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Abstract

Nowadays research in various �elds of natural science and engineering requires insight, which
can only be provided by computational simulations, due to the complexity of the systems under
consideration. Predicting energies and properties of molecular systems is especially hard, due to
the many body problem and the fact, that the mean-�eld only yields insu�cient accuracy in most
applications. For this purpose many di�erent methods have been developed over the past century,
which all o�er a tradeo� between accuracy and computational e�ort.

Contributing to this �eld of research, in this thesis major breakthroughs in the development of
a novel fragmentation scheme, named Excitonic Renormalization, XR, are presented along with
the extension of established methods based on perturbation theory, to consistently describe the
in�uence of polariton formation on the electronic structure of molecules as well as the application
of electronic structure methods to investigate a novel crystallization-induced ring opening reaction
observed in a derivative of a compound used in organic semiconductors.

The �rst major achievement in the development of the XR method is the reformulation of the
overlap matrix into a series of orbital rotations, which is shown to converge quickly, lifting the
necessity of numerically orthogonalizing the full sets of orbitals between fragments, which is a
big advantage of XR over related fragmentation methods. Moreover, fast convergence is observed
for approximate densities with increasing order of perturbation theory, indicating that densities
obtained from established post-Hartree-Fock methods yield su�cient accuracy for the XR method.
Method independent approximations to higher particle densities are presented as well, with little
success though. It is further pointed out, how to increase the performance of the XR method and its
approximations.

The perturbation theoretical methods, extended to describe polaritons consistently, are based
on two di�erent partitionings of the Hamiltonian, yielding polaritonic ground and excited state
methods corresponding to the Møller-Plesset Perturbation Theory and the Algebraic Diagram-
matic Construction Theory, respectively. The methods were shown to yield similar results for
intermediate coupling strengths, up to second order of perturbation theory. Later the necessity
of consistently treating the vacuum �eld contribution in the strong coupling regime is shown for
the photodissociation dynamics of Pyrrole, which is only provided by one of the two partitionings
of the Hamiltonian. For the excited state method based on this partitioning of the Hamiltonian
a "quasi-diabatic" representation is given as well, which can be utilized to simulate wavepacket
dynamics between polaritonically coupled surfaces using standard quantum dynamical methods



without further adjustments. This method requires negligible additional computational e�ort for
small state spaces compared to the approach widely applied in literature, which also yields a "quasi-
diabatic" representation, but is shown to yield qualitatively wrong dissociation dynamics for Pyrrole
for very strong coupling strengths.

In the investigation of the crystallization-induced reversible ring opening of Tetraazahexacene
derivatives to Pyrazinopyrazine derivatives the experimental spectra are reproduced �rst. Further,
assuming the Carbon-Carbon distance of the reversibly dissociating bond as the active reaction
mode, the energy pro�le along this reaction path is computed with and without the explicit crystal
environment, revealing double wells for all compounds and environments. Within reasonable
accuracy the experimental �ndings of open and closed derivatives could then be mapped onto
kinetical as well as thermodynamical stability and the reaction is shown to follow a concerted
electrocyclic mechanism. Finally the dominant force, leading to ring opening in Tetraazahexacene
derivatives, is found to be the force, that asymmetrically twists the aromatic core.
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Zusammenfassung

Heutzutage erfordert die Forschung in verschiedensten Bereichen der Natur- und Ingenieurswis-
senschaften Erkenntnisse, die aufgrund der Komplexität der betrachteten Systeme nur durch comput-
erbasierte Simulationen gewonnen werden können. Die Vorhersage von Energien und Eigenschaften
molekularer Systeme ist aufgrund des Vielteilchenproblems und der Tatsache, dass das gemittelte
Feld in den meisten Anwendungen nur eine unzureichende Genauigkeit liefert, besonders schwierig.
Im vergangenen Jahrhundert wurden dafür viele verschiedene Methoden entwickelt, die alle einen
Kompromiss zwischen Genauigkeit und Rechenaufwand bieten.

Als Beitrag zu diesem Forschungsgebiet werden in dieser Arbeit wichtige Durchbrüche bei der
Entwicklung einer neuartigen Fragmentierungsmethode, der so genannten Exzitonischen Renor-
malization, XR, vorgestellt, ebenso wie die Erweiterung etablierter, auf Störungstheorie basierender
Methoden zur konsistenten Beschreibung des Ein�usses der Bildung von Polaritonen auf die elek-
tronische Struktur von Molekülen sowie die Anwendung von Elektronenstruktur Methoden zur
Untersuchung einer neuartigen kristallisationsinduzierten Ringö�nungsreaktion, die in einem
Derivat einer Verbindung beobachtet wurde, die häu�ge Anwendung in organischen Halbleitern
�ndet.

Die erste große Errungenschaft bei der Entwicklung der XR Methode ist die Umformulierung
der Überlappmatrix in eine Reihe von Orbitalrotationen, von der gezeigt wird, dass sie schnell
konvergiert, wodurch die Notwendigkeit der numerischen Orthogonalisierung der vollständigen
Orbitalsätze zwischen den Fragmenten aufgehoben wird, was ein großer Vorteil von XR gegenüber
verwandten Fragmentierungsmethoden ist. Darüber hinaus wird eine schnelle Konvergenz für
approximative Dichten mit zunehmender Ordnung der Störungstheorie beobachtet, was darauf
hindeutet, dass Dichten, die aus etablierten post-Hartree-Fock Methoden gewonnen werden, eine
ausreichende Genauigkeit für die XR Methode liefern. Es werden auch methodenunabhängige
Näherungen für höhere Teilchendichten vorgestellt, welche allerdings nur mäßigen Erfolg zeigen.
Es wird außerdem aufgezeigt, wie der computerbasierte Aufwand der XR Methode und ihrer
Näherungen verringert werden kann.

Die störungstheoretischen Methoden, die erweitert wurden, um Polaritonen konsistent zu
beschreiben, basieren auf zwei verschiedenen Partitionierungen des Hamilton Operators, die
zu polaritonischen Grund- und angeregten Zustandsmethoden führen, die der Møller-Plesset-
Störungstheorie beziehungsweise der Algebraischen Diagrammatischen Konstruktionstheorie ent-
sprechen. Es wird gezeigt, dass diese Methoden für mittlere Kopplungsstärken bis zur zweiten



störungstheoretischen Ordnung ähnliche Ergebnisse liefern. Später wird für die Photodissoziations-
dynamik von Pyrrol gezeigt, dass der Beitrag des Vakuumfeldes bei starker Kopplung konsistent
behandelt werden muss, was aber nur von einer der beiden Partitionierungen des Hamilton Op-
erators geliefert wird. Für die Methode der angeregten Zustände, die auf dieser Partitionierung
des Hamilton Operators beruht, wird auch eine "quasi-diabatische" Darstellung angegeben, die
ohne weitere Anpassungen zur Simulation der Wellenpaketdynamiken zwischen polaritonisch
gekoppelten Potentialhyper�ächen mit Hilfe von quantendynamischen Standardmethoden verwen-
det werden kann. Diese Methode erfordert für kleine Zustandsräume einen vernachlässigbaren
zusätzlichen Rechenaufwand im Vergleich zu dem in der Literatur weit verbreiteten Ansatz, der
ebenfalls eine "quasi-diabatische" Darstellung liefert, aber wie gezeigt wird, eine qualitativ falsche
Dissoziationsdynamik für Pyrrol bei sehr starken Kopplungsstärken ergibt.

Bei der Untersuchung der kristallisationsinduzierten reversiblen Ringö�nung von Tetraazahexacen-
Derivaten zu Pyrazinopyrazin-Derivaten werden zunächst die experimentellen Spektren repro-
duziert. Unter der Annahme, dass der Kohlensto�-Kohlensto�-Abstand der reversibel dissozi-
ierenden Bindung der aktiven Reaktionsmode entspricht, wird dann das Energiepro�l entlang
dieses Reaktionsweges mit und ohne die explizite Kristallumgebung berechnet, wobei sich für alle
Verbindungen und Umgebungen zweifache Potentialtöpfe ergeben. Mit angemessener Genauigkeit
konnten die experimentellen Befunde o�ener und geschlossener Derivate dann auf die kinetis-
che und thermodynamische Stabilität abgebildet werden, und es wurde gezeigt, dass die Reaktion
einem konzertierten elektrozyklischen Mechanismus folgt. Schließlich wurde festgestellt, dass die
dominante Kraft, die zur Ringö�nung in Tetraazahexacen-Derivaten führt, die Kraft ist, die den
aromatischen Kern asymmetrisch verdreht.
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1. Introduction

The main task in quantum chemistry is the calculation of energy levels and their stationary as
well as dynamical properties. Gaining theoretical insight and being able to predict experimental
outcomes on such systems is vital for many �elds of science. Well-known examples from biology
are photosynthesis[1], photoisomerization of retinal[2] as well as analyzing active sites of pro-
teins e.g. for SARS-COVID-19[3]. Prominent examples from physics include Lasers[4] and other
systems, able to emit coherent light with a very small width in energy like Masers[5], as well as
photovoltaic systems, converting photon energy into an electric voltage, and the inverse e�ect,
utilized e.g. in light emitting diodes[6–8]. Medical applications are for instance markers, which
either increase detectability, like Gadolinium(III)-based markers, which enhance relaxation of the
surrounding nuclear spins of protons for magnetic resonance imaging due to the large magnetic
moment of Gadolinium[9], or enable detection at all, as used for instance in �uorescence imag-
ing, which allows for resolution beyond the di�raction barrier of standard optical microscopy[10].
Furthermore, lanthanide-doped nanoparticles, functionalized to bind e.g. tumor cells, can either
enhance detectability or kill surrounding tissue by photon-upconversion of otherwise harmless
irradiation, without any chemical interaction of the nanoparticles in the body at all[11, 12]. An other
application which gained increasing interest over the past decade are quantum computers, o�ering
access to much larger state spaces, due to the superposition of qubits, as well as their entanglement.
Algorithms, which utilize these properties, can then provide much lower scalings in the number
of qubits[13], as e.g. the Fourier transformation and its inverse, used for phase estimation[14], or
the variational quantum eigensolver[15], where an expectation value is solved for on quantum
hardware. Understanding and therefore being able to e�ciently optimize the given examples and
related applications is almost impossible without theoretical modelling and simulation of such
system, due to their high complexity.

How to calculate these energies and properties is known for almost 100 years, due to Schroedinger
[16] and later Dirac[17]. However, due to the many body problem fully expanding the con�guration
space is only computationally feasible for systems with a few electrons, because of the exponential
scaling of the computational e�ort with the system size. Hence, practically relevant calculations can
never be performed without approximations, when running computations on classical hardware.
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1. Introduction

This can in principle be circumvented using quantum hardware[13], but development of the hardware
is rather slow, especially because of the highly demanding engineering challenges. Hence, the most
research intensive �eld of quantum chemistry remains the challenge of computing accurate energies
and properties of large systems. Over the past century many methods have been proposed, which
all o�er a trade-o� between computational e�ort and accuracy. The most common methods are
either based on the variational principle, like Hartree-Fock, HF, con�guration interaction, CI and
coupled cluster, CC, or perturbation theory, like Møller-Plesset, MP, and the algebraic diagrammatic
construction, ADC, theory[18–20]. Note, that all of these methods are based on an mean-�eld ansatz,
which is usually some variant of Hartree-Fock. Also very common are semi-empirical methods,
like density functional theory[18], DFT, and extended tight binding methods[21], XTB, which yield
reliable results for standard organic systems, because they only require small variations of the
empirical parameters. However, they can break down even for such systems, e.g. when describing
charge transfer states[22]. An other class of quantum chemical methods, which gained increasing
interest over the past decade, are fragmentation methods, where large systems of molecules are
divided into smaller systems, which are calculated independent of each other, while their interaction
is approximated. Most methods provide large scalings, at least to fourth order, with the overall size
of the system, which results in very large but sparse tensors, requiring very tedious optimization of
the algorithm and the corresponding implementation, in order to achieve reasonable computational
e�ort for practically relevant systems, as for example done for coupled cluster in form of its domain-
based local pair natural orbital implementation[23]. Fragmentation approaches on the other hand
exploit these sparse tensors, by separating them into subsystems, which are expected to be dense
sections of the large tensors, and then trying to recover the couplings between these separated
sections without ever expanding to the full state space. Hence, they expose the sparse nature of
the tensors spanned by the full state space without having to build the full tensors and then apply
numerical techniques to lower the computational requirements.

Many di�erent �avors of fragmentation approaches have been developed for the application
of quantum chemistry. Probably the most well known of these methods are symmetry-adapted
perturbation-theory[24], SAPT, block correlated[25], BC, and active space decomposition[26], ASD,
methods, as well as the very successful density-matrix renormalization-group, DMRG[27]. Besides
the fact, that all quantum chemical methods lack either in their performance for some properties of
molecular systems, or are so expensive, that they are impractical, most fragmentation approaches
provide severe drawbacks. BC and ASD methods require explicit orthogonalization for all fragments,
which explicitly spans the full Fock space again, like in all methods based on HF, while SAPT
requires tedious derivation for global anti-symmetry and lacks cooperative e�ects at low orders of
perturbation theory, which is why SAPT was successfully applied to only two fragment systems.
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1. Introduction

Semiempirical fragmentation approaches exist as well, but like most semiempirical methods, they
are not generalizable at the very least. The nowadays most successful fragmentation approach is
DMRG, which lacks in its description of dynamical correlation, which makes it only applicable as a
FCI extension and therefore also to describe active spaces. It further lacks from its description of
interactions between orbitals, since the orbitals are in principle ordered as a one dimensional array,
where interactions between them are only included one by one, with the density being truncated in
each step. The excited renormalization method, XR, provides none of the drawbacks listed above,
making it a promising method to investigate[28, 29]. However, since XR is rather new, the method
still struggles from computational bottlenecks, hindering its applicability to practically relevant
system. In this thesis crucial steps toward achieving this goal are presented, which have been
developed in collaboration with Prof. Dr. Anthony Dutoi.

In addition to describing quantized matter and its interaction with classical �elds, as required
to calculate e.g. absorption spectra, the ability to accurately model the interaction of quantized
matter with quantized �elds gained increasing interest over the past decade, due to great success
from experimental research. Examples for such achievements are super�uidity, i.e. Bose-Einstein
condensate e�ects, at roomtemperature by coupling photons to excitons[30]. Similarly electron-
phonon coupling, which is required for superconductivity, can be massively enhanced[31]. Coupling
photons to vibronic excitations is useful to alter chemical reactions, e.g. by lowering yields of side-
products, increasing overall reaction speeds or inducing enantioselectivity[32, 33]. Su�ciently large
couplings to alter chemical reactions this way are already achieved by reaction chambers, which
easily allow for yields on the scale of milligrams. Similarly, electronic excitations can also be coupled
to photons, altering their energies and properties, which however requires more sophisticated
experimental setups though. Nevertheless, using plasmonic cavities, which are closely related in
their physical description to photonic cavities, the strong coupling limit has been surpassed even
for single molecules[34]. Such coupled fermion-boson systems are called polaritons. Note, that
these polaritons of vibronic or electronic excitations with photons or other bosonic �elds, like
plasmons, do not require chemical alteration of the reactants. Hence, e.g. in the case of vibronic
polaritons, this could substitute or enhance the e�ect obtained from catalysts. However, only few
methods exist, able to model polaritonic e�ects properly. The most widely applied approach is
to use only few states, which are completely decoupled from the quantized bosonic system, and
then using them to build the polaritonic Hamiltonian matrix, which is shown to be correct through
�rst order of perturbation theory later[35–37]. The strength of this approach is, that it is easily
implemented and is already in a "quasi-diabatic" representation, with the polaritonic couplings on
the o�-diagonals of the matrix. At resonance these polaritonic couplings dominate the coupling
of the diabatic states, which does not require any reformulation before being used in dynamics
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1. Introduction

simulations. On the other hand this approach is not very accurate and therefore breaks down for
strong couplings. Besides semi-empirical methods mainly based on DFT for ground[38–40] and
excited states[41–44], introducing more unknown functionals, two polaritonic variants of coupled
cluster, applicable to ground and excited states, have been developed, which are the only two ab

initio post-HF methods currently available[45, 46]. However, they inherit the high computational
scaling from the corresponding non-polaritonic methods, which is why in this thesis new ab initio

post-HF methods based on perturbation theory are presented, which inherit the lower scaling with
the system size of the corresponding non-polaritonic methods, MP and ADC, compared to coupled
cluster. Furthermore, the polaritonic ADC method can also be unitarily transformed into a form,
which can be truncated in good approximation and yields a "quasi-diabatic" representation as well.
This approach has been devoloped up to second order of perturbation theory and therefore also the
truncated approach is correct through second order of perturbation theory. Hence, it converges to
the full state space limit much faster, than the widely applied approach described above, which is
only correct through �rst order of perturbation theory.

Finally a project is presented, which has been investigated in collaboration with an experimental
group, where a novel isomerization upon crystallization has been observed for a derivative of
tetraazahexacene, which is commonly used in organic semiconductors[47]. Organic semiconductors
are widely used nowadays and are intended to replace inorganic semiconductors whenever possible,
since they are easier to process, less dangerous and much cheaper to produce. Their performance is
highly dependent on the crystal structure, since it determines the conductivity along a crystal axis,
governed by the transfer integral[48]. These are large, when e.g. the overlap of large delocalized
aromatic systems is large. Usually this is solely determined by the spatial orientation of the molecules
in the crystal, but in this collaborative work it was found for the �rst time, that crystallization can
also lead to a ring-opening in the aromatic system, yielding small transfer integrals, even if the
original aromatic systems would provide large overlaps. Hence, understanding why and how the
system isomerizes is important for designing future tetraazahexacene derivatives with application
in organic semiconductors.
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2. Theory

The reader is expected to be familiar with the basic concepts of quantum mechanics, such as the
Born-Oppenheimer approximation, the Rayleigh-Ritz variational principle, the methodology of
second quantization and how to evaluate their expectation values of operator strings using Wicks
theorem[18]. Also note, that the orbitals are expected to be real throughout the whole thesis.

2.1. Hartree-Fock

As is well known, the Schroedinger equation can not be solved for e�ciently, due to the many
body problem. However, its mean-�eld can be computed e�ciently. Furthermore, it is used as a
starting point for most of the methods presented in this thesis, which aim to e�ciently recover the
di�erence between the full electronic Schroedinger solution and the mean-�eld solution, which we
refer to as correlation.

This mean-�eld solution to the electronic Schroedinger equation within the non-relativistic regime
and under the Born-Oppenheimer approximation is better known as Hartree-Fock[18, 20], HF. The
working equations can be obtained from

⟨Φ0
||| Ĥ

|||Φ0⟩ =
⟨

Φ0
||||||
∑
pq,�

ℎpqa†p�aq� +
1
2

∑
pqrs,��

Vpqrsa†p�a
†
q�as�ar�

||||||
Φ0⟩

+VNN , (2.1)

where |Φ0⟩ denotes the ground state determinant, which is build from an orthonormal set of single
particle wavefunctions, H the non-relativistic Hamiltonian within the Born-Oppenheimer approxi-
mation and a and a† fermionic annihilation and creation operators, respectively. Moreover, the one-
and two-electron operator integrals are de�ned as ℎpq = ⟨�p || ℎ ||�q⟩ and Vpqrs = ⟨�p�q || V ||�r�s⟩,
where |�⟩ refers to a single-particle wavefunction, better known as orbitals. VNN denotes the
nuclear-nuclear repulsion and is trivially evaluated, so we only focus on evaluating the expectation
value on the right hand side. Using Wicks theorem we can easily evaluate the expectation value, as

∑
pq
ℎpq ⟨Φ0

||| a
†
paq

|||Φ0⟩ = ∑
i
ℎii (2.2)
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and

1
2
∑
pqrs

Vpqrs ⟨Φ0
||| a

†
pa

†
qasar

|||Φ0⟩ =
1
2
∑
ij
(Vijij − Vijji) =

1
2
∑
ij

⟨ij| |ij⟩ . (2.3)

Note, that due to simplicity we omitted the spin contribution here, while denoting occupied-,
virtual- and arbitrary orbitals with indices {i, j, ...}, {a, b, ...} and {p, q, ...}, respectively. Furthermore,
the common notation of the antisymmetrized two-electron integrals has been introduced, along
with omitting the � in the bras and kets, leaving only the orbital index. Hence, we obtain the HF
energy, EHF , as a functional of the set of orbitals

EHF [{�}] = ∑
i
ℎii +

1
2
∑
ij

⟨ij| |ij⟩ + VNN . (2.4)

In the next step we minimize the HF energy with respect to the orbitals, which either requires
functional variation and the introduction of Lagrange multipliers, or we introduce rotation matrices
and solve them via the Baker-Campbell-Hausdor�, BCH, expansion. The latter approach does not
require constraints and is therefore the algebraically more convenient one, however, we will refer to
the Fock matrix later many times and therefore need to introduce it here. Hence, the �rst approach
will be described in more detail in the following.

Under variation of the orbitals their orthonormality is not ensured, so a Lagrange multiplier is
introduced for this condition.

�EHF = EHF [�{�}] = ∑
i
�ℎii +

1
2
∑
ij
� ⟨ij| |ij⟩ + �VNN −∑

ij
��ij ⟨i |j⟩ = 0. (2.5)

Taking the variation into the integrals yields a sum of all the possible variations. However, since
all integrals as well as the Lagrange multiplier are hermitian and the electrons are indistinguishable,
the result can be written as

∑
i
� ⟨i|

[(
ℎ̂ +∑

j
(⟨j| V |j⟩ − ⟨j|| V Pij ||j⟩))

|i⟩ −∑
j
�ij |j⟩]

= 0, (2.6)

where Pij denotes the permutation operator, swapping indices i and j in the ket. Since the orbitals
are orthonormal, they are also linearly independent, so we obtain

(
ℎ̂ +∑

j
(⟨j| V |j⟩ − ⟨j|| V Pij ||j⟩))

|i⟩ −∑
j
�ij |j⟩ = 0. (2.7)
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Note, that one of the indices in the Lagrange multiplier is redundant now, so we can sum over
the right hand term. This yields the �nal expression

(
ℎ̂ +∑

j
(⟨j| V |j⟩ − ⟨j|| V Pij ||j⟩))

|i⟩ − �i |i⟩ = F |i⟩ − �i |i⟩ = 0, (2.8)

where F denotes the Fock operator. The last equality is the key equation here, because it shows,
that the Lagrange multipliers are the spectrum of the one particle operator, so they can be intepreted
as energies of the converged orbitals, which is a key quantity in quantum chemistry. Hence, the
�nal HF energy can also be given as

EHF [{�}] = ∑
i
ℎii +

1
2
∑
ij

⟨ij| |ij⟩ + VNN = ∑
i
�i −

1
2
⟨ij| |ij⟩ + VNN . (2.9)

In order to yield a computable result it is also required to expand the orbitals in a set of initial
orbitals. However, in this thesis the main focus is laid on the derivation and the �nal numerical
results of novel methods instead of their implementation, so we will not go into further detail on
how HF solution are actually computed.

2.2. Rayleigh-Schroedinger Perturbation Theory

Almost all ab-initio quantum chemistry methods, which aim to recover most of the correlation, are
based on some variant of Hartree-Fock as a reference. Most of these so-called post-Hartree-Fock
methods are either based on utilizing the variational principle, such as Con�guration Interaction
and Coupled Cluster, which will be discussed in sections 2.6 and 2.7 respectively, or they are based
on perturbation theory of some sort. Mixtures are also common, as will be shown in section 2.8.
However, most of the theoretical development of this thesis is based on Rayleigh-Schroedinger
perturbation theory[18–20], which is the most common perturbation theory. In this approach
the Hamiltonian is separated into a part, for which the eigenvalue problem can be solved for and
the remainder, which we will refer to as the unperturbed system, H0 and the perturbation, H1,
respectively. Furthermore, a series expansion around an auxiliary parameter � is postulated for the
exact eigenenergies and -vectors, such that

(H0 + �H1)
∞

∑
n=0

�n ||| 
(n)
I ⟩ =

(

∞

∑
n=0

�nE(n)I )

∞

∑
n=0

�n ||| 
(n)
I ⟩ , H0 + H1 = Ĥ . (2.10)

Now one can group the terms on the left and right hand side according to their order in � and then
take the limit for � against zero. Equations for the energies and wavefunctions of a certain order of
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perturbation theory can then be obtained by projection onto the same state and the resolution of
identity excluding the same state, respectively. There is, however, one additional degree of freedom,
which is set such, that a state of the unperturbed system is orthonormal to that exact state of an
higher order. The eigenenergies are then obtained as

E(0)I = ⟨ (0)
I
||| H0

||| 
(0)
I ⟩ , E(n)I = ⟨ (0)

I
||| H1

||| 
(n−1)
I ⟩ , (2.11)

while the eigenstates are obtained as

||| 
(1)
I ⟩ = ∑

J≠I

||| 
(0)
J ⟩

⟨ (0)
J
||| H1

||| 
(0)
I ⟩

E(0)I − E(0)J
, ||| 

(2)
I ⟩ = ∑

J≠I

||| 
(0)
J ⟩

⟨ (0)
J
||| H1 − E(1)I

||| 
(1)
I ⟩

E(0)I − E(0)J
, ... (2.12)

Note, that with this expansion all n-th order quantities can be build from the quantities up to
n − 1-th order.

2.3. Møller-Plesset Perturbation Theory

The most common variant of applied Rayleigh-Schroedinger perturbation theory nowadays is
Møller-Plesset perturbation theory[18–20], MP, which sets H0 to F , denoting the full Fock-operator,
as introduced in section 2.1. The partitioning of the Hamiltonian then results in

H0 = F = ∑
pq
fpqa†paq

!= ∑
p
�pa†pap (2.13)

and

H1 = H − H0 =
1
4
∑
pqrs

⟨pq||rs⟩a†pa
†
qasar −∑

pqk
⟨pk||qk⟩a†paq. (2.14)

Note, that we are operating in the converged orbital basis, so the Fock operator is diagonal.
Plugging that into Eq. (2.11) and evaluating up to �rst order yields

E(0)0 + E(1)0 = ∑
i
�i −

1
2
∑
ij
⟨ij||ij⟩ = EHF . (2.15)

This is an important feature of MP, since it recovers the mean-�eld of the two particle interaction
of the Hamiltonian, which corrects the one-particle solutions to the HF result. This needs to be true,
since no higher order contributions were included into the wavefunction yet, yielding corrections
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outside of the single determinant regime. Plugging the MP partitioning into Eq. (2.12) shows, that
one obtains contributions from wavefunctions up to the double excitation manifold, where two
electrons from the occupied orbitals of the reference determinant now occupy virtual orbitals. The
single and double excitation manifolds can be evaluated using Wicks theorem, while the �rst one
yields zero and the latter results in

||| 
(1)
0 ⟩ = −

1
4
∑
ijab

|||Φ
ab
ij ⟩

⟨Φabij
||| H1

|||Φ0⟩
�a + �b − �i − �j

= −
1
4
∑
ijab

|||Φ
ab
ij ⟩

⟨ab||ij⟩
�a + �b − �i − �j

= −
1
4
∑
ijab

tijab
|||Φ

ab
ij ⟩ . (2.16)

With this result obtains the second order energy correction as

E(2)0 = −
1
4
∑
ijab

tijab ⟨ij| |ab⟩ . (2.17)

Starting from the second order energy correction, the total energy result then goes beyond
the mean-�eld approximation and more of the correlation is recovered in every further energy
correction. However, this is only true from an algebraic point of view, since MP is known to
numerically diverge, starting even from around �fth order for some molecules.

2.4. Algebraic Diagrammatic Construction Theory

In order to also access excited states using perturbation theory, most approaches utilize Greens-
function theory and evaluate the expressions using diagrammatic approaches. In this chapter the
Algebraic Diagrammatic Construction Theory[19, 49, 50], ADC, is presented, which also has its
historic origin in the procedure described above. To be more precise, one starts from the propagator
describing the process of interest. Here the polarization propagator is used, which will end up in
the Polarization-Propagator ADC scheme, which is the standard ADC method, so it is referred to as
just ADC, yielding neutrally charged excited states. Using the electron propagator one can either
obtain Ionization-Potential ADC, IP-ADC, or Electron-Attachment ADC, EA-ADC, by only using
the corresponding term of the electron propagator. The Greens-function based approach will be
outlined brie�y in the following, since it applies all concepts of ADC theory in a straightforward
fashion. Starting from the polarization propagator in its common Lehmann representation

Πpq,rs(!) = lim
�→0

∑
n≠0

(
⟨Ψ0|a†qap |Ψn⟩⟨Ψn|a†r as |Ψ0⟩

! − (En − E0) + i�
−
⟨Ψ0|a†r as |Ψn⟩⟨Ψn|a†qap |Ψ0⟩

! + (En − E0) + i� ), (2.18)
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where! denotes the energy of the perturbing electromagnetic �eld and � describes an in�nitesimal
real number, ensuring adiabaticity during a previous integration. Setting � to zero one obtains
the excitation energies by determining the poles of either term. However, in this representation
one needs to solve the full Hamiltonian, in order to obtain the excitation energies. This can be
circumvented by using the projected representation of the polarization propagator

Πpq,rs(!) = ∑
n≠0

x0npq (⟨Ψn| ! − H |Ψn⟩)−1 xn0sr , (2.19)

where x0npq = ⟨Ψ0|a†qap |Ψn⟩ de�nes the transition amplitudes. This is in fact the basis to not only
ADC, but also to other excited state methods, e.g. time-dependent density functional theory, TDDFT.
Note, that the Hamiltonian and the transition amplitudes are resolved in the exact state basis and
are therefore diagonal. ADC now postulates a non-diagonal representation of each of these two
quantities. Therefore, the transition amplitudes are modi�ed by a vector yn, as

f 0npq = ynx
0n
pq . (2.20)

From this relation follows, that

MY = YH, (2.21)

where Y is build from all yn and M denoting the non-diagonal matrix. Note, that we still operate
in the exact state basis, so the Hamiltonian is diagonal, resulting in an eigenvalue problem. ADC
further postulates, that M and f can be expanded in a perturbation series, such that

M = M (0) + M (1) + M (2) + M (3) + ... (2.22)

f = f (0) + f (1) + f (2) + f (3) + ... (2.23)

These expressions can now be evaluated using diagrammatic techniques, since this way no
explicit basis needs to be de�ned, in which the theory is extended. However, the lack of the basis,
in which the Hamiltonian is expanded, inherits the problem, that the converged eigenvectors
cannot be mapped onto the exact states, and therefore no densities can be build, denying the access
to properties. This basis has been found though and is required to obtain transition densities,
required for the Excitonic Renormalization method 2.12. On the other hand it can be extended
to the polaritonic theory, which will be presented later, as straightforwardly as the diagrammatic
approach. Hence, M is presented in the so-called Intermediate-State Representation, ISR, in the
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following. ADC uses MP as its reference ground state, so the ISR is based on the span of the MP
vectors. In order to obtain a basis, in which excited states can be represented, the MP ground state
of a speci�c order is excited using fermionic �eld operators acting on the Fock space. However,
this span is not orthonormal and therefore not a basis. Hence, in a �rst step the span of a speci�c
perturbation order and excitation manifold is orthogonalized with respect to all lower excitation
manifolds of the same perturbation order, yielding the so-called precursor states

|Ψ#(n)I ⟩ = |Ψ(n)I ⟩ − (|ΨJ⟩⟨ΨJ |ΨI⟩)

(n)

, I > J , (2.24)

where (n) denotes the order of perturbation theory, while I and J denote the excitation manifold.
For instance doubly excited MP wavefunctions need to be orthogonalized to singly excited MP
wavefunctions and the MP ground state. In order to build a basis, orthogonality also needs to be
ensured between excited MP states of the same excitation manifold. Hence, the �nal ISR basis is
obtained as

|Ψ̃(n)I ⟩ = ∑
J

|Ψ#(n)J ⟩(S
− 12
I J )

(n), I = J , (2.25)

where SI J denotes the overlap matrix of the precursor states. Note, that I and J refer to the
excitation manifold again, and not to speci�c excitations, since the exact orbital transitions can
di�er between I and J . Further note, that two di�erent orthogonalization procedures have been
used here. In the second step the Loewdin orthonormalization procedure has been applied, because
of its bene�cial properties, which ensure compactness of the Hamiltonian and normalization of the
states. However, it requires a symmetric overlap matrix and can therefore not be applied in the �rst
orthogonalization step, where instead the Gram-Schmidt procedure is applied. Nevertheless, since
the Loewdin step is the last step, a compact representation of the Hamiltonian in a normalized basis
is obtained. The working equations can then be derived from

MI J = ⟨Ψ̃I |Ĥ − E0|Ψ̃J⟩, (2.26)

where a block of M within a given perturbation order is given as

M (n)
I J = (S

− 12
IK )

(k)M#(l)
KL (S

− 12
LJ )

(m) , n = k + l + m . (2.27)

Note, that M# denotes the shifted Hamiltonian in the precursor basis, which can be expanded in
perturbation orders analogous to M . For the perturbative expansion of S− 12 one can make use of the
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fact, that in zeroth order the relation S(0)I J = �I J holds and expand S− 12 in a Taylor-series. Therefore, S
is substituted as

S = 1 + x . (2.28)

Since S(1)I J = 0, x includes all higher order terms, starting from second order. For instance the
expansion up to second order of perturbation theory for S−

1
2

I J is given as

(S
− 12
I J )

(2) = �I J −
1
2
S(2)I J . (2.29)

This leaves a straightforward derivation for the working equations, which however becomes
increasingly tedious for higher orders of perturbation theory. Up to second order the working
equations are given as

M (0)
ia,jb = �ij�ab(�a − �i), (2.30)

M (0)
iajb,kcld = �ik�jl�ac�bd (�a + �b − �i − �j), (2.31)

M (1)
ia,jb = − ⟨aj| |bi⟩ , (2.32)

M (1)
ia,kcld = (1 − Pcd ) ⟨kl| |id⟩ �ac + (1 − Pkl) ⟨ak| |cd⟩ �il , (2.33)

M (1)
iajb,kc = (1 − Pab) ⟨kb| |ij⟩ �ac + (1 − Pij) ⟨ab| |ci⟩ �jk , (2.34)

M (2)
ia,jb =

1
4
�ij ∑

klc
(1 + Pab) tklac ⟨kl| |bc⟩ +

1
4
�ab ∑

kcd
(1 + Pij) tikcd ⟨jk| |cd⟩ −

1
2
∑
kc

(1 + PijPab) tikac ⟨jk| |bc⟩ ,

(2.35)

where Pij denotes the permutation operator between the indices i and j. Note, that for a consistent
treatment of the matrix block Mia,jb needs to expanded up to the full perturbation order of the ADC
method, i.e. for ADC(2) Mia,jb needs to be expanded up to second order. However, the block Miajb,kcld

only needs to be expanded to the perturbation order of the ADC method minus two, and the blocks
coupling Mia,jb and Miajb,kcld to the perturbation order of the ADC method minus one. Due to the
compactness of the ADC method, the excitation space only grows, if the new diagonal block is at
least of zeroth order. Therefore, ADC(0) and ADC(1) stay within the single excitation regime, while
ADC(2) and ADC(3) remain in the double excitation regime.
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2.5. Transition Densities within the Intermediate State
Representation

As already mentioned in section 2.4, the ISR grants access to transition densities, and therefore also
to properties, because the exact state can now be expanded in the ISR basis[50]

|Ψn⟩ = ∑
I

|||Ψ̃I⟩⟨Ψ̃I
|||Ψn⟩ = ∑

I

|||Ψ̃I⟩XI n, (2.36)

where XI n denotes the I -th element of the n-th ADC eigenvector. Working equations for arbitrary
transition densities are then obtained by substituting the exact state with the expansion given in Eq.
(2.36). For instance the transition density for a neutral single excitation is given as

⟨Ψf
||| a

†
paq

|||Ψi⟩ = ∑
I J
X †
I f ⟨Ψ̃I

||| a
†
paq

|||Ψ̃J⟩XJ i . (2.37)

This is the key relation to obtaining properties within the ADC scheme, since the operator integral
only needs to be contracted over the orbital indices of the corresponding density. For the example
of a transition dipole moment from the ground state to an excited state, the relation reads

D0→f = ∑
pq
dpq ⟨Ψf

||| a
†
paq

|||Ψ0⟩ = ∑
pq
dpq ∑

I J
X †
I f ⟨Ψ̃I

||| a
†
paq

|||Ψ̃J⟩XJ 0 . (2.38)

Even though the access to properties is the standard application for transition densities, they are
used later within the context of the excitonic renormatization method.

2.6. Configuration Interaction

As already mentioned in section 2.2, Con�guration Interaction[18, 20], CI, is based on the variational
principle. However, remaining in the one determinant basis only recovers HF. Hence, the basis
needs to be expanded beyond the one determinant basis, which is the key di�erence between all
methods based on the variational principle. If all singly excited determinants are taken into account,
one refers to the method with CIS, singly and doubly excited determinants yield CISD, up to the
complete basis, which is referred to as FCI. The wavefunction is then expanded linearly as

|Ψ0⟩ = (
1 +∑

I
cICI)

|Φ0⟩ , (2.39)
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where CI refers to the excitation operator and cI to the CI expansion coe�cient of the excitation
manifold I . Note, that the excited determinants are orthogonal to the ground state determinant.
This ansatz can then be inserted into the variational principle, to obtain working equations for the
expansion coe�cients and the energy referred to the CI wavefunction. The diagonalization step of
the Hamiltonian in the complete basis is obviously unpractical, so truncation schemes need to be
employed, like the above mentioned CIS and CISD. However, truncating the linear expansion looses
a property, which is called size consistency. Size consistency itself summarizes two properties, which
are excitation energies independent of the system size as well as ground state energies linearly
increasing with the system size. Obviously these two are very important properties, which is why
CI is not a frequently used method.

2.7. Coupled Cluster

Coupled cluster[18, 20], CC, theory makes use of all the concepts already introduced in section 2.6,
but uses a product ansatz, ensuring size consistency upon truncation,

|Ψ0⟩ = ∏
I
(1 + tICI ) |Φ0⟩ , (2.40)

where tI denotes the CC expansion coe�cient, usually referred to as CC amplitudes. Introducing
the cluster operator

T = ∑
I
tICI , (2.41)

the wavefunction can be rewritten in an exponential form

|Ψ0⟩ = eT |Φ0⟩ . (2.42)

Even though the CC amplitudes can still be solved for using the variational principle, the product
ansatz massively increases the computational cost, since the CC amplitudes cannot be solved for
independently. For instance in CCSD the singly excited CC amplitudes are connected to the doubly
excited ones through the double excitation manifold, via t2C2 + 1

2 t1C1t1C1. Therefore, di�erent
schemes have been employed to obtain the CC amplitudes, with the most common one for standard
CC being the projected CC scheme. This approach is obtained by multiplying with the inverse of
the cluster expansion from the left on

HeT |Φ0⟩ = ECC0 eT |Φ0⟩ , (2.43)
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yielding

e−THeT |Φ0⟩ = ECC0 |Φ0⟩ , (2.44)

which is the eigenvalue problem for the so-called similarity transformed Hamiltonian H ′ =
e−THeT . H ′ is not hermitian anymore, while usually numerically only slightly deviating from the
hermitian Hamiltonian, but provides the big advantage, that the energy and amplitude equations

⟨Φ0| e−THeT |Φ0⟩ = ECC0 (2.45)

⟨ΦI | e−THeT |Φ0⟩ = 0 , I ≠ 0 (2.46)

are now decoupled. Again note, that the excited determinants are orthogonal to the ground state.
Working equations are then generated by applying the Baker-Campbell-Hausdor�, BCH, expansion,
which expands the H ′ as a series of nested commutators

H ′ = e−THeT = H + [H , T ] +
1
2
[[H , T ], T ] +

1
6
[[[H , T ], T ], T ] +

1
24
[[[[H , T ], T ], T ], T ]. (2.47)

Note, that this expansion naturally truncates at fourth order, since each commutator reduces
maximum length of the Hamiltonian operator string, which is limited by the two particle operator,
by one. Even though this expansion truncates at fourth order, it is usually truncated even further,
since the full expansion scales as N 10 with N referring to the system size. The Hamiltonian is then
inserted in its normal ordered form, which is equal to subtracting the mean �eld contribution from
the one particle and the two particle operator, easing up further evaluation of the commutators.
Since the two particle operator also has a mean �eld contribution, of the form of an one particle
operator, the normal ordered Hamiltonian HN can be rewritten as

HN = H − EHF = FN + VN , (2.48)

with FN referring to the normal ordered Fock operator and VN denoting the normal ordered two
particle operator. Note, that the CC amplitudes are already in normal ordered form and therefore, if
they appear to the left of the Hamiltonian without hermitian conjugation, they yield zero, since
they are applied on the ground state determinant as deexcitation operator. Furthermore, all indices
of the CC amplitudes need to be contracted with the Hamiltonian, since there are no CC amplitudes
to the left of the Hamiltonian in hermitian conjugated form and due to the fact, that the operators
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are sandwiched between ground state determinants in the energy equation. Hence, for the example
of CCSD the energy correction one is left with

⟨Φ0|| H
′
N
||Φ0⟩ = ⟨Φ0

||||
HN t1C1 + HN t2C2 +

1
2
HN t1C1t1C1

||||
Φ0⟩

= t1 ⟨Φ0| FNC1 |Φ0⟩ + t2 ⟨Φ0| VNC2 |Φ0⟩ +
1
2
t1t1 ⟨Φ0| VNC1C1 |Φ0⟩

= ∑
ia
fiatai +

1
4
∑
ijab

⟨ij| |ab⟩ tabij +
1
2
∑
ijab

⟨ij| |ab⟩ tai t
b
j .

(2.49)

Note the similarity to the MP2 correlation energy, which gives the exact same result, if t1 = 0 and
t2 = − ⟨ab||ij⟩

�a+�b−�i−�j
, which is the same de�nition as for the t-amplitude of �rst order MP perturbation

theory, apart from the minus sign. Since the connection between CC and MP[51] is required in the
context of polaritonic unitary CC, it shall be lined out in more detail. As already explained, the
connection lies within the amplitude equations, so the amplitude equations need to be evaluated.
However, instead of evaluating the full CCSD amplitude equations a perturbation expansion scheme
is applied, to only evaluate the �rst order amplitude equations, which then correspond to the �rst
order MP amplitudes. Therefore, the CC amplitudes are expanded as

T = T (1) + T (2) + ... (2.50)

and the Hamiltonian is separated as

HN = F (0)N + V (1)
N . (2.51)

Now the �rst order single excitation CC amplitudes t (1)1 are obtained from

⟨Φ
a
i
||| H

′(1)
N

|||Φ0⟩ = ⟨Φai || FN ||Φ0⟩ + t
(1)
1 ⟨Φai || FNC1 ||Φ0⟩ + t

(1)
2 ⟨Φai || FNC2 ||Φ0⟩

= fai +∑
c
factc(1)i −∑

k
fkita(1)k +∑

kc
fkctac(1)ik

= 0.

(2.52)

Since this is a comparison to MP, which is based on a diagonalized Fock operator, one obtains

ta(1)i = −
fai + ∑kc fkct

ac(1)
ik

�a − �i
= 0. (2.53)
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The analogous procedure for t (1)2 yields

⟨Φ
ab
ij
||| H

′(1)
N

|||Φ0⟩ = ⟨Φabij
||| VN

|||Φ0⟩ + t
(1)
2 ⟨Φabij

||| FNC2
|||Φ0⟩

= ⟨ab| |ij⟩ + (1 + Pab)∑
c
fbctac(1)ij − (1 + Pij)∑

k
fkjtab(1)ik

= 0.

(2.54)

Inserting the diagonal Fock operator yields

tab(1)ij = −
⟨ab| |ij⟩

�a + �b − �i − �j
. (2.55)

Hence, one obtains exactly the amplitude equations, which match the CCSD energy to the MP2
energy. However, CCSD goes beyond MP2 with the remaining amplitude equations of higher
perturbation order. Nevertheless, most CCSD programms use the MP2 amplitudes as a guess and
therefore the results are equal in the zeroth iteration for CCSD. Furthermore, this similarity gives
rise to CC approaches, which are partially treated using perturbation theory, as will be explored in
this thesis within the context of polaritonic UCC2.

2.8. Unitary Coupled Cluster

As already discussed, the projected CC ansatz is not hermitian. However, recovering the hermiticity
of the CC ansatz can already be achieved by choosing a unitary cluster expansion

|Ψ0⟩ = eu |Φ0⟩ (2.56)

u = S − S† (2.57)

S = ∑
I
sICI , (2.58)

yielding a hermitian similarity transformed Hamiltonian H ′ = e−uHeu. This approach is called
unitary CC[18], UCC, and is a similarity transformation to H ′ from the CC approach. Hence, the
CC equations for determining the energy and amplitudes, Eq. (2.45) and (2.46) respectively, can also
be applied to the UCC similarity transformed Hamiltonian. Therefore, H ′ expanded in the basis of
the ground and excited determinants yields two fully decoupled blocks for the ground state and
the excited states, like in the ADC approach. In fact, the UCC and ADC matrices are related by an

17



2. Theory

unitary transformation. In order to obtain the working equations for UCC, H ′ needs to be expanded
in terms of H and u. In CC this is done via the BCH expansion, which naturally truncates in fourth
order. However, this is not true for UCC, since every commutator conserves the number of second
quantized operators for a unitary cluster operator. Nevertheless, a more favorable expansion has
been found, where the normal ordered Hamiltonian is separated as in Eq. (2.51) and H ′

N is rewritten
as

H ′
N = e

−uHN eu = eUHN = eU FN + eUVN = FN + P(U )[FN , u] + eUVN , (2.59)

where the superoperator U has been introduced, which is de�ned as

Ux = [x, u], (2.60)

and P(U ) de�ned as

P(U ) = (eU − 1)U −1. (2.61)

Multiplying H ′
N with P−1(U ) from the left one obtains

P−1(U )(H ′
N − FN ) = [FN , u] + P

−1(U )eUVN . (2.62)

The advantage of rewriting H ′
N this way is twofold. First note, that FN does not need to be iterated

through the higher orders of H ′
N , but only VN . The second advantage is, that P−1(U ) corresponds

to the generative function for the Bernoulli numbers, which converge rapidly for lower orders
and even result in zero for the third and �fth order contribution[52]. With the iterative part of H ′

N

summarized as V ′
N and multiplying with the relation 1 = P−1(U ) − ∑n=1

B−n
n!U

n, where B−n denotes the
Bernoulli numbers with the negative convention, one obtains the generating function for H ′

N as

H ′
N = FN + V

′
N = FN + [FN , u] + P

−1(U )eUVN −∑
n=1

B−n
n!
U nV ′

N . (2.63)

This generating function can be simpli�ed, since it is applied to the UCC amplitude equation,
resulting in

⟨ΦI || H
′
N
||Φ0⟩ = ⟨ΦI | FN |Φ0⟩ + ⟨ΦI || V

′
N
||Φ0⟩ = ⟨ΦI || V

′
N
||Φ0⟩ = ⟨ΦI || V

′
N ,OD

||Φ0⟩ , (2.64)
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where V ′
N ,OD denotes the o�-diagonal blocks of V ′

N , because only those can couple the HF deter-
minant to excited determinants. Similarly the diagonal blocks are referenced by V ′

N ,D , which are the
only contributions required to iterate

V ′
N
(i+1) = [FN , u] + P−1(U )eUVN −∑

n=1

B−n
n!
U nV ′

N ,D
(i). (2.65)

With the original V ′
N rewritten as follows

V ′
N = P(U )[FN , u] + e

UVN = (eU − 1)FN + eUVN = eU (FN + VN ) − FN , (2.66)

one can argue to start the iterative procedure with V ′
N
(0) = VN ,D , since expanding eU yields one in

zeroth order, for which FN cancels out and only VN remains. Going through this iterative procedure
once yields the following contributions

H ′
N = FN + VN + [FN , u] +

1
2
[VN , u] +

1
2
[VN ,D , u], (2.67)

with no further contributions for FN appearing in higher orders. Using this formulation for H ′
N

yields the correlation energy of the UCCSD approach

E0 =
1
4
∑
ijab

⟨ij| |ab⟩ sabij , (2.68)

while the corresponding amplitude equations can be generated from the amplitude equations.
However, in this thesis an ansatz based on UCC2 is extended, which is a simpli�cation of the
UCCSD approach. The UCC2 ansatz separates the normal ordered Hamiltonian in a perturbative
ansatz, Eq. (2.51), while the UCC amplitudes are provided with the same perturbative order, as
their corresponding amplitudes from MP perturbation theory. That means, that for instance in
�rst order of perturbation theory only the doubly excited amplitude exists, since the singly excited
amplitude is zero. Then all commutators from UCCSD are used for UCC2, which do not surpass a
perturbative order of two. This results in the same energy equation, but signi�cantly simpli�ed
amplitude equations. The working equations for the amplitudes of the UCC2 ansatz with a diagonal
fock matrix and VD summarized into V are then given as
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⟨Φ
a
i
||| H

′(1)
N

|||Φ0⟩ = s(2)1 ⟨Φai || FNC1 ||Φ0⟩ + s
(1)
2 ⟨Φai || VNC2 ||Φ0⟩

= (�a − �i)sa(2)i +
1
2
∑
jbc

⟨aj| |bc⟩ sbc(1)ij −
1
2
∑
jkb

⟨jk| |ib⟩ sab(1)jk

= 0,

(2.69)

and

⟨Φ
ab
ij
||| H

′(1)
N

|||Φ0⟩ = ⟨Φabij
||| VN

|||Φ0⟩ + s
(1)
2 ⟨Φabij

||| FNC2
|||Φ0⟩ + s

(1)
2 ⟨Φabij

||| VNC2
|||Φ0⟩

= ⟨ab| |ij⟩ + (�a + �b − �i − �j)sab(1)ij

+
1
2
∑
kl

⟨kl| |ij⟩ sab(1)kl +
1
2
∑
cd

⟨ab| |cd⟩ scd(1)ij + (1 − Pij)(1 − Pab)∑
kc

⟨kb| |cj⟩ sac(1)ik

= 0.
(2.70)

Note, that this approach does not just yield less equations to determine the amplitudes, but also
has decoupled amplitudes. Hence, the doubly excited equations can be iterated to yield s(1)2 , which is
independent of s(2)1 , and therefore provides a signi�cant speed-up compared to UCCSD.

2.9. Semiempirical methods

Semiempirical methods have always been important in quantum chemistry, since most practically
relevant problems require computations on large systems, where the high scaling of the presented
post-HF methods makes these computations impossible. However, there has been tremendous
progress over the last decades in terms of �oating point operations per second of the hardware,
parallel computing and linear algebra algorithms, as well as approaches to reduce the computational
scaling of quantum chemical methods, sometimes even down to quasi linear scaling[23, 53], and to
reduce the size of the basis set, by introducing a correction for the truncated basis[54, 55]. Especially
these new low scaling approaches are able to handle also large systems, but only if the system
provides highly local densities for ground state computations and highly local transition densities
for excited state computations. This is not true for many practically relevant systems, which is why
semiempirical methods are still widely used today. In this thesis semiempirical methods and their
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concepts are not required for theoretical developments, but only for computations, and therefore
shall only be shortly outlined.

2.9.1. Density Functional Theory

Density functional theory[20], DFT, is based on the Hohenberg-Kohn theorems, which state, that
the wavefunction of the ground state is bijectively mapped onto the electron density of the ground
state and that the variational principle also applies to the electron density. The electronic energy of
the system is then given as

E[p(r)] = T [p(r)] + Vne[p(r)] + Vee[p(r)] + Vxc[p(r)], (2.71)

where T , Vne , Vee and Vxc denote the kinetic, nuclear electron attraction, Coulomb electron
electron repulsion and exchange correlation energy functional. The advantage over wavefunction
based methods is the low dimensionality of p(r), which is three, compared to the high dimensionality
of the wavefunction, which still yields a signi�cant speed-up after evaluating the electron density
over a grid. However, the method has major issues, since for the kinetic energy functional only
the functional for the free electron gas is known for more than two electrons, which favors non-
chemically bound solutions over bound ones, while Vxc is completely unknown. Nevertheless, Vxc
can be reasonably well approximated with the local density approximation, LDA, or the generalized
gradient approximation, GGA, which both involve empirical parameters. Nowadays T is mostly
handled by reintroducing orbitals and using the kinetic energy term from the wavefunction based
Hamiltonian. This approach signi�cantly reduces the speed of the method, but is still much faster
than HF, while providing results of proper accuracy now. Since the empirical parameters in Vxc
need to be �tted, DFT works very well for organic molecules build from light atoms, because they
only require small variations in the empirical parameters. A lot of practically relevant molecules
fall under this category, which is why DFT is widely used, but its performance is rather poor, when
leaving the realm of organic molecules. Using Eq. (2.19), this approach can be extended to yield
excited states as well, using only the random phase approximation, RPA. However, usually only one
block of the 2 x 2 RPA block matrix is used for time-dependent DFT, TDDFT, which is the so-called
Tamm-Danco� approximation. In most cases, RPA accuracy can then be reobtained by applying a
cheap dispersion correction. TDDFT has the same limitations as DFT, in terms of molecular systems,
but also performs poor on charge transfer states, which are described well by HF. Therefore, most
DFT and TDDFT calculations nowadays are hybrid calculations, where the �nal Hamiltonian is
build from a linear combination of HF and DFT Hamiltonian.
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2.9.2. Force Fields

Force-�eld[20, 56], FF, approaches are probably the crudest of approximations to the actual Hamilto-
nian, since they neither use wavefunctions, nor electron densities, but parametrizations for internal
coordinates. For instance bond lengths and angles are parametrized by harmonic oscillators, which
for bond lenghts are very similar to the anharmonic oscillator around the equilibrium geometry.
Dihedral angles are parametrized by smooth functions, showing minima when atoms are the furthest
apart and maxima where they are closest to each other. Non-binding interactions are also taken into
account, e.g. using the classical dipole-dipole interaction to describe van-der-Waals interactions.
This approach is by far the fastest of all quantum chemical methods, but still gives reasonable results
for geometries, relative energies of conformers and sometimes even properties, which is why they
are widely used for initial screenings and geometry optimizations. Obviously this approach cannot
be extended to excited states though. It shall be noted here, that in terms of speed machine learning
algorithms greatly surpass the speed of force �elds, but for large systems the generalization to other
systems is usually not given, which is why nowadays machine learning algorithms are only applied
to speci�c molecules, which they were trained for.

2.9.3. Extended Tight Binding

Recently also tight-binding methods have a renaissance. The method most widely applied here is
the extended tight binding method, XTB, optimized for geometries, frequencies and non-binding
interactions, GFN-XTB[21]. XTB can be thought of an intermediate method between FFs and DFT,
since it is based on the tight-binding energy functional perturbatively expanded as

E[p(r)] = E(0)[p0(r)] + E(1)[p0(r), �p(r)] + E(2)[p0(r), (�p(r))2] + E(3)[p0(r), (�p(r))3] + ..., (2.72)

where p0(r) is the initial tight-binding electron density. E(0) is described by a Lennard-Jones
potential also including dispersion, which can be thought of as a tight-binding version of a force
�eld. The force �eld is then perturbed by density �uctuations, leading to anisotropic corrections to
p0(r). Extended up to in�nite order, the full density is recovered. Since the energy functionals are
then plugged into a DFT machinery, the fully expanded XTB ansatz yields DFT. For instance for the
GFN2-XTB method, which is the most widely used GFN-XTB method, Eq. (2.72) is truncated after
the third order. This approach has the advantage, that only small perturbations to the non-iterated
tight-binding density need to be iterated, which can be transformed to terms, which are much faster
evaluated, than the full density in DFT. This approach has then been numerically proven to provide
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close to DFT accuracy for geometries, frequencies and non-binding interactions, at signi�cantly
lower computational cost. Therefore, GFN-XTB enables fast prescreening at almost DFT accuracy in
principle for all energies and properties, since it is a density based methods. GFN-XTB also grants
access to excited states and the only atom speci�c parameters, which need to be �tted, are global
parameters. Hence, other than DFT or FFs, GFN-XTB can easily be applied to the whole periodic
system of elements.

2.10. Non-Relativistic �antum Electrodynamics

2.10.1. Deriviation of the Pauli-Fierz Hamiltonian

In order to derive a practical Hamiltonian for polaritonic systems in chemistry, the standard
Hamiltonian from electrodynamics will be canonically quantized and transformed into a compact
equation[57]. Canonical quantization of a variable, q, yields its conjugated momenta, p, from the
rules of Lagrangian mechanics

pconj =
)L
)q̇

(2.73)

qconj =
)L
)ṗ
, (2.74)

where q̇ refers to the time derivative of q and L denotes the Langrangian from classical electrody-
namics

L = ∑
a

1
2
ma ṙ2a +

�0
2 ∫ (E2(r) + c2B2(r))d3r +∑

a
(qa ṙa ⋅ A(ra) − qaU (ra)). (2.75)

One needs to sum over all particles a, which shall be dropped in the following for brevity along
with the dependencies r and t of the �elds. Furthermore, U and A denote a scalar �eld and a vector
�eld, respectively, which are utilized to de�ne the electric, E, and magnetic �eld, B as

E = −Ȧ − ∇U (2.76)

B = ∇ × A. (2.77)

The Hamiltonian can then be obtained from
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H = pconj ṙ − L. (2.78)

Choosing q in Eq. (2.73) as r yields the conjugate momentum

pcong =
)L
)ṙ

= mṙ + qA (2.79)

and with p denoting the momentum without a vector �eld applied, one obtains

H =
1
2m

(p − qA)2 −
�0
2 ∫ (E2 + c2B2)d3r − (qṙ ⋅ A − qU ). (2.80)

In order to recover the standard Hamiltonian used in quantum mechanics, without electrodynamic
�elds, the �elds will be decomposed into a longitudinal and a transversal part, which separates the
scalar �eld contribution from the vector �eld contribution. However, this decomposition requires
locality, which is not given, due to the spatial derivatives, so the reciprocal space is utilized here,
which one obtains through Fourier transformation. The �elds are then de�ned in reciprocal space as

B = ik × A (2.81)

E = −Ȧ − ikU (2.82)

and the longitudinal V∥ and transversal �elds V⊥ are then de�ned as

∇ × V∥(r) = ik ×V∥(k) = 0 (2.83)

∇V⊥(r) = ikV⊥(k) = 0. (2.84)

Decomposing the �elds then shows, that the magnetic �eld is purely transversal, while in the
electric �eld the scalar �eld contribution is purely longitudinal. In fact, also the remaining vector
�eld contribution in the electric �eld is transversal, when the Coulomb gauge is applied. With
E = E∥ + E⊥ and E∥ ⋅ E⊥ = 0, as well as the Parseval-Plancherel identity

∫ E ⋅ Ed3r = ∫ E∗ ⋅ Ed3k, (2.85)

one obtains

(
�0
2 ∫ (E2 + c2B2) d3r)

⊥
=
�0
2 ∫ (E2⊥ + c

2B2) d3r =
�0
2 ∫ (E2

⊥ + c
2B2) d3k (2.86)
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and

(
�0
2 ∫ (E2 + c2B2) d3r)

∥
=
�0
2 ∫ |E∥(k)|2d3k =

�0
2 ∫ E∥(r)2d3r

=
1

8��0 ∫ ∫
p(r)p(r ′)
|r − r ′|

d3rd3r ′

= ∑
�

q2�
2�0(2�)3 ∫

d3k
|k|2

+
1

8��0
∑
�≠�

q�q�
r� − r�

= VCoul .

(2.87)

Recovering the coulomb potential is crucial, since now the standard Hamiltonian can be excluded
as a separate term for the derivation of polaritonic methods, since the methods are already developed
for it. For the next step the following intermediates are used

��(k) = −
i
2N

(E⊥(k) − c� ×B(k)) (2.88)

��(k) = −
i
2N

(E⊥(k) + c� ×B(k)) = −� ∗k(−k), (2.89)

with N =
√

~!
2�0

and � denoting the unit vector of k. These are the eigenfunctions of the equations
of motion of the transversal �elds without a current of charged particles, which is why they are
vectors orthogonal to k, indicated by the index �. The Lagrangian can be rewritten as

L =
1
2
mṙ2 − VCoul + ∫ (

�0
2 (

Ȧ2 − c2(ik × A)2) + j ⋅ A)d
3k, (2.90)

where j is the electric current in reciprocal space. With the conjugated momentum to A given as

Z =
)L
)Ȧ

=
) ∫ �0

2 Ȧ
2d3k

)Ȧ
= �0Ȧ = −�0E⊥ (2.91)

and the fact that

c� ×B = ic� × k × A = icA, (2.92)

one can rewrite Eq. (2.88) as

��(k) =
√

�0
2~! (!A� +

i
�0
Z�) . (2.93)
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This formulation can now be used to rewrite the Hamiltonian as

H =
1
2m

(p − qA)2 + VCoul + ∫
~!
2

∑
�

(��(k)
∗��(k) + ��(k)��(k)∗)d

3k. (2.94)

This relation can easier be understood by the fact, that j is proportional to E⊥ and therefore also to
Z. One can already expect the additional part to the standard quantum chemical Hamiltonian to be
described by a harmonic oscillator, which signi�cantly simpli�es further derivations for polaritonic
quantum chemical methods. Now the actual quantization is performed, which is known for the
standard Hamiltonian, where spatial and momentum operators obey the anti-commutation relations.
Furthermore, A and its conjugated momentum are quantized, but since these are �elds interacting
via photons, i.e. bosons, they need to obey the commutation relations

[An(k),Zm(k′)] = 0 (2.95a)

[An(k),Z†m(k
′)] = i~�mn�(k − k′). (2.95b)

All other commutators are zero. From these commutation relations on obtains

[A�(k),Z�′(k′)] = i~���′�(k + k′) (2.96a)

[A�(k),Z†�′(k
′)] = i~���′�(k − k′). (2.96b)

With the other commutators still giving zero. From these one obtains

[a�(k), a
†
�′(k

′)] = ���′�(k − k′), (2.97)

where the other two commutation relations yield zero. Using these commutation relations, the
integral part can be brought into the common quantum harmonic oscillator representation

H =
1
2m

(p − qA)2 + VCoul +∑
i
~!i (a

†a +
1
2)

. (2.98)

Since in principle an explicit interaction with the spin and not just the charge of the electrons and
cores could be relevant, this contribution shall be investigated by introducing an ad hoc interaction
term as
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H S
1 = −∑

�
g�

q�
2m�

S� ⋅ B(r� ), (2.99)

where g� denotes the Lande factor. Since B = ∇ × A ∼ kA one obtains

H S
1

H1
≃
q~B/m
qAp/m

≃
~kA
pA

=
~k
p
. (2.100)

Since bound electrons in molecules are considered along with photons in the optical and long-UV
energy regime, the relation is very small, and the coupling of the particle spins to the magnetic
�eld can be neglected. As already mentioned, the Coulomb gauge has been applied, to separate
E and B into longitudinal and transversal contributions, which is a degree of freedom, due to the
non-uniqueness of the Lagrangian. One can switch representations between Lagrangians, by adding
a total time-derivative

L′(x, ẋ) = L(x, ẋ) +
d
dt
F (x, t) = L(x, ẋ) + ẋ

)F
)x

+
)F
)t
, (2.101)

yielding the new conjugated momentum

pL′ = pL +
)F
)x

. (2.102)

The spatial operators remains the same. This swap between representations can be achieved by
an unitary transformation, with the unitary operator

T = e
i
~ F , (2.103)

so that

x̂ (2) = T x̂ (1)T † (2.104a)

p̂(2) = T p̂(1)T † (2.104b)

|||Ψ
(2)⟩ = T |||Ψ

(1)⟩ . (2.104c)

From these transformations, and the fact, that the Schrödinger equation is only valid for repre-
sentation two with L′ or representation one with L it follows from
i~ d

dt
||Ψ

(2)⟩ = H (2)
L′

||Ψ
(2)⟩, that

H (2)
L′ = TH

(1)
L T † −

)F
)t
. (2.105)
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With the vector �eld given as

A(r� ) = ∑
i

√
~

2�0!iL3
(ai�ie+ikir� + a

†
i �ie−ikir�) (2.106)

and the dipole approximation, |kir� | << 1, A becomes time-independent. Note, that �i describes
the polaritzation of photon i. One can now get rid of A completely by a unitary transformation,
which is de�ned as

Tp�T † = p� + q�A(0). (2.107)

By de�ning �i = i√
2�0�r~!iL3

�i ⋅ d , where d denotes the dipole operator, the resulting transformation
can be written as

T = exp
(
∑
i
(�∗iai − �ia

†
i ))

. (2.108)

Since the transformation is time-independent, the last term in eq. (2.105) is zero. With TaiT † =
ai + �i and Ta†i T † = a†i + �∗i one obtains the transformed Hamiltonian as

H ′ = ∑
�

p2�
2m�

+ VCoul +∑
i
~!i ((a

†
i ai +

1
2)

+ (�ia†i + �∗iai) + �
∗
i�i) . (2.109)

This is known as the Pauli-Fierz Hamiltonian, from which quantum chemical methods can rather
straightforwardly be expanded to polaritonic quantum chemical methods, since the Hamiltonian
can be seen as the standard quantum chemical Hamiltonian where a perturbative term is added.

2.10.2. Linear response of the Pauli-Fierz Hamiltonian

In order to obtain the linear response, the representation of the Hamiltonian is changed �rst, which
eases up the photonic perturbation and the evaluation of the �nal integrals[41]. Therefore, the
bosonic �eld operators are given in terms of photonic displacement coordinates q, analogously to
the harmonic oscillator

a =
1
√
2 (q +

)
)q)

=
1
√
2 (q − i!pq) (2.110)

a† =
1
√
2 (q −

)
)q)

=
1
√
2 (q + i!pq) , (2.111)
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which transforms the Hamiltonian to

H = T + VCoul +
1
2
∑
�

(p
2
� + !

2
� (q� −

��
!�

R)2). (2.112)

Here pq denotes the conjugated momentum to q, R the total dipole moment of the system, and T
the kinetic part of the standard Hamiltonian. The perturbation, Hext , is then given by an external
electromagnetic potential v, disturbing the matter system, and a photonic current j, disturbing the
light system

Hext(t) = Vext(t) + Jext(t) = ∑
i
v(ri , t) +∑

�

j� (t)
!�

q� . (2.113)

Note, that the photonic perturbation has this form, since j needs to be introduced before unitarily
transforming the Hamiltonian from the Coulomg gauge to the Pauli-Fierz Hamiltonian, which
provides the so-called length gauge. Now the linear response is obtained via the standard procedure,
where the Born series is terminated after �rst order

ΨI (t) ≃ ΨI (0) −
i
~ ∫

t

t0
dt ′Hext,I (t ′)ΨI (t), (2.114)

which is then used to calculate the change in the expectation value of an arbitrary operator, O,
due to the time-dependent external perturbation in the interaction picture as

�⟨O(t)⟩ = ⟨Ψ(t)| O |Ψ(t)⟩ − ⟨Ψ0| O |Ψ0⟩ = −
i
~ ∫

t

t0
dt ′ ⟨Ψ0|| [OI (t), Hext,I (t ′)] ||Ψ0⟩ . (2.115)

The responses � are then obtained as

�� = −
i
~ ∫

t

t0
dt ′ ∫ dr ′ ⟨Ψ0| [XI , YI ] |Ψ0⟩ = −

i
~
Θ(t − t ′) ⟨Ψ0

||| [XI , X̃I ]
|||Ψ0⟩ , (2.116)

with X = {n(r , t), q� (t)}, Y = {Vext(r ′, t ′), Jext(t ′)} and X̃ = {n(r , t), 1
!�
q� (t)}. This yields four

responses, better known as propagators, which can be thought of as the response of the matter
system to the matter system, the response of the photonic system to the matter system, as well as
both responses to the photonic system. In Lehmann representation the �nal responses are

� nn (r , r
′, !) =

1
~
lim
�→0+

∑
k

(
fk(r)f ∗k (r ′)
! − Ωk + i�

−
fk(r ′)f ∗k (r)
! + Ωk + i�)

(2.117a)
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� nq� (r , !) =
1
~
lim
�→0+

∑
k

1
!�(

fk(r)g∗�,k
! − Ωk + i�

−
g�,kf ∗k (r)

! + Ωk + i�)
(2.117b)

� q�n (r
′, !) =

1
~
lim
�→0+

∑
k

(
g�,kf ∗k (r ′)
! − Ωk + i�

−
fk(r ′)g∗�,k
! + Ωk + i�)

(2.117c)

� q�q�′ (!) =
1
~
lim
�→0+

∑
k

1
!� ′(

g�,kg∗� ′,k
! − Ωk + i�

−
g� ′,kg∗�,k

! + Ωk + i�)
, (2.117d)

where fk(r) = ⟨Ψ0| n(r) |Ψk⟩, which is the transition moment known from standard linear re-
sponse theory, and g�,k = ⟨Ψ0| q� |Ψk⟩. Hence, the response to the matter system from the matter
perturbation is the same as for standard linear response theory, apart from the di�erent energy
eigenvalues in Ωk , which is important, since now polaritonic methods depending on the response,
or propagator, e.g. DFT and ADC, are only extensions to the non-polaritonic methods, instead of
completely di�erent methods. The same holds for the evaluation of properties from propagators,
e.g. see section 2.5, where the non-polaritonic approach can be considered a good zeroth order
approximation to the consistent polaritonic procedure. This response will then be applied molecules
in cavities and is visualized in Figure 2.1.

Figure 2.1.: Visualization of the polaritonic linear response of a 2 x 2 light-matter system in a cavity, which
is coupled by the constant �, determined by the experimental setup. The black ellipsoid depicts
the polaritonic system, interacting with the cavity photon of frequency !C .
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2.11. Polaritonic Hartree-Fock

2.11.1. Transforming to a Hamiltonian with an origin invariant mean-field

Before the mean �eld of the Pauli-Fierz Hamiltonian is determined[45], the Pauli-Fierz Hamiltonian
will be rewritten as

H = He + !b†b −
√
!
2
(� ⋅ d)(b† + b) +

1
2
(� ⋅ d)2. (2.118)

Note, that � has been multiplied with
√
2~! and the dipole operator has been factored out, while

i was factored into the polaritzation vector, since now it is a real constant given by the experimental
setup, as � = 1√

�0�rL3
�. Also since for the derivation of polaritonic methods fermionic and bosonic

second quantized operators are required, the bosonic second quantized operators are now denoted
by b. Finally He = ∑�

p2�
2m�

+ VCoul abbreviates the non-polaritonic Hamiltonian and the sum over all
photons has been dropped too, so only photons of one wavelength are taken into account. Note, that
this Hamiltonian still has an issue, since it is not origin invariant, due to the nuclear contribution,
dN , in the dipole operator

d = ∑
pq
dpqa†paq + dN . (2.119)

Note, that the Hamiltonian is origin invariant, if the system has no global charge. If the system
has a global charge, the center of the global charge can also be set to the origin and not moved from
there, which su�ces for most practically relevant calculations. However, in order to properly deal
with systems providing a global charge the Hamiltonian will be transformed again to provide an
origin invariant mean-�eld. The expectation value of the Hamiltonian is given as

⟨H⟩ = EHF + !b†b −
√
!
2
(� ⋅ ⟨d⟩)(b† + b) +

1
2 ⟨(� ⋅ d)2⟩ , (2.120)

where EHF denotes the non-QED HF energy and by substituting X =
√!

2 (� ⋅ ⟨d⟩) the expectation
value reduces to

⟨H⟩ = EHF + !b†b − x(b† + b) +
x2

!
. (2.121)

Now a unitary transformation is applied to the Hamiltonian, with the transformation operator
(2.108), with the new constant z, which yields

⟨H⟩ = EHF + !b†b − x(b† + b) +
x2

!
+ !(zb† + z∗b + z∗z) − x(z + z∗). (2.122)
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Choosing z = x
! grants

⟨H⟩ = EHF + !b†b. (2.123)

Hence, an origin invariant mean-�eld energy is obtained, by applying this transformation to the
Pauli-Fierz Hamiltonian, yielding the Hamiltonian, which is used throughout this thesis, as

H = He + !b†b −
√
!
2
(� ⋅ (d − ⟨d⟩))(b† + b) +

1
2
(� ⋅ (d − ⟨d⟩))2. (2.124)

2.11.2. Polaritonic Hartree-Fock for the transformed Hamiltonian in the
photonic vacuum

Since HF is derived for the ground state, the natural choice is to choose the fermionic system in
the standard ground state determinant and the bosonic system in the vacuum. The basis is then
build from the tensor product of the fock space with the photonic number states. Note, that the
photonic number states are eigenfunctions of the harmonic oscillator, since the pure bosonic system
is exactly determined by a harmonic oscillator, but explicit bosonic states are never required, since
in the second quantized basis the bosonic �eld operators are the known ladder operators of the
harmonic oscillator. Building the expectation value of the Hamiltonian with the tensor product of
the ground state determinant and the photonic vacuum, for which the notation |ΦI⟩ ⊗ |n⟩ = ||ΦI ,n⟩ is
used, gives

⟨Φ0,0|| H ||Φ0,0⟩ = ⟨Φ0,0
||||
He + !b†b −

√
!
2
(� ⋅ (d − ⟨d⟩))(b† + b) +

1
2
(� ⋅ (d − ⟨d⟩))2

||||
Φ0,0⟩

= ⟨Φ0
||||
He +

1
2
(� ⋅ (d − ⟨d⟩))2

||||
Φ0⟩ .

(2.125)

Hence, He is shifted by a purely electronic contribution, containing a two and a one particle
contribution, and evaluated in the purely fermionic basis. Therefore, the electronic contributions
in He are merely shifted, so the polaritonic HF method, QED-HF, can be obtained with established
methods. In order to do so, the shift to He is brought into normal order

1
2
∑
pqrs

(� ⋅ dpr )(� ⋅ dqs)a†para
†
qas =

1
2
∑
pqrs

(� ⋅ dpr )(� ⋅ dqs)a†pa
†
qasar +

1
2
∑
pqr
(� ⋅ dpr )(� ⋅ drq)a†paq, (2.126)
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using the fermionic commutation relations. Since the two particle �eld operator string is evaluated
analogously to the electron repulsion integrals, one obtains the polaritonic Fock operator as

Fpq = Fpq,e + (∑
i
(� ⋅ dpq)(� ⋅ dii) −∑

i
(� ⋅ dpi)(� ⋅ diq) +

1
2
∑
r
(� ⋅ dpr )(� ⋅ drq)

= Fpq,e +
1
2(
−∑

i
(� ⋅ dpi)(� ⋅ diq) +∑

a
(� ⋅ dpa)(� ⋅ daq))c†p cq,

(2.127)

and the QED-HF energy as

EQED−HF = EHF +
1
2 ⟨(� ⋅ (d − ⟨d⟩))2⟩ = EHF +

1
2
∑
i,a
(� ⋅ dia)2. (2.128)

Note, that to the nuclear repulsion energy the term 1
2 (� ⋅ (⟨d⟩))

2 is added, which is a constant on
the diagonal of the QED-Fock operator. It is further important to note, that the mean-�eld energy
is origin invariant, but the QED-Fock operator is not. This can be seen by separating d into a
diagonal part, which is origin dependent, ⟨d⟩ and the remainder d ′, which is origin independent,
d = ⟨d⟩ + d ′. This way the QED-Fock operator can be separated into an origin invariant part and
the non-invariant part

Fpq = Fpq,origin−invariant − (� ⋅ ⟨d⟩)(� ⋅ d ′ij) −
1
2
(� ⋅ ⟨d⟩)2�ij + (� ⋅ ⟨d⟩)(� ⋅ d ′ab) +

1
2
(� ⋅ ⟨d⟩)2�ab, (2.129)

which partially cancels against the constant on the diagonal 1
2 (� ⋅ (⟨d⟩))

2, yielding

Fpq = Fpq,origin−invariant − (� ⋅ ⟨d⟩)(� ⋅ d ′ij) + (� ⋅ ⟨d⟩)(� ⋅ d
′
ab) + (� ⋅ ⟨d⟩)

2�ab. (2.130)

2.12. Excitonic Renormalization

The excitonic renormalization method[28], XR, is a fragmentation approach, i.e. a super-system is
divided in subsystems, which a referred to as fragments. These fragments are calculated separately
and then the interaction betwenn the fragments is determined. A crucial di�erence of XR to other
fragmentation approaches is, that the basis is constructed from the states | i⟩ from all N fragments,
in contrast to building the basis from determinants. The basis is then constructed from the globally
antisymmetrized tensor product of all states from all fragments
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|ΨI⟩ = | i1 i2 ⋯ iN ⟩, (2.131)

where I = (i1, i2, ⋯ iN ) tracks the states and their corresponding fragments. Note, that these states
are not orthonormal. However, by introducing a biorthogonal complement basis {||Ψ

I⟩}, obeying

⟨ΨI ||ΨJ⟩ = �I J , a basis similar to the CC basis is constructed, which is also not orthonormal, but
biorthogonal. This enables the introduction of second quantized operatos, the so-called �uctuation
operators, as

�̂ jmkm || i1 ⋯ im ⋯ iN⟩ = �jmim || i1 ⋯ km ⋯ iN⟩ , (2.132)

providing the following commutation relations

[�̂ ji , �̂ lk] = �jk �̂
l
i − �il �̂

k
j . (2.133)

This ansatz enables separation of short and long range correlation, since the short range correla-
tion is already covered by the states, which are now used to solve for the long range correlation.
Furthermore, this leads to the possibility of truncation of the state space from each fragment, since
correlated states are used as the fragment basis, which can already contain all the relevant correla-
tion in very few states, instead of orbitals. The comparison of an excitation within the �uctuation
operator basis and the second quantized basis acting on determinants is visualized in Figure 2.2.

Using the �uctuation operator basis, the Hamiltonian can be rewritten without approximation as

̂ = ∑
m

∑
I =(im)
J=(jm)

⟨ΨI |Ĥ1|ΨJ⟩�̂ jmim + ∑
m1<m2

∑
I =(im1 ,im2 )
J=(jm1 ,jm2 )

⟨ΨI |Ĥ2|ΨJ⟩�̂
jm1
im1
�̂ jm2im2

+ ∑
m1<m2<m3

∑
I =(im1 ,im2 ,im3 )
J=(jm1 ,jm2 ,jm3 )

⟨ΨI |Ĥ3|ΨJ⟩�̂
jm1
im1
�̂ jm2im2

�̂ jm3im3

+ ∑
m1<m2<m3<m4

∑
I =(im1 ,im2 ,im3 ,im4 )
J=(jm1 ,jm2 ,jm3 ,jm4 )

⟨ΨI |Ĥ4|ΨJ⟩�̂
jm1
im1
�̂ jm2im2

�̂ jm3im3
�̂ jm4im4

, (2.134)

34



2. Theory

Figure 2.2.: Comparison between two second quantized operator bases, where a) shows a single excitation
in the �uctuation operator basis and b) shows the corresponding excitation in the determinant
basis. Both are shown in the orbital picture.

with Ĥi denoting the i body fragment contribution from the Hamiltonian. Since the Hamiltonian
has at maximum four second quantized operators, it can only interact with four particles, which is
why ̂ = ∑4

i=1 Ĥi , and therefore the expansion of the Hamiltonian in the �uctuation operator basis
naturally truncates after the four fragment contribution. The i body fragment contributions to the
Hamiltonian are then given by the single particle Hamiltonian

Ĥ = ∑
pqrs

ℎpqa
†
pa

q +∑
pqrs

vpqrs a
†
pa

†
qa

sar , (2.135)

where ℎpq = ⟨Φp |ℎ̂|Φq⟩ and vpqrs = 1
4⟨Φ

pΦq |v̂|ΦrΦs⟩, where the second quantized operators of each
term need to act on particles of exactly i di�erent fragments. Note, that these second quantized oper-
ators act on the orbitals of the single fragments {||Φp⟩} and their biorthogonal complements {|Φp⟩}.
Hence, only creation operators from one basis obey anticommutation relations with annihilation
operators from the other basis, such that

[a†p , a
q] = �pq, [a†p , a

†
q ] = 0, [ap , aq] = 0. (2.136)

This su�ces to evaluate the matrix elements in Eq. (2.134). The evaluation of the one fragment
term is trivial, since it is only evaluated in the basis of one fragment, which is assumed to be
orthogonal. Note, that in the following all states of a single fragment are assumed to be orthonormal.
Therefore, it yields the diagonalized matrix of the method used to calculate the states for the
individual fragment. The two fragment term can be evaluated as
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⟨ i1 i2 |Ĥ2| j1 j2⟩ = ⟨ℎ12⟩ + ⟨ℎ21⟩ + ⟨v1212⟩

+⟨v1121⟩ + ⟨v1222⟩ + ⟨v2212⟩ + ⟨v2111⟩

+⟨v1122⟩ + ⟨v2211⟩. (2.137)

Working equations can then be obtained by building the states from the vacuum states and
fermionic �eld operators, as well as making use of the fact, that also the biorthogonal complements
of the super-system are build from tensor products. The �rst term on the right hand side can then
be evaluated as

⟨ℎ12⟩ = ∑
p1q2

ℎp1q2 ⟨
|||  ̂

i1 ̂ i2 ... ̂ iN a†p1a
q2 ̂jN ... ̂j2 ̂j1

|||⟩ . (2.138)

In order to evaluate the expectation value, the state operators need to be brought into their orbital
representation. This is achieved by the relations

 ̂im |⟩ = || im⟩ = ∑
Pm

zPmim ||ΦPm⟩ = ∑
Pm

zPmim Φ̂Pm |⟩ (2.139)

⟨|  ̂ im = ⟨ im || = ∑
Pm

z̄imPm ⟨ΦPm || = ∑
Pm

z̄imPm ⟨| Φ̂Pm , (2.140)

where z is the coe�cient vector building the corresponding state from the orbital basis of the
fragment and z̄ denotes its inverse. This yields
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⟨ℎ12⟩ = ∑
p1q2

ℎp1q2 ⟨
|||  ̂

i1 ̂ i2 ... ̂ iN a†p1a
q2 ̂jN ... ̂j2 ̂j1

|||⟩

= ∑
p1q2

ℎp1q2 ∑
P

⟨
||| Φ̂

P1Φ̂P2 ...Φ̂PN a†p1a
q2Φ̂QN ...Φ̂Q2Φ̂Q1

|||⟩
N

∏
m=1

z̄imPmz
Qm
jm

= ∑
p1q2

ℎp1q2 ∑
P

⟨
||| Φ̂

P1Φ̂P2a†p1a
q2Φ̂Q2Φ̂Q1

|||⟩ ⟨
||| Φ̂

P3 ...Φ̂PN Φ̂QN ...Φ̂Q3
|||⟩

N

∏
m=1

z̄imPmz
Qm
jm

= ∑
p1q2

ℎp1q2 ∑
P

⟨
||| Φ̂

P1Φ̂P2a†p1a
q2Φ̂Q2Φ̂Q1

|||⟩
2

∏
m=1

z̄imPmz
Pm
im �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2 ∑
P

⟨
||| Φ̂

P1a†p1Φ̂Q1
|||⟩ ⟨

||| Φ̂
P2aq2Φ̂Q2

|||⟩
2

∏
m=1

z̄imPmz
Pm
im �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2 ⟨
|||  ̂

i1a†p1 ̂j1
|||⟩⟨

|||  ̂
i2aq2 ̂j2

|||⟩ �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2 ⟨ 
i1 ||| a

†
p1
||| j1⟩⟨ i2 || a

q2 || j2⟩ �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2 ⟨ i1
||| a

†
p1
||| j1⟩⟨ i2 || a

q2 || j2⟩ �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2 ⟨ i1
||| a

†
p1
||| j1⟩⟨ i2 || aq2 || j2⟩ �i3...N j3...N

= (−1)ni2 ∑
p1q2

ℎp1q2�p1�
q2�i3...N j3...N ,

(2.141)

where the density, �, has been introduced and ni2 denotes the number of electrons in the state
i2. ⟨ℎ21⟩ can then be evaluated simply by applying symmetry considerations. In the following the
Kronecker delta for the remaining state space will be dropped for brevity. The other expectation
values can be evaluated analogously to

⟨v1212⟩ = 4 ∑
p1q2r1s2

vp1q2r1s2 �
r1
p1�

s2
q2 (2.142)

⟨v1121⟩ = 2(−1)ni2 ∑
p1q1r2s1

vp1q1r2s1 �
s1
p1q1�

r2 (2.143)

⟨v1122⟩ = ∑
p1q1r2s2

vp1q1r2s2 �p1q1�
s2r2 . (2.144)

Hence, all that remains from the supersystem is a global phase, and the fragment Hamiltonian
can be evaluated from just biorthogonalized atomic integrals and densities evaluated on single
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Figure 2.3.: Comparison of the Dissoziation curves of Be2 in the 6-31G basis set. XR(n) denotes, that n FCI
states have been used from the monomers. Note, that these states were optimized with respect
to lowering the e�ective rank of the pseudo density, which builds the dimer ground state at FCI
level. This procedure is described in more detail in the literature[29].

fragments. This is extremely powerful, since all correlation for the full system only needs to be
evaluated for single fragments, which makes this approach in principle scale as the number of
interactions after which the Hamiltonian is cut o�, k, and the number of fragments N , as ( N

N−k).
However, the numerical performance of this approach is rather poor if applied to a truncated state
space, as shown in Figure 2.3.

This is due to the fact, that large non-hermitian terms can appear, e.g. core orbitals overlapping
with unoccupied orbitals from an other fragment, because biorthogonality is only ensured for the
full state space. This issue becomes more critical for short Be2 bond lengths, as can be seen in
Figure 2.3. The curve then seems to provide qualitatively wrong behaviour at short distances, but
it shall be noted, that this can also be an artifact of the Be2 system, which shows an additional
even deeper minimum at a lower bond distance for FCI, if a large basis set is used. Using a less
truncated state space on the other hand provides very good results, providing overall much higher
accuracy than CCSD(T), but using this many states introduces a very large prefactor, so CCSD(T)
will probably be faster even up to medium sized molecules, even though the XR approach only scales
as N 4 in CPU time and memory. Hence, XR is required to achieve good accuracy for small state
spaces in order to be of practical relevance. Ensuring biorthogonality in the truncated state space,
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in the following denoted with a tilde, requires explicit biorthogonalization between the truncated
spaces of the fragments required for the i body terms of the Hamiltonian. This is ensured by the
super-system wavefunction for the truncated space |||Ψ̄

Ĩ
⟩, which obeys ⟨Ψ̄Ĩ |ΨJ̃⟩ = �Ĩ J̃ . Analogous to

the biorthogonalization procedure, |||Ψ̄
Ĩ
⟩ can be obtained as

⟨Ψ̄Ĩ | = ∑
J̃

S̄ Ĩ J̃⟨ΨJ̃ |. (2.145)

Using this a new, non-terminating, expansion of the Hamiltonian is obtained as

̂̃ = H̃0 +∑
m

∑
ĩm
j̃m

H̃ ĩm
j̃m
�̂ j̃mĩm + ∑

m1<m2

∑
ĩm1 ,ĩm2
j̃m1 ,j̃m2

H̃ ĩm1 ĩm2
j̃m1 j̃m2

�̂ j̃m1ĩm1
�̂ j̃m2ĩm2

+⋯ + ∑
ĩm1 ,⋯ĩmN
j̃m1 ,⋯j̃mN

H̃ ĩm1⋯ĩmN
j̃m1⋯j̃mN

�̂ j̃m1ĩm1
⋯ �̂ j̃mNĩmN

, (2.146)

with the matrix elements

H̃0 = ⟨|̂|⟩ = 0 (2.147)

H̃ ĩm
j̃m

= ⟨Ψ̄(ĩm)|̂|Ψ(j̃m)⟩ − H̃0 �ĩm j̃m (2.148)

H̃ ĩm1 ĩm2
j̃m1 j̃m2

= ⟨Ψ̄(ĩm1 ,ĩm2 )|̂|Ψ(j̃m1 ,j̃m2 )⟩

−H̃ ĩm1
j̃m1

�ĩm2 j̃m2 − H̃
ĩm2
j̃m2

�ĩm1 j̃m1 − H̃0 �ĩm1 j̃m1�ĩm2 j̃m2 . (2.149)

Truncating this expansion after the dimer interaction and evaluating the overlap and the Hamil-
tonian elements by brute force using FCI monomer states yields FCI accuracy for the dimer, even if
the state space is massively truncated, as can be seen from Figure 2.4.

Hence, the dimer interaction is completely recovered. This approach is denoted as XR”. However,
this approach is not practical, since evaluating all terms by brute force is extremely demanding
in terms of CPU time and memory. Nevertheless, once the XR matrix is build, quantum chemical
methods can be easily derived to obtain the lowest eigenvalues, since the Hamiltonian is expanded
in the second quantized �uctuation operator basis. For instance the CC variant for the dimer XR
Hamiltonian results in a formal scaling of N3 with the system size and N4 with the number of
states per fragment[29]. Note, that the number of states within each fragment is very small after
truncation, so the XR-CC method can be evaluated at the cost of a mean-�eld calculation, roughly
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Figure 2.4.: Comparison of the methods shown in Figure 2.3 against the XR” method.

speaking. This can in principle already be applied to large clusters of small atoms and molecules, but
in order to calculate chemically relevant systems three things need to be taken care of. First of all
the brute force evaluation of the terms needs to be brought into a form similar to the non-hermitian
ansatz, then densities other than FCI densities need to be used for the fragments and �nally an
algorithm needs to be developed, which is capable of calculating the almost optimal states, without
building the density matrix of the full dimer.
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3. Results and Discussion

3.1. Polaritonic Perturbation Theory

3.1.1. Computational Details

The newly developed polaritonic perturbation theory methods presented in the following were
carried out with a development version of the adcc program package 0.15.14[58], which is located
at https://github.com/BauerMarco. The QED-CCSD-1 and QED-HF calculations were conducted uti-
lizing the Hilbert plugin 0.1[59] for the Psi4 program package 1.6[60]. For standard/non-polaritonic
HF calculations the Psi4 program package was used. All calculations have been performed either on
the hydrogen�uoride molecule, or in section 3.1.3 on pyrrole, using the cc-pVDZ basis set, as imple-
mented in the Psi4 program package. The density-�tted implementations of the Hilbert package
the JK-�tted cc-pVDZ basis set has been used. The bond-length of hydrogen�uoride was chosen as
0.917 Å and the bond-vector is always aligned with the polarization of the �eld. Pyrrole has been
optimized using the Orca programm package 5.0.1[61] with the same basis sets and the resolution of
identity variant of MP2. For the potential energy surfaces the N-H distance has been scanned in steps
of 0.1 Angstroms from 0.7 to 4.5 Angstroms, along with the symmetrically sampled angle � around
the N-H bond axis in the equilibrium geometry towards the normal axis of the aromatic plane,
which was sampled with 10 datapoints in the interval [−�

2 ,
�
2 ]. For simplicity the state space was

reduced to the electronic ground state with a single photonic excitation and the electronic second
excited state in the photonic vacuum. Note, that this state provides a di�erent symmetry, than the
states in the energetic vicinity and therefore also orthogonal transition dipole moments. Aligning
the polarization of the cavity photon with the transition dipole moment can therefore be expected
to yield negligible interactions to other states.The quantum dynamical simulations on these surfaces
have then been carried out by Federico Mellini, using the multi-con�gurational time-dependent
Hartree method as implemented in the Heidelberg MCTDH programm package 86[62], after �tting
the surfaces with the pot�t algorithm and interpolating using the chnpot algorithm as implemented
in the same programm package. A complex absorbing potential has been introduced as well at a
N-H distance of 2.2 Angstrom, to account for the loss of population through the conical intersection.
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3.1.2. Polaritonic Møller-Plesset Perturbation Theory

In order to determine polaritonic MP, QED-MP, the Hamiltonian needs to be split analogous to
section 2.3. This leads to two choices now, namely setting H0 either to the non-polaritonic Fock
operator, yielding QED-MP, or to the polaritonic Fock operator, yielding QED(np-HF)-MP. Both
variants shall be examined in the following[63].

QED-MP

Using the polaritonic Fock operator for H0 yields a diagonal H0, since the eigenstates from it are
used to span the Fock space. Hence, one obtains

H0 = ∑
p
�pc†p cp + !b

†b, (3.1)

for the polaritonic mean-�eld in the photonic vacuum. Generalizing the two particle contribution
of the purely electronic dipole term in the Hamiltonian, Eq. (2.124), to

1
4
Dpqrsa†pa

†
qasar =

1
4 ((� ⋅ dpr )(� ⋅ dqs) − (� ⋅ dps)(� ⋅ dqr )) a†pa

†
qasar , (3.2)

yields the the perturbation to the polaritonic mean-�eld as

H1 = −∑
pqk

⟨pk||qk⟩ a†paq +
1
4
∑
pqrs

⟨pq||rs⟩ a†pa
†
qasar +

1
2
∑
pqrs

(� ⋅ dpr )(� ⋅ dqs)a†pa
†
qasar

−∑
pqk
(� ⋅ dpq)(� ⋅ ⟨d⟩ �pq)a†paq +∑

pqk
(� ⋅ dpk)(� ⋅ dkq)a†paq

−
√
!
2
∑
pq
(� ⋅ (dpq − ⟨d⟩e �pq))(b† + b)a†paq

= −∑
pqk
(⟨pk||qk⟩ + Dpkqk)a†paq +

1
4
∑
pqrs

(⟨pq||rs⟩ + Dpqrs)a†pa
†
qasar

−
√
!
2
∑
pq
(� ⋅ (dpq − ⟨d⟩ �pq))(b† + b)a†paq.

(3.3)

Hence, the purely electronic additional component to He in HPF only leads to a shift of the
electronic repulsion integrals, ERIs. Therefore only the term coupling electronic to photonic
�eld requires explicit evaluation, since the other terms yield the standard MP working equations,
see section 2.3, with shifted ERIs. With the energies de�ned as Eq. (2.11), and the zeroth order
wavefunction only containing the photonic vacuum, see section 2.11.2, the coupling term yields
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zero, and the standard MP working equations are obtained with shifted ERIs and eigenenergies of
the QED-Fock operator. Hence, the zeroth and �rst order energies are found to be

E(0)0 = ∑
i
�i (3.4)

and

E(1)0 = −
1
2
∑
ij
(⟨ij||ij⟩ + Dijij). (3.5)

The �rst order energy contribution can then be transformed to

E(1)0 = −
1
2
∑
ij
(⟨ij||ij⟩ + Dijij)

= −
1
2
∑
ij
(⟨ij||ij⟩ + ((� ⋅ dii)(� ⋅ djj) − (� ⋅ dij)(� ⋅ dji)))

= −
1
2
∑
ij
(⟨ij||ij⟩ + ((� ⋅ ⟨d⟩)2 − (� ⋅ dij)2))

= −
1
2
∑
ij
(⟨ij||ij⟩ + ((� ⋅ ⟨d⟩)2 − (� ⋅ (d ′ij + ⟨d⟩))2))

= −
1
2
∑
ij
(⟨ij||ij⟩ − 2(� ⋅ d ′ij)(� ⋅ ⟨d⟩) − (� ⋅ d

′
ij)
2).

(3.6)

The origin dependent term here exactly cancels the origin dependent contribution in the occupied-
occupied block of the QED-Fock operator, Eq. (2.130), and since the occupied orbitals are summed
up, the �rst order QED-MP energy is origin invariant. This needs to be true, since the �rst order
QED-MP energy is required to recover the QED-HF energy, which is by de�nition of the Hamiltonian
origin invariant. However, the zeroth order energy and the higher order energies of QED-MP are not
origin invariant, but the deviation is rather small, since the zeroth order contribution is cancelled
by the �rst order contribution, so it comes into play at second order of perturbation theory. The
higher order QED-MP wavefunctions, which are required for the higher order QED-MP energies are
then obtained from Eq. (2.12), where the excitation class now summarizes electronic and photonic
excitation classes. The resulting �rst order QED-MP wavefunction is then obtained as
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|||Ψ
(1)
0 ⟩ =

√
!
2
∑
ia

(� ⋅ dia)
�a − �i + !

||Ψ
a
i,1⟩

−
1
4
∑
ijab

⟨ab||ij⟩ + Dabij

�a + �b − �i − �j
|||Ψ

ab
ij,0⟩ ,

(3.7)

which yields the second order energy correction

E(2)0 = −
1
4
∑
ijab

(⟨ij||ab⟩ + Dijab)2

�a + �b − �i − �j
−
!
2
∑
ia

(� ⋅ dia)2

�a − �i + !
. (3.8)

Note the additional term in the �rst order wavefunction, which has a contribution from the
singly excited electronic determinant and a single excitation in the photon number space. This
term yields the second term in the second order energy correction, which can be interpreted as
a correction to the QED-HF energy, since if ! = �a − �i , it is equal to minus one half times the
additional energy of the Pauli-Fierz Hamiltonian to the standard Hamiltonian in Eq. (2.128). Also
note, that for large ! the second order QED-MP correlation energy goes to minus in�nity. However,
as will be shown later, this overshoots the correlation energy of the corresponding polaritonic CCSD
version, QED-CCSD-1[45, 64], only for large coupling strengths and photon energies far beyond the
near-UV region, where the dipole approximation made in the Pauli-Fierz Hamiltonian breaks down
anyway, see section 2.10.

QED(np-HF)-MP

Choosing the standard Fock operator for H0 yields the perturbation

H1 = −∑
pqk
(⟨pk||qk⟩ + Dpkqk)c†p cq

+
1
4
∑
pqrs

(⟨pq||rs⟩ + Dpqrs)c†p c
†
q cscr

−
√
!
2
∑
pq
(� ⋅ (dpq − ⟨d⟩e �pq))(b† + b)c†p cq

+
1
2
∑
pqc
(� ⋅ dpc)(� ⋅ dcq)c†p cq

−
1
2
∑
pqk
(� ⋅ dpk)(� ⋅ dkq)c†p cq +

1
2
(� ⋅ ⟨d⟩e)2.

(3.9)
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Using Eq. (2.11) yields the same zeroth order energy as for standard MP, while the �rst order
energy is given as

E(1)0 = −
1
2
∑
ij
(⟨ij| |ij⟩ + Dijij) +

1
2
(� ⋅ ⟨d⟩e)2

+
1
2
∑
ia
(� ⋅ dia)(� ⋅ dai) −

1
2
∑
ij
(� ⋅ dij)(� ⋅ dji).

(3.10)

With Eq. (3.2) the shift in the ERI can be evaluated as

−
1
2
Dijij = −

1
2(

(� ⋅ dii)(� ⋅ djj) − (� ⋅ dij)(� ⋅ dji))

= −
1
2
(� ⋅ ⟨d⟩e)2 +

1
2
(� ⋅ dij)(� ⋅ dji),

(3.11)

which can be utilized to rewrite the �rst order energy correction as follows

E(1)0 = −
1
2
∑
ij

⟨ij| |ij⟩ +
1
2
∑
ia
(� ⋅ dia)(� ⋅ dai). (3.12)

This can now be used to show, that the �rst order energy is again equal to Eq. (2.128)

E(0)0 + E(1)0 = EHF +
1
2
∑
ia
(� ⋅ dia)2. (3.13)

The �rst order wavefunction is the same as Eq. (3.7) plus an additional contribution, which is

1
2
||Ψ

a
i,0⟩(∑

k

(� ⋅ dak)(� ⋅ dki)
�a − �i

−∑
c

(� ⋅ dac)(� ⋅ dci)
�a − �i )

=
1
2
tia,0 ||Ψ

a
i,0⟩ ,

(3.14)

which yields the second order energy correction as

E(2)0 = −
1
4
∑
ijab

(⟨ij||ab⟩ + Dijab)2

�a + �b − �i − �j
−
!
2
∑
ia

(� ⋅ dia)2

�a − �i + !
−
1
4
∑
ia
(tia,0)2(�a − �i). (3.15)
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Numerical results

As already pointed out in section 2.7, a connection between CC and MP exists, which can be used to
test the implementation and compare numerical results of QED-MP and QED(np-HF)-MP, since an
independent implementation for the corresponding polaritonic CC approach exists. This polaritonic
CC approach is called QED-CCSD-1 and uses the QED-HF reference, while otherwise following
the derivation in section 2.7 using the Hamiltonian from Eq. (2.124) and the same tensor product
basis as used here. However, the initial guess of the QED-CCSD-1 method only uses the photonic
vacuum. Hence, the shifted ERI contribution in the second order energy correction has to be equal
to the correlation energy of the QED-CCSD-1 guess. This comparison along with the full correlation
energies of QED-CCSD-1, QED-MP and QED(np-HF)-MP are shown in Figure 3.1.

Note, that the QED-Fock operator in the QED-HF implementation di�ers slightly from Eq. (2.127),
since the quadratic term in Eq. (2.124) is treated di�erent, which does however not a�ect QED-PT,
but only QED(np-HF)-PT. This leads to a numerical inconsistency for QED(np-HF)-MP, and later
also QED(np-HF)-ADC, which however can be considered negligibly small. Now one can see, that
for all coupling strengths and photon energies the di�erence between the correlation energy of
the initial guess of QED-CCSD-1 and the shifted ERI contribution in QED-MP is on the order of
the Cholesky treshhold of 10−9a.u.. This test ensures, that most of the implementation is correct,
since the shift of the ERIs also depends on � ⋅ d . It shall also be noted, that the additional term in
the second order correlation energy in QED(np-HF)-MP compared to QED-MP recovers most of
the mean-�eld correction from QED-HF compared to HF. As indicated by the correlation energy
of QED-CCSD-1, this di�erence is negligible for small coupling strengths, since it is much smaller
than the correlation energy, but fully iterating the mean-�eld in the QED-HF approach can be
expected to have non-negligible impact on the accuracy for strong coupling strengths. It can also
be seen, that the additional contribution in the QED-MP2 correlation energy corrects the QED-MP2
energy from the initial guess of QED-CCSD-1 toward the fully iterated QED-CCSD-1. For QED-MP2
the correction from the initial guess to the fully iterated QED-CCSD-1 is only overshooted, i.e. it
starts to diverge, at � = 0.06 and � = 0.10 with ! = 1.6a.u. and ! = 0.9a.u., respectively. Therefore,
divergence of the additional term in the QED-MP2 correlation energy is only expected for hard
UV cavity photons, where the dipole approximation starts to break down anyway, even for strong
coupling strengths. Hence, for practical calculations in the strong coupling regime QED-MP is
recommended. For small coupling strengths the di�erence in the absolute energy between the full
QED-MP2 and the full QED(np-HF)-MP2 approach are much smaller than the purely electronic
correlation energy, and therefore both approaches can be considered as equally accurate. This also
indicates, that for small coupling strengths �eld free references can be used in general, which also
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(a) � = 0.02 (b) � = 0.02

(c) � = 0.06 (d) � = 0.06

(e) � = 0.10 (f) � = 0.10

Figure 3.1.: a), c) and e) Show the comparison of the correlation energies of hydrogen�uoride computed
at the level of QED-MP2, "QED-MP2 doubly exc", which is only the adapted standard MP2
contribution, QED(np-HF)-MP2, QED-CCSD-1 and its initial guess QED-CCSD-1[0]. b), d) and f)
visualize the di�erence between "QED-MP2 doubly exc" and QED-CCSD-1[0]. The HF, QED-HF
and QED-CCSD-1 calculations have been carried out using Cholesky decomposition of the ERIs.
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motivates building the polaritonic matrix using �eld free states and calculating the polaritonic
couplings from them, according to the Pauli-Fierz Hamiltonian. By now this is the most common
approach to polaritonic states, since no new non-adiabatic coupling elements need to be derived,
while still being reasonably accurate for weak coupling strengths, making it especially useful for
dynamic simulations. This ansatz will be discussed in more detail later. In the strong coupling
regime QED-MP2 was shown to be reasonably accurate, while outscaling QED-CCSD-1, since
the scalings are the same as for the corresponding non-polaritonic methods, and is therefore the
recommended method for medium up to large sized molecules. It shall be noted here, that since
QED(np-HF)-MP uses an origin invariant reference, it is origin invariant through all orders of
perturbation theory, as can be seen for the second order contribution, where only the tia,0-amplitude
provides origin dependent terms, which cancel themselves out, since the nuclear contribution is the
same on all diagonal elements, independent of whether they appear in the purely occupied or the
purely virtual block of the dipole matrix. Nevertheless, since this is only necessary for very few
applications, QED-MP is preferred, since these methods only need to be applied for intermediate
and high coupling strengths, where QED-MP is more accurate, while also due to the additional
contribution from ||Ψ

a
i,0⟩ in the �rst order wavefunction of QED(np-HF)-MP, the corresponding

ADC variant contains signi�cantly more terms, which makes it slower and much more tedious to
derive.

3.1.3. Polaritonic Algebraic Diagrammatic Construction Theory

As already examined in section 3.1.2, two formulations for polaritonic MP can be thought of as
natural polaritonic expansions MP, depending on the partitioning of the Hamiltonian. Since ADC
depends on MP, see section 2.4, two formulations of ADC can be carried out, depending on which
polaritonic MP is chosen as reference. Following the derivation presented in section 2.4, with the
polaritonic Hamiltonian and the polaritonic MP reference, requires the extension of the ISR basis.
Using the previous notation for the matter-�eld tensor product states, the polaritonic ADC matrix
in the adapted ISR basis is given as

⟨Ψ̃I ,N
||| H − E0

|||Ψ̃J ,M⟩ , (3.16)

where the ISR basis is build from the adapted electronically and photonically excited basis, used
to expand the wavefunctions of the corresponding MP method, Eqs. (3.7) and (3.14)[63].
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QED-ADC

The QED-MP method and the corresponding partitioning of the Hamiltonian lead to the QED-ADC
method. The adapted polaritonic ISR basis is then build from the adapted polaritonic precursor
states

||Ψ
#
I ,0⟩

(0) = CI
|||Ψ

(0)
0,0⟩ (3.17a)

||Ψ
#
I ,0⟩

(1) = CI
|||Ψ

(1)
0,0⟩ (3.17b)

||Ψ
#
I ,1⟩

(0) = CI
|||Ψ

(0)
0,1⟩ (3.17c)

||Ψ
#
I ,1⟩

(1) = CI
|||Ψ

(1)
0,1⟩ − |||Ψ

(0)
0,0⟩⟨Ψ

(0)
0,0
||| CI ,1

|||Ψ
(0)
0,0⟩

(1)

= CI
|||Ψ

(1)
0,1⟩ −

√
!
2

(� ⋅ dia)
�a − �i + !

|||Ψ
(0)
0,0⟩ .

(3.17d)

Note, that the orthogonolization is carried out with respect to the photonic excitations as well.
Further note, that the precursor states have already been truncated, because in principle the photonic
excitations go up to in�nity. These photonically higher excited states are equal to those given
here, with the di�erence, that for a photonic excitation of N the second term in Eq. (3.17d) is
multiplied with a factor of

√
N . However, this would yield in an in�nitely large matrix with a

band structure, which provides a width of one, since a photonic excitation of N only interacts with
photonic excitations of N − 1 and N + 1 in QED-ADC(1). The implicit coupling to even higher and
lower photonic excitations is very small, i.e. for Hydrogen�uoride, where the cavity �eld is aligned
with the bond vector, the �rst bright excitation which is intermediately strong coupled to the singly
excited photon �eld, including double photon excitations alters the excitation energies by up to a
few meV. This error is almost two orders of magnitude smaller than the mean absolute error, MAE,
of even ADC(2) and ADC(3) and therefore negligible. Note, that this error might become signi�cant
for some systems at very strong couplings for QED-ADC(1), however, for QED-ADC(2) the doubly
excited photon number space is included and the in�uence of triply excited photon number states
on couplings based on the photonic ground and �rst excited state are signi�cantly smaller. Hence,
for practically relevant calculations restricting the photon number state space to a maximum of two
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will lead to negligible errors. Nevertheless, for practical reasons QED-ADC(0) and QED-ADC(1) will
be restricted to singly excited photon number states, yielding the QED-ADC(1) matrix as

(
⟨Ψ̃I ,0

||| H − E0
|||Ψ̃J ,0⟩ ⟨Ψ̃I ,0

||| H − E0
|||Ψ̃J ,1⟩

⟨Ψ̃I ,1
||| H − E0

|||Ψ̃J ,0⟩ ⟨Ψ̃I ,1
||| H − E0

|||Ψ̃J ,1⟩ )
. (3.18)

For the Loewdin orthogonalization the inverse square root is then required, which is given by

S−
1
2

I ,N ;J ,M = �I ,N ;J ,M −
1
2
S(2)I ,N ;J ,M (3.19)

up to second order, because the zeroth and �rst order of the overlap matrix are given by �I ,N ;J ,M
and 0, respectively. This simpli�es the QED-ADC(0) and QED-ADC(1) matrix to

(
⟨Ψ#I ,0|| H − E0 ||Ψ

#
J ,0⟩ ⟨Ψ#I ,0|| H − E0 ||Ψ

#
J ,1⟩

⟨Ψ#I ,1|| H − E0 ||Ψ
#
J ,0⟩ ⟨Ψ#I ,1|| H − E0 ||Ψ

#
J ,1⟩ )

. (3.20)

The zeroth order contributions are then given by

⟨Ψ#I ,0|| H − E0 ||Ψ
#
J ,0⟩

(0) = �ij�ab(�a − �i) (3.21a)

⟨Ψ#0,1|| H − E0 ||Ψ
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#
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(0) = �ij�ab(�a − �i + !), (3.21c)

while the �rst order contributions are

⟨Ψ#I ,0|| H − E0 ||Ψ
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√
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Note, that in principle new QED-HF and QED-MP solutions are required here for the electronic
ground state with a single photonic excitation, since !b†b is part of the mean-�eld. However, these
mean-�eld terms do not couple with the electronic space. Hence, the QED-HF and therefore also
the QED-MP solution stay the same, apart from the energy of the photon number state, which
is simply added to the total energy. For the QED-ADC(2) working equations the matrix then has
to be extended to the doubly excited photon number states, because the explicitly couple to the
photonic vacuum now, i.e. they are not zero anymore. Furthermore, the second order expansion of
the squared inverse of the overlap matrix is not diagonal anymore. Carrying out the evaluation
yields the working equations as
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The remaining non-zero blocks are either hermitian conjugates, or both photon number states
of a block need to be increased by one, yielding an additional global factor to the block, given by
the bosonic �eld operators. This is due to the fact, that the bosonic �eld operators are essentially
ladder operators of the harmonic oscillator, where e.g. a deexcitation from one to zero yields an
additional factor of

√
1, hence not a�ecting the result, while a deexcitation from the second to the

�rst excited state yields an additional factor of
√
2. It shall be noted, that as for QED-MP the �rst

order method, i.e. QED-ADC(1), is origin-invariant, since all origin-dependent terms in Dajbi cancel
with the origin dependent terms in �ij�ab(�a − �i). Hence, higher order QED-ADC method only
contain origin-dependent terms from second order and higher, which makes them rather small.

QED(np-HF)-ADC

The QED(np-HF)-MP method and the corresponding partitioning of the Hamiltonian lead to the
QED(np-HF)-ADC method. This yields the same zeroth order precursor states as in section 3.1.3,
but the �rst order precursor states now read
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I ,0⟩

(1) = CI
|||Ψ

(1)
0,0⟩ −

1
2
t (1)ia,0

|||Ψ
(0)
0,0⟩ (3.28a)

||Ψ
#
I ,1⟩

(1) = CI
|||Ψ

(1)
0,1⟩ −

√
!
2

(� ⋅ dia)
�a − �i + !

|||Ψ
(0)
0,0⟩ −

1
2
t (1)ia,0

|||Ψ
(0)
0,1⟩ . (3.28b)

Note, that this basis has been truncated for the same reason as discussed in section 3.1.3, while
also the same procedure can be applied to obtain higher photon number states. Hence, the QED(np-
HF)-ADC matrix has the same band structure as the corresponding QED-ADC method. Since the
zeroth order precursor states are equal to those in section 3.1.3, the working equations in zeroth
order are also the same, apart from the fact, that the orbital energies are now obtained from standard
HF, instead of QED-HF. The �rst order equations are also equal for the o�-diagonal blocks, where
o�-diagonal refers to the photon number states, but the new diagonal blocks are
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⟨Ψ#I ,0|| H − E0 ||Ψ
#
J ,0⟩

(1) = −(⟨aj| |bi⟩ + Dajbi)

−
1
2
�ijt (1)ab,0(�a − �b) +

1
2
�abt (1)ij,0(�i − �j)

(3.29)

and

⟨Ψ#I ,1|| H − E0 ||Ψ
#
J ,1⟩

(1) = −(⟨aj| |bi⟩ + Dajbi)

−
1
2
�ijt (1)ab,0(�a − �b) +

1
2
�abt (1)ij,0(�i − �j) + �ij�ab!.

(3.30)

As already mentioned in section 3.1.2, the �rst order QED(np-HF)-MP wavefunction contains an
additional contribution from a singly electronically excited determinant in the photonic vacuum.
This additional contribution increased the amount of additional terms in QED(np-HF)-ADC(1) only
very slightly with respect to QED-ADC(1), but signi�cantly increases the amount of terms for the
corresponding second order matrices. Hence, QED(np-HF)-ADC was only derived up to �rst order.
Note, that the higher excited photon number state blocks can also be evaluated with the same
procedure examined in section 3.1.3. It shall also be noted, that QED(np-HF)-ADC is origin invariant
through all orders of perturbation theory, like its corresponding ground state.

Testing

As can be seen from section 2.4 the ADC(1) matrix is equal to the CIS matrix, without the ground
state. Since a polaritonic CIS method[65], QED-CIS, exists, which is based on the QED-HF reference,
the QED-ADC(1) method can be tested, because like for the non-polaritonic methods these methods
are equal apart from their ground state contributions. Hence, the QED-CIS matrix without the
ground state and the ground to excited state coupling blocks, needs to yield the same eigenvalues
as QED-ADC(1). This has been tested to be true to numerical precision. However, no method exists,
which should yield similar results to the QED-ADC(2) matrix, so the QED-ADC(2) method can
only be tested on its implementation and not its derivation. A detailed explanation for this testing
procedure can be found in section 3.1.3. For numerical comparison QED-ADC(1), QED-ADC(2)
and QED(np-HF)-ADC(1) have been applied to Hydrogen�uoride again, where the setup of the
calculation was analogous to the one in section 3.1.2. These numerical results are visualized in
Figure 3.2.

Note, that for better comparison the �rst order methods have been computed with doubly excited
photon number states, as is required for the second order method. All methods yield qualitatively
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(a) QED-ADC(1) (b) QED-ADC(2)

(c) QED(np-HF)-ADC(1)

Figure 3.2.: Excitation energies of the 11 energetically lowest excited states of Hydrogen�uoride computed
at di�erent levels of theory for a coupling strength of � = 0.05 against the energy of the cavity
photon. Polariton formation is shown in the insets. Note, that all methods include the doubly
excited photon number space. Furthermore, the electronic and photonic character is determined
by the norm of the corresponding part of the QED-ADC vector.

equal results, which are also qualitatively equal to published scans generated from equation of
motion variant of QED-CCSD-1[45], apart from the doubly excited photon number states, which are
not included in the literature approach. The insets show the polariton with the largest Rabi-splitting,
which is roughly 1 eV. For this rather large splitting QED-ADC(1), Figure 3.2a, and QED(np-HF)-
ADC(1), Figure 3.2c, deviate by only 22 meV for the upper and less for the lower polariton. This
shows, that even for intermediate coupling strengths QED-ADC(1) and QED(np-HF)-ADC(1) yield
di�erences in energy, which are roughly one order of magnitude smaller than the MAE of ADC(2).
This is in line with the result from section 3.1.2, emphasizing that taking the full mean-�eld of

54



3. Results and Discussion

the Pauli-Fierz Hamiltonian does indeed become important for intermediate to strong couplings,
but is negligible for weak to intermediate couplings. This is concluded on the fact, that an error
in relative energy of one order of magnitude less than the MAE of a method can be considered a
signi�cant contribution already, while the intermediate coupling strength is not clearly de�ned
either. Note, that the above mentioned deviation of 22 meV is compromised though, see section
3.1.2, and therefore actually might slightly deviate, if the Hamiltonian was treated consistently in
the QED-HF calculation. Furthermore, given this small deviation, as well as the small number of
additional terms in QED(np-HF)-ADC(1) compared to QED-ADC(1), which has been tested already,
the QED(np-HF) family of perturbation methods can be considered tested as well.

QED-npADC

Since no method exists, providing contributions similar to QED-ADC(2), a di�erent testing procedure
needs to be applied here. Here, a unitary transformation is applied to the QED-ADC(2) matrix, so it
is build from di�erent contributions now, similar to the �eld free approach described in section 3.1.2.
The most simple way to do this, is using the states, which are closest to the QED-ADC(2) states,
but still remain in the photonic vacuum. These are given by diagonalizing the non-polaritonic
Hamiltonian with the squared dipole term of the Pauli-Fierz Hamiltonian. Doing this with QED-ADC
requires solving QED-HF and using these orbitals with the shifted ERIs, see section 3.1.2, in the
standard MP and ADC methods. In the next step the dipole and perturbation, i.e. full Hamiltonian
minus mean-�eld Hamiltonian, operators need to be evaluated using the ISR and the previously
obtained ADC states, including the photonic vacuum �eld, according to the procedure described
in section 2.5. This alters the working equations of just the diagonal blocks of the QED-ADC(1)
matrix, i.e. the blocks with the same photonic excitation in the bra and the ket state. As can be seen
from section 3.1.3, the second order QED-ADC contribution does not provide such contributions,
apart from those appearing in standard ADC(2). Note, that additional contribution to the diagonal
singles singles block in the photonic vacuum of QED-ADC(2) originates from the coupling term
in the Hamiltonian and not from the squared dipole term. Hence, only the zeroth and �rst order
diagonal blocks are changed, which are entirely build from the same working equations as standard
ADC with the shifted ERIs, apart from a trivial contribution on the diagonal, which is 0 in the
electronic, ! in the singly excited photonic and 2! in the doubly excited photonic block. Hence,
the unitary transformation diagonalizes the blocks on the diagonal of the QED-ADC(1) matrix and
transforms the o�-diagonal blocks accordingly. Apart from the term mentioned above the same
is true for the QED-ADC(2) matrix. This way the transformed QED-ADC(2) matrix is obtained
from calculating the ADC(2) states with the polaritonic vacuum contribution included, evaluating
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the dipole and the perturbation operator in the ISR basis using these states and then using the
eigenvalues corresponding to the states as diagonal for the QED-ADC(2) matrix in the photonic
vacuum. The same diagonal is added with ! for the singly excited photonic diagonal of the QED-
ADC(2) and the same procedure yields the diagonal for the doubly excited photonic diagonal, where
2! needs to added. The remaining terms are obtained from using the new dipole and perturbation
matrices in the full second order working equations, as well as for the �rst order working equations,
where ISR states of di�erent photonic excitations are coupled. This can be seen as a test for the
implementation, since all terms need to be reimplemented, due to how the implementation of other
ADC and therefore also QED-ADC methods is structured in the adcc package. Furthermore, the
matrix then needs to be build explicitly, instead of using the matrix vector product implementation
used in adcc, which is then pipelined into a subspace solver. This new formulation of the QED-ADC
matrix is called QED-npADC and was tested to be equal to QED-ADC in �rst and second order
to numerical precision. Note, that this approach provides all purely electronic terms, without
couplings to photonic number states of di�erent excitation, on its diagonal by de�nition. Further
note, that the additional contribution in second order to the diagonal block is small, and that the
couplings between di�erent photonic excitations are not much bigger than the diagonal elements.
Therefore, signi�cant couplings only appear in the energetic vicinity of an other state, and even
then only alter the states in their energetic vicinity. This is true for all polaritonic methods, but
in the QED-npADC approach these energies are located on the diagonal in good approximation.
Therefore, the QED-npADC matrix can be truncated to only those states in the energetic vicinity of
the coupling of interest, which are just a few states for most practically relevant examples, even in
the strong coupling regime. The heavily truncated QED-npADC method can then be compared to
the inset of Figure 3.2b, yielding di�erences of less than 50 meV. This comparison is also visualized
in Figure 3.3.

Hence, truncated QED-npADC is a very good approximation to QED-ADC, while signi�cantly
lowering memory requirements as well as CPU time, because the most expensive step is the
calculation of non-polaritonic ADC, if only a few states are taken into account. Considering up to
doubly excited photon number states this reduces the size of the ADC matrix by a factor of 3 in each
dimension. Furthermore, the convergence rate is drastically increased, because the Davidson solver
converges faster with smaller coupling elements, since the diagonal of the matrix then becomes
more dominant. In QED-ADC the most dominant coupling contributions scale linear with

√
!

and �, and can reach large values if the transition dipole moment is large. If the cavity photon
is then in resonance with a transition with a large dipole moment, which is the most common
use case for polaritonic applications, the convergence speed of the Davidson solver applied to
QED-ADC is drastically reduced. This is circumvented with the QED-npADC method. Finally the
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Figure 3.3.: Inset of Figure 3.2b compared to the same states calculated with QED-npADC(2), with only the
eleven lowest states in energy.

QED-npADC method shall be compared to the similar approaches found in literature, as already
mentioned in section 3.1.2. In these approaches �eld free states are computed and then used with the
corresponding transition dipole moments and energies, to build the polaritonic matrix according to
the polaritonic Hamiltonian. This approach is equal to QED-npADC(1), if the literature approaches
would use states obtained from a method, which treats the electronic Hamiltonian and the vacuum
�eld contribution in a consistent manner. However, only �eld free states are used. Therefore, these
literature approaches can, but usually do not, achieve a consistent treatment of the polaritonic
Hamiltonian through �rst order of perturbation theory. Hence, the QED-npADC(2) approach goes
beyond these literature approaches, since it is consistent through second order of perturbation
theory, while still using a truncated state space. This is especially useful, since the truncated QED-
npADC matrix can be considered a good approximation to the diabatic representation of QED-ADC,
which is required for most quantum dynamical simulations. It shall also be noted, that it outscales
all other currently available polaritonic ab initio methods, for instance QED-CCSD-1, which scales
as N 6, because it scales as N 5, like its non-polaritonic version. Bringing QED-ADC into the form
of QED-npADC and truncating the state space is also advantageous for further derivations, like
gradients. The advantage for deriving gradients is, that the derivatives for the diagonal elements are
already known, if they are known for just QED-HF, since the diagonal is build from the eigenvalues
of the standard ADC method with the vacuum coupling included. This yields a di�erent Fock
operator, but the perturbation operator is then given by Eq. (3.3) without the term coupling the
bosonic with the electronic �eld. This is the same perturbation operator as used to derive standard
MP and ADC, apart from a shift of the ERIs. Hence, all working equations, e.g. gradients, are

57



3. Results and Discussion

the same, after the ERIs were shifted. Hence, QED-npADC gradients can be obtained by only
determining the gradients of the dipole operator and the ERIs. An other advantage is, that the
ground state does not appear in the QED-npADC matrix. This yields trivial access to lossy cavities.
This can be seen from the Lindbladian of a lossy cavity, which can be given as

�̇ = −
i
~
[H , �] + 
b�b† −



2
(b†b� + �b†b), (3.31)

where 
 is the parameter determining the loss rate. If no states are contained in the QED-npADC
matrix, which have non-zero overlap after applying either b or b†, the term 
b�b† yields zero[65,
66]. In the most common use case ! or 2! is set equal to an electronic transition, so all states in
the energetic vicinity can be expected to either have di�erent electronic states or di�erent photon
occupation number. Using only these states, which are the relevant states, yields a set of states,
providing no overlap after applying a bosonic �eld operator. This simpli�es the Lindbladian to

�̇ = −
i
~
[H̃ , �], (3.32)

where

H̃ = H − i


2
b†b. (3.33)

Hence, this yields the Pauli-Fierz Hamiltonian with a shifted omega !̃ = ! − i 
2 and can therefore
be evaluated in a wavefunction based formalism, instead of using a density matrix based formalism.
Hence, lossy cavities can be accounted for by simply adding an imaginary term to the energy of the
cavity photon. This is not possible, if the state space cannot be truncated.

Photodissociation Dynamics of Pyrrole in a Photonic Cavity

In order to emphasize the impact of the choice of method on the accuracy of the result, the
photodissociation dynamics of Pyrrole coupled to a photonic cavity are investigated in the following.
Therefore the two methods presented in theis thesis shall be investigated, which yield a "quasi-
diabatic" representation. These methods are QED-npADC(2) and its corresponding �rst order ansatz,
for which two �avors are considered. One of the �rst order variants uses completely �eld-free
states, i.e. states, which are computed by standard ADC(2), while the second one uses ADC(2) states,
which additionally treat the squared dipole term of the Pauli-Fierz Hamiltonian, which is purely
fermionic, in a consistent manner. The �rst order variants are therefore referred to as �eld-free
and full-�eld, respectively. Note, that for the full �eld variant the orbitals are obtained from the
polaritonic Fock operator, while the corresponding MP and ADC results can be obtained from the
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Figure 3.4.: Potential energy surfaces of the ground and second excited state in the photonic vacuum without
polaritonic coupling of Pyrrole.

standard implementations with adapted ERIs, see Eq. (3.3). The potential energy surfaces were
then calculated over two degrees of freedom with no polaritonic coupling, which are visualized in
Figure 3.4 and agree very well with the surfaces published in literature[67], as well as with coupling
constants of � = 0.001, � = 0.01 and � = 0.1, with � = 1√

2~!�0�rV
, which are referred to as intermediate,

strong and ultra strong, respectively. Subsequent dynamical simulation then yields the evolution
of the population of the wavepacket after initial excitation at the Frank-Condon point, which are
visualized in Figure 3.5.

As can be seen all variants show only minor deviations for the intermediate coupling. For
strong coupling QED-npADC(2) is still very close to the non-polaritonic result, while the �eld-free
variant already shows a Rabi-Oscillation and slower decay of the population. At the ultra strong
coupling QED-npADC(2) shows a single Rabi-Oscillation and therefore shows slower decay than
the non-polaritonic result, while the �eld-free variant lost roughly 40 % of its population after
20 femtosecond and then shows stable Rabi-Oscillations, which is qualitatively di�erent from all
other variants. Note, that the populations do not add up to one, due to the complex absorbing
potential. Further note, that the full-�eld variant was left out in Figures 3.5a and 3.5b, since it
barely deviates from QED-npADC(2), and even for the ultra strong coupling only slightly deviates
from QED-npADC(2). The slower decay rates of the �eld-free variant compared to QED-npADC(2)

59



3. Results and Discussion

(a) � = 0.001 (b) � = 0.01

(c) � = 0.1

Figure 3.5.: Evolution of the population dynamics of a wavepacket prepared at the Frank-Condon point
of the excited surface for di�erent coupling strengths. These �gures were kindly provided by
Federico Mellini.

and the full-�eld variant originate in the destabilization of the ground state through the quadratic
component of the Pauli-Fierz Hamiltonian, as can be seen e.g. in Eq. 2.128. This penalty to the
energy is then balanced by a new set of orbitals and states, which provide smaller transition dipole
moments. This balancing is completely neglected by the �eld-free variant, leading to overestimation
of the Rabi-Splitting. The deviation can be expected to be severe at lower coupling strengths too for
system, which provide either larger transition dipole moments or smaller gradients at the Frank-
Condon point of the excited state. Deviations can also be caused by interactions with other states
in the energetic vicinity. Under these circumstances QED-npADC(2) is also expected to further
deviate from the full-�eld variant in the strong coupling limit. Hence, considering that the �eld-free
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variant can lead to major errors and even qualitatively wrong predictions in the strong coupling
limit, as well as the negligible additional e�ort, which is required to compute the full-�eld and the
QED-npADC(2) result, the QED-npADC(2) method should be used over the full-�eld and especially
the �eld-free variant even for small coupling strengths, when computing polaritonic potential
energy surfaces. However, for future investigations on properties and gradients the full-�eld variant
should be considered of the most interest, since it only slightly deviates from QED-npADC(2), while
not requiring additional derivation and implementation of densities and gradients for the diagonal
elements of the "quasi-diabatic" representation.

3.1.4. Polaritonic Unitary Coupled Cluster

In order to derive QED-UCC2 we utilize the Bernoulli expansion, established in chapter 2.8. The
the new mean-�eld and perturbation are chosen as the QED-Fock operator, F̃ , and HPF minus the
QED-Fock operator as the perturbation, Ṽ .

F̃ = F + Ω (3.34)

Ṽ = V + C, (3.35)

where F is the polaritonic Fock operator in the photonic ground state (i.e. without Ω), Ω = !b†b,
V denotes the antisymmetrized two electron integrals with the additional shift from the Dpqrs object,
and C is the term from HPF , which couples the bosonic to the fermionic system. Note, that we use
the transformed variant of HPF . The Bernoulli expansion then yields the same result, as for the
non-polaritonic Hamiltonian, if and only if the mean-�eld is still block-diagonal and the perturbation
can be separated into a non-block-diagonal part and a block-diagonal part, where the latter is always
zero for an amplitude equation. The �rst condition is true, since we provide a diagonal QED-Fock
operator, after having converged the QED-SCF equations. The second condition is still ful�lled for
V as in the non-polaritonic case, i.e. the non-diagonal part for V are the ⟨oo| |vv⟩-type integrals,
where o and v denote occupied and virtual orbital indices, respectively. In order to de�ne the
non-diagonal part of C we need to extend the purely electronic orbital basis to the polaritonic orbital
basis, where the ground state is still de�ned by the electronic and photonic ground state, ||Φ0,0⟩, but
the excited determinants can also have photonic excitations, e.g. ||Φia,1⟩. The non-diagonal terms
have to obey the following equation

⟨ΦI ,X
||| Ṽ

′
OD

|||Φ0,0⟩ = 0 (3.36)
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where Ṽ ′ denotes the perturbation from the Bernoulli expansion. Ṽ ′ only contains terms with
at max one V ′ and therefore only one C . Note, that the bosonic �eld operators introduce no
antisymmetry to the result, but yield symmetric results. Since we also obtain other terms, than
just the trivial solution Ṽ ′

OD = 0, the whole antisymmetry is embedded into the electronic part only.
The electronic part provides the same �eld operators as F and therefore C can be separated into
an o�-diagonal part and a block-diagonal part analogous to F . However, the dipole operator is not
block-diagonal, so COD ≠ 0. With the adapted Bernoulli expansion for the Pauli-Fierz Hamiltonian
at hand, we now de�ne the polaritonic UCC cluster operator as

u = S − S† (3.37)

S = ∑
I
sICI + (

!̃ +∑
I
s̃ICI)

b† +
(
̃̃! +∑

I

̃̃sICI)
b†b†. (3.38)

Note, that up to two bosonic excitations are taken into account for polaritonic UCC2, because in
polaritonic ADC(2) they directly couple to the photonic vacuum blocks. Furthermore, polaritonic
ADC(2) only provides amplitudes up to two fermionic excitations, so the fermionic excitation
manifold is also restricted to two. The same restrictions are valid for the QED-ADC(2) and therefore
also the QED-UCC2 matrix. The expansion of the similarity transformed QED-UCC2 Hamiltonian
then yields the analogous result to UCC2

H ′
PF = HPF + [F + Ω, u] +

1
2
[V + C, u] +

1
2
[(V + C)D , u]. (3.39)

Note, that C and Ω are already in normal ordered form. Further note, that s2 and s̃1 appear in the
�rst order wavefunction of QED-MP1 and are therefore of �rst order, while the other amplitudes
provide a perturbation order of two. For a diagonal polaritonic Fock operator and ṼD summarized
into Ṽ the QED-UCC2 energy and amplitudes can then be calculated as

⟨Φ0,0|| H
′
PF

||Φ0,0⟩ = EQED−HF +
1
4
∑
ijab

⟨ij| |ab⟩ sab(1)ij + ⟨Φ0,0
||||
[Ω, u] +

1
2
[C, u] +

1
2
[CD , u]

||||
Φ0,0⟩

= EQED−HF +
1
4
∑
ijab

⟨ij| |ab⟩ sab(1)ij + ⟨Φ0,0
||||
1
2
[C, u]

||||
Φ0,0⟩

= EQED−HF +
1
4
∑
ijab

⟨ij| |ab⟩ sab(1)ij −
√
!
2
∑
ia
� ⋅ dia s̃a(1)i

(3.40)
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and

⟨Φai,0|| H
′
PF

||Φ0,0⟩ = s(2)1 ⟨Φai,0|| FC1 ||Φ0⟩ + s
(1)
2 ⟨Φai,0|| VC2 ||Φ0⟩ + s̃

(1)
1 ⟨Φai,0|| CC1 ||Φ0⟩

= (�a − �i)sa(2)i +
1
2
∑
jbc

⟨aj| |bc⟩ sbc(1)ij −
1
2
∑
jkb

⟨jk| |ib⟩ sab(1)jk

−
√
!
2 (

∑
c
� ⋅ dac s̃c(1)i −∑

k
� ⋅ dki s̃a(1)k )

= 0,

(3.41)

⟨Φai,1|| H
′
PF

||Φ0,0⟩ = ⟨Φai,1|| C ||Φ0,0⟩ + s
(1)
2 ⟨Φai,1|| CC2 ||Φ0,0⟩ + s̃

(1)
1 ⟨Φai,1|| ΩC1 ||Φ0,0⟩

+ s̃(1)1 ⟨Φai,1|| FC1 ||Φ0,0⟩ + s̃
(1)
1 ⟨Φai,1|| VC1 ||Φ0,0⟩

= −
√
!
2
(� ⋅ dia) −

1
2

√
!
2
∑
kc
� ⋅ dkcsac(1)ik + (�a − �i + !)s̃a(1)i +∑

kc
⟨ak| |ic⟩ s̃c(1)k

= 0,

(3.42)

⟨Φai,2|| H
′
PF

||Φ0,0⟩ = s̃(1)1 ⟨Φai,2|| CC1 ||Φ0,0⟩ + ̃̃s(2)1 ⟨Φai,2|| ΩC1 ||Φ0,0⟩ + ̃̃s(2)1 ⟨Φai,2|| FC1 ||Φ0,0⟩

= −
√
!
(
∑
c
� ⋅ dac s̃c(1)i −∑

k
� ⋅ dki s̃a(1)k )

+
√
2(�a − �i + 2!) ̃̃sa(2)i

= 0,

(3.43)

⟨Φabij,0
||| H

′
PF

|||Φ0,0⟩ = ⟨Φabij,0
||| V

|||Φ0⟩ + s
(1)
2 ⟨Φabij,0

||| FC2
|||Φ0⟩ + s

(1)
2 ⟨Φabij,0

||| VC2
|||Φ0⟩ + s̃

(1)
1 ⟨Φabij,0

||| CC1
|||Φ0⟩

= ⟨ab| |ij⟩ + (�a + �b − �i − �j)sab(1)ij +
1
2
∑
kl

⟨kl| |ij⟩ sab(1)kl +
1
2
∑
cd

⟨ab| |cd⟩ scd(1)ij

+ (1 − Pij)(1 − Pab)∑
kc

⟨kb| |cj⟩ sac(1)ik −
√
!
2
1
2
(1 − Pab)(1 − Pij)� ⋅ dai s̃b(1)j

= 0,
(3.44)
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⟨Φabij,1
||| H

′
PF

|||Φ0,0⟩ = s(1)2 ⟨Φabij,1
||| CC2

|||Φ0,0⟩ + s̃
(2)
2 ⟨Φabij,1

||| ΩC2
|||Φ0,0⟩

+ s̃(2)2 ⟨Φabij,1
||| FC2

|||Φ0,0⟩ + s̃
(1)
1 ⟨Φabij,1
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|||Φ0,0⟩
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√
!
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(1 − Pab)∑
c
� ⋅ dbcsac(1)ij + (1 − Pij)∑
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� ⋅ dkisab(1)jk )
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c

⟨ab| |ic⟩ s̃c(1)j + (1 − Pab)∑
k

⟨bk| |ij⟩ s̃a(1)k

= 0,
(3.45)

⟨Φabij,2
||| H

′
PF

|||Φ0,0⟩ = s̃(1)1 ⟨Φabij,2
||| CC1

|||Φ0,0⟩ +
̃̃s(2)2 ⟨Φabij,2

||| ΩC2
|||Φ0,0⟩ +

̃̃s(2)2 ⟨Φabij,2
||| FC2

|||Φ0,0⟩

= −
√
!(1 − Pij)(1 − Pab)� ⋅ dai s̃b(1)j +

√
2(�a + �b − �i − �j + 2!) ̃̃sab(2)ij

= 0,

(3.46)

where d denotes the shifted dipole matrix. Note, that since the QED-UCC2 matrix is a unitary
transform of the QED-ADC(2) matrix, where the electronic ground state is decoupled from the
excited states even if they contain photonic excitations, one obtains ⟨Φ0,1|| H

′
PF

||Φ0,0⟩ = 0 and

⟨Φ0,2|| H
′
PF

||Φ0,0⟩ = 0. Since those are the only blocks, where !̃ and ̃̃! could have contributions, they
do not appear in the working equations. As can be seen now, Eqs. (3.41), (3.43), (3.45) and (3.46)
determine s(2)1 , ̃̃s(2)1 , s̃(2)2 and ̃̃s(2)2 without iteration, respectively. The remaining two equations can be
reformulated into working equations

s̃a(1)i =
√!

2 (� ⋅ dia) +
1
2

√!
2 ∑kc � ⋅ dkcs

ac(1)
ik − ∑kc ⟨ak| |ic⟩ s̃

c(1)
k

�a − �i + !
(3.47)

sab(1)ij = −( ⟨ab| |ij⟩ +
1
2
∑
kl

⟨kl| |ij⟩ sab(1)kl +
1
2
∑
cd

⟨ab| |cd⟩ scd(1)ij + (1 − Pij)(1 − Pab)∑
kc

⟨kb| |cj⟩ sac(1)ik

−
√
!
2
1
2
(1 − Pab)(1 − Pij)� ⋅ dai s̃b(1)j )(�a + �b − �i − �j)

−1,

(3.48)

which are the only two amplitudes contributing to the QED-UCC2 energy, and since they only
depend on each other, no further amplitudes need to be iterated. The initial guess is once again set
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up by restricting the working equations to the �rst order contributions, which yields the QED-MP2
equations. This can be implemented in a straightforward manner, since the QED-MP(2) class can
be inherited here, so the energy equation as well as all required amplitudes are already available
and set to their initial guess. Using a homebrew DIIS solver, the amplitudes can then be iterated.
Utilizing the same setup used to obtain Figure 3.1 and including QED-UCC(2) yields Figure 3.6.

(a) (b)

(c)

Figure 3.6.: Comparison of QED-UCC(2) against the results shown in Figure 3.1, where also a), b) and c) are
calculated with the same coupling constant.

As can be seen from Figure 3.6, QED-UCC(2) slightly overestimates the correlation energy of
QED-CCSD-1 for small !, and with increasing ! is corrected towards the QED-CCSD-1 correlation
energy. However, as QED-MP(2) starts to diverge, see section 3.1.2, QED-UCC(2) also diverges, but in
the opposite direction. Hence, QED-UCC(2) is valid for roughly the same range of coupling strength
and cavity photon energy as QED-MP(2). In section 3.1.2 it was explained in detail, that this range
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su�ces for all practically relevant calculations, so QED-UCC(2) can also be used for in principle all
practically relevant systems. Note, that QED-UCC(2) also outscales QED-CCSD-1, while yielding
very similar correlation energies within this practically relevant range, which makes QED-UCC(2)
a highly favorable polaritonic ground state method. Furthermore, QED-UCC(2) can also be used
as a polaritonic ground state to QED-ADC(2), since both share the same amplitudes. However,
QED-UCC(2) uses a perturbation expansion around the reference determinant, which makes it
non-variational, while also its performance highly depends on how good of an approximation the
determinant is to the exact wavefunction. This problem arises already from the non-polaritonic
comparison of QED-CCSD-1 and QED-UCC(2). This is a major issue for multi reference calculations,
even if only two determinants are relevant. In these multi reference regimes QED-CCSD-1 is
therefore favorable over QED-UCC(2) and QED-MP(2). Nevertheless, it shall be mentioned, that
even though QED-UCC(2) usually fails at producing qualitatively correct dissoziation curves, it
damps most of the divergence of QED-MP(2), just like in the non-polaritonic regime.

3.2. Excitonic Renormalization

3.2.1. Computational Details

The numerical results in this section have been computed using the programm package described
in section 3.2.7. The system under consideration is the Beryllium dimer using the 6-31G basis set as
implemented in the psi4 programm package[60]. If not noted otherwise, all densities are included,
which can be build from neutral and singly charged excitations at the FCI level of theory.

3.2.2. Approximating the Brute Forced Excitonic Renormalization Method

As already mentioned in section 2.12, the biggest impairment is the explicit orthogonalization of
the truncated state space, which is currently determined by brute force. One can write the overlap
matrix from Eq. (2.145) for the two-fragment contribution as

(SĨ J̃ )mn = ⟨ΨimΨin
||ΨjmΨjn⟩ = ∑

PmPnQmQn
(z̄iPz

Q
j )m (z̄iPz

Q
j )n ⟨�Pm�Pn

||�Qm�Qn⟩ . (3.49)

Note, that the factors on the left run only over one fragment index and therefore only need
to be evaluated once for each fragment. This is rather computationally cheap, but the overlap
of two-fragment determinants is not decoupled. This term can be rewritten as a determinant of
monomer overlaps
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⟨�Pm�Pn ||�Qm�Qn⟩ =
(
⟨ΦPm ||ΦQm⟩ ⟨ΦPm ||ΦQn⟩
⟨ΦPn ||ΦQm⟩ ⟨ΦPn ||ΦQn⟩)

. (3.50)

Nevertheless, SĨ J̃ requires evaluating a determinant the size of the sum of two orbital spaces in
each dimension for all combinations of states of all dimer combinations of fragments. This results
in a very high scaling is therefore not a practically applicable approach. Note, that the same has to
be done for the Hamiltonian, which is even more expensive. Hence, an approximation needs to be
found, which lowers this scaling. One could think of either truncating the orbital basis for each state
to only the most dominant contributions, which however still requires numerical computation of
all orbital dimer overlaps, or approximating ⟨�Pm�Pn ||�Qm�Qn⟩ with an algebraic scheme. As can be
seen from Eq. (3.50), the latter can be achieved by approximating the overlap of two non-orthogonal
determinants. In the trivial case of orthogonal determinants the overlap yields the Kronecker delta.
If they di�er by only one dimension, then the result is given by a Kronecker delta, where two
indices yield an additional result of a 2x2 matrix, which is not equal to the identity matrix, so the
overlap matrix has two o�-diagonal elements unequal to zero and two diagonal elements unequal
to one. Determining these four values is obviously much cheaper, than evaluating the full overlap
matrix by brute force. For two arbitrary determinants, which are equal to each other apart from one
dimension, which is orthogonal to all other states in the same determinant, this requires at least
biorthogonalizing the di�ering dimension. Assuming the di�ering dimension is orbital p and taking
into account, that the other orbitals are already biorthogonal, this operation is done by

⟨ΦA |ΦB⟩ = ⟨ΦA
||| (a

†
p − a

p†)ap
|||ΦB⟩ . (3.51)

As can be seen here, biorthogonal creation operators are required, which is indicated by a
hermitian conjugation of the annihilation operation, however, since they are not hermitian and
creation as well as annihilation operators of the same representation, i.e. "normal" or biorthogonal
complement, are relevant, the creation operators are from now on abbreviated with a c. As can be
seen from Eq. (3.51), this procedure can be applied up to arbitrary number of di�erent orbitals. This
is also true for states in the �uctuation operator basis as well as super-system states, which de�ne
the full wavefunction in XR. Hence, the overlap of two super-system states can be rewritten as

⟨ΨI |ΨJ⟩ = ⟨ΨI |Ŝ|ΨJ⟩ (3.52)

with
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Ŝ = 1 + ∑
p
(ĉp − ĉp)âp

+ ∑
p<q
(ĉp − ĉp)(ĉq − ĉq)âqâp + ⋯ (3.53)

= 1 + ∑
pq
�pq ĉpâq

+
1
2
∑
pqrs

�pq�rs ĉp ĉr âsâq + ⋯ (3.54)

= Ŝ[0] + Ŝ[1] + Ŝ[2] + ⋯ (3.55)

and

�pq ∈ � = s − 1 (3.56)

spq = ⟨�p |�q⟩ ∈ s. (3.57)

Note, that in Ŝ the corrections for di�erent numbers of states have been separated, in order to
expand Ŝ in a series around the trivial case of completely orthogonal states. The series was then
reformulated using the relation

âp = ∑
q
spqâq. (3.58)

From this expansion working equations can be generated analogous to Eq. (2.141), yielding dimer
overlaps as
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⟨Ψ
i1Ψi2 ||| Ŝ

[0] |||Ψj2Ψj1⟩ = ⟨Ψi1Ψi2 ||Ψj2Ψj1⟩ = �I J (3.59)

⟨Ψ
i1Ψi2 ||| Ŝ

[1] |||Ψj2Ψj1⟩ =
⟨

Ψi1Ψi2
||||||
∑
p1q2

�p1q2 ĉp1 â
q2
||||||
Ψj2Ψj1⟩

+
⟨

Ψi1Ψi2
||||||
∑
p2q1

�p2q1 ĉp2 â
q1
||||||
Ψj2Ψj1⟩

= (−1)n2(1 − P12)∑
p1q2

�p1q2�p1�
q2 (3.60)

⟨Ψ
i1Ψi2 ||| Ŝ

[2] |||Ψj2Ψj1⟩ =
1
2
(1 + P12) ∑

p1q2r1s2

�p1q2�r1s2�p1r1�
q2s2 − ∑

p1q2r2s1

�p1q2�r2s1�
s1
p1�

q2
r2 (3.61)

⟨Ψ
i1Ψi2 ||| Ŝ

[3] |||Ψj2Ψj1⟩ ≈ (−1)n2
1
2
(1 − P12) ∑

p1q2r1s2t2u1

�p1q2�r1s2�t2u1�
u1
p1r1�

s2q2
t2 (3.62)

⟨Ψ
i1Ψi2 ||| Ŝ

[4] |||Ψj2Ψj1⟩ ≈
1
4

∑
p1q2r1s2t2u1v2w1

�p1q2�r1s2�t2u1�v2w1�
u1w1
p1r1 �

s2q2
v2t2

−
1
6
(1 − P12) ∑

p1q2r1s2t1u2v2w1

�p1q2�r1s2�t1u2�v2w1�
w1
p1r1t1�

u2s2q2
v2 . (3.63)

Note, that the �eld operators of Ŝ can refer to a state of any fragment involved, so they need
to be swapped to preserve the normal ordering, introducing an additional factor of minus one.
Furthermore, as throughout the whole, orthogonal fragment states are assumed, and therefore
�p1q1 = 0. Therefore, Ŝ[n] requires densities of a �eld operator string with a maximum length of n, and
since densities describing for instance triple ionization yield negligible contributions, Ŝ converges
rather quickly. As a numerical example, neglecting triple ionization and electron attachment and
expanding Ŝ up to fourth order yields a di�erence matrix with a Frobenius norm on the order of
10−4 by subtracting it from the exact overlap matrix, at the equilibrium geometry of the Beryllium
dimer, which is visualized in Figure 3.7.

In fact each order lowers the error by roughly one order of magnitude. Note, that this is the
same system, which was already considered in literature, where only neutral and singly charged
Beryllium atoms were considered, which yielded FCI accuracy. In this system only double ioniza-
tion/attachment is possible, which is in line with at least partially dropping three body density
contributions. Hence, by truncating the expansion of Ŝ at low order yields a cheap and precise
approximation to the overlap, which can be extended to exact accuracy by further expanding Ŝ. The
same expansion can be applied to the Hamiltonian term, which yields

⟨Ψi1Ψi2
|| H ||Ψj2Ψj1⟩ = ⟨Ψ

i1Ψi2 ||| ŜH
|||Ψj2Ψj1⟩ = ⟨Ψ

i1Ψi2 ||| (Ŝ
[0] + Ŝ[1] + Ŝ[2] + ...)H |||Ψj2Ψj1⟩ . (3.64)

69



3. Results and Discussion

Figure 3.7.: Convergence behaviour for the expansion in Ŝ for the dissociation of the Beryllium dimer.

Using algebraic, not computational, intermediates as

S[n]
{0} = ∑

pqrs
ℎpq ĉp Ŝ

[n]âq +∑
pqrs

vpqrs ĉp ĉqŜ
[n]âsâr (3.65)

S[n]
{1} = ∑

pqrs
(ℎpq − ℎpq) ĉp Ŝ

[n]âq +∑
pqrs

(2vpqrs − 2v
pq
rs ) ĉp ĉqŜ

[n]âsâr (3.66)

S[n]
{2} = ∑

pqrs
(vpqrs + vpqrs − 2v

p
qrs) ĉp ĉqŜ

[n]âsâr , (3.67)

with

ℎpq = ⟨�p |ℎ̂|�q⟩ (3.68)

vpqrs =
1
4
⟨�p�q |v̂|�r�s⟩ (3.69)

vpqrs =
1
4
⟨�p�q |v̂|�r�s⟩, (3.70)

yields the operator ŜH through di�erent expansion orders as
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Ŝ[0]̂ = S[0]
{0} (3.71)

Ŝ[1]̂ = S[1]
{0} + S

[0]
{1} (3.72)

Ŝ[2]̂ = S[2]
{0} + S

[1]
{1} + S

[0]
{2} (3.73)

Ŝ[3]̂ = S[3]
{0} + S

[2]
{1} + S

[1]
{2}. (3.74)

Summing up the terms within a distinct order in Ŝ, yields

S[n]
{m} + S

[n]
{m+1} + S

[n]
{m+2} = ∑

pq
ℎpq ĉp Ŝ[n]âq +∑

pqrs
vpqrs ĉp ĉqŜ[n]âsâr , (3.75)

which is hermitian. Hence, for every expansion term S[n]
{m}, the m + 1-th term corrects for the

biorthogonal one-particle term of the Hamiltonian, by orthogonalizing the subspace it operates
in, while the two-particle term is partially corrected for in the same way in m + 1-th order and
fully corrected in m + 2-th order. This is not term by term hermitian, but two additional expansion
orders in ŜH fully hermitianize these terms. The newly introduced non-hermitian terms then yield
working equations with densities of higher particle order, yielding smaller contributions to the �nal
energy and thus converging in an approximately hermitian manner. It shall be noted here, that a
term by term hermitian expansion can also be build by using the relation

cpS = Scp , (3.76)

along with

̂ = ∑
pqrs

ℎpq ĉpâq +∑
pqrs

vpqrs ĉp ĉqâsâr , (3.77)

which yields

Ŝ̂ = ∑
pqrs

ℎpq ĉp Ŝâq +∑
pqrs

vpqrs ĉp ĉqŜâsâr . (3.78)

71



3. Results and Discussion

However, this expansion, which only uses fully symmetric one- and two-particle integrals, has
much worse convergence properties, because the biorthogonal integrals in the zeroth order ansatz
already account for most of the interaction, whereas the other ansatz treats the orbital bases of
the fragments as if they were orthogonal. Therefore, the absolute contributions to the �nal energy
are very large, much larger than the total correlation energy, even at high orders of the expansion,
while the ansatz using biorthogonal integrals uses a zeroth order, which already contains most of
the correlation, if the states of the fragments are chosen appropriately. Therefore, the ansatz of Eqs.
(3.65), (3.66) and (3.67) is used throughout this thesis. Working equations can then be derived as

Ŝ[0]̂ = (1 − P12)ℎp1q2�p1�
q2 + 2(1 + P12)vp1q1s2r1 �

r1
p1q1�

s2 + 2(1 + P12)vp1s2r1q1�
q1r1
p1 �s2 + 4v

p1r2
q1s2�

q1
p1�

s2
r2

+ (1 + P12)vp1q1s2r2 �p1q1�
r2s2

(3.79)

Ŝ[1]̂ = −(1 + P12) ∑
p2q1r1s2

�p2q1ℎ
s2
r1�

q1
r1 �

s2
p2 + (−1)
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q1
p1�

q1
r1p1�

s2
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s2
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u1q1r1
p1 �s2t2
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t1u2p1q1r2s2

�t1u2v
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p1q1�p1q1t1�

u2r2s2 .

(3.80)

As already noted for the overlap matrix, the maximum length of an operator string, from which
densities are build, increases by one for each additional order in Ŝ. This yields a cheap and precise
approximation for the overlap, since in zeroth order no densities are required, however, for ŜH
the zeroth order already requires the neutral two-particle density, so already in �rst order three
particle densities with a length of the operator string of �ve are required. Nevertheless, truncating
the overlap and the Hamiltonian expansion at �rst order recovers almost 90 % of the error of basic
XR around the minimum of the Be2 dissoziation curve, as shown in Figure 3.8.
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Figure 3.8.: Comparison of XR’ against other XR variants as well as established methods for the dissociation
curve of the Beryllium dimer.

This approach will further be referred to as XR’. As can be seen in Figure 3.8, XR’ yields in
principle FCI accuracy at the minimum and for larger bond distances, while slightly deviating for
shorter bond distances. Note, that at shorter bond distances, than the minimum, the deviation of
XR’ is still smaller than that of CCSD(T). This is still true when the Be dimer is compressed above
the dissoziation energy limit, until it �nally breaks down at an energy well above the dissoziation
energy. Note, that XR’ requires a �ve dimensional tensor for all state combinations of the monomer
states, but since these are restricted they do not contribute to the memory scaling, which is therefore
limited at N 5. Now given the fact, that XR’ provides much better accuracy than CCSD(T), while
formally scaling as N 5 in CPU time and memory, where e.g. CCSDT already scales as N 8 in CPU
time and N 6 in memory, makes XR’ a very promising approach for high accuracy in large systems.
Furthermore, all XR approaches can make use of all methods with orthogonal state spaces. Hence,
for the application of a metal complex the central metal atom can be calculated at the level of
a multireference method, while challenging ligands can be computed at a high level of theory
and all remaining simple fragments can be evaluated at a low level of theory. The XR’ method
and higher expansions in Ŝ are then able to compute the interaction at FCI level for massively
truncated fragment state spaces. However, even though great results are obtained for the challenging
Be2 system, three problems need to be addressed. The �rst is, that the method is still expensive,
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even though the scaling is comparably small, because the currently used procedure to obtain the
optimized states is very involved. The second problem is, that it is not clear whether the interaction
between fragments is similarly precise with less accurate densities, e.g. from CC or ADC. The
third problem is, that it is also not clear when higher expansions in Ŝ as well as higher fragment
interactions become relevant. The second problem is obviously the most severe limitation and
therefore should be addressed �rst. The �rst problem also leads to a large obstacle, since it requires,
that the pseudo-density of monomer states for two monomers is solved for all states. The third
problem is probably a minor issue, if the �rst two problems are solved, because higher expansions
in both series will then probably not increase the overall scaling of the method, but rather introduce
a larger pre-factor.

3.2.3. ADC densities

In order to lower the computational requirements of the post-HF method of each fragment, it shall
be investigated whether ADC densities at a low order of perturbation theory are su�cient to recover
most of the interaction. Therefore, all required densities need to be evaluated.

Figure 3.9.: Comparison of XR for all neutral singly excited monomer states evaluated at the level of CIS,
XR[CIS](neutral), and ADC(1/0), XR[ADC(1/0)](neutral), for the dissociation curve of the Beryl-
lium dimer.
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Taking higher orders of Ŝ into account this becomes a very tedious task and requires amplitudes of
high dimensionality. However, such amplitudes can be computed e�ciently using low dimensional
objects through a Laplace transformation[68, 69], while using ADC in its ISR formulation, all
densities can be obtained from Eq. (2.37), which only requires evaluating Wicks theorem. This task
was automized using the "physics.secondquant" module as implemented in the sympy programm
package[70], which can be used to evaluate Wicks theorem into strings of Kronecker deltas, which
can then be contracted with tensors. This derivation and implementation can be tested for all
neutral state to neutral state one and two particle transition densities, since CIS densities can be
generated from the FCI code, which must be equal to ADC(1/0) densities. Note, that ADC(n/m)
refers to evaluating n-th order ADC states using m-th order ADC densities. The comparison is
visualized in Figure 3.9 for the same Be2 system, as used throughout the previous part of this thesis.

Note, that both methods show excellent overlap with each other, but also signi�cantly di�er from
XR[FCI](23) not only in absolute energy, but also in position and depth of the minimum. The position
of the minimum is overestimated by more than two Angstroms and the depth is underestimated by
a factor of more than four. This shows, that the derivation and implementation of the required terms
is correct, while also the system under consideration has a large contribution to the correlation
in the doubly excited state space, as expected for Beryllium. The result with �rst order densities,
where also charged states are taken into account, i.e. XR[ADC(1/1)](full), is shown in Figure 3.10.

Figure 3.10.: Dissociation curve of the Beryllium dimer at the XR[ADC(1/1)](full) level of theory.
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Note, that even though the binding energy did not change signi�cantly, the position of the
minimum was shifted towards the correct bond distance by roughly 0.5 Å, while the scale of the
absolute energy is now o� by only 2 kJ/mol as well. This is a strong hint, that XR quickly converges
with increasing perturbation order of the ADC states and densities. The fact, that the depth and
location of the minimum are still quite o�, can be expected to originate from the signi�cant multi-
reference character of the Beryllium atom and will therefore most probably be �xed, as soon as
doubly excited contributions are taken into account. The working equations for the ADC densities
up to �rst order of perturbation theory required for XR are provided in section A.1.

3.2.4. Cumulant Ansatz for Densities

Due to the large memory requirement as well as highly increased CPU time, which comes with
exceeding the two particle densities, many approaches were applied with the goal of lowering the
memory requirement, while staying within the accuracy of XR’. All of the following approaches
have been tested using FCI states and densities. One of these approaches is the so-called density
matrix reconstruction, which builds higher than two particle densities from tensor products of up
to two particle densities. This approach is well developed, because it has a direct application to
solving the Schroedinger equation, which can be rewritten using densities instead of states. The
easiest derivation can be carried out by probing the doubly excited state space, which probes the
full space of the two particle reduced Hamiltonian K[71]. This leaves one with the Schroedinger
equation in the following form

∑
pqrstuvw

K rs
vwR

pqrs
tuvw = 4E2Dtu

pq, (3.81)

with R = ⟨ ̃
||| a

†
pa†qauata†r a†s awav

||| ⟩. Bringing R in normal ordered form yields the so-called
2,4 contracted Schroedinger equation for transition matrices. However, this formulation is not
practical, because it requires calculating explicit four particle densities. In theory this can be
circumvented though, as proven by Rosina’s theorem, which shows, that all information for a two
particle Hamiltonian is already contained in the reduced two particle density matrix and hence,
all higher particle reduced density matrices can be obtained from the two particle reduced density
matrix. Note, that this theorem proofs this relation only for reduced density matrices, i.e. bra
and ket state need to be equal. Nevertheless, transition matrices have been shown to numerically
converge faster than the reduced density matrices for various density matrix reconstruction schemes.
Here the cumulant approach will be applied, which, to the best of my knowledge, shows the best
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results published in literature, while also being extendable to higher accuracy by taking further
expansion terms into account[71, 72]. This approach is based on the fact, that the cumulant of a
sum of independent statistical variables is equal to the the sum of cumulants of each individual
variable. Hence, independent statistical variables can be separated from the total cumulant without
approximation. This means, that for instance the cumulant, corresponding to a three particle
density, is only missing contributions, where all three particles interact with each other. This is
the maximum information, which can be recovered without explicitly calculating the three particle
density. The required cumulants can then be found by �nding a function, whose moments are the
targeted densities. This can be achieved by choosing the generating function F as

F (J ) = ⟨ i
|||| [
e∑k Jka

†
k+J

∗
kak]N

||||
 j⟩ , (3.82)

where the subscript N refers to normal ordering, which means, that only normal ordered ex-
pansions in the exponential function are allowed. The variable J can be interpreted as Schwinger
probes, but remain a mathematical construct, since they only appear in the generating function, as
will be seen later. Partial di�erentiation with respect to the required Schwinger probes and then
taking the limit for the Schwinger probes against zero, to get rid of the exponential, then yields the
moments, which are the densities

lim
J→0

)F (J )
)Jp)Jq)J ∗r )J ∗s

= ⟨ i
||| a

†
pa

†
qaras

||| j⟩ . (3.83)

Note, that the densities are normalized. The corresponding cumulants, �, are then obtained
as the moments of ln(F (J )). It shall be noted here, that due to the derivative and the limit for
J → 0, this can only be applied if ⟨ i || j⟩ ≠ 0. This can easily circumvented by not building
the densities as moments, but the density operator, i.e. the new generating functional is given as
[exp(∑k Jka

†
k + J ∗kak)]N . This lifts the requirement of choosing non-orthogonal states. The moments

of F (J ), i.e. the densities or density operators, can then be recursively obtained from the cumulants
as

D1 = �1 (3.84)

D2 = D2
1 + �2 (3.85)

D3 = D3
1 + 3D1�2 + �3 (3.86)

D4 = D4
1 + 6�2D

2
1 + 3�2 + 4�3D1 + �4. (3.87)
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However, due to normalization it can be found, that D3 = �3 + 3D2D1, which is a rather trivial
result. One can also estimate �3, by tracing out one particle of the four particle density. The relevant
part of D4 can be shown to be D4

1 +3�2 +6�2D2
1 = D4

1 +3D2
2 , which is the �rst non-trivial contribution,

since it is a linear combination. Nevertheless, benchmarking against a few small single-reference
systems yields errors for the total densities on the order of 10−4 for reduced and transition three
particle density matrices[71, 72]. As a short numerical example to estimate the order of magnitude
of the error, which the density is allowed to include without changing the accuracy of the XR’
result, a relative statistical error is introduced into the density of the type ccaaa from the neutral
ground state to the cationic ground state and then XR’ evaluated for the same Be2 system as used
throughout the previous part of this thesis. It was shown, that this statistical error is allowed
to have a magnitude of less than 10−2. This yields an error norm, which is the Frobenius norm
of the di�erence between the exact tensor and the approximate one, of roughly 10−2. This is the
upper bound for the error, and given the error in the literature of around 10−4 this approach is
worth investigating. In order to do so, the scheme needs to be extended to also account for uneven
numbers of annihilation and creation operators. Using the ansatz producing density operators as
moments this is straightforward but tedious, since the products between densities and/or cumulants
is actually a wedge product from the Grassman algebra, which ensures the antisymmetry of the
�nal density by explicit antisymmetrization. Furthermore, in principle all combinations of �eld
operators need to be taken into account. Therefore, as a �rst naive example, the same expansion
shall be used as for densities sandwiched by equally charged states, and exciting/accepting one
electron into/from the continuum

⟨ 
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†
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†
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†
r asatau
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†
r asatau
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Utilizing the cumulant approach for D3 yields
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(3.89)

If p is now restricted to a single value, e.g. such that the cationic bra state is the cationic ground
state, the permutations would yield additional terms, which run over all states, while using even
lower particle densities. Hence, as a naive approximation the permutations shall be expected to be
separable, leaving one with the ansatz
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Using this ansatz one obtains an error norm of 1.3, which two orders of magnitude larger, than
the upper bound determined before. The error norm is 23 % of the total norm of the correct density,
which means, that around 77 % of the density are recovered. Not using the linear combination, but
only the single terms, reproduce the tensor with a similar accuracy. The same is true for the same
operator string but sandwiching it between the anionic and the neutral ground state, where an
error norm of 1.2 is achieved, recovering 85 % of the correct density. These results are orders of
magnitude worse, than the errors published in literature as well as the required upper boundary.
However, given the fact, that most of the density is still recovered, the approach can at least be
expected to be a rough approximation to the density. The large deviation from the results published
in the literature then is probably due to two reasons. The �rst one is, that the higher the dimension
of the target density, the more precise the approximation becomes. Taking this into account, one
can expect a lower accuracy for the three particle IP/EA densities, than for the neutral three particle
densities. The second reason for lower accuracy than the published results, which probably has the
biggest impact, is the fact, that the system of interest provides signi�cant multi-reference character,
whereas the systems investigated in literature are strictly single reference. Due to the high multi-
reference character the valence electrons are strongly correlated, which signi�cantly increases the
fully correlated contribution of all particles under consideration, which is not accounted for by the
cumulant approach. Hence, due to the initially estimated accuracy, which is more than two orders of
magnitude larger than the estimated upper boundary, this approach will not be further investigated.
It shall be noted here, that this approach might o�er su�cient accuracy for single reference systems
though, but this is also possible using e.g. ADC densities with similar computational cost for low
orders of perturbation theory.

3.2.5. Adapted Integrals

An other approach to lower the computational e�ort is to cheaply approximate the correction of
higher orders in Ŝ. In analogy to Hartree-Fock an ansatz has been chosen, which approximates the
two particle integrals by their one-particle mean-�eld. This approximation can be formulated as
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Figure 3.11.: Comparison of XR and XR’mean for the 11 best neutral states against the same methods for the
full optimized state space and FCI for the dissociation curve of the Beryllium dimer.

shown in section 2.1, however, since post-HF one particle densities are already calculated, one can
increase the precision by building the two-particle mean-�eld, ṽ, as

ṽr0p0 = 2�
q0
s0 v

r0s0
p0q0 + 2�

q1
s1 v

r0s1
p0q1 (3.91)

ṽr1p0 = 2�
q0
s0 v

r1s0
p0q0 + 2�

q1
s1 v

r1s1
p0q1 (3.92)

ṽr0p1 = 2�
q0
s0 v

r0s0
p1q0 + 2�

q1
s1 v

r0s1
p1q1 (3.93)

ṽr1p1 = 2�
q0
s0 v

r1s0
p1q0 + 2�

q1
s1 v

r1s1
p1q1 . (3.94)

Applying this approach for purely neutral states corrects the error from XR from roughly 8 kJ/mol
to 2 kJ/mol at equilibrium distance of the Be2 used before. The overall performance along the bond
distance is also signi�cantly improved, as shown in Figure 3.11.

This result with the mean �eld correction was obtained by applying the mean �eld correction
only for the ERI term in S[1]

{0}, while for the ERI terms in S[0]
{1} the actual ERIs were used, since they

do not contain Ŝ[1], even though they contribute to Ŝ[1]Ĥ . However, using this ansatz for ionized
states yields overcorrection of several orders of magnitude. Applying the mean �eld approach to
approximate all ERI terms of Ŝ[1]Ĥ , results in an overcorrection of the same order of magnitude,
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as for the �rst approach. Note, that approximating zeroth order contributions, in order to achieve
consistent treatment of all ERI terms, is not useful, because the zeroth order ansatz, XR, already
accounts for most of the correlation, as can be seen in Figure 3.8. Only approximating vr0s0p0q0 and
vr1s1p1q1 , i.e. the terms containing �ve dimensional density tensors, roughly lowers the overcorrection
by a factor of one half. Note, that the only relevant term from Ŝ[1]Ĥ , which cannot be approximated
by this mean �eld ansatz, namely (−1)n2(1 − P12)∑t2u1p1q1r2s2 �t2u1v

s2r2
p1q1�

u1
q1p1�

r2s2
t2 , provides a very small

contribution to the ground state energy on the order of 10−2 kJ/mol. Hence, the terms, dominating
the overcorrection can be identi�ed as the terms contributing to ṽr0p0 and ṽr1p1 . Pointing out the exact
reason, why these terms are so poorly approximated is very hard, because several reasons possible.
For instance, the expansion in Ŝ with XR as the zeroth order ansatz yields large numbers with very
delicate cancellations. Hence, small errors in the densities or the integrals, as seen for the cumulant
approach, yield large errors in the �nal ground state energies. Furthermore, ṽr0p0 and ṽr1p1 provide
much larger contributions, than ṽr1p0 and ṽr0p1 , which su�ce to approximate Ŝ[1]Ĥ for neutral states.
By further analyzing this approach, one also notices, that this approach is in fact related to the
cumulant approach. For the example of the term containing the three particle EA density from
Ŝ[1]Ĥ this yields

∑
t1u2p1q1r1s1
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s1r1
p1q1t1�

u2 = ∑
t1u2p1q1r1s1

�t1u2v
p1q1
r1s1 �

s1r1
p1q1t1�

u2

≈ ∑
t1u2p1q1r1s1

�t1u2v
p1q1
r1s1 �

r1
p1t1�

s1
q1�

u2

= ∑
t1u2p1r1
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r1 �
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(3.95)

where the last term is equal to the corresponding term from Ŝ[1]Ĥ with ṽp1r1 substituted by ℎp1r1 ,
while the approximation �s1r1p1q1t1 ≈ �r1p1t1�

s1
q1 was applied in the second line. This approximation is

at the core of the cumulant approach, which was shown to yield insu�cient accuracy for the
corresponding term containing the three particle IP density. Hence, the approach of approximating
higher particle densities, by building a single antisymmetrized tensor product of two lower particle
densities can be expected to yield insu�cient accuracy for the �ve dimensional density tensors, and
more generally speaking also for the terms containing a two particle EA and a two particle IP density
tensor. This also explains, why the results published for the cumulant ansatz are signi�cantly better
than for the numerical experiment performed earlier in this chapter, since the published results
only include neutral states. At this point it shall be noted, that one can most probably increase
the performance not only of this and therefore also the cumulant ansatz, but also of XR and its
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expansions in Ŝ in general by choosing a di�erent set of orbitals. Especially localized orbitals are
a seemingly good choice, due to the minimized interaction between fragments. Common choices
are the Edminston-Ruedenberg orbitals, which minimize the self interaction by minimizing the
following functional

fER({�}) = ∑
i
viiii , (3.96)

the Boys orbitals, which minimize the sum of variance

fB({�}) = ∑
i
⟨�i || (r − ⟨�i | r |�i⟩)2 ||�i⟩ , (3.97)

and the Pipek-Mezey orbitals, which are obtained by minimizing
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, (3.98)

where |�⟩ denotes a basis function and N runs over all atoms. Many post-HF methods exist, which
can utilize such sets of orbitals, e.g. local ADC[69, 73]. The only di�erence to standard ADC is, that
the Fock matrix is not diagonal anymore, which yield non-diagonal zeroth order terms, as well as
�rst order amplitudes, which need be iterated. Hence, densities can still be build within the same ISR
basis, with adapted orbitals and amplitudes, yielding the same working equations as already derived
in section 3.2.3. Regarding the presented mean-�eld approach and therefore also the cumulant
ansatz, the Edminston-Ruedenberg set of orbitals seem like a good choice, since they minimize
the diagonal of the two-electron integrals, which can be expected to lower the overall norm of the
ERIs, and therefore also the impact of the �ve dimensional density tensors. However, one could
also think of spatially localizing orbitals with the Boys orbitals or the Pipek-Mezey orbitals, given
atomic orbital basis functions.

3.2.6. Numerical Decomposition Techniques

Finally, one can also utilize methods from computer science, in order to lower the computational
e�ort. However, since the major problems of cheap access to densities and quickly optimizing
the monomer states are not solved yet, the only approaches employed are those with the goal of
lowering the e�ective rank of the high dimensional tensors. This has been attempted using Tucker-
and singular value decompositions, e.g. the canonical polyadic decomposition, as implemented in
the tensorly programm package[74]. These tensor decompositions can be applied very well to the XR
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ansatz, because the working equations have to be evaluated at all states of fragment one for all states
of fragment two for dimer interactions. These nested loops over four state indices are the reason,
why small state spaces are required for e�cient computations. Since the densities are only evaluated
on a single system a signi�cant speed-up can be achieved by decomposing the density tensors on top
of caching intermediates. One can also think of decomposing the ERIs, but it was shown, that they
do not pro�t from decomposition, while also their rank could not be lowered without introducing
signi�cant errors to the XR energy. This might seem surprising at �rst, considering that the integrals
also contain contributions between di�erent fragments, which are already quite far apart at the
equilibrium geometry of the Be2 system in the 6-31G basis. However, it was shown in literature, that
the ERIs also contain a signi�cant contribution of the multipole interaction between electrons, which
reaches far through space and depends on all positions of the electrons and therefore also on their
excitation levels. Nevertheless, using batching techniques or non-rank lowering decompositions,
computations on including ERIs can still be performed e�ciently[75, 76]. For the density tensors on
the other hand the e�ective rank could be lowered slightly, using Tucker decomposition, which
results in a tensor of the same dimensionality as the original density tensor, with a reduced size
in each dimension, and the corresponding two dimensional tensors, which are the transformation
matrices between the original density tensor and the tensor of lower rank. Note, that there is still a
lot of room left for further optimization, but decomposition approaches always require building the
full tensor �rst, which is ine�cient. Hence, the future focus will be laid on how the densities can be
approximated without building the full tensor, which can besides using e.g. ADC densities also be
achieved by algorithms like skeleton approaches[77].

3.2.7. Implementation

The implementation, which has been used to obtain the numerical data for this chapter, was written
from scratch and can be accessed through https://github.com/adutoi/QodeApplications. Since this
package was written from scratch, the basic work�ow shall be brie�y examined here. The reference
data, symmetric overlap-, one- and two-electron integrals in the AO basis and molecular orbital
coe�cients are currently obtained from the psi4 programm package[60], while the FCI densities are
obtained from a homebrew FCI code and the ADC densities are build from prerequisites obtained
from the adcc package[58]. All of these backends can be exchanged with little e�ort. In the next
step the densities are either imported as explicit tensors from the FCI backend, or as lazily evaluated
contraction schemes in the case of the ADC densities. Note, that the ADC densities can also be
numerically evaluated, before using them in the working equations. Having the ADC densities
evaluated in a lazy fashion via a contraction scheme, one can make use of the tensor product like
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structure of the ADC densities, which only include up to fourth order tensors in low orders of
perturbation theory, which lifts the requirement of handling �ve dimensional tensors. If however,
higher orders of perturbation theory are required to obtain densities of su�cient accuracy, six
and higher dimensional tensor can be required, which puts the explicit evaluation in favor. Then
the (partially-) biorthogonalized integrals are build from the symmetric integrals in the atomic
orbital basis, and the molecular orbital coe�cients, where the ordering of the molecular orbitals
can be exchanged to be in line with the ordering of the molecular orbitals in the density tensors.
The integrals are therefore put into a homebrew dynamic array object, which can be cached, so
only the required transformations are made, while also taking arguments de�ning the ordering
of the molecular orbitals as well as the wrapper used for the tensors. It also tracks the fragment
indices. The densities, or, if they are lazily evaluated, their preliminaries, are also wrapped in the
same way. This wrapper has been chosen as the TensorLy wrapper[74], which has the advantage,
that linear algebra backends, e.g. NumPy, PyTorch or TensorFlow, can be switched with a single
line of code, as well as whether GPU acceleration is desired or not, if the linear algebra backend
provides it. The wrapper also takes care of keeping double precision, since e.g. PyTorch uses single
precision as the default precision, which is insu�cient when going beyond the zeroth order in Ŝ.
At this point tensor decompositions can then be applied. In the next step the supersystem overlap
matrix for all dimer interactions is calculated, according to Eq. (3.59) for XR and additionally Eq.
(3.60) for XR’. Note, that one can also request higher orders in Ŝ. Accordingly the supersystem
Hamiltonian matrix is calculated according to Eqs. (3.79) for XR and additionally (3.80) for XR’.
At this point lazily evaluated densities can be utilized to lower the computational e�ort in terms
of CPU time and memory requirements for intermediate objects. In order to optimize this �nal
contraction and keep track of previous expression trees, the tensornet library has been developed
from scratch. It is still under heavy development, but already takes care of dispatching, which will
later be handled by e.g. the optimized NumPy.einsum dispatching, as well as building expression
trees, which are �nally evaluated using the TensorLy wrapped tensors, so it is agnostic with respect
to the backend. The �nal supersystem matrices are very large, and therefore also build in a lazy
fashion. The �nal evaluation can then be done by explicitly inverting the supersystem overlap and
by fully diagonalizing ⟨Ψ̄

Ĩ ||| H
|||ΨJ̃⟩ = ∑K̃ S̄ Ĩ K̃ ⟨ΨK̃

|| H ||ΨJ̃⟩, or using the XR-CCSD method, already
mentioned in section 2.12, which has a very low formal scaling of N 3 with the system size and N 4

with the number of states per fragment, which is always heavily truncated.
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3.3. Crystallization-Induced Reversible Ring Opening in
Tetraazahexacene Derivatives

3.3.1. Computational Details

In this chapter all calculations have been conducted using standard DFT methodology, utilizing the
B3LYP functional and the 6-311G* basis set as implemented in the QChem 5.2 programm package[78],
apart from the optimizations using the explicit crystal environments, where GFN2-XTB was applied,
as implemented in the xtb 6.4.1 programm package[21], and the crystal environment was �xed.

3.3.2. Experimental Findings

Experimental �ndings show[47], that some derivatives of Tetraazahexacene crystallize under open-
ing of a Carbon-Carbon bond, leading to a Pyrazinopyrazine core. It was also found, that solvation
of said crystals, as well as grinding the crystals to amorphous structures, reverses the ring opening,
as shown in Figure 3.12.

Figure 3.12.: Reversible reaction of three derivatives of Tetraazahexacene to Pyrazinopyrazine under crys-
tallization.

This reaction can be monitored by infrared spectroscopy, since the Pyrazinopyrazine core provides
a strong absorption band around 2200 cm−1, which is in line with the simulated spectrum, shown
in Figure 3.13. One can also UVVis spectroscopy, where a broad absorption band around 1100 nm
shows the existence of a Tetraazahexacene core, which completely vanishes during isomerization
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Figure 3.13.: Simulated infrared spectrum of com-
pound 1c in open and closed form
in Dichloromethane with a Lorenzian
broadening of 15 cm−1 at the half max-
imum.

Figure 3.14.: Simulated UVVis spectrum of com-
pound 1c in open and closed form
in Dichloromethane with a Lorenzian
broadening of 0.2 eV at the half maxi-
mum.

to the Pyrazinopyrazine core. This is also in line with the experiment, and the simulated spectrum
is shown in Figure 3.14.

Note, that there are three di�erent classes of possible Pyrazinopyrazine conformers, which can
be divided according due to their point group symmetry. The possible symmetries are D2h, C2v
and C2, which refer to completely planar, symmetrically distorted out of plane and asymmetrically
distorted out of plane, given, that R1 and R2 are equal. However, only the asymmetrically distorted
conformer will be investigated in the following, since it is the most stable conformer when simulated
in Dichloromethane using a polarizable continuum model, while it is also the conformer in the
experimentally observed crystal structures of compounds 1b and 1c. An additional experimental
�nding is, that the compound corresponding to compound 1c with a diazahexacene core crystallizes
without breaking a bond, as shown in Figure 3.15.

3.3.3. Computational Investigation

This behaviour upon crystallization shall be investigated in the following for all four compounds.
However, since the crystal environment needs to be modelled explicitly, which requires calculations
for up to 3000 atoms, sophisticated methods to �nd reaction paths, like the meta-dynamics reaction
path �nder, nudged elastic band or growing string methods cannot be applied here. Hence, the
reaction path needs to be approximated. For computational simplicity the reaction coordinate is
chosen as the distance of the Carbon atoms, whose chemical bond is broken during the crystalliza-
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Figure 3.15.: Crystallization of compound 2, which has the same functionalization as compound 1c, does
not yield an ten membered ring structure upon crystallization.

tion process, while relaxing the remaining degrees of freedom in the constraint of the chemical
environment, which is either Dichloromethane modelled with a polarizable continuum model or
the crystal environment obtained from the crystal structure. Optimizing the structure in the solvent
environment can then be handled by DFT, but an optimization in the explicit crystal environment re-
quires tremendous computational e�ort on this level of theory, even though the crystal environment
is not optimized. Using polarizable embedding also requires high computational e�ort, because
the embedding function needs to be �tted to the compounds, which is rather slow, if the number
of atoms in the single molecules surpasses 100. Optimizing by modelling the crystal environment
with e�ective charges at the atom centers, like Mulliken charges, is expected to underestimate the
repulsion and therefore yield wrong structures. Hence, the optimization in the crystal environment
needs to be performed at a lower level of theory. Note, that one could also use other embedding
techniques, like QM/MM, but as already discussed in section 2.9.3, the GFN2-XTB method can easily
handle structures with 3000 atoms, while yielding very good results for geometries. The reduced
crystal structures were then chosen as such, that the central molecule is surrounded by a shell of
the thickness of one molecule. This could be further reduced to a two dimensional shell with the
same thickness for compounds 1a and 1c, since along the third dimension the two dimensional
layers show a signi�cant distance, leading to approximately decoupled layers. This yields a total
of 5, 7, 27 and 18 molecules for compounds 1c, 1a, 1b and 2, respectively. These reduced crystal
structures are visualized in Figure 3.17 and the single molecules are shown in Figure 3.16.

Note, that compounds 1a and 2 crystallize in a brick wall motif, while compound 1c provides a
modi�ed triple block motif. The packing motif for compound 1b cannot be determined precisely, due
to the mixture of Pyrazinopyrazine and Tetraazahexacene cores of roughly 2:1 respectively, which
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(a) compound 1a (b) compound 1b

(c) compound 1c (d) compound 2

Figure 3.16.: Molecular geometries obtained from single-crystal X-ray spectroscopy.

also leads to minor deviations between orientations of the side chains, which cannot be resolved by
the spectrometer. With the geometries from the relaxed scans along the Carbon-Carbon distance
of interest in the crystal environment at hand, one can now further re�ne the result obtained for
the relative energies. This is necessary, since GFN2-XTB, and related XTB methods, do not yield
reliable relative energies. This is especially true for the systems under investigation, because for
instance optimizing the geometry of compound 1c in gas phase or solvent environment yields the
closed, i.e. the Tetraazahexacene, form, even when the Pyrazinopyrazine structure is provided as the
initial guess, where e.g. DFT with the B3LYP functional shows a deep local minimum. However, as
already discussed, polarizable embedding requires large computational e�ort. Hence, it was decided
to model the environment using the Mulliken charges obtained from the previous GFN2-XTB
optimization. Since the charge centers still provide a distance to the central molecule above the
van-der-Waals distance, this is a good approximation. Utilizing the same level of theory as used for
the solvent environment, without the polarizable continuum model, the reaction paths for all four
compounds in the crystal environment can be obtained and are compared to the same reaction path
in the solvent environment in Figure 3.18.
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(a) compound 1a (b) compound 1a

(c) compound 1b (d) compound 1b

(e) compound 2 (f) compound 2

(g) compound 1c

Figure 3.17.: E�ective crystal environments obtained from single-crystal X-ray spectroscopy.
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Figure 3.18.: Reaction paths for various compounds obtained from relaxed scans along the central C-C bond
in the crystalline and solvated environment. The data points were interpolated using a cubic
spline �t, which ensures minimal curvature.

For comparison, using GFN2-XTB for the relative energies yields a single minimum for all com-
pounds in between the Tetraazahexacene and the Pyrazinopyrazine minima obtained from the DFT
level of theory. Surprisingly, all compounds show two minima, independent of the environment, and
the absolute minimum in energy for all compounds in the crystal environment is the Pyrazinopy-
razine form. Only in the solvent environment is the Tetraazahexacene form thermodynamically
stable. The calculated reaction barriers from the closed to the open form and Eclosed − Eopen are
116 kJ/mol, 115 kJ/mol, 112 kJ/mol, 295 kJ/mol and 173 kJ/mol as well as 21 kJ/mol, 29 kJ/mol, 48
kJ/mol, 34 kJ/mol and -62 kJ/mol for compounds 1a, 1b, 1c, 2 in the crystal and 1c in the solvent
environment, respectively. In order to put these barriers into perspective, activated complex theory
is applied here, where the proportionality factor is set to one, and the standard Gibbs free energy is
approximated with the energy di�erence. The latter approximation can be justi�ed by the fact, that
the initial and �nal structures have very similar degrees of freedom, suggesting a very small change
in the entropy. Given an energy di�erence of 105 kJ/mol this yields a half-life time of roughly
a day. The energetic di�erences of the minima can even be compared to experimental �ndings,
when assuming chemical equilibrium. With crystal growth at room temperature, one can then
determine the energy di�erence required to obtain a mixture of 2:1, as observed for the crystal
structure of compound 1b, of roughly 2 kJ/mol from a Boltzmann distribution. Comparison to the
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calculated energy di�erence of 29 kJ/mol shows, that the sign has been determined correctly, but the
quantitative error is around 27 kJ/mol. Given this error range, the calculated reaction barriers can
range from being large enough to provide kinetic stability of either isomer of compounds 1a, 1b and
1c to small enough to ensure chemical equilibrium at room temperature. Compound 2 is then either
kinetically or thermodynamically stable and 1c in the solvent environment is thermodynamically
stable. Furthermore, compound 1a could also be thermodynamically stable in the Tetraazahexacene
form, but compound 1c still has the global energetic minimum at the Pyrazinopyrazine form. Even
though the relative energies cannot be brought to agreement with the experimental data with
absolute certainty, it shall be noted, that the barriers and energy di�erences of the minima show a
clear trend, from compound 1a with highest barrier and smallest energy gap between the minima to
compound 1c with the lowest barrier and the largest gap between the minima with compound 1b in
between. Hence, the remaining question is, given the fact, that compound 1c can be seen to not be
kinetically stable from the experiment, whether compound 1a is kinetically or thermodynamically
stable. This can however be experimentally proven with little e�ort, by slightly heating the crystal
and then performing the single-crystal X-ray crystallography. Now the question arises after the
dominant interaction, which forces the break of the innermost Carbon-Carbon bond. This dominant
interaction could either be the van-der-Waals repulsion due to small distances between atoms of
the central molecule and the crystal environment, or the polarization of the environment, due to
the crystal environment. This can be investigated by calculating the optimized open and closed
geometries of compound 1c from the crystal environment in gas phase. This absence of the crystal
environment leads to a change in the energy di�erence between open and closed form of less than
2 kJ/mol compared to the energy di�erence in the crystal environment. Hence, the polarization
due to the crystal environment is negligible, and the geometrical distortion of the molecule is the
reason for the isomerization. However, compound 2 is similarly distorted to compound 1c, as can
be seen from Figure 3.16. Hence, one can expect, that only Tetraazahexacene derivatives with very
bulky side groups crystallize under opening of the central Carbon-Carbon bond. The mechanism of
the ring-opening was found to be of electrocyclic nature. This can be determined from a localized
orbital bonding analysis using Pipek-Mezey orbital localization and Lowdin population analysis for
compound 1c, which shows no radicals at the approximate transition state geometry. This result is
the same for the crystal and solvent environment, as well as for a restricted orbital ansatz or broken
symmetry ansatz, where HOMO and LUMO are mixed 70:30, respectively. Hence, the reaction
should obey the Woodward-Ho�man rules, which propose the asymmetrically twisted conformer,
which is the one observed from single-crystal X-ray crystallography.
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Excitonic Renormalization

In this thesis crucial steps in the development of a novel fragmentation approach, Excitonic Renor-
malization, XR, towards practical applicability were presented. The �rst important achievement
was the reformulation of the overlap matrix into a series of orbital rotations, which was shown to
converge quickly for the Beryllium dimer. This lifts the necessity of numerically orthogonalizing
the full Fock space, build from all fragments. The next achievement was to show, that approximate
densities obtained from Møller-Plesset, MP, and Algebraic Diagrammatic Construction Theory,
ADC, quickly converge with increasing order of perturbation theory, which strongly indicates, that
densities obtained from methods, which do not span the full Fock space, yield su�cient accuracy.
However, proving this assumption requires the full second order densities, which will be published
in the future. Besides approximating the densities using ADC, method independent approaches of
algebraic and numerical nature were presented and tested. For the presented cumulant and adapted
integral ansätze a relation has been shown, as well as them managing to approximate densities
between neutral states with good accuracy, while densities, which include charged states, were
shown to yield insu�cient accuracy. The presented numerical decomposition techniques were able
to only slightly lower the rank of the density tensors under investigation, while also requiring to
build the full high-dimensional tensors �rst, which is highly ine�cient. It was further noted, that
the performance of all of these approximations can be improved e.g. by utilizing localized orbitals.
Based on these results, one can expect approximate densities, e.g. from ADC, to yield su�cient
accuracy for the XR method, where high particle densities need to be approximated on the level of
working equations and not with a method independent approximation scheme. Hence, obtaining an
XR method of practical relevance requires further evaluation and approximation of method speci�c
densities as well as an e�cient scheme to obtain optimized state spaces.
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Polaritonic Perturbation Theory

Additionally, an extension to consistently describe polaritons within perturbation theory was
presented in this thesis as well. Therefore, two di�erent splittings of the Hamiltonian have been
investigated, using either the standard Fock operator, yielding origin invariant methods even
for systems with a global charge, or the polaritonic Fock operator, consistently adjusting the
orbitals to the vacuum �eld contribution, as the unperturbed Hamiltonian. Using these splittings
of the Hamiltonian, two di�erent ground and excited state methods were developed, which can
be interpreted as extensions to MP and ADC, respectively. Numerical results for both splittings
were shown to agree well in �rst order for intermediate coupling strengths. For ground states a
similar agreement can be found in second order, while for excited states only the variant based on
the polaritonic Fock operator was developed up to second order of perturbation theory. All of these
approaches were extensively tested. Furthermore, it was presented how to unitarily transform the
ADC variant based on the polaritonic Fock operator into a "quasi-diabatic" representation, which can
be used for dynamical simulations of wavepackets in polaritonically coupled states without further
adjustments. Comparing three variants of this method within a study on the photodissociation
dynamics of Pyrrole in a photonic cavity then showed the importance of including the vacuum
�eld contribution into the Fock operator for strong couplings, which is however not done in most
studies published in literature. Considering the negligible computational e�ort required to build
the "quasi-diabatic" representation based on the polaritonic Fock operator, compared to the variant
based on the standard Fock operator, it should be used as the default for systems without a global
charge, even for small coupling strengths. The developed methodology of polaritonic perturbation
theory can also be used to derive consistent polaritonic properties in a straightforward manner,
which shall be investigated in the future.

Crystallization-Induced Reversible Ring Opening in
Tetraazahexacene Derivatives

Finally, a computational study on the crystallization-induced reversible ring opening of Tetraazahex-
acene derivatives to Pyrazinopyrazine derivatives was presented. Therefore, the experimental results
were presented �rst and it was shown, that the experimental spectra could be reproduced well. In
the following the energy pro�le along the reversibly opening Carbon-Carbon bond was computed
using constraint optimization with and without the explicit crystal environment. The resulting
energy pro�les show double wells for all derivatives. In solution the closed form was shown to be
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kinetically and thermodynamically stable, while the Diazahexacene compound was shown to be
only kinetically stable. The remaining compounds show no kinetic stability and thermodynamically
favored open forms, which qualitatively agrees only with two of the remaining three compounds.
Assuming a Boltzmann distribution an error was then estimated for the energy di�erence of the
open and closed form of one of these compounds, which, applied to the other compounds, yields
reasonable agreement with the experimental data. Furthermore, the reaction was found to follow a
concerted electrocyclic mechanism and the dominant force, leading to a ring-opening reaction, is
the repulsion of the large substituents in the crystal, resulting in a distorted aromatic core. Hence,
Pyrazinopyrazine cores are favored over Tetraazahexacene cores, when the substituents force the
aromatic system to twist asymmetrically.
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A. Appendix

A.1. Algebraic Diagrammatic Construction Densities up to
First Order of Perturbation Theory Required for
Excitonic Renormalization
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The remaining densities are either already published elsewhere[50, 79] or can be obtained from
hermitian conjugation. Note, that the ISR states are not charged, if not noted otherwise by a minus
or plus sign.
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