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1

Introduction

Data analysis plays a crucial role in biological research, enabling scientists to extract

meaningful insights from complex datasets. Understanding the dynamic behavior and

structural characteristics of biological systems is essential for uncovering underlyingmech-

anisms, identifying biomarkers, and developing new treatments.

In recent years, advancements in data acquisition technologies have revolutionized the

way biological research is conducted. Moreover, the increasing availability of sophisti-

cated measurement technologies, such as high-throughput sequencing, imaging tech-

niques, and wearable sensors, has led to the generation of large-scale datasets capturing

the dynamic behavior and structural characteristics of biological systems. This wealth of

data presents both opportunities and challenges for researchers seeking to extract mean-

ingful information and derive actionable insights.

Throughout the collaborative doctoral program titled ”Tissue analytics for stem cell-based

diagnostics”, a significant volume of data was generated across multiple projects. The

diverse projects undertaken as part of this doctoral program involved the collection and

characterization of various types of biological data, including molecular profiles, temporal

data, imaging data and clinical information. These datasets were crucial for investigating

the potential of different types of cells in the respective projects.

Initially, manual analysis was conducted, involving meticulous examination and interpre-

tation of the data by domain experts. This process allowed for detailed scrutiny of the in-
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formation, identification of patterns, and extraction of meaningful insights. However, due

to the large volume of data generated, manual analysis alone proved to be error-prone,

time-consuming and resource-intensive.

To address these challenges, programmatically-driven analysis techniqueswere employed.

This involved the development and application of computational algorithms, statistical

models, and machine learning methods to process and analyze the vast datasets. By

leveraging the power of automation and advanced data analysis tools, the research team

was able to extract valuable information from the data more efficiently and effectively.

Furthermore, functional and morphological data analysis techniques are vital for under-

standing biological processes at different scales, from the molecular level to complex or-

ganisms. Functional data analysis encompasses a range of statistical and computational

techniques designed to analyze data that vary over time. It involves the exploration, mod-

eling, and interpretation of complex patterns embedded within dynamic biological pro-

cesses. For instance, functional data analysis can be applied to study gene expression

profiles over time, brain activity captured by functional magnetic resonance imaging, or

like in the case of this thesis the filtration rate of glomeruli in the kidneys. By capturing the

temporal dependencies within the data, functional data analysis provides valuable insights

into the underlying mechanisms governing physiological processes, disease progression,

and their responses to various stimuli or interventions.

Morphological data analysis, on the other hand, focuses on the study of shape, structure,

and form within biological systems. It involves techniques for quantifying and character-

izing various morphological features, ranging from cellular and tissue structures to whole

organ shapes. Advances in imaging technologies, such as confocal microscopy, elec-

tron microscopy, and medical imaging modalities, have facilitated the acquisition of high-

resolution morphological data. Through morphological data analysis, researchers can

investigate cellular processes, embryonic development, disease pathology, and structural

abnormalities, providing valuable insights into the functioning and organization of biolog-

ical systems. The focus of morphological data analysis for this work is quantification of
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colony forming unit (CFU).

Both functional and morphological data analysis techniques enable researchers to iden-

tify biomarkers, detect abnormalities, classify samples, predict outcomes, and guide ther-

apeutic interventions. Furthermore, it requires interdisciplinary collaborations, bringing

together expertise from fields such as biology, statistics, computer science, and engineer-

ing.

The analysis of functional and morphological data poses various challenges. These in-

clude dealing with high dimensionality, handling noisy or missing data, accounting for

dependencies within the data, ensuring data quality and reliability, and developing ap-

propriate statistical models and computational algorithms. Overcoming these challenges

requires the development of innovativemethodologies, statistical frameworks, and compu-

tational tools tailored to the specific characteristics of the data and the biological questions

being addressed.

1.1 Aim of the study

The aim of this thesis, is to contribute to the doctoral program by facilitating researchers to

analyze data by introducing novel tools, techniques, and quality management approaches.

More specifically the aim is to address data analysis challenges associated with:

• Transcutaneous measurement of glomerular filtration rate, which allows for the an-

imal to stay conscious during the non-intrusive procedure and avoids the time con-

suming serial blood and urine sample collection previously required. The experi-

menter is assisted by calculating the elimination kinetics curve after the data is col-

lected.

• Counting and characterization of colony forming units (CFUs), in order to replace the

manual counting with automatic petri dish extraction and detection of each individual
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CFU as well as the possibility for correction, plotting and managing of the results.

Quality management in form of tracking over time in respect to the growth of each

individual CFU in order to quantify the quality of the experiment.

The aim is to advance the understanding of biological systems by automating the evalu-

ation of large amounts of data to a greater extent, to make evaluation possible in the first

place or at least to make it more reliable compared to manual evaluation and therefore

extracting meaningful insights from complex datasets.

1.2 Structure of the Thesis

This thesis will be structured in two main chapters for each aim it tries to accomplish.

These are then subdivided in background, related work, material & methods, results and

discussion. Chapter 2 called ”Functional data analysis” deals with one-dimensional data

over time, more specifically glomeruli filtration rate data. While chapter 3 named ”Mor-

phological data analysis” targets the analysis of color images of petri dishes containing

colony forming units. The thesis concludes with a summary of all projects and possible

future developments.
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2

Functional data analysis

This chapter will concentrate on the problem of kidney function measurements and part

of it has already been published 1. The chapter background illustrates the principles and

the importance of the subject. Related works including methods and programs used to

achieve similar goals are laid out in the next chapter. Afterwards follows the Material

and Methods chapter, where the experiment setup, the data, the devices as well as the

methodology and the resulting program called GFRmeasure are described in detail. A

comparison between existing programs used by other facilities and GFRmeasure is pre-

sented and discussed in the last two chapters.

2.1 Background

Chronic kidney failure, most commonly known as chronic kidney disease (CKD), is an in-

creasing worldwide public health issue 2. Prevalence is estimated to be >10% worldwide

3. Complications linked with early-stage CKD include increased all-cause and cardiovas-

cular mortality, kidney-disease progression, acute kidney injury, cognitive decline, ane-

mia, mineral and bone disorders and fractures 4. This is problematic since symptoms of

CKD are unspecific and remain often undetected until a late stage. Early kidney dysfunc-

tion diagnosis and treatment would increase the odds of preventing the need of dialysis

and preserving the remaining healthy nephrons as well as reducing cardiovascular-related
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outcomes. Unfortunately, awareness of the disorder, however, remains low in many com-

munities and among many physicians and patients 5.

Worldwide, diabetes mellitus and hypertension are the most common cause of chronic

kidney disease 6, but in some regions, other causes, such as herbal and environmental

toxins, are more common 7. Since 2016, CKD has risen rapidly to be ranked 11th among

the leading causes of death globally 6. The economic impact of CKD is global and tangible

and the prevention of CKD progression into later stages, and therefore delaying or avoid-

ing the requirement for dialysis and transplants, can save patients and health systems a

substantial fortune 8. This would also mean a significantly higher level of quality of life for

the patients.

Most patients with CKD have comorbidities that are susceptible to a methodical approach,

which helps with prevention and early management 9. Most common preventingmeasures

for kidney damage for patient with comorbidities include monitoring and lowering blood

pressure 10 and heathier lifestyle changes such as smoking remission 11, physical activity

12 and blood sugar control 13 predominantly in diabetic CKD patients. The strongest ev-

idence of treatment benefit for patients with proteinuric diabetic renal disease with early

CKD are the use of angiotensin-converting enzyme inhibitors 14 or angiotensin II-receptor

blockers 15.

Early diagnosis requires a highly sensitive kidney function test that is accepted by both

physicians and patients alike. There is no golden standard method available up to today

allowing for a simple and precise measurement of renal functions. One of the reasons

behind it is due the high complexity and flexibility of the kidneys allowing for extreme

damage compensation as far as an entire missing kidney. Most of the used qualitative

and quantitative kidney function assessments are based on estimated glomerular filtration

rate (e-GFR).
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Figure 2.1: Glomerulus (red), Bow-

man’s capsule (blue) and proximal tubule

(green). ”Bowman’s capsule and glomeru-

lus” by Mikael Häggström in the Public Do-

main, CC0.

The glomerular filtration rate (GFR) is the amount

of fluid filtered from all the glomeruli into their Bow-

man’s capsule per unit time 16. The glomerulus is

the smallest filtration unit of the kidney and the area

surrounding it is called the Bowman’s capsule as de-

picted in Fig. 2.1 fromMikael Häggström 1. Together

with the tubule it makes up the nephron, which is the

functional unit of the kidney. There around a million

nephron per kidney in a healthy human adult 17.

This study aims to compare existing methods and

approaches to be able to establish a tool that is able

to give an automatic and more accurate result than

previous attempts. Additionally the proposed meth-

ods integrated into the tool are able to help detecting

potential mistakes that might have emerged during the experiment. Existing and new

estimation formula are combined to adapt to the various absorption and excretion distri-

butions. Furthermore, half clearance times in the various states of kidney function are

determined and adapted to the according distribution.

1https://en.wikipedia.org/wiki/Glomerulus_(kidney)#/media/File:Bowman's_capsule_and_
glomerulus.svg”Bowman’s capsule and glomerulus” in the Public Domain, CC0.
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2.2 Related Work

Age

(years)

Average e-GFR

(ml/min/1.73 m2)

20–29 116

30–39 107

50–59 99

60–69 93

70+ 85

Table 2.1: The average e-GFR in

humans based on age according to

the US National Kidney Foundation

guidelines 18.

In 2002, the Kidney Disease Outcomes Quality Initia-

tive (K/DOQI) of the US National Kidney Foundation de-

fines CKD as the presence of functional or structural kid-

ney damage and/or an adjusted glomerular filtration rate2

lower than 60 ml/min/1.73m2 for at least three months 19.

This definition was then revised and updated in the 2012

Clinical Practical Guideline for the Evaluation and Man-

agement of Chronic Kidney Disease by the Kidney Dis-

ease: Improving Global Outcomes (KDIGO) to include al-

buminuria in the classification, which was shown to have

an important effect on outcomes 18. These provided guidelines are widely used by health-

care professionals for the diagnosis and classification of CKD. In young adults, a typical

GFR is approximately 120 ml/min/1.73m2, and this value naturally declines as individuals

age (see Table 2.1).

Category
Deviation from

supposed value
Description

G1 ≥90% Normal or healthy kidney function

G2 60% - 89% Kidney damage with mild loss of kidney function

G3a 45% - 59% Mild to moderate loss of kidney function

G3b 30% - 44% Moderate to severe loss of kidney function

G4 15% - 39% Severe loss of kidney function

G5 <15% Kidney failure

Table 2.2: Chronic Kidney Disease (CKD) classification according to the US National Kidney Foundation

guidelines 18.

Based on factors such as age, sex, and body size, each individual has a supposed e-GFR

value. Deviations from this value can be subdivided into six stages of CKD. The first stage

is considered normal or healthy while each subsequent stage indicates different levels of

kidney dysfunction and associated risks ending with kidney failure. Table 2.2 shows the

CKD classification from the US National Kidney Foundation.

2Units adjusted for body size with 1.73 m2 being the estimated body surface area of an adult with a mass

of 63 kg and a height of 1.7 m.
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2.2.1 GFR Marker

These days most physicians use endogenous markers such as creatinine, urea, elec-

trolytes, cystatin C or proteinuria found in either the plasma or urine. This is because

these methods are easy and cheap to perform. However, they have limitations and their

estimations are often restricted to a specific population type. The most common estima-

tion formulas and their disadvantages are described briefly: The Cockcroft-Gault formula

20 tries to estimate creatinine clearance rate without the need of 24 hours urine samples

but due to the disregard of muscle mass often overestimates 21. The Modification of Diet in

Renal Disease (MDRD) formula 22 also uses creatinine clearance and accounts for muscle

mass by adjusting for body surface area but is less accurate in early CKD and underes-

timates e-GFR 23. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)

formula 24 outperforms the MDRD formula in accuracy and bias using creatinine clear-

ance. The Schwartz formula measures e-GFR in children using creatinine clearance 25

and theMayo Quadratic formula 26 tries to better measure e-GFR in patients with restricted

kidney function by applying creatinine clearance but often fails to do so 27.

The most common GFR measure marker used in clinical practice is by far serum creati-

nine. Creatinine, first used in 1926 by Poul Brandt Rehberg to measure GFR, is a natural

breakdown product of creatine phosphate from muscles making its concentration already

steady in the blood but highly dependent of the muscle mass of the patient 28. Additionally

creatinine is not only filtered by the glomerulus but also actively secreted by the peritubu-

lar capillaries. These are the main reasons many of the formulas presented above over-

or underestimates actual GFR and should be used with caution in patients with very low

muscle mass such as cachectic patients and patients with cirrhosis. Other agents have

also been tested such as the inhibitor of cysteine protease protein secreted by most cells

in the body called cystatin C 29. Alternatively to endogenous markers would be the use of

exogenous tracers that have specific properties and are not found otherwise in the body.

To better understand the principles behind the most accurate kidney function assess-

ments, it must be clear how substances are normally distributed in the body 17. After

9



a substance enters the systemic circulation, it penetrates the vascular wall into the inter-

stitial fluid through perfusion and is then distributed to the body’s tissues. Depending on

the tissue mass, the permeability of cell membranes, the regional pH and the tissue vas-

cularization the distribution of a substance into a tissue can occur at various rates. For

tissues like muscle and fat where the perfusion is poorly, the distribution is very slow, this is

especially the case when the tissue has a high affinity for the substance. After distribution

equilibrium, when entry and exit rates are identical, the plasma concentration reflects the

substance concentrations in tissue and in extracellular fluids. Furthermore, the substance

is being metabolized and excreted and since excretion and metabolism occur simultane-

ously with distribution, the process is highly dynamic and complex. Volume of distribution,

total body clearance and half-life are usually used to describe these processes.

By choosing the right exogenous marker, the process of distribution and excretion can

be simplified drastically 30. This would be the case if the chosen marker is non-toxic and

water-soluble and would only undergo glomerular filtration. This happens when a tracer

does not enter the intracellular space, nor binds to protein or fat, nor is metabolized or

excreted by other organs, nor is absorbed or secreted by the peritubular capillaries. The

closer the marker can be designed to have these properties the more accurate the con-

centration in urinary clearance would reflect the concentration in the plasma directly and

therefore the easier would be to calculate the GFR. Since so far there is no perfect marker

with all the desired properties, there will always be some trade-offs with precision.

There is an important relationship between volume of distribution, clearance and elimi-

nation half-life. The volume of distribution (VD) gives information of the distribution of a

substance in a living body. A lower VD value represents a higher concentration of the sub-

stance in plasma, meaning that the substance can propagate to where it was intended to

be. VD is calculated by dividing the concentration of the substance in plasma (mg/L) from

the amount of the substance in the body (mg). Total body clearance (ClTOT) reflects the

elimination of the substance from a body through the liver, lungs and kidney. Since most

advanced markers are only eliminated by the kidney it can be simplified as the eliminating

rate through urine (mg/hr) divided by the substance remaining in plasma (mg/L). Depend-
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ing if a substance is being eliminated by zero-order or first-order elimination kinetics, the

decay will be either linear or exponential, respectively. Only a small portion of substances

such as Cisplatin, Fluoxetin, Omeprazol, Phenytoin, Salicylates and Ethanol fall under the

zero-order (also known as the Michaelis-Menten) elimination kinetics, because for these

substances there is a limit on how many metabolic enzymes are available. In this case the

system is saturable. Half-life (t1/2) determines the time needed for a reactant concentra-

tion to reach half of its initial concentration and is calculated differently depending on the

order of the elimination kinetics. While t1/2 for zero-order kinetic is dependent by the initial

concentration C0 and the elimination rate constant of a substance k: t1/2 =
C0

2k
, it is not the

case for the first-order kinetics. Here it is expressed as: t1/2 =
ln(2)
k

making t1/2 constant
31.

The administration of exogenous markers is usually executed either as a single bolus

injection or a constant intravenous infusion 32,33. Starting from the 1930s inulin was show-

ing signs of an optimal exogenous marker 34. Having to have a constant infusion, multiple

urine samples over the 24 hours and not being water-soluble at room temperatures, made

the use of inulin a complicated endeavor. Sinistrin solved the problem with the water sol-

ubility at room temperature, but because of the similar structure to inulin, both markers

can only be detected in plasma and urine samples with the help of complicated, time-

consuming enzymatic detection methods. At around the same time radioisotopes, such

as 51Cr-EDTA, 99mTc-DTPA, 131I-Diatrizoat and 131I-Iothalamat, were used because of

their easy tracking ability 21. Not only were these radioisotopes radioactive but also dif-

ficult, expensive and time consuming to store, to handle, to recycle and to analyze. An

alternative widely used in the 90s was an ionic tracer called Iohexol 21.

A different approach is to use the combination of fructosamine and a fluorophore, which

allows to be detected and analyzed in plasma and urine with fluorescence spectroscopy.

This type of marker is easily handled and costs only a fraction of what a radioisotopes

costs. The groundwork for Fluorescein isothiocyanate (FITC) was laid by Rutili et al. in

1976 with the usage of FITC-dextran 35. A few years later Inulin was combined with FITC

to become fluorescent without losing the properties of a good tracer for GFR 36. With-

out the room temperature water solubility property of inulin it was just a matter of time
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for FITC-sinistrin to replace it. FITC labeled sinistrin was produced by Pill et al. 37 which

retained the room temperature water solubility property and did not show signs of ac-

cumulation in organs. However, it is imperative to acknowledge the substantial intrinsic

auto-fluorescence emitted by living tissue, particularly when employing markers with emis-

sion wavelengths shorter than 600 nm, such as FITC-sinistrin, as it can potentially intro-

duce measurement inaccuracies 38. Furthermore, penetration depth increases with longer

wavelengths. Consequently, it is advantageous to employ markers with higher emission

wavelengths, specifically within the near-infrared (NIR) range (650–900 nm). In this re-

gard, in the same research facility, Huang et al. developed and produced several other

zwitterionic NIR fluorescent agent 39,40, two of which were used extensively in experiments

and represent a substantial portion of the data used in this work. The differences between

the two markers, FITC–HPγCD and ABZWCY–HPβCD, are mainly in admission and ab-

sorption wavelength and their composition. The former being in the blue light spectrum is

a polyfructosane, while the latter in the infrared spectrum is a cyclodextrin. Huang et al.

also published an overview of several fluorescent markers and compared them 41.

2.2.2 Compartment Model

A further simplification of the determination of renal function using fluorescence-labeled

markers is the transcutaneous real-time determination of the excretion kinetics of the

markers. This was demonstrated by Rabito et al. 2005 with the transcutaneous determina-

tion of GFR with carbosityril-124-DTPA-EU with a laser-induced fluorescence measuring

system 42. Aminiaturized low-cost device, developed by the group led by Prof. Gretz 43, is

capable of reading the markers concentrations, while the animal is moving freely 44. With

such a device, the manual extractions of urine and plasma samples become obsolete. Not

only it avoids a procedure that otherwise would inflict significant stress upon the animal

but furthermore, the subsequent time-consuming laboratory analyses of these samples

are avoided.

In the case of just a few samples, a one compartment model, sometimes also referred to
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as mono-exponential, can be used to fit the data. Only the exponential regression curve

after reaching the equilibrium is taken into account for calculating the integral under the

curve, thus simplifying the integral. The determination of the second function is omitted

because it represents only a very small part of the surface area and the resulting error in

the GFR calculation is considered to be acceptable 45. In principle, it can determine the

GFR relatively accurately with only two plasma samples, if the first sample was taken after

reaching the equilibrium between plasma and extracellular fluid. However, it is extremely

vulnerable to measurement errors 46.

Despite collective efforts to streamline classical GFR determination methods, such as

the infusion or bolus techniques, which seek to mitigate the dependency on urine and

plasma sampling 47–49, this aspect remains indispensable. On the other hand, when a

marker is administrated in a bolus fashion and the concentration is measured frequently,

the one-compartment model is often not suitable for the early time course of the marker

concentration in plasma because of a multi-phasic decline of the concentration-time curve.

This is due to the delay caused by perfusion or diffusion rate limited processes during

the distribution phase of the substance to reach equilibrium in the tissue. Spontaneous

equilibrium of a substance between plasma and tissues is rarely observed.

By introducing additional compartments for the substance to distribute itself from the cen-

tral compartment, usually blood, to one or several peripheral compartments the model

becomes more accurate but also more complex. These are the multi-compartment mod-

els, which include the more slowly equilibrating peripheral compartments caused by tis-

sues with a surrounding protective membrane or with poor perfusion. Three-compartment

model have, additionally to the blood and interstitial fluid compartment of the two-compartment

model, an extra cellular compartment.

As an example for a bi-exponential decline after an intravenous bolus dose, a two-compartment

model is shown as:

C = A · e−α·t +B · e−β·t

where C is the total concentration curve, which is composed as the sum of two lines,
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when data are plotted on semi-logarithmic scale. These two lines can be interpreted as

the equation for each compartment and have an initial concentration represented by A

and B respectively. The specific slope of each line are defined by α and β respectively as

shown in Fig. 2.2. Their corresponding half-lives are estimated as t1/2α =
ln(2)
α

and t1/2β =

ln(2)
β
.

Figure 2.2: Example of a two-compartment model (blue). Central compartment (orange) and the peripheral

compartment (green) with their respective initial concentrations A and B as well as their respective slopes

−α and −β.

14



2.3 Material & Methods

This chapter describes methods used for analyzing the data generated by the transcuta-

neous approach to assess renal function in conscious, freely moving animals, utilizing a

near infrared device in conjunction with the fluorescent renal marker. A comprehensive

exposition of the the data itself is also provided, explaining the possible differences and

nuances.

2.3.1 Device, marker and animal preparation

The innovativemethodology used to acquire the data employs a compact electronic device

to non-invasively monitor the excretion of the exogenous fluorescent renal marker, through

the animal’s skin 1. The animal is given anesthesia on a warming plate to counteract

the potential hypothermic effects of it. Once the animal reaches an appropriate level of

anesthesia a patch of fur is removed from its back to accommodate the adhesive patch

where the device will be attached to.

Figure 2.3: A picture showing the animal

ready for the injection 44. On its shaved

back the visible device and battery are at-

tached to its back with double-sided ad-

hesive and protected by a mesh to further

stabilize the setting. The battery is situated

on the left with its turquoise color while

to its right lies the device with the silver

usb+port showing through the mesh.

The device comprises of an optical component fea-

turing two light-emitting diodes (LEDs) and a pho-

todiode as well as a rechargeable battery acquired

from MediBeacon (MediBeacon GmbH, Mannheim,

Germany). To prevent noise from ambient light

falsely perceived by the photodiode as infrared light

coming from the fluorescent marker, a black plastic

foil is put on the device. This device and the bat-

tery are effortlessly affixed to the shaved dorsal area

of the animals via a simple double-sided adhesive

patch and protected by a meshed band as shown in

Fig. 2.3. Importantly, the animals remain awake and
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unrestrained throughout the recording period, which spans approximately 2 hours permit-

ting sequential measurements within the same animal.

The fluorescent agent ABZWCY-HPβCD, produced by CYANAGEN (CYANAGEN S.r.l,

Bologna, Italy), is combined with the Deltajonin physiologic solution (DeltaSelect GmbH,

Rimbach, Germany) and injected through the tail vein. Following intravenous administra-

tion of the renal marker, the LEDs stimulate it, and the ensuing fluorescence is captured

by the photodiode. The data generated are recorded and stored in the device’s inter-

nal memory, subsequently facilitating the creation of an elimination kinetics curve for the

marker.

To minimize the duration of anesthesia, the ABZWCY-HPβCD dose and the set-up of the

device with the battery onto the patch is prepared beforehand. Once the animal has been

anesthetized, the complete procedure of affixing the device to the animal and adminis-

tering ABZWCY-HPβCD typically takes approximately five minutes. After the animal has

been left alone for the duration of the readings the device is removed and connected to a

computer through a USB cable and the results are saved as a .csv file.
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2.3.2 Data

The data saved is a csv file containing three columns. The first value is the initial time

the experiment started, the second is the time passed since the beginning in seconds and

the last value represents the concentration readings ranging from zero to 2047. Each row

is equivalent to approximately a second and each csv file contains as many rows as the

duration of the device being attached to the battery. When plotted, it forms a kinetic curve

of the animal as shown in Fig. 2.4.

Figure 2.4: Example of one of the intensity readings of an animal. The baseline (blue) is before then injection

phase (green) which is followed by the clearance phase (yellow). Artifacts (red) can occur when the animal

moves or tries to remove the device from its back.

The curve can be subdivided in the different phases: baseline (blue), injection (green)

and clearance (orange). Sometimes if the animal moves or tries to dismount the device,

artifacts as seen in the plot in red can occur. These are most prevalent towards the end of

the curve when the device is being dismounted from the animal. The curve shown in Fig.

2.4 is one example of the kinetic curve shapes, which will be explored more in detail later

on. A total of 14854 csv files were found in the repositories of the research department.
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2.3.3 GFRmeasure

For a preliminary analysis and labeling of GFR curves, visualization and interactive anno-

tationmethods have been developed and released as open-source software tool GFRmea-

sure on GitHub 3.

The curve plotted by the software offers an initial assessment of data quality. It is impera-

tive to closely scrutinize the shape of the curve, with particular attention to the injection’s

phase peak, signifying the end of the administration of the fluorescence marker.

A good selection of injection and cutoff points is crucial in order to evaluate the half-life

correctly. For humans it is a trivial task to immediately recognize patterns and see if a

curve is usable, when the exact moment of the injection happened, as well as to see

when to cut the data to avoid noise or artifacts. After loading the data, the user is asked

to manually click on the time point that could resemble the injection point as shown in Fig.

2.5a. Similarly, the user is asked to select a cutoff point where the experiment is finish, as

seen in Fig. 2.5b.

(a) (b)

Figure 2.5: Manual selection of the injection point (a) and the cutoff point (b). The point of injection can be

clearly seen as the moment of increase from the baseline. The cutoff point is typically chosen to be the last

point before movement artifacts occur.

GFRmeasure allows evaluating the half-life of the fluorescent agent ABZWCY-HPβCD but

3https://github.com/AngeloTorelli/GFRmeasure. Last visited: 15.09.2023.
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can also be used with any generated high-frequency kinetic curve. The excretion kinetics

ofABZWCY-HPβCD is characterized by fitting the device-measured signal to one- to three-

compartment models. A 3-compartment model is selected by default but can be changed

by using the ”No of compartments” tab. A reasonable initial guess for curve fitting is already

provided as shown in the field of ”3. Initial guesses (optional)” in Fig. 2.6. However, if the

model does not fit well and residual error is high, these parameters can be adapted to the

specific curve.

This software with its graphical user interface (GUI), shown in Fig. 2.6, was programmed

entirely with MATLAB and tested for Windows and Linux and is freely accessible, intuitive,

and designed to be user-friendly, even for those new to its operation. It was also used to

create a ground truth dataset for comparison of some of the features.

Figure 2.6: The GFRmeasure GUI after loading and fitted a kinetic curve with compartment model. It shows

all the results such as the half-life time in minutes on the bottom left and all the other parameters and the

residual error of the chosen compartment model can be found in the black box to the right. The results are

saved as images and a csv files in the user-selected folder.

Due to the complexity and the sheer amount of data, there is a need for automatic methods

helping to differentiate the different phases, fit the kinetic curve with one of the compart-

ment models, calculate the half-life, categorize the data in the different health state of the

kidney and filter through the data.
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2.3.4 GFRmeasure+

Managing and enabling research on extensive repositories of GFR measurements, ac-

quired and processed over the course of several years in the context of individual research

projects, requires a robust approach for automating the analysis and categorization of di-

verse kinetic curves. Such an approach needs to address the challenges of maintaining a

coherent and organized record of which curve corresponded to what became increasingly

daunting.

As the need for a comprehensive, collective analysis of this substantial dataset emerged,

the research group recognized the pressing necessity for a robust solution. This is where

GFRmeasure+ (see Fig. 2.7) came into play, designed to enhance GFRmeasure even

further.

Figure 2.7: The GFRmeasure+ GUI after loading and fitted a kinetic curve with compartment model. It

shows all the results in the legend on the top right of the plot. On the left side there are options to load and

save the data including results as well as manually correcting the results. Additionally it is also possible to

filter through the data and see the results as a table.
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It embarked on the task of addressing the intricate challenges inherently associated with

high-frequency data sampling, as well as adapting to the ever-evolving landscape of new

measurement devices. The ultimate objective was to develop a sophisticated software

package capable of automating the analysis and categorization of the diverse kinetic

curves. This software aimed to bring order to the extensive dataset, enabling swift and

accurate identification of individual curves and facilitating comprehensive research en-

deavors that rely on the collective analysis of this wealth of data. In essence, GFRmea-

sure+ was developed to streamline the process of harnessing valuable insights from the

substantial body of kinetic data amassed over the years.

Peak detection

Figure 2.8: Depiction of the peak point de-

tection process. The local maxima (trian-

gles) are identified on a median filter with

an order equal to five percent of the curve’s

length (blue line). The plot is divided by

half the time of the curve (black line) and

the average intensity value of the entire

curve (red line). Local maxima are dis-

carded if they are below the average in-

tensity (red triangle) or after half the time

of the curve (yellow triangles). From the

remaining possibilities (blue triangles) the

first occurring (green triangle) is chosen.

The initial challenge entails the segmentation of the

curve into the aforementioned phases, namely, the

baseline, injection, and clearance phases. To ac-

complish this, it is imperative to precisely identify the

peak after the injection phase, which serves as a

crucial reference point in this process. This peak lo-

calization is achieved through a procedure involving

median filtering of the intensity curve. Specifically,

a median filter with an order equal to five percent of

the curve’s length is applied. Subsequently, all local

maxima present in the filtered curve are identified as

shown in Fig. 2.8. However, not all local maxima are

deemed relevant. Those local maxima falling below

the average value of the entire curve and those occurring after the halfway point in terms

of time are discarded, ensuring that only significant peaks are considered. Among the

remaining candidate peaks, the first occurring is selected. This approach forms the cor-

nerstone of the curve subdivision process.
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Injection point detection, baseline calculation and duplicate identification

After successfully identifying the peak in the kinetic curve, the subsequent challenge re-

volved around pinpointing the precise moment of injection. Among the three critical points,

injection, peak, and cutoff, the determination of the injection point held paramount impor-

tance as it significantly influences the curve fitting process. Achieving accuracy in identi-

fying the injection point was crucial for optimizing curve fitting outcomes. Therefore, this

step necessitated the utmost precision and reliability among the findings.

To discern the exact moment of injection, the following approach was developed. To en-

sure that only relevant points were evaluated, only points occurring prior the identified peak

point were considered as potential candidates for the injection point, which is exemplified

in Fig. 2.9a.

(a) (b) (c)

Figure 2.9: The automatic process of selecting the precise injection point. Plot (a) of the kinetic curve (blue)

and its gradient (orange) with the injection point (green dot), baseline (green line), mean intensity value

(black line), peak point (dark blue dot) and cutoff point (yellow dot). Initiating the search from the zenith and

directing it leftwards, only data points boasting intensity values below the mean intensity of the entire curve

fall within the purview, as depicted by the expansive dotted circle in (a). The respective points along the

gradient of the curve are being analyses in such that first the local maxima is found in the small dotted circle

in (a) or in the magnified version (c). From this summit, the journey descends to the left, in tandem with the

gradual diminishing of intensity values along the curve (b). Any deviation from these criteria instantly halts

the search, ensuring the precision and reliability of the injection point determination.

Here the peak point is marked as a blue dot. The two dotted circles in Fig. 2.9a are

regions which are magnified to better illustrate the method. Moreover, the injection point

had to exhibit intensity values lower than the average intensity of the entire kinetic curve
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marked as the dash line in Fig. 2.9b. Additionally the one-dimensional numerical gradient

of the curve is taken into account as represented by the orange curve in Fig. 2.9a and in

its zoomed in version Fig. 2.9c. The gradient can be thought of as a collection of vectors

pointing in the direction of increasing values of the intensity function.

The exact moment of injection was identified when the following criteria converge: The

algorithm detects the first local maximum in the gradient prior the peak which in the ex-

ample shown in Fig. 2.9c happens to be at five minutes and twenty seconds or x = 5.33.

This gradient peak signifies a notable surge in intensity which most likely is the injection

phase. The samples just before this gradient peak is of particular interest because it is

where the injection point will be. These identified samples are further validated by en-

suring that, moving leftward from this peak point, the intensity values also continues to

diminish. This reduction in intensity, in conjunction with the gradient’s behavior, corrobo-

rated the precise injection moment making the injection point at five minutes and sixteen

seconds or x = 5.26667. Continuing to follow the gradient leftwards it can be seen that the

value keeps on diminishing as seen in point at five minutes and thirteen seconds or better

x = 5.21667 but at the same time it increase in the intensity curve stopping the algorithm.

Based on the injection point the baseline is calculated as the median intensity value from

the start of the curve up to the injection point. This part is classified as the baseline phase.

The baseline also serves as a reference for further calculations. One of which was used

in conjunction with the injection and peak point to identify duplicate curves. This process

involved sifting through all available curves to pinpoint instances where the timestamp

of these points align. In cases where these criteria match, a further comparison of the

intensity values between the injection and peak points with the curves that were marked as

potential duplicates was conducted, ensuring higher accuracy in the identification process.
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Cutoff point detection

The wrong choice of the cutoff point can significantly impact the accuracy of curve fitting,

with the quality of the data playing a pivotal role in this regard. Specifically, if opting for

the cutoff point on artifacts that frequently manifests toward the end as a result of the de-

vice’s removal process rather than the genuine intensity curve, the impact on curve fitting

is drastic and the accuracy of the half-life time determination diminishes. On the other

hand when done right the precision persist even when the curve undergoes significant

truncation. For this reason the last ten percent of the data is not taken into account. From

the remaining points the last intensity value above the baseline and below the intensity

value on the peak point is selected.

Health classification

The shape is tied to the health of the animal. A few examples are presented in Fig. 2.10.

(a) (b)

(c) (d)

Figure 2.10: Examples for different type of kinetic curves grouped according to the health of the animal.

From very healthy (a) where the half-life clearance is around ten minutes and does not surpass the twenty

minute mark, to all the way to kidney failure (d) where clearance does not occur but instead the marker gets

distributed in the body. A healthy kidney (b) manages to have a half-life clearance between twenty and forty

minutes while the sick animal (c) already needs more than forty minutes to do so.

If the kidneys of the animal are healthy (Fig. 2.10a) it has a rapid clearance. On the other

hand the more compromised the kidney is, the slower the clearance and therefore the
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slope of the kinetic curve flattens as seen in Fig. 2.10d. While it is feasible to compute the

half-life times from these kinetic curves, a crucial limitation arises when attempting to di-

rectly compare the results obtained from different experiments. This limitation stems from

the absence of information regarding the exact quantity of the injected marker. Nonethe-

less it is of high value to be able to categorize the curve into its clearance potential.

Compared to the human CKD classification mentioned in Table 2.2 there is no clear ref-

erence for the different types of animal. For the purpose of convenience the curves are

categorized according to their half-life times as follows: very healthy with a half-life up to

twenty minutes, healthy betwenn twenty and forty, sick between forty and one hour and

kidney failure above the hour mark.
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ABCD quality scoring system

Optimal curves exhibit peak intensity values within the range of approximately 400 to 2000.

Within this range in mind, a quality scoring system has been established to categorize

these curves effectively.

(a) (b)

(c) (d)

Figure 2.11: One example for each classification according to the proposed ABCD quality scoring system

of kinetic curves. Black lines and arrows indicate the threshold and range in which the maximum intensity

should lie while the orange arrows show the spread between the baseline and peak.

Curves with peak intensities below 1600, and a considerable spread between the baseline

and the peak during the injection phase, exceeding 300 units, are grouped under class

A (Fig. 2.11a). Conversely, those curves falling below this intensity range are classified

as part of class B (Fig. 2.11b). Moving up the intensity scale, curves that reach values
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surpassing 1600 but remain below the 2000 mark are designated as class C (Fig. 2.11c).

Values exceeding 2000 present a challenge for accurate reading, primarily because the

device’s photodiode saturates at this level. Consequently, such curves are classified as

class D (Fig. 2.11d).

Furthermore, for curves falling within higher range of the 2000 mark, the consideration

of quenching effects becomes essential. In cases where the device only register val-

ues around 400, distinguishing the signal from background noise becomes challenging.

Therefore curves that fall below 400, are too short or have no peak are deemed unsuitable

and necessitate exclusion. An example for too short can be seen in Fig. 2.12a as well as

an example of a mix of below 400 and no peak is displayed in Fig. 2.12b.

(a) (b)

Figure 2.12: Examples of discarded curves. A short curve with values surpassing the baseline and reaching

zero (a). A noisy curve with no peak with genuine intensity values below the 400 mark (b).

The initial selection of an appropriate marker dosage tailored to the specific animal under

investigation represents the foundational stride toward attaining robust and reliable curves.
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Ground truth data

A ground truth dataset of hundred randomly chosen samples was created with the help of

GFRmeasure. The default setting were only used when the fitting was correct, otherwise

the parameters were adjusted to obtain better results. All the parameters as well as the

injection, peak and cutoff points were saved. Additionally the half-life time was calculated

and saved. This was done to be able to compare the automatic features of GFRmeasure+.
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2.4 Results

This chapter lays out the finding of the available data with GFRmeasure+. Additionally it

shows the comparison of GFRmeasure with the results of the manually labeled dataset

with two other software solutions. The first being the go-to pharmacokinetic solution ex-

isting for the past twenty years called WinNonlinTM from Certara (Certara Inc., Princeton,

New Jersey, USA). The second program in question is the accompanying software to the

reading device from Medibeacon. In order to ensure the correct utilization, the data was

analyzed with WinNonLin by Prof. Dr. med. David Czock from the department of clini-

cal pharmacology and pharmacoepidemiology at the Heidelberg university hospital. The

results were returned and compared.

2.4.1 Evaluation of GFRmeasure+ automation

Figure 2.13: R-square error comparison

between GFRmeasure+ (x-axis) and the

ground truth dataset (y-axis). In this exam-

ple the plot is zoomed in in the range be-

tween 0.88 and one, with one being a per-

fect fit. Blue line indicates the symmetry

line. Each sample is plotted with a twenty

percent transparency, enabling visibility of

the underlying sample.

As described in the methods section, GFRMeasure+

is able to automatically detect the injection, peak

and cutoff points therewith fully automatically fit the

compartment models. To test this fully automatic

mode, GFRmeasure+ was tested against the ground

truth dataset. Instead of comparing the difference

between the timestamps of the injection and cutoff

points of the ground truth and GFRmeasure+, the R-

square error of the fittings were taken into account in-

stead as shown in Fig. 2.13. While both the injection

and cutoff points do exert a substantial influence on

the fitting process, the comparison of the R-square

error holds even more significance. This is because the R-square error can remain con-

sistent even when the specific points used for the analysis differ. As previously mentioned,

this phenomenon is akin to the earlier example in which the tail end of a curve is preferably
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truncated to mitigate artifacts. Out of the hundred samples, seventy had identical fittings,

the others were influences mostly by the cutoff point, when including too much noise. The

half-life difference between the two deviated by a maximum of 24 seconds, which is very

low considering the typical half-life times between 10 and 90 minutes. This resulted in a

mean difference of 0 and a ±1.96 standard deviation of ±15 seconds as shown in the

Bland-Altman plot in Fig. 2.14.

Figure 2.14: Bland-Altman plot comparing half-life times of the ground truth dataset against GFRmeasure+.

All values in both plots are in minutes. The y-axis shows the difference in half-life times of the compared

solutions for each of the hundred kinetic curve analyzed while the x-axis shows the mean value of the two.

The dotted lines are the±1.96 times the standard deviation.
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2.4.2 Evaluation of available data

Thanks to the automatic abilities of GFRmeasure+, it was able to evaluate all 14854 csv

files found. Only 4815 curves were identified as unique. Comparing the curves with their

duplicates it showed that many curves were shortened at the beginnings or the ends or

both and some times several times at different length of truncation to remove artifacts

manually. This was done to increase the accuracy of the software from Medibeacon,

which was at that time the only solution at the researcher’s disposal. As visualized in Fig.

2.15, another 711 were discarded completely due to:

• having the wrong layout or coding in the csv file, with 429 cases;

• having not the right date and or time formatting, representing a total of 43 files or

• having no peak at all such as the curve shown in Fig. 2.12b, being 239 occurrences.

Figure 2.15: Distribution of the available data. The data is subdivided in doubles (green), uniques (orange)

and discarded (blue). The latter has a subdivision regarding the reason of being discarded: most occurring

with 60% being having a wrong formatted csv file (light blue), followed by curves without peaks at 34% (dark

blue) and files with wrongly formatted date or time with 6% (medium dark blue).
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Thanks to GFRmeasure+’s capability to display filtered curves based on specific criteria,

including ranges of baseline, injection and peak points, half-life time, as well as health cat-

egories, ABCD scoring system, device used, curve creator, and the exclusion of duplicates

or shorter curves, it became straightforward to investigate distinct scenarios.

When examining the diverse health conditions represented by the unique curves, the data

revealed that 2428 curves were classified as ”Very healthy,” 1511 were categorized as

”Healthy,” 657 were denoted as ”Sick,” and only 219 fell into the ”Very sick” category, as

illustrated in Fig. 2.16a.

(a) (b)

Figure 2.16: Distribution of unique curves divided according to their health classification (a) and to the

introduced ABCD scoring system (b). In (a) very healthy curves (blue) are the most common. Second

most common are healthy (orange) followed by sick curves (green) ending with the very sick category (red).

Similar is the distribution of the ABCD scoring system. Class A (blue) is the most represented followed by B

(orange), C (green) and D (red).

This disproportion of very healthy and healthy to the sick and very sick can be hypoth-

esized as follows. In most experiments or trials the test group is compared to a control

group which is in a healthy state. Additionally, the animals in the test group are closely

monitored and subjected to multiple follow-up tests. Furthermore, it may take some time

for the treatment to show its effects. Therefore, healthy cures accumulate and appear

more often than sick ones.

Finally once a sick state is reached it is usually the case that the experiment is brought to
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an end if it proves the statement of the experiment, to avoid further suffering of the animal.

Adifferent categorization of the unique curves is with the introducedABCD scoring system.

Most represented category is A with 2820 curves, followed by B with 1397. The other two

categories are not as strongly represented with only 360 in C and 238 in D as seen in

Fig. 2.16b. Despite the similarity in distribution observed in the pie charts, it is purely

coincidental as shown in Fig. 2.17. Fig. 2.17a shows the distribution in absolute numbers

and Fig. 2.17b shows the distribution in percentage.

(a) (b)

Figure 2.17: Health distribution among the ABCD quality scoring system in absolute numbers (a) and in

percentage (b). The colors are maintained as in Fig. 2.16a with blue, orange, green and red corrisponding

to ”Very healthy”, ”Healthy”, ”Sick” and ”Very sick” respectively.

Whenever a file is saved, the device’s name is automatically incorporated into the file’s

name, unless the user decides to rename it. The identifier of the device is two letters and

six digits separated by a underscore. A total of 134 unique device identifiers were found.

By examining the curves for each device it was noted that two devices were malfunction-

ing. Since these devices are very cheap to produce, it is more convenient to replace it

than to try to fix it, hence the number of devices used.

2.4.3 Comparison with other solutions

For this comparison the fitting curves and the half-life times were compared between the

software solutions. The data sample used with all three packages including WinNonLin
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was small with only eight samples. This was due to the limited time available Prof. Dr.

med. David Czock was able to allot for this project.

First WinNonLin was compared with GFRmeasure and then with the Medibeacon soft-

ware. Comparisons of two methods are often done by the Bland-Altman plots, which are

also known as Tukey mean-difference plot. These plots allow to visually assess the agree-

ment or concordance between two quantitative measurement methods or devices. It was

introduced by British statisticians Douglas G. Altman and J. Martin Bland in 1983 50.

When looking at Fig. 2.18a the mean difference over all half-life times betweenWinNonLin

and GFRmeasure is -5.44 minutes. This not only indicates an overestimation of the half-

life but shows how close the calculations are to WinNonLin. A similar results can be seen

with the comparison with Medibeacon in Fig. 2.18b, only that range tends to be more

towards the positive values like in the case of the mean differences of 6.97 minutes. This

is due the fact that Medibeacon underestimates the times in compare to WinNonLin.

(a) (b)

Figure 2.18: Bland-Altman plot comparing half-life times of WinNonLin against GFRmeasure (a) and against

Medibeacon (b). All values in both plots are in minutes. The y-axis shows the difference in half-life times of

the compared solutions for each kinetic curve analyzed while the x-axis shows the mean value of the two.

The dotted lines are the±1.96 times the standard deviation. GFRmeasure overestimated the half-life times

while Medibeacon underestimates them, as shown by the black line with the mean value on the right side.

Both maintain the zero value between the±1.96 SD interval.
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Figure 2.19: R-square error comparison between

GFRmeasure (x-axis) and Medibeacon (y-axis),

where the value range from zero to one, with one

being a perfect fit. Blue line indicates the sym-

metry line, where the R-square error obtained by

both methods is equal. Each ABCD scoring cat-

egory has its own shape while the health has dif-

ferent colors as depicted by the legend. The la-

beled sample at the bottom has been chosen as

an example shown in Fig. 2.20a.

To further compare Medibeacon with GFRmea-

sure, the R-square values of the fitting models

where compared. Fifty curve were selected at

random with the same distribution as the health

classification as shown in Fig. 2.16a. The

curves were first fitted with the default compart-

ment models of each software and compared

by the R-square error as seen in Fig. 2.19.

GFRmeasure has a mean value of 96.57 and a

median value of 97.94 in contrast to Medibea-

con with mean and median value of 88.46 and

96.20 respectively. The two outliers at the bot-

tom are curves of very sick animals. The labeled sample in Fig. 2.19 has been chosen to

show the difficulties Medibeacon has to adapt to these kind of curves (see Fig. 2.20a).

(a) (b)

Figure 2.20: Comparison of model fitting on a very sick animal. More specifically, curve from the labeled

sample in Fig. 2.19. Outlier from the curves used to compare Medibeacon (a) with GFRmeasure (b).
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2.5 Discussion

The distinction between low-frequency sampling through blood tests and high-frequency

experiments involving infrared devices and fluorescent markers should ideally have min-

imal impact when comparing final outcomes like half-life times. However, substantial dif-

ferences do emerge in terms of data acquisition, challenges, and execution processes. In

this case, most facets involved were enhanced, encompassing the amelioration of animal

well-being, reduction of the execution duration, and the implementation of high-resolution

sampling. Conversely, new challenges surfaced, including the management of vast data

volumes, distortions introduced by artifacts affecting the outcomes, device constraints,

and unanticipated physical phenomena like quenching, among others.

This work offered solutions for the following challenges. It introduced accurate methodolo-

gies for processing data on a large scale and unearthing concealed associations through

careful examination of curve distribution quality specific to a subject, like the identification

of malfunctioning devices. Additionally, it facilitated the identification of issues in experi-

mental setups for new users, whether through self-assessment or under the guidance of

a supervising project overseer, leading the examination based on user profiles.

Another aspect involved analyzing the distribution of health in the newly introduced ABCD

quality scoring system. It stands out that class B curves has the fewest occurrences of

”Very healthy” curves. A postulated argument for this behavior can be the fact that exper-

iments featuring minimal marker concentration can’t reach a peak and therefore often fall

under the B class. The opposite is also true where when excessive marker concentration

is injected the device saturates classifying such curves as class D.

The study involved a comparison of the obtained results with other solutions available in

the market, one of which can be considered the gold standard called WinNonLin. The

sample size used to test the solutions is too small to establish statistical significance.

However, upon closer examination of each individual example, the observed differences

become noteworthy and meaningful. It is worth to highlight a notable distinction in the
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presence of the one outliers in the two Bland-Altman plots. While the presence of this

outlier in GFRmeasure would not affect its classification as ”Very sick” of the kinetic curve,

a different scenario unfolds with Medibeacon. For the kinetic curves, see Fig. 2.20.

This can be observed as the lower data point in Figure 2.18a and the upper data point

in Figure 2.18b. The half-life time calculated by WinNonLin was 64 minutes, whereas

GFRmeasure yields a value of 96 minutes, both leading to the correct classification of the

curve as ”Very sick.” However, Medibeacon significantly underestimates the half-life time,

providing a value of only 30 minutes, resulting in the classification of the curve as ”healthy.”

This discrepancy can be attributed to Medibeacon’s inability to accurately fit the model to

exceptionally abnormal curves. It’s worth noting that although it might not be advisable,

removing this outlier from both Bland-Altman plots results further in favor of GFRmeasure,

leasing to the following outcomes:

(a) (b)

Figure 2.21: Bland-Altman plot comparing half-life times of WinNonLin against GFRmeasure (a) and against

Medibeacon (b) without the outlier. All values in both plots are in minutes. The y-axis shows the difference

in half-life times of the compared solutions for each kinetic curve analyzed while the x-axis shows the mean

value of the two. The dotted lines are the±1.96 times the standard deviation.

Another surprising discovery was the ability to calculate half-life times in curves under

the class D, where the device saturation was reached, allowing for more results than

previously imagined as shown in Fig. 2.22.
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(a) (b)

Figure 2.22: Two examples of successfully fitting a two-compartment model on kinetic curve of the D class.

When comparing established tools, such as WinNonLin, to newer options, certain key

features emerge that underscore the importance of increased automation, especially for

researchers who are new to this field. Table 2.3 enumerates essential features that re-

searchers at the Center for Medical Research in Mannheim, Germany, deemed significant,

and it compares the three tools used based on these particular features.

Features - Programs MediBeacon WinNonLin GFRMeasure+

Automation 7 7 3

Batch processing 7 3 3

Beginner friendly 3 7 3

Classification 7 7 3

Open-Source 7 7 3

Live correction 7 7 3

Robustness 7 3 3

Table 2.3: Comparison of the most relevant features and the performance between the used software solu-

tions. 3 depicts the presents of the feature while 7 represents a lack of it.
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3

Morphological data analysis

The second part of this work focuses on morphological data analysis. Part of it is based

on the methods and results were already published 51. The individual steps taken to reach

those results by means of the proposed approach calledAutoCellSeg as well as additional

methods and experiments are described in detail.

3.1 Background

Figure 3.1: Typical petri dish with several

colony forming units (CFUs). In this case

from the Klebsiella pneumoniae family.

In the laboratory, biologists often perform many tests

under differing conditions based on cell or bacte-

ria culture. Depending upon the type of experiment

being performed and the effects under observation,

these varying conditions typically lead to a huge ac-

cumulation of data. The manual analysis of a large

volume of image data is very inefficient.

The image data produced during microbiological assays is often comprised of cells or

colony forming units (CFUs) as shown in Fig. 3.1. It has therefore been a long-standing

interest in automated colony segmentation and counting techniques by the microbiology

community 52. A variety of cell segmentation and counting methods as well as software
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solutions for this purpose have been proposed ever since.

Counting the cells or CFUs manually is expensive and time consuming but it is still the

status quo. Besides the sheer count of the cells/CFUs, it is desirable in some experiments

to quantify other aspects, for instance, to examine the change in the cell/CFU morphology

and size according to the effects inflicted upon the cells/CFUs under both control and test

conditions. To make a quantitative analysis based on other CFU features is a non-trivial

task, and doing so is more complicated than simply enumerating all the colonies.

It becomes imperative to determine the size and number of CFUs/cells with great accu-

racy whenever the difference in the observed change is only marginal. Additionally the

differences could have been caused not only by the difference between the control and

the test, but instead by the experiment setup leaving users with unsatisfying or skewed

results. This is especially the case with inexperienced users. This is why an automatic,

high-accuracy analysis with a certain degree of quality management is highly desirable.

An algorithm that performs segmentation automatically, differentiating between the colonies

themselves and the unwanted background, need to be able to obtain CFU boundaries.

Using this segmentation, the counting of CFUs can be performed, and, in addition, fea-

tures of interest such as size, shape etc. can be extracted. A typical CFU image analysis

pipeline requires noise removal, image segmentation, feature extraction, feature selection

and object counting/classification. Each algorithmic step has parameters which have to

be appropriately set to obtain the targeted colonies in individual images.

Methods that require abstract a priori knowledge about colony characteristics such as size

in pixels, approximate number count, metrics of shape and other features will restrict its

practical use. This is especially true when analyzing entire data sets where colonies in

individual images may vary greatly from one another in size, morphology and intensity,

requiring the user’s input each time. Instead the parameters should, from a user’s stand-

point, be asked once and be intuitive, such as setting the minimum and maximum size of

colonies by graphically clicking on them in the image. The evaluation throughout entire

datasets should be adaptable to facilitate the process and minimize the user interactions.
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3.2 Related Work

Significant problems hindering a good CFU analysis include high CFU density, imperfec-

tions and impurities in the suspension medium, inherent background acquisition noise,

inconsistent illumination artifacts, luminous reflectance and other visible artifacts on the

container’s boundary, close proximity between CFUs or with container boundaries and low

image resolution. There are many different methods to tackle the complex task of seg-

menting and analyzing CFUs, such as deep learning, fuzzy algorithms, circular Hough-

transform to name a few. The following review of related work focuses on existing com-

prehensive software solutions rather than methodological approaches to individual steps

in the required processing pipeline.

Only some commercial tools, such as UVP ColonyDoc-It™ (Analytik Jena AG, Jena, Ger-

many) 53, STEMvision™ (STEMCELL Technologies Inc., Vancouver, Canada) 54 etc. are

available. Due to the limited market, these commercial solutions are expensive. While

these commercial tools offer a graphical user interface (GUI) to help guide the user, it is

often the case that the underlying algorithm stays undisclosed.

CHiTA 55 and NICE 56 are two examples of open source CFU counting solutions imple-

mented in MATLAB (The MathWorks Inc., Natick, Massachusetts, USA). Although MAT-

LAB is a commercial software, programs based on it are quite popular as MATLAB offers

an immense library of already existing well documented methods that can be deployed

free of charge on all major operating systems (Windows/Mac/Linux) using their run-time

compiler.

CHiTA applies segmentation based on circular Hough-transform and makes it possible

to discard eccentric segments. NICE employs a combination of extended minima and

thresholds, but is not suited to handle CFUs that differ significantly in size and shape as

compared to the ones given in their sample data. Additionally, these solutions are not able

to detect the container boundaries enclosing the CFUs and thus consider the whole image

as the searching area for CFUs. Although additional cropping can improve the outcome,
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many erroneous segments are detected nevertheless. Another MATLAB-based software

57 is based on a combination of an adaptive and a global threshold. This method was

developed to work in conjunction with a special hardware for image acquisition, which

allows for uniform light settings. However, the provided hardware allows to process on

single images only and it is bound to perform worse for data sets acquired other than in

this specialized setting.

Open source tools enable the user to write or adapt programs to their own need. A very

popular choice is OpenCFU 58, which executes quickly and does so on a variety of images

with simple parameter settings. Additionally, results with OpenCFU show very few false

positives. Due to its restrictive CFU selection criteria, however, it is prone to underestimate

the number and the size of colonies, as it searches for only round objects. OpenCFU is

written in C++ using OpenCV and is stand-alone application available for both Linux and

Windows operating systems, with compilation instructions for GNU/Linux only 59.

Another popular open-source software is called CellProfiler 60 that allows users to de-

fine and share custom-made pipelines. One of which was constructed in CellProfiler by

Choundhry et al. called Cell Colony Counting 61. It is used to detect, count and quantify

CFUs. Another commonly used platform with its own GUI is ImageJ 62, which is Java-

based. Cai et al. provided a macro, commonly known as IJM, that works with ImageJ to

analyze CFUs 63. Another macro based on edge detection algorithm called Cell Colony

Edge was developed by Choundhry et al. mentioned earlier in ImageJ to adapt to partic-

ular images 61.

Machine learning-based approaches have become popular in recent years 64. Ilastik 65

is a beginner-friendly framework to classify image pixels into user-defined classes. This

is done with an interactive graphical pixel labeling step which allows the user to select

individual pixels and Ilastik classifies the rest of the image based on that selection. Even

though it is not restricted to a specific algorithm it uses mainly a Random Forest classifier

66. Users can select from 37 predefined features for the classification process. A specific

solution for bacteria colony counting based on convolution neural networks was proposed
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by Ferrari et al. 67. It is able to classify colony conglomerations into different classes

containing at least one and up to six colonies per aggregation. Additionally it uses an

outliers class for rejecting false positives to improve the accuracy of the results. This

solution requires partial retraining on other datasets by creating a ground truth mask for

some of the new data for evaluation and testing. A missing element, however, is that it

does not extract and compare colony features and it does not offer an option for adapting

the parameters for experienced users to improve the results in cases where it is needed.

FastER is another software package that claims to provide a user-friendly, fast and robust

cell segmentation 68. It makes use of maximally stable extremal regions 69 for blob detec-

tion and estimates the likelihood of the detection being correct by applying a support vector

machine (SVM) with a Gaussian kernel. FastER is programmed in C++ and provides a

stand-alone GUI, which is freely available to the public. Unlike some of the aforemen-

tioned software systems, fastER tends to yield a lot of false positives when there is a

colony container visible in the image data. Additionally, it has no option for any parameter

selection, nor for post-processing the obtained results.

Automatic dish extraction is rarely used 70,71, which in these cases was achieved by apply-

ing a contrast-limited adaptive histogram equalization in combination with morphological

filters, often leading to false positives if post-filtering was not employed. Other programs

may offer manual methods such as creating a circle by selecting 3 points along the dish

72 or like in the case of CellProfiler several different pre-defined shapes are available for

cropping most petri dish silhouettes.

To generalize a segmentation program otherwise specific to an experiment or setup is

burdensome, as one must have the will, expertise and time to adapt the existing solution

to various experiment settings. Many software solutions for CFU detection suffer from a

lack of quick and intuitive parameter selection. Moreover, even when a program does offer

a more extensive parameter selection process, it still demands a wider user knowledge

to be able to take advantage of all its capabilities. There is an undeniable need for more

user-friendly software that is appealing to advanced and normal/new users alike.
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Unknown acquisition conditions and object locations can furthermore adversely affect

the results, even with finely-tuned parameters. Therefore, it is desirable that an inter-

active, flexible, intuitive and responsive correction step is integrated in any image analy-

sis pipeline. To locate objects in an image, one could use feedback-based segmentation

mechanisms, with an intuitive and interactive selection of a priori features. It is often help-

ful to have a comparison in cell/CFU count and size without the need of transferring the

results to a different tool. Therefore, one aim of this work was to develop a software so-

lution that contains interactive and easy-to-use feature selection for post-segmentation

editing and analysis to address the mentioned problems.
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3.3 Material & Methods

This chapter presents the datasets used for the characterization and evaluation of the

proposed method and software solution AutoCellSeg 51. It also lists the programs used

for comparison with AutoCellSeg for each dataset. Afterwards it explains AutoCellSeg in

more details with the various approaches used to overcome problems, automatize the

program and surpass the competition. This is followed by a quality management method

developed to insure a correct execution of an experiment.

3.3.1 Datasets

For this work several datasets were used for an in depth comparison between the software

solutions. In order to show the robustness and applicability of AutoCellSeg, it is reason-

able to try datasets of well-segmented images with different foreground and background.

Moreover, it is necessary to run AutoCellSeg in different operation modes, in order to

demonstrate its full performance.

Dark background

Figure 3.2: A collage made of six out of

the twelve images collected. Two from

theE.coli, two from theKlebsiella pneumo-

niae, one from the Pseudomonas aerugi-

nosa and one from theStaphylococcus au-

reus images were chosen to showcase the

vast spectrum of variability in the images.

Twelve images, acquired with the support of Prof.

Dr. Matthias Mack and Jasmin Baumgartl at the

laboratories of Mannheim University of Applied Sci-

ences, were labeled as ground truth. The images are

comprised of three images each of different bacte-

rial species including E.coli, Klebsiella pneumoniae,

Pseudomonas aeruginosa and Staphylococcus au-

reus, part of which can be seen as a collage image

(see Fig. 3.2). For all cases the background is darker

than the colony itself. The images have a resolution
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of 4032 pixels in width and 3024 pixels in height and were labeled in Adobe Photoshop

(Adobe Inc., San Jose, California, USA), by delineating boundaries of colonies. After-

wards, via MATLAB, masks were created by filling out the boundaries and labeling them

as binary. These ground truth images are then used to extract the colony count, and the

size of each individual colony in pixels 73. For this data set AutoCellSeg was compared

against OpenCFU, CellProfiler as well as the combination of the latter with Ilastik in batch

and individual mode.

Inverted background

Figure 3.3: Acollagemade of four quarters

out of the nineteen images. The chosen

images are number 3, 6, 12 and 19.

Nineteen high quality images 74, provided by Quentin

Geissmann at the OpenCFU project website make

up the inverted background benchmark. This data

set is based on Staphilococcus aureus colonies on

luria broth agar plates. Each of the nineteen images

have a lighter background than the colony itself. The

images have a resolution of 1538 pixels in width and

1536 pixels in height. Four images were selected to

show some examples of the possible colonies distri-

butions found in this data set, as seen in Fig. 3.3.

This data set was used to compare AutoCellSeg with OpenCFU on the data OpenCFU

was trained for. Unfortunately no ground-truth data was provided alongside the images.

For this reason the results of both programs were compared directly to each other.
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Batch processing

Figure 3.4: A conglomeration of four quar-

ters out of the fourty-nine images. The

name of the chosen images end with 09,

14, 18 and 23.

Another fourty-nine high quality images, available at

the OpenCFU website 75, were used in this work.

The data set contains images with a resolution of

2592×1944 pixels of E.coli colonies on agar plate

expressing a red and a green fluorescent protein.

The color of the agar plate background has also a

greenish tone and the background beyond the plate

is black. To show the variation between images in

the data set four images were selected as shown in

fig. 3.4. This data set was primarily chosen to evaluate the performance of AutoCellSeg in

batch processing mode (fully automated option) by comparing the results with OpenCFU.

Unfortunately no ground-truth data was provided alongside the images. For this reason

each CFU in each image was counted manually and the results of both programs were

compared directly to each other.

Fluorescent cell segmentation

Figure 3.5: Left side shows one example

of each data set and on the right it’s re-

spective mask. The image from the top

is from BBBC007 while the bottom one is

from BBBC008. Their respective names

are AS_09125_040701150004_A02f00d0

andAS_09125_050116000001_A24f00d0

_slice1_ channel1.

Among the existing data sets with ground truth of-

fered by the Broad Bioimage Benchmark Collection

from the Broad Institute 76, two data sets were used.

One of the two data sets is referenced as BBBC007

which is a collection of drosophila Kc167 cell images

and the other data set referenced as BBBC008 con-

tains human HT29 colon-cancer cells images (see

Fig. 3.5). While the latter has a total of twelve im-

ages with a resolution of 512×512, the former data

set has a total of sixteen images with various reso-

lutions: eleven have a resolution of 400×400 pixels,
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four have a width and height of 450 pixels and one has a resolution of 512×512 pixels. For

both data sets, only the images of the first channel (DNA) were used for the comparison

between AutoCellSeg and OpenCFU while excluding the third channel which stains actin

in the cytoplasm. While the BBBC008 had already the ground truth images as masks, the

other had black and white ground truth images where the cell boundaries are marked in

black while the rest is white 77. To create masks from the ground truth images provided as

seen in the top right corner of Fig. 3.5, the background was removed by using the built-

in MATLAB function imclearborder. Additionally, the outlines when thicker than one pixel

was not taken into account and no other changes were made to the ground truth images.

The purpose to use these data sets is to demonstrate the performance of AutoCellSeg on

a segmentation challenge containing animal and human cells.

Randomly selected images

AutoCellSeg was put through another performance test with three additional images from

different published experiments to see the performance on images unrelated to the once

previously tested. Two images and their respective manual count of the colonies for a

comparison were provided by Choundhry et al. 61. One of which is a low resolution image,

with only 246×236 pixels, of twenty-two bacterial colonies and the other an image of fifty-

one clonogenic colonies with a resolution of 1028×1000 pixels. The last image was taken

randomly from a data set containing aggregates of one to six colonies of bacteria on blood

agar plates provided by Ferrari et al. 67 and compared with the provided label.
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CFU growth over time

Figure 3.6: Four pictures taken from one

of the CFU growth over time sets. This set

is with fewer colonies and the images are

taken at random petri dish position. From

the bottom left clockwise the times are 13,

15, 20 and 31 hours as shown in white in

each partial image, making it into one col-

lage.

For biological experiments it is of high importance

to know if the experiment setup was done appropri-

ately to ensure that the results show what the sci-

entist expected it to be instead of being a skewed

result because of external causes. A way of doing

this is to monitor cell growth over time. A quality

management data set containing various images of

the same petri dish recorded over a certain period

of time was created in the laboratories of the Medi-

cal Research Center with the help of Yifei Mu. The

images of this data set have all different sizes and

resolutions. They are cropped out in a square shape with a resolution of approximately

1750 pixels on each side. The background is of a darker bluish gray color inside the petri

dish (the medium) and almost black outside the petri dish. The E.coli colonies are a faint

change to the medium color with a yellow-green touch. Thirteen sets have images which

were taken at 8, 12, 23, 27, 31, 35 and 46 hours with similar position of the petri dish.

Twelve sets have images taken hourly starting from 11 hours to 20 hours and one at 31

hours with random position of the petri dish. As an example of a set with fewer colonies,

four pictures at 13, 15, 20 and 31 hours, were made into a collage which follows the same

colonies of five and two as can be seen in Fig. 3.6. The amount of colonies in the images

may vary from just a couple to hundreds. The purpose of the data set is solely to follow the

growth of each colony separately. The reasons can be for example confirming the exper-

iment is set correctly or understanding if bacteria have different growth curve depending

on their neighboring surroundings.
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3.3.2 Overview of AutoCellSeg

AutoCellSeg 51 implements a robust image segmentation method, can be applied in dif-

ferent operation modes, enables the user to select intuitive object features to guide the

segmentation process, allows the user to correct results with a graphical interface and pro-

vides results statistics and diagrams. In this section, AutoCellSeg is outlined from a user

perspective. The following section presents the algorithmic details and design decisions.

Using AutoCellSeg is as simple as selecting an individual or multiple images as well as

entire folders of images without having a restriction in number. The user subsequently

chooses a process depending on the level of interaction with AutoCellSeg, see Fig. 3.7.
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Figure 3.7: The pipeline for AutoCellSeg showing each individual process depicted by using a blue colored

box. The left column represents the “fully automated” process, the central path shows the “partially auto-

mated” process and the right one illustrates the “manual labeling” process. The yellow boxes inside the blue

boxes indicate the different methods that the user can choose from to select the a priori information. Some

of the processes allow for a correction after each image but all allow for the user to correct the results by

adding new or removing unwanted segments at the end of the entire process. Once the user is satisfied

with the outcome, plots can then be created and saved for comparisons between experiments. The image

was taken unchanged from the work already published 51.
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The “fully automated” process having the least and “manual selection” having the most

interaction steps. The only a priori information needed for “fully automated” consist of the

selection of the approximately smallest and biggest CFU/cell between all images before

the complete evaluation can begin without further user input. Similarly, the a priori infor-

mation must be selected prior to the “partially automated” process, but instead of using

that information for all the images it is selected for each image before continuing to the

next. For the “manual selection” the user has to select all the objects, for example CFU or

cells, individually for all the images. A correction is possible in all three modes, either after

each image for the case of the “partially automated” and “manual selection” processes as

well at the end of all three procedures.

Once the results are satisfactory, the user can let AutoCellSeg create a plot showing the

change of total colony sizes, an overlaid kernel density estimation (KDE) plot as well as a

blob count plot for a comparison between both test and control images in each individual

case. The categorization between test and control is purely linked by their file name. At

this stage the user can save all of these plots along with all the parameters used, the binary

masks, the outlined overlaid images and two cvs files containing all the colony features

such as area, eccentricity, radius and mean intensity.

Figure 3.8: The interactive AutoCellSeg GUI after loading images from the dark background data set.
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AutoCellSeg with its GUI, shown in Fig. 3.8, was programmed entirely with MATLAB and

tested for all major operating systems: Windows, Ubuntu and MacOSX. The tool, the

created benchmark with the results as well as the entire source code are open source

and freely available at GitHub 1. AutoCellSeg has few requirements such as the required

MATLAB runtime being installed and the images to be of the common image format.

3.3.3 Image Analysis Pipeline

The following sections describe the individual sequential steps in details with pictures

showing the change in each step, some of which are explainedmore elaborately since they

were part of a new development resulting from this work. AutoCellSeg is based on fuzzy

a priori size and optionally intensity information extracted from the user’s object selection

using one of the three available methods (fast marching, ellipses or freehand drawing). A

supervisedmulti-threshold image segmentation stepmakes use of this a priori information.

The image is then pre-processed based on channel information. Afterwards it is passed

on to an adaptive threshold segmentation step, where a binary mask is created containing

the individual detected blobs. All the segmentation results, created by the different inten-

sity thresholds, are overlapped iteratively over a search space of successive threshold

values between 0 and 1. A plausibility check is performed over the resulting image where

any blob having a size outside the size derived from the fuzzy a priori knowledge is either

removed if smaller or if bigger passed onto feedback-based watershed segmentation step,

adapted from Vincent et al. 78. The feedback-based watershed segmentation adapts the

value of H-maxima transform for regional maxima of the image, which are then used as

seed points for watershed segmentation. After this step, the user is then able to correct

the results if necessary, which is done with slightly different fast marching methods.

1https://github.com/AngeloTorelli/AutoCellSeg.Last visited: 15.09.2023
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Fuzzy a priori information

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: The three

rows of images show the

freehand, the ellipse and

the fast marching se-

lection process respec-

tively and their results.

For most software solutions, once the image is loaded, a priori in-

formation is required, making the method supervised. Currently,

popular solutions with or without GUIs like CellProfiler, OpenCFU

or ImageJ require the user input of the a priori information values,

which are given manually or by moving a sliding bar, making it not

intuitive for the user. Most users have no prior knowledge about

the parameters such as precise size in pixels and circularity factor,

which can be challenging to estimate even for an expert user.

In AutoCellSeg a more intuitive approach is offered, by letting the

user manually select the CFU/cell graphically instead of the de-

manding trial and error search of optimal a priori information input.

For this, the user has the choice between three interactive methods

(see Fig. 3.9 for an overview). The first two are by freehand draw-

ing (Fig. 3.9a) or by overlaying an ellipse around the border of a

CFU/cell (Fig. 3.9c) making those regions into a binary mask. The

last available method, the default method, is just by simply clicking

on the approximate center of an CFU/cell (Fig. 3.9e) in the image displayed in the GUI.

The user selected points inside the object boundaries are used as seed points for a fast

marching segmentation 79, by applying the MATLAB function imsegfmm, to create a mask.

For cases where the colonies are similar to the background it is better to increase the

contrast. For that reason, independently of the chosen method, a weight array based on

gray scale intensity differences is applied on the image using the built-in MATLAB function

graydiffweight.

Additionally AutoCellSeg allows the user to remove the previously selected seed point in

case of an accidental mistake by using the backspace or the delete button. The recom-

mendation is to select at least one of the smallest and one of the biggest alone standing
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blobs with average shape and color. Here, the overview of all images in the AutoCellSeg

main window can serve its purpose to search for images containing such criterion. In

case of uncertainty a larger selection is advantageous to make the outcome more accu-

rate. The a priori information of minimum and maximum area size is extracted along with

the average eccentricity from the selected blobs. An example of a priori size extraction

using fast marching is shown in Fig. 3.10a.

(a) (b)

Figure 3.10: The extraction process of a priori information from the AutoCellSeg GUI. The image on the

left in (a) shows the two colonies selected from the user. The center of asterisk marker as shown magni-

fied on the bottom right corner is the user click position. The two smaller images on the right side show

the minimum amin and maximum amax colony sizes using the fast marching method indicated by the pink

colored delineation. (b) is an example of a fuzzy trapezoidal membership function. In this case the result-

ing edges of the size trapezoid are indicated by black arrows are equal to (amin

2 , amin, amax, 2 · amax) =
(4591, 9182, 16155, 32310).

Optionally the intensity information is also taken into account. For both size and intensity

a fuzzy trapezoidal membership function is used as filtering criteria. The edges of the

trapezoid are half of the minimum, minimum, maximum and twice the maximum size as

presented in Fig. 3.10b. Similarly for intensity the trapezoid has almost the same edges:

half of minimum, minimum, maximum and one and a half times the maximum capped at

1. When the a priori information is calculated, the image is pre-processed before being

segmented.

Image pre-processing

The pre-processing stage can be explained in several steps as follow. First, in case of

the presence of multiple channels the image is converted into gray-scale (see Fig. 3.11a).
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The conversion to gray-scale can be manually modified, between a specific channel or

the mean of all channels (default) in the option mask. The image is normalized between

0 and 1 as follows: pi−pmin

pmax−pmin
where each intensity pixel value of the image is represented

by pi and pmin and pmax are equivalent to the minimum and maximum intensity values of

the whole image.

(a) (b)

(c) (d)

Figure 3.11: An example to show some of the steps of the pre-processing stage. The image is converted

to a gray-scale image (a). By default AutoCellSeg extracts the petri dish as a mask (b) and applies it to

the image to have only the contents of the petri dish (c). A Gaussian filter with the default size of 5 by 5 is

applied (d).

If a petri dish is in the image, AutoCellSeg will by default recognize it and only concentrate

on the inner content of it. This is done by searching the most occurring intensity value iv,

usually being the medium, and using it to create two slightly different masks. One mask

is created with values below iv + 0.01, while the other with values above iv − 0.01, which,

combined with a logical AND operator, result into only the inner region of the petri dish.
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This way the information regarding the inner radius of the petri dish is extracted to create

a perfect circle inside the petri dish (see Fig. 3.11b). This is by default activated and can

be turned off in the option, but if left activated it will be multiplied with the image (see Fig.

3.11c). Afterwards a Gaussian filter is applied to minimize the noise in the medium before

the background removal step (see Fig. 3.11d), which by default is of size five by five but

can be also be changed in the options.

Background removal is performed using morphological top hat filtering with a disk of radius

ninety as a structuring element (see Fig. 3.12a). At this stage, if activated by the user,

a contrast-limited adaptive histogram equalization (with the help of the already existing

MATLAB function adapthisteq) is used to enhance the contrast of the image by transform-

ing the intensity values on small regions, rather than the entire image (see Fig. 3.12b).

Optionally, one can additionally use an edge detection step which is then combined with

the previous steps. From the resulting image, the lower and upper boundaries of the inten-

sity histogram are clipped to the 1% and 99% quantiles, respectively before being passed

to the multi-threshold segmentation step.

(a) (b)

Figure 3.12: Subsequent steps of the pre-processing stage. The background is then removed by using a

morphological top hat filtering with a disk of radius ninety as a structuring element (a). A contrast-limited

adaptive histogram equalization method is used to enhance the contract of the image (b).
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Multi-threshold segmentation

An automatic multi-threshold segmentation is then applied over an intensity search space

(see Fig. 3.13a). By removing the background and the petri dish, it not only helps dimin-

ishing the false positives, but also increases the sensibility of the intensity search space

for relevant objects by removing unnecessary low and high intensity values of the back-

ground and reflective petri dish. The size of an incremental step, which by default is 0.1,

can be varied manually in the option dialog to alter the outcome. The lower the value the

finer the results but at the same the longer the processing time. At each step a segmenta-

tion image is obtained and each blob is checked for plausibility. Blobs with a size outside

the fuzzy trapezoidal membership function are filtered out. After all the threshold levels

are executed, the results are combined using the logical OR operator. The image is now

segmented into individual blobs and clusters where the latter need to be processed further

to split them into individual clells/CFUs. This is done with a feedback-based watershed

segmentation, which is explained in detail in the next section. The only exception is with

the graphically selected segments, which are kept unchanged if the new segmentation

area only deviates with approximately 10% of area encapsulated by initial segments.

(a) (b)

Figure 3.13: Image (a) is the result of the multi-threshold segmentation step and image (b) is the result

of the feedback-based automatic watershed segmentation step using the same example as in the image

pre-processing pipeline.
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Splitting of conglomerates by feedback-based automatic watershed segmentation

Figure 3.14: The parameter adaptation for

h maximizing the quality criterion Q. Im-

age 1 and 2 represent the original gray-

scale image of the chunk of colonies and

the initial blob detected respectively. Four

different H-maxima transforms with h =
(0.1, 0.15, 0.21, 0.28) were selected shown

in black with their respective quality of

segmentation Q = (0, 0, 0.7, 0.68) in red.

Column (a) shows the result of applying

extended-maxima transform followed by a

hole filling operation. Column (b) shows

the representation of an OR operation be-

tween the selected seed points image with

the complement of the mask. Column (c)

shows the result of imposing the comple-

ment of the previous mask on the grey-

scale image. The final result of applying

watershed algorithm from the image ob-

tained from preceding step is shown in the

last column (d). The result with the highest

value of Q is selected as the final segmen-

tation (second last row).

A similar method 80, where it was applied to adapt

intensity threshold for segmentation, has been mod-

ified for this work. The watershed segmentation 78

is useful in separating conglomerates of blobs that

satisfy the criteria of eccentricity greater than 0.5

and total size greater than the maximum CFU/cell

area. The watershed segmentation separates a big-

ger bundle based on the defined catchment basins or

the seed points using the intensity information where

dark and light pixels represent low and high elevation

respectively (see Fig. 3.13b). However, detecting

the seed points may not be straightforward as the

objects of interest to be segmented have varying in-

tensity maxima. Here, the seed points are controlled

by regional maxima with a height of at least h using

the H-maxima intensity transform, which may vary

the produced result greatly depending on the cho-

sen intensity value. Regional maxima refer to con-

nected groups of pixels that share a consistent inten-

sity value, and where all the outer boundary pixels

possess a lower intensity value. The regional max-

ima of the H-maxima transform is called extended-

maxima transform. Therefore, the range can be se-

lected manually in the options (default is from 0.1

to 0.3 with steps of 0.01) and are tuned iterative by

feedback-based information using a quality criterion

at each step. The quality criterion Q is the multiplication of three fuzzy trapezoidal mem-
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bership functions for evaluation of the expected count, the eccentricity and the size. The

edges of the three function are: count being [1, nx, 2 · nx, 3 · nx-1] with nx being the size

of the cluster divided by the minimum blob size, eccentricity being [0, 0.1, 0.5, 0.85] and

size being set same as before [amin

2
, amin, amax, 2 · amax]. The end result uses the optimal

parameter, which has the highest quality value. Based on the left conglomerate in Fig.

3.13 a detailed example of inner process of the feedback-based parameter adaptation for

the watershed segmentation is shown in Fig. 3.14.

Interactive correction of segmentation

Even with the best software, results may lack precision, which is why a correction feature

should always be offered. At various time points in the available type of segmentation

processes, the user has the chance to correct the results of each image. Either after each

image is processed in “semi” and “manual” segmentation or at the end of “fully automatic”

by clicking on the image thumbnail displayed on the main GUI. The image is then opened

in a new window where the user is able to add undetected or remove erroneous segments.

Both are very important, non-trivial post manipulation features, that only AutoCellSeg is

offering.

In the following, the most occurring challenges in segmentation will be mentioned as a

showcase of how flexible the post correction features are. An overview of all challenges

can be seen in Fig. 3.15. These challenges can all be broken down into false positives

and false negatives.

The typical false positives are falsely recognized colonies that only need to be deleted.

When examining clusters, false positives can be wrongly separated bundles or segments

that are falsely identified as conglomerates, which usually occur when the intensity of a

CFU/cell varies a lot or when its size is bigger than the average. Another type of false pos-

itive is additional recognition, which is when some background is additionally recognized

to an CFU/cell as part of one.
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False negatives are colonies that are only recognized partially or are not recognized at all,

such as in the case of extremes, where colonies could bemistakenwith the similar intensity

of a background such as the petri dish border. A conglomerate without any separation at

all can also be interpreted as a false negative.

The user can add seed points where they need to enlarge the borders or delete and add

the cell again in cases where a single CFU/cell is not segmented perfectly. For all problems

with conglomerates, the user needs to delete all the falsely recognized colonies if any and

add as many seed points as the number of colonies forming that conglomeration in their

center.

Figure 3.15: An overview of segmentation challenges based on an actual example. For the sake of this

image, each challenge was given a name. All of these challenges can be categorized as false positives and

false negatives. Falsely identified conglomeration, false positive and additional recognition shown on the

left side are all false positive as they segment either a background as a colony or a border inside a colony

which does not exist. On the contrary when not detecting a cell, being partially or fully, or a border correctly,

then it can be categorized as a false negative as for the rest of the challenges.

In the segment removal step, activated with right mouse click, the coordinates of graphical

inputs are compared to the center coordinates of their nearest segments. The segment

closest to an input is then deleted. In the segment addition step, centers are inserted
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graphically by the user by using the left mouse button. These centers must be defined

within the actual boundaries of the CFU visible in the image. In the correction phase, the

adding function is internally processed in almost the same manner as a priori selection

using the fast marching method. The only difference is that instead of giving all the seed

points at once and running the function through the entire image, this function uses only

one seed point at a time and runs it on a cropped part of the image which is of the same

size as the biggest selected colony in the a priori selection phase. Moreover, the threshold

value is set to 0.02 as a default. The threshold parameter for the addition of new segments

with fast marching can be changed in the options dialog. To demonstrate the effect of the

different values for the threshold parameter a two colony aggregate example was used

as shown in Fig. 3.16. The parameter used to affect the outcome here is a threshold

value that can range between 0 and 1. This value specifies the level at which the function

thresholds the normalized geodesic distance map of the fast marching method to obtain

the output binary image. If there are more centers for a single blob, then these reference

points contained inside the blob are used as seed points for watershed segmentation

instead of adopting the seed points that are controlled by regional maxima of the H-maxima

intensity transform. Once the user is done adjusting the result, closing the window will end

the correction phase.

(a) (b) (c) (d)

Figure 3.16: A showcase of fast marching method results using different threshold values. A small value

such as 0.01 can cause the colony to be selected only partially as shown in (a). With a value of 0.035, the

segmentation is almost perfect besides some of the faint border on the right as shown in (b). At a threshold

of 0.05 the contour of the colony is completely delineated but part of the other colony is wrongfully included

as well as (c) shows. As (d) shows increasing the value too high to 0.09 results in an undesired single

aggregate of both colonies. The image was taken from the work already published 51.
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3.3.4 Pipeline for Quality Management

Based on a typical bacterial growth curve in culture medium there is an initial lag, followed

by an exponential growth until it reaches an equilibrium and then dies again 81. It is im-

portant to note that when assessing the quality of experiments, it is not necessarily the

entire curve of interest. Instead, the focus should be on ensuring that as many colonies as

possible are in the desired rising phase. Colonies in the exponential growth phase are the

most affected by their surroundings and experiment setting. In this context, an automatic

method for detecting this specific phase is of interest and presented in the following.

Ideally, this method should also provide a quality measure that quantifies how well the

experiment is progressing. For instance, a measure of 80% would imply that 80% of the

cells or colonies have reached the desired phase. The method presented here offers the

capability to calculate this measure locally, allowing for a detailed analysis at the level of in-

dividual cells or colonies. This stands in contrast to a global assessment, which considers

only average trends.

The proposed methods are evaluated on the last dataset ”CFU growth over time” that was

presented in section 3.3.1. The results are reported in section 3.4.8. The functionality

of the method presented in this chapter are not part of AutoCellSeg but could easily be

integrated in the software.

Localization and Tracking

The initial challenge lies in ensuring the accurate tracking of colonies or cells across suc-

cessive time points. While a scientist may take meticulous measures to maintain the petri

dish’s consistent orientation, it is quite possible for the petri dish to undergo spontaneous

rotations in various directions, when placed under the camera. Consequently, the colonies

or cells occupying a specific position on the petri dish in one image may not necessarily

maintain that exact location in a subsequent image of the same petri dish.
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(a) (b)

Figure 3.17: Example of a rotated petri dish image (b) with all colonies successfully localized and tracked

from the colonies of the first image in that series (a). Each colony is assigned a unique identifier that remains

associated with that particular colony throughout the entirety of the series.

To compensate for such rotations, the following method for registering the images to the

image acquired at the first time point is proposed. First, the center points of all seg-

mented CFUs are used as a point cloud, which is compared with a point cloud from a

later time stamp’s segmentation. This approach is rooted in the observation that, despite

the colonies’ growth over time, their centers tend tomaintain a relatively consistent position

in relation to all other colony centroids.

The process involves passing these two point clouds to an Iterative Closest Point (ICP)

algorithm 82,83. This algorithm uses a k-dimensional tree for the search and yields a trans-

formation matrix encompassing both rotation and translation, along with the root mean

square error (RMSE). Experiments showed that for larger rotations the ICP was inca-

pable of finding the correct orientation. In these cases the RMSE returned by the ICP was

greater than 50, triggering the proposed method to rotate the cloud points clockwise by

30 degrees. The shifted point cloud is subsequently subjected to the ICP algorithm once

more. This iterative procedure continues until an RMSE value lower than fifty is achieved.

Upon successfully registering the colonies of the rotating image (see Fig. 3.17b) with the
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colonies of the initial timestamped image (see Fig. 3.17a), a comprehensive analysis of

each colony is conducted over the whole duration of the experiment. In addition to the cal-

culation of the colony sizes and shape characteristics over the different time points of the

experiment, an extra parameter is calculated, which can be interpreted as the neighboring

space available for growth.

(a) (b)

Figure 3.18: Example of Voronoi diagram (a) on the same rotating image as in Fig. 3.17b. Based on three

times the area of each colony a growing space area is calculated which are subsequently cut along the line

of their Voronoi regions (b).

The foundation for this parameter is that in the competitive environment on the petri dish,

where colonies compete for the limited resources on the agar plate, colony growth can be

affected if restricted. The first step of the proposed method involves computing a Voronoi

diagram 84 by partitioning the entire space surrounding each point from the point cloud into

a designated region of influence. This region of influence is referred to as a Voronoi region,

and the collection of all these Voronoi regions collectively forms the Voronoi diagram as

shown in Fig. 3.18a. To determine the required space for growth, an area three times of the

current surface area of each colony around their center is calculated and then multiplied

by the corresponding Voronoi region associated with that colony as shown in Fig. 3.18b.

The probability of growth diminishes proportionally to the available space and can serve

as an indicator. As the number of colonies in a petri dish increases, the likelihood of growth
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restrictions also rises. To inform users about whether the experiment is conducted without

such limitations, a metric was introduced. This metric indicates the percentage of colonies

that have unhindered growth, considering the available space capped at 65%. This value

is derived from experimental data, which demonstrates that at approximately this level of

available space, colony growth begins to slow down.
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3.4 Results

This chapter introduces a detailed description of the evaluation methodology used and

presents the results from new benchmark data, as well as the results from other data sets

used in previous works. It demonstrates the robustness of AutoCellSeg by showing its

performance with various data sets with different backgrounds and foregrounds as well

as the difference between the available operation modes including batch processing on

randomly selected images. Additionally we demonstrate that AutoCellSeg is also capable

of segmenting more than just colonies with fluorescent mammalian cells. Here, the quality

measures resulted from AutoCellSeg are compared to those in other software tools.

3.4.1 Evaluation Methodology

Specificity and sensitivity of tools used for colony counting were previously based pre-

dominantly on the total count alone. An analysis based solely on the total count, gives

less insight into the plausibility of colonies, especially due to the lack of size detected. In

many experiments, individual colony size could be of equal importance. Henceforth, an

additional quality criterion based on segmentation precision should also be incorporated.

Based on the work of Khan et al. 80, the quality measure Q, was selected to additionally

evaluate the outcome of the segmentation process. Q takes two factors into account.

Firstly, the relative deviation in segment count with respect to ground truth as:

q1 =
NO

NTT

where NO is the number of overlapping objects and NTT is the total number of objects

in the ground truth image. Each blob of the segmented image is overlapped with the

according ground truth blob. If the maximum overlap exceeds the heuristically chosen

value of 1
3
NO, the set of correctly counted segmented objects increases by one and the

blob from the set of all blobs from the ground truth image is deleted. This is done to prevent
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multiple counting of the same object, meaning either when a blob is falsely recognized as

two smaller ones or when multiple close blobs are recognized as a bigger one. Secondly,

similar to the Rand Index 85, the number of misclassified segment pixels is calculated as:

q2 =

∑
i,j |sign(δtruth,ij − δseg,ij)|∑
i,j sign(δtruth,ij + δseg,ij)

The a priori knowledge for these measures are handled using a fuzzy membership func-

tions in order to describe it in the range between 0 and 1. The fuzzy function µ, which was

used in both cases for q1 and q2, is given as:

µ(q) =



1 q ≤ 0

1− 2(q)2 0 < q ≤ 1
2

2(q − 1)2 1
2
< q < 1

0 q ≥ 1

Together they form the quality measureQ, valid for binary ground truth objects, as follows:

Q = µ(q1) · µ(q2)

When ground truth data was not available,AutoCellSegwas directly compared toOpenCFU

with a normalized difference in colony counts, denoted as σ, employed as follows:

σ =
nacs − nocfu

max(nacs, nocfu)
(3.1)

Here, nacs and nocfu represent the number of colonies detected byAutoCellSeg andOpenCFU

respectively. Negative values would indicate that AutoCellSeg underestimated the colony

count compared to OpenCFU, while positive values indicate overestimation. A similar

equation can also be used to compare any software solution against a manual count:
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σmc =
ncounter − nmc

nmc

(3.2)

where nmc are the actual number of colonies counted manually and ncounter is the num-

ber of colonies detected by a CFU counter solution. Positive values would indicate that

the CFU counter solution overestimated the colony count, while negative values indicate

underestimation.

3.4.2 Dark background benchmark

Various tools mentioned previously were compared using the Q measure introduced in

section 3.4.1 with the dark background benchmark, see Fig. 3.19.

The four contestants for this benchmark were: AutoCellSeg, OpenCFU, CellProfiler as well

as the combination of the latter with Ilastik in batch and individual mode. Both OpenCFU

and AutoCellSeg were operated in semi-automatic mode as explained in the previous

chapter. For CellProfiler separate pipelines were created to be used for each species.

These can be found in the according folder of the repository 2. For instance the CellProfiler

pipeline and results for E.coli can be found under the folder “E.coli/CellProfiler” 3.

In the case of Ilastik only one image was taken for each bacterial specie for pixels labeling

of the background and colonies. All available features were utilized until the resulting seg-

mentation was close to the ground truth. The results of the segmentation were exported

as tiff files and were then combined with the CellProfiler pipeline for quantification. The

results of the segmentation were obtained as binary masks directly from the AutoCellSeg

and CellProfiler pipelines. As is the case of OpenCFU, the center and the radius of the

colonies are the only features available for a quality comparison of the colonies.

This is yet another drawback of using OpenCFU, making it impossible to directly compare

the count and size of colonies with ground truth without a binary mask. Via the use of

2github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark.Last visited: 15.09.2023
3github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark/E.coli/CellProfiler. Last visited:

15.09.2023
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Figure 3.19: The colors red, cyan, blue and green are used to represent CellProfiler, Ilastik+CellProfiler,

OpenCFU and AutoCellSeg respectively. One full example of the results from the dark background bench-

mark image data set are shown in the top row. The file name for that image is ”E.coli 20160223 plate

30min 48h control 3 48h.JPG”. The number in the corner shows which column it represents from the results

graphs. One image from each species is selected to demonstrate some of the problematic occurring for

each solution. The graphs on the top row shows the results for Q, which incorporates the measures for both

size and count of CFUs, for each species. While the second row shows the relative deviation from manual

count q1. This visual comparison uses an average Q value (Qm) and an average q1 value (q1,m). For the

definition of Q and q1 see section 3.4.1. Image was taken from the work already published 51.

the center and radius of colonies, binary circles were constructed to emulate the colonies,

and watershed segmentation was used to separate the overlapping colonies. This was

performed to match the number and size of the colonies, as they were extracted from the

OpenCFU software. All three binary masks acquired were compared against the ground

truth for the total count and size of the colonies using the Q benchmark.

Due to its careful colony selection criteria, OpenCFU avoids false detection. In OpenCFU

the user has to carefully specify the range of the colony size by manually using the slider

bar, which can be cumbersome when trying to be precise. In addition to detecting noise

both inside and outside of the CFU container, OpenCFU produces many false positives if
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the lower radius is very low. However, if the lower radius is set to a more accurate value

(i.e. 25-35, in case of Staphylococcus aureus), the estimated colony count is widely un-

derestimated. In order to get a good segmentation result, one must first try several values

for smaller radii. Even for an expert user, extensive trial and error may still be necessary if

different data sets with varying resolutions are to be evaluated. In AutoCellSeg, this issue

is rectified, because the user must only click on one small and one big colony, in order for

the smaller and larger radii to be automatically extracted using a fast marching method.

The second problem with OpenCFU, is that there is no fully-automated batch throughput

solution. In order to advance, the user must manually click on the GUI’s > tab in order to

process the next image. Even when global parameters for segmentation and counting

could be set, the fact that one must manually click through data, significantly hinders

OpenCFU to be used for larger data sets. In some cases, CellProfiler delivers a satisfying

segmentation result.

The results of Ilastik with CellProfiler in batch operation was not significantly better than

OpenCFU or CellProfiler. Nevertheless, the combination of the two programs produces

results comparable to AutoCellSeg, when it comes to labeling all of the images, which

does take much time and effort. In terms of quality, Q, of the segmentation outcome,

AutoCellSeg outperforms the other solutions. The graphs in Fig. 3.19 show the individual

comparison between the various solutions.

Software
Petri dish

extraction
Post-processing

Benchmark

evaluation

Qm

Deviation

in count

q,m (%)

AutoCellSeg Automatic Addition + removal 0.97 1.9

OpenCFU ROI mask Removal 0.65 25.8

CellProfiler (CP) Manual N/A 0.64 22

Ilastik + CP (Batch) N/A N/A 0.67 17.2

Ilastik + CP (Manual) N/A N/A 0.95 5.4

Table 3.1: Quality comparison of AutoCellSeg, OpenCFU, CellProfiler, Ilastik and CellProfiler in batch and

manual mode using the dark background benchmark images. TheQm and q1,m values shown in the last two

columns are the average values for all 12 images used. Table was taken from the work already published
51.

Table 3.1 depicts the overall comparison betweenAutoCellSeg, OpenCFU and CellProfiler

and the combination of Ilastik and Cellprofiler. In contrast, AutoCellSeg does not demand
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manual work, and allows users to enjoy a fully-automated process, without human inter-

vention during its running process. Even if colonies vary greatly in size AutoCellSeg is

able to analyze the images because it draws a priori information from the input examples

automatically. In this way, AutoCellSeg can also easily be used for other data sets, as well

as images containing other cell structures. When structures are not circular, AutoCellSeg

takes potential eccentricity of objects into account via graphical, a priori knowledge in-

put. AutoCellSeg also extracts other a priori features based on intensity, in case of the

detection of false positives.

3.4.3 Inverted background benchmark

Since AutoCellSeg was originally created for images with dark background and light fore-

ground, one of the challenges would be to apply the same algorithm on a data set with a

light background and darker colonies to see how well AutoCellSeg can adapt to the new

type of images. For this challenge the inverted background dataset was used which was

previously described.

Only AutoCellSeg and OpenCFU were compared against each other by running both of

them in the partially automated mode. A big disadvantage using OpenCFU is the lack

of a fully automated batch mode, since the user has to advance to the next image by

clicking on the GUI after processing each image. In OpenCFU global parameters, or

a priori knowledge, is based on trial and error since the framework does not offer any

overview of the complete dataset. OpenCFU was configured with a minimum radius of 1

pixel as a global parameter to account for the presence of very small colonies in several

images. For the same reason, the Guassian filter mask was reduced to a size length of

three and the edge detection was turned on in AutoCellSeg.

Figure 3.20 displays the results for one of the densely populated dishes. OpenCFU ef-

fectively identifies almost all colonies in automated mode. In the first image of the second

row, it is evident that OpenCFU failed to detect a cluster of colonies. Moreover, OpenCFU
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Figure 3.20: This presents the segmentation results of AutoCellSeg and OpenCFU for one of the images

characterized by a lighter background and darker colonies. The top-left image displays the detection results

from OpenCFU, while the top-right image shows the segmentation achieved by AutoCellSeg. The second

row provides zoomed-in views of selected areas from the first row images without any post-editing, and the

last row shows the results after applying the correction step. Image was taken unchanged from the work

already published 51.

mistakenly identified some noise outside the dish, especially when choosing a very small

value for the lower radius. Conversely, AutoCellSeg has an advantage as it automatically

extracts the container and therefore successfully segmented the same section as shown

in the third image of the second row. The underestimation of colonies by AutoCellSeg in

this case is attributed to the automatic exclusion of colonies on the petri dish’s boundaries

in fully automated mode without correction, as seen in the last image of the second row.

Moving on to the correction step, OpenCFU allows for the removal of erroneously detected
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segments outside the dish, as demonstrated in the second image of the last row. In con-

trast, AutoCellSeg additionally offers an interactive solution where undetected segments

can be manually added, as illustrated in the third image of the last row. As mentioned

before, AutoCellSeg employs a fast marching method to segment undetected colonies

based on user-defined seed points, as shown in the last image of the last row. However,

AutoCellSeg may occasionally miss smaller colonies depending on user selections during

the initial extraction phase, a situation that can be addressed easily in the correction step.

Figure 3.21: The assessment of similarity between AutoCellSeg and OpenCFU relies on the disparity in

colony counts. The x-axis denotes the image numbers, while the y-axis represents the normalized difference

in colony count, denoted as σ in accordance with criterion (3.1). This assessment is conducted in twomodes:
one without correction (orange) and the other with correction (blue).

Like many other CFU counting solutions, OpenCFU fails to offer the extraction of the

colony container. During post-processing, OpenCFU only allows for the removal of false

segments, as indicated by the arrow in the second image of the last row in Fig.3.20. No-

tably, in cases where segments go undetected, users cannot manually add new segments,

as shown in the first image in the second row of Fig.3.20. In contrast, AutoCellSeg offers

full flexibility by allowing users to add undetected segments and remove falsely detected

ones, as seen in the third image in the second and third rows of Fig.3.20. The goal here
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is to compare colony counts for all images using both software solutions, taking into con-

sideration the size of the detected colonies. The final colony counts obtained from both

software packages exhibited remarkable similarity, as evidenced in Fig. 3.21. It is worth

noting that the correction step effectively reduces the disparities between the two tools.

AutoCellSeg may exhibit a slight tendency to more accurately estimate the colony number.
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3.4.4 Batch benchmark

As mentioned in the previous section the advantage in AutoCellSeg is that after running

the process in any mode, one can also add undetected colonies as well as removing

the incorrectly detected colonies. The latter is also the case with OpenCFU. Since the

default settings of OpenCFU failed to recognize most CFUs, it was executed in bilateral

threshold mode with a value of ten and with aminimum radius of four selected as the global

parameter settings. In contrast, AutoCellSeg utilized default parameters. Initially, both

programs operated in fully automatedmode. Subsequently, manual correction was carried

out for both, allowing for an assessment of the degree of refinement each software affords

the user in improving the results. Furthermore, users can readily observe distinctions in

the detected colony boundaries as can be seen in Fig. 3.22a.

(a) (b)

Figure 3.22: The 36th image from the batch processing dataset named ”IMG_1033.jpg” was considered as

an example, along with the corresponding segmentation results generated by both software solutions. The

outcomes of AutoCellSeg (a) and OpenCFU (b) were obtained in fully-automated with a subsequent cor-

rection. The blue arrowheads highlight manually added CFUs, which were initially missed by AutoCellSeg’s

segmentation. The red arrowheads indicate false negatives that could not be added by OpenCFU. The

yellow arrowheads show instances of false positive which were easily deleted.

As an example the 36th image from the batch processing dataset named ”IMG_1033.jpg”

was chosen. AutoCellSeg has automatic petri dish extraction which causes false nega-

tives around the border of the petri dish. Thanks to the ability to add missed CFUs in the
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correction phase in AutoCellSeg, they can be seen delineated by the blue arrow heads in

Fig. 3.22a. Nevertheless one can see that the delineation of these cases is not precise

because the reflection of the glass is similar to the intensity values of the CFUs. OpenCFU

has eight false negatives, six extremes around the border and one conglomerate in the

middle of the petri dish as indicated by the red arrowheads as seen in Fig. 3.22b. The

lack of the capability to add new segments during the correction step for OpenCFU makes

it impossible to add the conglomerate in the center as well as the six missed CFUs on the

border, even when changing the global parameters. The yellow arrow heads indicate in-

stances of false positive which were easily deleted.

Figure 3.23: The assessment of similarity betweenmanual count and bothAutoCellSeg (blue) andOpenCFU

(orange) relies on the disparity in colony counts. The x-axis denotes the image numbers, while the y-axis

represents the normalized difference in colony count, denoted as σmc in accordance with criterion (3.2).

Since there was no ground truth present with the data set the count of each CFU in each

image was done manually. The results of AutoCellSeg and OpenCFU were compared

with the manual count, as shown in Fig. 3.23. For the normalized difference in colony

count the same σ in accordance with criterion (3.1) was use as before. The results not

only shows that with AutoCellSeg, a comparable count to OpenCFU can be obtained, but

that AutoCellSeg is closer to the ground truth count as with OpenCFU. This shows the

versatility and applicability of AutoCellSeg on different data sets.
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3.4.5 Fluorescent cell segmentation

OpenCFU was run with auto threshold mode selecting a minimum radius of 10 (global

parameter setting). Both tools were used in fully automated mode with the manual correc-

tion. Due to OpenCFU’s limitation of saving a segmentation binary mask, the approach

involved constructing binary circles based on the colony centers and radii, followed by

applying watershed segmentation to effectively separate overlapping colonies. The seg-

mentation quality of OpenCFU and AutoCellSeg was evaluated against the ground truth

provided using eight different evaluation measures. Apart from criterion (Qm), µ(q1)m and

µ(q2)m, five other metrics were chosen from the 2018 IEEE International Symposium on

Biomedical Imaging Challenges. These metrics are:

• local pixel-wise boundary prediction error (pixel error ep),

• minimum mean square error between the pixels of the target segmentation and the

topology-preserving warped source segmentation called warping error (ew)
86,

• frequency with which two masks disagree over whether a pair of pixels belongs to

the same or different objects, called rand error (er), which is closely related to rand

index 85,

• a scoring metric particularly useful in applications where the accurate delineation of

objects is critical by focusing on the key foreground elements while minimizing the

impact of background noise or irrelevant information called the foreground-restricted

rand scoring (V R) 87 and

• a criterion regarding the quantification of information and uncertainty called informa-

tion theoretic scoring (V I) 87.

For the sake of completeness, these established evaluation measurements were used

even though they come with flaws. For example pixel error considers only whether or not

a given pixel was correctly classified as a boundary pixel, without concerning the ultimate
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effect of that prediction on the resulting image segmentation 87. V R and V I which were

introduced to compensate these flaws and to compare the results better in the presence

of challenges, are the reason for their inclusion in the comparison.

Data set Tool Qm µ(q)m µ(q)m ep ew er V R V I

BBBC007
1 0.49 0.98 0.50 0.33 2.2 0.06 0.97 0.99

2 0.10 0.64 0.15 0.68 0.6 0.55 0.90 0.45

BBBC008
1 0.72 0.99 0.73 0.21 2.5 0.13 0.93 0.98

2 0.21 0.57 0.35 0.42 0.6 0.57 0.62 0.89

Dark BG
1 0.97 0.98 0.97 0.06 0.4 0.11 0.97 0.99

2 0.65 0.74 0.76 0.21 0.2 0.28 0.74 0.91

Table 3.2: Comparison betweenAutoCellSeg (tool 1) and OpenCFU (tool 2) using three different benchmark

data sets: BBBC007 and BBBC008 from the Broad Institute, as well as the dark background benchmark

data set created for this work. The evaluation measures are: average total quality (Qm), average count

(µ(q1)m), average overlapping pixels (µ(q2)m), local pixel-wise boundary prediction error (ep), warping error
(ew unit in 10−4), rand error (er), foreground-restricted rand scoring (V

R) and information theoretic scoring

(V I ). The better results between the two software are highlighted in bold. The table was taken from the

work already published 51.

The results are shown in Tab. 3.2, where it can be seen that AutoCellSeg has a higher

score and lower error than OpenCFU in almost all metrics. Only the warping error from the

masks created from OpenCFU were better because the perfect circles affect this measure

to an extremely lesser extent. From the results, it can be seen that measure µ2 is some-

what more strict than ep since it takes into account each individual pixel of each object

instead of the entire image. For a comparison, the results of the dark background dataset

was also added.
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3.4.6 Single images benchmark

For the three randomly selected images 61,67 presented in 3.3.1, AutoCellSeg successfully

segmented all CFUs as can be seen in Fig. 3.24. The count of AutoCellSeg followed by

the manual count can be seen in white in the corner of the images. The top left image has

a count of twenty-two which is the same as the segmentation ofAutoCellSeg. The fifty-one

CFUs in the image with clonogenic colonies vary greatly in size and are blue colored on a

light background. All fifty-one CFUs were segmented correctly as shown in the big image

on the right side of Fig. 3.24. AutoCellSeg effectively segmented the central cluster of

five colonies, aligning with the mask designated as a five-colony aggregate in accordance

with the ground truth. Additionally, it recognized also the other four colonies around the

conglomerate.

Figure 3.24: Segmentation done with AutoCellSeg of different images using partially automated mode with

correction. The image at bottom left was randomly selected from Ferrari et al. 67 and the other two images

are taken from Choundhry et al. 61. The colony count provided byAutoCellSeg as well as the manual colony

count for each image is shown in white on the corners of the images. The image was taken unchanged from

the work already published 51.
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3.4.7 Control/ test analysis

AutoCellSeg offers a unique capability compared to other CFU analysis software by en-

abling the comparison of different experiment settings. For instance, in microbiological

experiments, it allows users to observe changes in CFU morphology and quantity during

various treatments. This feature is exemplified in a test involving the irradiation of E.coli

colonies with blue light to monitor alterations in colony size and count. AutoCellSeg fa-

cilitates this experimental comparison by offering colony size and count comparison plots

as well as Kernel Density Estimation (KDE) functions plots. In practice, users load the

Figure 3.25: First and second row show the segmentation results for control (light blue) and test (red)

images respectively. Each column represents the experiment number. In this case the control/test pair

have no dependencies between each other but are only linked by their file name.

images into AutoCellSeg and configure the name of control and test images in the param-

eters accordingly. After processing all images, users can choose to display comparison

plots. The software also permits corrections at the individual image level. The resulting

segment outlines, represented in light blue for control CFUs and red for test experiment

CFUs, showcase the detection outcomes in Fig. 3.25. Each experiment is represented

by a specific color shown on the top left corner of each image in the first row.
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Kernel Density Estimation (KDE) functions are then plotted for each pair of datasets, pro-

viding probability density estimates of CFU size based on normal kernel functions (see

Fig. 3.26).

Figure 3.26: Kernel Density Estimation (KDE) plot is displayed on y-axis for colony sizes in pixels (x-axis).

The green lines represent control experiment results, where as red lines represent test experiment results.

The number of colonies found in each image is denoted by n in the legend. Negative values on the x-

axis should not be interpreted as indicating colonies with negative CFU areas; rather, they arise from the

extrapolation of the smoothing function.

The green curves represent the size distribution in control colonies, while the red curves

illustrate the size distribution (in pixels) of CFUs following light irradiation. The smoothness

of these curves is controlled by a bandwidth parameter. Negative values on the x-axis do

not signify the presence of colonies with negative CFU area; instead they result from the

extrapolation of the smoothing function.

AutoCellSeg also allows users to observe changes in CFU area and count after test ex-

periments. Since in this case each experiment is actually not related to each other and

only linked by the name, it can be deceiving to see some experiment increase and some
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decrease in size. When the control/test pairs share dependencies, the line of interest

is the mean value, represented by the black line. Fig.3.27a displays changes in CFU

areas, normalized to 1 for control conditions, with different colors representing various

experiments. In this specific setup, CFU sizes appear to decrease after light irradiation.

Fig.3.27b shows the absolute CFU count for both control and test conditions, indicating

an average decrease in this experiment.

(a) (b)

Figure 3.27: In this case the control/test pairs are independent, making the mean value the line of interest,

which is represented by the black line. The left plot in (a) shows the change in absolute colony sizes

normalized to 1 for each individual control/test pair. This is shown to express the change in size for each

pair of experiments (in color) and the total mean change between control and test in black. The right plot in

(b) is the absolute count of colonies detected in each experiment. The black line shows the average colony

count.

AutoCellSeg effectively extracts a priori information from input examples, evenwhen colony

size exhibits significant variation. This adaptability extends to different cell structures, even

when they are not perfectly round, thanks to AutoCellSeg’s consideration of object eccen-

tricity through graphical a priori knowledge input. The software also extracts additional a

priori features based on intensity to address false positives.
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3.4.8 CFU growth over time

It is often challenging for the human eye to perceive subtle growth impairments, which

can be influenced by physical and chemical factors. These impairments may not be im-

mediately apparent but over time it can be noticeable. AutoCellSeg offers the ability to

quantify these changes and can therefore be used as a quality management for petri dish

experiments.

(a)

(b)

Figure 3.28: The growth curve of each of the eighteen colonies found the in Medium I series (a). The bottom

six curves, number 9 to 14, with diminishing growth rates are from a cluster of colonies shown in (b).

The plate series described at the end of section 3.3.1 were categorized as few, medium or

many depending on how many colonies were present in the plate throughout the series.

Few was defined as ten or less, more than fifty was considered many and anything in

betweenwas classified asmedium. TheE.coliwere not visible at the eight hour timestamp.

Since all colonies start from zero pixels when the petri dish was freshly prepared, it is safe

to assume that the different sizes, when the colonies start to be visible, mean that each

colony has a different starting growing point. For that reason the smallest colony area

when first visible is taken as reference. All the values seen in Fig. 3.28a are the size

growth ratio in respect to that initial size.
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The value introduced in Section 3.3.4 concerning the reference value indicating the space

available for a colony can be computed for the entirety of the petri dish and subsequently

presented in the title, as depicted in Figure 3.29. This plot shows the growth factor from

the timestamp twenty hours to thirty-one hours in relations to it’s growing space at those

times. The orange line is the best fit function from all the points and the red line shows the

cut off of 65% of available space. The green dots are colonies with higher available space

as 65%, while the blue one are beneath that threshold, which are the same six colonies

that show diminishing growth rates in 3.28b.

Figure 3.29: Relation between growing factor and available space scatter plot. The threshold of 65% avail-

able space (red) separates colonies beneath it (blue) and those above that threshold (green). The orange

line is the best fit function. The 67% is the percentage of colonies that have more than 65% of the space

available to grow in the future, which in this case is twelve out of eighteen.
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3.5 Discussion

AutoCellSeg comes with a GUI which allows the user to select images or an entire folder,

change the parameters, choose the mode of operation, select the a priori information,

correct the results graphically, create comparison plots and save all the results including

individual CFUs features. The main advantage in using AutoCellSeg lies in its ability to

adjust the results in an intuitive and interactive fashion using simple graphical selection.

Especially, the adding of missing CFUs is a unique feature not found in other solutions.

It is versatile and robust enough to cope with different image variations, adapts to various

backgrounds and can cope with untypical morphological cell structures in a variety of

data sets. This has been demonstrated on a several benchmark sets based on bacteria

colonies and established benchmarks for cell segmentation in contrast to common CFU

counter solution such as CellProfiler and OpenCFU, outperforming the competition. Since

AutoCellSeg saves also the entire masks of the segmentation, which other CFU counters

lack, it can easily be used to create benchmark datasets, which can be then shared with

the public.

The ability to track colonies along rotating petri dishes and presenting the user with a

quality value, showing the percentage of unrestricted colonies, has also been found to

work successfully helping the user furthermore in the setup of experiments.

AutoCellSeg provides new features and more flexibility in comparison to existing software

tools for a better user experience as seen in Table 3.3.

Automatic Petri-dish extraction is a feature not performed by CellProfiler and OpenCFU. In

order to extract the information that is only present inside the container, OpenCFU allows

the user to select a region of interest (ROI) in the form of a 3-point circle, or a complex

polygon. Disappointingly, the ”Auto-Petri” function mentioned in the work of Geissmann 58

is nowhere to be seen on its GUI, and it also fails to run adequately, as there were several

results with false positives caused by the noise beyond the Petri dish borders.
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Features - Programs
Auto-

CellSeg

Open-

CFU

Cell-

Profiler

+ Ilastik

(batch)

+ Ilastik

(indiviual)

A-priori labeling XXX X XX XXX XXX
Accuracy XXX XX XX XX XXX
All-in-one solution XXX XX XX X X
Data analysis XXX X XX XX XX
Degree of automation XXX XX XX X X
Execution speed XX XXX X X X
Post-processing XXX X X X X
User-friendly XXX XX X X X

Table 3.3: Comparison of the most relevant features and the performance between the used frameworks.

X depicts the baseline among the used frameworks. XX represents an improvement in compared to the

baseline and XXX illustrates the best option between the tools. The table was taken from the work already

published 51.

CellProfiler and OpenCFU may not be the best solution for a high throughput and fully

automated segmentation, because one must manually select the Petri dish as well as of

the manual tuning of the parameters. However, the segmentation outcomes produced by

CellProfiler and OpenCFU were the closest to AutoCellSeg and were better compared to

all the other software solutions tested. Thus, they were included for comparison of some

datasets.

Based on the work done by Choundhry et. al. 61 a custom-made pipeline in CellProfiler

as well as a combination with Ilastik was developed to have a better comparison with

OpenCFU and AutoCellSeg. Ilastik was included, because, pixel-wise, it delivers reason-

able predictions, via supervised machine learning.

Regarding the other mentioned programs, most of them were discarded because of too

many disadvantages or the results not being satisfactory in initial tests. For example Im-

ageJ Edge and IJM both failed when a CFU container was in the image. There were

two additional ImageJ Macro that promised great advantages in their published papers.

Siragusa et al. created a lightbox for reproducibility and predefined plate positioning pur-

poses and developed a ImageJ Macro called CoCoNut, to automatically recognize the

cells tested in their laboratories 88. A more recent ImageJ macro created by Brzozowska

et al., called countPHICS 89 was published in combination with a program written with QT

Creator which translates the output text file and plots histograms of colony size distribution.
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Custom made pipelines and macros mentioned earlier have the main problem of being

often highly dependent on the image material for which they were originally customized

for, resulting in a poor performance when working with a range of different images. In

these instances, users are compelled to do some modifications in the parameter values,

and also in the number and order of steps involved. Similar obstacles arise from using

software that has little flexibility in their settings.

For CoCoNut the only hypothetical advantage is the possible improvement in accuracy

when using their developed hardware with the exact type of cells they used. This state-

ment can only be envision to be the case, since the hardware was not available for testing.

The drawbacks on the other hand are obvious after the first use. It requires a random pic-

ture to be selected as a background and depending on the selected image the result varies

immensely. The user needs to select a region of interest (ROI) with ImageJ which will be

used for all the images expecting all the petri dishes to be at the exact same position.

Aside from minor usability issues, the only parameter the user can adjust is the radius of

the smallest CFU making it impossible for the user to influence CoCoNut in case it devi-

ates from the correct path. This is especially true in the case of lighter cells compared to

the background.

Similar to CoCoNut the user has a few requirements to fulfill but has very little influence to

steer countPHICS at his will. In this case the user can change values for rolling ball radius,

minimum colony size, circularity and sigma. Nevertheless the results of both are unusable

as shown in the Fig. 3.30a for CoCoNut and in Fig. 3.30b for countPHICS. Another paper

90 shows a similar approach to the one showed in this work but does not disclose the code

for testing their acclaimed abilities.

Others have just recently included deep learning approaches as well as offered the code

based on the programming language python 91,92. Here AutoCellSeg could be used to

generate training data for the underlying deep learning model which requires labeled data

as well as used complementary to correct the results.

Commercial solutions were not taken into consideration for this work as they are not ac-
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(a) (b)

Figure 3.30: Results of CoCoNut (a) and countPHICS (b) on the dark background dataset created for this

work. The image in question is ”Klebsiella pneumoniae Kp20161026 24h 60min 24h Kp control 1 24h 60min

24h Kp.JPG”.

cessible to the majority of the users.
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4

Summary

Data analysis plays a pivotal role in biological research, empowering scientists to extract

meaningful insights from complex datasets. Throughout the collaborative doctoral pro-

gram titled ”Tissue analytics for stem cell-based diagnostics”, a substantial volume of data

has been generated across multiple projects. Manual analysis of this data proved to be

resource-intensive and error prone.

The focus of this thesis is on automatic functional and morphological data analysis, as

well as quality management. More specifically, it addresses data analysis challenges

associated with functional data from transcutaneousmeasurements of glomerular filtration

rate and morphological data from colony forming units.

Transcutaneous measurement of glomerular filtration rate allows for the animal to stay

conscious during the non-intrusive procedure and avoids the time consuming serial blood

and urine sample collection previously required. The software solutions for the analysis

of the acquired data proposed in this work yield outcomes akin to the gold standard, while

maintaining intuitiveness and robustness and necessitating fewer interactions. The exper-

imenter is assisted by calculating the elimination kinetics curve after the data is collected.

Furthermore, the proposed solution encompasses quality management features, includ-

ing live correction and duplicate detection functionalities, filtering and overview capabilities

as well as automatic curve quality scoring.

Acomprehensive analysis was conducted on a dataset comprising over 14000 curves. Out
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of this extensive pool, 4815 unique curves were identified for subsequent in-depth exami-

nation, including health classification and assessment using the introduced ABCD scoring

system. The fitting performance was evaluated in comparison to the proprietary software

provided by the device manufacturer, revealing a higher degree of consistency across the

variability of the dataset. Furthermore, the automation capabilities were assessed using

a ground truth dataset, yielding outcomes that closely aligned with the manually obtained

references.

Data analysis methods for counting and characterization of colony forming units (CFUs)

are developed in order to replace the manual counting with automatic petri dish extraction

and detection of each individual CFU. The proposed approach, named AutoCellSeg, not

only outperforms the competition in terms of accuracy and usability but also introduces

supplementary methods including post-processing, correction, analysis of growth over

time, quality management, plotting capabilities, and the ability to be used to generate

ground truth datasets for testing or for the learning processes of supervised deep learning

models.

AutoCellSeg was tested on five CFU and cell datasets with different characteristics, com-

prising a total of 111 images, and consistently demonstrated superior performance com-

pared to widely used competitors in this domain. Furthermore, a distinct method allowing

for automatic tracking of the growth of CFUs on rotated petri dishes was developed and

evaluated successfully on a separate dataset comprising 211 images.

This study has demonstrated that the proposed intuitive solutions can effectively process

data either automatically or semi-assisted, thereby enabling users to achieve their objec-

tives more accurately, swiftly, and/or with fewer interactions.
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