, dimension d

Output: ΦPL(X)
(G,w)← GLRips(X); . compare to Algorithm 1
K ← IterativeRips((G,w), d); . compare to Algorithm 3
i← 1

for i ≤ d do
D ← PHi(K); . Persistent homology of filtered simplicial complex
if dB(D,PHi(S

d)) is maximal then
ΦPL(X, d)← 1− 2dB(D,PHi(S

d)) . compare to Remark 4.1.8

Proposition 4.1.29. Let X,X ∈ Sam⋆ and X a δ-sample of X. Then, for ΦP̃L(X, d)
denoting the output of Algorithm 5 for reduced homology and Φd

P̃L
the function described

in Example 3.2.3 with reduced homology we have

| ΦP̃L(X, d)− Φd
P̃L

(X) |≤ 2δ + (

√
2(d+ 1)

d+ 2
− 1).



96 Tangential Approximation

Proof. LetDi
Sd = B(PH̃i(S

d)), LDi
X = B(PH̃i(X,Xε\B 1

2
)) and LDi

X = B(PH̃i(LRips(X)))
the barcodes associated to the persistent homology of Sd, X and LRips(X) respec-
tively (compare to Theorem 4.1.2). Then, we have

Φd
P̃L

(X) = 1− 2max
i≤d

dB(LD
i
X , D

i
Sd)

and
ΦP̃L(X, d) = 1− 2max

i≤d
dB(LD

i
X, D

i
Sd)

Using this we see that

| Φd
P̃L

(X)− ΦP̃L(X, d) | =| max
i≤d

dB(LD
i
X , D

i
Sd)−max

i≤d
dB(LD

i
X, D

i
Sd) |

≤ max
i≤d

dB(LD
i
X , LD

i
X).

Invoking Lemma 4.1.27 and Eq. (4.2) we have

| ΦP̃L(X, d)− Φd
P̃L

(X) |≤ 2δ + (

√
2(d+ 1)

d+ 2
− 1)

which is what we claimed.

Remark 4.1.30. The above result aims to quantify the worst-case error associated
with our proposed method for approximating the function ΦPL , as outlined in Ex-
ample 3.2.3. It is crucial to evaluate this result independently of the utility of Algo-
rithm 5. The interleaving error, as detailed in Proposition 4.1.29, does not provide
a satisfactory approximation of ΦPL when using Vietoris-Rips complexes. Further
exploration in this direction, possibly employing a different approach, may yield a
more nuanced assessment. However, the true effectiveness of Algorithm 5 can also
be assessed through practical results. In practical terms, the algorithmic Φ demon-
strates its capacity to discern regions resembling the topology of a linear subspace
from spaces with persistent homology barcodes that are distant from these. We will
illustrate these practical aspects in Section 4.3.2 and the subsequent Chapter 5.

4.2 Tangential Approximation
This section is primarily concerned with computing the Hausdorff distance between
arbitrary subspaces of Euclidean space Rn and linear subspaces, with the goal of iden-
tifying linear subspaces in Rn that minimize this distance. To achieve this objective,
we will explore the Hausdorff distance to some extend and subsequently focus on op-
timization techniques within Grassmannians. The overarching aim of this section is
to pave the way for the implementation of an algorithm aimed at approximating the
function Φd

Hd introduced earlier in Example 3.2.2.
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4.2.1 Hausdorff distance between subsets of Rn

We have used Hausdorff distances before as the metric on the non-empty compact
subsets of Rn for the definition of Sam,Sam⋆,SamP ,DPSam. However, we feel
that it is advisory to recall this concept at this point before we go any further. Let
A,B ⊂ Sam⋆. The Hausdorff distance is then given by

dHd(A,B) = inf{ε > 0 | Aε ⊂ B and Bε ⊂ A}. (4.7)

which is equivalently given by

dHd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)} (4.8)

which is finite in case A and B are finite. Eventually, we want to compute Φd
Hd∗ ◦Mr

and thus the Hausdorff distance only needs to be considered for elements of Sam⋆, i.e.
spaces isometric to subsets of the standard Euclidean n-ball Bn. To abbreviate the
notation at this point we write X ∈ Sam⋆ if we want to indicate that X is centered
at 0 and scaled to lie in Bn.

If the first argument of the distance function is a linear subspace of Rn then for a
given basis [v1, . . . , vk] of V ∈ Gr(k, n) we can simplify 4.8 to

max{max
x∈X
||(x− πV (x))||, sup

v∈V,||v||=1

d(X, v)} (4.9)

where πV (−) is the projection onto V which can be done by multiplying x with the
matrix (v1, . . . , vk)

T . Observe that if we allow to deviate from the Hausdorff distance
by only computing one side of the distance, that is

~d(V,X) = max
x∈X
||(x− πV (x))||, (4.10)

we are left with a much simpler objective function. However, note that ~d is not
a metric anymore as the symmetry axiom is not fulfilled. We also find ~d(V,X) ≤
dHd(V,X) for all V which shows that d̃ is continuous w.r.t. to the Hausdorff distance,
i.e. convergence in dHd implies convergence in ~d. However, consider the alternative
characterization of dHd by Eq. (4.7). The distance ~d(V,X) being less than some
α > 0 implies V ⊂ Xα but not necessarily Vα ⊂ X as well. Thus, it is not hard
to generate examples that converge in ~d but not in dHd. As a consequence, the
class of Φ-stratified spaces using ~d instead of dHd is strictly smaller than the class of
Φd
Hd-stratified spaces (compare to Examples 3.2.2 and 3.2.4). This brief discussion

prepares the upcoming discussion on how to formulate an optimization problem with
a deterministic approach.
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4.2.2 Optimization on Grassmannians

Algorithmically computing Φk
Hd for a given X ∈ Sam⋆ involves addressing the opti-

mization problem stated as follows:

inf
V ∈Gr(k,n)

max{sup
x∈X

d(x, V ), sup
v∈V,||v||≤1

d(X, v)}. (4.11)

It is essential to note that we must confine ourselves to ||v|| ≤ 1 for all v ∈ V to ensure
a well-posed problem, utilizing the metric of Sam⋆ instead of the general Hausdorff
distance. Additionally, to streamline the discussion and eliminate the need to address
the case of X = ∅ each time (which is not crucial for our purposes), we assume X 6= ∅.

Regarding the classification of Eq. (4.11) as an optimization problem, it is worth
observing that the objective function is neither smooth nor convex. Furthermore,
the optimization variable reappears as an infinite search space within the objective
function, specifically in supv∈V d(X, v). Consequently, the above optimization prob-
lem seems challenging to approach using many deterministic algorithmic optimization
strategies. In this section, we will briefly discuss how to simplify the problem to ob-
tain a smooth quadratic constrained optimization problem based on the one-sid. We
will also introduce a random optimization approach to tackle the general problem. To
this end, we will review pertinent results on Grassmannian optimization and random
distributions on Grassmannians.

Deterministic approach

First, with the previous considerations we can simplify the optimization problem
Eq. (4.11) with Eq. (4.10) to

inf
V ∈Gr(k,n)

~d(V,X) = max
x∈X
||(x− πV (x))||. (4.12)

if we are willing to reduce the class of stratified spaces whose stratification we will
be able to approximate. To formulate an optimization problem within the space of
k-dimensional linear subspaces of Rn, denoted as Gr(k, n), let’s take a brief detour
to explore alternative descriptions of Grassmannians. Our primary references for this
exploration are [EAS98, AEK06, LLY20]. The initial and arguably the most natural
characterization of the space of linear subspaces is through the so-called Stiefel man-
ifold. It is noteworthy that every linear subspace has an orthonormal basis and can
be effectively identified with it. We represent the space of all k orthonormal bases in
an n-dimensional space by

V (k, n) = {M ∈ Rn×k |MTM = In×n} ∼= O(n)/O(n− k). (4.13)
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Of course, orthonormal bases are not unique but related to each other by orthogonal
transformation and thus we have

Gr(k, n) ∼= V (k, n)/O(k). (4.14)

First considered for algorithmic consideration in [EAS98], this approach is commonly
used in optimization (see e.g. [JD15,WY13]).

Furthermore, as every linear subspace admits an orthonormal basis, there is a
unique projection matrix associated with such a basis. Hence, one can show

Gr(k, n) ∼= Pk,n = {P ∈ Rn×n | P T = P = P 2 and rank(P ) = k}. (4.15)

We will concentrate on this representation as we develop our randomized algorithm
later, drawing inspiration from the work of [AEK06]. In addition to this, projection
matrices find widespread use in various applications [Zha10,Chi03,Nic07]. For a more
in-depth comparison of these methods and the advantages they offer, both in the
context of optimization and alternative approaches for representing Gr(k, n) using
so-called symmetric involution matrices, refer to [LLY20].

The above matrix representations of Gr(k, n) allow us to work with an element
of the optimization search space as elements of a vector space either by row or by
column major order. To summarize this discussion, we can reformulate the simplified
distance in Eq. (4.12) by representing the Grassmannians as matrices e.g. by using
the Stiefel manifold. With Eqs. (4.13) and (4.14) we obtain

inf
M∈Rn×k

d̃(v,X) = inf
M∈Rn×k

max
x∈X
||(x−MMTx)|| (4.16)

subject to: MTM = In×n (4.17)

Here, the matrix M ∈ Rn×k has rows representing the basis vectors of a k-linear
subspace of Rn. The described problem gives rise to a constrained, quadratic opti-
mization problem with n2 variables. The function within the maximum is convex,
rendering the objective function convex, as the maximum of a convex function is itself
convex. However, because Grassmannians are not convex, this problem is non-convex,
and finding a global minimum may pose challenges. It’s important to note that the
presence of the maximum makes the problem non-smooth. To avoid dealing with
the maximum in the objective function, we can alternatively consider the equivalent
epigraph formulation

inf
M∈Rn×k,t∈R

t (4.18)

subject to: ||(x−MMTx)|| ≤ t for each x ∈ X, (4.19)

MTM = In×n, (4.20)
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which is a smooth problem with inequality constraints equal to the cardinality of X.
Note that we could also get rid of the norm in the constraints by simply squaring it.
While there are various existing implementations for solving such problems, it could be
advantageous to explore specialized algorithms designed for optimization on matrix
manifolds, such as the Stiefel manifold. As mentioned earlier, optimization within
Grassmannians has been explored previously, commonly relying on the differential
structures of Grassmannians represented by matrices. This approach involves defin-
ing tangent spaces and gradients and formulating an optimization algorithm based
on these terms. For a more in-depth understanding of the implementation of opti-
mization on matrix manifolds, refer to sources like [LLY20,KWT23]. The remaining
challenges in solving the problem 4.18 are predominantly associated with devising a
computationally efficient and stable implementation. We feel that at this point we
have delineated the mathematical essence of the problem when attempting to solve the
simplified optimization problem and leave the exploration of possible implementation
and evaluations for future work.

Randomized approach

Let us now turn towards our randomized approach to approximate a solution for the
original problem in 4.11. The fundamental concept behind a randomized approach
is straightforward: Generate a set of elements V1, . . . , Vn ⊂ Gr(k, n) randomly and
record min f(Vi) | i = 1, . . . , n. Consequently, we need a method for randomly gener-
ating elements Vi, and it would be advantageous to quantify the probability of being
close to the optimal solution with respect to the measure used to generate Vi. This
quantification enables us to approximate the required sample size n. To begin, we
will review some findings on the uniform distribution on Pk,n.

Proposition 4.2.1. Let Z ∈ Rn×k be a matrix such that the elements are independent
and identically N (0, 1) distributed. Then, P = Z(ZTZ)−1Z is uniformly distributed
on Pk,n.

Proof. See e.g. [Chi03, Theorem 2.2.2 (iii)].

Remark 4.2.2. This statement already suggests the algorithmic feasibility of obtain-
ing random samples from Grassmannians. As mentioned in Eq. (4.15), the subset
of Rn×n containing rank k projection matrices serves as an equivalent representation
of Grassmannians. Alternatively, if one opts to represent linear subspaces using the
column space of rank k matrices from Rn×k, the matrix Z from above can be directly
employed. This is because ZTZ almost surely has full rank, and its inverse amounts
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to a change of bases, thus representing the same point in the Grassmannians. This
approach may lead to a more efficient method of generating random samples.

At this juncture, one might inquire about the likelihood that a randomly selected V
from the uniform distribution on Gr(k, n) is in close proximity to a given W ∈ Gr(k, n)
which could potentially be the optimal point for the objective function in 4.12. While
various distance metrics exist for linear subspaces of Rn, describing P(d(V,W )) < δ for
uniformly chosen V and W from Gr(k, n) with δ > 0 requires employing the canonical
metric on Gr(k, n) known as the projection 2-norm

dGr(V,W ) = ||P (V )− P (W )||2.

Here, P (V ), P (W ) are the respective projection matrices associated to V,W and ||−||2
denotes the matrix 2-norm. Furthermore, one can show the following equalities

||P (V )−P (W )||2 = sin(θk) = max{ sup
v∈V
||v||≤1

d(v,W ), sup
w∈W
||w||≤1

d(w, V )} = dHd(V,W ) (4.21)

where θk denotes the largest principal (or canonical) angle. The principal angles
θ1, . . . , θk ∈ [0, π/2) between V and W can be defined recursively by

cos(θj) = max
v∈V
||v||=1

max
w∈W
||w||=1

vTw = vTj wj

with vTvi = 0 and wTwi = 0 for i = 1, . . . , j − 1. See e.g. [BG73,Drm00,AEK06] for
more details on these concepts. Put differently, the final equality in 4.21 implies that
the objective function in 4.12 exhibits continuity with respect to the canonical distance
on the Grassmannians. Before delving into the details of our random optimization
algorithm, we investigate the probability of selecting a linear subspace in proximity
to a specified subspace, drawing on findings from Edelman [AEK06].

Proposition 4.2.3. Let W ∈ Gr(k, n), k < n+1
2

and let V be randomly sampled from
the uniform distribution on Gr(k, n) endowed with the canonical metric. Then, for
any ε ∈ [0, 1) we have

P(dHd(W,V ) < ε) =
Γ(p+1

2
)Γ(n−p+1

2
)

Γ(1
2
)Γ(n+1

2
)

ε
p(n−p)
2 F1(

n− p
2

,
1

2
;
n+ 1

2
; ε2Ip×p)

where 2F1 denotes the hypergeometric function with matrix argument.

Proof. This immediately follows from Eq. (4.21) and the probability distribution of
the largest principal angle [AEK06, Theorem 1].
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(n, k) ε = 0.1 ε = 0.2

(2,1) s = 25 s = 12

(3,1) s = 321 s = 80

(4,1) s = 3786 s = 471

(4,2) s = 48175 s = 2990

(5,1) s = 42840 s = 2662

(5,2) s = 6420174 s = 99487

Table 4.1. Required approximate sample sizes for certainty of 80 percent

Remark 4.2.4. The rationale behind the constraint p < n+1
2

may raise questions
for the reader. It can be demonstrated that all principal angles within the range of
(0, π/2) between two subspaces are congruent to the angles between their orthogonal
complements, which also fall within the interval (0, π/2). Additionally, the probabil-
ity function presented above theoretically enables the determination of the required
sample size to find a linear subspace that is ε close to a given subspace with a specified
probability.

In practical calculations, however, we faced challenges in precisely computing the
hypergeometric function with matrix arguments. Our efforts led to an approximation
using the algorithm outlined in [KE06]. Consequently, the reported sample sizes are
also approximations. We present these results primarily as a reference to the order of
magnitude.

Given a specific ambient dimension n, subspace dimension k, and distance ε from
a linear subspace W ∈ Gr(k, n), one can determine the sample size s. This ensures a
desired level of confidence, for instance, p = 0.8, in selecting another linear subspace
V from the random sample such that d(V,W ) < ε. Detailed results are provided in
Table 4.1.

4.2.3 Implementation

Now, we describe an implementable random algorithm that carries out a random
optimization program. A possible pseudocode sequencing can be seen in Algorithm 6.
The prespecified sample size s determines how many random samples we draw. This is
done inside the loop starting at line 3. In lines 4–6 we generate a random element from
the uniform distribution on Gr(k, n), according to Proposition 4.2.1. The element
is represented as projection matrix, compare to Eq. (4.15). The column span of
the matrix P , denoted V =< P >, is a k-dimensional linear subspace of Rn and
elements in V are given by linear combinations of the column vectors of P . By
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generating a δ sample of the unit interval k times and taking all possible combinations
of length k we can generate a finite set of points V such that dHd(V, V ) ≤ δ. This
is done in line 7. At line 8 we have two finite subsets of Rn, i.e. V and X, for
which the Hausdorff distance can be computed directly (compare to 4.10). Note that
dHd(V,X) ≤ dHd(V,X)+ dHd(V,V) = dHd(V,X)+ δ. We record dHd(V,X) if we found
a new minimum amongst the set of all previous linear spaces. Finally, in line 14 for
the output value F we can say the following: Let Vopt denote the argmin for our
optimization problem and V be the element such that dHd(X,V) = F . For any ε > 0

we have that | F −dHd(X, Vopt) |≤ ε+δ with a probability of 1− (1−P(dHd(Vopt, V ) <

ε))s (compare to Proposition 4.2.3).

Algorithm 6 RandHd(X, n, k, s, δ)
Input: Sample X ∈ Sam⋆, dimensions n, k, sample size s, density δ
Output: Minimized Hausdorff distance to X of random linear subspace

1: i← 0

2: F ←∞
3: while i < s do:
4: Generate {zj}j=1,...,nk i.i.d. N (0, 1) distributed
5: M ← ((z1, . . . , zn)

T , . . . , (zn(k−1), . . . , znk)
T )

6: P ←M(MMT )−1M

7: Generate finite δ-sample V from V =< P >

8: f = dHd(V, X)

9: if f < F then:
10: F ← f

11: i++
12: Return F

Putting together the results for our random optimization approach we obtain Al-
gorithm 7 which described how to approximate the Φd

Hd. We record the level of
approximation in Theorem 4.2.5.

Algorithm 7 ΦHd(X, d)
Input: Point cloud X ∈ Sam⋆, dimension d

optional parameters: sample size s, sample density δ
Output: ΦHd(X)
n← dim(X) . Dimension of ambient space
ΦHd(X)← RandHD(X, n, d, s, δ)
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Theorem 4.2.5. Let X,X ∈ Sam⋆ with X a δ-sample of X. Let γ be the sample
accuracy for the linear subspaces. Then, for any 0 < ε ≤ 1, s ∈ N+ and ΦHd(X, d)
denoting the output of Algorithm 7 we have that

| ΦHd(X, d)− Φd
Hd(X) |≤ ε+ δ + γ

with probability 1− (1− P(θ < arcsin ε))s.

Proof. Let Vopt ∈ Gr(k, n) be such that dHd(X,Vopt) = infV ∈Gr(k,n) dHd(X,V ). The
existence of the optimum is due to the fact that the Grassmannians are compact and
the Hausdorff distance is continuous, see Eq. (4.21). For the given sample size s we
generate random elements {W1, . . . ,Ws} of Gr(k, n) w.r.t. the uniform distribution
by the procedure described in Algorithm 6 lines 4–7. The probability that there exists
j ∈ {1, . . . , s} such that dGr(Wj, Vopt) ≤ arcsin ε is given by

P( min
i=1,...,s

{dHd(Wi, Vopt)} ≤ θ̃)) = 1− (1− P(θ ≤ arcsin ε)s.

In Algorithm 6 we record the minimum of dHd(W,X) where W denotes an γ-close
sample of W . Therefore, with the stated probability, Algorithm 6 produces a sample
W such that

dHd(W, Vopt) ≤ γ + ε,

by the triangle inequality and Eq. (4.21). Furthermore, by assumption dHd(X, X) ≤ δ

and therefore, again by triangle inequality, we have

| ΦHd(X)− ΦHd(X) |≤ ε+ δ + γ

Remark 4.2.6. This outcome provides the degree of approximation for the value of
ΦHd(X, d), where X is derived from the magnification of a sample space Y at a specific
point. We have demonstrated how to derive an estimator for the necessary sample
size based on the chosen value of 1 − (1 − P(θ ≤ arcsin ε))s in Remark 4.2.4. It is
important to note that the probability of achieving the same level of accuracy at every
point in Y is expressed as (1− (1−P(θ ≤ arcsin ε))s)|Y |. This elucidates the process of
determining a required sample size for the function ΦHd(X, d) to approximate Φd

Hd(X)
to a chosen level of accuracy across all points in Y.

4.3 Point cloud stratification
In this section, we delve into the practical intricacies of stratifying a given point
cloud. We outline a straightforward routine for implementing a stratification of a
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given sample space, resulting in a diagram comprised of links and strata that conveys
the persistent stratified homotopy type. Although we have already introduced all the
requisite tools, providing a comprehensive explanation of how to integrate them and
establish a pipeline, as previously hinted at in Example 3.5.6, is still valuable.

Subsequently, we showcase the practical utility of the implementation. We focus
on a specific algebraic surface to generate samples with controlled sample density,
allowing us to assess the accuracy of the obtained stratifications relative to the quality
of the sample. Additionally, we leverage this opportunity to compare the effectiveness
of the various methods presented.

The modular nature of Φ-stratifications prompts an exploration of whether other
well-established methods, such as PCA, could be seamlessly integrated into this con-
text. This aspect is briefly touched upon towards the end of this section.

4.3.1 Implementation

In Corollary 3.5.9 we combined the convergence of SrΦ,u with the continuity of Pv to
see that Pv ◦ SrΦ,u(X) converges to Pv(W ) for 1

r
d(X,X) → 0 with X the underlying

topological space of W . In total, the process always has four parameters to specify
and these are dimension d, zoom parameter (or radius) r, threshold u and a tuple
v = (vl, vh) for the sub-level diagram. If we use our algorithm based on Hausdorff
distances (see Algorithm 7) we would have another two parameters that specify the
level of accuracy. We will first explain SrΦ,u and then how to generate a model for Pv
with their respective parameters.

Recall that SrΦ,u is given by

SrΦ,u(X) = Fu ◦ Φ∗ ◦Mr(X)

which prompts a logical sequence for computing a stratification for a given sample
X ∈ Sam⋆. Consider a sample space X, potentially sampled from a stratified space of
interest denoted as X. To proceed with determining the parameters for the routine,
it is essential to formulate a hypothesis about X. In cases where no hypothesis is
available, the process of stratifying a sample space becomes more explorative, and all
parameters should be considered within their respective ranges.

The selection of a function Φ may hinge, in part, on computational preferences,
influenced by the specific implementation of the method. For instance, while the
computation of high-dimensional persistent homology becomes impractical rapidly,
the size of the Grassmannians and thus the complexity of Algorithm 6 depends on
the codimension of the spaces optimized over. However, the primary determinant
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guiding the choice for Φ should be for which Φ the space X is Φ-stratified (refer to
Definition 3.2.1). At present, with only ΦPL or ΦHd available, this decision simplifies
to whether or not X is ΦPL-stratified. If not, one must resort to using ΦHd (refer to
Example 3.2.2).

The parameter d denotes the expected dimension of the top stratum of X. The
zoom parameter or radius r is ideally set as low as possible. However, as previously
discussed, practical constraints prevent setting it too low, in order to avoidMr

x(X) = x

for all x ∈ X.
Recall from Theorem 3.5.8 that for convergence SrΦ,u(X)→ X, we require, among

other conditions for X to be fulfilled, that 1
r
d(X, X)→ 0. In other words, for smaller

radii, we necessitate sufficiently good samples in that sense. In practice, it is prudent
to conduct a sweep of r over a specified range.

The parameter u serves as the lower threshold for Φ(Mr
x(X), d), determining

whether x is classified as singular. Theoretically, a good choice for u is given by
sup{Φ(Tex

x (X)) | x ∈ Xp} < u < 1. Notably, if information regarding the stratifica-
tion defined by (X,Xp) were available, obviating the need for this routine, it would
provide a clear interpretation of u. It is pertinent to note that u can be explored
across its full range, i.e., u ∈ [0, 1), as the thresholding occurs at the conclusion of the
routine, and all computationally intensive tasks are completed at this point.

To formalize the algorithmic procedure, we provide pseudocode in Algorithm 8
outlining the steps to determine SrΦ,u. Commencing with Mr(X), which denotes the
collection of local magnifications Mr

x(X) for all x ∈ X, the algorithm proceeds as
follows:

The construction of SrΦ,u involves evaluating the function Φ on Mr
x(X) at each

point x ∈ X. Points where Φ(Mr
x(X)) falls below the threshold u are classified as

singular, corresponding to the singular stratum of the given point cloud (refer to lines
4–5). The magnification Mr

x(X) is determined by normalizing the neighborhood of
radius r around the current point x, expressed as Mr

x(X) = 1
r
(X − x) ∩ Br (see line

3).
Upon iterating over all points in X, the algorithm collects all singular points in

the set S ⊂ X at line 6, representing (SrΦ,u(X))p.
We can construct a diagram from SrΦ,uX which we will denote D = {D≤vl ←↩ Dvl

vh
↪→

D≤vh} for brevity. This diagram is given by the level sets of the distance function to
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Algorithm 8 SrΦ,u(X, 2)
Input: Point cloud X ∈ Sam, Φ ∈ {ΦPL ,ΦHd}, dimension d, zoom r, threshold u

Output: A tuple (X, S) comprising SrΦ,u(X)
1: S← ∅;
2: for x ∈ X do
3: Mr

x(X)← 1
r
((X ∩ Br(x))− x);

4: if Φd(Mr
x(X)) ≥ u then . Compare to Algorithms 5 and 7

5: S← S ∪ {x}

the previously determined set S and that is

D≥vl(SrΦ,uX) = {x ∈ X | min(1, d(x, S)) ≥ vh}

Dvl
vh
(SrΦ,uX) = {x ∈ X | vl ≤ min(1, d(x, S)) ≤ vh}

D≤vh(SrΦ,uX) = {x ∈ X | min(1, d(x, S)) ≤ vh}

whose component-wise thickenings can be modelled by a filtered simplicial complex
and may serve as a geometric model for the associated persistent stratified homotopy
type Pv ◦ SrΦ,uX. As this process is straightforward, we omit the provision of pseu-
docode. It is essential to note that the distance to S must be rescaled to ensure a mean-
ingful cutoff at parameter values v = (vl, vh) ∈ (0, 1)2. Recall from Corollary 3.5.9
the assertion of the convergence of Pv ◦ SrΦ,uX to Pv(X) for X being associated to a
compact Lojasiewicz-Whitney space, given that v is sufficiently small.

Additionally, the ordering on tuples (vl, vh) follows (v1l , v1h) ≤ (v2l , v
2
h) ⇐⇒ v1l ≤ v2l

and v1h ≥ v2h, while still satisfying 0 < vil < vih < 1. Therefore, the aim is to choose
this parameter as small as possible, contingent upon the quality of the given sample
X. This implies setting the values of vl and vh close to each other, with a small value
for vh. In the scenario where X represents a continuous space, one would ideally set
vh = vl. However, this often results in Dvl

vh
being empty for discrete spaces, such as a

point cloud.
Moreover, considering our convergence results, which assume X to be associated

to a compact Lojasiewicz-Whitney space, we seek a more persistently geometric link
of the singular stratum at a certain non-zero distance from the singular stratum (refer
to Example 2.1.33).

4.3.2 Method Evaluation

Throughout this research, our underlying motivation has been the development of a
method capable of approximating the stratification of a space from a sufficiently close
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sample and subsequently representing the outcome in a stable manner that captures
pertinent homotopy theoretical information. In order to assess the practical utility
of our methods in the context of Topological Data Analysis (TDA), we believe it is
prudent to conduct demonstrations with artificial data where the correct results are
known. This approach allows for a thorough examination of whether our methods
function as intended before their direct application to real-world scenarios. Neverthe-
less, the efficacy of our methods when applied to real-world data is discussed in detail
in Chapter 5.

Moreover, we revisit the previously highlighted flexibility in the selection of a
function Φ : Sam⋆ → [0, 1] for stratifying a point cloud. While there may be numerous
suitable functions to choose from, we focused on two distinct functions (and mentioned
some variants). The evaluation of both methods is based on local homology and
Hausdorff distances, respectively, and we briefly comment on alternative methods
that have been employed in practice for stratification learning.

Remark 4.3.1. To establish the convergence of SrΦ,u for X ∈ Sam⋆, with Φ and
X satisfying the conditions outlined in Theorem 3.5.8, it is essential to furnish a
sequence Xi comprising δi-samples of X, where the density δi increases, signifying
δi < δj for i < j. Precision in controlling the increments is desirable to establish a
discernible relationship between enhancements in sample density and improvements
in the distance of the stratifications generated from Xi. While generating samples of
geometric objects, such as real algebraic varieties, is feasible, achieving a sample with
specific density requirements requires careful consideration. Notably, the task has
been accomplished for real algebraic varieties, as evidenced by the work in [DEHH18].

The task becomes substantially more straightforward if the space possesses a
parametrization over the real numbers. An illustrative example is the sphere S2,
for which a dense sample of real intervals [0, π) and [0, 2π) suffices to generate an
equally dense sample of S2. Given that the sphere is a prototypical example of a
smooth manifold, there is no necessity to undertake efforts to stratify a point cloud
sampled from it. Instead, our focus shifts to spaces arising from intersections of regions
parametrized over R2 and embedded in R3.

Example 4.3.2. We generated four samples from the standard Euclidean sphere
S = {p = (x, y, z) ∈ R3 | ‖p‖ = 1} and defined X = S ∪ (S + (0.5, 0.5, 0.5)). In other
words, the space under examination is a composite of non-disjoint Euclidean spheres
with a common radius of r = 1. The spheres have centers at the origin (0, 0, 0) and
the point (0.5, 0.5, 0.5). Consequently, the singular stratum in the natural stratifi-
cation of X is characterized by Σ = {(x, y, z) ∈ S2 | x + y + z = 0.75}, which is
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topologically equivalent to S1. The link of Σ is a space that can be represented as
a disjoint union S1 t S1. The sample densities δi for i ∈ {1, 2, 3} exhibit an ascend-
ing pattern, specifically δi+1 = 2δi. Achieving this progression involves managing
the sampling of intervals [0, π) and [0, 2π) that parameterize the standard 2-sphere
in spherical coordinates. It is noteworthy that the scaling factor for the spherical
coordinates always remains less than or equal to the radius, which is 1 in this context.
Consequently, although points may come closer to each other after transformation,
there is no stretching-out of points.

Let Xi denote the sample of density δi of X. Theorem 3.5.8 suggests that for
increasing magnification parameter r and simultaneously improving sample quality,
in the sense of increasing δi, we can expect a better approximation of the stratified
space X, that is the distance of SrΦ,u and (X,Σ) as elements of SamP decreases. Note
that we abuse notation here and refer to X as a stratified space and the underlying
space itself in hope to abbreviate the notation at this point. We want to demonstrate
the convergence of the approximate stratifications for two choices of Φ ∈ {ΦPLH ,ΦHd}.
For the other parameters we chose r ∈ {0.1, 0.3, 0.4} and u = 0.7 in all cases. A visual
representation of the resulting function values of ΦPL(Xi, 2) at every point of Xi, i.e.
Φ∗ ◦M(Xi), can be seen in Figs. 4.1 to 4.8 for r ∈ {0.3, 0.4}. In Fig. 4.9 we can see
ΦPL∗ ◦ M0.1(X1, 2). Note that Φ∗ ◦ M(X3) can be computed with Algorithm 8 by
returning all the calculated function values instead of the classification. Furthermore,
we chose v = (vl = 0.48, vh = 0.52) to generate a diagram from SrΦ,u(Xi) = Fu ◦
Φ∗ ◦ Mr(Xi) for M0.4(X2), M0.4(X1), M0.3(X1) and M0.1(X1) with ΦPL . Here the
distance to Σ has to be rescaled for (vl, vh) ∈ (0, 1)2 to make sense. As this example is
intended to demonstrate the convergence results the diagram parameters were chosen
for the persistent homology of the the parts of the corresponding diagram Pv(X) to
clearly reflect the topology of the respective strata and the link. The results have
been visualized by marking the respective geometric link, i.e. Dvl

vh
, in yellow color in

Figs. 4.11 to 4.14. With the case ofM0.4X3 we actually want to demonstrate the case
where our methods were unable to retrieve a stratification of the sample because the
radius was set to low for the rather coarse sample. We only exhibit the diagrams and
further investigation for ΦPL as the results are almost identical to the results with
ΦHd. However, the strongly stratified spaces shown in Figs. 4.3 to 4.8 actually show
a very distinct behaviour of the Φ functions. The function ΦPL attains the highest
values very close to the actual singular stratum of X but ΦHd exhibits highest values
near the boundary of an r-neighborhood of Σ. Finally, we measured the distance of
the singular part of the stratified samples, i.e. F0.7 ◦ ΦPL∗ ◦M0.4(X3), to the space
Σ, consider Table 4.2. The main observation here is that the distance to Σ, which
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Figure 4.1. ΦPL∗ ◦M0.4(X3, 2) Figure 4.2. ΦHd∗ ◦M0.4(X3, 2)

Figure 4.3. ΦPL∗ ◦M0.4(X2, 2) Figure 4.4. ΦHd∗ ◦M0.4(X2, 2)

is the only interesting part as the distance of X and Xi equals δi, decreases almost
linearly with the radius but only if the quality of the sample allows. For r = 0.1

and X2 we find the distance to be rather big because in that case the Algorithm 8
malfunctioned for the radius was to small for the provided sample density δ2. We also
calculated the persistent homology of the approximated link, i.e. D0.48

0.52(SrΦPL•,0.7
(Xi, 2))

marked yellow, respectively, consider Table 4.3. The table contains the length of the
four most persistent homology cycles, as we would expect four persistent 1-cycles. For
reference the expected persistence of the four most persistent 1-cycles for the geometric
link determined by v in X is approximately (0.65, 0.65, 0.32, 0.32). These results are
intended to illustrate how to interpret Theorem 3.5.8 and Theorem 3.5.8 in practice.
In this example one can see that stratifications can be reconstructed for the specified
parameters given the sample is close enough. We have also seen that the results for
the persistent homology of the approximated links approach the expectation for the
persistent stratified homotopy type of X represented by the specified diagrams.

Remark 4.3.3. The motivation behind the introduction of a novel tangential approx-
imation method and the discussion on computing local persistent homology might
prompt readers to question the necessity, considering the existence of widely accepted
methods for such tasks in practical applications. Notably, alternatives such as local-
ized versions of principal component analysis (PCA) have been employed for dimen-
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Figure 4.5. ΦPL∗ ◦M0.4(X1, 2) Figure 4.6. ΦHd∗ ◦M0.4(X1, 2)

Figure 4.7. ΦPL∗ ◦M0.3(X1, 2) Figure 4.8. ΦHd∗ ◦M0.3(X1, 2)

Figure 4.9. ΦPL∗ ◦M0.1(X1, 2)
Figure 4.10. Approximated singular
stratum from Φ2

PL∗ ◦M0.1(X1, 2)

(i, r) dHd(Σ,F0.7 ◦ Φ2
PL∗ ◦Mr(Xi))

(2, 0.4) 0.273
(2, 0.3) 0.198
(2, 0.1) 1.049
(1, 0.4) 0.272
(1, 0.3) 0.196
(1, 0.1) 0.065

Table 4.2. Hausdorff distances of Σ to the approximated singular strata
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Figure 4.11. D0.48
0.52(S0.4

Φ2
PL,0.7

(X2, 2))

marked yellow
Figure 4.12. D0.48

0.52(S0.4
Φ2

PL,0.7
(X1, 2))

marked yellow

Figure 4.13. D0.48
0.52(S0.3

Φ2
PL,0.7

(X1, 2))

marked yellow
Figure 4.14. D0.48

0.52(S0.1
Φ2

PL,0.7
(X1, 2))

marked yellow

(i, r) PH1(D0.48
0.52(SrΦ2

PL,0.7
(Xi)))

(2, 0.4) (0.559, 0.559, 0.071, 0.071)

(1, 0.4) (0.707, 0.707, 0.077, 0.077)

(1, 0.3) (0.662, 0.662, 0.179, 0.179)

(1, 0.1) (0.646, 0.646, 0.299, 0.299)

Table 4.3. Persistence of the four most persistent homology cycles of the
approximated links
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sion estimation and stratification learning, as illustrated in [LON22]. To conclude this
chapter, we offer insights into the distinctions between our introduced methods and
other established approaches.

A fundamental point to underscore is that the methods discussed here, both in this
context and in our previous work [MW22], come with theoretical assurances for their
efficacy in stratification learning (Theorem 3.5.8 and Corollary 3.5.9). Additionally,
we observed that the method for approximating stratification from a point cloud
is adaptable based on the selection of a function Φ, with a key property being its
continuity concerning the Hausdorff distance.

A crucial differentiation between the aforementioned methods and localized ver-
sions of principal component analysis, as employed in stratification learning [LON22],
lies in the optimization problem inherent in PCA. PCA yields a linear subspace that
minimizes the standard Euclidean norm distance, a metric that is generally not contin-
uous with respect to the Hausdorff metric. Moreover, while PCA is a well-established
method for approximating tangential spaces in cases where the space of interest is
sufficiently smooth, it is important to emphasize that our theoretical framework does
not support the claim that principal component analysis can effectively approximate
stratifications.

Regarding the use of local persistent homology for stratification learning, as demon-
strated in works such as [STHN20, Nan20, BWM12, BCSE+07], we focused on an im-
plementation of a function that is based on, and approximates, a method capable of
(provably) approximating the stratification of a two-strata space from a sufficiently
accurate sample.





Chapter 5

Applications

This chapter will explore the application of topological methods on real-world data.
Although each section exhibits a different dataset, our main field of applications lay
on images. After a thorough assessment of previous work on the different types of
data we continue by investigating possible stratified structures. In every case we detail
the preprocessing, the methods used for the analysis and give an interpretation of our
results.

5.1 Image patch data
The study of image patch spaces involves representing an image as collection of smaller,
sub-region patches that can be thought of as vectors in a high-dimensional space,
where each dimension corresponds to a pixel intensity value. The space of all possible
image patches is commonly referred to as image patch space.

The idea of distance between patches is crucial to understanding picture patch
space mathematics. The similarity or dissimilarity between patches can be measured
using a variety of distance metrics. The standard Euclidean norm, for instance, can
be used to quantify the pixel-level variations between patches. Other metrics such as,
e.g., the correlation coefficient or the structural similarity index measure (SSIM) may
also be considered if other relationships are to be inferred.

We will concentrate on the topology of image patch spaces here. To determine
the topological characteristics of image patches and their connections to one another,
topological tools like persistent homology can be utilized. For instance, persistent
homology can be used to detect components, tunnels and voids in an image patch
space, which can be helpful for processes like image segmentation or classification
[DMV17,AGV+18,VNG20,ESM+21].

Other mathematical techniques, such as stratification learning (or manifold learn-
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PatchExtraction

   Project and presentation sketches Page 1    

Figure 5.1. Enlarged image patch in a natural grayscale image

ing for that matter) and clustering, can also be applied to image patch spaces. While
clustering techniques can be used to group related patches together, stratification
learning algorithms seek to reveal the underlying low-dimensional structures or a
stratification of the patch space [LPM03, CIDSZ08, Xia16, CG20]. We will base our
stratification learning techniques on the methods described in the previous chapters.
This will also serve as a demonstration of the utility of ΦPL in this application context.

To generate some intuition about image patches we included Fig. 5.1. To make
things precise will state what we will refer to as an image. Here, an image is repre-
sented by a map

f : Ω = {0, . . . , n} × {0, . . . ,m} ⊂ N2 → T ⊂ Rc

where n,m are the height and width of the image respectively, c ∈ N>0 is the number
of color channels and T ⊂ Rc is a non-emtpy set of color vectors. For an image as
such, which we will often simply refer to as f , the associated image patch space of
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p× q patches, denoted P(p,q), can be represented by the map

F(p,q) : {0, . . . , n− p} × {0, . . . ,m− q} → P(p,q) ⊂ Rpqc

x 7→ (f(x+ t))t∈[0,p]×[0,q],

with 0 < p < (n − p) and 0 < q < (m − q) natural numbers. The topology of P
critically depends on the metric on the image patches and we will discuss different
choices in the subsequent sections to a small extend. We start with one of the first
approaches towards the topological analysis of image patch spaces and that is the
analysis of high contrast image patch spaces.

5.1.1 High contrast image patch spaces

Background and other work

Earlier studies examining the topological structures within image patch spaces, par-
ticularly those we will build upon, are found in [LPM03, SC04, CIDSZ08]. While
these sources primarily focused on natural grayscale images, similar investigations
into colored images are documented elsewhere [Xia16]. Specifically, the datasets uti-
lized in [LPM03, SC04, CIDSZ08] were derived from the van Hateren image collec-
tion [vHvdS98], comprising over 4000 large calibrated grayscale still images capturing
outdoor scenes around the city of Groningen, taken with a Kodak DCS420 camera.

In these studies, patches extracted from the image collection were of size 3×3 and
interpreted as elements in 9-dimensional Euclidean space R9. A sequence of prepro-
cessing steps was implemented to sparsify the dataset through random subsampling
and position it on a geometrically manageable object in Euclidean space, namely the
sphere. This transformation facilitated statistical analyses based on volume calcu-
lations, as described in [LPM03], and computations of distances to another object
situated on a sphere, as in [CIDSZ08].

The primary topological finding in [LPM03] is the concentration of most patches
around blurred step-edge patches, resembling the topology of an annulus, often re-
ferred to as the ”main circle.” Filtering the dataset by density allowed for the targeting
and further investigation of dense subsets, potentially revealing more complex spatial
structures. While [LPM03] primarily employed statistical methods, [CIDSZ08] uti-
lized persistent homology. They confirmed that blurred step-edge patches constituted
the densest subset in the extracted image patch space and proposed a 3-circle model
for a slightly higher percentage of densest patches.

To refine and build upon the analyses conducted in [LPM03, CIDSZ08], we aim
to provide a more precise account and transition into our own investigations of image
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patch spaces.

Dataset

We will briefly describe the approach by [LPM03] and [CIDSZ08] which focused on
high contrast patches extracted from van Hateren’s natural image dataset [vHvdS98].

The dataset was systematically generated through the random extraction of a
predetermined number of patches, denoted as N , from each patch space characterized
by a width w associated with an image f : Ω → T selected from the van Hateren
database. Subsequently, the collection of all patch spaces into a unified, comprehensive
patch space denoted as A was performed as per the methodology proposed in [LPM03,
CIDSZ08]. However, it is pertinent to mention that we also opted to incorporate
instances where the patch space originates from a single image in the dataset collection.
The initial step in dataset size reduction involves the selection of N patches from each
chosen image.

For the purpose of establishing a metric space, the patches are construed as real
w2-vectors arranged column-wise, representing elements of Rw2 endowed with the
standard Euclidean metric. To mitigate variations in luminance among diverse images
within the database, a logarithmic transformation is applied to the intensity values of
the patches. It is imperative to acknowledge that this adjustment is not applicable to
individual images, notwithstanding the logarithmic transformation applied. Even in
such cases, where a logarithmic transformation is employed, darker intensity values
are elevated, rendering features in the darker regions more perceptible to the human
eye. Simultaneously, brighter intensity levels are attenuated to lower values due to
the logarithmic transformation.

In summary, we have:

A → P ⊂ Rw2

a 7→ x = (log 1 + a11, log 1 + a21, . . . log 1 + aw1, log 1 + aw2, ..., log 1 + aww).

Preprocessing

The so-called D-norm given by ||x||D =
√∑

i∼j(xi − xj)2 with i ∼ j if the pixels are
adjacent in the patch associated to x, induces an ordering on P ′. The D-norm can be
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computed by ||x||D =
√
xTDx with a matrix D given by

D =



2 −1 0 −1 0 0 0 0 0

−1 3 −1 0 −1 0 0 0 0

0 −1 2 0 0 −1 0 0 0

−1 0 0 3 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 3 0 0 −1
0 0 0 −1 0 0 2 −1 0

0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2



.

The D-norm is a measure for contrast and can therefore be used to filter out low
contrast patches, e.g. by only keeping the T elements with highest D-norm. In order
to place P ′ on the surface of an w2− 2-dimensional ellipsoid the dataset is centralized
and normalized with the D-norm

P ′ → P̃ (5.1)

x 7→
x− 1

w2

∑
i=1 xi

||x− 1
w2

∑
i=1 xi||D

. (5.2)

It is crucial to note that the D-norm necessitates a non-zero value, a requirement
assured through the meticulous selection of high-contrast patches, ensuring that T
does not fall below a certain threshold. As of the current stage, the transformative
impact on the topology of patch spaces remains inconsequential, as alterations in
inter-point distances are reversible, a consideration integral to the computation of
persistent homology.

In order to land on an actual Sw2−2 ⊂ Rw2−1, the authors in [LPM03,CIDSZ08] un-
dertake a coordinate transformation with respect to the 2-dimensional Discrete Cosine
Transform (DCT) basis inherent to a 3× 3 image patch. This calculated transforma-
tion effectively diagonalizes the matrix D”. Within R9, this basis characterized by
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the following eight vectors:

e1 =
1√
6

(
1 0 1 1 0 1 1 0 1

)T
,

e2 =
1√
6

(
1 1 1 0 0 0 −1 −1 1

)T
,

e3 =
1√
54

(
1 −2 1 1 −2 1 1 −2 1

)T
,

e4 =
1√
54

(
1 1 1 −2 −2 −2 1 1 1

)T
,

e5 =
1√
8

(
1 0 1 0 0 0 −1 0 1

)T
,

e6 =
1√
48

(
1 0 1 −2 0 2 1 0 1

)T
,

e7 =
1√
48

(
1 −2 1 0 0 0 −1 2 1

)T
,

e8 =
1√
216

(
1 −2 1 −2 4 2 1 −2 1

)T
.

Density Filtration

An essential step in the investigation of patch spaces from natural images is to not look
at the whole dataset as previously described in the above but at percentages of the
densest points in P̃ . This is achieved by computing the k-nearest neighbors density at
every point x ∈ P̃ , denoted ρk(x), which is given by the maximum distance between
x and the k closest points to x in P̃ . These density values induce an ordering on P̃

by x ≤ y iff ρk(x) ≤ ρk(y). For a chosen value k and once P̃ is ordered in descending
order by the k-nearest density, we can select a percentage p ∈ [0, 1] of highest density
points for further investigation. We will refer to such a subset as X(k, p) ⊆ P̃ .

Analysis

To illustrate the importance of this filtration step let k = 15 and p = 0.3, i.e. the top
30 percent of densest points. See Fig. 5.2 for a visualization of a point cloud, denoted
X, embedded into R2 via PCA that was generated from a single image (image number
1111 in the van Hateren collection). Note that this considers only a single image not a
whole collection of images but the preprocession was essentially the same. In Fig. 5.3,
we showcase the effect of not selecting the denser subsets by setting p = 1, which
results in a larger dataset that also has less resemblance of the S1 then the smaller
percentage.

Another point cloud, denoted X′, was taken from a single image from the van
Hateren collection (number 120) with preprocession parameters p = 0.3, k = 15. An
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Figure 5.2. Point cloud from van
Hateren image number 1111 p = 0.3

Figure 5.3. Point cloud from van
Hateren image number 1111 p = 1.0

interesting point here is the difference in the topology. While in the case of X the
patch space very much resembled the topology of S1, the main circle, in case of X′ we
can record three persistent homology 1-cycles (see Fig. 5.4.

Apart from that, we generated a dataset from all images in the van Hateren collec-
tion exactly as described previously. To further investigate the stratified structure in a
dense subset of the whole patch space we chose the parameters k = 15 and p = 0.1, for
reference denote this patch space as X. We applied Algorithm 5 in order to compute
ΦPL(X, 1) of the point cloud, depicted in Fig. 5.5. Furthermore, we selected radius
r = 0.5, u = 0.3 as threshold in order to obtain a stratified sample by SrΦ,u. With this
procedure we were able to localize four connected regions of significant lower ΦPL(X, 1)
value, thus resulting in four connected singular regions. This is in line with the model
of having three nested circles where two of the three intersect the third only in two
distinct points. The identified singular regions may correspond to theses intersection
points. A picture of SrΦ,u(X, 1) with its singular stratum indicated by yellow color is in
included with Fig. 5.6. To further test the hypothesis whether or not the patch space
resembles the topology of a circle to which two distinct circles are attached at two dis-
tinct points each, we proceeded by investigating the persistent homology of the parts
of the corresponding stratification diagram. That is, we selected (vl, vh) = (0.3, 0.4)

to generate a stratification diagram from the stratified sample SrΦ,u(X, 1). The re-
sults for persistent homology up to dimension 1 of the three parts of the stratification
diagram can be seen in Fig. 5.7 for DvlSrΦ,u(X, 1) (the regular part), in Fig. 5.8 for
Dvl
vh
SrΦ,u(X, 1) (the link part) and in Fig. 5.9 for DvhSrΦ,u(X, 1) (the singular part). We

only calculated up to dimension 1 as we want to see if the hypothesis can be further
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Figure 5.4. Vietoris-Rips persistence diagram of X′

consolidated which would mean that we find only non-trivial 0 homology cycles. If
we only look at the most persistent features, we record eight persistent 0-cycles for
the regular part, 16 persistent 0 cycles in the link and four persistent 0-cycles in the
singular part.

Interpretation

Our analysis had mainly two objectives. First, we wanted to reconsider the analysis
originally done in [SC04, CIDSZ08] and take a closer look at the data preprocessing
as well as the effect on the topology of patch spaces. The transformations up to
the density filtration have no significant effect on the topology as it is more of a
rescaling of the distances between the patches and therefore the impact on persistent
homology can be adjusted for. The data was filtered by density estimations as a means
to extract subsets of an image patch space for further investigation. This followed
the idea that the space of most frequent patches in a collection of natural images
possess non-trivial topological features which can then be measured by persistent
homology. Previous publications reported that most of the patches concentrate around
blurred step edges [LPM03] and suggested a so-called three circle model [SC04]. We
also considered the topology of individual images with a simple comparison of the
images with noticeably different homological features as demonstrated by comparing
comparing image number 1111 and 120.



Image patch data 123

Figure 5.5. Visualization via PCA of X with coloring by results of ΦPL(X, 1)

Figure 5.6. Stratification indicated by color of the PCA embedding of X
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Figure 5.7. Persistent homology of DvlSrΦ,u(X, 1)
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Figure 5.8. Persistent homology of Dvl
vh
SrΦ,u(X, 1)
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Figure 5.9. Persistent homology of DvhSrΦ,u(X, 1)
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We then investigated the dataset constructed as in [CIDSZ08] with our own meth-
ods to test the circle model which would be a stratified space. We were able to uncover
a stratification for the sample space given by image patches and then generate a strat-
ification diagram. We then investigated the persistent homology of the parts of the
stratification diagram. All of our results strongly support the hypothesis of the threes
circle model by [SC04,CIDSZ08].

5.1.2 Cluster Images

In contrast to the previously examined image patch spaces, we now turn our atten-
tion to individual image patch spaces. Specifically, we aim to explore the topology
associated with a single image, contemplating the question of what form the topol-
ogy of an individual image might assume. The task of establishing a comprehensive
and meaningful topological model for every conceivable type of image appears daunt-
ing without the incorporation of statistical considerations. Consequently, we direct
our focus towards specific features within images, as elucidated at the outset of this
section.

In a broad sense, our approach involves regarding an image as an amalgamation
of colors and the transitions between them, adopting a reductionist perspective. A
category of images that readily lends itself to this descriptive framework is what we
will term as ”cluster images.” To foster initial understanding and to foreshadow the
eventual mathematical consolidation, we shall embark upon an example to provide
intuition regarding the model toward which this discussion converges.

Example 5.1.1. As a simple academic example consider the grayscale image in
Fig. 5.10. It contains four distinct grayscale colors and clearly defined and uni-
formly colored regions. The transition between different colors is not immediate but
smoothed-out, i.e. a patch that lies between a black and a white region also contains
colors that lie in between both colors on the grayscale. A few of the patches present
in the image are shown in Fig. 5.11. An embedding of the corresponding image patch
space of width 3 equipped with the Euclidean distance into R3 via PCA can be seen
in Fig. 5.12. We colored the points according to the value of the function

ΦPL(Mr
x(P ), 2)

at any point x in the patch space P to indicate the stratified topology of the patch
space. Although resembling the shape of nested spheres there is no intersection be-
tween the smaller spheres inside the largest sphere as indicated by the local homology
not being irregular at the visual intersection in the 3-dimensional embedding. Fur-
thermore, the global persistent homology also supports the hypothesis of five nested
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Figure 5.10. Simple grayscale cluster image

spheres representing the transition between four different colors. Consider Fig. 5.13
for the persistence diagram of the patch space up to a finite radius. In dimension
two we see exactly five persistent cycles that represent the fact that there are five
different complete transitions between two colors. Furthermore, the two persistent
one-dimensional cycles reflect that there are two different possibilities for cyclic tran-
sition form one color to another.

The illustrated image in Example 5.1.1 depicts a particularly unique case for an
image, and it is not within our expectations for a natural image patch space to com-
prise such a limited array of patches. This expectation is substantiated by existing
scientific findings, as evidenced in, for instance, [LPM03]. Additionally, the prevalence
of (ideal) step edges predominantly occurs in regions of an image devoid of textures.

Moreover, in the context of Example 5.1.1, we have already observed that each
color transition within a given image may correspond to an S2 within the image patch
space. This preliminary observation hints at the computational intricacies inherent in
the examination of the image patch space encompassing all color transitions.

Background

To refine this concept, we aim to introduce a model for the image patch space compris-
ing exclusively what we will term as step edge patches. In developing a mathematical
model for step edge patches, it is crucial to recognize that an ideal step edge patch
can be defined by two parameters—the distance from the patch’s center and the angle
of the edge. Consequently, the patch space exclusively composed of step edges situ-
ated between two colors is isomorphic to S2. It is worth noting that the exclusion of



Image patch data 129

Figure 5.11. Step edge patches from simple image

Figure 5.12. PCA embedding of step edge patch space with coloring by
ΦPL(Mr

x(P ), 2)
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Figure 5.13. Persistence diagram up to a finite scale and dimension two of the simple
image patch space
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low-contrast patches would alter the topology to that of an annulus, which is, at the
very least, homotopy equivalent to S1.

For a given number of colors, we can systematically generate all step edge patches
facilitating transitions between two colors. For the sake of simplicity, we consider
colors to be represented on the grayscale, designated by a real number within the
range of 0 to 1. Importantly, different approaches to defining a step edge patch may
exist, potentially yielding distinct outcomes concerning patch spaces. In our context,
we opt to characterize step edge patches through the following polynomial description:

Definition 5.1.2. Let pϕ,θ : {−1, 0, 1}2 → [−1, 1] be the polynomial given by

qϕ,θ(x, y) = sin(φ)(1 + cos(θ)x+ sin(θ)y)

for θ ∈ [0, 2π] and φ ∈ [0, π
2
). An (ideal) step edge patch between colors t1, t2 ∈ Rc is

given by
pϕ,θij (t1, t2) =

| t1 − t2 |
2

qϕ,θ(i, j) + t1

for (i, j) ∈ {−1, 0, 1}2.

For a given set of colors T = {t1, . . . , tk} we denote the image patch space of all
(ideal) step edge patches by G(T ) = {pϕ,θ(ti, tj) | φ ∈ [0, π

2
), θ ∈ [0, 2π](ti, tj) ∈

(T
2

)
}.

Definition 5.1.3. An image f : Ω→ T ⊂ Rc is called cluster image if the associated
patch space P contains only step edge patches, i.e. P ⊂ G(T ).

Remark 5.1.4. The definition of the ideal step edge patches as well as the definition of
cluster images in this context is intended to give a formal object to refer to that models
a certain class of patches that actually occur naturally in images. It is highly unlikely
that a patch space from a natural image, e.g. one from the van Hateren collection,
can be classified as a cluster image. However, we will use our model of cluster images
to describe the topology of a certain subset of patch spaces from arbitrary images
and to explore which visual information is contained in image patches that lie close
to a space G(T ). The topology of the space of all step edge patches between colors T
is can be described as a union of

(|T |
2

)
2-spheres whose pairwise intersection is either

given by a single point or the empty set.

We have seen an indication of what type of image can be faithfully classified as clus-
ter image in Example 5.1.1 and what effect the replacement of natural image patches
with step edge patches has in Example 5.1.5. More general, cartoonish images fit the
model of a cluster image very well. However, we would like to briefly demonstrate that
even a rather natural image can be represented as a cluster image without changing
the visuals detrimentally.
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Figure 5.14. Grayscale example image
from the INRIA Holidays dataset

Figure 5.15. Grayscale INRIA Holidays
image after transformation to G(T )

Example 5.1.5. To illustrate what portion of a natural image can be represented
solely with step edge patches, we have incorporated an example image extracted from
the INRIA Holidays image dataset [JDS08]. In Fig. 5.14, a grayscale image from the
dataset is depicted. Initially, we constructed the patch space of width 3, designated as
P , from the grayscale image. Subsequently, each patch in P was substituted with its
nearest point in the space G(T ), where |T | = 15, representing the 15 most dominant
colors in the given image. Following this replacement, an image can be reconstructed
from the collection of step edge patches, allowing an examination of the visual impact
of this transformation. The outcome is portrayed in Fig. 5.15. The image exhibits
an overall smoother or blurred appearance and has lost many of its textures. This
example underscores the challenge of capturing the topology of an image patch space,
particularly with the metric imposed on the image patch space. Although not identical,
the images presented in Figs. 5.14 and 5.15 are visually akin while harboring distinct
topological features.

The upshot of the transformation of an image as in Example 5.1.5 is to make
certain topological characteristics of an image accessible that were not available by
other means. How informative this characterization of an image can be will depend on
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the application and remains open at this point. Nevertheless, we made a first attempt
to demonstrate the utility of this topological feature of image data in the next part.

Dataset

We considered the CIFAR-100 dataset [KH09] as a source of rather natural images.
The dataset is a collection of small photographs of various natural scene types, e.g.
landscape, man-made outdoor scenes, animals, flower, people. The dataset is orga-
nized by groups of images. Each group contains images of a certain type, e.g. one
group contains only images of people and another contains images showing landscapes.
This is ideal for our purposes as we are interested in seeing if we are able to associate
distinct topological features with different types of images. Additionally, this dataset
contains images that are all of size 32× 32 which makes the dataset uniform.

Preprocessing

We want to compare two classes of images contained in the CIFAR-100 dataset. For
every image in a group we determined the five most dominant colors t1, . . . , t5 and
used these colors to generate spaces G(T ) with T = {t1, . . . , t5}. Furthermore, we
generated the associated patch space P of width 3 for every image. Then, for every
patch p ∈ P we determined the patch in G(T ) with minimal distance to p. In that
way we generated a patch space Pc ⊂ G(T ) whose patches are as closely matched to
the patches in P .

Analysis

We computed the persistent homology of the spaces Pc for every image in the respective
two groups from the dataset. We extracted the persistence bars from the persistence
diagrams that were longer than a threshold determined from the distances between
colors in T . This was done separately in every dimension to preserve most of the
topological information. The persistence was summed up to a single value in dimension
one and two. For every image we generated a 4-dimensional vector containing the
summed persistence and the number of homology 1- and 2-cycles that persisted for
longer than a fixed and uniform threshold. Let αki denote a persistent homology
cycle in dimension k = 1, 2 that persists for Pers(αki ). The format of the vectors
are (

∑m
i Pers(α2

i ),
∑l

i Pers(α1
i ),m, l). In the CIFAR-100 dataset the groups are of

size 2500. We selected only the first 500 images of each group as data sample to work
with. We then merged the two sets of 4-dimensional vectors containing the homological
information, i.e. we simply forgot the grouping, and then applied a standard k-means
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Figure 5.16. Excerpt image from the
CIFAR-100 landscape image group

Figure 5.17. Excerpt image from the
CIFAR-100 people image group

clustering with k = 2. In Figs. 5.16 and 5.17, we show two examples images from the
respective groups along-side their associated step edge patch space Figs. 5.18 and 5.19.
In that exemplary case the difference in topology is quite drastic which is clearly not
always the case. To be more precise, we can report that the two clusters formed by
the k-means algorithm separated the two groups again with high accuracy. That is,
84.4 percent of the images from the people image group were assigned to the first
cluster whose center was calculated as (91, 80, 5, 77), i.e. a total persistence value of
91 from 5 persistent homology 2-cycles. In the second cluster with center vector given
by (32, 128, 2, 31) we find 87.8 percent of the cluster are images from the landscape
group. We record an overall larger amount of short to medium persistent 1-cycles in
this dataset which we attribute to the fact that 1-cycles need less points to be formed
and are therefore much more susceptible to noise. Still, these results indicate a clear
trend in the topology of these image patch spaces that we will interpret in view of the
visual differences of the image groups in the next paragraph.

Interpretation

The results of our analysis indicate a measurable topological difference between dif-
ferent types of images. Our short investigation was by no means intended to develop
a new method for image classification but rather to demonstrate the presence of topo-
logical structure in image data. The selected image groups were visually very different.
One group showing landscapes which are organized on few (mostly two) large areas
of similar color and texture separated horizontally or vertically. This corresponds to
the strong tendency of these images, after transformation to the cluster image patch
space, to have few but very persistent homology cycles, especially in dimension 1. This
stems from the fact that the direction of step edge patches present in the associated
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Figure 5.18. Step edge patch space gen-
erated from landscape image in Fig. 5.18

Figure 5.19. Step edge patch space gen-
erated from people image in Fig. 5.17

patch spaces are restricted in their directions. The persistent 1-cycles may come from
incomplete 2-spheres in the space of all step edge patches.

The group of images showing people (and most of the time the upper body) usually
feature a strong background to foreground contrast. The foreground is dominated by
the outline of a person and the color transitions occur in several directions. Further-
more, we can often record more color transition occurring in these types of images.
This results in an increased number of 2-cycles in the image patch space generated
from the images. Note, however, that although the number of 2-cycles was usually
larger than in landscape images, the cycles were also less persistent indicating a smaller
distance in color space between which the transitions happen.

5.2 Artery images and pixel patches
Background and other work

Image patch spaces of width 1 are another special case as the patches are the pixels
of an image itself. The Euclidean distance between pixels, i.e. the color values, is
topologically not significant. However, another obvious choice of metric would be the
one induced by the metric on the lattice Ω associated with an image. Combined with
a filtration on the color values of the pixels or with a distance between them, we can
generate point clouds from the 2-dimensional geometric shapes visible in an image.
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Figure 5.20. Fundus camera image of
healthy retina

Figure 5.21. Fundus camera image of
glaucoma patient’s retina

The analysis of images based on varying local geometry in an image is common in the
field of image segmentation and clustering. In [ESM+21], for example, the authors
used persistent homology of local image regions for the segmentation of microscopy
images of cells into functional regions, e.g. cell border or nuclei. Because microscopy
images of cells are organized into different functional areas that result in different
geometrical features present in a cell image, persistent homology can be used to dis-
tinguish these regions and is therefore used in [ESM+21] to determine which regions
contribute to the classification in a machine learning task.

Dataset

The dataset we want to investigate here is a set of manually segmented retina photos.
After the photos were taken with a fundus camera, a group of retinal image analysis
experts and clinicians from ophthalmology clinics manually segmented the photos into
blood vessels and background. The dataset is composed of 15 healthy retina images,
15 retinas from glaucoma patients and 15 images of diabetes patients, which we did
not consider in our analysis, and was created by [BBM+13]. Examples of the original
fundus camera pictures can be seen in Figs. 5.20 and 5.21 and for examples of manually
segmented images, see Figs. 5.22 and 5.23.

Preprocessing

For a given segmented retina photo f : Ω→ T we consider the space of patches P of
width 1 equipped with the induced metric from the lattice Ω. Because the segmented
images are actually binary images and the patches are literally the pixels of the image
we can select only the patches that make the blood vessels in the image by thresholding
the pixel values, i .e. the point cloud we are working with is P ′ := {p ∈ P | p[0] > 0}.
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For two-fold reasons we thinned-out the point cloud by iterating over all patches and
including the current patch if the distance to all previously included patches is less
or equal a chosen minimum δ. We obtain a space of patches P ′′ such that p, q ∈ P ′′

implies d(p, q) >= δ. This is a common procedure in data analysis to reduce noise or
as in our case to improve computational performance. Besides this effect we wanted
to make sure that the points in the datasets extracted from both classes of images are
equally dense and our persistent homology results are not biased by such an effect.
The resulting space is a collection of points in the plane that sample the shape of
blood vessels in a participants retina.

Analysis

Topologically speaking, this space presents itself with many singularities of different
kind and we investigated its type with the methods we described in the Chapter 4.

• Sticking to usual notion for sample spaces, let Xg
i and Xh

i denote the spaces P ′′

as described in the preprocessing for the i-th image from the set of glaucoma or
healthy images respectively.

• The metric on X∗
i is induced by the natural image lattice Ω.

• As measure for singularity, i.e. as Φ-function we chose ΦPL .

• The magnification parameter was set to r = 30, thus, by evaluating the fibers
of Mr(X∗

i ), we obtain a strongly stratified sample ΦPL∗(Mr(X∗
i ), 1) for i =

1, . . . , 15 and for both image classes.

• The threshold value u was set to u = 0.58 for all spaces considered.

• We record two values obtained by this method. The first is the total amount
of points in X∗

i for which the threshold was surpassed. Second, we calculated
persistent homology in dimension 0 of the sample given by all points above the
threshold to retrieve the amount of singular regions.

Results

In Table 5.1, we see the amount of points in X∗
i for which the threshold was surpassed

by ΦPL(Mr(X∗
i ), 1). For every healthy test person the calculated value lies above the

value of any glaucoma patient. We proceeded by calculating the persistent connected
components of the approximated singular strata. See Table 5.2 for the recorded num-
bers.While the presentation of our results may not be as straightforward as in the case
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Figure 5.22. Healthy Figure 5.23. Glaucoma

of the point count surpassing the threshold, it is evident that, in general, the healthy
group displays a greater prevalence of singular regions.

Interpretation

Our findings indicate that local persistent homology proves effective in distinguishing
between glaucoma patients and healthy test participants using manually segmented
retina images obtained through a fundus camera. The key discriminative factors lie in
both the quantity of points in X∗

i reaching the threshold (Table 5.1) and the persistence
of singular regions within the sample space (Table 5.2).

To contextualize our results, a study by Rudnicka et al. [ROW+20] reported smaller
average area and width of arterioles and venules in glaucoma retina photography
compared to healthy arteries. However, the study did not address a reduction in
the number of bifurcations, branches, and crossings in arteries caused by glaucoma.
Consequently, we hypothesize that components within the singular stratum of SrΦ,u,
corresponding to regions around crossings, branchings, and bifurcations in a retina
image, exhibit greater persistence in pixel data extracted from healthy groups. This
may be attributed to our method’s capability to detect singular aspects in regions
where arterioles and venules are narrow, a feature that may be less discernible in the
glaucoma group where these vessels are too thin.

Exploring the robustness of our findings, it would be intriguing to apply our anal-
ysis to algorithmically segmented retina photos to assess the reliability of our results
under less-than-perfect image segmentation conditions.
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Figure 5.24. ΦPL∗(Mr(X∗
i ), 1) of retina image

Image number Healthy Glaucoma
1 9147 3728
2 9646 4526
3 9251 2692
4 7957 2694
5 8485 3618
6 7367 3922
7 7180 3888
8 9557 3891
9 5571 2884
10 5980 3066
11 8016 5069
12 11575 5010
13 6833 3533
14 5726 4114
15 5154 4559

Table 5.1. Number of points where ΦPL∗(Mr(X∗
i ), 1) is above threshold
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Image number Healthy Glaucoma
1 199 132
2 194 142
3 200 116
4 182 103
5 193 107
6 191 124
7 159 128
8 173 129
9 174 114
10 177 105
11 174 139
12 180 185
13 184 148
14 191 128
15 133 125

Table 5.2. Number of persistent connected components in the singular strata of
SrΦ,u(X∗

i , 1)



Chapter 6

Conclusion

In this final chapter we would like to discuss open questions and some promising
directions based on the results we presented. We address the results of every previous
chapter separately and in the same order they appeared in this thesis.

6.1 Persistent Stratified Homotopy Types
In Section 2.2, we have validated that the concept of persistent stratified homotopy
type indeed satisfies the expected stratified analogs of the properties delineated for
the persistent homotopy type, specifically encompassing properties (1), (2), and (3)
mentioned in the introduction. In concise terms, we have demonstrated its computabil-
ity (as discussed in Remark 2.2.15), stability (as elucidated in Theorems 2.2.31 and
2.2.32), and its ability to infer information through invariance under small thickenings
(detailed in Proposition 2.2.16).

An avenue for future research may involve exploring extensions beyond the two
strata case. The deliberate choice to concentrate on the two-strata case at the outset
serves as a strategic starting point, facilitating the introduction of fundamental con-
cepts such as persistent stratified homotopy types and stratification learning. This
deliberate focus helps manage technical complexity in the initial stages.

Expanding the scope to more than two strata represents a logical progression but
comes with an anticipated increase in complexity. Although the specific techniques
for investigating persistent stratified homotopy types in the context of more intricate
poset structures remain uncertain, it is noteworthy that certain aspects of the as-
sociated abstract homotopy theory have already been investigated ( [Dou19, DW21,
Hai18, AFR19]). The theoretical groundwork in abstract homotopy theory provides
a foundation and potential guidance for future explorations. Nevertheless, extending
the analysis to the multi strata case holds substantial promise for advancing the field
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of topological data analysis. This extension allows for the examination of even more
complex stratified structures that may emerge in real-world applications.

A crucial future direction involves exploring suitable algebraic invariants for strat-
ified spaces within the framework of Topological Data Analysis (TDA). Although we
have already used algebraic invariants capable of discerning singular spaces, read-
ily computable from point cloud data, namely, the persistent homology of links and
strata, there exists a persistent version of intersection homology (as discussed in, for
instance, [BH11]) that demands further investigation, particularly in terms of its com-
putability from stratified samples. Based on our investigations of persistent stratified
homotopy types and their representation by thickenings of stratification diagrams,
this work provides results that further indicate possible approaches to address this
aspect.

Consequently, there is considerable room for future refinements and generalizations
in subsequent research pursuits.

6.2 Approximate Stratification
We have worked towards a theoretical framework that allows to identify methods
that can be used in practice to infer stratified structures in point cloud data. With
Theorem 3.5.8 we reported the result that proves that it is possible to approximate the
stratification for a large class of two strata Whitney stratified spaces from sufficiently
close non-stratified samples.

Parallel to the conclusions drawn from our investigations into persistent stratified
homotopy types, extending our results to the multi-strata case presents a promis-
ing avenue for further exploration. Similarly, challenges emerge in this extension,
particularly concerning the increased difficulty in learning stratifications from non-
stratified data when confronted with a more complex underlying stratification poset.
This heightened complexity is exemplified by instances like the Whitney Umbrella, as
documented [Ban07, p. 128-129].

It is noteworthy that certain outcomes in this direction transcend the confines of
the two-strata case, as demonstrated by the convergence of magnifications to tangent
cones (Proposition 3.3.11). This observation hints at the potential to generalize our
approximation result (Theorem 3.5.8) for suitable functions Φ and sufficiently well-
behaved spaces. Such generalizations may even offer avenues to address the challenges
posed by examples like the Whitney Umbrella.
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6.3 Algorithmic Stratification Learning
Our overarching aim was to provide a comprehensive exposition of the algorithmic
aspects inherent in our work. The primary objective was to establish a connection
between the advanced mathematical concepts elucidated in preceding chapters and
the pragmatic implementation of stratifying a point cloud derived from a stratified
space. In particular, we meticulously expound upon the computation of two specific
choices for function Φ that can be used as a measure of singularity in point clouds.
One of the functions leveraged local persistent homology and the other was based on
the local distance to linear subspace of some Euclidean space.

Local persistent homology:

The function ΦPL , introduced in Example 3.2.3, presents a viable method for stratify-
ing a point cloud through the use of local persistent homology. Our goal was to devise
an algorithm capable of executing the computations associated with the application
of ΦPL .

• We expounded upon and implemented a methodology for quantifying singularity
within point cloud data, grounded in the application of local persistent homology
(compare to Sections 4.1.2 and 4.3).

• The requisite sensitivity and robustness to noise of this methodology were demon-
strated through assessments on both artificial and real-world datasets. This
validation involved verifying anticipated outcomes (refer to Example 4.3.2 and
Analysis of the three circle model) and providing additional insights into unex-
plored data domains (refer to Section 5.2).

• We also delineated the capacity to approximate genuine local persistent homol-
ogy (see Proposition 4.1.29) through the use of a Vietoris-Rips type construction.
Although the Vietoris-Rips complex is commonly used as it allows for efficient
construction and storage, the identified worst-case scenario error (based on the
interleaving of Vietoris-Rips and Čech complexes) suggests opportunities for en-
hancement, possibly through the exploration of alternative methods to evaluate
the accuracy of our approach.

• Another avenue of exploration involves approximating ΦPL by utilizing a Čech
type complex, briefly mentioned in Remark 4.1.23. Achieving this would neces-
sitate further investigation into the efficient computation of Čech complexes.
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Tangential Approximation

Once again, we introduced a function ΦHd in Example 3.2.2, which serves the pur-
pose of identifying potential singularities in non-stratified samples. We outlined an
initial algorithm for approximating the values of ΦHd on a given sample space and
evaluated the accuracy of these approximations. The computations involve solving an
optimization problem, formulated in both a deterministic and randomized manner.

While we explained how to formulate a smooth constrained optimization prob-
lem for calculating approximations of ΦHd, we did not provide an actual implemen-
tation. Although existing implementations for similar problems are available, ex-
ploring dedicated algorithms tailored for optimization on matrix representations of
Grassmannians could prove advantageous. Previous investigations into optimization
within Grassmannians have often relied on the differential structures of Grassman-
nians. Moreover, existing implementations of these methods may offer a promising
starting point [LLY20,KWT23].

Regarding the implementation we provided for our random optimization approach,
optimizing computational efficiency was not our primary goal, and there are certainly
several areas for improvement. We highlight a few of them here:

• The generation of random elements in the Grassmannians Gr(n, k) can be achieved
using algorithms of varying complexities. For instance, [Ste80] provides a de-
scription of an algorithm with a complexity of O(n2) for generating random
orthogonal matrices, which could be applicable in this context.

• Various sources discuss efficient methods for computing the Hausdorff distance,
as outlined in [GBK05, TH15]. Approximative approaches may be particularly
relevant in practice, given that the described algorithm inherently is of an ap-
proximative nature.

• Unlike our fundamental random optimization approach, more sophisticated de-
signs such as genetic algorithms or stochastic gradient descent are worth consid-
ering [Bot04,Mit98,LJ73] to further improve on the applicability of our methods
in future.

In total, the modular form of our stratification pipeline in the choice of functions
Φ to measure singularity leaves room for future investigations. Different methods that
may fit into this context and may be realized as a function Φ include methods based
on curvature and density (compare to [RBSL20]) as well as tangent spaces and local
dimension estimation (compare to [LON22]).
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Our efforts reached fruition with the integration of theoretical insights and algo-
rithmic advancements into a complete implementable stratification pipeline. Applying
this pipeline to a controlled example, where we meticulously controlled the Hausdorff
distance of the sample to the intended space (see Example 4.3.2), not only underscores
its practical utility but also facilitates the demonstration of previously developed con-
cepts.

6.4 Applications
The presence of stratified structures or singularities in data examples, providing dis-
tinctive features, is evident in various applications ( [LPM03, BMP+08, CIDSZ08,
MW11, FW16, Xia16, STHN20, ESM+21]). It is essential to acknowledge that point
clouds in general cannot be expected to be homogeneous or sampled solely from a
manifold. The exploration of stratifications in non-structured datasets is expanding,
and this work aims to contribute to that growing body of knowledge. The availability
of more appropriate methods empowers scientists to discover and recognize stratified
structures within data.

Our analysis of data examples illustrated how established models, such as the three-
circle model, could be reevaluated and supported by our methods, offering additional
insights into the underlying topology of the data space (see Analysis of the three circle
model).

Furthermore, we demonstrated the identification of stratified structures in simple
applications, such as manually segmented fundus camera images (discussed in Sec-
tion 5.2). The presence of distinctive features, characterized by the number of cross-
ings and branchings, allowed us to organize the dataset into distinct groups based on
this structure.

Our investigation into the topology of image patch spaces, addressing the question
of whether the underlying structure resembles that of a manifold or a stratified space, is
not exhaustive. We presented a model for characterizing image patch spaces extracted
from a specific class of images, namely cluster images (see Definition 5.1.3), and
found indications of a singular structure. Future research could explore additional
elements to augment the proposed model for cluster image patch spaces. For instance,
incorporating not only step edge patches (see Definition 5.1.2) but also other frequently
observed image patches depicting lines and cross formations could provide further
insights into how the topology changes. This may enable us to represent a broader
class of images or potentially identify conditions under which this is feasible for certain
images.
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Appendix A

Further results on Whitney
stratified spaces and definability

This appendix presents supplementary technical proofs that were intentionally omitted
from the main body of this thesis. The content herein consists of statements and proofs
previously featured in a collaborative paper authored by the present writer and Lukas
Waas [MW22], with the content reproduced in a largely verbatim manner.

A.1 Stability result for Whitney stratified spaces
Proposition A.1.1. [Hir69, Proof of 4.1.1] Let W be a Whitney stratified space
over P and let φ : [0, d] → W be the integral curve associated to x ∈ Wq, y ∈ Wp,
q ≥ p ∈ P , with notation as in Proposition 3.3.4. Then φ has the following properties.

1. ||φ(t)− y|| = t, for t ∈ [0, d].

2. ||φ(t)− φ(t′)|| ≤ 1√
1−δ2 |t− t

′|, for t, t′ ∈ [0, d].

As a consequence of this result, the continuity result of Theorem 2.2.31 can be
improved to Lipschitz continuity.

Proposition A.1.2. Let P = {p < q} and let W ∈ SamP be a Whitney stratified
space with compact singular stratum Wp. Then, for any C > 1, there exists an R > 0,
such that the function

Ω ∩ (0, R)2 → DPSam

v 7→ Dv(N (W ))

is C-Lipschitz continuous.
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160 Proof of Proposition 3.3.3

Proof. We omit the N , to keep notation concise. By Lemma 2.2.28, it again suffices to
consider the link part of the diagrams given by W vl

vh
. Choose δ < 1 such that 1√

1−δ2 <

C. Next, take R small enough such that NR(Wp), with retraction r : NR(Wp)→ Wp is
a standard tubular neighborhood of Wp. By [NV21, Lemma 2.1], for R small enough
the spaces W y = r−1(y)∩W of y are given by Whitney stratified spaces with singular
stratum given by a point. Then, using Construction A.3.1, we may also choose R so
small, that

β(x, y) ≤ δ,

for the respective β on the fiber W y. Now, let v, v′ ∈ Ω ∩ [0, R]. Let x ∈ W vl
vh

and
assume that vh > v′h (the other cases work similarly). Now, consider the integral curve
φ from y := r(x) ∈ Wp to x in r−1(y) ∩W . By Proposition A.1.1 we have,

|x− φ(v′h)| = |φ(|x|)− φ(v′h)| ≤ C||x| − v′h| ≤ C|vh − v′h| ≤ C|v − v′|.

Since φ(v′h) ∈ W
v′l
v′h

, going through all the cases, we obtain

W vl
vh
⊂ (W

v′l
v′h
)C|v−v′|.

Thus, the result follows by symmetry.

We thus obtain, as a corollary of Theorem 2.2.31, that for v sufficiently small
the persistent stratified homotopy type Pv is even Lipschitz continuous at a Whitney
stratified space.

Theorem A.1.3. Let P = {p < q} and W ∈ SamP be Whitney stratified with Wp

compact. Then, for any C > 1, there exists some R > 0, such that the map

Pv : SamP → hoStratR+

is 2(C + 1)-Lipschitz continuous at W , for all v ∈ Ω ∩ (0, R)2.

A.2 Proof of Proposition 3.3.3
Proof of Proposition 3.3.3. The mapping β clearly exhibits continuity on Sq×Sp. The
condition on β is thus tantamount to the extension by 0 to ∆Sp being continuous.
Indeed, due to the continuity of ~d(−,−), this extension condition immediately implies
condition (b). For the converse, given that β ≥ 0, it suffices to demonstrate upper
semi-continuity. This is the essence of Proposition A.2.1.

Proposition A.2.1. Let W = (X, s : X → P ) be a Whitney stratified space. Then,
the restriction of β to W≥p ×Wp → R is upper semi-continuous.
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Proof. The function β is evidently continuous on the strata of W ×W . Now, suppose
(xn, yn) ∈ W≥p ×Wp is a sequence converging to a point (x, y) ∈ Wp′ ×Wp for some
p′ ≥ p. Then, for sufficiently large n ∈ N, we have s(xn) ≥ p′. To demonstrate upper
semi-continuity, we may, without loss of generality, assume that xn lies in the same
stratum Wq. We show that any subsequence of (xn, yn) has a further subsequence (all
named the same by abuse of notation), for which β(xn, yn) converges to a value less
than or equal to β(x, y).

By compactness of Grassmannians, we may first restrict to a subsequence such that
Txn(Wq) and l(xn, yn) converge to τ and l respectively. By Whitney’s condition (a)
[Whi65a,Whi65b] - which, by [Mat12], follows from condition (b) - we have Tx(Wp′) ⊂
τ . Summarizing, this gives:

lim β(xn, yn) = ~d(l, τ ) ≤ ~d(l,Tx(Wp′)).

Now, in the case when x 6= y, the last expression equals β(x, y) by definition. In the
case when x = y, then, by condition (b), l ⊂ τ . Thus, again, we have:

lim β(xn, yn) = ~d(l, τ ) = 0 = β(y, y)

finishing the proof.

A.3 A normal bundle version of β
Furthermore, we are going to make use of the following fiberwise version of β.

Construction A.3.1. In the context of Construction 3.3.2, assume that W = (X, s : X →
P ) is a Whitney stratified space, with Wp compact. Take N to be a standard tubular
neighborhood of Wp in RN with retraction r : N → Wp. Note that by Whitney’s
condition (a), for N sufficiently small, r|Wq is a submersion for q ≥ p. In particular,
by [NV21, Lemma 2.1], the fiber of

W y := (r)−1
|N∩W≥p(y)

is a Whitney stratified space over {q ∈ P | q ≥ p} with the p-stratum given by {y}.
Furthermore, we have

Tx(Wq) ∩ νr(x)(Wp) = Tx(W
r(x)
q ),

where νr(x)(Wp) denotes the normal space of Wp at r(x). In particular, the dimension
of these spaces is constant, and they vary continuously in x. Then, consider the
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following function:

β̃p(−) : N ∩W≥p → R

x 7→ ~d(l(x, r(x)),Tx(W
r(x)
s(x) )), for s(x) > p

x 7→ 0, for s(x) = p.

Noting that l(x, r(x)) ∈ νr(x)(Wp), by an analogous argument to the proof of Proposi-
tion 3.3.3, one obtains that β̃p(−) is continuous on Wq ∪Wp. Note that if we restrict
β̃p(−) to W y, then we obtain the function β(−, y) associated with W y. Let us denote
this βy. In particular, by compactness of Wp, we obtain that the functions βy can be
globally bounded by any δ > 0, for N sufficiently small.

A.4 Definability of β
Proposition A.4.1. Let S = (X, s : X → P ) be as in Construction 3.3.2. Then, if
X ⊂ RN is definable, then so is β.

Proof. As all the strata of X × X are again definable, it suffices to show that β is
definable on the strata of X×X. Furthermore, as β is 0 along ∆X , it suffices to show
definability away from the diagonal. Here β is equivalently given by

β(x, y) = inf
v∈Tx(Xs(x))

|| x− y
||x− y||

− v||.

It follows from the fact that for q ∈ P , T(Xq) ⊂ RN × RN is definable (see [Cos00]
and Lemma A.5.1) that this defines a definable function Xq ×Xp → R.

A.5 Proof of Proposition 3.3.9
We begin by proving a series of technical lemmas.

Lemma A.5.1. Consider two definable maps f : X → R, π : X → Y such that f is
bounded from above on every fiber of π. Then the map

g : Y → R

y 7→ sup
x∈π−1(y)

f(x)

is again definable.

Proof. This is immediate if one interprets the graph of g in terms of a formula being
expressible with respect to the o-minimal structure.
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Lemma A.5.2. Let X → {p < q} be a stratified metric space and Y a first countable,
locally compact Hausdorff space. Let π : X → Y be a proper map, such that both the
fibers of π, as well as the fibers of π|Xp vary continuously in the Hausdorff distance.
Let f : X → R be upper semi-continuous and continuous on the strata. Then,

g : Y → R

y 7→ sup
x∈π−1(y)

f(x)

is continuous.

Proof. Note first that as the fibers of π are compact and f is upper semi-continuous,
it takes its maximum on every fiber. Now, let yn → y be a convergent sequence in Y .
We show that any of its subsequences y′n, has a further subsequence ỹn → y, with

sup
x∈π−1(ỹn)

f(x)→ sup
x∈π−1(y)

f(x).

Let x′n ∈ π−1(yn) for all n such that f(x′n) = supx∈π−1(y′n)
f(x). As Y is locally compact

and π is proper, x′n has a convergent subsequence x̃n → x̃. Define ỹn := π(x̃n). Since
the fibers of π vary continuously and ỹn → y, we also have x̃ ∈ π−1(y). Thus, we have

lim sup sup
x∈π−1(ỹn)

f(x) = lim sup f(x̃n) ≤ f(x̃) ≤ g(y).

It remains to see the converse inequality for a subsequence of ỹn. Let x̂ ∈ π−1(y) be
such that f(x̂) = supx∈π−1(y) f(x). By assumption we can find a sequence x′′n with
x′′n ∈ π−1(ỹn) converging to x̂. If x̂ ∈ Xp, then x′′n can be taken to be in Xp, as
π−1(ỹn) ∩ Xp converges to π−1(y) ∩ Xp. If x̂ ∈ Xq, then, as the latter is open, x′′n
ultimately lies in Xq. Hence, by continuity of f on the strata, we have

g(y) = f(x̂) = lim f(x′′n) = lim inf f(x′′n) ≤ lim inf sup
x∈π−1(ỹn)

f(x).

As a consequence of the prior two lemmas, we obtain:

Lemma A.5.3. If W is a definably Whitney stratified over P = {p < q}. Then the
map

β̂ : Wp × R≥0 → R

(y, d) 7→ sup
||x−y||=d,x∈W

β(x, y)

is continuous in a neighborhood of Wp × {0}, definable and vanishes on Wp × {0}.
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Proof. The proof of definability immediately follows from Lemma A.5.1. Consider the
map

B : W ×Wp → Wp × R≥0 (x, y) 7→ (y, ||x− y||).

Over Wp×R>0, it is given by submersion on each stratum of W ×Wp. Specifically, by
Thom’s first isotopy lemma [Mat12, Proposition 11.1], it is a fiber bundle with fibers
∂Bd(y) at (y, d) over R>0. Moreover, the fibers of B vary continuously over Wp×R>0.
Additionally, for (yn, dn)→ (y, 0), the fiber converges to the point y. Thus, B fulfills
the requirements of Lemma A.5.2. Furthermore, β : W ×Wp → R also satisfies the
conditions of Lemma A.5.2, demonstrating the continuity of β̂. Lastly, β̂ vanishes on
Wp × R≤0 by the definition of β.

We now possess all the tools required to establish a proof of Proposition 3.3.9,

Proof of Proposition 3.3.9. We conduct this proof for the case of P = p < q and
K = Wp (with notation as in Definition 3.3.7). The general case follows analogously
by working strata-wise and then passing to maxima. By Lemma A.5.3, for d small
enough, the function β̂ : Wp × R≥0 → R fulfills the requirements of Lojasiewicz’
theorem for (polynomially bounded) o-minimal structures [Loi16]. Hence, we find
φ̂ : R≥0 → R≥0 to be a definable and monotonous bijection such that on Wp × [0, d]

we have
φ̂(β̂(y, t)) ≤ t.

If the relevant o-minimal structure is polynomially bounded, then there exist n > 0,
such that

tn ≤ φ̂(t)

for t ∈ [0, d′]. Hence, we obtain

β̂(y, t)n ≤ φ̂(β̂(y, t)) ≤ t.

=⇒ β̂(y, t) ≤ tα

for t ∈ [0, d], α = 1
n

and d := φ−1(d′).
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