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Abstract

The robustness task asks to find a predictive model that remains accurate not only
under known conditions but also when encountering completely novel situations,
often referred to as distribution shift. Domain Generalization (DG) represents a spe-
cific case of robustness, wherein access to distinct environments is provided during
the training phase. In this thesis, we contribute to the robustness task in four im-
portant ways. We propose two distinct frameworks in the context of DG designed
to attain robustness. One is rooted in the fundamental principle of independent
causal mechanisms, seeking invariances that persist across various environments.
The second approach leverages contextual information about the origins of the data
to improve robustness via permutation-invariant neural networks. Additionally, we
define and implement a classifier’s competence region as the region where the classi-
fier is deemed competent and trustworthy. This approach enables us to increase the
classifier’s accuracy by rejecting samples lying outside its competence region, even
in the presence of a distribution shift. Lastly, we theoretically analyze three crucial
types of invariances, showing their prospects of success or failure in the robustness
task under various distribution shifts. This comprehensive analysis provides a broad
and insightful perspective on the topics of robustness and invariances.

Zusammenfassung

Die Aufgabe von Robustheit besteht darin, ein Vorhersagemodell zu finden, das
nicht nur unter bekannten Bedingungen prizise bleibt, sondern auch in voéllig
neuen Situationen. Die Verdnderung der Bedingungen wird auch als Verteilungsver-
schiebung bezeichnet. Domain Generalization (DG) stellt einen spezifischen Fall
der Robustheitsaufgabe dar, bei dem wihrend der Trainingsphase Zugang zu unter-
schiedlichen Bedingungen (oder Umgebungen) gewahrt wird. In dieser Arbeit tra-
gen wir insgesamt vier wesentliche Anséitze zur Robustheitsaufgabe bei. Wir schla-
gen zwei unterschiedliche Heransgehensweisen im Kontext von DG vor, die auf Ro-
bustheit ausgelegt sind. Eine basiert auf dem fundamentalen Prinzip unabhingiger
kausaler Mechanismen und sucht nach Invarianzen, die in verschiedenen Umge-
bungen bestehen bleiben. Der andere Ansatz nutzt kontextbezogene Informatio-
nen Uber die Herkunft der Daten, um die Robustheit mithilfe von permutations-
invarianten neuronalen Netzwerken zu verbessern. Zusétzlich definieren und im-
plementieren wir den Kompetenzbereich eines Klassifizierers als den Bereich, in
dem der Klassifizierer als kompetent und vertrauenswiirdig angesehen wird. Dieser
Ansatz ermoglicht es uns, die Genauigkeit des Klassifizierers zu erh6hen — selbst
in Anwesenheit einer Verteilungsverdnderung — indem wir Eingaben auflerhalb
seines Kompetenzbereichs ablehnen. Schlieflich analysieren wir in der Theorie drei
entscheidende Arten von Invarianzen und zeigen ihre Erfolgsaussichten oder ihr
Versagen bei der Robustheitsaufgabe unter verschiedenen Verteilungsverschiebun-
gen auf. Diese umfassende Analyse liefert eine breite und aufschlussreiche Perspek-
tive zu den Themen Robustheit und Invarianzen.
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Introduction and Overview

Generalization is the fundamental task in machine learning [1, 2], and its significance ex-
tends to the realm of human intelligence [3-5], indicating its crucial role in the pursuit
of Artificial Intelligence (AI). In the field of machine learning, generalization comes in two
flavors: out-of-distribution (OOD) generalization (or robustness) and standard generalization®
[6]. (Standard) Generalization refers to the ability to apply existing knowledge acquired in
one set of circumstances to novel situations from the same set of circumstances. For pre-
dictive modeling, this is typically considered in the context of supervised learning [2]. Ro-
bustness or OOD-generalization in contrast refers to the situation where the circumstances
under which knowledge is acquired differ from those in the encountered situations [6, 7].
The scenario where circumstances change is also termed distribution shift. In practical ap-
plications, predictive models are usually fine-tuned in one context, but might encounter
situations in different contexts where they are expected to remain accurate [6, 8] — this
corresponds to the robustness task. For instance, a tumor detector developed in one or
several hospitals might also be applied in another one [9] or a model trained to analyze
satellite images in one country should also work in another one [10]. Despite the practi-
cal relevance of the task and promising results [ 11], predictive models in Al and machine
learning still lack strong (or human-comparable) robustness in many relevant challenges
[12-14].

We contribute to the robustness task in four important ways. First, we relate differ-
ent distribution shifts to a whole class of robust algorithms which allows us to understand
when to expect failure or success. Second and third, we propose two distinct frameworks
to improve robustness. One is rooted in causality and aims to identify invariances that
promise robustness. The other uses contextual information about the data’s origins to im-
prove prediction under distribution shifts. Lastly, we define and implement the concept of
a competence region that allows us to identify samples where a classifier can be considered
trustworthy or not trustworthy.

1.1. Setting

Domain Generalization Intherealm of machinelearning and robustness, Domain Gen-
eralization (DG) depicts a particularly intriguing setting. The setup in DG involves having
access to data from multiple environments (or domains) during training. The goalis to find
a predictive model that performs well not only in the seen environments but also in entirely
novel and unseen ones [15—17]. In the examples of tumor detection and satellite images
from above, we might have access to images from different hospitals [ 9], or satellite images
from different geographical zones [ 10] during training and fine-tuning.

Standard generalization is henceforth referred to as generalization.



12 1. Introduction and Overview

Deep Learning The goal of this thesis is to contribute to the robustness task in the con-
text of Deep Learning. Deep Learning is a sub-field in machine learning (and Al), with its
origins traced back to 1957 when Frank Rosenblatt introduced the perceptron [18]. The
perceptron, loosely inspired by a single biological neuron, was emulated on an analog com-
puter which was tediously slow at that time [19, Chapter 17]. The practical significance
of deep learning, however, became evident much later, around the 2010s. It was dur-
ing this time that advancements in computer power allowed for the scaling up of single
perceptrons into larger deep neural networks consisting of millions or even billions of in-
terconnected perceptrons, making them applicable to real-world scenarios [19, Chapter
17]. Notably, in 2012 deep learning models outperformed all comparing approaches in the
challenging ImageNet competition [20]. Since then deep learning has been successfully
applied in many fields, including natural language processing [21], neuroscience [22],
protein structure prediction [23], and LHC physics [24]. We are currently experiencing
a phase of great optimism in the field of Al arguably attributed to the deep learning revo-
lution [19]. However, the field of Al is characterized by periods of optimism (summers)
followed by unfulfilled hopes and disillusionment (winters) [19, 25]. Will deep learn-
ing share the same fate of an upcoming winter? In previous summers, expectations were
not satisfied since they did not materialize in economic values leading to disappointed in-
vestors and loss of funding [25, Chapter 1.5]. This time is different: deep learning has
already demonstrated its economic value. For instance, ChatGPT, a deep learning based
product, reached over 100 million users within just two months [26]. Additionally, Yann
LeCun, the head of Facebook’s Al department (FAIR), has disclosed that the company is
entirely built around deep learning [27]. Similarly, in other major tech companies like
Google, deep learning is substantially integrated into a variety of products [28]. We can
therefore conclude that deep learning and its successors are here to stay.

1.2. Approaches

Causality and Invariances Different (seen) environments that are accessible during
training might indicate what knowledge remains applicable in all, potentially unknown
environments. An important idea is to seek invariances that show across environments
and exploit them for prediction [29—31]. For instance, we might have a dataset with cats
in the environments cartoons, paintings, and images. In this case, the shape of the catisin-
variant across environments and will be predictive in new environments (e.g., art pictures).
In contrast, style elements vary across environments and do not promise robust predic-
tions. In this work, we not only describe different types of invariances systematically (see
Section 2.4), we also explain how different forms of invariances are grounded in causality
(see Section 3.8). Furthermore, we elaborate on the relation between different types of in-
variances and distribution shifts, systematically answering the question of which type of
invariance should be exploited for different distribution shifts to achieve robustness (see
Section 3.8).

Learning robust models using the principle of ICM Stable causal relations induce
aninvariance (causalrelation = invariance)[ 30 ]. For instance, the shape of the cat causes it
to be labeled cat and this relation is stable across different environments (e.g., art images



1.2. Approaches 13

and cartoons). To find a robust model we therefore need to find and exploit stable rela-
tions. We propose an objective that exploits invariances to deduce stable relations (invari-
ance = causal relation; see Chapter 5). This objective is derived from the principle of ICM
[32, Chapter 2.1], a fundamental concept in causality that will be extensively discussed in
Section 3.6. Importantly, we can prove that by optimizing this objective we indeed iden-
tify the underlying causal relations that remain stable across environments under suitable
conditions. Our objective can be trained using gradient-based optimization and normal-
izing flows. Therefore, we avoid issues commonly encountered in discrete optimization,
such as an exponentially growing search space, and address limitations that arise from in-
expressive models, such as linear models. We demonstrate that models trained within our
framework can identify the causal relations and exploit them for prediction, even when no
inherently meaningful variables are provided, e.g. if only pixels are involved. This can be
seen as a form of causal representation learning.

Context-Aware Domain Generalization Finding an invariance is in some scenarios
unattainable (see Section 3.8) or not desirable. It could pose a disadvantage if we over-
look the potential to enhance predictions by leveraging environment-specific information
due to our focus on relying on some form of invariance. We propose an approach that
exploits the characteristics of an environment to enhance the final prediction (see Chap-
ter 6). With this approach, we can even withstand distribution shifts where it is impos-
sible to find an invariance (see Section 3.8). We propose enhancing predictive models to
be context-aware, adapting predictions to the current environment. The context of an in-
putis represented by a set of i.i.d. samples originating from the same environment as the
input itself. To integrate this “set-input” with standard models, we utilize permutation-
invariant models to distill a summary embedding from the set-input. The set embedding
acts as a condition for the inference network, which generates the final prediction (refer to
Figure 6.5 for an overview). Considering a set representation has several advantages over a
one-hot encoded environment label. First, we are not restricted to a pre-determined num-
ber of environments where the origin of inputs has to be always known. Second, our set
embedding can represent relations between environments (e.g., closeness between envi-
ronments). Third, discrete and continuous environment labels are equally informative for
known environments, ensuring no loss of information.

We demonstrate empirically that this approach leads to improved predictions com-
pared to baseline models on several datasets. In addition to establishing criteria that are
crucial for achieving improvements, we prove their necessity theoretically and provide em-
pirical demonstrations of how they can be validated using standard models. We also char-
acterize the kind of distribution shift where our approach might yield benefits, namely the
source component shift. As an example, consider the task of predicting housing prices based
on factors like room size, building age, and proximity to the next shopping mall and school.
In this case, the relationship between input factors and housing prices may vary due to lo-
cation (e.g., housing prices in affluent areas tend to be higher), corresponding to the source
component shift. When training our model on data from a couple of regions and applying
itin a novel region, it could take advantage of contextual information, such as the proper-
ties of nearby houses, to adapt its prediction. Conversely, a simple baseline model lacking
such context information would struggle in unfamiliar regions.

Additionally, we show how novel environments can be detected in the embedding
space of our set-encoder. We employ this novel environment detection approach in two
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pivotal ways. First, we show that we can detect potential failure cases, for instance, due
to entering an extrapolation regime with unknown prospects of success. Second, we show
how the notorious trade-off between robustness to distribution shift and performance in
the in-distribution (ID) setting [33, 34] can be overcome. This is achieved by selecting
between the most robust and the most predictive model (with respect to the ID setting),
according to whether a novel environment is detected.

Competence Regions Insafety-critical applications such as autonomous driving, trad-
ing, or medical diagnosis mistakes can have severe consequences, making undetected fail-
ures (also called silent failures ) highly problematic. In this thesis, we investigate inference
with failure detection [aka selective classification, 35, 36]in the context of DG and classifica-
tion. We introduce the concept of competence regions where a classifier can be deemed com-
petent and trustworthy. Identifying samples that fall outside a classifier’s competence re-
gion allows us to reject or delegate them to an expert, as in the case of medical applications,
where a doctor’s expertise can be consulted. Underlying to this approach is the fundamen-
tal trade-off between coverage and accuracy. By only retaining samples where the classifier
appears highly competent, improves performance, at the price of reduced coverage. Con-
versely, maintaining high coverage comes at the cost of lower competence. To compute the
competence region of a classifier we employ post-hoc OOD detection methods [37]. These
methods utilize the feature or logit space of a classifier to identify anomalous instances.
For instance, they may use a density estimation of the classifier’s feature space and mark
features that elicit sufficiently low density as OOD. The underlying idea of our work is to
align the classifier’s perception of OOD instances with its incompetence, hence making the
choice of post-hoc OOD methods justifiable, given their utilization of the classifier for OOD
detection. In our work, we investigate several different post-hoc OOD detection methods
for computing the competence region and investigate various DG classifiers across 6 DG
datasets. Additionally, we consider the closed (involving only known classes) vs. the open
world (involving both known and unknown classes) scenario.

1.3. Contributions and Overview

Contributions We succinctly summarize our main contributions in this thesis as fol-
lows.

» Weoperationalize the principle of ICM making it amenable to gradient-based optimiza-
tion (see Chapter 5).

— We prove that under suitable conditions our method is able to uncover the under-
lying causal relations that promise robustness.

— The use of normalizing flows allows us to generalize additive noise models, en-
abling the expression of more powerful functions.

— We circumvent scalability issues known from combinatorial optimization.

— We can empirically demonstrate that with our method we can perform causal dis-
covery as well as causal representation learning (i.e. finding causal variables in
high dimensional data, e.g., in pixel space).



1.3. Contributions and Overview 15

» We propose a novel approach to Domain Generalization (DG) that leverages context
information from new environments in the form of learnable set-representations (see
Chapter 6).

— Weformalize the necessary and empirically verifiable conditions under which this
approach canreap benefits from contextinformation and improve on standard ap-
proaches.

— We perform an extensive empirical evaluation and show that we can reliably de-
tect failure cases when the necessary criteria of our theory are not met, or when
extrapolation is required.

— We demonstrate that we can detect novel environments which allows us to cir-
cumvent the notorious trade-off between being accurate in known environments
and being robust to distribution shift.

» We introduce and investigate selective classification in the DG setting (see Chapter 7).

— We systematically examine different post-hoc OOD detection methods to com-
pute the competence region on various DG classifiers.

— We observed that currently there is no satisfying way to determine the thresh-
old that delineates competence from incompetence to ensure ID accuracy on OOD
data, calling for further research.

— We found that DG classifiers that aim to exploit domain knowledge do not exhibit
a favorable competence region compared to a standard classifier.

— We analyzed differences between post-hoc OOD detection methods in the open-
world vs. closed-world setting.

In addition to these accomplishments, we also contributed in the following ways:

» We systematically relate different invariance properties with distribution shifts (see
Section 3.8). This approach enables us to assess the potential success of various ro-
bustness algorithms based on the specific type of distribution shift.

» We propose ProDAS, a novel dataset that is an extension of the Dsprites dataset (see
Chapter 6). ProDAS serves as a valuable playground for the investigation of various
challenging domain shift scenarios (e.g., in Subsection 6.8.3).

Overview In the first three Chapters, we introduce the basics of robustness and domain
generalization, causality, and deep learning. The focus here is three-fold. First, we intro-
duce all the concepts necessary to understand our contributions in this thesis. Second,
by introducing important concepts we relate them to robustness when possible. Third,
we aim to systematically contextualize all concepts within a broader framework. In the
causality chapter we rely heavily on [ 32] for definitions and concepts. In the deep learning
chapter we use many definitions and views of [ 38].

In Chapter 3 we analyze which type of invariances might be beneficial according to
the type of distribution shift. In Chapter 5 we present our approach on learning robust models
using the principle of ICM that has already been published [31]. Chapter 6 introduces the
ProDAS dataset [ 39 ] and presents our work on context-aware DG [40]. Afterwards, in Chap-
ter Chapter 7 we present our approach on finding competence regions in domain generalization
also published in [41]. In Chapter 8 we recap the most relevant aspects of this thesis, also
pointing out intriguing research directions and discussing the broader perspective.
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1.4. Publications underlying this thesis

Many of the substantial contributions in this thesis have been previously published, often
in abbreviated formats due to space constraints. Next, I provide alist of the original articles,
summarizing my contributions and providing references to the chapters where they are
further elaborated in this thesis:

» Learning Robust Models using the Principle of ICM [31]
Jens Miiller, Robert Schmier, Lynton Ardizzone, Carsten Rother, and Ullrich Kothe
DAGM German Conference on Pattern Recognition, 2021

This article is adapted in Chapter 5. It constitutes predominantly my own and inde-
pendent work, encompassing the initial idea and its conceptualization, developing the
underlying mathematical framework, and executing the majority of experiments. My
co-authors contributed to the writing process and creation of figures. Robert Schmier
developed the architecture of the normalizing flow that we employ in the experimental
part.

» Finding Competence Regions in Domain Generalization [41 ]
Jens Miiller, Stefan T. Radev, Robert Schmier, Felix Draxler, Carsten Rother, and Ullrich
Kothe
Transactions on Machine Learning Research, 2023

This work is included in Chapter 7. The fundamental components of this article pri-
marily stem from me. I initiated the project, developed the underlying concepts, and
undertook the execution and analysis of the experimental segment. Collaboratively, my
co-authors and I developed the mathematical framework, figures, and written content.

» Towards Context-Aware Domain Generalization: Representing Environments with
Permutation-Invariant Networks [40 ]
Jens Miller, Lars Kithmichel, Martin Rohbeck, Stefan T. Radev, and Ullrich Kéthe
arXiv preprint arXiv:2312.10107, 2023

This work is adapted in Chapter 6. The initial idea to utilize permutation-invariant
neural networks in Doman Generalization stemmed from Ullrich Kéthe. I explored the
idea and shaped it into the current form, including the underlying theoretical basics.
I proved the mathematical results and did most of the experiments. Lars Kihmichel
significantly contributed to the code infrastructure underlying the experiments and ex-
ecuted parts of an experiment himself.

» ProDAS: Probabilistic Dataset of Abstract Shapes [39]
Jens Miiller, Lynton Ardizzone, and Ullrich Kdthe
doi:10.11588/HEIDOK.00034135,2023 andhttps://github.com/XarwinM/ProDAS

This work is included in Chapter 6. I had the initial idea for this dataset and started to
code an initial version. Lynton Ardizzone helped to extend the first version, both with
ideas and code.
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1.5. Notation, Terminology, and Basic Assumptions

Across this thesis, we will adhere to specific notational conventions aimed at enhancing
the clarity and coherence of the mathematical content across various chapters. At certain
parts, we will also introduce supplementary notation that aligns with the notation pre-
sented here, yet is relevant only to specific sections of this thesis.

The conventions we use are as follows:

X,Z,Y acapital letter denotes random variables (RVs)
x,y,z lower case letters denote realizations of a corresponding RV
X (orx) bold letters denote vectors or set of RVs (or realizations)

n a lowercase letter denotes a scalar
I denotes the identity matrix
F denotes a set of functions

Px or P(X) is a probability distribution of RV X.
Dx density of Px; RVs can be omitted for the sake of brevity.
for discrete prob. measure, it denotes the prob. mass function
P(Y | X) acollection of conditionals P(Y |X = x) for all x
I(X;Y) mutualinformation between X and Y’
I(X;Y | Z)mutual information between X and Y given Z
H(X) entropyof X
H(X|Y) entropy of X givenY
Var(X) varianceof X
Cov(X,Y) covariance of X and Y
N (x| pt, X)is multivariate Gauss with mean p and covariance matrix 3

Table 1.1. Standard notation used throughout this thesis.

We assume that all RVs have a density p4 with probability distribution P4. The in-
dependence and dependence of two variables A and B is denotedas A 1 Band A [
B respectively. Two RVs A, B are conditionally independent given C' if P(A,B|C) =
P(A|C)P(B|C). Thisis denoted with A L B |C and itimplies that A does not contain
any information about B if C'is known (see e.g., [32]). Similarly, one can define indepen-
dence and conditional independence for sets of RVs. For simplicity, we assume throughout
this thesis that the infimum and suppremum always exists in the corresponding reference
set.

Expectations are denoted as Ex. If we want to emphasize that X follows a particular
distribution P, we denote it as Ex. p or Ex~,. ID denotes in-distribution, OOD denotes
out-of-distribution, and i.i.d. stands for independent and identically distributed.






Robustness and Domain Generalization

In this chapter, we introduce and formalize the term robustness. We then consider one spe-
cific setting where robust models can be learned, namely Domain Generalization (DG). In
the setting of DG we introduce and discuss different types of invariances that may promise
robustness.

2.1. Distributional Robustness

A prediction task asks to find a function (or predictive model) f* that predicts a target Y’
from some input X as well as possible. For example, consider a hospital’s desire to develop
a function f, which can accurately predict the presence of skin lesions Y (represented as a
binary variable) from a given skin image X. In a more formal setting, we can define a pre-
diction task in the context of supervised learning. The goal of classical supervised learning
is to find a predictive model f* that minimizes the prediction loss

[*=argminEy vy plc(f(X),Y)] (2.1)
feF

on a distribution P. Here F is a family of functions (e.g., linear functions) and c is a task-
specific loss or cost function (see e.g., Section 4.1). The solution f* to the optimization
problem in Equation 2.1 is, therefore, a best function out of F on the prediction task as
presented by the distribution P and evaluated due to c. In Subsection 4.1.1 and Section 4.5
we discuss the supervised learning task in more detail.

In contrast, distributional robustness asks to find the best model f* on a whole class
of distributions P (see e.g., [7])

£+ = argmin sup Egxy)ple(f(X),Y)] (2.2)
feF Pep

Consequentially, f* is the best predictive model in F on the worst case distributions P €
‘P. In this work, we use the terms distributional robustness and robustness interchangeably.
Note that the definition of the term “robustness” can vary between different research fields
(e.g. our definition differs from the one in statistics) [ 7 |. Furthermore, the robustness task
as defined in Equation 2.2 is equivalent to the task of out-of-distribution (OOD) generaliza-
tion [42].

Why is it necessary to consider a class of distributions in Equation 2.2 in contrast to
just one distribution as in the supervised learning task in Equation 2.1? The main motiva-
tion to consider multiple distributions is that they offer a better description of many real-
world problems. Often, when f* is applied in a real setting, the encountered data samples
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can stem from multiple distributions. For instance, data encountered in different hospi-
tals follow different distributions like in microscopy images of cells [9] or medical images
of chest X-rays [43]. Reasons for the differences might include that devices collecting the
data are different or simply because different hospitals treat different groups of patients.
Also, satellite images can vary strongly across time and country/area [10]. Itis typical, that
during the optimization process, one has only access to a subset P’ C P of all possible dis-
tributions in Equation 2.2. A model that has been optimized under specific circumstances
(e.g. time range or physical location), may be inaccurate when conditions undergo alter-
ations. This makes finding a solution to the prediction task particularly challenging and
motivates the formulation of Equation 2.2 instead of Equation 2.1.

A particularly interesting application of robustness is adversarial robustness for deep
neural networks. It is well-known that an attacker can deliberately add a small amount of
noise N to the input X + N such that the actual output Y remains unchanged, but common
predictive models now predict a different and false Y [44]. This is mostly discussed in the
context of image classification where a small amount of noise is added to the image. The
class observed in the image does not change from a human perspective. But the previously
correct deep neural network predicts now a completely different class. In adversarial ro-
bustness, one seeks a model f that still works even under distribution shift which is in this
case adding small amounts of noise.

Solving the problem in Equation 2.2 becomes infeasible if distributions undergo arbi-
trary changes. Not only isitinfeasible, but considering arbitrary distributions is also point-
less from the perspective of a practitioner. In real-world applications, encountered distri-
butions are typically related. In Section 2.4 we discuss different forms of invariances as a
means to describe the family of distribution 7P. We extend this discussion in Section 3.8
and show how causal models can be beneficial in describing families of distributions.

2.2. Domain Generalization

The main goal of this work is to contribute to the robustness problem as described in Equa-
tion 2.2 in the context of Domain generalization (DG). In DG we term the distributions P €
P environments or domains and identify them with an index set £, i.e, P = {P°|e € £}.
Random variables with a superscript, e.g., Y¢, refer to a specific environment. We make
the distinction between known environments e € Egeen, Where training data are available,
and unknown ones € € Eynseen, Where we wish our models to generalize to. The set of
all environments is then & = Egeen U Eunseen- We can re-formulate the problem stated in
Equation 2.2 in the context of DG as

f* = argmin sup Exe ye[c(f(X?),Y )] (2.3)
feF ee&

The difficulty is that we need to solve Equation 2.3 only from Eseen. The formula in Equa-
tion 2.3 is equivalent to Equation 2.2, but emphasizes the role of environments.

In this work, we assume that there is always more than one environment accessible
during training, i.e. |Eseen| > 1, but we like to mention that there is also work dedicated
to the scenario where only one seen environment is assumed. This is called single-source
DG [16]. In the DG classification literature, it is a common presumption that the set of
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Data Set Environments Description/Infos
80% 90% 10% A variant of the famous
MNIST data set. Color-
ColoredMNIST[34] label association varies with
the environment. Labels
are noisy but consistently
associated with shape.
Sketch CarFoon 4 Environments with &~6K
y
PACS [46] @ < images in total and 7
6')) k 5 classes.
LabelMe SIS 4 Environments with ~10K
VLCS [47] W images in total and 5
;l classes.

Art Clipart Product

OfficeHome [48] i -=

Location 100 Location 38  Location 43  Location 46

4 Environments with ~16K
images in total and 65

classes.

4 Environments with &~24K

Terralncognita [49] images in total and 10

classes.
Clipart Infograph Painting Quickdraw
== é L o 6 Environments with
DomainNet [50] ) " /600K images in total
Sketch and 345 classes.

Figure 2.1. Overview of different DG datasets from the DomainBed repository [51]. All of
these datasets are used in this work. For each dataset we show one class in various environ-
ments.

labels remains constant across various environments, and in our study, we uphold this as-
sumption within the classification task. The scenario where the label space can change is
referred to as heterogeneous DG [45]. For other variants of DG, see for instance [16]. In
Figure 2.1, we present an overview of some interesting and relevant DG datasets.

2.2.1. Evaluation and Model Selection

The DG task asks to find a model that remains predictive when samples from a novel en-
vironment are presented. However, we do not know a priori how samples from this novel
distribution might look, rendering the evaluation task initially unapproachable.

Inliterature, usually, one of three evaluation methods for model selection is employed:
training-domain validation, leave-one-domain-out cross-validation, and test-domain validation
set [16, 51]. In training-domain validation all seen environments are split into train and
validation sets respectively. Different models and hyperparameter settings are then com-
pared on the pooled validation set (i.e. pooled over all seen environments). In leave-one-
domain-out cross-validation a model is trained on all seen environments except one left out
for evaluation. This procedure is repeated so that we have an estimate for the expected loss
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on all left-out domains/environments. To aggregate these estimates, we can either average
over all environments or use the estimate of the worst-case environment. It is common to
repeat this whole procedure for different models and hyperparameter settings and choose
the one where the best aggregated value (average or worst-case) is achieved. In test-domain
validation set different models are trained on the seen environments and then compared on
avalidation set of the unseen test domain. The model that performs best is selected. This
model-selection strategy is often used in literature butis actually notin line with DG where
no knowledge about the unseen test environment is assumed.

While all these procedures seem justifiable, we do not have any guarantees for the
model behavior in future, unknown environments. In real-world tasks, we usually do not
know how the unknown environments might look, and therefore, model evaluation and
model selection in DG are only accessible via a proxy measurement. Itis also worth noting
that the DG problem extends the complexity of the evaluation process. Given a dataset, the
evaluation in a supervised learning task asks for the performance on novel data of the same
distribution. Consequentially, one new sample indicates the performance of the model
and since we typically have a test set, we can achieve reasonable estimates of the model’s
performance (see Section 4.5). In the context of DG, model evaluation faces an additional
dimension of complexity due to the scarce amount of available environments and finite
data therein, resulting in a very noisy performance evaluation. In the realm of DG, we can
consider the environment as the object of interest (“How well is the performance for differ-
ent novel environments?”). Since evaluations often involve just a few accessible environ-
ments (environmentscarcity.), results might be very noisy and mustbe approached carefully.

2.2.2. Related Learning Settings

In various learning scenarios, we encounter data from multiple distributions and strive to
address the prediction task. In the following, we discuss the mostimportant ones. Closely
related to Domain Generalization is Domain Adapatation (DA) [52]. In DA, we do not only
have access to several environments during training but also to unlabeled/unvalued sam-
ples from the unseen test environment. Therefore, we know more about the test environ-
ment in DA compared to DG where we do not have access to any samples from the unseen
test environment. The Multi-task learning setting uses the same information as DG during
training, but asks for a less ambitious task: The test data are from the same environments
as the seen environments. In Transfer Learning, we aim to find a model that works par-
ticularly well in one environment. Here, we have access to labeled/valued samples of the
test environment. Often a model pre-trained on m environment is then fine-tuned for the
new test environment. For a succinct comparison see Table 2.1 thatis due to [61]. Amore
in-depth classification of DG and related fields can be found in [16] or [17].

Another interesting research field that is rarely considered in relation to DG is multi-
view learning. In multi-view learning one has access to data from different views. Con-
sider the example where a text is translated into different languages, then we have multi-
ple views of the same content. In the DG context, the data would exhibit a distinct pattern:
each text exists only in one language, but we possess also different texts written in other
languages. It is easily seen that the multi-view learning setting offers more information
than the DG setting. For more details on multi-view learning see [53].
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Learning Setup Training data |Testinputs
Domain Generalization L',...,L" ymtl
Multi-task learning L',....,.L™ wut,....um
Domain Adaptation ||L!,..., L™, U™ U™t
Transfer Learning L,...,Lm ot gmtl
Supervised Learning L Ul
Semi-supervised Learning LY, Ut Ul

Table 2.1. Comparison between different learning setups. L® and U*¢ denote the labeled and
unlabeled datasets from environment e. The table is adapted from [51].

2.2.3. Methods — Overview

We can roughly categorize the DG methods into one of three categories: data manipulation,
representation learning, and learning strategy [ 16 ]. In data manipulation the input distribu-
tion, where a model is trained, is extended either by data augmentation (e.g., [54, 55]) or
by data generation (e.g., [56, 57]). In contrast, in the learning strategy category one aims to
extend and adapt a common learning strategy to achieve improvements on the DG task.
Methods could include for instance self-supervised learning (see e.g., [568, 59]). In self-
supervised learning auxiliary tasks are formulated (e.g., image impainting, or predicting
the rotation of a rotated image) in order to learn representations that might generalize be-
yond the seen environments. The representation learning category is the most popular in
DG [16]. Methods in this category either aim to learn a representation of the inputs that
elicit some form of invariance (see our work in Chapter 5) or aim to disentangle the learned
representation/feature into domain-specific and domain-invariant parts to improve upon
the DG task (e.g., [43, 60]). In Section 2.4 we discuss different forms of invariances. Our
work in Chapter 5 falls in the category of representation learning via invariances. For more
details on different approaches to DG see [ 16].

While it has been contended that DG methods do consistently outperform a simple
baseline model trained via empirical risk minimization as observed in studies such as [ 14,
51, 61, 62], models trained on extensive datasets — comprising hundreds of millions of
images —like CLIP [ 63] elicit highly generalizable features. These features are noteworthy,
showcasing comparability to human-level abilities on certain tasks [11]. We applied the
CLIP features to various DG datasets, resulting in the following outcomes in Table 2.2: A
linear model fine-tuned on the CLIP features (denoted as Clip [Linear]), as well as a non-
linear neural network applied to the CLIP features (denoted as Clip [Non-Linear]), signif-
icantly outperform the DG methods on PACS, VLCS, OfficeHome and DomainNet. In con-
trast, they underperform on Terralncognita showing their generalizability might depend
on the dataset at hand. For an overview of the underlying datasets see Figure 2.1.

2.3. Generative and Discriminative Models

Before delvinginto various kinds of invariances, we will briefly introduce two generic model
types that significantly influence when an invariance might prove beneficial for the ro-
bustness task. In machine learning (for a brief introduction into machine learning see Sec-
tion 4.1), it is commonly distinguished between generative and discriminative models (refer
to, for instance, [68] or [8, Chapter 1.2]). Generative models aim to model the joint distri-
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Dataset .
. PACS VLCS OfficeHome| Terralnc |DomainNet

Algorithm

Clip [Linear] 93.9 £0.1 | 79.7 £0.1 77.4 40 29.8 £0.4 | 51.7+0.0
Clip [Non-Linear] 93.740.3 | 80.6+0.2 | 78.6+0.2 | 36.9404 | 51.740.0
ERM [64] 85.5+0.2 | 77.5+04 | 66.5+03 | 46.14+1.8 | 40.940.1
IRM [34] 83.54+0.8 | 78.5+05 | 64.3422 | 47.64+08 | 33.9+428
SagNet [65] 86.34+0.2 | 77.8405 | 68.1+0.1 | 48.6 +1.0 | 40.3 £0.1
CORAL [66] 862403 | 78.8406 | 68.74+0.3 | 47.6+1.0 | 41.5+0.1
MLDG [67 ] 849410 | 77.24+0.4 | 66.84+06 | 47.74+09 | 41.240.1

Table 2.2. Average accuracy and standard deviation of different algorithms on OOD data
across various DG datasets, with each algorithm evaluated over 3 trials as in [51]. Model se-
lection is conducted based on a validation set. Clip [Linear] denotes a linear model applied to
the Clip features. Similarly, Clip [Non-Linear] represents a non-linear neural network applied
to the fixed Clip features. All results, except the Clip-based models are sourced from [51].

bution Px y that describes the data [68]. Utilizing Bayes rule, the distribution of Y given
X can be expressed as

_ PEX[Y)P(Y)

P(Y|X) = PX) (2.4)

In a binary classification setting where we aim to predict whether Y = OorY = 1fora
given input X = x, we can compute the ratio:

PY=0|X=x) P(X=x|Y=0)PY
PY=1|x=x) PX=x|Y=1)PY

(1)) (2.5)

)

This ratio does evidently not depend on P(X = x). To determine which class fits best with
x we need to compute

argmax P(Y = y|X = x) (2.6)
ye{0,1}

In simple words, we just need to determine whether the ratio in Equation 2.5is > 1, =1
or < 1. Hence, we can disregard P(X) for the classification task. These considerations can
be easily extended to classification problems with multiple classes.

Adiscriminative model is just concerned with the prediction task of estimating P (Y | X).
Although it might seem unnecessary and cumbersome to consider generative models for
prediction rather than discriminative models, there are specific advantages to considering
generative models [68]. The distinction between discriminative and generative models
has also important implications for the robustness task as discussed in both Section 2.4.

2.4. Invariances

A mathematical object o is considered to be invariant under a transformation 7' if it re-
mains unmodified under transformation 7', i.e. it holds 7'(0) = 0 [69]. In this thesis, we
focus on a specific transformation — changing or shifting the domain or environment. The
hope is that the invariance reflects an intrinsic property of the object that proves helpful
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(a) Causal invariance: h(X) = H follows a normal distribution and Y = f(H) + N where
N ~ U[—a, a] is uniformly distributed. Here, f is a non-linear function. The distribution of H
varies between environments. It is evident from the ground truth model that P(Y | H) remains
invariant across both environments.
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(b) Anti-causal invariance: Y follows a normal distribution in all environments. The features are
H = f(Y) 4+ N where f is some non-linear function and N ~ U[—a, a]) uniform noise. In this
case, we can easily see that P(H|Y) is invariant across both environments.
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(c) Feature Invariance: H follows the same marginal distribution in both environments. Additionally,
wesetY = f.(H) + N where N ~ U[—a, a] is uniformly distributed and f. represents a
non-linear function that depends on the environment e. This formulation ensuresH 1 F.

Figure 2.2. Allthree typesofinvariancesillustrated. Left: For each type of invariance we show
data samples from two domains (one with green dots and one with blue plusses). Right: We
also show the estimated prior of y and h as well as of the conditional distributions p(y | h(X)
h) and p(h | Y = y) at the marked points (magenta and orange).
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for the robustness task. For example, consider the OfficecHome datasetin Figure 2.1, where
the image style changes, but the shape, i.e. the intrinsic property of the object, remains
invariant across environments.

Above, we defined the DG task and hinted at potential strategies to solve it (see Sub-
section 2.2.3). One crucial research field within DG addresses the DG problem by seeking
arepresentation h(X) of the input data X that exhibits an invariance property. The hope is
that the invariance property enables accurate predictions in unseen environments. There-
fore we adapt the non-accessible DG problem formulation in Equation 2.3 to

argmin sup [Exy)p,[c(f(A(X)),Y)] s.t hsatisfiesinvariance property  (2.7)
fE]-',hEH eegseen

This objective differs from Equation 2.3 in two crucial aspects. First, unlike a predictive
model f operating directly on the input space, we consider a model f that operates on the
representation h(X), allowing us to impose constraints on the objective through an invari-
ance property of h. Note that both f and h are optimized within Equation 2.7. Second,
this objective is accessible during training since we only consider Eg¢ep, instead of all envi-
ronments (including the unseen ones) £. The hope is that the invariance property applies
across all environments £. While it might seem plausible that if the invariance property
holdsin e € Egeen, it should bevalidin e € £, the concept of “invariance generalization” is
a subject of debate, as discussed in [ 70]. Its validity may depend on the model class F and
the specifics of the data distribution.

Different forms of invariances have been explored in the literature. Here, we introduce
and discuss three important types, which we term causal invariance, anti-causal invariance,
and feature invariance. In this thesis, we introduce a prefix before invariance to distinguish
different manifestations. For an illustration of all invariances, refer to Figure 2.2. We begin
with the causal invariance, also referred to as invariance henceforth. This specific form of
invariance is the main focus in Chapter 5.

Definition 1 (Causal Invariance). A feature h(X) is causal invariant with respect to the en-
vironment E if the relation between h(X) and Y is independent of the environment E, i.e. Y |
E| h(X). This is equivalentto P(Y | h(X), E) = P(Y | h(X)).

Termed conditional distribution alignment in [71], this form of invariance is explored
in our work in Chapter 5 and in other studies like [29, 30, 33, 71-73]. We illustrate this
concept in Figure 2.2a. The causal invariance permits a change in P(h(X)) as seen from
the factorization of the joint distribution

P(h(X), Y, E) = P(Y | h(X))P(h(X) | E)P(E) (2.8)

Since P(Y | h(X)) remains consistent across environments, it stays predictive even when
encountering unknown environments. The scenario where only P(h(X)) shifts is known
as covariate shift'. We will delve deeper into covariate shift and other dataset shifts in re-
lation to causality in Section 3.8. Another form of invariance is what we term anti-causal
invariance:

Covariate shift typically assumes A(X) = Xand P(Y |X) = P(Y | X, E).
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Definition 2 (Anti-Causal Invariance). A feature h(X) is called anti-causal invariant with
respect to the environment Eif E | h(X) | Y. Thisisequivalentto P(h(X) |Y) = P(h(X) | Y, E).

For instance, this form of invariance has been investigated by [ 74—78]. We exemplify
this type of invariance in Figure 2.2b. Similar to Equation 2.8, we can represent the joint
distribution through a different factorization

P(h(X),Y, E) = P(h(X)|Y)P(Y | E)P(E) (2.9)

Hence, we can conclude that the anti-causal invariance in Definition 2 allows for a change
in P(Y') as long as P(Y | h(X)) is unaffected. The scenario where P(Y") changes across
environments, while P(Y | A(X)) remains invariant, is often termed target shift [76, 77,
79]. In this case, however, predicting the probability P(Y" | k(X)) is not as straightforward
as in the covariate shift example mentioned earlier. The difficulty arises from the fact that
the conditional distribution P(Y | k(X)) is given by:

P(Y | h(X)) = (2.10)

and both P(Y') and P(h(X)) may vary across different environments. Given that P(h(X) | Y)
is a generative classifier, P(h(X)) can be disregarded. However, estimating P(Y") may be
impossible for unknown environments.

Another frequently examined form of invariance in the literature is what we term fea-
ture invariance.

Definition 3 (Feature Invariance). A feature h(X) is feature invariant with respect to the
environment E if the feature h(X) is independent of the environment E, i.e. E | h(X)

This form of invariance is also referred to as marginal distribution alignment in [71] and
has been explored in works such as [66, 80—84]. In Figure 2.2c we illustrate the feature
invariance. Subsequently, we provide a practical example highlighting when this form of
invariance leads to robust predictions.

If the feature-invariant representation lacks information about its originating envi-
ronment, it implies that environmental factors (like various camera properties) have been
removed from the representation /(X). While such a representation might prove useful,
it does not guarantee robustness on its own. Specifically, when P(Y | h(X)) varies across
different environments, as depicted in Figure 2.2c, issues arise. For example, the feature
h(X) might contain only shape information, omitting texture properties crucial for solv-
ing the task — like in certain skin cancer detection scenarios where texture information is
indispensable.

In Section 3.8 we provide an in-depth discussion on the question of “when to use
which invariance?”. We can succinctly summarize the relation between robustness and
predictiveness, i.e. P(Y | h(X)), and the type of invariance in the following remark.
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Remark 1. Asargued above, we achieve predictive guarantees in the case of the causal and anti-
causal invariance, even under distribution shift:

» If we obtained a causal invariant feature h(X), then P(Y | h(X)) remains consistent across
environments, ensuring its predictiveness.

» The anti-causal invariance can be exploited for prediction via

LX) |Y)PY)
P(h(X))

P(Y |h(X)) = (2.11)
In the regression setting, we are required to estimate how P(h(X)) and P(Y") behave under

distribution shift in order to robustly estimate P(Y | h(X)). For classification, knowing how
P(Y') behaves under distribution shift suffices to estimate P(Y" | h(X)).

However, feature invariance does not guarantee predictiveness in new environments as illustrated
in Figure 2.2c. Even if h(X) follows the same distribution in all environments, i.e. h(X) L E, the
conditional distribution P(Y | h(X)) might still unpredictably change across environments.

Itis worth noting thatinvariances have a close connection with fairness. For instance,
afeature lackinginformation about sensitive variables such as age or gender is often deemed
fair in an application process. Before we close this chapter, we briefly describe the differ-
ence between invariance and equivariance.

Remark 2 (Invariance and equivariance). Invariance and equivariance are specific proper-
ties of the relation between an object and a transformation. Invariance requires that the transfor-
mation has no effect on the object. For instance, consider bicycles in various environments (e.g. cli-
part, product, and art cartoons as in the OfficeHome dataset in Figure 2.1). The shape of the
bicycles remains largely unchanged (or invariant) despite the distribution shift, whereas their ap-
pearance varies across the environment, making it not invariant. Equivariance primarily refers
to a function or mapping, demanding that the transformation applied to the function’s output
is equal to the function applied to the transformed input. This concept can be formalized more
mathematically: A mapping f is equivariant with respect to a transformation or a group of trans-
formations g € G if f(g(x)) = g(f(x)). In contrast, f is said to be invariant with respect to
g € Gif f(g(z)) = f(z). Convolution operations in neural networks exemplify equivariance,
where a translation in the input corresponds to a translation in the output after the convolution
operation [ 38, Chapter 9.2].



Causality

Causality and robustness are closely related topics. In Chapter 2 we introduced the fun-
damental robustness task in Equation 2.2 which asks to find a good prediction even if the
distribution shifts. Since this task is unsolvable in all generality, it is crucial to consider the
characteristics of distribution shifts. Causality offers a perfectly suitable language for this
task.

We begin this chapter by explaining the difference between causality and statistics,
showing how statistical relations arise from causal relations. Next, we introduce both for-
mal and conceptual aspects necessary to describe causal relations. Besides discussing dif-
ferent ways to formalize causal relations, we discuss the fundamental principle of inde-
pendent causal mechanisms. Moving forward, we explore how distribution shifts can be
characterized and categorized from a causal perspective, also discussing their implications
and their relation to the invariances introduced in Section 2.4. We conclude this chapter
by exploring methods and conditions for uncovering causal relationships.

3.1. Causality and Statistics

“Correlation is not Causation” is a commonly repeated phrase and basis for many hilari-
ous observations as for instance the correlation between chocolate consumption and Nobel
laureates per capita [86] or the correlation between drowning deaths and the appearance
of movies starring Nicolas Cage (see Figure 3.1). While these observations seem ridiculous,
they raise a serious question: How do causation and correlation relate?

Number of people who drowned by falling into a pool
correlates with
Films Nicolas Cage appeared in

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films

20 drownings 4 films

a8e) sejoydIN

00 drownings 2films

Swimming pool drownings

80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-e- Nicholas Cage -+~ Swimming pool drownings

Figure 3.1. Correlation between Number of people who drowned by falling into a pool and the
amount of films starring Nicolas Cage between 1999 and 2009. Graph due to [85].
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Figure 3.2. The common cause principle by Reichenbach gives three scenarios
that explain a statistical dependency between two variables X and Y,ie. X }
Y.

First of all, we observe two insights: statistical dependency measures like correlation
are symmetric while causal relations are asymmetric'. The first insight follows by definition
of correlation and related statistical dependency measures. For the second insight, we con-
sider the Nicolas Cage example from above. Whether Nicolas Cage appearances in movies
cause people to drown and die or drowning people cause Nicolas Cage to appear in movies
are two exclusive causal explanations. Conclusively, we can not fully deduce an asymmet-
ric causal relation from a symmetric statistical one. However, we can ask which causal
relations can be deduced from a statistical dependency or put slightly differently, “how do
statistical dependencies arise from causal ones?”. The famous common cause principle by
Reichenbach provides an answer to this question [88]. As reformulated in [32, Page 7],
the principle states:

Principle 1 (Reichenbach’s common cause principle). If two random variables X andY are
statistically dependent (X [ Y'), then there exists a third variable Z that causally influences both.
(As a special case, Z may coincide with either X or Y.) Furthermore, this variable Z screens X
and Y from each other in the sense that given Z, they become independent, X 1 Y | Z.

Figure 3.2 depicts all three scenarios listed in Reichenbach’s common cause principle.
In the chocolate-nobel-prize example from above, three possible causal explanations are
(1) chocolate consumption could increase the consumer’s intelligence and work ethic and
therefore make it more likely to achieve a breakthrough research result, leading to a Nobel
price, or (2) Nobel prize winners and their teams are notorious chocolate eater, increasing
its countries chocolate consumption, or (3) there is a common cause for both like, for in-
stance, a high Gross domestic product (GDP) might resultin better education and therefore
increase the likelihood for Nobel prizes, as well as higher chocolate consumption.

It is important to note here that we cannot distinguish purely from data and without
assumptions which of the three common causes explains the statistical dependency be-
tween two variables (see Section 3.9 for details). Therefore we can conclude that a causal
model contains strictly more information than a causal one (see also [89]). In Section 3.9
we discuss how it s still possible to learn about causal relations from data. While the com-
mon cause principle explains how statistical dependencies arise from causal relations, it
does not explain all statistical dependencies. [32] hints at three reasons why dependen-
cies might occur that cannot be explained by the common cause principle. We recap and
extend on these reasons shortly.

In reality, we always deal with finite datasets and therefore, we might observe that
some illusory dependencies would vanish if we collected more data. For instance, under
the plausible assumption that the appearance of Nicolas Cage films is unconnected to the

We do not consider cyclic causal relations in this thesis. For details on cyclic causal models see e.g. [87]



3.2. Graph Theory 31

number of people drowning in pools, the correlation would disappear if Nicolas Cage ap-
peared in enough movies over time. So this kind of correlation might be explained solely
by the fact that we only observe a finite amount of data and not due to a common cause.
Note that from a statistical point of view the variables would in these cases actually be in-
dependent and only the finite dataset let them appear dependent. As a second reason, two
variables might exhibit statistical dependence without a common cause, provided they are
notindependently sampled. For instance, when we measure the same variables over time,
they might both show some form of growth behavior. For instance, the shoe size of a child
is correlated to the stock value of a company over time (both grow). However, assuming
a causal relation between both variables might seem implausible. A third reason why sta-
tistical relations occur when there is no common cause involved is due to the selection bias
which we discuss in Remark 5.

3.2. Graph Theory

Itis instructive to think of causal relations in terms of nodes and edges. A node represents
the variables of interest, such as GDP or chocolate consumption, while the edges depict
how these variables relate. In general, two nodes are connected if one variable causes the
other, and the direction of the edge indicates the causal relationship. Some examples of
simple “causal graphs” areillustrated in Figure 3.2. In this section, we introduce the formal
aspects of graph theory following [ 32, Chapter 6.1].

Consider a set of variables X1, X5, ... Xp. We define the set of nodes, denoted as V/,
as the set of indices corresponding to the variables,i.e. V = {1,2,..., D}. In the follow-
ing, we may use the variable index interchangeably with the variable itself. For instance,
we refer to variable i when we mean X; and vice versa. Nodes can be connected by directed
edges. Since cause-effect relationships are inherently asymmetric, we always assume a di-
rection, leading us to mainly work with directed graphs. The set of edges A C V?isa
subset of all tuples V2 = {(i,j)|4,j € V}. When we consider an edge (i, j), we refer to
variable ¢ as a parent of j, and j is as a child of 7. This edge is also written as ¢ — j. The
nodes V and edges A define the entire graph, denoted as G = (V, A).

Sometimes we might be interested in the structure of G without the orientation of the
edges. In such cases, we can consider the graph (V, A) where A is defined as

A={(i,j) € V2| (j,i) € Aor (i,j) € A} (3.1)

This graph is also referred to as the skeleton of G and it reflects the presence of direct causal
relations without specifying their direction.

Up to this point, we have primarily focused on direct connections in a graph, but we
can extend our understanding to paths, which involve connections across more distant
nodes. A sequenceiy, ..., i, of distinctnodes forms a path between i1 and i, if i1 — g,
oriy — tp_1 forall k = 2,..., m. If the path contains three consecutive nodes such that
ig—1 — I < k41, itis referred to as a collider relative to this path. This specific structure
has significant causal implications and is discussed in greater length in Remark 5 and Sec-
tion 3.9. When a path satisfies i, — 4541 forallk = 1,...m — 1, itis called a directed
path from i1 to i,,. In this case, we term allnodes i1, . . . , 4,1 ancestors of i,, and all nodes

19, . - . , iy descendants of 11. Ancestors of ¢ are denoted by ANiG and descendants of ¢ by
DEE.
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In this work, we exclusively focus on directed acyclic graphs (DAGs), i.e. directed
graphs that do not contain any circles. A circle consists of two directed paths: One from
node j to k and another from k to j. We can define an ordering on a DAG in the sense that
every node j that comes in the ordering before node k cannot be a descendant of node j.
Orderings that satisfy this property are called a causal orderings or topological orderings and
are defined as follows:

Definition 4. Let G be a DAG. A permutation (i.e. a bijective mapping) 7: {1,...,p} —
{1,...,p} is called a causal ordering or topological ordering if it satisfies

(i) <w(j) ifj€ DE] (3.2)

It is easily seen that for each DAG there exists a topological ordering (e.g., see [32,
Proposition B.2]). The topological structure of a graph G = (V, A) can be represented as
an adjacency matrix A (here, we overload the variable notation A that also represents edges
in G) which is a binary D x D matrix with

ay = b EED) (33)

This implies that the entry (4, j) in the matrix is 1 if variable 7 causes variable j in G and
otherwise 0. It is easily seen that for each DAG G there exists a topological ordering such
that the corresponding adjacency matrix is an upper triangular matrix with Ay ~(;) = 1
if (i) > m(j) and A3y (j) = O elsewhere.

Judea Pearl introduced the d-separation criteria [90, 91 ] which plays a crucial role in
identifying causal relations from observations (see also Section 3.9). d-separation is de-
fined as follows

Definition 5 (d-separation). Ina DAG G = (V, A), a path between nodes i1 and i,y is blocked
by aset C C V (with neither i1 nor i, in C) whenever there is a node iy, such that one of the
following two possibilities holds:

(i) iy € Cand

-1 —> U — Tyl (3.4)
Or 1p—1 <tk + 11 (3.5)
Or 1p—1 < Tk — k41 (3.6)

(ii) neither iy nor any of its descendants is in C and

Th—1 —> bk < Tjt1- (3.7)

Furthermore, in a DAG G, we say that two disjoint subsets of vertices A and B are d-separated by a
third (also disjoint) subset C if every path between nodes in A and B is blocked by C. We then write

AlgB|C (3.8)

Below, we provide a short example of d-separation statements in a graph.
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Figure 3.3. A simple example of a graph with four variables. In this graph, we can ob-
serve several interesting d-separation statements, e.g., X7 14 X3.

Example 1. Consider the graph as in Figure 3.3. The collider structure X1 — Xy
X3 implies X; 14 X3 with the only path between X; and X3 blocked by the empty set.
Similarly, we obtain X; 1; X4. However, if we condition on X5, then the paths are no
longer blocked. In this case, we write X; f4 X3| X9 and X1 L4 X4 | X2 . However, if we
condition on X7 and X3, then X; and X are d-separated again,ie. X; L4 Xy | X2, X3.
Similarly, the only path between X4 and X5 is blocked by X3,i.e. Xo 14 X4 | X3.

3.3. Structural Causal Models

We will first introduce and discuss the very basics of Structural Causal Models (SCMs). Af-
terward, we discuss their benefits, namely predicting interventions and answering coun-
terfactual questions.

@—> 4—@ X1 = fl(Nl)
X2 = fg(Ng)
@4—@ X3 = fg(Xl,XQ,Ng)

Figure 3.4. A simple example of an SCM with three variables as defined in Definition 6.
The noise variables N1, N5, N3 follow some distribution and are unobserved.

3.3.1. Definition

Structural Causal Models (SCMs) are a mathematical way to represent causal relations via
functional relations. Following [ 32, Chapter 6.2] we define an SCM:

Definition 6 (Structural Causal Models). A Structural Causal Model (SCM) S = (S, Py)
comsists of a collection S of D (structural) assignments

X; = fj(ipa(j),Nj), j=1,...,D (3.9)

where pa(j) C {1,...,7 — 1} are called parents of X ;. Py denotes the distribution over the
noise variables N = (N1, ..., Np) which are assumed to be jointly independent.

Succinctly, an SCM is described via the noise variables Vy, . . . , Np and the structural
assignments X; = f; (Xpa(i), N;). The random variables X; in an SCM correspond to
nodes V in a graph, and the structural assignments S define the edges A in this graph,
e.g. all nodes pa(j) have an arrow pointing to j. Consequentially, an SCM defines a graph
G = (V, A) as for instance in Figure 3.4. This graph is acyclic due to the assumption that
pa(j) C {1,...,j — 1}. The parents pa(j) are also called direct causes of X ;. The children
of X; in G are denoted as ch (i) or ch(X;) and are often termed the direct effects of X;.
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It is easily seen that an SCM defines a unique distribution over the variables X =
(X1,...,XDp) [32, Proposition 6.3]. This is due to the acyclic definition of the structural
assignments which implies that for each variable X; we can find a function g such that
X; = g(Ni,...,N;_1). This gives also a simple recipe on how to draw from the distribu-
tion Px. We first draw jointly from Ny, ..., Np and then use the structural assignments to
successively compute X1, ..., Xp. This shows that every SCM induces a unique distribu-
tion. Now, we raise the question of which distributions can be described via an SCM. So,
we basically ask how powerful are SCMs? It turns out that SCMs can represent any distri-
bution (see e.g., [ 32, Proposition 7.1] or Section 3.9):

Proposition 1. Let Px be a distribution that has a density with respect to the Lebesgue measure.
Then there exists an SCM S that elicits the distribution Px.

In Section 3.4 we will discuss in detail that the distribution Px as defined via an SCM
decomposes into the causal factorization

D

P(X) = P(X1,...,Xp) = [ [ P(Xi | Xpags)) (3.10)
=1

In the following remark adapted from [32, Section 6.2], we will show that several
graphs can correspond to the computationally same SCM. In this thesis, we will therefore
assume structural minimiality on SCMs to enforce a one-to-one correspondence between
SCMs and graphs. Structural minimality is a formal assumption and will be introduced in
the following remark.

Remark 3 (Structural minmality of SCMs). The following two SCMs are computationally equiv-
alent and produce the same distribution Px y

S1: X =Nx,Y =0-X+ Ny (3.11)
Sy: X = Nx,Y = Ny (3.12)

However, they correspond to two different graphs: one graph with an edge X — Y and one with
no edge between X and Y . Therefore, we use the structural minimality assumption which requires
all function f; in the SCM to depend on all their input arguments. In a mathematical way, we can
express this requirement as the following mathematical statement: If two structural assignments
fi and g; produce the same output, i.e.

fi(Za,,ni) = gi(Ta,,ni) (3.13)

with indicesset Ay C Ay C {1,...141}, we choose f; as structural assignment over g;. Note that
the structural minimality assumption does not pose assumptions on the reality of things, but in-
duces a formal requirement that removes redundancies. In the example above, the SCM satisfying
the structural minimality assumption guarantees a unique graph G that does not have an edge
between X andY .

We require in Definition 6 of an SCM that the noise variables are jointly independent.
If an SCM indeed satisfies this assumption, we say the causal sufficiency assumption is sat-
isfied. When this assumption is violated, then a hidden confounder H exists that is unob-
served and affects two observed variables. We discuss implications of hidden confounders
in Subsection 3.8.1.
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3.3.2. Intervention

What makes SCMs particularly intriguing is their ability to not only model observational
distributions but also to predict how the distribution changes under interventions or mod-
ifications. Our perspective on the robustness task in Equation 2.2 is strongly causality-
oriented: We assume that distributions or environments change due to interventions. Pre-
dicting how a distribution behaves under interventions and modifications is therefore cru-
cial for addressing the robustness task in Equation 2.2. Interventions, in a formal sense,
correspond to modifications of one or several structural assignments in the SCM. We can
define the interventional distribution similar to [32, Definition 6.8] as

Definition 7. Let S = (S, Py) be an SCM and its entailed distribution Px. An intervention is
the replacement of one or several of the structural assignments in S. Assume that we replace the
assignment for Xj, by

X = .ﬁ(xﬁd(k)vﬁk) (3.14)

Notethat fk is different from fy, in the original SCM S. We call the entailed distribution of the new
SCM an interventional distribution. The modified structural assignment is said to be intervened
on.

We can distinguish interventions based on the modification of structural assignments.
For instance, if a structural assignment is set to a constant, i.e. Xy := a for ascalara € R,
it is referred to as an atomic intervention. When X}, is freed from all relations to other
variables, i.e. X, = Nk, we call it a hard intervention. Note that we can similarly de-
fine interventions on the causal factors P(X; | X,,;)) of the causal factorization P(X) =

Hle P(Xj |Xpq(j))- We expand on this in Section 3.6 and Subsection 5.3.1.
It is important to note here that correlation or predictiveness does not imply causa-

tion. In the following, we give an example of how predictiveness can lead to the wrong
conclusion about causation.

Example 2. Consider the followinglinear Gaussian SCM that corresponds to G in the mid-
dle graph of Figure 3.7

X7 ~N(0,1) (3.15)
X = X1 + No, Ny ~ N(0,03) (3.16)
X3 = X9 + Ns, NgNN(O,O'g) (3.17)

We consider Y = X5 (and oy = 03) as target variable and assume that 02 = 1 and 03 =
0.01. The correlations are Cov(X3,Y) = Cov(Y,Y) = 03 = 0.01 and Cov(X;,Y) =
02 = 1. In this case the effect X35 is more predictive than the cause X;. In Example 6
we give a demonstrative example where children of target Y are more predictive than the

parents of Y.

In Definition 7 we formally defined interventions in the SCM framework. Interest-
ingly, we can also introduce interventions in the standard SCM setting by internalizing
them as an environment variable. The following remark explains this approach and can be
found similarly in [92, 93], [94, Chapter 3.2.2] or [ 32, Chapter 6.3].
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Remark 4 (Interventions as Environments or Domains). Consider a scenario where we inter-
vene on variable Xj,. We can describe the intervention by replacing the structural assignment

X = fk(xpa(k)7Nk) (3.18)
with a new structural assignment

X = fe(Xga(ry» Vi) (3.19)

There is another way to describe this intervention that is often more convenient. We could intro-
duce another variable E that indicates whether we have intervened upon X, or not. Then we can
define a new structural assignment

Je(Xparys Ni)  fE=0

Xy, = g Xy, By Ni) = 4 11 N
k1= 9 Xpait *) fe(Xpagey, k) ifE=1

(3.20)

From a graphical standpoint, we just added a variable F that is a parent of X. The node E acts
as a source node within the SCM, lacking any parent nodes. In this scenario, we only consider one
intervention, but we can easily extend this approach to arbitrarily many interventions.

The term intervention might insinuate that an intervention is done deliberately by an
agent. However, interventions in our understanding can also be a description of differences
between environments. For instance, if two image datasets follow the same distribution,
except that different cameras recorded them. Let us assume that the camera that recorded
the first dataset leaves some footprint in the images (e.g., adds Gaussian noise). Then we
can describe the difference between the dataset as an intervention or via an environment
variable (for details on this and similar examples see for instance Section 3.8).

It is important to note that ground truth functions in the structural assignments are
typically unavailable and are often derived by fitting a function, fk, to predict X}, from
Xpa(k) typically without considering interventions. Challenges arise when interventions
occur, causing a shift in the support of the training data used to fit f. In such cases, ex-
trapolation — that is unachievable without strong assumptions — might be necessary. We

delve deeper into this phenomenon within the context of robustness in Subsection 4.5.4.

3.3.3. Counterfactuals

We have shown that SCMs are incredibly powerful, not only for modeling observational
distributions but also for describing and predicting the outcomes of interventions. A third
special feature of SCMs is their ability to answer counterfactual questions. A counterfac-
tual question is a question of the type what would have happened if we acted differently than
we actually did. This kind of question asks counter the actual facts. Since claims about a
counterfactual world are never empirically falsifiable, they are sometimes contended as
unscientific, as by the philosopher Karl R. Popper [95]. However, humans appear to use
counterfactual reasoning in practice, acquiring this skill during their early childhood [96].
This indicates the relevance of counterfactual reasoning for artificial intelligence.

SCMs enable us to express and predict counterfactual questions. In contrast to inter-
ventional predictions, addressing counterfactual questions allows us to integrate future
knowledge into our analysis. To illustrate this fact, consider the case where doctors have
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to decide what treatment to apply to a patient. While doctors only see the present infor-
mation when asking which treatment to apply (interventional questions), they can obtain
more information in the future, e.g., via an autopsy when the patient is dead. With more
knowledge, they have a better understanding of how different treatments might have af-
fected the patient (counterfactual questions). How do we exactly compute counterfactual
questions in an SCM? This can be done via a three-step procedure as explained in [97]:

(i) Update the noise distribution according to the observed evidence (“abduction”)
(ii) Perform an intervention corresponding to the counterfactual question (“action”
(iii) Predict the outcome with the modified SCM (“prediction”)

While interventional and counterfactual questions may seem alike at first glance, the
key distinction lies in the type of information employed to answer these questions. To pre-
dictinterventions, we can only use the knowledge available in the present moment. To an-
swer counterfactual questions, we can also incorporate knowledge that might be obtained
at some future point (abduction). We refer for details on counterfactuals to [32] or [94].

3.4. Markov Property and Faithfulness

In the following, we will introduce different concepts that connect a graph GG with a dis-
tribution Px. These concepts are of importance, for instance, when we like to uncover the
true causal graph G (e.g., the one that corresponds to the underlying SCM) from the distri-
bution Px. We give an in-depth discussion of this task in Section 3.9.

Markov Property

The Markov property guarantees that we can read off conditional independence statements
in Px from the graph G. Equally to [ 29, Definition 6.21] we define it as

Definition 8 (Global Markov Property ). Let G be a DAG and Px a joint distribution, then we
say P satisfies the global Markov property with respect to the DAG G if

Al;B|[C=ALlB|C (3.21)

for all disjoint set of nodes A,B,C C X. The symbol L ; denotes d-separation as defined in Defi-
nition 5.

It can be shown that the global Markov property is equivalent to the local Markov prop-
erty and the Markov factorization property [98, Theorem 3.27]:

Proposition 2. If Px has a density p, then the global Markov property with respect to G is equiv-
alent to

(i) the local Markov property that requires that each variable in G is independent of its non-
descendants given its parents, and

(ii) the Markov factorization property that requires the following factorization to hold

D

p(x) =p(a1,...,2p) = [ [ p(z; | Kpa(s)) (3.22)
j=1
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Figure 3.5. Illustrative examples for elementary causal structures. These graphs are consid-
ered in Example 3.

Due to this equivalence, we often speak only of Markov property. An important prop-
erty of SCMs is that they naturally elicit the Markov property [94, Theorem 1.4.1]:

Proposition 3. Assume that P is induced by an SCM with its underlying graph G. Then, Px is
Markovian with respect to G.

The result of the proposition can be illustrated by the following examples that are pre-
sented in [99]. The examples show the most elementary causal structures: the chain, the
fork, and the collider.

Example 3 (Illustration of Markov Property). A chain is a graphical structure of the form
X — U — Y asin Figure 3.5a. As an illustrative example consider the scenario where
the binary variable X represents the occurrence of fire, U indicates whether there is smoke
(also binary), and Y represents the activation of a fire alarm (also binary) [99]. The graph-
ical structure X — U — Y clearly describes the causal relation between these variables:
Fire induces smoke with high likelihood and smoke (which is the mediator) very likely ac-
tivates the fire alarm. Note that this chain is not deterministic. Occasionally, the alarm
may sound without a fire present (e.g., due to a malfunction in the fire alert system), and
similarly, there might be a fire without smoke (e.g., when windows are left open). We can
easily conclude that in most cases fire induces smoke which triggers the fire alarm with
high likelihood. Therefore, we conclude that X [ Y. The path is in this case open and in-
formation flows from X to Y via smoke U and vice versa. However, if we condition on U,
i.e. we know for instance that there is smoke, then knowing something about fire does not
inform us that the fire alarm is ringing because the fire alarm is activated by the mediator
smoke. In this case, the path where information flows from X to Y is blocked if we know
the state of U. More formally, we have X | Y | U. Therefore, the statistical independence
statements follow from the d-separation statements the graph X — U — Y elicits.

The fork is a graphical structure of the form U — X and U — Y asin Figure 3.5b. As
an illustrative example consider the following variables: U represents the age of a child, X
its shoe size, and Y its reading skills. We can plausibly argue that the causal structure here
is afork. Age U causes the shoe size X and the reading skills Y of a child. However, there is
no direct causal relation between reading skills Y and shoe size X. Therefore, the variables
correspond to a fork. From a statistical viewpoint, there is an obvious correlation between
shoe size and reading skills: Shoe size is correlated with age and age in turn with reading
skills. Therefore, the shoe size gives up information about reading skills,i.e. X £ Y. Nev-
ertheless, if we know the age of a child, the shoe size does not give any information about
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Figure 3.6. Adapted example “Why are handsome men such jerks?” by [100].

the reading skills and vice versa. So conditioning on age blocks the path between shoe size
and reading skill and both variables become independent,ie. X | Y |U. Also in this ex-
ample, the statistical independence statements follow from the d-separation statements
in the fork.

A more intricate example is the collider or v-structure. A collider has the graphical
structure of the form X — U < Y (see also Figure 3.5c). As an illustrative example
consider the following variables that conform to this graph: U represents the success of an
actress, Y describes the actress’ talent, and X her beauty. Success is caused by a mix of tal-
ent and beauty. However, we can reasonably assume that beauty and talent are indepen-
dent and do not exert a direct influence on each other. Therefore the underlying causality
between U, X, and Y is correctly described by a collider structure. However, if we know
someone is successful and we also know that sheis far from beautiful, then we can conclude
that she is probably very talented. Therefore, talent Y and beauty X become dependent,
if we condition on success U,i.e. X [ Y |U. In this example, the graphical structure con-
tains two important d-separation statements. First, X 1; Y which we also find in the
distribution, namely X and Y are statistically independent. Second, X [/, Y |U which
allows that X can become statistically dependent on Y given U.

The fact thatindependent variables can become dependent if we condition on a com-
mon effectis averyimportant causal phenomenon and can lead to a selection-bias or collider-
bias or Berkson’s paradox:

Remark 5 (Selection or Collider-Bias). If we unknowingly condition on a common effect, then
actual independentvariables might become statistically dependent. This phenomenon is also known
as Berkson’s paradox [ 101 ] and has many manifestations. An example adapted from [100] il-
lustrates very well how unknowingly conditioning on a variable might render two independent
variables dependent. In this example, we consider three variables: the handsomeness H of a
man, his friendliness F', and whether he is in a relationship or not, i.e. R € {0, 1}. It is rea-
sonable to assume that friendly and handsome men are more likely in a relationship since R and
H are the cause for whether they end up in a relationship. We can express this via a functional re-
lationship R = f(F, H, Nr) where f is a function and N, is some noise variable. Furthermore,
we can assume that friendliness and handsomeness are independently distributed, ie. F© 1 H.
This leads to a causal graph with a collider structure as in Figure 3.6a. For simplicity and illustra-
tive purposes, we assume that all men who score in friendly plus handsome, i.e. F' + H, over some
threshold are in a relationship (so we assume a deterministic relation). If women are dating men,

v
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Figure 3.7. Left graph structure is also called fork and the other two are called chain. All
three graphs are Markov equivalent, i.e. they induce the same d-separation statements.

they implicitly condition on R = 0, i.e. on the men who are not in a relationship. However, in this
case, F' and R become dependent, i.e. F' /. H | R = 0 as Figure 3.6b and Figure 3.6¢ shows. In
this case, very handsome men tend to be very unfriendly, and very friendly men tend to score low
in handsomeness. Therefore, the example is titled “Why are handsome men such jerks?”.

The example in the remark demonstrates a case where Reichenbach’s principle is vio-
lated: When we condition on I = ( two variables become statistically dependent. This
statistical relation cannot be explained by F' causing H, H causing F’, or a common cause
of both as postulated in Reichenbach’s principle. The collider examples in Remark 5 and
Example 3 show also how collider structures can be used tolearn about causality from data:
If two variables are independent, but become dependent when conditioned on a third vari-
able, then we might have identified a collider structure. We discuss the role of colliders for
causal discovery in Section 3.9.

Markov Equivalence

We discussed that the graph and distribution obtained from an SCM satisfy a specific re-
lationship: d-separation statements translate to statistical independence statements (see
Proposition 3). We now turn our attention to characterizing graphs based on the contained
d-separation statements. First of all, the following example shows that three elementary
graphs can encode the same d-separation statements.

Example 4. Consider the three graphs in Figure 3.7. All three graphs encode only the d-
separation statement X; 14 X3 | Xs. Consequentially all three graphs imply the same
conditional independence statement for all distributions Px that are Markovian with re-
spect to these graphs.

We can formally define the class of graphs that elicit the same d-separation statements.
The following definition is due to [ 32, Definition 6.24]:

Definition 9 (Markov Equivalence of Graphs). We denote by M(G) the set of distributions
that are Markovian with respect to G

M(G) = {P| Pisadistribution and Markovian w.r.t. G} (3.23)

Two graphs G1 and G4 are then said to be Markov equivalent if M(G1) = M(G>). Similarly,
we can define the Markov equivalence class of a DAG G as the set of DAGs that are Markov
equivalent to G.
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Itis important to note that two graphs are Markov equivalent if and only if they imply
the same d-separation statements. Therefore, the graphs in Figure 3.7 are Markov equiva-
lent. In fact, we can “graphically” validate if two graphs elicit the same set of d-separation
statements [102]:

Proposition 4. Two DAGS (1 and G are Markov equivalent if and only if they have the same
skeleton and the same v-structures.

Hence, we can conclude that the graph X; — X3 < X3 is not Markov equivalent to
the graphs (fork and chains) in Figure 3.7. In Section 3.9 we will discuss the importance of
Markov equivalence for causal discovery (i.e. the process of uncovering the causal structure
from data).

Markov Blanket

In the following, we define the Markov blanket which is the smallest set of nodes that allows
us to separate a target node Y from the rest of the graph.

Definition 10 (Markov blanket). Let G = (V, A) be a DAG andY € V a target node. The
Markov blanket of Y is the smallest set M C V' such that

Y L, V\({Y}UuM) M (3.24)

If the distribution Px is Markovian with respect to G, then the graphical separation
statements transfer to the statistical conditional independence statements:

Y LV\({Y}UM)|M (3.25)

In this case, the Markov blanket of a target variable Y is the only set of nodes necessary to
predict Y. One might expect that to predict Y, we only need to include the variables from
the Markov blanket. However, additional variables might help in the prediction task. For
instance, the optimal predictive function estimating Y from the Markov blanket might not
be encompassed within the function class considered during optimization. Hence, addi-
tional variables could aid in the prediction task. While we did not say anything about the
graphical relation of the Markov blanket with the target Y in Definition 10, itis possible to
fully describe the Markov blanket:

Proposition 5. Let G = (V, A) be a DAG and Y a target node. The Markov blanket of Y is
the set of parents, children, and parents of its children:

M = pa(Y) Uch(Y) Upa(ch(y)) (3.26)

The proof for this Proposition can be found in [91, Corollary 6].

Faithfulness

The Markov property states that d-separation statements translate to conditional indepen-
dence statements. The faithfulness criterion works in the other direction, specifying how
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conditional independence statements translate to graphical d-separation statements. As
in [32, Definition 6.33] we define

Definition 11 (Faithfulness). Let G be a DAG and P a distribution. Then P is faithful to G
if

A1lB|C=A1;,B|C (3.27)
for all disjoint node sets A,B, C C X.

While a distribution that arises from an SCM always satisfies the Markov property with
respect to the corresponding graph (see Proposition 3), the same does not necessarily hold
true for the faithfulness condition. In the following example adapted from [ 32, Example
3.34] we define a distribution via an SCM that is not faithful to the underlying graph.

Example 5. Consider the following linear Gaussian SCM that corresponds to the graph G
in Figure 3.8

X = Ny, (3.28)
Y == aX + Ny, (3.29)
Z =bY +cX + Ny, (3.30)

where Ny ~ N (0,0%), Ny ~ N (0,0%)and Nz ~ N(0,0%).1fa- b+ c = 0, we obtain

Cov(X,Z) = Cov(X,bY + cX + Nyz) (3.31)
=bCov(X,Y) + cCov(X, X) + Cov(X, Nz) (3.32)
=bCov(X,aX + Ny) 4+ cCov(X, X)+0 (3.33)
= abCov(X, X) + co% (3.34)
=o%(ab+¢c)=0 (3.35)

We first note that normal distributions are closed under linear combinations (i.e. a linear
combination of normal distributions is also normally distributed) and that two normal dis-
tributions are independent if and only if they have O covariance. Therefore, we can con-
clude that X L Zif ab + ¢ = 0. For this configuration of coefficients, we have X 1 Z,
despite the fact that both variables are not d-separated. Consequentially, faithfulness is
violated. Note that we condition here on the empty set.

In the example, we have chosen specific val-
ues for a, b, and c such that the statistical depen-
dency between X and Z cancels out. This requires

a particular coefficient configuration. One can ac- ¢
tually show that if the coefficients are randomly c

drawn from positive densities in a linear SCM, con-

figurations leading to non-faithfulness are a null b
set, i.e. have zero probability [103, Theorem 3.2]. @

Furthermore, if we assume both faithfulness and
the Causal Markov condition, d-separation state-
ments and conditional independence statements
align. We discuss the significance of this case for
identifying causal relations in Section 3.9.

Figure 3.8. Graphical
structure considered in
Example 5.
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3.5. Languages of Causality

The SCM that we introduced in Section 3.3 is a powerful tool for expressing causal rela-
tions and it enables causal predictions, such as interventions and counterfactuals. How-
ever, there are other representations of causality that also can express causal relations. Be-
low, we will briefly discuss the most important ones and compare their expressive power
to SCMs

Potential Outcomes The potential outcome (PO) framework constitutes an alternative
to SCMs to ask and answer interventional and counterfactual questions. While SCMs are
more popular in the computer science community, the potential outcome framework is
widely used in the social sciences and statistics. Initially, the PO framework was intro-
duced in [104] and [105] mainly in the context of Randomized Controlled Trials. [106]
extended the ideas to observational data. In the following, we give a very brief overview of
the framework and refer for details to [107-109].

One of the best ways to understand the PO framework is through its application of as-
sessing amedical treatment, denoted as T'. Here we adapt an example by [ 32, Chapter 6.9].
For instance, a patient u can either be treated (7" = 1) or left untreated (7" = 0). Consider
the case where patient u is treated, i.e. " = 1. Then the outcome is deterministically de-
scribed as B, (t = 1). The patient s either cured (B, (t = 1) = 0) orsick (B, (t = 1) = 1).
What we did not observe in this case is what would have happened if the patient was not
treated, i.e. B, (t = 0). This is what the counterfactual question asks for. In particular, we
are interested in the difference B, (t = 0) — B, (t = 1). This difference is also called the
unit-level causal effect. If we have data of treated and untreated patients in addition with
the outcome, then we have only access to the factual world, i.e. to one treatment condi-
tion for one patient. This is the “fundamental problem of causal inference” [110]: we can
only observe either B, (t = 1) or B, (t = 0), but not both. The causal inference problem
is phrased in this setting as a missing data problem and can therefore be understood as a
prediction task: Whatis B, (t = 0) and B, (t = 1)?

[110] describes two remedies to the fundamental problem of causal inference: First,
one can use scientific insights to predict the counterfactual B, (t = 0) (assume that we
already observed B, (t = 1)). For instance, say patient u was treated in a previous exper-
iment with treatment 7" = 0. If we assume that he will behave in the same way over time
(homogeneity), then we can overcome the fundamental problem of causal inference and
indeed answer the counterfactual question of what would have happened if we had not
treated him, i.e. B, (t = 0). However, for this to work, we have to make the untestable ho-
mogeneity assumption. As a second approach, one could use the overall population statistics
to achieve probabilistic statements about the causal effect. For instance, if we have a ran-
domized controlled trial where the treatment condition is randomly assigned, then we can
estimate the average causal effect of T":

! > Bu(t=1) ! > Bu(t=0) (3.36)

‘U0| ueUg |U1| ueUy

where Uj are all units that underwent treatment 7' = 0 and U; all units that received
treatment 7’ = 1. Using the overall population statistics is the way the PO framework tries
to answer causal questions. For more details see [ 32, Section 6.9] or [110].
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How does the potential outcomes framework relate to SCMs? Indeed one can show
that they are both mathematically equivalent [ 94, Section 7.4.4]. A mathematical state-
mentthatholdsin oneworld also holdsin the other. Therefore, both frameworks are equally
powerful. However, some statements might be easier to show in one world compared to
the other [94, Section 7.4.4].

Graphical Models We have seen in Proposition 3 that an SCM induces a probability
distribution that conforms to the causal factorization

D
P(Xy,...,Xp) = [[ P(Xi | Xpai) (3.37)
=1

The underlying graph G is defined via the SCM and the factorization property is derived
from the Markov property. If we abstract away the functional relations between cause-
effectvariables that define an SCM, we get a graphical model. A graphical model is described
via the graph GG and the causal factors in Equation 3.37. Without the causal interpretation,
this is also known as a Bayesian network [111].

If a graphical model conforms to the underlying causality (i.e. parents in the graph
correspond to the real direct causes), then we are in the position to predict interventions.
For instance, if we modify mechanism P(X}, | X,,(x)) and replace it with P(Xj | X,q()),
then the new distribution is

D
P(X1,...,Xp) = P(Xi | Xpar) [ P(Xil Xpai) (3.38)
i=1ik

In Section 3.6 we give interventions in the setting of graphical models a more thorough
discussion.

While SCMs allow us to predict counterfactual questions by conditioning on the noise
distribution and then use the updated SCM to predict an intervention, we cannot do some-
thing similar in graphical models rendering them slightly less powerful.

Differential Equations Coupled differential equations are a way to describe how a sys-
tem evolves over time. If this description truly represents the underlying physicality, then
the equations give insights into the mechanisms of the causal system [89, 97]. In this case,
we can answer interventional and counterfactual questions.

Consider the following generic coupled differential equation

dx
& (3.39)

with initial value z(tp) = xo. We assume that this coupled differential equation correctly
describes the physical mechanisms of a system. Similarly asin [89] we can argue that from
a given state x we can predict its immediate future: If f is Lipschitz, then Picard—Lindel6f
theorem guarantees that, at least locally, there exists a unique solution x(t).

Inserting an infinitesimal dt and dx = x(¢ + dt) — x(t) in Equation 3.39 gives

x(t + dt) = x(t) + dt - f(x(t)) (3.40)
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As in [89] argued, we can read off which future values in x(¢ + dt) are caused by which
presentvalues x(t) from Equation 3.40. Therefore, we can directly read off the causal struc-
ture of the underlying system.

While coupled differential equations describe the system over time, SCMs can be used
in a setting where the time component is ignored. Hence, in general, coupled differential
equations do provide a finer physical understanding of the underlying causality compared
to SCMs. [97] discuss differences between the langugages of causality in more depth. Ta-
ble 3.1 gives an overview of the capabilities of the different languages of causality.

X Capability ID interv. | counterf. | physical |learn from
Representation .. . . . - ..
prediction|prediction |prediction| insight Data
Differential equations v v v/ v/ =
SCMs / PO framework v v v = =
Graphical models 4 v X =+ <+
Statistical models v X X X v

Table 3.1. Comparison of different languages of causality as well as their capabilities. The
table is adapted from [89]. v'means satisfied, Xmeans not satisfied and + means satisfied
only with assumptions or under certain conditions.

In the context of robustness, we require models to be learnable from data, capable
of ID prediction, and prediction under interventions. Statistical models are insufficient for
these tasks. All other proposed models can handle interventions, but require additional as-
sumptions for learnability. We hypothesize that graphical models and SCMs are amongst
the most easily learnable in most relevant scenarios.

3.6. Principle of Independent Causal Mechanisms

We thoroughly discussed representations for causality and how statistical relations arise
from causal ones. But why should we care? Why should we care about the exact causal re-
lations between variables? The motivation for causal models could be phrased in one term:
robustness. Causal models not only describe data as statistical models do, but they also al-
low us to predict how the data will behave if the underlying system is modified. Causal
models allow us to answer the question of which “existing” knowledge is still applicable if
things change. The principle of independent causal mechanisms gives a foundational explana-
tion on when and why “existing” knowledge is re-usable. In Chapter 5 we operationalize
this fundamental principle in order to learn knowledge that remains invariant and can be
re-used if certain conditions change. As formulated in [32, Chapter 2.1], the Principle of
Independent Causal Mechanism (ICM) states

Principle 2 (Indepentend Causal Mechanisms). The causal generative process of a system’s
variables is composed of autonomous modules that do not inform or influence each other.

In the probabilistic case, this means that the conditional distribution of each variable given
its causes (i.e. its mechanism) does not inform or influence the other mechanisms.

The principle of ICMs has two main components, an interventional and an informa-
tional. For the discussion of these two components, we consider the simplest causal sce-
nario of two variables where one variable causes the other. In this case, the principle of ICM
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Figure 3.9. Causal graph where altitude A causes temperature 7.

is termed independence of cause and mechanism (ICM) [ 112, 113]. For illustrative purposes,
we elaborate on an example from [32, Chapter 2.1] consisting of two variables A and T
where A represents the altitude of a temperature measurement device and 7" the tempera-
ture measured (see Figure 3.9). The causal direction, in this case, is that A causes T and not
vice versa. A Gedankenexperiment makes this obvious. If we intervene on the altitude A
by putting the measurement devices to different spots, e.g. taking them from places in the
valley to the top of the mountain, we change the temperature thatis measured. In contrast,
if we just heat the measurement devices, we do not change their altitudes.

Intervention The principle of ICM states that the causal generative process consists of
autonomous modules that do not influence each other. This has implications if we inter-
vene/modify the observed system. In our working example, the causal generative process
is described via the causal graph in Figure 3.9. We can for instance describe the causal
generative process that gives rise to the data via a Structural Causal Model (SCM) that we
defined formally in Definition 6 or a graphical causal model as in Section 3.5.

In an SCM, the causal generative process for our altitute-temperature example is de-
scribed via

A=N; (3.41)
T = f(A, Na) (3.42)

where N1, N is unobserved and follows a suitable noise distribution. f is a function that
properly describes the underlying causality and how T arises from A and some unobserved
noise Na. The SCM allows us to change the temperature T without affecting the altitude A,
i.e. we can intervene on 7. This corresponds to our common knowledge about reality: we
can heat the device without changing its altitude. Similarly, we can change the altitude A
without changing the physical mechanism (described via f( A, N2)) thatrelates altitude A
with temperature 7. Therefore, we can say that the true SCM satisfies indeed the principle
of ICM — we can change one causal module without affecting the others. Note that we can
also express the data via an SCM that corresponds to the graph T' — A (see for instance
Proposition 6). Since this SCM would not describe the underlying causality, it would not
satisfy the principle of ICM.

Likewise, in a probabilistic causal model, the joint distribution between temperature
T and altitude A is described via

P(A,T) = P(T| A)P(A) (3.43)

We can apply similar considerations as with the SCM to the probabilistic causal model. For
instance, if we assume that the measurement devices are all positioned in Austria a, then
we obtain a distribution P(A®,T%) = P(T*| A*) P(A®) where the superscript indicates
the country. We could also change the distribution by placing the measurement devices
to Switzerland s — for instance, if the Swiss government decides to buy them. In this case,
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we get a new distribution, namely P(A®, T%) = P(T*° | A%)P(A®). From a causal perspec-
tive, we have just modified the altitude A, in particular the distribution P(A%) has been
changed to P(A?®). The principle of ICM states that the autonomous modules which are
P(A) and P(T' | A) do not influence each other. This implies that we can change the alti-
tude without affecting the underlying physical mechanism that relates altitude with tem-
perature, i.e. P(T'| A). Therefore, we can conclude that P(7 | A%) = P(7%| A®). The
factorization P(A,T) = P(T'| A)P(A) is therefore special, because if we intervene on the
system, e.g. by changing the altitude distribution P(A) we might re-use the causal mecha-
nism P(T | A). The chain rule of probability also allows us to factorize the joint distribution
into non-causal factors, i.e. P(A,T) = P(A|T)P(A). In the following, we explain that
the non-causal factorization does not necessarily satisfy the autonomy of modules. We
easily obtain

P(A*

)
=

P(A%|T%) = P(T"| A )P(TS) =P(T*| A ')P(TS) (3.44)
and
apay — popa) oy EAYD) e ge PIAY)
P(A*|T*) = P(T"|H )P(Ta)—P(T |A>P(T‘1) (3.45)
So we can conclude that P(A* | T°) = P(A?®| T*) holds if and only if
P(A%) _ P(A?) (3.46)

which would require some specific entanglement between P(A) and P(T'). This shows
also that the principle of ICM can be used to discover the underlying causal relation be-
tween A and T'. For instance, if we observe that by changing P(A) only P(T'| A) stays
invariant whereas P(T') as well as P(A | T') changes, we might prefer the causal explana-
tion A causes T  over T  causes A.

A similar line of reasoning applies to a causal system consisting of multiple variables.
In this case, we can change one causal factor without affecting the others. One could also
say that this is the property of interventions being local. This means for an SCM that when
we intervene on one variable X;, we modify the structural assignment X; = f;(Xpq(i), Vi)
without changing the other structural assignments. In a graphical model, it means, that we
chang.e one of the causal factors P(Xl; | Xpq(s)) Without affecting th.e others P(Xj | X/pa(j)')
( # j). In both cases, we can extensively reuse the other, unmodified components. This
is not necessarily the case for data-generating processes that are non-causal. For instance,

the data distribution P(X1, ..., Xp) can be factorized along any index ordering, i.e.
D
P(X1,..., Xp) = [[ P(Xn(i) | Xnti=1)s - - Xu(1)) (3.47)
i=1
where 7: {1,...,D} — {1,..., D} is an arbitrary permutation, i.e. bijective function.

As in the two variable case, we might expect for the non-causal factorization all (or most)
factors to change, even if we just intervened on one causal factor.

It is important to mention that the principle of ICM only holds under certain condi-
tions in our example. For instance, if we would place the measurement devices from places
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with continental climate to places with maritime climate the mechanism p(7" | A) might
change as well.

Information The principle of ICM has also an informational component that states the
causal autonomous modules do not inform each other. So knowing P(X; | X,q(;)) does not give
information about the other causal mechanisms P (X | X,,4(;). This is much more difficult
to formalize and exploit. [114] propose to use the Kolmogorov Complexity to formalize
this property of the principle of ICMs. Two mechanisms p(X; | Xp,(;)) and p(Xj | Xpq(5))
share information if mechanisms can be described by a shorter program if we also know
the program of the second mechanism. For more details on the informational component
see for instance [ 32, Chapter 4.1.0] or [ 32, Chapter 6.10]

In this work, we only consider the interventional component of the principle of ICM.
We operationalize this principle and make it amenable to gradient-based optimization in
Chapter 5.

3.7. How Causal Models Can Create the Data

If we describe the data via a causal model (here an SCM), we assume some underlying
causalrelationsin the variables. From a helicopter perspective, the data might be described
via three variables: the observed data X, the target variable Y, and an unobserved, latent
variable Z that produces and relates X and Y.

If we consider only these three variables as entities, we can distinguish between the
three scenarios described in Reichenbach’s common cause principle. Firstly, the inputs X might
cause Y. This might be the case when for instance someone assigned the label/value YV
from X as it is often the case. Then the process can be described via the causal model
X — Y. Secondly, the label Y is causing the inputs X. This scenario might occur if the
label Y is causing the observations X. This is the case if for instance a disease referred
to as Yground truth 18 causing the observation of an MRT image X. In this case, it is impor-
tant how we actually gained the label Y = Y, casured- If it is labeled by some ground truth
method (e.g., an autopsy), then we can assume that ¥jpeasured = Yground truth is causing X,
ie.Y — X. However,if X waslabeled by a doctor, we can assume that Yground truth — X —
Y = Yheasured a0d Yineasured # Yground wruth- Therefore, the same type of data can have dif-
ferent causal explanations depending on how it was labeled. Thirdly, the label Y and ob-
servation X have a common cause Z. Examples might include a person writing numbers
from their intent Z. The person generates both the numbers as well as the corresponding
labels Y (see [32, Chapter 1.4] for this particular example).

There are more scenarios that can describe causalrelationsin Px y . Forinstance, some
variables in X are causes of Y and some are effects (see e.g. Figure 3.10f). We focused here
on the simple cases and will discuss more scenarios in Section 3.8.

The important question is does it matter?. Does it make a difference how to describe
the data? The difference between the three scenarios we described above seems subtle.
Two different causal models might plausibly describe the data as for instance the relation
between MRT image X and disease Y discussed above. However, only one model truely
explains how the data is collected and labeled. Although this distinction might seem sub-
tle, it has real consequences. [115] showed that whether additional data X without labels
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(a) Covariate Shift. (b) Prior Probability shift. (c) Imbalanced Data.

(d) Selection Bias. (e) Source component shift. (f) Parent-Child Structure.

Figure 3.10. Causal graphsunderlying different types of distribution shifts. If an arrow points
in both directions, itimplies one of three scenarios: either one variable causes the other, or vice
versa, or they share a common cause.

— termed semi-supervised learning — helps the prediction task depends on whether X is
causing Y or vice versa. In particular, they found, that semi-supervised learning can help
inthe anticausal direction,i.e. Y — X, and notin the causal direction X — Y. Alsoin terms
of robustness, it makes a difference how X and Y relate as we will discuss in Section 3.8.

3.8. Distribution Shifts and Their Relation to Invariances

In Chapter 2 we formalized the robustness/domain generalization problem using the for-
mulation provided in Equation 2.3. From a causal perspective, differences between dis-
tributions in the family P can be described by interventions (see also [7]). Taking this
perspective, we elaborate on the characteristics of various relevant distribution or dataset
shifts?. Thereafter, we assume that the extracted features bear a strong causal relation to
the target and investigate implications on various types of invariances. Finally, we con-
sider all previous dataset shifts and deduce which type of invariance is required for each
distribution shift respectively, to ensure robust predictions.

3.8.1. Distribution Shift from a Causal Perspective

In this subsection, we consider various relevant distribution shifts. We adopt the terminol-
ogy and conceptual definitions for the “standard distribution shifts” and the domain shift
from [8, Chapter 1]. For the other types of distribution shifts, we refer to the respective
literature. The distribution shifts under consideration can be categorized into shifts oc-
curring in the input space (refer to Figure 3.10), the latent space (refer to Figure 3.12), and
those influenced by hidden confounders (refer to Figure 3.11). Due to the extensive variety
of potential causes behind dataset shifts, we make no claim of being fully comprehensive.

*We use the terms dataset shift and distribution shift interchangeably.
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Covariate Shift  Covariate shift describes the scenario where the input distribution varies,
while the mechanism that relates Y and X remains unchanged [116]. This can be de-
scribed with the causal graph in Figure 3.10a. The joint distribution factorizes along the
causal factors P(X,Y) = P(Y | X)P(X). In this case, only the distribution P(X) changes
across different environments while P(Y" | X) remains invariant. By internalizing the en-
vironment variable into our model, we can also formalize this situation as P(X,Y, F) =
P(Y |X)P(X| E)P(F). Many real-world dataset shifts can be categorized as covariate
shifts. Consider for instance the scenario where hospital A utilizes MRT images to predict
a patient’s heart pressure, primarily dealing with severe cases. If we have the same MRT
device at hospital B and all conditions are identical, except that patients with milder con-
ditions are diagnosed, we observe a shift in the input distribution P(X), while the mecha-
nism P(Y | X) remains invariant. Furthermore, covariate shift scenarios include adversar-
ial samples [44].

From a modeling standpoint, we only need to learn P(Y" | X) which is independent of
P(X). However, if the model family is not able to represent P(Y" | X), the learned model
may depend on P(X). In such cases, one potential remedy is importance reweighting.
This approach helps to correct the covariate shift by accounting for the differences in P(X)
across environments [116, 117].

Prior Probability Shift The prior probability shift or also termed target shift [ 76 ] or class-
prior change [ 78] is the scenario where P(Y) changes across environments while P(X |Y)
remains invariant. This can be described as the data generating process where Y causes X
and F causally affects Y asis illustrated in Figure 3.10b.

For instance, a dataset that has been used for prior probability shift analysis is the
Autism Spectral Disorder (ASD) dataset that contains Electroencephalography (EEG) sig-
nals from children that get treated for ASD [118, 119]. The target variable Y is their treat-
ment stage, which is either before treatment, six months post-treatment, or twelve months
post-treatment [119]. In this case, the causal structure as in Figure 3.10b is plausible.
Treatment Y is the cause of the EEG signal X. Different treatment protocols, i.e. shifts in
P(Y) (e.g., due to different locations/datasets F), do not directly influence X, but only via
Y. We do not delve deeper into the multiple approaches proposed to address prior proba-
bility shifts [see e.g. 78, 120, 121]. Itis worth noting that the graphical structure underly-
ing the prior probability shift is Markov equivalent to that of the imbalanced data scenario.

Imbalanced Data Imbalanced data describes a scenario where the proportion of target
labels or occurrence of target values varies with the environment, but the process P(X |Y')
thatrelates X and Y remains unchanged. This scenario is depicted in Figure 3.10c and can
occur for several reasons. For example, the selection of samples might vary across differ-
ent environments. In fraud detection or spam detection, one class (i.e. the class fraud) is
commonly underrepresented. To counter this, the training dataset is often balanced out by
considering only a subset of the training data to achieve equal class proportions. However,
this can lead to dataset shift when applied under real conditions.

The graphical structure in Figure 3.10c reveals that knowing Y renders X and E inde-
pendent. As a result, the conditional distribution P (X |Y") remains invariant and predic-
tive across different environments. Hence, computing the predictive probability P(Y | X)
relies on estimating the invariant likelihood, P(X | Y'), and understanding the behavior of
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the non-invariant prior, P(Y), across different environments (and in the case of regres-
sion, also P(X)). For further details see Section 2.4.

Selection bias The selection bias occurs due to the process of how the data is selected
from an overall population distribution. In contrast to the imbalanced data shift, the se-
lection process is also influenced by X. This scenario can be described by a causal graph
as in Figure 3.10d. In formal terms, we can describe F in the underlying SCM as £ =
fe(X,Y, Ng) where fg denotes a selection function that is influenced by both X and Y as
well as some noise Ng. An environment emerges by conditioning on the output F of the
selection function. In surveys or clinical trials, participants usually decide for themselves
whether to take part. This implicitly induces a bias that is characterized by X and Y. Con-
sider a medical scenario where the task is to predict the outcome Y of a specific treatment
forill patients with characteristics X. In a study, the collected dataset might predominantly
consist of mild cases among participants aged 20 to 30. This could arise from the specifics
of the recruitment process or self-selection by participants. If a model is trained to predict
Y from X on the study’s data, it might experience a distribution shift when applied in a
setting where patients follow different age and illness intensity distributions. The selec-
tion bias not only appears in surveys and trials but in many other scenarios as well (see for
instance [8, Chapter 1.6]).

Source Component Shift Source component shift refers to the scenario where the data
comes from a number of sources (or environments) each with different characteristics [8,
Chapter 1.9]. This can be described via a graph as in Figure 3.10e where the environment
directly affects the input X and target Y. Consider for instance the introductory example
where we like to predict housing prices Y from different inputs X such as proximity to the
next school or room sizes. In this case, the geographiclocation might directly influence the
distribution of X as well as the relation between X and Y. This could resultin a distribution
shift if an “unknown” region is introduced to the model. For many more examples of this
shift see [8, Chapter 1.9].

Note that the source component shift has the same underlying causal graph as in
Simpson’s paradox |32, Chapter 6.6]. The upcoming example illustrates a case of Simp-
son’s paradox. Consider the comparison between COVID-19 case fatality rates (CFRs) as
in [122]: they observed that CFRs were overall higher in Italy compared to China. How-
ever, if they consider different age groups separately the effectis reversed. CFRs are lower in
each age group in Italy compared to China. This phenomenon can be explained due to the
different demography of both countries. China has a younger population and older people
are more affected by COVID-19. Also, the health care in Italy is better than in China. In this
scenario, I represents either Chinar or Italy, while X denotes age and Y signifies a binary
variable indicating whether a person has died due to COVID-19. The environment variable
evidently impacts the relation between X and Y (health care system is better in Italy) as
well as the distribution of X (different demography).

Parent-Child Structure The parent-child structure is a structure where the target vari-
able Y is caused by some input variables X; and in turn causes some other input variables
Xo. This might occur if for instance a target variable Y is a gene expression and inputs are
many other gene expressions that can either cause or be a cause of Y [29]. We detail this
structure in Chapter 5 and give a more illustrative example in Example 6.
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Figure 3.11. Causal model with hidden confounder H. Here, the environment variable F di-
rectly affects X and can also be considered an Instrumental Variable (IV).

Hidden Confounders and Instrumental Variables Hidden confounders can obfus-
cate the “pure” effect that X hason Y and lead to unexpected behavior under distribution
shift. In the following we adapt and extend an example by [32, Chapter 9.3] to the ro-
bustness problem to show how hidden confounders can complicate the robust prediction
task. The example also illustrates how access to different environments can address the
robustness challenge. For technical details not included here, please refer to Section A.1.
Consider the following SCM

X =bE+cH+ Nx (3.48)
Y =aX +dH + Ny (3.49)

where Nx, Ny and H = Ny is jointly independent and unobserved noise. We assume
that b,c,d # 0 and that Var(H) # 0. The environment variable E is here observed in
the sense that we always know from which environment the data originates. This SCM
corresponds to the graph in Figure 3.11. The hidden confounder H is not observed and
affects both X and Y. The “pure” effect from X on Y would be the coefficient a and is
sometimes called average causal effect. 1f we just regress on X to predict Y, we obtain an
estimate for a that converges in the infinite data regime to (details in Section A.1)

~ d-c-Var(H)

a=a+ W (3.50)
This is obviously a biased estimate. For simplicity, we assume in the following that all vari-
ables have zero expectancy. If we use this biased estimate for prediction, we obtain (cf.
Section A.1)

Exy[(@X —Y)? < E[(dH + Ny)? (3.51)

A model based on ¢ achieves a smaller predictive loss in Equation 3.51 compared to the
one attained by the causal model (see Section A.1 for details):

E[(aX — Y)?] = E[(dH + Ny)?] = E[d*H?] + E[NZ] (3.52)
Conclusively, we would prefer model F(X) = aX over f(X) = aX in terms of predictive
loss. However, f is not robust to environment changes. Consider the case where the en-
vironment £ = 0 eradicates the effect of  on X,i.e. X := Ny. In this case, the biased
model f introduces an unnecessary bias (see Section A.1 for details):

E[(aX —Y)? = E[(@ — a)>X?] + E[(dH + Ny)?] (3.53)
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The causal model that only uses the “pure” causal effect from X to predict Y is robust with
respect to environment changes and attains a smaller predictive loss:

E[(aX —Y)?] = E[(dH 4+ Ny)?] (3.54)

There are many real-world examples where a confounding variable is unobserved. For
instance, [ 123] aims to estimate the effect of smoking during pregnancy (variable X) on the
birth weight of the born baby (variable Y') from only observational data. The hidden con-
founder H comprises unobserved maternal characteristics that can influence both X and
Y. We extend this example below and consider an interesting environment variable E.
Note that an intervention in terms of strictly forbidding a pregnant woman to smoke would
eradicate the effect of H on X similar to our example above. In this case, a regression model
relying on a might deliver inferior results compared to the causal model based on a.

So how could we estimate the “pure” effect of X on Y? One way to do thisis to use in-
strumental variables (IVs). An instrumental variable (IV) is a variable that s (i) independent
of the hidden confounder H, (ii) dependent on X and (iii) affects Y only through X [32,
Chapter 9.3]. Aninstrumental variable can also be interpreted as an environment variable.
We show a graph that corresponds to the requirements of an IV in Figure 3.11. Since F'is
independent of H and Nx, we can consider cH + Nx as noise

X =0bE + (cH + Nx) (3.55)

Hence, we can consistently estimate b without introducing any biases. The target variable
then becomes

Y =aX 4+ dH + Ny = a(bE) + [a(cH + Nx) + dH + Ny] (3.56)

since bE'is independent of the noise a(cH + Nx ) +dH 4+ Ny, we can consistently estimate
a by regressing on bF. This two-stage procedure is also called two-stage least squares.

In the example above of estimating the “pure” causal effect of smoking during preg-
nancy on birth weight of the born baby, [ 123 ] use cigarette taxes that might vary across states
and times. Cigarette taxes are independent of the maternal characteristics (condition (i)),
they have an effect on the smoking behavior of people including pregnant women (condi-
tion (ii)) and they have no direct effect on the birth weight and affect the birth weight only
through the smoking behavior (condition (iii)).

The environment variable or IV is here used to uncover the “pure” causal effect repre-
sented via the coefficient a. The Gedankenexperiment presented above shows that inter-
vening in the system (e.g. by eradicating the effect of the hidden confounder) renders the
model based on @ more robust.

Appearance Shift What we refer to as appearance shift was proposed in [ 124 ] as a type
of dataset shift. Itis characterized by a latent model with a latent space comprising two
sub-spaces. One sub-space is environment-specific, i.e. it changes with environmental dif-
ferences, while the other sub-space is environment-invariant and remains invariant across
distinct environments. The causal graph representing appearance shift is depicted in Fig-
ure 3.12a. Image classification tasks often exhibit an appearance shift where an environment-
specific variable Z1, such as style or image appearance varies across environments (e.g. car-
toons, paintings, art). In contrast, there is often an environment-invariant content element,
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S S

(a) Appearance shift (b) Appearance shift (variant II)
(c) Domain shift (d) Domain shift (variant II)

Figure 3.12. Causal graphs depicting the underlying types of distribution shifts, specifically
in the context of latent variable models. If an arrow points in both directions, it implies one
of three scenarios: either one variable causes the other, or vice versa, or they share a common
cause.

like the consistent shape of an animal for animal classification tasks. A robust classifier
would rely on the invariant signals (content) within the image. We can easily come up with
interesting variants of the appearance shift where, for instance, the environment-specific
and the environment-invariant information are dependent, as illustrated in Figure 3.12b
and exemplified in the NICO dataset [ 125].

Domain shift In some cases, we do not have an actual distribution shift of the signifi-
cant variables, but of how they show themselves. This can be described via a latent vari-
able model as in Figure 3.12c where Z represents the crucial signal and X its appearance
which varies across environments. Only through Z flows information from X to Y. The
goal therefore is to recover Z that is not affected by the environment in order to predict Y
reliably. This scenario is also called domain shift [8, Chapter 1.8]. Important examples oc-
cur when the measurement devices switch across environments or when numbers change
their meaning (e.g., in inflation). We can also define a variant of the domain shift where
E affects Z directly (see Figure 3.12d). This scenario could occur when the distribution of
Z varies across environments. For instance, different hospitals (which are environments
here) not only use distinct measurement devices to collect data, but the distribution of pa-
tients itself differs across hospitals.

3.8.2. Invariances from a Causal Perspective

Now, we interpret selected features H = h(X) as either causing or being caused by the tar-
get variable Y. It offers valuable insights into the elicited kind of invariance, to causally
relate h(X) with Y. For instance, if we consider an image classification task where the con-
tentin theimage X is the cause of the label Y. Assuming that h(X) captures only the content,
we could conclude that h(X) causes Y. Amodel that predicts Y from h(X) is then a robust
model that does not get distracted from appearance/style which might deviate from envi-
ronment to environment (see also appearance shift above). This model satisfies the causal
invariance as we explain below. For an overview of our results see Figure 3.13.
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(d) Causal Invariance: v/ (e) Causal Invariance: X (f) Causal Invariance: v/
Anti-Causal Invariance: X Anti-Causal Invariance: v/ Anti-Causal Invariance: v/
Feature Invariance: X Feature Invariance: X Feature Invariance: v/

Figure 3.13. Different scenarios where a type of invariance is satisfied. Here H = h(X) is an
extracted feature and Y is the target variable. We assume that Y is either causing or being
caused by H.

For our considerations, we assume the distribution satisfies the Markov property and
faithfulness with respect to the respective graph. This implies that d-separation and condi-
tional independence statements coincide. We illustrate various scenarios in Figure 3.13,
allowing us to easily verify which form of invariance holds:

» Y 1,4 F|h(X)whichimpliesY L F|h(X) (causal invariance)
» h(X) L4 E|Y whichimplies h(X) L E'|Y (anti-causal invariance)
» h(X) L4 Ewhichimplies h(X) L; F (feature invariance)

For instance, the graph £ — h(X) — Y in Figure 3.13a contains the d-separation state-
ment £ 14 Y | h(X). From the Markov property, it follows ' | Y | h(X) which conforms
to the causal invariance as defined in Definition 1. In contrast, we have £ [, h(X) and
E )4 h(X)|Y andtherefore,weobtain £ } h(X)and E' [ h(X)|Y,excluding the feature
and anti-causal invariance. Thus, this graph only satisfies the causal invariance. Similarly,
we can relate different types of invariances to other scenarios as done in Figure 3.13.

If F affects both h(X) and Y, then we cannot d-separate h(X) from E (as required for
the feature invariance), Y from F (as required for the causal invariance) or 2 (X) from F (as
required for the anti-causal invariance). Due to the faithfulness assumption, we can con-
clude that no invariance form holds in case E affects both Y and h(X). Hence, Figure 3.13
shows all scenarios where a form of invariance is possible.

3.8.3. Invariances and Distribution Shifts

Here, we temporarily set aside the complexities associated with finding an invariant repre-
sentation, focusing instead on the fundamental feasibility of discovering a representation
h(X) that might exhibit a corresponding invariance property — results can be found in Ta-
ble 3.2. In the case of latent variable models such as in Figure 3.12, we assume that the
feature extractor h is able to recover the latent variables. Therefore h(X) can be either X,
a selection/combination of variables of X, or a selection of latent variables. Arguing with
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the d-separation statements, we can identify which types of invariances might be helpful
under which kind of dataset shift. For all dataset shifts in Figure 3.10, Figure 3.12 and
Figure 3.11 we can check if

» Y 1,4 E|h(X)whichimpliesY L E|h(X) (causal invariance)
» h(X) Ly E|Y whichimplies h(X) L F'|Y (anti-causal invariance)
» h(X) L, Ewhichimplies h(X) L4 F (feature invariance)

where h(X) is equal to X or some variable selection of X. Therefore, it can easily be seen
that the selection bias and source component shift do not satisfy any invariance for h(X) = X.
The children-parent case only satisfies the causal invariance for A(X) = X;. The results for
Figure 3.10 are summarized in Table 3.2 and can be effortlessly verified.

For the latent variable models in Figure 3.12, we can similarly check whether we can
find an invariance. As an example, we consider the appearance shift in detail. If h(X) = Zo,
thenweobtainh(X) Ly EaswellasE L ;Y |h(X)and E L4 h(X)|Y. Duetothe Markov
property, we therefore obtain that all three types of invariances hold. Conclusively, the pre-
dictive content information Z3 of X satisfies all invariance properties. Note that one excep-
tion appears in the appearance shift. Here, we also achieve E' L ; Y | Z;. This implies the
appearance/style variable Z; that varies across environments satisfies the causal invari-
ance. In this case, the sole invariance property is not indicative of our goal of finding the
content information Zs. Therefore, the predictive model P(Y | Z3) = P(Y') remains still
invariant but delivers no further information about Y compared to the prior information
P(Y). Therefore, Z3 has no utility for the feature extractor h in the domain generaliza-
tion formulation in Equation 2.7. The results for the other latent variable can be found in
Table 3.2 and can be verified similarly via the d-separation statements.

The hidden confounder model with confounder W surprisingly does not satisfy any
invariance property. Due to the collider structure £ — X <— W, information flows from F
to Y if we conditionon X, i.e. E [ Y | X (no causal invariance). The feature invariance and
anti-causal invariance are obviously not satisfied. All results can be found in Table 3.2.

Invariance ) . .
Causal Invariance Anti-Causal Inv. | Feature Invariance

Shift

Covariate shift

Prior shift

Imbalanced data
Selection Bias

Source Component Shift
Parent-Child Structure
Domain Shift

Domain Shift (var. II)
IAppearance Shift
IAppearance Shift (var. II)
Hidden Confounder and 1V|

X NN X SN X XX XN
X X N\ X N\ X X X X X X%

x NN X X X X %

Table 3.2. Which type of invariance can be achieved under different types of dataset shift? v/in-
dicates that the invariance is satisfiable, Xindicates that the type of invariance is unsatisfiable
and -+ indicates that the invariance is satisfiable, but for the prediction task additional infor-
mation, such as P(Y, F) or P(X, E), is required.
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In Table 3.2, we outline the types of invariances achievable under different distribu-
tion shifts. However, not all distribution shifts allow for an advantage over a standard ap-
proach by considering the corresponding invariance. Specifically, if a standard approach
would trivially satisfy the necessary invariance, as in the case of covariate shift. Because
of the relationship P(Y | X, F) = P(Y | X), a standard model automatically satisfies the
causal invariance. This might explain why current Domain Generalization (DG) meth-
ods do not consistently outperform a simple baseline on numerous benchmark datasets,
as demonstrated in [14, 51, 61, 62]. For instance, well-known benchmark datasets like
PACS and OfficeHome (refer to Figure 2.1) appear to undergo a covariate shift. However,
many methods evaluated on these datasets are specifically designed to approximate the
causal invariance (e.g., [34, 126]). This might explain why DG methods often fail to beat
a simple baseline model on several datasets. This asks for further research to identify the
type of distribution shift in real-world datasets.

It is also important to note that besides the difficulty of identifying and finding the
right type of invariance, there exist other challenging requirements associated with distri-
bution shift, such as extrapolation, discussed in Subsection 4.5.4.

3.9. Causal Discovery

The goal of causal discovery is to identify the true SCM that gives rise to the data. We do
notinvolve ourselves here in any philosophical discussion on what a true SCM is or means.
We consider true here pragmatically in the sense that interventions in the “real world” and
counterfactual questions dealing with the “real world” can be answered or predicted by the
true SCM. Put a little differently, the true SCM corresponds to the real world in the sense
that outcomes due to modifications and interventions to the real world can be predicted
by the corresponding modifications/interventions to the SCM. While a full description of
an SCM encompasses many components (e.g. noise distributions, functions in the assign-
ments), the main focus of the causal discovery task is the identification of the graph that
corresponds to the SCM. This is also called structure identification. If the graph is given,
the functions in the structural assignments can be estimated (e.g., via regression). While
estimating the functions in the structural assignments is non-trivial, it is not the focus of
most causal discovery literature.

In the following, we give some answers under which conditions the quest for causal
discovery is even possible, i.e. identifiability is achievable. Afterward, we introduce two
important methods that aim to find the true SCM.

3.9.1. Graph ldentifiability with Interventions

Randomized Controlled Trials (RCT) are widely considered the gold standard tolearn about
the underlying causal relations. In an RCT, groups are randomly assigned to different treat-
ment conditions. After the treatment outcome is measured, one can determine the causal
relations (see for instance [32, Example 6.15]). However, in most cases, RCTs are not
doable for various reasons. They can be expensive (e.g., in the medical sector), techno-
logically infeasible (e.g., too many variables like in genetics), or would violate ethical con-
siderations. Additionally, RCTs are designed for variables with finite support, but in many
relevant applications variables have infinite or continuous support.



58 3. Causality

There exists a plethora of work on the topic of causal discovery when non-randomized
interventions have been performed (see also Section 5.2 or [ 32, Chapter 7.2]). In our work

in Chapter 5 we contribute to the topic of causal discovery under interventions3.

3.9.2. Graph ldentifiability from Purely Observational Data

Time is a crucial signal for uncovering causal relationships [32, Chapter 10]. At a fine-
grained time scale, we can argue that a cause must precede an effect. However, the data
might lack a time component due to various reasons, such as processes are too rapid to
record — common in fields like cell biology — or when the time element is simply unavail-
able, as illustrated in the temperature-altitude example in Figure 3.9.

Here, we delve into the causal discovery task specifically in scenarios where the time
component is absent. Learning causality from purely observational data (without time)
seems impossible at first sight. Causal relations are asymmetric while most statistical re-
lationships are symmetric (e.g., correlation or mutual information). Therefore, causal rela-
tions cannot be uncovered by naively applying symmetric measures. To uncover the graph
that underlies the true SCM, we need to face the question of whether there exists more than
one SCM that could elicit the same data distribution Px. It turns out that SCMs are very
powerful and usually many SCMs can elicit the distribution Pk. First of all, we refer to the
tact thatif a distribution is Markovian with respect to a graph, we can find a corresponding
SCM that produces the SCM [ 127, Proposition 7.1.].

Proposition 6. Let Px be a distribution that has a density with respect to Lebesgue measure. We
assume it is Markovian with respect to G. Then there exists and SCM S that corresponds to G and
elicits the distribution PX.

In the following remark, we discuss the fact that actually many graphs G satisfy the re-
quirement in Proposition 6.

Remark 6. Let Px be a distribution. Furthermore let G be a DAG that is complete, i.e. for any
node there exists a direct path to any other node except itself. Since G does not contain any d-
separation statements, the Markov property holds for any distribution. So, it is evident that Px is
Markovian with respect to G. Proposition 6 implies that we can start from a full DAG G and find
a corresponding SCM that elicits Px.

Thereexist D! = 1-2---- D complete graphs with D variables. Thus, we can conclude that
at least D! SCMs exist that elicit the distribution Px.

In Remark 6 we discussed that a huge amount of SCMs can explain a given distribu-
tion. This renders the identification task impossible, at least from a theoretical standpoint.
As it turns out, we can introduce certain assumptions that might be plausible and render
the identification task possible. Some assumptions lead to a one-to-one mapping between
graphs and distributions and some assumptions allow us to identify a class of graphs that
can explain the data distribution. Over the years many assumptions have been proposed
thatrender the identification task possible (for an overview see e.g. [ 32, 128, 129]). In the
following, we briefly discuss two common assumptions to achieve identifiability.

*In our case, interventions correspond to environments.
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Faithfulness In Remark 6 we showed that the amount of SCMs that correspond to a
given distribution grows at least factorial with the number of variables. The explanation
is that a complete DAG contains no d-separation statements and therefore the Markov
property is trivially satisfied for any complete graph. However, if we assume the distri-
bution is faithful to a graph, (statistical) conditional independence statements translate
to d-separation statements. This implies that if we can find any conditional independence
statements in the data distribution, the distribution is not faithful to a complete graph.
Hence, the faithfulness assumption can reduce the amount of SCMs that elicit the distri-
bution drastically. Remarkably, the reduction is very strong, enabling us to effectively char-
acterize the graphs that align with the given distribution.

Itis easily seen that with the faithfulness assumption, a distribution Px has a one-to-
one correspondence to its Markov equivalence class as defined in Definition 9. In particular
Proposition 4 shows that we can identify the skeleton as well as all colliders from the ob-
served distribution under the faithfulness assumption.

We can therefore conclude that the chain and fork as considered in Example 3 are not
identifiable, but the collider is identifiable. So if we find two independent variables and
find out that they become dependent when we condition on a third variable, we identify
a collider structure. The collider structure is instructive since it also shows that consider-
ing more variables can ease the causal discovery task. For instance, if we consider just two
dependent variables, then the causal direction is not detectable under the faithfulness as-
sumption. However, if we consider a third variable and find a collider structure, then we
can identify the underlying causality.

Model Restrictions While the faithfulness assumption allows us to identify the true
causal graph up to the Markov equivalence class, assuming restrictions on the structural
assignments enables us to identify the one and only true causal graph. As it happens, the
underlying graph GG becomes identifiable if we assume the structural assignments in the
SCM that produces the data are from a certain class of functions, i.e.

Xj = fj(xpa(j),Nj) (3.57)

where f or N, is restricted. For instance, SCMs produced from linear functions with non-
Gaussian noisei.e.

Xj= > bpXe+ N (3.58)
kepa(j)

is completely identifiable [130]. This means if we assume that the data is produced by
a model like in Equation 3.58, then the mapping from graphs G to distribution Pk is a
one-to-one mapping. Interestingly, even if there are just two variables, we can identify
the direction if the model is produced as in Equation 3.58. While the linearity assump-
tion in Equation 3.58 might seem very restrictive similar identifiability results have been
shown for more expressive models as for instance additive noise models of the form X; =
fi(Xpa)) + Nj [127]. For a more extensive oversight of different model restriction as-
sumptions that lead to identifiability see [ 32, Chatper 7]
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3.9.3. Causal Discovery Methods

In the following, we consider two causal discovery methods in more detail. One that deals
with purely observational data (independence-based methods such as the PC-algorithm)
and one thatalso exploits information that shows across different environments (ICP method).
We will compare our proposed method in Chapter 5 to these algorithms.

It is important to point out that there exist many more algorithms that aim to solve
the causal discovery problem. In most cases, they rely on a different form of causal signal to
infer causal relations. For instance, independence-based methods like the PC-algorithm try
to exploit conditional-independence statements to uncover the true causal graph. Some
methods such as the ICP method [29] or the method we propose in Chapter 5 aim to ex-
ploit invariances that show across environments to learn about the underlying causality.
Score-based methods assign a score to each possible graph indicating how well the causal
graph matches the data. Different search techniques have been proposed to search through
all graph candidates and choose the graph with the highest score [32, Section 7.2]. This
could be used for instance in combination with the restricted model assumption as dis-
cussed above. The graph that gives the best fit under a certain model class (e.g. additive
noise models) is then the true causal model (see for instance [ 127]). For a more in-depth
oversight of different causal discovery methods consider for example [32, 128, 129].

Independence-Based Methods Independence-based methods estimate a set of causal
graphs from purely observational data. They proceed in two steps:

(i) Skeleton estimation
(ii) Orientation of edges

In the first step, the skeleton (i.e. the graph without directed edges) is estimated. This is
possible due to the following observation

Two variables X, Y are directly connected if and only if there is no set of variables
ACV\{X,Y}ofnodeswith X LY |A.

This follows directly from the faithfulness assumption: If we find a suitable set of variables
ACV\{X,Y}withX LY |A thenweobtain X 1;Y |A ie X andY arenotdirectly
connected. However, going through all possible variable sets A and testing for X | Y |Ais
infeasible if we consider many variables. The PC-Algorithm considers different subsets A in
a more elegant order [ 103]. While the PC-Algorithm relaxes the computational demands
resulting from a naive search, conducting nonparametric conditional independence tests
with a finite amount of data remains highly challenging [ 32, Chapter 7.2].

In the second step, we can orient some edges in the graph. Proposition 4 indicates
that we can orient all colliders. A collider is a structure of the form X — Y < Z where
X and Z are not directly connected. In Remark 5 we have discussed that these structures
leave a particular causal signal in the data, namely

» X 1 Z, and
» X L Z|Y

Therefore, we can investigate structures of the form X — Y — Z and test whether they
conform to a collider. Since we assumed that the causal graph is a DAG (in particular an
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acyclic graph), we can also orient all edges that would contradict the acyclicity assumption.
Meeks’ orientation rules are a set of orientation rules that have been shown to be complete
[131].

ICP The goal of the invariant causal prediction (ICP) method due to [29] is to find the
direct causes of some target variable Y. The ICP method exploits invariances that show
across different environments to learn about the causal parents of Y. In particular, it uses
the concept of causal invariance that we introduced in Definition 1.

We say a variable selection X, satisfies the null hypothesis if the conditional distri-
bution P(Y | X,) is invariant with respect to the environment. Put more formally, the null
hypothesis Ho a(Escen) is true if and only if X, satisfies the causal invariance property as
defined in Definition 1 across Egeen,.

The estimator is then defined as

S(Egeen) = N A (3.59)

A: Ho a(Eseen) istrue

(3.60)

The basic assumption in the ICP framework is that the target variable given its causal
parents does not change across environments, i.e. Hj ,4(y) is true. This implies in particu-
lar that the variable set pa(Y’) is always one term in the intersection in Equation 3.59 and
consequentially

S(Eseen) C pa(Y) (3.61)

This also shows that S(Eseen ) is a conservative estimator in the following sense: it opts to
include fewer or no variables at all. For instance, if we have only one seen environment,
then S(Escen) = 0 and therefore S(Eseep ) would refrain from including variables. In [ 29,
Theorem 1] they show statistical guarantees in the sense that

P(5(Escen) Cpa(Y)) 21—« (3.62)

if we have a hypothesis test for Hy a(Eseen) to level a.

In [29, Theorem 2] they show also that the estimator can indeed identify the direct
causes of Y, i.e. S(Eseen) = pa(Y'). However, they require strong conditions for this iden-
tifiability result (e.g. linear models and strong interventions on all variables).

In Chapter 5 we propose to exploit similar causal principles to learn about causal rela-
tionships as the ICP framework does. However, we are notrequired to perform an extensive
search as needed in Equation 3.59 and we do not restrict ourselves to linear models. We
discuss differences compared to our framework in more detail in Section 5.2.






Deep Learning

In this chapter, we cover the basics of deep learning, including a brief introduction to ma-
chine learning, maximum likelihood estimation, essential information theoretic concepts,
neural networks, and generalization. We furthermore discuss generalization in connection
to robustness and introduce important models that relate to robustness or are used in this
work.

4.1. A short introduction into Machine Learning

A concise definition of what machine learning is was given by Mitchell [ 132, Chapter 1.1]:

A computer program is said to learn from experience Exp with respect to some class of
tasks Tas and performance measure Per, if its performance at tasks in Tas, as mea-
sured by Per, improves with experience

While this definition includes most of the elements that constitute Machine Learning, it
leaves one of the most important aspects implicit: generalization. By improvement, we
mean improvementon new “experience” or data. Thisisbasically the main goal of machine
learning: to generalize from known data to unknown data [1]. The generalization aspect
delineates Machine Learning from pure optimization. In Chapter 4.5 we take a closer look
at generalization. Now, we give a brief overview of the various shapes that different Tasks
Tas, Performance Measures Per, and Experiences Exp can take, following [ 38, Chapter 5.1].
Afterward, we show how different machine learning approaches can be categorized.

4.1.1. Taks, Performance Measure and Experience

Task What qualifies as a machine learning task can vary widely and usually would re-
quire some form of intelligence to be solved. We just present a selection of the most preva-
lent tasks and do not claim to be comprehensive in this regard.

The classification task asks to find a function f: X — {1,2,...,C} that predicts a
class label given some input. The space of applications for classification is almost limit-
less, ranging from classifying tumors in images [9] to predicting objects (e.g., the animal
class) in images [125]. Often the classification task is not perfectly solvable for several
reasons, for instance, due to unobserved influences (also called noise). Unsolvability is
the norm and therefore we usually aim to learn the conditional probability P(y | X = x)
where x represents the inputand y € {1,2,...C} aclass. A prediction can then be per-
formed by choosing the class that achieves the greatest likelihood (see also Equation 4.49).
The advantage is that we can provide an uncertainty estimation that gives information on
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how trustworthy the prediction is. In regression the goal is not to predict a class from an
input, but a numerical value, i.e. to find a function f: X — R. The variety of regression
tasks is nearly boundless, including applications such as predicting a poverty index due to
a satellite image [133]. Also, in the regression setting, we can equip predictions with an
uncertainty estimation (see e.g., [ 134]). Another interesting application is data generation.
The goal here is to find a generator G: Z — X that transforms samples from a simple dis-
tribution (e.g., Gaussian noise) to samples from a more complex distribution (e.g., images
of cells obtained via microscopy).

Performance Measure The goal of machine learning is to obtain a model that is suc-
cessful at fulfilling its intent. Expressing an intent formally can be quite challenging and
depends strongly on the application.

In classification, we usually aim to find a model that gives good predictions. Itis com-
mon practice to measure “goodness” in terms of accuracy, i.e. the number of correct classi-
fications divided by the number of all classifications. However, in imbalanced datasets the
accuracy can be deceiving. Consider for instance the binary classification task on a dataset
where 99% of all instances belong to class 0 and 1% to class 1. In this case, a model that
simply predicts 0 achieves an accuracy of 99%. In this case, one would prefer performance
measures that are more suitable for imbalanced datasets such as the F'-measure (see e.g.,
[135] for more details). A typical performance measure in one-dimensional regression is
the L2-Loss, i.e.

Exy[(Y — f(X))%] (4.1)

where Y € R is the ground-truth value and f(X) the corresponding prediction. We give a
thorough theoretical interpretation of the L2-Loss in Subsection 4.4.2.

Experience In machine learning, one commonly distinguishes between supervised, un-
supervised learning, and reinforcement learning algorithms. These algorithms depend on the
experience (or data) they process [136].

In supervised learning, we assume that we are given data D = {(x;,;)}/~, of input-
output pairs (x;, ;). Depending on the data modality of the output (e.g., categorical vs.
continuous) we are usually in the classification or regression setting. We denote the set
D as the training set and n as the number of training examples. The inputs x can vary
from low-dimensional vectors to high-dimensional complex structures such as images or
graphs. Note that the output y; can take more complex forms beyond a one-hot encoded
class vector or one-dimensional value. For instance, in semantic segmentation, we aim to
predict a class label for each pixel in the image. One main drawback of supervised learn-
ing is that it is usually expensive to assign an output y; to an input x;. For instance, on
the crowdsourcing marketplace Amazon Mechanical Turk, it costs 0.012$ to assign a class
to an image [137]. The famous dataset ImageNet contains currently 14,197,122 images
[138, 139] which would add up to 14, 197,122 - 0.012$ = 170, 365$ labeling costs for the
whole dataset. If we were to label this dataset multiple times to reduce labeling errors, the
labeling costs would rise even more.

In unsupervised learning, we assume that we are given data D = {x;}" ; without cor-
responding outputs. The goal then is to find interesting patterns or knowledge in the data.
This goalis not as clearly defined as in supervised learning [ 136 |. A common unsupervised
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learning task is for instance clustering. In modern deep learning, one is often concerned
with finding a useful representation h(x) of the input such that future downstream tasks
(e.g., classification) become simpler.

In reinforcement learning the goal is to maximize reward or minimize punishment. In
the standard setting, it is assumed that an agent acts in an environment and the reward
or punishment is provided by the environment [140]. While reinforcement learning is
primarily associated with its successful application in gaming, as demonstrated by [141,
142],ithas also been employed for imitating human behaviors and enforcing safety mech-
anisms in large language models [ 143, 144].

Note that not all learning tasks fit neatly into these categorizations. For instance, as
we have seen, in Domain Generalization, aside from the class label y;, we also have access
to the environment label env; (see Section 2.2).

4.1.2. Learning Algorithms

There exists a plethora of differentlearning algorithms and keeping oversight seems a hope-
less endeavor. However, any learning algorithm can be categorized along three dimen-
sions: Representation, evaluation, and optimization [1]. Following [1], we examine these
dimensions in more detail. Here, we restrict ourselves to the classification task.

Representation We need to define a formal language to represent classifiers, as com-
puters require this formal representation to utilize them. We term the set of expressible
classifiers as the hypothesis space or function space. A natural trade-off arises in relation to
the power of the representation (hypothesis space): Less powerful representations, such as
linear functions, lack the ability to depict complex functions like non-linear ones. However,
in this case, the hypothesis space is comparably small making search tasks manageable.
More complex representations (e.g. neural networks as in Section 4.4) have the capacity to
depict very complex functions but also extend the hypothesis space significantly.

Evaluation Since our objectiveis to find a classifier in the hypothesis space that provides
the best fit to the data (for more details see Section 4.5), we need some form of evaluation.
An evaluation function (or scoring function) assigns higher values to classifiers when they
exhibit a better fit for the data. Note that practitioners might choose a scoring function
based on an intent they like to achieve. Another motivation to select a specific evaluation
function could be its improvement of the optimization procedure.

Optimization To find the best classifier (according to the evaluation function) within
the hypothesis space, we need a strategy to smartly navigate through the hypothesis space.
In most relevant applications the hypothesis space is immensely huge, and brute-force
search methods are therefore doomed to fail. In the realm of deep learning, the prevalent
choice for optimization is a variant of gradient-based optimization that we detail in Sub-
section 4.4.3. Typically, there is no guarantee to find the best classifier. However, we might
guarantee to find the best classifier compared to neighboring ones in the hypothesis space
(for details see Subsection 4.4.3).
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4.2. Maximum Likelihood Estimation

One of the most common methods to estimate the model parametersin deep learning is the
maximum likelihood method which we will briefly discuss in the following (for more details
seee.g., [ 145, Chapter 9.3] or [ 38, Chapter 5.5]). Assume that the data samplesxy, ..., x,
we observe are independent draws from the data generating distribution P. Furthermore,
assume that the unknown distribution P has a density p can be described via parameters
0,,i.e. P = Py, and p = pg, . The maximum likelihood method allows us to estimate 8, and
is defined as

O = argmax pg({x1,...,%Xn}) (4.2)
4
m
= arg max H po(x;) (4.3)
b =1
(4.4)
The term pg({x1, . . ., X,,) is also called likelihood or likelihood-function. The maximum like-

lihood estimator has some nice statistical properties thatwe donotdetail here (seee.g., [ 145,
Chapter 9.4] for more details). Since the arg max does not change when the logarithm is
applied (due to monotonicity) or when it is multiplied with a positive constant, we obtain

m
O\ = arg max Z log pe(x;) (4.5)
6 =
1 m
= argmax — Z log pe(%;) (4.6)
o Mo

It is common to optimize the log-likelihood instead of the likelihood since this alleviates
numerical instabilities (e.g. numerical underflow) and is often considered to be more con-
venient [ 38, Chapter 5.5].

In the infinite data regime, we get

Oy = argmax Exp, logpe(X) (4.7)
]

The Kullback-Leibler (KL) divergence between pg, and pg is

Dxw(pe, lpe) = Ex~py, [log pe, (X) — log pe(X)] (4.8)
= const — Exp,, [logpe(X)] (4.9)

Therefore, we can interpret the maximum likelihood estimation in Equation 4.7 as mini-
mizing the KL divergence between the true density pg, and the learned density pg. The KL
divergence is 0 if and only if both distributions are equal. Therefore, we can conclude that
finding the global maximum in Equation 4.7 leads to py, .
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The maximum likelihood estimator can be extended to conditional distributions as

m
Oy = argmax Y _ logpe(y; | x;) (4.10)
|

This is the basis for most supervised learning algorithms. We discuss this in more depth in
Subsection 4.4.2.

4.3. Information Theoretical Concepts

In this work, we extensively use information theoretical concepts. This section provides a
brief introduction to the most crucial concepts. Here, we assume that all random variables
are continuous. The definitions and properties of this section are sourced from [146] and
[38, Chapter 3.13]. We first define the differential entropy which should not be confused
with the discrete entropy.

Definition 12 (Differential Entropy). The differential entropy of a continuous random vari-

able X is defined as

H(X) = Ex|~1ogp(X)] = ~ [ p(o)logp(z)da (4.11)

Equivalently, we denote the entropy as H(p). This definition and all the following
ones extend to multiple random variables. In contrast to the discrete entropy, the differen-
tial entropy is not bounded from below. Similarly, we can define the conditional differential
entropy.

Definition 13 (Conditional Differential Entropy). The conditional differential entropy is
defined as

H(X|Y) = —Exy[~logp(X| V)] = - / p(e.y)logp(e | y)dedy.  (4.12)

One can show the property H(X) < H(X |Y'). This implies that the entropy might
decrease when additional information (here represented by Y) is available. The Kullback-
Leibler (or KL) divergence is a measure used to quantify the difference between two proba-
bility distributions by comparing their densities.

Definition 14 (KL-Divergence). The Kullback-Leibler (or KL) divergence is defined as

Dii(pllg) = Ex~p llog zggl = / p(x) log ggi;dx (4.13)

The KL divergence is always greater than or equal to 0 and is exactly equal to 0 if and
only if p = ¢ almost everywhere. The KL divergence is asymmetric implying that the or-
der in which it is expressed matters. Another important quantity is the cross-entropy from
which important loss functions can be derived (see Subsection 3.8.2).
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Definition 15 (Cross-Entropy). The cross-entropy between two distributions p, q is defined as
H(p.0) = ~Ex~plloga(X)) = - [ plx)loga(a)ds (419

The quantity in Definition 15 is just the sum of the entropy of p and the KL divergence
between p and ¢, namely

H(p,q) = H(p) + Dx.(pllq) (4.15)

Therefore, we obtain

min H (p, ¢) = min Dy (pllg) (4.16)

This implies that if we find a ¢ that minimizes H (p, q) for a fixed p, then we achieve p = ¢
almost everywhere. An important measure for us is the mutual information that quantifies
the amount of information two random variables carry about each other.

Definition 16 (Mutual Information). The mutual information (X, Z) between two ran-
dom variables with joint density px y is defined as

I(X;Y) = Dgc(px,y |lpxpy) (4.17)

The mutual information between X and Y is equal to O if and only if X and Y are in-
dependent, which means that they do not contain any information about each other. This
property can be understood through the definition via the KL-divergence: when the KL di-
vergenceis equalto 0, we obtain px y = pypy. From the definition of mutual information,
we can easily obtain

I(X;Y)=HX)-HX|Y)=HY)-H{Y|X) (4.18)
Likewise, we can define the conditional mutual information.

Definition 17 (Conditional Mutual Information). The conditional mutual information

is defined as
I(X;Y[Z)= /pZ(Z)DKL(pX,Y|Z:zHQX,YZ:z)dz (4.19)

Also here, we obtain that /(X ;Y | Z) = Oisequivalentto X L Y | Z.

4.4. Neural Networks

Feedforward Neural networks, also known as Multi-layer perceptron or artificial neural net-
works, are mathematical models that are loosely inspired by processes in the mammalian
brain. In the following section, we introduce them along the categorization representation
(Neural networks), evaluation (Loss functions), and optimization (Gradient-descent) in-
troduced in Subsection 4.1.2. We base our terminology and definitions on [38, Chapter
6].
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4.4.1. Neural Networks
A feed-forward neural network f is a mapping that consists of a sequence of operations

f&x) = (fno fa1- 0 fi)(x) (4.20)

where the single operations f; are termed layers. f; is called the input layer, f, the output
layer and all other layers are called hidden layers. The length n of this sequence is called
the depth of the model. Each layer f; consists of the same two building blocks: An affine
transformation Ax + b followed by a non-linear mapping a that acts independently on its
input dimensions:

fi(x') = a(Ax’' +b) (4.21)

Here, A € R™*"™ is areal-numbered matrix, and b € R™ areal vector. The entries in A are
called network weights (or just weights) and the vector bis called bias. The matrix A € R™*™
oflayer i is said to have width m. The non-linear mapping aisrequired to actindependently
on the input dimensions, i.e.

a(x) = [a1(zh), an(2?), ..., an(z")] (4.22)

Here a; are non-linear functions that are called activation functions. Different activation
functions have been proposed with different properties (see for instance Figure 4.1). One
of the most common onesis the ReLU (rectified linear unit) asin Figure 4.1b. The parameters
that describe the matrices A, biases b, and activation function a in all layers are denoted as
6. The network parameterized by 0 is referred to as fg.

The choice of the outputlayer depends on the modality of the target variable (e.g., con-
tinuous vs. discrete). In a regression task, the output layer typically takes the form of a lin-
ear mapping. For binary classification, the sigmoid function as shown in Figure 4.1c can
be employed to predict P(Y | X) where Y is binary. In classification problems where the
target value can take several values, the softmax function is commonly chosen and it takes
the following form:

exp(z;)
>_;exp(z))

for inputs z. We then estimate P(Y = ¢| X = x) for class ¢ via softmax(z). where z is the
output of all previous layers applied to x. Note that the denominator ensures that all class
probabilities add up to 1. For more details see [ 38, Chapter 6.2]

softmax(z); = (4.23)

This type of network s called a feed-forward network because information flows from
the input layer one-way through the hidden layers to the output layer [38, Chapter 6].
Feed-forward neural networks can be extended to include feedback connections in which
case they are called recurrent neural networks (RNNs) [ 38, Chapter 6]. Specificrestrictions
to the weights of the network (e.g., in Convolutional Neural Networks) or combining dif-
ferent neural networks into a new function (e.g. as in Neural Turing Machines [147]) are
referred to as network architectures. Specific architectures, such as the transformer model
[148], have often been responsible for significant advancements in deep learning.

Neural networks serve as function approximators, making it crucial to define the space
of learnable functions. First and foremost, excluding the non-linear activation function
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Figure 4.1. Three activation functions for neural networks.

from the neural network would result in a purely linear model. In such cases, the neural
network can represent only linear mappings, limiting its capabilities significantly. How
much does the expressive power of a neural network increase when we use non-linear ac-
tivation functions? It turns out that with various non-linear activation functions (includ-
ing those in Figure 4.1), a neural network can approximate any continuous function on a
closed and bounded subset of R” provided that the network has at least one hidden layer
with sufficient width. This property was shown by [ 149 for a class of activation functions,
including the sigmoid and Heaviside step function and later extended by [150] for ReLU.
This resultis also referred to universal approximation theorem for neural networks. While we
know that neural networks are theoretically highly expressive, in practice, we do not know
the required network size to express the function we are seeking.

The name neural networks and neuronsis derived from their biological inspiration, specif-
ically from the synaptic connections where neurons send signals to other neurons. For
one layer o = a(Ax + b) with output o, we can interpret each output dimension in o =

ol,...,0™ as a weighted input-sum plus some bias fed into an activation function:
n
a(Ax + b))l = a; Z Ainj +b; (4.24)
j=1

Considering the Heaviside step function (as shown in Figure 4.1a) provides a biological
explanation. If the weighted inputs, i.e. Z?Zl A;;x’, exceed a certain threshold of —b;,
neuron ¢ is activated and fires. This resembles a simplified biological neuron.

4.4.2. Loss functions

There exists an abundance of different loss functions that serve as evaluation functions in
deep learning. Most of these evaluation functions are the negative log-likelihood of the
model distribution [ 38, Chapter 6.2]. Minimizing this quantity is equivalent to minimiz-
ing the cross-entropy between training and predicted distribution or maximizing the like-
lihood (see Section 4.2 and Section 4.3).
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Conditional Log-Likelihood In supervisedlearning, the cross-entropy has the follow-
ing generic form

H(pyx,re) = —Ex,y)~pllogpe(Y | X)] (4.25)

where p is the distribution from where the data origins [ 38, Chapter 6.2]. Depending on
the assumption of pg(y | ), the cross-entropy yields a different loss or cost function.

For aregression task, it is often assumed that the model distributions follow a normal
distribution, i.e. pg(y | x) = N (y; fo(x),I). In this case, we recover the L2-Loss

1
~Exy)~pllogpe(Y [X)] = SExy[IIY = fo(X)[l3] — const (4.26)

up to a scaling factor and some constant [38, Chapter 6.2]. Different assumptions on
pe(y | x) resultin different loss functions. For instance, if one assumes pg(y | x) is a Lapla-
cian distribution for all x, one can recover the L1-Loss.

For the classification task, itis commonly assumed that the model distribution pg (y | x)
follows a multinoulli or categorical distribution. In this case, the cross-entropy is

C
H(pyx:po) = —Exy)~pllogpa(Y |X)] = —Exy)~p |log [ [ po(c|x)' =] (4.27)
c=1

C
= Exy)p | 2 1[Y = c]logpe(c| X) (4.28)
c=1
where Y € {1,2,...,C} and C is the amount of classes to predict. On a finite dataset

{(Xb yl)a EE) (xna yn)}’ this entity is

n

C
DD iy = -logpa(c|xi) (4.29)

i=1 \ c=1

To model pg we could employ the softmax function in the output layer as explained above.
It is important to note that the cross-entropy loss is a strictly proper scoring rule which
means that if we find the global optimum, then the learned model distribution faithfully
models the true distribution [151]. This implies, in particular, that we can trust the un-
certainties of the model’s predictions.

4.4.3. Gradient-Descent and Backpropagation

Gradient-Descent The standard approach to minimize the loss of neural networks is
gradient-descent or a variant thereof [38, 152]. The concept behind gradient-descent
involves evaluating a function at a specific point and calculating its gradient. The gradi-
ent provides directional guidance for either decreasing or increasing the function’s output.
Moving a small step in the negative direction of the gradient allows us to decrease the func-
tion’s output. See Figure 4.2 for a visual explanation. Gradient-descent does not guarantee
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L~

Figure 4.2. Illustration of gradient-descent. The blackline represents the function under con-
sideration, and the red line shows the linear extrapolation of the functions’ gradient at this
specific point. Moving a small step in the negative direction of the gradient allows us to locate
a point where the function is smaller than at the red point.

v

achieving the global minimum, but it ensures finding a local minimum under suitable con-
ditions. Global minimums are only guaranteed for convex functions.

In the context of deep learning, we would like to minimize the training error

L(0) = Reanlfe] = > clfol),y) (4.30)

x,y€Dy

with respect to @ where D,, is the training dataset of size n. Since this error is a sum, the
derivative also decomposes into a sum

VoL(0) = Y Voc(fo(w)y) (4.31)

x,y€Dn

This eases the computation of the overall gradient. We explain in Section 4.5 the relation
between the training error Rain[fo] and the error on the whole distribution. In the fol-
lowing, we give a heuristical derivation of the gradient-descent approach. With the Taylor
expansion we obtain

L(6) ~ L(6y) + (6 — 6)TVL(6)) (4.32)
for O close to 8 and therefore
L(8g — aVL(6o)) = L(6y) — a(VL(6o))" VL(60) (4.33)
for small & > 0. If @« > 0 is small enough, we obtain
L(68) — L(8g — aVL(0y)) ~ +a(VL(0)TVL(Gy) >0 (4.34)
Therefore, we could heuristically argue that
L(6y) > L(6y — aVL(Oy)) (4.35)

if « > 0is small enough and VL(6y) # 0. So, if we update the parameters 0 in the di-
rection of the negative gradient, we minimize the risk provided that £(6y) is not already a
minimum or a saddle point and the update step « is small enough.
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In deep learning, we usually do not compute the gradient of the whole dataset at
once, but on a sub-sample (also called mini-batch). Choosing a mini-batch over the whole
dataset offers several advantages, including the fact that computing the gradient on the
whole dataset is often unfeasible given the enormous size of modern datasets (for a more
depth-analysis on minibath gradient-descent see [ 38, Chapter 8]). Stochastic Gradient-
descent (SGD) is a crucial gradient-descent variant in deep learning that employs mini-
batches. Before we can update the gradients on a mini-batch in SGD, we need to specify
a learning rate schedule a1, cva, . .. which determines the step size for gradient updates at
each iteration. Typically, the step size decreases, i.e.; > ag > .... Choosing a learning
rate schedule is a delicate task. If o; becomes too small for j > 4, convergence to a mini-
mum may be unachievable within reasonable time frames. In contrast, if o is too big for all
j > 1, werisk missing the minima at each iteration. In addition to the learning parameter,
we need an initial parameter configuration 0 from where we start. Selecting an appropri-
ate initial parameter configuration is a research topic on its own. SGD then proceeds as
follows, starting at £ = 1 and continuing until a stop criterion is met:

(1) Sample mini-batch {(x(1), yM), ..., (x(™), 4(™))} of m examples from the training set
{2

(2) Compute gradient estimate

1 m ‘ .
d= () 4,(%) 4.36
grad = Ve ;_1 c(fo(x"),y"") (4.36)

(3) Update parameters: 8 < 0 — ay.grad; And update current step/iteration: k < k + 1

SGD is often enhanced by incorporating the method of momentum where gradients are
accumulated to improve optimization. Consider [38, Chapter 8] for more details on SGD
or momentum approaches.

Backpropagation Weshowedhow gradient-descentcanlead toanimprovementin terms
of the error £(0). However, we did not explain how Vg £(0) can be computed efficiently.
Two apparent solutions might come to mind. Firstly, we could approximate the gradient
of a function £(6) by computing the finite difference of its partial derivatives with respect
to each parameter 6;:

OL(0) _ L(0+ he;) — L(0)
00; h

(4.37)

where h > 0 is very small positive value, and e; is a vector with the same shape as § that
contains a 1 atentry ¢ and 0 elsewhere. This procedure is also known as numerical differen-
tiation. However, it can be imprecise due to approximation errors and becomes intractable
for large neural networks. Secondly, we could employ the chain rule and compute an exact
closed-form solution of the partial derivatives, commonly referred to as symbolic differen-
tiation. However, for complex functions, a closed-form solution of the partial derivatives
can become prohibitively memory-intensive, as illustrated in the example below.

An effective solution that addresses these issues is automatic differentiation or autod-
iff, which comes in two modes: Forward and reverse [38, Chapter 6.5]. The widely used
backpropagation (also called backprop) algorithm is an instance of the reverse mode. The
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Figure 4.3. Computational graph of example. The graph is due to [ 153].

backpropagation algorithm computes the gradients by recursively applying the multivari-
ate chain rule. In a neural network, a computation is propagated through the network in
a forward manner (also referred to as forward pass), starting from the first layer to the last.
The backpropagation algorithm operates backward starting from the last layer, and going
back to the first one (also known as backward pass). We will briefly discuss the backpropa-
gation algorithm with an example and refer for details to [ 38, Chapter 6.5].

Here we use the same computational graph as in [ 153] (see Figure 4.3). First, let us
briefly revisit the multi-variate chain rule. Consider a function f: R” — R, and functions
gi: R = Rfori = 1,..., m. Then we we can compute the derivative of the composition

flg1(x), ..., grx(x))as

of dg;
Z < 3y, B (4.38)

Figure 4.3 represents a computational graph where nodes without parents are fixed scalars
and nodes with parents represent functions (or computations) with incoming nodes as the
function’s arguments. The forward pass in the computation graph in Figure 4.3 is defined
via

2
si= Y wia; + b, i=1,2 (4.39)
j=1
h; = a(z), i=1,2 (4.40)
2
o= wih; + b, k=1,2 (4.41)
i=1
1 2
— 2
L=3 ;(yk — 0x) (4.42)

where a is an activation function. The backward pass then takes the following form:
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Backprop Symbolic Derivation

One can easily verify that by recursively applying the chain rule and using the com-
puted gradient from the previous layers to instantly compute the gradients, we drastically
reduce the symbols to keep track of. Therefore, the backpropagation algorithm is a much
more elegant and memory-efficient variant compared to symbolic differentiation.

Consider a topological ordering of the computation graph vy, . . . , vy representing the
neural network. In this ordering, parents precede their children. Generally, the backprop-
agation algorithm starts with the forward pass, where values at each node in the compu-
tational graph are stored. Subsequently, a simplified version of the backpropagation algo-
rithm proceeds in the following way [ 38, 153]

(1) Set%zl
(2) Fori=N—1,...,1:

(2.1) For the computational node v; compute the gradient via the multi-variate chain
rule

OL _ 3~ OLou (6.43)

avi 671)1 81;1»
lech(v;)

For more details on the backpropagation algorithm (and in particular on a vectorized ver-
sion) see [ 38, Chapter 6.5].
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4.5. Generalization

The main goal of machine learning is to generalize knowledge from observed training data
[1, 2]. This delineates machine learning from pure optimization [ 38]. In the following, we
formalize the generalization task in the supervised learning (and in-distribution) setting
and discuss why it is so difficult. Afterwards, we analyze the generalization error in more
detail from a theoretical as well as a practical point of view. We conclude this section by
discussing the differences between generalization in the in-distribution (ID) and out-of-
distribution (OOD) setting.

4.5.1. The Generalization Task

The goal of supervised learningis to find a function f in a function family F that minimizes
the expected error or risk

RIf] = BEyx[e(Y, f(X)] (4.44)

where cis some loss function that depends on the task at hand. For instance, ¢(y, f(x)) =
ly — f(x)||3 might be the squared Euclidean distance. However, given a predictive model
f, its risk is not available in practice, since we lack direct access to the true distribution
P(X,Y). What we have instead are independent samples

D, = {(x1>y1)7"'7(xn7yn)} (4'45)

or simply D, drawn from the true distribution. The training data allows us to determine
the empirical risk or training error for a given model f
1 n
Ruainl f] = ~ > _ ey, f(x1)) (4.46)

i=1

We denote the function in F that minimizes the risk as

[ =argmin R[f] (4.47)
feF

and likewise the function in F that minimizes the empirical risk on D as

f% = arg min Rtrain[f] (4.48)
feF

The empirical risk minimization (ERM) principle [ 154] requests to learn or find a function
that minimizes the empirical risk in Equation 4.46 in order to minimize the risk Equa-
tion 4.44. Put a little differently, it demands f7; to closely match f*. Typically, the learning
procedure or training algorithm finds only a function, denoted by f A p € JF,thatachieves
sub-optimal training error. The symbol A describes the specifics of the learning procedure,
such as network architecture, learning rate, or regularization/penalization term. In such
cases, this process often involves seeking an optimum within a subspace ) C F rather
than within the entire function space F. For instance, in Ridge regression the regulariza-
tion term A confines F to a subspace F [155, Chapter 2.3].
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The function fgayes that minimizes the risk is called Bayes rule. In classification, the
Bayes rule or Bayes classifier is given by

foayes(x) = argmax P(Y =y |X = x) (4.49)
yey

We can therefore bound the risk of any function from below and formulate the supervised
learning task to find afunction f € F thatminimizes the excess Bayesrisk R[f]—R [ fzayes] >
0.

A desirable property of a learning algorithm is that as the training set size n increases,
the expected risk of f \,» should closely match the Bayes risk R | fgayes) with high probabil-
ity. This is called Bayes consistency [ 156 |. One could think that if we make F as powerful
as possible, e.g., encompass all possible functions, then Bayes consistency is guaranteed.
However, this is not the case. This is easily seen if a learning algorithm just remembers
the training data and predicts arbitrarily on new input. In this case, the expected Risk will
be high, and the training error zero (see also [ 156 | for an elaboration on this example). It
turns out that if we restrict the space of admissible functions F, Bayes-consistency can be
achieved (see e.g., [ 156 ] for details).

Restricting the space of admissible functions is not enough. An implication of the no-
free-lunch theorem is that for any classifier f that achieves zero empirical risk, there is a sub-
stantial amount of distributions from which the training set could have been drawn and
where f has no better risk than random guessing [ 156, 157 ]. Is generalization therefore a
hopeless endeavour? If we do not make assumptions on the distribution, the answer to this
question is yes. But if we impose assumptions on the distributions from which the train-
ing set has been drawn (e.g., the distribution is smooth), then we can achieve theoretical
generalization results (see e.g., [156, 158]).

In total, we require assumptions on the function space and the distribution P where
we want to generalize. The restrictions that we put on the training algorithm f) p are
sometimes called inductive bias and we discuss its role below in more detail.

4.5.2. Risk Decompositions

As stated above, we want the excess Bayes risk R[f\ p] — R[fgayes] > 0 to be as small as
possible. It turns out that we can analyze this difference in more detail and learn about
separate components that add up to the difference.

The Estimation-Approximation Trade-Off A simple transformation into estimation
error and approximation error is achieved via (see also [ 166 ] or [155])

RIfD] = Rlfsayes) = (RUfD] = RU]) + (RI"] — Rl frayes]) (4.50)

estimation error approximation error

The estimation error is a random quantity influenced by the training set. It indicates
the sensitivity of the learning algorithm to various draws of training sets. It furthermore
signifies the additional error arising from optimizing the empirical risk rather than the ac-
tual risk. On the other hand, the approximation error is the systematic error due to the
lack of expressiveness in F. For instance, if the function class F is limited (e.g. only linear
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functions), then a non-linear Bayes rule cannot be fitted. For more details on this decom-
position see also [156].

Aswetypically obtain f \,p instead of f7;,[159] proposed an extension of the estimation-
approximation decomposition by introducing an optimization error. This error term quan-
tifies the discrepancy arising from the inability to find the minimum within F. The decom-
position is as follows:

RIfap] = Rlfsayes] = RIf 0] = RIH] +RUB] = RI+ (RIS = Rl frayes])

-~

optimization error estimation error approximation error

(4.51)

Bias-Variance Trade-Off It can be shown that the expected risk can also be decom-
posed in a noise, bias and variance term for the squared loss c(y, f(z)) = (y — f(z))?

2
Ep[RIfro]] = Exy[(Y — V) + Ex (ED[fA,D(X)] - Y)

expected risk noise

bias

T Ex |Enl(fan(X) - [ED[fA,D(X)])Q]] (4.52)

variance

where Y = Eyx[Y] [160]. The noise term is the irreducible error or Bayes error that is
only achieved for the Bayes rule. The bias term describes the systematic error resulting
from limitations of the training procedure f A, D to capture the complex relation between X
and Y, independent of the training samples. This term indicates underfitting. In contrast,
the variance term describes the sensitivity of the training procedure due to variations in
the selection of the training set. When f A,D is very sensitive to the training data selection,
it indicates that f ,p learns not the signal within the data, but rather the noise. When the
training procedure captures the noise rather than the signal, it is termed overfitting. We will
delve deeper into overfitting and underfitting below.

Interestingly, it has been demonstrated that a bias-variance trade-off exists for other
loss functions ¢ — in more general terms for any Bregman divergence —as well [161, 162]:

Ep[R[frn]] = Exy [c(Y, V)] + Ex | (Y, f(X)) | +Ex

noise

C(})\(X)a fD,A(X))] (4.53)

bias variance

o
Here f,(X) represents a measure of centrality, also termed centroid and may vary based
on the employed loss function[ 163, 164]. Notably, if we utilize the squared loss, we ob-

o A
tain fy = Ep[f\ p| and the variance-bias trade-off in Equation 4.52 is recovered. For
KL-divergence or Poisson regression, the centroid takes a different form [164]. For more
details refer to [163, 164 ]

Bias-Variance and Estimation-Approximation Trade-Off Theauthorsin[164]demon-
strated that the expected estimation error can be decomposed as follows, when a bias-



4.5. Generalization 79

variance decomposition exists:

Ep[RIf5] — RIf] = En[RIf5) — RIFAL+RIFA] — RIf (4.54)

~
exp. estimation error estimation variance estimation bias

Furthermore, they establish that the bias term could be broken down into the approxima-
tion error plus the estimation bias:

Ex[e(Y, £)] = RIF*] = Rifsayes] + RIFa] - RIF] (4.55)

~
bias approximation error estimation bias

Similarly, the variance term was shown to consist of the optimization error and estimation
variance:

Ex C(}me,A(X)) =kp [R[fA] - R[fﬁ]] +Ep | R[fD] — R[}A] (4.56)

~~
variance

€Xp. optimization error estimation variance

These decompositions provide insights into the components’ contribution to the overall
expected excess Bayes risk [ 164 ]:

Exp. excess Bayes risk = Exp. risk + Bayes error (4.57)
= Exp. opt. error + Exp. est. error + approx. error (4.58)

= (Exp. opt. error + est. variance) + (est. bias + approx. error)

variance bias

(4.59)

Hence, the approximation-estimation trade-off and variance trade-off are not exactly the
same but are closely related. Note that the expectation refers to random draws of the train-
ing set D.

Underfitting and Overfitting The behavior of overfitting and underfitting is often as-
sociated with the complexity of the function space F as shown in Figure 4.4a. The more
expressive F, the lower the systematic error (bias), but the more sensitive is the result to
the training data (high variance). This is the famous bias-variance trade-off and results in
a U-shaped risk curve. A natural consequence is that the training error goes to zero if the
function capacity is high enough. But at that point, we are already in the realm of over-
fitting: the risk is high while the training error is very small. The goal is then to find the
sweet spot of being expressive, but not too expressive to get the best risk. More recently
the phenomenon of double descent seems to challenge this conventional view. In particular,
in deep neural networks it has been observed that with additional model complexity, the
Risk curve experiences a second descent falling even below the minimum of the U-shaped
curve [165]. This is illustrated in Figure 4.4b. While the classical view and phenomenon
of double descent seem to contradict each other, a potential reconciling explanation lies
in the inductive bias: Stochastic gradient-descent seems to prefer smoother functions over
non-smoother functions and if we consider more complex models, we might find smoother
functions compared to less complex models [ 166 ]. Smoothness seems to be an inductive
bias that improves generalization for most real-world datasets.
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Figure 4.4. Bias-variance trade-off and double descent. Figure adapted from [ 166].

Curse of Dimensionality There are several reasons that mightlead to overfitting. Above
we discussed the role of the learning algorithms and inductive biases. But another reason
stems from the peculiarities of the training set. Especially when the training set lacks suffi-
cientinformation to enable the training algorithm to learn a predictive function. Therefore,
we need to ask how many samples are enough to give a sufficiently big coverage of the true
data distribution. Many inputs in machine learning are high dimensional, i.e.x € R with
a large D. The curse of dimensionality refers to the observation that numerous problems
exhibit distinct behaviors if more than just the geometrically interpretable dimensions of
one, two, or three are considered. For instance, if we are required to evenly sample a unit
interval such that the points have a distance of at most 1072, In this case, we need at least
(102)! = 10? data points. Things change dramatically when we consider a higher dimen-
sional unit hypercube. If we like to sample a 100-dimension hypercube evenly such that
the distance between samples is at most 1072, we require at least (102)!%0 = 10209 sam-
ples. Even if we had a trillion data samples 10!, we would achieve only a tiny coverage of
the total space (Example is due to [ 167]). This mightindicate thatlearning in high dimen-
sionsisimpossible. Fortunately, data samples are not uniformly distributed in space which
makes learning even in high-dimensional problems possible — this is termed the blessing of
dimensionality [168].

4.5.3. Model Selection and Estimating Generalization Error

Since we aim to find a function that generalizes well on new data, we actually try to achieve
two related goals (see [ 158, Section 7.2]):

» find the best model, and

» estimate how it will generalize on new data

Training, Validation and Test Set The typical approach in machine learning to ad-
dress these issues is to split all the available data into training, validation, and test sets. Dif-
ferent models (e.g., different network architectures) are then trained on the training set
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and evaluated on the validation set. In this procedure, the best model is chosen accord-
ing to the empirical risk on the validation set. To estimate how the best model behaves
under new data, it is evaluated on unseen test data. Here we assume training, validation,
and test sets to be independent draws from the same distribution. A separate test set is
necessary because the optimization process in the first step (finding the best model) could
lead to overfitting on the validation set and therefore the empirical risk on the validation
set might be overly optimistic about the risk. Note that if the test set is big enough, then
we obtain convergence due to the law of large numbers (see also [155])

A 1 r TMrest—» 00 P
Reest[fr,p,] = p— E c(y, iup, (%) " R, (4.60)
es (va)EDtest

where Dy is a set of M samples independent of training and validation samples. An
important question is how to choose the proportion between training, validation, and test
set. There is no ultimate answer to this question since we face a trade-off. For instance, if
the training setis too small, then the training process result might not capture the signal in
the data. On the other end, if the test setis too small, then our estimate of the risk might be
imprecise. A common choice of practitioners is to select 60% of all data for training, 20%
for validation, and 20% as test set. For more details on the overall procedure consult for
instance [158] or [155].

Cross Validataion The training, validation, and test split approach is a very sound pro-
cess to find the best model and estimate its risk. However, one problem is that the learning
algorithm f ,p only sees a proportion of all available data. Thisis particularly problematic
if we only have little data at hand. In this case, the result might be very sensitive to how
the data was split into training, validation, and test set. In a similar vein, we get an esti-
mate for the risk of just one execution of the learning procedure R | f \,p) on one dataset D.
However, we might like to fully evaluate the training procedure f \,- on the whole data at
hand.

M -fold cross-validation offers a solution to these problems. With this procedure, we
split all available data into a training set D,, = {(x1,91),- .-, (Xn, Yn)} and a test set that
has no influence on the model selection procedure. Then we proceed as follows (see also
[155]):

(i) We first split the training data randomly and evenly into M sets with

M
D, = U I, withI,, C D,and|L,| = |Iv| (4.61)
m=1
and define
M
o™= | L (4.62)
k=1,k#m

Here, we assume that 2 < M < n and to facilitate the formal depiction n/M € N.
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(ii) For a training configuration (or hyperparameter) \, we train a model (m)- The cor-

f AD
responding validation risk is then

Rualfy pil = 1 3 el pom (x) (4.63)

‘ m’ (x,y)EIm

From different hyperparameters, we select the configuration that performs best across
all splits

M
1 .
.
N = argmin 1, m§:1: Rualfy pgm] (4.64)

This two-step process enables us to determine the performance of a learning process f A,
not only on one training dataset, but on many different ones. From a theoretical perspec-
tive, a large M is therefore preferable. If M = n we speak of Leave-one-out cross validation.
A common choice for M is often between 5 and 10 [155].

While M -fold cross-validation offers several advantages over considering a single dataset
partition, it does come with higher costs. Specifically, training a model M times is often
prohibitively expensive, especially for large deep learning models, making it impractical in
many real-world applications.

4.5.4. Robustness and Generalization

We talked in depth about robustness/OOD-generalization! in Chapter 2 and Chapter 3.
Here, we will mainly discuss what makes the robustness task more challenging compared
to the generalization task in the ID setting. Additionally, we point out trade-offs that occur
in the robustness task.

While we can theoretically determine the optimal decision rule in classification eas-
ily (see the Bayes classifier in Equation 4.49), it is not so straightforward for the OOD-
generalization task. The Bayes classifier which achieves the smallest risk in the ID setting,
might perform terribly when the environment changes (see for instance our experiment in
Subsection 5.5.2). How the optimal classifier looks in the robustness setting depends a lot
on the distribution shifts between environments. Depending on the distribution shift, a
classifier needs to satisfy certain invariance conditions in order to be robust. We discussed
this in detail in Section 3.8.

While it cannot be guaranteed that the Bayes rule will be found in the ID setting?, a fair
model evaluation can be ensured. The law of large numbers ensures that we can estimate
the risk of any predictive model. We do not have any comparable results for the robustness
task. Since we do not know how a distribution behaves under a distribution shift, there is
no way to estimate the risk under the shift. While there are some evaluation schemes (see
Subsection 2.2.1), they only give a rough proxy for the risk under distribution shift.

In discussions about robustness, it is crucial to differentiate between extrapolation
and interpolation. In this thesis, we consider interpolation as necessary when a new sam-

!We use the terms robustness and OOD-generalization interchangeably.
2Assumptions on F and the data generating distribution are necessary
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ple x achieves a positive density under the true density p, expressed as p(x) > 0. Con-
versely, extrapolation becomes a concern when a new sample x has 0 density under the
training data generating density p, denoted as p(x) = 0. In interpolation, when drawing
enough samples from the distribution p, we can obtain samples x’ that are arbitrarily close
to x. However, in extrapolation, we cannot expect points thatlie in a sufficiently close prox-
imity to x, requiring strong model assumptions to guarantee accurate predictions. Due to
characteristics of the specific distribution shift, newly encountered samples might fall out-
side the support supp[p] = {x | p(x) > 0} of the true density p that describes the training
environments. It is therefore of relevance to ask which distribution shift requires extrap-
olation and which interpolation. For the majority of distribution shifts considered in Sec-
tion 3.8, novel samples could fall outside the support of the training distribution. Only
the prior shift and imbalanced data scenarios are guaranteed to be in the interpolation
regime>. An overview of these results can be found in Table 4.1.

Distribution Shift Interpolation guaranteed

Covariate Shift
Prior Shift
Imbalanced data
Selection Bias
Source Component shift.
Parent-Child Structure.
Domain Shift
Appearance Shift
Hidden Confounder

X X X X X X NN X

Table 4.1. Different distribution shifts and whether extrapolation might be required. For all
distribution shifts marked with X there is no guarantee that we are in the interpolation regime.
These results can be easily verified by inspecting the graphs that underly the distribution shifts
(see Section 3.8).

While we can easily distinguish extrapolation from interpolation in the infinite data
regime, it is much more complicated if only a finite number of data samples is given. Con-
sider the normal distribution which has full support (i.e. all inputs elicit positive density),
yet, the probability of drawing samples outside a certain range is negligibly low. For in-
stance, drawing one sample from a 1-dimensional normal distribution N/ (i, o) every day
implies an event thatis 8¢ away from its mean would occur approximately every 2.2 trillion
years, which practically means it has never occurred in the history of the universe [169].
In theory, samples far from the mean would require interpolation, but in practical applica-
tion, it tends to align more with extrapolation. Furthermore, the curse of dimensionality
(see Section 4.5) implies that in high-dimensional spaces, samples in close proximity to
an input are very unlikely to be drawn. This might render extrapolation and interpolation
from a practical standpoint equivalent in high dimensions. Understanding the relation be-
tween extrapolation and interpolation in the finite data regime, specifically with respect to
distribution shifts is a challenging and exciting avenue for future research.

As we discussed various trade-offs in the ID setting, it is important to note that trade-
offs also arise in the context of robustness. One notorious trade-off is between fitting the
ID data particularly well and finding an invariance that might involve discarding features
that are predictive in the ID setting. We delve into this trade-off in Chapter 5. Related

#“Only the mass of the distribution shifts, but the support is not left”
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to this trade-off, a risk decomposition was proposed in [33] that is adapted here to our
framework. Let R**"[ f] be the risk of a function f € F in the seen training environments,
and f“* = argmin ;. » R* [f] representing the function that minimizes risk within a novel
environment e. We can decompose the total bias into a transfer bias and an incomplete infor-
mation error:

RE[frpseen] — RE[f9*] = R fpresn] — R[frpe] + R [ frpe] — RE[f**]  (4.65)

total bias transfer bias incomplete information error

where e is a novel environment. The total bias represents the discrepancy arising from
using the function fA’Dseen trained on the training dataset D" with specific training pa-
rameters \ (e.g., an invariance objective as proposed in Chapter 5) rather than the optimal
function f“* in F. Conversely, the transfer bias characterizes the deviation resulting from
training on D" instead of samples D¢ drawn from the novel environment. If the predic-
tive model achieves equal results in all environments (i.e. it is robust), the transfer bias
should be close to 0. The incomplete information error denotes the error attributed to id-
iosyncrasies of the learning procedure fAM)e applied on data from the novel environment
D¢ instead of using the optimal function f®* € F. For instance, a learning procedure
might disregard certain features to fulfill an invariance objective.

4.6. Generative Models

Many machine learning models aim to estimate the density of a random variable X or to
sample from its distribution Px. Various models targeting these tasks, including Varia-
tional Autoencoder (VAEs) [170], generative adversarial network (GANs) [171] and the
recently successful diffusion models [ 172—174], exist. In this section, we only discuss two
models since they bear greater relevance to this thesis.

Autoregressive Models Aninteresting model class we briefly like to mention is the class
of autoregressive models [ 175 ] which offer a particular causal interpretation. They model
each factor in the factorization of the joint distribution separately by evoking the chain rule
of probability

D
P(Xy,...,Xp) = [[P(Xi| X1,..., Xi1) (4.66)
=1

If the ordering of the variables conforms to a causal ordering, i.e. nodes X; with ¢ < j can-
not be descendants of X, then the autoregressive model corresponds to the causal fac-
torization. This results from the observation that any set of nodes A C {X1,..., X1}
which is disjoint from X,,(;) satisfies the d-separation statement X; 14 A|X,,;). With
the causal Markov condition, we then obtain that P(X; | X1,..., X;—1) = P(X;|Xpa0:))-
Hence, an autoregressive model on a causal ordering is a causal model.

Normalizing Flows The following normalizing flow part is adapted from our work in
[31]. Normalizing flows model complex distributions by means of invertible functions 7'
(chosen from some model space 7'), which map the densities of interest to latent normal
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distributions. Normalizing flows are typically built with specialized neural networks that
are invertible by construction and have tractable Jacobian determinants. They are used for
density estimation and sampling of a target density (for an overview see [176]). This in
turn allows optimizing information theoretic objectives in a convenient and mathemati-
cally sound way.

Together with a reference distribution p,f, a normalizing flow T defines a new distri-
bution vy = (T'(x)); 'pref which is called the push-forward of the reference distribution
Dref [ 177]. By drawing samples from p.f and applying T on these samples we obtain sam-
ples from this new distribution. The density of this so-obtained distribution p,,. can be
derived from the change of variables formula:

Pur (%) = pret(T (%)) | VT (x)] (4.67)

A normalizing flow T or Ty is usually represented by a neural network architecture with
parameters f. In this case, we denote the corresponding density as p(x; ) = py, (x).

We can compute the KL-Divergence between the true density p, and the modeled den-
sity [178]

L(0) = Dxr(p«lp(+;0)) (4.68)
= —Exp, [log p(X; 0)] + Ex~p[log p+(X))] (4.69)
= —Exp, [log pref(T1 (X, 0);9) + log | det JT9_1(X; 6)|] + const (4.70)

These equations also show how we can obtain p,: we need to minimize £(f). A typical
choice for reference distribution is the isotropic normal distribution (i.e. normal distribu-
tion with the identity matrix as covariance matrix) in which case we get

L(0) = Dy (p+(x)[|p(x; 6)) (4.71)
= Ex [||T(x) 12/2 — log | det VxT(x)|] + const (4.72)

If we were to model a conditional distribution p(y | x), the change of variables formula
gives

Pur (Y %) = peet(T'(y; %)) |V T (5 %)) (4.73)
In this case, the KL Divergence takes the following form

[EX[DKL(PY\XHPVT)]

pl/T

=— H(Y |X) — Exy[logp,,. (Y | X)]
=— H(Y |X) + Exy|[—log pret(T (y; x)
~log |V, T(y: )| (4.74)
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The last two terms in Equation 4.74, namely
Ex,y[—1og pret(T(Y'; X) — log [V, T(Y;X)]]

correspond to the negative log-likelihood (NLL) for conditional flows with reference distri-
bution py in latent space. If the reference distribution is assumed to be standard normal,
the NLL is given as

Lrun(T) = Exy [[T(Y;X|2/2 ~ log| det ¥, T(V; X)|| + const (4.75)

In Remark 10 we will show that normalizing flows generalize Structural Causal Models
(SCM) that employ the additive noise assumption.



Learning Robust Models using the
Principle of ICM

The content of this chapter is a direct adaptation from our work in [31].

Abstract Standard supervised learning breaks down under data dis-
tribution shift. However, the principle of independent causal mecha-
nisms (ICM, [ 32]) can turn this weakness into an opportunity: one can
take advantage of distribution shift between different environments
during training in order to obtain more robust models. We propose a
new gradient-based learning framework whose objective function is
derived from the ICM principle. We show theoretically and experi-
mentally that neural networks trained in this framework focus on re-
lations remaining invariant across environments and ignore unstable
ones. Moreover, we prove that the recovered stable relations corre-
spond to the true causal mechanisms under certain conditions, turning
domain generalization into a causal discovery problem. In both regres-
sion and classification, the resulting models generalize well to unseen
scenarios where traditionally trained models fail.

5.1. Introduction

Standard supervised learning has shown impressive results when training and test sam-
ples follow the same distribution. However, many real-world applications do not conform
to this setting, so that research successes do not readily translate into practice (see Subsec-
tion 2.2.3 or [179]). Domain Generalization (DG) addresses this problem: it aims at training
models that generalize well under domain shift. In contrast to Domain Adaption, where a
few labeled and/or many unlabeled examples are provided for each target test domain, in
DG absolutely no data is available from the test domains’ distributions making the prob-
lem unsolvable in general. For a more thorough introduction to DG and related problems
see Section 2.2.

In this chapter, we view the problem of DG specifically using ideas from causal dis-
covery. This viewpoint makes the problem of DG well-posed: we assume that there exists
a feature vector h*(X) whose relation to the target variable Y is invariant across all envi-
ronments. Consequently, the conditional probability p(Y | A*(X)) has predictive power in
each environment. From a causal perspective, changes between domains or environments
can be described as interventions; and causal relationships — unlike purely statistical ones
—remaininvariant across environments unless explicitly changed under intervention. This
is due to the fundamental principle of “Independent Causal Mechanisms” which we intro-
duced in Section 3.6. From a causal standpoint, finding robust models is therefore a causal
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discovery task (see also Section 3.8 or [7, 180]). Taking a causal perspective on DG, we
aim at identifying features which (i) have an invariant relationship to the target variable
Y and (ii) are maximally informative about Y. This problem has already been addressed
with some simplifying assumptions and a discrete combinatorial search by [33, 72], but
we make weaker assumptions and enable gradient-based optimization. The latter is at-
tractive because it readily scales to high dimensions and offers the possibility to learn very
informative features, instead of merely selecting among predefined ones. Approaches to
invariant relations similar to ours were taken by [ 181 ], who restrict themselves to linear
relations, and [34, 126], who consider a weaker notion of invariance. Problems (i) and
(ii) are quite intricate because the search space has combinatorial complexity and testing
for conditional independence in high dimensions is notoriously difficult. Our main con-
tributions to this problem are the following: First, by connecting invariant (causal) rela-
tions with normalizing flows, we propose a differentiable two-part objective of the form
I(Y; h(X)) + ALy, where I is the mutual information and L enforces the invariance of
the relation between h(X) and Y across all environments. This objective operationalizes
the ICM principle with a trade-off between feature informativeness and invariance con-
trolled by parameter A;. Our formulation generalizes existing work because our objective
is notrestricted to linear models. Second, we take advantage of the continuous objective in
three important ways:

(1) We can learn invariant new features, whereas graph-based methods asin e.g. [33] can
only select features from a pre-defined set.

(2) Our approach does not suffer from the scalability problems of combinatorial optimiza-
tion methods as proposed in e.g. [29] and [72].

(3) Our optimization via normalizing flows, i.e. in the form of a density estimation task,
facilitates accurate maximization of the mutual information.

Third, we show how our objective simplifies in important special cases and under which
conditions its optimal solution identifies the true causal parents of the target variable Y.
We empirically demonstrate that the new method achieves good results on two datasets
proposed in the literature.

5.2. Related Work

Different types of invariances have been considered in the field of DG. We introduced them
in detail in Section 2.4 and discuss here the important ones in relation to the work pre-
sented in this chapter. One type is defined on the feature level, i.e. features h(X) are in-
variant across environments if they follow the same distribution in all environments (e.g.
[81, 182, 183]). However, this form of invariance is problematic since the distribution
of the target variable might change between environments, which should induce a corre-
sponding change in the distribution of h(X) (see for instance Section 2.4). A more plausi-
ble and theoretically justified assumption is the invariance of relations [29, 33, 72]. The
relation between a target Y and features h(X) is invariant across environments, if the con-
ditional distribution p(Y | A(X)) remains unchanged in all environments. This is what we
termed in Section 2.4 the causal invariance. Existing approaches exhaustively model condi-
tional distributions for all possible feature selections and check for the invariance property
[29, 33, 72], which scales poorly for large feature spaces. We derive a theoretical result
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connecting normalizing flows and invariant relations, which enables gradient-based learn-
ing of an invariant solution. In order to exploit our formulation, we also use the Hilbert-
Schmidt-Independence Criterion thathas been used for robustlearning by [ 184 | in the one
environment setting. [34, 126, 185] also propose gradient-based learning frameworks,
which exploit a weaker notion of invariance: They aim to match the conditional expecta-
tions across environments, whereas we address the harder problem of matching the entire
conditional distributions. The connection between DG, invariance and causality has been
pointed out for instance by [ 7, 72, 186 ] and we discussed it systematically in Section 3.8.
From a causal perspective, DG is a causal discovery task [7]. For studies on causal dis-
covery in the purely observational setting see e.g., [94, 187, 188], but they do not take
advantage of variations across environments. The case of different environments has been
studied by [29, 33, 93, 180, 189-192]. Most of these approaches rely on combinato-
rial optimization or are restricted to linear mechanisms, whereas our continuous objective
efficiently optimizes very general non-linear models. The distinctive property of causal
relations to remain invariant across environments in the absence of direct interventions
has been known since at least the 1930s [193, 194]. However, its crucial role as a tool
for causal discovery was — to the best of our knowledge— only recently recognized by [29].
Their estimator — Invariant Causal Prediction (ICP) — returns the intersection of all subsets
of variables that have an invariant relation with respectto Y. The outputis shown to be the
set of the direct causes of Y under suitable conditions. We considered ICP in more detail in
Section 3.9. Again, this approach requires linear models and an exhaustive search over all
possible variable sets Xg. Extensions to time series and non-linear additive noise models
were studied in [ 73, 195]. Our treatment of invariance is inspired by these papers and also
discusses identifiability results, i.e. conditions when the identified variables are indeed the
direct causes, with two key differences: Firstly, we propose a formulation that allows for a
gradient-based learning and does not need strong assumptions on the underlying causal
model. Second, while ICP tends to exclude features from the parent set when in doubt, our
algorithm prefers to err toward best predictive performance in this situation.

5.3. Preliminaries

In the following, we introduce the basics of this work as well as the connection between DG
and causality. Basics on causality are presented in Chapter 3. We first define our notation
as follows: We denote the set of all variables describing the system under study as X =
{X1,...,Xp}. One of these variables will be singled out as our prediction target, whereas
the remaining ones are observed and may serve as predictors. To clarify notation, we call
the target variable Y = X forsome i € {1,..., D}, and the remaining observations are
X = X \ {Y'}. In the Domain Generalization context, we employ the same notation as in
Section 2.2. Here, symbols with superscript, e.g. Y ¢, also refer to a specific environment,
whereas symbols without refer to data pooled over all environments. Similar to Remark 4
(or [93]) we consider the environment to be an RV F and therefore a system variable. This
gives an additional view on causal discovery and the DG problem.

5.3.1. Invariance and the Principle of ICM

DGis in general unsolvable because distributions between seen and unseen environments
could differ arbitrarily. In order to transfer knowledge from Eseen to Eunseen, We have to
make assumptions on how seen and unseen environments relate. These assumptions have
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a close link to causality as elaborated in Section 3.8. We assume certain relations between
variables remain invariant across all environments. A subset Xg C X of variables elicits an
invariant relation or satisfies the invariance property with respectto Y over a subset W C &
of environments if

Ve, e W: P(Y®|X% =u) =P |X§ =u) (5.1)

for all u where both conditional distributions are well-defined. It can be equivalently de-
finedbyY 1 F|XgandI(Y; E|Xg) = Ofor E restricted to W. The invariance property for
computed features h(X) is defined analogously by the relation Y L E'| h(X). This corre-
sponds to the causal invariance in Definition 1. Although we can only test for Equation 5.1
in Eseen, taking a causal perspective allows us to derive plausible conditions for an invari-
ance to remain valid in all environments £. In brief, we assume that environments corre-
spond to interventions in the system and invariance arises from the principle of independent
causal mechanisms (see Section 3.6). We specify these conditions later in Assumption 1 and
2. At first, consider the joint density pg(X). The chain rule offers a combinatorial number
of ways to decompose this distribution into a product of conditionals. Among those, the
causal factorization

px(@1, .- D) = [11210i (i | Kpa() (5.2)

is singled out by conditioning each X; onto its direct causes or causal parents X,,,(;), where
pa(i) denotes the appropriate index set. The special properties of this factorization are dis-
cussed in Section 3.6. The conditionals p; of the causal factorization are called causal mech-
anisms. An intervention onto the system is defined by replacing one or several factors in the
decomposition with different (conditional) densities P (for interventions in the context of
SCMs see Subsection 3.3.2). Here, we distinguish soft-interventions where p; (7 | Xpq(j)) #
P;j (%) | Xpa(;)) and hard-interventions where p; (; | X,4(;)) = Pj(7;) is adensity which does
notdepend on ,,4(;) (e.g. an atomic intervention where z; is set to a specific value 7). The
resulting joint distribution for a single intervention is

px(z1,...,2p) = Pj(z; |xpa(j))H£17i¢jpi(xi | Xpa(i)) (5.3)

and extends to multiple simultaneous interventions in an obvious way. The principle of
independent causal mechanisms (ICM) states that every mechanism acts independently of
the others (see Section 3.6). Consequently, an intervention replacing p; with p; has no
effect on the other factors p;;, as indicated by Equation 5.3. This is a crucial property of
the causal decomposition — alternative factorizations do not exhibit this behavior. Instead,
a coordinated modification of several factors is generally required to model the effect of
an intervention in a non-causal decomposition. We utilize this principle as a tool to train
robust models. To do so, we make two additional assumptions, similar to [29] and [ 195]:

Assumption. We pose the following two assumptions

(1) Any differences in the joint distributions p$ from one environment to the other are fully explain-
able as interventions: replacingfactors p§ (; | Xpq(;)) in environment e with factors s (2| Xpa(i))
in environment ¢’ (for some subset of the variables) is the only admissible change.

(2) The mechanism p(y | Xpq(v')) for the target variable Y is invariant under changes of environ-
ment, i.e. we require conditional independence Y | E | X,y
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Assumption 2 implies that Y must not directly depend on E. Consequences in the
case of omitted variables are discussed in the following remark.

Remark 7 (Causal Sufficiency and Omitted Variables). It has important consequences when
there exist omitted variables W, which affect Y but have not been measured. This is specifically
problematic in two scenarios. First, if there does not exist a set of variables that d-separate Y from
W and there does also not exist a set of variables that d-separate E/ from W. In this case, Y and
E are no longer d-separated by X,y and Assumption 2 is in general unsatisfiable. Second, if
W contains a hidden confounder affecting both X,y and Y (causal sufficiency is violated) and
E directly affects Xpq(y), i-e. B — Xpo(y). In this case, X,q(y) can become a collider (with
the graphical structure E — X,y < W — Y) and therefore Y and E are no longer d-
separated by X, (y. Consequentially, Assumption 2 is unsatisfiable in general. In both scenarios,
the method we propose in this chapter is unable to find an invariant mechanism.

If we knew the causal decomposition, we could use these assumptions directly to train
a robust model for ¥ — we would simply regress Y on its parents X,,,(y). However, we
only require that a causal decomposition with these properties exists, but do not assume
thatitis known. Instead, our method uses the assumptions indirectly — by simultaneously
considering data from different environments — to identify a stable regressor for Y. We call
aregressor stable if it solely relies on predictors whose relationship to Y remains invariant
across environments, i.e. is not influenced by any intervention. By assumption 2, such a
regressor always exists. However, predictor variables beyond X, (y), e.g. children of Y’
or parents of children, may be included into our model as long as their relationship to Y
remains invariant across all environments. We discuss this in the following Remark

Remark 8 (Using Causal Effects for Prediction). The estimator we propose in this chapter
might use predictor variables beyond X,y as well, e.g., children of Y or parents of children,
provided their relationships to Y do not depend on the environment. The case of children is es-
pecially interesting: Suppose X ; is a noisy measurement of Y, described by the causal mechanism
p(x; | y). As long as the measurement device works identically in all environments, including X ;
as a predictor of Y is desirable, despite it being a child.

In general, prediction accuracy will be maximized when all suitable predictor vari-
ables are included into the model. Accordingly, our algorithm will asymptotically identify
the full set of stable predictors for Y. In addition, we will prove under which conditions
this set contains exactly the parents of Y. The following example shows the special role of
the parents of Y for robustness.

Example 6. Suppose we would like to estimate the gas consumption of a car. In a suffi-
ciently narrow setting, the total amount of money spent on gas might be a simple and accu-
rate predictor. However, gas prices vary dramatically between countries and over time, so
statistical models relying on it will not be robust, even if they fit the training data very well.
Gas costs are an effect of gas consumption, and this relationship is unstable due to external
influences, such as varying tax policies across different countries. In contrast, predictions
based on the causes of gas consumption (e.g., car model, geography, local speed limits, and
owner’s driving habits) tend to be much more robust, because these causal relations are in-
trinsic to the system and not subjected to external influences. See Figure 5.1 for a simplified
illustration of this scenario. Note that there is a trade-off here: Including gas costs in the
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Figure 5.1. Simplifeid illustration of Example 6. The country (or tax policies) E repre-
sents the environment variable. The task asks to predict gas consumption Y from the
local speed limits X5, the owner’s driving habits X, and X35 the paid gas costs. Only X»
and X elicit a stable relation to Y and promise robustness to predict Y.

model willimprove estimation accuracy when gas prices remain sufficiently stable, but will
impair results otherwise. By considering the same phenomenon in several environments
simultaneously, we hope to gain enough information to adjust this trade-off properly.

In the gas example, countries can be considered as environments that “intervene” on
the relationship between consumed gas and money spent, e.g., by applying different tax
policies. In contrast, interventions changing the impact of motor properties or geography
on gas consumption are much less plausible — powerful motors and steep roads will always
lead to higher consumption.

5.3.2. Domain Generalization

To exploit the principle of ICM for DG, we formulate the DG problem in Equation 2.3 in an
information theoretical context as follows

h* = arg max { min /(Y% h(Xe))} st. Y L E|h(X) (5.4)
heH e€&

The optimization problem in Equation 5.4 asks to find features h(X) which are maximally
informative in the worst environment subject to the invariance constraint. where h € H
denotes a learnable feature extraction function h: RP — RM where M is a hyperparam-
eter. This optimization problem defines a maximin objective: The features h(X) should be
as informative as possible about the response Y even in the most difficult environment,
while conforming to the ICM constraint that the relationship between features and re-
sponse must remain invariant across all environments. In principle, our approach can also
optimize related objectives like the average mutual information over environments. How-
ever, very good performance in a majority of the environments could then mask failure in
a single (outlier) environment. We opted for the maximin formulation to avoid this. On
the other hand there might be scenarios where the maxmin formulation is limited. For
instance when the training signal is very noisy in one environment, the classifier might
discard valuable information from the other environments. As it stands, Equation 5.4 is
hard to optimize, because traditional independence tests for the constraint Y L F | h(X)
cannot cope with conditioning variables selected from a potentially infinitely large space
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‘H. A re-formulation of the DG problem to circumvent these issues is our main theoretical
contribution.

5.3.3. Normalizing Flows

We introduced normalizing flows in Section 4.6 as generative models that allow us to esti-
mate densities and sample from some learned target distribution. Here, we also represent
the conditional distribution P(Y" | h(X)) by a conditional normalizing flow (see e.g., [ 196]).
To optimize a conditional normalizing flow, we aim to minimize the negative log-likelihood
(NLL) loss of Y under T', given by

Laun(T,h) = Epgey [IIT(Y: h(X)[?/2 — log | det V,T(Y: h(X))]|| 4+ const ~ (5.5)

where det VT is the Jacobian determinant and const = dim(Y) log(+/27) is a constant
that can be dropped [176]. Equation 5.5 can be derived from the change of variables for-
mula and the assumption that 7" maps to a standard normal distribution (see Section 4.6).
If we consider the NLL on a particular environment e € &, we denote this with £f;;.
Lemma 1 shows that normalizing flows optimized by NLL are indeed applicable to our
problem:

Lemma 1. Let

h*,T* := arg he%,iilr}eTLNLL(T’ h) (5.6)

be the solution of the NLL minimization problem on a sufficiently rich function space T, i.e. we
assume that for all h. € H there exists one T' € T with Ep,x) [Dir(Py |n(x) [Py )] = 0. Then the
following properties hold for any set H. of feature extractors:

(a) h* also maximizes the mutual information, i.e. h* = argmaxyey I(g(X);Y)

(b) h* and the latent variables R = T*(Y'; h*(X)) are independent: h*(X) L R

Proof. For anintroduction to normalizing flows and the notation used in this proof see Sec-
tion 4.6. We first show statement (a). From Equation 4.74, we obtain

—En),y [logpu (Y [ A(X))] = H(Y | h(X)) (5.7)
forallh € H,T € T. We furthermore have

min ~Ej v log vy (V| (X)) = H(Y | h(x) (59)

due to our expressiveness assumptions on 7. Therefore, we obtain

pein—En).yllogpur (Y | (X)) = min H (Y [ h(X)) (5.9)

Since we have I(Y; h(X)) = H(Y) — H(Y | h(X)) and only the second term depends on
h, we can conclude statement (a).
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Now, we prove statement (b). For convenience, we denote 7'(Y; (X)) = R and
h(X) = Z. Due to the expressiveness of T, we achieve

Ez[Dxw(pyzlpvrs )] =0 (5.10)

and therefore py |7 (y | 2) = pyp. = Pret(T(y; 2))|Vy T~ (y; 2)|. By applying the change of
variables formula two times, we get

priz(r|2) = py|z(T(r;2)|2) - [V, T~ (r; )|
= peet(T(T(r; 2); 2)) - [V, T (y; 2))|
VT (rs 2)]
= Pref(7) - 1

Since the density p,s is independent of Z, we obtain R | Z which concludes the proof of
(b). O

Statement (a) guarantees that h* extracts as much information about Y as possible. Hence,
the main objective in Equation 5.4 becomes equivalent to optimizing Equation 5.5 when
we restrict the space H of admissible feature extractors to the subspace H | satisfying the
invariance constraint Y | F | h(X):

arg min min max £, (T: h) = argmaxmin I(Y?; h(X* 5.11
h%?—[l s n (T h) th’HL ey (Y% h(x°)) ( )

We give a sketch of the proof of Equation 5.11 in the following remark.

Remark 9 (Proof of Equation 5.11). Equation 5.11 can be concluded from Lemma 1 and its
assumptions. Let h € H | be a feature extractor that satisfies Y 1 FE | h(X). Then, it is easily
seen that there exists a T* € T with

L Z*;h =min L I, h 5.12
NLL( ) Ter NLL( ) ( )
Furthermore, for each environment e there exists a Te* € T with

Ly (T3, h) = :rpné%l_ Ly (T, h) (5.13)

foralle € E. Since the conditional densities p(y | h(X)) are invariant across all environments,
we have

H(Y®[h(X)) = Ly (T2 h) = Lo (T75 h) (5.14)

foralle € &. Therefore,

arg min min max Ly (7; h) = argminmax Ly (T h) (5.15)
heH TeT ecE heH | ec&
= argmaxmax H (Y| h(X%)) (5.16)
heH | ec&
= argmaxmin /(Y h(X%)) (5.17)
heH, ec&

The last equation follows from the relation I (Y ¢; h(X®)) = H(Y ) — H(Y° | h(X®)).
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Statement (b) in Lemma 1 ensures that the flow indeed implements a valid structural
equation, which requires that R can be sampled independently of the features h(X). This
fact generalizes the additive noise assumption that is common to a large portion of the
Structural Causal Models literature as discussed in the following Remark.

Remark 10 (Normalizing Flows and Additive Noise Models). The additive noise assumption
in SCMs implies that structural assignments are of the form'Y = f(Xg) + R where R is the
noise variable that is independent of the variable selection Xg. Hence, we can also compute the
noise/residual via R =Y — f(Xg). This computation represents a diffeomorphism of the form
Ty (Y;Xs) =Y — f(Xs).

We represent the conditional distribution P(Y | Xg) using a conditional normalizing flow
(see e.g. Section 4.6 or [196]). In our work, we seek a mapping R = T(Y'; Xg) that is diffeo-
morphicin'Y such that R ~ N(0,1) L h(X). Theinverse Y = F(R;Xg) takes the role of a
structural equation for the mechanism p(Y | Xg) with R being the corresponding noise variable.
Therefore, we can view this approach as a generalization of the well-studied additive Gaussian
noise model®.

5.3.4. Hilbert Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel-based measure for inde-
pendence which is in expectation 0 if and only if the compared random variables are in-
dependent [198]. An empirical estimate of HSIC(A, B) for two random variables A, B is
given by

1

—_— o ’
where tr is the trace operator. L;; = [(a’,a’) and L;j = I'(b*,b7) are kernel matrices
for given kernels [ and I’. The matrix K is a centering matrix K; ; = J; ; — 1/n where
0; ; is the Kronecker delta thatis 1if 7 = j and 0 otherwise. ai,...,a, and b1,...,b,

are independent realizations of the RVs A and B. For more details on HSIC as well as a
theoretical derivation see [ 198].

5.4. Method: Learning Invariances using the Principle of
ICM

In the following, we propose a way of indirectly expressing the constraint in Equation 5.4
via normalizing flows. Thereafter, we combine this result with Lemma 1 to obtain a differ-
entiable objective for solving the DG problem. We also present important simplifications
for least squares regression and softmax classification and discuss the relations of our ap-
proach with causal discovery.

! F is the concatenation of the normal CDF with the inverse CDF of P(Y | Xs), see [197].
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5.4.1. Learning the Invariance Property

The following theorem establishes a connection between invariant relations, prediction
residuals and normalizing flows. The key consequence is that a suitably trained normaliz-
ing flow translates the statistical independence of the latent variable R from the features
and environment (h(X), E) into the desired invariance of the mechanism P(Y | h(X)) un-
der changes of E. We will exploit this for an elegant reformulation of the DG problem
(Equation 5.4) into the objective (Equation 5.20) below.

Theorem 1. Let h bea differentiable function andY, X, E be RVs. Furthermore, let R = T'(Y; h(X))
be a continuous, differentiable function thatis a diffeomorphisminY . Supposethat R | (h(X), E).
Then, it holds thatY L E | h(X).

Proof. The decomposition rule for the assumption (i) R L (h(X), E)implies (ii) R L h(X).
To simplify notation, we define Z := h(X). Because T is invertible in Y and due to the
change of variables (c.0.v.) formula, we obtain

C.0.V. aT
pY|Z,E(y|za€>( = )pR|Z,E(T(yaz)|Zve) deta—y(y,z)
7 oT i oT c.0.0.
2 prr) det ()| pria(r]2) [det (02| X priay2)

ThisimpliesY | E'| Z. The theorem states in particular thatif there exists a suitable
diffeomorphism 7" such that R L (h(X), E), then h(X) satisfies the invariance property
with respect to Y. We use Theorem 1 in order to learn features h that meet this require-
ment. In the following, we denote a conditional normalizing flow parameterized via 6
with Ty. Furthermore, hy denotes a feature extractor implemented as a neural network
parameterized via ¢p. We can relax condition R 1 (hg(X), E) by means of the Hilbert
Schmidt Independence Criterion (HSIC), a kernel-based independence measure (see Sub-
section 5.3.4). This loss, denoted as L, penalizes dependence between the distributions
of R and (hg(X), E). The HSIC guarantees that

Ly (PR7Ph¢(x)7E) =0 <= RL1 (h¢(X),E> (5.19)

where R = Ty(Y'; hy(X)) and Pr, Py, (x), g are the distributions implied by the parame-
ter choices ¢ and 6. Due to Theorem Theorem 1, minimization of £ (Pr, P, (x),r) With
respect to ¢ and @ will thus approximate the desired invariance property Y L F | hy(X),
with exact validity upon perfect convergence. When R L (hg(X), E) is fulfilled, the de-
composition rule implies R L E as well. However, if the differences between environ-
ments are small, empirical convergence is accelerated by adding a Wasserstein loss which
enforces the latter (see Appendix A.2.2 and Subsection 5.5.2).



5.4. Method: Learning Invariances using the Principle of ICM 97

Observation

Extr. Features

Target variable Residuals

Ly
Y

Conditional INN

c
p(y|h) p(r) L

Figure 5.2. Illustration of Conditional Invertible Neural Network (Conditional INN) which
optimizes Equation 5.20. h is a feature extractor implemented as a feed-forward neural net-
work. L is the invariance loss that measures the dependence between residuals R and
(E, h(X)) and Ly is the negative log-likelihood as in Equation 5.5.

5.4.2. Exploiting Invariances for Prediction

Equation 5.4 can bere-formulated as a differentiable loss using a Lagrange multiplier A; on
the HSIC loss. As acts as a hyperparameter to adjust the trade-off between the invariance
property of h(X) with respect to Y and the mutual information between h¢(X) and Y.
In the following, we consider normalizing flows in order to optimize Equation 5.4. Using
Lemma 1(a), we maximize minceg I(Y%; hg(X®)) by minimizing maxece{Lni(To; ho) }
with respect to ¢, 8. To achieve the described trade-off between goodness-of-fit and in-
variance, we therefore optimize

arg m’in (Illeag( {,CI%LL(TQ, h,;/,)} + AL (Pg, Ph¢(x),E)> (5.20)
where R® = Tp(Y ¢, he(X®)) and A\; > 0. The first term maximizes the mutual infor-
mation between hg(X) and Y in the environment where the features are least informative
about Y and the second term aims to ensure an invariant relation. Figure 5.2 illustrates
the network that optimizes Equation 5.20 and Algorithm 1 the algorithmic details of the
training process.

In the special case that the datais governed by additive noise, Equation 5.20 simplifies
under certain assumptions to

argmein ( max {[E[(Ye _ fg(xe))ﬂ } + AL (Pr, Pfe(X),E)) (5.21)
€CCseen

where R¢ = Y — fg(X®) and A\; > 0. Here, arg maxg I(fg(X®), Y ) corresponds to the

argmin of the L2-Loss in the corresponding environment. In Algorithm 2 we show how the

final model is then optimized. The connection between additive noise models and normal-

izing flows is derived in the following remark:
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Algorithm 1: Training procedure to optimize Equation 5.20. This constitutes
the most general case with normalizing flows.

Data: Samples from Pxe y across seen environments € € Egeen;
Input: Model parameters 8, ¢, number of iterations n, and environment-specific
mini-batch size m;
1 fork=1,...,ndo
2 for ¢ € Egey do

3 Sample mini-batch B = {(y{,x{), .- -, (Y5, X;,) } from Py x g for
e € Eseens

4 Compute r§ = Tp(yj; he(x5)) forall j =1,...,m;

5 end

6 Update 0, ¢ by descending alongside the stochastic gradient

Voo man {3 [317005: eGP ~ 108 9, Tatof: o) |

eE&seen i—1

+M&Hﬁhawdﬁ%ﬂw0;

7 end
Output: In case of convergence, we obtain an invariant feature iy (X) and a
normalizing flow Ty~ that represents P (Y | hgx (X);

Remark 11. Let fg be a regression function. Solving for the noise term gives R = Y — fo(X)
which corresponds to a diffeomorphism in Y, namely To(Y; X) = Y — fo(X). If we make two
simplified assumptions: (i) the noise is Gaussian with zero mean and (ii) R L fg(X), then we
obtain

I(Y; fo(X) = H(Y) — H(Y | fo(X)) = H(Y) — H(R] fo(X)) (5.22)

W) - HR) L HY) - 1/210g(27e0?) (5.23)
where 02 = E[(Y — fo(X))?]. In this case maximizing the mutual information I(Y'; fo(X))
amounts to minimizing E[(Y — fo(X))?] with respect to 0, i.e. the standard L2-loss for regression

problems. From these considerations, we obtain an approximation of Equation 5.20 via Equa-
tion 5.21.

Alternatively we can view the problem as to find features hgy: RP — R™ such that
I(hg(X),Y') gets maximized under the assumption that there exists a model fg(he(X)) +
R =Y where Ris independent of h(X) and is Gaussian. Given this scenario, we obtain
the learning objective

arg min (eren;:; {[E [(Ye - fe(h¢(Xe)))2} } + ArL(Pr, Ph¢,(x),E)) (5.24)

In this case, we can derive the algorithmic details with minor adaptations to Algorithm 2.
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Algorithm 2: Training procedure to optimize Equation 5.21. This constitutes
the more specific additive noise case.

Data: Samples from Pxe ye across seen environments € € Egeen;
Input: Model parameters 8, number of iterations n, and environment-specific
mini-batch size m;
1 fork=1,...,ndo
2 for e € & do

3 Sample minibatch B¢ = {(y{,x7), .. ., (Us,, Xp,) } from Py x g for
€ € Eseen;

4 Compute 7§ = y; — fo(x5);

5 end

6 Update 6 by descending alongside the stochastic gradient

Eegseen

Vo max { 2 54 AL o).l )

7 end
Output: In case of convergence, we obtain a model fg« minimizing
Equation 5.21;

For the classification case, we consider the expected cross-entropy loss

x|y —tog (e (0) ) (5:29)

where f: X — R™returnsthelogits. Minimizing the expected cross-entropy loss amounts
to maximizing the mutual information between f(X) and Y (see Section 4.3 or [ 199, 200,
eq. 3]). Weset T(Y; f(X)) = Y - softmax(f(X)) with component-wise multiplication.
Then T is invertible in Y conditioned on the softmax output and therefore Theorem 1 is
applicable. Now we can apply the same invariance loss as above in order to obtain a so-
lution to Equation 5.4. In the classification case, we can directly obtain the algorithm’s
specifics with minor modifications to Algorithm 1.

5.4.3. Relation to Causal Discovery

Under certain conditions, solving Equation 5.4 leads to features which correspond to the
direct causes of Y (identifiability). In this case we obtain the causal mechanism by com-
puting the conditional distribution of Y given the direct causes. Hence Equation 5.4 can
be seen as an approximation of the causal mechanism when the identifiability conditions
are met. The following Proposition states the conditions when the direct causes of Y can
be found by exploiting Theorem 1.

Proposition 7. We assume that the underlying causal graph G is faithful with respect to Py p.
We further assume that every child of Y in G is also a child of E in G. Avariable selection h(X) =
Xg corresponds to the direct causes if the following conditions are met:

() T(Y;h(X)) L E,h(X) is satisfied for a diffeomorphism T'(-; h(X)),
(ii) h(X) is maximally informative about Y, and

(iii) h(X) contains only variables from the Markov blanket of Y .
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The Markov blanket of Y is the only set of vertices that are necessary to predict Y (see
Definition 10 and Proposition 5). In the following, we give a proof of Proposition 7.

Proof. Let S(Eseen) denote a subset of X which corresponds to the variable selection due to
h. Without loss of generality, we assume S(Egeen) C M where M is the Markov Blanket.
This assumption is reasonable since we have Y | X\ M | M in the asymptotic limit.

Since pa(Y’) cannot contain collidersbetween Y and F, we obtainthatY L E'|S(Eseen)
implies Y L E| (S(Eseen) Upa(Y)). This means using pa(Y') as predictors does not harm
the constraint in the optimization problem. Due to faithfulness and since the parents of Y
are directly connected to Y, we obtain that pa(Y") C S(Eseen)-

For each subset Xg C X for which there exists an X; € Xg N X.y,(y), we have Xg [/
Y | E. This follows from the fact that X is a collider, in particular £ — X; < Y. Con-
ditioning on X; leads to the result that Y and F are not d-separated anymore. Hence, we
obtain Y [ Xg | E due to the faithfulness assumption. Consequentially, for each Xg with
Y L E|Xs wehaveXg N X.,y) = ) and therefore X j,(y) N S(Eseen) = 0.

Since X,4(y) C S(Eseen), We obtain that Y L Xpq(cn(v)) | Xpa(y) and therefore the
parents of ch(Y') are notin S(Eseen ) €xcept when they are parents of Y.

Therefore, we obtain that S(Eseen) = Xpa(v)-
O

One mightargue that the condition thatevery child of Y is also a child of F,i.e. ch(Y") C
ch(E), is very strict in order to obtain the true direct causes. But this condition is neces-
sary if we do notimpose additional constraints on the true underlying causal mechanisms,
e.g., linearity [29]. For instance, if £ — X; — Y — X5, our model would opt for select-
ing X7 and X5 as variables. This follows from the causal Markov condition which implies
E 1 Y |X;,Xs. Nevertheless, including X» into the set of selected variables might be
beneficial as we elaborated in Remark 8.

To facilitate explainability and explicit causal discovery, we employ the same gating
function and complexity loss as in [201] (see also Appendix A.2.1). The architecture is
depicted in Figure 5.3 for three input variables. The gating function A is a 0-1 mask that
marks the selected variables, and the complexity loss £(h¢ ) is a soft counter of the selected
variables. Intuitively speaking, if we search for a variable selection that conforms to the
conditionsin Proposition 7, the complexity loss will exclude all non-task relevant variables.
Therefore, if H is the set of gating functions, then h* in Equation 5.4 corresponds to the
direct causes of Y under the conditions listed in Proposition 7. The complexity loss as well
as the gating function can be optimized by gradient descent.

5.5. Experiments

The main focus of this work is on the theoretical and methodological improvements of
causality-based domain generalization using information theoretical concepts. A com-
plete and rigorous quantitative evaluation is beyond the scope of this work. In the fol-
lowing we demonstrate proof-of-concept experiments.
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Figure 5.3. Illustration of Conditional Invertible Neural Network (Conditional INN) with gat-
ing mechanism. This architecture optimizes Equation 5.20 where the feature space is re-
stricted to gating mechanisms. L is the invariance loss that measures the dependence be-
tween residuals R and (E, h(X)), Lyir is the negative log-likelihood as in Equation 5.5 and
L a complexity loss that enforces to select only relevant variables.

5.5.1. Synthetic Causal Graphs

To evaluate our methods for the regression case, we follow the

experimental design of [195]. It rests on the causal graph in @ @
Figure 5.5. Each variable X7, ..., X¢ is chosen as the regression '
target Y in turn, so that a rich variety of local configurations

around Y is tested. The corresponding structural equations are @ @
selected among four model types of the form f(X,qz;), Ni) = ‘

> jepa(iymech(a; X;) + N, where mech is either the iden- @ @
tity (hence we get a linear Structural Causal Model (SCM)), Figure 5.5. Directed
Tanhshrink, Softplus or ReLU, and one multiplicative noise mech-  graph of our SCM. Tar-
anism of the form f;(Xpa(i), Vi) = (X epa) @X;) - (1 +  getvariable Y is chosen
(1/4)N;) + N;, resulting in 1365 different settings. For each set- among Xi,..., X¢ in
ting, we define one observational environment (using exactly the turn.

selected mechanisms) and three interventional ones, where soft

or do-interventions are applied to non-target variables according to Assumptions 1 and 2
(full details in Section A.3). Each inference model is trained on 1024 realizations of three
environments, whereas the fourth one is held back for DG testing. The tasks are to identify
the parents of the current target variable Y, and to train a transferable regression model
based on this parent hypothesis. We measure performance by the accuracy of the detected
parent sets and by the L2 regression errors relative to the regression function using the
ground-truth parents. We evaluate four models derived from our theory: two normalizing
flows as in Equation 5.20 with and without gating mechanisms (FlowG, Flow) and two
additive noise models, again with and without gating mechanism (ANMG, ANM), using
a feed-forward network with the objective in Equation 5.24 (ANMG) and Equation 5.21
(ANM).

For comparison, we train three baselines: ICP (a causal discovery algorithm also ex-
ploiting ICM, but restricted to linear regression. See [29] or Section 3.9), a variant of the
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Figure 5.4. Detection accuracy of the direct causes for baselines and our gating architectures,
broken down for different target variables (left) and mechanisms (right: Linear, Tanhshrink,
Softplus, ReLU, Multipl. Noise)
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Figure 5.6. Logarithmic plot of L2 errors, normalized by CERM test error. For each method
(ours in bold) from left to right: training error, test error on seen environments, domain gen-
eralization error on unseen environments.

PC-Algorithm (PC-Alg, see Section 3.9 and Appendix A.3.4) and standard empirical-risk-
minimization ERM, a feed-forward network minimizing the L2-loss, which ignores the
causal structure by regressing Y on all other variables. We normalize our results with a
ground truth model (CERM), which is identical to ERM, but restricted to the true causal
parents of the respective Y. The accuracy of parent detection is shown in Figure 5.4 The
score indicates the fraction of the experiments where the exact set of all causal parents was
found and all non-parents were excluded. We see that the PC algorithm performs unsatis-
factorily, whereas ICP exhibits the expected behavior: it works well for variables without
parents and for linear SCMs, i.e. exactly within its specification. Among our models, only
the gating ones explicitly identify the parents. They clearly outperform the baselines, with
a slight edge for ANMG, as long as its assumption of additive noise is fulfilled. Figure 5.6
and Table 5.1 report regression errors for seen and unseen environments, with CERM in-
dicating the theoretical lower bound. The PC algorithm is excluded from this experiment
due to its poor detection of the direct causes. ICP wins for linear SCMs, but otherwise has
largest errors, since it cannot accurately account for non-linear mechanisms. ERM gives
reasonable test errors (while overfitting the training data), but generalizes poorly to un-
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Table 5.1. Medians and upper 95% quantiles for domain generalization L2 errors (i.e. on un-
seen environments) for different model types and data-generating mechanisms (lower is bet-
ter).

Models Linear Tanhshrink Softplus ReLU Mult. Noise
FlowG (ours) 1.05..4.2 1.08..48 1.09..552 1.08..5.7 1.55..8.64
ANMG (ours) 1.02..1.56 1.03..2.23 1.04..4.66 1.03..4.32 1.46...4.22
Flow (ours) 1.08..1.61 1.14..1.57 1.14..155 1.14..1.54 1.35..4.07
ANM (ours) 1.05..1.52 1.15..1.47 1.14..147 1.15..1.54 1.48..4.19
ICP (Peters et al., 2016)0.99...25.7 1.44...20.39 3.9..23.77 4.37...23.49 8.94...33.49
ERM 1.79..3.84 1.89..3.89 1.99..3.71 2.01..3.62 2.08..5.86

CERM (true parents) 1.06..1.89 1.06..1.84 1.06..2.11 1.07..2.15 1.37..5.1

seen environments, as expected. Our models perform quite similarly to CERM. We again
find a slight edge for ANMG, except under multiplicative noise, where ANMG’s additive
noise assumption is violated and Flow is superior. All methods (including CERM) occa-
sionally fail in the domain generalization task, indicating that some DG problems are more
difficult than others, e.g. when the differences between seen environments are too small
to reliably identify the invariant mechanism or the unseen environment requires extrapo-
lation beyond the training data boundaries. Models without gating (Flow, ANM) seem to
be slightly more robust in this respect. A detailed analysis of our experiments can be found
in Section A.3.

Standard classifier (ERM) Our model Lo + AL
Perfect
0.8 causal model
0.6
0.4
0.2
~ o ~ v
2 D> h’g N N "7‘5‘\
G G & & G s
we wg
N N}

[Env. 1Env. 2Env. 3
ERM 90.3 79.9 10.2
Lo+ AL 74.8 74.7 68.5

Figure 5.7. Accuracy of a standard classifier (ERM) compared to our model on all three envi-
ronments on the ColoredMNIST data set.

5.5.2. Colored MNIST

To demonstrate that our model is able to perform DG in the classification case, we use the
same data generating process as in the colored variant of the MNIST-dataset established
by [34], but create training instances online rather than upfront. The response is reduced
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to two labels — 0 for all images with digit {0, ..., 4} and 1 for digits {5, . . . 9} — with delib-
erate label noise that limits the achievable shape-based classification accuracy to 75%. To
confuse the classifier, digits are additionally colored such that colors are spuriously asso-
ciated with the true labels at accuracies of 90% resp. 80% in the first two environments,
whereas the association is only 10% correct in the third environment. A classifier naively
trained on the first two environments will identify color as the best predictor, but will per-
form terribly when tested on the third environment. In contrast, a robust model will ignore
the unstable relation between colors and labels and use the invariant relation, namely the
one between digit shapes and labels, for prediction. We supplement the HSIC loss with a
Wasserstein term to explicitly enforce R | E,i.e. L1 = HSIC + L2(sort(R"), sort(R?))
(see Appendix A.2.2). This gives a better training signal as the HSIC alone, since the dif-
ference in label-color association between environments 1 and 2 (90% vs. 80%) is deliber-
ately chosen very small to make the task hard to learn. Experimental details can be found
in Section A.4. Figure 5.7 shows the results for our model: Naive training (A\; = 0, i.e.
invariance of residuals is not enforced) gives accuracies corresponding to the association
between colors and labels and thus completely fails in test environment 3. In contrast, our
model performs close to the best possible rate for invariant classifiers in environments 1
and 2 and still achieves 68.5% in environment 3. This is essentially on par with preexist-
ing methods. For instance, IRM achieves 71% on the third environment for this particular
dataset, although the dataset itself is not particularly suitable for meaningful quantitative
comparisons. Figure 5.8 demonstrates the trade-off between goodness of fit in the train-
ing environments 1 and 2 and the robustness of the resulting classifier: the model’s ability
to perform DG to the unseen environment 3 improves as Ay increases. If Ay is too large, it
dominates the classification training signal and performance breaks down in all environ-
ments. However, the choice of \; is not critical, as good results are obtained over a wide
range of settings.
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Figure 5.8. Performance of the model in the three environments of the ColoredMNIST data
set, depending on the hyperparameter \;.



5.6. Discussion 105

5.6. Discussion

In this work, we have introduced a new method to find invariant and causal models by
exploiting the principle of ICM. Our method works by gradient descent in contrast to com-
binatorial optimization procedures. This circumvents scalability issues and allows us to
extract invariant features even when the raw data representation is not in itself meaning-
ful (e.g. we only observe pixel values). In comparison to alternative approaches, our use of
normalizing flows places fewer restrictions on the underlying true generative process. We
have also shown under which circumstances our method guarantees to find the underlying
causal model. Moreover, we demonstrated theoretically and empirically that our method
is able to learn robust models with respect to distribution shifts. Future work might in-
clude ablations studies in order to improve the understanding of the influence of single
components, e.g. the choice of the maxmin objective over the average mutual information
or the Wasserstein loss and the HSIC loss. Another interesting direction is to examine our
approach in more complex scenarios where, for instance, the invariance assumption may
only hold approximately.






Context-Aware Domain Generalization
and ProDAS

In this chapter, we directly adapt our works from [40] and [39]. In [40], one of our exper-
iments relies on a dataset generated using ProDAS, which we present first.

6.1. ProDAS — Probabilistic Dataset of Abstract Shapes

Abstract We introduce a novel and comprehensive dataset, named
ProDAS, which enables the generation of diverse objects with varying
shape, size, rotation, and texture/color through a latent factor model.
ProDAS offers complete access and control over the data generation
process, serving as an ideal environment for investigating disentan-
glement, causal discovery, out-of-distribution detection, and numer-
ous other research questions. We provide pre-defined functions for
the important cases of creating distinct and interconnected distribu-
tions, allowing the investigation of distribution shifts and other in-
triguing applications. The library can be found at https://github.
com/XarwinM/ProDAS.

6.2. Brief Introduction of ProDAS

Probabilistic Dataset of Abstract Shapes (ProDAS) is a versatile library that provides a cus-
tomizable latent factor model applicable to any rendering function. This is schematically
illustrated in Figure 6.1. The library consists of two parts: Firstly, a customizable latent fac-
tor model. For instance, the library enables defining a distribution over object types (e.g.
squares or triangles), their color and texture as well as the background. Samples drawn
from this distribution can be processed through a renderer to generate the final images.
As this distribution is predefined, we can evaluate the likelihood of the rendered images.
The library offers also support managing multiple different distributions at the same time,
for instance in-distribution and out-of-distributions, or different environments as in Fig-
ure 6.2 or Figure 6.3.

As the second component of the library, ProDAS provides “Dsprites++” as a default
rendering frontend, supporting colors, textures, and more. By default ProDAS offers dif-
ferent shapes similar to Dsprites [202], supporting also colors and textures. The sensible
default that ProDAS provides encompasses the following variables:

» object shape opape € {circle, square, triangle}
» object size 0gizc € R>g

» object position Oposition € @ b)?


https://github.com/XarwinM/ProDAS
https://github.com/XarwinM/ProDAS
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Figure 6.1. An illustration of ProDAS. A distribution over a latent variable model is de-
fined. From this distribution, an instance is sampled, comprising attributes such as object
color and texture. This instance is then processed through the renderer, resulting in data
accessible to models. Consequently, ProDAS facilitates the sampling of high-dimensional
complex data for which the ground truth is known.

> object rotation Osotation € [0, 360]
» object and background color (e.g., in RGB)

» 9 different foreground and background textures

6.3. ProDAS — Target Applications

ProDAS offers the capability to alter both the latent model and rendering functions, en-
abling the creation of numerous intriguing applications and scenarios. In the following
section, we introduce four specific scenarios with the default rendering function. For more
challenging applications,the factor model can be applied to a different rendering function
such as VirtualKitti [ 203], Carla [204], etc.

Causal Discovery in Latent Space Given complete access to the latent factors that
generate the data, we can presume a latent causal model, thereby delving into the task of
causal discovery. In the realm of causal discovery, there is often the assumption that the
relevant causal variables are predetermined. However, in our scenario, we consider the
task of identifying the underlying causal graph from variables devoid of intrinsic meaning,
such as pixels. For instance, the task might involve uncovering the latent causal model as
depicted in Figure 6.1. Additionally, this setting aligns with the broader objective of the
disentanglement task where the latent factors are often assumed to be jointly independent.

Out-of-distribution, but why? InFigure 6.2 we showcase three different out-of-distribution
(OOD) scenarios with respect to the color, position, or shape of the objects. In this case, we

have created a scenario where one could evaluate an OOD detection algorithm under dif-
ferent conditions. With these scenarios, we enable OOD detection algorithms to show their
capabilities in the field of explainability: The samples in Figure 6.2 are OOD for different
reasons. Some samples are OOD due to low-level features such as color and some are OOD

due to more high-level features such as position. Therefore we can assess a model’s ability

to understand differences between OOD-ness.

Distribution Shift Furthermore, we can explore scenarios involving distribution shifts.
In Figure 6.3, we defined four domains, each sharing identical characteristics except for
their varying appearance across domains. This example showcases the potential for ex-
ploring distribution shifts, which can manifest in different forms.
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(a) Training Data. (b) OOD due to Color.

(c) OOD due to Position. (d) 0OD due to shape

Figure 6.2. ProDAS enables the support for multiple distributions concurrently. In this figure,
we implemented one in-distribution scenario and three distinct out-of-distribution (OOD)

situations.

(a) Domain 1 (b) Domain 2

(c) Domain 3 (d) Domain 4

Figure 6.3. ProDAS provides support for multiple distributions simultaneously. In this figure,
we implemented various domains to simulate a distribution shift setting.

Multi-View Learning In a multi-view setting, practitioners have access to various rep-

resentations (also called multiple views) of the same instance. For example, a book trans-

lated into multiple languages provides multiple views of the same content. Likewise, within
ProDAS, we can establish a multi-view setting. For instance in Figure 6.4, we observe the

same objects in multiple views.

(a) Multiple views of one instance (b) Multiple views of one instance

Figure 6.4. This figure shows two instances in four views.

Many More In addition to the demonstrated application, ProDAS offers a wide range of
potential applications. These encompass tasks such as disentanglement, domain transfer,
domain adaptation, few-shot learning, density estimation, among many others.
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6.4. Towards Context-Aware DG: Representing
Environments with Permutation-Invariant Networks

The subsequent sections of this chapter are a direct adaptation from our work in [40].

Abstract In this work, we show that information about the context
of aninputX canimprove the predictions of deep learning models when
applied in new domains or production environments. We formalize
the notion of context as a permutation-invariant representation of a
set of data points that originate from the same environment/domain as
the input itself. These representations are jointly learned with a stan-
dard supervised learning objective, providing incremental information
about the unknown outcome. Furthermore, we offer a theoretical anal-
ysis of the conditions under which our approach can, in principle, yield
benefits, and formulate two necessary criteria that can be easily veri-
fied in practice. Additionally, we contribute insights into the kind of
distribution shifts for which our approach promises robustness. Our
empirical evaluation demonstrates the effectiveness of our approach
for both low-dimensional and high-dimensional data sets. Finally, we
demonstrate that we can reliably detect scenarios where a model is
tasked with unwarranted extrapolation in out-of-distribution (OOD)
domains, identifying potential failure cases. Consequently, we show-
case a method to select between the most predictive and the most ro-
bust model, circumventing the well-known trade-off between predic-
tive performance and robustness.

6.5. Introduction: Context-Aware DG

Distribution shifts are the cause of many failure cases in machine learning [12, 14] and the
root of various peculiar phenomena in classical statistics, such as Simpsons’ paradox [ 32,
122]. In this work, we employ permutation-invariant neural networks as set-encoders
[205, 206] to improve the predictions of standard supervised models under distribution
shift. Specifically, we consider training in the realm of Domain Generalization (DG), a set-
ting where data from distinct environments? is available for training and testing [15, 17].

Forillustration, consider a probabilisticmodel P(Y" | X) thatclassifies diseases Y from
magnetic resonance (MR) images X. Since MR images are not fully standardized, the clas-
sifier should work slightly differently for images acquired by different hardware brands. It
thus makes sense to inform the classifier about the current environment F (here: hardware
brand) and extend itinto P(Y | X, F). This raises two questions:

(1) Under which circumstances will the classifier P(Y | X, E') be superior to P(Y | X)?
(2) How should F be represented to maximize the performance gain?

The first question is important because there might exist a function F = f(X) allowing the
classifier P(Y | X) to deduce E from the data X. For example, F might be inferred from the

We use the terms environment and domain interchangeably.



6.5. Introduction: Context-Aware DG 111

A) Data-Generating Process B) Example Data: Source Component Shift

Outcome

Input
C) Context-Aware Domain Generalization

New Environment Set-Encoder

O
¢ % e
> g Xy - .
o 9o 0 g4 0 @
O

Figure 6.5. Conceptual sketch of our setup and approach. A) Data-generating process
(DGP) that fulfills our criteria. We assume that the environment F is a source node that is not
caused by any system variable and that the relationship between X and Y varies with the en-
vironment. $(") is a set of  IID inputs available in the new environment (i.e. context). B) The
source component shift corresponding to the assumed DGP and example data coinciding with
Simpson’s paradox. C) The workings of our approach in a test environment. A set-encoder
generates a permutation-invariant representation h(S(™)) of the context. An inference net-
work (e.g., a classifier) processes the representation along with the target input X and predicts
the unknown outcome (e.g., label) of the target input. The set-representation can be combined
with the input to reliably detect out-of-distribution (OOD) queries and prevent failure cases
in domain generalization due to model misspecification.

periphery of the given image, while Y depends on its central region. Then, no additional
information is gained by passing F explicitly, and both classifiers perform identically.

A straightforward answer to the second question is to distinguish environments by
discrete labels. However, we argue that £ should be a continuous embedding. First, con-
tinuous embeddings can also be computed for new environments thathave notbeen present
in the training data. Second, when P(Y | X, F) receives a continuous E), it can potentially
configure itself for unseen environments by interpolating between the training environ-
ments. And finally, discrete and continuous F are equally informative for the known envi-
ronments, ensuring no loss in information.

In the current work, we systematically investigate both questions, formalize three cri-
teriawhen P(Y | X, F) is beneficial, and demonstrate how continuous embeddings F can
be learned from auxiliary data by means of set encoders (see Figure 6.5). Notably, two of
these criteria are empirically testable using standard models and are shown to be neces-
sary conditions for the success of the approach. First, we require that a single input alone
is insufficient to deduce the originating environment (see Criterion 2). If this condition
is not met, our model cannot possibly extract more information about the originating en-
vironment, compared to a standard model. Second, we require that, if the environment
label is known by an oracle and given as an additional input to the standard model, its per-
formance must improve (see Criterion 3). Otherwise, the set-based representation of the
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environment cannot possibly yield benefits. Notably, these two criteria are easy to verify
and also metunder the source component shift (see Subsection 6.6.6), which is a dataset shift
that occurs in many scenarios [8].

When test environments are highly dissimilar to the training environments, all DG
methods enter an extrapolation regime with unknown prospects of success and the po-
tential to generate silent failures. While our approach is not exempt from this “curse of
extrapolation”, it comes with a natural way to reliably detect novel environments in set-
representation space and delineate its competence region (see our work in Chapter 7).
Moreover, we propose a method to select between models that are specialized in the in-
distribution (ID) setting vs. models that are robust to out-of-distribution (OOD) scenarios
on the fly. Thus, we can overcome the notorious trade-off between ID predictive perfor-
mance and robustness to distribution shifts [31, 33, 207 |. Accordingly, we can adaptively
select the most robust model in the OOD setting and the most predictive model in the ID
setting, an approach we demonstrate on the ColoredMNIST data set (see Figure 2.1). In
summary, our contributions are:

» We propose a novel approach to Domain Generalization (DG) that leverages context
information from new environments in the form of learnable set-representations;

» We formalize the necessary and empirically verifiable conditions under which our ap-
proach canreap benefits from contextinformation and improve on standard approaches;

» We perform an extensive empirical evaluation and show that we can reliably detect fail-
ure cases when the necessary criteria of our theory are not met, or when extrapolation
is required.

6.6. Methods

6.6.1. Notation

We denote inputs X € X and outputs as Y € ), without any strict requirements on the
input and output spaces X and )/, respectively. We treat the (unknown) domain label F as
a random variable and denote with (™ an i.i.d. sample (i.e., a set of further inputs) from
the given domain. The domain label £ is only known during training time and unknown
during inference.

6.6.2. General Idea

The key idea of our approach is to build models that utilize not only a singleton input X
to predict a target Y, but also information about the environment of X that can improve
the prediction Y. Providing environmental information in the form of a one-hot label is
hardly feasible, as it presupposes the exact number of possible environments to be known
during training, and that we always know from which environment an input originates
at inference time. Consequently, such an approach is doomed to fail when the test data
originates from a novel or unknown environment.

To overcome this problem, we employ permutation-invariant neural networks to adap-
tively represent environmental information given a set of test inputs. We will first detail
our approach and then discuss criteria under which we can expect to reap benefits from
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the additional set-representation. Afterwards, we explain the theoretical data-generating
process that matches these criteria, providing insight into the distribution shifts for which
our approach may prove advantageous in practice. Finally, we discuss the process of iden-
tifying new environments that demand extrapolation, potentially leading to failure cases.

6.6.3. Permutation-Invariant Neural Networks

As mentioned above, a basic goal of our approach is to synthesize contextual information
about a target input X by compressing a set of n further inputs $(") := {X;,Xy,...,X,}
from the same environment into a permutation-invariant representation. The notion of
permutation invariance is closely related to a core concept in probabilistic modeling and
Bayesian inference — exchangeability [ 208 ]. Accordingly, an exchangeable sequence of ran-
dom vectors is characterized by a joint distribution which is invariant to any permutation
of the elements:

P(XI,XQ, s 7XTL) == P(xﬂ'(]_)7xﬂ'(2)7 ct e 7X7T(TL))7 (6'1)

where 7 : N — N denotes an arbitrary permutation of index elements n € N.

Exchangeable observations may come in various forms, for instance, patients entering
ahospital, different measurements obtained with the same device, or sets of visual images,
such as faces in a crowd. When it comes to learning exchangeable symmetries, permutation-
invariant functions can serve as a key building block in neural architectures [206 ], as they
automatically encode a favorable inductive bias towards permutation-invariance by de-
sign. A simple and intuitive way to create permutation-invariant functions involves the
sum-decomposition

n

h(s™)=p > o(x) (6.2)

=1

where ¢ and p can be any functions, including deep neural networks [206, 209]. h is
permutation-invariant due to the summation operator which ensures that the argument
of pis agnostic to the order of elements in the set $(".

Despite having favorable theoretical properties, plain sum-decompositions can have
limited representational capacity in practice [ 209, 210 ]. Thus, more expressive permutation-
invariant functions can be learned by stacking equivariant transformations with sum-decompositions
[206, 209] or by using a self-attention mechanism without positional encodings [211]. In
order to re-assess the expressiveness of these methods, we show a comparison of the bi-
nary domain classification accuracy based on domain overlap and set size in Section B.7.

6.6.4. Context-Aware Model

Our model consists of two key components (also illustrated in Figure 6.5):

» apermutation-invariant network h, (“set encoder”) with parameters ¢ that maps a set
input $(™) to a summary vector h,;(8(™), and

» an inference network f with parameters ¢ that maps both the input X and the sum-
mary vector h,(S(™)) to a final prediction.
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The complete model is denoted as fg(X,8™) = f4(X, hy (™)) with parameters 6 =
(v, @) for short. For a given supervised learning task, we aim to find the minimum to the
following optimization problem

0* = argminxy g [c(fg(x, s()), Y)] , (6.3)
0

where cis a task-specificloss function (e.g., cross-entropy for classification or mean squared
error for regression). The algorithmic details for optimizing Equation 6.3 are detailed in Al-
gorithm 3. For practical reasons, we first apply a feature extractor g and then pass {g(X) | X €
s("} asinput to the set encoder and g(X) as input to the inference network, building upon
the features extracted by g. Note, that g can be a pre-trained network, in which case we can
treat it as a fixed transformation, or its parameters can be optimized jointly with 6.

Algorithm 3: Optimizing Equation 6.3 for context-aware domain generaliza-
tion.
Data: Samples from the joint distribution P (X, Y, F);
Input: Composite model parameters 6, set size n, batch size m, loss-function c,
number of iterations k, learning rate schedule a(k);
1 fori=1,...,kdo

2 Sample mini-batch B = {(x1, y1,envy), ..., (X, Ym, env,,) } from
P(X,Y, E);

3 forj=1,...,mdo

4 Sample set sg.") = {x1,...X,} from P(X | E = envj);

(7]

Replace env; with sg-n in B;

6 end
7 Update 0 using adaptive mini-batch gradient descent (or any variant):
m
O < 01 — a(k)Ve Z c <f9(Xj,s§-n)), ’yj>
j=1
8 end

Output: Trained context-aware model fy;

6.6.5. Criteria for Improvement

In the following, we establish criteria under which our method can exploit the distribu-
tion shifts between environments and yield improved predictions. In total, we propose
three criteria that are necessary to achieve incremental improvement. In Theorem 2, we
show how these criteria are related to each other. In the formulations below, /(X;Y") de-
notes the mutual information between random vectors X and Y and I(X; Y | Z) denotes the
conditional mutual information given a third random vector Z (exact definitions of these
concepts can be found in Section 4.3). The symbol | (resp. /) between two random vec-
tors X and Y is used to express that the random vectors are independent (resp. dependent)
or conditionally independent (resp. dependent) given a third random vector Z.
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First, we require that given an input X, a further set of i.i.d. inputs $(”) from the same
environment provides incremental information about Y. This is exactly what we need to
achieve improved predictive performance, and we can formally define it as our first crite-
rion:

Criterion 1. 8"V [ Y | X or equivalently I(8(™); Y | X) > 0.

The second criterion requires that, given a target input X, a set of further i.i.d. inputs
s(") from the same environment provides additional information about the origin environ-
ment of X.

Criterion 2. E [ 8" | X or equivalently I(E; 8 | X) > 0.

In Figure 6.5, an instance X cannot be assigned with complete certainty to an environment.
Consequentially, further data provides additional information about the environment. In
general, the more data we consider, the better we can predict the originating environment.
Crucially, this criterion is not satisfied, if we can recover the origin environment from the
singleton input X alone.

The third criterion requires that the singleton input X gains information about Y if we
also consider the origin environment F of X.

Criterion 3. Y [ F'|Xorequivalently I1(Y; E|X) > 0.

In Figure 6.5, this is evidently the case: If we knew the environment from which the data
stems, we could improve our prediction of Y. Furthermore, this criterion can serve as a
sanity check in case we have an oracle that can identify the origin environment of the data
with perfect accuracy.

In what follows, we show that Criterion 2 and Criterion 3 are necessary conditions for
Criterion 1. We furthermore prove that if we can extract the environment label fully from
S("), then Criterion 2 and Criterion 3 are sufficient conditions for Criterion 1. We even
generalize this result for the case where the environment label is not inferable with 100%
accuracy.

Theorem 2. The following statements hold:

(@) If E L s |X, it follows that Y L S(") |X. This is equivalent to the implication that if
Criterion 2 is unattainable, then Criterion 1 is also not satisfied.

(b) IfE LY |X, weachieveY L S |X. This statement corresponds to: Criterion 3 is a neces-
sary condition for Criterion 1.

(c) Assume that there exists a deterministic function g with g(8'™)) = E, thenY [ F | Ximplies
Yy [ s | X. This conveys that if we could perfectly infer E from $("), then Criterion 3 implies
Criterion 1.

(d) Assume that there exists a function g and a noise variable Z that elicits the relation £ =
g(8"™) + Z and satisfies S | Z | X as well as 8" | Z|X,Y. Furthermore, assume
thatY J E|Xand I(Y;E|X) > I(Z;Y | X). Then, we achieve Y J 8™ | X, recovering
Criterion 1.



116 6. Context-Aware Domain Generalization and ProDAS

Proof. For the upcoming proofs, we extensively employ the chain rule of mutual informa-
tion:

I(Y;Z,X)=1(Y;Z|X)+ I(Y;X) (6.4)

Additionally, we utilize the inequality I(Y; 8 | X) < I(Y'; E | X) which follows from
the data processing inequality and how 8™ relates to the other variables (see Figure 6.5).

For (b): We easily achieve

I(Y;8™ x) = I(Y;8™ | X) + I(Y;X) (6.5)
<I(Y;E|X)+ I(Y;X) (6.6)
=I1(Y;X) (6.7)
Therefore, we have
0<I(Y;s™|x)=1I(v;s™ X)—I(X;Y) <0 (6.8)

which proves (b).

For (a): We can write

1(s™:y,x) = 1(s™; Y | X) + I(s";X) (6.9)
< I(s™; E|X) + I(s™);X) (6.10)
= I1(s™;x) (6.11)
and therefore
0<I(Y;8™|x)=1(s™;Y,X)—I(x;8"™) <0 (6.12)

and conclusively Y 1 (") |X.

For (c) is easily seen, using the data processing inequality, that 0 < I(Y; E|X) =
I(Y;g(s™)|X) < I(Y; 8" | X) and therefore (c) holds true.

For (d), we also employ the entropy H (X) as well as the conditional entropy H (X |Y)
(for definitions and elementary properties see Section 4.3). We first establish that

I(A+B;C)<I(A;C)+ I(B;C) (6.13)
forany RVs A, B, C with A L Band A L B|C:
I(A+B;C) = H(A+ B) — H(A+ B|C)
& (H(4)+ H(B) - H(A| A+ B)) (6.14)
- (H(A|C)+H(B|C) —H(A]A+B,C))

= I(A;C)+I(B;C)— H(A|A+ B)+ H(A| A+ B,C)

o)+ 18:0) (6.15)
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(%) follows with the chain rule for entropy

H(A, A+ B)=H(A) + H(A+ B|A) (6.16)
= H(A) + H(B| A) “£° H(A) + H(B) (6.17)
=H(A+B)+H(A|A+ B) (6.18)

whichimplies H(A+B) = H(A)+ H(B)— H(A| A+ B) and equally when conditioning
onC.

(xx) follows since h(A| A+ B,C) < h(A| A+ B).

Equation 6.14 can be extended to the conditional mutual informationif A 1 B|D
and A L B|D,C:

I(A+ B;C|D) < I(A;C|D) + I(B;C'| D) (6.19)

Since 8™ | Z|Xands™ L Z|X,Y,we achieve

0<I(Y;E|X)=I(Y;9(s"™) + Z|X) (6.20)
<I(Y;9(s™) %)+ 1(Y; Z|X) (6.21)
<I(Y;s™ |X) + I(Y; Z|X) (6.22)
and therefore
0<I(Y;E|X)—I(Y;Z|X)<I(Y;s™|x) (6.23)
which concludes the proof. OJ

A brief discussion of the theorem’s presumptions can be found in Section B.1. Unfortu-
nately, we cannot deduce that Y L 8(") | X follows from Criterion 2 and Criterion 3 in
general. An example where Criterion 2 and Criterion 3 hold, but Criterion 1 is violated, is
provided in the following:

Example 7. Criterion 2 and Criterion 3 are not sufficient to imply Criterion 1. This can be
seen in an example with three environments j € {1, 2, 3}. Assume the first two have com-
pletely identical input distributions. We presume that both input distributions adhere to a
uniform distribution/[a, b]. Furthermore, we assume that the third input distribution also
follows a uniform distribution that is slightly shifted, i.e. U[a + GTH’? b+ GTH)] Due to the
overlap between the third and the first two environments, a set input provides additional
information about F compared to a single sample X, verifying Criterion 2.

When considering the mechanism linking inputs to outputs, we assume that within
the range [a, ‘%‘b], the relationship between input X and output Y differ — for instance,
linear relations with distinct values. Additionally, we presume that within the inverval
(‘%H), b+ aT‘H’], the relationship between input X and output Y remains consistent across
environmenst, e.g., is constant. This aligns with Criterion 3: When the environment is

known, we can improve the prediction, specifically within the range [a, ‘%"b]

However, Criterion 1 is unsatisfiable. While the set input allows us to effectively dis-
tinguish environment 3 (i.e. the one with support[a+ aT—i-b , b+ “T‘H’]) from the other ones,
it does not allow us to differentiate between environment 1 and environment 2. Since the
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relationship between X and output Y differs solely within the supports of environment 1
and environment 2 (specifically, in U|a, aTer]), the set input cannot provide additional in-
formation about the output Y compared to the single input X. Consequentially, it holds

Y L 8(™ | X and Criterion 1 is not met.

6.6.6. Source Component Shift

Using our approach, we can characterize the kind of distribution shift that allows our cri-
teria to be satifsied. Source component shift refers to the scenario where the data comes from
a number of sources (or environments) each with different characteristics (see Subsec-
tion 3.8.1). The source component shift can be described by the graphical model in Fig-
ure 6.5, where the environment directly affects both the input X and the outcome Y. Prob-
lems that conform to the graph in Figure 6.5 have two important implications. First, the
input distribution changes whenever the environment changes.? Second, the relationship
between inputs and outcomes varies with the environment (corresponding to Criterion 1).
For more details on this kind of distribution shift, we refer the reader to Subsection 3.8.1
or [8, Chapter 1.9]. It is also worth noting that the graph in Figure 6.5 corresponds to
Simpson’s paradox 32, 122], which supplies a proof-of-concept for our approach (see Ex-
periment 1).

6.6.7. Detection of Novel Environments

During test time, data could either originate from an environment that corresponds to one
of the training environments (butits origins are unknown) or from a previously unseen en-
vironment. In the following, we explain how we aim to detect the second case that might
resultin potential failure cases due to fundamental challenges in extrapolation. Following
our work in Chapter 7, we can define a score s(f,5(S(™))) on the summary vector A, (S(™)
implicit in our model fg(X, (™)) that aims to predict the target variable Y. As a score func-
tion, we consider the distance of (8(™) to the k-nearest neighbors in the training data
in the feature space of the set-encoder. Accordingly, set-representations that elicit a score
surpassing a certain threshold are considered to originate from a novel environment. Sim-
ilar to our work in Chapter 7, we consider the score distribution and set a threshold to clas-
sify a specific percentage, denoted as g, of in-distribution samples as originating from a
known environment. To establish this threshold, we consider the g-th percentile of scores
obtained from the validation set. We also compare our novel environment detector with
the same score function computed solely from singleton features g(X). These results can
be quickly previewed in Table 6.3.

6.7. Related Work

6.7.1. Domain Generalization

The aim of domain generalization (DG) is to train models that generalize well under distri-
bution shifts [15, 17]. The DG setting involves access to data from multiple domains dur-
ing training exploiting the heterogeneity between domains. In this context, the plethora

%In our case, we require a stronger assumption, namely, that the domains are not deducible from a single
input, as formalized in Criterion 2.
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of algorithms aimed at improving robustness has been divided into three categories as ex-
plained in Subsection 2.2.3. Our approach explores a different avenue exploiting contex-
tual information about the origin of the data via an adaptive environment embedding.

In contrast to Domain Adaptation (DA) [52], where samples from the test domain are
given during training, in DG no knowledge about the test environment is available during
training. As a middle-ground between DA and DG, test-time adaptation (TTA) involves
the provision of unlabeled samples during test time, enabling further fine-tuning of the
model [212]. TTA can be categorized into test-time domain adaptation, test-time batch
adaptation (TTBA), and online test-time adaptation (OTTA) [212].

Among these settings, our work aligns most closely with the TTBA scenario concern-
ing the utilization of environment information. In TTBA a pre-trained model is adapted
to one or a few inputs [213—-215]. Each adaptation depends on the mini-batch at hand.
Similarly, we consider a mini-batch as a set input to deliver contextual information. How-
ever, we do not adapt or fine-tune our model at test time, but rather directly extract context
information via the set-encoder. This allows us to identify whether extrapolation is neces-
sary, enabling model misspecification detection [216 ]. Moreover, since we do not need to
fine-tune the model at test time, our approach is considerably more efficient.

Finally, [217] assume a setting where inputs from multiple domains are available, but
it is unknown which sample belongs to which environment — even during training time.
The authors infer potential domain labels that are used for downstream invariant learn-
ing, for example, via Invariant Risk Minimization (IRM) [34]. This method improves on
baseline models and enables the application of DG methods in the absence of domain la-
bels. Interestingly, it could be combined with our approach when no environment labels
are provided during training, and we leave this as an avenue for future research.

6.7.2. Learning Permutation-Invariant Representations

Analyzing set-structured data with neural networks has received much theoretical [206,
210, 218] and empirical [209, 211, 219] momentum in recent years. For instance, [219]
build on the set transformer architecture [211] and augment the attentive encoder with
the capability to learn dynamic templates for attention-based pooling. The resulting “PI-
CASO” blocksinclude consecutive multi-head attention stacks with skip connections, which
update their template(s) depending on previous template(s) and the particular input set
(in contrast to global templates). Differently, [ 220 ] propose to learn set-specific represen-
tations, along with global “prototypes”, using an optimal transport (OT) optimization cri-
terion. The authors also show how to use their criterion for generative and few-shot classi-
fication tasks In a somewhat similar vain, [ 221 ] investigate a gradient-based optimization
method for aggregating set-structured data. Importantly, these methods comprise a pool
of algorithms which can be used as the backbone architecture for realizing the set-encoder
in our approach.

Notably, the methods above impose no probabilistic structure on the set-representations,
since the latter are mainly used as deterministic features for downstream tasks. In contrast,
probabilistic models attempt to learn a conditional or a marginal distribution over the set-
representations. In the Bayesian literature, sets represent finitely exchangeable sequences,
embodying the core probabilistic structure of most Bayesian models [208]. In particular,
hierarchical or multi-level Bayesian models are used to model the dependencies in nested
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Model Symbol Description Purpose
Context-aware model (ours)  f Yx8™ predicts Y from X and §(™ Improve predictions
Baseline model Y Predicts Y from X alone  Verify improvement
Environment-oracle model fY®E  predicts Y from Xand E Verify Criterion 3
Contextual environment model f¥ 5™ predicts E from X and s(") Verify Criterion 2
Baseline environment model ~ fZI¥ Predicts F from X alone  Verify Criterion 2.

Table 6.1. The five different model types used to evaluate our approach and verify the theo-
retical criteria for improvement.

data, where observations are organized into clusters or levels [222, 223], mirroring the
notions of domain or environment in DG. Indeed, hierarchical Bayesian models have been
successfully applied in many areas of science, but are typically constrained to linear or gen-
eralized linear models (GLMs), prioritizing interpretability over predictive performance.

From a somewhat different Bayesian perspective, IID data represents the starting point
for learning invariant summary statistics for parameter estimation or model comparison.
The pioneering work on Neural Statisticians [ 224 ] tackles the task from a variational per-
spective, learning global set-representations as part of a generative model. Neural pro-
cesses [225, 226 | comprise a related family of set-based models for prediction and uncer-
tainty quantification in supervised learning tasks, rooted in the spirit of Gaussian processes
[227]. Finally, [228] explore a permutation-invariant variational autoencoder (SetVAE)
with multiple latent variables trained with a modified ELBO objective. The goal of this and
follow-up models [229] is accurate generative performance, less so the learning of com-
pact representations. The theoretical and empirical implications of learning random set-
representations falls outside the scope of our current work, but offers a potentially fruitful
avenue for future research.

Crucially, none of the above methods pursues the concrete goal of our work, which is
improving domain generalization performance through set-based environment represen-
tations. For the purpose of achieving this goal, we employ variants of the DeepSet [209]
and SetTransformer architectures for our backbone set-encoder throughout all experi-
ments. Interestingly, we observe that our approach is widely robust to the choice of set-
encoder architectures in the problems considered.

6.7.3. OOD Detection and Selective Classification

Detecting unusual inputs that deviate from the examples in the training set has been a
long-standing problem of conceptual complexity in machine and statistical learning [6,
37, 230-232]. Flagging out-of-distribution (OOD) instances involves identifying uncom-
mon data points that might compromise the reliability of machine learning systems [37].
00D detection is closely related to inference with a reject option (also termed selective clas-
sification) [ 35, 36|, which allows classifiers to refrain from making a prediction under am-
biguous or novel conditions [233]. The reject option has been extensively studied in sta-
tistical and machine learning [ 234237 |, with early work dating back to the 1950s[234,
238, 239].

More recently, our work in [41] explored the utility of selective classification in DG
settings. They investigated various post-hoc scores to define a “competence region” in fea-
ture space where a classifier is deemed competent. Post-hoc methods rely on various as-
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Figure 6.6. Experiment 1. Left: Toy dataset that conforms to our theoretical criteria. A de-
tailed description can be found in Appendix B.3.1. Without environmental information, the
marked input at x = 2.5 could belong to either one of the domains numbered 1, 2, or 3.
Marginal distributions of the five environments are shown on top. Right: Comparison of envi-
ronment classification accuracy for different set sizes.

pects of pre-trained model outputs, such as the softmax outputs (e.g., [ 240]), logit outputs
(e.g., [241, 242]), or intermediate features (e.g., [ 243—245]). In this work, we consider a
post-hoc score based on the k-nearest neighbors to the training set in feature space simi-
lar to [244], which is applicable to both classification and regression settings. Unlike the
approach taken in our work in [41], where the focus lies on individual input features, we
consider the set summary provided by the set-encoder. Thus, we can identify novel envi-
ronments even when singleton inputs lack sufficient information.

6.8. Experiments

In the following, we explore various aspects of our approach across three different dimen-
sions. First, we show on two datasets that our model achieves improved performancein the
ID as well as the OOD setting compared to a baseline model. Second, we show how novel
environments can be detected to select between the most predictive (in the ID setting) and
the most robust (in the OOD setting) model. We also show that novel environment detec-
tion can be utilized to avoid failure cases. Third, we demonstrate that the necessary criteria
(see Subsection 6.6.5) can be validated empirically, identifying cases where no benefits of
our method can be expected. Experimental details can be found in the Appendix B.

6.8.1. Evaluation Approach

To approximate Criterion 1, Criterion 2 and Criterion 3, we are required to train five distinct
models (see Table 6.1 for an overview). We denote our composite model as fY|X’S(") (see
Figure 6.5) and the baseline model (having no access to the context) as f X. Based on these

two models, we can compute the relative improvement achieved by our model relative to a
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baseline model via

L OL(fYIRS™y (YR
R = 27 . (6.24)

Here, L(f Yixst ) denotes a performance measure for our model and similarly for the base-
line model f¥X. R; > 0 signifies an advantage attained by our approach and therefore the
fulfillment of Criterion 1. In the regression setting, we consider the negative L2-Loss as the
performance measure.

. .. . . (n)
To validate Criterion 2, we train a contextual environment model (referred to as f /%8

utilizing both the set input $() and the target input X to predict the environment label E.
Additionally, we train a baseline environment model (denoted as f¥/X) aimed at predicting
E solely from X. We then compute the relative improvement R, of the contextual envi-
ronment predictor relative to the baseline environment predictor:

R — Acc(fE‘x’s(n)) — Acc(fE|x)
e Acc(fEIX)

(6.25)

We consider here the accuracy of the environment prediction as a performance measure.
Riu > 0indicates that Criterion 2 is satisfied. In our experiments, we choose the set size
n such that we achieve approximately 100% accuracy for our contextual environment pre-
dictor fEX8™ on 1D data.

Similarly, we consider an environment-oracle model f YIXE that aims to predict Y from

the singleton input and the environment label E. We define the relative improvement Ry
of the environment-oracle model f¥ ¥ compared to the baseline method fY¥ X

L(fRE) — £(F7H)

7?fIII = E(fy‘x)

(6.26)

In this case, the relative improvement Ry is associated with Criterion 3.

6.8.2. Experiment 1: Toy Example

Setup To set the stage, we consider a dataset that is inspired by [246]. The dataset in-
cludes data from five environments, defined by five 2D Gaussian distributions differing
only in their locations (i.e., mean vectors). The data-generating process is thus:

j ~ Categorical(py,...,pJ) (6.27)
X0 o N(u9),2) for i=1,...,1; (6.28)

This is the classical setting of Simpsons’ paradox, for which a naive linear model fit obliv-
ious to the hierarchical data-generating process will yield results opposite to the true rela-
tionship between X fj )

for details).

and X. éj ) in each environment (cf. Figure 6.6 and Appendix B.3.1

We designate the first dimension, X7, as the input feature, while the second dimen-
sion, Y = Xy, serves as the outcome variable. Importantly, the dataset meets our neces-
sary criteria: We cannotinfer the origin environment from a single input alone, asindicated
by the overlap between the marginal distributions of X1, obtained by projecting the entire
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Figure 6.7. Experiment 1. Relative improvement of set-encoder (shown in I) approach ver-
sus baseline model (0 means no improvement is achieved) on toy example. We also show I
(OOD) on OOD data. II depicts the relative improvement of the environment-oracle model
compared to the baseline model. III demonstrates the relative improvement in predicting the
environment when using contextual information compared to the absence of it. Sampling
variation arises from using different seeds to partition the ID data into training, test and vali-
dation set.

sample onto the x-axis in Figure 6.6. Thus, this setting aligns with Criterion 2, and, ad-
ditionally, corresponds to Criterion 3, since learning about the environment location g¢(/)
should improve prediction.

Results As a first check of Criterion 2, we evaluate whether a set input provides addi-
tional information about the environment compared to a singleton input. This evaluation
involves studying the classification accuracy in distinguishing between the environments.
In Figure 6.6 we observe that the additional set input improves the ability to predict the
environment significantly and the more samples we include, the better the prediction. As
expected, a decrease in the distance between environments necessitates more samples to
differentiate between environments. Interestingly, the particular choice of architecture for
the permutation-invariant network does not seem to play a significant role for predicting
the environment label well, as demonstrated in Section B.7.

Next, we assess the predictive capabilities of our approach across all possible scenar-
ios of “leave-one-environment-out”. This involves training on all environments except one
and treating the excluded environment as a novel OOD scenario. Here, we consider linear
models to ensure an optimal inductive bias for the problem (non-linear models achieve
similar results, as shown in Appendix B.3.3). We can see that Criterion 1, Criterion 2 and
Criterion 3 are satisfied in Figure 6.7. Providing contextual information in the form of a
set input increases the performance significantly compared to a baseline model in the ID
as well as in the OOD setting (see I and I (OOD) in Figure 6.7). We also observe a slightly
higher relative improvement when the environment label is directly provided (see II) com-
pared to using the output of the set-encoder (see I). This aligns with our expectations, as
the set input does not offer more information about the target value than the environment
label itself.

Finally, we visualize the predictions of the baseline approach and our set-encoder ap-
proach in Figure 6.8. Our model captures and utilizes the characteristics of each environ-
ment for prediction. In contrast, the baseline approach struggles to discern between envi-
ronments due to the significant overlap between environments, resulting in an inability to
deal with environmental differences. Note that we obtained the best results on this prob-
lem by considering a class of linear models that aligns with the data-generating process.
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Figure 6.8. Experiment 1. Predictions performed on the toy dataset illustrated in Figure 6.6.
We show predictions made by both our set-encoder approach and the vanilla model in the ID
and OOD settings.

However, we observe that extrapolation performance drops when the considered models
are overly complex and lack a strong inductive bias (see Appendix B.3.3).

6.8.3. Experiment 2: ProDAS Example

Setup Weutilize the ProDAS libraryintroduced in Section 6.1 to generate high-dimensional
image data that meets our dataset requirements. The dataset comprises objects of shape
square and circle, exhibiting variations in their texture, background color, rotation, and
size. Additionally, the background varies in color and texture, resulting in a complex sce-
nario. We consider the task of predicting the object size. Difficulties arise due to the pres-
ence of distinct environments with varying characteristics. Specifically, depending on the
environment, a constant is added to the observed object size to get the actual target vari-
able that we aim to predict:

}/gt = Yobserved + ] - consty (629)

Here, j € {1,2,3,4} denotes the environment, while Y represents the ground truth
(or factual) size, obtained as a sum of the observed size Yypserved (relative to the image
frame) and a constant depending on j. The background color follows a normal distribu-
tion NV (pj; X2) where the mean depends on the environment in the following way: p; =
o + j - consta. Here we assign a small value to consty to enforce the background distri-
butions to overlap between different environments. Specifically, this construction implies
that the relation between input X and target Y differs across environments. This corre-
sponds to Criterion 3. Notably, inferring the originating environment from a single sam-
ple is unattainable due to overlapping background distributions (corresponding to Crite-
rion 2). Samples of different environments are shown in Section B.4. This example could be
inspired by microscopy data where different microscopes correspond to distinct environ-
ments, each exhibiting its own characteristics. During training, we assume to have access
to the ground truth value Yj,.

Results In line with the results from the previous toy example, we can demonstrate a
strong relative improvement in the ProDAS dataset, as depicted in Figure 6.9. All formal
criteria are satisfied and a very significant improvement is achieved, both in the ID and the
OOD setting, by considering the contextual information from the environment. Details for
this experiment can be found in Section B.4.
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Figure 6.9. Experiment 2: Relative improvement of set-encoder (shown in I) approach ver-
sus baseline model (0 means, no improvement is achieved) on ProDAS dataset. We also show
I (OOD) on OOD data. II depicts the relative improvement of the environment-oracle model
compared to the baseline model. IIl demonstrates the relative improvement in predicting the
environment when using contextual information compared to the absence of it. Variations
arise from using different seeds to partition the ID data into training, test and validation set.

6.8.4. Experiment 3: Colored MNIST

Setup The ColoredMNIST dataset (see also Figure 2.1) is an extension of the standard
MNIST dataset, wherein the number of classes is reduced to two classes (all standard labels
< b are assigned to new label 0, and all labels > 5 are the new label 1). Furthermore, there
exists label noise, so only in 75% of all cases, the label can correctly be predicted from the
input image. To make things more challenging, the image background can take two colors
that are also associated with the image label. In the first environment, the association is
90% and in the second one 80%. Therefore, a baseline model would tend to utilize the
background for prediction instead of the actual shape. However, in a third environment,
the associations are reversed, so that a model based on the background color would achieve
only 10% accuracy — worse than random.

This datasetimplies a trade-off between predictive performance in ID domains versus
robustness in OOD domains, as discussed in Subsection 5.5.2. For instance, an invariant
model that relies solely on an object’s shape would be robust to domain shift at the cost
of diminished accuracy in the first two environments (75% instead of 80% or 90%). In
contrast, a baseline model would achieve greater accuracy in the first domains (80% and
90%), but would fail dramatically in the third domain (only 10%).

Results Here, we assume the invariant model to be given (see Section B.5 for details),
but it could also be obtained by invariant learning, e.g. Invariant Risk Minimization [ 34].
With our novel environment detection approach (see Subsection 6.6.7) we can get the best
of both worlds, circumventing the inherent trade-off. When identifying the ID setting, we
utilize the baseline model that achieves the highest predictiveness within the observed en-
vironments. In case we detect the OOD setting, we employ the invariant model. We com-
pare this kind of model selection due to the features A, (S(”)) inherent to our model versus
the features extracted by the baseline model. The results can be found in Table 6.2. By uti-
lizing the model selection based on the set-summary h¢(S(”)), we nearly recover the ID
accuracy while maintaining identical performance to the invariant model on OOD data.
Evidently, the novel environment detection only works with set summaries. A feature ex-
tracted from a single sample does not provide enough information to reliably detect distri-
bution shifts, leading to difficulties in effectively selecting between baseline and invariant
model, as demonstrated in Table 6.2.
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Accuracy [%] 1

In-DistributionOut-of-Distribution

Baseline 846+ 0.3 10.2+0.3
Invariant 72.8+£0.9 73.1+0.2
Selection (Ours)  84.1 £ 0.3 73.1+0.2
Selection (Baseline) 84.0 +0.3 14.0£04
Optimal Classifier 85.0 75.0

Table 6.2. Experiment 3. Mean and standard deviation of accuracy percentages across model
types and domain settings over 5 runs. The features extracted by our model allow for improved
OOD detection compared to the features of the baseline model. Thus, our model can perform
a favorable selection between the baseline model in the ID setting and the invariant model in
the OOD setting.

6.8.5. Experiment 4: Violated Criteria

Setup We consider the PACS dataset [46 ], training our model on the Cartoons, Sketches,
and Paintings environments, and assess its performance in the Art environment during
testing. The dataset includes images with labels that we intend to predict. Regarding a
second classification task, we delve into the OfficecHome dataset [48]. In line with the
PACS dataset, we approach the classification problem, training across three specific envi-
ronments, and subsequently evaluating a novel one as an out-of-distribution (OOD) sce-

nario.
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(a) Environment Art in PACS dataset. The (b) Environment Product in OfficecHome dataset.
environment is almost completely inferable Although the environment is not inferable
from one input sample (Criterion 2 not from one input sample (Criterion 2), the
satisfied). Conclusively our approach does environment information does not yield
not yield benefits. benefits (Criterion 3).

Figure 6.10. Experiment 4. Examples where atleast one of the necessary criteria is not satis-
fied and our approach cannot possibly yield benefits. For experimental details, see Section B.6.

Results When the criteria are not met, no benefits can be achieved, even in the ID set-
ting. This has been proven in Theorem 2 and we demonstrate it here for two scenarios
empirically (see Figure 6.10). We find that Criterion 2 is not satisfied on the PACS dataset:

As depicted in Figure 6.10b, the contextual environment model f% %5 does not perform
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MSE | MSE |
D 00D AUROC [%] T D 00D AUROC [%] T
Baseline 2.89+0.15 2.94 4 0.05 50.8 +2.2 Baseline 2.9940.17 2.7440.10 65+ 5
Ours 2.13+0.13 3.23+0.11 99.7 £ 0.2 Ours 2.27+£0.13 3.840.4 100.0 £ 0.0
Spring | Summer
Fall | Winter
MSE | MSE |
D 00D AUROC [%] T D 00D AUROC [%] 1
Baseline 2.294+0.12 7.04+04 7644 2.6 Baseline 2.21+0.11 6.08 +£0.13 58.24+0.7
Ours 2.1940.09 1490 +1.30 100.0 £ 0.0 Ours 2.094+0.12 5.7+04 100.0 + 0.0

Table 6.3. Experiment 5. Performance comparison between our model and the baseline,
broken down by target domain. We compare the performance in the ID and OOD setting
(MSE), as well as their capability to detect a novel environment (AUROC). Both models fail
in the OOD setting, but our model can detect with strong certainty when this is the case. We
present the mean and standard deviation derived from 5 runs using different seeds for parti-
tioning into training, validation, and test sets.

better compared to the baseline environment model fZ*. Remarkably, a single example
is sufficient to infer the source environment, allowing for a 99.7% accuracy in predicting
the correct environment from an individual sample (see Section B.6). Since Criterion 2 is
not fulfilled, we anticipate Criterion 3 also to be wrong. This is indeed the case as Fig-
ure 6.10b depicts. Since the criteria are not met, we do not achieve any benefit over the
baseline model, neither in the ID nor in the OOD setting, as demonstrated in Figure 6.10b.

On the OfficeHome dataset we find that Criterion 2 is not satisfied, while Criterion 3
is. Results are depicted in Figure 6.10b. We observe that the set input offers benefits for
predicting the data originating environment corresponding to Criterion 3. However, even
when providing the target classifier with the environmentlabel (environment-oracle model),
we do not achieve an improvement over the baseline model suggesting that Criterion 2 is
not satisfied. As expected and depicted in Figure 6.10b, our method does not yield benefits
compared to the baseline model.

6.8.6. Experiment 5: Failure Case Detection

Setup Besides unfulfilled criteria, another reason why our approach might fail to reap
benefits or degrade in performance is when the distribution shift requires extrapolation.
This might be unattainable by the model. We demonstrate, using the BikeSharing dataset
[247], thatin cases where different seasons like summer or winter represent distinct envi-
ronments, extrapolation might be necessary. For this dataset we consider the task of pre-
dicting the number of bikes rented across the day based on weather data. Details about
the dataset and pre-processing steps can be found in Section B.8. We explore four scenar-
ios, each entailing training on all seasons except one. We aim to assess the abilities of our
model compared to a baseline model in detecting novel environments.

Results InTable 6.3 we demonstrate that our approach is slightly superior compared to
the baseline modelin the ID settings. However, both the baseline and our approach experi-
ence performance degradation in the novel environments. To detect the novel environment
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(and consequentially potential failure cases), we compute the score as suggested in Sub-
section 6.6.7 and evaluate how well it distinguishes between ID versus OOD environment.
We designate an independent ID test set and use the environment excluded during train-
ing (e.g., summer or winter) as the OOD set for evaluation. The area under the ROC-curve
(AUROC) in Table 6.3 demonstrates that the score based on the summary vector provided
by the permutation invariant network allows for a perfect novel environment detection
whereas the standard approach fails in detecting the novel environment.

6.9. Conlusion: Context-Aware DG

In this chapter, we introduce a novel approach enabling the extraction and utilization of
contextual information from set inputs within a Domain Generalization (DG) setting. The
set inputs originate from the same environment as the sample for which a prediction is
required and are summarized into a vector via a permutation-invariant network. We for-
mulate criteria that are necessary for our approach to yield benefits and are easy to verify.
Empirically, we demonstrate that we can verify these criteria, which enables us to iden-
tify cases where our approach does not yield benefits. We showcase the merits of our ap-
proach on several datasets. Additionally, we demonstrate that novel environments can be
detected, allowing for the identification of potential failure cases.

In our current framing, we have not yet employed regularization techniques, such as
enforcing the set vector to contain all information about the environment in our composite
model in Figure 6.5. In general, investigating inductive biases for the composite network
architecture is an interesting future research avenue. Finally, even though we focused our
experiments in standard supervised learning settings, our method could also be employed
in other realms, such as domain disentanglement, data generation, or in combination with
other DG methods. Thus, extending our method to different settings represents another
exciting research direction.



Finding Competence Regions in Domain
Generalization

The following is a direct adaptation from our work in [41].

Abstract We investigate a “learning to reject” framework to address
the problem of silent failures in Domain Generalization (DG), where
the test distribution differs from the training distribution. Assuming
a mild distribution shift, we wish to accept out-of-distribution (OOD)
data from a new domain whenever a model’s estimated competence
foresees trustworthy responses, instead of rejecting OOD data outright.
Trustworthiness is then predicted via a proxy incompetence score that is
tightly linked to the performance of a classifier. We present a compre-
hensive experimental evaluation of existing proxy scores as incompe-
tence scores for classification and highlight the resulting trade- offs be-
tween rejection rate and accuracy gain. For comparability with prior
work, we focus on standard DG benchmarks and consider the effect
of measuring incompetence via different learned representations in a
closed versus an open world setting. Our results suggest thatincreasing
incompetence scores are indeed predictive of reduced accuracy, leading
to significant improvements of the average accuracy below a suitable
incompetence threshold. However, the scores are not yet good enough
to allow for a favorable accuracy/rejection trade-off in all tested do-
mains. Surprisingly, our results also indicate that classifiers optimized
for DG robustness do not outperform a naive Empirical Risk Minimiza-
tion (ERM) baseline in the competence region, that is, where test sam-
ples elicit low incompetence scores.

7.1. Introduction

Although modern deep learning methods exhibit excellent generalization, they are prone
to silent failures when the actual data distribution differs from the distribution during
training [ 37, 248 ]. We address this problem in a “learning to reject” framework [ 233, 249,
250]: Given a pre-trained model and potentially problematic data instances, can we determine if
the model’s responses are still trustworthy?

A major goal of this work is to explore the above question in settings where we wish to
make predictions on a test set from a new domain following a potentially different distribu-
tion than the one available during training. This setting is referred to as Domain General-
ization (DG) and assumes that we have access to multiple domains (also known as datasets
or environments) during training (for a thorough introduction to the topic see Section 2.2).
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Figure 7.1. The main principle behind incompetence scores for improved domain generaliza-
tion: We rejectinstances above the incompetence threshold, which is located at the 95% quan-
tile of the training distribution.

The generalization task asks to provide accurate predictions for anew domain, usually sub-
jectto amild distribution shift (e.g., from one hospital to the next). Still, from a data-centric
perspective, almostall instances in the new domain are out-of-distribution (OOD). Follow-
ing the rationale of DG, we do not want to reject all OOD instances outright, but only those
for which the estimated model competence falls below some acceptance threshold.

Since we do not have access to the distribution of the test data during training, we can
neither determine out-of-domain competence directly [251], nor define the acceptance
threshold in a Bayes-optimal way [239]. Instead, we investigate proxy scores that are
negatively correlated with competence: We call them incompetence scores and they should
monotonically decrease as a model’s accuracy increases (see Section 7.3). For a simple ex-
ample of such a score, we may consider the distance of a new data point to the nearest
neighbor of the training data in a model’s learned feature space. In this case, we expect the
performance to drop with increasing distance. A visual explanation of the incompetence
score is shown in Figure 7.1. Interestingly, our experiments demonstrate that the mono-
tonicity property typically holds for well-known choices of these scores.

Setting a threshold to delineate a competence region inevitably results in a trade-off
between accuracy and coverage: The more instances we add to the competence region, the
worse the accuracy, and vice versa. Identifying the optimal (task-dependent) trade-off in
DG is difficult due to the differences between the training and the (unknown) test distri-
butions. Thus, we find it pertinent to explore this trade-off for different thresholds across
DG tasks (see Subsection 7.4.3).

The concept of incompetence underlying the present work is strongly linked to pre-
vious research on classification with a reject option (e.g. [252]) and selective classifica-
tion (e.g. [35]). Common to these concepts is the idea to accurately predict errors based
on a proxy quantity. Since we are interested in the task-dependent competence of pre-
trained classifiers, we concentrate solely on post-hoc OOD detection methods as proxy
scores for incompetence. And although the current work focuses on classification tasks,
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our approach should also be worth pursuing in regression tasks, since feature-based in-
competence scores seem equally applicable in this case.

In the following, we present a comprehensive experimental evaluation of incompe-
tence scores in a variety of DG tasks. For comparability with prior work, we focus on stan-
dard datasets from the DG literature [51] and consider the closed vs. open world setting
(i.e., new appearances of known classes vs. hitherto unknown classes) as well as the effect
of measuring incompetence through different data representations. Further, we investi-
gate whether state-of-the-art classifiers that are optimized specifically for domain shift
robustness exhibit more accurate competence regions than naively trained ones. Finally,
we investigate whether it is possible to estimate an incompetence threshold, such that a
classifier is guaranteed to recover its ID accuracy in the corresponding competence region
under domain shift. In summary, we make the following contributions:

1. Wedemonstrate empirically that accuracy decreases asincompetence scores increase
and highlight the resulting trade-offs between rejection rate and accuracy gain (see
Subsection 7.4.3)

2. Wefind thatboth feature- and logit-based scores are competitive in the closed world,
whereas feature-based approaches work best in the open world setting (see Subsec-
tion 7.4.4 and Subsection 7.4.5)

3. We propose an approach to determine an incompetence threshold from ID data and
demonstrate its utility for most domain shifts considered in this work (see Subsec-
tion 7.4.6)

4. We observe thatrobust classifiers do not outperform a naive baseline in terms of gen-
eralization performance in the elicited competence regions (see Subsection 7.4.4)

7.2. Related Work

7.2.1. OOD Detection

Dealing with anomalous (i.e., out-of-distribution; OOD) instances that differ from those
contained in the training set (i.e., our proxy for the in-distribution; ID) is a widely dis-
cussed and conceptually overloaded topicin the machine and statistical learning literature
[6, 37, 230—232]. OOD detection addresses the problem of flagging unusual data points
which could undermine the reliability of machine learning systems [ 37 ]; OOD generaliza-
tion addresses the need to make predictions even when the test distribution is completely
unknown or known to be different than the training distribution [6].

In this work, we are interested in analyzing established domain-robust classifiers.
Thus, we focus on OOD detection methods that do not modify the classifier architecture
or training. Such methods are called post-hoc detection [37], as they do not intervene on
the downstream classifier. In this work, we utilize established post-hoc methods that rely
on various aspects of model output such as the softmax output (e.g. [240]), logit output
(e.g. [241, 242]), or intermediate feature-outputs (e.g. [ 243—245]).

Post-hoc OOD scores have been shown to perform well across a variety of OOD de-
tection benchmarks [232]. Previous work analyzed post-hoc OOD detection scores to pre-
dict the accuracy of a classifier on novel inputs [253] or to detect ID failure cases [254].
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In addition, [ 253 ] compute an aggregated OOD-score over an entire ID dataset to predict
the global accuracy of a classifier on OOD data. Differently, we aim to predict the likeli-
hood of error from individual incompetence score values and show that this approach pro-
vides us with a finer control over the trade-off between coverage and accuracy (see Sub-
section 7.4.6).

Despite the large volume of literature focusing on OOD detection and generalization
(e.g., [255]), there are no extensive studies applying OOD scores to domain generalization
(DG) benchmarks. Thus, one of the main goals of this work was to provide such a compre-
hensive analysis on the utility of OOD scores for improving DG.

7.2.2. Domain Generalization

The goal of domain generalization (DG) is to train models that generalize well under distri-
bution shifts [15, 17], such as adversarial attacks [44] or style changes [256], for which
the label space remains unchanged during testing [37]. In DG settings, we assume that
we have access to different environments or datasets (e.g., art and sketch images) and the
goal is to make good predictions in completely unknown environments (e.g., real-world
images). We introduce DG in Section 2.2 in more depth.

Compared to Domain Adaptation [DA; 52], where we have unlabeled data from the
testdomain, the DG problems assume that we have no knowledge about the test domain(s).
Consequently, it is not possible to train the algorithm using unlabeled test data as in self-
training [257 |. However, a recent study has demonstrated that a model can be effectively
adjusted during test time [258]. Moreover, it has been shown that classifiers can assign
high likelihoods under domain shift even when they are plainly wrong, which makes it
hard to detect failure cases [ 259, 260]. Thus, proxy “incompetence” OOD scores appear to
be good candidates for spotlighting such failures. However, to the best of our knowledge,
there are no extensive studies which attempt to quantify the competence of domain-robust
models in the context of DG.

Many benchmark datasets in DG have been established, on which researchers can
study generalization performance beyond a single training environment [ 14, 51]. In this
work, we consider the main datasets contained in the DomainBed benchmark [51]. We ad-
ditionally distinguish between a closed world setting, where only instances of known classes
are encountered in the test domain, and an open world setting, where instances of unknown
classes are also present in the test domain. We believe the open world setting to be of prac-
tical interest, even though typical DG problems are formulated under a closed world as-
sumption [17].

The current work primarily focuses on learning-based approaches that seek to learn
features thatremain invariant under domain shift. For an overview of other approaches see
for instance Subsection 2.2.3. According to [261], there is theoretical evidence to suggest
that features that remain invariant across domains enable accurate predictions in cases of
distributional shifts. As a result, various algorithms have been proposed with the goal of
learning invariant features [15, 31, 34, 262]. However, it is not clear which DG methods
can achieve consistently robust performance across different datasets. On the one hand,
it has been suggested that a strong standard classifier trained with empirical risk estima-
tion (ERM) performs favorably across multiple DG datasets [51, 263 ]. On the other hand,
some DG methods have been shown to outperform an ERM baseline on several benchmark
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datasets[14]. Here, we complement the existing literature by examining whether the com-
petence regions of different DG classifiers differ in terms of the achieved improvements in
accuracy.

7.2.3. Selective Classification

Inference with a reject option [aka selective classification, 35, 36| enables classifiers to re-
frain from making a prediction under ambiguous or novel conditions [233]. The reject
option has been extensively studied in statistical and machine learning [234-237]. The
origins of these approaches can be traced back until at least the 50s of the last century,
as demonstrated by works such as [234, 238, 239 |. However, selective classification has
only recently gained attention in the context of deep neural networks [ 35].

[250] outline the three main reasons why a reject option could be a reasonable choice
in any practical application: 1) failure cases; 2) unknown cases; and 3) fake inputs. For
instance, [ 264 ] train natural language processing (NLP) models for selective question an-
swering under domain shift. [265] investigate the utility of MaxProb (a common OOD
detection score) as a rejection criterion across several NLP datasets. [266 ] use the Maha-
lanobis distance as OOD detection method to filter inputs to NLP models for conditional
text generation and [ 267 | showcase the reject option for catching software defects.

The main challenge selective classifiers face is how to reduce the error rate by “re-
jecting” instances for which no reliable prediction can be made, while keeping coverage
(i-e., the number of “accepted” instances) as high as possible [239, 268, 269]. And while
the theoretical characteristics of the resulting trade-off have been systematically studied
[36, 270], the empirical utility of OOD “rejection scores” for ensuring robust performance
in the DG setting remains largely unclear. In this work, we perform an extensive evalua-
tion of this trade-off across a wide variety of state-of-the-art OOD scores, domain-robust
classifiers, DG datasets and environments.

7.3. Method

We denote with fy an arbitrary classifier with a vector of trainable parameters 6 (e.g., neu-
ral network weights) which we typically suppress for readability. To evaluate a classifier,
we consider its accuracy, which we denote as Ag;g, based on inference queries from some
reference distribution & ~ pgise ().

7.3.1. Incompetence Scores

The goal of an incompetence score sy : RP — Ris to indicate whether a classifier f is fa-
miliar with some input x € X. We consider familiarity with the input to be equivalent
to competence. The fundamental principle of this work is that instances eliciting a high
incompetence score are intrinsically hard to predict and vice versa. Due to the close con-
ceptual connection between competence and familiarity or incompetence and OOD, we
employ OOD scores as proxy for incompetence. In particular, we employ post-hoc methods
that compute an OOD score taking into account the classifier.
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In our subsequent experiments, we compute the incompetence scores via a number
of post-hoc methods. The post-hoc methods used in this chapter can be grouped into the
following categories:

» Feature-based: Virtual-logit Matching [ViM; 245 |, Deep-KNN [Deep-KNN; 244 ];

» Density-based: Gaussian mixture models (GMM), minimum Mahalanobis distance be-
tween features and class-wise centroids [Mahalanobis; 271];

» Reconstruction-based: reconstruction error of PCA in feature space [243];

» Logit-based: energy score [Energy; 242 ], maximum logit [Logit; 241 ], maximum soft-
max [Softmax; 240], and energy-react [Energy-React; 272].

Note, that we interpret higher scores as indicative of incompetence (e.g., we consider the
negative of the maximum softmax and the maximum logit).

7.3.2. Admissible Incompetence Scores

Detecting out-of-competence means checking whether some given incompetence score
s¢(x) € R falls below some threshold « (classified as in-competence) or above (classi-
fied as out-of-competence). We consider scores s ¢(x) that depend on the classifier f and
the input x at hand.

The threshold « trades off accuracy (how well does the classifier perform on accepted
data) with coverage (how many samples does the score accept). In this section, we de-
scribe how a useful (ideal) incompetence score should affect downstream classification as
a function of the threshold a. In particular, consider the subset of input space where the
classifier is deemed competent given a fixed threshold «:

X¢(a) :=={z:sp(x) < a}. (7.1)

We use the ID data to determine a suitable threshold for the competence region, for in-
stance we later pick @ = ags such that 95% of the ID data is in X ¢(cvg5). We consider the
accuracy Aoop () of the classifier ¢ on the unknown test domain restricted to the compe-
tence region X ¢ () as a function of c.

We summarize the above description in the fundamental criterion of this work: An
admissible incompetence score must assign low incompetence to those regions where
the downstream accuracy is high. We formalize this as follows:

Criterion 4. An incompetence score sy(x) is called “admissible” if the downstream accuracy
Aoop () decreases monotonically as « is increased for any distribution that undergoes a mild dis-
tribution shift.

This monotonic trend requires that the incompetence score s¢(x) is closely related to the
performance of the classifier. Such a connection allows us to make predictions on the down-
stream accuracy as a function of a:
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Proposition 8. Given a classifier fo(x) and its corresponding in-distribution pyp. Then, for a
test distribution of interest poop and a corresponding admissible score s ; () as in Criterion 4:

(a) Ifthereisathreshold o € R such thatforall o < o ID and OOD have the same support and
classification accuracy, then, Aoop () > Ayp for a < o,

(b) In the limit of « — o0, we find that Aoop (t) — Aoop-

a—0o0

Proof.  (b) Take thelimit X (o) =~ RP. Then there s no restriction of the support of

(a)

Poop, S0 the accuracy for large o approaches the accuracy on the entire OOD dataset.

By assumption pip and poop share their support when restricted to the competence
region X s(a) when av < o*. Thus we can always assume that Poop (X () > 0
for all & > mingecqupp(py) Sf(T) =: ao, which makes the accuracy well-defined for
all relevant o > «y:

_ Poon(Xy(a), ¢(X) =Y)

Poop (X f(a)) 7.2)

Aoop (Oé)

Here, Y is the correct label to the input X.

For the remainder, we consider « € [ap, a*], so Aoop (@) = A (). Then, we have
that Aoop(a) = Ap(a) > limy— 00 Ap(a) = App. The limit can be taken analo-
gously to the proof of (b) above.

]

The first statement describes the behavior of Agop () for small « and the second for

large .. We observe this behavior empirically in Figure 7.3.
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Figure 7.2. Anincompetence score is able to sort out-of-distribution (OOD) images from the
PACS dataset, so that higher incompetence scores result in lower classification accuracy. (Left)
Example images from the training domains. (Right) Images from the test domains resulting
in lowest and highest incompetence scores (using a Deep-KNN scoring function) in the fea-
ture space of a baseline ERM classifier. Green and red frames denote correctly and incorrectly
classified images, respectively. Higher incompetence scores correlate with a decrease in the
classifier’s accuracy.
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7.4. Experiments

In our experiments, we analyze the effect of an incompetence threshold a (see Subsec-
tion 7.3.2) on DG performance.! In the following, we first describe our experimental proto-
col. Then, we analyze the competence region in dependence on the threshold « and show
that the competence region behaves as predicted in Proposition 8. Finally, we carry out an
extensive investigation of the competence region for closed and open world settings, where
we show the utility of the concept for various incompetence scores and point out current
weaknesses.

As an introductory example to the competence region, we consider Figure 7.2 which
depicts the experimental procedure on the PACS dataset for a standard classifier trained
with Empirical Risk Minimization [ERM; 64 ]. We train the classifier on the domains Art,
Photo, and Sketch, and apply the trained classifier in the unknown Cartoon domain. The
samples in the test domain are ordered by the predicted incompetence score s ¢(x). As ex-
pected, the classifier still performs well on Cartoon samples with low incompetence scores
(9 out of 9 classified correctly in the example), but the accuracy drops for high scores (only
2 out of 9 correct classification). Qualitatively, the score correctly notices that images with
significantly different characteristics are much harder to classify. In the following sections,
we quantify this behavior systematically for anumber of different classifiers, incompetence
scores, datasets, and domain. But first, we give details on our experimental setup.

7.4.1. Experimental Setup

We consider all combinations of nine pre-trained classifiers cg(z), varying both in archi-
tecture and training, nine OOD post-hoc scores s ¢(x) as incompetence scores on a total of
32 DG tasks from six different DG datasets. The pre-trained classifiers are obtained as fol-
lows. We train various state-of-the-art classifiers from DG literature, namely Fish [262],
GroupDRO [273],SD [274], SagNet [65], Mixup [275] and VREx [ 126 ]. Furthermore, we
train three different neural network architectures with empirical-risk-minimization [ 64]:
A ResNet based architecture which we denote by ERM [276], a Vision Transformer [277]
and a Swin Transformer [278]. Training details and hyperparameter settings are listed in
Section C.5.

These models are trained on six domain generalization datasets from the DomainBed
repository [51]: PACS [46], OfficeHome [48], VLCS [47 |, Terralncognita [49 ], DomainNet
[60] and SVIRO [279]. For an overview of these datasets see Figure 2.1. Each DG dataset
consists of four to ten different domains from which we construct different DG tasks: We
train a classifier on all but one domain. The one left out during training is then the OOD
test domain where the competence region is evaluated. As an example consider the DG
task behind the earlier example in Figure 7.2: If we train a model on the domains Photos,
Artimages, and Sketches, the DG task asks for an accurate model on the domain Cartoons
which constitute the OOD test domain (see Figure 7.2). Overall we consider 32 DG tasks
which result in 288 trained networks. We then compute the incompetence scores of each
trained network In Subsection 7.3.1, we describe the process of calculating the incompe-
tence scores.

For each DG task, we distinguish four datasets. For the ID distribution, we consider
a training set, a validation set for hyperparameter optimization, and a test set that has no

We provide access to our code under https://github.com/XarwinM/competence_estimation
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Figure 7.3. Theaccuracy of the ERM classifier on OOD data Agop () as the competence region
is enlarged by increasing the incompetence threshold a. As predicted by our monotonicity cri-
terion (Criterion 4), the accuracy starts off at Agop () > Ajp and then falls off monotonically
with a. Atthe same time, the fraction of data the classifier is applied to increases. The classifier
accuracy and fraction of considered data can easily be traded off using this figure.

influence on the optimization process for the subsequent evaluation. The classifiers are
trained on the ID training set. We compute the scores for the ID distribution on the ID val-
idation set and the ID accuracy on the ID test set. The OOD test set is given by the DG task
(e.g., as in Figure 7.2). After training, we apply all post-hoc methods to the penultimate
feature layer or the ouput (logits) layer of the classifier, as is typical in the OOD detection
literature. If the post-hoc method needs to fit the data (as for instance with GMMs), we fit
the score function on the ID training data.

7.4.2. Competence Threshold

In this section, we analyze the performance of the classifiers as a function of the threshold «
which determines their competence region (see Equation 7.1 in Section 7.3). To this end,
we compute the incompetence scores on the ID validation dataset and on all OOD data
samples.

Figure 7.3 depicts the resulting score distributions and accuracy Agop (<) as a function
of the threshold « for a single classifier (ERM). Here, we consider four incompetence scores
on one of the DG tasks provided by PACS and Terralncognita, respectively. We find that the
considered incompetence scores fulfill the requirement for a competence detector in Cri-
terion 4 that the accuracy must decrease monotonically as the threshold « increases. We
then find the theoretical results in Section 7.3 confirmed: For low «, the accuracy Agop (<)
is high, and even exceeds the average accuracy on the ID data Ajp (see Proposition 8 (a)).
It eventually decreases until Agop () — Aoop for large « (see Proposition 8b).

Figure 7.3 also depicts the fraction of ID and OOD data that is considered (i.e., not
rejected) as we increase the incompetence threshold a:

_ [Daise 0 X (o)

Coverage g (o) = Do (7.3)
1st
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Figure 7.4. The expectation over the different domain robust classifier’s accuracy on OOD
data as a function of the coverage of the competence region. The 95™ percentiles refer to the
validation set of the ID distribution and also represent averages over all classifiers (and are
thus sometimes off-curve). The domains are ordered in canonical sequence as in Table C.1 in
Section C.3.

When dist is equal to ID, we consider Djp as ID validation or test set. In Figure 7.3 we
opt to choose the validation set as Djp, since it is accessible during training and provides
insight into what to expect during application on ID data. Note that the coverage of the
ID test set is very similar to that of the ID validation set. In the case of dist being equal
to OOD, we include all available OOD data. For instance, we can compare the methods
at the ag; which includes 95% of the ID data (vertical gray line in Figure 7.3). Here, Logit
keeps a significantly larger fraction of test data compared to the other incompetence scores.
However, this results in a lower accuracy in the competence region Apop (95 ).

Unfortunately, due to the nature of the DG problem, the accuracy curve Agop () in
Figure 7.3 is not accessible during inference, which makes it difficult to choose a suitable
threshold «. In Figure 7.3 we can observe that ViM and KNN achieve at the 95% percentile
(with respect to the ID validation set) an accuracy that is comparable to the ID accuracy,
rendering the predictions in this competence region very accurate and trustworthy. GMM
and Logit obtain very high accuracies in the competence region X ¢(«) N Doop for small o
values, but exhibit a larger drop in accuracy at the 95% percentile (w.r.t. the ID distribu-
tion). We show the accuracies Aqop () for different threshold values « for all datasets and
DG tasks in Section C.2.

7.4.3. Accuracy vs. Coverage Trade-Off

We illustrate the trade-off between accuracy and coverage for the ViM, GMM and Logit
score for all domains in PACS and Terralncognita in Figure 7.4. Here, we consider the em-
pirical average over all classifiers. All scores behave relatively monotonically in the sense
thatincreased coverage results in a reduction in accuracy.

First, itis evident that GMM (red curve) shows a non-competitive accuracy-coverage
trade-off. Further, while the Logit score (green curve) exhibits a slightly favorable accu-
racy coverage trade-off across the PACS domain, a clear winner for Terralncognita does not
emerge. Overerall, VIM (blue curve) performs better than the Logit score in terms of accu-
racy in the competence region elicited via a threshold at the 95™ percentile of the score ID



7.4. Experiments 139

distribution. This indicates that the ViM score demonstrates greater selectivity and clas-
sifies more samples as outliers in comparison to the Logit score. However, for all cases
considered, we conclude that Logit and ViM exhibit a similar accuracy coverage trade-off.
Note that the curves in Figure 7.4 are not accessible when we need to set the threshold.

7.4.4. Extensive Survey

PACS OfficeHome VLCS

In Percentages (%)
OOD-Gain T‘ ID-Gain ‘Coverage 1|00D-Gain T‘ ID-Gain 1 ‘Coverage 1|00OD-Gain T‘ ID-Gain 1 ‘Coverage 0

Deep-KNN 11[1-18] | 0[-12-5] |66[56-95]| 8[3-16] |-13[-28-1]82[64-94]|| 2[0-5] |-9[-27-14]|87[72-99]
ViM 9[1-19] | 0[-17-5] |66[50-93]| 5[2-13] |-14[-32-1]87[65-95]|| 2[0-5] |-8[-28-14]|85[62-99]
Softmax 7[1-14] | -4[-11-5] |84[65-97]| 8[3-15] |-12[-32-1]84[67-95]|| 2[0-4] |-10[-27-13]93 [87-99]
Logit 9[1-12] | -3[-12-5] |80[61-96]| 9[2-16] |-13[-33-0]81[66-96]| 2[0-5] |-10[-27-14]92[83-98]
Energy 9[1-12] | -3[-12-5] |79 [61-96]| 8[2-16] |-14[-33-0]82[67-96]| 2[0-4] |-10[-27-14]/93[82-98]
Energy-React 9[1-12] | -3[-13-5] |79 [60-96]| 8[2-16] |-14[-33-0]82[67-96]| 2[0-4] |-10[-27-13]/93 [82-98]
Mahalonobis 1[0-12] | -8[-22-4] |80[50-96]|| 1[0-7] |-17[-42-0]91[75-95]| O[-1-3] |-11[-28-14]|93[73-99]
GMM 2[0-13] | -8[-21-4] |76 [50-96]| O[0-7] |-18[-42-0]92[76-95]| O[-1-3] |-12[-28-14]85[53-99]
PCA 1[-1-10] |-12[-21-3]|78[57-97]| O0[0-7] |-18[-42-0]|93[78-96]| O[-1-2] |-12[-28-14]88 [64-99]
Terra Incognita DomainNet SVIRO

OOD-Gain T‘ ID-Gain ‘Coverage 1|OOD-Gain T‘ ID-Gain 1 ‘Coverage 1|OOD-Gain T‘ ID-Gain 1 ‘Coverage 0

Deep-KNN 32[12-51] | -8[-36-4] |37[13-52]|| 4[0-6] |-6[-50-7]|85[70-93]| 4[1-28] | O[-1-0] |28[5-64]
ViM 28[13-51] |-13[-35-3] | 41[7-57] | 2[0-7] |-8[-50-6]|90[68-97]|| 4[1-30] 0[0-0] |19[6-62]
Softmax 4[1-12] |-38[-54-24]85[68-96]| 3[0-5] |-8[-52-5]|94[77-98]| 4[0-24] | 0[-10-0] |60 [28-83]
Logit 5[1-18] |-34[-55-23]85[60-98]|| 2[0-5] |-8[-51-6]|93[77-97]| 2[0-21] | 0[-19-0] |67 [40-87]
Energy 5[1-19] |-33[-55-21]|85[55-98]|| 2[0-5] |-9[-51-5](94[79-98]| 2[-2-21] | 0[-24-0] |67 [40-87]
Energy-React 5[1-19] |-33[-55-21]|85[55-98]|| 2[0-5] |-9[-51-5]|93[79-98]| 2[-2-21] | 0[-24-0] |67 [42-88]
Mahalonobis 5[-1-38] |-33[-56-11] 62[7-94] || -1[-3-5] |-11[-53-4]92[77-97]| 2[-1-28] | 0[-19-0] |20[5-95]
GMM 7[-1-38] |-28[-51-10] 56 [7-84] || -1[-3-4] |-12[-53-3]|93 [79-98]|| 3[-1-28] | O[-11-0] | 20[5-67]
PCA 1[-1-26] |-38[-53-24]/87[35-99]|| -1[-3-2] |-12[-53-2]92[84-98]| O[-1-15] | -2[-26-0] |87 [47-99]

Table 7.1. Accuracy on competence region of OOD domain for different domain general-
ization datasets and incompetence scores. As the threshold for the competence regions, we
choose the 95% percentile of the ID validation set. For all metrics, a higher value means better
performance (7). All displayed values are medians over different domain roles and classifiers,
brackets indicate 90% confidence interval.

In the following, we evaluate all nine incompetence scores on all six DG datasets using
the nine classifiers. Since each dataset features 32 different DG tasks, we perform a total
of 32 -9 -9 = 2592 experiments. For each experiment, we obtain accuracy curves as in
Figure 7.2 as a function of o. To summarize and compare the performance of each score on
each dataset, we need to deal with the trade-off between accuracy and coverage. Thus, we
measure accuracy Aoop ((rg5) at the score s, such that 95% of ID validation data fall be-
low this threshold, thatis Fracip (ag5) = 95%. As mentioned in Subsection 7.4.2, choosing
«in DG is notoriously difficult, since we have no access to the test domain(s) during train-
ing. The following quantities provide useful summary statistics for comparing our results
across all experiments:
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Figure 7.5. Accuracy in the competence region for different DG algorithms and OOD scores
on different datasets. The chosen threshold corresponds to the 95™ percentile of the ID-
distribution scores. Note: VREx failed to converge with the hyperparameters used on the Do-
mainNet dataset.

1. OOD-Gain = Agop(a95) — Aoop: The performance gain in the OOD domain by con-
sidering only the data in the competence region X (aygs).

2. ID-Gain= Aoop(a95) — Ap: Expresses the performance gap between the accuracy
on OOD data in the competence region X ¢(ags) and the accuracy on the entire ID
data AID .

3. Coverage = CoverageOOD(ag5) as given by Equation 7.3: The proportion of OOD
data that falls within the competence region.

For each quantity, a higher value indicates better performance (7). Note that the coverage
of the competence region alone is not informative. A naive approach that includes all sam-
ples in the competence region would achieve the largest competence region but would fall
short in terms of OOD-Gain or ID-Gain.

Table 7.1 summarizes the results from our extensive sweep over classifiers, datasets,
and incompetence scores. The displayed values are the medians over different domain
roles and classifiers. Overall, we observe that in the competence region, higher accuracy
is achieved compared to the naive application on all OOD data instances. This confirms
that incompetence score and accuracy are indeed tightly linked. However, for most DG
datasets and incompetence scores, we are not able to replicate the ID accuracy. This indi-
cates that we cannot naively expect the classifier to attain the same accuracy as observed
in the ID distribution in the 95% percentile aigs. Further important findings are:

» Ingeneral, feature-based (Deep-KNN, ViM), as well as logit-based incompetence scores
(Softmax, Logit, Energy, Energy-React) obtain significantly higher accuracy on OOD
data (higher OOD-Gain) by filtering the data to the competence region X ¢(ags) than
the density- and reconstruction-based approaches (Mahalanobis, GMM, PCA).

» The feature-based scores achieve a significant performance boost on Terralncognita.
Terralncognita contains DG tasks that suffer from a particularly huge drop in accuracy
from ID to OOD distribution (see Section C.6).

» The proportion of OOD data that falls inside the competence region (i.e., coverage) is
smallest for feature-based methods, but they also provide the highest accuracy across
all DG datasets.

It is important to note that at the specific threshold investigated, the accuracy in the
competence region remains unaffected by the DG algorithms (see Figure 7.5). Based on this
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observation, the incremental utility of DG algorithms specifically designed for the purpose
of domain robustness becomes uncertain. If we assume that DG algorithms successfully
achieve their primary goal of learning domain-invariant features, then we can speculate
that they create a more valuable competence region. However, this is not in line with our
observation in Figure 7.5: We observe that no domain-robust classifier is consistently and
significantly more accurate in the competence region than the simple baseline classifier
(ERM). In Section C.6, we also show that the same result holds without restrictions on the
competence region. Furthermore, we explore in Section C.2 thresholds close to the 95th
percentile and demonstrated that the relative performance of the scores remains quite con-
sistent.

(a) Samples of domain Cartoon (b) Open world samples for domain Cartoon.

Figure 7.6. OOD Samples (left) and open world samples (right) for the PACS Cartoon envi-
ronment.

7.4.5. Open World Performance

In this section, we study how different incompetence scores shape the competence region
when instances of unknown classes are presentin the ID distribution. Accordingly, for each
domain in PACS, VLCS, Office-Home, and Terralncognita datasets, we create a matching
“open world“ domain containing only instances of unknown classes. In total, we create 16
open world domains. For example, if we evaluate a model on the PACS Cartoon domain, we
create an open world domain containing only cartoons of classes that are not in the PACS
dataset as demonstrated in Figure 7.6. We describe the procedure for creating the open
world domains in detail in Section C.4. In the following, we restrict our analysis to the 16
domains for which an open world twin exists.

We enrich the existing test domains with 0%, 5%, 10%, 15%, 20%, and 25% instances
with unknown classes. A good incompetence score should mark instances of unknown
classes with a high value and therefore render them outside of the competence region X (ags ).
In this case, the OOD-Gain would increase as more open world instances find their way into
the test set. In Figure 7.7 we observe that this behavior is achieved particularly well for the
ViM score. The Logit and Softmax scores are less successful in delineating unknown class
instances from the competence region and therefore the OOD-Gain is less pronounced.

Indeed, to test whether this observation holds statistically across all classifiers, we
fit a hierarchical linear regression [280] on OOD Gain with Classifier, Percentage
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Figure 7.7. Performance of Logit and Softmax scores (logit-based) against Deep-KNN and
ViM (feature-based) for an increasing fraction of open world data (unknown classes) in the
testdomain. The performance gain on the OOD data (OOD-Gain, higher is better) for the logit-
based methods is less pronounced compared to ViM and Deep-KNN.

Open World, and Incompetence Score, as well as their interactions as fixed factors, to-
gether with Data Set and Test Domain as random factors (to account for the fact that
the same classifier is evaluated in multiple data sets and test domains). The statistical re-
sults confirm the general trends visible in Figure 7.7. First, we find significant main effects
of Percentage Open World (i.e., overall OOD Gain increases with an increasing number
of open world instances) and Incompetence Score (i.e., ViIM and Deep-KNN achieve a
higher overall OOD Gain). Importantly, the only significant interaction revealed by the hi-
erarchical regression model suggests that ViM is able to achieve the largest OOD Gain as
the fraction of open world samples increases. Note, that the same trend is present for Deep-
KNN, butit fails to achieve statistical significance due to its high variability (see Figure 7.7).
Moreover, none of the effects involving the factor Classifier turn out to be significant
predictors of OOD Gain, suggesting that the results are largely classifier-independent.

In the closed world setting, differences between logit- and feature-based scores are
for most DG data sets small (see e.g. Table 7.1). However, we have shown that it is very
relevant in the setting where instances of unknown classes occur. In Section C.4 we show
the open world behavior for all incompetence scores.

7.4.6. Estimating the Incompetence Threshold

Choosing the 95% percentile of the ID distribution as incompetence threshold can be con-
sidered as weighting the trade-off between accuracy and coverage towards coverage —only
5% of ID data are rejected. We now seek a slightly different incompetence threshold which
puts more weight on the accuracy. The question we want to address is whether we can set
a threshold such that a certain accuracy is achieved in the competence region? This question is
of high practical relevance, but also particularly challenging for two reasons. First, many
scores used so far have no out-of-the-box connection to the accuracy and second, we deal
with a domain shift that might result in a completely new score-accuracy relationship.

Thus, as a potential remedy, we suggest learning s¢(z) = pip(f(x) # y|s¢(z)) and
using this conditional probability as a transformed score. This score represents the proba-
bility of an incorrect prediction given the original score. If we define a competence region
with an incompetence threshold of 1 — Ajp, we can expect an accuracy of at least Ajp on
ID data. We hope that this relation also holds under domain shift. To predict 5¢(z) =



7.5. Conclusion 143

0.4, B Logit (transformed) I ViM (transformed)
0.2 .
S:: ¢ 3
B oo ==
(G v
! 1 ¢ :
9 —0.21 ‘ ¢
) +
‘
+
-0.4 ¢
PACS OfficeHome VLCS Terralncognita DomainNet SVIRO
1.0
0.8 :
% _
@ 0.6
o
2
o 0-47
@)
0.2 -
PACS OfficeHome VLCS Terralncognita DomainNet SVIRO
Data Set

Figure 7.8. ID-Gain and Coverage for Logit and ViM if transformed as described in Subsec-
tion 7.4.6. The threshold is set such that the ID-Gain should be atleast 0. Top row: ID-Gain for
Logit and ViM due to different datasets. Bottom row: Coverage for Logit and ViM across differ-
ent DG datasets. Medians and quantiles for all boxplots are computed over different domain
roles and classifiers. The threshold is set as the ID accuracy.

po(f(x) # y|s¢(x)) we rely on an architecture that is constrained to be monotonic as
proposed in [ 31]. Therefore, we do not change the order of the scores and equip the trans-
formed score with an inductive bias that is consistent with Criterion 4. The transformed
score also has a predictable extrapolation behavior which is helpful when the distribution
shifts. Note that since the transformation is monotonic, a threshold for the original score is
also a valid threshold for the transformed score and vice versa. Therefore, we can also inter-
pret this approach as estimating an incompetence threshold such that a certain accuracy
is achieved.

Accordingly, Figure 7.8 depicts the ID-Gain and Coverage for ViM and Logit (trans-
formed), if we select 1 — Ajp as the incompetence threshold. The transformed ViM score
suggests that we achieve in most cases at least the ID accuracy, but at the cost of small cov-
erage. The transformed Logit score has higher coverage, but it often fails to reproduce the
ID accuracy (e.g., in the Terralncognita data set). However, while we attain the ID accuracy
for most cases, we still observe some failure cases, which makes the approach only tenta-
tive. Note, that these results also suggest that the information contained in the logits is not
sufficient to give suitable competence regions in the sense of our question.

7.5. Conclusion

Accepting only predictions from the competence region of a classifier increases its accu-
racy dramatically under domain shift. Determining the fraction of samples where the clas-
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sifier could be considered competent is a question of how to approach the trade-off be-
tween accuracy and coverage. Addressing this trade-off via the incompetence threshold
is application-dependent and particularly challenging in the domain generalization (DG)
setting where the test distribution differs from the training distribution per definition. Still,
we showed that even in DG, it is possible to achieve higher than in-distribution accuracy
under domain shift — at the price of potentially diminished coverage (see Figure 7.2 or Sec-
tion C.2).

Furthermore, we investigated a coverage-oriented threshold that would reject only a
pre-defined fraction (e.g., 5%) of all instances from the training distribution. In this case,
we achieved a considerable improvement under distribution shift compared to a naive ap-
plication where no samples are rejected. However, at this particular threshold, we could
recover the ID accuracy only in some settings. Thus, we also studied whether we can learn
an accuracy-oriented threshold where some predefined ID accuracy is guaranteed in the
competence region. This approach was able to replicate the ID accuracy in the competence
region for most investigated domain shifts. However, for a few domains, OOD accuracy
drops significantly below the expected ID, calling for a more detailed understanding of the
behavior of incompetence scores in DG. Nevertheless, we observed that accuracy in the
competence region behaves monotonically with the threshold a (see Proposition 8 and
Subsection 7.4.2).

Finally, we investigated differences between the closed and open world settings. We
found thatin the open world setting, feature-based methods, such as Deep-KNN [ 244 ] and
ViM [245], elicit a particularly useful competence region. In a closed world DG setting, a
clear winner does not emerge, but ViM and Deep-KNN seem to be competitive to logit-
based approaches. We also analyzed whether we could find differences in the accuracy of
the competence region with respect to different classifiers. We could not find statistically
significant effects on the accuracy in the competence region, leaving the benefit of robust
algorithms for DG and different architectures for enlarged competence regions question-
able.

All post-hoc methods investigated in this chapter are comparably fast to evaluate and
therefore easily accessible for practitioners. However, the resolution of the trade-off be-
tween accuracy and coverage is notyet satisfactory in all cases, calling for more research on
better competence scores. One interesting avenue concerns the use of multivariate scores
(i-e., a combination of multiple scores) with the potential to elicit better competence re-
gions.



Summary and Conclusions

Learning accurate and robust models is in general only feasible if we take the kind of distri-
bution shift into account. Understanding the need to consider the distribution shift leads
us in three key directions. First, we characterize different distribution shifts and relate
them to different types of invariances. Second, we derive two frameworks that deal with
distinct distribution shifts, one based on the principle of ICM — a fundamental concept in
causality — and the other based on contextual knowledge of the environments from which
the data originates. Third, appreciating the challenges that robustness poses, we explore
the concept of a competence region to identify samples where the predictive model can be
considered incompetent or competent to enhance its trustworthiness.

8.1. Our Work

Invariances and Distribution Shifts In this work, we recap basic concepts of causal-
ity and deep learning and relate them to robustness when possible. Most importantly, we
explored the effect of different types of invariances on robustness under various distribu-
tion shifts. We could therefore systematically answer the question of which forms of in-
variances promise robustness under which kind of distribution shift (see Section 3.8). An
interesting future research direction is the identification and characterization of the type
of distribution shift in Domain Generalization (DG) datasets. This poses a hard challenge,
particularly in cases where the relevant variables are latent variables.

Using the Principle of ICM for Robustness Our work in Chapter 5 considers a spe-
cific form of invariance that we term causal invariance. This type of invariance is rooted in
the principle of ICM which is a fundamental concept in causality (see Section 3.6). We have
operationalized this principle into an objective amenable to gradient-based optimization.
Therefore, our approach eliminates scalability issues seen in combinatorial optimization.
Furthermore, our use of normalizing flows in an information-theoretic context extends the
additive noise model, allowing the identification of relevant variables, even when the pre-
sented variables themselves lack inherent meaning, such as pixels in image data. Addi-
tionally, we proved theoretically that models trained in our framework identify the true
underlying causal relations under suitable conditions. We further demonstrated empiri-
cally that we are able to identify the invariances that promise robustness in new environ-
ments. Employing a gating architecture optimized via gradient-descent, we successfully
excluded non-causally relevant variables, enabling the identification and interpretation of
the true causes of a target variable. Besides the potential future adaptations discussed
in Section 5.6, we think that the framework could be extended to deal with the invari-
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ances discussed in Section 2.4. Anintriguing approach would be to train a multi-invariance
model capable of choosing between different invariances (e.g., in the form of a condition).

Context-Aware DG We proposed a novel approach that utilizes context information
about the data’s origin. This enables our model to adapt its predictions to the characteris-
tics of the environments. We establish crucial criteria that are necessary for our approach
to yield benefits. In addition to proving their necessity, we also demonstrate empirically
that two of these criteria are readily accessible with standard models, enabling the verifi-
cation of potential advantages offered by our approach. Additionally, we characterize the
kind of distribution shift necessary for our approach to deliver advantages. We empirically
showcase the benefits of our approach over baseline models in several scenarios.

Although our approach shows the benefits of contextual information, it can also en-
counter failure cases. We demonstrate that distribution shifts can be detected, identifying
potential failure cases. The detection of novel environments extends the possibilities of our
approach to model selection. Specifically, we show how we can select between the most
predictive model (regarding ID data) and the most robust model to overcome the inher-
ent trade-off between robustness and predictive in the ID setting. While we opened a new
avenue in Domain Generalization by exploiting context information, there remain several
interesting research directions ready to be explored.

While we explored the concept within the supervised learning paradigm, our approach
holds promise in various other domains. It could be adapted for domain disentanglement,
data generation tasks, or seamlessly integrated with alternative DG methodologies. An-
other intriguing avenue involves inferring environments (e.g., through k-nearest neigh-
bor search in feature space) and exploiting them within our framework. Additionally, in-
vestigating the impact of regularization and inductive biases in our approach presents an-
other compelling research direction. In our work in Chapter 7, we delved into the inher-
ent trade-off between coverage and accuracy. Exploring similar trade-offs in the context
of novel environment detection would be an exciting avenue for further research. And fi-
nally, throughout our investigation in Chapter 6, we showed the benefits of context-aware
networks mainly on synthetical or half-synthetical datasets. A large-scale investigation of
our approach on several real-world datasets is therefore desirable.

Competence Region Inour workin Chapter 7, we explored various post-hoc OOD de-
tection methods to define the competence region. We demonstrated significant perfor-
mance gains by rejecting samples outside a classifier’s competence region, even under dis-
tribution shift. Choosing different thresholds for where the classifier can be deemed com-
petent leads to the fundamental trade-off between accuracy and coverage. By manipu-
lating this threshold, we demonstrated that the accuracy behaves monotonically with the
threshold: The more competent the classifier, the higher the accuracy, but at the price of
little coverage (and vice versa for high coverage). Notably, we achieved above ID accuracy
levels for OOD samples in the region of high competence across several datasets. In the
open-world scenario where new classes can occur in the unknown test environment, we
observed that feature-based OOD detection methods outperformed those based on logits
and the softmax output. Additionally, we found that the competence regions of standard
classifiers are comparable to that of a set of DG methods.

Although, we considerably improved the accuracy on OOD data within the compe-
tence region, we encountered difficulties in determining an adequate threshold that en-
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sures the classifier’s ID accuracy. This highlights the need for future research to implement
the competence region more effectively. Improving the competence region could involve
exploiting deep neural networks on multiple scales and combining various OOD scores.
This might also provide insights into the reasons for the model’s silent failure. Exploring
the competence region in regression tasks presents another interesting avenue for future
research. Itis important to note that our approach is exceptionally user-friendly since the
post-hoc methods leave the classifier unchanged and are easily applicable.

No matter how robust and accurate a method is, in a sufficiently complex scenario,
failure cases might occur. Therefore, the concept of a competence region remains always
important — specifically, if we are dealing with safety-critical situations. Considering the
possibility of a reject option should therefore be standard in all safety-critical applications.

8.2. The Broader Perspective

From a broader perspective, the most effective methods on many relevant robustness tasks
employ feature extractors learned on extensive datasets, which tend to be very generaliz-
able (see Subsection 2.2.3). However, this approach is not universally applicable. First,
if there is not enough data in the problem domain to train a large-scale feature extractor
due to data scarcity or data protection laws, a large-scale feature extractor is not achiev-
able. Second, certain distribution shifts exhibit problems that do not stem from model fit-
ting, but rather from identifying the right invariances. In this case, more data does not
necessarily help (see for instance Subsection 5.5.2). Lastly, large-scale models might still
suffer from silent failures emphasizing the role of competence regions or similar concepts.
Nonetheless, large-scale feature extractors trained on extensive datasets offer intriguing
research opportunities. For instance, these feature extractors could also be employed in
our and similar frameworks: instead of the data space, we could apply our methods in the
feature space. This is possible with a context-aware neural network (see Chapter 6), with
our invariant learning (see Chapter 6) and within the setting of competence regions (see
Chapter 7). The impact of large-scale feature extractors on the realms of robustness and
DG will unfold in the coming years and will answer the question of whether DG algorithms
seamlessly integrate large-scale feature extractors or hold a specialized role in limited data
scenarios and niche problems.

In classical supervised learning, as well as in most other machine learning paradigms,
a single sample within a dataset indicates an algorithm’s performance. As the test set
comprises numerous samples, we can statistically estimate the algorithm’s success on the
task. When it comes to distribution shifts, model evaluation faces an added layer of com-
plexity: the assessment of performance in novel environments. This assessment presents
a challenge due to the scarce amount of available environments and finite data therein,
resulting in a very noisy performance evaluation. Another way to put it: in supervised
learning, each sample provides a single signal for an algorithm’s success, while in robust-
ness, domain generalization, and causality, each distribution shift! offers a noisy individ-
ual signal for an algorithm’s success (see also Subsection 2.2.1). As a result, evaluating ro-
bustalgorithms and causal discovery algorithms is more challenging. Successful outcomes
must be approached cautiously since they are often tested only on a few distribution shifts
(environment-scarcity).

In causal discovery, each dataset can be considered as one sample from an evaluation standpoint
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Furthermore, the identification and characterization of distribution shifts in practi-
cal applications is unfortunately not established. However, this kind of understanding is
of crucial importance for choosing the type of invariance to seek as shown in Section 3.8.
Moreover, large-scale trained feature extractors might excel for certain distribution shifts,
like covariate shifts, but might fail for other dataset shifts such as the source component shift.
Therefore, understanding the kind of distribution shift might be indispensable in many
applications. In Chapter 6 we took first steps in this direction by characterizing the distri-
bution shift where our approach might be beneficial and by formulating criteria that are
testable and necessary for our method to yield benefits. Itis important to mention that the
absence of considering the distribution shift at hand could potentially explain why many
DG algorithms do not perform better than a naive baseline on many benchmark datasets
as discussed in Section 3.8.

The fields of robustness and DG stand as crucial areas of research. Despite the sub-
stantial efforts in these fields, there remains a lack of foundational comprehension and ef-
fective evaluation processes. The recent appearance of various benchmark datasets facili-
tates method comparisons, yet a nuanced understanding of the specific distribution shifts
within the datasets is essential to ensure fair model comparison, as we have elaborated in
Section 3.8. In the coming years, one of the big challenges for DG is the development of
well-founded evaluation processes, including the consideration of the distribution shift at
hand. Progress in this direction promises not only to enhance algorithmic development
but also to provide a fundamental understanding of their current state.
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Appendix: Causality and Learning with
the Principle of ICM

A.1l. Instrumental Variables and Hidden Confounders

Recall that the SCM in the example in Section 3.8 is described as

X =bE+cH+ Nx (A1)
Y =aX +dH + Ny (A.2)

where Nx, Ny and H = Ny is jointly independent and unobserved noise. Itis assumed
that b, ¢, d # 0 and that Var(H) # 0.

If we just regress on X to predict Y, we obtain an estimate for a that converges in the
infinite data regime to

. Cov(X,Y) a-Var(X)+d-Cov(X,H) (a3)
“= var(X) Var(X) '
_ aVar(X)+d-c-Var(H) d-c-Var(H)

Var(X) - Var(X)

(A.4)

This is obviously a biased estimate. For simplicity, we assume in the following that all vari-
ables have zero expectancy. If we use this biased estimate for prediction, we obtain

Exy[@X — Y)Y =E ((’d @)X —dH — Ny>2 (A.5)
= E[(a — a®)X?) — 2E[(@ — a)X - (dH + Ny)] — E(dH + Ny)?
(A.6)
= E[(@—a)®X? —2E[(@—a)-d- XH] - E(dH + Ny)> (A7)
= W Var(X) — ZW Var(H) + E(dH + Ny)?
(A.8)
= —W + E(dH + Ny)? < E(dH + Ny)? (A.9)

Here we primarily utilize that Ny | X, E | H, Nx | H andthefactthatE[A-B] =0
holds for independent RVs A and B. A model based on @ achieves a smaller predictive loss
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in Equation A.9 compared to the one attained by the causal model:

E(aX —Y)? = E(dH + Ny)? = E[d?H?] + E[NZ] (A.10)
Conclusively, we would prefer model f(X) = aX over f(X) = aX in terms of predictive
loss. However, f is not as robust to environment changes. Consider the case where the
environment £/ = () eradicates the effect of H on X, i.e. X := Ny. In this case, the biased
predictor f introduces an unnecessary bias:

F@X —Y)? = ((@-a)X -t - Ny>2 (A.11)
= E[(@ —a)’X? - 2E[(@ — a)X - (dH + Ny)] + E(dH + Ny)* (A.12)

= [[(@ — a)®’X? + E(dH + Ny)? (A.13)

(A.14)

The causal model that only uses the “pure” causal effect from X to predict Y is robust with
respect to environment changes and attains a smaller predictive loss:

E(aX —Y)? = E(dH + Ny)? (A.15)

So how could we estimate the “pure” effect of X on Y? One way to do thisis to use in-
strumental variables (IVs). An instrumental variable (IV) is a variable thatis (i) independent
of the hidden confounder H, (ii) dependent on X and (iii) affects Y only through X [32,
Chapter 9.3]. An instrumental variable can also be interpreted as an environment variable.
We show a graph that corresponds to the requirements of an IV in Figure 3.11. Since F is
independent of H and Nx, we can consider cH + Nx asnoise

X =0bE + (cH + Nx) (A.16)

Hence, we can consistently estimate b without introducing any biases. The target variable
then becomes

Y :=aX +dH + Ny = a(bE) + [a(cH + Nx) + dH + Ny] (A.17)

since bE is independent of the noise a(cH + Nx ) +dH 4+ Ny, we can consistently estimate
a by regressing on bF. This two-stage procedure is also called two-stage least squares.

A.2. Learning with the Principle of ICM

A.2.1. Gating Architecture

We employ the same gating architecture asin [ 201 | which was first proposed in [281] as a
Bernoulli reparameterization trick. They use this reparameterization trick in their original
work in order to train neural networks with LO-Regularization in a gradient based manner.
[201] apply the LO-Regularization on the input to learn a gating mechanism. Similarly we
use the LO-Regularization to learn a gating mechanism.
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The gating architecture hy is parameterized via ¢ = (a, 8) wherea = (a1,...,ap)
and 8 = (B1,...,0p). Lety < 0and ¢ > 0 be fixed. Then we map u ~ U[0,1]” via
s(u) = Sigmoid((logu—1log(1—u)+a)/B),to z = min(1, max(0, s(u)({ —)+y)). This
is how we sample the gates for each batch during training. The gates are then multiplied
element-wise with the input z ® X. In principle we could sample many u ~ U]0, 1], but
we observe that one sample of u ~ U[0, 1] per batch suffices for our examples. At test time
we use the following estimator for the gates:

2z = min(1, max(0, Sigmoid(a)(¢ — ) + 7))

Similarly as during training time, we multiply Z with the input. After sufficient training 2
is a hard 0-1 mask. The complexity loss is defined via

D
L(hg) = Z Sigmoid (aj — Bjlog ?) (A.18)

j=1

For a detailed derivation of the reparameterization and complexity loss, see [281].

A.2.2. Wasserstein Loss

The one dimensional Wasserstein loss compares the similarity of two distributions [ 282].
This loss has expectation 0 if both distributions are equal. An empirical estimate of the one
dimensional Wasserstein loss for two random variables A, B is given by

Lw = [[sort({a;}j_1) — sort({b;}j_1)ll2

Here, the two batches are sorted in ascending order and then compared in the L2-Norm.
We assume that both batches have the same size.

A.3. Experimental Setting for Synthetic Dataset

A.3.1. Data Generation

In Section 5.5 we described how we choose different Structural Causal Models (SCM). In
the following we describe details of this process.

We simulate the datasets in a way that the conditions in Proposition 7 are met. We
choose different variables in the graph shown in Figure 5.5 as target variable. Hence, we
consider different “topological” scenarios. We assume the data is generated by some un-
derlying SCM. We define the structural assignments in the SCM as follows
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(a) fi(l)(xpa(i)aNi): Z a; X; + N; [Linear]

Jé€pa(i)
®) S Kpagi), Vi) = Y a;X; —tanh(a;X;) + N;
Jj€pa(i)
[Tanhshrink]
() £ Kpa(is Ni) = Y log(1 +exp(a; X)) + N,
J€pa(i)
[Softplus]
4
(@) Y Ky M) = D max{0,0;X;)} + N;
Jj€pa(i)
[ReLU]
1
(e) fi(S)(xpa(i),Ni):< 3 ajxj> (L V) N
Jj€pa(i)

[Mult. Noise]

with N; ~ N (0, c?) where ¢; ~ U[0.8,1.2],i € {0,...,5} and a; € {—1, 1} according to
Figure A.1. Note that the mechanisms in (b), (c) and (d) are non-linear with additive noise
and (e) elaborates the noise in a non-linear manner.

We consider hard- and soft-interventions on the assignments f;. We either intervene
on all variables except the target variable at once or on all parents and children of the target
variable (Intervention Location). We consider three types of interventions:

» Hard-Intervention on X;: Force X; ~ e1 + eaN (0, 1) where we sample for each envi-
ronment eg ~ U([1.5,2.5]) and e; ~ U([0.5,1.5] U [-1.5,—0.5])

» Soft-Intervention 1on X;: Add e1 + ea N (0, 1) to X; where we sample for each environ-
ment ez ~ U([1.5,2.5]) and e; ~ U([0.5,1.5] U [—1.5,—0.5])

» Soft-Intervention Il on X;: Set the noise distribution NN; to N'(0,22) for E = 2 and to
N(0,0.2%) for E =3

Per run, we consider one environment without intervention (£ = 1) and two envi-
ronments with either both soft- or hard-interventions (£ = 2, 3). We also create a fourth
environment to measure a models’ ability for out-of-distribution generalization:

» Hard-Intervention: Force X; ~ e+/N(0,4?) where e = e &1 with e; from environment
E = 1. The sign {+, —} is chosen once for each 7 with equal probability.

» Soft-InterventionI: Add e + N(0, 4%) to X; where e = e1 + 1 with e from environment
E = 1. The sign {+, —} is chosen once for each i with equal probability as for the do-
intervention case.

» Soft-Intervention I1: Half of the samples have noise N; distributed due to A/(0, 1.22) and
the other half of the samples have noise distributed as A/(0, 32)

We randomly sample causal graphs as described above. Per environment, we consider
1024 samples.
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A.3.2. Training Details

All used feed forward neural networks have two internal lay-
ers of size 256. For the normalizing flows we use a 2 layer
MTA-Flow described in Appendix A.3.3 with K=32. As opti-
mizer we use Adam with a learning rate of 1072 and a L2-
Regularizer weighted by 10~° for all models. Each model is
trained with a batch size of 256. We train each model for
1000 epochs and decay the learning rate every 400 epochs by
0.5. For each model we use A\; = 256 and the HSIC £L; em-
ploys a Gaussian kernel with 0 = 1. The gating architecture
was tra.ined with01.1t the comPlexity loss for 200 epochs and Figure A.1. The signs of the
then with complexity loss weighted by 5. For the Flow model " . a; for the mecha-
without gating architecture we use a feed forward neuralnet- ;o115 of the different SCMs
work hg with two internal layers of size 256 mapping to an

one dimensional vector. In total, we evaluated our models on 1365 created datasets as de-
scribed in Appendix A.3.1.

Once the normalizing flow 7' is learned, we predict y given features h(x) using 512
normally distributed samples u; which are mapped to samples from p(y|h(x)) by the trained
normalizing flow T'(u;; h(x)). As prediction we use the mean of these samples.

A.3.3. One-Dimensional Normalizing Flow

We use as one-dimension normalizing flow the More-Than-Affine-Flow (MTA-Flow), which
was developd by us. An overview of different architectures for one-dimensional normaliz-
ing flows can be found in [176]. For each layer of the flow, a conditioner network C maps
the conditional data A (X) to a set of parameters a,b € Rand w,v,r € RE for a chosen
K € N. It builds the transformer 7 for each layer as

z=7(y[h(X))

K
1
=a y+W;w¢f(viy+n) +0, (A.19)

where f is any almost everywhere smooth function with a derivative bounded by 1. In this
work we used a gaussian function with normalized derivative for f. The division by

K
N(w,v) =¢! Z lwivi| +6 |, (A.20)
i=1

with numeric stabilizers ¢ < 1 and § > 0, assures the strict monotonicity of 7 and thus its
invertibility Vo € R. We also used a slightly different version of the MTA-Flow which uses
the ELU activation function and — because of its monotonicity — can use a relaxed normal-
izing expression N (w,v).
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Figure A.2. Detection accuracies of direct causes for different variants of the PC-Algorithm.
EnvOut means we pool over all environments and Envin means the environment is treated as
system intern variable E. The suffix Cons means we us the conservative assignment scheme.
OneEnv means we only consider the observational environment for inference.

A.3.4. PC-Variant

Since we are interested in the direct causes of Y, the widely applied PC-Algorithm gives
not the complete answer to the query for the parents of Y. This is due to the fact that it
is not able to orient all edges. To compare the PC-Algorithm we include the environment
as system-intern variable and use a conservative assignment scheme where non-oriented
edges are thrown away. This assignment scheme corresponds to the conservative nature
of the ICP.

For further interest going beyond this work, we consider diverse variants of the PC-
Algorithm. We consider two orientation schemes: A conservative one, where non-oriented
edges are thrown away and a non-conservative one where non-oriented edges from a node
X; toY are considered parents of Y.

We furthermore consider three scenarios: (1) the samples across all environments
are pooled, (2) only the observational data (from the first environment) is given, and (3)
the environment variable is considered as system-intern variable and is seen by the PC-
Algorithm (similar as in [93]). Results are shown in Figure A.2. In order to obtain these
results, we sampled 1500 graphs as described above and applied on each of these datasets a
PC-Variant. Bestaccuracies are achieved if we consider the environment variable as system-
intern variable and use the non-conservative orientation scheme (Envin).

A.3.5. Variable Selection

We consider the task of finding the direct causes of a target variable Y. Our models based
on the gating mechanism perform a variable selection and are therefore compared to the
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Figure A.3. Accuracies for different models across all scenarios. FlowG and ANMG are our
models.

PC-Algorithm and ICP. In the following, we show the accuracies of this variable selection
according to different scenarios.

Figure A.3 shows the accuracies of ICP, the PC-Algorithm and our models pooled over
all scenarios. Our models perform comparably well and better than the baseline in the
causal discovery task.

In the following, we show results due to different mechanisms, target variables, inter-
vention types, and intervention locations. Figure A.4b shows the accuracies of all models
across different target variables. Parentless target variables,ie. Y = XyorY = X are
easy to solve for ICP due to its conservative nature. All our models solve the parentless case
quite well. The performance of the PC-variant depends strongly on the position of the tar-
get variable in the SCM indicating that its conservative assignment scheme has a strong
influence on its performance. As expected, the PC-variant deals well with Y = X4 which
is a childless collider. The causal discovery task seems to be particularly hard for variable
Y = Xj for all other models. This is the variable which has the most parents.

The type of intervention and its location seem to play a minor role as shown in Fig-
ure A.4a and Figure A.4a.

Figure A.4b shows that ICP performs well if the underlying causal model is linear,
but degrades if the mechanism become non-linear. The PC-Algorithm performs under all
mechanisms comparably, but not well. ANMG performs quite well in all cases and even
slightly better than FlowG in the cases of additive noise. However in the case of non-additive
noise FlowG performs quite well whereas ANMG perform slightly worse — arguably be-
cause their requirements (additive noise) on the underlying mechanisms are not met.
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Figure A.4. Comparison of models across different scenarios in the causal discovery task.

A.3.6. Transfer Study

In the following we show the performance of different models on the training set, a test
set of the same distribution, and a set drawn from an unseen environment for different
scenarios. As in Section 5.5, we use the L2-Loss on samples of an unseen environment to
measure out-of-distribution generalization. Figure A.5, Figure A.6 and Figure A.7 show
results according to the underlying mechanisms, target variable or type of intervention re-
spectively. The boxes show the quartiles and the upper whiskers ranges from third quartile
to 1.5 - IQ) R where IQ R is the interquartile range. Similar for the lower whisker.

A.4. Experimental Details Colored MNIST

For the training, we use a feed forward neural network consisting of a feature selector fol-
lowed by a classifier. The feature selector consists of two convolutional layers with a kernel
size of 3 with 16 respectively 32 channels followed by a max pooling layer with kernel size 2,
one dropoutlayer (p = 0.2) and a fully connected layer mapping to 16 feature dimensions.
After the first convolutional layer and after the pooling layer a PReLU activation function
is applied. For the classification we use a PReLU activation function followed by a Dropout
layer (p = 0.2) and a linear layer which maps the 16 features onto the two classes corre-
sponding to the labels.

We use the data generating process from [34]. 50 000 samples are used for training
and 10 000 samples as test set. For training, we choose a batch size of 1000 and train our
models for 60 epochs. We choose a starting learning rate of 6 - 1073, The learning rate
is decayed by 0.33 after 20 epochs. We use an L2-Regularization loss weighted by 107°.
After each epoch, we randomly reassign the colors and the labels with the corresponding
probabilities. The one-dimensional Wasserstein loss is applied dimension-wise and the
maximum over dimensions is computed in order to compare residuals. For the HSIC we
use a cauchy kernel with ¢ = 1. The invariance loss L7 is simply the sum of the HSIC and
Wasserstein term. For Figure 5.7 we trained our model with A\; ~ 13. This hyperparameter
is chosen from the best run in Figure 5.8. For stability in the case of large A7, we divide
the total loss by A; during training to produce the results in Figure 5.8. For the reported
accuracy of IRM, we train with the same network architecture on the dataset where we
created training instances online.
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Figure A.5. Logarithmic plot of L2 errors, normalized by CERM test error. For each method
(ours in bold) from left to right: training error, test error on seen environments, domain gen-
eralization error on unseen environments. Scenarios for different mechanisms are shown.



176 A. Appendix: Causality and Learning with the Principle of ICM

Y=Xo Y=Xy
10t : 1ot I
5 : : H' I ; :
W00 F - fed l EEE SR S ILT 10T | P EH bed 1%%
B =
10-! ‘ 1o
o
Il | 9N IR AR AEE M
- %j 15| 8 1 {}% Y 1L, lT 14 L%T 144 1{%
I g
1071 ‘ 1o
— < Yo xs :
10t 10t Hi W
: . | % Ul
1004 F-% FE3 ll +-§ 154 ++4 L'L 10° -1 Jl : TH .T? ; IT%
ORI W : = =
107! 1o
o E o E < o Eo * E <

Figure A.6. Logarithmic plot of L2 errors, normalized by CERM test error. For each method
(ours in bold) from left to right: training error, test error on seen environments, domain gen-
eralization error on unseen environments. Scenarios for different target variables are shown.
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Figure A.7. Logarithmic plot of L2 errors, normalized by CERM test error. For each method
(oursin bold) from left to right: training error, test error on seen environments, domain gener-
alization error on unseen environments. Scenarios for different intervention types are shown.






Appendix: Context-Aware DG

B.1. Theory

In the following, we discuss the assumptions in (c) and (d). In our experiments, we ob-
served thatin most datasets a relatively small sample size suffices to infer the environment
label with approximately 100% accuracy (see Table B.2). Therefore, the assumption that
there exists a function g(8(™)) = E seems justified if n is sufficiently large. To generalize
the assumption where the environment label is not fully inferable, we have to make as-
sumptions. For one, we require $("”) | Z | X. This can be interpreted as “increasing the set
size does not improve the prediction of E” in a contextual environment model. Also 8 |
Z |X,Y can be interpreted similarly: increasing the set size and considering the ground
truth label/value does not enhance the predictability of F. Both assumptions should hold
approximately if n is large enough. With the assumption I(Y; E |X) > I(Z; L Y | X) we
assume that the noise Z is less predictive of Y compared to E if X is given. This can be
roughly interpreted as the noise does not prove useful for predicting ¥ from X compared
to the ground truth environment label.

B.2. Experiments: General Remarks

Due to the large amount of settings, we did only little hyper-parameter optimization (we
looked into batch size, learning rate, and network size). For a given dataset we optimized
only on one scenario where an environment is left out during training. The found hyper-
parameters were then applied on all other scenarios. To ensure that the baseline model is
comparable to ours, we ensure that the inference network (and feature extractor) in Fig-
ure 6.5 have a comparable number of parameters as the baseline model. In all cases, the set-
encoder is kept simple and its hyper-parameters are selected for optimal performance of
the contextual environment predictor f¥ x5™  For an overview, see Table B.2. Through-
out all experiments, we employ a mean-pooling operation.

We show the accuracies of classifying the environment of the contextual-environment
model fE|X’S(n> and the baseline environment model f¥X in Table B.2. Here we only con-

sider the datasets where we performed a full evaluation of all criteria.
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B.3. Experiment 1: Details

B.3.1. Data Generation

Simpson’s Paradox [32, 122] describes a statistical phenomenon wherein several groups
of data exhibit a trend, which reverses when the groups are combined. There are several
famousreal-world examples of Simpson’s Paradox, such as a study examining a gender bias
in the admission process of UC Berkeley [283] or an evaluation of the efficacy of different
treatments for kidney stones [284].

In order to replicate this, we create a dataset as a mixture of 2D multivariate normal
distributions, with the intent of using the first dimension as a feature, and the second as
a regression target. Unless otherwise specified, we generate the data by taking an equal
number of samples from each mixture component, defining the environment as a one-hot
vector over the mixture components.

The mixture components are chosen to lie on a trend line that is opposite to the trend
within each mixture. We achieve this by using a negative global trend, and choosing the
covariance matrix of each mixture as a scaled and rotated identity matrix with opposite

trend.
Setting Value [Controls
n_domains ) number of mixture components
n_samples 10000 mumber of samples per mixture component
spacing 2.0 spacing between means of the mixture components
noise 0.25  |overall noise level
noise_ratio 6.0  ratio of the primary to secondary noise axis
rotation_range|(45.0,45.0)min (leftmost) and max (rightmost) mixture rotation angle

Table B.1. Default Settings for the Simpson’s Paradox Dataset. Samples from the dataset con-
structed with these settings can be seen in Figure 6.6

B.3.2. Training Details

We consider five distinct settings, where in each setting, one domain is left out during
training, and considered for evaluation as a novel environment. To gauge the uncertainty
stemming from data sampling, we also consider five dataset seeds for partitioning into
training, validation, and test sets. For each dataset seed and model, we consider the re-
sults due to the best performance on the validation set.

We enforced that our approach and the baseline model have a similar amount of pa-
rameters for the feature extractor and final inference model. We conducted minimal hy-
perparameter tuning (focusing on parameters such as the learning rate schedule, batch
size, and the number of parameters), and this was performed solely within one “leave-one-
environment-out” setting. In total, we trained the five models outlined in Table 6.1 using
five distinct dataset seeds. Consequently, a total of 5 - 5 - 5 = 125 models were trained.
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In all cases, the set-encoder is kept simple and its hyper-parameters are selected for opti-
mal perf fth lenvi dictor fZ*5"™ We choose th

performance of the contextual environment predictor f . We choose the mean
as the pooling operation.

B.3.3. Non-Linear Models

In the experiments in Subsection 6.8.2, we considered linear models for our model and the
baseline. In the following, we show results for the non-linear model class in Figure B.1. We
compare predictions of a baseline model and our model on all environments in Figure B.2.
We see that the extrapolation task fails in some cases as in environment 1. This is due to
the mismatch of the considered model class and ground truth model.
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Figure B.1. Experiment 1. Verification of criteria. In I we depict the relative improvement
of our approach versus a baseline model. We also show I (OOD) on OOD data. In Il we show
the relative improvement of the oracle model compared to the baseline. In III we compare
the relative improvement of the contextual environment model with respect to the baseline

environment model.
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Figure B.2. Experiment 1. Models are trained on all environments except the OOD environ-
ment. “Extrapolation”, i.e. when environment 1 or 5 is OOD, is a particularly hard task in this
setting. The set-based model shows slightly better extrapolation capabilities. Generally, our
model exhibits adaptability to diverse environments, addressing a limitation present in the
baseline model.

B.4. Experiment 2: Details

Data samples from different environments are depicted in Figure B.3. The process of how
inputs relate to outputs is described in Subsection 6.8.3.

During training, we employ a convolutional network to extract features g(X). These
features are passed to the inference network and the set-encoder. The feature extractor is
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(a) Environment 1

(¢) Environment 3 (d) Environment 4

Figure B.3. Experiment 2. We generate four distinct domains synthetically. Notably, the
background color within each domain follows a normal distribution. However, there are vari-
ations in the means across these domains Note that there is a huge overlap between the envi-
ronments.

then jointly trained with the inference network and set-encoder. We ensured that the fea-
ture extractor plus inference network and the baseline model have a comparable amount of
parameters. The set-encoder is kept simple and its hyper-parameters are selected for opti-

fE|X,s(”

. . ) . .
mal performance of the contextual environment predictor . Asapooling operation

we choose the mean-pooling.

B.5. Experiment 3: Details

To select between the baseline model and the invariant model, we are required to distin-
guish between ID and OOD data. Therefore, we follow the approach proposed in Subsec-
tion 6.6.7. We consider the k-nearest neighbors of the training set to compute the score sy,
where £ = 5. Since we compare the scores elicited by features of the baseline model with
the scores elicited by the features extracted by the set-encoder, we restricted both archi-
tectures to have the same feature dimension. To establish a threshold for distinguishing
between ID and OOD samples, we designate samples with scores below the 95% quantile
of the validation set as ID and those above as OOD (see Subsection 6.6.7 for details).

In total, we explore five dataset seeds to partition into training, validation, and test
sets. To train an invariant model, we considered the same split in training, validation, and
test set where the background color has no association with the label. Therefore the invari-
ant model learns to ignore the background color and only utilize the shape for prediction.
To learn effectively about the environment, we considered a large set input, namely 1024
samples in $("). We employed a simple set-encoder incorporating a mean pooling opera-
tion.

B.6. Experiment 4 and 5: Details

For the BikeSharing dataset we consider a simple feed-forward neural network in all mod-
els. For the PACS as well as the OfficeHome dataset we consider features g(X) that are kept
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fixed and not optimized. Here, we employ the Clip features proposed in [63]. The infer-
ence model, baseline model, and set-encoder are kept simple and employ only linear lay-
ers followed by ReLU activation functions. Given that Clip features considerably simplify
the task, we performed a minimal hyper-parameter search and ensured that the inference
model had a similar number of parameters as the baseline model. In all cases, the set-
encoder is kept simple and its hyper-parameters are selected for optimal performance of

the contextual environment predictor fZXs™

Dataset / Set Size Simpson / 32

Domain 1 2 3 4 5

fE‘x 86.3+1.3 90.8+1.3 90.7+0.8 904+0.9 85.5+0.8

FEXS™ 100.0 = 0.0 100.0 £ 0.0 100.0 + 0.0 100.0 = 0.0 100.0 = 0.0
Dataset / Set Size ProDAS /128 OfficeHome /4  PACS/4
Domain 1 2 3 4 Product Art
fE‘X 43.84+ 1.1 50.0+1.3 499+2.3 444+1.0 86.16 £0.33 99.72 + 0.33
FEXS™ 99.6 £ 0.6 99.5+ 1.0 98.7+ 1.6 98.0 £ 3.2 98.49+0.24 100.0 = 0.0

Table B.2. Environment classification accuracy for different models and datasets, broken
down by domain. As in Table 6.3, the uncertainty (mean and standard deviation) is computed
over multiple seeds for dataset splits. In all cases, the set-based model outperforms the base-
line.

In all cases, the set-encoder is kept simple and its hyper-parameters are selected for

optimal performance of the contextual environment predictor f¥ X8t

B.7. Comparison of Permutation-Invariant Architectures

As a pilot experiment, we estimate the contextual information contained in a set input by
evaluating the binary classification accuracy of a set-based model compared to a baseline
model with singleton sample input.

Importantly, we postulate that for stronger domain overlap, the contextual informa-
tion contained within the single sample decreases significantly, while the contextual in-
formation within the set decreases only weakly, depending on the set size. Domains that
do not overlap exactly will remain distinguishable, so long as the set size is large enough.

Therefore, we construct the toy dataset as described in Appendix B.3.1, but use the
settingn_domains = 2and vary the distance between environments for each experiment.

We train each architecture on this dataset for 20 epochs, using 5 different seeds. We
evaluate a total of 30 domain spacings, linearly distributed between 0.05 and 1.5 (both
inclusive). Since we evaluate a baseline model, plus 3 set-based models at 3 different set
sizes, this brings us to a total of 30 - 20 - 5 - (1 + 3 - 3) = 30000 model epochs. We choose
the batch size at 128 fixed.

Each architecture consists of a linear projection into a 64-dimensional feature space,
followed by a fully connected network with 3 hidden layers, each containing 64 neurons
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and a ReLU [285] activation. For the set-based methods, this is followed by the respective
pooling. We choose 8 heads for the attention-based model.

Finally, the outputis linearly projected back into the 2-dimensional logit space, where
the loss is computed via cross-entropy [286].

For methods that support a non-unit output set size, we choose the output set size as
4. The output setis mean-pooled prior to projection into the logit space. Results are shown
in Figure B.4.
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Figure B.4. Comparison of different architectural choices for the permutation-invariant net-
workin predicting the data’s originating environment. We consider various distances between
environments and different set sizes n. As anticipated, the plots illustrate that smaller envi-
ronment distances make it more challenging to differentiate between them. Moreover, with
larger set size n, our ability to predict the environment label improves. Notably, the baseline
model shows significantly poorer performance compared to the model utilizing contextual in-
formation in the form of a set input.

B.8. Bike Sharing Dataset

This dataset, taken from the UCI machine learning repository[ 247 ], consists of over 17000
hourly and daily counts of bike rentals between 2011 and 2012 within the Capital bike-
share system.

Each dataset entry contains information about the season, time, and weather at the
time of rental. Casual renters are also distinguished from registered ones.

Similar to [ 287 ], we only consider the hourly rental data. We drop information about
the concrete date and information about casual versus registered renters. We choose the
season variable (spring, summer, fall, winter) as the environment and the bike rental count
as the regression target. Since we deal with count data, we also apply square root transfor-
mation on the target similar to [287].



Appendix: Competence Regions in DG

In the following, we describe optimization procedures in detail, give additional detailed
results and describe the open world datasets in detail for Chapter 7.

C.1. Detailed Qualitative Results

Figure C.1 and Figure C.2 show for the PACS dataset the three images attaining the high-
est and the lowest incompetence scores per class respectively. Images with lower scores
achieve higher accuracy compared to the highest-scored images.

C.2. Detailed Quantitative Results - Dependence on
Competence Threshold

We show the accuracy on OOD test data in dependence on the competence threshold «
for the DG datasets PACS, OfficeHome, VLCS, Terralncognita, DomainNet and SVIRO in
Figure C.3, Figure C.4, Figure C.5, Figure C.6, Figure C.7 and Figure C.8 respectively. We
only show results for Deep-KNN, Logit, ViM and GMM applied on the ERM classifier. For
Deep-KNN, Logit, and Vim we see in almost all cases the monotonic behavior as predicted
in Proposition 8. On the DG datasets VLCS, DomainNet and Terralncognita the GMM score
fails to show this monotonic behavior for some test domains. Therefore, GMM has not the
monotonic behavior we would expect from an admissible incompetence score. For some
domains, all scores do notbehave as we aimed for. Forinstance, in the LabelMe test domain
in VLCS (see Figure C.5) we cannot achieve the ID accuracy for all thresholds a and all
incompetence scores. While this behavior is extremely rare in our experiments (for the
feature- and logit-based scores), it shows that the current competence scores can fail for
some domain shifts.

In Figure C.9 we also show results for different thresholds according to their percentile
in the ID distribution. We can see that the relative performance of the scores stays consid-
erably stable.

C.3. Detailed Quantitatively Results — Extensive Study

In Table C.1, Table C.2 and Table C.3 we give detailed results for all DG datasets considered
in this work: PACS, VLCS, OfficeHome, Terralncognita, DomainNet, and SVIRO. We list the
accuracies in the competence region where the incompetence threshold is chosen as the
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Figure C.3. The accuracy of the ERM classifier on OOD data Agop () as the competence re-
gion is enlarged by increasing the allowed incompetence «. Here we show the results for all
DG tasks of the PACS dataset.

95% percentile of the ID validation set. Here we show the median, the 5% and 95% per-
centiles over all test domains and classifiers. We can see that the deviations between dif-
ferent test domains are quite severe indicating different strengths of domain shifts across
the DG tasks. The main observations in Subsection 7.4.4 (e.g. the OOD-gain is quite sig-
nificant and feature-based methods [ViM; Deep-KNN] are very successfull) hold across the
different DG tasks.

C.4. Open World Setting

Open World Creation We use additional data to extend the closed world datasets to
the open world setting. We use similar domains of other datasets with disjunct classes
to generalize the DG datasets. The ID datasets and the open world extensions are listed
in Table C.4. We show examples of test data (closed world) and open world samples for
all DG datasets. For PACS (in Figure C.14) for VLCS (in Figure C.15), for OfficeHome (in
Figure C.16) and for Terralncognita (in Figure C.17)

Open World Results Figure C.10 shows the ID-Gain and OOD-Gain for all incompe-
tence scores considered in this work depending on the fraction of open world samples. We
see that VIM and Deep-KNN are particularly able to delineate unknown class instances
from known class instances resulting in an improved ID- and OOD-Gain across all open
world fractions.
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Figure C.4. The accuracy of the ERM classifier on OOD data Agop (<) as the competence re-
gion is enlarged by increasing the allowed incompetence «. Here we show the results for all
DG tasks of the OfficeHome dataset.

In Figure C.11 we investigate the behavior of different scores in detail. It shows the
AUROC of delineating ID data vs. correctly classified samples of the test domain, ID data
vs. wrongly classified samples of the test domain, and ID data vs. unknown class instances
in general. Here we consider an unknown test domain where 25% of all samples are open
world outliers. We see an interesting behavior here: ViM and Deep-KNN are well-able to
filter out wrongly classified samples, but also filter out many correctly classified samples.
The logit-based scores (Logit, Softmax, Energy, Energy-React) are less successful in filter-
ing out wrongly classified samples, but also keep more correctly classified samples. In the
optimal case, we would expect that the AUROC of ID vs. correct test datais < (.5 and the
AUROC of ID vs. false OOD data is 1. This would imply that we could successfully filter
out wrongly predicted samples and keep a high coverage. Figure C.11 shows that ViM and
Deep-KNN are capable of filtering out new class instances across all DG datasets. For all
other scores, we can find datasets where this behavior is not achieved. Consequently, ViM
and Deep-KNN work best when unknown class instances occur.

C.5. Training Details and Classifiers

All classifiers are trained using the DomainBed repository !. We train three different neu-
ral network architectures with Emprirical-Risk-Minimization, shortly ERM [ 64 ]. Namely,
a ResNet based architecture [276], a Vision Transformer [277] and a Swin Transformer

'https://github.com/facebookresearch/DomainBed
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DG tasks of the Terralncognita dataset.
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C.5. Training Details and Classifiers 193

Logit Deep-KNN ViM GMM
- 1.0 efromms . - -

aclass

escape

hilux

lexus

tesla

tiguan

tucson

x5

zoe

—— 95%-Percentile (Validation)
—— Accuracy curve (Aq)

Coverage (OOD)
Coverage (ID)

Accuracy (OOD) 3 Score (OOD)
Accuracy (ID) 3 Score (ID)

Figure C.8. The accuracy of the ERM classifier on OOD data Agop («¢) as the competence re-
gion is enlarged by increasing the allowed incompetence a. Here we show the results for all
DG tasks of the SVIRO dataset.



194 C. Appendix: Competence Regions in DG

00D-Gain IID-Gain Coverage
o1 \ 0.0 \ 05 /
a
T | \ 0.6
~0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

80.02 \ o1 \ o /
s -0.10 \ 0.8
- =

000|012

0.90 0.95 0.99

3 . . . . .99
£o.10 -0.10 /
3

go.05 \ -0.15 0.8

o —_—

0.90 0.95 0.99

éo.z l 02 Q 05 —%

0.90 0.95 0.99 70,90 0.95 0.99 lo0.90 0.95 0.99
" .
005 \ ~0.05 \ > /
©
£
gooof 0 T/==|-010 > 08
0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
\ 0.00 N 0.75 ///
o
§0.03 0.50
¥ 0.02 N —-0.01 0.25
0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
Percentile Percentile Percentile
—— Deep-KNN Softmax —— Llogit —— ViM — GMM

Figure C.9. Median of accuracies in competence region for different thresholds (percentiles
of ID distribution ) over all domain roles and classifiers.

[278]. If we just refer to ERM, we mean the ResNet-based architecture. Furthermore, we
train classifiers with various recent DG algorithms, namely Fish [262], GroupDRO [273],
SD [274], SagNet [65], Mixup [275] and VREx [126].

We use all the standard settings provided in the DomainBed repository and train all
classifiers with hyperparameters proposed in the repository. The Vision Transformer and
SwinTransformer are trained with hyperparameters found useful on these datasets and ar-
chitectures asin [288]. Eachmodelis trained for 100 epochs on the smaller datasets (PACS,
VLCS, Terralncognita and OfficeHome) and for 10 epochs on DomainNet and SVIRO. When
no improvement in terms of accuracy on the validation set is achieved, we stop the train-
ing. The best model is chosen due to the accuracy on the ID distribution measured via the
accuracy on the validation set.

Some scores are computed on the logits and some on the features. If computed on
the features, we use the output of the penultimate layer of the model as input to the score
function. We distinguish between training, validation, and test sets of the ID distribution.
For the OOD distribution we only consider one dataset provided by the DG task which is
not seen during training. Score quantiles are always computed on the ID validation set.
The ID accuracy is computed on the ID test dataset. If score functions need optimization
(as with GMM), we train them on the ID training set. If a score function needs optimization,
we restrict the training set to 50 000 samples. This only affects the DomainNet dataset. We
do only little to no optimization of the parameters of the score functions. We mainly stay
in line with the standard settings found in the literature. For Deep-KNN we choose K =1
since it shows slightly improved performance on the ID distribution (only inspected on
PACS).
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Table C.1. Accuracy on competence region of OOD domain for different PACS, OfficeHome,
VLCS and Terralncognita domains and incompetence scores. As the threshold for the compe-
tence regions, we choose the 95% percentile of the ID validation set. For all metrics, a higher
value means better performance (7). All displayed values are medians over different domain
roles and classifiers, brackets indicate 90% confidence interval.

C.6. Trained Classifiers

Figure C.13 shows the accuracies of all different Classifiers on all DG datasets for the ID
data and the OOD data. Here we show the means and standard deviations over the differ-
ent domains. All classifiers obtain a similar ID and OOD accuracy. One exception is VREx
which did not converge for all domains on DomainNet. In Figure C.12 we show the accu-
racies for the different DG methods on all datasets.
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ViM 4[2-6] 4[1-6] |90[85-93]| 1[0-9] |-42[-44-28]92[66-97]| 2[1-8] |-10[-13-3]|92[80-95]
Softmax 3[1-3] 3[1-5] |95([94-97]|| 5[1-7] |-40[-42-28]78[74-88]|| 3[1-4] |[-10[-12-8]|93[91-95]
Logit 3[1-4] 4[2-5] [92[90-96]| 2[0-8] |-42[-44-30]87[72-96]| 3[1-4] |-10[-12-8]|93[90-95]
Energy 3[1-5] 3[1-5] |91([88-96]|| 1[0-8] |-42[-44-30]92([73-97]|| 3[1-4] |[-10[-13-7]|93[90-95]
Energy-React 3[1-5] 3[1-5] |92[88-96]|| 1[0-8] |-42[-44-30]92[72-98]| 2[1-4] |-10[-13-7]|93[91-96]
Mahalonobis -1[-3-3] -2[-3-5] |86[84-93]| O[-1-4] |-44[-45-32]96[79-97]|| O[-1-8] |-14[-16-3]|95[80-97]
GMM -2[-3-2] | -2[-4-4] |87[84-94]|| O[-1-3] |-45[-46-32]97[83-98]| -1[-1-6] |-14[-16-4]|95 [80-97]
PCA -2[-3-1] | -2[-4-3] |86[84-93]|| O[-1-1] |-45[-47-32]96[87-98]| -1[-1-1] |-14 [-16-10]/96 [90-97]

quick real sketch

OOD—Gainﬁ ID-Gap T ‘Coverage? OOD-GainT‘ ID-Gap T ‘CoverageTOOD-GainT‘ ID-Gap T ‘CoverageT
Deep-KNN 3[0-4] |-48[-52-27]78[65-91]|| 3[1-3] 5[2-9] [92[89-95]| 6[2-9] -4[-6-0] |83[79-87]
ViM 2[0-3] |-49[-54-27] 80[65-99] || 2 [0-4] 4[2-11] |94[88-97]| 3][0-6] -7[-9-1] [90[86-95]
Softmax 0[0-2] |-51[-54-27]94 [88-98]| 1[1-2] 3[1-8] [97[97-98]|| 3 [2-4] -7[-9-1] [93[92-94]
Logit 1[0-2] |-50[-54-27] 89 [72-95]|| 2[1-2] 3[2-7] |97[96-98]|| 3[1-5] | -7[-8-1] |93[91-94]
Energy 1[0-2] |-50[-54-27] 88[71-98]|| 1[0-2] 3[1-7] |98[95-98]|| 3[0-4] | -7[-9-2] |94[91-95]
Energy-React 1[0-2] |-50[-54-27] 88[72-98]|| 1[0-2] 3[1-7] |98[95-98]|| 3[0-4] | -8[-9-2] |94[91-95]
Mahalonobis 0[-1-1] |-52[-55-27]94 [68-100]|| -1[-3-5] 1[-2-11] |87[81-91]|| -1[-1-5] |-10[-13-2]|93[86-95]
GMM 0[-1-0] |-52[-55-27]95 [75-100]| -1[-3-4] | O[-3-10] |87[79-90]|| -1[-2-3] |-11[-14-2]|93[88-95]
PCA 0[-1-0] |-52[-55-27] 94 [75-99]| -2[-3-3] 1[-2-9] |87[79-90]|| -1[-2-2] |[-11[-13-3]|93 [89-95]

Table C.2. Accuracy on competence region of OOD domain for different DomainNet domains
and incompetence scores. As the threshold for the competence regions, we choose the 95%
percentile of the ID validation set. For all metrics, a higher value means better performance (7).
All displayed values are medians over different domain roles and classifiers, brackets indicate
90% confidence interval.

In Percentages (%) aclass escape hilux i3 lexu

[0OD-Gain 1[ID-Gap 1|Coverage 7/|00D-Gain 1] ID-Gap T [Coverage 1[0OD-Gain 1[D-Gap J[Coverage 1]0OD-Gain 1] ID-Gap | |Coverage 1/00D-Gain {ID-Gap 1| Frac T
[Deep-KNN 2[1-4] | 0[0-0] |56[19-64]|| 14[1-20] | O[-1-0] [41[23-63] 3[1-8] [0[-1-0][25[19-56]| 17[4-27] | O[-3-0] |15[10-26]| 4[1-9] | 0[0-0] |27 [14-45]
iM 2[1-4] 0[0-0] |42[26-65]| 11[1-20] | O[-3-0] |28[12-56]| 3[1-7] 0[0-0] [17[11-33]|| 17[4-28] | ©0[0-0] | 12[8-17] 4[2-9] 0[0-0] | 20[6-44]
Softmax 2[1-3] | 0[-1-0] |82([71-86]|| 11[1-18] | O[-4-0] (67 [55-74]|| 2[1-7] | 0[0-0] |69 [57-72]( 7[-1-18] |-1[-30-0]|51[33-64]| 3[1-9] |0O[-1-0] |56([35-77]
[Logit 1[0-3] 0[-1-0] |81[72-90]| 7[0-14] |O][-15-0] |73 [65-82] 2[1-5] 0[-5-0] |73 [54-80]| 4[-2-18] |-2[-30-0]|54[35-79]| 2[1-8] 0[-3-0] [60[36-81]
[Energy 1[0-3] |0[-1-0] [81[72-90]|| 5[-1-14] | 0[-16-0] |73 [66-85]|| 2[0-5] |O[-6-0] |73 [54-81]|| 4[-2-18] [-2[-30-0]|55[35-79]| 2[1-7] |0[-3-0] |60 [36-81]
[Energy-React 1[0-3] | 0[-1-0] [81[72-90]|| 5[-1-14] | 0[-16-0] |73[65-85]| 2[0-5] |O[-6-0] |73 [53-81]|| 4[-2-17] |-2[-30-0] |55[35-79]| 2[1-8] |O[-3-0] |61[34-81]
IMahalonobis 1[0-3] | 0[-1-0] |44 [23-94]|| 4[-8-19] |-2[-20-0](19[17-94]|| 2[-1-7] |O[-5-0] | 16[8-95] || 4[-17-28] | 0[-32-0] | 18[6-93] | 3[0-9] |O[-3-0] | 20[7-95]
IGMM 1[1-3] | O[-1-0] |44 [24-70]| 3[-8-19] |-1[-20-0]|19[17-61]|| 2[-1-7] |O[-4-0] |16 [8-42] || 7[-16-28] | 0[-30-0] | 15[6-19] | 2[1-9] |O[-4-0] | 21 [7-47)
[PCA 0[0-1] |-1[-3-0] |89 [68-99]|| -1[-2-7] |15[-22-0]83[67-93]|| 1[0-6] |-1[-4-0]|84[42-94]| O[-2-3] |-19[-28-0]90[48-100] 0[0-2] |-3[-9-1]|88[66-95]

tesla tiguan tucson X5 z0€e

|0OD-Gain 1]ID-Gap 1|Coverage 1||00D-Gain 1| ID-Gap 1 [Coverage 1[0OD-Gain fID-Gap J|Coverage 1]|00D-Gain 1| ID-Gap | |Coverage 1/00D-Gain ]]ID-Gap 1]Coverage 1|
[Deep-KNN 21[2-36] | 0[-1-0] | 5[2-18] 1[1-4] 0[0-0] [43[22-66]| 2[0-4] | 0[0-0] |37 [19-66]( 20[13-32] | 0[0-0] | 16[5-41] | 13[2-25] | 0[-1-0] {28 [18-46]
IViM 21[2-37] | 0[0-0] | 7[2-17] 1[1-4] 0[0-0] [38[19-67] 2 [0-4] 0[0-0] |20[14-65]|| 20[13-31] | ©0[0-0] 11[5-23] | 13[2-25] | 0[0-0] | 19 [9-43]
Softmax 17[-2-27] |-1[-28-0]|35 [22-45]|  1[0-3] 0[0-0] [68[52-84]|| 2[0-4] | 0[0-0] |63[39-81]|| 20[13-30] | -1[-1-0] |42 [26-56]| 9[0-25] |0[-12-0]|55[36-70]
[Logit 4[-9-21] |-2[-46-0]60 [26-72]| 1[1-2] | 0[-2-0] |79 [56-90]( 2[0-4] |O[-1-0] |73 [52-88]| 19[9-28] | -2[-8-0] |54 [41-66]| 9[-1-21] |0[-16-0]|57 [43-71]
[Energy 4[-9-20] |-2[-46-0]|60 [26-74] 1[0-2] 0[-2-0] |79 [57-90] 2 [0-4] 0[-2-0] |74 [59-88]|| 19[1-28] |-2[-17-0] |56 [42-66]| 5[-1-21] |0[-22-0]|57 [50-71]
[Energy-React 4[-11-20] |-2[-48-0]|60 [27-74]|| 1[0-2] | 0[-2-0] |79 [66-91]|| 2[0-4] |O[-2-0] |74 [59-88]|| 19[1-27] |-3[-17-0] |56 [45-66]| 5[-2-21] |0[-23-0]|57 [48-72]
IMahalonobis 20[0-37] |-1[-4-0]| 7[2-94] 1[0-3] | O[-1-0] [35[19-95]|| 2[0-4] |O[-2-0]|23[9-95] |18 [-14-31]|-6[-33-0]| 12[6-95] | 6[-4-21] |0[-24-0]|25[10-93]
IGMM 19[2-37] | 0[-4-0] | 7[3-22] 1[1-3] 0[0-0] [35[19-71] 2 [0-4] 0[0-0] | 22[9-69] || 18[-15-31] | 0[-32-0] | 13 [6-24] | 9 [-6-25] |0[-14-0]|26 [10-39]
[PCA 2[0-32] |-6[-25-1]|83[32-91]]] 0[0-2] |-1[-3-0] [90[70-97]|| 1[0-4] |O[-3-0]|90[66-96]| 7[-2-17] |-12[-30-1] 80 [48-94]| 0[0-19] |-5[-21-0]91 [57-100]

Table C.3. Accuracy on competence region of OOD domain for different SVIRO domains and
incompetence scores. As the threshold for the competence regions, we choose the 95% per-
centile of the ID validation set. For all metrics, a higher value means better performance (7).
All displayed values are medians over different domain roles and classifiers, brackets indicate
90% confidence interval.
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ID dataset Open world dataseﬂTest domain — Open world domains Open world classes
c:rrttog;riltltilsagrt alarm clock, ambulance, apple,
PACS DomainNet backpack, baseball, basketball,
photo — photo bat, bear,bed and bicyle
sketch — sketch ? ’
IVLCS PACS all environments — photo elephant, giraffe and guitar
art — paint
OfficeHome DomainNet clipart — clipart bread, butterfly, cake, carrot, cat]
product — real
real world — real
Terralncognita PACS all enviroments — photo elephant, giraffe and horse

Table C.4. Open world extensions of different DG datasets and their test domains.
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Figure C.10. OOD-Gain and ID-Gain for different incompetence score for an increasing frac-
tion of open world data (unknown classes) in the test domain (higher is better).
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Figure C.11. Above: AUROC of delineating ID data vs. correctly classified samples on the OOD
data. Middle: AUROC of delineating ID data vs. wrongly classified samples on the OOD data.
Below: AUROC of delineating ID data vs. open world data in general. All test domains are en-
riched with 25% open world outliers.
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Figure C.12. Accuracies for different classifiers on OOD test data. The boxes show the quar-
tiles and medians.
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Figure C.13. Accuracies for different classifiers on ID and OOD test data. We show the means
and standard deviations over different DG tasks.
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(g) Testdata from domain Sketch. (h) Open world data for domain Sketch.
Figure C.14. Test (left) and open world data (right) for the PACS dataset.
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(g) Testdata from domain VOC2007. (h) Open world data for dom. VOC2007.

Figure C.15. Test (left) and open world data (right) for the VLCS dataset.
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(g) Testdata from domain Real World. (h) Open world data for dom. Real World.

Figure C.16. Test (left) and open world data (right) for the OfficeHome dataset.
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(c) Testdatafrom domain L38. (d) Open world data for domain L38.

(g) Testdata from domain L46. (h) Open world data for domain L46.

Figure C.17. Test (left) and open world data (right) for the Terralncognita dataset.
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