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Abstract

Given our evermore complex world, keeping track of important events, developments, and inter-
dependencies is increasingly time-consuming or even infeasible. To a large part, this complexity is
caused by the systems’ underlying dynamics and connectedness – characteristics found in various
domains. Media, characterized by its high volatility and interwoven network of content and actors,
is such a domain. Due to its ever-growing importance, not only from an academic but also from
a societal perspective, understanding media-related phenomena is of huge importance. However,
deriving insights frommedia data is not trivial, and the mentioned characteristics must be consid-
ered. Instead of simply asking a question likeWhich topics are currently discussed?, to gain a holistic
perspective, one must also consider the underlying dynamics and askWhich topics are gaining in
popularity? orHow does the relevance of a topic change over time?. Similarly, it is insufficient to only
investigate individual media actors without considering their social connectedness. To account
for these requirements, in this thesis, we leverage temporal, network-based methods for analyzing
media data. We do not limit ourselves to the development of novel methodological approaches
but also put these into practice by bridging the gap between model and application.

First, a unifying model that allows for coping with heterogeneous data sources is required. Based
on the concept of temporal networks, we develop such a model that particularly reflects the data’s
time-sensitivity and structural interdependencies. Its capabilities are demonstrated in several me-
dia analytics studies. These studies include the investigation of trends – a phenomenon that is
integral to the dynamics of media. In particular, we focus on examining long-term trends, which
keep their large prevalence over longer periods compared to short-lived trends. Also, we connect
the analysis of trends with that of social network analysis by investigating the actor-networks
underlying trends. Further, we show that the model can also be applied to online conversation
analysis. Given its conception based on temporal networks, we can approach respective analysis
by incorporating the conversations’ content, dynamics, and structural properties. Finally, after
laying the theoretical foundation of this work in the form of the proposed model and successfully
leveraging it for several analytics use cases, we shift our focus to its technical implementation. For
that, we showcase two real-world applications, the EPINetz platform and the TrendTracker app,
for the temporal and network-based exploration of media data. Also, the design of such applica-
tions at its core requires a performant graph data management and analysis system. Therefore, we
benchmark various system setups anddiscuss an appropriate implementation strategy. In sum, this
thesis demonstrates the benefits that come with approaching media analysis from a temporal and
network-based perspective. Our contributions are not limited to novel methods and techniques
but also tackle challenges that occur when putting these approaches into practice.
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Zusammenfassung

In unser zunehmend komplexen Welt ist es beinahe unmöglich, den Überblick über wichtige
Ereignisse, Entwicklungen und Zusammenhänge zu behalten. Diese Komplexität ist größten-
teils in den systemischen Dynamiken und Interdependenzen begründet – Charakteristika, die
in verschiedenen Domänen zu finden sind. Medien, die sich durch eine hohe Volatilität und ein
verflochtenes Netzwerk an Inhalten und Akteuren auszeichnen, stellen eine solche Domäne dar.
Deren wachsende Bedeutung führt dazu, dass die Untersuchung medialer Phänomene, nicht nur
aus akademischer, sondern auch aus gesellschaftlicher Sicht, immer bedeutsamer wird. Allerd-
ings ist das Gewinnen von Erkenntnissen aus Mediendaten nicht trivial. Für eine ganzheitliche
Betrachtung genügt eine Frage wieWelche Themen werden derzeit diskutiert? nicht aus, sondern
die zugrunde liegende Dynamik der Daten muss ebenfalls berücksichtigt werden, zum Beispiel
durch Fragen wieWelche Themen werden immer populärer? oderWie ändert sich die Relevanz
eines Themas über die Zeit?. Ebenso reicht es nicht aus Medienakteure isoliert zu betrachten,
ohne deren soziale Beziehungen zu berücksichtigen. Um genannte Dynamik und Interdependen-
zen miteinzubeziehen, nutzen wir in der vorliegenden Arbeit netzwerkbasierte und zeitsensitive
Methoden zur Analyse von Mediendaten. Zunächst ist hierzu ein vereinheitlichendes Modell
erforderlich, das die Integration von heterogenen Datenquellen ermöglicht. Basierend auf dem
Konzept zeitlich veränderlicherNetzwerke entwickelnwir ein solchesModell. SeineEinsetzbarkeit
wird in mehrerenMedienanalysen demonstriert. Diese umfassen die Untersuchung von Trends
– ein Phänomen, das integraler Bestandteil der Mediendynamik ist. Wir konzentrieren uns ins-
besondere auf die Untersuchung langfristiger Trends, die im Vergleich zu kurzlebigen Trends
über längere Zeiträume hinweg eine hohe Prävalenz aufweisen. Darüber hinaus verbinden wir
die Analyse von Trends mit der Analyse sozialer Netzwerke, indem wir die den Trends zugrun-
deliegenden Akteursnetzwerke untersuchen. Außerdem zeigen wir, dass das Modell auch für die
Online-Konversationsanalyse verwendbar ist. Aufgrund seiner Konzeption können wir Analysen
durchführen, die den Inhalt, die Dynamik und die Struktur der Konversationen miteinbeziehen.
Im Anschluss verlagern wir unseren Fokus auf die technische Umsetzung der entwickeltenMeth-
oden. Dazu stellen wir zwei Anwendungen zur zeitlichen und netzwerkbasierten Erkundung
von Mediendaten vor, die EPINetz-Plattform und die TrendTracker-App. Das Design solcher
Anwendungen erfordert im Kern ein leistungsfähiges System zur Verwaltung und Analyse von
Netzwerkdaten. Dazu vergleichen wir verschiedene Systeme und diskutieren eine geeignete Im-
plementierungsstrategie. Zusammenfassend zeigt die vorliegende Arbeit die Vorteile auf, die sich
aus zeitsensitiven und netzwerkbasierten Medienanalysen ergeben. Nicht nur entwickeln wir
neueMethoden und Techniken, sondern wir gehen auch auf Herausforderungen ein, die bei der
Umsetzung dieser Ansätze in die Praxis auftreten.
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1 Introduction

We live in an increasingly complex and constantly evolving world, driven by two fundamental
characteristics: dynamism and connectedness (see Bianconi (2018, pp. 79–82)). However, even
if these characteristics are very noticeable today, they are not unique to our time. Instead, they
can be seen as fundamental building blocks of our environment. Already in 1769, Gotthold
Ephraim Lessing described this phenomenon very aptly (Lessing (1769, p. 140), as cited in Quote
Investigator (2022)):

“In nature everything is connected, everything is interwoven, everything changeswith
everything, everything merges from one into another.”

Named characteristics open up two perspectives on our world: How do things evolve and how are
they interrelated? In order to find ever more precise answers to these questions, our real-world
observationmethods andmodeling approachesmust be improved. Nowadays, many observations
are available in the form of unstructured datasets. Extracting valuable insights from these datasets
and improving our real-world understanding based on these is a key challenge. This work intends
to make a contribution to overcoming the stated task.

1 .1 Why to Use Temporal Networks?

In line with the characteristics revealed by real-world systems, for the analysis of collected observa-
tion data, its dynamism and connectedness have to be taken into account. In this regard, networks
as data structure represent a natural choice to model the interrelatedness of objects. Leveraging
such networks for an appropriate data model satisfies the first “connectedness” requirement. Fur-
ther, stated dynamics also need to be incorporated. Therefore, the simple network-based model
must be extended to reflect the dynamics of the analyzed data as well. Approaches from the field
of temporal networks do so. Hence, they satisfy the “dynamism” requirement for sought-after
data model and can be employed to study real-world phenomena. In fact, numerous studies have
already shown their broad applicability across various domains, such as route planning (Chabini
and Lan, 2002;Wang et al., 2015), social network analysis (Hanneke et al., 2010; Huo and Tsotras,
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1 Introduction

2014), finance (Somin et al., 2020) or biology and medicine (see Hosseinzadeh et al. (2023)). Par-
ticularly relevant for this work are use cases from the field of (social) media analytics, as detailed in
the following section. Notably, the term “network”, as used in this work, must not be understood
in a technical sense, e.g., such as used to refer to “computer networks”. Instead, it refers to an
abstract data structure for the modeling of interrelated objects (see Section 2.1.1).

1 .2 Media Analytics as Use Case

The current historic era is termed “Information Age” or “NewMedia Age”1. This naming already
highlights the great importance ofmedia in today’s world. Given the societal importance ofmedia,
from an academic perspective, studying the related phenomena is of great relevance. Traditionally,
media has mainly referred to analog content-sharing services like newspapers, radio, or television.
With the advent of the World Wide Web, online media in the form of social media platforms,
blogs, and streaming services gained significance (see Wikimedia Foundation, Inc. (2023)). As of
October 2023, each of the seven biggest social media platforms had over one billion active users
each month (Statista, Inc., 2023). Therefore, analyzing and understanding such online media
content also becomes more relevant. One might be interested in investigating discussed topics,
trends, conversations, or from an actor-centric perspective, e.g., which social media users are very
influential or frequently spread information. In the case of social media, Zeng et al. (2010) define
its analysis as follows:

“Socialmedia analytics is concernedwith developing and evaluating informatics tools
and frameworks to collect, monitor, analyze, summarize, and visualize social media
data, usually driven by specific requirements from a target application.”

With regard to this definition, multiple aspects must be highlighted. First and foremost, the
application-driven nature of social media analytics is stated. Most often, the context in which a
respective analysis study is conducted determines leveraged techniques and methodology. In this
work, we also follow this approach. The development of the temporal, network-based analysis
model (see Chapter 3) is primarily driven by use case-related requirements. Additionally, its appli-
cability to study various media-related phenomena is demonstrated, e.g., by investigating trends
in Chapter 4 or conversations in Chapter 5.

Most applications presented in this thesis are conducted based on data collected from the Twitter2

platform. Even thoughTwitter has recently been renamed to “X”, for historic consistency, we keep

1Information Age –Wikipedia: https://en.wikipedia.org/wiki/Information_Age (accessed 2023-11-27)
2X. It’s what’s happening / X: https://twitter.com (accessed 2023-11-02)
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1.2 Media Analytics as Use Case

referring to their information-sharing service and social media platform as “Twitter”. Additionally,
in subsequent parts, “media analytics” is understood as a generalization of themore specific “social
media analytics” approach by also taking into account media services without additional social
interaction features, e.g., news outlets (without commenting functionality).

EPINetz project

This thesis has been conducted in the context of the EPINetz project3. As indicated by its name,
“Exploration of Political InformationNetworks”, the project aims to leverage network approaches
for the analysis of politically relevant data collected from news and social media (see Section 6.2).
Along with that, a web application is developed that allows EPINetz users to explore the gathered
data and derive insights. Therefore, by its conceptual design, the EPINetz project aims not only
to develop novel theoretical approaches for analyzing political media data but also to put these
into practice. In line with this agenda, in this thesis, we bridge the gap between theoretical con-
tributions and actual technical implementations. As such, a model for analyzing media data is
not only developed and applied to various use cases, but technical challenges that come with its
implementation are also approached.

Even though within the EPINetz project, political information is studied in particular, this thesis
is not tied to the political domain. Instead, a domain-independent temporal, network-based data
analysis model (see Chapter 3) is developed, and its capabilities are demonstrated bymeans of non-
political applications, e.g., the study of trends inChapter 4. Due to the lack of the author’s political
domain expertise, politically related work is not included in this thesis. For the development of
respective computational methods, this expertise is not necessarily required. However, during the
EPINetz project, collaborations with researchers from the political sciences allowed for a transfer
of developed computational methods to the political science discipline. Several contributions to
the field of computational political science can be mentioned in this regard:

• Wolf J. Schünemann, Alexander Brand, TimKönig, and JohnZiegler. LeveragingDynamic
Heterogeneous Networks to Study Transnational Issue Publics. The Case of the European
COVID-19 Discourse on Twitter. Frontiers in Sociology, 7, 2022.

• Tim König, Alexander Brand, Wolf Schünemann, John Ziegler, and Michael Gertz. Wer
treibt hier wen an? – Temporale Diskursverschiebungen zwischen News-Agenda und
Parteikommunikation auf Twitter. DVPWKongress, 2021.

3EPINetz: https://epinetz.de (accessed 2023-11-02)
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1 Introduction

In general, the described interdisciplinary research environment influenced the conducted research
efforts in various ways. Most notably, the selected application use cases are strongly motivated
by a real-world need, and developed methods are tailored with practical requirements in mind.
For example, maintaining high data quality standards is essential in the political science discipline.
Therefore, we have made a great effort to comply with these standards. Also, we focused on data
analysis methods that guarantee reproducibility and do not reveal black box characteristics.

1 .3 Aims and Scope

Even though this work aims to contribute to the research area of media analytics in a way that
reaches from theoretical approaches, such as the modeling of analyzed data, to the technical imple-
mentation, e.g., how a scalable temporal graph4 processing and data management system needs to
be designed, of course, not all related use cases and application scenarios are covered. Instead, the
effort is focused on a subset of topics. This selectivity starts with the leveragedmedia data. Not the
complete spectrum of online and offline media sources is covered, but the emphasis is placed on
online news outlets and social media platforms, especially Twitter. Further, semi-structured data
is analyzed in particular. This data involves a combination of textual data and metadata. Data of
other modes is not considered, such as visual data (e.g., images and videos). Also, concerning the
analysis itself, not all aspects are covered. From an abstract perspective, by leveraging the developed
temporal, network-based analysis model, the data’s dynamism and connectedness characteristics
are studied in particular, such as how different content (e.g., social media posts) is related to one
another or how it evolves over time. However, the content itself is less studied, e.g., in the form of
semantic or sentiment analysis. Finally, concerning the domain of application, even though this
thesis originates from a politics-centered context and some of the applications are demonstrated
based on political media data, e.g., the study about social media conversations presented in Chap-
ter 5, the theoretical approaches are not tight to the political domain, but can be applied to others
as well.

4Even though “graphs” are the mathematical representation of the (real world) “networks” (Aleta andMoreno, 2019;
Blanco and Lioma, 2012). Both terms are used interchangeably in this work as this is common practice in the field
of network science. The same is true for the terms “object”, “vertex”, and “node”, as well as “edge”, “link”, and
“relationship” (see Latora et al. (2017, p. 3)).
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1.4 Contributions

1 .4 Contributions

Several contributions to different research disciplines are part of this thesis. In the following, these
are outlined in line with the order of subsequent thesis chapters. Related publications are listed
along with respective contributions:

• Chapter 3: A model for analyzing media data is developed. It is built on concepts known
from temporal graph analysis and allows the extraction of informative insights from the
analyzed data, taking its time-dependency and structural (i.e., topological) characteristics
into account. Further, due to its modeling flexibility, which allows data integration from
various sources and its reproducibility capabilities, central requirements arising from the
media analysis use case are satisfied. The model’s applicability is show-cased in subsequent
studies, such as the investigation of actor-networks underlying trends on Twitter presented
in Section 4.2. Further, challenges related to the technical implementation of an analysis
systembasedon this datamodel are approached in Section6.3. To thebest of our knowledge,
the developed approaches make up themost comprehensive network-basedmedia analytics
framework, and the conducted application studies show how it can successfully contribute
towards a better understanding of the highly dynamic and interwoven media landscape.

• Chapter 4: Trends characterize the dynamics of media in general and social media in partic-
ular. However, trends are not studied in all their details, but numerous research questions
still need to be answered. In this work, we focus on two specific topics. First, long-term
trends prevalent over a longer time with respect to typical media information cycles are
studied. Methodologies for detecting long-term trends and visualizing respective analy-
sis results are developed for this. Secondly, actor-networks underlying trends are studied,
which contributes to a better understanding of the question “Who is behind a trend?”. Use
case-specific approaches for detecting trend phases, and the temporal sampling of networks
are developed. Generally, this chapter contributes to a blend of time series analysis in the
form of trends and network analysis. Presented insights are based on the following publica-
tions:

John Ziegler andMichael Gertz. NoMayfly: Detection and Analysis of Long-term Twitter
Trends. In BTW 2023, pages 353–364. 2023.

JohnZiegler andMichaelGertz. Who Is behind aTrend? TemporalAnalysis of Interactions
among Trend Participants on Twitter. Proceedings of the International AAAI Conference
onWeb and SocialMedia, 17:960–969, 2023.

5



1 Introduction

• Chapter 5: With the results presented in this chapter, we contribute to an improved under-
standing of conversations taking place on social media. We argue that a holistic perspective
on conversational data analysis is required for that – structurewith regards to network topol-
ogy, content, and the conversation’s dynamics need to be considered. Therefore, various
aspects of online conversations are studied. First, the users’ posting activity is modeled, and
a specific sampling technique for creating temporal network snapshots is developed based
on that. This approach allows to investigate the structural evolution of the conversation
networks. A novel metric, the temporal Wiener index, is developed and leveraged for that.
Finally, the dynamics concerning the hashtags used in conversations are studied. Found
insights are made publicly available to the research community:

John Ziegler, Fabian Kneissl, and Michael Gertz. CODY: A graph-based framework
for the analysis of COnversation DYnamics in online social networks. arXiv preprint
arXiv:2310.08140, 2023.

• Chapter 6: Unlike the previous chapters, this one is focused on realization and technical
applicability. Thereby, four main building blocks are covered. First, a temporal network
media dataset is presented, which serves as the foundation of subsequently presented im-
plementations and studies. It is also leveraged for various studies presented in the other
chapters of this thesis, such as the study of long-term trends presented in Section 4.1. For
the discussion of the dataset, a large emphasis is placed on its statistics, network schema,
and covered dynamics. Secondly, the developed EPINetz platform is presented. It shall
give interested users access to parts of the mentioned media dataset and allows them to
explore the dataset in a self-service manner. In line with the developed analysis model,
users can explore the data based on temporal and network-centric methods. Thereby, the
platform is intended to provide capabilities that support users in improving their media
literacy and learning about political topics. Nevertheless, implementing such a system in
practice does not come without its challenges. Developing a performant (temporal) graph
data management and analytics system is required. By benchmarking various systems and
technical setups, we contribute to the research discipline related to the performance anal-
ysis of graph analysis systems. Finally, another technical contribution is presented in the
form of the TrendTracker application. It allows users to interactively explore the studied
long-term trends mentioned above. Network-based and time series visualizations are core
to the application and allow to gain insights into the context of analyzed trends, as well as
their dynamics. In a broader sense, the TrendTracker application also contributes to im-
proved trend visualization and exploration techniques. Outlined work is rooted in various
publications:
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1.5 Structure

John Ziegler, Alexander Brand, Julian Freyberg, Tim König, Wolf Schünemann, Marina
Walther, andMichael Gertz. EPINetz: Exploration of Political InformationNetworks. IN-
FORMATIK 2021, pages 1603–1609, 2021.

John Ziegler, Johannes Sindlinger, Marina Walther, and Michael Gertz. TrendTracker:
Temporal, network-based exploration of long-term Twitter trends. In Proceedings of the
2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining, Forthcoming.

In sum, the contributions of this work cannot be limited to a single research discipline but span
from the modeling of media data to a performant implementation of a graph processing system.
Also, they range from methodological approaches to more technically-focused insights. Several
publications make the lessons learned available to the research community.

1 .5 Structure

Structurally, this thesis is separated into seven chapters, including this one. Logically, however,
they can be grouped into four main parts. First, the objective of this work is introduced, and the
theoretical foundation is provided. Then, methodological contributions and studies are covered
before the focus is shifted towards more technical and implementation-centric work. Finally, the
thesis is concluded by summarizing the efforts and discussing their limitations. In detail, the fol-
lowing topics are covered in the subsequent chapters: First of all, in Chapter 2, the theoretical
background is introduced. This introduction primarily includes concepts from the field of net-
work science, media, and socio-semantic networks. Also, for the technical Chapter 6, different
aspects related to databasemanagement systems are described. After that, inChapter 3, a temporal,
network-based media analysis model is introduced. For that, its requirements are discussed first.
Then, its capabilities concerning the network-basedmodeling, themodeling of dynamics, network
projections, and different aspects related to granularity are discussed. Further, this proposedmodel
is applied to different use cases in the subsequently discussed studies. In Chapter 4, the objectives
of these studies are trends. In particular, two aspects of trends as a social media phenomenon are
examined: long-term trends and actor-networks behind trends. Next, themodel is applied to study
online conversations in Chapter 5. Several experiments about the posting activity, the structural
evolution of conversation networks and the usage of hashtags are conducted. Furthermore, in
Chapter 6, the focus is shifted towards technical objectives such as the leveragedmedia dataset, the
EPINetz platform, which allows interested users to explore politics-related media information, a
benchmark on the performance of different graph data management and analysis systems, as well
as the TrendTracker application offering advanced trend exploration capabilities. Also, these tech-
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nical contributions showcase the applicability of the proposedmodel (see Chapter 3) in real-world
solutions. Finally, Chapter 7 concludes this thesis by summarizing done work and discussing its
limitations.
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2 Fundamentals

This chapter provides the necessary theoretical basics for the studies and methods presented in
subsequent chapters. Thereby, various academic disciplines are covered, and methods from differ-
ent topics are presented. First and foremost, Section 2.1 introduces fundamental network science
concepts, covers different network modeling approaches, explains community detection methods,
and highlights approaches for studying the dynamics of networks. Then, in Section 2.2, media
platforms are introduced based on the Twitter example, and a specific focus is placed on working
with data collected from such platforms, e.g., by examining issues related to data quality. Fur-
thermore, a specific network modeling approach called “socio-semantic networks” is described in
Section 2.3. It follows the idea that for a comprehensive understanding (social) media data needs
to be analyzed from an actor-centric and a semantic perspective. In the subsequent chapters, we
consider both of these perspectives. Finally, in a more technically-focused Section 2.4, various con-
cepts related to systems for managing data are explained. These concepts are particularly relevant
for the benchmark on graph data management and analysis presented in Section 6.3.

2.1 Network Science

In this section, the theoretical background needed for the subsequent chapters with regard to
the network science discipline is covered. For that, Section 2.1.1 first introduces the theoretical
foundations of graph theory. Important concepts are explained, such as various graph representa-
tions (e.g., adjacencymatrices and edge lists), randomnetworks, weighted networks, and centrality
measures. Further, in Section 2.1.2, different aspects of community detection and evolution are
examined. Then, in the following, two specific network modeling approaches are discussed in
detail: heterogeneous information networks (HINs) in Section 2.1.3 and multilayer networks in
Section 2.1.4. Finally, Section 2.1.5 covers various aspects related to the dynamics of networks,
such as different temporal network representations or the concept of network journeys.
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2.1 . 1 Graph theory

Given the enormous size of the graph theory research field, this section in no case claims com-
pleteness. However, it is meant as an introductory covering some basic concepts to understand
the methods developed in subsequent chapters. It is largely based on the work by Latora et al.
(2017), which gives an excellent overview of the network science discipline. In detail, this section
covers the graph formalism in Section “Formalism”, the area of weighted networks in the subse-
quent section, random networks, network motifs, ego-networks and node centrality measures in
Section “Centrality”.

Formalism

According to Latora et al. (2017, p. 3), “[a] graph is defined by giving a set of elements, the graph
nodes, and a set of links that join some (or all) pairs of nodes.” This definition already indicates
that networks are an abstract concept and are not tied to any real-world phenomenon, rather they
can be leveraged to model complex systems from a variety of domains.

Starting from the basics, in its simplest form, a network consists of nodes that are linked by undi-
rected edges, which is called an undirected network:

Definition 2.1 (Undirected network). (Latora et al., 2017, Definition 1.1, adjusted). An undi-
rected network𝐺 ≡ (𝑉, 𝐿) is a tuple of its nodes and edges. Both the nodes𝑉 and the edges 𝐿 are
sets of distinct elements. Each edge 𝑙𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) (or 𝑙𝑗𝑖 = (𝑣𝑗, 𝑣𝑖)) with 𝑙𝑖𝑗, 𝑙𝑗𝑖 ∈ 𝐿 and 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 is
an unordered pair of the adjacent nodes. In total, 𝑛𝑉 = |𝑉| ≠ 0 nodes and 𝑛𝐿 = |𝐿| edges are part
of the network.

In some use cases, one might be interested in only a subset of a graph’s nodes and/or edges. This
subset defines a specific part of the network, also referred to as subgraph:

Definition 2.2 (Subgraph). (Latora et al., 2017, Definition 1.4, adjusted). A subgraph 𝐺′ =
(𝑉′, 𝐿′) of a graph 𝐺 = (𝑉, 𝐿) is a part of the whole network defined by the two subsets 𝑉′ ⊆ 𝑉
and 𝐿′ ⊆ 𝐿. If the subgraph 𝐺′ consists of all links from the original graph 𝐺 among the set of
nodes𝑉′, one calls it an induced subgraph.

Not all phenomena are well-modeled by an undirected network, but occurring relationshipsmight
imply some directionality instead. In these cases, directed networks are better suited as graph
representations. In contrast to the undirected networks for the directed networks, the inequality
𝑙𝑖𝑗 ≠ 𝑙𝑗𝑖 holds. Figure 2.1 gives an example of an undirected and a directed network with five nodes
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each. In the case of the directed network, one can see that both directions are present only for the
link between node 3 and node 5. All the other links are uni-directional.



2 4



31




 5

(a) Undirected



2 4



31




 5

(b)Directed

Figure 2.1: Two exemplary networks illustrating the difference between directed and undirected networks

Formally, the same network can be represented in multiple ways. Next to a visual representation
as in Figure 2.1, networks are commonly described by their adjacency matrix.

Definition 2.3 (Adjacency matrix). (Latora et al., 2017, Definition 1.15, adjusted). A graph
𝐺 = (𝑉, 𝐿) is represented by a binary 𝑛𝑉 × 𝑛𝑉 square matrix, termed adjacency matrix 𝔸. Its
entries 𝕒𝑖𝑗 are defined by the following condition:

𝕒𝑖𝑗 = {
1 iff (𝑣𝑖, 𝑣𝑗) ∈ 𝐿,

0 otherwise.

In Equation 2.1, the two adjacency matrices belonging to the networks of Figure 2.1 are shown.
Thereby, 𝔸𝑢 is the according matrix of the undirected network of Figure 2.1a and 𝔸𝑑 is the cor-
responding matrix of the network shown in Figure 2.1b. As one can see, matrix𝔸𝑢 is symmetric
and includes 2𝑛𝐿 non-zero values. In contrast, the matrix 𝔸𝑑 has 𝑛𝐿 non-zero values and is not
symmetric. This asymmetry is caused by the uni-directional edges present in the corresponding
network. For an uni-directional edge between the nodes 𝑣𝑖 and 𝑣𝑗, only the value 𝕒𝑖𝑗 or the entry
𝕒𝑗𝑖 is non-zero.
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𝔸𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 0

0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

, 𝔸𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

. (2.1)

Notably, the definition of an adjacency matrix given above and the discussed examples do not
contain self-loops. Thesewould be represented bynon-zero values on the diagonal of the adjacency
matrix: 𝕒𝑖𝑖 = 1.

Further, an adjacency matrix is not a graph’s only formal representation form. In cases where the
network is sparse (𝑛𝐿 ≪ 𝑛2𝑉), most entries in the corresponding adjacency matrix are zero. A more
compact representation form called edge list is commonly used in such scenarios. In Equation 2.2,
the edge lists belonging to the networks of Figure 2.1 (𝕃𝑢 belongs to Figure 2.1a) are shown.

Definition 2.4 (Edge list). (Latora et al., 2017, Definition 1.17, adjusted). Two vectors i and j
make up the edge list representation of a graph. These vectors store integers that indicate the row
and column indices of the graph’s adjacency matrix non-zero entries. Both vectors contain 2𝑛𝐿
elements in case of an undirected graph and 𝑛𝐿 elements otherwise.

𝕃𝑢 = (i, j), i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

1

2

2

3

3

3

4

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

, j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

2

1

3

2

4

5

3

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

, 𝕃𝑑 = (i, j), i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

1

2

3

4

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

, j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜

⎝

2

3

5

3

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟

⎠

. (2.2)

Furthermore, the nodes in a network might have different topological characteristics. One of the
metrics to quantify the “connectedness” of a node is the so-called degree:
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Definition 2.5 (Degree). (Latora et al., 2017,Definition 1.7, adjusted). Given a node 𝑣𝑖, its degree
𝑘𝑖 is defined as the number of incident links. For directed networks, one differentiates between the
number of ingoing links that make up the in-degree 𝑘𝑖𝑛𝑖 of a node 𝑣𝑖 and the number of outgoing
links that define the out-degree 𝑘𝑜𝑢𝑡𝑖 respectively. In total, the degree of a node 𝑣𝑖 in a directed
network is given as 𝑘𝑖 = 𝑘𝑖𝑛𝑖 + 𝑘𝑜𝑢𝑡𝑖 .

Additionally, on thenetwork level, instead of a single node level, the average degree ⟨𝑘⟩ characterizes
the overall connectedness of the nodes in the network. It is defined as

⟨𝑘⟩ = 1
𝑛𝑉

𝑛𝑉
∑
𝑖=1

𝑘𝑖 =
2𝑛𝐿
𝑛𝑉

. (2.3)

Further, for directed networks the equality ⟨𝑘𝑖𝑛⟩ = ⟨𝑘𝑜𝑢𝑡⟩ = 𝑛𝐿
𝑛𝑉 holds for the average in- and

out-degree.

Similar in a sense to also describe the topology of a network are the concepts of walks and paths.
These concepts characterize traversals of the according graph and are closely related to node reach-
ability.

Definition 2.6 (Walk & path). (Latora et al., 2017, Definition 1.8, notation adjusted). A walk
𝒲(𝑖, 𝑗) from node 𝑖 to node 𝑗 is an alternating sequence of nodes and edges […] 𝒲 = (𝑖 ≡
𝑣0, 𝑙1, 𝑣1, 𝑙2, … , 𝑙𝑛𝒲 , 𝑣𝑛𝒲 ≡ 𝑗) that begins with 𝑖 and ends with 𝑗, such that 𝑙𝑖 = (𝑣𝑖−1, 𝑣𝑖) for 𝑖 =
1, 2, … , 𝑛𝒲. Usually a walk is indicated by giving only the sequence of traversed nodes: 𝒲 = (𝑖 ≡
𝑣0, 𝑣1, … , 𝑣𝑛𝒲 ≡ 𝑗). The length of the walk, 𝑛𝒲 […], is defined as the number of edges […] in the
sequence. […] A path is a walk in which no node is visited more than once. A shortest path (or
geodesic) from node 𝑖 to node 𝑗 is a walk of minimal length from 𝑖 to 𝑗, and in the following will
be denoted as 𝑆̄(𝑖, 𝑗).

Notably, for an undirected graph, a walk or path that connects two nodes following one edge
direction also represents a walk or path respectively in the other direction. To give an example
based on the directed network shown in Figure 2.1b, the path𝒲 = (1, 2, 3, 5) links the two nodes
1 and 5.

Weighted networks

Weighted networks are a natural extension of the network types presented in the previous para-
graphs. According to Latora et al. (2017, p. 374), a weighted network is “[…] a network in which
each link is associated with a numerical value, in general, a positive real number, representing
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the strength of the corresponding connection.” Formally, a weighted network is defined as fol-
lows:

Definition 2.7 (Weighted network). (Latora et al., 2017, Definition 10.1, adjusted). Next to
the set of nodes𝑉 and edges 𝐿, a weighted network𝐺𝑊 ≡ (𝑉, 𝐿,𝑊) consists of a set of weights
𝑊 = {w1,w2, … ,w𝑛𝐿}withw𝑖 ∈ ℝ

+ that are attributed to the edges in the network.

Furthermore, to represent a weighted network in the form of a matrix, a binary adjacency matrix
is insufficient as the edge weights must also be encoded. Therefore, a weighted adjacency matrix is
leveraged that is defined as follows:

Definition 2.8 (Weighted adjacency matrix). (Latora et al., 2017, Definition 10.2, adjusted).
The weighted adjacency matrix, 𝔸𝑊, of a graph, 𝐺 = (𝑉, 𝐿), is a 𝑛𝑉 × 𝑛𝑉 matrix. Thereby, the
weights of the links are equal to the matrix’s values, i.e., the weight of the link between node 𝑖 and
𝑗 determines the value 𝕒𝑊𝑖𝑗 in the weighted adjacency matrix. Further, 𝕒𝑊𝑖𝑗 = 0 holds if the two
nodes 𝑖 and 𝑗 are not connected, as well as 𝕒𝑊𝑖𝑖 = 0 ∀𝑖.

Next to the adjacency matrix of a graph, the weighted links should also be considered for the node
degrees. Therefore, a node’s strength quantifies the node’s connectedness in a weighted network
and functions as a natural extension of the degree metric in the case of weighted graphs.

Definition 2.9 (Node strength). (Latora et al., 2017, Definition 10.3, notation adjusted). The
strength 𝕜𝑖 of a node 𝑖 is the sum of the weights of the edges incident in 𝑖:

𝕜𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑊𝑖𝑗 . (2.4)

If the graph is directed, the strength of the node has two components: the sum of weights of
outgoing links 𝕜𝑜𝑢𝑡𝑖 , referred to as the out-strength of the node, and the sum of weights of ingoing
links 𝕜𝑖𝑛𝑖 , referred to as the in-strength of node 𝑖:

𝕜𝑜𝑢𝑡𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑊𝑖𝑗 𝕜𝑖𝑛𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑊𝑗𝑖 . (2.5)

The total strength of the node is then defined as 𝕜𝑖 = 𝕜𝑜𝑢𝑡𝑖 + 𝕜𝑖𝑛𝑖 .

Random networks

Random networksmake up a specific class of networks. According to Latora et al. (2017, p. 69),
they are characterized by “[…] the disordered nature of the arrangement of links between different
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nodes.” Even thoughmost real-world networks do not reveal random graph properties (see Latora
et al. (2017, p. 252)), they still play a crucial role when it comes to theoretical considerations.
In this regard, various random network models exist. These describe not only a single network
but instead a complete set of potential random network instances. In the emergence of the field
studying random networks, the two researchers Erdős and Rényi (ER) played a significant role
(Erdős and Rényi, 1959, 1960). Two of the well-known random network models are named after
them:

Definition 2.10 (ER model A: uniform random graphs). (Latora et al., 2017, Definition 3.1,
notation adjusted). Let 0 ≤ 𝑛𝐿 ≤ 𝑋, where𝑋 = 𝑛𝑉(𝑛𝑉−1)

2 . The model, denoted as𝐺𝛦𝑅𝑛𝑉,𝑛𝐿 , consists
in the ensemble of graphs with 𝑛𝑉 nodes generated by connecting 𝑛𝐿 randomly selected pairs of
nodes, uniformly among the𝑋 possible pairs. Each graph𝐺 = (𝑉, 𝐿)with |𝑉| = 𝑛𝑉 and 𝑛𝐿 = |𝐿|
is assigned the same probability.

Definition 2.11 (ER model B: binomial random graphs). (Latora et al., 2017, Definition 3.2,
notation adjusted). Let 0 ≤ p ≤ 1. Themodel, denoted as𝐺𝛦𝑅𝑛𝑉,p, consists in the ensemble of graphs
with 𝑛𝑉 nodes obtained by connecting each pair of nodes with a probability p. The probability
P𝐺 associated with a graph𝐺 = (𝑉, 𝐿)with |𝑉| = 𝑛𝑉 and |𝐿| = 𝑛𝐿 is P𝐺 = p𝑛𝐿(1 − p)𝛸−𝑛𝐿 , where
𝑋 = 𝑛𝑉(𝑛𝑉−1)

2 .

Even though both models can be leveraged to create random networks, the sampling strategy
differs. For the ERmodel A, a fixed number of links is randomly selected to be “materialized” in
the generated network. In contrast, for the ER model B, the probability of a potential edge to
be “materialized” is fixed. Therefore, for the latter model, multiple network generation processes
might lead to networks with varying numbers of edges. Notably, more random network models
exist. Nevertheless, covering all of these would go beyond the scope of this thesis. We refer the
interested reader to the Chapters 4, 5, and 6 of Latora et al. (2017).

Network motifs

For specific use cases, detecting and analyzing certain topological patterns occurring in a network
is highly interesting. Thereby, so-called network motifs play a crucial role. Latora et al. (2017,
p. 324) define them as “[…] the recurrent structures representing the building blocks of a given
network.”

Definition 2.12 (Network motifs). (Latora et al., 2017, Definition 8.6, notation adjusted). An
undirected (directed) subgraph𝐺′ with 𝑛𝑉′ nodes and 𝑛𝐿′ links is said to be a network motif if it
occurs in an undirected (directed) graph𝐺 at a number significantly higher than in randomised ver-
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sions of the graph, i.e. in graphs with the same number of nodes and links, and degree distribution
as the original one, but where the links are distributed at random.

Given Definition 2.12, one still needs to clarify how the occurrences of a subgraph𝐺′ in the graph
𝐺 are detected. For that, the subgraph itself and its topologically equivalent subgraphs are checked.
Then, based on the number of occurrences of all topological variations of𝐺′, it is decided whether
they appear significantly more frequently compared to similar random networks.

Ego-networks

This paragraph is based on the book of Crossley et al. (2015) that gives a comprehensive overview
on the topic of social network analysis based on ego networks (a.k.a. “ego-nets”). Notably, the
concept of ego-nets is closely tied to social network analysis in which actors and their relationships
are analyzed (see Section 2.3). Therefore, ego-net analysis is also referred to as “actor-centered”
analysis (Crossley et al., 2015, p. 1). Thereby, an ego-net consists of a central actor node, the ego,
and all the other actors the ego is related to. Commonly, the relationships among the non-ego
nodes are also considered part of the ego network. Nevertheless, this is not a strict requirement.
Generally, the concept of ego-nets is not tied to a particular type of actor or relationship. In-
stead, arbitrary phenomena, such as the economic exchange between companies or the emotional
closeness between people, can be modeled by leveraging ego networks.

Centrality

Some use cases benefit a lot from gaining insights into which nodes in a network are particularly
“important” and play a key role. Nevertheless, measuring the importance of a node is a challenging
task, and numerous metrics have been developed to “[…] characterize and rank the nodes of a
network.” (Latora et al., 2017, p. 31) One quite simple measure is the degree centrality which is
based on the node’s degree:

Definition 2.13 (Degree centrality). (Latora et al., 2017, Definition 2.2, notation adjusted). In
an undirected graph, the degree centrality of node 𝑖 (𝑖 = 1, 2, … , 𝑛𝑉) is defined as:

𝑐𝐷𝑖 = 𝑘𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑖𝑗, (2.6)

where 𝑘𝑖 is the degree of node 𝑖.
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In a directed graph, in-degree and out-degree centrality of node 𝑖 are respectively defined as:

𝑐𝐷
𝑖𝑛

𝑖 = 𝑘𝑖𝑛𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑗𝑖, 𝑐𝐷
𝑜𝑢𝑡

𝑖 = 𝑘𝑜𝑢𝑡𝑖 =
𝑛𝑉
∑
𝑗=1

𝕒𝑖𝑗, (2.7)

where 𝑘𝑖𝑛𝑖 and 𝑘𝑜𝑢𝑡𝑖 are respectively in- and out-degrees.

The normalised degree centralities 𝐶𝐷𝑖 , 𝐶
𝐷𝑖𝑛
𝑖 , 𝐶𝐷𝑜𝑢𝑡𝑖 are obtained by dividing the three quantities

above by 𝑛𝑉 − 1. For instance, in the undirected case we have:

𝐶𝐷𝑖 =
𝑐𝐷𝑖

𝑛𝑉 − 1
. (2.8)

Next to the centrality measures based on the node’s degree, another set of metrics exists. These fo-
cus on determining a node’s centrality based on the paths in the network. As such, the betweenness
centrality takes into account the number of shortest paths the analyzed node is part of.

Definition 2.14 (Betweenness centrality). (Latora et al., 2017, Definition 2.7, notation adjusted).
In a connected graph, the shortest-path betweenness centrality of node 𝑖 is defined as:

𝑐𝛣𝑖 =
𝑛𝑉
∑
𝑗=1
𝑗≠𝑖

𝑛𝑉
∑
𝑘=1
𝑘≠𝑖,𝑗

𝑛𝑗𝑘(𝑖)
𝑛𝑗𝑘

(2.9)

where 𝑛𝑗𝑘 is the number of geodesics from node 𝑗 to node 𝑘, whereas 𝑛𝑗𝑘(𝑖) is the number of
geodesics from node 𝑗 to 𝑘, containing node 𝑖. The normalised quantity, defined as:

𝐶𝛣𝑖 =
𝑐𝛣𝑖

(𝑛𝑉 − 1)(𝑛𝑉 − 2)
(2.10)

takes values in the range [0, 1].

2.1 .2 Communities: detection and evolution

This section builds on Chapter 9 of the book by Latora et al. (2017), which gives a good overview
of the community detection topic. They understand communities in networks as “[…] clusters of
nodes such that nodes within the same cluster are more tightly connected than nodes belonging
to two different clusters.” Therefore, communities make up “mesoscopic structures” whose scale
are between a single node and that of the complete graph. In general, studying the communities
of a network allows one to gain insights into the graph’s internal structure. Further, for time-

17



2 Fundamentals

dependent networks (see Section 2.1.5), the temporal evolution of contained communities needs
to be considered as well.

In particular, this section addresses three topics related to network communities. First, modularity
is discussed as ametric to evaluate the partitioning of a graphwith respect to community structures.
Secondly, Infomap as an algorithm for the detection of communities is examined, and finally, we
focus on the evolution of communities in time-varying graphs.

Modularity

Commonly, community detection algorithms aim at finding graph partitions that are likely to re-
flect the actual community structure of the network. Nevertheless, to quantitatively measure how
“good” a given network partition is, a so-called quality function is necessary. Ideally, optimizing
this quality function should lead to partitioning the network into real communities. Modularity
is such a quality function.

Definition 2.15 (Modularity). (Latora et al., 2017, Definition 9.11, notation adjusted). Given
a graph 𝐺 and a partition 𝑃̈𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛𝛲̈} of its nodes into 𝑛𝛲̈ sets, the modularity 𝒬𝛲̈ of
partition 𝑃̈𝑉 can be written as:

𝒬𝛲̈ =
𝑛𝛲̈
∑
𝑖=1

[
𝑘𝑖𝑖
𝑛𝐿

− (
𝑘𝑖
2𝑛𝐿

)
2

] (2.11)

where 𝑘𝑖 is the degree of set𝑉𝑖, defined as the sum of the degrees of all the nodes in set𝑉𝑖, 𝑘𝑖𝑖 is the
total number of links joining nodes in set𝑉𝑖, and 2𝑛𝐿 is the total number of links in𝐺.

In other words, the modularity metric measures if the number of internal edges of a node cluster
is larger than expected in a random network with the same degree for each partition set as in the
analyzed network. The larger the modularity value, the more the network reveals clustered node
structures. It is defined to be smaller than one and can also take on negative values.

Infomap

Infomap is an algorithm to be used for network clustering (Edler et al., 2023) and is based on
the “map equation” (Rosvall et al., 2009). Thereby, the map equation allows to determine the
theoretical limit of how efficiently the movement of a random walker on the network can be
encoded. Efficiently encoding the trajectories can then be used to partition the network: “If
we can find an optimal code for describing places traced by a path on a network, we have also
solved the dual problem of finding the important structural features of that network.” (Rosvall
et al., 2009) Naively, the random walks could simply be encoded as a sequence of unique node

18



2.1 Network Science

identifiers. Nevertheless, this encoding approach might not be the most efficient one as the node
IDs would need many bits. Alternatively, the sequence can be encoded by introducing codes of
specific modules/clusters/communities in the network. In the path sequence, one then needs to
record which modules are visited by the random walker and when it leaves a module again. Even
though this additional information leads to some encoding overhead, it also allows a more concise
encoding of the node identifiers, given that these can be reused across the different modules and,
therefore, need fewer bits. Finally, testing multiple ways to cluster the network and using the map
equation to derive the theoretical description length limits leads to the optimal partitioning of the
network.

In contrast to other community detection approaches that leverage modularity maximization
to find the optimal partitioning of a network (e.g., Newman and Girvan (2004)), the Infomap
approach “maps the flow” on the network which is restricted by the underlying network structure.
Therefore, the focus is placed “[…] on the interdependence of links and the dynamics on the
network once it has been formed […]” (Rosvall et al., 2009).

Community evolution

Communities of nodes might not be static if the underlying network is evolving. To conduct
community analyses in such a temporal network context, it is required to leverage specialized
algorithms that can handle community evolution. In the past, such approaches have been applied
to investigate the evolution of topics, e.g., Lorenz-Spreen et al. (2018), or to examine trends, e.g.,
Cazabet et al. (2012). We refer the interested reader to the survey of Rossetti and Cazabet (2018)
for a comprehensive overviewof the research field dealingwith community detection in temporally
evolving networks.

2.1 .3 Heterogeneous information networks

The following section introduces heterogeneous information networks (HINs) as a special cate-
gory of networks. For that, their formalism is introduced at first in Section “Formalism”. This
introduction not only includes the fundamental concepts covering the network-related definitions
but also derived concepts such asmeta paths. Finally, in Section “Comparison to related concepts”,
HINs are compared to related concepts such as complex networks and knowledge graphs.
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Formalism

The concept of HINs is not new but has already been introduced a few years ago (see Sun et al.
(2009)). Essentially, a HIN is a type of network that consists ofmultiple types of objects and/or
relationships. Still, its fundamental building blocks are nodes𝑉 and links 𝐿. To formally define
HINs, one has to start clarifying the concept of information networks:

Definition 2.16 (Information network). (Shi et al., 2017, Definition 1, notation adjusted). An
information network is defined as a directed graph 𝐺 = (𝑉, 𝐿) with an object type mapping
function 𝜑 ∶ 𝑉 → 𝐴 and a link type mapping function 𝜓 ∶ 𝐿 → 𝑅. Each object 𝑣 ∈ 𝑉 belongs
to one particular object type in the object type set 𝐴: 𝜑(𝑣) ∈ 𝐴, and each link 𝑙 ∈ 𝐿 belongs to
a particular relation type in the relation type set 𝑅: 𝜓(𝑙) ∈ 𝑅. If two links belong to the same
relation type, the two links share the same starting object type as well as the ending object type.

HINs are different from homogeneous networks as they contain more than one type of object
and/or relationship. For a more detailed comparison to related concepts, see the following section.
Based on Definition 2.16 the differentiation can be formalized as follows:

Definition 2.17 (Heterogeneous/Homogeneous information network). (Shi et al., 2017, Defini-
tion 2, notation adjusted). The information network is called heterogeneous information network
if the types of objects |𝐴| > 1 or the types of relations |𝑅| > 1; otherwise, it is a homogeneous
information network.

Tomodel the overall structure of aHIN,meaning howobjects of a specific type are related to other
objects by which relationship type, one has to resort to a more abstract level. This abstraction
requirement is why so-called network schemas have been introduced:

Definition 2.18 (Network schema). (Shi et al., 2017, Definition 3, notation adjusted). The
network schema, denoted as 𝑆𝐺 = (𝐴, 𝑅), is a meta template for an information network 𝐺 =
(𝑉, 𝐿)with the object type mapping 𝜑 ∶ 𝑉 → 𝐴 and the link type mapping 𝜓 ∶ 𝐿 → 𝑅, which is
a directed graph defined over object types𝐴, with edges as relations from 𝑅.

Therefore, HINs that follow the structure of a given network schema are called network instances
of the same network schema. As part of that, the schematic dyad of two object types 𝑎1 and
𝑎2 that are related by the link type 𝑟 is written as 𝑎1

𝑟−→ 𝑎2. Further, given that the network is
constrained by its schema, one can classify network instances as semi-structured networks (Shi
et al., 2017).

Figure 2.2 shows an exemplarynetwork schemabasedonTwitter data that ismodeled asHIN.Both
the nodes, indicated as circles, and the relationships are labeled. These labels indicate the respective
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types (𝐴 and 𝑅) as used in the HIN. The “Reply” and “Retweet” self-loops indicate relationships
among “Tweet” nodes. In contrast, the other two relationship types link nodes of different types,
e.g., the “Mention” relationship links “Username” nodes and “Tweet” nodes.

Tweet Hashtag

Usage



Reply



Retweet

Username 
Mention

Figure 2.2: Exemplary network schema based on a HIN extracted from Twitter data

In HINs, specific paths that traverse a semantically meaningful sequence of nodes are calledmeta
paths, which are defined as follows:

Definition 2.19 (Meta path). (Sun et al., 2011, Definition 3, notation adjusted). A meta path
𝑃 is a path defined on the graph of network schema 𝑆𝐺 = (𝐴, 𝑅), and is denoted in the form of
𝑎1

𝑟1−→ 𝑎2
𝑟2−→ …

𝑟𝑙−→ 𝑎𝑙+1, which defines a composite relation 𝑟𝛲 = 𝑟1 ∘ 𝑟2 ∘ … ∘ 𝑟𝑙 between type 𝑎1 and
𝑎𝑙+1, where ∘ denotes the composition operator on relations.

Furthermore, according to Sun et al. (2011), if only one relationship type exists between the same
pair of objects, denoting the sequence of objects is sufficient to unambiguously define ameta path,
𝑃 = (𝑎1, 𝑎2, … , 𝑎𝑙+1), and can be used as simplified notation. Also, the length of 𝑃 is defined
by the number of links in 𝑃. A concrete realization of a meta path as occurring in a network
instance is called a path instance 𝑝. Given such a path instance 𝑝 = (𝑣1, 𝑣2, … , 𝑣𝑙+1) in the network
𝐺, which follows the schema 𝑆𝐺, the following holds true: ∀𝑖 𝜑(𝑣𝑖) = 𝑎𝑖 and 𝜓(𝑙𝑖) = 𝑟𝑖 with
𝑙𝑖 = (𝑣𝑖, 𝑣𝑖+1).

Remark. A path as defined by Definition 2.6 requires that none of the nodes is passed more
than once. However, no such restriction exists for the meta path Definition 2.19 and the related
definition of a path instance. Following a specific meta path instance, the same node might be
visited multiple times. For example, take the following meta path, which links the hashtags used
in the original tweet with these used in the retweets: ℎ𝑎𝑠ℎ𝑡𝑎𝑔 𝑢𝑠𝑒𝑑 𝑖𝑛−−−−−→ 𝑡𝑤𝑒𝑒𝑡

𝑟𝑒𝑡𝑤𝑒𝑒𝑡 𝑜𝑓
−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→

ℎ𝑎𝑠ℎ𝑡𝑎𝑔. Now, if the start and end hashtag is checked to be the same, one obtains all the hashtags
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that are used in both the original and the retweeted post. This request is still valid under the less
restricted meta path definition.

Described meta paths can not only be used to define latent relationships but also to project HINs.
In the projected network, nodes are directly linked that were only latently connected by a spe-
cific meta-path in the original network. Milani Fard et al. (2019) propose a network projection
method based on meta-paths. They call the projected network an “augmented reduced graph”. It
is formally defined in the following:

Definition 2.20 (Augmented reduced graph). (Milani Fard et al., 2019, Definition 5, notation
adjusted). Given a HIN graph𝐺 = (𝑉, 𝐿) and a target meta path 𝑃(𝑎𝑖, 𝑎𝑗) between nodes of type
𝑎𝑖 and 𝑎𝑗, an augmented reduced graph𝐺𝛲 = (𝑉𝛲, 𝐿𝛲) is a graph, where𝑉𝛲 ⊆ 𝑉 and nodes in𝑉𝛲

are of type 𝑎𝑖 and 𝑎𝑗, and edges in 𝐿
𝛲 indicate relationships of type 𝑃 in𝐺.

Comparison to related concepts

For a broader picture, the concept of HINs needs to be compared and differentiated from related
network concepts. Such comparison is, to some extent, already outlined in previous work by Shi
et al. (2017) and Shi and Yu (2017, p. 5).

Homogeneous network: As already formalized in Definition 2.17, homogeneous networks are
different from HINs as they only contain a single type of object and relationship, which makes
them a special case of heterogeneous networks. Homogeneous networks can be extracted from
HINs by network projections. Given a HIN𝐺 = (𝑉, 𝐿)with network schema 𝑆𝐺 such a network
projection 𝐺𝑎𝑟 = (𝑉′, 𝐿′) by the relation 𝑎 𝑟−→ 𝑎 is defined as: 𝑉′ = {𝑣 ∈ 𝑉|𝜑(𝑣) = 𝑎} and
𝐿′ = {𝑙 ∈ 𝐿|𝜓(𝑙) = 𝑟}.

Multi-relational network: Multi-relational networks as used by Yang et al. (2012) are again a
special case of heterogeneous networks as they are restricted to networks with multiple link types
but only a single object type.

Social network: According toMyers et al. (2014), information and social networks have different
characteristics, which help to classify a given network instance as information or a social network.
A list of network characteristics for information and social networks is shown in Table 2.1. For
example, information networks are typified by a lack of reciprocity and large two-hop neighbor-
hoods. In contrast, social networks generally have a high degree of reciprocity and small shortest
path lengths.
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Table 2.1: Characteristics of information and social networks according toMyers et al. (2014)

Information network Social network

lack of reciprocity high degree of reciprocity
large two-hop neighborhoods small shortest path lengths
large vertex degrees high degree assortativity

large connected components
high clustering coefficients

In addition to the characteristics shown in Table 2.1, one can say that the dominant interaction
within information networks is the spreading of information, while social networks are mainly
built on social ties (Myers et al., 2014).

Apart from the characteristics of the interaction(s) within the network, social network data, gener-
ally, can be modeled in several ways, e.g., by using HINs. In this case, nodes might be social actors
and edges the relationships among those. Multiple types of relationships and/or actors might be
modeled by using different node/edge types accordingly.

Complex network: According to Kim andWilhelm (2008) complex in contrast to random net-
works are characterized by specific topological features. These features include a high clustering
coefficient combined with a small characteristic path length (Watts and Strogatz, 1998), a power-
lawdistributionof nodedegrees (Barabási andAlbert, 1999), a (inverse) correlationof nodedegrees
(Newman, 2002), a, compared to random networks, significantly higher presence of network mo-
tifs (Milo et al., 2002) and a division into subgraph modules (Newman, 2006). In contrast to
complex networks, HINs are not defined by their topological features and, therefore, the study
of complex networks also places a different focus on investigating named network structures (Shi
and Yu, 2017, p. 5) as opposed to extracting semantically meaningful information. Many real-
world networks from the field of biology, social sciences, or economics can be classified as complex
networks (Kim and Wilhelm, 2008). Given that many of them are also semantically heteroge-
neous, one can assume that many real-world HINs are also complex in nature (Shi and Yu, 2017,
p. 5).

Network of networks: Opposed to the model of HINs, the concept of “network of networks”
places its focus on the interdependence or rather coupling of multiple networks (D’Agostino
and Scala, 2014, pp. 3–7). Still, those individual networks and their dependence could also be
modeled as a single, large HIN, which contains all the different object and relationship types. In
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Section 2.1.4, the model of a network of networks is discussed in more detail in the context of
multilayer networks.

Knowledge Graph: In the field of knowledge graph research, the concept of a knowledge graph
is used inconsistently, which is why Ehrlinger and Wöß (2016) propose a unified definition: “A
knowledge graph acquires and integrates information into an ontology and applies a reasoner to
derive new knowledge.” Given their definition, it becomes clear that comparing the concept of
HINs and that of a knowledge graph is notmeaningful. Compared toHINs, knowledge graphs are
muchmore than just a knowledgebase anddescribe the complete system,which implies integrating
information from different sources and reasoning to generate additional knowledge (Ehrlinger
andWöß, 2016).

Better suitedwould be the comparison to ontologies, which are defined as follows: “An ontology is
a formal, explicit specification of a shared conceptualization that is characterized by high semantic
expressiveness required for increased complexity.” (Feilmayr and Wöß, 2016) In the same line,
HINs can also be used as models with high semantic expressiveness. Also, given that ontologies
do not only refer to the pure schema but to populated instances of the knowledge base as well
(Ehrlinger andWöß, 2016), the meaning is similar to network instances of a given HIN schema.
Nevertheless, ontologies tend to be very schema-rich and are meant for complex modeling scenar-
ios, which is less true for HINs, which typically have less complex network schemas (Shi and Yu,
2017, p. 8).

Labeled property graph: The terminology of labeled property graphs (LPGs), commonly re-
ferred to as property graphs, is described by Rodriguez and Neubauer (2010) and more formally,
they are defined by Angles (2018). In general, a property graph can be characterized as “[…] di-
rected, labeled, attributed, multi-graph […]” (Rodriguez and Neubauer, 2010), which means that
its relationships are directed, its nodes and edges are typed/labeled and come with additional at-
tributes, as well as multiple edges might connect the same pair of nodes. Thereby, the additional
node and edge attributes, referred to as properties, allow the storage of specific features, such as the
first name belonging to a “person” node or the date belonging to a “published in” relationship
(Angles, 2018). Given its large degree of flexibility, various Graph Database Management Systems
(GDBMSs) leverage property graphs as database model (Angles, 2018). Compared to the formal
definition of HINs, they also come with typed nodes and edges, as well as explicitly model node
and edge attributes. Still, they miss derived features such as meta paths even though these could
also be formalized via typed paths, as leveraged by the pattern matching syntax, i.e., the MATCH
clause, used to query property graphs (see Angles (2018)).
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2.1 .4 Multilayer networks

The following section about multilayer networks is based on the book by Bianconi (2018,
pp. 79–114) with the respective notation being adjusted. Generally, multilayer networks describe
a composition of multiple interacting networks. Thereby, a single layer in a multilayer network
represents one of the composing networks. Modeling a composition of networks as a multilayer
network facilitates understanding the interplay between the different network layers.

Multilayer networks are often referred to asmultidimensional networks. In this case, dimensions
correspond to layers with respect to the multilayer network terminology. Nevertheless, given that
the term “dimension” has a special meaning in the field of mathematics and physics, one should
preferably refer to multidimensional networks as multilayer networks (Kivelä et al., 2014).

In the following, the mathematical formalism and the most general form of multilayer networks
are described in Section “Formalism”. Further, special subtypes of multilayer networks, namely
multiplex networks, multi-slice networks and networks of networks, are explained. Also, examples
of multilayer networks are given, and in the final paragraph, multilayer networks are compared to
the concept of HINs.

Formalism

Each layer of the multilayer network represents a network of a certain type. Interactions among
nodes of the same layer are referred to as intralinks, whereas interactions betweennodes of different
layers are called interlinks. Given that a multilayer network consists of 𝑛ℳ layers, the same amount
of networks exists that describe the interactions among nodes in the same layer. Furthermore,
for every pair of layers in the multilayer network, another network represents the interactions
among nodes of the paired network layers. Therefore, in addition to the 𝑛ℳ networks covering
the intralinks, 𝑛ℳ(𝑛ℳ−1)2 networks of the interlinks are part of a 𝑛ℳ-layer network. According to
Bianconi (2018, p. 100) the most general description of a multilayer network𝑀 can be given as
follows:

𝑀 = (ℳ, 𝒢̇, 𝒢̈). (2.12)

As Equation 2.12 shows, a multilayer network is defined as a triple consisting of the network layers
denoted asℳ,

ℳ = {𝑚|𝑚 ∈ {1, 2, … , 𝑛ℳ}} with |ℳ| = 𝑛ℳ, (2.13)
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as well as the ordered list of networks that are made up of the interactions within each of the
network layers

𝒢̇ = (𝐺1, 𝐺2, … , 𝐺𝑚, … , 𝐺𝑛ℳ) with 𝐺𝑚 = (𝑉𝑚, 𝐿𝑚). (2.14)

As described above, the nodes𝑉𝑚 of the layer𝑚 are thereby connected by intralinks 𝐿𝑚. Further,
a multilayer network also comprises networks of interlinks that connect nodes of different layers.
Formally, those interlink networks are a 𝑛ℳ × 𝑛ℳ list 𝒢̈ of bipartite networks 𝒢̈𝑚,𝑚′ whereby the
indices of those networks indicate the pair of layers that are connected by the interlinks:

𝒢̈𝑚,𝑚′ = (𝑉𝑚, 𝑉𝑚′ , 𝐿𝑚,𝑚′) for each 𝑚 < 𝑚′ and 𝑚,𝑚′ ∈ {1, 2, … , 𝑛ℳ}. (2.15)

In their most general form, nodes of different layers are of different types and do not have any one-
to-one mapping regarding nodes of other layers. Sill, various categories of multilayer networks
that come with additional characteristics and constraints, such as a one-to-one mapping between
nodes of different layers, exist (see Figure 2.3).

(a)Multiplex network



time

(b)Multi-slice network (c)Network of networks

Figure 2.3: Illustrations of different kinds of multilayer networks according to Bianconi (2018, Figure 4.1)

Multiplex networks

According to Bianconi (2018, pp. 102–106), multiplex networks are defined as outlined in the
following. In short, they are characterized by two key properties:

• There exists a one-to-one mapping of nodes of different layers. Those corresponding nodes
are called replica nodes.
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• Interlinks can only connect replica nodes.

In their simplest form, multiplex networks do not contain any interlinks. Instead, the same set
of nodes is simply replicated across different layers, each representing a different kind of interac-
tion. In this case, multiplex networks are similar to multi-relational networks, with each type of
relationship represented in a different layer of the multiplex network. In contrast, a multiplex
network with interlinks can be seen in Figure 2.3a. As one can observe, links connecting different
network layers also exist in these multiplex networks. Regardless of whether interlinks are part of
the multiplex network or not, its set of vertices𝑉 can be defined as

𝑉 = {𝑖|𝑖 ∈ {1, 2, … , 𝑛𝑉}}. (2.16)

Based on that, for each of the 𝑛ℳ layers of the network a set of replica nodes 𝑉𝑚 can be de-
fined:

𝑉𝑚 = {(𝑖, 𝑚)|𝑖 ∈ {1, 2, … , 𝑛𝑉}}. (2.17)

Note that the nodes with the same label 𝑖 but different layer indices correspond to each other as
replica nodes. Based on that, the set of interlinks 𝐿𝑚,𝑚′ which connects replica nodes, i.e., nodes
with the same label but of different layers (𝑚 and𝑚′), is defined as follows:

𝐿𝑚,𝑚′ = {[(𝑖, 𝑚), (𝑖, 𝑚′)]|𝑖 ∈ {1, 2, … , 𝑛𝑉}}. (2.18)

Concerning Equation 2.18, one can see that only links between nodes with the same label 𝑖 are
allowed.

Multi-slice networks

The notion ofmulti-slice networks is also outlined in the book of Bianconi (2018, pp. 106–110).
Briefly described, the following features characterize multi-slice networks:

• In multi-slice temporal networks, a one-to-one mapping relates nodes of different layers as
replica nodes. Each layer in the network represents a different temporal snapshot.

• Interlinks between nodes of different snapshots only exist in temporal succession.
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Accordingly, multi-slice networks can also be seen as temporal snapshot-based networks. In more
detail, given a multi-slice network𝑀 covering the interactions within a time period 𝑇 and the
time intervalΔ𝑡 chosen as snapshot size, there exist 𝑛ℳ = 𝛵

Δ𝑡 layers. Thereby, the layer𝑚 captures
the interactions that occur in the time window [(𝑚 − 1)Δ𝑡, 𝑚Δ𝑡). Further, given that interlinks
only occur between replica nodes of subsequent snapshots, the set of interlinks 𝐿𝑚,𝑚′ is only a
non-empty set in case of𝑚′ = 𝑚 + 1:

𝐿𝑚,𝑚′ = {
{[(𝑖, 𝑚), (𝑖, 𝑚′)]|𝑖 ∈ {1, 2, … , 𝑛𝑉}} 𝑚′ = 𝑚 + 1,

∅ otherwise.
(2.19)

In Figure 2.3b, one can see amulti-slice network consisting of three layers, i.e., temporal snapshots.
Only links between subsequent temporal layers exist.

Furthermore, an aggregated network 𝐺̃ can be constructed from a multi-slice network. For such
an aggregation, the temporality of the edges contained in the network is neglected, and all edges,
no matter from which network slice, are aggregated into a single network (layer).

Network of networks

Network of networks as discussed in Section 2.1.3 can also be seen as a special kind of multilayer
network. With respect to the multilayer network model, each layer represents a network of the
“network of networks” model. Interactions between multiple networks are determined by a so-
called supernetwork, which specifies the layers, i.e., networks, that interlinks can connect. As
a visualized example of such a network consisting of three layers, i.e., individual networks, see
Figure 2.3c.

Networks of networks are formally defined by Bianconi (2018, pp. 112–114). Accordingly, the
supernetwork 𝐺𝑠 = (𝑉𝑠, 𝐿𝑠) is composed of the supernetwork nodes 𝑉𝑠 that represent layers of
the original multilayer network,

𝑉𝑠 = {𝑚|𝑚 ∈ {1, 2, … , 𝑛ℳ}}, (2.20)

and the set of supernetwork edges 𝐿𝑠. These supernetwork edges determine which pairs of layers
in the original network are connected by interlinks. Interlinks in the multilayer network can only
exist between nodes of layers also connected in the supernetwork.
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Multilayer network examples

Different complex systems can be modeled using the multilayer network framework. Bianconi
(2018, Chapter 4) provides examples of versatile application scenarios ranging from social network
analysis to the analysis of brain networks. Depending on the specific use case and analysis perspec-
tive, different types of multilayer networks are more appropriate to use. Table 2.2 shows a list of
exemplary multilayer networks leveraged for various application scenarios. The respective type of
the multilayer network is shown as well.

Table 2.2: Exemplary use cases for multilayer networks as outline by Bianconi (2018, Chapter 4)

Description Multilayer network type

social network with multiple interaction types multiplex
transportation network with multiple connection types multiplex
scientific interaction network multiplex
temporal brain correlation network multi-slice
face-to-face interaction network multi-slice

Also, in this thesis, concepts from the multilayer network model are leveraged. In particular, tem-
poral network snapshots are applied, aligning with the multi-slice network approach. A detailed
comparison with regards to the data analysis model developed in this thesis can be found in Sec-
tion 3.3.3. The respective temporal network model is employed for different use cases, such as to
analyze long-term trends (see Section 4.1.4).

Multilayer network vs. heterogeneous information network

According to Kivelä et al. (2014) multilayer networks can also be seen as HINs with the different
node and edge types being mapped to different layers of the multilayer network. Still, it is essential
to note that multilayer networks should not be understood as single large networks containing
all the interaction types, but rather, the focus is placed on treating the different interaction types
separately (Bianconi, 2018, p. 4). This separation contrasts the model of HINs in which all in-
teractions are modeled within a single network. In the HIN model, information regarding the
different nature of the nodes and their relationships is encoded in the network’s link and edge type
mappings as opposed to the different layers of a multilayer network.
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2.1 .5 Network dynamics

Commonly, in a graph-based data analysis setting, the topology of the underlying network is
time-dependent. To consider this time dependency, e.g., for evolving social or time-dependent
biological networks, the leveraged network model needs to be adjusted. This adaptation can
be done by leveraging a time-dependent network model that considers the network’s dynamics
accordingly. Nevertheless, temporal networks are appropriate only for some dynamic data analysis
use cases. According toHolme and Saramäki (2012), only if the temporal evolution of the network
topology influences the dynamics of the studiedphenomenon itmakes sense to resort to a temporal
network model. For a counter-example, studying the movement of data packets on the internet
does not require a temporal network model, given that the packets traverse the network much
faster compared to how the network itself is evolving. It is, therefore, sufficient to treat the network
as being static.

In the past, temporal graphs have been referred to in multiple ways, such as time-varying graphs,
temporal networks, time-dependent graphs or evolving graphs (Rost et al., 2022). Multiple surveys
give a comprehensive overview of the temporal networks topic, e.g., Kostakos (2009), Casteigts
et al. (2012), Holme and Saramäki (2012), or Wang et al. (2019). In the following, different
aspects of the field are highlighted. A particular focus is placed on concepts again leveraged in
other parts of this thesis. In detail, we cover different forms of representing temporal networks,
the differentiation between “temporal” and “evolving” metrics, as well as the concept of temporal
network journeys.

Temporal network representations

In the past, time-dependent networks have been represented in various ways (see Holme and
Saramäki (2012); Wang et al. (2019); Xu (2021)). These representations include contact sequences,
interval graphs, link streams and snapshot networks. Each of them emphasizes different aspects of
the network’s temporal evolution and is more or less suited for different analysis use cases. Fig-
ure 2.4 illustrates two of these temporal network representations, contact sequences and interval
graphs. For both representation forms, the temporal information is modeled as edge property.
Additionally, Figure 2.5 visualizes the other representation forms, snapshot networks and link
streams, highlighting the difference between continuous and discrete temporal network represen-
tations.

Contact sequence: According to Holme and Saramäki (2012), modeling the dynamics of a net-
work in the form of a contact sequence is appropriate if the durations of the interactions are
negligible. In these cases, representing the edges as a triple of the source node, the target node, and
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Figure 2.4: Two representations of time-dependent networks for which the temporal information is mod-
eled as edge property according to Holme and Saramäki (2012, Figure 4)

a simple timestamp is sufficient. Exemplary temporal networks that can be modeled as contact
sequences are e-mail networks or networks based on physical proximity data. Also, see Figure 2.4a
for a visualization of a contact sequence. The timestamps of the contacts are indicated as black
lines on the grey timelines. Representing a temporal network as a contact sequence allows to
capture its dynamics in a continuous manner.

Interval graph: As outline by Holme and Saramäki (2012), in contrast to contact sequences,
interval graphs are the appropriate modeling approach if the durations of the interactions are not
negligible. For interval graphs, time intervals instead of simple timestamps are assigned to the
network edges to indicate in which time windows the respective interaction is active. Figure 2.4b
shows an exemplary interval graph. The active periods of the edges are marked in black on the grey
timelines. Real-world applications of interval graphs are seasonal food webs or infrastructure net-
works. Like contact sequences, an interval graph is also a continuous representation form.

Link stream: A link stream represents the time points or intervals of interaction between a fixed
set of nodes (Xu, 2021; Latapy et al., 2018). In a way, they are similar to contact sequences and
interval graphs, which also keep track of the timestamps, respectively time periods, a specific edge
is active. Nevertheless, for link streams, the activity of edges is explicitly representedwith regards to
a time axis (see Figure 2.5b) instead of being indicated by edge properties (see Figure 2.4). Further,
Latapy et al. (2018) extend link streams to the concept of stream graphs. For these, not only are
the edges dynamic, i.e., only active at certain times, but also the nodes are temporally dependent.
In any case, these time-dependent network representation forms can be leveraged for studying the
network’s continuous dynamics.

Snapshot networks: For some network analysis use cases, discretizing the time-dependent net-
work might facilitate unveiling the network’s dynamics. Such network discretization can be
achieved by modeling the network as a sequence of static network snapshots (Wang et al., 2019;
Xu, 2021). Each of the temporal snapshot networks then contains only those edges that are ac-
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tive during the time (period) covered by the respective snapshot. In contrast to the previously
described continuous temporal graph representations, discrete network snapshots are unsuitable
for continuously analyzing graph properties (Xu, 2021). Also, the network’s evolutionary changes
should not be obliterated by the selected network sampling strategy.




ti

time

ti+1

(a)Network snapshots

Time

1
2
3
4
5
6
7

N
od
e

1 2 3 4 5 6 7 8 9

(b) Link stream

Figure 2.5: Two representations of time-dependent networks: network snapshots (discrete) and a link
stream (continuous) (according to Xu (2021, Figure 9))

Temporal vs. evolving

Even though the terms “temporal” and “evolving” might commonly be used interchangeably, it
has to be noted that in the context of studying network dynamics, they might come with different
meanings. In this regard, Rost et al. (2023) who propose novel degree metrics in their work
understand a temporal metric with respect to a certain point in time. In contrast, an evolutionary
metric comes in the formof a time series describing themetric over a given period of time. Therefore,
understanding “temporal” as referring to a specific moment and “evolving” as referring to a time
window is required.

Journey

Not all concepts that apply to static networks can be transferred to the context of time-varying
networks without further adjustment. As such, the concept of walks/paths must be re-defined for
time-dependent networks. In this regard, journeys are defined as the temporal-sensitive equivalent
(Xuan et al., 2003; Santoro et al., 2011). Even though a journey is also realized as a sequence
of edges, given that these are time-dependent, additional conditions must be fulfilled. These
conditions include the necessity for each edge part of the journey to be active when it is traversed
and that each edge needs to follow in temporal succession of the previous edge (Santoro et al.,
2011). As a result, “[…] journeys cannot go to the past.” (Xuan et al., 2003)
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2.2 Digital Media

As already outlined in Section 1.2, media plays a central role in today’s world. So do the digital
platforms on which users consume respective media. In the first step, understanding how these
platforms work is essential because, in the next step, during the analysis of the collected media
data, this knowledge is indispensable. Therefore, the following Section 2.2.1 introduces media
platforms using the example of Twitter. Secondly, in Section 2.2.2, special attention is drawn
to data quality, again in the case of Twitter social media data. Issues related to data quality are
discussed because these should be considered during the subsequentmedia analysis studies.

2.2 .1 Platforms

Various digital media platforms, ranging from online services of news outlets, such as CNN1 or
BBC2, to social media services like Facebook3 or Instagram4 exist. From an academic perspective,
the emergence of these platforms opens up new research opportunities. Questions about how
users behave on these platforms, which content is gaining popularity or how it is spread are still
not fully answered. Given that this thesis also deals with the objective of media analytics, it might
be helpful to give an introduction to named media platforms. In the following, this is done based
on the Twitter platform because Twitter data is analyzed in numerous ways in the subsequent
chapters.

Twitter

Twitter can be described as an information sharing platform with additional social interaction
features. Zubiaga et al. (2015) give a good summary of the Twitter platform. This section largely
builts on their work.

Remark. As already explained in Section 1.2, to be consistent with past work, we still refer to the
renamed platform by its old name “Twitter” even though it has been renamed to “X” (Dey and
Conlin, 2023).

This section is separated intomultiple paragraphs: First of all, various interaction features available
to the users on the Twitter platform are described. Subsequently, because trends are especially
relevant for the next parts of this thesis, e.g., Chapter 4, Twitter trends are also covered. Finally,
Twitter data accessing capabilities are discussed.

1Breaking News, Latest News and Videos | CNN: https://edition.cnn.com (accessed 2023-10-27)
2BBC –Homepage: https://www.bbc.com (accessed 2023-10-27)
3Facebook – log in or sign up: https://www.facebook.com (accessed 2023-10-27)
4Instagram: https://www.instagram.com (accessed 2023-10-27)
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Interaction features: On the Twitter platform users can interact in various ways (see Zubiaga
et al. (2015)). These interaction features and the way they are used on the platform are shown in
Table 2.3. Some of these features can also be combined in a single tweet, e.g., hashtags can also
be used in a reply message. Also, the content users share on the platform can be of various types,
like URLs, images, videos, or simple text messages. As of January 2023, the length of these text
messages is constrained by a 280 character limit (Twitter, Inc., 2023a).

Table 2.3: Interaction features of the Twitter service along with a description of the corresponding syntax
(Zubiaga et al., 2015)

Feature Description Example

user
mention

In a tweet another Twitter account can be mentioned or re-
ferred to by placing its name after an @-sign.

Please check
@BBC for the
latest news.

reply If a tweet is meant as direct reply to a previous tweet, the @-
mentioning of this username needs to be placed at the begin-
ning of the reply tweet.

@BarackObama
That’s great
news.

retweet User “A” can share a tweet of another user “B” on his own pro-
file by retweeting it. This is indicated by placing “RT@UserB:”
in front of the original tweet. Retweets can also be nested.

RT @POTUS:
This is a public
health risk.

hashtag Certain terms in a tweet canbemarked as keywords byprefixing
a #-sign to them. These hashtags work as tagging system on the
Twitter platform and link tweets to a certain topic.

Great #soccer
game!

From an abstract perspective, the interactions on the Twitter platform shown in Table 2.3 can be
assigned to two different categories depending on the type of relationship they enable: social and
topical/semantic. This differentiation again highlights that the Twitter platform reveals character-
istics of an information sharing as well as a social media platform. Theoretically, the discipline of
socio-semantic networks also deals with the discoursive interactions of actants and Twitter data
is often analyzed leveraging concepts developed in socio-semantic network research (see Hellsten
and Leydesdorff (2020)). We refer the interested reader to Section 2.3 for more details.

Trends: The content shared on Twitter is constantly evolving, and the attention paid to different
topics is shifting all the time. Thereby, some topics gain a significant level of popularity andbecome
trending. To keep track of these trends, Twitter provides its users with a list of trending terms on
the homepage. According to Twitter, by default, these trends are personalized, and the algorithm
to determine the trends prefers currently popular topics and such that are currently emerging over
topics that are popular on a regular basis or have already been popular for some time (Twitter, Inc.,
2023b). Figure 4.1 shows an example of this list of trending topics. Next to the topic itself, the
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corresponding tweet volume is also given in some cases. Also, as already stated, topics might only
be trending with respect to a particular geographic region. This information is indicated in the
referenced list of trends where appropriate.

Data access: Twitter provides an API to access their platform’s data programmatically, such as
tweets or details about user profiles. Exemplary data that can be retrieved through Twitter’s API
is shown in the listings given in Section 3.2.4. Access to this data lays the foundation for studying
various phenomenons, such as the evolution of trends (see Section 4.1) or specific types of actor-
networks (see Section 4.2). Unfortunately, at the beginning of 2023, Twitter severely limited their
free API offering (Dotson, 2023).

2.2 .2 Data quality

Working with social media data does not come without hurdles. One of these is the issue of
appropriate data quality. A lack of good data quality inevitably leads to suboptimal analysis results
and should, therefore, be considered for any data analysis project (see Batrinca and Treleaven
(2015)). Given that the research related to data quality covers a broad spectrum of domains and
aspects, at this point, we focus on social media data quality and, more specifically, on Twitter data
quality. For details on how the Twitter media platform works and what features it covers, we refer
to Section 2.2.1.

For social media data to achieve high data quality, upfront cleaning is required. According to
Batrinca and Treleaven (2015), this cleaning process involves the removal of “[…] incorrect, incon-
sistent or missing information.” Practically, steps like spell-checking, the removal of duplicates or
fixing inconsistent dates might be part of that.

RegardingTwitter data quality, some specific issues are highlighted in the following. Still, it should
be noted that this section does not claim completeness. Additional data quality issues might arise
according to specific use-case requirements and should be considered accordingly. For example,
one issue related to political data collected from Twitter is that the published content primarily
comes from people with strong opinions (Huberty, 2015). Less opinionated users might not pub-
lish political content as actively. A dominance of “heavy users” is also stated by Tumasjan et al.
(2010). Furthermore, when dealing with Twitter data, one should take into account that one is
not analyzing a static system, and therefore, the reproducibility of analysis results might not be
guaranteed. In particular, the platform’s highly volatile user community should be considered.
“Rapid growth and customer churn will very quickly alter the profile of its users, often in ways
which are difficult to measure from the outside.” (Huberty, 2015) Even though the root causes of
these dynamics cannot be eliminated, the time-dependent nature of the data can and should be
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considered during data analysis. Therefore, the network analytics model proposed in this thesis ex-
plicitlymodels the data’s dynamics (see Chapter 3). In addition to the issues related to the evolving
social media platform, analyzing its content also comes with specific hurdles. As such, one has to
consider that the offered platform features might not be used consistently. For example, hashtags
might be used inconsistently, i.e., in different variations or to refer to different topics (Cazabet
et al., 2012). Furthermore, Twitter data quality issues concerning replies to private profiles or
deleted tweets have been reported in the past (Cogan et al., 2012). Taking these issues into account
is especially relevant for the analysis of conversations happening on Twitter. Section 5.4.1 gives
more details on that.

2.3 Socio-Semantic Networks

In this section, the topic of socio-semantic networks is introduced. Conceptually, these kind of
networks connect the semantic and the actor-centric perspectives on the modeled data. In later
chapters, e.g., Chapters 4 and 5, an attempt is also made to adopt both of these perspectives.
Figure 2.6 illustrates a socio-semantic network model and shows the duality of this approach. In
a two-layer network, topics are modeled on one layer and users on the other, including their inter-
and intra-links. Thereby, the semantic perspective (topics) and the actor-centric perspective (users)
is represented.

Users

Topics

Figure 2.6: Multi-layer socio-semantic network illustration according to Logan et al. (2023, Figure 1)

In the following, after clarifying the used terminology, various studies from the socio-semantic
network field are examined. For that, static and temporal analyses are taken into account.
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2.3 .1 Terminology

To clarify the terminology of socio-semantic networks, we refer to Gloor et al. (2009). They
describe a socio-semantic network as a kind of two-mode network in which entities, such as in-
dividuals or groups, are linked by their shared discursive elements, e.g., words or sentences. As
an example, in their work, Borge-Holthoefer et al. (2017) model Twitter data as a socio-semantic
network with hashtags representing elements of discourse and Twitter users as the social entities
accordingly. Socio-semantic networks can be seen as an extension of networks that solely repre-
sent text but do not explicitly model the underlying actor-network. Named text-representing
networks, i.e., semantic networks, are largely based on the theories developed in the area of “Dis-
tributional Semantics”5. In this regard, Harris (1954) explains that semantic elements, e.g., words,
are characterized by their context, i.e., co-occurring elements. Also, two elements with a similar
meaning are more likely to occur in similar contexts than those with a less similar meaning. Such
co-occurrences of linguistic elements are also leveraged in subsequent studies, e.g., for the trend
networks based on co-occurring hashtags presented in Section 4.1. For additional background on
semantic networks, we refer to the work referenced by Blanco and Lioma (2012).

In contrast, social networks model the interactions between actants. Latora et al. (2017) describe
the basis of social network analysis as follows: “This discipline is based on representing a social
system as a graph whose nodes are the social individuals or entities, and whose edges represent
social interactions.” (Latora et al., 2017, p. 31) Given the graph-basedmodeling approach, specific
insights can be derived, such as finding important actors (Latora et al., 2017, p. 33).

2.3 .2 Related work

In the following, work related to the study of socio-semantic networks is covered. It is separated
into approaches that treat the networks as being static and those that specifically take their dynam-
ics into account.

Static analysis: In their workHellsten and Leydesdorff (2020) propose a socio-semantic network-
based approach for the automated analysis of online debates. In line with the socio-semantic net-
work methodology, they do not only consider the social networks among actors but also take the
content or rather topics of the debates into account. Compared to related approaches, their focus
is on the interactions of actors and topics. Further, they extend the existing actor-topic network
model and also account for the authors of the content as another type of entity used during net-
work analysis. By applying their methodology to two Twitter datasets, they can demonstrate the

5Distributional semantics – Wikipedia: https://en.wikipedia.org/wiki/Distributional_semantics
(accessed 2023-10-30)
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effectiveness of their approach. They leave it open for further research to extend their model in a
way that takes even more entities and their interactions into account. Also, their method is not
limited to the analysis of Twitter data but can be applied to related research fields as well. Further,
building on the idea of heterogeneous networks, theworkbyHellsten et al. (2020) studies scientific
publications by leveraging multi-mode networks. In addition to the social and semantic dimen-
sions, they also integrate epistemic information into their network model. More generally, their
approach allows to consider any number of document attributes and their relationships. In their
ownwords: “Ourmethodology is also relevant for combining heterogeneous nodes into networks
of ‘actants’.” (Hellsten et al., 2020) This approach reveals similarities to the way documents and
related entities are modeled in the network analytics model presented in Chapter 3. Specifically, it
is similar to the entity networks proposed in Section 3.2.2. Still, the network’s dynamics are not
considered by Hellsten et al. (2020). Arroyo-Machado et al. (2021) build on the work of them
and use scientific publications mentioned on Twitter to detect communities of social media users
that share the same interests.

Temporal analysis: In an earlier work Gloor et al. (2009) mine web, blog, and online forum con-
tent to detect trends and the actors initiating these trends. For this, they mainly build onmethods
from the field of network science. Thereby, their approach consists of three main steps. First, they
analyze the temporal betweenness centrality of concepts, such as companies or persons, as a mea-
sure of their importance. Secondly, to also account for the importance of the actors that talk about
these concepts, they weigh different content according to the social network centrality of its origi-
nator. Finally, they keep track of the quality of the trends as extracted by the previously described
steps by measuring the content’s sentiment. Furthermore, Cointet and Roth (2009) in their work
specifically investigate the dynamics of the socio-semantic network extracted from content of on-
line blogs. They not only analyze how the knowledge distribution influences the topology of
the social dimension of the network but also the other way around, i.e., how the topology of the
network influences the spreading of information. The same authors also apply socio-semantic
networks to study the temporal evolution of knowledge networks, in this case, a scientific commu-
nity of embryologists and a group of political web bloggers (Roth and Cointet, 2010). Similarly,
Gaumont et al. (2018) conduct an extensive study based on dynamic socio-semantic networks and
analyze Twitter content related to the 2017 French presidential election. Thereby, they investigate
the dynamics of opinions, as well as how political communities evolve. Furthermore, they look
at the engagement of political actors, how political communities impact information diffusion,
especially in the context of fake news, and also measure echo chamber effects. Also within the
political context, Radicioni et al. (2021) study the discourse on migration policies taking place on
the Italian Twittersphere and leverage socio-semantic networks for that. They not only analyze
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the user community structures of the Twitter retweet network but also investigate the semantic
hashtag networks related to these communities. Furthermore, they do not stick to a static analysis
of the mentioned networks but also look at their temporal development. This way, they are able
to analyze the dynamics of interactions between different political forces.

2.4 Data Management

Not only if one wants to build a customer-facing application to present data analysis results, but
also for the analysis itself, the respective data needs to bemanaged in a functional way. Commonly,
database management systems (DBMSs) are leveraged for that. These systems usually come with
features to optimize the data management for the use case on hand. In this regard, the following
Section 2.4.1 covers specific data indexing capabilities and Section 2.4.2 explains different data
partitioning concepts. Further, Sections 2.4.3 to 2.4.6 cover various DBMSs that are later bench-
marked in Section 6.3 to find an efficient and performant temporal network data management
system.

2.4.1 Database indices

In a DBMS, specific subsets of data might be queried more frequently than others, or the stored
data might be retrieved based on specific data accessing patterns, such as filtering the data with
respect to selected properties. To improve the query performance in such scenarios, specialized
data indexing techniques have been developed. In the following, two such data indexing methods,
namely B-tree indices and GIN indices, are described.

B-tree index

The following section is largely based on Chapter 2 of the book by Petrov (2019) in which he gives
an introduction to the topic of B-trees. Additional to that, the work by Comer (1979) gives and
systematic overview of different B-tree variants. Originally, B-trees were developed by Bayer and
McCreight (1970) and referenced work is largely based on this original work.

To better understand the benefits of B-trees used as efficient index structure within multiple
database systems, one has to start at the related concept of binary search trees (BSTs) which are
used for efficient in-memory key-value lookup. For an example of a BST see Figure 2.7. Each node
in a BST consists of a key, an associated value and twopointers to its child nodes. The starting node
at the top of the tree is called the “root node”. As subtrees are divided into a (left) part with values
lower than the parent value and a (right) part with values larger than the parent value, traversing
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Figure 2.7: Exemplary binary search tree

the tree allows to efficiently search for a given value. For this lookup to be efficient it is necessary
that the tree is “balanced”, meaning that its hight follows log2(𝑛)with 𝑛 being the total number
of inserted elements. As random additions to the tree lead to an unbalanced situation, elements
have to be shifted around in these cases to rearrange an balanced state again.

For disk-based storage, random seeks following pointers are quite expensive. By using BSTs as
on-disk data structures, these seeks lead to several performance issues. This is especially relevant
because disk-based storage is often used for database systems today. First of all, due to the low
“fanout” of 2 which describes that a maximum of 2 children is allowed per node, a BST has to
be balanced rather frequently which leads to relocations of pointers and additional maintenance
costs. Also, compared to higher fanout trees traversing a BST is more costly as the height of the
tree also follows log2(𝑛). Further, it is not guaranteed that child nodes are in close proximity to
their parent. On disk, this might lead to the situation that a child pointer spans across multiple
pages. Such disk seeks during the traversal of the tree then become quite expensive. Therefore, to
overcome named issues two properties are targeted which also leads to the concept of B-trees: 1.
high fanout for an increased locality of neighboring keys 2. low height for less seeks during tree
traversal.

As shown in Figure 2.8 B-trees have a larger fanout compared to BSTs and again three hierarchy
levels: a root node, internal nodes, and leaf nodes. Compared to BSTs they also have a lower height.
For a B-tree, the keys of the nodes (the indexed values) are sorted, and each node contains dozens
of items. Therefore, only for level jumps disk seeks are needed and the lookup within the nodes
itself can be done efficiently, for example by using binary search. B-trees work efficiently not only
for point queries (=), but also for range queries (<, >, ≤, ≥). In general, the complexity of searching
elements within B-trees can be stated to be𝑂(log(𝑛)).
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Figure 2.8: Illustrated structure of a B-tree according to Petrov (2019, Figure 2-9)

Next to the high performance, the B-tree index implementation of PostgreSQL comes with addi-
tional advantages. These advantages include the capability of defining the ordering of the indexed
data, the option to createmulti-column indices, clusterability, and the possibility to configure how
NULLs are handled within the index (Rogov, 2019).

GIN index

The term GIN index stands for “Generalized Inverted Index” (PostgreSQL Global Development
Group, 2023b), referring to its capability of indexing complex data types, such as arrays and JSON
documents, in contrast to simple data types like integers and strings, which makes it a more “gen-
eralized” form of an inverted index. It is tailored to support search queries of element values
occurring in the indexed composite types, such as a search for a word occurring in a set of text doc-
uments. Internally the GIN index stores tuples of named element values and a so-called “posting
list”. This posting list itself is again a set of row IDs that identify the composite data in which the
according element appears. Thereby, each element value referred to as “key” appears only once in
the GIN index. In contrast, the same row IDmight occur multiple times in different posting lists,
such as a word occurring in multiple text documents.

As shown in Figure 2.9, the mentioned posting list is stored in different ways depending on its size.
If its size, together with the indexed key, does not surpass the defined size of the leaf node tuple, a
list of heap pointers to the row IDs is stored (PostgreSQL Global Development Group, 2023a).
In contrast, a heap pointer leading to a B-tree of heap pointers is stored if the posting list is too
large to be stored in the leaf node page. Further, the GIN index, as implemented in PostgreSQL,
comes with a pending list of queued GIN index updates. With that list of pending updates, these
can be applied batch-wise instead of individually, which improves the update efficiency. This

6GIN Internals: https://www.postgresql.org/docs/current/gin.svg (accessed 2023-12-22)
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Figure 2.9: Structure of a GIN-index according to PostgreSQL Global Development Group (2023a, Fig-
ure 70.1.)6

performance improvement is crucial, given that updates to the GIN index are pretty expensive.
Even a single added item/documentmight causemany posting lists to be updated, given that many
keys might be contained in the added item.

2.4.2 Database partitioning

“Partitioning in database design is the process of assigning a logical object (relation) from the
logical schema of the database to several physical objects (files) in a stored database.” (Navathe
et al., 1984) Informally, during partitioning logically related data is separated intomultiple chunks
and stored in physically different places. These techniques are relevant to multiple computing
environments. Such use cases include the distribution of data across multiple computing nodes
in a distributed database design, partitioning of data according to primary and secondary memory,
as well as distributing data across multiple physical devices (Ceri et al., 1982; Navathe et al., 1984).
It aims at faster data access and improved query performance. Therefore, to partition data in a
way that data access performance is improved, it is crucial to investigate typical data access patterns
(Ceri et al., 1982). In a relational database setting, where data is stored in multi-columnar tables
of records, data can be partitioned horizontally (Ceri et al., 1982), i.e., into sets of records, or
vertically (Navathe et al., 1984), i.e., by sets of columns. Navathe et al. (1984) describe the two
partitioning techniques as follows: “Vertical partitioning subdivides attributes into groups and
assigns each group to a physical object. Horizontal partitioning subdivides object instances (tuples)
into groups, all having the same attributes of the original object.”
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2.4.3 PostgreSQL

PostgreSQL7 (a.k.a. “Postgres”) (Stonebraker and Rowe, 1986) is an open source object-oriented
RDBMS. It is a popular database system (solid IT gmbh, 2023) and is commonly used in industrial,
as well as academic settings (seeDing et al. (2019) andMiler et al. (2014)). PostgreSQL comes with
a rich set of features, such as B-tree-based access methods (see Section 2.4.1) and partitioning of
data according to different memory levels (Stonebraker and Rowe, 1986). Further, it is explicitly
designed to work with time-varying data (Stonebraker and Rowe, 1986). Not only current tuples,
but also historical data can be retrieved. Also, parts of the time-varying data can be materialized
and stored in the form of snapshots for faster access performance of subsequent queries. Different
use cases might come with different data requirements, such as geographic information systems
require to work with geographic objects (Stonebraker and Rowe, 1986). PostgreSQL facilitates
such customization and extensions in multiple ways. First of all, its open source nature allows
to inspect the source code and helps to understand the software’s internal workings. Secondly,
PostgreSQL allows to define custom object types, along with specialized operators and access
methods (Stonebraker and Rowe, 1986). Multiple PostgreSQL extensions to deal with domain-
specific use cases exists, such as TimescaleDB to work with time series data.

2.4.4 TimescaleDB

TimescaleDB is a PostgreSQL extension to work with time series data (Timescale, Inc., 2023). It
enriches the native PostgreSQL capabilities to deal with time-varying data with more advanced
time series and analytics features. These features include among others auto-updatingmaterialized
views, enhanced data compression, and data distribution across multiple databases. As core con-
cept, TimescaleDB leverages so called “hypertables” which are native PostgreSQL tables that are
horizontally partitioned into subsets of tuples, so called “chunks”. Partitioning is based on a given
time attribute. The size of these chunks are defined by the chunk_time_interval parameter
which determines the time window or snapshots size of respective data subsets. Hypertables can
also be distributed across a cluster of multiple databases. In such a setup, hypertables are then
called distributed hypertables. For a more visual understanding of how PostgreSQL tables are
partitioned into time-based chunks in the form of hypertables, see Figure 2.10.

7PostgreSQL: The world’s most advanced open source database: https://www.postgresql.org (accessed 2023-
07-07)

8TimescaleDB hypertable visualization: https://assets.timescale.com/docs/images/getting-started
/hypertables-chunks.webp (accessed 2024-01-09)

43

https://www.postgresql.org
https://assets.timescale.com/docs/images/getting-started/hypertables-chunks.webp
https://assets.timescale.com/docs/images/getting-started/hypertables-chunks.webp


2 Fundamentals

time value

2023-12-06 02:00:00 12

2023-12-06 12:00:00 23

2023-12-06 19:00:00 43

2023-12-07 03:00:00 11

2023-12-07 10:00:00 27

2023-12-07 23:00:00 43

2023-12-08 09:00:00 19

2023-12-08 14:00:00 25

2023-12-08 21:00:00 53

Normal Table

time value

Hypertable

2023-12-06 02:00:00

2023-12-06 12:00:00

2023-12-06 19:00:00

12
23
43

Chunk ID 1

2023-12-07 03:00:00

2023-12-07 10:00:00

2023-12-07 23:00:00

11
27
43

Chunk ID 2

2023-12-08 09:00:00

2023-12-08 14:00:00

2023-12-08 21:00:00

19
25
53

Chunk ID 3

chunk_time_interval = "1 day"

Figure 2.10: Visualization of the hypertable concept as used by the TimescaleDB extension according to
Timescale Inc. (2024)8

2.4.5 Apache AGE

Apache AGE9 is a PostgreSQL extension which enhances the database’s native features by capa-
bilities typically found in graph databases. Most notably, the extension allows the execution of
openCypher10 queries against the stored graph data. In addition to the PostgreSQL extension
itself, the Apache AGE project provides users with a web application for the graph-based data
exploration and analysis. The user interface is termed “Apache AGE Viewer”. Technically the ex-
tension follows the LPG (Angles, 2018)model to represent stored graph data. In version 1.1.0 of
the extension, each created graph is stored in a separate namespace and related objects (nodes and
vertices) get assigned unique ids. These objects are redundantly stored in separate tables according
to their labels, as well as in the tables _ag_label_vertex and _ag_label_edgewhich contain
all the nodes and edges respectively (Farias, 2023). Properties of nodes and edges are stored in the
form of JSONB data in an additional column within the same tables.

2.4.6 Neo4j

Neo4j11 is a fully-featured graph analytics platform which also includes the Neo4j graph database.
The GDBMS is offered in a free-to-use community edition, which can be self-hosted and run on
commonly used platforms, such as Linux orWindows. Given the system’s Java-based implementa-

9Apache AGE: https://age.apache.org (accessed 2023-07-07)
10openCypher · openCypher: https://opencypher.org (accessed 2023-07-25)
11Neo4j Graph Database & Analytics | Graph Database Management System: https://neo4j.com (accessed 2023-

07-25)
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tion, it is required to have a compatible Java12 Virtual Machine (JVM) installed and set up on the
respective operating platform. Independent of the underlying computing platform, the database
itself comes with a rich set of configuration options, such as the JVM’s heap size or the maximum
number of memory a single transaction can use. Regarding data modeling, the Neo4j database
follows the property graph model (Angles, 2018) and the stored data can be queried using the
Cypher language. Neo4j’s Cypher implementation itself is based on openCypher.

12Java | Oracle: https://www.java.com (accessed 2023-10-10)
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3 Network Analytics Model

This chapter describes the datamodel used for themedia analyses presented in subsequent chapters.
The model builds on the theoretical basis outlined in Chapter 2 and mainly leverages concepts
from network science, especially temporal graph analysis. Thereby, the model is tailored to the
use case of media analysis and corresponding requirements.

In the following, Section 3.1 elaborates on these requirements. Subsequently, in Section 3.2, the
network model is described concerning its topology. Then, in Section 3.3, this model is extended
to capture the temporal evolution of modeled data. Furthermore, Section 3.4 describes network
projections as a valuable tool for analyzing modeled networks. Next, Section 3.5 introduces a
system of different network perspectives. According to different granularities, both topological
and temporal, different points of view on the data can be defined. Finally, the chapter is concluded
by discussing the proposed model in Section 3.6.

3 .1 Requirements

Several requirements for a media analysis model can be formulated based on practical experiences
gained during the EPINetz project. It is crucial to consider these requirements carefully as the
model must be used for different data sources and in various analysis scenarios. Even though the
requirements are based on practical insights, completeness is still not guaranteed, and additional
requirements might arise from the specific use case. The general requirements of a target model
are outlined in the following:

Flexibility and extensibility: The model must be flexible and extensible in a way that it needs
to be applicable to different analysis use cases. Such use cases include, but are not limited to, trend
analysis as described in Chapter 4 or the analysis of conversations (see Chapter 5). Further, flexi-
bility is not only required concerning the usage of the model but also regarding the modeled data
itself. The model needs to cope with heterogeneous kinds of data, and this heterogeneity comes
in different forms. First, data might be heterogeneous regarding its formats, such as differently
structured JSON files or various forms of HTML documents. This condition needs to be consid-
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ered, especially in cases where data is collected from different media platforms, e.g., social media
and news outlet websites. Secondly, with a more detailed perspective on the data, heterogeneity
might also be related to how the collected data is structured. Some datamight come in a structured
format following a well-defined schema. In contrast, other data might only be semi-structured or
even unstructured, which is especially true for social media data (Gerhardt et al., 2012). Finally,
heterogeneity might come from semantic differences between the data. It might cover multiple
domains, such as user profiles, social media posts, or publication metrics. Altogether, a target
model should comewith sufficient flexibility and extensibility to integrate multiple heterogeneous
data sources and give the practitioner a more structured and homogeneous perspective on the
modeled data to leverage it for various analysis use cases.

Time sensitivity: As another requirement of the data and analysis model, one can state its capa-
bility to work with temporally evolving data. Media data is inherently time-dependent as discussed
topics, participating actors, or even the platforms themselves are constantly changing. Therefore, a
model needs to capture the dynamics of the data. Temporal sensitivity is crucial formany use cases,
such as information diffusion, trend and discourse analysis or event detection. In this regard, the
use cases might rely on different temporal resolutions. For some scenarios, temporal information
given on a daily basis might be sufficient, whereas other scenarios might demand higher temporal
resolutions, such as hours or minutes. Consequently, the model should be able to cope with the
different temporal resolution requirements.

Reproducibility: The model needs to guarantee reproducibility. Given the same data, based on
deterministic analyses should lead to the same results. The same is true if analyses are done at
different points in time or are re-produced after an initial run. Also, if data is processed in a way
that less structured data is modeled to follow some schematic structure or if more fine-grained
entities are extracted from given data, a data practitioner should still be able to trace back these
entities to the original, “raw”, data. This way, post-analysis investigations would allow checking
whether processing was done as intended.

Information value: In contrast to data, information is understood as organized data that allows
to answer simple questions about the world (Gartner, 2016, p. 10; Ackoff, 1989). In this sense,
less organized data needs to be processed to be effectively used as information, e.g., in a decision-
making process. Information, as opposed to data, is on a higher “knowledge” level. The proposed
model should provide a framework to analyze processed data and effectively use it as information
and, therefore, increase its “knowledge” level. For example, suppose one wants to ask questions
about the mentioning activity of actors on a social media platform. In that case, it is of more
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informative value to have the data modeled as a mention network, in contrast to the unprocessed
social media posts.

Efficiency: For a data analytics model to be used in a practical setting, it should guarantee efficient
usage of available computational resources. Still, in this chapter, the focus is placed on the layout
of the proposedmodel and less on its efficient application. Its actual implementation is elaborated
on in Chapter 6 regarding resource-saving storage and computation.

3 .2 Network Model

For media analytics use cases, data often comes from different sources in an unstructured and
heterogeneous way. Given their modeling flexibility, networks as introduced in Section 2.1 and
especially HINs can cope with these conditions, which is why they are used as the elementary
data model. The following sections describe in detail how unstructured social media data can be
modeled as such an information network (Sections 3.2.1, 3.2.2, and 3.2.3). Also, in Section 3.2.4,
the complete process is detailed based on a Twitter data example.

3 .2 .1 Document network

On an abstract level, a dataset used in a media analytics scenario can be described as a collection of
documents. These documentsmight be of different types, such as news articles or socialmedia posts.
Nevertheless, abstractly, they are referred to as documents. Further, these documents might also
be related, and the relationshipsmight be relevant to the individual analytics use case. For example,
a tweet might be a retweet of another tweet, or a news article might reference another. Defining
relevant relationships is a manual task and requires domain-specific knowledge. Nevertheless, the
present model is not restricted to a pre-defined set of documents and relationships but treats them
as abstract concepts. Formally, the specification of a document network is given in Definition 3.1,
and Figure 3.1 visualizes the corresponding network schema.

Definition 3.1 (Document network). With a given set of documents𝐷 and links among these
documents, referred to as 𝐿𝑑, a document network is defined as a directed graph𝐺𝑑 = (𝐷, 𝐿𝑑). Each
of the network’s links 𝑙𝑑 ∈ 𝐿𝑑 connects two documents, 𝑑𝑖

𝑙𝑑−→ 𝑑𝑗, and is denoted as a tuple of
these documents: 𝐷 × 𝐷 → 𝐿𝑑.

Already at this point, the document network can be described as HIN. Not only may the network
contain different types of documents like news articles or tweets, but documents might also be
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Figure 3.1: Document network schema. Document nodes are marked blue, and links in grey.

linked by different types of relationships. Table 3.1 lists examples of document node types and
corresponding relationship types.

Table 3.1: Node and link types of exemplary document networks

Document node type Link type(s)

tweet retweet, reply
Twitter user profile following
news article reference
webpage hyperlink
Instagram user profile following

Remark. Notably, one has to distinguish between the node and relationship types described by
the network model and those of actual network instances. Abstractly, analyzed documents are
modeled as nodes connected by links in the according document network. Nevertheless, in an
actual document network instance, these documents and links might be of different types (see
Table 3.1). Still, the topological schema of the network might be the same. In the following
sections, modeling follows the same approach. Keeping the model at this abstraction level allows
different and heterogeneous datasets to be modeled and analyzed, as stated in the requirements
Section 3.1.

3 .2 .2 Entity network

The documents described in Section 3.2.1 might contain additional data relevant to a given use
case. This data should explicitly bemodeled as well. For that, additional entities are extracted from
these documents, e.g., hashtags and usernames contained in tweets, and are then added to the
network. Different types of extracted entities are modeled as different node types. Thereby, we
refer to entities as an abstract concept, similar to that of “objects”. Depending on the exact use case,
different entity types are relevant. Deciding which entities are relevant and should be extracted
from the documents needs manual intervention and requires domain-specific knowledge. More
detailed guidance on the selection of valuable entities is given in Section 3.2.2. Also, the entity
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extraction process is not explicitly specified but treated as an abstract stepwith documents as input
and extracted entities as output. Themodel only describes how extracted entities are incorporated
into the network. For example, methods known from natural language processing (NLP) might
be used to extract entities from text data contained in the documents. See the survey by Yadav and
Bethard (2019) for an overview of the named entity recognition topic. Formally, the extraction
process is specified in Definition 3.2, and Table 3.2 gives examples of documents, together with
contained entities that might be extracted for analysis purposes.

Definition 3.2 (Entity extraction). Given a set of documents 𝐷, entities denoted as 𝐸 can be
extracted from these. A single extracted entity is referred to as 𝑒: 𝑒 ∈ 𝐸. Further, the extraction
process of entities from documents is defined by a function that maps each document to a subset
of entities: 𝜖 ∶ 𝐷 → 2𝛦.

Table 3.2: Examples of documents, contained entities, and corresponding relationship types

Document Entities Relationship type(s)

tweet hashtag, username, URL usage, mention, usage
Twitter user profile country residence
news article keyword, tag occurrence, description
webpage URL reference

Remark. Relationships, as outlined in Table 3.2, often imply some hierarchy and are, therefore,
formulated in a way that implies directionality. Still, edge types that describe the relationship
following one or the other direction can be formulated. For example, compare the two semantic
descriptions of a relationship between a tag and a news article: “A tag describes a news article.” vs.
“A news article is described by a tag.” To take this into account, links between entities and docu-
ments can, in general, be characterized as bidirectional. Nevertheless, only a single instance of the
relationship is considered part of the network. The link going in the other direction can be derived
as the inverse of that relationship. As the default choice, the edges from the document to the
extracted entity are taken into account. Other network models also consider inverse relationship
types, such as the work byMilani Fard et al. (2019) on meta path prediction in temporal HINs or
the work by Bronson et al. (2013) in which they present a system to access the social graph data of
the Facebook platform.

We refer to the document network extended by the extracted entities as entity network. In this
network, the entities are linked to the documents they are extracted from. These relationships are
labeled and come with a semantic meaning. Definition 3.3 formalizes the entity networks.
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Definition 3.3 (Entity network). The documents𝐷 and extracted entities 𝐸 as nodes, together
with the links among documents 𝐿𝑑 and links between documents and entities 𝐿𝑒, make up the
entity network 𝐺𝑒. It is defined as directed graph 𝐺𝑒 = ({𝐷 ∪ 𝐸}, {𝐿𝑑 ∪ 𝐿𝑒}). Each link 𝑙𝑒 ∈ 𝐿𝑒
connects an entity to the document it is extracted from: 𝑑

𝑙𝑒−→ 𝑒.

At this stage, the network contains the documents and entities as nodes, as well as the relationships
among documents and between documents and entities as links. Given that the same entities
might be extracted from different documents in the entity network, two documents might also
be linked via shared entities. Such latent relationships can be described by meta paths as formerly

defined in Definition 2.19. These meta paths follow the structure of 𝑑
𝑙𝑒−→ 𝑒

𝑙−1𝑒−−→ 𝑑.
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Figure 3.2: Schema of a single document entity network. Entity nodes are marked orange, red, green, or
yellow.

As illustrated in Figure 3.2, a subnetwork describing a single document and extracted entities fol-
lows the topology of an ego-network with the document at its center. Linking extracted entities
with the original document allows retracing the extraction process, which is essential for repro-
ducibility purposes (see Section 3.1). Entities included in the network can be traced back to their
origin even after the extraction is completed. This way, extraction procedures can be reviewed, and
entities extracted from a specific document can be removed from the network at any time. Further,
the entity extraction process and entity network model satisfy the “flexibility and extensibility”,
and “information value” requirements as outlined in Section 3.1. The entities can be extracted
from differently structured, or unstructured data, which comes withmuch flexibility as the model
can also deal with this kind of data heterogeneity. Also, even after an initial extraction process,
other entities can extend the network. Further, the entity networkmodel transforms the processed
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data to be more structured, which is crucial for many analytics use cases and transforms the data
into more valuable information.

Which entity types should be considered for entity networks?

The selection of entities that should be considered during the entity network construction process
depends on the exact use case and analysis scenario. Therefore, at least to some extent, domain-
specific knowledge is required. Nevertheless, some guidelines regarding the appropriate entity
types can be outlined. First, only entity typeswith a limited number of possible values also denoted
as nominal data, should be considered. This restriction helps to avoid polluting the network with
many entity nodes but instead focuses on the most semantically expressive ones. These might, at
least on average, be linked to more document nodes, leading to higher connectedness within the
network. Such entities might be contained in the data itself, or its associated metadata which is
typically described as “[…] data about data.” (Gartner, 2016, p. 2) For example, raw Twitter data
comes with associatedmetadata such as the username of the account that posted the tweet, its date
and location, and statistics about the user, such as the follower count (Gartner, 2016, Figure 1.1).
Especially structural metadata, which is defined as “[…] metadata designed to help us discover
and locate the data it refers to” (Gartner, 2016, p. 6) should be considered for the selection of
appropriate entity types as it already provides a good indication of possible entity categories and
filters to analyze the data.

3 .2 .3 Document attributes

Some of the information in the datamight not be appropriatelymodeled as separate node or entity
type but is better suited to be represented by an attribute assigned to related document nodes.
Examples of such attributes include statistics like the number of followers related to a Twitter
profile or the number of comments belonging to a news article. Table 3.3 shows more details
about exemplary document node attributes. Formally, the attribution process can be described
as mapping 𝜋𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 between the set of documents𝐷 and the domain of the respective attribute.
Not all types of documents have the same attributes. Therefore, the attribute mappings are partial
functions. They are undefined for the documents that do not have the respective document node
attribute. For example, all news article document nodes are undefined for the attribute, which
describes the number of followers on Twitter.

Especially time-related attributes, like the publication date of news articles or the timestamp of
tweets, are essential to model the dynamics of described networks. This modeling step is described
in detail in Section 3.3.
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Table 3.3: Examples of attribute mappings with𝕋 denoting the domain of time.

Description Function Codomain

number of Twitter follower 𝜋𝑡𝑤𝑖𝑡𝑡𝑒𝑟 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ℕ
publication date 𝜋𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑒 𝕋
number of news article references 𝜋𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ℕ
number of retweets 𝜋𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑠 ℕ

3 .2 .4 Twitter network example

In the following, we illustrate the model described above using a network extracted from Twitter
data. To begin with, Listing 3.1 shows data of a tweet as retrieved by the Twitter API v2. Different
parts of the raw JSON data are highlighted as they represent the tweeted document and related
entities modeled in the respective entity network. These node types are also given as examples in
Table 3.2. Further, the publication date of the presented tweet, “created_at”, is highlighted as this
information is represented as an attribute belonging to the tweet document node (see Table 3.3).
Leveraged colors align with the color coding used in Figure 3.2.

Listing 3.1: Excerpt of raw Twitter (tweet) data (Twitter, Inc., 2022, modified). The color coding corre-
sponds to the coloring leveraged for the network illustrations.

"tweets" : [

{

"conversation_id": "1304102743196356610",

"id": "1304102743196356610" ,

"public_metrics": {

"retweet_count": 31,

"reply_count": 12,

"like_count": 104

},

"entities": {

"mentions": [

{

"start": 146,

"end": 158,

"username": "suhemparack"

}

],

"hashtags": [

{
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"start": 8,

"end": 19,

"tag": "TwitterAPI"

}

]

},

"text": "The new #TwitterAPI includes some improvements to the Tweet

↪ payload. You're probably wondering — what are the main differences?

↪ 🧐\n\nIn this video, @SuhemParack compares the v1.1 Tweet

↪ payload with what you'll find using our v2 endpoints. https://t.co/

↪ CjneyMpgCq",

"created_at": "2020-09-10T17:01:37.000Z" ,

"author_id": "2244994945"

}

]

The respective entity “ego-network” (see Section 3.2.2) extracted from the raw tweet data as shown
in Listing 3.1 is given in Figure 3.3. The tweet document node is shown at the center with the
tweet ID as the node identifier and its publication date assigned as an attribute. Further, two
extracted entities, a hashtag, “#TwitterAPI”, and a mentioned user, “@SuhemParack”, are linked
to the document node. The network only consists of a single document, and no links between
documents exist. Nevertheless, as outlined in Section 3.2.1, the proposed model also deals with
relationships between multiple documents, in this case, tweets. To illustrate these relationships
Listing 3.2 gives an additional, fictitious tweet document excerpt following the structure of tweet
replies used by the Twitter API v2 (Twitter, Inc., 2022).

Listing 3.2: Fictitious Twitter (tweet reply) data (Twitter, Inc., 2022, modified)

"data": [

{

"conversation_id": "1304102743196356610",

"text": "See how @SuhemParack is using the new Twitter API.",

"referenced_tweets": [

{

"type": "replied_to",

"id": "1304102743196356610"

}

],

"entities": {

"mentions": [

{
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"start": 8,

"end": 20,

"username": "suhemparack"

}

]

},

"id": "1304102743196356689" ,

"public_metrics": {

"retweet_count": 9,

"reply_count": 3,

"like_count": 26

},

"author_id": "2544984325",

"in_reply_to_user_id": "2244994945",

"created_at": "2020-09-11T16:05:31.000Z"

}

]

Figure 3.4 shows the network of Figure 3.3 extended with the data extracted from Listing 3.2.
Now, the network contains another document node connected to the first one by a “reply”
relationship. Further, the two document nodes are indirectly linked by their shared user

1304102743

196356610

#TwitterAPI




@SuhemParack



2020-09-10T17:01:37

mention

usage

Figure 3.3: Entity network extracted from tweet data as shown in Listing 3.1. Timestamps are marked
purple.
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node, labeled as “@SuhemParack”. Latent relationships like these are described by the meta
path 𝑡𝑤𝑒𝑒𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠−−−−−−−→ 𝑢𝑠𝑒𝑟

𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑏𝑦
−−−−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡 or, in this case, the actual meta path instance

𝑡𝑤𝑒𝑒𝑡1
𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠−−−−−−−→ 𝑆𝑢ℎ𝑒𝑚𝑃𝑎𝑟𝑎𝑐𝑘

𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑏𝑦
−−−−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡2. The two connected tweets are further spec-

ified by their IDs given as respective document node attributes: 𝜋𝑖𝑑(𝑡𝑤𝑒𝑒𝑡1) = 13[…]10 and
𝜋𝑖𝑑(𝑡𝑤𝑒𝑒𝑡2) = 13[…]89.

1304102743

196356610

#TwitterAPI




@SuhemParack



2020-09-10T17:01:37

mention

usage

1304102743

196356689

2020-09-11T16:05:31

mention

 reply 

Figure 3.4: Extended tweet entity network

3 .2 .5 Related work

Many document corpora, such as social media posts, research publications, or web pages, can
be modeled as document networks. In this sense, a document network representation models
the documents as nodes connected by use case-specific relationships (e.g., social media following,
citations, or hyperlinks). Notably, the terminology around “document networks” is not used con-
sistently throughout different academic disciplines. Some document network models represent
the documents themselves as networks. Thereby, the networks consist of the words contained
in the documents. Other node types, such as named entities, keywords, or URLs, might also
be used. In the document networks, the nodes are then linked by use case-specific and seman-
tically expressive relationships such as sentence distance or similarity. Works that leverage such
document network model include Rafi et al. (2014), Rousseau and Vazirgiannis (2013), or Spitz
and Gertz (2016). Described document networks are often referred to as semantic networks (see
Section 2.3).
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Further, Spitz (2019) describes in his thesis a graph-based approach tomodel document collections
via implicit networks constructed based on term and entity co-occurrences. His model also covers
enriching the extracted graph with data from external knowledge bases. Additionally, by propos-
ing a generalization of his basic model, which leverages hypergraphs, higher-order co-occurrences
are also taken into account. In contrast to the model proposed in this thesis, the model by Spitz
(2019) is tailored to the use cases of natural language analysis, and itmainly leverages co-occurrence
relationships. Our model specifically models various types of semantically meaningful relation-
ships and focuses on entities extracted from documents, including their relationships. Also, we
explicitly consider links on a document level.

Apart from terminological inconsistencies, document networks have in the past been successfully
leveraged in different use case scenarios, such as topic modeling (Chang and Blei, 2009; Yang et al.,
2016; Spitz and Gertz, 2018) or document clustering (Rafi et al., 2014). In their work, Schuh-
macher and Ponzetto (2014) use the DBpedia knowledge graph (Auer et al., 2007) to model text
documents as semantic networks based on occurring entities and their semantic relationships. Fol-
lowing their approach, a document’s semantic network consists of the named entities mentioned
in the document and which are known from DBpedia. Further, these entities are linked via re-
lationships that are as well found in the knowledge base. Relationships could be direct links or
indirect multi-hop paths between two entities. Schuhmacher and Ponzetto (2014) successfully
apply their model to entity ranking tasks and to specify document similarity.

Furthermore, in their work, Sun et al. (2010) apply the task of community detection to dynamic
HINs. Thereby, they focus on networks that follow a star-like schema. The objects in the center
of the network are referred to as “target objects” (e.g., research publications), and the others are
described as “attribute objects” (e.g., authors, conferences). This pattern is similar to the entity
networks described in Section 3.2.2. The subgraph with the document at the center and the
extracted entities on edge follows the same topology. In this sense, documents can be seen as target
objects and the extracted entities as attribute objects.

Further related concepts regarding the document attributes outlined in Section 3.2.3 exist. Most
notably, the approach of assigning additional attributes to nodes and edges in a graph is described
by the property graph model (Rodriguez and Neubauer, 2010; Angles, 2018). Graph database
systems commonly implement this model (Angles, 2018). Rodriguez andNeubauer define a prop-
erty graph as “[…] directed, labeled, attributed, multi-graph […]” (2010, p. 3). Property graph
edges come with an orientation, and multiple edges can exist between the same two vertices. Ver-
tices might be typed and/or might have attributes. These attributes correspond to the document
attributes described in Section 3.2.3.
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3 .3 Modeling Dynamics

As already stated in Section 3.1, for a holistic analytics model, it is crucial to consider the temporal
nature of social media data. Therefore, in this section we cover how the model presented in
Section 3.2 is extended to deal with the data’s temporal dynamics. For this, Section 3.3.1 covers
an extension to the network model in the form of temporal network snapshots and Section 3.3.2
compares different temporal-sensitive analysis methods.

3 .3 . 1 Temporal network snapshots

Documents, as described in Section 3.2.1, usually comewith a characteristic timestamp as they are
created, changed, or published at a given point in time. This temporal information is represented
in the outlined model as document node attributes. The according attribute mapping assigns
timestamps to each document in the analyzed dataset: 𝜋𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∶ 𝐷 → 𝕋, where 𝕋 refers to
the domain of time, which is presumed to beℝ+ (see Xu (2021)). Documents without temporal
information are not considered since these cannot be localized in time, and it would be unclear
when respective information should be included in the network model.

Remark. As an alternative to modeling the temporal dimension as a document node attribute,
onemight argue that a particular node type should represent time. Other nodeswould be linked to
respective time nodes to indicate their timestamps. Nevertheless, as time is a continuous variable
and not of nominal scale, its values cannot, without restriction, be limited, e.g., to days, weeks, or
months. Therefore, to preserve generalization, time should not be represented as a separate node
type in the network model but instead as a node attribute to follow the argumentation outlined
in Section 3.2.2.

The temporal information provided by the document timestamps allows us to extend the network
model presented in Section 3.2 and to incorporate its temporal dynamics. For this, the document
network is split into temporal snapshots. Each document network snapshot consists of only the
subset of documents and their relationships with a timestamp, that falls into the time window the
corresponding snapshot covers. Converting the temporal network into a temporal sequence of
static snapshots usually facilitates their analysis (Holme and Saramäki, 2012).

Definition 3.4 (Document network snapshot). The time 𝑇 is split into multiple time windows
to derive the document network snapshots. Thereby, a time window 𝑤𝑖 = [𝑡𝑖, 𝑡𝑖+1] covers the
time range between 𝑡𝑖 and 𝑡𝑖+1. A document 𝑑 is part of the respective network snapshot if 𝑡𝑖 ≤
𝜋𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑑) ≤ 𝑡𝑖+1 holds. The document network snapshot of the time window 𝑤𝑖 is referred to
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as 𝐺𝑖𝑑 = (𝐷𝑖, 𝐿𝑖𝑑) with𝐷
𝑖 denoting its document nodes and 𝐿𝑖𝑑 the respective links among these

documents.

It is noted that the time windows used to split the network into snapshots can be of different sizes.
The interval 𝑡𝑖+1 − 𝑡𝑖 might not necessarily be as large as the interval 𝑡𝑖+3 − 𝑡𝑖+2. Nevertheless, time
windows have to be at least temporally ordered. For the two time windows 𝑤𝑖 = [𝑡𝑖, 𝑡𝑖+1] and
𝑤𝑖+1 = [𝑡𝑖+2, 𝑡𝑖+3], 𝑡𝑖+1 < 𝑡𝑖+3 has to hold. Notably, this definition does not imply the condition
𝑡𝑖+1 <= 𝑡𝑖+2. Therefore, two subsequent network snapshots might also be temporally overlapping.
For example, the snapshotsmight be defined in an accumulativewaywith 𝑡𝑖 = 𝑡𝑖+2 = 𝑡𝑖+4 = … = 𝑡0.
Following such an approach means that for each snapshot, all past documents with respect to the
snapshot’s ending time are taken into account and are part of the network.

Abstractly, splitting the network into temporal snapshots is based on the discretization of time.
This discretization can be defined either directly by specifying time windows that serve as the basis
for the network aggregation or indirectly by splitting time according to another non-temporal
metric. As such, numerous ways of defining network snapshots exist. In general, determining an
appropriate sampling approachdepends on the analysis use case andmight require domain-specific
knowledge. Multiple sampling methods are outlined in the following:

• Fixed time window sizes: Straight-forward, time can be split into equally sized time
windows for discretization. Thereby, the time interval for each time window is of the same
size: 𝑡𝑖+1 − 𝑡𝑖 = 𝑡𝑖+3 − 𝑡𝑖+2. This approach can be seen as direct discretization strategy. In
contrast, unequally sized time windows are unsuitable without another metric to define
the discretization, as a comparison of networks across snapshots is invalid or at least less
meaningful. However, fixed time window sizes that might be used are days, weeks, or
months. Also, the same networkmight be sampled according to different timewindow sizes.
Different time window sizes relate to different temporal resolutions, as smaller windows
lead to a higher temporal resolution. For a more elaborate discussion on the implications
of the different temporal resolutions, see Section 3.5.2. Further, it has to be noted that for
the accumulative creation of network snapshots, sampling by fixed time windows is not
possible. By definition, subsequent snapshots always cover a larger period than the previous
snapshots. Nevertheless, keeping the additional period covered by the following network
snapshot constant might be an appropriate extension of the fixed time window sampling
employed in an accumulative setting: 𝑡𝑖+3 − 𝑡𝑖+1 = 𝑡𝑖+5 − 𝑡𝑖+3.

• Volume-based: Given the document network of time window 𝑤𝑖 as 𝐺
𝑖
𝑑 = (𝐷𝑖, 𝐿𝑖𝑑), the

volume-based approach can be defined by the constraint that |𝐷𝑖| = |𝐷𝑖+1| needs to be
fulfilled. Each temporal document network snapshot contains the same number of docu-
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ments, e.g., tweets or news articles. Such an approach is especially suitable for use cases in
which fixed time window sizes would lead to a highly skewed distribution of documents
across the snapshots. In these scenarios, some snapshots contain a lot more documents
than others. This unequal distribution of documents makes a comparison of snapshots less
meaningful. With the volume-based sampling of the networks, their sizes are normalised,
and comparison becomes useful again. Indirectly, taking the document count as a metric to
split the network into snapshots also discretizes time. Respective time windows are defined
so that each network contains the same number of documents. An unequal temporal dis-
tribution of documents inevitably leads to unequal time intervals, which sets this approach
apart from the one using fixed window sizes. Furthermore, in an accumulative network
setting, volume-based sampling, as described above, is not possible, at least if more docu-
ments are added to the dataset over time, and the removal of documents is not allowed. In
such a scenario, |𝐷𝑖| <= |𝐷𝑖+1| always holds. Nevertheless, the volume-based sampling
has a natural extension to fit the accumulative setting. For this, the number of newly added
documents per snapshot is kept constant: |𝐷𝑖+1| − |𝐷𝑖| = |𝐷𝑖+3| − |𝐷𝑖+2|. The CODY
model presented in Section 5.3 employs such a sampling strategy.

• Use case-specific: Depending on the context, there might also be more appropriate use
case-specific strategies to partition the temporal network data into snapshots that are nei-
ther based on fixed time windows nor the volume of analyzed documents. For example, in
the work about actor-networks underlying trends examined in Section 4.2 the temporal se-
quence of detected trends is leveraged to define the time windows of the network snapshots.
Given that trends might occur irregularly, the time windows of the snapshots might also be
of different sizes and cover a variable number of documents. In contrast to the “fixed time
window” method, these approaches also indirectly discretize time.

Remark. The present model does not consider links between documents of different snapshots.
For every link 𝑑𝑘

𝑙𝑑−→ 𝑑𝑙 the linked documents 𝑑𝑘 and 𝑑𝑙 have to be part of the same snapshot:
𝑑𝑘 ∈ 𝐷

𝑖 ∧ 𝑑𝑙 ∈ 𝐷
𝑗 with 𝑖 = 𝑗. Other document links are not considered. Therefore, it is crucial

to select an appropriate snapshot strategy carefully. Not too much information relevant to the
analysis use case should be contained in the links between document snapshots. Instead, the
most relevant information should be contained in the links within the temporal snapshots. As an
example, if one is interested in the interactions among Twitter users and the main interactions are
happening during weekdays, the time windows should be defined to go fromMonday to Sunday
and not from one Wednesday to the other, as this approach would omit valuable links between
tweets that are posted on the first days of the week and those that are posted on the other days.
Generally speaking, the snapshots should be defined so that links between these snapshots do not
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play a significant role in the analysis use case. In this way, it is guaranteed that through discretizing
the network, as little information as possible is lost.
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Figure 3.5: To model the dynamics of the network, it is split into multiple temporal snapshots.

Figure 3.5 illustrates the splitting of a document network into snapshots according to given time
windows. The snapshot-based modeling approach allows observing temporal changes in the net-
work structure. Not only temporal changes related to the documents but also related to extracted
entities might be observed. Even though the network snapshots are constructed based on the
timestamps of the document nodes, the entities extracted from these documents, as outlined in
Section 3.2.2, are also part of the snapshot networks. Accordingly, Figure 3.6 visualizes the tem-
poral document snapshots with the extracted entities as part of the networks. These networks are
referred to as entity network snapshots. Each entity network snapshot comprises the document net-
work’s nodes and relationships and the entities and links extracted from these documents.

Definition 3.5 (Entity network snapshot). An entity network snapshot of time window 𝑤𝑖 is
defined as𝐺𝑖𝑒 = ({𝐷𝑖 ∪ 𝐸𝑖}, {𝐿𝑖𝑑 ∪ 𝐿

𝑖
𝑒})with 𝐸

𝑖 and 𝐿𝑖𝑒 referring to the entities extracted from the
documents𝐷𝑖 and the belonging links respectively.

With the entities as part of the temporal network snapshots, analyses based on certain entity types
can also consider their temporal changes. For example, one might be interested in the entities that
are added or removed from one snapshot to the other or how the occurrence of an entity changes
over time.

3 .3 .2 Temporal vs. evolution analysis

During analysis, temporal changes can be investigated from different perspectives. As described
in Section 3.3.1, the analyzed data is split into temporal snapshots. Each snapshot represents an
excerpt of the ongoing evolution of the constructed network. Therefore, the first perspective
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Figure 3.6: Document network snapshots with extracted entities

on the temporal evolution of the network is centered around single snapshots. Questions asked
with this perspective in mind focus on the state of the network at this point or target temporal
properties of individual nodes, edges, or subgraphs. This data analysis method is referred to as
temporal analysis.

In contrast to focusing on a single snapshot, one might also be interested in the evolution of a
particular property or metric across time. Such a property or metric might be the degree of a
specific node or its centrality, the number of documents included in the snapshot network or the
number of interactions among these. An evolution-based analysis starts by deriving the property
values for each network snapshot. This results in a temporally ordered list or time series of values
and allows investigating the temporal evolution of the property across the entire period covered
by the network snapshots. Formally, if one refers to the property calculated for the 𝑖-th snapshot
as 𝑥𝑖, mentioned time series of temporal property values is given as𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛)with
𝑛 being the number of network snapshots. This formalism assumes that the property value can
be derived for each network snapshot. If not, the corresponding null value is used as a property
value for respective snapshots.

Throughout this thesis, both analysis approaches are applied. For example, the analyses conducted
in the context of long-term social media trends detailed in Section 4.1.5 illustrate the difference
between temporal and evolution analysis. While comparing the state of the trend networks at
different points in time corresponds to a temporal analysis (see Figure 4.4), does the investigation
of how the trend prevalence change over time fit with the characteristics of an evolution analysis
(see Figure 4.5).
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3 .3 .3 Related work

Different approaches for modeling the temporal evolution of networks exist, and the terminology
used varies a lot. For more details on this topic, please see Section 2.1.5. Nevertheless, commonly,
the modeled temporal information is attributed to the networks’ edges. This attribution, how-
ever, contrasts the model presented in Section 3.3.1. In line with the data structure of document
corpora, timestamps are modeled as document node attributes. Furthermore, the differentiation
between temporal and evolution analysis proposed in Section 3.3.2 and previously outlined in
Section 2.1.5 aligns with the understanding applied by Rost et al. (2023) who also differentiate
between temporal and evolutionary metrics. According to them, the first mentioned metrics are
defined with regard to a specific moment, and the latter ones capture the change within a given
period in the form of a time series.

In contrast to snapshot-based approaches, which aggregate the temporal data into static networks
according to pre-defined timewindows, Kostakos (2009) presents a different approach. Each node
becomes a directed chain of temporal node occurrences in his temporal network model. For each
time a node is part of an edge, a respective node instance is added to the node’s temporal occurrence
chain. Links between the node chains represent the actual temporal edges. This model does not
rely on snapshots, so it differs from the model presented in Section 3.3.1.

Several publications provide a good overview of the temporal network analysis topic, such as the
one byCasteigts et al. (2012) or the survey byWang et al. (2019). Also,more use case-specificworks
exist. For example, Spitz and Gertz (2018) leverage temporal projections, i.e., snapshots, of term
and named entity co-occurrence networks to study the evolution of topics in document corpora.
This approach is similar to the one presented in Section 3.3.1. Still, our approach specifically
includes different network sampling strategies.

Multi-slice networks

An alternative approach to incorporate the temporal information into the network model pre-
sented in Section 3.2 would be multi-slice temporal snapshot networks. Therefore, these should
also be discussed in the context of related work. To apply this approach, one would follow the
formalism outlined in Section 2.1.4 but not consider replica nodes. Instead, a document node
would be part of only the network layer that covers the time window in which the document’s
timestamp falls. With a given time intervalΔ𝑡 to define the network snapshots, the nodes of layer
𝑖would be given as𝑉𝑖 = {𝑑|𝑑 ∈ 𝐷∧(𝑖−1)Δ𝑡 ≤ 𝜋𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(𝑑) < 𝑖Δ𝑡}. This subset of documents
would then be referred to as𝐷𝑖 ⊆ 𝐷. Further, links between two documents 𝑑𝑘 and 𝑑𝑙 would be
intralinks in the case they connect documents with timestamps that fall into the same time win-
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dow, 𝑑𝑘 ∈ 𝐷
𝑖 ∧𝑑𝑙 ∈ 𝐷

𝑗 ∧ 𝑖 = 𝑗, or they would be interlinks in the case they connect documents of
different time windows, 𝑑𝑘 ∈ 𝐷

𝑖 ∧ 𝑑𝑙 ∈ 𝐷
𝑗 ∧ 𝑖 ≠ 𝑗. However, such interlinks are not modeled by

the document network snapshots described in Section 3.3.1. Instead, multi-slice networks with
only intralinks would be more suitable for this model. Also, it should be noted that the multi-
slice network approach relies on fixed time window sizes. In contrast, the model presented in
Section 3.3.1 does not restrict the time windows used to define the snapshots. Also, themulti-slice
network approach does not cover the accumulative creation of network snapshots.

Temporal HINs

As stated in Section 3.2.1, the network containing only document nodes can already be seen as
HIN. It might consist of different document node types, such as tweets and news articles, but also
different document relationship types, such as “retweet” or “reference”. The network becomes
even more diverse by including the entities extracted from the documents. At this step, additional
node types like “URL” or “hashtag” might be added to the network. Now, by modeling the
network as temporally evolving, it can be described as temporalHINmodel. Various works have
already dealt with such temporal information networks. For example, in their workMilani Fard
et al. (2019) apply the task of meta path prediction to dynamic HINs. They understand dynamic
HINs as typed networks with timestamped edges andmodel the network’s evolution as a sequence
of temporal snapshots, in line with the approach presented in Section 3.3.1. Going one step
further, Sajadmanesh et al. (2019) not only try to predict relationships in the setting of temporal
HINs but also propose a method to predict when these relationships will appear in the future.
Focused on community detection, Sun et al. (2010) propose a method to detect heterogeneous
communities in dynamic HINs. They also leverage sequences of temporally-aggregated network
snapshots to analyze the temporal evolution of the studied networks. Using a similarmethodology,
Cuzzocrea and Folino (2013) focus on tracking communities over time and develop a method to
detect changes in the community structure of the analyzed information network. Several other
aspects are studied in the context of dynamic HINs, such as deriving node embeddings (Wang
et al., 2022; Bian et al., 2019), sequential recommendation (Xie et al., 2021), network motifs (Li
et al., 2018), or link inference (Jia et al., 2017; Aggarwal et al., 2012) and prediction (Sett et al.,
2018).

3 .4 Projections

For some analysis use cases, not all information contained in the networks presented in Sections 3.2
and 3.3 might be needed. Sometimes, the heterogeneous nature of the networks might hinder
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or make the corresponding analysis more complex. Therefore, an appropriate method to trans-
late the original, full-blown network into a more condensed version, which only contains the
information needed for the given analysis use case, is needed. Network projections as presented
in this section can be understood as such a “translation” approach. In this regard, Section 3.4.1
outlines the projection mechanism concerning the entity networks described in Section 3.2.2.
Section 3.4.2 describes how node attributes are handled during the network projection process.
Finally, Section 3.4.3 summarises related work.

3 .4 .1 Entity network projections

The model’s current state does not incorporate links between entities. This lack of entity rela-
tionships is true for the entity network containing all documents and entity network snapshots.
Nevertheless, much valuable information is contained in these entity-entity relationships. Some
interesting questions to ask based on these relationships could be: What hashtags are frequently
used within the same tweet? Which Twitter users are mentioned in the same context? How often
are two websites referenced together? Even though the entity network model presented in Sec-
tion 3.2.2 does not explicitly model links between the entities extracted from a document, these
are still present implicitly. Tomanifest these latent relationships, the respective entity network has
to be projected onto an entity network with these latent relationships explicitly modeled as links.
These projected networks are referred to as entity network projections.

Formally, such a network projection𝐺𝑝 = (𝐸𝑝, 𝐿𝑝) is made up of the links 𝐿𝑝 between a subset of
those entities that are contained in the unprojected network: 𝐸𝑝 ⊆ 𝐸. The subset of entities and
respective links depends on the way the projection of the network is conducted. Generally, the
projection is defined by ameta path, which starts and ends at an entity type. In other terms, with a
givenmeta path of length 𝑛 for each of its path instances, 𝑝 = (𝑣1, 𝑣2, … , 𝑣𝑛+1), 𝑣1 ∈ 𝐸 and 𝑣𝑛+1 ∈ 𝐸
should hold. Nevertheless, at least one node of the sequence (𝑣𝑖)

𝑛
𝑖=2 has to be of type document

as entities are not directly linked in the original entity network. In the simplest form, two entities
are linked if they are extracted from the same document. In this case, the corresponding meta
path instance is given as 𝑒𝑘 → 𝑑 → 𝑒𝑙. Given this meta path instance, the resulting entity network
projection would contain a link between 𝑒𝑘 and 𝑒𝑙: (𝑒𝑘, 𝑒𝑙) ∈ 𝐿𝑝 and given the above meta path
instance 𝑝 the according projection would contain a link (𝑣1, 𝑣𝑛+1). A more general description of
the entity network projections is given in Definition 3.6.

Definition 3.6 (Entity network projection). If ℙ is the set of all meta path instances that follow
the meta path used to project the network and this meta path is of length 𝑛 with 𝑛 ≥ 3, then
the nodes 𝐸𝑝 contained in the projected entity network are defined as⋃𝑝∈ℙ{𝑣1, 𝑣𝑛+1} with 𝑝 =
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(𝑣𝑖)
𝑛+1
𝑖=1 . Further, the set of edges 𝐿𝑝 contained in the projected entity network are defined as

⋃𝑝∈ℙ{(𝑣1, 𝑣𝑛+1)}.

By now, the edges of the projected network are not typed. To improve the semantic expressiveness
of the links, theymight be labeled. Finding relationship labels requires domain-specific knowledge,
as the labels should describe the semantic meaning of the projected links. Table 3.4 gives some
exemplary meta paths and respective labels.

Table 3.4: Examples of meta paths used to construct entity network projections

Label Meta path

hashtag co-occurrence ℎ𝑎𝑠ℎ𝑡𝑎𝑔 𝑢𝑠𝑒𝑑 𝑖𝑛−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→ ℎ𝑎𝑠ℎ𝑡𝑎𝑔
co-mention 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛−−−−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠−−−−−−−→ 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒

residence of hashtag user ℎ𝑎𝑠ℎ𝑡𝑎𝑔 𝑢𝑠𝑒𝑑 𝑖𝑛−−−−−→ 𝑡𝑤𝑒𝑒𝑡
𝑝𝑜𝑠𝑡𝑒𝑑 𝑏𝑦
−−−−−−−→ 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒−−−−−−−→ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦

same hashtag usage 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒
𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜
−−−−−−−→ 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑝𝑜𝑠𝑡𝑠
−−−→ 𝑡𝑤𝑒𝑒𝑡1

𝑢𝑠𝑒𝑠−−−→
ℎ𝑎𝑠ℎ𝑡𝑎𝑔 𝑢𝑠𝑒𝑑 𝑖𝑛−−−−−→ 𝑡𝑤𝑒𝑒𝑡2

𝑝𝑜𝑠𝑡𝑒𝑑 𝑏𝑦
−−−−−−−→ 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔
−−−−−−−→

𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒

1304102743

196356610

#TwitterAPI
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mention
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 reply  
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Figure 3.7: Twitter example entity network with added instance of 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛−−−−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→
ℎ𝑎𝑠ℎ𝑡𝑎𝑔meta path indicated by the dashed line

Figure 3.7 illustrates the extraction of latent relationships from entity networks. It shows the same
entity network as Figure 3.4 but with the latent relationship between the extracted Twitter user
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and hashtag explicitly represented as “hashtag mentioned with” relationship. This relationship
follows the meta path 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑒𝑑 𝑖𝑛−−−−−−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→ ℎ𝑎𝑠ℎ𝑡𝑎𝑔 and is indicated by the dashed
line.

Taking the “hashtagmentioned with”meta path as indicated in Figure 3.7 to project the according
entity network, one receives a simple entity network projection with the respective Twitter user
and hashtag as nodes and a connecting “hashtag mentioned with” link. The described network
projection is shown in Figure 3.8.

#TwitterAPI@SuhemParack



hashtag 

 mentioned 


with

Figure 3.8: Entity network projection by meta path as shown in Figure 3.7

Remark. Similar to the discussion about directionality implied by the relationship labels outlined
in Section 3.2.2, one might argue that some meta paths can also be formulated both ways. The
link between the Twitter user and hashtag, as shown in Figure 3.7, might also go from the hashtag
to the Twitter user and be labeled as “Twitter user mentioned with”. Together, both meta path
projections could be summarized as “Twitter user and hashtag co-occurrence” projection and be
modeled as an undirected networkwith links between hashtags andTwitter users that occurwithin
the same tweet. For the sake of simplicity, the model sticks with simple projections based on single
meta paths and does not deal with the aggregation of multiple network projections. Still, these
might be possible in an additional aggregation step.

Examples of entity network projections

Entity network projections can be used for different use cases and in various analytics scenarios.
Accordingly, one has to decide which entity types and meta paths should be considered during
the network projection. Two highly relevant use cases are analyzing topics and actors, especially
while working with social media data. For these use cases, one has to target entities representing
semantic entities, like hashtags, named entities, or terms, and actors (e.g., Twitter users or news
article authors), respectively. In the according entity network projections, these entities might be
linkedby relationships such as co-occurrence for the topic-centered projections and co-mentioning
or co-authorship for the actor-focused projections. Figure 3.9 illustrates such an actor-focused
entity network projection based on Twitter user co-mentioning.
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username tweet username
mention
mention

(a) Schema of the exemplary document network used for the actor-network projection

username username

username

username


co-mention


co-mention


co-mention

username

co-mention


co-mention
co-mention

(b) In the exemplary projected actor co-mentioning network, the username nodes are linked by
co-mention relationships.

Figure 3.9: Illustration of an entity network projection by the example of username co-mentioning. The
co-mention meta path (see Table 3.4) is leverage for the projection.

Entity network projections are also leveraged for several studies presented in this thesis, such as
to examine actor-networks underlying trends (see Section 4.2) or to analyze long-term trends (see
Section 4.1).

3 .4 .2 Network attribution

Similar to document node attributes described in Section 3.2.3, the projected entity networks
might also be extended by additional information modeled as attributes. Thereby, the attributes
come from the original document nodes in the projected document network andmight be assigned
to nodes or edges. In line with the formalism outlined in Section 3.2.1, these attributes are defined
via attribute mappings that either map entity nodes, 𝜋𝑛𝑜𝑑𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑒𝑝) with 𝑒𝑝 ∈ 𝐸𝑝, or respective
edges, 𝜋𝑒𝑑𝑔𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑙𝑝) with 𝑙𝑝 ∈ 𝐿𝑝, to their attribute values. Again, these mappings are partial
functions and do not assign an attribute to nodes or edges for which it is not defined. Table 3.5
gives some examples of attributes thatmight be present in a projected entity network. The column
“projected object” indicates whether the attribute is relevant for network nodes or edges in the
projected network.
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Table 3.5: Examples of attributes that might be used in entity network projections

Description Projected object

number of Twitter follower node (esp. Twitter user)
timestamp edge
impact score node (e.g., news outlet)
similarity edge
weight node/edge

During the network projection, attributes formerly assigned to document nodesmight be assigned
to nodes or edges in the projected network. The formalism of this assignment process is described
by Definition 3.7.

Definition 3.7 (Document-based network attribution). If a meta path instance 𝑝 = (𝑣𝑖)
𝑛+1
𝑖=1 tra-

verses document 𝑑 such that 𝑑 ∈ ⋃𝑛
𝑖=2{𝑣𝑖}, then the document’s attributes might be used as node

or edge attributes in the corresponding subgraph of the projected network: 𝜋𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑑) =
𝜋𝑛𝑜𝑑𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑣)with 𝑣 ∈ {𝑣1, 𝑣𝑛+1} or 𝜋𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑑) = 𝜋𝑒𝑑𝑔𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑙𝑝)with 𝑙𝑝 = (𝑣1, 𝑣𝑛+1).

To highlight, the projection of document attributes is essential for temporal information related to
the document nodes. With that information also given in the projected networks, these networks
can be analyzed from a temporal-sensitive point of view. Questions like “When did these two
hashtags occur most frequently together?”, and “Which Twitter users were frequently mentioned
together during this period?” can be answered this way. Recalling the model requirements stated
in Section 3.1, the entity network projections improve the information value of the modeled
data. Simple filtering and aggregation-based queries on the projected networks allow us to answer
questions like those above. This way, meaningful information can be derived from the projections
instead of unprocessed and less informative data.

3 .4 .3 Related work

Network projections are well-known from bipartite networks (Newman, 2010, pp. 123–126).
This kind of network contains two types of nodes, and each edge in the network links nodes of
different types. In the so-called “one-mode projections”, only the nodes of one type are contained.
These nodes are linked if they are connected in the original bipartite network via a shared adja-
cent node of the other type. Such a one-mode projection can be seen as a particular case of the
more general meta path-based projections outlined in Section 3.4.1. By discarding links between
documents, the entity networks can be seen as bipartite networks with the two node types “docu-

70



3.4 Projections

ment”, and “entity”. Accordingly, entity network projections defined by meta paths that follow
an 𝑒𝑛𝑡𝑖𝑡𝑦 → 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 → 𝑒𝑛𝑡𝑖𝑡𝑦 structure can be seen as one-mode projections of described
bipartite document-entity networks. Still, in our case, the projected entities are not required to be
of the same type.

More generally, projections of bipartite networks are leveraged in different network analysis sce-
narios and use cases, such as personal recommendation (Zhou et al., 2007), community detection
(Melamed, 2014), and food pairing (Ahn et al., 2011). Further, somework also deals with network
projections of HINs. For example, Shi et al. (2014) leverage HIN projections for their ranking-
based clusteringmethod. According to their definition of aHINprojection, one starts by selecting
a node type, called “pivotal type”, and other node types, called “supportive types”, linked to the
node type selected at first. With these selections, the projected network’s schema is defined. It
contains all nodes of selected types and links among these. As outlined by Shi et al. (2014), the
projected networks are either bipartite or star-schema networks with potential self-loops. This def-
inition of a heterogeneous network projection differs from the approach outlined in Section 3.4.1.
The latter relies on meta paths as a basis to define the projection. In contrast, the approach by Shi
et al. (2014) is centered around a single node type and its neighborhood. Accordingly, the schema
of theprojectednetwork canbe seen as a subgraphof the original network’s schema. Amore similar
approach to the one presented in Section 3.4.1 is used byGrčar et al. (2013). They propose a frame-
work to analyze document-enriched HINs and leverage network projections. In these projections,
two nodes are linked if they share a common neighbor of a particular type in the original HIN.
This approach is similar to the case of a projection that follows an 𝑒𝑛𝑡𝑖𝑡𝑦 → 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 → 𝑒𝑛𝑡𝑖𝑡𝑦
meta path. Further, as outlined in Section 2.1.3, Milani Fard et al. (2019) define a general method
for projectingHINs based onmeta-paths. Even though they do not build on the document-entity
network schema as we do, their methodology is similar to our entity network projection if one
defines an “augmented reduced graph” (Milani Fard et al., 2019) based on a meta-path that starts
and ends with an entity type.

Focused on HIN embeddings, some existing work also uses network projections in a different
sense. The network is represented in a different vector space depending on the relationship type.
For that, the vector of each node of the original HIN is projected to the relationship-defined vector
space. Works that follow this approach are, for example, Chairatanakul et al. (2021) and Chen
et al. (2018).
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3 .5 Granularity

The networks described in Sections 3.2, 3.3 and 3.4 can be investigated from different perspec-
tives and according to different levels, scales, or granularities. The following section elaborates
on these granularities concerning network topology in Section 3.5.1 and regarding the temporal
evolution of a network in Section 3.5.2. Finally, Section 3.5.3 covers related work of presented
concepts.

3 .5 . 1 Network granularities

So far, the proposed model focuses on topological patterns related to single nodes or relationships.
Nevertheless, more coarse-grained structures like subgraphs of the constructed networks also pro-
vide valuable information frommore than just the contained nodes and relationships. This section
provides a more systematic overview of the different levels of granularity that might be used to
analyze described information networks. Similar to zooming in and out while observing an image,
a network can also be analyzed on different levels of detail. These levels of detail are referred to as
granularities. A fine-granular perspective focuses on individual nodes and edges, whereas a less
granular focus shifts towards a more coarse network perspective. Table 3.6 provides an overview
of which granularities can be used when analyzing a network. According to their level of zoom,
these levels are referred to asmicro,meso,macro andmega perspectives.

Table 3.6: Different levels of granularity that can be used as perspectives on the analyzed network

Granularity Network perspective

micro individual node or edge
meso two nodes and their relationship
macro subgraph
mega complete network

In the following, the described levels of granularity are examined in more detail:

• Micro: At this level of granularity, the analysis focus is placed on individual nodes and
edges. Regarding the edges, this perspective does not involve the connected nodes but
solely focuses on the information related to the edges themselves. Most importantly, one
is interested in the attributes and metrics of given nodes or edges. These properties might
include the node or edge type, a node’s degree or the weight of an edge. For example, one
might be interested in the number of hashtag occurrences by checking the hashtag node’s
degree in the Twitter network as shown by Figure 3.4.
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• Meso: Themeso level refers to a network edge including its involved nodes. In other studies,
e.g., by Saveski et al. (2021), this network structure is also called a “dyad”. Use cases for
this perspective are the analysis of how often a particular link occurs in a network across
time. Also, one might be interested in comparing adjacent nodes, e.g., by investigating
their similarity. For example, one might want to investigate the similarity of frequently
co-mentioned Twitter users (see Figure 3.9b).

• Macro: In the most general sense, the macro perspective investigates network subgraphs.
These subgraphs consist of a subset of the nodes and edges of the complete network. There-
fore, more topologically complex network structures can be analyzed. Such structures
include network communities or motifs. For example, in the context of Twitter actor-
networks, one might be interested in analyzing groups of Twitter users that make up com-
munities.

• Mega: The most coarse-grained perspective on the network is to investigate it as a whole.
Every node and edge contained in the network is considered at this level. One might be
interested in global network metrics such as the number of nodes and edges or the average
node degree. For example, when analyzing networks extracted from social media data (e.g.,
Tweets), one might want to investigate the distribution of node degrees to see whether
highly connected “hubs” exist.

Complementary to the list of granularities as shown in Table 3.6, Figure 3.10 visualizes the differ-
ent levels of detail that might be used during the analysis of a network. Notably, the presented
systematic is valid for different types of networks like the document networks presented in Sec-
tion 3.2.1, the entity network projections as outlined in Section 3.4 or even temporal network
snapshots (see Section 3.3.1). In all cases, the network can be examined with different levels of
detail.

3 .5 .2 Temporal resolution

Different granularity levels can be defined not only concerning topological network structures but
also related to the temporal-sensitive analysis. In the context of time, these levels of granularity
are better referred to as resolution levels and correspond to varying approaches of discretizing
𝕋. Accordingly, the temporal network snapshots outlined in Section 3.3.1 can be created with
respect to different resolution levels. Most importantly, this is relevant for snapshots defined by
a fixed time window size. Snapshots can be generated based on different time windows, such as
15 minutes, 24 hours, or three months. Different time windows come with different resolution
levels. The larger the time window, the lower the time resolution. Also, different resolution levels
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Figure 3.10: Visualization of the different network granularities

must be used depending on the phenomenon being studied, and their determination requires
domain-specific knowledge. As outlined by Zhou et al. (2020), different resolution levels come
with computational trade-offs. On the one hand, a higher resolution leads to more snapshots
and, therefore, higher computational costs. On the other hand, a too coarse temporal granularity
might save computational costs but might also lead to a loss of “[…] fine-grained temporal context
information […]” (Zhou et al., 2020).

3 .5 .3 Related work

In their survey about temporal graph concepts, Casteigts et al. (2012) also differentiate between
various “point of views” when analyzing the temporal evolution of a network. They outline three
categories: “edge-centric”, “vertex-centric” and “graph-centric”. Accordingly, the analysis focuses
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on individual edges, vertices, or the network as a whole. Similar to the concepts outlined in Sec-
tion 3.5.1, their categorization is based on different network granularities. Further, they also apply
this kind of distinction to the temporal dimension and differentiate between “fine-grain dynamics”
and “coarse-grain dynamics” depending on the time scale used for the analysis. Again, this is similar
to the temporal resolution concept outlined in Section 3.5.2. Similarly, Roth and Cointet (2010)
in their work differentiate betweenmicro- andmacroscopic network perspectives. In line with the
categorization proposed in Section 3.5.1, the microscopic scale focuses on individual nodes. In
contrast, the macroscopic scale, as defined by Roth and Cointet (2010), considers the network as
a whole. This perspective corresponds to the “mega” granularity described above (see Table 3.6).
Furthermore, Latora et al. (2017, p. 332) refer to communities in networks as “mesoscopic struc-
tures”. Following our categorization, communities would be macroscopic structures. Farther
fetched, the differentiation betweenmicro-, meso- andmacro-level analysis is also commonly used
in the social sciences. See Serpa and Ferreira (2019) for a discussion on that. According to the
specific level, analyses range from the study of face-to-face interaction to the study of society as a
whole or even inter-societal systems (Turner, 2010, pp. 12–20).

3 .6 Discussion

In this chapter, the media analysis model leveraged for the studies presented in subsequent parts
is developed. It is built on concepts known from temporal network analysis and tailored to the
use case of media analytics. A summary of its properties and capabilities is given in the following
Section 3.6.1. Furthermore, even though themodel is successfully leveraged in subsequent studies,
its limitations must also be mentioned. Therefore, the model’s shortcomings are discussed in the
final Section 3.6.2.

3 .6 .1 Summary

The media analytics model proposed in this chapter is developed with regard to several require-
ments outlined in Section 3.1. Among these requirements, integrating and modeling heteroge-
neous data from various sources plays an outstanding role. It led to leveraging networks as the
central modeling approach (see Section 3.2). In line with the implicit structure of a dataset consist-
ing of documents that themselves contain entities, a respective network model is developed. Once
the data is processed and a network representation is derived, it can be accessed and analyzed in a
more standardized and homogeneous way. Further, a specific emphasis is placed on the model’s
capabilities to reflect the underlying data’s dynamics. Snapshots are leveraged as the temporal
network representation for that (see Section 3.3). In practice, defining appropriate time windows
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for these snapshots can be challenging and at worst, much information is lost due to the network’s
discretization. Thus, we discuss different temporal sampling strategies in detail. Only by employ-
ing an appropriate sampling technique valuable information can be extracted from the data. In
this regard, the proposed model comes with two additional capabilities, respectively properties,
that facilitate gaining informative insights into the data. First, the network projections introduced
in Section 3.4 allow data investigation from different entity-centric perspectives. Based on given
meta-paths, “condensed” versions of the original network can be derived. Further, the examined
network granularities (see Section 3.5) serve as a framework to guide the network analysis based
on different topological and temporal perspectives. Finally, the model takes the “reproducibil-
ity” requirement into account (see Section 3.1). In the network, extracted entities are linked to
their original document, which allows to retrace derived results and to investigate where gained
information comes from.

3 .6 .2 Limitations

Even though the proposed data analysis model has been developedwith the outlined requirements
in mind, it also comes with its limitations. Two such limitations arise from the way the network’s
dynamics are modeled. First, in the snapshot-based temporal network model, interlinks connect-
ing nodes of successive snapshots are not considered. Based on the assumption that an appropriate
sampling technique is leveraged, this should not lead to a significant information loss. Still, our
approach might not be sufficient for analyses that require continuous modeling of the network
dynamics. Secondly, the proposed model considers the data’s temporal information in the form
of timestamps and not in the form of intervals. Leveraging intervals during which a respective
node or edge is active might be more suitable in certain application scenarios. Next, the model
is currently limited with respect to the modes of the analyzed data. Primarily, textual data is con-
sidered. Nevertheless, media content might also come in other forms, such as videos or images.
Extending the model to follow a multi-model perspective would be a valuable path for future
work. Finally, in this chapter, no information is provided on the efficient implementation of the
proposed model as demanded by the outlined requirements. Section 6.3 catches up on this by
establishing a benchmark on the performance analysis of several temporal graphmanagement and
analysis systems.
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The attention to specific topics is rapidly changing on (social) media, and trends are integral to
these dynamics. Very prominently, this is demonstrated by the ever-changing list of trends on
Twitter (Twitter, Inc., 2023b) as shown by Figure 4.1. Thereby, the meaning of the term “trend”
should not be confused with its meaning in the context of time series analysis. Trends in that
context refer to a characteristic of a time series, whereby a time series shows a trend if its mean is
dependent on time (Cryer andChan, 2008, pp. 27–54). In a social media analysis setting, however,
trends come with a semantic meaning and are similar to topics (Asur et al., 2011; Budak et al.,
2011). Further, for a topic to become a trend, it needs to “[…] capture the attention of a large
audience […]” (Asur et al., 2011) or, in other words, it needs to gain a certain level of popularity.
Thereby trends can be triggered in various ways. On Twitter, trends are often related to news,
ongoing events, memes, or commemoratives (Zubiaga et al., 2015).

In contrast to trends driven by news or ongoing events that are prevalent for only a short time,
long-term trends keep their prevalence for a longer period, e.g., the news coverage of the COVID-
19 pandemic. As such, the phenomenon of long-term trends is studied in Section 4.1. Not only
does the study contain an examination of long-term trends extracted from a dataset covering
the German political Twittershere between January 2021 and July 2022, but it also proposes a
network-based analysis framework that is build upon the model developed in Chapter 3.

Independent of how a trend comes into existence and for how long it is present, another interesting
dimension of a trend to be studied are the actor-networks among trend participants. Such a study
is conducted and presented in Section 4.2 based on a Twitter dataset that covers the discussion
around the UEFA EURO 20201 soccer championship. Next to the analysis results, the proposed
methodology, again based on the model developed in Chapter 3, is presented in this section. In
sum, this study showcases another application of the proposed network analytics model.

1Season 2020 | UEFA EURO 2020 |UEFA.com: https://www.uefa.com/uefaeuro/history/seasons/2020
(accessed 2023-05-11)

2Trends / Twitter: https://twitter.com/i/trends (accessed 2023-06-19)
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Figure 4.1: Screenshot of a trends list published on the Twitter platform2. Displayed trends are also influ-
enced by the user’s location, such as Germany, as in the shown example.

4.1 Long-Term Trends

Stories about short-livedbreakingnews characterize the focus anddynamics of socialmedia. Often,
such “mayflies” make it hard to keep track of more profound topics that are prevalent over a long
period of time. To provide such capabilities, this section presents a method to detect long-term
trends based on temporal networks and community evolution. Connecting these methods with
trend analysis approaches allows to study the temporal development of trends, their contextual
information, and how they are interrelated over time, thereby overcoming deficiencies of existing
work. Results obtained from a Twitter case study are discussed in detail and evaluated based on
real-world event linkage, proving the proposed method’s effective functionality.
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Reference: This section is based mainly on the following peer-reviewed publication:

JohnZiegler andMichaelGertz. NoMayfly: Detection andAnalysis of Long-termTwitter Trends.
In BTW 2023, pages 353–364. 2023.

The remaining part of this section is structured as follows: After outlining the contributions of this
study in Section 4.1.1 and a coverage of the leveraged terminology in Section 4.1.2, related work is
described and compared in Section 4.1.3. Section 4.1.4 then covers the methodology concerning
the detection of long-term trends. The proposed method is applied to a collected political Twitter
dataset, and the according analysis is described and evaluated in Section 4.1.5. Finally, Section 4.1.6
summarises the present framework and describes future work.

4.1 .1 Contributions

In this study, a framework to detect and analyze long-term social media trends is proposed. It
builds on existing work that is adopted and extended to fit the use case requirements. These
extensions include:

1. Leveraging a temporal network model to study long-term trends,

2. Pruning of less prevalent nodes based on a power law degree distribution model,

3. Temporal tracking of hashtag communities via a core of central nodes, and

4. Visualizations to analyze the temporal development of found trends.

The proposed methodology is applied to the German political Twittersphere to analyze long-term
political trends. Thereby, the network-based approach allows us to intuitively represent detected
trends within their semantic context. In contrast to related work, e.g., the work by Chae and
Park (2018), the present analysis specifically investigates semantic shifts of detected trends over
time.

4.1 .2 Terminology

Asur et al. (2011) describe trends as topics that “[…] capture the attention of a large audience
[…]”. We follow this definition and start by taking Twitter hashtags as representatives of topics,
which is in line with previous work, e.g., Asur et al. (2011) and Budak et al. (2011). According
to Bhulai et al. (2012), these hashtags might also be clustered. As a result, we extend the previous
definition of a “topic” and do not refer to it as a single hashtag but as a community of hashtags.
Tracking those communities of hashtags over time results in “temporal topics”. A topic can be
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said to make up a “trend” if its popularity is large enough (see Asur et al. (2011)) and is further
called a “long-term” trend if it is prevalent over a sufficiently long time period. Combined, we
denote them as “long-term topical trends”. Further, to distinguish between short- and long-term
trends, we refer to the concept of “news cycles” or rather “political information cycles” as described
by Chadwick (2011). These cycles describe news production processes and typically cover a time
span of a few days. Topics discussed in the context of such short-lived media attention cycles are
defined as short-term trends. In contrast, long-term trends describe topics that are prevalent in
media for several weeks, months, or even years. This distinction is in line with past work, e.g., by
Hashavit et al. (2016).

4.1 .3 Related work

Most studies related to social media trend analysis focus on short-lived and mostly event-driven
scenarios, e.g., Asur et al. (2011) and Budak et al. (2011). Nevertheless, Chae and Park (2018),
as an example, apply topic detection to a long-term Twitter dataset and investigate trends within
the corporate social responsibility domain. They study how the popularity of topics changes over
time and how topics are interrelated. In contrast to their work, the present analysis focuses on the
political domain, explicitly aiming to analyze topical shifts over time and following a temporal,
network-based approach. In another work, Cazabet et al. (2012) use network analysis methods to
extract trends from social media content. They apply a dynamic community detection method to
detect trends. Theirmethoddoes not only allow for studyingbursting events and short-lived topics
but also steady trends that are prevalent over a long period. Regarding the semantic evolution of
these trends, they look at the terms that become relevant in respective contexts during different
times. The authors leave it for future work to adjust their method to other social media platforms
such asTwitter. In ourwork, trends are extracted fromTwitter data and specifically for theGerman
political domain. Also, the semantic evolution of found long-term trends is analyzed inmore detail
by investigating the complete co-occurrence networks at different points in time and by looking at
the interrelation of different topics across time. Also related to trend analysis, Annamoradnejad
andHabibi (2019) study the trends published byTwitter itself. Thereby, they analyze the trending
time as well as the trend’s re-occurrence over time.

Further, Majdabadi et al. (2020) propose a graph-based Twitter trend extraction method and do
not only take hashtags but also terms into account. Still, they do not track those trends over
long time periods. Similarly, the work by Khan et al. (2021) deals with detecting and ranking
trends based on Twitter data. Also, Cui and Kertész (2023) analyze the pre-history of trending
hashtags on theChinesemicrobloggingplatformSinaWeibo. Theyfind twodominating categories
of popularity progression. On the one hand, there is the “Born in Rome” category for which
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superhubs are involved at an early stage, and hashtags immediately gain high popularity. On the
other hand, hashtags that follow the “Sleeping Beauty” pattern need more initial time until they
reach a certain level of attention. Even though their work is also concerned with the temporal
dimension of trends, they do not investigate long-lasting trends.

Some existing work from the field of information retrieval also approaches trend-related use cases.
For example, Hashavit et al. (2016) propose an online method to detect trends in a user search
context. Notably, they also use social network communities as trend candidates and distinguish
between short- and long-term trends. Further, focusing on classifying trends on Twitter, the work
by Zubiaga et al. (2015) outlines a classification system of Twitter trends, along with methods to
correctly identify a trend’s category at its initial stage. For trends, they rely on the official trends
shown on the Twitter platform, which are short-living (Twitter, Inc., 2023b).

4.1 .4 Methodology

The following paragraphs outline the methodology underlying the detection of long-term trends.
For this, we first introduce the leveraged dataset in Section “Dataset”, then continue by describing
the temporal, network-based model formalism in Section “Temporal networks” and outline the
processing of the underlying hashtag co-occurrence networks in Section “Network processing”.
Finally, Sections “Detection of hashtag communities” and “Long-term trend detection” cover
the detection of topics and their tracking over time, which also leads to the extraction of topical
long-term trends.

Dataset

The EPINetz Twitter Politicians Dataset 2021 provides “[…] Twitter accounts of German parlia-
mentarians, minsters [sic], state secretaries, parties, andministries on a state, federal, and European
Union level for the year 2021” (König et al., 2022). We rely on the Twitter searchAPI v23 to gather
the raw tweets based on those user accounts. Tweets posted by the 2,449 accounts are collected for
the time range from January 2021 until July 2022 without filtering. In total, the dataset contains
about 1.8 million tweets. Retweets are not considered. Instead, only the original tweets are taken
into account. Collected tweets are primarily inGerman and cover topics from the political domain.
Not every Twitter user we track via the Twitter API is contained in the dataset, most likely due to
a lack of Twitter activity in the analyzed time frame. In sum, the dataset contains posts of 2,097
unique users. It is a subset of the complete EPINetz dataset described in Section 6.1.5. Hashtags

3Twitter API Documentation |Docs | Twitter Developer Platform: https://developer.twitter.com/en/doc
s/twitter-api (accessed 2023-05-11)
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used in the tweets are taken as representatives of topics, which corresponds to the procedure of
other works (see Asur et al. (2011) and Budak et al. (2011)). We extract timestamped information
about the (co-)occurrence of the hashtags from the unprocessed tweets and use them as the basis
for detecting long-term topical trends. Table 4.1 gives a comprehensive overview of the dataset
statistics.

Table 4.1: Rounded statistics of the collectedTwitter dataset used to analyze long-term trends in theGerman
political Twittersphere. “Unique hashtags” refers to the number of unique hashtags that occur
in at least one of the collected tweets. Similarly, “unique tweet authors” refers to the number of
unique Twitter users that published a tweet contained in the dataset.

Description Count (in thousand)

tweets 1,824
unique tweet authors 2.097
unique hashtags 144.039
temporal hashtag co-occurrences 5,942

The timestamped hashtag co-occurrence information can also be described in the context of the
model proposed inChapter 3. Specifically, the hashtag co-occurrence network represents an entity
network projection as outlined in Section 3.4.1. The according network projection is based on
the meta path ℎ𝑎𝑠ℎ𝑡𝑎𝑔 𝑢𝑠𝑒𝑑 𝑖𝑛−−−−−→ 𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→ ℎ𝑎𝑠ℎ𝑡𝑎𝑔 (see Table 3.4). Further, the timestamp of the
edge is the result of a network attribution as described in Section 3.4.2.

Temporal networks

By leveraging the timestamped information about hashtag (co-)occurrences, the temporal net-
works are created as aggregations based on a given time window. To formally describe the tempo-
ral snapshot networks, we rely on the framework of multi-slice networks as outlined by Bianconi
(2018, pp. 106–110). A multi-slice temporal network is a special kind of multilayer network,
with each layer/slice representing a temporal snapshot of the complete network (see Section 2.1.4).
As in our case, no interactions across snapshots exist, we focus on the intralink networks only,
i.e., multi-slice networks without interlinks. Such a multilayer network𝑀 is defined as a tuple,
𝑀 = (ℳ, 𝒢̇). It consists of the network layersℳ with |ℳ| = 𝑛ℳ. A single layer is referred to
as 𝑚 ∈ ℳ. Additionally, 𝒢̇ describes the time-ordered list of networks that are made up of the
interactions within each of the layers:

𝒢̇ = (𝐺1, 𝐺2, … , 𝐺𝑚, … , 𝐺𝑛ℳ) with 𝐺𝑚 = (𝑉𝑚, 𝐿𝑚). (4.1)
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Each network 𝐺𝑚 consists of a set of nodes 𝑉𝑚, which are, in our case, hashtags and their co-
occurrences as edges 𝐿𝑚. Given that a multi-slice network𝑀 covers the interactions within a time
period 𝑇 and the time interval Δ𝑡 is chosen as snapshot size, e.g., one month, there are 𝑛ℳ = 𝛵

Δ𝑡

layers. Thereby, layer𝑚 captures the interactions that occur in the timewindow [(𝑚−1)Δ𝑡, 𝑚Δ𝑡).
Within such a layer𝑚, the degree of a node 𝑖 is denoted as 𝑘𝑚𝑖 . Further, for the aggregated network
𝐺̃ of the multi-slice network, the temporal nature of the interactions is neglected, and edges from
all snapshots are taken into account.

Model reference. The proposed temporal network model based on multi-slice networks aligns
with the dynamic network model described in Section 3.3, which is based on temporal document
network snapshots. We refer to the discussion in Section 3.3.3 for a detailed comparison.

Network processing

In contrast to mostly event- or breaking news-related short-term trends (Zubiaga et al., 2015),
which are often represented by a single hashtag, long-term trends deal with more complex topics
and can therefore be seen as communities of interrelated hashtags. To obtain more meaningful
community networks and to further save computational costs during the community detection
step, this analysis focuses on popular and highly connected hashtags. For this, less related hashtags,
i.e., with a low co-occurrence degree, are removed from the temporal networks. We take themedian
node degree per snapshot as a reference and remove all hashtags with a degree below this threshold
from the according temporal network. An investigation of the degree distribution reveals its power
law nature (𝑘 ∝ 𝑘−𝛼). Therefore, we leverage the median as defined by Newman (2005):

𝑘𝑚𝑒𝑑 = 21/𝛼−1𝑘𝑚𝑖𝑛 (4.2)

Figure 4.2 shows an exemplary degree distribution. The fitting procedure reveals a power law
exponent of 1.42 and, according to that, a median 𝑘𝑚𝑒𝑑 of 5.31. For the fitting, the powerlaw
package version 1.5 provided by Alstott et al. (2014) is used. In addition to the pruning step, the
temporal snapshot networks are weighted. Ideally, respective edge weights reflect the strength of
interrelations between hashtags. Therefore, we resort to Pointwise Mutual Information (PMI)
(Role and Nadif, 2011) to be used for the edge weights as it sets the co-occurrence frequency
of the two adjacent hashtags and their individual occurrence frequency into relation. With 𝑓𝑚𝑖
describing the frequency of occurrence of node 𝑖 during the timeframe covered by layer𝑚 and 𝑓𝑚𝑖𝑗
the frequency of co-occurrence of nodes 𝑖 and 𝑗, the according PMI value is defined as:
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PMI𝑚𝑖𝑗 = ln
𝑓𝑚𝑖𝑗

𝑓𝑚𝑖 ⋅ 𝑓𝑚𝑗
= w𝑚𝑖𝑗. (4.3)

As already indicated, those PMI values are used as co-occurrence edgeweightsw𝑚𝑖𝑗 between hashtag
𝑖 and 𝑗 in layer𝑚 of the temporal multi-slice network. This network weighting is also part of the
model proposed in Chapter 3. Specifically, it relates to the network attribution as outlined in
Section 3.4.2. Even though the weights are not derived from document attributes directly, they
are still derived based on statistics extracted from the documents used for the network construc-
tion.

Figure 4.2: Degree distribution of the January 2021 network snapshot

Detection of hashtag communities

Hashtags, i.e., the nodes of the temporal networks, are taken as representatives of topics (Asur
et al., 2011; Budak et al., 2011). Further, according to Bhulai et al. (2012), related topics should
be clustered in a comprehensive trend analysis framework. Therefore, methods developed in
the field of community detection are leveraged to find groups of densely interrelated hashtags.
Those groups of hashtags then form a topic with all of its aspects, as multiple hashtags might
describe different semantic dimensions of a topic. Tobeprecise, we leverage theLeiden community
detection algorithm by Traag et al. (2019) and use the implementation as provided by the python-
igraph software package version 0.10.1 (Csárdi and Nepusz, 2006). The community detection
is applied to all layers of the temporal network described in Section 4.1.4.
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Long-term trend detection

Of course, temporal communities of hashtags, i.e., temporal topics, as described in Section 4.1.4
do not yet make up a long-term topical trend. Asur et al. (2011) describe trends as topics that “[…]
capture the attention of a large audience […]”, which means that trends need to reach a certain
level of popularity. For this to measure, we take the accumulated count of hashtag occurrences
per community and time window as trend scores. A community 𝑖 in the network layer/slice𝑚 is
given as a subset of hashtag nodes: ℂ𝑚𝑖 ⊆ 𝑉𝑚. Together with a mapping of those nodes to their
respective occurrence counts for the given layer𝑚, 𝑜𝑚 ∶ 𝑉𝑚 → ℕ, we define the trend scores 𝜏 as
follows:

𝜏(ℂ𝑚𝑖 ) = ∑
𝑣∈ℂ𝑚𝑖

𝑜𝑚(𝑣). (4.4)

Those scores allow to rank detected trends by their popularity, and, for example, only the top-𝑛
trends can be investigated in subsequent steps.

Long-term trends, as opposed to short-lived trends, need to be prevalent over a sufficiently large
time span. Therefore, detected hashtag communities need to be tracked over time. In their work,
Lorenz et al. (2017) specifically propose a method to capture the dynamics of weighted hashtag co-
occurrence networks. Not only does their method allow to track communities of hashtags across
subsequent time steps, but also across further distant snapshots. Considering higher-order mem-
ory, i.e., taking the networks of multiple previous snapshots into account, their approach allows to
overcome issues related to temporal variations and instabilities of the single-layer (static) commu-
nity detection process. We build on this existing work and leverage their approach to track popular
temporal hashtag communities over time, which then form long-term topical trends. Figure 4.3
illustrates the temporal tracking of the communities across the temporal hashtag co-occurrence
network snapshots. Even though a hashtag community might reveal slight temporal variations, it
can be tracked based onmaximum similarity linkage across the snapshots. The resulting sequences
of temporal hashtag communities then make up the long-term trends.

4.1 .5 Analysis and evaluation

To illustrate the long-term trend detection method described above, it is applied to the political
Twitter dataset as outlined in Section “Dataset”. Extracted hashtag co-occurrences are aggregated
into monthly snapshots. For a global trend description, independent of time, the aggregated
network is leveraged. As described in Section “Detection of hashtag communities”, the Leiden
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(b) Temporal community tracking indicated by the added dashed lines

Figure 4.3: Illustration of the temporal community tracking, which links communities across multiple
temporal network snapshots.

algorithm (Traag et al., 2019) is used for the community detection step. We use modularity as
the objective function along with a resolution parameter of 1, 𝛽 = 0.01, and 1000 iterations.
Edge weights are taken into account. The algorithm is applied 10 times to circumvent suboptimal
optimization results due to stochastic variations. Then, only the clustering that leads to the highest
modularity score is taken to define the communities of hashtags, i.e., topics. Of course, due to the
built-in randomness, repeated runs do not always lead to the same results, but slight variations
might occur. Per community, the induced subgraph of the 10nodes, i.e., hashtags, with the highest
PageRank scores (Page et al., 1999) is taken to represent a trend. Trend networks consist of those
hashtags as nodes and their weighted interactions. As many communities contain hashtags that
are either used for only a short time on social media or are very specific, we focus on the set of
the 25most central nodes, according to their PageRank, and link communities according to the
similarity between those sets. For this, we leverage the method proposed by Lorenz et al. (2017)
as described in Section “Long-term trend detection”. Four months are used as memory for the
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matching procedure to also link communities with temporal fluctuations and to focus on the
long-term prevalence of a trend.

In the following sections, we present analysis results covering the prevalence of trends over time,
their evolution, and temporal interactions. Finally, results are also evaluated.

Prevalence of trends

As topics are tracked over time, their prevalence and popularity can be investigated with a focus
on their temporal development. Not all topics might be equally prevalent at a given time, nor
might they occur across all time windows. Also, the popularity of a particular topic might change
significantly over time. Figure 4.4 shows a temporal heatmap of the trend scores as outlined in
Section 4.1.4. Trend scores are normalized on a trend basis, meaning that a value of 1 indicates
the maximum popularity reached for an individual trend. The heatmap shows the 10 trends with
the overall highest trend scores and visualizes their development over the 18 months of the entire
dataset, from January 2021 until July 2022.

Figure 4.4: Temporal heatmap of trend scores. Larger trend scores indicate a higher level of popularity. The
blank spaces show that some trends are not prevalent throughout the entire covered period.

First of all, it has to be noted that some trends, such as the one related to foreign policy and the
European Union (row 2), are present across the entire time span, whereas for others, gaps in their
prevalence over time become visible. That those gaps are occurring in the trend detection results
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confirms that the used method is indeed capable of handling temporal fluctuations. The topic is
tracked over time, even though it might not be detected in all intermediate snapshots. In contrast,
some trends do not show gaps but are only present for a limited time span. As further described
in Section 4.1.5, those trends are often related to some sort of event, e.g., the flood in the Ahr
region (row 9). During the occurrence of that event, the trend’s popularity is often at its high. All
trend developments show periods of higher and lower prevalence. As an example, the COVID-
19-related long-term trend (row 1) is most prevalent during the spring and winter of 2021, which
might be due to a more tense pandemic situation during those periods.

Further, some trends do peak at approximately the same time. Of course, one cannot conclude any
causality or correlation from that, but at least the heatmapmakes such patterns visible. Exemplary
of this are the peaks of the trends related to the Russian invasion of Ukraine (row 2), which
also triggered an ongoing media discussion about public transportation (row 10: “mobilität”,
“verkehrswende”) and renewable energy (row 4: “klimaschutz”, “energiewende”).

Temporal evolution

Topical trends usually do not consist of only a single keyword but are instead described bymultiple
aspects. With the proposed trend networks, those aspects, represented by hashtags, and their
interrelations are intuitively visualized. More interestingly, the temporal changes in the topical
trends can be analyzed by tracking them over time. As an example, see Figure 4.5 that shows the
trend networks related to theCOVID-19 pandemic, as indicated by the respective hashtags, for the
two time periods of January 2021 andNovember 2021. For the graph layout, the igraph (Csárdi
and Nepusz, 2006) implementation of the Fruchterman and Reingold algorithm (Fruchterman
and Reingold, 1991) is used. Even though some hashtags can be found in both networks, e.g.,
“corona” and “pandemie”, other aspects and their importance change over time, e.g., “lockdown”
and “impfstoff” vs. “impfpflicht” and “2g”. Also, it seems as for this trend, hashtags are a lot more
interrelated during November 2021 as more edges in the network show. Represented by their
weighting, those edges also indicate relationships of different strengths.

Trend interrelation

Chae and Park (2018) already highlight the importance of topic interrelations. We go in the
same direction and analyze temporal interrelations between topics. Topics do not co-exist inde-
pendently of each other but might instead be merged over time or at least become more or less
interrelated.
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(a) January 2021 (b)November 2021

Figure 4.5: Trend networks related to the COVID-19 pandemic covering different time periods

Figure 4.6 visualizes the temporal interrelations between tracked trends from February 2022 until
March 2022. The veins of the alluvial diagram (Rosvall and Bergstrom, 2010) represent the flowof
nodes between two communities and, therefore, also the interrelation between topics across time.
For the most part, topics seem to be relatively stable as the majority of nodes stays within the same
community. Nevertheless, some topics, e.g., the one related to climate protection (“klimaschutz”),
also influence numerous others, and nodes of these communities move to other topics. Most
notably, a large portion of the climate protection topic shifts to the public transportation topic.
To quantify these observations, 114 hashtags stay in the community, whereas 81 shift to the public
transportation-related topic. Additionally, 21 shift to the foreign policy topic, and 17 go to the
one covering the Ahr flooding. Those results indicate a context switch of certain topical aspects
as they also become relevant for other trends.

Evaluation

To confirm that computed trends are meaningful, we leverage an event-based evaluation and man-
ually check if detected trends are related to real-world events. For the top 10most prevalent trends
shown in Figure 4.4, the time frame of their highest popularity is taken as prediction and related
events are checked for their temporal occurrence as kind of ground truth. In a subsequent step,
the trend peak and the temporal occurrence of the related event are then compared and checked
for accordance.
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Figure 4.6: Alluvial diagram visualizing the temporal interrelation of trends

Table 4.2: Long-term trends and related events

Hashtags Peak Event Reference (accessed 2023-06-13)

1 corona, covid19, pandemie,
lockdown, impfpflicht, imp-
fung

January
2021

COVID-19 pandemic
(17 November 2019 –
present)

https://en.wikipedia.org

/wiki/COVID-19_pandemic

2 eu, ukraine, europa, russland,
deutschland, putin

Febru-
ary and
March
2022

2022 Russian invasion
of Ukraine (24 February
2022 – present)

https://en.wikipedia.org

/wiki/2022_Russian_invas

ion_of_Ukraine

3 cdu, spd, laschet, csu, btw21,
klimaschutz

Septem-
ber
2021

2021 German federal
election (26 September
2021)

https://en.wikipedia.org

/wiki/2021_German_federa

l_election
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4 klimaschutz, energiewende,
klima, landwirtschaft, kli-
makrise, nachhaltigkeit

March
2021

– –

5 afd, bundestag, thüringen,
berlin, deutschlandabernor-
mal, brandner

May
2021

– –

6 berlin, wohnen, mietendeckel,
mietenwahnsinn, ampel, r2g

Septem-
ber
2021

– –

7 nrw, afd, landtagswahl,
ltwnrw22, teamkinderschutz,
spd

May
2022

2022 North Rhine-
Westphalia state election
(15May 2022)

https://en.wikipedia.org

/wiki/2022_North_Rhine-W

estphalia_state_election

8 sachsen, antisemitismus, noafd,
polizei, dresden, rassismus

January
2022

– –

9 rlp, hochwasser, bildung,
flutkatastrophe, digitalisierung,
ltrlp

July
2021

Flooding of Ahr and
Eifel region in Germany
(15 July 2021)

https://www.dw.com/en/fl

ooding-in-germany-befor

e-and-after-images-fro

m-the-ahr-and-eifel-reg

ions/a-58299008

10 mobilität, verkehrswende,
bahn, öpnv, mobilitätswende,
verkehr

March
2022

– –

Table 4.2 shows that half of the top 10 long-term trends can be related to events like the COVID-
19 pandemic or the Russian invasion of Ukraine. Popularity peaks of these trends are in close
temporal proximity to the occurrence of the related events. We argue that for the other trends
as well, meaningful descriptions can be found, like “Klimaschutz” (Engl. climate protection) for
trend 4, “AfD” (German party) for trend 5, “Wohnungsmarkt” (Engl. housing market) for trend
6, “Diskriminierung” (Engl. discrimination) for trend 8 and “öffentliche Verkehrsmittel” (Engl.
public transportation) for trend 10. Nevertheless, those trends are not directly linked to real-world
events. Together, the event-referenced and manually labeled trends prove good functionality of
our long-term trend detection method.

4.1 .6 Conclusion

The work presented in this section tackles the issue of detecting long-term prevalent topics hid-
den in the large volume of short-lived news media. Based on methods known from the field
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of temporal network analysis and community evolution, an approach to detect such long-term
trends is presented. A case study based on German political Twitter data proves that meaningful
trends are detected. Related real-world events can be identified for many top trends, as shown
in Section 4.1.5. Future work might target more extensive evaluation procedures and additional
quantitative metrics to describe the long-term evolution of trends. Also, a more sophisticated
semantic topic model could extend the current trend detection approach. However, this would
also require more expertise in the field of NLP, in particular, topic modeling. By now, this work is
primarily built on temporal network analysis methods.

4.2 Actor-Networks behind Trends

Trends are a fundamental component of today’s fast-evolving media landscape. Still, many ques-
tions about who participates in such trends remain unanswered. Do individual actors drive trends,
or do interactions between actors reveal community structures? If so, do those structures change
during the life cycle of a trend or between topically similar trends? In short: Who is behind a
trend? Complementary to the methods and analyses examined in Section 4.1, this study aims at
a better understanding of the actor-networks underlying trends. Also, it focuses on short-lived
trends as opposed to the previously discussed long-term trends.

The network analytics model proposed in Chapter 3 is well suited for these analysis use cases.
Trends are characterized to a large extent by their dynamics. The developed analytics model can
also depict such developments over time. Further, since in this analysis, the main focus is placed
on the actors involved in the trends and their social interactions, the network-based approach
of the model is beneficial. Networks consisting of objects and their relationships are a natural
representation of social interaction networks. Given a network-based representation of the trend-
related actor-networks, methods known from the field of network science can be leveraged to
study the structure and dynamics of these networks and to answer the question of “Who is behind
a trend?”.

Reference: This section is based mainly on the following peer-reviewed publication:

John Ziegler and Michael Gertz. Who Is behind a Trend? Temporal Analysis of Interactions
among Trend Participants on Twitter. Proceedings of the International AAAI Conference onWeb
and SocialMedia, 17:960–969, 2023.

In the following, after covering the research questions and contributions of this study in Sec-
tion 4.2.1 and a discussion of related work in Section 4.2.2, we present our approaches to trend de-
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tection and thederivationof temporal properties of online social network trends (see Section4.2.3).
We then present various analytical methods that are aimed at a better understanding of the inter-
actions among trend participants (see Section 4.2.4). Finally, we conclude with a summary and
discussion of potential future extensions in Section 4.2.5.

4.2 .1 Research questions and contributions

This work aims at a better understanding of the actor-networks behind trends on social media,
expressed by the general question of “Who is behind a trend?”. Inmore detail, we ask the following
research questions:

RQ1 Are trends driven by individual actors, or do interactions between those actors reveal com-
munity structures?

RQ2 Do those structures change during the life cycle of a trend or between topically similar
trends?

To answer these questions using appropriate computational methods, we conduct a case study
based on a large Twitter dataset of more than 16 million tweets collected over the duration of
the European soccer championship 2020 (EURO 2020). As an extension to the methodology
proposed in Section 4.1, a Gaussian fitting method is developed to identify periods in which se-
lected topics become trends. The detection process also determines the two stages of a trend, the
up- (increasing prevalence) and down-trend (decreasing prevalence) stage, as well as the respective
duration of a complete trend life cycle. To better understand the relationship among trend partici-
pants, wemodel the dataset as temporal snapshot networks with interactions representing Twitter
@mentions. Changes in these networks during a trend (intra-trend) and between similar trends
at different points in time (inter-trend) are analyzed. In summary, this study makes the following
contributions:

1. To conduct a comprehensive analysis, we leverage a large-scale Twitter dataset that is known
to contain topically similar trends over time. Known trends are leveraged for evaluation
purposes.

2. By combining changepoint detection and Gaussian fitting, we present a novel method for
trend detection. It allows us to distinguish between up- and down-trend, and it helps to
determine the duration of detected trends.

3. We use identified trend durations as adaptive timewindows andmodel the dataset as tempo-
ral snapshot-based networks accordingly. In contrast to a static window size used in similar
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approaches, this adaptivity overcomes the difficulty of properly aggregating snapshots, a
problem related approaches are struggling with.

4. An in-depth network analysis of the interactions among actors participating in trends is
conducted. Changes within trends and between topically similar trends over time are con-
sidered.

Our findings confirm but also significantly extend previous results obtained by related work such
as Budak et al. (2011), Asur et al. (2011), and Zhang et al. (2016) as these findings show new
methods and results of an actor-centered analysis during and across temporal trends on social
media. Regarding the first research question, they show that only a fewTwitter accounts take up a
large portion of thementions in tweets, as observed by high domination-ratios, and therefore form
the center of the respective trend. Additionally, only a few large communities of actors are present
in respective interaction networks, andmost users belong to a small group of actors. Regarding the
second research question, trends are not centered around stable communities of actors, as shown
by an intra-trend analysis that reveals great variability among community members across the life
cycle of a trend. These communities are also not temporally stable, as shown in an inter-trend
comparison. In contrast, the mentioned highly dominating actors are temporally stable, i.e., re-
occurring across trends. Also, trends showa considerable overlap of participatingusers for topically
similar trends at different points in time. Nevertheless, actors participating in a trend are strongly
changing during the trend life cycle and vary between the up- and down-trend stages.

4.2 .2 Related work

The methods described in the following lie at the intersection of trend detection and network
analysis, with some focus on the study of communities. While those topics have already been
studied in numerous ways individually, work that connects both aspects is rare. On the one hand,
regarding trend analysis, we refer the interested reader to the survey by Sharma et al. (2016). Also,
in amore general sense, Yang andLeskovec (2011) investigate temporal attention patterns of online
media content. On the other hand, the books by Newman et al. (2006) and Latora et al. (2017)
give an excellent overview of network science in general. More specifically, Javed et al. (2018)
survey different community detection approaches. Similarly, the work by Rossetti and Cazabet
(2018) provides an in-depth coverage of the field of community detection as applied to temporal
networks.

The study of Budak et al. (2011) is probably most similar to the work presented in this section. By
connecting topical trends with the social network structure of participating users, they are able
to identify structurally different types of trends. According to their study, “coordinated” trends,
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as opposed to “uncoordinated” ones, are mainly discussed among users that are also “friends” in
the respective social network. In contrast, “uncoordinated” trends are not driven by clustered
groups of actors but are instead driven by unrelated users. As validation, they use a Twitter dataset
of trends connected with information about the Twitter social graph. Although their work also
connects trend analysis with social interactions amongparticipating actors, we specifically focus on
ad-hoc interactions that are present during trends and further compare those interactions across
similar trends at different points in time. With the trenddetectionmethodpresented in this section,
we can also differentiate between different phases of a trend and compare interactions during these
accordingly. This differentiation is also an enhancement compared to the methodology presented
in Section 4.1 that does not distinguish between the different stages of a trend.

Work that is related to socio-semantic networks also connects topical or, more broadly speaking,
semantic networks with actor-networks, which is similar to our approach (Arroyo-Machado et al.,
2021; Radicioni et al., 2021; Hellsten and Leydesdorff, 2020). Nevertheless, to the best of our
knowledge, no work in the socio-semantic networks field focuses on actor-networks that underlie
topical trends on social media.

Further, other additional work is related to ours, such as the one by Asur et al. (2011). Based on
a Twitter dataset, they analyze the factors that influence the formation and persistence of trends.
Even though they already consider factors influencing the impact of users regarding a trend, they
do not investigate the network structures between those trend participants. In a similar direction,
the work by Zhang et al. (2016) is concerned with the question of whether the so-called “crowd”,
meaning a large number of low-impact users or rather “opinion leaders”with a significant influence,
contribute the most to trends on social media. They already highlight the importance of ordinary
users as opposed to influencers and therefore underline the necessity of our work. Again their
focus is not on the interactions among actors participating in a trend. They do not further analyze
community structures of such “crowds”, and their work lacks a temporal comparison of similar
trends re-occurring over time.

Furthermore, recent work by Khan et al. (2021) focuses on detecting and ranking trends based on
Twitter data. Unlike our work, they take an open-domain approach and, therefore, detect trends
related to different genres but do not check for topically similar trends over time. Also, their
method cannot determine the different phases of a trend and its duration. Marangoni-Simonsen
andXie (2015) take a different approach anduse a changepointmethodology to detect community
emergence in a sequence of networks. Theirmethodology applies to various kinds of communities
and is not limited to the case of hashtag co-occurrence clusters. Finally, Huang et al. (2020) apply
changepoint detection to a sequence of network snapshots to find temporal anomalies. In the
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present work, we start with a changepoint detection step to find the appropriate window size for
the built-upon network aggregations and subsequent analyses. Somehow similar is the work by
Anghinoni et al. (2019), which proposes a novel trend detection method. Trends are represented
as communities of complex networks that are extracted from time series data. In contrast to the
work in this thesis, their work is more theoretical and does not deal with the use case of analyzing
actor-networks that underly trends.

4.2 .3 Trend detection

The first step of this analysis consists of detecting trends in a collection of social media posts,
which represent the documents in this analytics scenario (see Section 3.2.1). Due to the lack of a
benchmark dataset that fits the use case of examining actor-networks behind trends, we rely on
a Twitter dataset related to the EURO 2020 soccer championship that we specifically collected
for this purpose. We check whether our trend detection method delivers high-quality results
by conducting an evaluation based on known real-world events. Detected trends and the time
windows in which they are present provide the basis for subsequent analytical methods to study
interactions among actors contributing to those trends over time. The perspective on the actor-
networks underlying the analyzed trends complements the approach presented in Section 4.1,
which focuses on the trends themselves along with their temporal evolution and not on the trend
participants.

Dataset

The leveraged Twitter dataset consists of posts related to the EURO 2020 soccer competition. We
rely on the Twitter search API v2 and gather tweets that either contain the official EURO 2020
account (@EURO2020) or the official hashtag (#EURO2020). To get a complete dataset, we use a
time window that starts one week before (4 June 2021) and ends one week after (18 July 2021) the
competition. Time-stamped information about mentions of users in Tweets and what hashtags
are used is extracted from the raw tweets. Mentions as interactions among actors compared to
retweets are used because they rather represent some social tie as opposed to actions of just sharing
information. The statistics of the dataset can be found in Table 4.3.

As Figure 4.7 shows, the activity on theTwitter platform related to the EURO2020 championship
varies over time. A clear peak of attention can be observed during times of the soccer championship
final (11 July 2021).

In line with the works of Asur et al. (2011) and Budak et al. (2011), we do not deal with the
problem of topic extraction on its own but rather take hashtags as representatives of topics and,
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Table 4.3: Rounded statistics of the collected Twitter dataset. For hashtag usages and user mentions,multi-
ple occurrences in the same tweet are not considered.

Description Count (𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑜𝑛)

tweets 16.163
users 3.802
hashtags 0.266
hashtag usages 27.594
user mentions 19.707

therefore, restrict ourselves to the detection of trends as determined by the temporal usage of
hashtags.

Figure 4.7: Number of tweets over time as part of the collected EURO 2020 dataset

Detection

Given the usage of a hashtag over time, the goal of the detection process is to find time windows
in which the hashtag shows trending behavior. In contrast to the trends analyzed in Section 4.1,
the trends we analyze in this study are short-lived and do not reveal long-term trending behavior.
Based on the analysis model discussed in Chapter 3, an entity network (see Section 3.2.2) consist-
ing of tweets as documents, hashtags as entities, and “usage” links between tweets and hashtags,
can be leveraged for this analytics scenario. In this case, the mentioned hashtag usage, respectively
occurrence, corresponds to the temporal in-degree of a hashtag node in the respective entity net-
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work. As the hashtag usage is given on an hourly basis, the respective temporal network snapshots
are also sampled based on a fixed time window of one hour.

Formally, let ℎ be a hashtag,𝕋 the domain of time and the output of the detection process

𝜉(ℎ) = ((𝑡2𝑛−1, 𝑡2𝑛))𝑛∈ℕ
with 𝜉(ℎ)𝑛 ∈ 𝕋 × 𝕋

(4.5)

the sequence of time windows defined as tuples of points in time that specify the duration of
the found trends for that hashtag. Further, we refer to the usage of a hashtag ℎ over time as
𝑢ℎ(𝑡) ∶ 𝕋 → ℕ. In a time range [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑠𝑡𝑜𝑝] of a potential trend we model 𝑢ℎ(𝑡) as a Gaussian
function with parameters 𝑠, 𝑐, and 𝑑:

𝑢ℎ(𝑡) = 𝑠 ⋅ exp(−(𝑡 − 𝑐)
2

2𝑑2
)

with 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑠𝑡𝑜𝑝.
(4.6)

Given that those parameters control the height, center, and standard deviation of the function,
one can think of them as the strength (𝑠), center (𝑐) and duration (𝑑) of the respective trend. In
more detail, the characteristic full width at half maximum (FWHM) value of the model is used to
determine the actual time range [𝑡1, 𝑡2] of the trend duration:

FWHM = 2√2 ln 2 𝑑,

𝑡1 = 𝑐 − FWHM
2 , 𝑡2 = 𝑐 + FWHM

2 .
(4.7)

Consequently, time ranges of the up- and down-trend stages of the respective trend are derived as
follows:

Up-Trend ∶ [𝑡1, 𝑐] = {𝑡 ∈ 𝕋|𝑡1 ≤ 𝑡 ≤ 𝑐},

Down-Trend ∶ [𝑐, 𝑡2] = {𝑡 ∈ 𝕋|𝑐 ≤ 𝑡 ≤ 𝑡2}.
(4.8)
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Figure 4.8 shows the temporal hashtag usage for #GER, which stands for the German national
team. It further shows how a Gaussian function is fitted to the time window that potentially
contains the trend. Parameters derived by the model are then used to define the characteristics of
the present trend. In this case, the trend duration is determined to be about 3.4 hours.

Figure 4.8: Example fit to identify the trend of the hashtagGER and its duration

Although Gaussian-like popularity progressions seem to fit our use case (as they are in line with
typical temporal attention patterns on social media, e.g., see clusters T1 and T2 in Yang and
Leskovec (2011)), it is not yet answered how the time ranges that potentially contain a trend are
determined. Constantly checking a sliding time window for a successful model fit is inefficient.
Therefore, we leverage a two-step process and first detect changepoints of the hashtag usage via
BayesianOnlineChangepointDetection (Adams andMacKay, 2007). If a changepoint is detected,
its point in time is taken as the center of a 12 h time window, and the trend detection is only then
applied to this time range.

For example, Figure 4.9 shows detected changepoints for the temporal hashtag usage of #GER. In-
terestingly, changepoints are in close proximity to the soccermatches of theGerman national team.
Later on, this pattern is exploited during the evaluation, as described in the next section.

For the actual implementation of the changepoint detection step, we rely on the Kats4 Python
package version 0.1.0 as a toolkit for time series analysis. To detect shifts in the average hashtag
usage, we use the NORMAL_KNOWN_MODELmodel parameter, together with the default threshold
of 0.5 and a lag of 24. Given an hourly time resolution, the lag of 24 h is inspired by a media logic
of daily new trends.
4Kats | Kats: https://facebookresearch.github.io/Kats (accessed 2023-05-11)
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Figure 4.9: Detected changepoints for the hashtagGER and soccer matches of the German national team

Evaluation

To verify whether trends found in the present dataset do indeed reflect real-world trends, we
follow an approach similar to the one used by Béres et al. (2018) and argue that real-world events
characterized by their temporal limitation should also be reflected by a temporally limited shift of
representative dataset statistics, in particular those of a trend.

As exemplified by Figure 4.9, detected changepoints andmatches of soccer teams, as represented by
related hashtags, are close in time. Therefore, we resort to the official schedule of the competition5

as ground truth and argue that participating teams should be trending in the respective Twitter
conversation during matches. This reasoning follows the rationale adopted in Béres et al. (2018).
We rely on the official acronyms used in the competition schedule to find tweets that belong to
soccer teams. Those are often leveraged as hashtags on Twitter, e.g.,GER referring to the German
national team would often be used as #GER.

We check whether trends are detected on the same day as the according team played a EURO
2020 soccer game. Given that for the group stage of the EURO 2020 competition, teams were
arranged in groups of four, every team participated in at least three matches during the time win-
dow covered by the dataset. In total, 51 matches and, therefore, 51 expected trends are evaluated.
Per team, an average of 98 % of the trends are correctly detected, and only 12 % of the detected
trends are false positives under the assumption that only soccer matches caused a trend. Further

5EURO2021 Match Schedule: https://editorial.uefa.com/resources/026a-126a09addc81-6f092
f1f9f89-1000/euro2021_match_schedule_-_english_-_310521_20210601103927.pdf (accessed
2023-05-11)
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Figure 4.10: Trends and their durations for the hashtagGER

investigations reveal that false positive trends appear either the day before the tournament (53 %)
or on the last day of the group stage (47 %). One can assume that the increased media coverage
before the competition and the decision about which teammakes it to the knockout stage, next
to actual matches, also caused trends. Also, trend-related discourse on Twitter is not only lim-
ited to the actual soccer matches but covers other events as well. As an example, Table 4.4 shows
the most liked English tweets published on 12 June 2021 mentioning #DEN. Even though the
Danish team played against Finland and was trending this day, a large portion of the social media
discourse is related to the cardiac arrest of the Danish soccer player Christian Eriksen (Norgaard
andMcSweeney, 2021). These findings strengthen the assumption that the proposed dataset and
methodology are not limited to a soccer-specific social media analysis but apply to studying social
media trends in general. Furthermore, the high accuracy gives reason to assume that our trend
detection method is reliable and can be used to analyze interactions among actors participating in
those trends during the following steps.

Further, a median trend duration of 2.6 ± 0.5 hours underlines the good performance of the
approach. Given that a soccer match lasts about 1.5 hours plus a break of 0.25 hours (and often
some extra time), this value seems reasonable. Especially one has to consider that news coverage
typically starts earlier and stops later compared to the actual time range of the match.

Also related to the identification of trenddurations, our proposed fitting procedure converges in all
cases except for one (hashtag SCO (Scotland) on14 June 2021, 6 amUTC), as shown inFigure 4.11,
meaning that, in general, theGaussianmodel canbe seen as appropriate. Following a classical trend
life cycle, it assumes a rise, peak, and downfall of the according trend. Nevertheless, looking at
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Table 4.4: The discourse around trends on Twitter is not only related to soccer matches but also to other
happenings, as in this case, the cardiac arrest of the Danish soccer player Christian Eriksen. Here,
the most liked English tweets published on 12 June 2021 mentioning #DEN are shown.

Tweet ID Content

1403766744624381955 YEEEES!Theofficialword is here. #Erikson is alive! What ahorrible
scare. My thoughts are with his family, his friends, and all players
on the pitch. #DENFIN #DEN #UEFA2020 #EURO2020🙏
https://t.co/tuviGvtSVp

1403766315681259524 Unbelievable news👏👏.

Just unbelievable👏👏.

#DEN #FIN #EURO2020
https://t.co/tozmCoft1X

the trend for which duration identification fails reveals another possible trend development. In
this case, the trend rises in a two- or three-step process and can be seen as multiple overlapping
Gaussian functions (think of a Gaussian mixture model (Reynolds, 2009)). Compared to the
findings of Yang and Leskovec (2011), the pattern might most accurately be described by their
cluster T5, which also describes a two-step increase in attention. Given that this kind of up-trend
pattern can be seen as relatively rare, it is not studied further in this work.

Overall, the abovemethod allows us to identify trends and their durations robustly. Applied to our
dataset, which also contains interactions among trend participants, it further allows us to analyze
and temporally compare the social network structures underlying those trends.

4.2 .4 Network analysis

The network analysis part aims at a better understanding of the interactions among trend partici-
pants. As already discussed, we resort to mentions in tweets for this purpose. Formally,𝐺(𝑉, 𝐸)
denotes the directed mention network of users extracted from our Twitter dataset. An edge
𝑒 = (𝑣1, 𝑣2, 𝑡) ∈ 𝐸 contained in the network is defined as a triple of two vertices 𝑣1, 𝑣2 ∈ 𝑉 and a
timestamp 𝑡 at which the respective link occurred (i.e., account 𝑣1 mentions account 𝑣2 in a tweet
at time 𝑡). This approach aligns with the model proposed in Chapter 3. Specifically, the described
mention network represents an entity network projection as examined in Section 3.4.1. The
according network projection is based on the meta path 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒

𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜
−−−−−−−→ 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑝𝑜𝑠𝑡𝑠
−−−→
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Figure 4.11: Example of a failing trend duration fit. In this case, the trend rises in a multi-step process
instead of a single Gaussian-like increase.

𝑡𝑤𝑒𝑒𝑡 𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠−−−−−−−→ 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒. Further, the timestamp of the edge is the result of a network attribution
as described in Section 3.4.2.

Given that a trend of a hashtag ℎ is present during the time window lasting from 𝑡1 until 𝑡2, the
set of users𝑉𝑡1,𝑡2ℎ and the set of mentions 𝐸𝑡1,𝑡2ℎ define the interaction network𝐺𝑡1,𝑡2ℎ among trend
participants. Participants are those users that used the hashtag at least once during the time of
the trend. In other words, a meta path of the structure 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒

𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜
−−−−−−−→ 𝑢𝑠𝑒𝑟 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

𝑝𝑜𝑠𝑡𝑠
−−−→

𝑡𝑤𝑒𝑒𝑡 𝑢𝑠𝑒𝑠−−−→ ℎ𝑎𝑠ℎ𝑡𝑎𝑔 must exist for a 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 to be included in the participation network as
user node. Formally, the set of interactions that have to be taken into account is defined as fol-
lows:

𝐸 ⊇ 𝐸𝑡1,𝑡2ℎ = {𝑒 = (𝑣1, 𝑣2, 𝑡) ∈ 𝐸|(𝑣1 ∈ 𝑉
𝑡1,𝑡2
ℎ ∨ 𝑣2 ∈ 𝑉

𝑡1,𝑡2
ℎ ) ∧ 𝑡1 ≤ 𝑡 ≤ 𝑡2}. (4.9)

As a result, for a sequence of trends 𝜉(ℎ) = ((𝑡1, 𝑡2), (𝑡3, 𝑡4), … , (𝑡2𝑛−1, 𝑡2𝑛)) detected for a given
hashtag ℎ, one obtains a series of snapshot networks𝐺ℎ = (𝐺𝑡1,𝑡2ℎ , 𝐺𝑡3,𝑡4ℎ , … , 𝐺𝑡2𝑛−1,𝑡2𝑛ℎ ) that contain
the interactions among participants during those trends. Note that according to the respective
trend durations determined with the approach described in Section “Detection”, snapshots are
adaptively sized instead of having a fixed window size.

Given the defined interaction networks, methods known from the field of community detection
(see Javed et al. (2018)), e.g., Infomap, can be applied to gain a better understanding of the inter-
action patterns. Also, successive interaction networks can be compared based on their similarity.
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We rely on the overlap coefficient as a similarity measure for that (Vijaymeena and Kavitha, 2016).
Given two sets of vertices𝑉1 and𝑉2, the overlap coefficient 𝛼 is defined as

𝛼(𝑉1, 𝑉2) =
|𝑉1 ∩ 𝑉2|

𝑚𝑖𝑛(|𝑉1|, |𝑉2|)
. (4.10)

Further, as an extension to the overlap coefficient 𝛼 as defined in Equation 4.10, we specify the
relative overlap 𝛼𝑟 as the intersecting fraction relative to the cardinality of the first set:

𝛼𝑟(𝑉1, 𝑉2) =
|𝑉1 ∩ 𝑉2|
|𝑉1|

. (4.11)

In the following, we will talk about “inter-trend” comparison when comparing interaction net-
works for the same hashtag at different points in time. As an example, comparing the four trends
of the hashtagGER shown in Figure 4.10 would follow the “inter-trend” approach. In contrast,
“intra-trend” analysis compares the up- and down-trend phases within a single trend. It focuses
on only a single trend period.

Regarding the implementation of this framework, we rely on the python-igraph software pack-
age version 0.9.8 (Csárdi and Nepusz, 2006). For community detection, we use the Infomap
community detection algorithm, which is already included in the igraph package. Centrality
measures are derived via PageRank scores and the community detection is applied per snapshot.
We argue that approaches from the field of evolutionary clustering (Chakrabarti et al., 2006) are
not feasible for our community detection use case due to their inherent assumption that subse-
quent clusters should be similar, see the discussion about the method of “Temporal Smoothing”
in Section 3.2 of Rossetti andCazabet (2018). Our approach is less restrictive than those methods,
given that we do not assume to find communities or stable clusters of communities at all.

As an example, Figure 4.12 shows the interactions among the five largest communities during
the trend on Twitter accompanying the match of Germany vs. France. Communities are labeled
according to the three most central nodes within the respective cluster.

Inter-Trend Results

Overall, the interaction networks derived from our dataset contain, on average, about 7 ± 4 k
vertices and 20 ± 10 k edges, corresponding to a very low density of 0.0004 ± 0.0002. This result
already shows that not a single highly connected group of nodes participates in the trends, but
interactions are spread across a large user base. Furthermore, the high deviations show that trends
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Figure 4.12: Exemplary mentions between the five largest communities in a trend, related to the soccer
match of Germany vs. France, visualized as a chord diagram

significantly vary in their spreading across the social media platform. If one takes mentions as
an indicator of the social network between actors, the terminology used in the study of Budak
et al. (2011) can be leveraged. In that sense, analyzed trends can be classified as “uncoordinated”,
meaning that they are discussed among distributed as opposed to clustered users.

Interestingly, on average 21 ± 4 % of nodes overlap for successive trend networks shown by the
median value 𝛼(𝑉𝑡𝑖,𝑡𝑖+1ℎ , 𝑉𝑡𝑖+2,𝑡𝑖+3ℎ ) = 0.21 ± 0.04. Considering that real-world matches against
different teams cause two comparable trends, one would expect amaximumoverlap of about 50 %,
assuming that the same amount of users represents supporters of one and the other team. Given
this assumption, the fraction of overlapping users seems to be quite high, and one can argue that
a similar user base is participating across topically similar trends. From that, one could conclude
that the fan base supporting a team stays similar across matches. Alternatively, participants might
as well be not supporters of individual teams but general soccer-related actors, e.g., sports media
outlets or journalists.
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Table 4.5: Domination-ratios for different trend phases, in- (I) and outgoing (O) mentions, as well as the
top one (1) and ten (10) ranked users

Complete Up-Trend Down-Trend

I1 0.16 ± 0.03 0.17 ± 0.04 0.14 ± 0.03
I10 0.46 ± 0.04 0.48 ± 0.04 0.48 ± 0.06
O1 0.008 ± 0.003 0.02 ± 0.01 0.009 ± 0.004
O10 0.05 ± 0.02 0.09 ± 0.05 0.05 ± 0.02

To determine whether single users play an outstanding role in the network, similar to Asur et al.
(2011), we calculate the domination-ratio as the proportion of mentions that come from or go to
the most mentioning/mentioned user. For an evenmore meaningful quantity, we also sum up the
domination-ratios for the ten most active participants (see Table 4.5 “I10” and “O10”). Because
mentions imply a direction, we differentiate between out- and ingoing mentions. As shown in
Table 4.5, especially for ingoing mentions, the domination-ratio is relatively high, which means
that only a handful of user accounts take up a large portion of the overall mentions and thereby
form the core of actors that the trend is centered around. Onemight call those actors “trend-hubs”
or “trend-influencer”. Interestingly, the top ten most dominating users reach a median overlap
coefficient of 0.46 ± 0.04. This value is close to the expected maximum value of 0.5, as explained
above.

Contrarily, no accounts dominate the actual mentioning activity, as the domination-ratios for
outgoing mentions are low. This finding aligns with the insights of Asur et al. (2011), who high-
light the link between low domination-ratios and longer trend durations. Zhang et al. (2016)
as well outline the importance of the “crowd” participating in a trend for it to gain considerable
popularity.

The most dominant user accounts regarding ingoing mentions during matches of the German
national team are shown in Table 4.6. Most actors are related to soccer players and teams, national
soccer associations, or the EURO 2020 championship. Obviously, those users have a large rele-
vance for soccer-related trends. Accounts closely linked to the German national team, in this case
DFB_Team_EN andDFB_Team, can be found across all trends. The EURO2020 account can be
seen as an artefact of the dataset collection process. On the other hand, one can also observe large
variations between the different matches/trends. Depending on the opposing team accounts re-
lated to this one also become relevant, e.g., England or sterling7, for the match against the English
team.
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Table 4.6: Top ten most dominating users for trends during matches of the German national team

GER vs. FRA GER vs. POR GER vs. HUN GER vs. ENG

EURO2020 EURO2020 EURO2020 EURO2020
goal DFB_Team goal goal
InvictosSomos goal Football__Tweet DFB_Team
Football__Tweet DFB_Team_EN Footballogue England
DFB_Team_EN ToniKroos SquawkaNews DFB_Team_EN
DFB_Team Cristiano DFB_Team sterling7
Cristiano realmadrid DFB_Team_EN BBCSport
EURO2020FR InvictosSomos InvictosSomos ChelseaFC
realmadrid 2010MisterChip brfootball ManCity
ToniKroos selecaoportugal 2010MisterChip Football__Tweet

Besides individual actors, when it comes to community detection, on average, 700 ± 300 commu-
nities per network are found. Of these communities, most consist of only a small number of users,
as shown in Figure 4.13. The distribution of community sizes approximately follows a power
law decay. The largest communities, on average, consist of 14 ± 4 % of nodes of the complete
network. Again, strongly deviating values are observed, which suggests large differences in the
trend dominance of single communities.

Interestingly, a pairwise comparisonof the top ten largest communities between trends reveals large
fluctuations. On average, even the maximum overlap coefficient with a value of 0.21 ± 0.04 does
not surpass the similarity score between complete networks. Therefore, communities do not seem
to be temporally stable across trends. This finding is underlined by a very low overlap between the
largest communities of subsequent trends (0.04±0.03). Also, only a small fraction of nodes of the
largest community during a trend can be found during the next trend (𝛼 = 0.13 ± 0.03).

To verifywhether specific communities of actors continuewithin other communities in succeeding
trends, we check for the maximum fraction of users that stay together between any pair of the
top ten communities in successive trends. We use the relative overlap coefficient 𝛼𝑟 as defined
in Equation 4.11 for that. Figure 4.14 gives a visual example of such a community flow in the
form of an alluvial diagram. It should be noted that the sizes of the community blocks are not
absolute but relative to the in- respective outgoing overlap. The top three accountswith the highest
centrality values are used as community labels. One can see that the community containing the
DFB_Team_EN Twitter account continues partially across trends. Nevertheless, for the most
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Figure 4.13: Community sizes differentiated by trend stages. Densities approximately follow power law
distributions.

part, communities get mixed quite strongly as a lowmaximum value of 𝛼𝑟 = 0.10 ± 0.03 between
successive top ten communities indicates.

Intra-Trend Results

In contrast to the inter-trend setting, the intra-trend analysis compares interaction networks be-
tween different trend stages (up- vs. down-trend). The mention networks during those stages
contain, on average, about 3 ± 2 k respectively 5 ± 3 k vertices, as well as 6 ± 4 k respectively
11 ± 6 k edges, meaning that the mention networks reveal very low densities of 0.0008 ± 0.0005
respectively 0.0005±0.0003. Similar to the findings for the inter-trend analysis, a group of loosely
interacting actors seems to participate across the stages of a trend. In this case, one could as well
talk about “uncoordinated” trends (Budak et al., 2011). Furthermore, it must be noted that, on
average, more distinct users participate in the later phase of a trend. This disparity can probably
be explained by an already larger popularity of the trend at that point in time.

Usually, one would not expect entirely differing networks during up- and down-trend phases.
However, this is what our analysis reveals. Within a single trend, only a median of 28 ± 4 %
of nodes is overlapping, showing that only about a quarter of the users participates across the
complete trend life cycle. Also, regarding community analysis, results are similar to the ones found
for the inter-trend setting. On average, 400±200 respectively 500±200 communities per network
are found. Figure 4.13 shows the distribution of community sizes over all actor-networks. As can
be seen, communities primarily consist of only a few users, a property that holds for all trend
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Figure 4.14: Exemplary inter-trend overlap of the five largest communities visualized as an alluvial diagram
– GER vs. FRA (left) GER vs. POR (right)

stages. The distributions of community sizes approximately follow power laws with even less large
communities as expectedbynameddistribution. The largest communities cover on average16±6%
respectively 14 ± 5 % of actors of the complete ad-hoc network and are thereby quite dominant
among respective interactions. On average, the maximum similarity in terms of overlap coefficient
between the top ten largest communities during the up- and down-trend is only 0.28 ± 0.08. As
the two stages are part of the same trend, onewould expect amore stable base of actor communities
contributing to the trend across its life cycle. Similar results are obtained by simply comparing
the largest communities between the two trend stages. On average, only a fraction of 6 ± 6 % of
actors overlaps. Also, again a lowmaximum value of 𝛼𝑟 = 0.10 ± 0.04 is observed by comparing
the top ten communities of successive trend stages. Nevertheless, in all cases, actors of the largest
community found during the up-trend also participate in the down-trend, meaning that at least
those actors are stable across the entire trend life cycle.

Furthermore, findings related to the domination of users, as shown in Table 4.5 and already dis-
cussed for the inter-trend analysis, also hold for the intra-trend setting. Domination-ratios of 0.48
regarding the top ten ranked users can be observed for both trend stages. By comparing a maxi-
mum of ten most dominant accounts between trend stages, an overlap of 60 ± 10 % is observed
on average. Dominant accounts seem to be relatively stable within a trend. For example, the top
five dominant users during matches of the German national team regarding ingoing mentions
and separated by trend stages are shown in Table 4.7. One might expect that the changes in these
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Table 4.7: Top fivemost dominating users for different trend stages duringmatches of the German national
team

Stage GER vs. FRA GER vs. POR GER vs. HUN GER vs. ENG

Up DFB_Team EURO2020 goal EURO2020
Cristiano InvictosSomos DFB_Team_EN DFB_Team_EN
EURO2020 DFB_Team_EN EURO2020 goal
goal DFB_Team DFB_Team DFB_Team
DFB_Team_EN goal InvictosSomos England

Down EURO2020 EURO2020 EURO2020 EURO2020
goal DFB_Team goal goal
Football__Tweet DFB_Team_EN DFB_Team England
DFB_Team_EN ToniKroos DFB_Team_EN DFB_Team_EN
DFB_Team Cristiano InvictosSomos BBCSport

dominant accounts between the two trend stages are caused by different foci in media attention,
e.g., pre-match expectations vs. moderating the soccer match. Unfortunately, analysis of the actor-
networks does not tell much about the topical variations within a trend life cycle. More suitable
semantic analyses are needed to better understand how media coverage (e.g., discussed topics)
changes over the lifespan of a trend.

4.2 .5 Summary and discussion

Given the important role of social media platforms and their influence on society, obtaining in-
sights into who contributes to trends and how underlying actor-networks are structured will
continue to play an important role. In the present work, we tackle the problem of combining two
core methods for such studies, trend detection and network analysis, to get a more fine-grained
view of social interactions among actors during trends on social media. In the context of a large-
scale Twitter dataset related to the 2020 UEFA European Football Championship, we developed
several novel methods to analyze and explore trends. Our novel Gaussian-based trend detection
method allows us to differentiate between up- and down-trend as well as to determine the duration
of a trend. An event-based evaluation proves good performance.

Furthermore, with the dataset and detected trends on hand, we are able to analyze topically sim-
ilar trends across time (inter-trend) and within the trend life cycle (intra-trend). Our analysis
focuses, in particular, on the actors behind those trends, modeled in the form of temporal men-
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tion networks extracted from the dataset. Trend-dependent time windows allow for an adaptive
snapshot-based network aggregation. In this regard, the study also serves as a demonstration of
the analytics model presented in Chapter 3. Its temporal, network-based approach is well suited
for the present use case of studying interaction networks among trend participants.

Among other results, our findings show a considerable overlap of the user base in an inter-trend
setting but not within a trend during its different stages. Users participating in a trend seem to vary
a lot during the life cycle of a trend but not so between similar trends across time. Furthermore,
trends are centered around a small set of highly influential users, as indicated by high domination-
ratios. This core of actors is also stable across time. In contrast, even though large communities of
actors are present, these are neither stable within nor across trends.

In general, the methods and techniques described in this section provide a solid basis for studying
actor-networks underlying trends on social media. Also, this study’s methodology and analysis
results complement the insights examined in Section 4.1. While the previous work presented in
Section 4.1 focuses on the detection and analysis of long-term trends, the present study focuses
on investigating the actor-networks underlying short-lived trends.

Outlook

Even though these insights are primarily based on the analyzed Twitter EURO 2020 dataset, simi-
lar results can be obtained for other types of social media datasets as analyzed content is not only
centered around soccer matches but covers the discourse around general events as well (see Sec-
tion “Evaluation”). Also, the trend detection method captures commonmedia attention patterns,
meaning that it applies to other trend analysis scenarios as well. In this sense, the present work
could be extended in several ways. For example, the trend detection method elaborated in Sec-
tion “Detection” could be enhanced by techniques that can deal with different trend progressions,
such as the one shown in Figure 4.11. Also, incorporating additional information like terms and
named entities into the proposed network model might complement the analysis with a better
semantic understanding of given trends. This way, topical shifts within and across trends might
also be recognized. Furthermore, it might be interesting to integrate additional data sources to
gather a more complete picture of who is participating in a trend on which platform. Are there
cross-platform patterns that emerge synchronously, e.g., in a coordinated fashion by a small group
of users? Additionally, from amethodological point of view, evolutionary clusteringmight lead to
different results when it comes to detecting temporally stable communities in the actor-networks
behind analyzed trends. Also, in combination with the methodology developed in Section 4.1,
it might be of interest to analyze the actor-networks underlying long-term trends. Can one find
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similar network structures as in the case of short-term trends? Do the actor-networks change
in a similar way compared to short-lived trends? How do the actor-networks differ structurally
between multiple long-term trends?
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Conversations are an integral part of online socialmedia, for example, in the formofTwitter replies
or YouTube comments. Gaining insights into these conversations is of significant value for many
commercial as well as academic use cases as it contributes towards a better understanding of the
investigated community and the discussed topics. From a computational perspective, however,
analyzing conversation data is complex, and numerous aspects must be considered. Next to the
structure of conversations, the discussed content – as well as their dynamics – have to be taken
into account. Still, most existing modeling and analysis approaches focus only on one of these as-
pects and, in particular, lack the capability to investigate the temporal evolution of a conversation.
To address these shortcomings, in this chapter, we present CODY, a content-aware, graph-based
framework to study the dynamics of online conversations alongmultiple dimensions and, thereby,
follow the approach of the model presented in Chapter 3. Its capabilities are extensively demon-
strated by conducting three experiments based on a large conversation dataset from the German
political Twittersphere. First, the posting activity across the lifetime of conversations is examined.
We find that posting activity follows an exponential saturation pattern. Based on this activity
model, we develop a volume-based sampling method to study conversation dynamics using tem-
poral network snapshots. In a second experiment, we focus on the evolution of a conversation’s
structure and leverage a novel metric, the temporal Wiener index, for that. Results indicate that
as conversations progress, a conversation’s structure tends to be less sprawling and more centered
around the original seed post. Furthermore, focusing on the dynamics of content in conversa-
tions, the evolution of hashtag usage within conversations is studied. Initially used hashtags do
not necessarily keep their dominant prevalence throughout the lifetime of a conversation. Instead,
various “hashtag hijacking” scenarios are found. Overall, the work on the evolution of online
communities presented in this chapter serves as another use case example of the network analytics
model proposed in Chapter 3.

Reference: This chapter is basedmainly on the following preprint publication. Its content results
from the collaboration with Fabian Kneissl, whom the author supervised during his master thesis,
“Time-Dependent GraphModeling of Twitter Conversations”:
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John Ziegler, Fabian Kneissl, andMichael Gertz. CODY: A graph-based framework for the anal-
ysis of COnversation DYnamics in online social networks. arXiv preprint arXiv:2310.08140,
2023.

The remaining part of this chapter is structured as follows: After an introduction in Section 5.1
which covers the study’s research questions and contributions, in Section 5.2, related work is
outlined and discussed. Next, the CODYmodel is introduced in Section 5.3. Its capabilities are
experimentally examined in Section 5.4. Finally, Section 5.5 summarizes this chapter.

5 .1 Research Questions and Contributions

In a recentwork byBrambilla et al. (2022), the authors state that “[m]ost studies on social networks
have focused only on user relationships or [emphasis added] on the shared content, while ignoring
the valuable information hidden in the digital conversations, in terms of structure of the discus-
sion and relation between contents, which is essential for understanding online communication
behavior.” In summary, they highlight the need for an analysis model to incorporate a conversa-
tion’s content and structure. While this insight already leads towards a more holistic conversation
analysis model, it still lacks an essential aspect. As conversations are fundamentally characterized
by their temporal evolution, a respective analysis model should also consider a conversation’s dy-
namics. To the best of our knowledge, existing conversation analysis approaches are still missing
this aspect (Cogan et al., 2012; Saveski et al., 2021; Brambilla et al., 2022). In line with the model
presented in Chapter 3, we overcome these shortcomings by proposing a graph-based conversa-
tion analysis model, named CODY, which incorporates the conversation’s structure, content, and
dynamics. Its capabilities are demonstrated by focusing on three main research questions:

RQ1 How does the posting activity change over the lifetime of a conversation? Does a generaliz-
ing model describe the observed activity pattern?

RQ2 How do conversations structurally evolve? Is there a metric to quantitatively describe the
structural evolution?

RQ3 How does the focus of discussed topics change over the lifetime of a conversation? Do
initially used hashtags keep their dominant prevalence?

To answer these research questions, an analysismodel needs to be developed that is versatile enough
to cope with the three dimensions of a conversation – structure, content, and dynamics – as
no current approach exists for that. The proposed CODY model is based on the concept of
temporal heterogeneous information networks (THINs) (see Sun et al. (2010), Li et al. (2018),
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andMilani Fard et al. (2019)) and therefore comeswith proper flexibility tomodel a conversation’s
evolution, along with its structure and content. By leveraging a large conversation dataset from
the German political Twittersphere, the model’s applicability is shown and the above research
questions are investigated. The developed methodology and the results of our experiments make
up several contributions:

• The graph-based CODY model constitutes a versatile framework to study the structure,
content, and dynamics of conversations. Its flexibility in terms of integrated node/edge
types allows to model various (content) objects and their interplay within a conversation.

• RQ1: Based on empirical results, the posting activity of a conversation follows an exponen-
tial saturation pattern. Contributions occur mainly at the early stage of a conversation, and
participation becomes less towards the end.

• The developed activity model lays the theoretical foundation for a volume-based sampling
approach used to model a conversation’s evolution based on temporal snapshots. The
common issue of finding an appropriate sampling technique is overcome with that.

• RQ2: The newly proposed temporal Wiener index metric allows to quantitatively mea-
sure a conversation’s structural evolution. Experimental results show that as conversations
progress, their structure tends to be less sprawling and more centered around the original
post.

• RQ3: Focused on the content of conversations, investigations regarding the temporal preva-
lence of hashtags show that initially used hashtags do not necessarily keep their dominant
role across a conversation’s lifetime. Instead, various “hashtag hijacking” scenarios can be
observed.

Terminology

Regarding the used terminology, in line with previous work (Cogan et al., 2012), we focus on
conversations that start from an initial social media post and that are made up of direct user
interactions related to this post rather than “conversations” that are centered around an event
or other social media entities, such as @mentions. In our understanding, conversations must be
based on direct interpersonal communication instead of latent social interactions. In the context
of the Twitter platform, replies are considered “[…] the most direct communication sign between
two users.” (Cogan et al., 2012) Therefore, Twitter reply threads make up conversations.
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5 .2 Related Work

The study presented in this chapter touches on different research topics. Even though differen-
tiation is not always definite, this section aims to clarify the study’s similarities and differences
compared to existing work. For that, related work from online conversation analysis is covered
first. Secondly, the difference between this study and information diffusion is explained. Finally,
methodological similarities are described by summarizing work that also leverages THINs.

Online conversation analysis: Most closely related to our work are studies about the modeling
and analysis of online conversations. As such, Brambilla et al. (2022) conduct an in-depth study
of various online conversations. For their analysis, they propose a graph-based framework and
mainly focus on intention analysis as well as network construction. In contrast to us, they do not
consider the dynamics of the conversation graph itself. Still, they consider temporal aspects of the
analyzed conversations, such as their duration and typical reply times. Similar to our approach,
they also view the network as heterogeneous by including different node and edge types. Recently,
Botzer andWeninger (2023) leverage entity graphs extracted fromonline conversationdata, in their
case Reddit, to study whether online discourse is predictable, how the online conversations are
structured and whether theories on spreading activation can be successfully applied in the context
of online discourse analysis. Compared to our work, they do not investigate the conversation
graphs’ dynamics or consider the heterogeneity of the conversations’ content. Further, in one of
the early works on conversation graph analysis, Cogan et al. (2012) investigate the characteristics
of conversation networks emerging from an initial social media seed post. This understanding of
a conversation graph is in line with our definition (see Section 5.1). In their work, they propose a
method to gather conversation data as completely as possible and conduct an experimental analysis
based on Twitter data. Their outlook highlights the importance of future work considering a
conversation graph’s temporal evolution.

Focused on the aspect of toxicity, Saveski et al. (2021) also study the structure of Twitter con-
versations. They conduct their analysis on different levels, from individual users to the entire
conversation group. Even though applied in a static setting, they also leverage the Wiener index
to investigate the topology of analyzed reply trees. In two prediction tasks, they aim at forecast-
ing future toxic conversation characteristics based on previous conversation data. In another
application-focused work, Mathew et al. (2016) analyze Twitter conversation data related to e-
commerce promotional events. They model the data as a user-centric network by considering
replies, mentions, and retweets for the weighted edges and Twitter users as nodes. Regarding the
network’s temporal evolution, they determine the users’ flow between different network compo-
nents across time. Nevertheless, they do not elaborate on their temporal graph model but only
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propose a sampling approach using fixed timewindows. Also, they donot investigate the dynamics
of any network metric and solely focus on users, not the content, as part of a conversation.

Temporal heterogeneous information networks: As part of our methodology, we leverage
THINs to model the evolution of online conversations. Even though, to the best of our knowl-
edge, none of the existing work applied THINs in the context of conversation analysis, they are
extensively used for other use cases. For example, Sun et al. (2010) propose a method to detect
communities in THINs. They understand THINs as a sequence of temporal network snapshots,
which aligns with our approach. Similarly, Cuzzocrea and Folino (2013) deal with community
detection in temporal information networks. They specifically focus on the temporal tracking of
the detected communities and propose a detection method to analyze structural changes regard-
ing the community structure of the evolving network. Further, again in the context of THINs,
Milani Fard et al. (2019) tackle the task ofmeta path prediction. They leverage temporal snapshots
to model a network’s evolution. Sajadmanesh et al. (2019) also predict relationships in THINs.
Additionally, they predict the time when these relationships will occur. Further, as described in
Section 3.3.3, multiple other use cases are elaborated on in the context of THINs.

Information diffusion: Information diffusion is a topic that is also extensively studied in the
context of online social networks. The survey by Guille et al. (2013) and the more recent one by
Yujie (2020) give a good overview of this research field. Commonly used information diffusion
models also leverage topological information of the underlying social network. The spreading
process is frequently modeled as a network, referred to as diffusion graph. In contrast to our work,
information diffusion mainly investigates how information spreads across the entire network.
We, however, are less interested in the information diffusion process but instead focus on the
graph-centric evolution of individual online conversations, which includes not only the discussed
information but also the participating actors and the structure of a conversation. Still, based on
our model, temporal meta paths related to the concept of THINs could be leveraged to study
information diffusion processes within individual conversations.

5 .3 CODY Model

As already described, a conversation’s structure, content, and dynamics must be considered for a
conversation analysis model to be leverageable in different analysis scenarios. Following the same
pattern, this section introduces the CODYmodel in three steps. First, Section 5.3.1 explains how
the CODYmodel considers the structure of conversations. Secondly, the temporal evolution of
a conversation is integrated into the model in Section 5.3.2. Finally, Section 5.3.3 complements
the model by additionally considering the content of conversations. Along with developing the
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model, the reference to the network analytics model proposed in Chapter 3 is always made. Also,
apart from the conversation model, metrics to investigate a conversation’s structural evolution
are needed. Therefore, Section 5.3.4 introduces a novel metric, called temporalWiener index, to
quantitatively study how a conversation’s structure evolves over time.

For an illustration of a conversation represented using the CODYmodel, see Figure 5.1. Differ-
ent node and edge types are indicated by different symbols and line styles, respectively. Further,
temporal network snapshots are used to show the conversation’s dynamics.
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Figure 5.1: The graph-based CODYmodel incorporates three central dimensions of a conversation: struc-
ture, content, and dynamics. Different node and edge types are represented by different symbols
and line styles, respectively. Temporal snapshots enable the dynamics of the conversation to be
modeled.
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5 .3 . 1 Structural conversation model

Considering the structure of a conversation is an essential requirement for a holistic analysismodel.
On an abstract level, an online conversation consists of posts (e.g., tweets or comments) and links
between these posts that represent semantic relationships (e.g., replying or commenting). The
concept of graphs is particularly suitable for modeling objects, in our case posts, and their rela-
tionships. We resort to these graphs as the primary modeling approach for the CODY framework.
Posts contained in the conversation are represented as nodes and are linked via semantic relation-
ships represented as edges. For a conversation graph with nodes𝑉 and edges 𝐿 to take the different
semantic types into account, the network definition comes with a node type mapping 𝜑 ∶ 𝑉 → 𝐴
and a link type mapping 𝜓 ∶ 𝐿 → 𝑅 with 𝐴 and 𝑅 denoting the network’s node and edge types
respectively. This network typing aligns with the concept of HINs.

Definition 5.1 (Structural conversation network). The structural network 𝐺𝑠𝑡𝑟𝑢𝑐 = (𝑉, 𝐿) of a
conversation consists of a set of posts modeled as nodes 𝑉 (𝜑(𝑣) = post with 𝑣 ∈ 𝑉) and a set of
links 𝐿 ⊂ 𝑉 × 𝑉 among these posts. Each link 𝑙𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) is a tuple of the two related posts 𝑣𝑖 and
𝑣𝑗.

A single conversation is treated as an individual network based on Definition 5.1. Generally, inter-
personal communication modeled by the structural conversation network implies directionality
and a post is usually meant as a response to another, e.g., reply→ seed post. Therefore, the struc-
tural conversation network is a directed network. Also, the outgoing degree of a node is one except
for the root node, which is not a response to any other post. Therefore, if one would not consider
the edges’ directionality, two posts would be connected by exactly one path, and the structural
conversation network could be described as a tree (see Cogan et al. (2012)).

Model reference. The structural conversation network proposed in this section is in line with the
network analytics model of Chapter 3. Specifically, if one understands the posts contained in the
conversation network as document nodes, the proposed conversation network corresponds to a
document network as described in Section 3.2.1 with the post nodes being linked by conversation
interactions, e.g., replies.

5 .3 .2 Temporal conversation model

Conversations are inherently dynamic and evolve over time. It is crucial to consider these dynamics
for modeling a conversation. Typically the posts contained in a conversation come with a times-
tamp, such as the publishing date. Formally, the assignment of timestamps is described by a node
time mapping 𝜋𝑡 ∶ 𝑉 → 𝕋with 𝕋 representing the domain of time. Given that the posts’ times-

119



5 Conversations

tamps impose a natural order on a conversation’s elements, the respective structural conversation
network can be split into a temporal sequence of snapshots.

Definition 5.2 (Temporal conversation model). Each post in a structural conversation network
comes with a timestamp: 𝜋𝑡(𝑣) = 𝑡. Given a sequence of 𝑛 timestamps (𝑡𝑖)

𝑛
𝑖=0 with 𝑡𝑖 < 𝑡𝑖+1,

the structural network 𝐺𝑠𝑡𝑟𝑢𝑐 can be split into 𝑛 temporal snapshots: 𝐺𝑡𝑒𝑚𝑝 = (𝐺𝑖)
𝑛
𝑖=1. For each

snapshot 𝐺𝑖 = (𝑉𝑖, 𝐿𝑖) ∈ 𝐺𝑡𝑒𝑚𝑝 the contained nodes and edges are defined as follows: 𝑉𝑖 = {𝑣 ∈
𝑉 | 𝑡0 ≤ 𝜋𝑡(𝑣) = 𝑡 < 𝑡𝑖} and 𝐿𝑖 = {𝑙𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐿 | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑖}.

Notably, the model does not require equally sized snapshots, meaning that the condition |𝑡𝑖+1 −
𝑡𝑖| = |𝑡𝑖+3 − 𝑡𝑖+2| does not necessarily hold. Instead, the network 𝐺𝑠𝑡𝑟𝑢𝑐 might also be sampled
according to the volume of conversation posts as an alternative to equally sized time windows. In
such a case, the condition |𝑉′𝑖 | = |{𝑣 ∈ 𝑉 | 𝑡𝑖−1 ≤ 𝜋𝑡(𝑣) = 𝑡 < 𝑡𝑖}| = |𝑉′𝑖+1| = |{𝑣 ∈ 𝑉 | 𝑡𝑖 ≤
𝜋𝑡(𝑣) = 𝑡 < 𝑡𝑖+1}| holds, meaning that the amount of newly added posts is constant across the
network snapshots. This volume-based sampling approach is especially suitable in cases where
conversation posts are not equally distributed over time. Therefore, a time-based sampling, as
suggested by Cogan et al. (2012) and used byMathew et al. (2016), would lead to a highly skewed
distribution of newly added posts across the network snapshots.

Model reference. The temporal conversation model, as proposed in this section, is again coherent
with the analytics model leveraged throughout this thesis. First of all, the timestamps of the posts
are an example of document attributes as described in Section 3.2.3. Based on these, the temporal
conversation network is created in line with the approach taken for the document network snap-
shots (see Section 3.3.1). The named section also explains the volume-based sampling as applicable
in an accumulative snapshot creation setting. The same sampling strategy is leveraged for the
CODYmodel.

5 .3 .3 Content-aware conversation model

Next to structure and dynamics, the actual content of a conversationmust be considered by a con-
versation model. Various types of semantically meaningful content can be part of a conversation,
such as the written text, shared URLs, posted images, or involved users. These content objects are
extracted from the analyzed posts to be incorporated into the conversation network. Figure 5.2
illustrates this extraction process in line with Figure 3.2, which visualizes the schema of a docu-
ment entity network as part of the analytics model proposed in Chapter 3. In the content-aware
conversation network, the extracted content objects are linked to their belonging post node.
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Figure 5.2: Modeled content objects are extracted from the analyzed posts. Extracted content, the two
hashtags and the image, is linked to the respective post node in the content-aware conversation
network.

Definition 5.3 (Content-aware conversation network). Given𝐺𝑠𝑡𝑟𝑢𝑐, the content-aware conversa-
tion model𝐺𝑐𝑜𝑛𝑡 contains additional content objects modeled as nodes of additional types 𝑎 ∈ 𝐴.
The actual content objects are extracted from the respective conversation posts: 𝜖 ∶ 𝑉𝛲 → 2𝑉𝐶 with
𝑉𝛲 = {𝑣 ∈ 𝑉 | 𝜑(𝑣) = post} and 𝑉𝐶 = {𝑣 ∈ 𝑉 | 𝜑(𝑣) ∈ 𝐴\{post}}. To indicate the extraction
process, in𝐺𝑐𝑜𝑛𝑡 the content objects are linked to the original post node(s): 𝑣𝑝 → 𝑣𝑐 with 𝑣𝑐 ∈ 𝑉𝐶
and 𝑣𝑐 ∈ 𝜖(𝑣𝑝). These links might be typed. Respective types are modeled as additional edge types
𝑟 ∈ 𝑅.

The same content object might belong to different posts in the content-aware conversation net-
work, e.g., the sameURLmight be shared inmultiple posts. Therefore, two formerly disconnected
post nodes might become indirectly linked via shared content nodes (e.g., URLs, hashtags, user-
names).

Model reference. The definition of the content-aware conversation network follows the definition
of an entity network as described in Section 3.2.2. The content objects are linked to their orig-
inal post node in the content-aware conversation network as entities are linked to their original
document node in the entity network.

The content enrichment of the structural conversation network also applies to the individual
snapshots of the temporal conversation network 𝐺𝑡𝑒𝑚𝑝. Each network snapshot then contains
the content objects belonging to the contained posts. Together, the temporal and content-aware
conversation model incorporates a conversation’s structure, dynamics, and content. Formally, the
CODYmodel can be seen as a THIN.
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5 .3 .4 Temporal Wiener index

To quantitatively describe the structure of conversation networks, tailored metrics are needed. In
a recent work, theWiener index, known from the field of chemistry (Wiener, 1947), is leveraged
to measure the structure of reply trees (Saveski et al., 2021). According to Saveski et al. (2021), the
Wiener index describes two characteristic topologies of a tree-like graph in its extreme cases. On
the one hand, a lowWiener index indicates a conversation in which all non-seed posts respond to
the original seed post, and these non-seed posts do not show any interactions among each other.
On the other hand, a highWiener index indicates a conversation tree with a single dominant inter-
action branch. To the best of our knowledge, no work extends the Wiener index to fit temporally
evolving conversation trees. Based on the definition of the staticWiener index employed by Saveski
et al. (2021), we define the temporalWiener index as formalized in the following:

Definition 5.4 (Temporal Wiener index). Given a temporal sequence 𝐺𝑡𝑒𝑚𝑝 = (𝐺𝑖)
𝑛
𝑖=1 of tree-

like structured conversation networks, its temporal Wiener index𝕨(𝐺𝑡𝑒𝑚𝑝) is determined by the
average distance between post nodes in each network snapshot:

𝕨(𝐺𝑡𝑒𝑚𝑝) = ( 1
|𝑉𝑖| ⋅ (|𝑉𝑖| − 1)

∑
𝑚∈𝑉𝑖

∑
𝑛∈𝑉𝑖

𝛿𝑖(𝑚, 𝑛))
𝑛

𝑖=1

(5.1)

with 𝛿𝑖(𝑚, 𝑛) denoting the shortest path length between the nodes𝑚 and 𝑛 in the temporal snap-
shot𝐺𝑖.

Given a temporal sequence of conversation networks, the temporal Wiener index thus itself is
given as a temporal sequence of static Wiener indices. Therefore, the time series of Wiener indices
allows for studying the temporal changes of the Wiener index across the temporal evolution of a
conversation.

5 .4 Experiments

This section discusses various experiments and their results to demonstrate the capabilities of the
CODY model. A Twitter conversation dataset that we collected is leveraged for the conducted
experiments. It is described in detail in Section 5.4.1. Subsequently, in Section 5.4.2, the posting
activity across the lifetime of conversations is analyzed and an empirical model is derived. Further,
Section 5.4.3 focuses on investigating the structural evolution of conversations. For this, the
temporal Wiener index is leveraged, and its dynamics are studied. Finally, in Section 5.4.4, the
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dynamics of the content discussed in the conversations are analyzed. Specifically, the evolution of
hashtag prevalence is studied, and several hashtag hijacking scenarios are examined.

5 .4 .1 Twitter conversation dataset

The dataset used for the subsequent experiments is based on a collection of German political Twit-
ter accounts published as EPINetz Twitter dataset (König et al., 2022). We collected conversations
that started from a seed post of one of these accounts by leveraging the official Twitter search API
v2. According to Maireder and Ausserhofer, the political domain is particularly suitable for exam-
ining the structure of conversations (Maireder and Ausserhofer (2014), as cited in Koylu (2019)):
“Retweets and mention/reply functions have been found to influence the structure of conversa-
tional discourse if it is especially related to politics.” In total, the dataset consists of more than 2M
tweets as part of 5 k conversations, with each conversation including at least 50 posts. Figure 5.3
shows the distribution of conversation sizes. The tweets were published between December 2020
and January 2023, and the median conversation duration in the dataset is about seven days.

Figure 5.3: Distribution of conversation sizes as contained in the leveraged dataset of the German political
Twittersphere

According to Sun andHan (2013), theTwitter information network is well suited to bemodeled as
HIN. In line with the CODYmodel, we view each conversation as a temporal and content-aware
conversationnetworkwith the contained tweets as posts andhashtags as content objects. Figure 5.4
illustrates the network schema of the conversation model used for the subsequent experiments.
In the analyzed networks, links between tweets indicate replies which are seen as “[…] the most
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direct communication sign between two users” (Cogan et al., 2012) and therefore, make up the
structure of a conversation.

Regarding data quality, there is no guarantee that the complete lifetime of a conversation is cap-
tured. This would require a continued re-crawl of the conversation data, which is unfeasible due
to API usage restrictions. Nevertheless, the reported high average conversation duration suggests
that most of the conversation’s evolution is captured. This assumption is also underlined by the
conducted experiment, which examines the posting activity of the collected conversations. Most
activities seem to occurwithin the first 10% of a conversation’s lifetime. Therefore, sufficient posts
should be contained in the dataset even for shorter conversations, for which data of less than a
day is captured. In their analysis, Cogan et al. (2012) state that conversation activity usually stops
after 6 hours. Further, additional data quality issues related to online conversations have been
reported in the past, such as replies to private profiles or the deletion of posts (Cogan et al., 2012).
However, less than 5 % of conversations seem to be affected by that. Missing posts lead to a split
of the conversation graph into multiple components. Therefore, we take the weakly connected,
giant component for creating the reply trees to handle the cases in which already deleted posts or
those that link to private profiles are part of a conversation. Also, in a prior step to generate these
reply trees, tweets are grouped into conversations based on the conversation_id field contained
in the raw API payload. Among the tweets of a conversation, reply links are determined by the
additional referenced_tweets field and the contained entries of type replied_to.

Even though the following experiments are conducted based on the described dataset, we argue
that the CODY framework is applicable to a wide range of use cases and conversation data of
platforms different from Twitter could be used as well. The primary assumption of the model,
which is to have interrelated and timestamped conversation posts, is fulfilled by a large variety of
online conversation data sources.

Tweet Hashtag

Usage



Reply

Figure 5.4: Network schema used for the conducted experiments. A conversation’s reply tree consist of
tweet nodes connected by replies. Further, the “usage” relationship indicates that a hashtag is
used within a tweet.
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5 .4 .2 Posting activity

Analyzing the posting activity across the lifetime of a conversation is crucial for a more general
understanding of conversation dynamics (see RQ1). It lays the foundation for deciding which
temporal sampling approach must be leveraged to model the conversation dynamics correctly.
Figure 5.5 shows the volume completion rate (relative number of posts) of the conversations in
our dataset plotted against the conversations’ lifetime (time completion rate). The dark and lighter
value bands indicate mean values and their standard deviations. Values are calculated using a 10−5

resolution of the completion rate. The large fluctuations show that temporal posting activity varies
a lot between conversations. Still, a general activity pattern across the lifetime of a conversation
can be observed. If 𝜆𝑣𝑜𝑙𝑢𝑚𝑒 denotes the volume completion rate of a conversation, which can also
be described as the fraction of the total amount of conversation posts, and 𝜆𝑡𝑖𝑚𝑒 denotes the time
completion rate (lifetime) of a conversation, a conversation’s posting activity can be modeled
as

𝜆𝑣𝑜𝑙𝑢𝑚𝑒 = 1 − 𝑒−𝛼𝜆𝑡𝑖𝑚𝑒 (5.2)

with 𝛼 as the saturation rate. As shown by the fitted function in Figure 5.5 and indicated by a
reduced chi-square value, 𝜒2𝜈 , of 0.4, this model, despite its simplicity, describes the process in a
precise manner. For the curve fitting, the lmfit Python package is used (Newville et al., 2016).
Most of the posting activity happens during the early stage of a conversation. After an exponential
increase in conversation posts, the posting activity slows down and converges towards its final
saturation level. This saturating process is also characterized by the saturation time constant Γ,
defined as Γ = 1

𝛼 . For our dataset, the saturation time is about 0.03, meaning that on average, after
3 % of the conversation lifetime, about 1 − 1

𝑒 ≈ 0.63 =̂ 63% of the posts are published.

The non-linear activity pattern must be considered when selecting the sampling method for the
temporal modeling of conversations. Given the exponential increase in posts during the early
stage of a conversation, a sampling approach using fixed time windows would lead to a highly
skewed distribution of newly added posts across the network snapshots of a conversation. In the
beginning, the network snapshots would grow significantly, whereas in later stages, only minor
changeswould be captured. Quantitatively the change rate of sampling snapshots can be described
by the derivative of the posting activity:

𝜆′𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑑

𝑑𝜆𝑡𝑖𝑚𝑒
𝜆𝑣𝑜𝑙𝑢𝑚𝑒 = 𝛼𝑒−𝛼𝜆𝑡𝑖𝑚𝑒 . (5.3)
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Figure 5.5: The evolution of a conversation regarding the number of posts is characterized by an exponential
saturation function.

Therefore, the ratio of snapshot change rates during two points in time 𝜆𝑡𝑖𝑚𝑒1 and 𝜆𝑡𝑖𝑚𝑒2 of a
conversation’s lifetime is given as:

𝜆′𝑣𝑜𝑙𝑢𝑚𝑒(𝜆𝑡𝑖𝑚𝑒1)
𝜆′𝑣𝑜𝑙𝑢𝑚𝑒(𝜆𝑡𝑖𝑚𝑒2)

= 𝑒𝛼(𝜆𝑡𝑖𝑚𝑒2−𝜆𝑡𝑖𝑚𝑒1). (5.4)

For our conversation activity model (𝛼 = 32.5), about 131 times more posts would be added
to a snapshot right at the beginning of a conversation (𝜆𝑡𝑖𝑚𝑒1 = 0.05) compared to a later stage
(𝜆𝑡𝑖𝑚𝑒2 = 0.2) by using fixed time windows. Therefore, to correctly capture changes across the
entire lifetime of a conversation, the exponential saturation regarding the posting activity needs to
be considered. This can easily be done using fixed volume sampling instead of fixed time windows.
In line with the accumulative snapshot creation proposed for the network analytics model in
Section 3.3.1, the conversation size difference between two successive snapshots is kept constant
for this. In our case, we determine a sampling rate of five new posts per snapshot. This sampling
approach is also used for the subsequent experiments. Given that the relative volume of posted
tweets can be seen as normalized conversation time, we use a conversation’s completion rate as the
unit for the temporal dimension whenever appropriate.
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5 .4 .3 Temporal Wiener index

Modeling conversations as networks allows us to analyze the conversations’ topological structure
and by leveraging the temporal Wiener index, this can also be done by considering the conversa-
tion’s dynamics (see RQ2). For the following analysis, we calculate the temporal Wiener indices
for the conversations contained in our dataset. Only their reply trees are considered without ad-
ditional content objects (i.e., hashtags) to comply with the definition of the Wiener index metric.
For the software implementation, the igraph Python package is used (Csárdi andNepusz, 2006).
To handle the edge case of a single-node reply tree, we define the Wiener index as zero at this
conversation state.

Figure 5.6: Exemplary temporal Wiener index. After a steep increase at the beginning of the conversation,
the value rapidly decreases. Structural changes in the conversation also reflect this evolution.
Over time most posts directly link to the original seed post, and offshoots are rarely observed.

Figure 5.6 shows a temporal Wiener index example. As one can observe, the structural evolution
of the network is also reflected by the temporal change of the Wiener index. The initial rise of the
Wiener index value is caused by the first reply, which directly links to the original seed post. Given
that only one shortest path of length one is contained in the network at this stage, namely from
the first reply post to the original post, a maximumWiener index value of 0.5 is derived for this
network snapshot. From there on, most posts are directly linked to the seed post, reflected by the
rapid decrease of the temporal Wiener index. Overall, offshooting branches are rarely observed in
the conversation network, which explains its low final value of about 0.03.

To not just focus on a single conversation example but to analyze the structural evolution of
conversations in a more general way, the average temporal Wiener index across the lifetime of a
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conversation is shown inFigure 5.7 in the formof a boxplot. First, it should benoted that temporal
Wiener index values vary a lot between the different conversations, as shown by the large quartile
ranges, the high variability, and the outliers. Still, a general evolution pattern can be observed.
Over time, the Wiener index decreases and converges towards a final median value of about 0.01.
Structurally, this means that over time, most replies directly link to the original seed post, and
sprawling conversation branches do not seem to play a significant role in the conversation network.
Nevertheless, to return to the high data variability, in rare cases, offshoots might be observed in the
conversation structure, reflected by the higher outlier values as shown in the box plot. Interestingly,
Cogan et al. (2012) report thatmore than 60%of their analyzedTwitter conversation graphs follow
the structure of paths. Apart from the described outliers, this structure is less prevalent in our case
as it would lead to significantly higher final Wiener index values. Many reasons are conceivable for
this structural difference. One might be that, in our case, most conversation participants wanted
to interact directly with the political actor who posted the original seed post. Thus, more star-like
conversation structures are observed.

Figure 5.7: Box plot showing the averaged temporal evolution of Wiener index values across the lifetime of
the analyzed conversations. Decreasing values indicate the tendency of conversations to become
less sprawling.

5 .4 .4 Hashtag hijacking

In a holistic conversation analysis framework, the discussed content and its dynamics should also
be considered next to the structure of the conversation. On theTwitter platform, used hashtags are
an indicator of the discussed topics and the semantics of posted content. In that sense, hashtags can
be leveraged to analyze how the topical focus of a conversation changes over time. More specifically,
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one can investigatewhether initially used hashtags keep their dominant prevalence over the lifetime
of a conversation (see RQ3). For this, we leverage the proposed Twitter conversation dataset
and, given that hashtags are represented as nodes in the content-aware conversation network,
we temporally track their degree centrality as an indicator of the importance they play in the
conversation.

In the second step, the temporal degree evolution of the hashtag(s) used in the initial seed post is
compared to the evolution of the other hashtags used later in the conversation. Suppose a non-
initial hashtag reaches a higher degree centrality value than the initially used hashtag(s) at the
end of a conversation we denote the scenario as hashtag hijacking. In case of an overtake that is
followed by a “retake” of an initial hashtag so that it reclaims the highest prevalence with regards to
its degree centrality in the conversation network at the conversation’s ending, the scenario is called
failed hijacking. It is not a hijacking scenario if no non-initial hashtags are used in a conversation,
or no overtake happens. If multiple hashtags take over the initial hashtag(s), the scenario is only
counted as a single hijacking. Semantically, a hashtag hijacking scenario can be seen as an indicator
of a topical shift within a conversation. Nevertheless, it has to be noted that at this point, we do
not employ any NLP techniques to analyze the semantic similarity of the prevalent hashtags in
a conversation and whether these are used synonymously. Takeovers might as well be performed
by semantically similar hashtags, and therefore, only a slight semantic shift would be caused. An
extension to overcome this shortcoming would be a valuable future contribution.

To apply the methodology, we focus on conversations where the initial seed post contains at least
one hashtag. Also, conversations should have at least one hashtag that is used a sufficient number
of times. In our case, we set this threshold to five usages in a conversation. About 1.6 k of the
5 k conversations in the analyzed Twitter corpus fulfil the outlined requirements. In total, about
1 k hijacking scenarios (∼ 67%) are detected in these conversations. Further, 111 failed hijacking
scenarios (∼ 7%) and 427 scenarios without hijacking (∼ 26%) are found. Compared to the
total number of conversations in the dataset, successful hashtag hijackings comprise a considerable
portion of about 22%.

As an example of a hijacking scenario, Figure 5.8 shows the temporal degree centrality of three
hashtags used in the related Twitter conversation1. The original tweet of the conversation criticizes
a climate protest by the “Letzte Generation” (Engl. “Last Generation”) movement, in which
activists glued themselves to the tarmac of an airport in order to interrupt flight operations. The
Klimaschutz (Engl. climate protection) hashtag is used in this tweet. Interestingly, the initial
thematic positioning of the tweet is overtaken. This takeover is reflected by the hashtag hijacking
1Volker Wissing on Twitter: [...] / Twitter: https://twitter.com/Wissing/status/1596101821994606592
(accessed 2023-07-10)
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Figure 5.8: Example of a hashtag hijacking scenario. The initial hashtagKlimaschutz (Engl. climate protec-
tion) is overtaken by the hashtag Tempolimit (Engl. speed limit) in terms of degree centrality.

of theTempolimit (Engl. speed limit) hashtag, which represents the discussion about a speed limit
on German autobahns. In this case, the hijacking can be understood as a counter-positioning
of many conversation participants. Alternatively, their intention might have been to relate this
conversation to another climate-related conversation.

Apart from a hashtag hijacking scenario occurring within a conversation, some use cases might
also benefit from an analysis of when the takeovers happen. Figure 5.9 shows a heatmap of the
occurrence probability of the takeovers related to the (failed) hijacking scenarios across the lifetime
of a conversation. Dark patches indicate a high takeover occurrence probability, whereas bright
ones indicate the opposite. All heatmap rows are normalized based on the total count of occur-
rences of the respective takeover. As timestamps of the occurrences, we take, on the one hand, the
first point at which a takeover is happening by the finally dominating hashtag. For both scenarios,
this is when a non-initial hashtag takes over the initial hashtag(s). On the other hand, for the
failed hijacking scenario, we also keep track of the last time a “retake” of one of the initial hashtags
occurs. At this point, one of the initial hashtags is reclaiming its position as the most prevalent
hashtag in the conversation. As shown by Figure 5.9, many initial takeovers happen early in the
conversations. A slight shift towards the end of the conversation can be observed for the failed
hijacking scenario. Nevertheless, the “competition” for the most prevalent position is not finished
at this point. Towards the end of the conversations, most retakes occur.
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Figure 5.9: Initial hashtag overtakes in hijacking scenariosmainly happen at the beginning of a conversation.
Unlike in successful scenarios, in failed ones and for retakes, the overtake tends to occur slightly
later in the conversation.

5 .5 Conclusion and Future Work

Existing work that focuses on analyzing conversations in online social networks only partially con-
siders the three dimensions of a conversation: structure, content, and dynamics (see Section 5.2).
To address this shortcoming, the CODYmodel is presented in this chapter. Based on the scheme
of THINs and in line with the concepts proposed in Chapter 3, it allows one to model a con-
versation’s topological structure, incorporate various content objects, and consider its temporal
evolution. The results of several experiments are presented to demonstrate themodel’s capabilities.
A conversation dataset of theGermanpolitical Twittersphere is leveraged for these experiments (see
Section 5.4.1). Still, the conducted experiments are not tight to this dataset but apply to an exten-
sive range of data sources. The proposed CODY framework can be used for various use cases and
conversation data sets. Only the primary assumption of the model, which is to have interrelated
and timestamped conversation posts, needs to be fulfilled for the model to be applicable.

Regarding general applicability, the CODY model also serves as an exemplary use case of the
network-based analyticsmodel proposed inChapter 3, which highlights the lattermodel’s versatile
usage possibilities and broad applicability. In summary, the CODY model follows the concept
of temporal entity snapshot networks by referring to the terminology of the proposed analytics
model.

Furthermore, in the first experiment, the posting activity across the lifetime of a conversation is
examined. Modeling attempts show that an exponential saturation pattern characterizes the ac-
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tivity (see Section 5.4.2). This empirical model is leveraged to develop an appropriate sampling
technique for modeling a conversation’s dynamics based on temporal network snapshots. Instead
of commonly used fixed time windows, the sampling is conducted based on a fixed growth of the
snapshots to avoid a highly skewed distribution of changes in network size. Further, a novelmetric,
the temporal Wiener index, is introduced to characterize the structural evolution of conversations.
Analyses based on the leveraged Twitter dataset show that with the progression of a conversation,
its structure tends to be less sprawling and more centered around the original seed post (see Sec-
tion 5.4.3). Finally, the content of conversations is analyzed by investigating the prevalence of
hashtags over the lifetime of a conversation. In particular, we investigate whether initially used
hashtags kept their dominance over time. The results show that this is not necessarily the case.
Instead, what we call “hashtag hijacking” scenarios are observed in which non-initial hashtags gain
more importance in a conversation than initially used ones (see Section 5.4.4).

Of course, the conducted experiments are not exhaustive butmay be extended in several directions.
In this regard, future work might consider additional content objects, such as shared images or
videos. Analyzing these multimedia objects might lead to an even better semantic understanding
of the analyzed conversations. Along with that, more advanced NLP methods might also be
employed, for example, to analyze the sentimentwithin a conversation or to investigate the hashtag
hijacking scenarios from a semantic perspective. Also, one might frame the hashtag hijacking
phenomenon as a prediction task and develop a method to predict hashtag hijacking scenarios or,
in the case of the temporal Wiener index, how a conversation structurally evolves. In this sense, it
is also of interest whether a conversation’s structural and content-wise evolution depend on each
other and if they are correlated in some way.

132



6 Realization and Application

In contrast to the other chapters in this work, this one aims to provide insights into the technical
applications needed to put discussed theoretical approaches into practice. For that, the following
chapter consists of four main parts. First, a temporal network media dataset is presented in detail
in Section 6.1. Thereby, a large emphasis is placed on the dataset’s statistics and covered dynamics.
Secondly, the EPINetz platform is presented in Section 6.2. The platform aims to provide access to
thementionedmedia dataset. For that, the EPINetz platform is implemented as a web application,
allowing interested users to explore the collected media dataset interactively. Based on the model-
ing approach presented in Chapter 3, these exploration capabilities also include graph analytics
methods. To provide such capabilities, it is necessary to manage the underlying data appropriately
and to provide performant query interfaces, requiring an efficient (temporal) graph data manage-
ment and analytics system. Finding such an appropriate system is not straightforward, and given
the use case-specific requirements, no publicly available benchmark can be leveraged. Therefore,
our own use case-specific benchmark is conducted, and its results are presented in Section 6.3.
A system that best fits the technical requirements is found by testing various data management
systems and different configuration setups formultiple dataset sizes and graph queries. Finally, the
TrendTracker web application for the interactive exploration of social media trends is presented
in Section 6.4. It serves as an example of how temporal and network-based data exploration capa-
bilities might be leveraged to facilitate the analysis of temporally evolving and highly interrelated
data.

6.1 Dataset

This section examines the dataset that lays the foundation for various analyses conducted through-
out this work. For example, the study on long-term trends, as presented in Section 4.1, is based
on this dataset. Also, the EPINetz platform outlined in Section 6.2 is built on top of this data.
Thereby, it not only enables showcasing the capabilities of the temporal, network-based model
of Chapter 3 but also contributes towards the development of a comprehensive media analytics
system. The longitudinal and broad media coverage of the German political domain makes it a
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unique dataset. In general, it consists of data from two sources: Twitter and news articles. The
part of the dataset that comes from the Twitter platform is examined in detail in Section 6.1.1,
whereas the news article subset is discussed in Section 6.1.2. The textual data from these two
sources is also analyzed using natural language processing methods. Section 6.1.3 describes the
relevant parts of this processing step and gives statistics on the extracted data. For the EPINetz
platform, a subset of both data sources is used. This EPINetz dataset is presented in Section 6.1.5.
Further, the collected data is modeled as a temporal heterogeneous information network in line
with the analysis model proposed in Chapter 3. Therefore, specific network-related information
about the datasets is given in Section 6.1.4 as well as for the EPINetz subset in the according Sec-
tion 6.1.5. The statistics presented in this section are based on the state of the dataset from 11 July
2023.

6.1 . 1 Twitter data

A large portion of the dataset is made up of tweets that are collected from the Twitter platform via
the official Twitter API v2. An example of how the raw tweet data, as returned by the API, looks is
given in Section 3.2.4. In total, the dataset contains about 82M tweets and profile information of
about 1.1 M Twitter users. About 1.7 M individual Twitter users posted these tweets. Therefore,
not for every tweet author, the respective profile information is also contained in the dataset. To
a large degree, the tweets are related to user accounts owned by (German) politicians, lobbyists,
news outlets, broadcasting companies, or journalists. To show some exemplary tweets, Table 6.1
ranks the top 3 most liked tweets as contained in the dataset. With the third place being held by
the tweet of Barack Obama1, one politician is also represented in this list.

Table 6.1: Top 3 most liked tweets. The publishing date is given in UTC.

Username Text Publishing date Likes

chadwickboseman https://t.co/aZ2JzDf5ai 2020-08-29 02:11:50 7,345,887
elonmusk Next I’m buying Coca-Cola

to put the cocaine back in
2022-04-28 00:56:58 4,666,655

BarackObama “No one is born hating
another person because of
the color of his skin or his
background or his religion...”
https://t.co/InZ58zkoAm

2017-08-13 00:06:09 3,953,368

1Barack Obama –Wikipedia: https://de.wikipedia.org/wiki/Barack_Obama (accessed: 2023-07-13)

134

https://de.wikipedia.org/wiki/Barack_Obama


6.1 Dataset

Furthermore, Figure 6.1 shows the number of published tweets over the entire time span covered
by the dataset. The oldest tweets contained in the dataset were published at the beginning of 2006.
From there on, newly published tweets were added to the dataset until the beginning of 2023,
when Twitter severely restricted the free access to its API (Dotson, 2023). Most of the tweets
were published between 2020 and 2023. The peak in tweet volume at the beginning of 2020 is
most likely related to the outbreak of the COVID-19 pandemic2 when many more tweets were
collected.

Figure 6.1: Amount of tweets over time. Tweets in the dataset were published between the beginning of
2006 and 2023, with most tweets falling into the time range of 2020 until 2023.

Not only direct tweets are contained in the dataset but also retweets. As mentioned, some tweets
are not directly linked to any user for which the respective profile information is collected. These
tweets have mainly been collected to cover a broader conversation (i.e., including the retweets) or
to cover specific topics (e.g., theCOVID-19 pandemic). Tweets related to a topic are selected based
on the usedhashtags, whichmust be relevant to the topic (e.g., #covid19). In all the collected tweets,
about 1.4M individual hashtags are occurring. Table 6.2 shows the dataset’s top 10most occurring
hashtags. One can see that a lot of the top hashtags are related to the COVID-19 pandemic:
corona, covid19, coronavirus, covid, maskenpflicht (Engl. mask duty) and lockdown. Also, the
remaining “non-covid” hashtags are related toGermanpolitics: afd (Germanparty), berlin (capital
of Germany and the place of the German parliament), spd (German party) and cdu (German
party).

2COVID-19 pandemic – Wikipedia: https://en.wikipedia.org/wiki/COVID-19_pandemic (accessed
2023-07-12)
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Table 6.2: Top 10 most occurring hashtags

Hashtag Occurrence count

corona 3,151,309
covid19 1,572,382
coronavirus 1,268,890
afd 739,344
berlin 441,468
spd 379,993
covid 367,262
maskenpflicht 333,193
cdu 326,108
lockdown 314,056

Next to topic-related statistics, like the topmost used hashtags, it is also interesting to examine the
dataset from a more actor-focused perspective. Following this direction, Table 6.3 shows the top
10 Twitter users that published the most tweets as contained in the dataset. These accounts again
indicate the dataset’s centering around the German (political) media sphere. Of the 10 Twitter
accounts shown in Table 6.3, seven represent German news organizations: na_presseportal, welt,
FAZ_NET, BILD, Tagesspiegel, dwnews andMDRAktuell.

Table 6.3: Top 10 most active Twitter accounts according to posted tweets

Username Number of tweets

na_presseportal 654,285
welt 577,142
FAZ_NET 495,955
BILD 359,883
Tagesspiegel 324,767
citoyenneFrance 324,189
dwnews 318,202
HolgerEwald1 300,502
BMG_Bund 288,649
MDRAktuell 281,079
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In addition to the actively posting actors, onemight be interested inwhich accounts getmentioned
the most. Table 6.4 shows the 10 most mentioned Twitter accounts as contained in our dataset.
All of the presented accounts are related to the political domain. They either represent German
politicians or German parties (CDU, spdde andDie_Gruenen).

Table 6.4: Top 10 most often mentioned Twitter accounts

Username Mention count

Karl_Lauterbach 5,590,294
c_lindner 1,599,117
Markus_Soeder 1,358,947
CDU 991421
SWagenknecht 894,001
Ralf_Stegner 872,628
MarcoBuschmann 816,720
StBrandner 804,947
spdde 789,646
Die_Gruenen 782,977

6.1 .2 News data

Next to theTwitter subset, a large amount of news article data is also included in the dataset. These
news articles are crawled from publicly accessible news websites. Primarily, news articles from the
fields of politics, business, finance, and society are collected. Apart from the text of the article,
metadata is also included. This metadata includes the URL of the published article, the language,
the title, the authors, when the article was published, and when it was crawled. In total, about
1.8Mnews articles are contained in the dataset. Figure 6.2 shows the distribution of crawled news
articles over time. The according crawling time is used for the time axis because the publishing
date is not always available from the crawled HTML data.

The dataset’s news articles were crawled from 12 different news outlet websites, withmost of them
being mainly prominent in the German news landscape. Also, the German news outlets, such
as the Frankfurter Allgemeine Zeitung (faz.net) or the Bild (bild.de), contribute the most to the
number of news articles included in the dataset as shown by Figure 6.3. All of the top seven news
outlets are specifically targeted at the German news market.

137



6 Realization and Application

Figure 6.2: Amount of news articles over time. News articles in the dataset were crawled starting from the
spring of 2014. The two periods at the beginning of 2020 and 2023 show large peaks in the
volume of crawled articles.

Figure 6.3: Amount of news articles grouped by outlet. German news outlets hold all of the top seven
positions.

6.1 .3 Natural language processing

The data retrieved from the Twitter API and from crawling the news websites is not kept in its
raw form. Using methods known from natural language processing (NLP), the textual data of
the collected tweets and the news articles is processed. First of all, individual terms are extracted
from the contained text (e.g., again, you or project). In total, about 16 M terms are part of the
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extracted vocabulary, meaning that about 16M individual terms occurred in the dataset’s textual
data. Secondly, named entities, such as locations, people, or organizations, are extracted. For the
extraction process the spaCy3 Python package is used. In sum, more than 6 M named entities
are found in the dataset. To improve data quality, the found named entities are also checked to
have a corresponding entry in the Wikidata4 collection. Only these named entities with such an
equivalent are considered during the network creation step.

Table 6.5: Top 10 most occurring named entities. Named entities have to be part of Wikidata.

Named entity Occurrence count

Deutschland 2,239,608
SPD 1,127,896
CDU 972,540
EU 884,073
Corona 867,342
Berlin 832,299
FDP 677,822
Ukraine 619,792
Europa 544,532
Russland 515,234

Table 6.5 shows the top 10 named entities that occur the most in the dataset and are also part
of the Wikidata collection. Again, one can see the dataset’s focus on German politics. Three
German parties are contained in the list of the most occurring named entities: SPD, CDU and
FDP. Further, the Russian invasion of Ukraine5 is reflected (Ukraine andRussland), as well as the
COVID-19 pandemic (Corona).

6.1 .4 Network data

In line with the network-based analytics model examined in Chapter 3, the dataset presented in
this section is modeled as a temporal heterogeneous information network. For that, the tweets
and the news articles are treated as documents and are used as the basis for the document network
described in Section 3.2.1. Various objects are extracted from these documents, such as hashtags

3spaCy · Industrial-strength Natural Language Processing in Python: https://spacy.io (accessed 2023-07-18)
4Wikidata: https://www.wikidata.org/wiki/Wikidata:Main_Page (accessed 2023-07-14)
5Russian invasion of Ukraine –Wikipedia: https://en.wikipedia.org/wiki/Russian_invasion_of_Ukra
ine (accessed 2023-07-12)
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and Twitter usernames for tweets and named entities for news articles. These extracted entities
enrich the document network and turn it into an entity network.

Further, to take the dynamics of the dataset into account, the documents’ timestamps, meaning
the publication date for the tweets and the crawling time for the news articles, are incorporated
into the network in the form of document attributes. According to the analytics model, they
can also be used within entity projections this way. Adding up the number of tweets and news
articles, about 84 M documents are part of the analytics network derived this way. Apart from
these document nodes contained in the network, it consists of more than 12M entity nodes. The
entity nodes are of type named entity, term, hashtag, or Twitter user.

Figure 6.4: Number of edges grouped by their type. Term co-occurrences contribute the most to the num-
ber of edges.

Further, the network contains edges among these named entities. In total, more than 23 B of
these edges are part of the network. They also have various types, denoted as: “Twitter user
mentions Twitter user”, “Twitter user co-occurrence”, “named-entity co-occurrence”, “term co-
occurrence”, “hashtag co-occurrence”, “Twitter user and hashtag co-occurrence”, and “Twitter
user uses hashtag”. Together, the number of nodes and edges in the entity network result in
an average degree across all node and edge types of about 1.9 k. As shown in Figure 6.4 by the
distribution of edges grouped by their type, most edges are term co-occurrences. Even a small
number of text documents can result in huge term co-occurrence networks. Therefore, the large
number of co-occurrences and the related high average degree seem plausible.

With regards to the model proposed in Chapter 3, some entities might only be related to the orig-
inal document. For example, the author of a tweet might simply be connected to the original
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Figure 6.5: Number of node occurrences by type. Term occurrences contribute the most to the number of
node occurrences.

tweet node in the entity network. From a model perspective, keeping track of the edges in the
document-entity network that do not involve relationships connecting document nodes is neces-
sary. Given that they also come with an implicit timestamp of the related document, we denote
them as “node occurrences”. The types of node occurrences (document-entity links) contained
in the network are: term (occurrence), Twitter user (occurrence), Twitter user (tweet author),
named entity (occurrence), and hashtag (occurrence). Figure 6.5 shows the distribution of node
occurrences by their type. As described above, one can again see the dominance of the term-related
type. By far the most node occurrences are of the term occurrence type. Together about 1.8 B
node occurrences are part of the dataset.

Table 6.6: Schema of the network with respect to the dataset’s source

Twitter network News network

Node types named entity, term, hashtag, Twitter user named entity
Edge types Twitter user mentions Twitter user, Twitter user

co-occurrence, term co-occurrence, named-entity co-
occurrence, hashtag co-occurrence, Twitter user and
hashtag co-occurrence, Twitter user uses hashtag

named-entity
co-occurrence

Node occur-
rence types

hashtag (occurrence), Twitter user (occurrence), named
entity (occurrence), term (occurrence), Twitter user
(tweet author)

named entity
(occurrence)
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The networks extracted from the Twitter data and from the news data do not have equivalent
schemata. Instead, they come with different node (occurrence) and edge types. Table 6.6 gives an
overview of these types separated by data source type. As one can see, the Twitter network is much
richer and contains more node and edge types than the news network. Also, not each possible
node or edge is reflected in the networks. For example, term co-occurrences are not extracted for
the news data as they would result in a tremendous amount of data which is infeasible to be stored
given the computational restrictions. Statistics about two network subsets related to the Twitter
and the news data are discussed in detail next.

6.1 .5 EPINetz dataset

For the EPINetz platform, not the complete dataset can be leveraged. Restriction comes into play,
especially for the data coming fromTwitter. Themain concern related to this data is about harmful
content such as hate speech or spam. Given that school children are supposed to use the EPINetz
application, such content should not be displayed on the platform. Therefore, only direct tweets
from politicians are part of the dataset made accessible through the EPINetz platform. Onewould
assume that politicians less likely spread harmful content. For the news articles, no restrictions are
applied. Instead, all news articles are used for the analyses provided on the platform. Commonly,
news outlets already have content policies in place. Therefore, the news article data should not
contain any harmful content.

Table 6.7: Top 10 parties according to the number of tweets posted by their members

Party Number of tweets

Bündnis 90/Die Grünen 2,739,818
SPD 2,171,265
DIE LINKE 1,661,592
CDU 1,249,018
FDP 927,054
AfD 849,451
CSU 285,665
Piratenpartei 80,191
Freie Wähler 54,024
DIE PARTEI 41,203

One needs to have a labeled set of Twitter user accounts to decide which tweets are posted by
politicians. Such a dataset is provided by König et al. (2022). According to them, the dataset
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contains “[…]Twitter accounts ofGermanparliamentarians,minsters [sic], state secretaries, parties,
andministries on a state, federal, and EuropeanUnion level for the year 2021” (König et al., 2022).
Later updates to this dataset are also taken into account. By the 11 July 2023, the labeled dataset
contains 2, 857 Twitter user accounts. These accounts are used to filter the complete Twitter
dataset. As a result, about 11 M tweets are used for the EPINetz platform. These tweets by
politicians make up about 14 % of the complete Twitter dataset. Together with the about 1.8 M
news, the leveraged EPINetz dataset contains about 13M documents in total.

Table 6.8: Statistics of the network data used for the EPINetz platform

Twitter network News network Total EPINetz network

Nodes 1,101,802 632,662 1,734,464
Node occurrences 43,475,540 23,059,723 66,535,263
Edges 118,788,786 1,002,017,118 1,120,805,904
Average degree ≈ 108 ≈ 1,584 ≈ 646

The politics-related metadata in the Twitter user account dataset provided by König et al. (2022)
can be used to derive domain-specific insights. As such, Table 6.7 shows the number of posted
tweets grouped by the author’s party. The top 10 parties are shown according to their members’
posting activity.

Furthermore, not the complete modeled network data described in Section 6.1.4 is contained in
the EPINetz subset, given that the Twitter data is filtered based on politicians’ tweets. Statistics on
the network extracted from these tweets and the news-related network are given inTable 6.8. Term
co-occurrences are not contained in the network statistics as these are not used for the EPINetz
platform. Given the enormous volume of the term co-occurrence data, ad-hoc queries of this data
would result in computational resource requirements that are unfeasible to accomplish within the
EPINetz project’s framework. Apart from that, one can see from the data shown in Table 6.8 that
named-entity co-occurrences of the news network make up the majority of the total network’s
edges (see Table 6.6). These also cause a sizeable average degree within the news network of about
1.6 k.

6.2 EPINetz Platform

The media dataset presented in Section 6.1 can be used for various use cases, especially in the
political science domain. In this regard, one might notice that different societal challenges, such as
information overload, emerge due to the digital transformation of the media landscape. This new
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environment demands new competencies from citizens that often lack the means to contextualize
arguments or actors and to understand their interrelationships in complex topics. The EPINetz
project is an approach to bridge the outlined skills gap by developing an appropriate political
information system. It provides access to political news collected from multiple data sources,
including social media, and offers various network exploration capabilities. Different entities, such
as political actors or topics, are extracted from collected data and shown within their respective
contextsmodeled asweighted and time-varying informationnetworks. Thereby, interested citizens
and especially schoolchildren, can discover current political topics and understand relationships
between relevant entities.

Reference: This section is based mainly on the following peer-reviewed publication:

John Ziegler, Alexander Brand, Julian Freyberg, Tim König, Wolf Schünemann, Marina Walther,
andMichael Gertz. EPINetz: Exploration of Political Information Networks. INFORMATIK
2021, pages 1603–1609, 2021.

The remaining part of this section is structured as follows: After covering our contributions in
Section 6.2.1, we summarize related projects, contrast them with the EPINetz approach, and
outline relevant concepts of digital literacy in Section 6.2.2. This summary is succeeded by a de-
scription of the EPINetz platform itself in Section 6.2.3, along with some sample user stories.
Finally, we conclude this section with a summary and outlook on the project’s roadmap in Sub-
section 6.2.4.

6.2 .1 Contributions

In the EPINetz project we develop a web-based platform6 that allows users to explore political
information networks. Rather than focusing only on a few select media outlets, the platform inte-
grates data from various publicly accessible (German) sources, including Twitter and news outlets.
Section 6.1 gives detailed information regarding the leverage dataset, with especially Section 6.1.5
focussing on the data used for the EPINetz web application. Overall, the project has the following
objectives:

1. Integrate politically relevant information from different sources and make it accessible in
the form of a unified information retrieval system.

2. Extract and visualize entities such as actors (e.g., politicians) and topics, as well as their
relationships, in a temporal-sensitive way.

6EPINetz Plattform: https://app.epinetz.de (accessed 2023-07-19)
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The named extraction process incorporatesNLP-basedmethods. Thesemethods allow tomap col-
lected documents (e.g., tweets and news articles) to interactively explorable information networks.
In these networks, nodes represent entities and edges time-varying and weighted relationships,
which aligns with the network-based analytics model examined in Chapter 3. According to the
model’s terminology, the named temporal entity networks are a type of entity network projection
with attributed weights and timestamps. In this regard, the approach followed to develop the
EPINetz political information system differs significantly from traditional search engines, where
users are simply providedwith a list of documents, barely offering any contextualized view.

6.2 .2 Background

In this section, we first give an overview of relatedwork, contrast the samewith the approach taken
in the EPINetz project, and, secondly, outline our understanding of digital literacy.

Related Work

To focus on the platform’s core functionality, we narrow the scope of related work to political
information systems. In the past, different projects have aimed at building tools similar to the
EPINetz platform. These approaches differ from EPINetz in several ways. First and foremost, the
Media Cloud7 project offers a platform for general-purpose media analysis. Despite its diverse and
very sophisticated capabilities, such as topicmapping and sourcemanagement, it does not offer any
of the network-based exploration functionality provided by the EPINetz project. This limitation
also applies to the Vox Civitas tool (Diakopoulos et al., 2011) designed to analyze social media
content around broadcast events. Similarly, the Europe Media Monitor Team (2023) provides
basic statistics, trending topics, and activity detection to the end-user but again lacks sufficient
exploration functionality. Furthermore, information from social media is not taken into account.
This lack of social media incorporation is also true for the TopExNet (Spitz et al., 2019) tool, even
though it offers network-based exploration capabilities for entity relationships extracted from
news articles. Probably most similar to our work is the LeadLine system (Dou et al., 2012). It
offers a visual analytics system for events extracted from news articles and social media. In contrast,
EPINetz focuses on the less general domain of political information and, more specifically, targets
the German media landscape.

7Media Cloud: https://mediacloud.org (accessed 2023-07-25)
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Digital Literacy

EPINetz aims to improve both general and domain-specific digital literacy. As to our general con-
ception of digital literacy, there is no canonical terminology to build on, but rather a great variety
of concepts used in the field (vanDeursen and vanDijk, 2009). The concept of literacy is generally
oriented towards comprehensive understandings of citizen education and participation in the digi-
tal age. First, our concept emphasizes the informational skills that individual users need to develop
and apply a critical understanding of their digital information ecosystems and lifeworlds. Thus,
we can build on Jones-Kavalier’s and Flannigan’s definition of digital literacy (Jones-Kavalier and
Flannigan, 2006) as “a person’s ability to perform tasks effectively in a digital environment […]
Literacy includes the ability to read and interpret media (text, sound, images), to reproduce data
and images through digital manipulation, and to evaluate and apply new knowledge gained from
digital environments.” Beyond this fundamental concept, recent developments in digitalization
need to be reflected. Therefore, we include skills and evaluative capacities concerning datafication,
algorithmic filtering, or machine learning that have been termed data literacy elsewhere (Pangrazio
and Sefton-Green, 2020). Beyond processing and presenting information in context, EPINetz al-
lows a “look behind the scenes” of datafication by providing opportunities to observe and practice
data-scientific methods. All in all, our basic conception is compatible with strategies and frame-
works issued by governance actors such as the European Union (Vuorikari et al., 2016) and the
German Conference of EducationMinisters (Kultusministerkonferenz, 2017) as it takes up key
components defined in those frameworks, mostly covering the competence area “information and
data literacy”, but also citizen engagement and a critical understanding of media in a digital world.
As to our domain-specific orientation, it is essential to add that in contrast to many other studies
and projects on politics and policy using computational social science methodology, we do not
operate in an exclusively data-driven way. EPINetz instead accounts for the pre-structuration of
policy fields that resonates in public debates even when mediated in digital environments.

6.2 .3 Platform

In the following, we describe the main components of the EPINetz platform. First of all, based on
the leveraged dataset described in Section 6.1.5, we outline the data processing in Section “Data
processing”. Subsequently, in Section “Information networks and timelines”, we detail the con-
struction of the different types of information networks for text analysis and exploration pur-
poses. Potential user stories and an explanation of the EPINetz platform’s features are given in
Section “User stories”. To start with, Figure 6.6 serves as an overview of how the different software
components interact. Accordingly, the flow diagram underlying the EPINetz application is as
follows:

146



6.2 EPINetz Platform

Figure 6.6: Simplified overview of the architecture of the EPINetz platform

1. Data is collected frommultiple sources, such as Twitter and news outlets

2. Textual information of the data is processed by the NLP pipeline

3. Data is stored in PostgreSQL for network generation and Elasticsearch8 for information
retrieval

4. A GraphQL9 API is used as a unifying data access layer

5. Information can be explored by the end-user via the web application

Data processing

Both news articles and tweets are processed via dedicated NLP pipelines, primarily using spaCy,
for named-entity extraction (e.g., persons, organizations, or locations). For tweets, hashtags and
user mentions are also extracted. By now, we refer to topics as densely connected sets of keywords
and actors as occurring in our information networks. As illustrated in Figure 6.6, the processed
data is managed via two systems, a PostgreSQL database used as the basis for the construction of
our information networks and Elasticsearch for different information retrieval tasks.

To distinguish between different policy fields, e.g., public health and migration, we develop “pol-
icy parsing” as a novel method for identifying such fields. This method involves a mixture of su-
pervised and unsupervised learning techniques, namely a pre-informed, enriched keyword-based
grouping of the tagged dossiers of the Bundeszentrale für politische Bildung (Engl. Federal Agency
for Civic Education) and a clustering of the node-embedded representations of the mentioned
information networks.
8Elasticsearch Platform– Find real-time answers at scale | Elastic: https://www.elastic.co (accessed 2023-07-18)
9GraphQL |A query language for your API: https://graphql.org (accessed 2023-07-18)
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Information networks and timelines

With fine-grained information about text data accessible in PostgreSQL, different types of informa-
tion networks and timelines can be constructed. Some of these networks are built as soon as new
documents come into the system, while other networks are constructed on the fly in response to
user requests issued via the platform interface. Such networks show, for example, the Twitter users
mentioned by a user, the hashtags used by a user, or co-occurrences of hashtags, named entities,
and keywords. To reflect the temporal dimension, all relationships are assigned time-encoding
attributes, enabling the analysis and contrasting of entities and relationships in a time-sensitive
manner.

User stories

Afictitious user could leverage the EPINetz platform to keep upwith ongoing political debates. By
providing an aggregated view based on data from different sources, the end-user less likely suffers
from information overload. Statistical information and timelines of the collected data serve as
potential entry points to currently prevalent topics. For this use case, on the welcome page of the
EPINetz platform, the user is provided with statistics on the dataset and recent trends extracted
from the collected documents. These trends serve as a teaser and give the users inspiration on
where to start their data exploration journey. Figure 6.7 shows exemplary statistics as shown on
the news dataset’s welcome page. Both data sources, the tweets and the news articles, have their
own welcome page. The user can switch between the different data sources by clicking the button
right below the search input field as shown in Figure 6.8. Getting back to the statistics shown in
Figure 6.7, one can see that first of all, the user is provided with general dataset-related statistics
like the number of documents or a timeline of the number of newly added documents. Further,
currently trending entities are also given. By now, these are determined based on the occurrence
volume within the past seven days. These trends allow the user to easily track current political
discussions and eliminate the need to manually search through a large volume of documents to
uncover recent developments in the political media landscape.

In addition to the statistics provided on the welcome pages, the users might want to retrieve data
specifically related to an entity they are interested in. Various input types can thereby be used for
a search query, such as hashtags, simple terms, or named entities. Not all entity types might be
valid depending on the selected dataset. For example, given that, only named entities and terms
are contained in the news article documents, appropriate search results will only be returned if
the query consists of terms or named entities. For the tweets, the user can also search for hashtags
or Twitter users. Also, next to the actual textual query input, the user has the option to restrict
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6.2 EPINetz Platform

Figure 6.7: On the welcome page, data source-specific statistics are shown to facilitate the start of the user’s
data exploration process; Screenshot taken from the EPINetz web application on 19 July 2023

the search to a given time window and to select the data source that should be leveraged (tweets or
news articles). The search bar shown in Figure 6.8 indicates how the user can adjust these filtering
options.

Figures 6.8 and 6.9 show two exploration features of the EPINetz web application. In this case,
the covid19 hashtag related to the COVID-19 pandemic is used as a prototypical search query.
First of all, the user is provided with a list of relevant documents as known from popular search
engines (see Figure 6.8). Query-related parts of the documents’ text are highlighted in the retrieved
documents to support the user’s visual exploration of the result list. Apart from the text contained
in the resulting documents, they are also enriched by additional metadata such as the number of
likes and retweets, as well as politics-specific information such as the author’s partymembership or
incumbency state. This metadata is further used to give the user additional filtering options. With
these, the user is able to filter the relevant documents based on attributes like the author’s political
party. Filtering options are displayed next to the search results as shown in Figure 6.8. Addition-
ally, to better understand the temporal dynamics related to the searched entity, the EPINetz web
application allows the user to change the chronological order of the retrieved document list.

Furthermore, with the network-based exploration capabilities shown in Figure 6.9, the user is able
to understand the context of the analyzed entity better. For that, the searched-for entity is used as
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Figure 6.8: By conducting a search on the EPINetz platform, relevant documents can be retrieved in the
form of a result list; Screenshot taken from the EPINetz web application on 19 July 2023

the root node. Starting from this root, the top 10 neighboring nodes as occurring in the EPINetz
network are retrieved. Different relationship types might be used for that, depending on the root
entity type. For example, the neighborhood of the covid19 hashtag shown in Figure 6.9 might be
derived based on hashtag co-occurrence or Twitter user and hashtag co-occurrence relationships. De-
pending on the selected link type, of course, different node types will be part of the neighborhood.
The users can select the respective relationship type they are interested in. Regardless of the link
type, the neighboring nodes are selected based on the number of existing edges to the root node
that occur within the selected time frame. This number of edges is then also used to determine the
edge weights in the resulting network. In contrast, the node weights are derived via the number
of node occurrences in the filtered time window.

Given an initial network query, the users are able to click on additional nodes contained in the
network. This way, the already explained neighborhood query step is repeated, and the additional
adjacent nodes are added to the network. Following this mechanism, the users are able to traverse
theEPINetz network and intuitively explore the context of the entities they are interested in. Usage
scenarios could then be as simple as exploring topics and arguments over time or more complex,
e.g., contrasting actors and arguments on different media outlets.
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6.2 EPINetz Platform

Figure 6.9: Entities of interest can also be examined using network-based exploration capabilities; Screen-
shot taken from the EPINetz web application on 19 July 2023

6.2 .4 Conclusion and future work

With the steady increase of news outlets and channels in the media landscape, it will becomemore
and more difficult for the public and citizens to deal with the amount and complexity of infor-
mation, especially aspects related to political topics and debates. In the EPINetz project, we aim
to address this problem by providing users with a web-based platform allowing them to search,
explore, and contrast information surrounding political actors, topics, and debates at different
scales, with data uniformly integrated from diverse sources, including social media. In this section,
we outline how network-like structures provide a suitable means to explore actors and topics in
context and over timewhile informing users fromwhere and how the information is obtained. Un-
derlying EPINetz is an extensive collection of German news outlets and a comprehensive Twitter
dataset related to German politicians and organisations.

In the future, it is planned to offer the user a way to save and share exploration results and foster
collaborative work. Thereby transparency is not only guaranteed if results are potentially ref-
erenced in the future but different approaches of how the data is filtered and analyzed can be
compared.
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6.3 Temporal Network Data Management

Toprovide the data analysis capabilities of the EPINetz platformpresented in Section 6.2 or in gen-
eral of a real-world system that allows to study the dynamics of heterogeneous networks according
to the model described in Chapter 3, one needs to focus, during realization, on the management
of the data and performant analysis interfaces. By comparing various systems and setup configura-
tions, this work aims to find an implementation that best fits the described requirements. Finding
such an implementation is not straightforward, as analyzing temporal (social) networks comes
with its own set of challenges:

“Consequently, queries on time series social networks aremore complicated, and due
to the concept of the time dimension, there aremany query problems that are unique
to time-dependent social networks.” (Wang et al., 2019)

The system’s requirements are detailed in Section 6.3.1. Primarily, they are derived from the
volume of data, how it is structured and the research questions that are asked about it. After that,
in Section 6.3.2, related work is discussed, followed by an outline of the benchmark’s technical
setup in Section 6.3.3 before its results are analyzed in Section 6.3.4. Finally, the derived insights
and alternative approaches are discussed in Section 6.3.5.

6.3 .1 Requirements

Multiple real-world system requirements can be formulated. These requirements cover a large
number of possible application scenarios. Depending on the exact use case, they can be prioritized
differently. By now, the model outlined in Chapter 3 serves as the methodological basis in terms
of the analysis use cases and potential research questions. Also, the real-world experience gained
from realizing the EPINetz platform inspired the proposed requirements.

Large data volume: Semantic networks extracted from text and actor-networks based on social
media data are often quite large. For example, take one relatively short tweet of 25 tokens and a
sliding window of 10. Per sliding window∑9

𝑖=1 𝑖 = 45 term co-occurrence relationships can be
extracted. Given that the sliding window can be moved 15 times, in total 16 ⋅ 45 = 720 edges
have to be taken into account. Now, if one wants to analyze 10 million tweets, the extracted
term co-occurrence network already consists of 7.2 billion edges. Even though more restrictive
assumptions can be made to limit the number of allowed edges, the example gives an idea of
how quickly extracted semantic networks can become quite large. Of course, in addition to simple
terms, onemight also keep track of@-mentions, hashtags, or other use case-specific entities, which
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further increases the size of the network. Therefore, a real-world system to analyze (socio-semantic)
networks should be capable of storing and analyzing millions of edges.

Memory efficiency: To minimize memory consumption, the network’s data should be stored
in an efficient way. Considering the large volumes of data, as outlined above, this requirement
becomes even more pressing.

Multiple node and edge types: Required capabilities of the system also include the handling
of multiple node and edge types. As analyzed networks are not homogeneous, but instead cover
different node types, such as terms, hashtags, and user accounts, as well as multiple edge types (e.g.,
co-occurrence, mentioning), an appropriate system should be able to handle described heterogene-
ity. This capability is also necessary for the system to be applicable to the EPINetz platform that
also relies on analyzing heterogeneous networks.

Adjustable time resolution: Different temporal or topological patterns might only become
visible at different time resolutions. Therefore, the specified system should allow the data to be
queried on a single occurrence basis, up to the complete temporally aggregated network. As an
example, different phenomena occurring in social media data have to be analyzed on different time
scales, e.g., on a daily, weekly, or monthly basis.

Reproducibility: So that research results can be verified, corresponding analyses need to be repro-
ducible. Therefore, in the described system data should be safely stored and repeated deterministic
requests should result in the same retrieved data.

Transparency: Related to the requirement of reproducibility, transparency also calls for capabili-
ties to retrace analysis results. Further, as the network’s data is often extracted from less structured
data, it is required that after the processing step the link to the original data is still accessible and
stored in the system. As an example, a hashtag co-occurrence link extracted from Twitter data
should in the system be accompanied by a reference to the original tweet. Thereby, it is transparent
to the user of the system where the extracted data came from.

6.3 .2 Related work

The general fields of graph data analytics systems and database benchmarking cover an enormous
amount of academic work. Therefore, we restrict the following discussion of related work to the
most similar research topics. As such,we coverwork that studies theperformancebenchmarkingof
GDBMSs and Time Series Databases (TSDBs), especially in comparison to traditional RDBMSs,
as well as various technical approaches regarding graph processing systems, followed by more
theoretical work on graph modeling.
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GDBMS benchmarking

The work of Macak et al. (2020) investigates the applicability of graph databases for big data
analysis. Technically, they compare the performance of a three-node PostgreSQL cluster and a
Neo4j cluster in case of queries that specifically target large amounts of highly-connected data.
They use three types of queries: the first uses simple joins across multiple tables, the second also
includes filtering conditions and the third leverages string checks instead of equality checks as
done by the second type. For most queries, PostgreSQL outperformsNeo4j with some exceptions.
The graph database’s performance varies greatly depending on the directionality of stored edges.
In line with that work, Ding et al. (2019) benchmark multiple RDBMSs, including PostgreSQL
and GDBMSs, like Neo4j. For that, they propose a unified benchmark consisting of relational
queries as well as graph algorithms. Their results prove superior performance to RDBMSs in
the case of the “group by”, “sort” and “aggregation” operations. In contrast, GDBMSs perform
better under workloads including multi-table joins, pattern matching, path identification, and
their combinations. Further, the analysis reveals that the performance of the graph databases
varies significantly depending on the used storage engine. Underlining the good performance
of Neo4j in the case of graph-based queries, Miler et al. (2014) compare the performance of a
shortest path algorithm for PostgreSQL andNeo4j, which reveals superiority to the graph database.
Nevertheless, the better performance of Neo4j also comes with a higher memory footprint.

Not taking PostgreSQL into account, but still comparing a relational database, namely MySQL,
with Neo4j, the work by Vicknair et al. (2010) proves superior performance to the graph database
for graph traversal queries. Still, for integer-based equality operations, the relational database per-
forms significantly better. Sun et al. (2015) take a slightly different approach even though they
also use a relational database as a graph data store. To support the Gremlin graph query language,
they translate Gremlin requests to SQL queries. By evaluating different database storage schemas
and optimizing the translated Gremlin queries, they can show the relational database’s superior
performance compared to Titan andNeo4j. Nevertheless, at least regarding the LinkBench evalua-
tion, they do not evaluate temporal network queries. Unfortunately, when reading the publication
(21 July 2023), the link to access the Gremlin queries of the DBPedia benchmark is not working
anymore. Another benchmark comparing SQL and NoSQL data stores based on Gremlin LPG
queries is conducted by Anikin et al. (2019). Their evaluation considers not only a single node as
well as a cluster-based JanusGraph setup but also a single machine PostgreSQL and H2 setting.
The benchmarking is conducted using various graph datasets. Overall, the PostgreSQL-based
setup shows the best performance. In contrast to an actual performance comparison of different
databases, in their work Ligtenberg and Pei (2017) present a temporal interval graph benchmark
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dataset. For that, they compare multiple properties, like clustering coefficient, during static and
temporal graph analysis.

TSDB benchmarking

In their work, Hao et al. (2021) present a time series benchmark and conduct a performance
analysis of different TSDBs, including TimescaleDB. The proposed benchmark covers multiple
workloads: data loading, injection, and fetching. Even though their work is not tailored to the use
case of temporal network analysis and instead focuses on IoT analytics, it gives exciting insights
into the performance of various time series databases. Regarding the TimescaleDB system, their
results reveal poor query performances compared to the other systems, mainly because it lacks
automatic index creation. In contrast, TimescaleDB reaches high write performance for data
injectionworkloads and demonstrates the highest import efficiency. Similarly, Rinaldi et al. (2019)
also conduct a performance analysis of a TSDB, i.e., InfluxDB. For that, they check different
metrics, like ingestion rate, storage usage, and multiple queries based on time series data. They
focus their evaluation on comparing different data models, specifically how the metadata, which
is extensively used for analysis queries, is stored in the database. The results show that query
performance varies significantly depending on how the data is stored internally. Queries that rely
on metadata, which is stored as indexed “tags”, are executed much faster.

Graph processing systems

Apart from benchmark-related studies, technical work about systems to serve graph-based queries
exist. As such, Bronson et al. (2013) present “TAO”, a data store specifically designed to support
requests to the social graph underlying the Facebook platform. Two of its core features are geo-
graphic distribution and efficient data access. According to their requirements, they defined a data
access API. Queries included in this API are the retrieval, update, and deletion of relationships
as well as the request of adjacent nodes given a root node. They model the data as a temporal
heterogeneous information network by recording edge and node types as well as the timestamp of
an occurring edge. In their production setting, they observe that reads to the data are much more
common compared to writes and that the query frequency of individual nodes, along with their
connectivity, follow long-tail distributions. Further, Steer et al. (2020) propose the “Raphtory”
system. It is a distributed system to manage and analyze temporal graphs. By leveraging network
event streams, they are able to keep the complete history of each node and edge. Through their
API, this full archival data is made accessible to the end user. Similarly, Iyer et al. (2021) propose
“TEGRA” as a system for efficient ad-hoc queries on time-evolving graphs. The user can query
and analyze the graph’s state based on arbitrarily selected time windows. Thereby, the system’s
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outstanding performance is achieved by efficiently leveraging different temporal states of the graph
as well as intermediate computational results, which are kept inmemory. Another temporal graph
analysis system is developed by Rost et al. (2022). Their system, termed “GRADOOP”, comes
with a rich set of (temporal) graph operators and algorithms. The evaluations show that the frame-
work is able to handle graphs with billions of edges. In line with the discussed graph processing
systems, various other related works can be mentioned, such as the “GraphBolt” system byMari-
appan and Vora (2019), “Chronograph” (Erb et al., 2017) or “Naiad” (Murray et al., 2013) even
though the last one is not limited to the processing of graphs.

Graph models

In contrast to the mentioned technical approaches, there are also more theoretical works in the
temporal graph analysis field. As such, Moffitt and Stoyanovich (2017) propose an evolving graph
model along with an algebraic query language to facilitate temporal network analysis. Next to
their theoretical contributions, they outline various use case scenarios of their model and algebra,
such as examining a node’s influence over time or analyzing the spread of information across the
analyzed network. Also, Angles (2018) formally describes the property graph database model,
which is leveraged by different GDBMSs, such as Neo4j. He describes the graphs that follow the
property graph model as “labeled multigraphs where both nodes and edges can contain pairs of
the form property-value”.

6.3 .3 Benchmark setup

The following section details the setup of the conducted graph data analysis benchmark. This spec-
ification includes the description of the leveraged dataset in Section “Dataset”, the coverage of the
benchmark graph queries in Section “Queries” and various details about the used configurations
in Section “Technical Implementation”.

Remark. Notably, the conducted benchmark is tailored to the specific use case of finding a suitable
technical implementation that fits the requirements outlined in Section 6.3.1. These requirements
also include the need for the system to work with the EPINetz platform examined in Section 6.2.
Therefore, one might argue that the proposed benchmark is not a graph benchmark in the com-
mon sense (see Dominguez-Sal et al. (2010)) but aims at the fulfilment of these use case require-
ments and reveals various characteristics that go into the direction of time series analysis, e.g., the
benchmarked queries are all tailored to time-dependent graphs.
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Dataset

For the benchmark, a subset of the temporal heterogeneous information network dataset pre-
sented in Section 6.1 is used. With regards to the actual performance in the EPINetz platform
production environment, fast access to the projected networks is most important. Therefore, this
kind of network data is also used for the benchmark to compare the performance of various graph
data management and analytics systems. In line with the model outlined in Chapter 3, the an-
alyzed network projections can be described as entity network projections with edge-attributed
timestamps of the source documents. Exemplary network projections are timestamped hashtag
co-occurrence networks or Twitter mention graphs. The following network schema describes the
dataset used for the benchmarking:

• Node types: Twitter user, hashtag

• Edge types: Twitter user and hashtag co-occurrence, Twitter user mentions Twitter user,
Twitter user uses hashtag, Twitter user co-occurrence, Twitter user mentioned by Twit-
ter user, hashtag and Twitter user co-occurrence, hashtag co-occurrence, hashtag used by
Twitter user

One might notice from comparing the edge types listed here with the types listed in Section 6.1
that for the benchmark dataset, the inverted edge types (e.g., hashtag used by Twitter user) are also
used. This bi-directionality is necessary to support neighborhood queries following both edge
directions. In line with that, each co-occurrence edge is represented in the form of two directed
edges between the adjacent nodes. Also, the nodes are identifiable based on IDs which are unique
across all node types.

To meet the requirements specified in Section 6.3.1, various aspects are considered for the dataset
curation. First of all, to satisfy the “large data volume” requirement, the dataset is available in
multiple sizes. These size variants allow for investigating the systems’ performance based on dif-
ferent dataset sizes and to check whether the system is able to adjust to a growing network dataset.
Table 6.9 shows the different scales of the benchmark dataset along with their respective network
size in terms of temporal edges contained in the network.

Another stated requirement is referred to as “multiple node and edge types” and describes the
need for the system’s capability to handle heterogeneous information networks. Such networks
lay the foundation of the EPINetz data analysis platform described in Section 6.2. Therefore,
the network processing system should be able to handle such types of networks as well. As one
can see from the above list of node and edge types contained in the used network dataset, this
requirement is fulfilled, too. Figure 6.10 visualizes the heterogeneity among the node types, which
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Table 6.9: Different scales of the temporal network dataset used for the benchmarking. With increasing
scale, more edges are part of the network.

Scale Number of edges

0.1 100,000
1 1,000,000
10 10,000,000

shows the volume of nodes grouped by their type as appearing in the scale 1 network used for the
benchmarking. As one can see, about 15 k nodes are hashtags (≈ 44%), and about 19 k nodes are
Twitter users (≈ 56%). In total, the scale 1 benchmark network contains 34, 408 nodes.

Figure 6.10: Number of nodes included in the scale 1 network used for the benchmark. Nodes are grouped
by their type.

Theheterogeneity among edge types appearing in the benchmarknetwork is evenmore remarkable.
Figure 6.11 shows the respective distribution of the edge types. Overall, each edge type makes up
around 9 to 21 %, showing that the 1 M edges are distributed relatively equally. The top edge
types, each making up about one-fifth of the overall edges, are “twitter user co-occurrence edges”
and “hashtag co-occurrence edges”. As already discussed in Section 6.3.1, the number of term
co-occurrences extracted from textual documents increases very rapidly with an increasing sliding
window. Similarly, multiple hashtags used or users mentioned in a Tweet result in numerous co-
occurrence edges. Therefore, it is reasonable that two types of co-occurrence edges dominate the
edge types appearing in the network.

Table 6.10 shows five exemplary edges occurring in the raw benchmark data used for the scale 1
network. As one can see, each edge comes with IDs of the start and end nodes, a timestamp, as
well as the respective edge label. For example, the first edge in the table indicates a co-occurrence
relationship between a Twitter user (node ID 10798904) and a hashtag (node ID 39178) that
occurred on 14 December 2022 at 22:59:46.
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Figure 6.11: Number of edges included in the scale 1 network used for the benchmark. Edges are grouped
by their type.

In sum, the benchmark set of scale 1 covers approximately two weeks of data, as shown by Fig-
ure 6.12. Of course, for the other scales, the covered time window is smaller (scale 0.1) or larger,
respectively. For scale 1, the dataset starts from the beginning ofDecember 2022 and lasts until the
mid of the same month. Clearly, large fluctuations in the volume of data can be observed. These
variations are probably caused by the day-night rhythm with the users posting less frequently
at night. This daily rhythm is particularly dominant because the dataset mainly covers posts of
German users that live in the same timezone.

Shifting the focus of the dataset description towards the network’s topology, Figure 6.13 shows its
degree distribution concerning outgoing edges. Given that for an ingoing edge, its respective out-
going counterpart is also included in the network, the degree distribution regarding ingoing links
would look similar. As the added power law fit indicates, the degree distribution approximately
follows a long tail distribution. Compared to the power law fit, fewer high-degree nodes andmore
low-degree nodes, as expected, exist. Also, the estimated power law exponent of 1.35 is outside of

Table 6.10: Sample of temporal edges contained in the benchmark dataset for scale 1

dt start_id end_id label

2022-12-14 22:59:46 10798904 39178 twitter_user_hashtag_co_occurrence
2022-12-14 22:59:46 11654370 39178 hashtag_co_occurrence
2022-12-14 22:59:46 10794851 39178 twitter_user_hashtag_co_occurrence
2022-12-14 22:59:46 11060784 39178 twitter_user_uses_hashtag
2022-12-14 22:59:46 11060784 10794851 twitter_user_mentions_twitter_user
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Figure 6.12: Temporal distribution of the edges included in the scale 1 network used for the benchmark

the (2, 3) range typically observed in real-world scale-free networks (Newman, 2010, Section 8.4).
However, the distribution is similar to the query frequency and node connectivity distribution ob-
served by Bronson et al. (2013) in the sense that it also represents a long tail characteristic. Typical
social network distributions seem to be characterized this way. Further, an average degree across
all node and edge types of 0.03 reveals that most nodes are not highly connected.

Queries

Optimizing a graph datamanagement and analytics systemwith regard to all possible requirements
is infeasible. Therefore, specifically selected data queries are used for the benchmarking. In the case
of complex queries, the system’s performance is highly affected by the leveraged algorithms (see
Hao et al. (2021)). As a result, we focus on reasonably simple queries to ensure the actual system
performance is measured. In line with the “adjustable time resolution” requirement outlined in
Section 6.3.1, these queries are not tight to fixed timewindows, but data of arbitrary timewindows
can be retrieved. The same is true for the queried edge types. These can also be set flexibly, which
is essential to comply with the “multiple node and edge types” requirement. Further, none of the
queries aims at measuring the data ingestion performance as this is not a critical factor for our use
case. In contrast to data loading times, it is more important for the end user to retrieve the data
in a fast way for our use case. In the following, a list of all the benchmarked queries is provided.
The pseudocode of these queries is provided in Appendix A. Given that not all tested systems are
SQL-compliant, the queries had to be translated into a hybrid SQL and openCypher version used
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Figure 6.13: Outdegree distribution of the scale 1 network used for the benchmark

by Apache AGE and a pure Cypher version used by Neo4j. The respective SQL queries leveraged
for the native PostgreSQL setup and the TimescaleDB setup are given in Section A.1.

(Q1) Temporal degree: Given a time window, an edge type, and a node ID, the query allows to
compute the node’s degree over time. The respective time granularity is set to one day.

(Q2) Top-10 neighbors: Given a time window, an edge type, and the ID of the queried seed
node, its top ten neighbors (with respect to the set edge type and timewindow) are retrieved.
The ranking is determined based on the number of relationships between the seed node
and the adjacent nodes.

(Q3) 3-hop neighborhood: With this query, the nodes that are three hops away from a given
seed node are retrieved. Only the edges of the given types are considered for the individual
hops. Also, only edges falling into the given time window are considered.

From a time series analysis perspective, the first query is an evolution metric as it measures the
temporal development of the node degree metric (see Sections 2.1.5 and 3.3.2). In contrast, the
other two queries represent snapshot-based metrics as they only take the data of the defined time
window into account. Both types of queries are used on the EPINetz platform and, therefore,
need to be part of the benchmark.
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Table 6.11: Sample of benchmark query parameters used for scale 1

start_id start_dt end_dt edge_type_1 edge_type_2 edge_type_3

11187212 2022-12-12
19:55:19.24
1237688

2022-12-13
15:50:17.97
8386113

twitter_user_
mentioned_by
_twitter_user

twitter_user_
uses_hashtag

hashtag_co_
occurrence

750205 2022-12-11
20:57:11.55
5022970

2022-12-14
08:11:00.56
1121195

hashtag_co_
occurrence

hashtag_
twitter_user_
co_occurrence

twitter_user_
hashtag_co_
occurrence

1539 2022-12-09
02:46:03.30
4083018

2022-12-14
03:08:57.31
6909700

hashtag_co_
occurrence

hashtag_
used_by_
twitter_user

twitter_user_
mentioned_by
_twitter_user

Next to the actual queries, parameters for these queries must also be available for the benchmark.
In our case, we generate synthetic data that can be used to parametrize the queries described above.
This generation is based on the temporal network data used for the various benchmark scales by
randomly selecting and combining node and edge information. Thereby, specific restrictions are
fulfilled by the generated data, such as that the target node type of an edge typematches the source
node type of its adjacent edge type. In total, 1000 query parameter sets are generated per dataset
scale. Table 6.11 gives three example query parameter sets used for the scale 1 benchmark. Its
details are discussed in the following:

• start_id: All three benchmarked queries are centered around a seed node. This node is
clearly identified by the given start_id. Also, the type of this node matches the source node
type required by the edge_type_1. This matching is needed as graph traversal-based queries
would not return any adjacent nodes otherwise. Of course, all used node IDs occur in the
benchmark dataset used for the specific scale.

• start_dt and end_dt: Apart from the “Temporal degree” query, the two provided times-
tamps define the time window used for the temporal snapshot the queries are applied to. In
contrast, for the derivation of the temporal degree, the time windows used for the network
snapshots are set to one day, and these timestamps determine the starting and end date for
which the metric is derived. In all cases, start_dt ≤ end_dt holds.

• edge_type_1, edge_type_2 and edge_type_3: The three edge types are used to type-set
the network queries. Only for the “3-hop neighborhood” query all edge types are lever-
aged. Thereby, the target node type of edge_type_(n) matches the source node type of
edge_type_(n+1). For example, a “twitter_user_ mentioned_by_twitter_user” edge type is
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followed by a “twitter_user_uses_hashtag” link type. Of course, all of the used edge types
appear in the leveraged benchmark dataset.

In line with the exploration capabilities on the EPINetz platform, all of the benchmarked queries
are centered around a single source node. Users on the platform also start their data exploration
from a specific entity of interest. In a second step, they might then derive related statistics or
traverse the graph for additional network investigations.

Technical implementation

In the presented benchmark, not only traditional GDBMSs are tested, but also relational DBMSs
likePostgreSQL.This approach is basedonpast findings such as the onebySun et al. (2015):

“[…] existing mature, relational optimizers can be exploited with a novel schema to
give better performance for property graph storage and retrieval than popular noSQL
graph stores.”

Seemingly, relational databases can also be used for performant graph analysis. At the same time,
it is not sufficient to pick a good-performing data management system, but using correct indices
and partitioning aligned with queries is equally essential (see Rinaldi et al. (2019)). For that, it is
crucial to find typical patterns of how the data is accessed (Ceri et al., 1982). Therefore, different
data management systems, as well as various configurations, are tested. For the benchmark, only
open source systems, respectively, such that offer a self-hostable community edition, are selected.
As such, the set of selected systems is not exhaustive, and the specific selection is based on the
authors’ technical know-how and past working experience.

The following section describes the technical implementation of the benchmarked systems in
detail. First, the technical details applying to all PostgreSQL-based systems (native PostgreSQL,
TimescaleDB, and ApacheAGE) are discussed, followed by investigations of the system-specific
implementations, including the previously mentioned systems plus Neo4j. Finally, the leveraged
virtual machine setup is described. In general, all system setups are based on Docker10 to run the
respective application containers. Therefore, a unified execution environment is guaranteed. Also,
the Docker runtime is configured with a shared memory size (shm-size) of 20 GB (20g).

Setup for PostgreSQL-based systems: The PostgreSQL-based systems (i.e., TimescaleDB,
Apache AGE, and the native PostgreSQL setup) have some implementation details in common.
Concerning the shared_buffers setting, which determines the cache size (Ahuja, 2022), their
configured values are below the shared memory setting of the Docker runtime. This lower value
10Docker: Accelerated Container Application Development: https://www.docker.com (accessed 2023-08-14)
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is necessary for the application process(es) to not run out of memory (Mackay, 2023). Further,
the database is configured to allow a maximum of 100 concurrent connections. Optimization
strategies are applied to the definition of table indices. As a rule of thumb for multi-column in-
dices, the column which is used to apply the most restrictive condition during data filtering is
defined first (see Winand (2023)). Also, to speed up specific queries, filtering columns are defined
as the leftmost columns during index creation. Another critical factor to consider if one wants
consistent database performance is when database statistics gathering and vacuuming are applied.
To not arbitrarily interrupt the benchmark, auto-vacuum, which removes no longer needed tuples
(Ahmed, 2023), is switched off for the PostgreSQL-based systems. Instead, “vacuum analyze” is
executed before every benchmark run. Finally, to optimize the physical layout of the data on disc,
the tables are clustered according to the used indices (see Schönig (2020)). Of course, this can
only be done if no conflicting indices are present. Unfortunately, GIN indices (see Section 2.4.1)
cannot be clustered given that they do not impose a natural order on the data (see Travers (2018)).
Given this clustering and the respective physical alignment of the data, randomized ingestion of
the network data is not applied. The data would be ordered according to the applied index in any
case.

Furthermore, to prevent performance deviations due to “cold-starting”, the tables used to store
the temporal graph data, as well as the query parameters, are pre-warmed using the pg_prewarm
module (PostgreSQL Global Development Group, 2023c). Fetched data is loaded into the cache
this way already. Also, because arbitrary timewindows can be used during data analysis, the needed
time resolution cannot be known in advance and leveraging pre-aggregated snapshots becomes
infeasible. In the same regard, partitioning the graph stream table with respect to a particular time
granularity is not practical.

PostgreSQL-specific setup: A native PostgreSQL database setup without any additional exten-
sion is also part of the benchmarked systems. For this setup, the database configuration needs to
be adjusted to fit the temporal graph processing use case. The PGTune11 online tool is used for
parameter optimization. Given that the EPINetz platform is supposed to be used in various ways,
its application type is set as “MixedType of Application” for the PGTune parameter recommenda-
tion. This type of application works for data warehousing as well as online transaction processing
requirements. The detailed parameter recommendations are shown in Listing 6.1.

Listing 6.1: PostgreSQL PGTune recommendations

# DB Version: 14

# OS Type: linux

11PGTune – calculate configuration for PostgreSQL based on the maximum performance for a given hardware con-
figuration: https://pgtune.leopard.in.ua (accessed 2023-08-15)
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# DB Type: mixed

# Total Memory (RAM): 60 GB

# CPUs num: 8

# Connections num: 100

# Data Storage: ssd

max_connections = 100

shared_buffers = 15GB

effective_cache_size = 45GB

maintenance_work_mem = 2GB

checkpoint_completion_target = 0.9

wal_buffers = 16MB

default_statistics_target = 100

random_page_cost = 1.1

effective_io_concurrency = 200

work_mem = 19660kB

min_wal_size = 1GB

max_wal_size = 4GB

max_worker_processes = 8

max_parallel_workers_per_gather = 4

max_parallel_workers = 8

max_parallel_maintenance_workers = 4

Apart from the set configuration parameters, it is important tomention that the postgres:14.3-
alpine PostgreSQLDocker container12 is used. Also, the temporal network data is stored in the
form of a temporal edge list. The following columns are used for the respective edge table: 1. id:
unique identifier, 2. dt: timestamp, 3. source: source node ID, 4. target: target node ID, and 5.
label: edge type.

Compared to an adjacency matrix, this storage format is more efficient as only the actual edges are
stored (see Bianconi (2018, p. 109)). This advantage is significant in the case of sparse networks,
which are used as benchmark data in our case. Commonly, sparse network data is stored in the
form of an edge list (see Bianconi (2018, p. 106)).

When designing a database setup for a specific use case, such as temporal graph processing, one
must consider various data indexing techniques for faster data querying. Therefore, multiple in-
dexing strategies are benchmarked to test the effect on the edge data access performance. Table 6.12

12Image Layer Details – postgres:14.3-alpine | Docker Hub: https://hub.docker.com/layers/library/post
gres/14.3-alpine/images/sha256-84c6ea4333ae18f25ea0fb18bb142156f2a2e545e0a779d93bbf0
8079e56bdaf?context=explore (accessed 2023-10-10)
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shows the various indices and index combinations tested during the benchmark. Thereby, the
column/table names in brackets reference the column names used in the pseudocoded queries
(see Appendix A.1). Regarding the conducted experiments, the “baseline” setup is only tested
for scale 0.1. For larger data volumes, data retrieval without indices would have taken extensive
time.

Table 6.12: List of benchmarked indices applied to the edge stream (temporal edge) table for the native
PostgreSQL setup

Label Description

1 baseline no index
2 index (source) B-tree index on source (source node) column
3 index (source) & index (target) same as 2 + B-tree index on target (target node) col-

umn
4 index (dt) B-tree index on dt (timestamp) column
5 index (dt) & index (target) same as 4 + B-tree index on target (target node) col-

umn
6 index (label) B-tree index on label (edge type) column
7 index (label) & index (target) same as 6 + B-tree index on target (target node) col-

umn
8 index (source,label,dt) multi-column B-tree index on source (source node),

label (edge type) and dt (timestamp) columns
9 index (source,label,dt) & index

(target)
same as 8 + B-tree index on target (target node) col-
umn

10 partial index (source,dt) partial, multi-column B-tree index on source (source
node) and dt (timestamp) columns with equality con-
dition on label (edge type) column

11 partial index (source,dt) & in-
dex (target)

same as 10 + B-tree index on target (target node) col-
umn

TimescaleDB-specific setup: As already mentioned, the benchmarked systems are set
up based on Docker. In the case of the TimescaleDB system setup, the container,
timescale/timescaledb:2.9.1-pg1413, is used. Further, the database’s parameters are opti-

13Image Layer Details – timescale/timescaledb:2.9.1-pg14 |Docker Hub: https://hub.docker.com/layers/ti
mescale/timescaledb/2.9.1-pg14/images/sha256-5e37b20e64a8e33443b7358159a4e022feffed1
067fb320c7d820d4f8fe3149b?context=explore (accessed 2023-10-10)
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mized using the TimescaleDB tuning tool14. Its recommendations are shown in Listing 6.2. The
TimescaleDB database is configured accordingly.

Listing 6.2: TimescaleDB tuning tool recommendations

# Recommendations based on 60.00 GB of available memory and 8 CPUs for

PostgreSQL 14

shared_buffers = 15GB

effective_cache_size = 45GB

work_mem = 19660kB

max_worker_processes = 27

max_parallel_workers_per_gather = 4

max_parallel_workers = 8

In line with the storage of the temporal network data, as implemented for the native PostgreSQL
setup, for TimescaleDB, the data is also stored as a temporal edge list. This edge list is con-
figured as a hypertable. For the hypertable configuration, it is crucial to set an appropriate
chunk_time_intervalwhich defines the time windows used for the time partitioning. For the
scale 1 benchmark, the edge stream hypertable is about 88MB large. According to the Timescale
documentation, it is recommended that all recent hypertable chunks fit into 25 % of main mem-
ory (Timescale Inc., 2024). In our case, this fraction of memory equals about 15 GB. Therefore,
up to scale 170 ( 15GB88MB ≈ 170) all the temporal network data fits into memory. The network
data could even be completely stored in a single chunk. Still, it is split into multiple chunks
to benefit from partitioning, which is especially crucial for larger data volumes. Therefore, the
chunk_time_interval parameter is set to 1 month. Given that the scale 1 data covers about
15 days, the hypertable consists of multiple chunks for larger scales. For scale 10, five chunks are
used.

Furthermore, similar to the setup used for the native PostgreSQL implementation, various index-
ing techniques are tested. Table 6.13 gives an overview of applied indices and index combinations.
Apart from the “baseline” setup, which is only tested for scale 0.1, the others are benchmarked for
all scales.

14GitHub – timescale/timescaledb-tune: A tool for tuning TimescaleDB for better performance by adjusting settings
to match your system’s CPU and memory resources.: https://github.com/timescale/timescaledb-tune
(accessed 2023-08-16)
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Table 6.13: List of benchmarked indices applied to the edge stream (temporal edge) table for the
TimescaleDB setup

Label Description

1 baseline no index
2 index (source,dt) multi-column B-tree index on source (source node)

and dt (timestamp) columns
3 index (source,dt) & index (tar-

get)
same as 2 + B-tree index on target (target node) col-
umn

4 index (label,dt) multi-columnB-tree index on label (edge type) and dt
(timestamp) columns

5 index (label,dt)& index (target) same as 4 + B-tree index on target (target node) col-
umn

6 index (source,label,dt) multi-column B-tree index on source (source node),
label (edge type) and dt (timestamp) columns

7 index (source,label,dt) & index
(target)

same as 6 + B-tree index on target (target node) col-
umn

Apache AGE-specific setup: For the Apache AGE benchmark setup the apache/age:v1.1.0
Docker container15 is used. Also, the database is configured with the same parameters leveraged
for the native PostgreSQL setup. Internally, Apache AGE uses a table layout optimized for graph
datamanagement. Table 6.14 gives an overview of the database design. It is important to note that
a separate namespace is created for each newly added graph. Also, the _ag_label_vertex and
_ag_label_edge tables work as parent tables of the respective node and edges of a graph (Farias,
2023). Compared to the way the data is stored for the TimescaleDB and the native PostgreSQL
setup, the Apache AGE table layout is quite different. Instead of simply storing the data as a
temporal edge list, it is more complex and focused on separating the graph data based on the
various node and edge types.

Based on the described database design used internally by Apache AGE, various indexing tech-
niques are tested (see Table 6.15). Since the edges are stored in separate tables according to their
type, indices are created for each of these individually. Also, the edge and node properties are
stored as a JSON-compliant data type. Therefore, B-tree indices on the edge timestamps must be
created on the respective JSON object fields. Compared to the other system setups, GIN indices
are also tested. They are created on the “properties” columns of the edge tables. Still, in line with
15Image Layer Details – apache/age:v1.1.0 | Docker Hub: https://hub.docker.com/layers/apache/age/v1.

1.0/images/sha256-4cbc8ad05877772d8fbcfb05e5701eb9e414001e684f50f392d3e78d2cf9fe87?co
ntext=explore (accessed 2023-10-10)
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Table 6.14: Internal table layout of Apache AGE

Table(s) Description

ag_catalog.ag_graph list of graphs
ag_catalog.ag_label list of all node and edge types
⟨graph⟩._ag_label_vertex all nodes of respective graph
⟨graph⟩._ag_label_edge all edges of respective graph
⟨graph⟩.⟨node type⟩ all nodes of respective type in graph
⟨graph⟩.⟨edge type⟩ all edges of respective type in graph

the native PostgreSQL and the TimescaleDB setup, the “baseline” configuration is only tested for
scale 0.1.

Neo4j-specific setup: With Neo4j being part of the benchmark, a system not based on Post-
greSQL is also tested. For the benchmark, the neo4j:5.8.0-community Docker image16 is
used. Unfortunately, Neo4j does not come with any pre-warming capabilities. As a workaround,
the database cache is warmed by querying all nodes and edges of a graph previous to the actual
benchmark (Gordon, 2023). Nevertheless, statistics about the stored data needed to optimize the
query plans are automatically kept up to date, and no manual statistics collection needs to be trig-
gered (Neo4j, Inc., 2023a). Further, the database memory settings are configured by following the
memory recommendations provided by the Neo4j memory-recommendation tool17. Listing 6.3
shows the recommendations for the used virtualmachine setup. Also, the database’s configuration
is validated via the validate-config tool (Neo4j, Inc., 2023b).

Listing 6.3: Neo4j memory recommendations

# Based on the above, the following memory settings are recommended:

NEO4J_server_memory_heap_initial__size='23000m'

NEO4J_server_memory_heap_max__size='23000m'

NEO4J_server_memory_pagecache_size='26g'

#

# It is also recommended turning out-of-memory errors into full crashes,

# instead of allowing a partially crashed database to continue running:

NEO4J_server_jvm_additional='-XX:+ExitOnOutOfMemoryError'

16Image Layer Details – neo4j:5.8.0-community | Docker Hub: https://hub.docker.com/layers/library/ne
o4j/5.8.0-community/images/sha256-dc272726680f27f10425e6697cc405103478e358968976515aa
dfa11b319cbd4?context=explore (accessed 2023-10-10)

17Memory recommendations – Operations Manual: https://neo4j.com/docs/operations-manual/curren
t/tools/neo4j-admin/neo4j-admin-memrec (accessed 2023-07-16)
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Table 6.15: List of benchmarked indices applied to the Apache AGE graph database setup

Label Description

1 baseline no index
2 index (source) B-tree index on source (source node) column
3 index (source) & index (target) same as 2 + B-tree index on target (target node) col-

umn
4 index (dt) B-tree index on dt (timestamp) JSON object field of

properties column
5 index (dt) & index (target) same as 4 + B-tree index on target (target node) col-

umn
6 index (source,dt) multi-columnB-tree index on source (source node) col-

umn and dt (timestamp) JSON object field of proper-
ties column

7 index (source,dt) & index (tar-
get)

same as 6 + B-tree index on target (target node) col-
umn

8 GIN index (properties) GIN index on properties (edge properties) column
9 GIN index (properties)& index

(target)
same as 8 + B-tree index on target (target node) col-
umn

Since Neo4j also has various data indexing capabilities, multiple indexing strategies are tested for
theNeo4j setup. These indices are shown inTable 6.16. Unfortunately, a composite index onnode
and edge properties is not possible. Instead, individual indices for node (IDs) and relationship
(dates) information are used. Similar to the Apache AGE setup, indices must be applied to each
node and edge type individually. Next to the indices applied to the actual graph data, a range index
on the benchmark query data is also created. Therefore, the generated query parameter sets can be
retrieved faster based on their IDs. In contrast to the setups discussed above, for the Neo4j setup,
the “baseline” configuration is benchmarked for all scales.

Virtual machine setup: The complete benchmark is executed on a virtual machine that runs on
Google Cloud18 infrastructure. The Google service offers free credits of $300 to test their service.
These are used for benchmarking. Still, for these test accounts, some usage restrictions exist. As
such, only a maximum of 8 vCPUs for n2machines is allowed, and c3-type virtual machines are
not allowed to be used. Manually increasing these usage quotas does not work. Given that more
CPUs are better for parallelizing the database queries (e.g., for TimescaleDB), the maximum of

18Cloud Computing Services | Google Cloud: https://cloud.google.com/?hl=en (accessed 2023-08-16)
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Table 6.16: List of benchmarked indices applied to the Neo4j graph database setup

Label Description

1 baseline no index
2 index (rel:dt) range index on dt (timestamp) relationship property
3 index (node:id),(rel:dt) range index on id node and dt (timestamp) relation-

ship property
4 index (node:id) range index on id node property

8 vCPUs is used. Specifically, the n2-highmem-8 general-purpose machine type19 is used. The
cores of this machine type are not shared, which is crucial for consistent resource availability. Also,
these virtual machines come with 64 GB of RAM. Given that Docker and other processes also
need a certain amount of memory, the benchmarked systems are set up with an expected available
RAM of 60 GB. Regarding SSDmemory, the usage quota is also completely taken advantage of,
and 1.5 TB of local SSD is used. Additionally, the virtual machine is configured with a 125 GB
persistent disk SSD for booting. Further configuration details of the virtual machine used for the
benchmark are listed in Table 6.17.

Table 6.17: Provisioning of the virtual machine used for the benchmarking

CPU(s) 8
On-line CPU(s) list 0–7
Thread(s) per core 2
Socket(s) 1
NUMA node(s) 1
Model name Intel(R) Xeon(R) CPU@ 2.80 GHz
NUMA node0 CPU(s) 0–7

6.3 .4 Benchmark results

This section examines the results of the temporal graph data analysis benchmark. For the bench-
mark, the results are measured in “Transactions Per Second” (TPS). Therefore, the higher the
values, the better the tested performance. Also, each setup, consisting of a database system, a
dataset of a particular scale, a specific benchmark query and a data indexing strategy, is tested 100
19General-purpose machine family for Compute Engine | Compute Engine Documentation | Google Cloud: https:

//cloud.google.com/compute/docs/general-purpose-machines#n2_machine_types (accessed
2023-08-16)
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times. For each run, the performance metrics are stored and given that most setups show highly
skewed distributions of their TPS values due to variations in query performance, see Figure 6.14
for example, median values are used for comparison. In line with that, to quantitatively measure
the variance in system performance, median absolute deviation (MAD) values are derived and
used to discuss the benchmark results. Notably, concerning MAD values, one has to take into
account the characteristic that these can be zero in cases of distributions where more than 50 % of
the values are equal, even though some sort of “variance” is present in the data (Rosenmai, 2013).
Apart from the benchmark measurement, the benchmark itself is conducted up to the dataset
scale of 10 as described in Section 6.3.3. Testing the systems for an even larger dataset would have
been desirable. Unfortunately, given the hardware constraints, benchmarking more significant
amounts was unfeasible. Even the native PostgreSQL setup ran out of disk space for a potentially
tested dataset of scale 100 with 100,000,000 temporal edges.

Figure 6.14: Probability density distribution of the performance results for the native PostgreSQL setup
in case of the scale 10 benchmark dataset, the “3-hop neighborhood” query and the “index
(source,label,dt) & index (target)” data indexing strategy. A non-normal distribution can be
observed.

The benchmark results are presented in the following by first giving an overview in Sec-
tion “Overview”. Then, Section “Results by system” discusses the test results in detail on a per-
system level. This discussion includes a comparison of the different dataset scales and queries, as
well as an investigation of which data indexing strategies work best in which case.
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Overview

To guarantee transparency, Appendix B shows the complete list of benchmarking results – see the
respective section for more details. Still, gaining deeper insights from Table B.1 might not be easy.
Therefore, more focused perspectives on the benchmark results are provided in the following. As
such, Table 6.18 shows the best-performing system for each tested dataset size and benchmark
query. For each database system, only the best-performing index setup is taken into account.
Thereby, the setups are ranked by their median TPS values. As one can see, for the smallest dataset
scale, the Neo4j system performs best for all queries, and for the other dataset scale and query
combinations, the native PostgreSQL system performs best. In general, one can derive that the
native PostgreSQL setup fulfills the outlined requirements best and should, therefore, also be
used for the EPINetz platform – especially because an appropriate system needs to be capable of
handling large volumes of data. Supposedly, PostgreSQL scales well for the graph analysis use case.
In the following, the setup-specific results are discussed in detail.

Table 6.18: Best performing system by dataset scale and benchmark query

Temporal degree 3-hop neighborhood Top-10 neighbors

0.1 Neo4j Neo4j Neo4j
1 Native PostgreSQL Native PostgreSQL Native PostgreSQL
10 Native PostgreSQL Native PostgreSQL Native PostgreSQL

Figure 6.15 shows a performance comparison of the benchmarked systems for the scale 0.1 dataset.
The best-performing index configuration, according to the maximummedian TPS value, is con-
sidered for each system and benchmark query setup. As one can see, Neo4j clearly outperforms
the other systems for all three benchmark queries. All queries start from a given seed node, and
seemingly, for the small benchmark dataset, the Neo4j system is faster in accessing the properties
related to this node. Also, the variance in system performance is relatively low in all cases except
for the Neo4j system concerning the “3-hop neighborhood” query. As discussed in Section 6.3.3,
the node degrees of the network used for the benchmark dataset approximately follow a long tail
distribution. Depending on the degree of the randomly selected seed node, querying its neighbor-
hood might be differently expensive. The Neo4j system seems to be especially prone to this in the
case of the small benchmark dataset.

Compared to the performance results retrieved for the scale 0.1 benchmark dataset, the ranking
changed significantly for the larger scale 1 dataset. Figure 6.16 shows thebest-performing setups for
this scale 1 grouped by benchmark query and system. The chart shows that the native PostgreSQL
setup clearly outperforms all the other systems for all three benchmark queries. Also, performance
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Figure 6.15: Performance comparison of the different systems for the scale 0.1 benchmark dataset. Results
are grouped by benchmark query. Neo4j outperforms the other systems in all cases.

variance is low for all setups. Now, even the Neo4j system performs quite consistently for the
3-hop neighborhood query. By taking a look at Table 6.22, one can see that, compared to the scale
0.1 dataset, not the “index (node:id)”, but using the index on the relationship timestamp leads to
the best results for the Neo4j system. Seemingly, this database configuration leads to more robust
performance results.

Figure 6.17 shows the performance overview for the benchmarks conducted on the scale 10 dataset.
Even though the native PostgreSQL system still shows the best results, multiple differences can be
observed compared to the scale 1 benchmark. First of all, the Neo4j setup is no longer in second
place but is surpassed by the PostgreSQL-based TimescaleDB setup. Supposedly, PostgreSQL’s
efficient data-accessing methods play a significant role, especially for larger datasets. Nevertheless,
the Apache AGE system does not benefit from these technical advantages. Given that Apache
AGE internally uses a specific database layout that is not tailored to the use case of analyzing
dynamic network data (see Table 6.14), these benefits might not come into action. Furthermore,
it is again noticeable that performance variations are pretty large for the 3-hop neighborhood
query in the case of the native PostgreSQL and the TimescaleDB setup. Again, this phenomenon
might be related to the large variations in node degree, as explained above. Given that this type of
query requires self-joins of the temporal edge table (see Appendix A.1), the size of the result set
might become enormously large, and its size highly depends on the degrees of the involved nodes.
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Figure 6.16: Performance comparison of the different systems for the scale 1 benchmark dataset. Results
are grouped by benchmark query. PostgreSQL performs best.

The larger the degree of the nodes part of the 3-hop neighborhood, the larger the neighborhood
becomes. This dependency might explain the large variations in system performance for the two
PostgreSQL-based systems in the case of the neighborhood query.

Results by system

In the following, the results discussed in the previous section from an overview perspective are now
examined in detail. For that, the derived benchmarkmetrics are discussed per system. For each sys-
tem, including native PostgreSQL, TimescaleDB, Apache AGE, and Neo4j, their performance is
compared across the tested queries and dataset scales. Further, for each setup, the best-performing
data indexing strategy is discussed.

Native PostgreSQL-based: Figure 6.18 shows the benchmark performance of the native Post-
greSQLsystemgroupedby thedifferent benchmarkqueries. For each scale andquery combination,
the best-performing data indexing strategy is shown. The performance is mostly around 200 TPS,
and its variance is relatively low. A slightly decreasing performance of around 10 to 20 TPS for
each step of increasing the benchmark dataset size can be observed. This behavior is consistent
throughout the different benchmark queries and dataset scales, except for the scale 10 “3-hop
neighborhood” query, which performs with only around 70 TPS and shows a variance of nearly
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Figure 6.17: Performance comparison of the different systems for the scale 10 benchmark dataset. Results
are grouped by benchmark query.

the same size. This high-performance variability is, as examined above, probably related to the
highly skewed node degree distribution present in the leveraged benchmark dataset.

Next to the actual performance results, it might be interesting to investigate which indexing strat-
egy led to these. For the native PostgreSQL system, the indices used for the best-performing tests
with respect to the according dataset scale and benchmark query are given in Table 6.19. Except
for the “3-hop neighborhood” query, the “index (source)” strategy leads to the best results inde-
pendent of dataset scale. Seemingly, the overhead of having more than just the “source” column
contained in the B-tree index outweighs the potentially gained performance improvements. Given
that filtering the data based on an individual (source) node applies the most restrictive condition
compared to edge label or timestamp filtering, it is probably most effective to have a lightweight
index on this individual column that can be used to improve data access performance. Neverthe-
less, more complex indexing strategies seem to lead to the best results for the scales 1 and 10, and
the “3-hop neighborhood” query. In these cases, using a multi-column B-tree index applied to
the source node, edge type, and timestamp columns works better. Having the additional columns
also considered during index creation, allowing to filter on them within the B-tree already, seems
to outweigh the induced overhead.

TimescaleDB: A performance overview of the tests conducted for the TimescaleDB system is
given by Figure 6.19. Again, results are grouped by the different benchmark queries, and each
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Figure 6.18: Performance comparison of the native PostgreSQL setup grouped by benchmark query and
dataset scale. In most cases, the system’s performance is around 200 TPS.

Table 6.19: Best-performing indices used for the native PostgreSQL setup. Results are separated by dataset
scale and benchmark query. See Table 6.12 for a description of the different indices.

Temporal degree 3-hop neighborhood Top-10 neighbors

0.1 index (source) index (source) index (source)
1 index (source) index (source,label,dt) index (source)
10 index (source) index (source,label,dt) & index (target) index (source)

group contains the results of all three dataset scales. One can see that, in general, the TimescaleDB
system performs worse compared to the native PostgreSQL setup, with the performance being,
for the most part, around 80 TPS. Also, in most cases, performance variance is relatively low (<
10 TPS). The system shows significantly less performance only for the “3-hop neighborhood”
query in combination with the scale 10 benchmark dataset. For this test, the observation of a low
performance (≈ 50TPS) combined with a high variance (≈ 25TPS) is similar to the behavior of
the native PostgreSQL system, which is plausible given that TimescaleDB is also built on top of
PostgreSQL.

From Table 6.20, which shows the best-performing indexing strategy per benchmark for the
TimescaleDB setup, one can see that indexing the source node column plays a crucial role. Inmost
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Figure 6.19: Performance comparison of the native TimescaleDB setup grouped by benchmark query and
dataset scale. In most cases, the system’s performance is around 80 TPS.

cases, indexing the source node and the relationship timestamp leads to the best results. Given that
TimescaleDB internally partitions the data by time, it is required to include the timestamp column
in all indices that span the entire hypertable. Interestingly, in various tests, themulti-column index,
which also takes the edge type into account (“index (source,label,dt)”), performs best. Seemingly,
having the edge-type information present within the index allows for faster filtering compared to
the other indexing strategies in these circumstances.

Table 6.20: Best-performing indices used for the native TimescaleDB setup. Results are separated by dataset
scale and benchmark query. See Table 6.13 for a description of the different indices.

Temporal degree 3-hop neighborhood Top-10 neighbors

0.1 index (source,dt) index (label,dt) index (source,label,dt)
1 index (source,dt) index (source,dt) index (source,dt)
10 index (source,label,dt) index (source,label,dt) index (source,label,dt)

Apache AGE: For theApacheAGE system, benchmark results are given in Figure 6.20. In general,
one can observe that the system’s performance decreases significantly with larger dataset scales.
Even though the Apache AGE setup outperforms TimescaleDB for all three benchmark queries
in the case of the scale 0.1 benchmark, its performance is much worse for the other dataset scales.
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Still, the performance variance is low for all tests, not exceeding a value of 8 TPS. The worse
performance in the case of the larger benchmark dataset compared to the TimescaleDB and native
PostgreSQL setups might be related to the different database layout used internally by Apache
AGE. As discussed above, the database’s structure follows the idea of partitioning the graph data
according to the different node and edge types. Nevertheless, the benchmarked queries are highly
time-dependent, and fast filtering on the temporal dimension is therefore crucial. This different
partitioning approach might cause inferior performance.

Figure 6.20: Performance comparison of the native Apache AGE setup grouped by benchmark query and
dataset scale. As the amount of data increases, the performance decreases significantly.

Concerning the best-performing indexing strategies shown in Table 6.21 for the Apache AGE
setup, one can observe that the two indices on the source and target node columns work well for
the “Temporal degree” and “Top-10 neighbors” queries, whereas the multi-column index on the
source node and the edge’s timestamp works well for the “3-hop neighborhood” query. In all
cases, indexing the source node helps to speed up the edge filtering, which is crucial for all the
benchmarked queries.

Neo4j: From Figure 6.21, one can observe that the Neo4j setup outperforms all the other sys-
tems for the scale 0.1 benchmark dataset and also shows competitive results for the scale 1 dataset.
Nevertheless, for scale 10, the performance is only between 15 to 19TPS and, therefore, worse com-
pared to TimescaleDB or the native PostgreSQL setup. Seemingly, Neo4j does not scale well for
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Table 6.21: Best-performing indices used for the native Apache AGE setup. Results are separated by dataset
scale and benchmark query. See Table 6.15 for a description of the different indices.

Temporal degree 3-hop neighbor-
hood

Top-10 neighbors

0.1 index (source) & index (target) index (source,dt) index (source) & index (target)
1 index (source) & index (target) index (source,dt) index (source) & index (target)
10 index (source,dt) index (source,dt) &

index (target)
index (source)

the tested benchmark queries and dataset. Further, except for the scale 0.1 “3-hop neighborhood”
query, variance in performance is relatively low.

Apart from the actual performance results, it should be noted that the TPS values are calculated by
summing up Noe4j’s query result availability and consumption time. The complete time it takes
the database client to consume the query results is taken into account. For a detailed explanation,
we refer to Bowman (2023).

Figure 6.21: Performance comparison of the native Neo4j setup grouped by benchmark query and dataset
scale. As the amount of data increases, the performance decreases significantly.

Furthermore, Table 6.22 shows the data indexing strategies which led to the best results for the
Neo4j benchmark. It has to be noted that inmultiple cases (e.g., scale 0.1& “3-hop neighborhood”
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or scale 10 & “Top-10 neighbors”), different indices led to very similar performance results with
differences of less than 1 TPS. Still, only one index strategy is selected to be present in the table
based on the highest median TPS value and lowest MAD value. If both values are the same, the
first analyzed setup is selected. Nevertheless, these similar results make it hard to derive general
rules on which data indexing method works well in which cases. At least, one might argue that
indexing the node IDs and/or relationship timestamps works best in most cases.

Table 6.22: Best-performing indices used for the native Neo4j setup. Results are separated by dataset scale
and benchmark query. See Table 6.16 for a description of the different indices.

Temporal degree 3-hop neighborhood Top-10 neighbors

0.1 index (node:id) baseline index (node:id),(rel:dt)
1 index (rel:dt) index (node:id) index (node:id)
10 baseline index (node:id),(rel:dt) index (rel:dt)

6.3 .5 Summary and discussion

In this study, various temporal network data management systems have been tested. Thereby
conducted tests aimed at finding a setup to analyze temporal heterogeneous network data in a
performant way. Multiple graph queries, dataset scales, and data indexing strategies have been
examined in line with the requirements discussed in Section 6.3.1. Further, related work and tech-
nical implementations are detailed in Sections 6.3.2 and 6.3.3, respectively. Overall, a customized
setup based on native PostgreSQL showed the most promising results by performing best for all
queries in cases of the two largest dataset scales. Therefore, this system is also recommended to be
used for the EPINetz platform.

Nevertheless, the conducted benchmark does not claim generalizability, first and foremost, be-
cause it is designed with a focus on the specific use-case requirements in mind. It is not meant as a
general temporal graph analytics benchmark. In this regard, a pre-selected set of systems is tested
only. This set of systems does, for example, not include most proprietary systems or such that
are not commonly used in academia. Furthermore, the benchmark results are merely evaluated
based on the systems’ query performance and other metrics, such as memory usage or CPU utiliza-
tion, are not taken into account. Finally, several hardware constraints had to be considered while
conducting the benchmark. Therefore, a graph dataset of a larger scale could not be tested.

Even though the goal of the conducted benchmark, to find a high-performant edge sequence-
based data management system, is reached, overcoming the discussed shortcomings should be
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part of future work. Further, more advanced graph analysis algorithms could be integrated into
the benchmarking framework, such as those used for community detection or information diffu-
sion.

6.4 Network-Based Trend Exploration

The study of trends in social media is highly relevant for many use cases. For example, from a
business intelligence perspective, it is essential to track what the company’s target group is inter-
ested in and how specific characteristics, e.g., environmental friendliness, of a product become
more or less relevant over time. Also, in the field of political science, it is of great interest to study
which political topics are discussed on social media, in which context and how they evolve. For these
use cases, the temporal analysis of long-term trends extracted from social media data is crucial.
Even though Section 4.1 already presents a framework for detecting and analyzing long-term so-
cial media trends, an actual system for the interactive exploration of the derived analysis results is
still missing. Therefore, in this section TrendTracker, a web application20 for the network-based
and temporal exploration of long-term social media trends, is presented. Topical trends, repre-
sented as a series of hashtag co-occurrence networks, can interactively be explored while the user is
provided with detailed trend analysis insights. This approach has several benefits compared to al-
ternative trend visualization and explorationmethods, such as ranked lists of trending keywords, as
it provides the user with additional context-sensitive information. To showcase the TrendTracker
application, we leverage a Twitter dataset of German political actors and demonstrate the system’s
capabilities in various ways. For example, the user is able to investigate a single trend frommultiple
perspectives, such as the trend’s temporal development over time, including its topical shifts and
changes in popularity. Also, given the network-based trend visualization, the user can intuitively
understand the different facets of a trend and how these are interrelated. Thereby, individual
hashtags and relationships can be tracked over time. Furthermore, the TrendTracker application
allows the user to compare trends. This way, differences in the trends’ temporal evolution or
topical alignment can be uncovered.

Reference: This section is based mainly on the following peer-reviewed publication. The
TrendTracker application was developed in collaboration with Johannes Sindlinger and Marina
Walther in the context of their software practicals at the Heidelberg University’s Data Science
Group:

20TrendTracker: https://trend-tracker.ifi.uni-heidelberg.de (accessed 2023-10-23)
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John Ziegler, Johannes Sindlinger, Marina Walther, andMichael Gertz. TrendTracker: Temporal,
network-based exploration of long-termTwitter trends. In Proceedings of the 2023 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis andMining, Forthcoming.

The remaining part of this section is structured as follows: First, in Section 6.4.1, the contributions
of this work to the Twitter trend visualization discipline are highlighted. Subsequently, in Sec-
tion 6.4.2, related work is discussed and compared to the capabilities of the TrendTracker system.
Further, in Section 6.4.3, the background, including the leveraged dataset, the long-term trend
detection methodology and the technical implementation, is covered. Based on that, the analysis
workflowsmade available to the user via the web application are described in Section 6.4.4. Finally,
Section 6.4.5 gives a concise summary of this section.

Figure 6.22: Landing page of the TrendTracker web application. Descriptive explanations facilitate the
onboarding of the user; Screenshot taken from the TrendTracker web application on 8 August
2023

6.4 .1 Contributions

Given long-term trends extracted from social media data, from an end-user perspective, a suitable
visual representation of these is crucial. Simple lists of trending topics, as shown in Figure 4.1, are
insufficient for several reasons, as described by Bhulai et al. (2012). They do not clearly indicate
the relative importance of topics, and the topics’ temporal evolution is not represented at all.
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Finally, multiple topics in these lists might be related and should therefore be clustered for a
more descriptive representation as well (Bhulai et al., 2012). The TrendTracker system overcomes
these shortcomings by providing the user with trend scores over time and by visualizing topics
in the form of intuitively understandable temporal networks, giving the user additional context-
sensitive information. Further advanced trend analysis features are provided. In summary, our
contributions to the fields of Twitter trend visualization and analytics are manifold:

1. The studied trends are visualized as temporal hashtag co-occurrence networks. This visu-
alization method allows users to easily grasp the context of the respective trend and how
different aspects of the topic are related.

2. A series of temporal network snapshots represents the long-term temporal development of
a trend. Thereby, users can study how a trend, i.e., its focus or relevant aspects, changes
over time.

3. Additional trend analysis insights are provided to the user, such as the trend’s popularity
over time or its relative trend relevance score.

4. Individual hashtags and their relationships can be highlighted in the trend networks and can
be tracked over time, allowing to investigate their dynamics regarding the explored trend.

5. Multiple concurrent trends can be explored simultaneously in a comparative manner.
Thereby, temporal and topical differences between trends can be uncovered.

Regarding the terminology used, in our context, long-term trends must be understood in contrast
to short-lived media content. We do not deal with breaking news but focus on topics prevalent
in social media over a long period. We refer the interested reader to Section 4.1.2 for a detailed
discussion on the used terminology.

6.4 .2 Related work

Most similar to our work are related approaches from the field of Twitter trend visualization. Sev-
eral systems have been presented for that in the past, most notably the work by Doshi et al. (2017).
They propose a system calledTweetanalyzer that allows users to explore real-time trends extracted
from Twitter. As trends, they use the most frequently occurring hashtags and usernames. Re-
spective statistics are presented in the form of bar charts. Further, tweets related to named trends
are displayed on a map to visualize their geographic location. In contrast to our TrendTracker
system, they do not provide the user with network-based exploration capabilities, nor do they
explore the long-term development of detected trends but are instead focused on their real-time

184



6.4 Network-Based Trend Exploration

occurrence. Further, one of the early works in the field of trend visualization based on Twitter
data was published by Bhulai et al. (2012). To visualize trending topics in the most informative
way, they use so-called “dynamic squarified treemaps” that allow them to not only show the actual
trends based on hashtags and terms but also incorporate information regarding the speed and ac-
celeration of the trend development. Additionally, they cluster related topics for them to be more
descriptive. Still, they do not incorporate information regarding the long-term development of
trends and do not provide the user with network-based exploration capabilities. Further, Wanner
et al. (2012) propose another visualization technique to track Twitter topics. Using equal-sided
triangles to visualize the occurrence of tweets within a timeline allows them to represent the un-
evenly distributed time series data concisely. The color of named shapes indicates the sentiment of
respective tweets. By usingmultiple timelines at once, the user can also compare different topics or
rather different time windows and is, therefore, able to investigate a topic’s temporal development.
Even though the work of Wanner et al. (2012) is dealing with the challenge of visualizing Twitter
data, their focus is not on network-based methods and does not explicitly target the tracking of
long-term trends as done by our TrendTracker system. More recently, Stojanovski et al. (2014)
present a web application called TweetViz to explore Twitter data visually. They focus on user-
and hashtag-oriented visualizations but do not deal with exploration capabilities for trends. Sim-
ilarly, Kant et al. (2020) publish a Python package called TTLocVis to work with Twitter data.
Leveraging their package to visualize detected topics over time also allows to track their temporal
prevalence. Still, they do not provide network-based exploration capabilities, nor do they deal with
topical trends. The same is true for theRIVA social media analysis platform proposed byWu et al.
(2017). By counting the occurrence of hashtags, they are able to detect trends and visualize these
in the form of pie charts. Nevertheless, further exploration capabilities are not provided.

6.4 .3 Background

This section describes theGerman political Twitter dataset and the analysismethodology leveraged
to showcase the TrendTracker application. For all the data analysis details, we refer the interested
reader to the respective Section 4.1. Next to the data-related background, a concise summary of
the system’s technical implementation is given.

Dataset

The used dataset is based on tweets from German political actors as provided by the EPINetz
Twitter Politicians Dataset 2021 König et al. (2022) and covers data from January 2021 until July
2022, in total approximately 1.8 million tweets. To retrieve the raw tweets, we rely on the Twitter
search API v2 and extract timestamped information about the occurrence and co-occurrence of
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hashtags. In line with the works of Asur et al. (2011) and Budak et al. (2011), we treat hashtags as
representatives of topics and do not apply any additional topic extraction technique. In general,
the methodology is not restricted to this dataset but can be applied to a broad set of use cases that
deal with temporal occurrences of keywords.

Figure 6.23: Settings where users can configure the trend and time period they want to explore; Screenshot
taken from the TrendTracker web application on 8 August 2023

Trend detection

Taking the timestamped information about the usage of hashtags as described in the previous
section, we construct hashtag co-occurrence networks, each covering the data of one month. To
remove noise and focus on the most expressive hashtags, we remove all nodes with a degree lower
than the network’s median. Degrees follow a power law distribution. Therefore, we leverage the
median as defined by Newman (2005). Additionally, edges are weighted by Pointwise Mutual
Information to strengthenmore semantically expressive relationships between hashtags (Role and
Nadif, 2011). In the next step, to cluster related topics as done by Bhulai et al. (2012), we apply
the Leiden community detection algorithm to each network (Traag et al., 2019). The induced
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subgraphs of the ten most central hashtags of found communities make up the trend networks
that the user can explore. To track topics over time, i.e., the communities of hashtags across the
network snapshots, we apply the algorithm proposed by Lorenz et al. (2017). As trend scores,
the community’s cumulative sum of hashtag occurrences is taken. Finally, for the word clouds
describing the complete trend, we leverage the joined networks of the temporal communities per
trend and take the ten nodes with the highest PageRank scores as representatives per trend. For
example, Figure 6.23 shows the extracted word cloud related to the COVID-19 trend. For all net-
works, node sizes are adjusted according to their normalized PageRank centrality (see Figure 6.25).
Computations are done using the igraph network analysis library (Csárdi and Nepusz, 2006).
On the TrendTracker website, the ten most prevalent trends over time are visualized.

Implementation

The TrendTracker web application is built with the SvelteKit21 framework, along with D322

and Chart.js23, that are used for the interactive visualizations. Data about the long-term trends
is retrieved from a Python REST API. Figure 6.24 gives an overview of the software architecture
behind the TrendTracker system.

6.4 .4 Analysis workflows

By visiting theTrendTrackerwebsite, the user first reaches the landing page as shown in Figure 6.22.
There, an introductory text explains the purpose of the application and facilitates the user’s on-
boarding. Continuing the website visit, by scrolling down or clicking on the “Explore trends” link,
the user reaches the actual data exploration part of the web app and is led to the analysis settings
(see Figure 6.23). For explanatory purposes, most application features come with a tooltip that is
indicated by an encircled question mark.

Single trend exploration

The mentioned analysis settings (see Figure 6.23) allow users to select a given trend and time
window. Thereby, additional information and statistics are provided for the trend selection, such
as a word cloud visualizing the trend, the overall trend score and its trend relevance. This relevance
score is derived by comparing the trend’s popularity to the prevalence of the other trends. It,
therefore, acts as a relative importance indicator, which is, according to Bhulai et al. (2012), a

21SvelteKit • Web development, streamlined: https://kit.svelte.dev (accessed 2023-10-24)
22D3byObservable | The JavaScript library for bespoke data visualization: https://d3js.org (accessed 2023-10-24)
23Chart.js | Open source HTML5 Charts for your website: https://www.chartjs.org (accessed 2023-10-24)
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Long-term Trends

TrendTracker

Networks
 Charts


REST API

Figure 6.24: Illustration of theTrendTracker system’s software architecture. The data about long-term
trends is retrieved from a REST API and visualized in the form of interactively explorable
networks and charts.

significant improvement compared to ranked lists. Furthermore, for the date selection, next to the
dropdown list, the right-sided slider can be used to pick the analysis time window.

According to the selected trend and set time window, the trend network (see Figure 6.25) and
temporal trend scores (see Figure 6.26) are presented to the user. These charts allow a network-
based and temporal exploration of the trend. Also, the built-in reactivity of the application leads
to an immediate update of the statistics if the user adjusts the settings. Once a user has scrolled past
the configuration section, updating the settings is possible via the sticky header (see Figure 6.28).
Further, the layout of the trend network can be adjusted to the user’s preferences by dragging the
respective nodes in the network.

Node and edge tracking

Not only can the users adjust the positioning of nodes in the trend networks, as mentioned above,
but they can also track these across multiple network snapshots. By clicking on a node or a link,
it is highlighted. If the user then changes the time window of the trend, the node/edge remains
highlighted in the network in case it is still present. Thereby, the temporal tracking of individual
aspects of a trend (i.e., represented by a hashtag) is facilitated. This way, the user can checkwhether
some hashtags gain or lose importance for the trend over time. Besides the manual tracking of
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Figure 6.25: Exemplary COVID-19 trend network. To a large portion, the network consists of vaccination-
related hashtags and covers discussions around the lockdown as an action to fight the pandemic;
Screenshot taken from the TrendTracker web application on 8 August 2023

the highlighted entity, a line chart of temporal node/edge weights is also displayed. It indicates
the evolution of the importance of the highlighted entity. Figure 6.27 gives an example of such
a line chart. It shows the node weights of the corona hashtag occurring in the COVID-19 trend
networks.

Trend comparison

Some use cases also benefit from a direct comparison of two trends. Therefore, the TrendTracker
application offers the capability to conduct two analyses in parallel. For both analyses, the trend
and time window can be set individually. This way, the users are not limited to comparing the
same trend at arbitrary points in time, but they can also contrast the state of different trends at
the same or different times. Figure 6.28 shows such a comparison which contrasts the COVID-19
trend as of January 2021 with the state of the EU trend inMarch 2022. Generally, while the users
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Figure 6.26: Trend scores of the COVID-19 trend. Two peaks in popularity are visible during January 2021
and November 2021; Screenshot taken from the TrendTracker web application on 8 August
2023

Figure 6.27: Temporal nodeweights of the corona hashtag as part of the COVID-19 trend networks; Screen-
shot taken from the TrendTracker web application on 8 August 2023

conduct a trend comparison, the same features, such as node/edge highlighting and the temporal
trend scores, are still available and are applied to both investigated trends.

6.4 .5 Conclusion

This section presents the TrendTracker web application to explore long-term social media trends.
Its capabilities are demonstrated based on Twitter data of German political actors collected from
January 2021 until July 2022. Users of the TrendTracker system can explore the temporal evo-
lution of long-term prevalent topics in various ways. Especially the network-based visualizations
give the user context-sensitive exploration capabilities, which is a significant benefit compared
to existing Twitter trend visualization approaches. Additional features of the web application,
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Figure 6.28: Exemplary comparison of two trends. Both the trend and the time window can be adjusted
individually; Screenshot taken from the TrendTracker web application on 8 August 2023

such as the temporal trend scores, the trend comparison functionality or the entity highlighting,
complement the application’s capabilities.
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In today’s fast-evolving and highly connected world, keeping track of all changes, developments,
and interdependencies becomes increasingly difficult. To some extent, content shared on various
media platforms reflects these dynamics and the connectedness. Even though this content does
not cover the real world in all its details and might even provide a biased perspective on many
subjects, given its enormous influence not only for each person individually but also for our society
as a whole, studying and understanding media-related phenomena becomes ever more critical.
Derived findings might affect various disciplines, such diverse as sociology, politics, marketing, or
communication. However, deriving such findings is not straightforward, and various challenges
remain no matter which media phenomenon one wants to investigate, be it trends, conversations,
or the spread of information in general. These challenges include the need for an efficient and
performant data management system, the appropriate modeling of collected media data, and
finally, gaining insights from the modeled data regarding the investigated research questions. The
effort of this work is aimed at making contributions to named challenges.

7.1 Summary and Contributions

In this work, the analysis of media data is approached from two different perspectives in particular:
dynamism and connectedness. This focus is reflected by the leveraged data modeling, which is
built on concepts known from the field of temporal networks that allow taking the data’s interde-
pendent nature and time sensitivity into account. In sum, our effort led to variousmethodological
and technical contributions. To the best of our knowledge, combined, they represent the most
comprehensive network-based media analytics framework. All novelties and contributions are
detailed in the following.

7.1 . 1 Methodological contributions

Ourmethodological contributions start with the developed data analysismodel presented inChap-
ter 3. It is based on temporal network concepts, specifically tailored to the use case of media
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analytics and comes with several properties that facilitate extracting informative insights. These
properties include different data granularities, which allow the analysis of the data based on differ-
ing topological structures – from individual nodes and edges up to the complete network – as well
as based on varying temporal resolutions. Also, capabilities to project the network via user-defined
network paths are part of the proposed model. Together, the mentioned properties provide the
user not only with a lot of modeling flexibility and powerful data analysis tools but also allow
for use case-specific data investigations. Further, regarding the network-based modeling of the
data, the model is specifically designed to integrate heterogeneous data from different sources,
which is particularly important for analyzing media data. The data is structurally processed and
represented homogeneously through the defined schema and the resulting topology of the con-
structed network. Inmore detail, themodel’s extensibility is achieved by its robust design based on
document-centric networks, which are further enriched by extracted entities. This leads to latent
relationships between otherwise unconnected documents and, therefore, to a structural harmo-
nization of the analyzed data. Next, the data’s and therefore, also the network’s time-dependent
nature is incorporated into the model. Specifically, we rely on constructing temporal network
snapshots and go into great detail concerning appropriate network sampling techniques. Not
only do we consider the commonly leveraged fixed time window sampling but we also examine
alternative approaches, such as volume-based techniques or techniques based on use case-specific
metrics, e.g., the duration of trends (see Section 3.3.1). In sum, we contribute to the temporal
and network-based modeling of heterogeneous media data, including methodology for advanced
media analytics.

Based on this model, we conducted various studies about different social media phenomena, and
developed novel methods along the way. In this regard, Chapter 4 details our contributions to-
wards a better understanding of social media trends. First, we studied long-term trends, which are
prevalent over larger periods compared to commonly known short-lived trends that are only pop-
ular for a few days (see Section 4.1). Specific techniques for detecting such trends are developed,
and advanced visualizations support the communication of derived insights. Further, Section 4.2
investigates the actor-centric perspective concerning trends. For that, the actor-networks underly-
ing trends are studied. Methods for detecting different trend phases, determining trend durations,
and for a trend-aware temporal sampling of studied networks are developed. In particular, we
design a framework for the network-based analysis of actor interactions, including the analysis
across similar trends, called inter-trend analysis, as well as the analysis across the individual trend
life cycles, called intra-trend analysis. More broadly speaking, our work on trends paves the way
for a tighter connection between the trend and network analysis disciplines.
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7.1 Summary and Contributions

Next to the studies on trends, we leveraged the proposed model for the analysis of conversations.
Respective results are outlined in Chapter 5. To derive these results, we tackled the analysis of
conversational data by taking its structure, content, and dynamics into account, which is a more
holistic approach compared to that of existing studies. In detail, we first analyzed the users’ post-
ing activity and developed an empirical exponential saturation model. Further, a volume-based
sampling technique for the adaptive creation of temporal network snapshots was developed by
building on this posting model. This sampling technique allowed to further analyze the topologi-
cal evolution of extracted conversation networks. We employed our novel temporal Wiener index
metric for that. Finally, we derived insights into the semantic changes of a conversation by analyz-
ing the evolution of hashtag “usage”. Together, this leads to a more comprehensive perspective on
online conversations compared to existing approaches. The developed methods allow for incor-
porating the structural dimension based on actor-centric and network-topological information,
the temporal dimension based on the network’s evolution, and the semantic dimension based on
the modeled content.

7.1 .2 Technical contributions

In contrast to the aforementioned chapters, in Chapter 6, the technical contributions of this work
are detailed. This includes the detailed examination of the unique temporal media dataset that
is leveraged through this thesis, such as for the study of long-term trends in Section 4.1 or the
EPINetz platform (see Section 6.2). For the dataset’s description, a large emphasis is placed on its
statistics, network schema, and covered dynamics. When it comes to comparable media datasets,
specifically for the German political media landscape, to the best of our knowledge, the dataset
presented in this work is unique in its scale, i.e., number of collected documents, diversity, i.e., the
covered media platforms, and high data quality that is derived by building on a list of curated user
accounts.

Next, the EPINetz platform is presented. It provides an interface for the temporal and network-
based exploration of thementioned dataset – capabilities that no existingmedia analytics platform
provides in such away. Users can learn about ongoing and historic political topicswhile improving
theirmedia literacy skills. Therefore, wemake contributions to the field of computational political
science not only in a technical sense but also from an educative perspective.

Furthermore, we contribute to benchmarking graph data management and analysis systems, as
developing the EPINetz platform required testing various systems and technical configurations.
Overall, the results show that a customized system setup based on PostgreSQL works best for our

195



7 Conclusion

requirements. All the temporal graph analysis benchmark results are presented and discussed in
Section 6.3.

Finally, the TrendTracker application showcased in Section 6.4 constitutes contributions to an
improvement of trend visualization and exploration techniques. In contrast to simple trend rep-
resentations like lists, the TrendTracker application provides additional features that help its users
to better understand the relative importance of trends, their dynamics, and how they are interre-
lated.

7.2 Limitations and Outlook

Even though this thesis includes several contributions to different research disciplines, such as
trend research, online conversation analysis, or graph analysis benchmarking, it does not come
without limitations. These limitations, together with potential extensions, are discussed in the
following.

7.2 .1 Methodological shortcomings

Methodologically, some weaknesses and, thus, opportunities for future work can be identified.
With regard to the network-based media analytics model leveraged for the studies of this thesis, a
few shortcomings exist. First, the network dynamics are modeled using a simple snapshot-based
approach. Even though this approach captivates with its simplicity and is sufficient for a diverse
range of use cases, it might reach its limits for others. In the current model, interlinks connecting
nodes of different snapshots are not considered. Therefore, due to the temporal discretization
of the network, some information is lost, which might need to be preserved in specific scenarios
where, for example, continuous temporal network metrics are required. In this sense, gaining
insights into temporally far-reaching dependencies is currently only possible by adjusting the
snapshot sampling accordingly. However, one must note that an appropriate temporal sampling
of the network can minimize the mentioned information loss of the current model. We examined
various sampling techniques in great detail throughout this work (see Section 3.3.1).

Furthermore, by now, the data’s temporal information is incorporated in the form of timestamps.
However, some dynamics might be better modeled using interval graphs, especially if links are
active for specific periods instead of only a given point in time. An extension of the current model
could go in this direction. Also, currently, the data modeling and analysis efforts are primarily
directed towards the data’s temporal and topological properties and less so towards the analyzed
content itself. Although entities, such as hashtags or usernames, are considered in the proposed
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network model, more advanced content analyses, e.g., by using NLPmethods, are currently not
conducted. Such analyses might focus on a better semantic understanding of the content or on
analyzing its sentiment. Together, future extensions should extend the holistic perspective on
the analyzed data by taking a combination of temporal, topological, and content properties into
account.

Also, concerning the mentioned content, our efforts are currently limited to textual data, e.g., text
extracted from social media posts or news articles. Data of other modes, such as images or videos,
are not analyzed. Even though analyzing such content types requires different methods, such as
those from the computer vision discipline, our holistic media analysis framework would greatly
benefit from such multi-model data analysis. In this regard, many possible research questions
could be approached.

7.2 .2 Potential extensions

As mentioned in the previous section, current methodological limitations also come with oppor-
tunities for future research efforts. A few additional extensions can be outlined next to the already
mentioned potential extensions. First, one might adapt the temporal and network-based model
to study data of non-media domains as well, e.g., law or business. In this thesis, we demonstrated
the model’s applicability in various media-related contexts. Even though we argue that its core
concepts can be applied to other domains as well, this still needs to be proven. Furthermore, the
data analyzed in this thesis was primarily collected from social media, Twitter in particular, and
online news sources. This selection leaves many media data sources untouched, such as other
social media platforms or even offline media sources. A comparison of analysis results for different
platforms or even between online and offline media presents only one possible future extension
of our work. Also, in this work, we blended the worlds of network and time series analysis, e.g.,
by studying trends in Chapter 4. We expect a treasure trove full of additional potential extensions
lying at the intersection of these two research disciplines.

Apart from the mentioned methodological and data-focused extensions, the technical contribu-
tions of this workmight also be extended. Startingwith the conducted benchmark of the temporal
network data analysis systems, given that only simple queries were tested by now, the systemsmight
also be compared based on more complex queries. For these types of queries, an efficient imple-
mentation is crucial. Therefore, varying implementations of the same query might be tested as
well. Nevertheless, the insights gained from the current benchmark can already be used to build a
general-purpose temporal network data analysis system. The found data indexing and partitioning
strategies can be leveraged for that. By providing built-in network analytics capabilities and aiming

197



7 Conclusion

for a good developer experience, academic or commercial usersmight find such a systemhelpful for
their network science projects. Similarly, the built EPINetz platform canbe extended. For example,
integrating the capabilities of the TrendTracker application into the existing EPINetz platform
would provide additional exploration tools and trend information to the user – in Section 6.4, we
already examine respective capabilities. Similarly, features for the self-service analysis of individual
online conversations might be valuable extensions. Also, the realized analysis platformmight be
adjusted to work for other application domains. In a business environment, it could, for example,
be used to analyze operational data from a temporal, network-based perspective.

Clearly, we only touched the surface of possible applications. Our developed approaches provide a
solid foundation formore temporal, network-based analytics projects to come, and the road ahead
is full of opportunities.
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A Benchmark Queries

In the following, the queries used for the benchmarking discussed in Section 6.3 are provided.
Various temporal network data management and analysis systems are compared in the respective
benchmark. Accordingly, the following queries can be used to derive temporal, network-based
properties from analyzed data. Given that not all tested systems “understand” the same query
language, multiple versions of the queries are provided: based on SQL in Section A.1, based on a
combination of SQLandCypher in SectionA.2, and solely based onCypher in SectionA.3.

A.1 SQL Queries

Listing A.1: Temporal degree

SELECT te.timestamp::date AS day, COUNT(*)

FROM temporal_edge AS te

WHERE te.type = given edge type

AND te.source_node = given source node

AND te.timestamp BETWEEN given start timestamp AND given end timestamp

GROUP BY day

ORDER BY day ASC

Listing A.2: Top-10 neighbors

SELECT te.target_node, COUNT(*)

FROM temporal_edge AS te

WHERE te.type = given edge type

AND te.source_node = given source node

AND te.timestamp BETWEEN given start timestamp and given end timestamp

GROUP BY te.target_node

ORDER BY COUNT(*) DESC

LIMIT 10
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Listing A.3: 3-hop neighborhood

SELECT DISTINCT ON (te3.target_node) te3.target_node

FROM temporal_edge AS te1, temporal_edge AS te2, temporal_edge AS te3

WHERE te1.type = given edge type 1

AND te2.type = given edge type 2

AND te3.type = given edge type 3

AND te1.source_node = given source node

AND te1.target_node = te2.source_node

AND te2.target_node = te3.source_node

AND te1.dt BETWEEN given start timestamp AND given end timestamp

AND te2.dt BETWEEN given start timestamp AND given end timestamp

AND te3.dt BETWEEN given start timestamp AND given end timestamp

A.2 SQL/Cypher Queries

Listing A.4: Temporal degree

SELECT *

FROM cypher(graph, $$

MATCH (n1 {__id__: given source node})-[r: given edge type]->(n2)

WHERE check_between(r.timestamp, given start timestamp, given end timestamp)

RETURN dt_trunc('day', r.timestamp), COUNT(*)

$$) AS (day agtype, count agtype)

Listing A.5: Top-10 neighbors

SELECT *

FROM cypher(graph, $$

MATCH (n1 {__id__: given source node})-[r: given edge type]->(n2)

WHERE check_between(r.timestamp, given start timestamp, given end timestamp)

RETURN n2, COUNT(*)

ORDER BY COUNT(*) DESC

LIMIT 10

$$) AS (target_node agtype, count agtype)

Listing A.6: 3-hop neighborhood

SELECT *

FROM cypher(graph, $$
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A.3 Cypher Queries

MATCH (n1 {__id__: given source node})

-[r1: given edge type 1]->(n2)

-[r2: given edge type 2]->(n3)

-[r3: given edge type 3]->(n4)

WHERE check_between(r1.timestamp, given start timestamp, given end

timestamp)

AND check_between(r2.timestamp, given start timestamp, given end

timestamp)

AND check_between(r3.timestamp, given start timestamp, given end

timestamp)

RETURN DISTINCT n4

$$) AS (target_node agtype)

A.3 Cypher Queries

Listing A.7: Temporal degree

MATCH (n1)-[r]->(n2)

WHERE type(r) = given edge type

AND n1.id = given source node

AND r.dt >= given start timestamp AND r.dt <= given end timestamp

RETURN datetime.truncate('day', r.timestamp), COUNT(*)

Listing A.8: Top-10 neighbors

MATCH (n1)-[r]->(n2)

WHERE type(r) = given edge type

AND n1.id = given source node

AND r.dt >= given start timestamp AND r.dt <= given end timestamp

RETURN n2, COUNT(*)

ORDER BY COUNT(*) DESC

LIMIT 10

Listing A.9: 3-hop neighborhood

MATCH (n1)-[r1]->(n2)-[r2]->(n3)-[r3]->(n4)

WHERE type(r1) = given edge type 1

AND type(r2) = given edge type 2

AND type(r3) = given edge type 3

AND n1.id = given source node
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A Benchmark Queries

AND r1.timestamp >= given start timestamp AND r1.timestamp <= given end

timestamp

AND r2.timestamp >= given start timestamp AND r2.timestamp <= given end

timestamp

AND r3.timestamp >= given start timestamp AND r3.timestamp <= given end

timestamp

RETURN DISTINCT n4
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B Benchmark Results

The following table shows for each benchmark run the respective tested system, dataset scale, and
used indices, along with the retrieved performance results. For example, the data shown in the first
rowmeans that the Apache AGE system was tested with the scale 0.1 benchmark dataset for the
“3-hop neighborhood” query (see Listing A.6) with a GIN index used on the “properties” column.
This setup reached a median performance of 6.4 TPS with a MAD of 3.41.

Table B.1: Complete list of benchmarking results. TPS values are rounded to two decimals.

System Scale Benchmark query Indices TPS
(median)

TPS
(MAD)

Apache AGE 0.1 3-hop neighborhood GIN index (properties) 6.4 3.41

Apache AGE 0.1 3-hop neighborhood GIN index (properties) & index
(target)

6.86 3.86

Apache AGE 0.1 3-hop neighborhood baseline 6.85 3.33

Apache AGE 0.1 3-hop neighborhood index (dt) 4.75 1.19

Apache AGE 0.1 3-hop neighborhood index (dt) & index (target) 5.34 1.94

Apache AGE 0.1 3-hop neighborhood index (source) 86.54 9.8

Apache AGE 0.1 3-hop neighborhood index (source) & index (target) 83.63 8.63

Apache AGE 0.1 3-hop neighborhood index (source,dt) 86.86 7.26

Apache AGE 0.1 3-hop neighborhood index (source,dt)& index (target) 83.32 7.53

Apache AGE 0.1 Temporal degree GIN index (properties) 13.87 1.75

Apache AGE 0.1 Temporal degree GIN index (properties) & index
(target)

13.44 1.99

Apache AGE 0.1 Temporal degree baseline 14.07 2.03

Apache AGE 0.1 Temporal degree index (dt) 13.96 2.1

Apache AGE 0.1 Temporal degree index (dt) & index (target) 13.92 2.18

Apache AGE 0.1 Temporal degree index (source) 114.18 4.38

Apache AGE 0.1 Temporal degree index (source) & index (target) 115.76 3.03

Apache AGE 0.1 Temporal degree index (source,dt) 114.47 4.32
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Apache AGE 0.1 Temporal degree index (source,dt)& index (target) 113.82 3.12

Apache AGE 0.1 Top-10 neighbors GIN index (properties) 14.58 1.96

Apache AGE 0.1 Top-10 neighbors GIN index (properties) & index
(target)

14.32 2.15

Apache AGE 0.1 Top-10 neighbors baseline 12.94 2.35

Apache AGE 0.1 Top-10 neighbors index (dt) 14.58 1.68

Apache AGE 0.1 Top-10 neighbors index (dt) & index (target) 13.93 1.61

Apache AGE 0.1 Top-10 neighbors index (source) 113.54 4.31

Apache AGE 0.1 Top-10 neighbors index (source) & index (target) 114.32 4.13

Apache AGE 0.1 Top-10 neighbors index (source,dt) 113.35 4.36

Apache AGE 0.1 Top-10 neighbors index (source,dt)& index (target) 110.55 4.52

Apache AGE 1 3-hop neighborhood GIN index (properties) 0.46 0.17

Apache AGE 1 3-hop neighborhood GIN index (properties) & index
(target)

0.49 0.22

Apache AGE 1 3-hop neighborhood index (dt) 0.45 0.13

Apache AGE 1 3-hop neighborhood index (dt) & index (target) 0.49 0.17

Apache AGE 1 3-hop neighborhood index (source) 21.8 10.25

Apache AGE 1 3-hop neighborhood index (source) & index (target) 5.34 5.32

Apache AGE 1 3-hop neighborhood index (source,dt) 22.32 2.76

Apache AGE 1 3-hop neighborhood index (source,dt)& index (target) 14.81 10.32

Apache AGE 1 Temporal degree GIN index (properties) 1.28 0.2

Apache AGE 1 Temporal degree GIN index (properties) & index
(target)

1.39 0.17

Apache AGE 1 Temporal degree index (dt) 1.29 0.25

Apache AGE 1 Temporal degree index (dt) & index (target) 1.32 0.19

Apache AGE 1 Temporal degree index (source) 32.88 3.46

Apache AGE 1 Temporal degree index (source) & index (target) 34.88 2.16

Apache AGE 1 Temporal degree index (source,dt) 33.17 2.9

Apache AGE 1 Temporal degree index (source,dt)& index (target) 34.68 1.61

Apache AGE 1 Top-10 neighbors GIN index (properties) 1.45 0.14

Apache AGE 1 Top-10 neighbors GIN index (properties) & index
(target)

1.44 0.15

Apache AGE 1 Top-10 neighbors index (dt) 1.47 0.13

Apache AGE 1 Top-10 neighbors index (dt) & index (target) 1.44 0.15

Apache AGE 1 Top-10 neighbors index (source) 33.5 2.96

Apache AGE 1 Top-10 neighbors index (source) & index (target) 33.8 2.87
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Apache AGE 1 Top-10 neighbors index (source,dt) 32.85 3.21

Apache AGE 1 Top-10 neighbors index (source,dt)& index (target) 33.5 2.94

Apache AGE 10 3-hop neighborhood GIN index (properties) 0.04 0.02

Apache AGE 10 3-hop neighborhood GIN index (properties) & index
(target)

0.04 0.03

Apache AGE 10 3-hop neighborhood index (dt) 0.04 0.03

Apache AGE 10 3-hop neighborhood index (dt) & index (target) 0.04 0.02

Apache AGE 10 3-hop neighborhood index (source) 0.1 0.09

Apache AGE 10 3-hop neighborhood index (source) & index (target) 0.18 0.17

Apache AGE 10 3-hop neighborhood index (source,dt) 0.14 0.13

Apache AGE 10 3-hop neighborhood index (source,dt)& index (target) 0.18 0.18

Apache AGE 10 Temporal degree GIN index (properties) 0.15 0.05

Apache AGE 10 Temporal degree GIN index (properties) & index
(target)

0.15 0.05

Apache AGE 10 Temporal degree index (dt) 0.15 0.04

Apache AGE 10 Temporal degree index (dt) & index (target) 0.18 0.02

Apache AGE 10 Temporal degree index (source) 5.54 0.44

Apache AGE 10 Temporal degree index (source) & index (target) 5.6 0.27

Apache AGE 10 Temporal degree index (source,dt) 5.61 0.62

Apache AGE 10 Temporal degree index (source,dt)& index (target) 5.5 0.17

Apache AGE 10 Top-10 neighbors GIN index (properties) 0.18 0.02

Apache AGE 10 Top-10 neighbors GIN index (properties) & index
(target)

0.19 0.01

Apache AGE 10 Top-10 neighbors index (dt) 0.16 0.04

Apache AGE 10 Top-10 neighbors index (dt) & index (target) 0.18 0.03

Apache AGE 10 Top-10 neighbors index (source) 5.12 0.25

Apache AGE 10 Top-10 neighbors index (source) & index (target) 4.97 0.23

Apache AGE 10 Top-10 neighbors index (source,dt) 5.12 0.24

Apache AGE 10 Top-10 neighbors index (source,dt)& index (target) 5.08 0.33

Native PostgreSQL 0.1 3-hop neighborhood baseline 81.89 7.57

Native PostgreSQL 0.1 3-hop neighborhood index (dt) 137.26 71.05

Native PostgreSQL 0.1 3-hop neighborhood index (dt) & index (target) 174.4 27.03

Native PostgreSQL 0.1 3-hop neighborhood index (label) 145.65 29.01

Native PostgreSQL 0.1 3-hop neighborhood index (label) & index (target) 120.08 21.94

Native PostgreSQL 0.1 3-hop neighborhood index (source) 210.22 3.71

Native PostgreSQL 0.1 3-hop neighborhood index (source) & index (target) 200.04 4.62
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Native PostgreSQL 0.1 3-hop neighborhood index (source,label,dt) 202.94 3.27

Native PostgreSQL 0.1 3-hop neighborhood index (source,label,dt) & index
(target)

192.99 4.5

Native PostgreSQL 0.1 3-hop neighborhood partial index (source,dt) 187.14 3.12

Native PostgreSQL 0.1 3-hop neighborhood partial index (source,dt) & index
(target)

176.2 2.9

Native PostgreSQL 0.1 Temporal degree baseline 85.32 4.84

Native PostgreSQL 0.1 Temporal degree index (dt) 181.35 43.25

Native PostgreSQL 0.1 Temporal degree index (dt) & index (target) 168.59 52.6

Native PostgreSQL 0.1 Temporal degree index (label) 181.16 6.34

Native PostgreSQL 0.1 Temporal degree index (label) & index (target) 178.56 4.71

Native PostgreSQL 0.1 Temporal degree index (source) 230.92 3.38

Native PostgreSQL 0.1 Temporal degree index (source) & index (target) 227.45 3.46

Native PostgreSQL 0.1 Temporal degree index (source,label,dt) 224.82 3.46

Native PostgreSQL 0.1 Temporal degree index (source,label,dt) & index
(target)

221.61 3.39

Native PostgreSQL 0.1 Temporal degree partial index (source,dt) 199.52 2.83

Native PostgreSQL 0.1 Temporal degree partial index (source,dt) & index
(target)

194.23 2.66

Native PostgreSQL 0.1 Top-10 neighbors baseline 84.08 4.01

Native PostgreSQL 0.1 Top-10 neighbors index (dt) 180.6 28.84

Native PostgreSQL 0.1 Top-10 neighbors index (dt) & index (target) 148.8 52.63

Native PostgreSQL 0.1 Top-10 neighbors index (label) 168.93 6.58

Native PostgreSQL 0.1 Top-10 neighbors index (label) & index (target) 166.06 6.43

Native PostgreSQL 0.1 Top-10 neighbors index (source) 212.13 2.38

Native PostgreSQL 0.1 Top-10 neighbors index (source) & index (target) 208.07 2.43

Native PostgreSQL 0.1 Top-10 neighbors index (source,label,dt) 204.73 3.1

Native PostgreSQL 0.1 Top-10 neighbors index (source,label,dt) & index
(target)

204.65 2.18

Native PostgreSQL 0.1 Top-10 neighbors partial index (source,dt) 185.01 2.45

Native PostgreSQL 0.1 Top-10 neighbors partial index (source,dt) & index
(target)

181.8 2.53

Native PostgreSQL 1 3-hop neighborhood index (dt) 40.03 25.34

Native PostgreSQL 1 3-hop neighborhood index (dt) & index (target) 46.31 34.31

Native PostgreSQL 1 3-hop neighborhood index (label) 37.5 17.1

Native PostgreSQL 1 3-hop neighborhood index (label) & index (target) 38.69 18.24

Native PostgreSQL 1 3-hop neighborhood index (source) 146.88 61.36
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Native PostgreSQL 1 3-hop neighborhood index (source) & index (target) 131.25 66.65

Native PostgreSQL 1 3-hop neighborhood index (source,label,dt) 190.77 15.84

Native PostgreSQL 1 3-hop neighborhood index (source,label,dt) & index
(target)

187.58 7.6

Native PostgreSQL 1 3-hop neighborhood partial index (source,dt) 177.24 12.15

Native PostgreSQL 1 3-hop neighborhood partial index (source,dt) & index
(target)

169.38 9.4

Native PostgreSQL 1 Temporal degree index (dt) 51.55 13.23

Native PostgreSQL 1 Temporal degree index (dt) & index (target) 53.91 15.07

Native PostgreSQL 1 Temporal degree index (label) 63.04 4.74

Native PostgreSQL 1 Temporal degree index (label) & index (target) 63.63 5.01

Native PostgreSQL 1 Temporal degree index (source) 223.31 4.97

Native PostgreSQL 1 Temporal degree index (source) & index (target) 219.97 4.28

Native PostgreSQL 1 Temporal degree index (source,label,dt) 221.21 3.06

Native PostgreSQL 1 Temporal degree index (source,label,dt) & index
(target)

217.49 2.92

Native PostgreSQL 1 Temporal degree partial index (source,dt) 194.04 3.58

Native PostgreSQL 1 Temporal degree partial index (source,dt) & index
(target)

192.49 2.5

Native PostgreSQL 1 Top-10 neighbors index (dt) 53.12 11.79

Native PostgreSQL 1 Top-10 neighbors index (dt) & index (target) 54.23 13.4

Native PostgreSQL 1 Top-10 neighbors index (label) 60.98 4.94

Native PostgreSQL 1 Top-10 neighbors index (label) & index (target) 62.32 3.71

Native PostgreSQL 1 Top-10 neighbors index (source) 207.9 3.83

Native PostgreSQL 1 Top-10 neighbors index (source) & index (target) 205.36 3.08

Native PostgreSQL 1 Top-10 neighbors index (source,label,dt) 203.17 2.74

Native PostgreSQL 1 Top-10 neighbors index (source,label,dt) & index
(target)

199.76 2.65

Native PostgreSQL 1 Top-10 neighbors partial index (source,dt) 180.47 2.26

Native PostgreSQL 1 Top-10 neighbors partial index (source,dt) & index
(target)

178.25 2.57

Native PostgreSQL 10 3-hop neighborhood index (dt) 9.5 9.01

Native PostgreSQL 10 3-hop neighborhood index (dt) & index (target) 4.36 4.3

Native PostgreSQL 10 3-hop neighborhood index (label) 5.6 4.37

Native PostgreSQL 10 3-hop neighborhood index (label) & index (target) 6.29 4.78

Native PostgreSQL 10 3-hop neighborhood index (source) 32.66 32.65

Native PostgreSQL 10 3-hop neighborhood index (source) & index (target) 16.21 16.2
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Native PostgreSQL 10 3-hop neighborhood index (source,label,dt) 34.1 34.03

Native PostgreSQL 10 3-hop neighborhood index (source,label,dt) & index
(target)

71.53 71.48

Native PostgreSQL 10 3-hop neighborhood partial index (source,dt) 20.89 20.89

Native PostgreSQL 10 3-hop neighborhood partial index (source,dt) & index
(target)

62.09 62.08

Native PostgreSQL 10 Temporal degree index (dt) 14.83 8.99

Native PostgreSQL 10 Temporal degree index (dt) & index (target) 19.96 12.3

Native PostgreSQL 10 Temporal degree index (label) 26.9 3.08

Native PostgreSQL 10 Temporal degree index (label) & index (target) 24.17 5.54

Native PostgreSQL 10 Temporal degree index (source) 200.72 6.6

Native PostgreSQL 10 Temporal degree index (source) & index (target) 190.75 6.28

Native PostgreSQL 10 Temporal degree index (source,label,dt) 199.72 2.7

Native PostgreSQL 10 Temporal degree index (source,label,dt) & index
(target)

200.04 8.71

Native PostgreSQL 10 Temporal degree partial index (source,dt) 191.74 3.03

Native PostgreSQL 10 Temporal degree partial index (source,dt) & index
(target)

189.65 3.16

Native PostgreSQL 10 Top-10 neighbors index (dt) 11.24 5.99

Native PostgreSQL 10 Top-10 neighbors index (dt) & index (target) 12.6 6.82

Native PostgreSQL 10 Top-10 neighbors index (label) 23.19 3.88

Native PostgreSQL 10 Top-10 neighbors index (label) & index (target) 28.27 1.96

Native PostgreSQL 10 Top-10 neighbors index (source) 191.5 8.22

Native PostgreSQL 10 Top-10 neighbors index (source) & index (target) 183.28 6.68

Native PostgreSQL 10 Top-10 neighbors index (source,label,dt) 182.78 2.37

Native PostgreSQL 10 Top-10 neighbors index (source,label,dt) & index
(target)

183.22 3.43

Native PostgreSQL 10 Top-10 neighbors partial index (source,dt) 173.84 2.76

Native PostgreSQL 10 Top-10 neighbors partial index (source,dt) & index
(target)

174.23 2.72

Neo4j 0.1 3-hop neighborhood baseline 333.33 83.33

Neo4j 0.1 3-hop neighborhood index (node:id) 333.33 133.33

Neo4j 0.1 3-hop neighborhood index (node:id),(rel:dt) 333.33 108.33

Neo4j 0.1 3-hop neighborhood index (rel:dt) 333.33 83.33

Neo4j 0.1 Temporal degree baseline 333.33 0.0

Neo4j 0.1 Temporal degree index (node:id) 500.0 0.0

Neo4j 0.1 Temporal degree index (node:id),(rel:dt) 333.33 0.0
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Neo4j 0.1 Temporal degree index (rel:dt) 333.33 0.0

Neo4j 0.1 Top-10 neighbors baseline 333.33 0.0

Neo4j 0.1 Top-10 neighbors index (node:id) 333.33 125.0

Neo4j 0.1 Top-10 neighbors index (node:id),(rel:dt) 333.33 0.0

Neo4j 0.1 Top-10 neighbors index (rel:dt) 333.33 0.0

Neo4j 1 3-hop neighborhood baseline 66.96 33.04

Neo4j 1 3-hop neighborhood index (node:id) 100.0 11.11

Neo4j 1 3-hop neighborhood index (node:id),(rel:dt) 71.43 39.68

Neo4j 1 3-hop neighborhood index (rel:dt) 100.0 11.11

Neo4j 1 Temporal degree baseline 100.0 0.0

Neo4j 1 Temporal degree index (node:id) 111.11 0.0

Neo4j 1 Temporal degree index (node:id),(rel:dt) 111.11 0.0

Neo4j 1 Temporal degree index (rel:dt) 111.11 0.0

Neo4j 1 Top-10 neighbors baseline 100.0 0.0

Neo4j 1 Top-10 neighbors index (node:id) 111.11 0.0

Neo4j 1 Top-10 neighbors index (node:id),(rel:dt) 111.11 5.56

Neo4j 1 Top-10 neighbors index (rel:dt) 100.0 9.09

Neo4j 10 3-hop neighborhood baseline 16.26 2.97

Neo4j 10 3-hop neighborhood index (node:id) 16.81 3.29

Neo4j 10 3-hop neighborhood index (node:id),(rel:dt) 16.81 3.47

Neo4j 10 3-hop neighborhood index (rel:dt) 15.28 3.96

Neo4j 10 Temporal degree baseline 18.87 0.35

Neo4j 10 Temporal degree index (node:id) 18.87 0.36

Neo4j 10 Temporal degree index (node:id),(rel:dt) 18.87 0.36

Neo4j 10 Temporal degree index (rel:dt) 18.87 0.36

Neo4j 10 Top-10 neighbors baseline 18.52 0.35

Neo4j 10 Top-10 neighbors index (node:id) 18.87 0.36

Neo4j 10 Top-10 neighbors index (node:id),(rel:dt) 18.87 0.36

Neo4j 10 Top-10 neighbors index (rel:dt) 18.87 0.36

TimescaleDB 0.1 3-hop neighborhood baseline 45.87 15.16

TimescaleDB 0.1 3-hop neighborhood index (label,dt) 75.82 1.98

TimescaleDB 0.1 3-hop neighborhood index (label,dt) & index (target) 71.56 2.53

TimescaleDB 0.1 3-hop neighborhood index (source,dt) 75.05 1.19

TimescaleDB 0.1 3-hop neighborhood index (source,dt)& index (target) 74.04 0.95

TimescaleDB 0.1 3-hop neighborhood index (source,label,dt) 75.71 1.38
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B Benchmark Results

TimescaleDB 0.1 3-hop neighborhood index (source,label,dt) & index
(target)

73.9 0.96

TimescaleDB 0.1 Temporal degree baseline 63.14 8.19

TimescaleDB 0.1 Temporal degree index (label,dt) 80.85 1.85

TimescaleDB 0.1 Temporal degree index (label,dt) & index (target) 78.69 2.0

TimescaleDB 0.1 Temporal degree index (source,dt) 82.03 0.79

TimescaleDB 0.1 Temporal degree index (source,dt)& index (target) 81.18 0.8

TimescaleDB 0.1 Temporal degree index (source,label,dt) 81.68 0.86

TimescaleDB 0.1 Temporal degree index (source,label,dt) & index
(target)

80.31 0.92

TimescaleDB 0.1 Top-10 neighbors baseline 63.24 6.69

TimescaleDB 0.1 Top-10 neighbors index (label,dt) 79.81 2.13

TimescaleDB 0.1 Top-10 neighbors index (label,dt) & index (target) 79.37 1.9

TimescaleDB 0.1 Top-10 neighbors index (source,dt) 80.4 1.82

TimescaleDB 0.1 Top-10 neighbors index (source,dt)& index (target) 79.93 1.14

TimescaleDB 0.1 Top-10 neighbors index (source,label,dt) 82.17 0.74

TimescaleDB 0.1 Top-10 neighbors index (source,label,dt) & index
(target)

80.99 0.73

TimescaleDB 1 3-hop neighborhood index (label,dt) 51.16 20.02

TimescaleDB 1 3-hop neighborhood index (label,dt) & index (target) 50.01 17.26

TimescaleDB 1 3-hop neighborhood index (source,dt) 74.41 3.47

TimescaleDB 1 3-hop neighborhood index (source,dt)& index (target) 71.63 3.04

TimescaleDB 1 3-hop neighborhood index (source,label,dt) 72.07 3.81

TimescaleDB 1 3-hop neighborhood index (source,label,dt) & index
(target)

72.04 1.91

TimescaleDB 1 Temporal degree index (label,dt) 66.1 9.21

TimescaleDB 1 Temporal degree index (label,dt) & index (target) 64.36 9.22

TimescaleDB 1 Temporal degree index (source,dt) 81.26 0.74

TimescaleDB 1 Temporal degree index (source,dt)& index (target) 79.21 0.78

TimescaleDB 1 Temporal degree index (source,label,dt) 80.25 0.88

TimescaleDB 1 Temporal degree index (source,label,dt) & index
(target)

78.87 0.63

TimescaleDB 1 Top-10 neighbors index (label,dt) 63.76 9.7

TimescaleDB 1 Top-10 neighbors index (label,dt) & index (target) 64.2 9.44

TimescaleDB 1 Top-10 neighbors index (source,dt) 82.05 0.73

TimescaleDB 1 Top-10 neighbors index (source,dt)& index (target) 80.69 0.6

TimescaleDB 1 Top-10 neighbors index (source,label,dt) 80.85 0.6
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TimescaleDB 1 Top-10 neighbors index (source,label,dt) & index
(target)

79.96 0.65

TimescaleDB 10 3-hop neighborhood index (label,dt) 17.99 16.41

TimescaleDB 10 3-hop neighborhood index (label,dt) & index (target) 14.44 14.3

TimescaleDB 10 3-hop neighborhood index (source,dt) 37.14 31.54

TimescaleDB 10 3-hop neighborhood index (source,dt)& index (target) 16.5 16.49

TimescaleDB 10 3-hop neighborhood index (source,label,dt) 48.93 25.76

TimescaleDB 10 3-hop neighborhood index (source,label,dt) & index
(target)

26.76 26.75

TimescaleDB 10 Temporal degree index (label,dt) 34.67 9.71

TimescaleDB 10 Temporal degree index (label,dt) & index (target) 33.19 8.21

TimescaleDB 10 Temporal degree index (source,dt) 68.52 2.25

TimescaleDB 10 Temporal degree index (source,dt)& index (target) 76.03 2.93

TimescaleDB 10 Temporal degree index (source,label,dt) 77.81 2.61

TimescaleDB 10 Temporal degree index (source,label,dt) & index
(target)

74.44 3.3

TimescaleDB 10 Top-10 neighbors index (label,dt) 32.35 9.2

TimescaleDB 10 Top-10 neighbors index (label,dt) & index (target) 32.9 7.82

TimescaleDB 10 Top-10 neighbors index (source,dt) 69.41 2.74

TimescaleDB 10 Top-10 neighbors index (source,dt)& index (target) 65.46 3.04

TimescaleDB 10 Top-10 neighbors index (source,label,dt) 76.72 3.24

TimescaleDB 10 Top-10 neighbors index (source,label,dt) & index
(target)

76.03 2.96
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Acronyms

BST Binary Search Tree

CODY COnversation DYnamics

DBMS Database Management System

ER Erdős and Rényi

GDBMS Graph Database Management System

GIN Generalized Inverted Index

HIN Heterogeneous Information Network

JVM Java Virtual Machine

LPG Labeled Property Graph

MAD Median Absolute Deviation

NLP Natural Language Processing

RDBMS Relational Database Management System

THIN Temporal Heterogeneous Information Network

TPS Transactions Per Second

TSDB Time Series Database
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Glossary

𝔸 Adjacency matrix

𝐺̃ Aggregated multi-slice network

𝜋 Attribute mapping

𝐺𝛲 Augmented reduced graph

⟨𝑘⟩ Average degree

𝐶, 𝑐 Centrality

ℂ Community

𝜆 Completion rate

𝑘 Degree

𝑑 Document

𝐷 Documents

𝑙 Edge

𝕃 Edge list

w Edge weight

𝑊 Edge weights

𝐿 Edges

𝐸 Entities

𝑒 Entity

𝜖 Entity extraction

𝐺𝛦𝑅 Erdős and Rényi graph

𝑓 Frequency

𝐺 Graph
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Glossary

ℎ Hashtag

𝑢ℎ Hashtag usage

𝑘𝑖𝑛 In-degree

𝕜𝑖𝑛 In-strength

𝑚 Index of layer in multilayer network

𝒢̈ Interlink networks

𝒢̇ Intralink networks

ℳ Layers in multilayer network

𝑟 Link type

𝜓 Link type mapping

𝑅 Link types

𝑃 Meta path

𝑟𝛲 Meta path composite relation

𝑝 Meta path instance

ℙ Meta path instances

𝒬 Modularity

𝑀 Multilayer network

𝑆𝐺 Network schema

𝑜 Node occurrence

𝑛𝐿 Number of edges

𝑛ℳ Number of layers in multilayer network

𝑛𝑉 Number of nodes

𝑎 Object type

𝜑 Object type mapping

𝐴 Object types

𝑘𝑜𝑢𝑡 Out-degree

𝕜𝑜𝑢𝑡 Out-strength

𝛼 Overlap coefficient

𝑃̈ Partition
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Glossary

P, p Probability

𝜒2𝜈 Reduced chi-square

𝛽 Resolution parameter

Γ Saturation time constant

𝑆̄ Shortest path

𝛿 Shortest path length

𝕜 Strength

𝐺𝑠 Supernetwork

𝕋 Time domain

Δ𝑡 Time interval

𝑇 Time period

𝑤 Time window

𝑡 Timestamp

𝜉 Trend detection

𝜏 Trend score

𝑣 Vertex

𝑉 Vertices

𝒲 Walk

𝑛𝒲 Walk length

𝔸𝑊 Weighted adjacency matrix

𝐺𝑊 Weighted graph

𝕨 Wiener index
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