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Abstract

In the multidisciplinary field of economic behavior, traditional theories often struggle to

capture the inherently complex nature of human decision-making processes. Building

upon well-established theoretical foundations, this research proposes a comprehensive ex-

ploration of human economic behavior. It leverages the strengths of behavioral economics,

experimental methodologies, and advanced computational techniques, integrating these

into comprehensive analytical models. Through five interconnected papers, the core ob-

jective is to investigate the psychological complexities of individual choices. Rigorous

experimental designs and robust methodologies reveal detailed insights into actions and

decisions. The introduced studies cover adaptive and evolutionary learning, equilibria in

asymmetric games, as well as fairness and loss aversion in strategic interactions. They

also investigate the correlation between dark personality traits and dishonesty, explore

the phenomenon of algorithm aversion, and examine the dynamics of motivated sampling

of information. These topics collectively provide a broad perspective on human decision-

making in economic contexts, with the findings offering deep insights into diverse real-

world inspired scenarios. To achieve this, the research utilizes advanced computational

techniques such as Genetic Algorithms, Agent-Based Models, Reinforcement Learning,

Machine Learning, and Causal Inference. From understanding the psychological mecha-

nisms underlying decision-making to examining well-established behavioral traits like loss

aversion and dark personality traits, this dissertation paints a comprehensive picture. It

adeptly bridges the gap between theoretical constructs and real-world implications, pre-

senting a fresh perspective on the dynamic nature of economic behavior in contemporary

society.
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1. Introduction

Economic behavior, rooted in the complex tapestry of human decision-making, presents

a multifaceted challenge to traditional economic theories. As individuals navigate the

complexities of economic scenarios, their choices often diverge from classical rational, self-

maximizing predictions. This divergence has paved the way for the emergence of behav-

ioral economics, which seeks to understand economic decisions’ psychological, cognitive,

and emotional underpinnings. The field has leaned heavily on experimental methods to

empirically validate these behavioral insights, employing controlled settings to test and

refine theories. In parallel, the digital age has enabled unprecedented data availability and

an ever-evolving collection of computational methods, offering a glimpse into real-world

economic behaviors on an unimaginable scale. This confluence of behavioral insights, ex-

perimental rigor, and computational prowess presents challenges and opportunities. It

allows researchers to harness advanced analytical tools and bridge the gap between con-

trolled experiments and the complex realities of human actions in the real world.

This research project is designed to comprehensively explore economic behavior through

various scenarios, analytical lenses, and facets. Building upon prior research, the aim is

to uncover fresh insights that shed light on the complexities of human decision-making.

This endeavor is articulated through five papers, each sticking to the same foundational

principles. These papers navigate diverse contexts, each presenting unique dynamics and

focusing on decisions influenced by elements other than rationality per se.

From a contextual perspective, Behavioral economics, influenced by elements of psychol-

ogy, challenges the traditional economic theory that assumes individuals are purely rational

and self-maximizing. As Thaler (2016) suggests, this field provides both normative and

descriptive models that yield better predictive power for real-world scenarios. Over the

past decades, evidence has mounted, indicating that human decision-making is governed by

heuristics and biases and is influenced by factors such as the choice environment, incentive

structures, and information presentation (Tversky & Kahneman, 1974). These individual-

level behavioral anomalies can have ripple effects, influencing entire market structures, as

Shiller points out Shiller (2003). The traditional notion of the homo economicus is consis-

tently challenged, emphasizing the need to bridge everyday economic life with models of

individual choice behavior (Henrich et al., 2001).

Parallel to behavioral economics, experimental methods form the next pillar of this re-

search. As defined by V. L. Smith (1991), experimental economics is a discipline that

studies human behavior in controlled settings, allowing the assessment of theories and

models. It offers a platform to test hypotheses about decision-making, isolating specific

factors to understand their effects. Samuelson (2005)’s work further highlights the trajec-

tory of experimental economics, evolving from a niche area to a cornerstone of economic

research. The literature draws attention to the alignment of experimental findings with

traditional economic theories and the complexities that arise when theoretical predictions

diverge from practical outcomes.
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The synergy between behavioral and experimental economics is profound. While experi-

mental economics offers controlled environments to test and validate theories, behavioral

economics goes deeper into decision-making’s cognitive and emotional facets. This combi-

nation ensures that experimental settings test and validate behavioral theories, leading to

a comprehensive understanding of economic behavior. The interconnection between these

fields offers a broad perspective, bridging theoretical insights with real-world economic

decision-making, a connection discussed by Santos (2011).

In recent advancements within the field, the application of machine learning and other

computational resources in behavioral and experimental economics has gained traction.

Mullainathan and Spiess (2017) emphasize the shift from procedural to empirical ap-

proaches akin to econometrics. They note that machine learning’s strength lies in its

ability to predict and uncover generalizable patterns from complex data structures. This

predictive power, distinct from traditional economic parameter estimation, offers a fresh

perspective and tools for understanding economic behaviors. Building on this perspective,

C. F. Camerer (2018) underscores the utility of machine learning in behavioral economics,

emphasizing its adeptness at harnessing a broad spectrum of variables for predictive pur-

poses. Machine learning’s ability to sift through extensive variable sets and pinpoint

predictive ones aligns seamlessly with behavioral economics objectives, offering a richer

understanding and a promising avenue for subsequent research.

Athey (2018) also underscores the transformative potential of machine learning in eco-

nomics, highlighting its capability to enhance policy decisions, estimate causal effects, and

address generalization concerns in economic contexts. Green, White, et al. (2023) share

that machine learning techniques offer robust methods for causal inference and charac-

terizing treatment effect heterogeneity in experiments. Furthermore, the importance of

understanding the differences between machine learning and traditional econometrics is

emphasized in Athey and Imbens (2019), suggesting that machine learning techniques re-

quire adaptation to address specific economic challenges. The integration of these tools

is advocated as essential for the empirical economist’s toolkit, ensuring a comprehensive

approach to economic research.

Complementarily, Plonsky et al. (2019) highlight the pivotal role of behavioral decision the-

ories in predicting human choices in economic decision tasks. Their findings underscore the

synergy between machine learning and behavioral insights, emphasizing that integrating

qualitative behavioral tendencies and quantitative descriptive models enhances predictive

accuracy in human economic behavior. Similarly, I. Lundberg, Brand, and Jeon (2022)

discuss the significant impact of machine learning in advancing social science research.

They highlight its ability to enhance traditional methods, facilitate more profound discov-

eries, and integrate human reasoning with computational prowess. The authors champion

the collaborative approach of human expertise and algorithmic automation, emphasizing

that while machine learning offers powerful tools, it complements rather than replaces the

human element in research.

Recent developments in the literature suggest an evolution in the landscape of economic

research. As such, it becomes perceptibly imperative to approach the study of economic
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1. Introduction

behavior from multifaceted perspectives. Following this reasoning, this research is an-

chored on three foundational pillars: behavioral economics, experimental methodologies,

and computational techniques. While distinct in its approach, each pillar collectively

contributes to a comprehensive understanding of economic decision-making. Behavioral

economics offers insights into the psychological complexity of individual choices, exper-

imental methodologies provide the empirical evidence to validate or challenge existing

theories, and computational techniques equip us with the tools to analyze and interpret

complex datasets. Together, these pillars form the basis of my exploration into economic

behavior, as detailed in the subsequent sections.

Regarding the understanding and modeling of economic behavior, a sentence that sets the

title of this manuscript, the focus is on understanding the psychological mechanisms under-

lying decision-making. With the indispensable support of my co-authors, I aim to elucidate

how individuals make choices, considering potential biases and influencing factors. My ex-

amination of specific traits such as loss aversion, inequity aversion, dark personality traits,

algorithm aversion, and motivated decision-making highlights this investigation. To empir-

ically validate the formulated hypotheses, I employ rigorous experimental methodologies.

By conducting laboratory, online, and simulated experiments with varied treatments and

designs, I gather data that provides insights into individual behavior in different strategic

scenarios. To further analyze and interpret this data, I leverage computational methods.

My research incorporates advanced computational techniques, including Genetic Algo-

rithms, Random Forests, Gradient Boosting Machines, Causal Machine Learning, Agent-

Based Modeling, and Reinforcement Learning. These methodologies enable us to process

complex data relationships and derive findings that might be challenging to obtain through

traditional analytical methods. In essence, by leveraging computer simulations, intricate

experimental designs, and a blend of conventional statistical analyses with advanced ma-

chine learning and causal methods, I aim to offer profound insights and methodological

advancements to the broader field of economics.

1.1 Motivation and Objectives

The combination of behavioral, experimental, and computational economics provides a

holistic approach to understanding the intricacies of decision-making and strategic be-

havior. With the ever-advancing nature of science, the role of technology in reshaping

our understanding of economics becomes increasingly evident. Therefore, the motivation

behind the research conducted in this project’s scope takes inspiration from these four

pillars.

Technological Advancements in Computational Models: The rapid advances in computa-

tional technologies have revolutionized our ability to process vast amounts of data. This

allows for efficiently handling large datasets and facilitates uncovering intricate interactions

and patterns previously obscured.

Methodological Advancements: There is a growing aspiration to push the boundaries of

traditional methodologies in economics. By integrating computer science methods into
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1.2. Main Contributions to the Literature

experimental and behavioral research, I aim to foster a more interdisciplinary approach.

This synthesis broadens the toolkit available to researchers and paves the way for innovative

insights and findings.

Complex Insights into Human Decision Making: At the heart of economics lies the study of

human decision-making. With the tools and techniques at our disposal, I seek to shed light

on the insights that arise from human economic-driven decisions and strategic interactions.

Understanding these complexities is paramount, as it informs policies, strategies, and

interventions that can have profound societal and corporate impacts.

Bridging Theory and Practice: As the world becomes more interconnected and dynamic,

there is a need to ensure that economic theories are not just sound in principle but also

applicable in real-world scenarios. I strive to bridge the gap between theoretical constructs

and their practical implications by combining behavioral insights with experimental data

and computational analysis.

In essence, this research is motivated by the desire to push the frontiers of economic

understanding, leveraging the strengths of technology, methodology, and interdisciplinary

collaboration.

1.2 Main Contributions to the Literature

Across the five selected publications composing this thesis, the goal was to advance the field

of economics through behavioral and experimental lenses, both in terms of findings and in-

novative methods, focused on robustness, generalizability, and reproducibility. Therefore,

each piece of work provided a unique contribution. The author has conceptualized and

executed the research reported in each paper, being greatly supported by the contributions

of their respective co-authors.

The paper Analyzing the Impact of Strategic Behavior in an Evolutionary Learning Model

Using a Genetic Algorithm introduces a novel heuristic-based simulation model that in-

tegrates game theory and Genetic Algorithms to explore strategic behavior and economic

learning. The research is driven by the observation that strategic scenarios often evolve

over time, prompting the need for a model where games can adapt based on agents’ be-

havior.

As heuristic methods are often built for specific purposes, the paper outlines the theoreti-

cal procedure for constructing the simulation model. The model is designed to analyze 144

unique 2× 2 games and three distinct strategy selection rules: Nash equilibrium, Hurwicz

rule, and a Random selection method. The primary aim is to understand how strategic

behavior influences the transformation of dynamic decision-making scenarios. The anal-

ysis focuses on different decision rules’ performance in this evolutionary learning process,

highlighting the consistent transformation of games and behavioral traits.

Furthermore, the originality of this approach lies in an algorithm that modifies the games

based on their overall outcomes rather than altering the strategies or player-specific traits.

This unique perspective offers insights into the evolution of optimal outcomes in various
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choice scenarios. The results from the study underscore the significance of strategic be-

havior in evolutionary learning, with findings indicating optimal player scenarios for both

the Nash equilibrium and Hurwicz rules. The paper also observes the frequent transfor-

mation of games, allowing agents to coordinate their strategies and achieve stable optimal

equilibria. Another critical observation is the evolution of game populations into groups

of fewer repeating isomorphic games with strong preceding game characteristics.

In essence, this paper contributes to the literature with a comprehensive exploration of

the impact of strategic behavior in an evolutionary learning model, offering valuable in-

sights into the dynamics of game theory and economic learning through a methodologically

rigorous simulation model.

The subsequent two papers are derived from experiments undertaken within the same re-

search initiative. Although they share a common origin, their focuses diverge significantly.

The first paper adopts a game-theoretical perspective, analyzing equilibria through behav-

ioral dynamics. Meanwhile, the second paper introduces the notion of dark personality

traits, examining how game mechanics, individual attributes, and contextual factors influ-

ence decision-making. Detailed overviews of each paper will follow next.

Stationary Equilibria in Behavioral Game Theory: An Experimental Analysis of Inspec-

tion Games, investigates the dynamics of inspection games, a subset of non-cooperative

game theory, where strategic interactions occur between two actor profiles: an inspector

and the inspected. The study’s primary focus is understanding how behavioral traits, such

as loss aversion and inequity aversion, influence the equilibrium behavior in these games.

The research framework is designed to capture interactions influenced by psychological

incentives, including moral connotations, punishment, and regret. This approach allows

for a comprehensive exploration of behavioral parameters and their dynamics in strategic

decision-making.

A significant aspect of this study is the introduction of both neutral (”context-free”) and

information-loaded (”in-context”) frames. This design choice aims to measure the effects

of information framing on perceptions and equilibria, especially in scenarios with potential

ethical implications.

Methodologically, the paper evaluates several stationary equilibrium concepts: Nash Equi-

librium, Quantal Response, Action Sampling, Payoff Sampling, and Impulse Balance. The

analysis extends to understanding the models’ characteristics and performance at different

aggregation levels. Additionally, the paper introduces modified versions of these equilib-

ria concepts, integrating behavioral traits to provide more flexible models and accurate

predictions.

The results indicate enhanced predictive performance in cyclic games when integrating

behavioral traits into stationary equilibrium models. While traditional models faced chal-

lenges, the modified versions aligned more closely with observed behavior. Notably, the

inclusion of loss aversion as a model parameter in these modified concepts aligned with the

actual behavioral tendencies of participants. As for framing, the study revealed minimal

impact, with detailed information subtly nudging participants to opt for riskier strategies.
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This paper extends the foundational literature on stationary equilibria by presenting mod-

ified concepts, examining the impact of behavioral traits and framing effects, and offering

an in-depth assessment of model parameters and their evolving dynamics. The primary

contribution of this research is a broader and more detailed perspective on equilibria in

completely mixed games.

I further explore the inspector game framework in the subsequent manuscript, titled Under-

standing Dark Personality Traits and Strategic Choices in an Inspection Game: Insights

from Machine Learning and Causal Inference. This paper provides a more comprehen-

sive analysis of framing effects and introduces the concepts of dark personality traits and

dishonesty. While it draws upon the repeated game dataset from the preceding paper,

it extends the research by integrating a one-shot game dataset with a larger sample of

participants.

The employed experiment utilizes the same design with information-loaded and neutral

frames. Further, it employs the D-Factor and dishonesty questionnaires, which quantify

dark personality traits, shiting the focus on moral and behavioral aspects. The objective

is understanding how framing, game mechanics, and personal elements influence decisions

and the interaction between experimental participants in repeated and one-shot settings.

The study’s methodology began with a statistical evaluation of game behavior, followed by

applying advanced machine learning models to analyze the influence of personality traits

and framing effects. Random forest models were used to assess the impact of contex-

tual and personal variables on decision-making. Additionally, causal forest was employed

to provide a detailed analysis of framing, quantifying the causal treatment effects and

examining how participants’ traits influenced these effects.

The primary findings emphasize the dominant role of game mechanics in decision-making.

The D-factor, representing dark personality traits, emerges as a secondary factor influ-

encing decisions, especially in the inspector profile under framed conditions. This profile

displays a trend towards higher retaliation when subjected to certain conditions.

This paper’s main contributions include a novel analysis of dark personality traits within

the context of inspection games, filling a gap in the existing literature. The research

employs a robust methodology designed to deliver complex insights that might remain ob-

scured with conventional methods. Furthermore, the study offers a holistic understanding

of decision-making, factoring in the strategic interaction and the influence of contextual

and personal elements. For practical implications, the paper sheds light on behaviors re-

lated to cheating and punishment. Such insights can be valuable for policy formulation,

especially in areas that require behavioral regulation, and can also be instrumental in

designing interventions to mitigate dishonest behaviors.

The following paper, titled Trust in the Machine: Contextual Factors and Personality

Traits Shaping Algorithm Aversion and Collaboration, explores the intricate relationship

between contextual factors, personal variables, and the phenomenon of algorithm aversion

in decision-making. The study is set in an experimental environment where subjects are

presented with the option to delegate decisions to a Reinforcement Learning algorithm

6



1. Introduction

while navigating a multi-armed bandit problem. The experiment is designed to discern

the superior option with hidden expected values.

A standout feature of this research is its distinctive experimental design, allowing par-

ticipants to interact directly with individual instances of Reinforcement Learning models.

This design is further enriched with four treatments: baseline, explanation, payment, and

automation. Each treatment offers insights into different facets of human-algorithm in-

teraction. For instance, the explanation treatment provides a non-technical algorithm

description to enhance transparency and reduce the ”black box” perception. The payment

treatment introduces a cost associated with algorithmic support, exploring the psycholog-

ical implications of financial incentives in decision delegation. The automation treatment,

on the other hand, offers participants the convenience of continuous algorithmic selection,

reducing the task effort.

Methodologically, the paper employs a combination of statistical, regression, and machine

learning techniques, including Logistic Regressions, Random Forest, Gradient Boosting

Machines, and Uplift Random Forest classifiers. The analysis evaluates the influence of

personal and contextual factors on participants’ decisions. Subsequently, the study em-

ploys a causal inference approach to disentangle the effects of context from individual

characteristics. These tools examine the nuanced nature of decision delegation behavior,

revealing robust insights such as the negative impact of payment on delegation and the

positive influence of full automation.

On the personal dimension, the study incorporates a range of psychological and demo-

graphic measures, including the Big Five Personality traits, Locus of Control, and Gener-

alized Trust. Findings indicate that age, extraversion, openness, neuroticism, and locus of

control are pivotal in shaping delegation decisions. Notably, female participants exhibited

a heightened sensitivity to algorithmic errors.

Furthermore, the paper unveils several novel insights. The detrimental effect of even a small

payment on decision delegation suggests that the perceived cost can outweigh the perceived

benefits of algorithmic support. Additionally, gender effects emerge as a significant factor,

with female participants reacting more strongly to algorithmic mistakes. The findings

offer valuable insights into crafting user-centric AI designs that foster collaboration while

minimizing aversion.

Lastly, the paper titled Motivated Sampling of Information: Experimental Data and

Agent-Based Modeling in a Bayesian Framework explores the idea of information sam-

pling, where objective and subjective criteria exist. The paper introduces an experimental

framework that addresses the phenomenon of motivated reasoning, termed motivated sam-

pling. Participants in the study are presented with a binary sampling and decision task,

where they must discern information from two ”computers” generating numbers from dis-

tinct distributions. The objective is to identify the ”high distribution” computer. The

experiment introduces externalities to influence participants’ decisions, thereby inducing

subjective preferences. Moreover, the type of feedback provided to participants varies,

offering an understanding of its influence on decision-making.
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The main findings highlight that female subjects, for instance, sample more intensively

in scenarios with negative externalities or when provided Bayesian posterior feedback.

Additionally, subjects exhibit a pronounced margin of motivated sampling, especially when

they perceive the option with a positive externality as correct. This behavior underscores

a preference to sample from options that align with objective and subjective criteria.

Furthermore, the study employs a simulation model that mimics the task of sampling for

information. This model incorporates agents based on Attraction-Based Reinforcement

Learning, ϵ-greedy strategies, and the Upper Confidence Bound method. These agents,

in essence, learn the sampling process to optimize rewards from subsequent computer

selections. A comparison with a random sampling agent further enriches the analysis.

In essence, this paper offers a novel perspective on information sampling strategies, un-

raveling the mechanisms of motivated sampling. It comprehensively explains the overlap

between information sampling and motivated reasoning, emphasizing the significance of

subjective preferences, feedback types, and gender differences in decision-making scenar-

ios. The findings contribute to the broader theme of motivated reasoning and highlight its

specific application in situations where information sampling is relevant.

In summary, the papers presented in this dissertation integrate across three foundational

pillars: the experimental, the behavioral, and the computational domains. These domains,

while diverse, provide a holistic perspective. Table 1.1 briefly summarizes each paper’s

alignment with these pillars.

The employed techniques covered laboratory, field, and computer-simulated experiments

within the experimental facet. The behavioral dimension spans a broad spectrum, from ex-

ploring classical strategic decision-making behavior to assessing well-established behavioral

economics concepts like loss aversion and fairness. This dimension further touches upon

the dark facets of personality, the big five personality traits, elements of trust, control,

and underlying motivations behind information acquisition and decisions. The computa-

tional domain encompasses a spectrum of artificial intelligence methodologies from genetic

algorithms to optimization processes, an array of machine learning techniques including

ensemble learning using random forests, gradient boosting, reinforcement learning strate-

gies, and diving into causal machine learning with techniques like causal forests and uplift

modeling.

1.3 Structure of this Document

This thesis is structured to present the five key papers discussed sequentially in the fol-

lowing chapters. Each paper comprises its abstract, introduction, methods, theoretical

foundations, experiment designs, and pertinent conclusions and discussions. Each paper

distinctly articulates its aims, employed methods, and derived results. Subsequent to each

paper, an appendix offers further insights into the research. The literature used across the

papers is consolidated and presented at the end of the document. The ensuing chapter, 7,

encapsulates the work’s primary takeaways, contributions, and conclusions.
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Paper 1 - Simulating Economic Learning in Dynamic Strategic Scenarios with a Genetic Algo-
rithm (chapter 2):
Experimental Approach: Simulated experiments using computer agents.
Behavioral Approach: Analysis of simulated strategic behavior in 144 2× 2 games.
Computational Approach: Specially designed genetic algorithm to modify games where compu-
tational agents interact based on optimal decision behavior.
Co-author: Thomas Pitz
Status: Published in Computational Economics (DOI: 10.1007/s10614-022-10348-1)

Paper 2 - Stationary Equilibria in Behavioral Game Theory: An Experimental Analysis of
Inspection Games (chapter 3):
Experimental Approach: Laboratory experiment, between-subject design with two treatments
employing information-loaded and neutral frames.
Behavioral Approach: Analysis of Stationary Equilibria concepts with traits like loss aversion
and inequity aversion in completely mixed cyclic games.
Computational Approach: Development of new equilibria concepts formulated as optimization
models that include behavioral parameters.
Co-authors: Thomas Pitz, Wolf Gardian, Deniz Kayar & Jörn Sickmann
Status: Submitted for publication in November 2023

Paper 3 - Understanding Dark Personality Traits and Strategic Choices in an Inspection Game:
Insights from Machine Learning and Causal Inference (chapter 4):
Experimental Approach: Laboratory and online experiments, between-subject design with two
treatments employing information-loaded and neutral frames.
Behavioral Approach: Analysis of strategic and moral decision-making linked with dark person-
ality traits.
Computational Approach: Analysis using Random Forests and Causal Forests with Double Ma-
chine Learning estimators for causal inference.
Co-authors: Leon Houf, Thomas Pitz & Christiane Schwieren
Status: Submitted for publication in November 2023

Paper 4 - Trust in the Machine: Contextual Factors and Personality Traits Shaping Algorithm
Aversion and Collaboration (chapter 5):

Experimental Approach: Online experiment, between-subject design with four treatments.
Behavioral Approach: Examination of the algorithm aversion phenomenon via contextual factors
and personal insights.
Computational Approach: Analysis using Random Forests, Gradient Boosting Machines, and
Uplift Random Forest models for causal inference.
Co-authors: Leon Houf, Thomas Pitz, Christiane Schwieren & Jörn Sickmann
Status: Submitted for publication in September 2023

Paper 5 - Motivated Sampling of Information: Experimental Data and Agent-Based Modeling
in a Bayesian Framework (chapter 6):

Experimental Approach: Online experiment, between-subject design with a 3×3 treatments split
with varied feedback and externality conditions.
Behavioral Approach: Analysis of motivated decision-making and Bayesian behavior.
Computational Approach: Agent-based models using Reinforcement Learning techniques:
Attraction-Based RL, ϵ-greedy strategies, and Upper Confidence Bound.
Co-author: Leon Houf
Status: Will be submitted for publication

Table 1.1: Summary of Papers and Approaches

9

https://www.springer.com/journal/10614
https://doi.org/10.1007/s10614-022-10348-1




2. Simulating Economic Learning in Dynamic

Strategic Scenarios with a Genetic

Algorithm

Authors
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Abstract

This study presents an experimental approach to strategic behavior and economic learning

by integrating game theory and Genetic Algorithms in a novel heuristic-based simulation

model. Inspired by strategic scenarios that change over time, we propose a model where

games can change based on agents’ behavior. The goal is to document the model design

and examine how strategic behavior impacts the evolution of optimal outcomes in various

choice scenarios. For diversity, 144 unique 2×2 games and three different strategy selection

criteria were used: Nash equilibrium, Hurwicz rule, and a random selection technique. The

originality of this study is that the introduced evolutionary algorithm changes the games

based on their overall outcome rather than changing the strategies or player-specific traits.

The results indicated optimal player scenarios for both The Nash equilibrium and Hurwicz

rules, the first being the best-performing strategy. The random selection method failed

to converge to optimal values in most of the selected populations, acting as a control

feature and reinforcing the need for strategic behavior in evolutionary learning. Two

further observations were recorded. First, games were frequently transformed so agents

could coordinate their strategies to create stable, optimal equilibria. Second, we observed

the evolution of game populations into groups of fewer (repeating) isomorphic games with

strong preceding game characteristics.

Keywords

Game Theory, Simulation, Genetic Algorithms, Economic Learning, Artificial Intelligence

2.1 Introduction

Our world is constantly going through systemic transformations. Technological and scien-

tific advancements, in combination with changes in economic, political, sociological, and

other factors, result in new decision contexts in which strategic interaction occurs. By

analyzing such situations, one can observe the ever-arising need for individuals to update

their beliefs and adapt to the new informational and strategic structures. As an example,

Freedman (1998, 2017) reported the example of socioeconomic and political transforma-

tions occasioned by the development of technology and communication structures, resulting

1Status: This paper was published in Computational Economics, in December 2022, under the DOI:
https://doi.org/10.1007/s10614-022-10348-1.
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in changes in how nations engage in warfare conflict. When making decisions, economic

agents will act according to their interests, as well as the actions of other agents and in-

formation available in the given scenarios, as outlined by Von Neumann and Morgenstern

(1953).

As stated by Axelrod (1997), one can understand the properties of complex social and eco-

nomic systems by applying simulations. The nature of human interaction is often modeled

and analyzed in computational models of society, which introduce autonomous agents that

interact with one another and the environment into which they are placed according to

predefined rules (Billari, Fent, Prskawetz, & Scheffran, 2006). Adding dynamics to models

of strategic interaction, social learning, and the evolutionary process are often simulated

by introducing evolutionary biology concepts, as outlined by Gintis et al. (2000). This

evolutionary approach introduces the notion of predefined strategies that are repeatedly

applied in an evolutionary process, operating dynamically on the distribution of behavior

(Weibull, 1997).

Game theory models describe strategic scenarios and behavior (Von Neumann & Mor-

genstern, 1953). In game theory, political or socioeconomic conflicts or crises are often

modeled in a strategic form by matrix games or in an extensive form by game trees. One

often restricts oneself to a fixed game that does not change significantly over time. Promi-

nent examples are the analysis of the Cold War as a Prisoner Dilemma (Plous, 1993) or

the Cuba crisis as a Chicken Game (B. Russell, 1959). In reality, however, it is observable

that the strategic character of conflicts or crises changes over time. A crisis modeled as

a Prisoner Dilemma can intensify into a Chicken Game with higher conflict potential or

transform into a less conflictual Stag Hunt (Skyrms, 2004) or Harmony Game (Bruns,

2010). Therefore, it would be appropriate to describe these strategic changes by trans-

forming the original game into a new game. In empirical settings, fundamental behavioral

changes are observed when making decisions that can affect not only the strategic behav-

ior of the agents involved but also environmental conditions and individual preferences.

Heckathorn (1996) documented the transformation of games with dynamic interaction,

where changes in decision-influencing factors changed the whole structure of the initial

game. Similarly, Simpson (2004) empirically demonstrated how behavioral factors, such

as social preferences, can transform one game into another (see also Hayashi, Ostrom,

Walker, and Yamagishi (1999); Kollock (1998)).

Motivated by this fact, in the present paper, we introduce a novel heuristic procedure

that describes these changes in strategic interaction scenarios with Genetic Algorithms,

a search procedure inspired by the process of biological evolution (D. E. Goldberg &

Holland, 1988; Holland, 1992). Genetic Algorithms have been employed in economics-

based problems since their introduction and are regarded as a powerful tool for finding

optimal solutions over complex search spaces (Schmertmann, 1996), as well as a method

that shows remarkable results for the simulation of decision behavior that is in line with

empirical observations in similar research frameworks (Arifovic & Ledyard, 2012; Lensberg

& Schenk-Hoppé, 2021; Manson, 2006). Given a pool of 2 × 2 strategic-form games, the

games, represented as binary sequences, are transformed by a Genetic Algorithm depending
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on the players’ experience with the games in the pool. In each round, after making

decisions, the game is evaluated based on the players’ payoffs. This process determines

the probability of staying in the pool, or being replaced by another new game created

via crossover and mutation. We describe the dynamics of the game pools related to the

different types of strategy selection rules adopted by the players, establishing the notion

of strategic behavior for the agents. The populations are defined based on two rules for

aggregating sets of games. The first rule is based on topological proximity, using the

periodic table of 2 × 2 games concept introduced by Robinson and Goforth (2005); the

second rule clusters games by similar characteristics, based on the families categorization

introduced in Bruns (2010, 2015a).

The introduced model focuses on analyzing the impact of strategic behavior in this evolu-

tionary learning process, where games are allowed to change over time and the performance

of different decision rules. We aimed to document the implementation, testing, and assess-

ment of different decision-making rules and their influence on dynamic game populations.

For a comprehensive analysis, the simulation model described here analyzes 144 unique

types of 2×2 games and three distinct strategy selection rules: Nash equilibrium, Hurwicz

rule, and a Random selection method. The goal is to outline how strategic behavior af-

fects the transformation of dynamic decision-making scenarios by pairing different strategy

selection rules with distinct populations of 2 × 2 games. The analysis of the simulation

results focused on convergence speed (optimal utility levels reached) using different com-

binations as a performance measure, as the encoding of strategies and convergence process

are seemingly interconnected (Dawid & Kopel, 1998). We have also documented the find-

ings derived from the simulation process, including the consistent transformation of games

and behavioral traits highlighted during the process 2.

2.2 Evolutionary Computation Overview

Evolutionary computation methods arose from taking inspiration from biological mecha-

nisms to design and implement computer-based problem-solving systems (Spears, Jong,

Bäck, Fogel, & Garis, 1993). This collection of methods allowed the creation of evolving

and adaptive solutions to complex problems, especially the ones that impose challenges to

traditional algorithms, such as randomness, chaotic disturbances, and complex non-linear

dynamics, as outlined by Fogel (2000). The family of evolutionary algorithms contains

several different methods, each with its particularities, but all of them share a connection

with biological evolution. Among the most known methods in the literature are Genetic

Algorithms (Holland, 1992), Genetic Programming (Koza et al., 1992), Differential Evo-

lution (Storn & Price, 1997), Evolution Strategies (Rechenberg, 1978) and Evolutionary

Programming (Fogel, 1998). For an overview of each of these methods, see Slowik and

Kwasnicka (2020). The literature discussion that follows next outlines applications of

some of these methods in similar contexts, highlighting the elements that led to adopting

a Genetic Algorithm as an appropriate method to simulate the dynamic transformations

of games over time.

2The documented source code, data, and resources used in this paper are published in the CoMSES
Library. The material is available to download at: https://doi.org/10.25937/smg0-0t92.
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2.2.1 Evolutionary Models: Applications for Learning, Strategic Interaction, and

Optimization

As C. Camerer (2003) outlined, some aspects of learning are sometimes overlooked by

economic theory. If perfect information and rationality are assumed, the equilibrium point

will always be known from the beginning, and people will only modify the equilibrium if

information changes. Moreover, C. Camerer and Weigelt (1988) emphasized the impor-

tance of achieving better outcomes in experimental games, especially when dealing with

scenarios having potentially inefficient equilibrium outcomes, such as trust games, pub-

lic goods games, beauty contests, and others. Consequently, well-formulated economic

learning theories are crucial in providing predictive power, coherence, and concomitantly

revealing new insights (C. Camerer, 2011).

The multidisciplinary combination of game theory and genetic programming has grown

in several distinct fields, from economics and sociology to computer science and natural

sciences such as biology. Evolutionary game dynamics provide comprehensive frameworks

for studying interaction, learning, and evolution (Roca, Cuesta, & Sanchez, 2009). In ad-

dition, in contrast with the neoclassic assumption of perfect rationality, economic models

of learning provide the possibility to study agents as they learn and update their beliefs

since the application of an evolutionary model assumes that strategies can change over

time (Baddeley, 2018). According to Axelrod et al. (1987), individuals cannot thoroughly

analyze the situation and calculate optimal strategies when interacting in complex environ-

ments. Alternatively, strategies are updated and based on achieved results, highlighting

how a Genetic Algorithm can be particularly adept as a learning mechanism for creating

effective strategies. The given approach serves as an inspiration for the analysis performed

in this article. The following are some of the relevant constructs.

Holland and Miller (1991) stresses that the employment of artificial adaptive agents in

economic theory can help us understand real-world economic issues by enabling the free

exploration of system dynamics under controlled conditions and the opportunity to check

several unfolding behavioral patterns. Furthermore, Dawid (1999) argued that the decen-

tralized structure of Genetic Algorithms, which naturally resembles a group of interacting

economic agents, is well-suited to simulate the behavior of economic systems.

Isaac (2008) provided an introductory overview of an agent-based model using Genetic

Algorithms in the iterated Prisoner’s Dilemma, reporting variations in the payoff struc-

tures that create new player types, introducing an interaction between payoff cardinality

and players’ attributes. Chmura, Kaiser, and Pitz (2007); Pitz, Chmura, et al. (2005)

presented a novel simulation model for analyzing action patterns in social systems mainly

based on the concepts of Genetic Algorithms and the Theory of Action Trees (Gold-

man, 1971). They explained how the emergence and disappearance of actions could be

described with a uniform algorithm, succeeding in endogenously eliciting comprehensive

changes in the agents’ behavior. Manson (2006) documented experiments exploring the

concept of bounded rationality, stating that Genetic Algorithms are an appropriate tool to

model actors that are not perfectly rational, that is, addressing characteristics of human

decision-making such as cognitive limits, learning, and innovation.
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Similarly, the algorithm for optimization problems reported by Yang (2017) build on a

similar conceptual framework. Their main idea is a game theory-inspired evolutionary

model that updates the strategy sets by replacing individuals of the population with better-

performing offspring generated by replication or belief learning operators, creating a model

that outperforms four other algorithms often used for similar purposes. Pereira et al. (2020)

also introduced a constrained optimization model that explored two ideas, the first being a

Genetic Algorithm with social interactions (for diversification of solutions in the selection

process). The second model consisted of game-based crossovers (tournament simulations

for more diverse offspring). The presented construct demonstrated robust performance

when compared to traditional methods in the engineering design optimization process.

Continuing on the topic of optimization.

Savin and Egbetokun (2016) formulated an agent-based model of innovation networks

with endogenic absorption capacity, where dynamic cooperation for knowledge can occur

between different agents, represented as firms, with different knowledge positions. In their

simulation model, the authors applied a Differential Evolution algorithm to find optimal

investment budget decisions regarding trade-offs between cooperative and non-cooperative

scenarios. Their findings demonstrate that networks generated with the model display

small-world properties, which tend to be efficient structures for knowledge distribution.

Another interesting observation is that firms with higher absorptive capacity tend to be

better positioned within their networks, ultimately demonstrating that their ability to

learn drives network performance effects.

With a similar objective to this paper, Savin, Blueschke, and Blueschke-Nikolaeva (2018)

introduced a meta-heuristic approach for solving non-linear dynamic games, proposing a

method that allows the analysis of more realistic strategic scenarios. The method can solve

the standard version of the introduced game, like other traditional techniques, and solve

non-standard extensions of the problem (inequality constraint and asymmetry in penalties)

by identifying optimal equilibrium strategies, both cooperative and non-cooperative. The

proposed procedure combines Differential Evolution (for individual optimal strategies) and

Approximation of a Nash Equilibrium. The set consists of a three-player macroeconomic

game between two groups of countries exercising fiscal policy and one joint central bank.

The results shed light on a more realistic analysis of strategic scenarios for policy insights

and finding optimal strategies, contrasting with traditional methods. In further devel-

opments on the Differential Evolution method application, Savin and Blueschke (2016)

introduced a model to solve optimal control problems, addressing the limitations of clas-

sical methods in specific situations. The model’s performance demonstrated a superior

optimization of expected outcomes, strengthening the claim that heuristic methods are

well-suited to navigate complex search spaces and find good approximations to global op-

tima. Blueschke, Savin, and Blueschke-Nikolaeva (2020) later extended on this subject by

introducing a novel Differential Evolution-based method for solving optimal control prob-

lems with passive learning. This learning method models the observation of the world’s

current state and employs new information to improve the system’s general knowledge.

The proposed approach does not imply the modification of the original problems and
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provides more robust results regarding the learning process.

Bullard and Duffy (1998) documented a macroeconomics experiment using a Genetic

Algorithms-based learning model to simulate the behavior, outlining that a population

of artificial agents can coordinate depending on the information structures they are in-

serted into, as chaotic and complex structures tend to hinder coordination. Another re-

lated framework was developed by Gooding (2014), who formulated a simulation model for

capturing evolutionary trends observed in society, such as wealth aggregation, inequality,

and climate change. Where experimental data verify changes in actions, surroundings,

and decision-making, such social trends remain resilient and difficult to alter, according to

the study, offering insights into how to impact social development. Macedo, Godinho, and

Alves (2020) applied a Genetic Algorithm to optimize trading strategies, which outper-

formed the analyzed market indicators by employing a more comprehensive search space

than traditional methods.

In a similar context, Glynatsi, Knight, and Lee (2018) used an evolutionary game theoretic

model in the ecology field to examine the interaction between poachers and wildlife. The

model analysis reported how the devaluation of rhino horns would likely lead to higher

poaching activity and that such an approach was only practical when combined with

disincentives, intending to contribute to informing debates on the issue with scientific

facts.

Arifovic and Ledyard (2011) introduced an evolutionary learning model with relatively

good performance at matching the behavior of agents engaged in repeated strategic in-

teractions when the behavior converges to a Nash equilibrium state. The authors state

that most games do not require sophisticated strategies, except for the case of coordina-

tion games, which reduces the model’s performance. Arifovic and Ledyard (2012) later

reinforced the predictive power of evolutionary learning methods by introducing a compre-

hensive model able to generate data quantitatively similar to the empirical values, focused

on the contribution mechanism of a public goods game. Price (1997) also reported a good

performance from Genetic Algorithms in searching for equilibria in standard games from

industrial organization theory, such as Bertrand and Cournot competition scenarios.

Koza (1994); Koza et al. (1992) provided an early framework for Genetic Programming

that introduced the notions of learning by modeling agents and their learning behavior

over time. The author defines adaptive learning as the process of changing the structure of

a potential solution. Hence, it performs better in its environment, where positive changes

are rewarded and negative changes are discouraged by the underlying fitness function.

Similarly, S.-H. Chen, Duffy, and Yeh (2005) introduced a comprehensive game theory

and Genetic Algorithms framework that approach several topics present in this research,

such as coordination, adaptive learning, and equilibrium selection. The authors compared

the behavior of computational agents to human subjects. They concluded that the be-

havior was remarkably similar in the applied experiment, supporting the idea of Genetic

Algorithms as a credible tool to model human behavior.

Lensberg and Schenk-Hoppé (2021) studied the process of learning in one-shot multiple
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2 × 2 games, where the agents never only see each game once and should learn to find

optimal strategies based on information acquired across games. The author proposes a

solution concept based on multiple artificial agents that learned how to play the games

through Genetic Algorithms. The proposed theoretical model is reported to perform well,

in line with intuition and empirical evidence.

Other interesting applications of the combination of Genetic Algorithms and game theory

described in published literature include practitioners in other distinct and diverse fields,

such as engineering (Périaux, Chen, Mantel, Sefrioui, & Sui, 2001), energy (Castillo &

Dorao, 2013, 2012; Mohamed & Koivo, 2011), communications (Kusyk, Sahin, Uyar, Urrea,

& Gundry, 2011), land usage (Liu et al., 2015), biology (Hamblin & Hurd, 2007) and

ecology (Hamblin, 2013).

In summary, the literature suggests that Genetic Algorithms are an appropriate model for

adaptive learning and optimizing strategic decisions. It performs well in problems of strate-

gic interaction models (such as ours) while incorporating behavioral traits that are close

to empirical findings in experiments with human behavior. Genetic algorithms suit our

objective since they allow us to manipulate binary sequences under imposed constraints.

In this case, one can transform the numerical structure of game elements so that essential

characteristics are taken into account, as well as the outcomes of the decisions performed

by the agents, expressed by the fitness function generated by different strategy selection

rules. In this way, repeated decisions of the agents can influence the transformation of

the games to directions that are consistent with the agents’ behavior, providing us the

necessary building blocks to simulate a situation where games can transform and analyze

how the behavior of the agents influences these transformations.

2.3 Game-Theoretical Features

This article adopted the standard representation of strategic-form games as a model of

simultaneous interaction between two agents, denoted by a 2 × 2 matrix. This form en-

compasses the following elements: the (two) players, who are the parties making the

decisions; the strategies that can be selected by each player (two for each) and the payoffs

being the rewards received as a function of the chosen strategy (Robinson & Goforth, 2005;

Von Neumann & Morgenstern, 1953). The strategic representation of games focuses on

static analyses while overlooking dynamic aspects such as the order of the players’ moves,

changes in the moves, and the informational structure. This approach suggests the strate-

gies that are more likely to be used by each player or alternatively recommend to players

which strategies to choose in similar scenarios (Maschler, Solan, & Zamir, 2013). In Robin-

son and Goforth (2005) ’s notation, the players in the context of this article are named

after how the strategy profiles are organized, with the player ROW ’s strategies displayed

in the rows of the matrix and player COL’s strategies in the columns, respectively.

The adopted classes of 2× 2 strategic-form games were based on the ”periodic table” cat-

egorization provided in Robinson and Goforth (2005), which formally connects all ordinal

rank games with distinct player preferences since swaps topologically linked the games in
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adjoining payoffs. The space of 2 × 2 is infinite, though as we were only interested in

ordinal preference relations, we can concentrate on classes of isomorphic games, where for

each class, we can choose one representation of the form {1, 2, 3, 4} × {1, 2, 3, 4}. Respec-

tively, as Robinson and Goforth (2005) have demonstrated, there are 576 ways to arrange

two sequences of four numbers in a bi-matrix scheme. The ordinal structure of a game

does not change by switching rows, columns, or both simultaneously; the 576 games can

be reduced by a factor of 4 to 144. For a broader representation of strategic scenarios, all

144 unique classes of games - including a wide range of well-known applied game theory

situations such as the Prisoner’s Dilemma, Chicken game, Stag Hunt, Battle of Sexes, and

several others - are included in the simulation model.

Figure 2.1: Representation of the Game Families and Layers in the Periodic Table of 2× 2
games (Bruns, 2010, 2011, 2015a, 2015b)

Game
Family

Nash
Equilibria

Pareto-optimal
Dominant
Strategies

Count % Details

Biased 1 2 0-2 44 31%
One player gets the best and the other second best
outcome

Cyclic 0 2-4 0 18 13%
In each cell one player would prefer to change their
move, no pure strategy equilibrium

Prison 1 2-3 1-2 15 10%
Dominant strategies based on individual incentives
leads to a worse outcome than cooperation

Second Best 1 3 1-2 12 8% Both players gets the second best outcome

Unfair 1 2-3 1-2 19 13%
One player gets the best and the other the second-worst
outcome

Win-Win 1 1 1-2 36 25% Both players get the best outcome

Table 2.1: Characteristics of games categorized in families (Bruns, 2015a, 2015b)

In complement to the periodic table approach, Bruns (2010) further categorized the games

by similarity in Layers, which outlines topological proximity, and Families, which groups

similar games (based on equilibria and payoff structures, see Table 2.1). The games were

split into populations following both grouping rules, as the scheme described in Figure 2.1

and Table 2.1.

2.4 Simulation Model Design

To have dynamic and transforming games, this simulation model processes the game-

theoretical elements described earlier by allowing the games to change as a function of
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the players’ strategic behavior. The Genetic Algorithms method becomes a fundamental

building block, an enabler of these dynamic transformations. Genetic Algorithms are a

class of search heuristic programs inspired by the process of natural evolution (Holland,

1992; Holland & Miller, 1991), being part of a broader set of comparable methods named

Optimization Heuristics. The latter term, usually linked to algorithms inspired by nature,

is defined by Gilli and Winker (2009) as methods that provide high-quality approximations

to the global optimum, robust to changes, not too sensitive to parameters, easily deployable

to many types of problems and might be stochastic, but without subjective elements.

In Genetic Algorithms, the search space for potential solutions imitates the process of

biological evolution. There are many variants of methods that are considered Genetic

Algorithms. However, usually, this class of algorithms shares the following characteristics:

having a population of individuals as potential solutions represented as binary strings,

an objective function (fitness or cost), and the three types of genetic operators: selection,

crossover, and mutation (Holland, 1992; Leszek, 2008; Mitchell, 1998; Slowik & Kwasnicka,

2020). The following sections will explain these individual elements in detail as we describe

our implementation method.

Our approach allows the agents to modify their environment, especially regarding how

they decide, to measure the progress of the genetic learning process in terms of strategy

performance. The simulation process basically consists of playing the games in the desig-

nated populations and adopting one of three different strategy selection rules: (1) Nash

equilibrium, (2) Hurwicz rule, and (3) random selection. After the strategies’ selection,

the games were assigned fitness scores based on the aggregated payoffs from both agents’

choices; therefore, the games can be selected for replication in a way that favors higher-

performing combinations of strategies. These preferences were implicitly expressed by the

fitness function, which defined the quality of the selected strategies in terms of gained util-

ity. In the next step, the games were processed by the Genetic Algorithm, which selects

two games (parents) from the pool and generates a new game via the crossover and mu-

tation operators. The new games were inserted back into the population, and the process

was iterated a fixed number of times.

To manage the complexity and the processing requirements, the population numbers were

kept constant throughout the iterations of the evolutionary model, which means when a

new game is added, another game is excluded.

2.4.1 Populations and Data Structures

The encoding of games is based on a vector representation (payoff structure reproduced

by integer vectors, as in Figure 2.3). The analysis was rooted in two primary divisions of

game pools based on families and layers. On the one hand, the first restriction derived

from Robinson and Goforth (2005) ’s division of layers in their definition of the periodic

table of 2×2 games, which considers all the 36 neighboring games according to the number

of payoff swaps (see Figure 2.1). The entire space (all 144 games, not allowing ties) was

also handled as one distinct population, being processed apart from the others, allowing
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Figure 2.2: Simulation Model Overview

us to analyze the population’s results using the complete set of available characteristics in

the pool.

On the other hand, the second restriction was based on Bruns (2015a) ’s game families’

categorization, split into six groups (as in table 2.1). These two restrictions separated our

groups of games into eleven distinct populations, processed and analyzed individually.

Figure 2.3: Game Vector Encoding Scheme

2.4.2 Binary Encoding

We adopted a binary representation of the vector form for the genetic operations. As our

payoff matrices were represented by integers between1 and 4, each possible payoff value

has been encoded with one pair of bits. Consequently, the binary encoding was based on

four possible sequences using a double binary representation:
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0, 0→ 1

0, 1→ 2

1, 0→ 3

1, 1→ 4

(2.1)

As an example of a vector transformed to binary, the representation of the Prisoners’

Dilemma game (game in Figure 2.3) is defined as:

[1, 3, 2, 4, 4, 3, 2, 1]→ [0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0] (2.2)

This encoding scheme was applied in all 144 games. All game binary strings contained 16

bits, with each pair of bits representing one of the payoff values in the matrix. The game

vectors could only be modified in accordance with this framework; thus, the structural

scheme remained unchanged.

2.4.3 Evolution Environment: Strategy Selection and Fitness

This section explains the processes that govern the agents’ strategy selection rules and

how the players should act in the scenarios presented. The three approaches for selecting

strategies were used to measure the impact of distinct types of strategic behavior.

Nash Equilibrium Strategy Selector

The Nash equilibrium is a strategy profile in which each strategy is an optimum response

to other players’ strategies. This logic holds to pure and mixed-strategy profiles (proba-

bility distribution over the available choices). As expected, utilities are linear in terms of

probabilities. If a player in Nash equilibrium utilizes a non-degenerate mixed strategy, it

must be indifferent from all other pure strategies assigned with a positive probability. A

strict Nash equilibrium exists when each player has a unique best response to its rivals’

strategies (Fudenberg & Tirole, 1991; Maschler et al., 2013; Von Neumann & Morgenstern,

1953). In our games, we will encounter all Nash Equilibrium situations, with strict and

weak equilibria and pure and mixed strategies.

Because there can be multiple equilibria in bi-matrix games, the approach selected is the

support enumeration method (Knight & Campbell, 2018; von Stengel, 2007; Widger &

Grosu, 2008). The support enumeration computes all equilibria for a degenerate 2 × 2

game (A,B) ∈ IRm×n2
, for all 1 ≤ k1 ≤ m and 1 ≤ k2 ≤ n (enumeration of all possible

equilibrium strategies); for all pairs of support, (I, J) with |I| = k1 and |J | = k2. In other

words, the goal was to find support for strategies played with a non-zero probability. At

this point, the algorithm evaluated the best response condition, ensuring no better utility

residing outside of the supports.
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The steps outlined in equations (2.3) and (2.4) iterate through all potential support pairs.∑
i∈I

σriBij = v for all j ∈ J,∑
j∈J

Aijσcj = u for all i ∈ I.
(2.3)

Sequentially, for considering mixed strategies:

m∑
i=1

σri = 1 and σri ≥ 0 for all i,

n∑
i=1

σci = 1 and σcj ≥ 0 for all j.

(2.4)

There were two equilibrium-selection rules for games with more than one Nash equilibrium.

The first rile rule is based on the payoff dominance concept for simulating self-maximizing

behavior (Harsanyi, Selten, et al., 1988). The equilibrium points might be finite or infi-

nite, with at least one equilibrium (pure or mixed) for each game. Our structure identified

three main configurations: pure-strict, pure-weak (when a stronger pure-strategy equilib-

rium was available), or mixed. The Nash equilibrium is payoff-dominant and henceforth

selected if it is Pareto superior to all other possible equilibrium situations in a game. The

second rule applied a simple random selection from the sample of computed Nash equilib-

ria for each game. The objective was to enable the comparison of the maximization versus

randomization approaches and measure the effects in the evolutionary process generated

by more diverse procedures for Equilibrium selection.

Hurwicz Rule Strategy Selector

This study’s second strategy selection rule employed the Hurwicz criterion (Hurwicz, 1951).

This rule introduces a coefficient of realism, α, which serves as a tool for balancing pes-

simism and optimism in decision-making under uncertain scenarios, allowing decision-

makers to account for different possible outcomes. The pessimistic option employs the

maximin criterion, while the optimistic option employs the maximax criterion. The α pa-

rameter introduces a weighting factor between both extremes, simulating different degrees

in behavior profiles.

Following Gaspars-Wieloch (2014) ’s implementation, we applied the following formula.

hj = α · wj + (1− α) ·mj , (2.5)

resulting in the Hurwicz criterion, hj , with α as the coefficient of realism, being α ∈
[0, 1]. In this paper, 0 represents the pessimistic extreme, the risk-averse behavior, while 1

represents the optimistic extreme, or the risk-prone behavior (Colman, 2016). The optimal

alternative between the two is expressed by:

hj = max
j
{hj} = max

j
{α · wj + (1− α) ·mj}. (2.6)
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This strategy selector introduced another model of behavior profiles and enriched the

dataset to analyze simulation results. Three variations of the Hurwicz coefficient (α) were

applied, simulating three distinct decision-making profiles: pessimistic (0.0), neutral (0.5),

and optimistic (1.0). For other applications of the Hurwicz criterion in decision-making

under uncertain scenarios, see Jaffray, Jeleva, Gains, and Paris (2007), Pažek and Rozman

(2009), and Puerto, Mármol, Monroy, and Fernández (2000).

Random Strategy Selector

The third strategy selection mechanism consisted of a random choice of strategies for both

players, simulating the total absence of strategic behavior. This method was added mainly

as a control scheme, so one could assess if the populations were able to progress in terms

of utility by not having any simulated decision rule and only relying on the maximization

mechanism of the Genetic Algorithm - through selection, crossover, and mutation. The

random selection was essential to outline the effects of strategic behavior introduced by

the other two rules.

Payoffs and Fitness

Our fitness function reflected the players’ preferences defined by the strategy selection rules

applied at the game-playing stage, consequently taking the aggregated payoffs from each

player as the overall game utility. The previously defined strategy selectors returned an

array of probabilities (pure or mixed) of the agents selecting between the various available

strategies. For systematic computations of payoffs, this algorithm employs a matrix multi-

plication method, using the dot product algebraic operation (Tanimoto, 2015). In this case,

the strategies adopted by an agent during the execution of a game yielded probabilities

distributions over the two possible strategies, expressed as the state vectors (p1i (t), p
2
i (t)),

that is, the probability of player i selecting the strategy j (1 or 2) at period t.

We may depict the game (choice scenario) between two players by representing the reward

matrix of the game structure as the matrix ABCD, the computation of the payoffs (πj
1, π

j
2)

at period t for a game as:

πj
1(t), πj

2(t) =

(
p12(t),

p22(t)

)
.

[
A B

C D

]
.(p11(t), p

2
1(t)) (2.7)

This approach returns the matrix cell containing the expected payoffs (πj
1, π

j
2) for players

ROW and COL, respectively, at time t, which we will denote throughout the analysis as

utility, for the sake of simplicity. The fitness (f) for a game (g) in the population (G) was

then defined as:

fg(t) = (πj
1(t) + πj

2(t))2. (2.8)

The acquired utilities were aggregated to represent the overall utility derived from a game,

then squared to give higher weights to the best-performing games in the game selection

step relative to the current population’s performance.

23



2.4. Simulation Model Design

Figure 2.4: Overview – Strategy Selectors versus Populations

All variations of strategy selectors were applied to all game populations, as illustrated

in Figure 2.4. Once the strategies were selected, and the utility scores were assigned to

the entire set of games, the game population was ready to be processed by the Genetic

Algorithm environment.

2.4.4 Genetic Algorithms Implementation: Genetic Operators

The application of the Genetic Algorithms method in this study was designed to model

the collective learning process within a population of games. Each individual (game) rep-

resented a search point in the space of all potential solutions for the introduced problems

and a potential temporal container of current knowledge regarding the laws of the envi-

ronment. The process starts by initializing a population; then it evolves towards enhanced

performance regions of the search space utilizing randomized crossover, mutation, and

selection processes, or genetic operators (Back, 1996). The optimization process in this

context aimed to adjust the payoff structures in the games, to disseminate the best out-

comes for the defined strategy selection rules, as described by Haupt, Haupt, and Haupt

(1998).

Selection and Replacement

Selection is a crucial factor for directing the search process toward better individuals.

According to Reeves and Rowe (2002); Rowe (2015), the fitness function assigns positive

scores to well-performing games in the search space. To avoid early convergence, we opted

for a non-deterministic approach, meaning that all individuals are considered with a certain

probability during the selection process. Based on the experiments with distinct methods,

we adopted the fitness proportionate selection, where the probability of a game g being

selected is based on its performance against the rest of the population: f(g)
F . Where f is

the game’s fitness scores and F is the total fitness of the current population (aggregated).

The applied replacement method was based on the Inverse Selection criterion (Rowe, 2015),

which links directly to the fitness function and the previously described selection method.

The standard replacement rate chosen for the algorithm was 1. Since the population size
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remained constant, another game required removal whenever a new game was added to

the current population. This rule made the poorer performing solutions more likely to be

replaced than the better ones since the fitness determined the probability of being replaced.

Reproduction: Crossover and Mutation

The chosen reproduction method was a single-point crossover (Holland, 1992; Lucasius

& Kateman, 1993) that chooses a random index position within the individual’s binary

structure, and the parts of the two parents were exchanged at this point - generating a

new individual, or offspring, as demonstrated in Figure 2.5. The idea was to recombine

building blocks (schemes) on different strings. The crossover operator ensured that new

individuals inherited the parents’ characteristics, likely to be high performers among the

population.

Figure 2.5: Crossover and Mutation Operators Example

As the next step, the mutation operator introduced a probability of changing one bit within

the binary structure of an offspring game at a given generation. As illustrated in Figure

2.5 (Right-hand side), if mutation takes place, one random bit will be selected within

the offspring game’s (generated via crossover) binary string, with a uniform probability

distribution over the possible 16 bits. The selected bit element is then flipped, from 1

to 0, or 0 to 1, generating a new game with new attributes, potentially not present in

the parents’ original gene pools. This step ensures the diversity of characteristics in the

population and the possibility of generating more diverse games while avoiding fixation in

determined sets of characteristics.

Evolutionary Loop

The outlined steps are iterated through multiple generations. The populations of games

and their fitness scores were the main object of analysis for accessing the algorithm’s

properties and effects. The final data output consisted of a population of games with the

same length as the initial set, outlining the effects of N generations of simulated natural

selection, breeding, and mutation. Consequently, such generations directed the population

to a convergence process towards an optimal point expected to become constant when
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first reached, meaning that the algorithm found an optimal solution for the problem. As

a recap, the model applied the following steps:

1. initialization of a pre-filtered population of 2× 2 strategic form games

2. Implementation of the strategy selection methods outlined previously

3. Calculation of the fitness for each individual (game) in the population, based on the

strategies performance (fitness proportionate selection).

4. Execute the genetic operators: selection, crossover, and probably mutation within

selected individuals in order to create a new game from the selected games.

5. Insert the offspring back into the population, replacing a game by inverse selection.

6. Return to step 2 and iterate this process until the termination criterion is satisfied

One important remark is that we employed a unified termination criterion for simplicity

and experimental purposes at 10, 000 generations. Theoretically, the algorithm would have

served its purpose when the entire game population reached the maximum fitness level

(global optimum). We have recorded and documented the generation number in which all

populations reach an optimal point as a measure of performance (speed of convergence)

in table 2.3. The shared termination threshold allowed straightforward comparisons of

the datasets and the observation of the stability of equilibrium states over more extended

periods. Similarly, for the mutation rate, we have applied a unified parameter value at

1%. The mutation rate affects the evolutionary process and speed of convergence. Since

we analyzed several different combinations of populations and strategy selection rules,

we kept a constant parameter for simplicity and comparability. However, we encourage

practitioners to find optimal mutation rates for individual problems in optimization-based

tasks through parameter fitting or experimentation. We have performed a few tests with

different mutation rates in terms of convergence. An example of such tests is found in

Appendix 2.7.4.

Parameter Value Short Description

Distinct populations 11 Populations restricted according to layers and families logic
Strategy selectors 3 Nash equilibrium, Hurwicz rule and Random
Selection rule FPS Fitness Proportionate Selection (roulette wheel)
Crossover points 1 Random point where the binary string is divided and recombined
Mutation rate 1% Probability of mutation taking place
Replacement rate 1 Number of games replaced by the offspring in each generation
Termination 10000 Maximum number of generations (iterations) allowed

Table 2.2: Summary: algorithmic parameters adopted in the model execution

Apart from the termination criterion situation described above, the simulation model

comes with a range of other distinct parameters to be defined by the practitioner. Table

2.2 summarizes the methods and parameters applied in this experiment.
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2.5 Simulation Results

Variations of both the Nash equilibrium and the Hurwicz Rule strategy selectors repre-

sented this study’s concept of strategic behavior in decision-making. Alternatively, the

absence of any strategic behavior was simulated by allowing the agents to select random

strategies from the available options utilized as a control feature. The analysis of the

experiment findings focused primarily on studying the effect of strategic behavior during

the evolutionary learning process.

We quantified the influence of strategic behavior as the ability and speed of converging

to optimal outcomes for an entire population, expressed by the individual utility levels.

We applied the variations of the strategy selection methods into a range of different game

pools, intending to assess this performance and also judging by the ability to transform

the initial scenarios, which might be anything between pure conflict and harmony.

In addition to the utility convergence and strategy performance, the analysis of the simula-

tion outcomes revealed two other interesting points, the coordination patterns in strategy

selection by the agents and the transformation of the diverse game pools into sets of

repeated games. Each of these points was explored more in-depth hereunder.

2.5.1 Utility Convergence

The simulation results indicated that the model mostly evolved in conformity with the

reported literature and the expected development in accordance with the self-maximizing

applied behavioral patterns. The evolutionary process drove the players into creating bet-

ter outcomes throughout the learning generations, individually, by changing the structure

of the games they were inserted into. The overall tendency was that once an optimal

strategy was found, there were no incentives for the participants to deviate. Over time,

successful tactics were generally replicated, resulting in an evolutionary equilibrium, as

described in Reschke et al. (2001); Riechmann (1998, 2002). When the equilibrium was

disturbed by the stochastic mechanisms in place, the players tended to evolve again toward

an optimal strategy. Only the rounds with the Nash and Hurwicz strategy selectors get the

aforementioned results. The Random approach produced fuzzier and unordered payoffs,

which were usually non-optimal.

The analysis of the utility development, that is, the payoffs gained as results of strategies

selected, was plotted in Figures 2.6, 2.7 and 2.8, for each of the populations and strategy

selectors. Each plot’s data is divided into two combined plots displaying the utility de-

velopment for each generic player type, ROW , and COL. The Y axes show the average

utility levels for the whole population in each generation (X axes), using different colors

for each population. Each figure shows the results for each of the strategy selector types,

being Figure 2.6 for the Nash equilibrium-based methods, Figure 2.7 for the variations of

the Hurwicz rule, and Figure 2.8 for the completely random method. The populations are

further divided into plots using the layers and family groups described earlier.

The evolutionary process gradually increased the individual utility to optimal values. The

agents proceeded to select strategies that maximized the individual payoffs to maximize
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the overall outcomes of the games themselves, as defined by the fitness function. In this

manner, the equilibrium became stable when all games in the given population achieved

optimal payoffs. The selected strategies tended to persist and resist other invading strate-

gies, as also observed by D. Friedman (1991). The charts displayed similar convergence

curves in most cases.

Due to the stochastic mechanisms inherent to Genetic Algorithms, some games in the

population may have lost an optimal pair of strategies during the evolutionary process.

Nevertheless, the subsequent generations quickly adapted to the optimal strategies again.

Similar effects of genetic experiments are observed in Riechmann (1998, 2001, 2002), where

the learning process was given in two states: (1) the movement of populations towards a

stable state, denominated behavioral stability and (2), once such state has been reached,

the learning process presents a near-equilibrium dynamic of getting out of the evolution-

arily stable state and returning there again. We observed similar trends in the equilibrium

states observed in our results.

When looking at the Nash equilibrium runs (Figure 2.6), one can observe that in all

game pools, the Nash strategies could drive the convergence to the optimal utility values.

Interestingly, the population that took the longest to achieve the equilibrium was Layer 2

(left side), which contained the most Biased games, mixed with Unfair, Second Best and

Prison games. Similarly, when compared to the population containing all Biased games

(right side), they also displayed a lower convergence time, even when compared with games

having initially inferior strategies. Analysis inferences from the random Nash equilibrium

strategy selection, apart from the inferior performance to the payoff maximizing version

(as expected), include the fact that the more diverse pools (layers division) presented a

better performance than the pools with all similar games together (families division). In

this case, the pools with Biased, Unfair, and Prison games displayed a significantly higher

convergence time.

Following data analyses of the populations using the Hurwicz rule, the equilibrium state

was reached at similar speeds (see Figure 2.7) compared to the Nash equilibrium runs.

According to the simulation results, the layers-based families presented similar effects as

before, with Layers 1and 2 being slower than the others in some cases. There was a more

distinct evolutionary pattern in the families-based populations until reaching stability. The

Second Best and Prison families demonstrated a much noisier and longer process to reach

equilibrium when considering the optimistic and, even more so, the pessimistic approaches.

The random pools displayed an interesting control feature, exhibiting a noisier process,

with marked lower populations that could not converge to the evolutionary stability, even

after ten thousand iterations, for both layers- and families-based populations (Figure 2.8).

This lack of convergence properties is an essential contrast to the other runs, implying that

the presence of strategic behavior highly influenced the evolutionary process itself. Even

with a model tailored to favor individual payoffs, it was insufficient to drive the equilibrium

state.
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Figure 2.6: Utility Development - Nash equilibrium Strategies

2.5.2 Strategies Performance

This section analyses the strategy selectors’ performance in terms of convergence speed

to optimal values. Table 2.3 summarizes the speed of convergence results, that is, the

number of generations it took for the entire population to reach maximum fitness scores.

The payoff dominant Nash equilibrium strategy displays the best overall performance,

followed by the Hurwicz rule with α = 0.5, which alternates between the maximin and

maximax strategies according to the game structures. In the third place, we have the

Hurwicz rule with α = 1, or maximax (optimistic), followed by the Nash equilibrium with

random equilibrium selection, and the Hurwicz rule with α = 0, or maximin (pessimistic).

As denoted in the previous chapter, one can notice the lack of convergence for the random

strategy selection method. In most cases, the random selection failed to converge within

the allowed time, reinforcing the influence of strategic behavior simulation in the process.

Upon analyzing the game pools separately, we observed that pools with a higher number of

conflict and non-optimal types of games, such as Biased, Unfair, Second-Best and Prison,

affect the speed of convergence as well, requiring more iterations in order to reach opti-
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Figure 2.7: Utility Development - Hurwicz rule Strategies

mized fitness values. Although the games will be transformed in every case and eventually
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Figure 2.8: Utility Development - Random Strategies

converge to optimal scenarios when in the presence of strategic behavior, the available

population characteristics directly influence how the games will transform in the next

generations.

Population NE: pdom eq. NE: rand eq. HR α = 0 HR α = 0.5 HR α = 1 Random

Biased 363 401 737 392 217 failed
Cyclic 70 149 90 161 89 failed
Prison 95 2160 8881 298 54 failed
SecondBest 53 101 3148 55 4549 failed
Unfair 116 4382 73 235 58 failed
Win-Win 1 27 33 40 1 failed
L1 208 316 226 1494 1491 failed
L2 828 1972 209 178 2600 failed
L3 1 23 81 39 1 3201
L4 355 681 432 319 271 6842
Entire Space 701 653 742 709 612 failed

Average 254 988 1332 356 904 n.a.
Min 1 23 33 39 1 n.a.
Max 828 4382 8881 1494 4549 n.a.
Std. Deviation 283 1349 2658 424 1456 n.a.

Rank (avg.) 1 4 5 2 3 6

Table 2.3: Rank of strategies performance in each of the distinct populations

The charts in Figure 2.9 demonstrate the utility development for both players by adopting

each strategy selector and variations used in the simulation model, aggregated by average

across all populations. Here it is easy to understand this rank and compare the random

method against the others. The performance of the strategies varied on a game basis; a

complete overview of each combination of game pool and strategy selector is presented in

Appendix 2.7.1.
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Figure 2.9: Strategies Performance - Consolidated

2.5.3 Evolutionary Stability: Coordination

Following our game structure, each agent could select between two strategies, generically

denominated as Strategy1 and Strategy2. Additionally, for the Nash equilibrium-based

pools, mixed strategies were allowed. The frequency of selected strategies based on a

random sample of populations is presented in Figure 2.10. One can notice that the evo-

lutionary stability, in terms of utility, is reflected directly in the stability of the strategies

adopted by each player. This observed trend was in line with the examples detailed in

Hines (1987); Weibull (1997). Furthermore, most displayed a symmetric plot, especially

after reaching equilibrium.

The literature suggests that in equilibrium situations, the players coordinate their strate-

gies. For each strategy one of the players adopts, there is a strategy that is always the

best response, giving no incentives for the players to deviate from this equilibrium state

by selecting another strategy. This allows the equilibrium state to persist throughout the

generations (see Figure 2.10).

In addition, due to their inferior outcomes, mixed strategies have been eliminated early in

the evolutionary process. Figure 2.10 displays a random sample of six strategy selectors

and game pool combinations. The complete overview of the frequency of the selected

strategies in all pools is presented in Appendix 2.7.2.
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Figure 2.10: Evolutionary Stability - Sample Pools (percentage of strategies used in each
round)

2.5.4 Transformation of Games

We started with a game pool containing the following equilibrium structure: one pure

Nash equilibrium (75% of the games), one completely mixed Nash equilibrium (12.5% of

the games), and two pure and mixed (one or infinitely many) Nash equilibrium (12.5% of

the games). Table 2.4, depicts the resulting equilibria structure, depending on the strategy

selection method, of the new games generated by the evolutionary process, considering the

games in the last period of the simulation rounds.

Equilibrium Structure Initial Pools Hurwicz Pools Nash Pools Random Pools

1 pure 75.0% 74.8% 48.7% 0.0%
1 completely mixed 12.5% 0.0% 0.0% 0.0%
2 pure (and mixed) 12.5% 25.2% 51.3% 100.0%

Total 100.0% 100.0% 100.0% 100.0%

Table 2.4: Frequencies of the equilibrium structure for games in the final populations,
compared to the initial pools

Games with completely mixed Nash equilibria have been eliminated during the evolution-

ary process, making all new games with at least one pure Nash equilibrium. The symmetry

in the payoff structures was only sometimes present. A highlighted finding was the ex-

istence of an optimal equilibrium cell (4, 4), where both players attained the maximum

payoffs by playing that strategy, as in the Win-Win (harmonious) game family.
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The analysis of the results uncovered another interesting fact. Most games transformed

and replicated one-selves, reducing the number of unique games in the final populations,

where successful games appeared repeatedly. There was no restriction to how the game

may change, except for the rules defining the periodic table of 2 × 2 games (Robinson

& Goforth, 2005). Even when the payoff symmetry was broken, both players had an

optimal equilibrium state, which tended to survive across generations. The games were

changed in such a way that they retained (in the majority of cases) the strategy choices,

and payoff yield stabilized according to the characteristics of the initial populations and

the decision rules applied. In this case, the games were specifically optimized to create

favorable decision scenarios for both players.

Figure 2.11: Count of Unique Games in Pool Across Generations - Sample Pools

This point is visualized in Figure 2.11, which contains a random sample of pools plotting

the count of unique games in each of the denoted populations. This reduction pattern

was equivalent across every population and strategy selector. The model yielded popula-

tions with few different games, repeatedly occurring within the same pool. The complete

overview of the count of games in all pools is found in Appendix 2.7.3.

2.5.5 Comparison with Reinforcement Learning

Reinforcement Learning is a broadly applied concept in the economics literature, espe-

cially when it comes to game theory and situations of strategic interaction, as a model of

the human learning process, as it is regarded as an alternative method to this paper for

modeling learning behavior. A popular version of the model was introduced by Erev and

Roth (1998), in which payers change their choice probabilities in reaction to payoffs from

previous rounds. Duffy (2006) documented comparisons between Genetic Algorithms and

Reinforcement Learning in the context of economics by mentioning two examples. In the

first comparison, Haruvy and Ünver (2002) analyzes a scenario based on a procurement-

type market experiment, where buyers and sellers are supposed to reach a stable outcome.

Applying Reinforcement Learning and Genetic Algorithms yielded similar predictions con-

sistent with empirical evidence. In the second example, Arifovic and Ledyard (2004) com-

pare both methods’ performances in the context of a public goods game, also employing a

reinforcement-belief hybrid model known as Experience-Weighted Attraction (C. Camerer
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& Hua Ho, 1999). By measuring performance in terms of time taken to converge to an

equilibrium state (same rule used in our paper), the authors conclude that Reinforcement

Learning ranks significantly worse than the other two methods. In contrast, the Genetic

Algorithm displays the best performance.

As the model introduced in this paper is highly customized, a comparison might be bene-

ficial for the reader to understand the discussion about performance and speed of conver-

gence. For this reason, we applied a version of Erev and Roth (1998) ’s model to the same

pools of games and identically documented the results in terms of utility optimization

and strategy selection. However, it is of uttermost importance to understand that in our

original model, we allow the Genetic Algorithm to modify the games in a population. In

contrast, the Reinforcement Learning model can only learn optimal strategies restricted

by the static structure of the games, which will not change over time. In other words, as

the programs start iterating through the data, they will eventually be processing different

sets of games, even though the starting pools are the same.

Details on how we implemented the Reinforcement Learning algorithm can be found in

Appendix 2.7.5. The model implemented for the comparison takes two parameters for a

better fit to the data: ϕ, denoting the ”forgetting rate,” that is, how quickly the agents

forget past payoffs, and λ, which defines the sensitivity to the weights assigned to strategies

for the generation of choice probabilities. For simplicity, we applied static parameter values

for all game pools, found through over 1000 simulations of 1000 rounds each. We calculated

the average values of the pair of parameters that were most frequent in optimized outcomes

in each population. Based on the results, the global parameter values were set at ϕ = 0.42

and λ = 0.9, and initial attractions were set to 0; that is, no previous experience is assumed

for the agents in any of the games.

Figure 2.12: Reinforcement Learning Algorithm Application

Figure 2.12 displays the results for the Reinforcement Learning application. As suggested

by earlier comparisons, Reinforcement Learning (and many other similar models), by na-
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ture, find suitable strategies that maximize the rewards in a given scenario. The fitness

values converged to local optimum values. However, the main difference in our setting is

that the Reinforcement learning model is constrained to the structure of the games, as

observed in the summary of the results. The utility will never reach a global optimum if

optimal-yielding strategies are not available for selection, as the games remain static over

time.

Figure 2.13: Reinforcement Learning Strategies Selection Overview

When analyzing the strategy selection behavior of the agents, we noticed weaker coordi-

nation of strategies using reinforcement learning, as demonstrated in Figure 2.13. Agents

learned optimal strategies within each of the games. However, no consistent optimal-

yielding strategies can be selected across an entire population, outlining the Genetic Al-

gorithm’s capacity to optimize multiple scenarios by transforming individual situations.

Therefore, this higher coordination effect cannot be achieved in optimizing multiple static

games, and it shows similar figures to the random strategy selection method introduced

before within the Genetic Algorithm implementation.

Fundamentally, both methods are based on similar premises but have different operating

processes. Reinforcement Learning methods, such as the one used for this comparison,

proved to be very efficient in finding optimal payoff-maximizing strategies, even using

global parameters. However, the Genetic Algorithm performs better in our environment as

strategic behavior rules allow the algorithm to change the games based on well-performing

strategies. This ability enables the transformation of the games based on the agents’
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behavior, which optimizes the decision environment as a whole, introducing the possibility

of new, potentially better strategies.

2.6 Conclusion and Discussion

This paper introduced a novel game-theoretical approach for analyzing dynamic scenarios

that uses a heuristic approach to transform games played sequentially based on the deci-

sions performed by the agents, taking inspiration from observed scenario transformations

over time. Based on how economic agents learn and transform their decision environments

in the real world, our motivation was to document and describe the process of imple-

menting a Genetic Algorithm as a mechanism for evolutionary economic learning. For

this purpose, we compared the convergence rate to optimal scenarios of different strategy

selection rules in different populations of diverse 2×2 game types. The presented analysis

demonstrated how strategic behavior can influence this dynamic learning process and how

different strategic behavior mechanisms perform.

The core observations extracted from the presented results are summarized in the following

points:

1. The simulated strategic behavior for decision-making directly impacted the evolu-

tionary process, being responsible for transforming games into optimal scenarios

(from conflict to harmony).

2. Similarly, the absence of strategic behavior negatively affects the Evolutionary pro-

cess, preventing the evolution toward optimized scenarios.

3. The rank of the strategy selection methods from best to worse performance is given

as follows: (1) payoff dominant Nash equilibrium, (2) Hurwicz rule with α = 0.5, (3)

Hurwicz rule with α = 1, (4) Nash equilibrium with random equilibrium selection,

(5) Hurwicz rule with α = 0 and (6) random strategy selection.

4. When agents maximize their utility (i.e., behave strategically), the games evolve to

have higher payoff structures, optimizing their decision environments and transform-

ing conflict into harmonious games.

5. The evolution of dynamic strategic situations tends to create games where coordi-

nation is possible.

6. Decision rules and the environment characteristics influence the optimization pro-

cess’s agility in reaching an evolutionarily stable equilibrium.

7. Comparisons with reinforcement learning outline the power of transforming the

games for the evolution of conflict to optimal scenarios. The reinforcement learning

model can find optimal strategies within the game constraints but cannot optimize

further without structural changes in the population of games.

The diverse set of games used for this analysis provided a rich representation of multiple

real-life scenarios, including conflict, biased, dilemma, and harmonious situations. In
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addition, combining multiple game types with multiple behavior types yielded a diverse

data set for exploring additional individual factors, such as which strategies performed

better and which games were the most challenging to achieve a stable equilibrium.

The introduced decision rules presented a satisfactory performance in supporting the trans-

formation of the games in maximizing individual payoffs. An exception was the random

selection method, which failed to reach the evolutionary equilibrium multiple times in the

allowed time. In many points, the performance of the Nash equilibrium and Hurwicz rule

variations ranked similarly. However, in essence, the Nash equilibrium was still found

to be, in this study, the most rapid and robust method for optimization modeling, in

conformity with past findings by Sefrioui and Perlaux (2000).

The self-maximizing behavior and the transformation of the games allowed the individual

strategies to evolve so that the agents tended to coordinate their strategies. Hence, for

each player’s strategies, an optimal best response is consistent over time. When the genetic

process eliminates stable strategies, the evolutionary learning process eventually creates

new optimal strategies that enable a new equilibrium state, reinforcing the findings in

Chmura, Goerg, and Selten (2012); Kalai and Lehrer (1993), the rational learning in

replicated games eventually leads to stationary points of the Nash equilibrium. Such a

result is also in line with the concept of genetic stability documented in Riechmann (1998,

2001, 2002). In essence, strategic behavior allowed the agents to transform each game

scenario into mutually optimal situations, eliminating conflicts and inequality.

Per Savin et al. (2018), incorporating the dynamics of strategic scenarios in equilibrium

analysis allows for more realistic interpretations of possible environmental transformations

and policy outcomes. Compared to this paper, our results relied on transforming strate-

gic scenarios due to strategic behavior. We also conclude that heuristic techniques and

their extensions provide flexible tools with broader search spaces, potentially resulting in

superior and even innovative outcomes than traditional procedures. The comparison with

Reinforcement Learning in our research also outlines the limitations of commonly employed

methods, proposing new solutions to more flexible problems and providing insights into

reality-inspired dynamics.

As discussed by Brown and Rosenthal (1990); Chmura et al. (2012); Erev and Roth (1998),

the actual human behavior is at times not well predicted by the standard theory. However,

in reality, the evolutionary social models are more complex and require significant efforts

to create representative pictures that capture relevant characteristics of social systems

(Reschke et al., 2001). The model created in this study aimed at an exploratory analysis

that contributes to the discussion on how to envision and build representative models of

strategic behavior and economic learning in different situations, exploring the effects of

decisions in repeated strategic interaction.

We developed our simulation model to be flexible and integrate other ideas that enable the

examination of dynamic games, strategic behavior, and economic learning in the future.

Further research shall be performed by enriching the current model with different types of

games (also diverse populations) and encoding different strategy selection models, which
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should capture more diverse behavioral profiles of decision-makers in varying contexts. In

another exploration direction, practitioners can add another layer of processing payoffs and

utilities by defining a spectrum of profiles based on social preferences, such as altruism,

envy, fairness, and justice, defined by the agents’ utility functions. Furthermore, different

Evolutionary Programming methods can be compared with the results achieved with the

Genetic Algorithms application.

2.7 Appendix

2.7.1 Complete diagram of strategies performance

Figure 2.14 contains the overview of the performance achieved by the different decision

rules in every population, individually.

2.7.2 Complete diagram of evolutionarily stable strategies

Complete overview of the strategies selection frequency for the Nash equilibrium Pools in

Figure 2.15

Complete overview of the strategies selection frequency for the Hurwicz Pools in Figure

2.16

Complete overview of the strategies selection frequency for the Random Pools in Figure

2.17

2.7.3 Complete diagram of games transformation

Figure 2.18 displays the overview of the count of unique games across generations in all

pools, for all strategy selectors.

2.7.4 Mutation Rate Tests

Figure 2.19 summarizes the tests performed with mutation rates using the Payoff Dominant

Nash Equilibrium strategy selector, which is the highest performing and most robust of

our rules, applied in the whole pool of 144 games.

2.7.5 Reinforcement Learning Algorithm

The reinforcement learning algorithm applied for a comparison with the Genetic Algo-

rithms was based on Erev and Roth (1998) ’s model and in the formulation presented in

C. Camerer and Hua Ho (1999); Moffatt (2020), which introduced the concept of attrac-

tions Aj
i , as weights attached to strategies. Initial attractions Aj

i (0) can be given values

to assume a degree of previous experience from the agents with the game (having to be

estimated by the practitioner), or they can be neutral by setting default values to 0. The

generalized model has two main components. First, the attractions’ update function at

time t Aj
i (t), given as:

Ai
j(t) = ϕAj

i (t− 1) + I(sji , si(t))πi(s
j
i , s−i(t)), (2.9)
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Figure 2.14: Strategies Performance - All Pools

where πi(si(t), s−i(t)) is the player i’s payoff in round t (scalar-valued function) and I is

the indication function, taking the value of 1 if the statement is true and 0 otherwise. This

means that in reinforcement learning, a player’s attraction to a strategy can only increase

if that strategy is chosen. ϕ indicates the speed at which past payoffs are forgotten. ϕ = 0

would indicate that only the most recent payoff is remembered. ϕ = 1 would indicate that

all past payoffs have equal weights in the current decision.

The second component is the transformation of attraction into choice probabilities via
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Figure 2.15: Evolutionary Stability - Nash Pools

Figure 2.16: Evolutionary Stability - Hurwicz Pools

logistic transformation, given as:
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Figure 2.17: Evolutionary Stability - Random Pools

P j
i (t + 1) =

eλA
j
i (t)∑mi

k=1 e
λAk

j (t)
(2.10)

Where P j
i (t + 1) is the probability of player i playing strategy j in round t and mi is the

number of strategies player i has. The parameter λ defines the sensitivity to attractions;

attractions are irrelevant if λ = 0, and attractions are important if λ is large. The choice

probabilities are then used to select strategies in each round.
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Figure 2.18: Count of Unique Games in Pool Across Generations - All Pools
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Figure 2.19: Mutation rate tests - Payoff-Dominant Nash Eq. applied on the complete
pool of games
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Abstract

This paper investigates the predictive capabilities of different stationary equilibrium con-

cepts within the framework of an inspector game. The experiment employed a 2 × 2

asymmetric payoff design spanning 70 periods, executed under information-loaded and

neutral frames. Drawing on data from 100 participants, we analyze the five established

stationary equilibria concepts and five modified versions incorporating loss aversion and

fairness parameters. Our analysis emphasizes predictive performance and model charac-

teristics on aggregated, time series, and game-play data aggregations. The results show

the limited predictive power of the Nash Equilibrium, while the Action Sampling Equilib-

rium and Impulse Balance Equilibrium emerge as the best predictors among the original

concepts. The modified models exhibit high predictive potential but also increased calcu-

lation complexity and parameter estimation. The modified Impulse Balance Equilibrium

with a dynamic loss aversion parameter stands out for its predictive power and robust

representation of the loss-aversion behavioral trait.

Keywords

Behavioral Game theory, Equilibrium Theory, Stationary Equilibrium Concepts, Inspec-

tion Games, Competition

3.1 Introduction

Understanding the motivations behind equilibrium in strategic interactions gives us several

insights into predicting or describing situations involving human decisions. While tradi-

tional game theory relies on strict rationality, behavioral game theory expands this by

accounting for psychological effects, context, and other human factors (C. F. Camerer &

Loewenstein, 2003). This paper introduces an experimental study that examines equilibria

in a game that incorporates psychological elements like morality, retaliation, punishment,

and cheating, modeled with an inspection game.

Inspection games depict scenarios where an inspector monitors another entity, termed the

inspectee, ensuring adherence to specific rules (Avenhaus, Canty, Kilgour, Von Stengel,

& Zamir, 1996). These models can shape the creation of optimal incentives, such as

penalties or bonuses, to foster desired economic behaviors. Notably, games with entirely
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mixed strategies (as inspection games), where players employ every strategy at certain

probabilities (Kaplansky, 1945, 1995), pose challenges to traditional rational models, such

as the Nash Equilibrium (Erev & Roth, 1998)

Our study investigated a student versus inspector interaction. Drawing inspiration from

Selten and Chmura (2008), we designed an experimental framework to evaluate five sta-

tionary equilibrium concepts: Nash Equilibrium, Quantal Response Equilibrium, Impulse-

Balance Equilibrium, Action Sampling Equilibrium, and Payoff Sampling Equilibrium.

Our analysis of the equilibrium behavior includes an in-depth investigation of the models’

characteristics and performance in different levels of aggregation. In addition, we have also

investigated whether framing in such games influences the participants’ strategy selection

by applying two versions of the same game: one neutral frame, where no information about

the game is given, and an information-loaded frame, containing a contextual description.

Our analysis extended to examining model parameters by incorporating behavioral traits

into predictions. We introduced five variations of the original stationary equilibria con-

cepts, integrating loss aversion and inequity aversion elements. Our primary goal was to

systematically evaluate how these modified concepts aligned with observed game equilibria

and to understand their inherent features more comprehensively. In line with Mauers-

berger, Nagel, and Bühren (2020) suggestion that adding behavioral components to eco-

nomic models can enhance our understanding of real-world phenomena—taking the ’level

k’ reasoning as an example—our approach seeks to enhance both predictive accuracy and

explanatory power.

Our results demonstrated that we achieved enhanced predictive performance in inspec-

tion games by integrating behavioral traits such as loss aversion and inequity aversion

into stationary equilibrium models. While traditional models like the Nash Equilibrium

were challenged, modified versions provided more accurate predictions, especially when

accounting for the temporal dynamics of player strategies. Interestingly, the influence

of game framing was marginal, with more comprehensive information slightly inclining

participants towards riskier strategies. Furthermore, our models’ parameter investigation

revealed that quantifying behaviors like loss aversion closely aligns with real-world player

behavior.

This paper is structured as follows: we first outline the conceptual framework describing

the key areas combined in this research. We then discuss the experimental design and

framing techniques. The results section elaborates on the equilibrium analyses based on

aggregated data, time series, and individual game levels. Finally, we evaluate the predictive

capabilities of our model modifications by applying them to the other 12 cyclic games used

in the experiments documented by Selten and Chmura (2008).

3.2 Theoretical and Conceptual Background

This chapter explores the foundational game theoretical concepts central to our research.

We examine concepts such as inspection games, cyclic games, and various stationary equi-

librium concepts in 2× 2 games. As we navigate these ideas, we highlight how behavioral
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traits influence strategic decision-making, especially those related to fairness, inequity

aversion, and loss aversion. The subsequent sections unpack these core concepts in detail.

3.2.1 Inspection Games

Inspection games model strategic interactions between two actor profiles: an inspector

and the inspected. Within these games, the inspector must decide whether to oversee

the inspected party, who in turn chooses between compliance and non-compliance with

established rules. The associated payoffs and consequences drive their decisions. As a part

of non-cooperative game theory, inspection games are recognized as discoordination games,

wherein the optimal outcomes often emerge when both parties make contrasting choices.

The foundational works by Dresher (1962) and Maschler (1966) provide a deep dive into its

applications in warfare and economics. Subsequent research, such as by Kolokoltsov, Passi,

and Yang (2013) and Nosenzo, Offerman, Sefton, and van der Veen (2016), has expanded

its boundaries, highlighting evolutionary perspectives and mixed strategy equilibriums,

respectively. For a comprehensive overview of the game’s applications and mechanics,

refer to Borch (1982), Avenhaus et al. (1996), and Avenhaus, Von Stengel, and Zamir

(2002). Practical applications range from mitigating shirking, as evidenced by Nosenzo,

Offerman, Sefton, and Van der Veen (2010); Nosenzo, Offerman, Sefton, and van der Veen

(2014), to ticket controls and fraud detection in tax audits (Avenhaus, 2004).

3.2.2 Cyclic Games and Stationary Equilibria

The inspection games belong to the cyclic family, which describes the recurring nature

of particular economic and social situations. In contrast to extensive form games, cyclic

games might not have an end. The same scenarios can repeat infinitely often, with players

who might enter and exit such situations at different times (Selten & Wooders, 2001).

Gurvich, Karzanov, and Khachivan (1988) provided an early formalization of the concept

and a procedure to find optimal strategies in a 2×2 setting based on the minimax concept.

In game theory, a stationary equilibrium denotes a scenario where players consistently

adopt the same strategies throughout repeated game plays. This concept, highlighted

by Selten and Chmura (2008), emerges from specific learning or evolutionary dynamics,

offering a robust framework for analyzing repetitive game interactions. In this context,

models of stationary equilibria aim to predict or describe the strategies that players will

consistently adopt throughout repeated interaction periods. Selten and Wooders (2001)

describes stationary equilibria as a form of local optimization: the strategies chosen at

any decision point remain consistent, regardless of the sequence of prior decisions. This

equilibrium is maintained as long as altering these strategies does not offer players a better

payoff, given their opponents’ decisions.

Selten and Chmura (2008) compared experimentally different stationary concepts for com-

pletely mixed 2×2 games, namely the Nash equilibrium, the quantal response equilibrium,

the action-sampling equilibrium, the payoff-sampling equilibrium, and the impulse balance

equilibrium. Concerning the predictive performance, the impulse balance equilibrium is

the best, and the Nash equilibrium is the worst. Brunner, Camerer, and Goeree (2011)
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complement these studies; they also found that the Nash equilibrium concept fits the worst,

while the action and payoff sampling concepts fit slightly better than the other non-Nash

concepts.

Chmura, Goerg, and Selten (2014) reinforced that the generalized impulse balance equi-

librium in 3 × 3 contexts offers predictions closer to the empirical data than the Nash

equilibrium. Kirman, Laisney, and Pezanis-Christou (2018) compared impulse balance and

quantal response concepts in binary choice participation games, assessing cluster hetero-

geneity consistency with symmetric models. Results showed better performance of impulse

balance equilibrium over quantal response equilibrium in accommodating model-consistent

cluster heterogeneity.

The literature suggests that impulse balance equilibrium may replace Nash equilibrium for

cyclic game predictions, as it uses no parameters and offers better accuracy, assumptions

discussed and tested in this study.

3.2.3 Stationary Equilibrium Concepts

This paper explores five such stationary equilibria that have been prominently discussed

in academic literature. Additionally, we enhance these models by incorporating behav-

ioral parameters, emphasizing loss and inequity aversion. This chapter is dedicated to

providing clear, conceptual definitions for each of these equilibria methods. Please refer

to appendix 3.6.2 for readers interested in detailed formal representations. For technical

remarks regarding the implementation of the calculations, see appendix 3.6.3.

The Nash Equilibrium (NE), a foundational concept in game theory, defines a state where

every player’s strategy is the best response to the strategies chosen by other players. In

this equilibrium, each player’s expectations and strategies align perfectly. No player is

incentivized to change their strategy unilaterally, given that others stick to theirs. It

captures a state of mutual best response and strategic stability (Nash Jr, 1950). Although

the NE is simple and does not require parameter estimations, Erev and Roth (1998);

Selten and Chmura (2008) highlight that this method exhibits counter-intuitive features,

rendering it a sub-optimal predictor for completely mixed games. We will explore this

assumption further in later sections.

Taking the concept of bounded rationality into consideration, McKelvey and Palfrey (1995)

introduced the Quantal Response Equilibrium (QRE) Concept. In QRE, players’ decisions

are influenced by the expected behaviors of others, but with a twist. Players do not always

choose the absolute best response. Instead, their choices are probabilistic, with strategies

that have higher expected payoffs being chosen more frequently but not always. This

concept introduces a degree of ”noise” or randomness into decision-making, reflecting the

imperfections and uncertainties inherent in real-world choices. In contrast to the NE, the

QRE introduces a parameter λ, which represents the precision of players’ beliefs about

others’ strategies, with higher values indicating more accurate beliefs and more rational

behavior. In other words, high values of λ converge QRE to NE.

In the Action-Sampling Equilibrium (ASE), based on Osborne and Rubinstein (2003),

players do not respond to the overall strategy distribution of their opponents. Instead,
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they take a limited sample of the other players’ recent actions and then decide on the

best response to this sample. This approach introduces variability and acknowledges that

players base their decisions on recent experiences or observations rather than broader

strategic considerations. The sample size N for the opponents’ actions is a parameter to

be adjusted.

Similarly to the ASE, in the Payoff-Sampling Equilibrium (PSE), players are retrospective

in their decision-making. They sample and assess the historical payoffs associated with

each strategy. Players choose the strategy that has historically yielded better results by

comparing these sampled outcomes. It is a method that emphasizes learning from past

experiences and outcomes, as envisioned by Osborne and Rubinstein (1998). This concept

also incorporates a parameter, N , representing the number of samples taken from one’s

payoffs.

Lastly, we transition to the Impulse Balance Equilibrium (IBE). Introduced in Ockenfels

and Selten (2005), based on the learning direction theory (Selten & Buchta, 1994). In

contrast to the previous concepts, the IBE diverges from the traditional best-response

thinking. Instead, it considers the idea of ”impulses” that push a player towards or away

from a particular strategy. Central to the IBE is the concept of a ”security level” or

reference point, termed the pure-strategy maximin. Payoffs from each strategic choice are

assessed against this reference, with gains halved in line with the principles of prospect

theory (Kahneman & Tversky, 1979) idea of loss aversion, emphasizing that losses count

twice as much as gains. This process results in a modified game matrix from which these

impulses are derived. The equilibrium is achieved when the push and pull of these impulses

balance out, leading to a state where players’ actions are influenced by both their rational

calculations and their emotional or psychological impulses.

The original IBE model lacks explicit parameters but incorporates an implicit constant for

loss aversion. Brunner, Camerer, and Goeree (2010) highlight that the lack of parameters

may simplify the model but limit its empirical application. Ockenfels and Selten (2005)

and C. Camerer (2012) have also experimented with different loss aversion values. In our

study, we introduce a dynamic variant, IBEγ, which treats this constant as a parameter γ

and compares it with the original IBE.

3.2.4 Inequity Aversion Matrix Transformations

Broadening our investigation into how behavioral traits impact strategic equilibria, we have

incorporated the notion of fairness through inequity aversion. This concept emphasizes

an individual’s distaste for inequitable outcomes. We have transformed the game matrix

before computing the equilibrium using the utility function introduced in foundational

work by Fehr and Schmidt (1999). Within this framework, we introduce two parameters:

α, which represents a player’s discomfort with earning less, often referred to as ”envy,” and

β, which indicates a player’s unease with earning more, known as ”guilt.” This adjustment

renders the perceived payoffs dependent on fairness considerations (Tavoni, 2009). See

appendix 3.6.2 for the formal description. We use IA(α,β) as an abbreviation for the
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inequity aversion matrix transformations, generating the following modification for the

NE and IBE:

• NE ◦ IA(α,β): Nash equilibrium with inequity aversion matrix transformation.

• IBE ◦ IA(α,β): Impulse balance equilibrium with inequity aversion matrix trans-

formation, without the impulse transformation. This model replaces the aspiration

level framework from the original model with the inequity aversion, as performed in

Tavoni (2009).

• IBE2◦IA(α,β): Impulse balance equilibrium with both inequity aversion and impulse

transformations, holding γ = 2, as in the standard model.

• IBEγ◦IA(α,β): Impulse balance equilibrium with both inequity aversion and impulse

matrix transformations, with dynamic γ.

Incorporating the inequity aversion transformations, especially in the framed treatment

where participants were aware of their competition, aimed to provide a more nuanced

representation of participants’ behavior.

3.3 Experimental Design

In our study’s experimental phase, we used a 2×2 non-constant sum game with the cyclic

game structure. The following sections of this chapter provide more information on this

design.

3.3.1 Game Mechanics

Our game modeled the interaction between a student and an examiner during an exam

scenario. The student has the strategy options ”to cheat” (U) or ”not cheat” (D), while

the examiner can choose between ”control” (L) and ”not control” (R). In our 2 × 2 con-

text, ”control” implies that ”cheating” will always be detected. We use ”¬” to represent

the negation-based strategies, respectively ¬Cheat (not to cheat) and ¬Control (not to

control). Figure 3.1 shows the applied game matrix.

Figure 3.1: Inspector Game Matrix
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In our design, we decided to allow for the possibility of coordination to give a better chance

for the Nash equilibrium, as it could imply more minor deviations from assumptions of

strict rationality. In the original experiment by Selten and Chmura (2008), the players

were matched randomly within pre-defined groups to avoid the possibility of coordination.

In this experiment, the players were matched randomly at the start, and the same pair

continued in the same game until the end. Another slight design difference is the number of

iterations for each game-play. We observed in preliminary tests that the choice probabilities

results became stable much earlier (after around 30 periods) than in the 200 periods

proposed originally. Therefore, we reduced this number to 70 to make the experiment

more efficient. Because we assume that ”cheating” is not the norm in a real-life situation,

”control” implies effort or costs. The Nash equilibrium has a slight -presumably realistic-

tendency for (¬Control,¬Cheat). In this case, the preferred outcome for the inspector

player is (¬Control,¬Cheat), and for the student (¬Control, Cheat).

3.3.2 Framing Schemes

Information framing can significantly influence decisions, even when the underlying in-

formation remains constant. Tversky and Kahneman (1981) highlighted the interplay of

cognitive biases in decision-making, a finding also shared by Andreoni (1995); Cookson

(2000), who noted how different descriptions of a single choice can lead to varied out-

comes. In this study, we introduce both neutral (”context-free”) and information-loaded

(”in-context”) frames to gauge their effects on perceptions, particularly in areas with po-

tential ethical implications imposed through cheating and controlling behavior actions.

This design choice mirrors the approach of Abbink and Hennig-Schmidt (2006), which

examined bribery through a similar lens. While there is a mix of findings regarding the

impact of such frames—Abbink and Hennig-Schmidt (2006); Abbink, Irlenbusch, and Ren-

ner (2002) reported negligible effects, whereas Dufwenberg, Gächter, and Hennig-Schmidt

(2011) noted distinct behavioral shifts using neutral frames—we aim to look further into

potential variances referencing our methods as the ”framed” and ”unframed” treatments

throughout our research. See appendix 3.6.4 for details about the experiment design and

frames.

3.4 Results

This section presents the results of the inspector game experiment. We begin with general

statistics and then apply stationary equilibrium concepts across aggregated data, time

series, and individual games. We also apply the modified concepts to other experiments.

Our accuracy assessment method, based on Selten and Chmura (2008), measures the dis-

tance between predictions and observed outcomes, denominated as Q (details in appendix

3.6.2).

In our sample, we had 100 student participants 1 in laboratory sessions: 52 in the framed

game (26 observations) and 48 in the unframed game (24 observations). The group was

1Note: here, we have to distinguish the student participants from the role of ”student” in the game. All
participants were students. However, in the game, they were randomly assigned either ”student” or
”inspector” roles.
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58% female and 42% male, primarily from Rhine-Waal University in Kleve, Germany.

Half were German, while the rest were diverse, including 7% Russian and 6% Indian. The

average completion time was 40 minutes, with participants earning 16.75 euros on average.

3.4.1 Game Behavior and Framing Analysis

We compared data samples between different groups, including framed and unframed treat-

ments, male and female gender, and each player type individually, using the frequency dis-

tributions of individual player strategies aggregated over 70 periods. Non-significant treat-

ment differences were found using both a non-parametric Mann–Whitney U test (Mann &

Whitney, 1947) and a permutation test (Fisher, 1936). The complete overview of the sam-

ple comparison results is documented in table 3.4, appendix 3.6.1. These results align with

Abbink and Hennig-Schmidt (2006); Abbink et al. (2002), where neutral frames did not

significantly affect participants’ perceptions of the task. Figure 3.2 describes the overall

game behavior analysis.

Figure 3.2: Game Behavior Analysis. From left to right: in the first row, we have the
subjects’ observed strategy selection behavior and payoffs per round. On the
second row, we have the distributions of total payoffs and the distributions of
cheat and control frequencies .

Interestingly, despite similar strategy frequency distributions, both examiners and stu-

dents played the strategies control (strategy U , +12%) and cheat (strategy L, +3%) more

often in the framed games, which are strategies associated with higher risks. This effect

was reflected in the payoffs at the end of the experiment. Examiners scored, on average,

846 points (12.1 per round) in framed games versus 869 points (12.4 per round) in un-

framed games. Students’ average score in framed games was 814 (11.6 per round), while

in unframed games, it was 863 (12.3 per round). This suggests subjects engaged in riskier

behavior when they had complete information about the game, resulting in slightly lower

payoffs in the framed version. These differences are visible in figure 3.2, in both strategy
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selection behavior and payoff results.

Brandts and Schwieren (2007, 2009) showed that different framing designs and incentives

lead to diverse effects, with more intense interventions producing larger effects. Our study

used a neutral vs. non-neutral framing scheme, which may not have been strong enough to

generate significant treatment effects in this game. Individual decision-making frequencies

yielded similar results for most analyzed features.

3.4.2 Aggregated data

In the aggregated data level, we calculated average choice probabilities for each player type

in both treatments, bundled across subjects and iterations. The distribution of choice prob-

abilities, as shown in Figure 3.3, reveals that the examiner profile (pU ) is more scattered

than the student profile (qL), which is more concentrated. The distribution information

for the examiner profile includes a variance of 0.10 (framed) and 0.07 (unframed) and

a standard deviation of 0.32 (framed) and 0.27 (unframed). For the student profile, we

observed a variance of 0.03 (framed) and 0.01 (unframed) and a standard deviation of

0.16 (framed) and 0.12 (unframed). Each point in Figure 3.3 represents a mixed strategy

profile (pU , qL) for one observation, and the cross indicates the means. For the aggre-

gated data, mean frequencies were (pU = 0.461, qL = 0.136) for the framed treatment and

(pU = 0.341, qL = 0.108) for the unframed treatment.

Figure 3.3: Observed relative frequencies distributions for the framed and unframed treat-
ments

We compared our empirical results to a total of ten stationary equilibrium concepts’ pre-

dictions. Table 3.1 provides a complete overview of the equilibria computation results.

The table also depicts the parametric models’ selected parameter values and the distances

(Q) to the empirical observations. Except for the NE, most predictions yield satisfactory

results. The IBE and ASE models are the best predictors among the standard concepts.

One can also observe that the modified concepts generally seem to fit the data better.

This could imply that parametric modifications yielded more flexible or adaptive models

in capturing the complexities of empirical data.
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Framed Treatment Unframed Treatment

Standard Concepts PU QL Q Params. PU QL Q Params.

NE 0.200 0.250 0.285 - 0.200 0.250 0.200 -

IBE 0.380 0.170 0.088 - 0.380 0.170 0.073 -

QRE 0.426 0.208 0.080 λ = 0.591 0.342 0.195 0.087 λ = 0.995

ASE 0.440 0.176 0.045 N = 3 0.349 0.180 0.072 N = 4

PSE 0.431 0.203 0.073 N = 7 0.382 0.203 0.103 N = 11

Modified Concepts PU QL Q Params. PU QL Q Params.

IBEγ 0.423 0.196 0.071 γ = 1.4 0.320 0.135 0.034 γ = 3.2

NE ◦ IA(α,β) 0.200 0.250 0.285
α = 0
β = 0

0.180 0.220 0.196
α = 0.127
β = 0

IBE ◦ IA(α,β) 0.461 0.136 0.000
α = 0.768
β = 0.172

0.374 0.165 0.065
α = 1

β = 0.991

IBE2 ◦ IA(α,β) 0.461 0.136 0.000
α = 0.763
β = 0.847
γ = 2

0.341 0.108 0.000
α = 0.886
β = 0.543
γ = 2

IBEγ ◦ IA(α,β) 0.461 0.136 0.000
α = 0.617
β = 0.146
γ = 1.1

0.341 0.108 0.000
α = 0.069
β = 0.578
γ = 3.7

Table 3.1: Compiled results of the application of all stationary concepts

The IBE, a model rooted in behavioral impulses, demonstrates notable disparities in pre-

dictions across the same game framed differently. Such framing likely heightens specific

behavioral tendencies, potentially diminishing participants’ loss aversion. In comparing

it with the parametric version, adjusting the loss aversion values through the γ parame-

ter brings the model’s predictions closer to empirical findings, accounting for the framing

effects.

This predictive power comparison is clearly outlined in figure 3.4. The plots rank the Q

values from highest (worst) to lowest (best), showing the standard concepts first, followed

by the modified concepts. Overall, the ASE and IBE concepts were the best predictors for

our treatments, while NE was the least effective. QRE performed better in the unframed

treatment, ranking second, but less effective in the framed treatment, being the second-

worst predictor. PSE ranked third in both treatments.

For the modified concepts, the IBE model variants provided the best predictions, with a

closer fit to the empirical data (see table 3.1). IBEγ◦IA(α,β) had the best overall predictive

power in both treatments. The other IBE modifications, IBE ◦IA(α,β) and IBE2 ◦IA(α,β)

similarly demonstrated satisfactory accuracy, particularly when compared to the original

concepts. IBEγ exhibited superior performance compared to the fixed-parameter version.

Selten and Chmura (2008)’s results 2 rendered the NE as the worst performer, reinforcing

that Nash Equilibrium is a poor predictor for games with only mixed strategies. The

authors ranked concept performance as 1. IBE, 2. PSE, 3. ASE, 4. QRE, and 5. NE.

2Note: Unlike the authors, who used 12 distinct games and averaged parameter values for the QRE, ASE,
and PSE models, we estimated parameters for a single game type. This approach removed the need for
a sampling variance component in our Q values.
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Our rankings share similarities; however, IBE performs well in the framed version of our

experiment but not as well in the unframed version, being superior only to NE predictions.

Figure 3.4: Predictive performance measure Q, ranked for the standard and modified con-
cepts

Among the modified concepts, the NE modification, NE ◦ IA(α,β), had nearly the same

prediction accuracy as the original NE. For the framed treatment, it remained the same,

considering up to 3 decimal points, while in the unframed treatment, there was a slight

change, resulting in a reduction of 0.004 in the Q value. Generally, incorporating be-

havioral parameters greatly enhances the accuracy of the IBE compared to the NE. The

rigid rationality assumption of NE, which prioritizes individual payoff maximization, might

limit its adaptability to behavioral nuances. In contrast, IBE, rooted in behavioral im-

pulses, is inherently flexible and captures the complexities of real-world decision-making.

Consequently, when behavioral elements are introduced, IBE naturally aligns better with

observed human behavior, while NE’s foundational assumptions may overshadow these

adjustments.

Proceeding with the empirical fit analysis, figure 3.5 displays the prediction values from

our analysis, giving an overview of the concepts’ fit to empirical observations. The plots

are divided into treatments and standard versus modified concepts. Empirical observations

are shown in red (framed treatment) and blue (unframed treatment), and different marker

colors and shapes represent equilibrium concepts. Except for NE, standard concepts are

closely grouped with minor Q value differences. Modified concepts show a better overall fit.

After incorporating the IA parameters in NE, predicted values showed minimal differences,

indicating that no parameter value in the search space could produce better predictions.

We sought to understand how the parameter values from the parametric models affect the

predicted probabilities. For a visual exploration of the QRE λ and the introduced γ for

the IBE, figure 3.6 displays the development of the parameters during the optimization

process. QRE performed as expected; there was a convergence for higher lambdas to the

Nash equilibrium. The closest (pU , qL) prediction values to the empirical observations are

given as (0.426, 0.208) with λ = 0.591 for the framed treatment and (0.342, 0.195) with

λ = 0.995 for the unframed treatment. The QRE search space represented by this curve

starts at a given pair of predicted probabilities with low λ values, and as the quantal

response functions become steep, it gets closer to the NE.
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Figure 3.5: Predictions for the standard stationary equilibrium concepts c to the aggre-
gated observed relative frequencies

Figure 3.6: Development of λ and γ parameters in the search space for the best predictions

For the IBE moodels, the closest predictions are (0.457, 0.135) with γ = 1.9 for the framed

treatment and (0.455, 0.100) with γ = 2.7 for the unframed treatment. As with the QRE

and IBE models, the γ parameter increases as it progresses through the search space

until it reaches a limit. The results show that the framed treatment has a lower overall

loss aversion (γ) value than the unframed treatment, consistent with the statistical tests

showing that subjects with more information tended to play riskier strategies. This finding

suggests that the γ parameter can represent the loss aversion behavioral trait in the IBE-

based models.

As the second behavioral measurement, we assessed inequity aversion by examining strat-

egy changes after inequitable outcomes, with stronger aversion expected in the unframed

treatment where subjects were unaware of playing against each other. We calculated con-

ditional frequencies of strategy changes in response to the worst outcomes, determining

inequity aversion by the frequency of these changes relative to maximum payoff differ-

ences. Envy indicated strategy changes after a player’s losses, while guilt corresponded

to changes after an opponent’s loss. For envy, the results were framed = 0.74, unframed

= 0.57; for guilt, framed = 0.64 and unframed = 0.67. The means of α and β across

all IA-based modes are framed α = 0.35, β = 0.08 and unframed α = 0.48, β = 0.64.

There is some consistency in comparing the results in the unframed but not in the framed

treatment. Measuring this is challenging due to potential strategy changes caused by the

game’s asymmetric payoff differences, which depend on the matrix structure since it also

showed strong values in the framed treatment. The detailed analysis is in appendix 3.6.1.
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A more in-depth analysis may be necessary to understand the relationship between these

parameters and actual behavior better.

For the sampling-based equilibria methods ASE and PSE, we checked the sample sizes

N = 1, ..., 12. The best fit to our data was given by four different sample size N values,

and we did not identify an optimal sample size that fits all values well. For ASE, we found

n = 3 to be the best fit in the framed treatment and n = 4 in the unframed treatment. For

PSE, we found higher values to be the best fit, with n = 7 in the framed treatment and

n = 11 in the unframed treatment. Figure 3.7 shows the predicted probabilities yielded

by both ASE and PSE concepts and the distances Q to the observed relative frequencies.

The search space of the sampling equilibria was restricted to the number of sample sizes

considered.

Figure 3.7: ASE and PSE predictions for sample sizes 1-12

We wanted to display the particular search space for all the explored models and how

the possible predictions are distributed within the space of choices. Thus, we collected

all prediction values yielded by each model in the following parameter ranges specified

in appendix 3.6.3. The predictions distribution within the search spaces are plotted in

figure 3.8; the heat maps represent the density distribution of all yielded predictions of

probabilities for the players’ mixed strategies (pU , qL).

The superior performance of modified concepts can be attributed to their ability to explore

larger, more comprehensive search spaces, as seen in figure 3.8. Their primary advantage

lies in exploring larger probability spaces constrained by subjects’ behavioral parameters,

resulting in these observed high-density predictions close to empirical values. However,

search spaces are game-specific and vary according to the game’s structure. For example,

models with fundamentally smaller search spaces than the three-parameter model also

yield accurate predictions, reinforcing their predictive power claims.

3.4.3 Time-Series Analysis

In this section, we enhance the aggregated relative frequencies analysis by adding a time

dimension to the study. We compute the equilibrium probabilities considering the cumu-

lative development of strategies chosen by each group of players per period. Additionally,

we examine the players’ strategic behavior over time by generating stationary equilibrium

predictions in each round. The results of this analysis are concisely presented in Figure
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Figure 3.8: Heatmaps with the search space for the parametric models

3.9, which offers a deeper understanding of the evolution of players’ strategic behavior

throughout the game.

Figure 3.9: Distances Q to observed relative frequencies per period

We observed consistent learning effects in both framed and unframed treatments. Ini-

tially, distances Q to model predictions were higher but decreased over time as players

gained context understanding and strategy selection improved. Choices converged closer

to equilibrium predictions and stabilized after 20 periods. Choi, Gale, and Kariv (2012)

found similar results using QRE, where agents learned by observing others’ behavior in

limited information scenarios. Incorporating natural noise in decision processes enables

theoretical models to provide structural decision estimations and yield predictions close to

empirical data.

Learning effects were present in varying degrees for all stationary concepts in our study,

with models incorporating behavioral traits generally outperforming strictly rational pre-

dictions. The effects are evident in the empirical choice probabilities when the distribution

is split before and after the 20th and 40th periods (table 3.2).
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Framed Treatment Unframed Treatment

Period split pU qL pU qL
1-20 0.492 0.188 0.431 0.163
21-40 0.471 0.131 0.338 0.090
41-70 0.433 0.104 0.282 0.083

Table 3.2: Relative frequencies of the empirical observations with period split

Both treatments showed the highest differences between the first 20 and the remaining

periods. However, we observed that the framing affected the learning process, as the

participants of the framed experiment presented lower Q values in the first periods and

displayed a more stable strategy selection behavior if compared to the participants in the

unframed treatment. We have also isolated the individual parameter values in applying

parametric models on a period level. The compiled results are presented in figure 3.10.

Each chart represents the parameter value for each round’s predictions for the equilibrium

concept described in the title of the charts.

Figure 3.10: Parameters development per period, for all parametric models

For a better understanding of the parameters’ meaning, we assigned them to their respec-

tive theoretical explanations in each of the models:

• QRE - λ: precision of beliefs about others’ strategies (McKelvey & Palfrey, 1995)

• IBE - γ: loss aversion (Ockenfels & Selten, 2005; Selten & Chmura, 2008)

• ASE - N : memory about other players’ past actions (Osborne & Rubinstein, 2003;

Selten & Chmura, 2008)

• PSE N : memory about own past payoffs (Osborne & Rubinstein, 1998; Selten &
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Chmura, 2008)

• IA α: envy, β: guilt (Fehr, Naef, & Schmidt, 2006; Fehr & Schmidt, 1999; Rey-Biel,

2008)

This explanation assists in interpreting the charts in Figure 3.10. We observed a near-

monotonic increase over time for the bounded rationality trait (QRE λ), indicating that

predictions moved closer to the NE and became more constant in later rounds. A similar

trend was seen for the loss aversion trait (IBE γ); subjects initially displayed riskier be-

havior, progressing to a more loss-averse state over time. Referring to Table 3.2, higher

incidences of ”cheat” and ”control” strategies were observed early in the experiment, re-

flecting riskier behavior consistent with theoretical assumptions.

As memory improves in sampling equilibria, an ideal sample size is found and only modified

if another sample size proves superior. We observed more stable values for both cases

(ASE N and PSE N), with few changes across the 70 periods. Trends for the inequity

aversion’s envy and guilt values (α and β) were less clear. While an increasing trend

was observed most of the time, more significant variations occurred from round to round,

especially in the 3-parameter model IBEγ ◦ IA(α,β). In the unframed treatment, the

values of the IA parameters were significantly higher and increased faster than in the

framed treatment. The behavioral interpretation suggests that inequity aversion had a

more substantial influence on decisions in the unframed treatments. Except for the α

parameter in the IBEγ ◦ IA(α,β) model, the development of the parameters remained

consistent across models and treatments.

3.4.4 Game-Level Analysis

In the final section of our results analysis, we examined observations on a game-play

level. To do this, we considered each pair of players’ strategy choices over 70 periods as

one observation, aggregating pairs of probabilities (pU , qL) for students and inspectors.

We analyzed 24 gameplays in the framed treatment and 26 in the unframed treatment,

individually computing the Q values for all stationary concepts. Table 3.3 displays the

frequency with which each concept was ranked against the others, based on prediction

power for each observation. In other words, it shows how often each concept was ranked

between 1 (best) and 10 (worst) based on the lowest Q values.

We observed consistency with the aggregated analysis, highlighting a higher predictive

power for the parametric models. The modified concepts extensively occupied the ranks’

best positions, with IBEγ ◦ IA(α,β) demonstrating the best performance most of the time.

The other concepts were distributed more evenly across the ranks. Interestingly, the

modified NE version NE ◦ IA(α,β), QRE, and PSE also exhibited significant performance

in the first position frequency despite not performing as well on the aggregated level.

In contrast, the original IBE did not fare as well in the observation-level ranks, while the

IBEγ showcased a significantly superior performance. For the IBE case, this isolated game

analysis using a dynamic parameter dramatically improved the accuracy of the predictions.
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Fr. Treatment Rank 1 2 3 4 5 6 7 8 9 10

NE 0% 0% 0% 4% 19% 4% 4% 25% 50% 4%
IBE 0% 0% 0% 0% 0% 0% 4% 0% 31% 75%
QRE 0% 0% 25% 19% 19% 29% 8% 0% 0% 0%
ASE 0% 0% 0% 22% 19% 13% 42% 3% 0% 0%
PSE 0% 0% 13% 30% 5% 8% 13% 0% 13% 21%

IBEγ 21% 29% 8% 22% 10% 4% 4% 0% 0% 0%
NE ◦ IA(α,β) 0% 4% 25% 0% 0% 0% 0% 53% 0% 0%

IBE ◦ IA(α,β) 0% 8% 21% 0% 14% 8% 21% 19% 6% 0%

IBE2 ◦ IA(α,β) 0% 38% 8% 4% 14% 33% 4% 0% 0% 0%

IBEγ ◦ IA(α,β) 79% 21% 0% 0% 0% 0% 0% 0% 0% 0%

Uf. Treatment Rank 1 2 3 4 5 6 7 8 9 10

NE 0% 0% 0% 0% 20% 15% 4% 31% 24% 4%
IBE 0% 0% 0% 0% 0% 0% 0% 0% 35% 77%
QRE 0% 4% 4% 23% 44% 23% 4% 0% 0% 0%
ASE 0% 0% 4% 15% 12% 15% 54% 0% 0% 0%
PSE 0% 0% 11% 12% 4% 8% 15% 3% 41% 19%

IBEγ 20% 23% 26% 8% 16% 4% 4% 0% 0% 0%
NE ◦ IA(α,β) 4% 8% 26% 8% 4% 0% 0% 37% 0% 0%

IBE ◦ IA(α,β) 0% 8% 11% 15% 0% 12% 15% 29% 0% 0%

IBE2 ◦ IA(α,β) 0% 35% 19% 19% 0% 23% 4% 0% 0% 0%

IBEγ ◦ IA(α,β) 76% 23% 0% 0% 0% 0% 0% 0% 0% 0%

Table 3.3: Ranked stationary concept frequency in terms of predictive power for each model
applied to all individual observations, on a game-play level

3.4.5 Modified Equilibria Concepts Applied to Other Experiments

To evaluate the predictive power of the modified concepts introduced earlier, we applied

them to the original 12 games experiment introduced by Selten and Chmura (2008) and

later adjusted by Brunner et al. (2010). The consolidated results for each combination

of game and concept, including the outcomes for pU , qL, and Q, as well as the fitted pa-

rameters for each combination, are documented in table 3.6, appendix 3.6.1. The results

exhibit a similar pattern to those of our game. The modified concepts generally demon-

strate improvements when compared to their original versions. In terms of predictive

performance, based on our Q measure, we observe a ranking akin to the one presented in

Figure 3.4. Considering the mean Q values for all 12 games, we obtain the following order

from most to least accurate predictor: IBEγ◦IAα,β (mean Q = 0.002), IBE◦IAα,β (mean

Q = 0.007), IBE2 ◦ IAα,β (mean Q = 0.032), IBEγ (mean Q = 0.038), and NE ◦ IAα,β

(mean Q = 0.131).

The predictive performance for each game and equilibrium concept is shown in Figure

3.11. The 3D bar plot displays the 12 games on the X-axis, the categorical equilibrium

concept on the Y-axis, and the Q values on the Z-axis, represented by the bars’ size. The

concepts are ordered by the mean Q values for all games, from lowest to highest. Note

that our Q formula (defined in appendix 3.6.2) slightly differs from the one in Selten and

Chmura (2008). We use the Euclidean distance formula, while they employ a quadratic

distance formula and account for sampling variance since it is a multi-game experiment.
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Figure 3.11: Measure of predictive success Q for the modified concepts applied to the 12
games

This comparison reveals that the search functions generated by the modified concepts are

game-specific. Similar to the plots in Figure 3.8, we plotted the search space functions for

all 12 games in Figures 3.12 and 3.13 (appendix 3.6.1), with ”X” indicating the observed

frequencies. The IBE and NE variations are game-specific, with different search functions

depending on the game structure. Models with more parameters generate more prediction

possibilities. However, in every case, the models’ predictions are relatively close to the

empirical values, reinforcing their flexibility and adaptability to different game scenarios.

3.5 Conclusions and Discussion

This paper extends the stationary equilibrium literature, building on Selten and Chmura

(2008) by employing a different game, applying different frames, and allowing coordina-

tion. We introduced Loss Aversion and Inequity Aversion conceptual modifications and

analyzed aggregated data, time series, and game-level observations. Our study offers an-

other perspective on the stationary equilibria theory. The Inspector game framework was

interesting in this context as it introduces several behavioral-related mechanisms connected

to both the incentive schemes in the game and the contextual and personal influences re-

garding cheating and punishment actions.

Our game design represents the idea that cheating is less likely than not cheating, and

controlling is less likely than not controlling. Additionally, the probabilities of the NE

represent a more straightforward pattern by using inverse ”prominent ” numbers - 0.20

and 0.25 for the first strategy of players 1 and 2, respectively - than the probabilities of

the games reported in Selten and Chmura (2008). Though we allowed additional possible

coordination, this did not lead to a better prediction of the empirical data by the NE. We

showed that in a situation with unclear and vague norms like a mixed NE, players do not

recognize the norm but try instead to follow an impulse to reduce losses.
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The information-loaded and neutral frames had a small and statistically insignificant ef-

fect, where participants with complete information played the riskier strategies more often.

In the computation of stationary predictions, we ranked the applied concepts as follows:

framed treatment: 1. IBE, 2. ASE, 3. PSE, 4. QRE, 5. NE; unframed treatment:

1. ASE, 2. QRE, 3. PSE, 4. IBE, 5. NE. In line with the literature, stationary con-

cepts outperformed. Four of our concept modifications demonstrated improved predictive

power, except for the NE modification, which showed better results only at the observa-

tion level. While models with additional parameters enhance accuracy, they also increase

computational complexity and pose interpretational challenges.

Our parameter investigation outlined that theoretically quantifying behavioral parameters

does a fair job of capturing real-world behavior. Our IBE parameter for loss aversion

showed lower loss aversion values for riskier players and greater loss aversion values for

players who choose high-risk strategies less frequently. That fact was also outlined by our

framing intervention, where players with more information about the context appeared to

take more risks. The time-series analysis also reinforced this finding, displaying learning

effects and equilibrium stability. Subjects selected riskier strategies in the first 20 periods.

The strategic behavior converged closer to the theory predictions over time after learning

about the environment, and their loss aversion measurements rose over time, analogous to

equilibrium convergence. Regarding inequity aversion, we found no substantial evidence

that envy and guilt matched the empirical behavior, even if they made sense according to

the situations applied.

Our study’s limitations include its focus on a specific game, potentially limiting gener-

alizability to other scenarios. We lean on behavioral traits and information constraints

to explain decisions, which might be a simplified perspective on the intricate nature of

human choices. While laboratory settings provide controlled environments essential for

initial observations on decision-making, real-world data, with its inherent complexity, of-

fers a deeper and more robust understanding of mixed-strategy behaviors, as highlighted

by Mauersberger and Nagel (2018). Furthermore, introducing new parameters poses in-

terpretational challenges for practitioners, increasing the calculation complexity.

In summary, our paper builds upon the literature groundwork in stationary equilibria by

introducing modified versions of these concepts, exploring the influence of behavioral traits

and framing effects, and providing a deeper analysis of model parameters and their tempo-

ral dynamics. The main contribution of this paper is a more comprehensive understanding

of equilibria in completely mixed games.

3.6 Appendix

3.6.1 Additional Analyses

Table 3.4 shows the p-values for the non-parametric tests employed to compare the data

samples of interest.

Table 3.5 displays the results of the inequity aversion analysis. Here, we assess inequity

aversion in both framed and unframed treatments by examining strategy changes post-
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Sample A Sample B Test Results

Framed Unframed Mann-Whitney U: 0.614, Permutation: 0.092
Male Female Mann-Whitney U: 0.904, Permutation: 0.291
P1 Framed P1 Unframed Mann-Whitney U: 0.256, Permutation: 0.083
P2 Framed P2 Unframed Mann-Whitney U: 0.946, Permutation: 0.253

Table 3.4: Strategy Selection Statistical Tests Overview - p Values

inequitable outcomes. We have employed two forms of aversion computation based on our

behavioral parameters - envy (strategy changes after a player’s losses) and guilt (changes

after an opponent’s loss).

Unframed Framed

Examiner Student Examiner Student

Strategy Change Envy 0.29 0.84 0.60 0.89
Strategy Change Guilt 0.53 0.81 0.42 0.86

Table 3.5: Analysis of strategy changes based on Inequity Aversion

In the presented data, players exhibited a pronounced inclination towards envy-driven

strategy changes in the framed context, with a change rate of 0.74 compared to 0.57

in the unframed scenario. Conversely, guilt-driven strategic alterations were slightly more

prevalent in the unframed environment, registering at 0.67, compared to 0.64 in the framed

setting (both comparisons use average values). However, there’s a notable inconsistency

when we examine the IA-based models: while the envy parameter (α) in the unframed

setup aligns with observed behaviors, rising to 0.48, the substantial surge in the guilt

parameter (β) to 0.64 doesn’t mirror the empirical strategy change data.

The remainder of this chapter focuses on the analysis of the equilibria in the 12 additional

games. Similar to figure 3.8 in chapter 3.4.2, we have computed all possible prediction

points for each of the 12 games from Selten and Chmura (2008). The calculation methods

and parameter ranges were kept exactly the same as those used in the inspector game in

our experiment. The plots are divided into two figures, figure 3.12 containing the plots

for games 1 to 6, and figure 3.13 containing the plots for games 7 to 12. Lastly, table

3.6 displays the details regarding the equilibria computation for each game, including the

predicted probabilities (pU , qL), the measure of fit Q, and the fitted parameter values.
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Figure 3.12: Modified Stationary Equilibria Concepts Applied to the games from Selten
and Chmura (2008), games 1-6
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Figure 3.13: Modified Stationary Equilibria Concepts Applied to the games from Selten
and Chmura (2008), games 7-12
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3.6.2 Methodological Formalizations

This section documents the theoretical definitions of cyclic games, the stationary equilibria

concepts, the inequity aversion transformations, and the Q measures.

Cyclic Games Taxonomy

We performed an experiment using an inspection game design, following the structure

outlined in Selten and Chmura (2008) for cyclic games, illustrated in the matrix in table

3.7. The analyzed 2 × 2 game, represented in the following standard form, has precisely

one completely mixed Nash equilibrium.

Pl 2
L R

Pl 1 U (aL + cL, bU) (aR,bU + dU)
D (aL,bD + dD) (aR + cR,bD)

aL, aR, bU , bD ≥ 0; cL, cR, dU , dD > 0

Table 3.7: Taxonomy of experimental 2× 2 cyclic games

Nash Equilibrium (NE)

The NE formula for computing the equilibrium of cyclic games is given as:

pU =
dD

dU + dD
, qL =

cR
cL + cR

. (3.1)

Quantal Response Equilibrium (QRE)

For computing the QRE, let EU (q) and ED(q) be player one’s expected payoffs for U and

D, against a strategy q of player two. Conversely, EL(p) and ER(p) are the expected

payoffs for player two’s L and R against a strategy p for player one. In the QRE, pU and

qL are defined as:

pU =
eλEU (q)

eλEU (q) + eλED(q)
, qL =

eλEL(p)

eλEL(p) + eλER(p)
.

E′
U (q) = EU (q) + qRr, E′

D(q) = ED(q) + qRr

(3.2)

In this equations system, the mixed-strategy profiles are given as a function of λ, which

minimizes the distance of predictions from the observed relative choice probabilities. By

incorporating the possibility of errors in human judgment, the QRE is given as a modified

version of the NE, introducing noise into the local optimization process.

Action Sampling Equilibrium (ASE)

In the stationary state defined by the outlined game structure, players take a sample of

n past choices of the other players and optimize the decision against this sample. To
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determine the probabilities of the strategies in the action sample equilibrium for sample

size n, one determines for each number k ≤ n, where k is the number of L played and

n−k the numbers of R played in the sample of length n, an indicator αU (k) for the payoff

difference ∆1 = (n− k)cR − kcL

αU (k) =


1 for 0 < ∆1

1

2
for 0 = ∆1

0 else

. (3.3)

In the same way for player two for each number m ≤ n, where m is the number of U

played and n − k the numbers of D played in the sample of length n, an indicator αL(k)

for the payoff difference ∆2 = (n−m)dU −mdD:

αL(m) =


1 for 0 < ∆2

1

2
for 0 = ∆2

0 else

. (3.4)

The choice probabilities are given for the action sample with a sample size n by:

pU =

n∑
k=0

(
n

k

)
qkL (1− qL)n−k αU (k), qL =

n∑
m=0

(
n

m

)
(1− pU )m pn−m

U αL(m). (3.5)

In the analysis presented here, we tested all ASE sample sizes ranging from 1 to 12.

Payoff Sampling Equilibrium (PSE)

For the PSE, each player takes two samples of equal size for each pure strategy. The

sum of payoffs is then compared, and the strategy with the higher payoff sum is selected

(if both are equal, then each strategy is selected with the probability of 1
2), (Osborne &

Rubinstein, 1998). Selten and Chmura (2008) introduced The PSE concept as a mixed-

strategy combination reflecting this situation. The equations for the payoff sampling with

sample length n are derived as follows:

Let kU be the number of U and kD the number of D in the sample of player 1 and further

HU = kU (aL + cL) + (n− kU ) aR, HD = kDaL + (n− kD) (aR + cR)

Φ1 = HU −HD,

HL = mUbU + (n−mL) (bD + dD) , HD = mR (bU + dU ) + (n−mR) bD

Φ2 = HL −HR.

. (3.6)

With the indicator
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β (kU , kD) =


1 for 0 < Φ1

1

2
for 0 = Φ1,

0 else

γ (mL,mR) =


1 for 0 < Φ2

1

2
for 0 = Φ2

0 else

. (3.7)

The system of equations to compute the equilibrium probabilities is defined as:

pU =

n∑
kU=0

n∑
kD=0

(
n

kU

)(
n

kD

)
qkU+kD
L (1− qL)2n−kU−kD β (kU , kD) , (3.8)

qL =

n∑
mL=0

n∑
mR=0

(
n

mL

)(
n

mR

)
(1− pU )mL+mR p2n−mL−mR

U γ (mL,mR) . (3.9)

In accordance with the ASE sample size choices, we also analyzed the values between 1

and 12 for PSE. In both ASE and PSE models, increasing the sample size range increases

the calculation complexity by increasing the degree of the polynomials.

Impulse Balance Equilibrium (IBE and IBEγ)

In the IBE, the probability of choosing a strategy is taken as a parameter to be adjusted.

The authors assumed that the pure strategy maximin is the reference for determining a

surplus or a loss. The original game matrix must be transformed to specify the γ-Impulse

equilibrium. All payoffs below the surplus si

s1 = max [min (aL + cL, aR) ,min (aL, aR + cR)] , (3.10)

and

s2 = max [min (bU , bD + dD) ,min (bU + dU , bD)] (3.11)

Remain unchanged. The surplus of payoffs higher than si is reduced by the factor γ

between a given and an alternative strategy against a fixed opponent strategy.

The original IBE concept uses γ = 2, based on the loss aversion definition in Kahneman

and Tversky (1979). We applied the original method and a dynamic γ-modified version

as an optimization model that minimizes the distance to observed probabilities, analogous

to the QRE parameter λ. The transformation involves iterating over player i’s payoffs xi,

comparing them to security levels si, and reducing the surplus over si by the factor γ. The

transformed payoffs ti for player pi are given by:

ti =

si + xi−si
γ , if xi ≥ si

xi, else
(3.12)
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The transformed game matrix accounts for the combination of ordinary and loss impulses

from one pure strategy to another. In the transformed game, the payoff differences cL,

cR, dU and dD are expressed by c∗R, c∗L, d∗L and d∗D. When a strategy is selected by player

i, and it yields a payoff inferior to another option, player i receives an impulse toward

the other strategy. The foregone payoff gives the size of the impulse from the unselected

strategy in the transformed game. With x∗y = xyγ for xy ∈ {c∗R, c∗L, d∗L, d∗D} the γ-impulse

matrix is then given by table 3.8.

Pl 2
L R

Pl 1 U (0, d∗L) (c∗R, 0)
D (c∗L, 0) (0, d∗D)

Table 3.8: Impulse matrix

The IBE assumes that player 1’s expected impulse from strategy U to D is the same as

the impulse from D to U . This logic also applies to payer 2’s impulse from L to R and R

to L, yielding the following impulse balance equations:

pUqRc
∗
R = pDqLc

∗
R, pUqLd

∗
U = pDqRd

∗
D. (3.13)

The terms on the left and right-hand sides of the first impulse balance equation denote

player 1’s expected impulse from U to D and player 1’s expected impulse from D to U ,

respectively. If the left-hand side is higher than the right-hand side, player 1 has a stronger

impulse from R to D, which consequently decreases qR and increases qL, thus creating a

tendency in the direction of the impulse balance, as argued by Selten and Chmura (2008).

The impulse balance equations yield the following equations for the equilibrium state

functions:

pU =
qLc

∗
L

qLc∗L + (1− qL)c∗R
, qL =

(1− pu)d∗D
pUd∗U + (1− pU )d∗D

. (3.14)

The γ-impulse equilibrium can then be computed by determining the coordinates of the

intersection of (pU , qL), expressed as:

pU =

√
c

√
c +
√
d

qL =
1

1 +
√
cd

, (3.15)

with

c =
c∗L
c∗R

d =
d∗U
d∗D

. (3.16)

We shall use IBEγ as an abbreviation for the γ-impulse to distinguish these concepts. We

applied both methods with fixed and dynamic parameters analogously.
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Inequity Aversion

For a player i with payoffs x, the original model described in Fehr and Schmidt (1999) is

defined as:

Ui (xi, xj) = xi −max [αi (xi − xj) , 0]−max [βi (xi − xi) , 0] , αi, βi ∈ [0, 1], (3.17)

where alpha captures the distaste of player i for disadvantageous inequality in the first

nonstandard term, also denominated as ”envy,”whereas beta captures the distaste of player

i for advantageous inequality in the final term, or ”guilt.” This formula is applied to modify

the original game matrix prior to equilibria computation.

Euclidean Distance - Goodness of Fit for Model Predictions

For each stationary concept, we calculated the Euclidean distances between the predicted

probabilities and the empirical observations to evaluate their predictive success. fiUj and

fiLj are the relative frequencies for U and L in the j-th independent subject group. The

euclidean distance to the predicted probabilities (pU , qL) is calculated as:

Qij =
√

(fiUj − pU )2 + (fiLj − qL)2 (3.18)

Subsequently, the aggregated mean squared distance for a given set of players is defined

as follows.

Qi =
1

si

s∑
j=1

Qij (3.19)

We used this method to measure the Q values for all aggregations of the data observed

in the experiment, considering the overall treatment level, round-based, and individual

game-play level.

3.6.3 Technical Remarks

The experiment was programmed using oTree (D. L. Chen, Schonger, & Wickens, 2016).

The statistical tests were employed using the statsmodels library (Seabold & Perktold,

2010). Both the experiment and the analysis were executed using Python language. For

the equilibria computations, we used Scipy (Virtanen et al., 2020) and Gambit (McKelvey,

McLennan, & Turocy, 2023).

Regarding the stationary concept calculations in the context of the introduced models,

creating equilibria predictions for a game is primarily a mathematical optimization prob-

lem. We aim to comprehend how parameters and other factors produce and affect these

predictions. To accomplish this, we organized the calculations of equilibria predictions as

grid search problems. In this methodological approach, we define boundaries and incre-

ments for all possible combinations of parameters, thus generating a search space. The
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grid search method iterates through all possible combinations and finds optimal values

that satisfy the objective function (LaValle, Branicky, & Lindemann, 2004; Liashchynskyi

& Liashchynskyi, 2019), in our case defined by our measure of predictive success Q.

The modified models had three possible parameters: γ, α, and β. We defined the search

space by defining boundaries and increment steps for each. The boundaries for α and β

were set to 0 and 1, with increment steps of 0.001, whereas for γ, we had it between 0.1

and 12 with increments of 0.1. It is important to outline here that searching through large

grids can be a complex computational task. If we think of the model with 3 parameters,

IBEγ ◦IAα,β, we had a search space of 1001∗1001∗120, which searches through 120240120

pairs of predicted probabilities for (pU , qL) for a given game. Our implementation was done

using Python programming language. The code was written for multi-thread tasks to han-

dle large search spaces using open-source just-in-time compilers from the Numba library

(Lam, Pitrou, & Seibert, 2015). During the grid search process, IBE-derived methods may

generate games that don’t follow cyclic game rules (table 3.7), making it impossible to cal-

culate impulse equilibrium. To address this, we check if games remain cyclic after applying

inequity aversion and impulse transformations. If not, the algorithm skips predictions and

moves to the next case.

3.6.4 Experiment Design Details

In this section, we added the actual experiment designs, which the subjects interacted

with, containing examples of framed and unframed variants.

The experiments were conducted in Kleve, Germany’s Rhine-Waal University of Applied

Sciences experimental laboratory.
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Figure 3.14: Introductory explanation

Figure 3.15: Framed design example, applied to the student player
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Figure 3.16: Unframed design example, applied to the student player
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Vińıcius Ferraz, Leon Houf, Thomas Pitz & Christiane Schwieren

Abstract

This paper analyzes the dynamics of human behavior in strategic interactions, focusing

on the influence of dark personality traits within the framework of an inspector game.

Utilizing a rigorous experimental design, participants engaged in one-shot and repeated

game versions under two distinct framing conditions: neutral and information-loaded.

The analysis employed a combination of traditional statistical analyses complemented

by advanced machine learning techniques, including Random Forest and Causal Forest

models. Key findings highlight the prevailing role of game mechanics in decision-making,

with the D-factor surfacing as a significant secondary influencer. The inspector profile

shows higher retaliation trends and consistently exhibited pronounced treatment effects,

especially under framed conditions. The results offer a thorough understanding of the

interplay between individual attributes, game dynamics, and strategic choices, contributing

valuable insights into behavioral economics and strategic decision-making.

Keywords

Behavioral Game Theory, Dark Personality, Machine Learning, Causal Inference, Inspec-

tion Games

4.1 Introduction

In strategic decision-making, a comprehensive understanding of the factors influencing

human behavior is essential C. Camerer (2011). Traditional economic theories focus on

rationality, (Kahneman & Tversky, 1979, 1984) and highlight the impact of cognitive

biases and emotions. Additionally, research on cooperation Axelrod and Hamilton (1981),

fairness Fehr and Gächter (2002); Fehr and Schmidt (1999), and social preferences Charness

and Rabin (2002) underscores the diverse influences in strategic interactions. Building on

this perspective, this paper analyzes the influence of dark personality traits within the

framework of an inspector game. By employing a combination of traditional statistical

analyses and advanced machine learning techniques, our study explores the relationship

between game mechanics, contextual framing, and individual traits like the Dark Factor of
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Personality (D-factor), which measures characteristics associated with manipulative, self-

centered, and malevolent behaviors. Our research aims to provide a deeper understanding

of how these elements converge to influence strategic behavior in decision-making scenarios

laden with asymmetric information and non-rational elements.

Inspection games model a scenario where an inspector aims to detect non-compliant be-

haviors of an inspectee, often within resource constraints. In this context, cheating refers

to deceiving or manipulating to gain an advantage despite the risk of detection. While

this game provides a robust framework for studying behaviors like dishonesty, retalia-

tion, and punishment, the influence of dark personality traits remains largely unexplored.

When combined with framing and dark traits, the game’s particular dynamics introduce

new directions in behavioral research. Furthermore, our methodological approach, which

integrates traditional statistical analyses with advanced machine learning, offers compre-

hensive insights into behavioral patterns and the causal relationships between strategic

choices, context, and individual traits.

In the experiment’s design, we incorporated both one-shot and repeated variations of

an Inspection Game, enabling in-depth examinations of strategic behavior statically and

over time. Participants were randomly assigned to one of two framing schemes: neutral

or information-loaded, introducing contextual elements to the decision-making process.

Post-game questionnaires assess individual characteristics like dark personality traits and

propensity for dishonesty, serving as pivotal variables in our analysis. This comprehensive

design allows us to draw causal inferences and provides a robust framework for examining

interactions between personality, context, and decision-making. Our analytical approach

focuses on participants’ strategy selections, specifically their tendencies to ”cheat” or ”con-

trol,” and extends to correlations and regressions. Subsequently, it expands to incorporate

Random Forest and Causal Forest models, facilitating a deeper understanding of behav-

ioral patterns and their underlying causal relationships.

Our findings underscore the dominant influence of game mechanics on decision-making,

with the D-factor emerging as a secondary determinant. The inspector profile consistently

exhibited more pronounced treatment effects and higher retaliation tendencies. At the

same time, the causal forest model highlighted the nuanced impacts of the dark factor,

age, and gender on treatment outcomes. The layered nature of our findings reveals the

interwoven relationships between rational decision-making, behavioral context, and indi-

vidual characteristics.

In terms of practical contributions, we aim to advance the understanding of human behav-

ior and strategic interactions through a methodologically robust and diverse framework.

The insights gleaned from our findings offer a meticulous comprehension of cheating and

controlling behavior, which has implications for policy formulation and business ethics.

Among the practical applications of our research are the potential for detecting cheating

behaviors and designing targeted interventions based on individual risk factors.
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4.2 Conceptual Background

This section examines two core elements of the study: Inspection Games, dark personality

traits, and their role in strategic interactions and cheating. We discuss the use of Inspec-

tion Games in game theory, explore the Dark Factor of Personality (D) and its impact

on decision-making, and highlight empirical evidence linking dark traits to strategic and

cheating behavior.

4.2.1 Inspection Games

This paper employs an experiment using a variation of the Inspector Game, which belongs

to the Cyclic class. Cyclic games, as defined in Selten and Wooders (2001), are a type of

game theory model designed to account for recurring situations where the same scenario

may be repeated indefinitely, potentially with different players. They are characterized by

having payoff matrices where the best replies of the players cycle, resulting in a situation

where there is no pure-strategy Nash equilibrium. Instead, these games often have mixed-

strategy equilibria, where players utilize all their possible strategies with a given probability

(Kaplansky, 1945), and the game dynamics tend to cycle around them.

The game involves a sequential play between an inspector and an inspectee. The inspector

aims to detect illicit activities by the inspectee through inspecting actions. However,

due to limited resources, continuous inspection is unfeasible. This formulation seeks an

equilibrium representing the optimal strategies for both players, considering their resources

and the other’s strategy. Often used in international relations modeling, such as arms

treaty enforcement, inspector games encapsulate strategic interactions under asymmetric

information. Key contributions include works by Avenhaus et al. (1996, 2002). Early

definitions are attributed to studies by Dresher (1962) and Maschler (1966). Inspection

games have found application in various fields including law enforcement (Andreozzi, 2004;

Ferguson & Melolidakis, 1998; Rauhut, 2009), environmental policy (Holler, 1993), fraud

detection (Kolokoltsov, 2010), corporate bonuses and fines (Nosenzo et al., 2010), public

transport controls, arms control (Avenhaus, 2004), to name a few.

The Inspector game can provide a framework that captures the essence of a moral decision-

making scenario, where players must weigh personal gain against their choices’ social and

moral implications. This game-theoretic approach is especially suitable for examining dark

personality traits, as it mirrors real-world contexts where individuals possessing these traits

may take advantage of others for their benefit.

4.2.2 Dark Personality Traits

Dark personality traits encompass behaviors that are harmful and self-centered. These

individuals often prioritize their own needs, showing little empathy or warmth towards

others. They can be deceptive, misleading others for their own benefit, and may inten-

tionally harm others to achieve their goals (Rogoza, Kowalski, Saklofske, & Schermer,

2022).
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While the dark triad of personality, comprising Machiavellianism, Narcissism, and Psy-

chopathy, is one of the most studied constructs in this field (Paulhus & Williams, 2002),

dark traits extend beyond these three. Recognizing the need for a comprehensive frame-

work, Moshagen, Hilbig, and Zettler (2018) introduced the Dark Factor of Personality

(D-factor). This value combines the core dispositional tendencies underlying various aver-

sive personality traits. D is characterized by an individual’s inclination to maximize their

utility, often at the expense of others, and is supported by beliefs that justify such behav-

iors. It consolidates various dark traits, including but not limited to Machiavellianism,

Narcissism, Psychopathy, Amorality, Egoism, Greed, Sadism, and Spitefulness, into a sin-

gle measure, providing a holistic perspective.

The decision to employ the D-factor stems from its comprehensive coverage of dark traits

and the methodological advantage of consolidating them into a singular score. The associ-

ation of dark personality traits with behaviors such as callousness, dishonesty, selfishness,

and risk-taking is well-established (Crysel, Crosier, & Webster, 2013; Jones & Neria, 2015;

Moshagen et al., 2018). Given the relevance of these traits to our study, we employ the

D-factor measurement questionnaire as proposed by Moshagen, Zettler, and Hilbig (2020).

4.2.3 Dark Personality Traits, Strategic Interaction, and Cheating - Related Work

The literature reveals a consistent relationship between dark personality traits and various

forms of dishonest or strategic behavior. Studies by K. Smith, Emerson, Haight, and Wood

(2022), G. J. Curtis, Correia, and Davis (2022), and Esteves, Oliveira, de Andrade, and

Menezes (2021) collectively indicate that these traits are significant predictors of academic

misconduct among students, with some variations based on cultural and academic contexts

(Cheung & Egan, 2021; J. Zhang, Paulhus, & Ziegler, 2019).

In strategic games like the Prisoner’s Dilemma, dark traits link to more selfish or strategic

behaviors. Deutchman and Sullivan (2018) and Lainidi, Karakasidou, and Montgomery

(2022) found that individuals with high Dark Triad scores were more likely to betray their

partners, especially in loss-framed and non-social contexts. Lopez, Calvo, and Torre (2022)

extended this to show that Dark Triad traits influence decision-making but may not affect

susceptibility to anchoring bias.

In competitive settings, S. R. Curtis et al. (2021) found that high Machiavellianism led to

better performance, whereas high levels of narcissism and psychopathy resulted in poorer

outcomes. This result aligns with Timmermans, Caluwé, and Alexopoulos (2018)’s findings

that dark traits like psychopathy correlate with immoral behaviors such as infidelity on

online dating platforms.

This body of work underscores dark personality traits’ complex but consistent influence

on dishonest behaviors and strategic decision-making across various contexts.

4.3 Experiment Design

We use a between-subject design, randomly assigning participants to one of two treat-

ments with distinct framing schemes. This approach enables causal behavior comparisons
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across treatments (Charness, Gneezy, & Kuhn, 2012). At the beginning of the experi-

ment, participants are also randomly paired. In the repeated game, these pairs remain

consistent from start to finish. However, in the one-shot game, participants submit strate-

gies individually. Post-game, participants completed the dark factor survey. Additionally,

the one-shot group answered five dishonesty-related questions, enhancing and diversifying

findings due to the game’s lack of a time dimension. Further details on the game matrix,

framing schemes, and questionnaires will follow in subsequent sections.

4.3.1 Game Matrix

The game consists of a 2 × 2 strategic-form version of the inspection game, designed fol-

lowing Selten and Chmura (2008)’s taxonomy for cyclic games. The game models an exam

situation, introducing the strategic interaction between an inspector and a student. The

Student has the strategy options ”cheat” or ”not cheat,” whereas the inspector can choose

between ”control” and ”not control.” Figure 4.1 displays the game matrix representing this

scenario, with player 1’s (row) payoffs representing the inspector profile and player 2’s

(column) the student.

Figure 4.1: Base Inspector Game Matrix

Considering real-life scenarios, we model ”cheating” as an easier, atypical behavior, con-

trasting it with a ”control”condition that entails effort or cost. The game’s payoffs embody

this, leaning towards the (¬control,¬cheat) outcome (where ”¬” denotes negation-based

strategies). This model suggests cheating is often simpler than its prevention or control.

Hence, the game’s asymmetric payoffs express the student player’s preference hierarchy:

(¬Control, Cheat) ≻ (¬Control,¬Cheat) ≻ (Control,¬Cheat) ≻ (Control, Cheat),

(4.1)

Suggesting that cheating, when not controlled, is the most preferred outcome. Comple-

mentarily, we designed the following preference relations for the inspector player:
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(¬Control,¬Cheat) ≻ (Control, Cheat) ≻ (Control,¬Cheat) ≻ (¬Control, Cheat),

(4.2)

where the preferred outcome is no cheating and no control. The preference relations are

reflected in the players’ best response correspondences, introducing a unique, completely

mixed Nash equilibrium. As such, our model’s equilibrium predicts that the inspector will

opt for control with a probability pU = 0.2 and choose not to control with a higher prob-

ability pD = 0.8. On the other hand, the Student is anticipated to cheat with probability

qL = 0.25 and decide against cheating with probability qR = 0.75. This equilibrium re-

flects the inherent tendencies and strategic choices of both the inspector and the Student

within the game framework (for details on the computation of the Nash equilibrium in

cyclic games, see appendix 4.7.2).

4.3.2 Information-Loaded and Neutral Frames

Research has shown that framing choices can significantly influence decision-making out-

comes, even when the underlying information remains the same. This importance of

cognitive biases and heuristics challenges the idea of pure rationality being our primary

decision driver (Tversky & Kahneman, 1981). How information is presented can alter

perceptions and decisions through cognitive and motivational effects (Levin, Schneider,

& Gaeth, 1998). Framing effects on individual and group behavior in 2 × 2 game experi-

ments have been substantiated in studies such as Brewer and Kramer (1986) and Andreoni

(1995).

Among different types of frames, the subset of interest in our context comprises neutral

and information-loaded frames, as studied in Abbink and Hennig-Schmidt (2006). This

approach is designed to control for potential biases or preconceptions related to the task,

particularly given that our experiment involves actions with potentially negative ethical

implications. We employ neutral and information-loaded frames, referred to as ”unframed

treatment”and the ”framed treatment,”respectively. The unframed treatment presents the

tasks context-free, allowing participants to select generic strategies. On the other hand,

the framed treatment adds context with an explanation of the game and named strategies.

Other studies with this framing scheme are presented in Dufwenberg et al. (2011), Abbink

et al. (2002), and Abbink and Hennig-Schmidt (2006). For visualizing how participants

saw the different versions of the game, see appendix 4.7.4.

4.3.3 Dark Traits and Dishonesty Measurements

In the last stage of the experiment, we employ the 35-questions version (D35) of the D-

factor questionnaire (Moshagen et al., 2020) to assess the underlying personality traits that

might influence participants’ behavior in our game scenario. The quantification of dark

traits can help understand how this behavioral predisposition interacts with the context

and participants’ decisions, particularly regarding dishonest, selfish, or punitive behavior.

A complete overview of the questions is in table 4.14, appendix 4.7.4.
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Participants of the one-shot game answered five additional questions to assess their propen-

sity for dishonest behavior. Following the randomized response scheme introduced by

Warner (1965) and later modified by Greenberg, Abul-Ela, Simmons, and Horvitz (1969),

participants were randomly divided into two groups to ensure anonymity and encourage

truthful responses. One group responded directly to questions. The other group was in-

structed to flip a coin before responding: if the coin showed ”heads,” they should answer

”yes”; if ”tails,” they should answer truthfully. This coin-flip method aimed to ensure par-

ticipants felt their responses were anonymous. Further details are provided in appendix

4.7.4.

Based on the outlined design, we posit the following: Dark personality traits, as measured

by the D-factor, are hypothesized to influence game behavior, with individuals displaying

higher dark traits likely exhibiting more control or cheat strategies. In addition, whether

neutral or information-loaded, the game’s framing is expected to influence participants’

decisions. However, the mechanics of the game (incentive schemes, feedback, repeated

interaction, etc.) are anticipated to play an important role in shaping decision-making,

regardless of individual traits or framing effects.

4.4 Machine Learning Analysis: Models, Explainability, and Perfor-

mance Metrics

In recent years, machine learning methods have gained significant traction in tackling

complex economic problems. C. F. Camerer (2018) highlights its predictive accuracy and

adaptability strengths, especially when dealing with complex human behavior. These fea-

tures enable more effective personalization and foster cross-disciplinary insights, thereby

contributing to a nuanced understanding of human decision-making across various do-

mains. Complementarily, Athey (2018) notes machine learning’s robustness in causal in-

ference, particularly in scenarios involving numerous covariates.

To navigate the complex landscape imposed by our experiment, We leverage traditional

statistical methods and advanced tools like random forests. We also use causal forests to

distinguish the effects of treatment, game mechanics, and personal traits. To interpret the

machine learning models, we turn to Shapley values. The subsequent subchapters delve

into these methods in detail.

4.4.1 Random Forest

Random Forest is a machine learning algorithm proposed by Breiman (2001), inspired by

earlier work in shape recognition with multiple randomized trees by Amit and Geman

(1997). It comprises a collection of decision trees, which are simple models that split data

into branches at each step. Each tree in the Random Forest is trained on a random subset

of the data and makes predictions. The final result of the Random Forest is then made

by taking the majority vote (for classification tasks) or the average (for regression tasks)

of the trees’ predictions. This ensemble approach helps to improve prediction accuracy

and robustness. Random Forests excel in managing complex datasets with many variables,
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adeptly handling interactions between them. This algorithm stands out for its capability to

process high-dimensional data and offers built-in error estimation and variable importance

metrics (Cutler, Cutler, & Stevens, 2012). A generalized formalization of the Random

Forest classifier is documented in appendix 4.7.2.

4.4.2 Causal Forest and Double Machine Learning (DML) Estimators

In this analysis step, we aim to disentangle the treatment effects and the influence of

covariates. The goal is to assess how these two sets of factors jointly influenced the partic-

ipants’ behavior. We employ machine learning combined with causal inference techniques

to achieve this. Specifically, we focus on estimating the Conditional Average Treatment

Effects (CATE), which represent the expected disparity in outcomes between treated and

untreated groups, conditioned on a set of observed covariates (Athey & Imbens, 2016).

According to Lechner (2023), Causal Forests are particularly effective for their flexible

estimation of causal effects at multiple levels of aggregation, allowing for a more nuanced

understanding of complex behavioral phenomena.

The concept of causal forests, proposed by Wager and Athey (2018), is an extension of

Breiman (2001)’s random forest designed to estimate CATE using causal inference. The

causal forest method pairs ”honest” trees with the subsampling mechanism of random

forests to estimate heterogeneous treatment effects. This algorithm constructs a random

forest where each tree is ”honest,” meaning the data splits into two parts: one for con-

structing the tree (choosing splits) and the other for estimating treatment effects within the

resulting leaves. This separation of data avoids overfitting and allows for valid statistical

inference. Meanwhile, the random forest’s subsampling helps reduce variance and improve

the model’s predictive performance. The transition from a Random Forest to a Causal

Forest primarily focuses on the tree’s target variable and splitting criterion. In Random

Forests, the trees aim to minimize classification or regression errors (classification, in our

case), but in Causal Forests, they are designed to estimate causal effects. For applications

of this method, see Athey and Wager (2019); Davis and Heller (2017).

Complementarily, Double Machine Learning (DML) is a method introduced in Cher-

nozhukov et al. (2017), which integrates decision tree ensembles with the DML approach to

robustly estimate localized causal treatment effects in the presence of high-dimensional co-

variates while accounting for confounders. The name ”double”relates to the involvement of

two sets of machine learning predictions. The first model (model T ) predicts the treatment

T given covariates X, yielding a propensity score or probability of receiving the treatment

based on observed characteristics. The second model (model Y ) predicts the outcome Y

given covariates X and cofounders W , highlighting the expected outcome based solely on

observed characteristics without considering the treatment. Using the predictions from

the two models, the DML model computes the residuals T̃ and Ỹ by subtracting predicted

values from the observed treatment and outcome, respectively. These residuals represent

the component of treatment and outcome that the observed covariates cannot explain.

The DML version of causal forest integrates generalized random forests (Athey, Tibshirani,

& Wager, 2018) with DML estimators, allowing for a nuanced analysis in high-dimensional
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covariate spaces and heterogeneity in treatment effects. The DML technique employs aux-

iliary machine learning models to adjust for confounders, ensuring unbiased treatment

effect estimation. Given the potential presence of omitted confounders, utilizing a dou-

ble machine-learning approach is wise. This method combines the robustness of Double

Machine Learning with the adaptability of causal forests, enhancing the reliability of treat-

ment effect estimates. For a detailed mathematical breakdown of the Causal Forest DML

model, see appendix 4.7.2.

Causal forests with DML estimators have been applied to various fields, such as medicine

Mizuguchi and Sawamura (2023), marketing Ellickson, Kar, and Reeder III (2023), eco-

logical monitoring Fink et al. (2022), and finance (Wasserbacher & Spindler, 2022).

4.4.3 Model Evaluation and Performance Metrics

Model evaluation is vital for both prediction and extracting insights. To validate our

findings, we examined the performance of the employed two machine learning models:

Random Forest Classifier and Causal Forest DML. We partitioned our datasets into 80%

for training and 20% for testing. While the Random Forest model’s evaluation is direct

using the test set, the Causal Forest DML model requires a more intricate approach due

to the inherent complexities of causal inference, such as counterfactuals and potential

unobserved confounders.

For the Random Forest Classifier, we employed five popular performance metrics: Accu-

racy, Precision, Recall, F1 Score, and ROC-AUC (Fawcett, 2006; Powers, 2020; Sokolova &

Lapalme, 2009). Accuracy calculates the fraction of correctly classified instances, Precision

gauges the model’s skill in identifying true positives among those it classifies as positive,

Recall determines how well the model recognizes positive instances among all real positives,

F1 Score balances Precision and Recall, and ROC-AUC assesses the model’s discriminative

ability across varying thresholds.

In causal machine learning, the causal effect estimation is particularly challenging for model

evaluation because it involves unobservable counterfactuals. Therefore, goodness-of-fit

metrics like Mean Squared Error (MSE) and R2 are often used, involving only the observed

data (Machlanski, Samothrakis, & Clarke, 2023). We utilized two primary evaluation

metrics to assess the performance of our Causal Forest DML model: Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE). These metrics have been adapted from

the field of regression and are particularly suitable for tasks involving the estimation of

Average Treatment Effects (ATE), as outlined in Cheng et al. (2022).

4.4.4 Model Selection, Training, and Tuning Strategies

Individualized models were developed for repeated and one-shot game scenarios to under-

stand the multifaceted game dynamics and players’ motivations. These models catered to

each player type, and random and causal forests were built separately for each dataset.

The double machine learning model has two first-stage models, T (treatment) and Y (out-

come), which must be selected and tuned separately. This stage is also crucial for the
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quality of the final model’s results, as demonstrated by Machlanski et al. (2023). Since

both our treatment variable and the outcome are binary, this problem naturally falls within

the scope of classifiers. Identifying appropriate models for complex datasets involves exper-

imentation and evaluation. We included four model types in the selection process, focused

on popular and widely applied models for classification problems: Random Forest (RF),

Gradient Boosting Machines (GBM), Gaussian Naive Bayes (NB), and the Multi-layer Per-

ceptron (MLP) classifier. In all cases, we applied cross-validation techniques during model

training stages to prevent overfitting while ensuring robustness and reliability. Details on

the model descriptions, tuning, and cross-validation are documented in appendix 4.7.3.

The systematic first-stage model selection procedure is documented in 4.7.3. Technical

choices, parameter values, and details regarding the DML estimation are documented in

appendix 4.7.3.

4.4.5 Shapley Values for Machine Learning Explainability

The Shapley Value, originally a cooperative game theory concept by Shapley et al. (1953),

denotes a player’s average marginal contribution across all player combinations. Adapted

to machine learning as Shapley Additive exPlanations (SHAP) by S. M. Lundberg and Lee

(2017), it measures feature importance in prediction models. Each feature’s SHAP value

indicates its average influence on predictions across feature combinations. S. M. Lundberg

et al. (2020) extended SHAP to tree-based models, including random and causal forests,

offering consistent interpretability for these different methods. For a comprehensive ex-

ploration of the SHAP concept, see Sundararajan and Najmi (2020) and appendix 4.7.2.

4.5 Results

This section presents the findings of our experimental analysis. Based on our hypotheses

outlining the influence of the game mechanics, the D-factor, and the framing on decisions,

we initiate the discussion by examining the sample’s characteristics and the behaviors

participants exhibited during the game. Subsequently, we incorporate personal variables

into our analysis, exploring their relationships through correlation and regression analyses.

Finally, we turn to machine learning applications, starting with insights from the Random

Forest model and then moving on to the causal inference models.

4.5.1 Samples Information

We conducted experiments using two distinct samples. The first sample involved a re-

peated game played over 70 periods, while the second sample engaged in a one-shot game.

The details about the two samples are summarized in table 4.1. In the repeated game,

participants received compensation based on their performance, with each point earned

equivalent to 0.02=C. On average, participants received a payment of 16.75=C for their par-

ticipation. In contrast, for the one-shot game, participants had the opportunity to enter a

raffle with a chance to win one of three =C50 gift cards. It’s worth noting that all partici-

pants in both experiments were students from Rhine-Waal University of Applied Sciences

located in Kleve, Germany.
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Attribute Repeated Game One-Shot Game

Experiment Type Laboratory Online
Participants (N) 100 526
Treatment Split Framed: 52, Unframed: 48 Framed: 275, Unframed: 251
Gender Distribution 54% Female, 43% Male 47% Male, 48% Female
Nationality 50% German, 50% Diverse 41% German, 59% Diverse
STEM Field Share 32% 53%
Age Distribution
- 18-24 years 54% 58%
- 25-34 years 40% 37%
- 35-44 years 6% 3%
- Other or non specified 0% 2%
Average Session Length 40 minutes N/A

Table 4.1: Repeated and One-Shot Samples Comparison

The repeated game experiment was conducted initially. However, we later introduced a

one-shot sample to ensure a representative distribution of characteristics, especially for

the D-factor. This addressed the lack of extreme values observed in the repeated sample

(shown in figure 4.9, appendix 4.7.1). The one-shot approach allowed for an expansive yet

cost-effective sample, given the constraints of conducting a large lab experiment

4.5.2 Game Behavior and Statistical Analysis

We comprehensively analyzed game behavior in line with our hypothesis that empha-

sizes the game’s incentives as a pivotal influence on decision-making. This foundational

overview serves two purposes: firstly, to provide a clear understanding of the observed

game dynamics, and secondly, to set the groundwork for examining its interactions with

dark personality traits.

Our analysis began with statistical tests comparing the samples, emphasizing the vari-

able ”s1” representing the action of choosing the first strategy: ”cheat” for students and

”control” for inspectors. This variable will be a central point throughout the results sec-

tion. For the repeated game, we assessed players’ aggregate s1 choices over 70 periods

using Mann-Whitney U (Mann & Whitney, 1947) and permutation (Fisher, 1936) tests,

given non-normal distributions. In the one-shot game, we applied permutation, Z-tests,

and Fisher’s exact test to compare binomial samples. Preliminary results showed no sig-

nificant differences in strategy by treatment framing or gender. However, there was a

statistically significant variation in the inspector’s choices in the one-shot game (with the

framed sample higher than the unframed). Detailed outcomes of the tests are in table 4.7,

appendix 4.7.1.

Upon analyzing the participants’ behavior in the repeated game, the observed equilibrium

probabilities (pU , qL) were identified as (0.46, 0.13) for the framed version and (0.34, 0.11)

for the unframed version, taking into account the mean relative frequencies across the

game. Meanwhile, the one-shot game’s equilibrium probabilities stood at (0.65, 0.15) for

the framed version and (0.47, 0.21) for the unframed. In comparing these findings with the
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Nash equilibrium predictions of (0.20, 0.25), there were notable deviations, particularly

regarding the inspector’s strategy selection 1. Player 1’s (the inspector’s) choices were

consistently higher than the Nash predictions, and Player 2’s consistently lower, suggest-

ing a potential predisposition or bias in their decision-making process. Furthermore, the

framing of the game appeared to exert influence here. In both game formats, the framed

treatment showed a trend of higher s1 probabilities for Player 1, indicating a potential

context influence. These trends can also be observed by computing the absolute means of

selected strategies across treatments and participants, plotted in figure 4.2.

Figure 4.2: Absolute Mean Frequencies of Choosing Strategy 1 (s1).

The analysis of the repeated game behavior is encapsulated in figure 4.3. Starting from

the top and moving towards the bottom: First, the time series frequencies of playing

strategy 1 reveal that both players initially leaned towards their first strategies, but this

preference stabilized after about ten periods, indicating a shift towards coordination with

their counterparts. Second, the distribution of payoffs shows comparable mean payoffs

for both players, although Player 1 and the unframed treatment in general had slightly

higher averages. Third, scatter plots correlating total payoffs with frequencies s1 indicate

that Player 1 consistently chose s1 more often. Third, strong negative correlations be-

tween total payoffs and frequent use of s1 for both player types outlined that making this

choice frequently was not advantageous. Fourth, lower correlation values when examining

strategy changes across the game indicate that inconsistency in strategy choices leads to

lower payoffs. These findings imply that neither a predisposition to choose s1 nor fre-

quent strategy changes optimize payoffs, and the game’s framing subtly influenced these

behaviors.

The results from the analysis of the one-shot game are available in figure 4.4. The heatmaps

(top) reveal distinct patterns in strategy choices between the framed and unframed treat-

ments. In the framed version, the most frequent outcome was Player 1 choosing strategy

1 and Player 2 opting for strategy 2 (54% of the time). However, while this outcome

remained prevalent in the unframed treatment, the 2,2 outcome was equivalently frequent

(38-40% of the time). Here, we can observe a change not just in individual choices but

also in interactions. Regarding payoffs, both treatments show comparable distributions,

with slight variations between treatments and players. The framing did not significantly

1The scope of this paper will not dive deeper into equilibria computation. McKelvey and Palfrey (1995);
Osborne and Rubinstein (1998); Selten and Chmura (2008) discussed the lack of predictive power of
the Nash equilibrium concept in cyclic games and proposed alternatives.
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Figure 4.3: Repeated Game Analysis, from top to bottom: (1) time series frequencies of
playing s1; (2) payoffs distribution; (3) total payoffs vs. frequencies of s1 and
(4) total payoffs vs. total strategy changes in the game.

impact the overall payoffs but did subtly affect the balance between players.

In analyzing game participant behavior, we observed deviations from traditional game

predictions. While strategy variations across treatments were evident, the impact of fram-

ing was subtle. The following sections explore further the complexities influencing human

strategic behavior.

4.5.3 Dark Factor and Personal Data - Correlations and Regressions

In the following analyses, we consider not only the effects of framing but also the dark

personality score D-Factor, dishonesty scores (for the one-shot game), and other personal

dimensions such as Age, Gender, and Education Background (STEM). We converted cat-

egorical values like Female gender, STEM, and framing into binary indicators. We also

divided the data into three categories: the general game context and each player type.

Given the distinct motivations and differences between the two player profiles, analyzing
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Figure 4.4: One-Shot Game Analysis, from top to bottom: (1) Heatmap of the distribu-
tions of the game outcomes and (2) payoff distributions.

them separately and within the broader game dynamics is beneficial to provide insights

into behavioral patterns across different scenarios. Figure 4.5 presents the Spearman corre-

lation coefficient matrices in line with this approach. The correlation coefficients between

all variables are documented in 4.7.1.

Figure 4.5: Spearman Correlation Coefficients Between the Independent Variables and the
Action of Choosing Control / Cheat (s1)

In the correlation analysis for s1, the D-factor consistently demonstrated a positive associ-

ation across all game types, similar to the trend observed with the dishonesty score. Fram-

ing also correlates with strategy choices, particularly in one-shot games, with a stronger

positive correlation for inspectors and a negative one for students. The ”Female” variable

showed a slight negative correlation with s1, suggesting that female participants might be

less inclined towards these strategies. Age correlations were inconsistent, and the impact

of STEM was minimal and context-dependent.
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In the repeated game, we added two time-based variables: one reflecting the opponent’s

choice of control or cheat in the previous round (Opponent S1 (t-1)), indicating patterns

like retaliation or imitation, and another tracking the player’s historical cheat frequency

(Own S1 Freq. (t-1)), representing their game ”track record,” included in the subsequent

analyses. We then constructed logistic regression models for each dataset split to under-

stand these relationships further. In these models, s1 was the dependent variable. It is

important to note that in the repeated game, we treated every decision made by each player

in each round as a distinct observation. Therefore, we clustered the standard errors at

the subject level to account for repeated decisions by the same player across rounds. This

method addresses the intra-participant correlation, considering potential impacts from un-

observed individual traits or shared experiences, as highlighted by Bertrand, Duflo, and

Mullainathan (2004). Although some independent variables exhibit a degree of correlation,

we chose not to include interaction terms in the regression models. This decision was based

on the absence of multicollinearity issues, as evidenced by the Variance Inflation Factors

(presented in table 4.9, appendix 4.7.1). The results for the six models are summarized in

table 4.2.

Repeated Game One-Shot Game
Game P1(Inspector) P2 (Student) Game P1(Inspector) P2 (Student)

D-factor 0.51∗∗ 0.51∗ 0.54 0.44 0.01 1.17∗∗

Age −0.15 −0.08 −0.39 0.06 0.04 0.28
Framing 0.14 0.25 −0.12 0.19 0.73∗∗ −0.46
Female 0.01 0.03 −0.22 0.11 0.09 0.09
STEM −0.17 −0.18 −0.15 −0.03 -0.13 0.46
Dishonesty Score 1.19 0.31 3.22∗

Opponent S1 (t-1) 0.24 1.31∗∗∗ −0.36
Own S1 Freq. (t-1) 4.78∗∗∗ 4.38∗∗∗ 5.12∗∗∗

Constant −3.67∗∗∗ −3.74∗∗∗ −2.32∗∗∗ −1.96∗∗ -0.26 −5.5∗∗∗

N 7000 3500 3500 526 264 262
Pseudo R-squared 0.29 0.28 0.16 0.01 0.03 0.09

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 4.2: Logistic Regression Results

In the repeated game, the D-factor significantly influenced the overall game and Player 1 in

choosing s1, not Player 2. The opponent’s previous choice of strategy 1 (Opponent s1 t-1)

and the player’s past behavior (Own s1 Freq. t-1) are highly significant for both players,

indicating that past choices strongly guide current decisions. The relatively high Pseudo

R-squared values suggest a good model fit, especially for Player 1. For the one-shot game,

the D-factor was a significant predictor only for Player 2. The game’s framing notably

influenced Player 1’s choice, while a higher Dishonesty Score significantly impacted Player

2’s strategy selection. Although the Pseudo R-squared values are low, suggesting a weaker

model fit than the repeated game, it is essential to note that the one-shot dataset has

significantly fewer observations, rendering modeling tasks more challenging. Generally

speaking, Age, Gender, and STEM fields did not significantly influence strategy choices

in either game. The consistently negative and significant constants, particularly in the

repeated game, suggest a baseline tendency against s1 when all other variables are at zero.
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Overall, individual traits like the D-factor and past behavior have a stronger influence on

the repeated game. In contrast, situational factors like framing and dishonesty score are

more impactful in the one-shot game.

4.5.4 Retaliation and Reciprocity

We investigated the dynamics of reciprocity and retaliation to understand the relationship

between individual characteristics and in-game actions within the repeated game context.

Specifically, we looked at instances where players changed their strategies in response to

their opponent’s actions in the preceding round, particularly transitions from non-control

to control or non-cheat to cheat. This analysis was further segmented by treatment and

gender. The results are presented in table 4.3.

Comparison Dimension Split P1 (Inspector) P2 (Student)

Treatment
Unframed 0.60 0.15
Framed 0.65 0.17

Gender
Male 0.61 0.20
Female 0.64 0.11

Table 4.3: Retaliation Frequencies Comparison

Inspectors retaliate more frequently than students, possibly due to the nature of their role,

especially when facing cheating opponents. The Framed treatment shows higher retaliation

rates for both roles than the Unframed treatment, indicating framing’s impact on strategy.

Among Inspectors, females retaliate slightly more than males, while in the Student role,

males retaliate more than females. Using non-parametric tests like the Mann-Whitney

U and Permutation tests (referenced in chapter 4.5.2), we found significant differences in

retaliation based on player type but not for Gender or Framing, highlighting the strong

influence of player type on retaliation. The full results are in table 4.8, appendix 4.7.1.

We broadened this analysis by incorporating additional variables into a logistic regression

model, where the binary action of retaliation was the dependent variable. The standard

errors in this model were also clustered at the participant level. The findings from this

approach are detailed in table 4.4.
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P1(Inspector) P2 (Student)

D-factor −0.15 1.27∗∗

Age 0.13 −0.70∗

Framing 0.35 −0.27
Female 0.61 −0.74∗

STEM 0.37 −0.23
Own S1 Freq. (t-1) 2.03∗∗∗ 5.62∗∗∗

Constant −4.25∗∗ −4.67∗∗∗

N 3500 3500
Pseudo R-squared 0.06 0.24

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 4.4: Logistic Regression Results - Retaliation in the Repeated Game

The analysis of the regression model revealed distinct patterns of retaliation behavior.

For Player 1, the past actions significantly predict their subsequent behavior rather than

anything else. On the other hand, Player 2’s decision-making is influenced not only by

their past behavior but also by the D-factor, Age, and Gender. The model for Player 2

offers a more nuanced understanding, as reflected in the higher Pseudo R-squared value,

highlighting different determinants for the distinct player types.

4.5.5 Random Forest Analysis

Following the same approach as the regression analysis in Chapter 4.5.3, we employed

individual machine learning models for the overall game and each player. For this anal-

ysis phase, we utilized the Random Forest algorithm to better understand the variables

influencing strategy choices across different game settings. These models’ construction,

training, and deployment adhered to the methodology outlined in Chapter 4.4. We calcu-

lated the SHAP values for each scenario using the training sets to interpret the outcomes.

These values quantify the contribution of each independent variable to the prediction of

strategy choices during the training process. The consolidated findings are presented in

Figure 4.6.

In the repeated game scenario, past behavior is the most salient factor influencing both

players’ strategy selection, in accordance with the previous models. For Player 1, this

tendency is further reinforced by the opponent’s past choices, suggesting a more adaptive

approach. On the other hand, Player 2 appears to be more self-reliant in their strategy

selection but also shows a tendency to counterbalance their opponent’s frequent choice of

s1. While the D-factor moderately affects both players, its influence is also secondary to

these behavioral patterns. The game’s framing introduces a modest effect, subtly shaping

players’ strategic choices. Overall, the data underscores game behavior dominance in

selecting strategies with a minor impact on personal features.

In the one-shot scenario, the features have a more subdued impact on strategy selection

than the repeated game. Dishonesty Scores and D-Factor emerged as the most influential
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Figure 4.6: SHAP Values on the Traning Datasets - Random Forest

for the overall game, polarizing their effects at both ends. This distribution suggests that

extreme values of the D-Factor are more decisive in strategy selection influence. Framing

also plays a role but is more clearly divided: Those in the framed treatment were likelier to

choose s1, while the unframed treatment was inclined to opt for the opposite. For Player

1, the influence of framing is even more pronounced, reinforcing that context could affect

this player’s choices. Player 2’s choices are most influenced by high values of Dishonesty

Scores and the D-Factor relative to the other variables. Framing produced the opposite

effect on the student framing in this case, that is, driving less cheating.

The measurement of the models’ feature importances (displayed in figure 4.11, appendix

4.7.1) generally reinforces the findings from the SHAP values. Regarding model perfor-

mances, we computed the same set of performance metrics for all models, consolidated in

table 4.5.

For the repeated game, all metrics are generally higher, indicating better model perfor-

mance across the board. In contrast, the one-shot game shows notably lower values,

especially for the game as a whole and Player 2 (Student), suggesting that the model

struggles more with these scenarios. The drop in performance metrics for the one-shot

game compared to the repeated game could indicate that the one-shot context is more
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Dataset Split F1 Score Precision Recall Accuracy ROC-AUC

Repeated
Game 0.66 0.56 0.82 0.78 0.88
P1 (Inspector) 0.73 0.73 0.74 0.78 0.87
P2 (Student) 0.69 0.54 0.96 0.65 0.82

One-Shot
Game 0.43 0.40 0.47 0.50 0.48
P1 (Inspector) 0.66 0.72 0.60 0.58 0.55
P2 (Student) 0.25 0.20 0.33 0.66 0.59

Table 4.5: Random Forest Classifier Performance Metrics

challenging for the model to predict accurately due to the smaller dataset and the lack

of patterns emerging from repeated interaction. In complement, the ROC curves for all

models are plotted in 4.12, appendix 4.7.1.

In summary, the Random Forest analysis reveals that players’ past behavior is again an

influential factor in strategy selection in repeated games, especially for the inspector profile.

Secondary variables such as the D-factor still pose a relevant influence but at a lower

intensity. In one-shot games, the D-Factor and Framing variables become more prominent

but have a subdued impact compared to repeated games. The model’s performance metrics

and feature importances corroborate these findings, highlighting the robustness of the

behavioral patterns in the repeated game and the nuanced influences in the one-shot

scenario.

4.5.6 Causal Inference Analysis and Treatment Effects

This section employs the Causal Forest Double Machine Learning (DML) model to dis-

entangle covariate effects from treatment effects. This analytical separation allows for a

detailed examination of participants’ behavior in their strategic interactions, considering

contextual (treatment) and individual factors. The first-stage models were selected using

the procedure described in chapter 4.4. In most cases, the MLP Classifier was the model

of choice for T and Y , consistently outperforming other models. The only exception was

the Y model in the one-shot game dataset, where a Random Forest Classifier was selected

instead. The overview of the model selection results is documented in table 4.11, appendix

4.7.3. The frequent selection of the Neural Network-based model across all scenarios sug-

gests that its complexity and flexibility make it better suited for capturing the intricate

patterns in the data, as evidenced by the higher overall scores. In addition, the selected

hyperparameters for each model instance are documented in table 4.12.

In constructing the Causal Forest DML models, we followed a similar approach to the

Random Forest models. The dependent variable (Y ) is the strategy choice ’s1,’ while the

personal attributes serve as covariates (X), and ’Framing’ is designated as the treatment

variable (T ). By accounting for past decisions, we ensured that our observed impact was

genuinely due to ’Framing’ and not influenced by previous game dynamics. Therefore, the

time-based variables were defined as cofounders (W ). We computed the SHAP values to

interpret the models’ results, displayed in figure 4.7. The SHAP values in this context
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measure the independent variables’ influence on the framing effects’ intensity, not in the

decisions directly.

Figure 4.7: SHAP Values on the Training Datasets - Causal Forest (DML)

In the Repeated Game, the D factor stood out as a significant influence. Younger play-

ers tended to be negatively affected by the game’s framing, while older ones experienced

positive effects. Gender differences were evident, with females being more negatively influ-

enced than males. For Player 1, those with low D-factor values were particularly affected,

whereas younger Player 2s showed positive effects. In the one-shot game, the D factor’s

influence was less dominant but still notable. The same gender patterns persisted, with

females generally being more negatively affected. High D factor values led to more positive

outcomes for Player 1, while Player 2’s decisions were more influenced by their dishonesty

scores. Across both games, the D factor, age, and gender consistently impacted the effects

of framing, but their influence varied depending on the game type and player role.

We assessed the Conditional Average Treatment Effects (CATE) using causal forest models

to understand treatment impact conditioned on covariates. The effect estimations on the

training sets provide an average view of the treatment’s influence. In Figure 4.8, the upper

plots show the CATE for individual observations, with a 95% confidence interval shaded,

while the lower histograms present the frequency distribution of these effects. These visu-

alizations offer a clear comparison of treatment effects across the different dataset splits.
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Figure 4.8: CATE on the Training Datasets - Causal Forest (DML)

There is a noticeable trend in the analysis of repeated games: the distribution of effects

is broader, with the inspector players exhibiting higher effects than the student players.

This pattern is even more pronounced in the one-shot dataset. Here, most positive effects

are attributed to the inspector player, while negative effects are predominantly associated

with the student player. The treatment effect trends suggest a relatively higher influence

on individuals fitting the inspector profile.

To validate the robustness of our effect quantifications, we turn to predictions on the

test set, evaluating the model’s performance. We employ a widely recognized metric from

foundational studies by (Rosenbaum & Rubin, 1983; Rubin, 1974), the Average Treatment

Effect (ATE)2. This metric captures the anticipated outcome difference between the treated

and untreated groups across the entire dataset, offering a comprehensive perspective on

the overall impact of the treatment. The outcomes of these predictions are detailed in

table 4.6.

The treatment effect predictions point in the direction that the framing was generally more

2The ATE is expressed as EX [τ(X,T0, T1)]
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Dataset Split ATE MAE RMSE

Repeated
Game 0.107 0.532 0.393
P1 (Inspector) 0.112 0.635 0.516
P2 (Student) 0.091 0.358 0.226

One-Shot
Game 0.039 0.556 0.365
P1 (Inspector) 0.238 0.540 0.470
P2 (Student) −0.035 0.410 0.189

Table 4.6: Predicted Average Treatment Effects (ATE) and Error Measures on the Test
Datasets

influential for the Player 1 group, as indicated by higher ATE values in both ”Repeated”and

”One-Shot” datasets (consistent with earlier findings). However, this group also exhibited

higher error measures, suggesting less reliable predictions. In contrast, the second player’s

group had the most reliable predictions in the ”Repeated” dataset. However, it showed a

negative ATE in the ”One-Shot” dataset, indicating that the framing might have prevented

cheating for this group. The game split has moderate ATE values. The predicted effects

generally align with the observed participants’ behavior in the game.

The consistent prominence of D-factor, age, and gender across game scenarios underscores

their significance in influencing treatment effects. Moreover, the differential impact of the

treatment on inspector and student profiles, as evidenced by the ATE values, offers valuable

insights into the nuanced dynamics of the game. While the predictions validate the general

trends observed, they also highlight areas of uncertainty, particularly for the inspector

group. This detailed analysis provides insights into the framing effects not identified

earlier with regular statistics.

4.6 Conclusion

This study analyzed the influence of dark personality traits within an inspector game,

comparing an information-loaded frame to a neutral one. The combination of game me-

chanics, contextual changes, behavioral tendencies, and individual attributes presents a

complex environment for strategic decision-making. Our findings provide a comprehensive

understanding of strategic decision-making, emphasizing the distinct roles of individual

attributes and treatment effects in shaping players’ behaviors in the game.

Participants often deviated from the Nash Equilibrium’s theoretical predictions, favoring

less risky and morally neutral strategies. These choices often resulted in more favorable

outcomes, highlighting the nuanced dynamics of the game. Notably, the inspector profile

demonstrated a heightened sensitivity to perceived dishonesty, especially under the framed

conditions.

The effects of framing, while subtle, were evident. When informed about the student’s

motivations, the inspector profile showed an increased tendency to control more in the

framed treatment. However, when personal attributes were integrated into the analysis,

the dominant role of game mechanics became clear. The D-factor, although influential,
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was secondary to the rational behaviors aimed at maximizing outcomes. This dominance

was further emphasized in advanced models like the Random Forest.

The causal forest model provided insights into the relationship between treatment effects

and individual attributes. The inspector profile consistently showed more pronounced

effects, with the dark factor emerging as a significant predictor of frame effects. The

combined use of the causal forest and SHAP values effectively captured these intricate

effects.

Models derived from the repeated game dataset demonstrated more robust performance,

likely due to the iterative nature of these games. In contrast, the one-shot dataset showed

less reliable and consistent performance. As such, predictions from the latter models should

be approached with caution.

This study has limitations, including the complexity of the experimental construct, poten-

tial biases, and unobserved confounders. The computational demands of models like DML

also present challenges. The specificity of the game in this study suggests an avenue for

future research, exploring a variety of games beyond moral dilemmas. We also understand

that this is a specific game with very particular mechanics.

In conclusion, this research highlights the utility of machine learning methods in under-

standing the complex behavioral dynamics of strategic games. By elucidating the interac-

tions between individual attributes, game mechanics, and contextual influences, this study

contributes to a broader understanding of strategic decision-making.

4.7 Appendix

4.7.1 Additional Data Analysis Elements

The results of the employed statistical tests for the decision-based samples are documented

in table 4.7. The direction is positive in all cases, which means Sample A > B. Similarly,

the test results for the retaliation samples are in table 4.8, and the directions are also

positive.

Dataset Sample A Sample B Test Results

Repeated Framed Unframed Mann-Whitney U: 0.614, Permutation: 0.092
Repeated Male Female Mann-Whitney U: 0.904, Permutation: 0.291
Repeated P1 Framed P1 Unframed Mann-Whitney U: 0.256, Permutation: 0.083
Repeated P2 Framed P2 Unframed Mann-Whitney U: 0.946, Permutation: 0.253

One-Shot Framed Unframed Permutation: 0.134, Z-test: 0.239, Fisher’s: 0.242
One-Shot Male Female Permutation: 0.325, Z-test: 0.578, Fisher’s: 0.586
One-Shot P1 Framed P1 Unframed Permutation: 0.002, Z-test: 0.003, Fisher’s: 0.004
One-Shot P2 Framed P2 Unframed Permutation: 0.917, Z-test: 0.220, Fisher’s: 0.263

Table 4.7: Game Decisions Statistical Tests Overview - p Values

The distribution of D scores for both samples is plotted in figure 4.9. The one-shot sample,

which is larger, provides a more realistic distribution of the D scores, according to the
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Sample A Sample B Test Results

Framed Unframed Mann-Whitney U: 0.342, Permutation: 0.661
Male Female Mann-Whitney U: 0.869, Permutation: 0.656
Inspector Student Mann-Whitney U: 0.001, Permutation: 0.000

Table 4.8: Retaliation Statistical Tests Overview (Repeated Game) - p Values

overall distributions documented on the D-factor questionnaire website3.

Figure 4.9: Distributions of D-Factor Scores, 1 is the Lowest and 5 is the Highest

Figure 4.10 displays the Spearman correlation coefficients for all variables in both game

datasets.

Figure 4.10: Spearman Correlation Coefficients for the Repeated (RG) and One-Shot (OS)
Samples

In order to understand the relationships between our independent variables, we computed

the Variance Inflation Scores (VIF), a method used to detect multicollinearity in regression

models (Draper & Smith, 1998). The results are compiled in table 4.9.

In both the Repeated and One-Shot Game datasets, the Variance Inflation Factors (VIF)

for all independent variables range from 1.01 to 1.33, well below the commonly cited

3https://www.darkfactor.org/
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Variable Repeated Game One-Shot Game

D-factor 1.33 1.10
Age 1.21 1.03
Framing 1.13 1.01
Female 1.18 1.11
STEM 1.33 1.07
Dishonesty Score 1.02
Opponent S1 (t-1) 1.03
Own S1 Freq. (t-1) 1.04

Table 4.9: Variance Inflation Factors (VIF) Within Independent Variables

threshold of 5. This suggests that multicollinearity is unlikely to be a significant concern

in the regression models for either dataset.

Feature importances provide a global measure of each variable’s impact on the model’s

predictions. They differ from SHAP values because they offer an aggregate and simplified

view rather than instance-level explanations. Figure 4.11 displays the computed feature

importance for the Random Forest model.

Figure 4.11: Feature Importances - Random Forest

In the Repeated Game, ”Own s1 Freq. (t-1)” is the most important feature for all models,

followed by ”D-factor.”In the One-Shot Game, ”Dishonesty Score”and ”D-factor”dominate

the game model, while ”Framing” is significantly important for Player 1. For Player 2

in the One-Shot Game, ”D-factor” takes precedence. The importance of features varies

significantly between the repeated and one-shot games and between players within each

game type.

The ROC curves evaluate the performance of a classification model by plotting the true

positive rate against the false positive rate (as described in chapter 4.4). AUC (Area

Under the Curve) values range from 0 to 1, with higher values indicating better model

performance. The ROC plots for the random forest model are compiled in figure 4.12.

In the repeated game, the models for the game, Player 1 and Player 2, show strong predic-
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Figure 4.12: AUC-ROC Curves - Random Forest

tive power with AUC values above 0.8. In contrast, the one-shot game model performance

is less satisfactory, confirming a difficult prediction scenario. This is mainly due to the

dataset sizes and difficulty finding clear trends in a one-shot framework.

4.7.2 Theoretical Formalizations

Cyclic Games and Nash Equilibrium

The basic taxonomy of cyclic games in matrix form, which includes the inspector game,

is given by Selten and Chmura (2008). A matrix will be a cyclic game if the following

conditions are met (table 4.10):

Pl 2
L R

Pl 1 U (aL + cL, bU) (aR,bU + dU)
D (aL,bD + dD) (aR + cR,bD)

aL, aR, bU , bD ≥ 0; cL, cR, dU , dD > 0

Table 4.10: Taxonomy of experimental 2× 2 cyclic games

The Nash Equilibrium is a strategy profile in which every strategy is an optimal response

to other players’ strategies (Nash Jr, 1950). The basic NE formula for computing the

equilibrium of cyclic games is given as follows:

pU =
dD

dU + dD
, qL =

cR
cL + cR

. (4.3)

For more details in stationary equilibria computation for cyclic games, see Brunner et al.

(2010, 2011); Selten and Chmura (2008).

Dishonesty Scores

We utilized a randomized response strategy with a coin flip, where the flip’s outcome

determined if a participant should answer five dishonesty-related questions truthfully or
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randomly. Given this uncertainty, we estimated the true proportion of ”yes” responses for

each question by:

Proportion of ”yes” =
Observed proportion of ”yes”− probability of random ”yes”

Probability of truthful response
(4.4)

For a fair coin flip dictating truthful or random responses, this formula simplifies to:

Proportion of ”yes” = 2× (Observed proportion of ”yes”− 0.25) (4.5)

We then aggregated the estimated proportions from all questions to derive a single ”dis-

honesty score”, averaged across questions. This score ranges between 0 and 1, where higher

values suggest a greater likelihood of dishonest behavior. For participants answering based

on the coin flip, the method presumes a 0.5 probability of getting a ’yes’ due to the coin

flip alone. Hence, half of the ’yes’ responses could be attributed to the coin, and the other

half to actual affirmative responses. The true ’yes’ proportion is estimated by subtract-

ing the 0.25 probability (from the coin flip) from observed proportions and doubling the

remaining amount. If the resultant number is negative, it’s adjusted to 0.

Random Forest

The Random Forest algorithm concept builds a large collection of de-correlated decision

trees and then aggregates them through a majority voting system for classification prob-

lems. A generalization of the implementation of a random forest classifier is available in

Hastie, Tibshirani, Friedman, and Friedman (2009). The algorithm can be generalized in

algorithm 1.

Algorithm 1 Random Forest Algorithm (Generalized)

Require: B trees to be grown, N size of bootstrap sample, M total variables, m selected
variables, nmin minimum node size

Ensure: Output the ensemble of trees {Tb}B1
1: for b = 1 to B do
2: Draw a bootstrap sample of size N from the training data
3: Grow a decision tree Tb on this data by:
4: while each terminal node of the tree until the minimum node size nmin is reached

do
5: Select m variables at random from all M variables
6: Pick the best variable/split-point among the m
7: Split the node into two daughter nodes
8: end while
9: end for

10: To make a prediction for a new point x, let Ĉb(x) be the class prediction of the bth
random forest tree

11: The random forest chooses Ĉrf(x) = majority vote{Ĉb(x)}B1

Further information about the model is provided in Breiman (2001).
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Causal Forest and Double Machine Learning Estimators

The transition from a Random Forest to a Causal Forest primarily focuses on the tar-

get variable and the splitting criterion of the tree. In Random Forests, the trees aim

to minimize classification or regression errors (classification, in our case), but in Causal

Forests, they are designed to estimate causal effects. Double Machine Learning (DML)

is a method that integrates decision tree ensembles with the DML approach to estimate

localized causal treatment effects robustly. This method is designed to estimate treatment

effects in the presence of high-dimensional covariates while ensuring that confounders are

properly accounted for. The method is called ”double” because it typically involves two

sets of machine learning predictions. The first model (model T ) predicts the treatment

T given covariates X. This provides a propensity score or probability of receiving the

treatment based on observed characteristics. The second model (model Y ) predicts the

outcome Y given covariates X. This gives an idea of the expected outcome based solely

on observed characteristics without considering the treatment. Essentially, model T is

trying to approximate the conditional expectation f(X,W ) = E[T |X,W ], and model Y is

capturing g(X,W ) = E[Y |X,W ]. These are non-parametric regression tasks, where we’re

trying to predict the expected value of our treatment or outcome based solely on observed

characteristics.

Using the predictions from the two models, DML computes the residuals T̃ and Ỹ by

subtracting predicted values from the observed treatment and outcome, respectively. These

residuals represent the component of treatment and outcome that the observed covariates

cannot explain.

This causal forest variant, grounded in the principles of Double Machine Learning, aims to

estimate causal effects by utilizing a blend of machine learning techniques and econometric

insights. In particular, the CausalForest methodology described here is based on a residual-

on-residual local moment condition:

θ̂(x) = arg min
θ

n∑
i=1

Kx(Xi) ·
(
Yi − q̂(Xi,Wi)− θ · (Ti − f̂(Xi,Wi))

)2
(4.6)

Xi represents the set of observed covariates or features for the ith observation that are

directly of interest in assessing the treatment effect. Wi denotes additional covariates or

features for the ith observation, which, while not the primary focus, can influence the

treatment and outcome. The goal is to find the estimate θ̂(x) that minimizes the squared

difference between the observed outcome Yi and its predicted value after adjusting for

the treatment effect and its prediction. This is done in a ’local’ fashion using a weight

function Kx(Xi) that gives more importance to data points close to x. Kx(Xi) represents

a similarity metric, capturing how similar observation i is to the target point x. q̂(Xi,Wi)

represents the predicted outcome value based on covariates Xi and Wi. f̂(Xi,Wi) gives

the predicted treatment value based on the same covariates. The model considers two
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distinct splitting criteria. The first is based on the mean-squared error (MSE):

max
S1,S2

θ21
∑
i∈S1

T̃ 2
i +θ22

∑
i∈S2

T̃ 2
i ≈ max

S1,S2

θ21 ·|S1|·V arn(T |x ∈ S1)+θ22 ·|S2|·V arn(T |x ∈ S2) (4.7)

Which partitions the data into two subsets, S1 and S2, such that the sum of squares of

the treatment effect estimates θ1 and θ2 on these subsets is maximized. This is done by

factoring in the variability (as denoted by T̃i within each subset. The criterion priori-

tizes maximizing heterogeneity while penalizing splits, leading to low treatment variability

within nodes.

The second criterion is the one suggested in Athey and Wager (2019). Unlike the MSE

Criterion, Athey’s Criterion (HET) aims to maximize the treatment effect’s heterogene-

ity without considering the treatment’s within-node variability. It solely optimizes for

maximizing the distinctiveness between the two estimates.

max
S1,S2

θ21 + θ22 (4.8)

Based on Battocchi et al. (2023)’s implementation of Chernozhukov et al. (2017); given

a dataset with treatments T , outcomes Y , and potential confounders X, the overarching

objective is to discern the causal effect of T on Y conditional on X. The model postulates

the following structural relationships for the data-generating process:

Y = θ(X) · T + g(X,W ) + ϵ, E[ϵ|X,W ] = 0

T = f(X,W ) + η, E[η | X,W ] = 0

E[η · ϵ|X,W ] = 0

(4.9)

In the equations in 4.9, Y represents the outcome, influenced by the product of the treat-

ment effect θ(X).T , a function g that encapsulates the effects of covariates X and co-

founders W , and an error term ϵ. T stands for the treatment, defined by a function f and

an error term η. The errors ϵ and η are assumed to be uncorrelated when conditioned on

the covariates X and cofounders W .

To estimate the constant marginal Conditional Average Treatment Effect (CATE), namely

θ(X), distilling the pure effect of the treatment from the confounding influences, the

outcome Y is residualized concerning its expected value, leading to:

Y − E[Y |X,W ] = θ(X).(T − E[T |X,W ]) + ϵ (4.10)

For estimation, we consider the conditional expectation functions as non-parametric re-

gression tasks:

g(X,W ) = E[Y |X,W ]

f(X,W ) = E[T |X,W ]
(4.11)
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From the regressions, we compute the residuals, representing the unexplained variances of

Y and T as:

Ỹ = Y − q(X,W )

T̃ = T − f(X,W ) = η
(4.12)

These residuals provide a relationship governed by:

Ỹ = θ(X).T̃ + ϵ (4.13)

Owing to the condition E[ϵ.η|X] = 0, the treatment effects θ(X) can be estimated by

regressing the residual outcome Ỹ on the residual treatment X, T̃ and covariates X, for

example:

θ̂ = arg min
θ∈Θ

En[(Ỹ − θ(X).T̃ )2] (4.14)

By adhering to these structured steps, the Double Machine Learning approach isolates

and quantifies the treatment effect, filtering out confounding influences and capturing the

pure causal impact of the treatment.

Shapley Values

Considering a machine learning model as a real-valued function f that takes a vector of

real-valued features as input. For a classification problem, the function models the score

of a class. The set of model features is denoted by N . The vector x of features denotes the

input to be explained or the explicand. xs expresses the sub-vector of a vector x restricted

to the features in the set S. Formally, a cooperative game with a characteristic function

v: 2N → R (considered as the models’s input), where N is the set of players, player i’s

Shapley value si is given as:

si =
∑

S⊆N\i

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ i)− v(S)] (4.15)

This formula sums over all possible coalitions S that do not include player i, and distributes

the payoffs according to the marginal contribution of player i to each coalition. The

term |S|!(|N |−|S|−1)!
|N |! refers to the probability that coalition S forms before player i joins

when other players join one at a time, randomly (Shapley et al., 1953). The Shapley

value can also be described using a permutation approach: Players are randomly ordered,

sequentially added, and each player i is assigned its expected marginal contribution, given

by V (S ∪ i)− v(S) where S consists of players added before i.

Following S. M. Lundberg and Lee (2017)’ approach, in the context of machine learning

models, the key application of the Shapley values is based on the concept’s extension

known as the Conditional Expectations Shapley (CES). This variation takes three inputs:
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an explicand x, a function f , and a distribution D. The conditional expectation defines

the set function:

v(S) = ED[f(x′)|x′S = xS ] (4.16)

The algorithmic procedure to compute the CES is given in algorithm 2.

Algorithm 2 Calculating the Shapley values with CES(D̂)

Require: explicand x and examples T , each over feature set N
Ensure: Compute Shapley values via permutations
1: Initialize sσi ← 0 for all i
2: for all permutations σ of N do
3: vnew ← 1

|T |
∑

x∈T f(x)

4: T ′ ← T
5: for all i ∈ {1, . . . , |N |} do
6: vold ← vnew
7: Update T’
8: for all t ∈ T ′ do
9: if xtσi ̸= xi then

10: remove t from T ′

11: end if
12: end for
13: vnew ← 1

|T ′|
∑

x∈T ′ f(x)
14: Update the Shapley value of the i-th feature ordered in σ
15: sσi ← sσi + 1

|N |!(vnew − vold)
16: end for
17: end for

The CES provides an intuitive way to attribute the impact of each feature on a given

prediction based on its actual value and the data distribution. For more details on this

concept, including axiomatic considerations, see Sundararajan and Najmi (2020).

4.7.3 Technical Remarks

The experiment was programmed using oTree (D. L. Chen et al., 2016). The regression

models and statistical tests used the statsmodels python library (Seabold & Perktold,

2010). The remaining machine learning models were implemented using Scikit-Learn in

python (Pedregosa et al., 2011). The TPE hyperparameter estimation for the Random

Forest analysis applied the optimization algorithms from Optuna (Akiba, Sano, Yanase,

Ohta, & Koyama, 2019). The causal forest models used the EconML in python (Battocchi

et al., 2023). The causal forest DML models were tuned using the native EconML tuning

function.

Model Selection, Training, and Tuning Details

For the random forest, the models were tuned using the Tree-structured Parzen Estimator

(TPE) algorithm for hyperparameter optimization, which uses the history of previously

evaluated hyperparameter configurations to sample the following ones (Akiba et al., 2019).
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The optimization maximized the ROC-AUC metric over 1000 trials for the six distinct cases

(Akiba et al., 2019).

In the causal forests framework, we assessed the Random Forest, Gradient Boosting Ma-

chines, Gaussian Naive Bayes, and the Multi-layer Perceptron as candidates for models

T and Y . The random forest model has been previously described. The remaining three

models’ descriptions are provided next.

Gradient Boosting Machines (GBMs) are ensemble learning methods that build predictive

models by iteratively adding weak learners to minimize residual errors. The technique

employs boosting to optimize a differentiable loss function, introduced in J. H. Friedman

(2001). NB classifiers are probabilistic models that apply Bayes’ theorem with strong fea-

ture independence assumptions. The Gaussian variant of NB assumes feature likelihoods

are Gaussian-distributed (Bishop & Nasrabadi, 2006; Murphy, 2012). The Multi-Layer

Perceptron (MLP) is an artificial neural network consisting of interconnected layers of

nodes, or ”neurons,” each applying a non-linear activation function. Formulated initially

in early work by Rumelhart, Hinton, and Williams (1986), MLPs are prominent for the

ability to model complex, non-linear relationships in data.

We employed grid search techniques to select the best-fitting model among these four

options systematically. This algorithmic approach exhaustively tests all possible param-

eter combinations within a predefined search space and is detailed further in Bishop and

Nasrabadi (2006); Hastie et al. (2009). We gauged the performance of each model using

composite scores of basic classification metrics (as mentioned earlier for the Random For-

est), RMSE, and MSE. It is crucial to note that the computational complexity of grid

search can be prohibitive, depending on the breadth of the search space. Upon com-

pleting the model selection, the DML model uses the selected models to generate CATE

predictions.

Specific cross-validation methods were employed (Kohavi et al., 1995) to ensure the ro-

bustness and reliability of model predictions. In repeated games, we used group-level

cross-validation per participant, preventing overfitting. For one-shot games, Stratified

K-fold cross-validation ensured dependable estimates. Due to causal modeling’s computa-

tional intensity, we used three-fold cross-validation, while random forest models employed

a five-fold approach.

DML - First-Stage Models and Model Selection Procedure

A consistent methodology was applied across all datasets in estimating the first-stage mod-

els or the causal forest. However, special attention was required for the one-shot dataset

due to its significantly smaller size. Theoretical considerations suggest that applying highly

complex models to small datasets is prone to overfitting, which can subsequently distort

the results of second-stage models, even when cross-validation techniques are employed.

We modified the model estimation function specifically for the one-shot dataset to mit-

igate this risk. This modification restricts the complexity of the models by limiting the

architecture of neural networks and constraining the depth of trees in ensemble models.
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In addition, we employ a higher number of cross-validation folds. This approach aims

to balance model complexity and predictive power, thereby enhancing the reliability of

the second-stage estimates. The scores achieved by each model for each dataset and the

selected variants in each case are documented in table 4.11.

Dataset Split Model MLP RF GBM GNB Model Selected

Repeated Game
T 0.657 0.551 0.582 0.530 MLPClassifier
Y 0.596 0.496 0.455 0.455 MLPClassifier

Repeated P1 (Inspector)
T 0.680 0.526 0.426 0.476 MLPClassifier
Y 0.642 0.511 0.486 0.536 MLPClassifier

Repeated P2 (Student)
T 0.784 0.655 0.659 0.531 MLPClassifier
Y 0.610 0.531 0.572 0.482 MLPClassifier

One-Shot Game
T 0.564 0.524 0.532 0.463 MLPClassifier
Y 0.529 0.544 0.536 0.495 RandomForestClassifier

One-Shot P1 (Inspector)
T 0.584 0.536 0.558 0.508 MLPClassifier
Y 0.571 0.527 0.538 0.513 MLPClassifier

One-Shot P2 (Student)
T 0.597 0.540 0.550 0.517 MLPClassifier
Y 0.630 0.627 0.607 0.556 MLPClassifier

Table 4.11: The first-stage models’ performance, based on the ROC-AUC refit scores.

Each first-stage model was fit individually to its respective dataset systematically. The

first-stage model selection procedure selected the models’ architectures. The hyperparam-

eter configuration for each model used is documented in table 4.12.

Random Forest and Causal Forest DML Parameters

The optimized parameters for the Random Forest models applied in chapter 4.5.5 are

documented in table 4.13.

For the causal forest model, we established an initial set of parameters aligned with our

research objectives. This foundational model was consistently applied to all samples. How-

ever, specific parameters were fine-tuned for each sample using a dedicated tuning func-

tion. The universally applied model parameters were set as follows: n_estimators: 1000,

inference: True, discrete_treatment: True, cv: 10, drate: True. In this context,

the inference parameter enables statistical inference on causal effects by computing stan-

dard errors when set to True. The CV parameter defines the cross-validation strategy,

enhancing the robustness of the treatment effect estimates. Additionally, when activated,

the drate parameter leverages the double robustness property, ensuring consistent treat-

ment effect estimates if the treatment effect or the outcome model is correctly specified.

4.7.4 Design Elements

This section documents the experiment design applied to the participants. Figure 4.13

contains the explanation screen common to all participants in our samples. Figure 4.14

shows the framed version of the game, containing the contextual explanations and named

strategies. Conversely, figure 4.15 displays the unframed version with generic strategies

and no context.
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Figure 4.13: Game explanation

Figure 4.14: Framed design example

For the one-shot game, the following questions have been applied to compute the dishonesty

scores:

1. In your studies, have you ever copied from other students during an exam?
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Figure 4.15: Unframed design example

2. In your studies, have you ever used illicit crib notes in an exam?

3. In your studies, have you ever used prescription drugs to enhance your performance

in an exam

4. In your studies, have you ever handed in a paper containing a passage intentionally

adopted from someone else’s work without citing the original?

5. In your studies, have you ever had someone else write a large part of a submitted

paper for you, or have you handed in someone else’s paper as your own?

The dishonesty questions also included the coin-based randomized response method. Fig-

ure 4.16 shows how these questions were presented to participants.

Figure 4.16: Dishonesty Questionnaire

In addition, the D-factor questionnaire, more precisely the 35-question version (D35), is

documented in table 4.14.
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Dataset Split Model Model Architecture (Hyperparameters) - MLP-
Classifiers

Repeated Game
T activation: ’tanh’, alpha: 0.25, hid-

den_layer_sizes: (100, 100, 100), learn-

ing_rate: ’constant’, learning_rate_init:

0.1, solver: ’adam’, warm_start: True

Y activation: ’logistic’, alpha: 0.1, hid-

den_layer_sizes: (150, 150, 150), learn-

ing_rate: ’constant’, learning_rate_init:

0.2, solver: ’adam’, warm_start: True

Repeated P1 (Inspector)
T activation: ’logistic’, alpha: 0.001,

hidden_layer_sizes: (150, 150, 150), learn-

ing_rate: ’constant’, learning_rate_init:

0.2, solver: ’adam’, warm_start: True

Y activation: ’tanh’, alpha: 0.01, hid-

den_layer_sizes: (100, 100), learning_rate:

’constant’, learning_rate_init: 0.2,

solver: ’adam’, warm_start: True

Repeated P2 (Student)
T activation: ’relu’, alpha: 0.1, hid-

den_layer_sizes: (100, 100, 100), learn-

ing_rate: ’adaptive’, learning_rate_init:

0.01, solver: ’sgd’, warm_start: True

Y activation: ’relu’, alpha: 0.0001, hid-

den_layer_sizes: (100, 100, 100), learn-

ing_rate: ’constant’, learning_rate_init:

0.001, solver: ’sgd’, warm_start: True

One-Shot Game
T activation: ’relu’, alpha: 0.25, hid-

den_layer_sizes: (50, 50), learning_rate:

’constant’, learning_rate_init: 0.2,

solver: ’adam’, warm_start: False

Y bootstrap: True, criterion: ’entropy’,

max_depth: 1, max_features: ’sqrt’,

min_samples_leaf: 30, n_estimators: 800

One-Shot P1 (Inspector)
T activation: ’tanh’, alpha: 0.01, hid-

den_layer_sizes: (100,), learning_rate:

’invscaling’, learning_rate_init: 0.2,

solver: ’sgd’, warm_start: False

Y activation: ’relu’, alpha: 0.01, hid-

den_layer_sizes: (100,), learning_rate:

’constant’, learning_rate_init: 0.001,

solver: ’adam’, warm_start: False

One-Shot P2 (Student)
T activation: ’tanh’, alpha: 0.01, hid-

den_layer_sizes: (50,), learning_rate:

’constant’, learning_rate_init: 0.1,

solver: ’adam’, warm_start: False

Y activation: ’logistic’, alpha: 0.5, hid-

den_layer_sizes: (50, 50), learning_rate:

’constant’, learning_rate_init: 0.1,

solver: ’adam’, warm_start: False

Table 4.12: First Stage Model Architecture Settings for the Selected Classification Models
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Dataset Split Model Architecture (Hyperparameters) - Random Forest

Repeated
Game n_estimators: 1200, max_depth: 5, max_features:

’sqrt’, min_samples_leaf: 40, bootstrap: True,

criterion: ’entropy’, class_weight: ’bal-

anced_subsample’

P1 (Inspector) n_estimators: 500, max_depth: 5, max_features:

None, min_samples_leaf: 10, bootstrap: True, cri-

terion: ’gini’, class_weight: ’balanced’

P2 (Student) n_estimators: 700, max_depth: 5, max_features:

None, min_samples_leaf: 60, bootstrap: True, cri-

terion: ’gini’, class_weight: ’balanced’

One-Shot
Game n_estimators: 900, max_depth: 5, max_features:

’log2’, min_samples_leaf: 55, bootstrap: False,

criterion: ’entropy’, class_weight: ’bal-

anced_subsample’

P1 (Inspector) n_estimators: 1400, max_depth: 5, max_features:

None, min_samples_leaf: 60, bootstrap: False, cri-

terion: ’gini’, class_weight: ’balanced_subsample’

P2 (Student) n_estimators: 500, max_depth: 5, max_features:

’log2’, min_samples_leaf: 15, bootstrap: True,

criterion: ’entropy’, class_weight: ’bal-

anced_subsample’

Table 4.13: Model Architecture Settings for the Random Forest Models
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D35 Personality Trait Reversed Score Statements

1 Amoralism-crudelia rev It is hard for me to see someone suffering.
2 Psychopathy reg Payback needs to be quick and nasty.
3 Egoism rev All in all, it is better to be humble and honest

than important and dishonest.
4 Spitefulness reg If I had the opportunity, then I would gladly pay

a small sum of money to see a classmate who I
do not like fail his or her final exam.

5 Machiavelianism rev Most people are basically good and kind.
6 Amoralism-crudelia reg My own pleasure is all that matters.
7 Psychopathy reg I’ll say anything to get what I want.
8 Sadism rev Hurting people would make me very

uncomfortable.
9 Egoism reg Never tell anyone the real reason you did

something unless it is useful to do so.
10 Sadism rev If I ever tormented others, I would feel strong

remorse
11 Machiavelianism reg I believe that lying is necessary to maintain a

competitive advantage over others.
12 Self-centeredness rev I feel sorry if things I do upset people.
13 Amoralism-frustralia reg A person should use any and all means that are

to his advantage, taking care of course, that
others do not find out.

14 Psychopathy reg People who mess with me always regret it.
15 Narcissism rev In principle, everyone is worth the same.
16 Sadism rev I cannot imagine how being mean to others

could ever be exciting.
17 Egoism reg To make money there are no right and wrong

ways anymore. Only easy and hard ways.
18 Psychopathy rev I don’t want people to be afraid of me or my

impulses.
19 Psychological Entitlement rev I do not deserve more things in life than others.
20 Amoralism-frustralia reg I would like to make some people suffer, even if

it meant that I would go to hell with them.
21 Machiavelianism reg It’s wise to keep track of information that you

can use against people later.
22 Self-centeredness reg I’m not very sympathetic to other people or

their problems.
23 Narcissism rev It does not give me much pleasure to see my

rivals fail.
24 Psychopathy rev I make a point of trying not to hurt others in

pursuit of my goals.
25 Moral Disenrangement reg People who get mistreated have usually done

something to bring it on themselves.
26 Amoralism-crudelia reg Why should I care about other people, when no

one cares about me?
27 Sadism rev I avoid humiliating others.
28 Machiavelianism rev Most people deserve respect.
29 Psychological Entitlement reg Someone who hurts me cannot count on my

sympathy.
30 Spitefulness reg I would be willing to take a punch if it meant

that someone I did not like would receive two
punches.

31 Greed rev For most things, there is a point of having
enough.

32 Psychopathy reg Success is based on survival of the fittest; I am
not concerned about the losers.

33 Narcissism rev I do not mind sharing the stage.
34 Amoralism-crudelia reg Doing good deeds serves no purpose; it only

makes people poor and lazy.
35 Sadism rev Making people feel bad about themselves does

not make me feel any better.

Table 4.14: D-Factor Questionnaire (D35)
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Vińıcius Ferraz, Leon Houf, Thomas Pitz, Christiane Schwieren & Jörn Sickmann

Abstract

This paper investigates the interplay between contextual factors, personal variables, and

algorithm aversion in decision delegation behavior. In an experimental setting with four

treatments —baseline, explanation, payment, and automation— subjects chose whether

to delegate decisions to an algorithm, considering hidden expected values. Employing

Random Forests, Gradient Boosting Machines, and causal analysis with the Uplift Random

Forest, we probed key algorithm aversion drivers. In the personal dimension, we assessed

Big Five Personality Traits, Locus of Control, Generalized Trust, and demographics. We

find that payment reduced delegation, while full automation promoted it. Factors like

Age, Extraversion, Openness, Neuroticism, and Locus of Control consistently emerged as

significant in shaping delegation decisions. Female participants demonstrated a stronger

reaction to algorithmic mistakes. This study offers insights for crafting user-centric AI

design to enhance cooperation and minimize aversion.
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5.1 Introduction

Driven by technological advancements, data availability, and computing power, intelligent

systems powered by Artificial Intelligence (AI) have become common in our society, largely

due to their transformative potential (S. J. Russell, 2010). AI simulates human behaviors

like learning and decision-making (McCarthy, 2007). AI’s ability to efficiently process

vast amounts of data, inform decisions, and automate processes has led to its widespread

adoption (Azucar, Marengo, & Settanni, 2018).

However, technological shifts can lead to new social phenomena like algorithm aversion,

characterized by the reluctance to use algorithms in decision-making, despite their supe-

rior ability to undertake certain tasks (Dietvorst, Simmons, & Massey, 2015; Ku, 2020).

The extensive body of literature emerging in a relatively short period reveals an intricate

mechanism with various factors that can influence aversion or appreciation of algorithms,
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demonstrating the complexity of achieving a common understanding of the underlying

reasons for this behavior.

As a consensus in the literature, context and personal elements significantly shape an in-

dividual’s willingness or aversion to delegate decisions to an automated system. Building

on this concept, we explore these two impact dimensions in an experimental study, ap-

plying a simplified multi-armed bandit problem. In the experiment, subjects repeatedly

choose from three options with hidden expected values, aiming to identify the superior op-

tion. At each period, they can delegate decisions to a Reinforcement Learning algorithm.

For a holistic understanding of this behavior, this study delves into the environmental

dimension by investigating the impact of explainability, costs, and full task automation.

Concurrently, we assess the personal dimension by examining personality traits commonly

associated with algorithm aversion, such as the big five, locus of control, generalized trust,

and demographic information. Despite growing awareness of algorithm aversion, there re-

mains a need for more extensive research; therefore, we focused on these psychological and

contextual measures inspired by suggestions and recommendations for further research in

(Burton, Stein, & Jensen, 2020; Mahmud, Islam, Ahmed, & Smolander, 2022). This paper

aims to contribute to understanding how to design systems that enable fruitful interactions

between humans and computers.

Experimental evidence on algorithm aversion and appreciation varies significantly across

domains and contexts. Studies have found differing levels of human interaction with auto-

mated agents based on factors such as task context, performance expectations, and agent

roles (Chugunova & Sele, 2022). Studies in financial and investment contexts highlight

reluctance to fully surrender decision-making authority to automated agents despite their

superior performance (Filiz, Judek, Lorenz, & Spiwoks, 2022; Gaudeul & Giannetti, 2023;

Logg, 2017). The presence of human errors and significant decision outcomes seem to

exacerbate algorithm aversion (Dietvorst et al., 2015; Filiz, Judek, Lorenz, & Spiwoks,

2021). Yet, showcasing an AI-based system’s learning ability (Berger, Adam, Rühr, &

Benlian, 2021) or exerting time pressure can mitigate this aversion (Jung & Seiter, 2021).

Notably, the moral implications of decisions also play a role. In morally charged decisions,

people often prefer the discretionary scope of human decision-makers (Jauernig, Uhl, &

Walkowitz, 2022), and in situations where discrimination is possible, people prefer algo-

rithmic evaluation (Jago & Laurin, 2022). However, there are instances of preference for

algorithmic over human advisory, influenced by factors such as how the expertise of the

algorithm is framed against a human (Candrian & Scherer, 2022; Hou & Jung, 2021; Logg,

Minson, & Moore, 2019). In summary, experimental studies on human-machine collabora-

tion and algorithm aversion point to the complexity of these phenomena, influenced by a

range of factors from decision consequences and task complexity to decision context fram-

ing and perceived algorithm expertise. For comprehensive and interdisciplinary literature

collections on algorithm aversion, systematic reviews are provided in Jussupow, Benbasat,

and Heinzl (2020), Burton et al. (2020), and Mahmud et al. (2022).

Given the complexity of the phenomenon, we began our methodological approach with sta-

tistical and regression analysis to understand treatment differences and explore variable
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relationships. We then used machine learning and causal inference techniques, including

Logistic Regressions, Random Forest, Gradient Boosting Machines, and Uplift Random

Forest classifiers, to probe the nuanced nature of decision delegation behavior. Contextual

factors like payment and automation notably affected delegation, with payment reducing

and full automation boosting its likelihood. Key personal factors influencing delegation

across models were age, extraversion, openness, neuroticism, and locus of control. This

paper documents the intricate relationships between individual traits, contextual condi-

tions, and delegation behavior, providing a nuanced understanding of algorithm aversion

within the boundaries of an experimental construct.

5.2 Experimental Design

The experimental setting employed a between-subject design, utilizing a simplified version

of the multi-armed bandit problem (Robbins, 1952). Our design finds parallels in previous

works, notably by Hoelzemann and Klein (2021), who also examined human interactions

with bandit-based decision-making scenarios. The primary task involved participants re-

peatedly choosing one of three options labeled as ”products” over 40 periods. The ex-

periment was conducted online, where participants were instructed to select from three

products, each with distinct hidden quality levels that represented their expected values,

translated into the probability of receiving a payoff from the chosen option. The three

variants of quality were low (50% chance of payoff), medium (70% chance of payoff), and

high (90% chance of payoff). These probabilities were randomly assigned to products 1 to

3 at each participant’s onset and remained constant throughout the experiment. Through

repeated choices, the expected goal was for the participants to identify the high-quality

product that would maximize their total payoffs. After each selection, participants received

feedback on the outcome of their decision. In each round, participants had the option to

delegate the decision to an algorithm. After reading the instructions, we asked partici-

pants about their perception of using algorithms for decision-making in regular tasks. The

responses were categorized as positive, neutral, or negative. This response was used as a

variable in the study, referred to as perception.

The basic framework described above is established as the ”baseline” treatment. We fur-

ther introduce three treatments with different contexts — Explanation, Payment, and

Automation — to investigate the impact of explainability and transparency, willingness to

pay, and complete task automation on delegation behavior. We aim to better understand

user preferences and friction points in algorithmic decision-making by examining these

factors. In all treatments, we employ an attention check in a given round by displaying

an animal picture below the task, which participants had to identify by the end of the

task. Information about the design and the actual experiment screens are documented in

appendix 5.6.4.

5.2.1 Explanation Treatment

As discussed in numerous studies, transparency and explainability are key factors affecting

the acceptance of algorithmic decision support. Algorithm complexity often presents these
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tools as ”black boxes,” undermining their acceptance due to the lack of understanding

(De Bruyn, Viswanathan, Beh, Brock, & von Wangenheim, 2020; Enholm, Papagiannidis,

Mikalef, & Krogstie, 2021; Miller, 2019; Trocin, Mikalef, Papamitsiou, & Conboy, 2021;

Vlačić, Corbo, e Silva, & Dabić, 2021; Y. Zhang, Chen, et al., 2020).

The inherent complexity in high-performing computational models poses a dilemma be-

tween accuracy and transparency, as the intricacy of these models could challenge the

public’s comprehension (Gilpin et al., 2018; Gunning, 2017; Herm, Heinrich, Wanner, &

Janiesch, 2022). This complexity underscores the ongoing challenge practitioners face in

maintaining explainability (Castelluccia & Le Métayer, 2019), necessitating accessible ex-

planations irrespective of the chosen approach. Institutions and regulators also emphasize

the need for transparent algorithmic decisions (Goodman & Flaxman, 2017).

We tested the information-sharing impact on delegation in this explanation treatment,

in which participants had access to a description of the algorithm used in the product

selection task. The description was supposed to be non-technical and to transmit the

essence of the method behind reinforcement learning to the subjects. In the primary

experiment page, the following text is displayed in a text box with a prominent design:

”Reinforcement Learning: the algorithm calculates probabilities and chooses an alternative

based on the success of choices in previous rounds”. The description text remained visible

during the experiment.

5.2.2 Payment Treatment

Exploring the less examined aspect of financial incentives in algorithm aversion, people

might hesitate to pay for transparent AI if costs surpass perceived benefits (König, Wurster,

& Siewert, 2022). During crises, the appeal for robo-advisors—and hence the willingness

to pay—escalates due to the need for financial advice (Ben-David & Sade, 2001). Similarly,

radiologists are ready to pay for AI tools that expedite diagnostics (von Wedel & Hagist,

2022).

We investigate payment’s role in algorithm aversion by assigning a payment requirement

to algorithmic support, termed payment treatment. Here, participants were informed that

while they can delegate decisions to an algorithm, each delegation carries a cost of 0.10

points (one-tenth of a point), aiming to introduce the psychological aspect of payment in

a way that participants easily understand. The goal was to simply introduce payment as

a contextual variable to gauge its impact, not to explore the complexities of differential

willingness to pay. The cost incurred for a decision effectively restricts algorithm support

to a pay-per-use basis. The points deduction reduces the expected values of the products

by the same amount, introducing a ”loss” for rounds where payoffs do not materialize, as

the amount is subtracted from the participant’s total points.

5.2.3 Automation Treatment

The task complexity may induce people towards higher acceptance of algorithmic decisions

(Bogert, Schecter, & Watson, 2021). Bucklin, Lehmann, and Little (1998) argue that from

118



5. Trust in the Machine: How Contextual Factors and Personality Traits Shape
Algorithm Aversion and Collaboration

a human standpoint, full, compared to partial, automation of decision-making processes

can be very desirable in terms of efficiency, such as improving productivity, and effec-

tiveness, for better resource allocation. In essence, the action of delegating the decision

is already a form of automation, as the algorithm calculates and selects the best option

based on past data. We advance this process by further automating it, thereby reducing

the overall task burden. In this way, one can analyze the subjects’ behavior toward the

delegation of discrete decisions compared to the delegation of the complete task.

In the automation treatment, the algorithm takes over the repetitive task of product se-

lection for 40 periods, easing the participants’ effort. Unlike previous treatments requiring

round-by-round delegation decisions, this feature allows continuous selection without ac-

tive involvement. Participants could toggle automation on or off at any stage. If they

opted for delegation, they had a 5-second window to override the decision, redirecting

them to the primary selection interface. Feedback remained available post each round.

5.2.4 Personal Dimension

Algorithm aversion can be significantly impacted by personal factors such as psychological

aspects, personality traits, demographic features, and algorithm/task familiarity (Mahmud

et al., 2022). For instance, individuals with an internal locus of control tend to resist

human and AI suggestions (Sharan & Romano, 2020), and neuroticism correlates with

lower trust ratings. Delegation to algorithms increases when information scarcity is present

and among extroverted individuals (Goldbach, Kayar, Pitz, & Sickmann, 2019). Trust in

algorithms is not static but can evolve with personal experiences (Fenneman, Sickmann,

Pitz, & Sanfey, 2021), which similarly impacts attitudes toward autonomous transport

(Goldbach, Sickmann, Pitz, & Zimasa, 2022).

Broadening our research to encompass both contextual and personal aspects of algorithm

aversion, we incorporate demographic data, the Big Five Personality traits, Locus of Con-

trol, and trust levels into our analysis. The Big Five Personality Traits offer an encompass-

ing view of human personality (L. R. Goldberg, 1990), while Locus of Control illustrates

an individual’s belief in their power over life events (Rotter, 1966). Generalized trust sig-

nifies an individual’s confidence in the reliability and benevolence of others (Yamagishi

& Yamagishi, 1994). After completing the selection task, participants proceeded to this

series of personality questionnaires, including control questions (see appendix 5.6.4).

5.3 The Algorithm: Reinforcement Learning Implementation Frame-

work

The term ”algorithm” has various definitions across different fields. Computer science typ-

ically defines it as a step-by-step procedure or set of rules used to perform tasks (Cormen,

Leiserson, Rivest, & Stein, 2001). In the context of algorithm aversion, it often refers to

decision-making tools that assist humans in making choices or predictions (Dietvorst et

al., 2015).
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A variety of algorithms could be applied to the task of repeatedly selecting alternatives

that maximize one’s payoffs. In our design, we aimed to allow participants to observe the

algorithm’s training and improvement process throughout the task while keeping it simple

enough for participants in the explanation treatment to understand its core mechanism in

just a sentence or two. As a result, we chose the Reinforcement Learning (RL) model, a

class of solution methods well-suited for learning-based and sequential problems.

Reinforcement learning is typically framed as an optimization problem, with the goal of

identifying optimal actions based on defined criteria (Barto, 1997). The model’s framework

is designed to map situations to actions in a way that maximizes rewards, as defined by

Sutton and Barto (2018). Key components of reinforcement-based models include a set

of choices or actions, a mechanism for receiving feedback associated with each choice, an

updating rule that adjusts previous beliefs or estimates of each choice’s expected value

based on the feedback, and a decision rule that determines the probability of selecting

each choice based on current beliefs. Our model is based on Erev and Roth (1998) ’s

implementation, which incorporates the concept of attractions, or weights attached to

strategies that represent the perceived value associated with specific choices (C. Camerer

& Hua Ho, 1999). Our implementation assigns an attraction value to each product, which

is updated after a decision is made using a learning rule. The attractions are transformed

into probabilities of choice using a softmax function. A formalization of the algorithm is

presented in appendix 5.6.1.

The embedding of this algorithm in the experiment generates one instance of reinforcement

learning for each participant, which starts with no pre-training or bias. The attraction

values are initialized at 0, and the algorithm learns from participant choices and its own

choices over time, making the learning process for humans and algorithms comparable.

5.4 Results

In this section, we conduct a comprehensive six-stage analysis of decision delegation to an

algorithm, exploring its contextual, behavioral, and personal dimensions. We begin with

an overview of our sample information and attention analysis, followed by an examination

of delegation behavior across different treatments. We then use regression methods to

identify significant predictors of delegation behavior and machine learning methods for a

nuanced understanding of algorithm aversion. We incorporate causal inference methods to

clarify causal relationships, analyze participants’ reactions to algorithmic failures, and mea-

sure the algorithm’s performance under varying conditions. This multifaceted approach

provides a detailed understanding of the complex phenomenon of algorithm aversion1.

5.4.1 Sample Information and Attention Analysis

A total of 358 participants took part in our online experiment. Subjects were evenly

distributed across the four treatments, with approximately 89 to 91 participants per treat-

ment. On average, the experiment took 11 minutes to complete, and participants earned

1This research project was pre-registered in AsPredicted.org, with the ID 119401.
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between 4 and 10 euros, with an average of 6.13 euros. Demographically, the sample

was 52.7% female. Participants were primarily from Germany (51%), with the remaining

individuals representing various nationalities. Most participants (73.2%) were from the

Rhine-Waal University of Applied Sciences, while 26.8% were from Heidelberg University

(both in Germany), aged between 18 and 47 years old; the mean age was 25. Among

the subjects, 19% were economics students; the rest were from various other academic

disciplines, of which 21% came from STEM majors. The self-reported perception values

were 46.6% positive, 43.9% neutral, and 9.5% negative.

We analyzed participants’ attention, particularly focusing on the automation treatment,

to determine if active supervision of the algorithms’ decisions persisted in a fully auto-

mated task. To measure this, we calculated the total time the web page was active in

the subjects’ browsers. Additionally, we implemented attention-check questions in both

the experimental task and the personality questionnaires. The results are summarized in

the table 5.4.1; these values do not account for the first round, which includes the time of

reading the instructions.

Treatment Average Active Time (s) Animal Question (frequency correct)

Baseline 9.6 0.88
Explanation 10.3 0.89
Payment 9.0 0.85
Automation 11.2 0.55

Table 5.1: Attention metrics for all treatments

The active time analysis showed consistent results across all treatments, with participants

spending an average of 9 to 11 seconds per round. A second attention check involved

identifying an animal that appeared during the final rounds, revealing decreased attention

in the automated treatment. Even though the screen was active, fewer people in the

automated treatment seemed to monitor the task closely. We included an attention self-

report question in the automated treatment, especially asking if the subject had supervised

the algorithm’s decisions during the task. 76% of them answered yes, which deviates from

the 55% of participants that got the animal question correct. 15% answered no, and

9% answered not applicable. The delta suggests an overreporting of the attention and

supervision levels in the automated treatment. Four control questions were embedded

in the personality tests, with 78% of participants answering all four correctly and 93%

answering at least three correctly, indicating attentive reading.

5.4.2 Delegation Behavior and Treatment Effects

We measured the frequency of delegating decisions to the algorithm in each treatment.

The absolute frequency of delegation in each treatment is documented in table 5.4.2.

In the baseline treatment, we observed a balanced split, where about half of the decisions

were delegated across participants and rounds. The information shared in the explanation

treatment only slightly increased the number of delegation decisions. The introduction of
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Treatment Frequency of Delegation

Baseline 53.02%
Explanation 58.37%
Payment 27.87%
Automation 66.07%

Table 5.2: Absolute frequencies of delegation across the four treatments

payment sharply decreases, and the possibility for automation increases the willingness to

allow the algorithm to decide.

Figure 5.1: Mean Frequencies of Delegation Over Time

Figure 5.1 displays the overall delegation frequencies over time, where the distributions

are consistent across treatments and relatively constant, without any large variations in

the decision behavior between rounds. We aggregated the experimental data on a partici-

pant level to test these findings for statistical significance. Each participant’s cumulative

delegation frequency over 40 periods is treated as an independent observation. The distri-

butions of these relative frequencies of delegation are displayed in the histogram in figure

5.2.

Figure 5.2: Histogram of Participants Cumulative Delegation Frequencies

As anticipated, the highest delegation frequencies occur in automation and the lowest in

payment treatments. The baseline and explanation treatments exhibit a more even dis-

tribution of subjects’ delegation behavior. We employed a Kruskal-Wallis test (Kruskal &

Wallis, 1952), a non-parametric statistical test comparing the medians of several indepen-

dent samples. With a test statistic of 52.67 and a p-value < 0.001, the results indicate a

significant difference between the medians of the four independent treatment samples.
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While the Kruskal-Wallis test reveals significant differences, it does not provide detailed

insights into these differences between the samples. Consequently, we employed a Dunn

posthoc test (Dunn, 1961) to identify significant pairwise differences between samples. The

p-values for these comparisons are in table 5.4.2.

Baseline Explanation Payment Automation

Baseline 1 0.373 <0.001 0.009
Explanation 0.373 1 <0.001 0.090
Payment <0.001 <0.001 1 <0.001
Automation 0.009 0.090 <0.001 1

Table 5.3: Dunn posthoc test results, p-values for pairwise treatment comparisons

In summary, these results suggest significant differences between the medians of baseline,

payment, and automation, as well as between explanation and payment. There is no signif-

icant difference between the medians of baseline and explanation or between explanation

and automation. The payment feature was the most influential regarding the willingness

to delegate.

The contextual findings highlight the influence of different treatment conditions on the

delegation behavior of participants. The baseline and explanation treatments led to a more

even distribution of delegation behavior. On the other hand, the payment treatment had

a considerable negative impact on the willingness to delegate. The automation treatment

led to the highest frequency of delegation among the four treatments, demonstrating the

importance of reducing the involved workload in a task in encouraging algorithm-based

decision-making. Overall, these results underscore the significance of understanding and

addressing the factors that affect delegation behavior to design more effective human-

algorithm collaborations and decision-making processes.

5.4.3 Incorporating the Personal Dimension - Regression Analysis

The design of our treatments provides insights into how exogenous factors influence dele-

gation behavior. However, individual factors also play a significant role in algorithm aver-

sion, as widely discussed in the literature. In this section, we examine the binary action

of delegating a decision in relation to treatment conditions and personal factors, including

personality test scores, gender, education, and self-reported perception (as explained in

chapter 5.2). Categorical values were encoded as binary dummy variables.

Although correlations between the variables under investigation and delegation are primar-

ily weak, they are highly significant (full correlation results are reported in 5.6.2, appendix

5.6.2). To further explore and quantify these relationships, we constructed a logistic re-

gression model including demographic and personal information as independent variables.

The model results are summarized in table 5.4. A critical remark in the regression mod-

eling is that we use the entire experiment’s dataset: every decision from each participant

at each round. Due to repeated choices made by the same individuals across 40 periods,

we clustered the standard errors on the participant level. This approach accounts for
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intra-participant correlation, considering potential influences from unobserved individual

factors or shared experiences, as per Bertrand et al. (2004) ’s reasoning.

Variable Coefficient Standard Error p-value

Constant -0.525 1.013 0.605
Explanation 0.252 0.207 0.223
Payment -1.012 0.235 ∗∗∗ < 0.001
Automation 0.515 0.234 ∗0.027
Female -0.144 0.179 0.421
Age -0.009 0.018 0.596
STEM 0.267 0.227 0.238
Business & Economics -0.181 0.201 0.37
Extraversion 0.04 0.059 0.497
Agreeableness 0.036 0.073 0.627
Conscientiousness 0.137 0.085 0.106
Neuroticism -0.047 0.072 0.513
Openness -0.008 0.087 0.926
Internal LoC 0.057 0.102 0.578
External LoC 0.054 0.106 0.614
Generalized Trust 0.067 0.066 0.307
Perception -0.368 0.14 ∗∗0.009

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.4: Logistic Regression Results - Delegation

The logistic regression model provides several insights into the effects of treatments and

personality traits on delegation and also reinforces the findings in chapter 5.4.2. Ini-

tially, the automation treatment exhibits a positive and statistically significant impact

on delegation (p = 0.027), suggesting that automating tasks encourages individuals to

delegate. Conversely, the payment treatment displays a negative and statistically signifi-

cant influence (p < 0.001), implying that requiring payment could discourage delegation.

The explanation treatment, although positive, is not statistically significant (p = 0.223).

Regarding personal variables, the only statistically significant effects are observed for per-

ception (p = 0.009), which negatively impacts delegation, suggesting that an increase in

negative perception about algorithms is correlated with a lower likelihood of delegation.

Other variables, including gender, age, field of study, and personality traits, do not exhibit

statistically significant effects on delegation in this model. A second regression model,

including interaction terms, is reported in appendix 5.6.2, in which payment loses its sig-

nificance, and Internal Locus of Control becomes significant. Quantile regression models

applied to cumulative delegation frequencies (shown in figure 5.2) showed similar signifi-

cance and coefficients to logistic regression, despite a marginally better fit. See appendix

5.6.2 for full details.

In conclusion, examining personality traits and algorithm aversion uncovers the influence

of individual factors and treatment conditions on delegation behavior. A critical insight

from this analysis is the existence of intricate relationships between various traits. In-

teraction terms offer a more comprehensive understanding of the relationships between
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variables and delegation behavior by accounting for the dependence of some variables’

effects on the values of other variables. Gaining insights into these relationships can aid

in comprehending how diverse behavioral profiles respond to algorithmic systems.

5.4.4 Machine Learning for Delegation Behavior Analysis and Causal Inference

To understand whether the personal and contextual pieces of information are helpful in

predicting the delegation behavior in such a case, we tested a few prediction techniques

using the same variables scheme, that is, predicting the binary outcome of the delegation

decision possibility using the treatments, personality, and demographic data.

C. F. Camerer (2018) highlights the benefits of applying machine learning to model behav-

ior, emphasizing its potential for improved predictive accuracy, handling large datasets,

capturing non-linear relationships, and adaptability. Additionally, machine learning en-

ables personalization and fosters cross-disciplinary insights, contributing to a better un-

derstanding of human decision-making and facilitating more effective interventions across

various domains.

The logistic regression model, as detailed in chapter 5.4.3, offers limited insights into

the complex interplay of our variables, accounting for only about 9% (pseudo R-squared)

of the variation in delegation decisions. Given the absence of clear linear relationships

and the complexity of the data, we turn to more sophisticated methods. We employ

machine-learning models to examine the overall impact of variables on predicting delega-

tion, followed by causal machine learning models to separate treatment effects from the

personal covariates. In the subsequent models, we refer to within-sample predictions, using

80% of the sample for model training and the other 20% to generate and test predictions.

Methodological formalizations for the adopted methods can be found in appendix 5.6.1,

and technical model implementation remarks in appendix 5.6.3.

5.4.5 Predicting Delegation Behavior

If we use our logistic regression coefficients to generate predictions, the model yields an

accuracy score of 0.62, meaning 62% of the delegation decisions were classified correctly,

not far from a random baseline. This relatively low accuracy might be due to several

factors influencing the results that have yet to be accounted for or the failure of the model

to capture complex relationships between the variables. To deepen the understanding of

these variables’ relationships and the possibility of generating predictions for algorithm

aversion behavior using contextual and personal information, we resort to the machine

learning techniques Random Forest and Gradient Boosting Machines.

Research shows successful predictions of behavioral elements using personality traits, char-

acteristics, and environmental data. Balakrishnan, Khan, Fernandez, and Arabnia (2019)

used psychometric test data, including Big 5 and Dark Triad, and Twitter features to

predict cyberbullying accurately. Guntuku, Yaden, Kern, Ungar, and Eichstaedt (2017)

employed machine learning to predict mental health status based on social media and

personality data. Similarly, Stachl et al. (2017) used personality traits to predict smart-

phone usage behavior. Saltık, Söyü, Değirmen, Şengönül, et al. (2023) combined reaction
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time, psychological attributes, and personality traits to predict Loss Aversion Bias, sup-

porting Kahneman’s ”Thinking Fast and Slow” theory (Kahneman, 2011). These studies

demonstrate the potential of machine learning models in similar prediction tasks.

Breiman (2001) introduced the Random Forest model, an ensemble learning method de-

signed for classification and regression problems. The algorithm works by creating multiple

decision trees, each of which ’votes’ on an answer. In a classification problem such as ours,

the Random Forest chooses the class that gets the most votes from all the trees. The key

idea behind Random Forest is to create a ”forest”of diverse decision trees constructed from

random subsets of training data and features. This approach helps increase the model’s

robustness, reduce overfitting, and improve overall predictive accuracy. The Random For-

est algorithm is particularly useful for binary classification problems because it can handle

non-linear relationships between the input features and the output variable. It can also

handle missing values and outliers in the input data and estimate the importance of each

input feature in the prediction (Liaw, Wiener, et al., 2002).

In a similar manner, Gradient Boosting Machines (GBMs) are a class of ensemble learning

algorithms that build a robust model by iteratively adding weak learners, typically decision

trees, to minimize a loss function. The algorithm focuses on correcting the errors of

the previous tree by training on the residuals, effectively improving the overall model’s

performance, as defined in J. H. Friedman (2001).

As per definitions in Breiman (2001) and J. H. Friedman (2001), Random Forest and GBMs

are ensemble learning methods for similar purposes. The main difference lies in their ap-

proach to building the ensemble of decision trees. Random Forest constructs multiple trees

independently and in parallel, combining their predictions through averaging or majority

voting. It uses bagging (Bootstrap Aggregating) to create diverse trees by resampling the

dataset with replacement. In contrast, GBM constructs trees sequentially, with each new

tree trying to correct the errors made by the previous tree. It utilizes a technique called

boosting, where trees are combined through a weighted majority vote, and the weights

are determined by minimizing a loss function during the training process. We apply both

methods for comparable results but with distinct processes, enabling comparing and val-

idating the findings from the generated predictions to assess our findings’ consistency. In

each model, feature importances highlight the significance of each feature in predicting the

target variable. Figure 5.3 presents an overview of the feature importances.

Both models have been cross-validated during parameter fitting and training using the

KFold method to avoid overfitting (details in appendix 5.6.3). In this process, we split the

training data into a number of subsets or ”folds.” We train the model on the remaining

data for each fold and test it on this fold. This process is repeated for each fold, allowing

us to assess the model’s performance based on its ability to predict new data (Berrar, 2019;

Kohavi et al., 1995). Furthermore, with an equivalent objective as clustering the regression

errors on a participant level (chapter 5.4.3), we aggregated the participant observations

here using the GroupKFold variant, which ensures instances from the same participant

either in the training set or the test set. This approach safeguards against data leakage
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and maintains a realistic estimate of the model’s performance, especially when observations

within the same group (in this case, participant) are correlated.

Figure 5.3: Machine Learning Models Feature Importances

According to the Random Forest and Gradient Boosting Machine models, the decision to

delegate to algorithms is influenced by a complex mix of individual characteristics and

contextual factors. Age consistently emerges as the most significant variable in both mod-

els, reflecting its significant role in shaping comfort with algorithmic delegation. Similarly,

Neuroticism and Extraversion — two Big Five personality traits — feature prominently,

signifying their impact on delegation tendencies.

Apart from these, the Locus of Control, both internal and external, appears to influence

delegation decisions, although they are more pronounced in the Random Forest model.

Contextual factors, like payment and automation, also emerge as crucial determinants

across both models. Intriguingly, automation is more influential in the GBM model, sug-

gesting a more substantial bias towards delegation in fully automated scenarios. Gender,

education, and the Explanation context appear to have minimal impact in both models.

These findings underscore the intricate dynamics governing decision delegation, with no

single factor having a dominating influence. Instead, a nuanced interplay of various indi-

vidual and contextual elements appears to guide the decision to delegate to algorithms.

We evaluated the Logistic Regression (LR), Random Forest (RF), and Gradient Boosting

Machine (GBM) models using four metrics: Accuracy, Precision, Recall, and F1 score.

Accuracy calculates the proportion of correctly classified instances. Precision quantifies

how well the model correctly identifies positive instances. Recall gauges the model’s ability

to detect positive instances among actual positives. The F1 score, a blend of precision and

recall, is the harmonic mean of these two metrics (Powers, 2020; Sokolova & Lapalme,

2009). As summarized in Table 5.4.5, both RF and GBM outperformed LR in predictive

power, with RF achieving slightly superior performance across all metrics. This outcome

highlights the efficacy of tree-based models for our classification problem.

In addition, a Receiver Operating Characteristic (ROC) curve provides a graphical repre-

sentation of a classifier’s performance across varying decision thresholds (figure 5.4). The

Area Under the ROC Curve (AUC-ROC) measures the overall performance of a binary
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LR RF GBM

Accuracy 0.6210 0.8332 0.8325
Precision 0.6112 0.8185 0.8120
Recall 0.7018 0.8730 0.8730
F1-score 0.6534 0.8414 0.8415

Table 5.5: Prediction Performance metrics

classifier. It ranges from 0 to 1, with higher values indicating better performance. A value

of 0.5 indicates a random classifier (dashed line), and 1 indicates a perfect classifier. The

ROC area quantifies how well the classifier can distinguish between the positive and neg-

ative classes, regardless of the choice of classification threshold (Bradley, 1997; Fawcett,

2006). In the overall analysis, and in line with previous performance metrics, the LR

model is surpassed by the other models, with the RF model showing a slight edge. The

high scores achieved by both the RF and GBM models affirm their ability to explain the

data, enhancing the reliability of the interpretations documented in our study.

Figure 5.4: ROC Curves for All Models

Although logistic regression provided valuable insights into the direction and significance

of individual variables, its ability to handle the complex data relationships in our study was

limited. We explored machine learning techniques to capture these relationships better,

specifically Random Forest and Gradient Boosting Machines. Both models significantly

outperformed logistic regression regarding accuracy, precision, recall, and F1 score, with

the Random Forest model having a slight edge in accuracy over the GBM. Both models

consistently highlighted the same features, such as payment, extraversion, and neuroticism,

as key influencers in delegation decisions.

5.4.6 Causal Inference and Heterogeneous Treatment Effects - Uplift Random

Forest

To further understand the factors influencing decision delegation to algorithms, we now

focus on disentangling the effects of the treatment conditions from personal data. While
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regression and machine learning models have provided insights, they combine all vari-

ables, not distinguishing between treatment conditions and personal characteristics effects.

Hence, we use causal inference to uncover how treatment effects vary across different sub-

groups within our sample, focusing on estimating the expected change in the outcome as

a result of the intervention. This approach allows us to measure heterogeneous treatment

effects and identify the subset of individuals most influenced by the treatment conditions,

given their characteristics. To this end, we resort to Uplift Modeling.

Uplift Modeling, a branch of causal inference, models the impact of incremental treatment

effects on individuals’ behavior (N. J. Radcliffe & Surry, 2011). Early applications of sim-

ilar methods can be seen in N. Radcliffe and Surry (1999). For a comprehensive definition

and literature review on machine learning problems and applications, see Gutierrez and

Gérardy (2017); N. J. Radcliffe and Surry (2011).

We employ the Uplift Random Forest Algorithm, an ensemble learning method that uses

the random forest algorithm to estimate the causal effect of a treatment or intervention on

individual outcomes (Guelman, Guillén, & Pérez-Maŕın, 2012, 2015). The uplift random

forest classifier (So ltys, Jaroszewicz, & Rzepakowski, 2015) incorporates the treatment

indicator as a covariate to capture differential effects and uses other covariates to estimate

individual treatment effects. The model is tuned using the same cross-validation technique

described in 5.4.5, with details in appendix 5.6.3.

Treatment effects can be evaluated at an individual level by computing uplift scores. These

scores represent the predicted likelihood of delegation for each observation under each

treatment scenario, essentially providing a probabilistic estimate of how a participant

would behave if they were subjected to a specific treatment. The distributions of these

predicted likelihoods are plotted in figure 5.5. The trend observed in this analysis follows

the initial assessment of the treatment effects (chapter 5.4.2) in reference to the base-

line. Payment negatively impacts the likelihood of delegation, whereas explanation has a

slight positive effect, and automation has a more pronounced positive effect. Each treat-

ment’s computed average treatment effects are payment = −0.26, explanation = 0.05, and

automation = 0.12.

Feature importance can also be extracted from this model, with a slightly different mean-

ing. Unlike traditional classification models, in Uplift models, feature importance does

not directly equate to the effect of a feature on the outcome but rather its influence on

the treatment effects. In other words, an essential feature in the model translates to the

influence on the change in the likelihood of delegation mediated by the treatment. These

values are presented in figure 5.6.

In the Uplift Random Forest model, Age, Openness, External Locus of Control, Extraver-

sion, and Agreeableness significantly influence the treatment effectiveness on delegation

behavior. Other variables like Internal Locus of Control and Conscientiousness also play

a role, but their influence is moderate. On the other hand, Gender, Perception, and

Education have the least effect on treatment assignment.

Contrasting with the Random Forest and Gradient Boosting Machine models, the Uplift
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Figure 5.5: Distribution of Predicted Treatment Effects (Uplifts)

Figure 5.6: Feature Importances - Causal Model

model emphasizes the impact of these variables on the treatment effects rather than the

outcome itself. While age and certain personality traits like Extraversion and Openness

are influential across all models, the Uplift model uniquely demonstrates their role in

optimizing treatments for delegation.

Evaluating causal inference models, like uplift random forests, is intricate due to coun-

terfactual outcomes. We can only observe a given individual’s delegation decision under

one treatment. Unlike traditional classification, where predicted outcomes are compared

to observed labels (as in table 5.4.5), uplift modeling predicts the difference between ob-

served and unobserved counterfactual outcomes. This lack of observed outcomes for both

scenarios for an individual restricts using standard classification metrics. Instead, metrics

specific to uplift models, such as uplift curves, assess their performance. The uplift curve,

similar in interpretation to the ROC curve, plots cumulative gain from targeting individu-

als by predicted uplift. Derived from it, the Area Under the Uplift Curve (AUUC) mirrors

the AUC-ROC, gauging the model’s ability to prioritize effective interventions. Figure 5.7

shows our model’s Uplift Curve.
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Figure 5.7: Uplift Curve

We have computed the AUUC using a synthetic control group consisting of individuals

whose predicted optimal treatment matches the actual treatment they received or those

in the actual control group, following the method in H. Chen, Harinen, Lee, Yung, and

Zhao (2020). The uplift score for each individual in the synthetic control was computed,

and individuals were ranked based on these scores. The AUUC was then calculated as the

area under the curve plotting the cumulative proportion of actual outcomes against the

proportion of the population targeted. The result is 0.977, which indicates relatively high

performance in the prediction task and in explanation power.

Applying Uplift Random Forest to our study has offered valuable insights into the factors

that influence the impact of treatments in delegation decisions. The model identified age,

openness, and certain personality traits as significant determinants. It provided an addi-

tional perspective by focusing on the influence of these variables on treatment effectiveness

rather than on the outcome itself.

5.4.7 How Subjects React to Non-Profitable Algorithmic Decisions

Numerous studies show that people initially trust algorithms, but trust may plummet af-

ter a mistake occurs (Glikson & Woolley, 2020). Dietvorst et al. (2015) found that people

avoid algorithms or computerized decision-making systems even if they make fewer errors

than humans due to high expectations for algorithms and attributing errors solely to the

algorithm. Prahl and Van Swol (2017) showed that people are less likely to follow advice

from a computer algorithm immediately after receiving incorrect advice. Complementarily,

Chong, Zhang, Goucher-Lambert, Kotovsky, and Cagan (2022) reveals that poor algorith-

mic performance harms human confidence in the algorithm and self-confidence. Bogert et

al. (2021) complements the idea of adverse reactions by outlining that bad decisions gener-

ated by algorithms are more severely punished than those of humans. To investigate this

further, we analyzed participants’ reactions after delegating a decision to the algorithm

and receiving no payoff.
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Delving into the impact of the algorithms’ performance on the subjects, we calculated

the frequency of participants changing their strategies from ”delegate” to ”not delegate”

relative to the number of times the algorithm’s decision resulted in a zero payoff, which

does not necessarily mean a ”wrong” choice but can also indicate a non-realized payoff

from the ”correct” choice. We extended this analysis to explore potential gender effects.

Table 5.4.7 presents the absolute proportions of reaction results categorized by gender and

treatment.

Baseline Explanation Payment Automation

General (aggregated) 0.30 0.25 0.35 0.09
Males 0.26 0.15 0.27 0.07
Females 0.34 0.31 0.40 0.10

Table 5.6: Relative frequencies of changing strategies (reaction) following algorithmic fail-
ures

On average, participants in the payment treatment group exhibited the highest reaction

frequency (0.35), suggesting that individuals are more likely to change their decision when

a financial incentive is involved. Conversely, the automation treatment group had the

lowest frequency of reaction (0.09), indicating that participants are less likely to change

their decision when the task is automated, possibly due to the complete handover pro-

cess or also satisfaction with the algorithm performance, which was overall higher in the

automation treatment (further details on the algorithm’s performance are documented in

chapter 5.4.8).

Figure 5.8: Frequencies of reaction to algorithmic failures by treatment and gender

Comparing reaction frequencies between males and females reveals that females have a

higher reaction frequency across all treatments, suggesting they might be more sensitive to

algorithm mistakes (figure 5.8). To further examine the gender gap in reaction, given that

gender differences were not observed elsewhere in the experiment, we conducted statistical

tests on both samples.

Similar to the statistical tests performed on the relative frequencies of delegation, we cal-

culated the relative frequencies of reaction for each participant over 40 periods, treating
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each participant’s decision path as an independent observation and separating the samples

by gender. We then applied a Mann-Whitney U test (Mann & Whitney, 1947) to measure

the difference between the two independent samples. The results show a value of 7751.51

and a p-value of 0.0028, outlining a statistically significant difference between the means

of the frequency of strategy reactions for males and females. To deepen our understanding

of participant reactions, we further analyzed whether contextual or personal factors influ-

enced their behavior. Similar to the methodology used in the delegation behavior analysis

(Chapter 5.4.3), we employed a logistic regression with standard errors clustered at the

participant level. The results of this analysis are compiled in Table 5.7.

Variable Coefficient Standard Error p-value

Constant -2.188 0.868 ∗0.012
Explanation -0.088 0.181 0.626
Payment -0.32 0.214 0.134
Automation -1.042 0.24 ∗∗∗ < 0.001
Female 0.453 0.154 ∗∗0.003
Age 0.005 0.016 0.775
STEM -0.345 0.213 0.106
Business & Economics 0.021 0.182 0.908
Extraversion 0.031 0.053 0.567
Agreeableness 0.121 0.081 0.138
Conscientiousness 0.027 0.082 0.743
Neuroticism -0.044 0.061 0.465
Openness 0.04 0.09 0.657
Internal LoC -0.292 0.087 ∗∗∗ < 0.001
External LoC -0.107 0.104 0.304
Generalized Trust -0.034 0.07 0.63
Perception -0.229 0.122 0.06

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.7: Logistic Regression Results - Reactions

The analysis indicates that task automation, gender, and internal locus of control are key

factors in strategy changes following unprofitable algorithm decisions. Full task automa-

tion and a high internal locus of control reduce the likelihood of strategy shifts, suggesting

trust in the process and personal control beliefs. Conversely, female participants are more

prone to strategy changes, hinting at potential gender differences in reactions to algorith-

mic failures. Other factors, including algorithm explanation, payment requirement, and

various personality traits, don’t significantly influence strategy changes, suggesting their

impact may be less direct.

5.4.8 Task Performance and Human-Algorithm Interaction

Finally, to evaluate the performance of Reinforcement Learning in the product selection

task, we analyzed the mean probabilities of selecting each product quality level, grouping

them based on their probabilities of receiving a payoff. The task was not straightforward

due to the possibility of receiving a zero payoff even after identifying the best option,
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which could alter the weight of correct attractions. This ambiguity challenged human

subjects and affected the algorithms’ convergence capabilities. Figure 5.9 illustrates the

development of choice probabilities for each product type.

Figure 5.9: RL Choice Probabilities Over Time

In all instances, the algorithm could identify the highest quality product compared to the

inferior alternatives. However, performance levels varied across treatments. We observed

improved performance in generating optimal choice probabilities in treatments with higher

delegation rates, such as explanation and automation, compared to the other groups, with

the payment group being the most impacted. In treatments where participants exhibited

higher ”trust” in the algorithmic decision-making process, the performance in identifying

the optimal product was better.

Algorithm Human

Baseline 0.592 0.511
Explanation 0.634 0.495
Payment 0.506 0.505
Automation 0.694 0.515

Table 5.8: Frequency ”high” Product Selected

In a complementary analysis, table 5.4.8 compares performance between the algorithm

and human subjects throughout the task. The values denote the success frequencies,

normalized by the number of human or algorithm decisions. As expected, even with a

non-trained algorithm that learned on the spot, the algorithm consistently outperformed

the human subjects.

5.5 Conclusion and Discussion

This paper investigated the impact of framing conditions, explainability, willingness to

pay, and complete task automation on delegation behavior in the context of algorithmic

decision-making. Additionally, the study explored individual differences by examining the

Big Five Personality Traits, Locus of Control, Generalized Trust, and other individual

characteristics such as gender, age, and education.

We investigated the algorithm aversion phenomenon employing a multi-stage analysis cov-

ering hypotheses testing, regressions, machine learning, and causal inference models. Our
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findings revealed that context conditions significantly influenced participants’ delegation

choices. The study demonstrated that explaining the algorithm used in the product se-

lection task improved user trust and increased the likelihood of delegation. In contrast,

introducing a cost for delegation (Payment treatment) led to a decrease in delegation rates.

Finally, the Automation treatment highlighted that participants were likelier to delegate

decisions to the algorithm when the task was wholly automated.

In the machine learning application, we adopted a two-pronged approach to decipher the

complex dynamics of decision delegation. We utilized traditional machine learning mod-

els — Random Forest and Gradient Boosting Machines — and an Uplift Random Forest

model, providing complementary perspectives on the influences on delegation behavior.

The Random Forest and Gradient Boosting Machine models offered insights into the di-

rect impacts of individual and contextual variables on delegation decisions. Age, person-

ality traits like Neuroticism and Extraversion, and factors like Payment and Perception

consistently emerged as significant influences. These models underscored the intricate in-

terplay of individual traits and contextual conditions, with no single factor dominating

the decision to delegate. Complementing this, our Uplift Random Forest model provided

direct heterogeneous treatment effects, which confirmed the impacts observed in the statis-

tical analysis: the strong negative influence from the payment context and the moderately

strong positive influence of automation. As for the impact of personal variables, this fo-

cused on their influence on quantifying the likelihood of delegation. Key variables such

as Age, Openness, and certain personality traits significantly shaped the uplifts in treat-

ment assignments. The model highlighted the importance of these factors in optimizing

interventions to enhance delegation, adding a unique dimension to our understanding.

The machine learning analysis revealed a nuanced understanding of how individual char-

acteristics and contextual factors, alongside their interplay, shape decision delegation to

algorithms. The machine learning models identified a set of influential factors with high

predictive accuracy, while the Uplift model shed light on optimizing intervention impacts.

This complexity and interconnectedness of personal and contextual factors were also re-

ported by Snijders, Conijn, de Fouw, and van Berlo (2023). These insights provide valuable

guidance for practitioners designing algorithmic decision systems, emphasizing the need

for a personalized, context-sensitive approach.

In examining responses to algorithmic errors, we discovered pronounced reactions in sce-

narios involving payment treatments. Interestingly, these reactions were significantly more

frequent among females, indicating the presence of gender effects. Confirmatory statistical

analyses reinforced these observations, revealing that factors such as Automation, Pay-

ment, and Internal Locus of Control significantly influenced participants’ responses to

algorithmic mistakes. These findings highlight the influence of both gender and specific

situational contexts and confirm previous experiments in the literature pointing to algo-

rithmic failures as a driver of aversion.

Employing a non-biased algorithm and allowing it to learn exclusively from the interac-

tion with participants allowed us to observe how the algorithm’s learning process evolved

alongside the participants’ decision-making behavior. In particular, treatments with lower
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delegation rates negatively affected the algorithm’s performance, generating sub-optimal

choice probabilities.

The implications of these findings are manifold. By better understanding the factors

influencing delegation behavior in algorithmic decision-making, we can develop more user-

friendly systems that facilitate trust and encourage appropriate delegation. These insights

can contribute to designing decision support tools tailored to individual preferences and

optimize human-algorithm collaboration.

This study has several limitations, including the simplicity of the experimental design,

which may not fully capture the complexity of real-world decision-making scenarios, and

a potentially non-representative sample. The interconnectedness and multicollinearity of

personal traits also present challenges in isolating and interpreting their individual effects

on delegation behavior. Further research could employ more realistic product designs and

decision-making tasks and investigate the effects of combined treatment conditions, e.g.,

payment and automation, payment and explanation, among other things, to understand

better the interplay between various contextual factors and their impact on delegation

behavior in algorithmic decision-making. Moreover, future studies could also consider

evaluating purely economic behaviors and attitudes, such as risk, loss, and ambiguity

aversion.

In conclusion, this paper contributes to the growing literature on algorithm aversion and

delegation behavior. It highlights the importance of framing conditions, explainability,

individual differences, and the complex interaction between variables in shaping user pref-

erences and trust in algorithmic decision-making systems. Future research could delve

deeper into the interaction between these factors and explore the impact of different ex-

planation styles, varying costs for delegation, and other contextual factors on delegation

behavior. By understanding the nuances of human-algorithm collaboration, we can de-

velop systems that enhance decision-making and contribute to more efficient and effective

outcomes in various domains.

5.6 Appendix

5.6.1 Methodological Formalizations

This chapter provides an overview of the machine learning methods used in the project.

The following subchapters account for the Random Forest, Gradient Boosting, and Uplift

Random Forest methods, providing generalizations of the algorithms’ implementations.

Reinforcement Learning Implementation and Tuning

The underlying problem introduces three options or products, expressed as Qi, each asso-

ciated with distinct probabilities of receiving a payoff that can be selected at each period,

t. Each product Qi is associated with an attraction value AQi(t), representing the deci-

sion weight attached to product Qi at period t. Following the theoretical frameworks in
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C. Camerer and Hua Ho (1999); Erev and Roth (1998), the attraction values are updated

based on the payoffs received by selecting product Qi using the following update rule:

AQi(t) = ϕAQi(t− 1) + I(Q(t) = Qi)πQi(t) (5.1)

This model features the indicator function, which means that a player’s attraction to a

strategy can only increase if they choose it. The attraction increases by the amount of

payoff received from it. In the update rule, the indicator functions I(Q(t) = Qi) equals

1 if a participant chooses product Qi at period t and 0 otherwise, while πQi(t) represents

the payoff received when choosing product Qi at period t. The recency parameter ϕ

indicates how quickly past payoffs are forgotten, which acts as a form of learning rate.

Attractions from the previous period determine choice probabilities in any period. A

logistic transformation over the attraction values calculates the probabilities:

PQi(t + 1) =
eλAQi

(t)∑m
k=1 e

λAQk
(t)

(5.2)

In this equation, PQi(t + 1) represents the probability of selecting product Qi at time

t + 1, AQi(t) denotes the attraction of product Qi at time t, and m indicates the number

of available product options. The second parameter, λ, reflects the sensitivity of choice

probabilities to differences in attractions. The two necessary parameters were tuned using

observed data from 1000 simulations, testing for the ranges 0 − 1 for ϕ and 0 − 10 for

λ. The tuning resulted in ϕ = 0.47 and λ = 4.5, associated with higher payoffs. The

experiment parameters were set to these values statically.

Random Forest

The Random Forest algorithm concept builds a large collection of de-correlated decision

trees and then aggregates them through a majority voting system for classification prob-

lems. Hastie et al. (2009) generalized the algorithm as follows:

More details on the Random Forest algorithm can be found in Breiman (2001).

Gradient Boosting Machines

Gradient Boosting Machines (GBM) is a machine learning method that builds a sequence of

decision trees, each correcting its predecessor’s mistakes, to create a final, robust predictive

model (J. H. Friedman, 2001). Hastie et al. (2009) also provides a generalization of this

model, with the stepwise algorithm defined as:

Lines 2-6 are repeated K times at each iteration m, once for each class. For a more detailed

description of the Gradient Boosting Machines and their derivations, see the comprehensive

overview in Hastie et al. (2009).

Uplift Modelling

The underlying method is the same as that of the Random Forest. However, For the uplift

random forest classifier, the uplift tree consists of a combination of methods based on uplift
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Algorithm 3 Random Forest Algorithm

Require: B trees to be grown, N size of bootstrap sample, M total variables, m selected
variables, nmin minimum node size

Ensure: Output the ensemble of trees {Tb}B1
1: for b = 1 to B do
2: Draw a bootstrap sample of size N from the training data
3: Grow a decision tree Tb on this data by:
4: while each terminal node of the tree until the minimum node size nmin is reached

do
5: Select m variables at random from all M variables
6: Pick the best variable/split-point among the m
7: Split the node into two daughter nodes
8: end while
9: end for

10: To make a prediction for a new point x, let Ĉb(x) be the class prediction of the bth
random forest tree

11: The random forest chooses Ĉrf(x) = majority vote{Ĉb(x)}B1

Algorithm 4 Gradient Boosting Machines Algorithm (Generalized)

Require: M iterations, n number of observations, L loss function, yi observed response,
F (xi) predicted response, hm(x) base learner at iteration m

Ensure: Output FM (x) as the final model
1: Initialize the model with a constant value:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ)

2: for m = 1 to M do
3: Compute pseudo-residuals:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, for i = 1, . . . , N.

4: Fit a base learner hm(x) to pseudo-residuals, i.e., train it using the training set
{(xi, rim)}ni=1

5: Compute multiplier:

γjm = argmin
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi))

6: Update the model:
Fm(x) = Fm−1(x) + γmhm(x)

7: end for

modeling, with the tree split criterion based on differences in the uplift. In the standard

notation (Rubin, 1974), we consider Yi(1) an individual’s i being treated and Yi(0) for

being in the control group. In this case, the causal effect τi is given by τi = Yi(1)− Yi(0).

Having Wi ∈ 0, 1 as a binary variable indicating if person i is in the active treatment group,

and 0 otherwise (control group), the observed outcome is Y obs
i = WiYi(1) + (1−Wi)Yi(0).

Based on Gutierrez and Gérardy (2017), considering a balanced, randomized experiment,
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the average treatment effects (uplifts) are estimated as:

τ̂ =

∑
i Y

obs
i Wi∑
iWi︸ ︷︷ ︸
p

−
∑

i Y
obs
i (1−Wi)∑
i(1−Wi)︸ ︷︷ ︸

q

, (5.3)

Which represents the difference in the sample average outcome between the treated and

untreated observations. For the splitting criterion, the gain difference after splitting is

defined as:

Dgain = Daftersplit(P
T , PC)−Dbeforesplit(P

T , PC) (5.4)

Where D is the difference and P T and PC is the probability distribution of the outcome

variable in the treatment and control groups (Rzepakowski & Jaroszewicz, 2012). The

uplift trees were split using the Chi function, rooted in a statistical test that determines

significant associations between two categorical variables. Within uplift modeling, this

function aids in prioritizing splits that highlight a significant relationship between the

treatment and the outcome. The divergence in this method is represented by X2:

X2(P : Q) =
∑

k=left,right

(pk − ql)
2

qk
(5.5)

where p indicates the sample mean in the treatment group, q is the sample mean in the

control group, and k denotes the leaf in which p and q are calculated.

5.6.2 Additional Data and Analyses

This chapter presents additional data analysis elements not included in the main manuscript.

Correlations

Delegation behavior exhibits weak positive correlations with STEM degrees, extraversion,

agreeableness, conscientiousness, internal locus of control, and external locus of control.

Conversely, it has weak negative correlations with gender (female), business and economics

degrees, and neuroticism. Age and openness display almost no correlation with delegation

behavior (figure 5.10).

Table 5.6.2 displays the results of point-biserial correlation coefficients between the per-

sonality traits and delegation behavior (binary).

Regressions

This regression model includes interaction terms to account for the correlation between

independent variables (table 5.6.2), providing a more nuanced analysis of the relationships

between variables and delegation behavior. In this model, the main effects of some variables
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Figure 5.10: Spearman correlation coefficients

change, and the added interaction terms help us better understand how the relationships

between variables affect the outcome.

The internal locus of control variable becomes significant (p = 0.041) in the model with

interaction terms, while it was not significant in the model without interactions. This

change suggests that the relationship between internal locus of control and delegation

behavior might be more complex than initially estimated by the first model. Including

interaction terms allow us to capture the combined effects of internal locus of control

with other variables, such as openness, which might help explain this shift in statistical

significance.

The interaction between female gender and neuroticism is significant at the 10% level (p =

0.084). For instance, women generally report higher neuroticism scores than men (Costa Jr,

Terracciano, & McCrae, 2001; Schmitt, Realo, Voracek, & Allik, 2008; Weisberg, DeYoung,

& Hirsh, 2011), which is also true for our sample. Given that women generally report higher

neuroticism scores than men, this term indicates that the relationship between neuroticism

and delegation behavior differs for males and females. Specifically, the effect of neuroticism

on delegation behavior may be more substantial for one gender than the other. As a

result, the positive coefficient for the female gender in the second model suggests that the

likelihood of delegation among females might depend more on their neuroticism level than

males.

Another noteworthy interaction term is the one between internal locus of control and

openness, which is significant at the 10% level (p = 0.080). This interaction suggests

that the effect of internal locus of control on delegation behavior is more pronounced for

individuals with specific levels of openness. For example, participants with a high internal

locus of control and high openness might be more likely to delegate tasks than those

with a high internal locus of control and low openness. This finding further emphasizes
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Variable Correlation Coefficient p-value

Age -0.019 ∗0.026
Female -0.065 ∗∗∗ < 0.001
STEM 0.078 ∗∗∗ < 0.001
Business & Economics -0.03 ∗∗∗ < 0.001
Extraversion 0.06 ∗∗∗ < 0.001
Agreeableness 0.039 ∗∗∗ < 0.001
Conscientiousness 0.089 ∗∗∗ < 0.001
Neuroticism -0.087 ∗∗∗ < 0.001
Openness 0.024 ∗∗0.005
Internal LoC 0.06 ∗∗∗ < 0.001
External LoC 0.068 ∗∗∗ < 0.001
Generalized Trust 0.044 ∗∗∗ < 0.001
Perception -0.147 ∗∗∗ < 0.001

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.9: Point-biserial correlation coefficients to binary action of delegation

Variable Coefficient Standard Error p-value

Constant 5.195 4.046 0.199
Explanation 0.195 0.21 0.354
Payment -1.053 0.24 ∗∗∗ < 0.001
Automation 0.453 0.235 0.054
Female 0.821 0.567 0.147
Age -0.012 0.018 0.501
STEM 0.269 0.232 0.246
Business & Economics -0.193 0.201 0.337
Extraversion 0.018 0.059 0.755
Agreeableness 0.044 0.073 0.552
Conscientiousness -0.411 0.597 0.491
Neuroticism 0.111 0.361 0.759
Openness -0.71 0.416 0.088
Internal LoC -1.266 0.618 ∗0.041
External LoC 0.251 0.604 0.678
Generalized Trust 0.07 0.065 0.284
Perception -0.361 0.14 ∗0.01
Female x Neuroticism -0.234 0.136 0.084
Internal Loc x Conscientiousness 0.136 0.089 0.129
External Loc x Conscientiousness -0.043 0.094 0.65
External Loc x Neuroticism -0.011 0.079 0.894
Internal Loc x Openness 0.139 0.079 0.08

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.10: Logistic Regression results - delegation, with interaction Terms

the importance of considering the interaction effects when examining the relationships

between variables and delegation behavior.
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We also have fit quantile regression models (Koenker & Bassett Jr, 1978) using the cumu-

lative frequency of delegation for each participant across all periods, removing the time

dimension. We employed this method due to the varying relationships between the vari-

ables across different parts of the outcome distribution and the lack of normality. The

results are summarized in table 5.6.2.

Variable Coefficient Standard Error p-value

Intercept 0.386 0.28 0.169
Explanation 0.088 0.059 0.138
Payment -0.367 0.06 ∗∗∗ < 0.001
Automation 0.192 0.06 ∗∗0.002
Female -0.027 0.046 0.558
Age -0.003 0.005 0.526
STEM 0.078 0.057 0.173
Business & Economics -0.051 0.055 0.348
Extraversion 0.023 0.017 0.179
Agreeableness 0.011 0.021 0.598
Conscientiousness 0.025 0.024 0.285
Neuroticism 0.002 0.018 0.927
Openness 0.005 0.023 0.841
Internal LoC -0.02 0.027 0.467
External LoC 0.058 0.028 ∗0.04
Generalized Trust 0.013 0.019 0.49
Perception -0.143 0.034 ∗∗∗ < 0.001

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.11: Quantile Regression results - cumulative delegation frequencies

This model explains approximately 18.95% of the sample variance. Similarly to the logistic

regression results, these findings show that the condition involving payment significantly

reduces the frequency of delegation (p < 0.001), while full automation significantly in-

creases it (p = 0.002). Among personal characteristics, only External Locus of Control

significantly contributes to delegation, indicating that participants who believe outcomes

are beyond their control are more likely to delegate decisions (p = 0.04). Moreover, a

negative perception of algorithms significantly corresponds to a less frequent delegation

of decisions (p < 0.001). Other actors such as explanation condition, demographics, Big

Five personality traits, Internal Locus of Control, and Trust do not significantly affect the

delegation frequency. We have also controlled for correlated variables in this model by

adding interaction terms; the results are summarized in table 5.6.2.

Upon adding interaction terms, the pseudo-R-squared value rose to 21.01%, showing a

marginally improved model fit. Payment (p < 0.001) and automation (p = 0.01) still sig-

nificantly influence delegation. Notably, individuals with a STEM background (p = 0.017)

show a significant positive association with delegation. Openness to experience negatively

correlates with delegation (p = 0.034). A significant interaction emerges between internal

locus of control and Openness (p = 0.04): those high in internal locus of control and

openness tend to delegate more. A negative view of algorithms remains a strong deterrent
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Variable Coefficient Standard Error p-value

Intercept 1.206 1.043 0.248
Explanation 0.039 0.057 0.497
Payment -0.397 0.058 ∗∗∗ < 0.001
Automation 0.151 0.058 ∗0.01
Female 0.105 0.139 0.45
Age -0.007 0.005 0.14
STEM 0.131 0.055 ∗0.017
Business & Economics -0.034 0.052 0.512
Extraversion 0.011 0.017 0.509
Agreeableness 0.015 0.02 0.451
Conscientiousness 0.058 0.166 0.727
Neuroticism 0.02 0.086 0.814
Openness -0.22 0.103 ∗0.034
Internal LoC -0.258 0.144 0.074
External LoC 0.18 0.157 0.253
Generalized Trust 0.008 0.018 0.672
Perception -0.102 0.033 ∗∗0.002
Female x Neuroticism -0.032 0.033 0.331
Internal Loc x Conscientiousness 0.016 0.026 0.548
External Loc x Conscientiousness -0.025 0.025 0.307
External Loc x Neuroticism -0.003 0.018 0.879
Internal Loc x Openness 0.041 0.02 ∗0.04

Note: Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 5.12: Quantile Regression Results - cumulative delegation frequencies, with interac-
tion terms

to delegation (p = 0.002).

5.6.3 Technical Remarks

The documented experiment was executed online, programmed with the oTree open-source

platform (D. L. Chen et al., 2016). The data work was performed using Python language.

The statistical tests were done using statsmodels (Seabold & Perktold, 2010). The machine

learning models were deployed, tuned, and cross-validated using Scikit-Learn (Pedregosa

et al., 2011). Both models were tuned using a grid search algorithm with the target to

maximize the AUC-ROC. It is important to outline that this is a computationally expensive

procedure. The parameter set for the Random Forest model is in table 5.13.

Similarly, the grid search-generated parameters for the GBM model are described in table

5.14

The cross-validation technique used in both models was the GroupKFold algorithm, which

aggregated samples for the same participant. This procedure was performed in both the

parameter search and model training steps, using five validation folds.

The uplift random forest classifier was implemented using the causalml library (H. Chen

et al., 2020). Since this method, in conjunction with the group cross-validation using syn-
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Parameter Value Definition

bootstrap True Determines whether or not to use bootstrap samples when
building trees

class weight balanced subsample Adjusts the weights of the classes. balanced subsample
means it computes weights based on the bootstrap sample
for every tree

criterion entropy Defines the function to measure the quality of a split.
entropy is for information gain

max depth 15 Specifies the maximum depth of the tree
max features auto The number of features to consider when looking for the

best split. auto means the square root of the total number
of features

min samples leaf 1 The minimum number of samples required to be at a leaf
node

min samples split min samples split The minimum number of samples required to split an inter-
nal node

n estimators 100 The number of trees in the forest

Table 5.13: Random Forest Classifier parameters

Parameter Value Definition

learning rate 0.05 Determines the impact of each tree on the final outcome
max depth 10 Specifies the maximum depth of the tree
max features sqrt The number of features to consider when looking for the best split. sqrt

means the square root of the total number of features
min samples leaf 1 The minimum number of samples required to be at a leaf node
min samples split 15 The minimum number of samples required to split an internal node
n estimators 100 The number of boosting stages to perform. Each stage adds a new tree

into the ensemble
subsample 0.7 The fraction of samples to be used for fitting the individual base learners

Table 5.14: Gradient Boosting Machine Classifier parameters

thetic control groups, was performance costly, we implemented a less-exhaustive approach

for the parameter-fitting method, using the Optuna library (Akiba et al., 2019). It employs

efficient search algorithms, such as Tree-structured Parzen Estimator (TPE). We ran an

optimization study for 150 trials and selected the parameter set that yielded satisfactory

AUUC scores. One important remark here is that calculating the AUUC in this way might

produce abnormally high results due to the stochastics in place, so practitioners might have

to supervise the optimization process. Table 5.15 describes the parameter values.

Parameter Value Definition

n estimators 850 The number of trees in the forest
max depth 8 The maximum depth of each decision tree
max features 9 The number of features to consider when looking for the best split
min samples leaf 45 The minimum number of samples required to be at a leaf node
min samples treatment 15 The minimum number of samples in a leaf node that come from the

treatment group
n reg 14 The regularization parameter used in the causal tree procedure
evaluationFunction Chi The evaluation function used to evaluate splits

Table 5.15: Uplift Random Forest Classifier parameters
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5.6.4 Experiment Design Screens

In this appendix session, we added the most important screens for the experiment. Figure

5.13 contains the main task screens for each treatment. Figure 5.14 shows the attention

questions.

5.11 Displays the information flowchart adopted in the experiment for the different treat-

ments, where the automation treatment has a dedicated loop

Figure 5.11: Experiment Flowchart
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Figure 5.12: General Instructions Screen
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Figure 5.13: Main Task Experiment Screens
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Figure 5.14: Attention Measures
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Vińıcius Ferraz & Leon Houf

Abstract

This paper investigates information sampling where objective and subjective criteria are

coupled. This experimental framework creates a situation that gives room for motivated

reasoning, which we identify as motivated sampling. We present participants with a binary

sampling and decision task. Participants sample information from two ”computers,” which

generate numbers from distinct distributions, and participants have to identify the ”high

distribution” computer. In this task, we vary externalities on the participants’ decision

to induce subjective preferences. Furthermore, we vary the type of feedback participants

receive. Following this methodological framework, we compare participants with simulated

agents using Reinforcement Learning variations. We find motivated reasoning in several

instances. First, we show that female subjects sample significantly more than male subjects

when faced with a negative externality or Bayesian posterior feedback. Moreover, we show

a strong, intensive margin of motivated sampling. Here, subjects sample additionally from

the option with positive externality if they deem it correct, which shows an added liking

to sample from it. These findings provide an understanding of motivated sampling and

a specific application of motivated reasoning, emphasizing the importance of subjective

preferences, feedback, and gender differences in all situations where information sampling

is necessary for decision-making.

Keywords

Motivated Reasoning, Information Sampling, Bayesian Learning, Decision Theory

6.1 Introduction

Decision-making is an integral part of human life. Individuals are frequently faced with

the task of selecting from multiple options, whether choosing a restaurant, booking travel

tickets, or picking a university. In these situations, information sampling is crucial to facil-

itate well-informed choices. Understanding the dynamics of information sampling can lead

to better decision-making, especially in complex scenarios. Previous research has provided

valuable insights into information sampling behavior and its cognitive and computational
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costs for human subjects (Kool & Botvinick, 2018; Petitet, Attaallah, Manohar, & Hu-

sain, 2021), individual factors in sampling and information-seeking (Gottlieb & Oudeyer,

2018; Kelly, Sharot, et al., 2021), decision-making perspectives (Leung, 2020) and how

rewards influence sampling through a Pavlovian-approach (Hunt, Rutledge, Malalasekera,

Kennerley, & Dolan, 2016).

However, there remain open questions about coupling subjective and objective criteria in

decision-making. Specifically, how do individuals approach decisions when they aim for

the objectively best option but already have a pre-existing preference? This phenomenon,

known as motivated reasoning, is characterized by individuals processing information in a

way that aligns with their pre-existing beliefs or desires (Bénabou & Tirole, 2016; Eil &

Rao, 2011; Hagenbach & Koessler, 2022). This paper introduces the concept of motivated

sampling. This phenomenon represents the overlap between information sampling and the

well-established idea of motivated reasoning.

We present subjects with a binary decision task to disentangle the effects of objective and

subjective criteria in information sampling. In this task, subjects must sample information

to determine the objectively correct option to receive a payoff. We then asymmetrically add

negative and positive externalities to the options. A positive externality is an additional

reward for an organization the subject liked, while a negative externality is a reward

for an organization the subject explicitly disliked. Through this, we induce subjective

preferences into the sampling and decision situation. Using a between-subjects design, we

can measure how these subjective criteria affect sampling behavior. In the simulations, we

employ Reinforcement Learning Models for Optimal Sampling. The simulations give us a

sampling behavior benchmark that helps us better understand human sampling.

Our central research question is: ”How do subjective preferences on externalities influ-

ence motivated sampling?’ Additionally, we analyze the accuracy of posterior beliefs with

different feedback forms and the time participants actively engage in the task.

Our findings show that women sample significantly more information than men when a

negative externality is at play. Subjects sample much more for the option with a positive

externality when they deem this option correct than when incorrect. This behavior, termed

motivated sampling, indicates a ‘liking’ to sample from options that meet both objective

and subjective criteria. In contrast, we do not see such a behavior when a negative

externality is involved. For both types of externality, male participants show a more

substantial bias for the ”nicer” option than female participants.

We offer a novel perspective on information sampling strategies by disentangling the effect

of objective and subjective criteria. Specifically, we uncover the mechanisms of motivated

sampling. Hereby, we add a specific application to the more broadly defined theme of

motivated reasoning, also serving as a fundamental, underlying mechanism of confirmation

bias.

The remainder of this paper is structured as follows: We first outline the method and

experimental design. Then, we present the empirical results of our human subject experi-

ment. Section four concludes.
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6.2 Design and Methods

This section provides an overview of the experimental design used in our online study. We

first characterize the participants’ demographics. Then, we describe the main experimental

task and provide an overview of the overall procedure. Next, we outline the treatment

dimensions of our 3x3 between-subject design, allowing us to investigate the interplay

between 3 forms of externalities and three forms of feedback. Lastly, we describe the

simulation model dynamics.

6.2.1 Demographics

A total of 457 students were recruited from the experimental economics labs at Heidelberg

University and Rhine-Waal University of Applied Sciences, both in Germany, with a 37%

representation from Heidelberg and 63% from Rhine-Waal. The participants were split

almost equally between male (48%) and female (51%), with 1% choosing not to disclose or

identify as non-binary. The average age of the participants was 24.2 years old (standard

deviation 4.6 years), and they represented a diverse mix of nationalities, with the largest

group being German (48%) followed by Indian (10%). The remaining participants came

from a variety of international backgrounds. The experiment was online, and participants

could take part any time of the day or week and take breaks of any length. The median

participant had the experiment open in the browser for 30.5 minutes. The average earning

was 4.91=C.

6.2.2 Description of Main Task

During the task, participants are presented with two ”computers.”Each computer generates

numbers based on specific distributions, as depicted in figure 6.1. One of the computers

produces higher numbers on average because the computer uses a ”high distribution” of

numbers, whereas the other computer uses a ”low distribution.”Both distributions produce

numbers from 1 to 8, as used in Goette, Han, and Leung (2020). The ”high computer”

produces numbers using the distribution shown on the left side of figure 6.1, and the ”low

computer” produces numbers using the distribution on the right.

Figure 6.1: High and Low Distributions

In every round, one computer uses the high distribution of numbers, while the other

uses the low distribution. The computer that uses the high distribution is determined

randomly in each round with a 50/50 chance. The participants’ goal is to identify which
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computer uses the high distribution. Each correct identification is rewarded with a point.

Participants can sample as many numbers as they want by clicking on one of the computers,

but they are restricted to only sample one new number every two seconds. This constraint

is explained as a need for the computers to reload to produce the following number. We use

this two-second restriction to prevent rapid ”over-clicking”by participants because we want

to create a situation where every new information can be taken into account subsequently.

6.2.3 General Procedure of Experiment

Now, we describe the overall procedure of the experiment surrounding the main task.

Before the experiment starts, we gather demographic information from participants, which

includes two questions about which organizations participants would be most and least

likely to contribute money to. Then, the experiment starts with a practice round and 20

payment-relevant rounds. Each round consists of three parts: Part A assesses the prior

belief about which computer uses the high distribution, shown in figure 6.8 and 6.9. Part B

is the main task explained above. Part C assesses the posterior belief after the participants

chose their option, shown in figure 6.10. At the end of the 20 rounds, we randomly select

three rounds as payoff relevant. For each point a participant scored in those rounds, they

receive 1.5=C, in addition to a 1.5=C show-up fee.

We have nine treatments that differ in whether an externality is added to the main task and

whether feedback is provided after part C at the end of a round. Subjects are randomly

assigned to their treatment group. The treatments are created as a 3× 3 design along the

dimensions of externality and feedback. And as pre-registered1, we have 50-52 participants

in every treatment cell as shown in table 6.1, allowing us to pool the cells across rows or

columns when we compare the respective treatment dimension for feedback and externality.

Feedback

Condition Outcome Bayes No

Negative 51 50 52
Externality No 52 51 50

Positive 50 51 50

Table 6.1: Subjects per Treatment

6.2.4 Externality Treatments

In the externality dimension, we distinguish between no externality, positive externality,

and negative externality. With no externality, the main task is as described above. In the

externality treatments, we attach an externality randomly to one of the two computers in

each round.

In the positive externality treatments, we use the organization the participant chose in

the demographics section as the organization they are most likely to give money to. This

1AsPredicted #104844
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organization is attached to one of the computers. The organization receives 1 point in

the round if the participant chooses the respective computer, and it is correct (shown

in appendix figure 6.12). This feature introduces a subjective element to the decision

task. While the objective criterion is still to select the correct computer, since only then,

the participant and the preferred organization, receive a point, participants might have a

subjective preference to experience the option with externality to be correct.

In the negative externality treatments, we use the organization the participant chose as

least likely to give money to. This organization is attached to one of the computers, and

the organization receives 1 point in the round if the participant chooses the respective

computer, but that was the wrong decision (shown in appendix figure 6.13). Here, the

objective incentive is still to select the correct computer, since then the participants receive

a point, and the antagonizing organization receives nothing. The subjective element for the

participants here is an increased subjective incentive not to be wrong when selecting the

option with externality, as the antagonizing organization can only receive a point through

a subject’s mistake.

6.2.5 Feedback Treatments

In the feedback treatment dimension, we distinguish between no feedback, outcome feed-

back, and Bayes feedback. With no feedback, the procedure is as described above, and

participants move to the next round without receiving any feedback.

In the outcome feedback treatments, participants learn whether their computer choice was

correct or incorrect at the end of each round.

In the Bayes feedback treatments, at the end of each round, after stating their posterior

belief in part C, participants receive a reminder of the posterior belief they just stated and

are informed about the rational Bayesian posterior. The feedback is shown in appendix

figure 6.15, and the calculation of the Bayesian posterior is outlined in appendix 6.5. The

overall design is summarized in figure 6.2. Samples of the experiment screens for all tasks

and treatment variants are documented in appendix 6.5.2.

6.2.6 Simulation Model

To model the motivated sampling problem in a computational framework, we wanted to

understand how the sampling behavior unfolds by following robust decision rules. Es-

pecially when comparing both sampling and reward performances between human and

artificial agents. Therefore, the introduced computational environment mimics the task

of sampling for information and selecting a computer in each round while accounting for

constraints imposed by sampling and externalities.

In the original problem’s incentive schemes, sampling for numbers imposes a cost on the

subjects translated to time since the sampling action button is disabled for 2 seconds after

each click. The externalities, which could be either positive or negative, added an addi-

tional layer of incentives to the decision related to giving points to preferred (considered

a gain) or disliked (considered a loss) organizations. Our simulation model accounts for
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Figure 6.2: Experimental Design Framework

both constraints by deducting points from the reward in case of sampling actions or the

realization of negative externalities and adding points in case of positive externalities. To

model these conditions, we introduce this simple reward function: R = P + E − C × T ,

where P is the payoff for the round, equal to the base payoff if the selected computer is

correct or zero otherwise. E is the externality value added or subtracted from the reward

depending on the externality condition. C is the cost per sample. T is the total number

of samples. The externality component E of the reward follows the conditions: when the

positive externality is realized, the participant gets additional points, and for the negative,

the participant gets discounted by the same amount. We use one of the key assumptions

from Kahneman and Tversky (1979) to weight the externality losses (in case a negative

externality is selected) simply, making it count twice as much as the gains.

The ABRL framework we implemented employs a decision rule grounded in the concept

of attractions, which are essentially weights assigned to strategies. These attraction val-

ues are updated based on the payoffs from successful computer selections (C. Camerer &

Hua Ho, 1999; Erev & Roth, 1998). An extension of the ABRL agent, the ϵ-greedy strat-

egy, emerges from the multi-armed bandit framework (Robbins, 1952; Robbins & Monro,

1951). It introduces an exploration-exploitation trade-off by incorporating an exploration

rate, ϵ. This rate represents the likelihood of the agent opting for a random strategy. As

the experiment unfolds, ϵ decays from its initial value to a minimum threshold, empha-

sizing exploitation in its latter stages. In contrast, the UCB method also navigates the

exploration-exploitation dilemma by factoring in the current reward estimates and their

uncertainties. By integrating a confidence interval with each action’s value, UCB balances

exploring less familiar actions with exploiting known, high-reward actions, thereby opti-

mizing cumulative gains (Auer, Cesa-Bianchi, & Fischer, 2002; Sutton & Barto, 2018). For

a deeper dive into the theoretical underpinnings of each model, refer to Appendix 6.5; for

a detailed technical breakdown, see Appendix 6.5.1.

In the simulation model, the three types of agents—ABRL, ϵ-greedy, and UCB—are all

tasked with the same objective, mirroring the original design: they sample for information
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and then select a computer based on a Bayesian update rule. Instead of directly learning

how to choose the best computer (since its assignment is randomized each round), the

agents learn the sampling process to ensure that the subsequent computer selection yields

maximized rewards. We added a fourth agent that always draws random samples for

comparison purposes. The feedback part is not considered in the simulation, as it is

necessary to provide feedback for the RL updating rules in any case.

6.3 Experimental Results

This section presents the results of the human subject experiment. First, we see the

results for total sampling S per round across the treatment dimensions and how these

results are driven by gender. We continue with the analysis of motivated sampling. First,

we analyze the extensive margin of unequal sampling between the options A and B. Then,

we split it by whether or not the externality option Aext was selected. We then analyze

the intensive margin of this unequal sampling, split by whether or not the externality

option Aext was selected. Here, we measure the intensive margin of motivated sampling

MotSamp. Furthermore, we analyze the decision behavior and scoring success of subjects.

We measure the time subjects actually take for sampling. Lastly, we show the accuracy of

the stated posterior belief.

6.3.1 Total Sampling per Round

First, we assess the total sampling behavior S per round. Here, we will look at the effect of

the externalities and feedback treatments on the total number of samples a subject created

for both computers in one round.

We find that participants sample most in the negative externality (12.18 samples per round)

and equally in the no- and positive externality treatments (11.01 and 10.95). Across the

feedback dimension, the participants sample more, the more detailed feedback they receive:

Bayes feedback (12.00) > outcome feedback (11.54) > no feedback (10.61).

The plots in figure 6.3 show that these effects are driven by gender. Female participants

sampled significantly more than male participants in the negative externality and Bayes

feedback treatments. This insight shows that women make higher sampling efforts when

the context is most salient, either through a negative externality or detailed feedback on

their stated posterior belief.

6.3.2 Motivated Sampling

After this effect of total sampling per round, we turn to motivated sampling within a round.

We define motivated sampling as the tendency to sample additionally because of subjective

preferences. To identify this behavior, we need to perform an analysis in multiple steps.

First, we will identify the extensive margin of whether subjects sampled unequally for the

two available options. Then, we will split this by whether the externality option (Aext)

was selected or the non-externality option (Bnon). This split will give us a score of the
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Figure 6.3: sampling by gender - externality and feedback treatments

extensive margin of motivated sampling, but more importantly, we use it to move to the

intensive margin of how many subjects sample more when they sample unequally. We will

then also split by whether the externality option Aext was selected or not, which gives the

crucial comparison of the sampling behavior when subjects deem Aext correct compared

to when they deem Bnon correct. This allows us to identify the additional sampling from

an option out of a subjective preference for doing so. Out of this, we will calculate this

score of motivated sampling in a round MotSamp, split by type of externality and gender.

6.3.3 Extensive Margin Unequal Samples

Many subjects might use a strategy to constantly sample equally from options A and B.

Those subjects will not show a behavior of motivated sampling within a round. Never-

theless, many subjects might sample unequally from the two options, resulting in unequal

sample sizes sA ̸= sB. We will first turn to the extensive margin of this unequal sampling

behavior, whether a subject did sample unequally or not.

We measure for each participant how many of the 20 rounds they show an unequal sample

strategy sA ̸= sB. Figure 6.4 plots this fraction of rounds in which a subject showed

an unequal sample. 23% subjects show a fraction of 0, so never sampling unequally, i.e.,

constantly sample the same number of information from both sources. In total, 49.7% of

all subjects show unequal samples in only a quarter of the rounds or less. This effect is

drastically more than compared to 6.8%, who constantly sample unequally, and 25.6%,

who show unequal samples in at least three-quarters of all rounds. This pattern is stable

over all treatments.

6.3.4 Extensive Margin Unequal Samples with Externality Selection

Table 6.2 shows the extensive margin of how many observations in a treatment exhibit

an unequal sample. In the first column, overall by treatment, where treatments with an

externality show more unequal samples and especially the negative externality treatment

shows statistically significant more unequal sampling than with positive externality (p <

0.01) and without externality (p < 0.001) using a Chi-Squared Test. Columns two and

three split this overall value in whether the externality or non-externality option was

selected. Now, we can calculate the extensive margin of motivated sampling.
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Figure 6.4: Unequal sampling by subjects

With a negative externality, we see 42.7 − 40.3 = 2.4 percentage points more unequal

samples when the externality is selected. With a positive externality, we observe 38.3 −
37.9 = 0.4 percentage points more unequal samples, so in both cases, a relatively mild

extensive margin of motivated sampling.

Externality Overall Ext select Non ext select

No 37.1% - -
Negative 41.5% 42.7% 40.3%
Positive 38.1% 38.3% 37.9%

Table 6.2: Extensive Margin Unequal Sampling

6.3.5 Intensive Margin of Motivated Sampling

Now, we turn to the intensive margin, so how many more subjects sample for one of the

options when they showed a sA ̸= sB unequal sampling. For this, we calculate the ∆-

sample, ∆s, which is the difference between the sample for the selected option, sselect, and

the option that was not selected, sNonSelect, ∆s = sselect − sNonSelect.

Table 6.3 shows ∆s in the first column by treatment. Here, we see motivated sampling as

the intensive margin with no externality is with ∆s = 0.419 sample on average lower than

both intensive margins with negative (0.876) and positive (0.912) externality.

Columns two and three split ∆s by whether the option with externality was selected,

∆sext, or without, ∆snon.

Externality ∆s ∆sext ∆snon

No 0.419 - -
Negative 0.876 0.842 0.91
Positive 0.912 1.769 -0.075

Table 6.3: Intensive Margin Unequal Sampling ∆s
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With ∆sext and ∆snon, we can now calculate the intensive margin of motivated sampling

as the additional sampling when the externality option Aext was selected as MotSamp =

∆sext−∆snon. With a negative externality, we see almost no motivated sampling within a

round (MotSamp = 0.842−0.91 = −0.068) as the margin of unequal sampling is relatively

similar regardless of whether subjects select the externality.

However, with a positive externality, there is a striking difference. Here, we see a robust

case of motivated sampling of MotSamp = 1.769 − (−0.075) = 1.844. This large effect

shows that subjects sample much more additionally from the positive externality option,

hence ”like” sampling from it when they deem it correct.

Table 6.4 splits this analysis of motivated sampling by gender. With both types of exter-

nalities, we observe that male participants show a stronger liking for the ”nicer” option

than female participants, i.e., the option with positive externality or the option without

negative externality, respectively.

Externality Overall Male Female

Negative -0.068 -0.201 0.200
Positive 1.844 1.925 1.637

Table 6.4: Motivated sampling MotSamp

6.3.6 Decision and Scoring behavior

Next to the sampling behavior, we are also interested in how externalities and feedback

influence the decision and scoring behavior. Here, we should note that the correct option

was always determined randomly, so the correct baseline is always a 50/50 split. More-

over, the option subjects select is relatively equally balanced between the options with

and without externality with a negative externality (49.0% to 51.0%). With a positive

externality, subjects decide in 53.3% for the externality option. This is significantly more

than the balanced split (p < 0.001) in a binomial test, as seen in table 6.5, mirroring the

motivated sampling into decision behavior.

Externality Externality Select Non-ext select

Negative 49.0% 51.0%
Positive 53.3% 46.7%

Table 6.5: Select Ext / Non-Ext per Externality Treatment Dimension

Interestingly, this does not translate into meaningful differences in correct decisions, as all

treatments hover around 75% accuracy in their decisions, see table 6.6. This effect is also

very stable throughout the experiment of 20 rounds.
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Treatment Scoring

Overall 75.2%

Feedback
Outcome 74.5%
Bayes 77.0%
No 74.2%

Externality
Negative 75.3%
Positive 74.8%
No 75.5%

Table 6.6: Scoring across treatments

6.3.7 Page Time Analysis

Furthermore, as an exploratory analysis, we investigate the time subjects take to complete

the core sampling task. Figure 6.5 reports on the x-axis the seconds subjects spend on the

page for the main task from the start of sampling till confirmation of their decision. We

plot the 5th, 25th, 50th, 75th and 95th percentile and the mean of the seconds they spent

on the page for the task. An interesting finding for further research is that even though

subjects in the negative externality treatments sample more, they spend less time on the

task than subjects in the other treatments. Potential explanations could be that they take

less time to evaluate the samples through more sampling or that the unpleasant presence

of the negative externality prompts subjects to be faster in their evaluation process, which

would show another form of motivated effort distribution, a hypothesis for further research.

Figure 6.5: Task time

6.3.8 Posterior Beliefs

After subjects completed the task as part B of a round, we asked them, ”Please let us know

how likely it seems to you that your choice was correct.” Table 6.7 reports the percentage

point difference between their stated belief and the rational Bayesian posterior. We see

that subjects, on average, gave a lower estimation than the rational Bayesian posterior,

where the subjects who receive the Bayes feedback are closest to the rational posterior since

they get feedback on their stated posterior and the Bayesian posterior in every round and

can learn from it. Interestingly, subjects with only outcome feedback significantly differ
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significantly from those without feedback. As pre-registered, we excluded participants who

stated a posterior belief lower than 50% as a potential sign they did not seriously think

about the question.

Treatment Difference

Overall -4.4%

Feedback
Outcome -6.7%
No -4.2%
Bayes -2.3%

Table 6.7: Difference Stated- to Bayesian-Posterior

6.3.9 Agent-Based Simulation Insights

In this chapter, we examine the outcomes of our task simulation using different variations

of RL agents. In Table 6.8, we have consolidated the results from the simulation model

across all agent classes. The rows labeled ”Experiment” represent metrics corresponding

to human participants. Notably, the ”reward” metric for human participants was com-

puted using the identical formula employed for the agents, ensuring a consistent basis for

comparison. This calculated ”reward” should be differentiated from the actual rewards

that participants received, which may have been in the form of payoffs or monetary com-

pensations. Additionally, we introduced a ”Random” agent that samples randomly within

the pre-defined limits to serve as a benchmark. Significantly, all the RL models and the

human participants consistently outperformed this random benchmark, underscoring the

efficacy of the RL approach in the task.

Method Externality Reward Samples Posterior Correct Freq. Externalities

Experiment negative 0.38 12.17 0.74 0.75 0.12
Experiment neutral 0.48 11.06 0.74 0.75 0.00
Experiment positive 0.56 10.99 0.73 0.74 0.40

ABRL negative 0.37 18.26 0.77 0.78 0.11
ABRL neutral 0.47 13.23 0.73 0.72 0.00
ABRL positive 0.56 12.79 0.72 0.72 0.34
ABRL ϵ-Greedy negative 0.32 25.15 0.83 0.84 0.08
ABRL ϵ-Greedy neutral 0.38 23.97 0.83 0.84 0.00
ABRL ϵ-Greedy positive 0.48 21.65 0.80 0.80 0.40
UCB negative 0.39 15.04 0.73 0.74 0.14
UCB neutral 0.47 12.27 0.71 0.70 0.00
UCB positive 0.55 16.13 0.74 0.76 0.37
Random negative 0.34 24.04 0.83 0.83 0.08
Random neutral 0.38 23.66 0.83 0.83 0.00
Random positive 0.49 23.88 0.85 0.84 0.42

Table 6.8: RL simulation model - Results consolidated by average

Several salient observations arise in our comparative study between human participants

and a range of reinforcement learning strategies. When juxtaposed with attraction-based
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reinforcement learning (ABRL) agents, ABRL with ϵ-greedy exploration, and the Upper

Confidence Bound (UCB) method, human participants tended to sample less frequently.

Despite this reduced sampling, their performance remained on par with the RL agents,

suggesting a heightened efficiency in their decision-making process. This insight is further

illustrated in figure 6.6, showcasing the distributions of samples and cumulative rewards

for each method.

Figure 6.6: Distributions of Samples and Cumulative Rewards

The ABRL strategy, which can be viewed as a more optimization-centric method, show-

cased a performance profile comparable to that of the human participants. Both in terms

of sampling frequency and rewards, fact further illustrated in figure 6.7, comparing average

samples and cumulative rewards. In addition, externalities played a significant role in influ-

encing sampling behavior. Introducing a negative externality exerted a more pronounced

impact on sampling frequency than its positive counterpart. This trend was consistently

observed in both human participants and the simulation, indicating a universal aversion

to potential losses or penalties.

Figure 6.7: Comparison of Mean Samples and Cumulative Rewards
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6.4. Discussion

We also noted a nuanced relationship between sampling, certainty, and rewards. While

increased sampling enhances the posterior certainty, it comes at a cost. Given the as-

sociated costs, excessive sampling can erode the net rewards, highlighting the balance

decision-makers must strike between gathering information and acting efficiently.

In summation, the simulation provides an additional layer of understanding that com-

plements the primary analysis. It consistently demonstrates the reinforcement learning

behavior in human participants, emphasizing their inclination to act optimally. This ex-

ploration further delineates the nuanced relationship between data sampling, externali-

ties, and decision-making, highlighting parallels between human intuition and algorithmic

strategies and enriching our comprehension of human-like decision processes.

6.4 Discussion

In this study, we have investigated the intersection of information sampling and motivated

reasoning, which we term motivated sampling.

We find substantial evidence for motivated sampling, which emerges in different forms.

First, female participants sample significantly more in context-rich environments, espe-

cially when the externality is negative. Furthermore, subjects show a strong sense of

motivated sampling when they deem the option with a positive subjective preference cor-

rect. Here, they also show a behavior of ”liking” to sample from it. This behavior of

motivated sampling is more strongly pronounced for male than female subjects. This ef-

fect translates into a tendency to select the option associated with the positive externality

more often than it would be objectively correct. As complementary findings, we observe

that subjects use the least time for the task in the negative externality treatment, even

though they sample the most. If subjects receive feedback on the rational Bayesian pos-

terior, their stated posterior belief is very close to it. When subjects receive feedback on

the outcome of their decision, the stated posterior belief is more distant from the Bayesian

posterior than when subjects receive no feedback.

By employing a simulation model, we gained further insights into the dynamics of moti-

vated sampling. The model served as a valuable tool to validate and extend our empiri-

cal findings, revealing consistent reinforcement learning behaviors in participants as they

sought to act optimally. The simulation underscored the intricate balance participants

strike between data sampling, externalities, and decision-making. It also highlighted the

parallels between human intuition and algorithmic strategies, adding depth to our un-

derstanding. This computational approach complements our primary analysis and offers

a framework for future studies to explore the nuances of motivated sampling in various

contexts.

With this study and its findings, we contribute to a better understanding of information

sampling behavior as a specific application of the broader field of motivated reasoning.

This contribution indicates different cost functions of sampling depending on externality,

relating to Petitet et al. (2021) and Kelly et al. (2021).
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Our study shows that the amount and direction of effort spent on information sampling

in a decision-making context is greatly influenced by subjective criteria. The gender-

based differences, particularly among female participants in specific treatments, indicate

that context might influence information acquisition differently across genders, potentially

having implications in areas like marketing, education, or policy-making.

The study naturally carries several limitations. The study’s online nature might introduce

biases, as participants could be influenced by external factors while doing the experiment

not present in controlled lab settings. The list of organizations provided as externality is

inherently incomplete to elicit strong subjective preferences for all subjects. It is expected

that some participants had no ”strong feelings” about any of them, reducing the studied

effect of externalities. Furthermore, experienced subjects might not have responded truth-

fully to the questions about the organizations, anticipating that they might play a role

later and therefore just indicating organizations they feel indifferent about. This would

imply that our findings provide a lower bound of the effect of externalities in motivated

sampling.

Future studies could explore the underlying psychological factors driving the observed

behaviors, especially in negative externality scenarios. It would also be intriguing to

analyze further the gender differences and what might drive them. Additionally, expanding

the study to diverse demographic groups or introducing more complex decision-making

tasks could provide richer insights. The behavior termed motivated sampling can be seen

as a fundamental, underlying mechanism of confirmation bias, which future studies should

explore specifically.

This research highlights the role of objective and subjective criteria in information sam-

pling. The findings, particularly regarding gender differences and the influence of personal

values, underscore the importance of the phenomenon of motivated sampling.

6.5 Appendix

Methods and Formulas

This chapter provides the mathematical formalizations for the methods used in calculating

Bayesian posteriors and the RL-based decision rules for the agent-based models.

Bayesian Posterior

Our design introduces two main assumptions. Firstly, we assume that each computer

generates a number from one of two distinct distributions: high or low. Secondly, before

any data sampling, both computers are presumed to have an equal probability of drawing

from either the high or low distribution, with the prior probability set at an even 50/50.

In our notation, HL indicates that computer 1 is sampling from the high distribution

while computer 2 is drawing from the low distribution. Given an array X representing

all sampled numbers from both computers, we can apply Bayes’ theorem to determine

P (HL | X), which represents the probability that computer 1 is from the high distribution

and computer 2 is from the low distribution:
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P (HL | X) =
P (X | HL)P (HL)

P (X | HL)P (HL) + P (X | LH)P (LH)
(6.1)

This formula was used to update the prior beliefs in the experiment and in the simulation

model.

Reinforcement Learning Agents

The ABRL agent operates within the Attraction-Based Reinforcement Learning frame-

work, leveraging the Softmax algorithm to determine the optimal sample size. Two pivotal

components underpin this methodology. Initially, we have the attraction update given by:

Asi(n) = ϕAsi(n− 1) + I(s(n) = si)πsi(n) (6.2)

Subsequently, the decision-making process employs the Softmax criterion, expressed as:

Psi(n + 1) =
eλAsi (n)∑m
k=1 e

λAsk
(n)

(6.3)

Here, s denotes the sample size selection action, n represents the period, and π is the

payoff associated with a specific computer selection action. The model incorporates two

parameters: ϕ (the Recency parameter), which acts as a discount rate for attractions, em-

phasizing the significance of previous experiences, and λ, the Softmax update weight. The

latter parameter, λ, gauges the sensitivity or weight of attractions. A value of λ = 0 implies

that attractions hold no relevance, while a high λ value accentuates their importance.

Building on this, the ϵ-greedy strategy introduces a nuanced balance between exploration

and exploitation. Here, exploration corresponds to a random choice, while exploitation

adheres to the Softmax rule, as delineated in the ABRL:

si(n) =

random action with probability ϵ

softmax rule with probability 1− ϵ
(6.4)

The UCB (Upper Confidence Bound) model integrates three pivotal components to guide

its decision-making process. Initially, the model employs an action selection rule repre-

sented by

si(n) = arg max
s

[
Q(s) +

√
2 logN

n(s)

]
(6.5)

This rule is designed to determine the optimal action by maximizing the estimated value of

an action, Q(s), while accounting for an uncertainty term. This ensures a balance between

exploring actions with less certainty and exploiting those with higher known rewards.

Subsequently, the model updates its beliefs using the rule:

Qn+1(s) = Qn(s) +
1

n(s)
[Rn(s)−Qn(s)] (6.6)
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This equation refines the estimated value of an action based on the latest rewards received,

ensuring that the model’s beliefs are always in line with the most recent observations.

Lastly, the model generates the upper confidence bounds, denoted as UCB, using the

equation:

UCB(s) = Q(s) +

√
2 logN

n(s)
(6.7)

This calculation provides a measure of the potential upside of each action, taking into

account both its estimated value and the uncertainty surrounding it. This ensures that

the model remains explorative, especially in the face of uncertainty, while also being op-

portunistic when the rewards are more predictable.

6.5.1 Technical Remarks

The experiment was programmed using oTree (D. L. Chen et al., 2016). The simulation

models were programmed in Python and employed the following base parameter described

in table 6.9.

Parameter Value Description

Simulated agents 100 Number of agents simulated per externality type
Periods 21 Same amount of periods as the experimental task
Maximum samples 25 Maximum samples allowed
Base payoff 1 Amount of points per correct answer
Sample costs 0.019 The amount a sampling action costs, relative to a point (base payoff)
Externality value 0.25 The value of an externality realization E, relative to a point

Table 6.9: Parameters for the Agent-Based model

In addition, the ABRL parameters ϕ and λ were tuned using the Optuna library for

hyperparameter optimization (Akiba et al., 2019), following a ”maximize reward” target.

The ϵ-greedy variant of the ABRL introduces an additional ϵ parameter that unfolds

into three more parameters when using dynamic values, decaying ϵ over time. The three

additional parameters are then ϵstart, which is the upper bound value, ϵend, the lower bound

value, and ϵdecay, which governs the rate at which ϵstart decays to ϵend. These parameter

values were also tuned for each case using Optuna. In every case, The optimization process

employed 450 trials for each variant.

6.5.2 Design Details

This section contains the experiment screens shown to the participants during the tasks.

Figure 6.8 and 6.9 show the unbiased prior estimation task before and after clicking. Figure

Figure 6.10 shows the posterior estimation task, also with an unbiased slider.

For the externalities design, figure 6.11 contains the ”no externality variant”, while figures

6.12 and 6.13 contain the positive and negative externality design examples, respectively.

In the case of negative externalities, we gave participants in this treatment the chance to

opt out of the experiment since it could involve the action of donating money to a disliked
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Figure 6.8: Prior before click (no-default slider)

Figure 6.9: Prior after click

organization. The opt-out screen is shown in figure 6.13. Participants who opted out of

the experiment were still paid the show-up fee.

Lastly, figure 6.15 contains examples of the different variations of feedback provided. From

left to right, we have ”no feedback,””outcome feedback,”and ”Bayesian posterior feedback.”
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Figure 6.10: Posterior

Figure 6.11: No externalities
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Figure 6.12: Positive externalities
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Figure 6.13: Negative externalities

Figure 6.14: Opt-out in case of negative externalities
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Figure 6.15: Feedback
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7. Conclusions

The body of work consolidated in this research project aimed at advancing the field of

economics through behavioral-focused analyses, experimentally validated insights, and ad-

vanced methods that enable deep exploration of decision-making phenomena. I trust that

the findings from the five introduced papers can guide practitioners and chart new research

directions. From the experiment designs to the algorithms developed, an emphasis was

placed on transparency, robustness, generalizability, and reproducibility. A concerted ef-

fort was made to provide clarity in the assembly of complex methodological constructs by

drawing insights from other analytical fields, such as computer science and causal inference.

In the journey for new findings and insights, this research has been guided by a commit-

ment to understanding the psychological elements of human decisions. I have explored

how individuals navigate economic scenarios, considering a wide array of factors, from

personal traits to contextual elements and strategic interaction. The experimental designs

in laboratory and online environments have been tailored to capture authentic behavioral

responses, generating results that enrich the understanding of economic decisions.

My intended contributions to the field aim to help bridge the gap between traditional

economic theories and observed behavioral outcomes through contemporary designs, ac-

tionable findings, and methodological innovation. With objectives focused on integrating

behavioral, experimental, and computational economics to enhance understanding of hu-

man decision-making, the essence of my envisioned contributions is outlined in the follow-

ing points:

1. A novel, open-source simulation model using genetic algorithms to simulate evolving

strategic scenarios. This includes several different game types, behavioral profiles,

and decision rules.

2. Behavioral modifications to stationary equilibrium concepts based on loss aversion

and fairness, which substantially improve their predictive performance over the sem-

inal literature.

3. A novel analysis of dark personality traits and framing in the context of inspection

games, with an extensive analytical approach involving advanced machine learning

methods and causal inference.

4. A comprehensive study of algorithm aversion with novel treatment design condi-

tions, such as payment, automation, and method description, delivering robust and

significant insights on human-computer interaction using advanced machine learning

techniques.

5. A new perspective on motivated sampling, revealing gender-based distinctions in in-

formation acquisition within decision-making, and utilizing a reinforcement learning-

based simulation model to validate and deepen our comprehension of these behaviors

in varying conditions.
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From a theoretical perspective, these contributions include introducing innovative models

that enrich existing economic theories by offering novel perspectives on strategic behavior,

equilibrium dynamics, and the role of behavioral traits in economic interactions. Concern-

ing practical contributions, the presented findings are intended to provide real-world rel-

evance and offer actionable insights for practitioners, policymakers, and decision-makers.

Examples include guidance on designing systems and interventions that effectively deal

with aversion, cheating, and asymmetric information while accounting for pre-defined per-

sonality traits and different behavioral profiles. In essence, these implications collectively

contribute to enhancing decision-making processes and outcomes in various economic con-

texts.

The relevance for practitioners lies in the tangible applications of the research findings and

methods. The open-source simulation model using genetic algorithms offers a predictive

tool for anticipating strategic interaction dynamics and competitive behavior. Insights into

behavioral modifications to equilibrium concepts enable the crafting of effective incentive

structures and policies that resonate with human behavioral traits. The exploration of

dark personality traits in inspection games can guide organizations in designing robust

tools and policies where dishonesty-related behavior is relevant, especially in trust-critical

subjects, for example, fraud detection. The study on algorithm aversion provides technol-

ogy companies with strategies to enhance user trust in AI-driven tools, ensuring smoother

adoption and optimal behavior and considering specific personality profile types. Lastly,

understanding motivated sampling can empower organizations to refine their information

presentation strategies, optimizing their messaging to align with consumer decision-making

processes with different characteristics.

From a holistic point of view, there are limitations that I recognize and aim to address.

The game-theoretical experiments primarily focus on specific game types, potentially lim-

iting the applicability of findings to broader decision-making contexts. In addition, the

reliance on simplified behavioral models and experimental designs may not capture the full

complexity of human choices. It is also noteworthy that my samples of participants, which

consisted mainly of students, may only partially represent diverse populations. Lastly,

some methods employed, especially regarding machine learning models, can be computa-

tionally demanding, potentially limiting real-time applicability. Recognizing these limita-

tions underscores the need for future research to address these constraints and expand the

breadth and depth of insights in the field.

Embarking on this research journey has been both enlightening and challenging, an unfor-

gettable voyage through scientific and personal discovery. From the first steps of formu-

lating research questions and analyzing the current literature, combined with the expert

collaboration of the coauthors, as mentioned earlier, this process offered valuable insights

into the gaps and opportunities that shaped my direction. My approach’s multidisciplinary

nature introduced new perspectives on analyzing and documenting findings from economic

experiments. The path taken from conception until this moment is marked with personal

growth, beautiful experiences, and a drive to contribute to the higher purpose of science.

Future research could consider testing the introduced models and methods using different
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designs and participant pools in varied scenarios. The novel simulation and equilibrium

models can be extended to incorporate further components representing other facets of hu-

man behavior, strengthening the connection between theory and practice. Moreover, ap-

proaching different problems using similar methodologies, such as machine learning models

and advanced causal inference techniques, can validate and sharpen the usability of such

techniques to analyze complex experimental data. I employed generalized scenarios in the

two more contextual experiments of algorithm aversion and motivated sampling. Such

experiments could be extended to represent specific situations and test different context

frames that reveal other sides of the underlying phenomena.

To conclude, throughout this research, I have systematically investigated the intersections

of economics, behavioral analysis, and computational methods. Across five independent

but connected papers, I have presented evidence and analyses that aim to expand our un-

derstanding of economic decision-making processes. My methodological approach focused

on painting a comprehensive picture by combining traditional analytical frameworks with

cutting-edge methods in machine learning, agent-based simulations, and causal inference.

As with any scientific endeavor, these findings also open avenues for further questions and

research. I hope this body of work serves as both a valuable contribution to current litera-

ture and a foundation for future investigations. It is my intent that this research provides a

clearer, more rigorous understanding of how individuals make economic decisions in varied

contexts.
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8. General Appendix and Additional

Information

8.1 Conference Presentations

Table 8.1 displays the list of conference and workshop paper presentations produced and

executed in the context of this thesis.

Paper Conference Date Place

Simulating Economic
Learning in Dynamic
Strategic Scenarios with a
Genetic Algorithm

12th International Confer-
ence of the French Associ-
ation of Experimental Eco-
nomics (ASFEE)

Jun 2022 Lyon, France

Stationary Equilibria in
Behavioral Game Theory:
An Experimental Analysis
of Inspection Games

12th International Confer-
ence of the French Associ-
ation of Experimental Eco-
nomics (ASFEE)

Jun 2022 Lyon, France

Stationary Equilibria in
Behavioral Game Theory:
An Experimental Analysis
of Inspection Games

The European Economic
Science Association (ESA)
Conference

Aug 2022 Bologna, Italy

Simulating Economic
Learning in Dynamic
Strategic Scenarios with a
Genetic Algorithm

57th Hohenheimer
Oberseminar (HOS)

Dec 2022 Kleve, Germany

Stationary Equilibria in
Behavioral Game Theory:
An Experimental Analysis
of Inspection Games

57th Hohenheimer
Oberseminar (HOS)

Dec 2022 Kleve, Germany

Trust in the Machine: How
Contextual Factors and
Personality Traits Shape
Algorithm Aversion and
Collaboration

BSE Computational and
Experimental Economics
Workshop

Jun 2023 Barcelona, Spain

Motivated Sampling of
Information: Analysis
With Experimental Data
and Agent-Based Mod-
eling Within a Bayesian
Framework

BSE Computational and
Experimental Economics
Workshop

Jun 2023 Barcelona, Spain

Motivated Sampling of
Information: Analysis
With Experimental Data
and Agent-Based Mod-
eling Within a Bayesian
Framework

Subjective Probability,
Utility and Decision Mak-
ing (SPUDM)

Aug 2023 Vienna, Austria

Table 8.1: List of Paper Presentations in Conferences and Workshops
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8.2 Supplementary Files

The following pages include the additional material to be appended to this thesis. In the

first supplementary sheet, information about my contributions to each paper is provided.

Next, an affidavit and declaration of originality is presented.
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