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A B S T R A C T

The numerical simulation of quantum many-body systems constitutes
a long-standing and challenging problem, as the ’curse of dimension-
ality’ restricts the applicability of exact methods to systems consisting
of only a few particles. Thus approximative techniques that reduce
the computational complexity are of high fundamental interest. Simul-
taneously, there exists a strong desire to benchmark the ever-growing
capabilities of quantum simulators, thus strengthening the motivation
to research tools that are capable of matching their increasing system
sizes.

In this thesis, we, for one, develop and explore such new compu-
tational methods by exploiting the rapid developments in machine
learning, allowing us to construct highly versatile ansatz functions
to model quantum states based on deep artificial neural networks.
Building on this, we establish a new numerical technique capable of
modeling the dynamics of dissipative many-body quantum systems,
relying on an accurate variational description of an informationally
complete probability distribution that corresponds to the quantum
system of interest. Additionally, we explore the differences in per-
formance in ground state searches between a multitude of different
network architectures and thereby shed light on the question of why
some networks significantly outperform others.

Secondly, we adapt the developed techniques also for classical sys-
tems. This is possible as the only requirement is a probabilistic de-
scription with a (closed) evolution equation, thereby emphasizing the
wide range of applicability.

Finally, we rely on existing approximative techniques to devise an
experimental proposal aimed at observing an area to a volume law
transition following a quench in a spin-1 Bose-Einstein condensate.
Notably, we herein do not rely on quantum entropies but rather on
differential entropies of the phase-space distribution describing the
system. These quasi probability distributions are importantly readily
accessible in experiments and we demonstrate that their entropies
can be reliably estimated from a feasible number of samples without
assuming a particular type of distribution, such as a Gaussian.
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Z U S A M M E N FA S S U N G

Die numerische Simulation von Quantenvielteilchensystemen stellt ein
seit langem bestehendes und herausforderndes Problem dar, da der
’Fluch der Dimensionalität’ die Anwendbarkeit exakter Methoden auf
Systeme mit wenigen Teilchen beschränkt. Deshalb sind approximative
Techniken, welche die algorithmische Komplexität senken, von hohem
wissenschaftlichen Interesse. Außerdem besteht ein großes Interesse
daran, die stetig wachsenden Fähigkeiten von Quantensimulatoren
zu verifizieren, was die Motivation, solche Methoden zu erforschen,
weiter bestärkt.

In dieser Arbeit werden einerseits solche neuartigen computerge-
stützten Methoden entwickelt und untersucht, wobei wir uns die
rasanten Entwicklungen im Feld des maschinellen Lernens zunut-
ze machen. Dies erlaubt, hochgradig vielseitige Ansatzfunktionen
für Quantenzustände auf Basis von tiefen künstlichen neuronalen
Netzen zu konstruieren. Darauf aufbauend etablieren wir eine neue
numerische Methode die es ermöglicht die dissipative Dynamik von
Quantenvielteilchensystemen zu modellieren, indem die informati-
onstheoretisch vollständige Wahrscheinlichkeitsverteilung, welche zu
dem interessierenden Quantensystem korrespondiert, variatonell dar-
gestellt wird. Zusätzlich arbeiten wir für eine Vielzahl von neuronalen
Netzwerkarchitekturen Unterschiede in den Fähigkeiten, Grundzu-
stände zu finden, heraus und können so erklären, weshalb manche
Architekturen in dieser Aufgabe deutlich besser abschneiden als ande-
re.

Zweitens werden die entwickelten Techniken für klassische Syste-
me adaptiert. Dies ist möglich, da die einzige Voraussetzung hierfür
eine probabilistische Beschreibung des Systems ist, welche einer (ge-
schlossenen) Entwicklungsgleichung gehorcht, was die Vielzahl an
Anwendungsmöglichkeiten hervorhebt.

Schließlich werden wir mit Hilfe von etablierten numerischen Me-
thoden einen Vorschlag zur experimentellen Umsetzung ausarbeiten,
welcher zum Ziel hat, den Übergang eines ’area laws’ hin zu einem
’volume laws’ in einem Spin-1 Bose-Einstein Kondensat nach einem
Quench zu beobachten. Es ist erwähnenswert, dass wir hierfür keine
Quantenentropien, sondern differentielle Entropien von Phasenraum-
verteilungen betrachten, welche das System beschreiben. Wichtig ist
hierbei, dass diese Quasi-Wahrscheinlichkeitsverteilungen in Experi-
menten zugänglich sind und wir demonstrieren, dass ihre Entropien
zuverlässig aus einer überschaubaren Anzahl an Samples geschätzt
werden können, ohne dass wir dabei die Form der Verteilung auf
Gauss’sche Verteilungen einschränken müssen.
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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

Nature seems predictable if judged from everyday experience. Given
perfect knowledge of the state of a system and sufficient computational
resources, one might argue, it should be possible to obtain unambigu-
ous predictions with regards to measurement results of some system
of interest. This is not so.

At the level of minuscule scales one finds that the world surrounding Although it was
Einstein who had
first observed
glimpses of the
quantum world, he
remained a skeptic of
quantum theory
until his death, with
a dislike for its
indeterministic and
thereby ’incomplete’
nature (see
EPR-paradox [1]).

us is fundamentally non-deterministic and that even perfect knowl-
edge of the state of a system does not suffice to give a definite answer
on the outcome of an experiment1 [2]. This observation was puzzling
for those physicists who initially made contact with this ‘quantum
world’ of small scales, famously leading Einstein to state that ‘God
does not play dice’, a statement at odds with the observations made
in quantum experiments. At present, one hundred years have passed
since the Nobel prize for the discovery of the photoelectric effect was
awarded to Einstein for demonstrating the quantization of light and
marking the advent of a new era in physics [3].

Today, quantum mechanics is a well understood field and part of ev-
ery physics curriculum. The non-deterministic nature of the universe
is widely accepted and quantum properties are sought to be exploited
to gain advantages over classical devices. Experimental progress re-
garding the design and control of quantum experiments over the last
decades has been astonishing, allowing to probe various predictions of
quantum theory in a wide variety of settings. Of particular theoretical
and experimental interest, especially in the context of this thesis, is the
emulation of toy-model Hamiltonians on suited platforms, allowing
to demonstrate fundamental quantum many-body phenomena in a
controlled setting. This idea is referred to as quantum simulation [4–7].
Quantum simulation is to be differentiated from the more general goal
of quantum computing [2, 8, 9], in that quantum computing aims to im-
plement arbitrary unitary transformations on quantum states, whereas
quantum simulation aims to implement only such transformations
that are physically motivated, meaning that they stem from an easy-
to-implement Hamiltonian or similar. Depending on the system of
interest, one may choose a quantum simulation platform from a wide
variety of possible setups, including cold atoms [10–12], photonics [13,
14], trapped ions [15, 16] or nuclear or electronic spins as encountered
for example in NMR experiments [17].

1 We here omit a discussion regarding the similarities and differences to classical
chaotic systems.
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4 introduction

This work is mainly concerned with the classical simulation of
quantum many-body systems. A central motivation herein is that the
ever-growing capabilities of quantum simulation experiments require
classical benchmarks to assert their correct working. This motivates
the exploration of more capable classical computation schemes that
can keep up with the increasing system sizes of modern quantum
simulators. Simultaneously, a parallel line of motivation is aimed at
probing fundamental questions of interest to quantum many-body
theory in otherwise inaccessible system size regimes. In the remainder
of this chapter, we will therefore present and discuss milestones in the
fields that are most relevant to this thesis — for one, quantum simula-
tion and, secondly, a novel, classical computational technique referred
to as neural quantum states. The following chapters will introduce
these topics more formally, giving a more complete discussion of the
theoretical background.

The results of this thesis can be separated into three categories:
Chapter 5 and Chapter 7 are dedicated to the development and under-
standing of novel classical computation schemes of quantum systems,
motivated by the aforementioned necessity to benchmark quantum
simulation platforms as well as the desire to fundamentally push the
boundaries of classical computation techniques to numerically probe
the collective behavior in larger quantum systems.

The second part concerns the extension of the developed method-
ologies from Chapter 5 to classical systems. These findings are sum-
marized in Chapter 6.

Finally, the third part consisting of Chapter 8 and Chapter 9 dis-
cusses a proposal on how one may test the presence of the so-called
area-law in a particular quantum simulation platform, namely a Bose-
Einstein condensate (BEC). Here, we will rely on classical computa-
tional methods to demonstrate the feasibility of the proposed experi-
ment but do not attempt to further develop the utilized computational
techniques.

1.1 quantum simulation

We herein give a (non-extensive) overview of some of the develop-
ments and theoretical predictions that were tested in quantum simula-
tion experiments while explaining their physical significance. Simul-
taneously, this will give us the opportunity to introduce many of the
physically relevant phenomena and models that we will come back to
at later points in this thesis.

As quantum theory does not lend itself easily to classical compu-
tation, obtaining quantitative predictions of a system of interest too
complicated for analytical solutions has always been challenging. This
led Richard Feynman to the idea that one might be able to emulate
this quantum system of interest using another quantum system, and
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thus the idea of quantum simulation was born [4]. Since its conception,
this idea has been a popular avenue to test various theoretical predic-
tions in table-top experiments in the laboratory. While many of these
experiments are concerned with testing predictions of fundamental
interest in quantum theory [10, 12, 15, 18–66] , there also exist strong
efforts to answer questions of practical significance, such as material
design and molecular research [67–71]. We will in the following limit
our considerations to the former category, as it is of higher relevance
to the work at hand.

One of the earliest examples, that showcased the potential of this
idea was the implementation of the Bose-Hubbard model using a
gas of ultracold rubidium atoms confined in a periodic lattice [18].
In their experiment, Greiner et. al. demonstrated the existence of
a quantum phase transition in the Bose-Hubbard model, preparing
ground states in both the superfluid and Mott-insulator phase in
the low occupancy limit with ⟨n⟩ = 1− 3 atoms per site. The Bose-
Hubbard model features repulsive on-site interactions of strength
U as well as tunneling between neighboring sites with strength J.
The energy of the density-density interactions is minimized if atoms
are distributed homogeneously over the lattice sites, leading to a
ground state that is characterized by definite real-space occupation
numbers and no phase coherence among lattice sites. In contrast,
once the tunneling contribution becomes the dominant energy scale,
the ‘good’ quantum numbers shift from real-space occupations to
momentum-space occupations and phase coherence between sites is
established, while atoms are delocalized over many lattice sites paying
tribute to the Heisenberg uncertainty principle. While an analytical
solution in the limit U/J = 0 or J/U = 0 is possible, obtaining the
system’s ground state in the regime where the two contributions are
approximately equally important is a challenging task. The critical
value Jc for which the quantum phase transition occurs is dependent
on the number of atoms in the system, or, equivalently, its chemical
potential as well as its dimensionality and has been the subject of
intense study [72–75]. Figure 1.1 shows the measured momentum
space occupations in two dimensions, with the center of the image
corresponding to momenta in x and y direction equal to zero, i.e. the
kinetic eigenstates with the lowest energy. As the ratio U/J of on-site
repulsion relative to tunneling strength is increased, phase coherence
is reduced, causing a broadened distribution in momentum space.

While the phases of ground states of different models show a wide
variety of captivating phenomena, another compelling research di-
rection concerns the dynamic behavior of quantum systems. One
typically prepares the system in an easy state2 and then rapidly alters
the parameters of the Hamiltonian, leaving no time for the system

2 Easy typically means adjusting the control parameters, such as external fields for
example, so that there is no entanglement between the system constituents.
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Figure 1.1: Absorption images following a free evolution of t = 15ms after
ground state preparation with different rations J/U. The color-
bar gives the occupations in k-space. The depth of the wells is
increased from a to h, with all atoms in the k = 0 mode in a and
no visible structure in k-space for high potential barriers in h.
Adapted with permission from [18].

to adjust to the new settings such that the sudden quench takes itIn the opposing limit,
where one alters the

parameters
sufficiently slowly,

the system
continuously evolves

to the new ground
state. This is known

as adiabatic state
preparation [79].

far from equilibrium. Since the evolution of closed quantum systems
obeys unitary transformations generated by the system’s Hamilto-
nian, no information is lost during the evolution implying that it is
reversible. During the evolution, the interaction among particles leads
to a buildup of entanglement, such that initially localized information
is coherently spread throughout the system. This means that a sub-
system cannot be described by a single wave function but rather by a
statistical mixture of wave functions. One finds that this statistical mix-
ture becomes stationary in the long time limit under relatively mild
constraints, raising the question as to what characterizes said statisti-If the system for

example features
sufficient disorder,

the system stays
‘close’ to its original

state and does not
thermalize. This is

referred to as
localization [80].

cal mixture and how the system approaches the stationary state. The
first question has a surprisingly simple and beautiful answer. It turns
out that the stationary state may oftentimes be described by a Gibbs
ensemble, meaning that a single parameter, namely the temperature,
is sufficient to describe the system in the long time limit. One there-
fore also refers to the process of approaching the equilibrated steady
state as thermalization. The notion of temperature here arises due to
our ignorance of the subsystem’s complement, since we disregard its
contained information, thereby increasing the (quantum) entropy. This
is the same principle that leads to the notion of temperature in classi-
cal statistical mechanics, where one is ignorant about the individual
positions and momenta of the macroscopically many particles, thereby
making an ensemble description necessary. Quantum thermalization
was first demonstrated using ultra-cold atoms in a BEC, again relying
on an implementation of the Bose-Hubbard model [78], as sketched
in Figure 1.2 A. Following a quench from deep inside Mott-insulator
phase, Kaufman et. al. studied the single-site occupations and found
them to be in agreement with the predictions from a thermal ensemble
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Figure 1.2: Thermalization in a one-dimensional Bose-Hubbard model fol-
lowing a quench from the Mott-insulator phase with a single
atom per site. The quench is achieved by suddenly decreasing
the potentials, such that atoms start tunneling between neighbor-
ing sites in x-direction (third panel in A). After a free evolution
time of 16 ms, one finds the single site number occupations to
be in agreement with a local thermal state (second panel in B),
while the global state is still pure (third panel in C), as measured
by two-copy interference in y-direction [20, 76, 77]. From [78].
Reprinted with permission from AAAS.

(second panel in Figure 1.2 B) while the purity of the full system is
not in agreement with thermal predictions (third panel in Figure 1.2
B), thereby demonstrating the emergence of local thermal descriptions
due to to the generated entanglement between the single site and its
complement.

Another phenomenon that is of paramount importance in the theory
of many-body quantum systems is the emergence of magnetism in
solid states. As quantum magnetism arises due to the internal spin
degree of freedom of atoms that are located at fixed sites (such that
all motional degrees of freedom are frozen out), any platform that
allows to precisely control it may be deemed suited a priori. Various
toy-model Hamiltonians exist to describe the wide range of quantum
spin phases and phenomena [81–85]. The paradigmatic classical spin
model is the Ising model, showing a classical phase transition driven
by thermal fluctuations between an ordered and disordered phase. The
paradigmatic quantum spin model is the transverse-field Ising model,
featuring a quantum phase transition at zero temperature driven
by quantum fluctuations between a ferromagnetic and paramagnetic
phase. The transverse-field Ising model is a popular object of study, as
it is integrable in one dimension by means of a Jordan-Wigner trans-
formation, mapping the spin system to a system of non-interacting
fermions [81]. It consists of two competing terms, namely interactions
along the axis of quantization of nearest neighbors with strength J
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Figure 1.3: Probability of obtaining the outcome |↑↑⟩ and |↓↓⟩ following
an adiabatic protocol from the initial paramagnetic state |ψ⟩ =
|→→⟩ to the final Hamiltonian parameters given on the x-axis.
Adapted with permission from [79].

as well as an external magnetic field with strength B oriented or-
thogonally to the quantization axis. One of the earliest works that
implemented the transverse-field Ising model experimentally is [79],
demonstrating the preparation of (anti-) ferromagnetic ground states
using an adiabatic protocol from the initial paramagnetic ground state
for a system of two trapped ions, as shown in Figure 1.3. While the ini-
tial paramagnetic state (B≫ J) |ψ⟩ = |→→⟩ = (|↑⟩+ |↓⟩) (|↑⟩+ |↓⟩)
has uniform probability 0.25 for all 4 basis states, the ferromagnetic
state that is obtained for J ≫ B only has non-vanishing probability for
|ψ⟩ = |↑↑⟩ and |ψ⟩ = |↓↓⟩. Importantly, the authors demonstrate by
means of parity measurements that the ferromagnetic configurations
are in a coherent superposition instead of a statistical mixture, mean-
ing that the adiabatic protocol indeed has generated entanglement
between the two spins.

Also, the dynamics of spin systems is of high interest [86] and has
recently been subject to experimental studies in a system consisting
of 127 qubits [87]. Systems of such extent are no longer simulatable
by means of exact computational schemes but require treatment with
more advanced, approximative methods [88–92]. Of particular interest
are variational schemes, which do not simplify the Hamiltonian of the
system in question but rather try to find the best approximation to the
state by adapting its variational parameters. With this motivation in
mind, let us discuss machine learning inspired approaches to tackle
such problems.
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1.2 neural quantum states

Systems consisting of only a few dozen qubits are already sufficient
to push the largest supercomputing clusters to their limits. This is
due to the ‘curse of dimensionality’, meaning that each additional qubit
that is added to the system, doubles the memory required to store
its state. While this property of quantum mechanical systems may
seem like an insurmountable barrier, there may be scenarios that are
nevertheless within the reach of classical computation. While Hilbert Efficiently here

means without an
exponential growth
in computational
cost with system
size.

space is vast, typical states, such as ground states or those obtained
from quenches, are located in small regions thereof. Therefore, if one is
able to efficiently parameterize these regions, there may still be hope to
be able to simulate the system from first principles, meaning without a
simplification of its Hamiltonian. The question that follows, of course,
is what kind of ansatz function is a suitable choice to parameterize
quantum states.

The first class of ansatz functions that were developed, were con-
cerned with particle systems and were physically motivated in that
they introduced factors to directly control physical properties, such
as double occupancies of sites or similar. These approaches include
Hartree-Fock wave functions, Gutzwiller wave functions, density-
density Jastrow wave functions, and many more [93, 94]. Being de-
rived from physical intuition, these classes of wave functions had
considerable success due to their strong physical prior.

For spin systems, tensor network states were the unchallenged vari-
ational method [95, 96] until recently. Tensor networks assign a tensor
of variable rank to each spin so that each spin has connections to its
neighbors. Upon contraction of the tensor network, the tensors are
turned into a wave function coefficient of a desired basis state. This
will be explained in more detail in Chapter 4. The parameters of tensor
network states, i.e. the numbers that define the tensor entries, have
no direct physical interpretation, unlike those of the Gutzwiller wave
function for instance, which restrict double occupancies [93]. However,
matrix product states are still physically motivated as they obey the
principle of locality, meaning that only neighboring tensors are con-
tracted and that correlations between spins that are more than one
site apart must be mediated through the encompassed tensors, akin
to how correlations spread in models with nearest-neighbor interac-
tions. This makes tensor network states a powerful class of ansatz
functions in one dimension. However, in two- or three-dimensional
settings their performance is diminished [97–100], as will be discussed
in greater detail in Chapter 4. This motivates the exploration of more
potent variational ansatz functions, that can also flexibly handle higher
dimensional problems.

One such class of ansatz functions is given by artificial neural
networks, whose exploration is motivated by universal approximation
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Figure 1.4: Ground state energy deviations obtained with the RBM as a func-
tion of its complexity α in the A 1D transverse field Ising model
(80 sites) for different magnetic fields h, B 1D antiferromagnetic
Heisenberg model (80 sites) and C 2D antiferromagnetic Heisen-
berg model (10×10 sites). From [121]. Reprinted with permission
from AAAS.

theorems (UAT) [101–119]. Universal approximation theorems guar-Such UATs do
however not simplify

finding the optimal
set of weights. One

may still get stuck in
local minima during

optimization.

antee the capability of approximating sufficiently smooth functions
arbitrarily well in the appropriate limits of depth and width of specific
network architectures. The ability to scale towards these limits was
made possible by the availability of unprecedented GPU compute
resources, leading to a revolution in deep learning, which attracted
attention well beyond the computer science community ever since
AlexNet won the ImageNet competition in 2012 [120]. Interest in these
novel methods was quickly ignited within the scientific communities,
with computational quantum physics being no exception. The possi-
bility of utilizing neural networks as variational ansatz functions for
quantum states was first explored by Carleo and Troyer in [121]. Neu-
ral quantum states assign complex wave function coefficients to basis
configurations, with the latter being the input and the former being
the output of the network. This general idea has been demonstrated to
accurately describe many scenarios of physical interest, such as spin
systems as well as bosonic and fermionic particles in both discrete and
continuous space.

In their 2017 paper, Carleo and Troyer introduced the idea of neu-
ral quantum states [121], demonstrating the possibility of model-
ing ground states as well as time-evolved states in one- and two-
dimensional spin systems using artificial neural networks to encode
the wave function coefficients. They rely on the simple restricted Boltz-
mann machine (RBM) architecture and employ complex parameters
for generality, facilitating, for example, phase accumulation during
real-time evolution. By employing the second-order stochastic recon-
figuration (SR) optimization scheme, the RBM outperforms the bench-
marks given by the Jastrow wave function, as well as the projected
entangled pair states in terms of ground state energy, as shown in
Figure 1.4. Simultaneously, the same optimization routine also enables
real-time evolution.

After their conception, neural quantum states quickly became pop-
ular and were adapted for further tasks, such as state reconstruction
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Figure 1.5: Estimation of the Rényi-2 entanglement entropy of the first l spins
in a one-dimensional chain of length 20. The model is trained
on synthetic samples from ground states of the XXZ and TFIM
model at various field strengths. Adapted with permission from
[122].

from experimental data, also known as quantum state tomography. A
characterization of all present degrees of freedom in an experiment is
a daunting task, since naïvely this number is exponentially large while
the set of available measurement data usually is not. This apparent
contradiction cannot be resolved easily, since the information con-
tained in the set of measurement data is fundamentally limited and
insufficient to uniquely determine the experimentally prepared state.
However, if the state obeys a certain functional form, only the parame-
ters defining this functional form need to be determined, significantly
simplifying the task at hand as the number of parameters is typically
much lower than the Hilbert space dimension. Additionally, not only
the determination of these parameters becomes manageable, but also
their storage, with the memory requirements given by the number
of parameters. In the past, quantum state tomography has been car-
ried out using various different variational ansatz functions, such as
tensor network approaches [123–125], compressed sensing techniques
[126–128] and permutationally invariant tomography schemes [129,
130]. The common feature that these approaches share is that the
physical implications of their simplifying assumptions are well under-
stood: tensor network states are biased towards lower entanglement,
compressed sensing assumes a low-rank density matrix and permu-
tationally invariant tomography requires a permutationally invariant
state [F]. The same cannot be said about neural quantum states, as
the bias introduced by the network is poorly understood in regard to Bias here refers to the

tendency to prefer
certain classes of
states over others.

its implications regarding physical properties. Nevertheless, quantum
state tomography using neural networks is a promising application
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as the existence of universal approximation theorems guarantees that
this bias can be systematically minimized by choosing a network of
larger size. It has first been tested in Ref. [122], with applications to
one- and two-dimensional lattice spin systems. Given a sample set, the
authors optimize the parameters of the network in order to maximize
the likelihood of observing it. Using only a fraction of the samples
required for standard full-state tomography, accurate estimation of
the entanglement entropy of a subsystem is demonstrated, as shown
in Figure 1.5 by employing the replica trick [131].

Both data-free and data-driven neural quantum states have been
in the focus of investigation over the past years, and even hybrid
approaches have been explored [132, 133]. Today, neural quantum
states give state-of-the-art results for ground states of various spin
models [C, 97–99, 121, 134–153], their unitary dynamics [154–161] and
have additionally been extended to dissipative systems [A, 162–168].
Fermionic [169–181] and bosonic [167, 168, 182–185] systems have also
been explored, in both discrete and continuous settings. Of particular
interest are works that study the entanglement properties of neural
quantum states [186–188], promising an edge compared to tensor
network states.



2
Q UA N T U M T H E O RY

In this chapter, we will give the background in quantum theory that
will be required in the remainder of this thesis. To give a compre-
hensive overview, we also discuss fundamental concepts, which the
experienced reader can omit. Unless explicitly stated differently, we
assume spin-1/2 systems for our discussion.

The perhaps most striking difference that separates classical and
quantum mechanical systems is definiteness regarding the outcome of
experiments, as the result of any experiment conducted on a classi-
cal system is uniquely determined by the initial configurations of its
constituents. Even classical systems that only allow for statistical (en-
semble) descriptions, such as an ideal gas, are made up of particles for
which one can in principle give precise coordinates in phase space and
solve the corresponding equations of motion; it is simply not practical
to do so. This is in stark contrast to systems made up of sufficiently
small constituents, for which the Heisenberg uncertainty principle
states that the position x and momentum p of any particle cannot
be determined precisely at the same time, leading to the Heisenberg
uncertainty relation

∆x∆p ≥ 1
2

, (2.1)

where ∆x and ∆p are the standard deviations of position and momen-
tum obtained through repeated measurements. This property (and Uncertainty

relations can be
formulated for any
pair of
non-commuting
observables.

its generalizations) is an inherent ingredient of quantum theory and
is reflected therein as follows. In contrast to classical particles in one
dimension, which are described by arbitrarily peaked distributions
in the two-dimensional phase space, the wave function depends on

x

| (x)|2
= 1

= 1.5
p

| (p)|2

Figure 2.1: Demonstration of the Heisenberg uncertainty principle. A reduc-
tion in uncertainty in momentum space comes at the price of
increasing uncertainty with regard to position, as indicated by
the orange density profile.

13



14 quantum theory

either position or momentum. Hence, given a wave function in real
space, its properties in momentum space are implied (and vice versa)
such that the Heisenberg uncertainty principle Eq. (2.1) is automatically
fulfilled. If, for instance, the wave-function of a state with minimalThe reduction and

increase of
uncertainty in a pair

of non-commuting
observables is also

referred to as
squeezing.

uncertainty (meaning equality in Eq. (2.1)) produces a Gaussian prob-
ability density profile in real space that is stretched by a factor of σ,
the associated density profile in momentum space is contracted by a
factor 1/σ, such that the product of the two is unchanged, as shown
in Figure 2.1.

2.1 mathematical formalism

While continuous systems are ideally suited to visualize phenomena
such as squeezing, we will be mainly concerned with discrete quantum
systems in this thesis, such as spins or bosonic modes.

The arguably simplest discrete quantum system is a single particle
with spin-1/2, which is characterized by a wave function |ψ⟩ in a
two-dimensional Hilbert space H. The Hilbert space is spanned by the
two orthogonal basis states |↑⟩ and |↓⟩ (usually understood to denote
the z-axis |↑⟩ ≡ |↑z⟩ and |↓⟩ ≡ |↓z⟩), so that projections of the wave
function onto these basis states uniquely identify |ψ⟩. One obtains the
x- and y-eigenstates as linear combinations of the z basis states

|↑x⟩ =
1√
2
(|↑⟩+ |↓⟩) , |↓x⟩ =

1√
2
(|↑⟩ − |↓⟩) ,

|↑y⟩ =
1√
2
(|↑⟩+ i |↓⟩) , |↓y⟩ =

1√
2
(|↑⟩ − i |↓⟩) .

(2.2)

The complex wave function coefficients ⟨↑ |ψ⟩ and ⟨↓ |ψ⟩ are not di-
rectly measurable experimentally, but rather determine the probability
of the observations

P↑ = |⟨↑ |ψ⟩|2, P↓ = |⟨↓ |ψ⟩|2 = 1− P↑, (2.3)

which are in practice inferred through repetition. To gather sufficient
information to uniquely determine also the relative phases of the
coefficients, measurements in additional bases are required, usually
conveniently chosen as the mutually unbiased bases in x- and y-
direction [2]. Equivalently, one can uniquely identify a spin-1/2 wave
function by giving the expectation values of the three elementary
spin-1/2 operators, the Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
, (2.4)

for which we identified

|↑⟩ ≡
(

1

0

)
and |↓⟩ ≡

(
0

1

)
. (2.5)
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These expectation values are conveniently represented on the Bloch-
sphere, as shown in Figure 2.2, allowing a very intuitive understanding
of the simplest quantum system.

Importantly, the Pauli matrices do not commute, as

[σi,σj] = σiσj − σjσi = 2iε ijkσk, (2.6)

with ε ijk the Levi-Civita symbol, implying that angular momentum
cannot be measured simultaneously with arbitrary precision in differ-
ent directions.

As any hermitian operator, the Pauli matrices can be constructed by
an eigendecomposition, yielding

σd = |↑d⟩ ⟨↑d| − |↓d⟩ ⟨↓d| , (2.7)

with the outer product |·⟩ ⟨·| and d ∈ {x, y, z}. Expectation values
thereof are obtained as

⟨σd⟩ = ⟨ψ|σd|ψ⟩ , (2.8)

with ⟨σd⟩ guaranteed to be real due to the hermiticity of σd.
Systems consisting of N spin-1/2 particles are described by wave

functions on Hilbert spaces that are constructed as tensor products of
the single particle Hilbert spaces,

H = H1/2 ⊗H1/2 ⊗ ...⊗H1/2. (2.9)

Consequently, the wave function is uniquely determined by 2N com-
plex coefficients, demonstrating the curse of dimensionality of the
quantum many-body problem.

The evolution of a closed quantum system is governed by its Hamil-
tonian H through the Schrödinger equation

i∂t |ψ⟩ = H |ψ⟩ . (2.10)

x y

| ↑ ⟩

| ↓ ⟩
0 1 2 3t

−1.0
−0.5
0.0
0.5
1.0

⟨σx⟩⟨σy⟩⟨σz⟩
0 1 2 3t

−1.0
−0.5
0.0
0.5
1.0

Figure 2.2: Unitary evolution under H = σx of a single spin-1/2 depicted
on the Bloch sphere. The spin is initially prepared in the state
|ψ⟩ = cos(α) |↑⟩+ sin(α) |↓⟩, for α = 0 (π/6, π/4) shown in blue
(orange, green). The closer the initial state is to the eigenstate |↑⟩x,
the smaller the time-dependent signal becomes until it finally
vanishes completely (green data point on the Bloch sphere).
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For time-independent Hamiltonians, it is formally solved by the oper-
ator exponential

|ψ(t)⟩ = e−iHt |ψ(t = 0)⟩ = U |ψ(t = 0)⟩ , (2.11)

where U is the unitary evolution operator generated by H .

2.2 subsystems , entanglement and quantum informa-
tion

Wave functions describe pure quantum systems, which are perfectly
shielded from the environment. Experimentally, this is an oftentimes
unjustified assumption. Due to non-negligible interactions with its
surroundings, the system of interest and the environment become
entangled so that the total wave function cannot be written as a
product state. Consequently, the (sub-)system of interest can no longer
be described by a single wave function but rather by a statistical
mixture of many wave functions. It should therefore be treated in the
density matrix formalism.

The density operator ρ is given by

ρ = ∑
i

pi |ψi⟩ ⟨ψi| , (2.12)

where pi is the probability to find the system in state |ψi⟩. Its time
evolution is given by the von Neumann equation

∂tρ = −i[H ,ρ]. (2.13)

Density operators are normalized, hermitian, and positive [2]:

Tr [ρ] = 1, ρ = ρ†, ρ ≥ 0, (2.14)

so that we may in the following assume Eq. (2.12) to be the eigende-
composition of ρ in the orthonormal eigenbasis {|ψi⟩} without loss of
generality.

The rank of ρ is upper bounded by the number of terms that
appear in Eq. (2.12) and is one for pure states, for which only a single
probability is one, while it is greater than one for thermal states

ρ =
exp(−βH)

Tr [exp(−βH)]
, (2.15)

where β ≥ 0 is the inverse temperature. This is reflected in the quan-
tum purity Tr

[
ρ2], which vanishes for pure states and deviates from

zero for mixed states [2].
Using the density matrix formalism, we can meaningfully describe

a subsystem A of the system under consideration by tracing out its
complement B,

ρA = TrB [ρ] = ∑
ij
⟨ij|ρ |ij⟩ |i⟩ ⟨i| , (2.16)
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with |i⟩ (|j⟩) an element of the basis of subsystem A (B) and |ij⟩ their
tensor product. If ρ is pure, the von Neumann entropy

SA = −Tr [ρA ln (ρA)] (2.17)

constitutes a measure of entanglement between the two subsystems,
and so do their Rényi extensions

S(n)
A =

1
1− n

ln (Tr [ρn
A]) , (2.18)

for which the limit

lim
n→1

S(n) = S (2.19)

is understood [189]. Another information theoretical quantity of inter-
est is the quantum mutual information,

I(A : B)(n) = S(n)
A + S(n)

B − S(n)
AB (2.20)

which measures all correlations that are present between the subsys-
tems A and B, in particular those that are not captured by second-order
correlation functions.

A research question that has received a lot of attention is how the
entanglement entropy of a subsystem changes with its size [190]. A
central observation in quantum information theory and quantum
many-body physics is that typical states, such as ground states of
gapped Hamiltonians, show a so-called area law, given that only local
interactions are present. This means that the entanglement entropy
of that subregion, given a sufficient size, only grows with the size
of the boundary and not its volume. In one-dimensional systems,
this corresponds to a logarithmic growth of SA, featuring an almost
stationary value for large enough subsystem sizes after an initial

A
B

|A|

S Volume Law

Area Law

Figure 2.3: Left: Bipartition of a two dimensional system into subsystem A
and B. Right: Depending on whether the entanglement entropy of
a one-dimensional system grows linearly (logarithmically) with
the size of the subsystem |A|, the system is said to exhibit a
volume law (area law).
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transient regime as shown on the right-hand side of Figure 2.3. This is a
striking observation, given that a random state that is typical according
to the Haar-random measure obeys a volume-law of the entanglement
entropy so that it is an extensive quantity for that subsystem [191–193].
Let us emphasize that the origin of area laws stems from the locality
of the interactions in the Hamiltonian and is not present within all-
to-all connected models, such as, for example, the Sachdev-Ye-Kitaev
model [194–197]. The presence of area laws has important implications
regarding the classical simulatability of quantum models, as we will
discuss in more detail in Chapter 4.

2.3 dynamics of open quantum systems

While closed quantum systems evolve according to the Schrödinger
equation (2.10) or von Neumann equation (2.13), the evolution of a
system that is in contact with a bath is non-unitary, breaking the time-
reversal symmetry as information flows out of the system and cannot
be recovered [198–200]. In certain limits, the subsystem of interest
obeys a Lindblad master equation

∂tρ = −i[H ,ρ] + ∑
i

γi

(
LiρL

†
i −

1
2

{
L†

i Li,ρ
})

, (2.21)

with the anticommutator {A,B} = AB +BA, the ‘jump’ operators
Li corresponding to different dissipation channels and γi denoting
the dissipation rate.

The main assumptions that lead to the Lindblad master equation
are a weak coupling between system and bath and that the bath is of
Markovian type, meaning that correlations between system and bath
decay on short time scales compared to the internal dynamics such
that the bath has no memory of its previous states [198, 201].

The dynamics generated by Lindbladians typically lead to a unique
steady state that the system asymptotically converges to in the long
time limit irrespective of initial conditions [202, 203], such that

lim
t→∞

ρ(t) = ρSS. (2.22)

The uniqueness property of the steady state is equivalent to the spec-
trum of the Lindbladian only having a single entry with a real part
equal to zero. The real parts of all other entries are necessarily smaller
than zero, as they are continuously projected out during the time
evolution.

We may think about the Lindblad evolution equation also in a
stochastic way, where dissipative jumps, such as the emission of a
photon or the flipping of a spin, are discrete, random events in an
otherwise continuous evolution [204, 205]. This bears the advantage,
that the only objects that need to be modeled are wave functions,
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meaning a quadratic reduction in complexity compared to the density
matrix formalism, albeit one needs to average many such stochastic
evolutions to obtain a reasonable signal-to-noise ratio. In this Monte
Carlo wave function (MCWF) framework, which we use as a bench-
mark in Chapter 5, the wave function obeys an evolution generated
by the effective Hamiltonian

He f f = H − i
2 ∑

i
L†

i Li. (2.23)

As He f f is not a hermitian operator, the wave function needs to be
renormalized after every evolution step. This evolution is perturbed
by projections that occur with probability

dp = dt ∑
i
⟨ψ|L†

i Li|ψ⟩ = dt ∑
i

pi, (2.24)

while the evolution under He f f for a small time step dt takes place
with probability 1− dp. The time step should be chosen such that the
probability for a jump is low, dp≪ 1. The evolution equation for the
wave function then reads

|ψ(t + dt⟩ = e−iHe f f dt |ψ(t)⟩ /
√

1− dp (2.25)

if dp < p, with p a random number drawn uniformly from the interval
[0, 1]. When dp > p, the system instead undergoes a jump event

|ψ(t + dt⟩ = Li |ψ(t)⟩ /
√

pi, (2.26)

where the event i occurs with probability dtpi in a single step.
Figure 2.4 shows the dynamics of a single spin-1/2 that is subject

to an external magnetic field as well as dephasing in the MCWF

0 1 2t
−1.0
−0.5
0.0
0.5
1.0

⟨σ z⟩

0 1 2t
−1.0
−0.5
0.0
0.5
1.0

⟨σ z⟩

∞101000
x

y| ↑ ⟩

| ↓ ⟩

Figure 2.4: Monte Carlo wave function demonstration for a single spin-1/2

following a quench from |ψ⟩ = |↑⟩ under the Hamiltonian H =
σx with dissipation L = σz with rate γ = 1.5. Left: Single wave
function trajectories. Center: Averages over 10 (1000) trajectories
with the shaded region corresponding to a 1σ confidence interval.
Right: Evolution on the Bloch sphere. The dissipative evolution
brings the state from the surface of the sphere to the origin,
corresponding to the steady state ρSS = 1/2.
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formalism. The left panel depicts two single trajectories for which the
discrete jumps at random times are apparent. Upon averaging many
trajectories, the correct ensemble description is recovered, as indicated
in the center panel. As non-unitary evolutions change the purity of
the quantum state, the dynamics on the Bloch-sphere are no longer
restricted to its surface but finally end up in the steady state which is
the origin for the case at hand.

2.4 positive operator valued measures (povms)

Quantum mechanical systems are typically either described using
wave functions, if the system is closed or density matrices if it is open.
This section and Section 2.6 will introduce two alternative descriptions
that may be advantageous in certain situations.

Suppose the following experimental setup: We are given access to a
two-level system, i.e. a qubit, whose state |ψ⟩ we wish to characterize.
By carrying out projective measurements along the z-axis, we obtain
statistics of ‘up’ and ‘down’ outcomes, which we can use to compute
the expectation value ⟨σz⟩. However, unless |ψ⟩ = |↑⟩ or |ψ⟩ = |↓⟩,Note that these are

precisely the
eigenstates of σz.

we have insufficient knowledge to associate a point on the Bloch
sphere to the state. By carrying out projective measurements along
the x- and y-axis and obtaining their respective expectation values,
we can remove this ambiguity and uniquely identify the state. This
process is known as quantum state tomography and is used to verify

x
y

| ↑ ⟩

| ↓ ⟩
x y

| ↑ ⟩

| ↓ ⟩
x y

| ↑ ⟩

| ↓ ⟩

Figure 2.5: Different choices of informationally complete POVMs, with ar-
rows indicating the directions of projective measurements. Left:
The Pauli-6 POVM is an experimentally motivated example of an
informationally complete POVM, where each projective measure-
ment in the computational basis is carried out after the application
of a random unitary that corresponds to a basis transformation to
the x-, y- or z-basis. Middle: To transform the Pauli-6 POVM to a
minimal informationally complete POVM, we may group the ’up’
outcomes of the three different basis configurations (shown in
red) to represent a new outcome. Note that this grouped outcome
does not correspond to a rank-1 projector. Right: The symmetric
informationally complete POVM (SIC-POVM) is characterized
by pairwise equal Hilbert-Schmidt inner products among the
projectors and is theoretically motivated.
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the state preparation procedures in quantum devices. It is formalized
using the concept of informationally complete positive operator valued
measures (IC-POVMs), which assign a unique probability distribution
over measurement outcomes to each state [2].

A general POVM is characterized by K measurement operators Mk
that fulfill

Mk = M †
k , ∑

k
Mk = 1, Mk ≥ 0 ∀k. (2.27)

Informational completeness is guaranteed once the set of the Mk span
the space of operators - if the number of operators is just sufficient to
span that space, the IC-POVM is said to be minimal.

In the case of a single spin-1/2, three informationally complete
POVMs are relevant, which are presented in Figure 2.5. Of particular
interest to this thesis is the symmetric informationally complete POVM
(SIC-POVM) [206] shown on the right, since it is used in our approach
to model the dissipative dynamics using neural networks [A], which
is discussed in Chapter 5. It is made up of the four ‘projectors’ Note that the term

projector is
commonly used but
misplaced as
M2

k = Mk/2,
violating the
property P2 = P a
projector must obey.
We will nevertheless
use this
nomenclature to be
consistent with the
literature.

Mk =
1
2
|ψk⟩ ⟨ψk| (2.28)

with the states |ψk⟩ defined as

|ψ0⟩ = |↑⟩ , |ψ1⟩ =
1√
3
|↑⟩+

√
2
3
|↓⟩ ,

|ψ2⟩ =
1√
3
|↑⟩+ ei 2π

3

√
2
3
|↓⟩ , |ψ3⟩ =

1√
3
|↑⟩+ ei 4π

3

√
2
3
|↓⟩ .

(2.29)

A POVM is referred to as symmetric if all its elements have the
same pairwise Hilbert-Schmidt inner product,

Tr[MkMl ] =
1
d2

dδkl + 1
d + 1

(2.30)

with d the dimension of the Hilbert space.
The other two POVMs shown in Figure 2.5 are experimentally

motivated and are employed in [F] and [H]. One intuitive way to
construct POVMs for a system of N spin-1/2 particles consists in
building tensor products of the single spin measurement operators,

Mk = Mk1k2..kN = Mk1 ⊗Mk2 ⊗ ...⊗MkN . (2.31)

We note that the symmetry property of a POVM is lost upon using
tensor products of SIC-POVMs to build POVMs on larger systems.
The POVM distribution associated to a set of measurement operators
{Mk} is obtained by computing expectation values of the measure-
ment operators

Pk = Tr [ρMk] . (2.32)
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If {Mk} is informationally complete, the above probability distribution
Eq. (2.32) contains all the information about the quantum state. In
particular, it is possible to reconstruct the density operator from the
probabilities using the inverse of Eq. (2.32) which is given by

ρ = ∑
kl

MkT−1
kl Pl, (2.33)

where T−1
kl denotes the inverse of the overlap matrixNote that this

inverse does not exist
for POVMs that are

informationally
complete but not

minimal.

Tkl = Tr [MkMl] . (2.34)

It is thus possible, to reformulate quantum mechanics using only
the language of POVM probability distributions. In particular, we can
write down expressions for expectation values and reformulate the
master equation of the density operator ρ as a differential equation
for the POVM distribution P.

In the POVM formalism, an expectation value of an operator O

takes the form

⟨O⟩ = Tr [ρO] = ∑
k

PkOk, (2.35)

where

Ok = ∑
l

T−1
kl Tr [MlO] . (2.36)

Given samples {k} of the probability distribution P, it is thus sufficient
to average the associated coefficients {Ok} to arrive at an estimate for
the expectation value, hinting at an efficient Monte Carlo estimation
scheme of Eq. (2.35).

To arrive at an evolution equation of the probability distribution,
we insert Eq. (2.21) into the time derivatives of the probabilities

∂tPk = ∂t Tr [Mkρ] = Tr [Mk∂tρ] . (2.37)

For the unitary part contained in Eq. (2.21), we compute

∂tPk = Tr [−i [H ,ρ]Mk]

= Tr
[
−i
[
H , T−1

ll′ Ml′

]
Mk

]
Pl

= Tr
[
−iH

[
T−1
ll′ Ml′ ,Mk

]]
Pl

= UklPl,

(2.38)

where we inserted the definition of the density operator in terms of
POVM probabilities (2.33) in the second line and used the cyclicity of
the trace in the third line. For the dissipative part, we similarly find

Dkl = Tr

[
∑
l′

∑
i

γi

(
LiT−1

ll′ Ml′L
†
i Mk

− 1
2
L†

i Li

{
T−1
ll′ Ml′ ,Mk

})] (2.39)
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and write the composite evolution equation

∂tPk = ∑
l

LklPl (2.40)

with the POVM-Lindblad operator

L = U +D. (2.41)

For a meaningful evolution probability must be conserved, so that the
matrix exponential of L must be stochastic,

∑
k

exp(τL)kl = 1, (2.42)

with τ denoting a small time step, implying

∑
k

Lkl = 0. (2.43)

While all (normalized) POVM probability distributions correspond
to hermitian density operators with unit trace, the positivity constraint
may be violated depending on the distribution, so that some POVM
distributions correspond to non-physical density matrices [207]. For
instance, SIC-POVM distributions that are delta-peaks are forbidden
due to the non-orthogonality of the projectors in Eq. (2.29),

⟨ψi|ψj⟩ ̸= δij, (2.44)

which would exemplarily lead to

P = (1, 0, 0, 0)T ⇐⇒ ρ =

(
2 0

0 −1

)
(2.45)

obviously violating the positivity constraint.
It is not easy to say whether a given POVM distribution is positive,

meaning whether it corresponds to a density operator with ρ ≥ 0,
without explicitly constructing ρ using Eq. (2.33) and computing
its eigenvalues. This point will also be discussed in some detail in
Chapter 5, where it would be desirable to define ansatz functions that
only allow modeling physical distributions, which form a subset within
the probability simplex as shown in Figure 2.6.

2.5 bosonic modes

One of the main results of this thesis is a proposal regarding the
readout of an area to volume law transition in the classical differential
entropies of phase-space distributions describing a Bose-Einstein con-
densate. We thus wish to describe bosonic modes in this section, their
associated phase-space descriptions in Section 2.6 and the details of
the system studied in Chapter 8 and Chapter 9 in Section 2.7.
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‘Physical’
Configura�ons

Probability
Simplex

Pure states

Figure 2.6: The probability simplex: The set of valid physical distributions is
shown in blue, which is a subset of all (normalized) probability
distributions shown in grey. The boundary of the subset is shown
in orange, which is given by the set of pure states.

A single bosonic mode describes a harmonic oscillator with Hamil-
tonian

H =
mω2

2
x2 +

1
2m

p2. (2.46)

Its solutions are the Hermite functions

ψn(x) =
1√
2nn!

(mω

π

)1/4
exp

(
−mωx2

2

)
Hn
(√

mωx
)

(2.47)

with n a non-negative integer and the Hermite polynomials

Hn(z) = (−1)n ez2 dn

dzn e−z2
. (2.48)

As eigenfunctions of a hermitian operator, the Hermite functions
constitute an orthonormal basis

⟨ψn|ψm⟩ =
∫

dxψ∗n(x)ψm(x) = δnm, (2.49)

the harmonic oscillator lends itself to treatment in the discrete Hilbert
space spanned by the Fock-basis

B =

{(
a†)n

√
n!
|0⟩
∣∣∣∣∣∀n ∈ N

}
. (2.50)

Here |0⟩ is the vacuum state and

a† = (x− ip)/
√

2 (2.51)

the creation operator, transitioning between the equidistant energy
eigenlevels

En = ω

(
n +

1
2

)
(2.52)
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by creating an elementary excitation. Its adjoint a instead annihilates
an elementary excitation and we find

[a,a†] = 1 (2.53)

and note that the creation and annihilation operators span the space
of operators. We may write the Hamiltonian in its diagonal form

H = ω

(
a†a+

1
2

)
= ω

(
N +

1
2

)
, (2.54)

with N the particle number operator.
Depending on the system under consideration, Fock states are

difficult to prepare experimentally, particularly in the regime of high
occupations. What is oftentimes more easily accessible are coherent
states |α⟩, meaning eigenstates of the annihilation operator a with
eigenvalue α, which are given by the Fock-expansion

|α⟩ = exp
(
−α2

2

)
∑
n

αn
√

n!
|n⟩ . (2.55)

In the following we associate the real part of α with position x and its
imaginary part with momentum p, i.e.

α =
x + ip√

2
. (2.56)

Equivalently, we may define the displacement operator

D (α) = exp
(

αa† − α∗a
)

(2.57)

and generate a coherent state |α⟩ by acting on the vacuum with D (α).
Its average number occupation and associated standard deviation are
given by

⟨N ⟩ = |α|2 σ⟨N ⟩ =
√
⟨N ⟩, (2.58)

so that the number occupation distribution becomes peaked in the
(classical) limit of high occupations,

σ⟨N ⟩
⟨N ⟩ = 1/

√
⟨N ⟩. (2.59)

2.6 phase-space representations of bosonic modes

Bosonic systems lend themselves to phase-space descriptions, allowing
an arguably more intuitive treatment of physical phenomena than the
description in Fock space [209].

The most relevant phase-space distributions for this thesis are the
Wigner W- and Husimi Q-distribution. In contrast to phase-space
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distributions of classical systems, these descriptions only constitute
quasi-probability distributions, as we will see shortly.

The Wigner transform of an operator O defines its associated Weyl-
symbol

OW(x, p) =
∫

dχ

〈
x− χ

2

∣∣∣∣O∣∣∣∣x +
χ

2

〉
exp(ipχ). (2.60)

The Weyl-symbol of the density operator gives the Wigner distribution
W(x, p) = W(α) with α defined in (2.56). The Wigner distribution is
normalized,∫

dxdpW(x, p) = 2
∫

d2αW(α) = 1 (2.61)

but can take negative values, therefore not allowing a probabilistic
interpretation for all states. Its marginals,

W(x) =
∫

dpW(x, p), W(p) =
∫

dxW(x, p), (2.62)

can however be shown to be strictly positive also for negative W(x, p),
as demonstrated in the right panel of Figure 2.7. They correspond
to the marginal distributions that one would obtain from measuring
either the position or momentum of the system.

Importantly, coherent states correspond to Gaussian Wigner distri-
butions and are thus positive. Connecting to the discussion at the start

x

pW(x, p)

0.00

0.13

0.25

W(x) Q(x)

W(p)

Q(p)
x

pW(x, p)

-0.32

-0.06

0.19

W(x) Q(x)

W(p)

Q(p)

Figure 2.7: Left: Wigner W-distribution of the vacuum state |0⟩, with
marginalizations over p (x) shown on the top (right) in blue.
If the two observables are read out simultaneously, the Wigner
density profile is broadened, and the obtained marginals corre-
spond to those of the Husimi Q-distribution (shown in orange).
Right: Wigner W-distribution of the Fock state |2⟩, which is no
longer of Gaussian form but rather described by Laguerre polyno-
mials [208], thus taking on negative values. Its marginals however
are still positive, with the Husimi marginals now significantly
more smeared out compared to the vacuum state.
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of this chapter regarding the Heisenberg uncertainty principle, we are
now faced with a quantity that, unlike the wave function, depends on
both x and p, and hence the Wigner distribution must fulfill certain
restrictions so that the Heisenberg uncertainty principle (2.1) is not
violated. For Gaussian distributions, this translates into a lower bound
on the determinant of the covariance matrix, which in turn translates For diagonal

covariance matrices
the constraint on the
determinant is the
same as (2.1).

into a lower bound on the differential entropy of W (also referred to
as Wigner entropy)

S(W) = −
∫

dxdpW(x, p) ln (W(x, p)) ≥ 1 + ln (π) . (2.63)

For general, i.e. non-Gaussian, distributions it has not yet been proven
that (2.63) holds, with the hitherto best known entropic uncertainty
relation reproducing the one obtained for a Gaussian [210, 211]. One
may extend the definition of (2.63) to negative Wigner distributions,
where S(W) becomes complex-valued.

A strictly positive phase-space description is given by the Husimi
Q-distribution. It is defined by the projection of the density matrix
onto all coherent states

Q(x, p) = Q(α) = ⟨α|ρ |α⟩ . (2.64)

The set of coherent states constitutes an overcomplete, non-orthogonal
basis such that all information contained in the density operator is
preserved in the Husimi Q-distribution. Its connection to the Wigner
W-distribution can be made explicit, as it can also be obtained as a
smoothed version of the Wigner W-distribution using a convolution
with a Gaussian kernel [209]

Q(α) = 4
∫

d2βW(β) exp(−2|α− β|2). (2.65)

With the appropriate integral measure, the Husimi Q-distribution is
normalized,∫ dxdp

2π
Q(x, p) = 2

∫ d2α

2π
Q(α) = 1. (2.66)

Its quasi-probabilistic nature is due to the interpretation of its marginals,
which are broadened compared to those one would obtain if one were
to measure either only position or momentum. This broadening arises
since the projection onto coherent states has a clear physical interpre-
tation as a measurement operation of both position and momentum
following Eq. (2.56). Hence, in order to not violate the Heisenberg
uncertainty principle, the distribution is broadened compared to the
marginals that stem from non-simultaneous measurements, such as
those of the Wigner distribution. The Husimi marginals can thus not
be interpreted as those that are obtained from repeatedly measuring
the position or momentum of the system. The differential entropy
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that is associated with the Husimi Q-distribution is the Wehrl-entropy,
satisfying

S(Q) = −
∫ dxdp

2π
Q(x, p) ln (Q(x, p)) ≥ S(W)− ln (π) . (2.67)

If we consider phase-space distributions of multiple modes, we may
compute Wigner and Wehrl entropies of subsystems and hence also
their mutual information

I(OA : OB) = SA(O) + SB(O)− SAB(O) (2.68)

with O either W or Q, much alike to their quantum counterpart in
Eq. (2.20). We are motivated to explore these information theoretical
phase-space quantities, as they also encode the area law similar to the
discussion in Section 2.2, as we will show in Chapter 8 and Chapter 9.

2.7 spin-1 bose-einstein condensates

The bosonic system we wish to study in Chapter 8 and Chapter 9 using
the introduced phase-space representations is a spin-1 Bose-Einstein
condensate (BEC), that may be realized using Lithium-7 or Rubidium-
87 atoms. In this section, we will give a brief overview of the system
and link to more exhaustive sources for the interested reader.

Building on work from Bose on the introduction of quantum statis-
tics [212], Einstein predicted the existence of a novel state of matter, the
Bose-Einstein condensate [213]. It is characterized by a macroscopic
occupation of the system’s ground state at low densities, once the
temperature falls below a critical value, which is typically close to
absolute zero. Due to remarkable advances in the microscopic control
over quantum systems, Bose-Einstein condensates have developed into
an ubiquitous platform to implement and simulate various many-body
phenomena ever since their first experimental realization in 1995 [214,
215].

In experimental setups, Bose-Einstein condensates are obtained us-
ing laser- and evaporative cooling techniques and confined to small
spatial subregions by employing magneto-optical traps (MOTs) [216].
Using optical lattices the implementation of periodic potentials is fea-
sible, enabling the realization of Hamiltonians such as Bose-Hubbard
models in the lab [18], which will be of high interest to this thesis. Such
setups may be used to study both ground state properties as well as
dynamics in lattice systems. Information about the system is typically
gained using projective imaging techniques that destroy the prepared
state. Due to long state preparation cycle times (∼40 seconds), effi-
ciency with respect to the number of obtained samples is essential, a
point which will be emphasized in Chapter 8 and Chapter 9.
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Working in the single mode approximation1 and the F = 1 manifold,
each well j within the optical lattice is described by three bosonic
modes a

j
i , with i enumerating the three magnetic sublevels. These are

coupled by the (internal) Hamiltonian

H
j
int = q

(
N

j
1 +N

j
−1

)
+ c0 N

j
(
N j − 1

)
+ c1

[ (
N

j
0 − (1/2)1

) (
N

j
1 +N

j
−1

)
+ a

j†
0 a

j†
0 a

j
1a

j
−1 + a

j†
1 a

j†
−1a

j
0a

j
0

]
.

(2.69)

Here, N j
i counts the number of atoms in mode i at site j and N j =

N
j
−1 +N

j
0 +N

j
1.

The terms proportional to c1 and q are responsible for the internal
spin dynamics, with c1 giving the strength of the pair production
process where two side-mode atoms are created upon the collision
of two zero-mode atoms or vice versa. Depending on the value of q,
this process may be suppressed as q serves as an energy penalty or
detuning for the creation of side-mode populations. An illustration of
the single well dynamics is given in Figure 2.8.

The Hamiltonian of the full system is composed of the internal
contributions of all wells and the couplings among them

H =
L

∑
j=1

H
j
int +

L−1

∑
j=1

H
j
tunnel (2.70)

where L denotes the number of wells in the lattice, and Htunnel is the
nearest-neighbor tunnel Hamiltonian

H
j
tunnel = −J ∑

i=±1
a

j†
i a

j+1
i + a

j
ia

(j+1)†
i , (2.71)

where the restriction to side-mode hopping is motivated in Chapter 8

and Chapter 9.
In the limit of large values of q, all spin dynamics are suppressed

and the remaining dynamics are those of the Bose-Hubbard model,
with c0 giving the on-site repulsion, thereby suppressing the creation
of population imbalances between sites which are created by the tun-
nel Hamiltonian. Depending on their relative strengths, we thus face
a competition of momentum-space ground states, characterized by
phase coherence across all lattice sites favored by the tunnel Hamilto-
nian in contrast to definite real-space occupation numbers favored by
the on-site repulsion. We note that while both J and q are experimen-
tally tunable parameters, the ratio c0/c1 is determined by the atomic
species and thus not tunable.

1 The single mode approximation assumes that all atoms are described by the same
real-space wave function throughout the experiment [216].
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The spin physics we aim to study within the described system is
accessible by measuring the two non-commuting spin observables of
our interest

ϕj =
S

j
x√

2⟨N j⟩

=
1√
2

[
a

j†
0

(
a

j
1 + a

j
−1

)
+ a

j
0

(
a

j†
1 + a

j†
−1

)]
/
√

2⟨N j⟩,
(2.72)

and

π j = −
Q

j
yz√

2⟨N j⟩

=
−i√

2

[
a

j†
0

(
a

j
1 + a

j
−1

)
− a

j
0

(
a

j†
1 + a

j†
−1

)]
/
√

2⟨N j⟩.
(2.73)

This can be done successively, such that a single shot gives a sample
of the marginal Wigner distribution associated with either ϕ or π.
Another option is their simultaneous readout, leading back to the
prior discussion regarding the Husimi Q-distribution (see Figure 2.7
and Eq. (2.64)).

For a discussion on how this can be done experimentally, see [216]
and [217].
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Figure 2.8: Truncated Wigner simulation of the single well dynamics gener-
ated by the internal Hamiltonian Eq. (2.69) after reading out ϕ
and π given in Eqs. (2.72) and (2.73). The Gaussian distribution of
(ϕ, π) that is associated with the initial polar state |ψ⟩ = |0, α, 0⟩,
constructed from side mode vacua and a coherent state in the
zero mode, is first squeezed (roughly corresponding to qt = 2)
before depletion effects cause the distribution to develop more
complex features. Note that the evolution equations of (ϕ, π) are
not closed and hence no flow field can be given. Here we chose
q = ⟨N ⟩c1.
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2.8 thermalization of closed quantum systems

As we will also consider the long time limit of the dynamics generated
by the Hamiltonian in Eq. (2.70) in Chapter 9, we want to briefly
discuss the mechanisms that cause quantum systems to thermalize.

It is a priori unclear what leads to the equilibration and thermaliza-
tion of generic, interacting closed quantum systems, as their unitary
dynamics do not feature any attractors. Locally, the situation at hand is
however qualitatively different as a spatial subregion A with reduced
density matrix ρA = TrB[ρ] does not obey a unitary evolution, since
the initially localized information flows out of subsystem A into sub-
system B as the two become entangled. Thus, in the long time limit,
local subregions may approach a steady state which is oftentimes well
described by a thermal ensemble [80, 218–220].

One such ensemble is the quantum microcanonical ensemble

ρMC
A = TrB

[
1
D ∑

Ei∈I
|i⟩ ⟨i|

]
(2.74)

which attributes equal probability to all eigenstates |i⟩ that fall into
the energy interval I = [E, E + ∆E], with ∆E small compared to
the macroscopic energy scale but large enough so that many energy
eigenstates are contained in the interval.

Surprisingly, the local predictions for subsystem A typically do
not strongly depend on the details of the chosen energy interval I,
meaning its precise location E and the size of the energy window
∆E. One idea that postulates an explanation for this, is the eigenstate
thermalization hypothesis (ETH) [221], which assumes that eigenstates
that are close in energy yield similar local descriptions so that the
different terms in the sum of Eq. (2.74) give similar results despite
their global orthogonality.

Another ensemble that may be used to describe the emergent ther-
mal features of subsystems is the canonical ensemble, which we also
define in analogy to classical statistical mechanics

ρC
A =

TrB [exp (−βH)]

Tr [exp (−βH)]
, (2.75)

where the inverse temperature β must fulfill the self-consistency equa-
tion

Tr [H exp (−βH)]

Tr [exp (−βH)]
= ⟨H⟩, (2.76)

with the energy expectation value on the right-hand side given by the
pure initial state.

For completeness, let us also mention that there exist quantum
systems which do not thermalize and instead remain ’close’ to their
initial conditions: such systems are said to exhibit localization [222–
227].





3
M A C H I N E L E A R N I N G

It is challenging to give a definition of machine learning (ML) that
does justice to the vastness of the field. Instead, we will describe the
underlying aims, which is an arguably easier task.

The high complexity of the world surrounding us is matched by our
equally high ability to filter out only those bits of information that are
relevant to us at a specific point in time. While this filtering may seem
like a trivial task, defining strict rules for what is relevant in a specific
situation is almost never straightforward. In order to have machines
that can make sense of heaps of complex data, such as images or nat-
ural language for example, explicit, rule-based approaches therefore
seem like a dead end. Instead, a new paradigm that breaks with this
’if-else’ logic is required. This paradigm is machine learning.

The shortcomings of explicit programming become apparent for
comparably easy tasks. A frequently cited example is image clas-
sification, where one aims to assign images to their corresponding
categories. While defining the precise characteristics, or rules, because
of which one reached a particular decision is difficult, such tasks are
usually trivial to any human above a certain age. What makes this
task trivial is our ability to relate new impressions to prior experience.
The question thus becomes how we may build machines or algorithms
that are capable of learning from prior experience.

In standard machine learning instances, this is achieved by defining
loss functions that measure the performance of the algorithm on some
training and test set. Then, elaborate gradient descent schemes are
used to optimize these performance measures. For our applications,
we need to alter these procedures, since the neural quantum state
applications we have in mind are not data-driven, meaning that no
training set exists. These novel approaches are therefore neither well
placed in the category of supervised nor unsupervised learning. In-
stead, they form a standalone approach that is not restricted to scenarios
that have already been studied by means of other methods. One may
therefore hope to achieve results that go beyond the state-of-the-art
that is set by competing computational techniques.

This chapter starts by introducing the challenges that are most rele-
vant in the context of neural quantum states, namely those associated
with generative modeling, before discussing the different network
architectures that are employed in the remainder of this work.

33
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3.1 generative modeling

The most relevant branch of machine learning for the following chap-
ters is generative modeling. Generative modeling aims to model high-
dimensional objects, such as probability distributions, which are an-
alytically intractable and which are not associated with a particular
distribution family. This description also fits the requirements when
trying to model quantum states, so that applying the tools of genera-
tive modeling to problems from quantum many-body physics seems
plausible.

3.1.1 Sampling from high-dimensional Distributions

As we will see in the following chapters, generating samples from the
encoded distributions is essential in many applications. The funda-
mental problem associated with this task is the intractability of the
partition function

Z = ∑
{x⃗}

p(x⃗) (3.1)

in discrete or

Z =
∫

dx⃗p(x⃗) (3.2)

in continuous settings. Focusing on the case of an N-particle spin-1/2

system in the following, we see that the exponential complexity asso-Here we have
p(x⃗) = |ψ(x⃗)|2. ciated with the naïve normalization of the probabilities would render

any computational approach inefficient. We thus cannot generate sam-
ples by drawing uniformly distributed random numbers between zero
and one and check to which configuration they correspond. Instead,
we are forced to resort to Markov chain Monte Carlo techniques.

3.1.1.1 Markov chain Monte Carlo

Markov chain Monte Carlo algorithms generate a set of samples in
an iterative fashion. First, an initial sample x⃗ is defined as the start
of the chain before a new sample x⃗′ is proposed. The new sample is
accepted and added to the chain with probability

r = min
(

1,
p(x⃗′)
p(x⃗)

)
. (3.3)

If the new sample is not accepted, x⃗ is added to the chain instead.
Then the procedure starts anew and compares the next proposed
sample to the one that was added most recently. Notice, that the
acceptance probability only relies on the ratio of the probabilities such
that working with unnormalized probabilities is not an issue, as the
normalization cancels out.
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Eq. (3.3) constitutes a valid Markov chain Monte Carlo scheme if
the proposal probabilities p(x⃗ → x⃗′) and p(x⃗′ → x⃗) are identical. If
this condition of detailed balance is not met, Eq. (3.3) must be adapted
accordingly. For most applications, p(x⃗ → x⃗′) is zero unless x⃗ and x⃗′

differ in exactly one or two positions. This proposal scheme is used
to maintain high acceptance rates within the Markov chain but also
implies that neighboring samples within the chain may be highly
correlated. To obtain sample sets that are less correlated, one has to
disregard a significant portion of the sample set by considering only
every N-th sample or so, increasing computational complexity.

Furthermore, the Markov chain scheme does not guarantee an er-
godic exploration of the configuration space. In the case of the classical
Ising model, for example, the two fully magnetized configurations are
highly unlikely to occur within the same Markov chain if we use local
updates, as they are connected only by passing through regions of
highly energetic states. This means that despite the energetic equiv-
alence of the two magnetized states, the chain would spontaneously
break the spin-flip symmetry and stay either within the sector of posi-
tive or negative magnetization. To resolve incorrect expectation values
that are an artifact of this phenomenon, one may run multiple chains
in parallel, which will approximately distribute equally into the two
regions.

These shortcomings reduce the appeal of Markov chain Monte
Carlo techniques so that the exploration of network architectures that
support exact sampling from high dimensional distributions was met
with great interest.

3.1.1.2 Exact sampling

Some specific model architectures, such as recurrent neural networks
or normalizing flows support exact sampling in discrete and con-
tinuous settings by design. This means that samples are perfectly
uncorrelated and that sampling from multimodal distributions is no
issue.

In discrete settings, exact sampling can be achieved using the au-
toregressive property of multivariate probability distributions. This
property guarantees the existence of conditionals, that uniquely define
the distribution, such that

p(x⃗) = p(x1) · p(x2|x1) · ... · p(xN |xN−1...x1). (3.4)

To obtain a sample x⃗, we thus first sample x1 from p(x1). Normalizing
p(x1) is tractable as x1 can only take the two values that correspond to
the up and down spin configurations so that we do not need Markov
chains for this task. We can then proceed similarly through the lattice,
sampling one spin at a time conditioned on all previously sampled
spins. Autoregressive sampling can be achieved with various network
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architectures and we will revisit this task in the context of recurrent
neural networks in Section 3.2.3.

Normalizing flows achieve exact sampling of continuous distribu-
tions by transforming a simple distribution, such as a Gaussian, from
which exact samples may be generated, into a more complex one by
means of a learnable coordinate transformation. This architecture will
be discussed in Section 3.2.5.

3.1.2 Expressivity

Most distributions that are of interest in the context of this thesis do
not stem from a particular distribution family. Thus using generative
modeling with artificial neural networks as ansatz functions is a highly
promising avenue in this case. Here, the motivation is again given
by universal approximation theorems, which allow to increase the
representable range of functions in a controlled way. In the following
section, we discuss various network architectures that can be used for
the described tasks.

3.2 neural network architectures

Inspired by the research into the neural circuits of the human brain,
the idea of synthetically recreating similar structures in software was
developed. While a lot of theoretical considerations regarding these
artificial neural networks (or neural networks for short) were developed
in the 20th century, they only achieved major breakthroughs at the
beginning of the last decade, owing to the high requirements of (pre-
viously unavailable) compute power. Since then, their employment led
to state-of-the-art results in computer vision [120, 228–230], natural
language processing [231–233] and various other fields that range from
playing Go [234] to quantum physics [235]. Their vast applicability is
explained by universal approximation theorems [101–119], which guar-
antee that the network may approximate (reasonably well-behaved)
functions arbitrarily well given a sufficient number of parameters.

In the simplest case of a fully connected feed-forward neural net-
work, as shown in the left panel of Figure 3.2, the network is a map ϕ

consisting of a composition of elementary functions ϕi

ϕ (x⃗) = ϕn ◦ ϕn−1 ◦ ... ◦ ϕ1 (x⃗) (3.5)

with ϕi given by an element-wise non-linear activation function σi, such
as those shown in Figure 3.1, which acts on an affine transformation

ϕi : Rn → Rm : x⃗ 7→ ϕi (x⃗) = σi

(
Wi · x⃗ + b⃗i

)
, (3.6)

so that each ϕi constitutes a single feed-forward layer. The affine trans-
formation consists of a linear map given by the (not necessarily square)
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weight matrix W ∈ Rm×n and an offset vector b⃗ ∈ Rm, referred to
as bias. The set of all weight matrices and bias vectors constitute the
learnable, or variational, parameters of the neural network, also simply
referred to as weights, which we summarize in the weight vector θ⃗.
We omit this explicit dependence of the map ϕ(x⃗) on the variational
parameters θ⃗ for readability here and in the following. The first and
last layers of the network are also referred to as the input and output
layers, while the layers in between are called hidden layers. The com-
putation of the network is typically only interpretable at the input and
output layers and we refer to the representation of the input at the
intermediate stages as a latent representation.

Note that this definition of a feed-forward neural network is com-
pletely agnostic to the task it will be used for; there is no underlying
motivation for its architecture other than that upon increasing the
network size the sought-after function becomes representable, which
is guaranteed by the aforementioned theorems regarding universal
approximation.

Obviously, there exist scenarios where we know that the map we
aim to find can be restricted with prior knowledge about the problem
at hand. For image classification tasks, for example, it does not matter
where on the image an object is located, it is only important that it is
located somewhere. We may thus use this knowledge regarding the
present translation symmetry to only define such maps that respect
it. The construction of general neural networks whose outputs are
confined to submanifolds by various symmetries is an active field of
research referred to as geometric deep learning [236].

3.2.1 Restricted Boltzmann Machines (RBMs)

A restricted Boltzmann machine (RBM) [237–239], in the context of
this thesis, is a shallow two-layer network as shown in the right

−5 0 5x
0
2
4

ReLU
(x)

−5 0 5x
0
2
4

Soft
plus

(x)

−5 0 5x
0.00
0.25
0.50
0.75
1.00

Sigm
oid(

x)

Figure 3.1: Popular choices of activation functions. Left: The rectified linear
unit (ReLU) is zero for negative input values and the identity oth-
erwise, f (x) = max(0, x). Center: The softplus activation function,
f (x) = ln(1 + exp(x)), which has the same asymptotic behavior
of the ReLU but is differentiable everywhere. Right: The sigmoid
activation function, bounded to the range (−1, 1) and given by
f (x) = 1/(1 + exp(−x)).
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panel of Figure 3.2. Its output is a single number, that is obtained by
summing over the neurons in the second layer after the application of
the activation function

f (x⃗) = ∑ σ
(

W · x⃗ + b⃗
)

. (3.7)

Typically, σ is chosen to be the hyperbolic cosine.
Historically, restricted Boltzmann machines were developed to

model binary probability distributions over the visible neurons v⃗
in the first layer and the hidden neurons h⃗ in the second layer, giving
rise to the joint probability distribution

p(⃗v, h⃗) =
1
Z

exp
(
−
(

v⃗T ·W · h⃗ + b⃗T
1 · v⃗ + b⃗T

2 · h⃗
))

, (3.8)

with the partition function Z = ∑{v⃗,⃗h} p(⃗v, h⃗). As the computation
of the partition function is generally intractable, we must resort
to Markov chain Monte Carlo methods to generate samples from
p(⃗v) = ∑{⃗h} p(⃗v, h⃗). Restricted Boltzmann machines are to be differen-
tiated from general Boltzmann machines, which also allow connections
within each layer, making an analytical marginalization over the hid-
den units impossible. These probabilistic considerations break down,
when the weights and biases become complex-valued, as is required
for the modeling of complex wave function coefficients. The term
restricted Boltzmann machine in the sense of Eq. (3.7) is therefore
potentially misleading in those applications; we will nevertheless use
it to connect to the existing literature.

3.2.2 Convolutional Neural Networks (CNNs)

Convolutional networks were originally developed for computer vi-
sion tasks, such as image recognition [120, 229, 240], as their (ap-
proximate [241]) translation invariance is aligned with the aim of
recognizing whether an object is present in an image or not, without
caring for its precise location.

Figure 3.2: Left: Feed-forward architecture with an input (hidden, output)
layer consisting of 3 (4, 5) neurons. Right: Restricted Boltzmann
machine with 3 input and 5 output neurons.
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Convolutional networks are inspired by the mathematical convolu-
tion operation between two functions f and g

( f ∗ g)(x) =
∫

dx′ f (x′)g(x′ − x). (3.9)

Of particular interest to our considerations are convolutional kernels f
which have highly localized support, so that ( f ∗ g)(x) only depends
on a small neighborhood interval centered around x. This setup is
akin to what is typically encountered in deep convolutional networks
for computer vision tasks, albeit in a discretized and two-dimensional
fashion.

These discrete convolutional kernels are also referred to as filters
and are scanned over the image, creating local latent representations of
pixel neighborhoods. As the same filters are used independent of the
position within the image, convolutional networks have considerably Using the same

weights for different
parts of the input is
known as weight
sharing.

fewer weights than comparable feed-forward architectures, making
them computationally more efficient. Each filter may pick up on
different characteristics. For example, edges are detectable as local
gradients within images. Thus, a discretized gradient is a common
filter in the first convolutional network layers [242], and might take
the following forms

Fh =

 1 1 1

0 0 0

−1 −1 −1

 , Fv =

−1 0 1

−1 0 1

−1 0 1

 , Fd =

 0 1 1

−1 0 1

−1 −1 0

 ,

(3.10)

for horizontal, vertical, and diagonal edges respectively. In this exam-
ple, the discrete support of the convolutional kernels only consists of
three-by-three pixel patches, so that longer range correlations span-
ning many pixels may only be picked up in deep architectures. Of
course, such filters are never hardcoded but learned by the network
by minimization of a suited cost function.

After parallel application of N filters (resulting in N images), all
values are fed into an element-wise non-linear activation function,
before the next layer of filters is applied to the N images. One may
freely choose the network depth, filter size as well as their number
per layer (also referred to as channels).

3.2.3 Recurrent Neural Networks (RNNs)

In order to work with sequential data, such as time-series [243–245] or
natural language [246–248], feed-forward based architectures present
a suboptimal choice, as they are not capable of working with inputs
of variable length. Hence, an architecture that can work with inputs of
different shapes is required. This led to the development of recurrent
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networks, in which the input is treated sequentially in the order of
occurrence within the sequence while treating each occurring item
with the same network [249–251].

Recurrent networks are particularly suited to model discrete proba-RNNs are, however,
not restricted to

modeling probability
distributions.

bility distributions, due to their autoregressive property, which allows
us to a+ssign normalized probabilities to an event x⃗ by partitioning the
probability into the product of its conditionals

p(x⃗) = p(x1) · p(x2|x1) · p(x3|x2, x1) · ... · p(xN |xN−1...x1), (3.11)

as already stated in Section 3.1.1.2. This is achieved by scanning
a recurrent cell iteratively over the input as shown in Figure 3.3
and keeping a memory vector of latent context information of the
encountered items in a so-called hidden vector h⃗ that is updated after
each item

h⃗i = f (⃗hi−1, xi−1). (3.12)

This hidden vector is used to compute the conditional probabilities as

p(xi|xi−1...x1) = g(⃗hi). (3.13)

In the simplest case, both f and g are shallow feed-forward networks
[249]. However, they can also be more complex, featuring so-called
’gating mechanisms’, as in the long short-term memory (LSTM) [250]
or gated recurrent unit (GRU) [251] architectures.

Notice the advantages when generating samples from the encoded
probability distribution using such architectures: Instead of having to

ℎ0 𝑓 ℎ1

ℎ1

𝑔

𝑥0

𝑝(𝑥1)

𝑓

ℎ2

𝑔

𝑥1

𝑝(𝑥2|𝑥1)

ℎ2 … ℎ𝑁−1 𝑓

ℎ𝑁

𝑔

𝑥𝑁−1

𝑝(𝑥𝑁|𝑥<𝑁)

Figure 3.3: Treatment of an input sequence using a recurrent neural network.
In each step, the RNN-cell f computes a new hidden state based
on the previous hidden state and the data input xi. As the RNN-
cell f uses the same parameters for each operation, it is agnostic
to the length of the sequence so that RNNs can, for example, be
trained on one sequence length and deployed on another. Using
the hidden state, another network g computes the conditional
probabilities p (xi|x<i). This is possible since information flows
strictly from left to right so that a causal interpretation is possible.
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await thermalization of a Markov chain in order to get an uncorrelated Autoregressive
sampling is also
referred to as direct
or exact sampling.

sample, we are guaranteed to obtain uncorrelated samples as we sample
from the probability distribution directly. This is possible since we
generate each sample iteratively, only requiring computations of local
partition functions, given by two terms corresponding to the two
possible spin configurations in the case of the Ising model and the
size of the dictionary in natural language tasks. The price we pay for
the sequential treatment is our inability to parallelize the evaluation,
thus increasing computation time. Another challenge is the possible
loss of information when working with long sequences, such that the
dependence of p(xN |xN−1...x1) on the first elements of the sequence
may not be captured correctly. This was the main motivation for the
development of the LSTM and GRU architectures. Dependencies in
long sequences are not an issue for transformers [231].

While MCMC algorithms have been shown to work well in Ising-like
models, imagine the overhead this would introduce in tasks such as
natural language processing, where the local dimension is the size of Random sentences

are rarely
meaningful, in
contrast to random
spin configurations.

the considered dictionary instead of only the two spin configurations.
This underlines the necessity of being able to generate exact samples
in certain scenarios.

3.2.4 Graph Neural Networks (GNNs)

If we know the input data to feature a graph-like structure, we may re-
strict the search space to permutation invariant functions by choosing
a suited architecture. Scenarios in which the input data features such
a structure are ubiquitous: The positions of atoms inside a molecule
can be viewed as a graph, just like social networks; even sets can be
understood as disconnected and trivial or all-to-all connected graphs.

Graphs consist of nodes that are connected through edges to their
neighbors; the set of neighbors of a node i is referred to as the neigh-
borhood Ni. Each node is attributed a latent representation h⃗i ∈ RF,
that is updated in every layer of the graph network. This can be
achieved in different ways, as discussed in [236]. Since we employed
the graph attention variant [252] in [H], we discuss it here.

A graph attention layer updates the node features h⃗i of node i as

h⃗′i = σ

(
∑

j∈Ni

αijW · h⃗j

)
, (3.14)

with an activation function σ, a linear learnable transformation W ∈
RF′×F and the self-attention coefficient αij ∈ R between nodes i and j

αij =
exp(eij)

∑k∈Ni
exp(eik)

, (3.15)

where

eij = a⃗T ·
(

W · h⃗i ∥W · h⃗j

)
. (3.16)
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Here, a⃗ ∈ R2F′ is a vector of learnable parameters, and ∥ denotes the
concatenation of the vectors on its left and right-hand side.

So far, the graph network is permutation equivariant, meaning that
upon changing the order of the inputs the order of the output after
some layers changes accordingly. To build a permutation invariant
map, we merely need a transformation that is agnostic to the ordering,
such as a sum, so that we can map to a suitable output using a network
ϕ of our choice

f (⃗h1, ..., h⃗N) = ϕ

(
∑

i
h⃗i

)
. (3.17)

3.2.5 Invertible Neural Networks (INNs)

Modeling probability densities in continuous space constitutes another
goal with numerous applications, such as modeling the density of flu-
ids [253], the Brownian motion of particles [254] or derivative-pricing
in finance [255] as well as sampling in lattice field theories [256–258]
and modeling quasi-probability distributions in phase space [167, 209,
259] and many more. Thus, various neural network based approaches
have been developed to encode complex density distributions, go-
ing beyond simpler previous machine learning approaches such as
Gaussian mixture models.

The challenge when constructing such densities lies in parameter-
izing a preferably general probability density, from which we also
wish to be able to generate exact samples. This can be achieved by
using an invertible neural network (INN), which constitutes a (unique)
coordinate transform [260–266]. Invertible networks are also referred
to as normalizing flows (NFs).

An invertible neural network uses the change of variables formula

p(x⃗) = p(⃗z)
∣∣∣∣ d⃗z
dx⃗

∣∣∣∣ , (3.18)

to construct a probability density p(x⃗) in the d-dimensional real space
X from a given latent space distribution p(⃗z) in the d-dimensional
latent space Z . The latent space is to be understood as an auxiliary
space, in which we define p(⃗z) to be a simple probability density
of our choosing, such as a d-dimensional Gaussian, while the real
space is the interpretable space where the data is located. The Jacobian
|d⃗z/dx⃗| quantifies how the value of the probability density changes
due to the stretching that is given by the coordinate transformation.
The network f implements this learnable coordinate transformation

x⃗ = f (⃗z), (3.19)

where a particular challenge is to only construct such maps that are
one-to-one and that allow for an efficient evaluation of the Jacobian,
meaning sub-cubic computational cost in the problem dimension d.
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One option, which we utilize in Chapter 6, is a coordinate trans-
formation that is composed of many small, elementary coordinate
transformations referred to as ’coupling blocks’

f (⃗z) = φ1 ◦ φ2 ◦ ... ◦ φN (⃗z). (3.20)

It was originally introduced in [265], where each coupling block is
defined as depicted in Figure 3.4.

In the forward/left-to-right evaluation shown in the top of Fig-
ure 3.4, the input vector u⃗ is split in a random but fixed way into the
vectors u⃗1 and u⃗2 so that their dimension is approximately half of
the dimension of u⃗. Using the standard non-invertible feed-forward
networks s1, s2, t1 and t2, u⃗1 and u⃗2 are transformed into the output
v⃗1 and v⃗2 by assigning

v⃗1 = u⃗1 ⊙ exp (s2(u⃗2)) + t2(u⃗2),

v⃗2 = u⃗2 ⊙ exp (s1(⃗v1)) + t1(⃗v1),
(3.21)

where ⊙ means element-wise multiplication. Notably, although the
networks si and ti are not invertible, the full transformation is, so that
u⃗1 and u⃗2 may be recovered from v⃗1 and v⃗2 as

u⃗2 = (⃗v2 − t1(⃗v1))⊙ exp (−s1(⃗v1)) ,

u⃗1 = (⃗v1 − t2(u⃗2))⊙ exp (−s2(u⃗2)) ,
(3.22)

shown in the bottom of Figure 3.4.

𝑢1

𝑢2

⊙

𝑠2

+

𝑡2

𝑣1

𝑠1 𝑡1

⊙ + 𝑣2

Input Output

𝑣2

𝑣1

−

𝑡1

⊘

𝑠1

𝑢2

𝑡2𝑠2

−⊘𝑢1

InputOutput

Figure 3.4: Computations carried out in a single coupling block for the
forward-evaluation (top) and backward-evaluation (bottom). The
data passing through the coupling block is randomly split into
the vectors u⃗1 and u⃗2 of approximately equal size, and changed
by the actions of the neural networks si and ti as described in
Eq. (3.21). As a typical invertible neural network consists of many
coupling blocks, it is ensured that the full architecture allows
very general interactions between the data, thereby constituting a
powerful coordinate transform and an expressive architecture for
encoding continuous probability densities.
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The Jacobian of the first step of the transformation (3.21), mapping
u⃗1 → v⃗1 and u⃗2 → u⃗2, becomes trivial to compute as

J =
∂(⃗v1, u⃗2)

∂(u⃗1, u⃗2)T =

(
diag [exp (s2(u⃗2))] 0

∂v⃗1/∂u⃗T
2 1

)
(3.23)

is observed to be of triangular form, such that its determinant is given
by

|J| = exp

(
∑

i
s2(u⃗2)i

)
, (3.24)

thus incurring only linear cost in the problem dimension, instead of
the generic cubic complexity [265]. Importantly, the Jacobian of the
full transformation f as defined in (3.20), is obtained by multiplication
of all ’elementary’ Jacobians associated with both u⃗1 and u⃗2. The
same considerations hold true for the inverse step, as the Jacobian
determinant in this case is simply the inverse one of the forward step.

Let us briefly mention, that it is also possible to construct normal-
izing flows with continuous depth, where depth is understood as the
final integration time of the ODE defined by a neural network. These
so-called Neural ODEs (NODEs) [267] use a neural network f to defineNeural ODEs are

also referred to as
continuous

normalizing flows.

the infinitesimal change of a hidden state h in time

˙⃗h(t) = f
(⃗

h(t), t
)

. (3.25)

It is thus possible to obtain the state h⃗(t∗) at some time of interest t∗

using black-box integrators. As shown in [267], the computation of
gradients of loss functions can be made efficient by using the adjoint
sensitivity method, without needing to differentiate through the ODE-
solver.
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C L A S S I C A L S I M U L AT I O N T E C H N I Q U E S

The simulation of quantum systems on classical computers is difficult,
due to the exponential growth of the Hilbert space dimension with
the number of system constituents N. This NP-hardness renders exact
approaches to problems within the many-body regime futile. How-
ever, one may oftentimes employ suited approximations to make the
problem of interest tangible.

For the purpose of this thesis, we differentiate between approxima-
tions that simplify the Hamiltonian of interest and such that work
with the full quantum Hamiltonian and rather approximate the wave
function. In the former case, one can imagine instances where being
in the high occupation limit justifies working with the classical rather
than the quantum Hamiltonian. This approximation will be discussed
in detail in the context of the truncated Wigner Approximation (TWA)
in Section 4.2. The latter case which is concerned with approximating
the wave function, is highly interesting, as it holds the potential for
accurate solutions to the full quantum system given that we can find
an efficient and sufficiently expressive parameterization of the wave
function. Such encodings are based on the optimization of variational
parameters that characterize this so-called ansatz function. Such ansatz
functions can, but do not need to be based on physical insights.

For spin-1/2 systems in one dimension, one such physical insight
is that ground states of local gapped Hamiltonians are known to
satisfy an area law with respect to the entanglement entropy [190].
Hence, the entanglement entropy of a large enough region only grows
with its boundary, implying that spins are only entangled with those
spins in their neighborhood, but not with those that are far away. This
is a remarkable observation: If one were to pick a random state in
Hilbert space, it would almost always show a volume law scaling of the
entanglement entropy, meaning a growth that is proportional to the
size of the considered region [190]. To accurately model the ground
state, we can thus target this so-called physical corner of Hilbert space
and may safely ignore its complement, posing a striking decrease in
complexity. The remaining question is how we accurately target this
corner numerically. One can show that matrix product states are suffi-
cient to efficiently encode area-law states in one dimension [95, 96]. χ is referred to as the

bond dimension and
may be raised to
increase the
expressivity of the
ansatz.

One-dimensional matrix product states are constructed by assigning a
rank-three tensor K to each spin, where two of the indices, ranging
from one to χ, serve to mediate correlations between the spin and its
neighbors while the last index chooses the spin orientation. To com-
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pute the wave function coefficient ψ(⃗s) of a given spin configuration s⃗
we must contract the tensor network

ψ(⃗s) = ⟨s1s2...sN |ψ⟩ = ∑
l1,...,lN

Ks1l1l2
1 Ks2l2l3

2 ...KsN lN l1
N , (4.1)

where we assumed periodic boundary conditions so that both K1 and
KN are also tensors of rank three. The total number of variational
parameters is 2χ2N, an immense reduction compared to the naïve ex-
ponential scaling of 2N . Thus, both storage and evaluation of the tensor
network are efficient as well as its optimization, as discussed in [95,
96]. The guiding principle in the construction of matrix product states
is the locality of the Hamiltonian, which served as intuition for how
the tensor network shall be contracted: Those tensors corresponding
to neighboring spins are multiplied directly so that their correlations
become easy to represent. In contrast, correlations between spins that
are far away must be mediated through the enclosed tensors, so that
they are naturally harder to represent, which makes a restriction to
area-law states plausible.

While the tremendous success of tensor network methods for one-
dimensional systems is a significant achievement, generalizations to
two dimensions are not straightforward. While many approaches have
been put forward [96, 249, 268–270], their success never matched
that of their one-dimensional counterparts. A more recent variational
technique based on neural networks thus caused significant interest,
as it does not rely on the dimension of the underlying system in the
same fundamental way tensor networks do. These approaches are
coined neural quantum states (NQS), are central to this thesis, and will
be discussed in the following section.

4.1 neural quantum states

Neural quantum states are a class of variational methods, that can be
used to approximate wave functions of many-body quantum systems
[121]. While fermionic and bosonic systems in both discrete and contin-
uous space are applicable to the treatment within the NQS framework
[167–185], we will here focus on the arguably simpler case of spin-1/2

systems [A, C, 97–99, 121, 134–153, 162–166], as it is most relevant to
this thesis.

Neural quantum states approximate wave function coefficients by
assigning

ln (ψ(⃗s)) = f (⃗s), (4.2)

where f is a neural network with trainable parameters and s⃗ a spin con-
figuration. For numerical stability, one usually interprets the network
output as the logarithm of the wave-function coefficient, as written in
Eq. (4.2).
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While the initial proposal of neural quantum states [121] chose
f to be an RBM (Section 3.2.1), subsequent works explored other
architectures, such as CNNs (Section 3.2.2) [F, 99, 148, 154], RNNs
(Section 3.2.3) [A, 134, 158, 175, 271] and GNNs (Section 3.2.4) [149, 170–
173, 182, 183], each with their own set of advantages and disadvantages
[C]. We note that a priori any differentiable function that maps spin
configurations s⃗ onto complex numbers can be treated within the
variational Monte Carlo framework used to optimize neural quantum
states.

Therefore the choice of network does not necessarily require a
physical motivation. In the case of restricted Boltzmann machines, for
instance, such a motivation is lacking since there exists no sense of
locality as it is a simple, fully connected feed-forward architecture.
This non-locality is the cause for the perhaps somewhat surprising
observation that RBMs are capable of efficiently encoding volume
law states [186–188], in stark contrast to tensor network states. This
observation generated a lot of interest in neural quantum states, as
it renders them potential solutions in instances where the system is
expected to exhibit volume-law entanglement, such as the Sachdev-Ye-
Kitaev model [194–197]. Simultaneously, this raises the question, of
what fundamentally limits the capabilities of neural quantum states,
given that it is not the encoded entanglement.

To approximate generic wave functions, the output of the network
must be complex-valued. This can either be achieved by using complex
parameters or by employing two networks with real-valued param-
eters so that f (⃗s) is set together from an amplitude and a phase
network. We can, however, treat both approaches on equal footing,
by interpreting any occurring complex network parameter as the two
real parameters that define its real and imaginary part, and will thus
assume that all parameters are real-valued, allowing for a unified
discussion in the following.

In contrast to tensor network states, the optimization of neural
quantum states is immensely challenging due to the highly non-linear
nature of neural networks [157, 272]. An additional challenge lies
in the high precision that is required to obtain faithful estimates of
ground states, a prerequisite that is atypical for standard machine
learning applications. This oftentimes forces one to go beyond simple
stochastic gradient descent schemes, as we will show in the following.

As variational ansatz functions, neural quantum states fall into the The following
discussion is based
on [G].

larger framework of variational Monte Carlo techniques. In variational
Monte Carlo, we generally deal with an unnormalized variational
wave function |ψ⟩, whose expansion in the computational basis {⃗s} is
given by

|ψ⟩ = ∑
{⃗s}

ψ(⃗s) |⃗s⟩ . (4.3)
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The challenge in the following consists of ensuring that all occurring
expressions, such as expectation values or gradients, are obtainable as
Monte Carlo expectation values so that at no point an evaluation of
the exponentially large sum over all basis configurations is required.

4.1.1 Expectation Values of Operators

For instance, given an operator O whose expectation value we are
interested in, we compute

⟨O⟩ = ⟨ψ|O |ψ⟩⟨ψ|ψ⟩

= ∑
{⃗s},{⃗s′}

ψ(⃗s)∗ψ(⃗s′)
⟨ψ|ψ⟩ ⟨⃗s|O |⃗s′⟩

= ∑
{⃗s}

|ψ(⃗s)|2
⟨ψ|ψ⟩ ∑

{⃗s′}

ψ(⃗s′)
ψ(⃗s)

⟨⃗s|O |⃗s′⟩

≈ E⃗s∼p(⃗s)

[
∑
{⃗s′}

ψ(⃗s′)
ψ(⃗s)

⟨⃗s|O |⃗s′⟩
]

= E⃗s∼p(⃗s) [Oloc(⃗s)]

(4.4)

where we multiplied and divided by ψ(⃗s) in the third line, defined
the probability distribution of the basis configuration

p(⃗s) =
|ψ(⃗s)|2
⟨ψ|ψ⟩ (4.5)

and replaced the exponentially costly sum over all basis configurations
{⃗s} by a Monte-Carlo expectation value that only requires a sub-
exponential number of samples obtained from p(⃗s) to converge. We
still have a sum over the complete basis in the definition of the so-
called ’local energies’

Oloc(⃗s) = ∑
{⃗s′}

ψ(⃗s′)
ψ(⃗s)

⟨⃗s|O |⃗s′⟩ . (4.6)

However, as we are usually interested in the expectation values of local
operators O, or their sums, the non-vanishing entries of ⟨⃗s|O |⃗s′⟩ are
only linear in the system size so that the evaluation of Oloc(⃗s) becomes
efficient.

4.1.2 Generation of Samples

As described in Section 3.1.1.1, samples with regards to p(⃗s) are ob-
tained either in an autoregressive fashion if the architecture supports
direct sampling [134, 135] or through Monte Carlo Markov chains. In
the latter case, the most common choice is Metropolis-Hastings sam-
pling, where the ratio of the probability of the proposed configuration
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s⃗′ divided by the probability of the current configuration s⃗ gives the
acceptance probability

r = min
(

1,
p(⃗s′)
p(⃗s)

)
. (4.7)

The generation of the proposal configurations s⃗′ typically is achieved
locally, meaning that s⃗′ and s⃗ differ in only a single position, however,
various proposal strategies are possible. We refer the interested reader
to [G] for technical details.

4.1.3 Ground State Optimization

By replacing O with the Hamiltonian H of the system in Eq. (4.4)
and taking gradients with respect to the variational parameters θ⃗, we
can optimize the variational wave function towards lower energies.
Analytically, one obtains

∇θ⃗⟨H⟩ = 2Re
(
E⃗s∼p(⃗s)

[
O⃗(⃗s)Hloc(⃗s)

]
−

E⃗s∼p(⃗s)

[
O⃗(⃗s)

]
E⃗s∼p(⃗s) [Hloc(⃗s)]

)
= 2Re

(
F⃗
) (4.8)

where we defined the so-called force-vector F⃗ and introduced the
logarithmic derivatives

O⃗(⃗s) = ∇θ⃗ ln (ψ(⃗s)) (4.9)

as well as the local energies Hloc(⃗s) belonging to the Hamiltonian H

Hloc(⃗s) = ∑
{⃗s′}

ψ(⃗s′)
ψ(⃗s)

⟨⃗s|H |⃗s′⟩ . (4.10)

With this, we can define the iterative gradient descent scheme

θ⃗n+1 = θ⃗n − η∇θ⃗⟨H⟩, (4.11)

where η denotes a small learning rate.
The requirement of highly accurate representations of the state of

interest is in stark contrast to traditional machine learning applica-
tions. One thus finds that simple, first-order optimization, is in many
instances insufficient to obtain state-of-the-art results. Fortunately, by
insertion of the so-called quantum geometric tensor, we can turn the
first-order optimization into a second-order optimization, coined nat-
ural gradient descent. Effectively, we herein take the curvature of the
variational manifold into account and optimize the network param-
eters in dependence on one another. It can also be understood as an
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imaginary time evolution that iteratively projects out higher energy
contributions [93] and is given by

θ⃗n+1 = θ⃗n − ηRe(S)−1∇θ⃗⟨H⟩, (4.12)

with S the connected correlator of the outer product of the logarithmic
derivatives

S =E⃗s∼p(⃗s)

[
O⃗(⃗s) · O⃗(⃗s)T

]
−

E⃗s∼p(⃗s)

[
O⃗(⃗s)

]
· E⃗s∼p(⃗s)

[
O⃗(⃗s)T

]
.

(4.13)

As S is often rank-deficient, care must be taken when computing its
inverse. Therefore, different regularization schemes have been put
forward, including the addition of a small identity

S→ S + ϵ1 (4.14)

and only inverting those eigenvalues that are larger than a given
threshold [G]. Recently, it has also been shown that regularization
with respect to the signal-to-noise ratio of the noisy estimates of S
and ∇θ⃗⟨H⟩ can significantly enhance the performance in applications
concerned with real-time evolution [154].

As the size of S is dictated by the number of network parameters Np,
and the computational cost of matrix inversions scales approximately
cubically in the matrix size, one is restricted to networks with few
parameters, far away from universal approximation regimes. However,
recently, progress has been made to reduce the computational cost in
those cases where the number of samples Ns used to estimate S and
∇θ⃗⟨H⟩ is significantly lower than the number of network parameters
Np. By a suited rearrangement of the terms in Eq. (4.12), the to be
inverted matrix is only of size Ns × Ns and has full rank [98, 99], so
that even some of the regularization techniques may no longer be
required.

4.1.4 Unitary Time Evolution

To turn the imaginary time evolution into a real-time evolution, it is
sufficient to replace the real-valued learning rate η by iτ, with τ a
real-valued time step. The time-dependent variational principle that
is obtained in this way admits two different formulations [G]. The
principle of least action leads to

Im (S) · ∂t⃗θ = Im
(
−iF⃗

)
, (4.15)

while the minimization of a suited distance measure results in

Re (S) · ∂t⃗θ = Re
(
−iF⃗

)
. (4.16)
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Only in the former case can the energy be shown to be conserved
during the real-time evolution. Similar to the imaginary time evolution,
S is typically ill-conditioned and thus needs to be regularized in order
to obtain a stable solution [G].

While the projective character of the imaginary time evolution does
not penalize errors during the evolution, such safeguards do not In the case of

imaginary time
evolution, the
dynamics lead to a
fixed point. This is a
crucial difference
compared to the case
of real-time
evolution.

exist for the case of real-time evolution, where errors will accumulate
as time progresses. To minimize these effects, regularization should
only be as high as necessary, and more sophisticated integrators in
comparison to Euler steps (4.12) should be chosen.

A pseudo-code overview of the natural gradient scheme for both
imaginary and real-time evolution is given in [G].

4.2 truncated wigner approximation

We now introduce the truncated Wigner approximation. The following
introduction is a slightly modified excerpt from [D], which we here
present for completeness.

The high occupation limit of a bosonic system of interest is usually
too complex to admit computational solutions to the full quantum dy-
namics. Instead, as the populations are increased, the role of quantum
fluctuations compared to the mean-field dynamics grows smaller. This
emergent simplicity implies that the predictions made by approximate
techniques become more and more accurate, justifying a semiclassical
approach to the problem. One such semiclassical technique is the trun-
cated Wigner approximation (TWA). At its core, all mode operators
are replaced by complex numbers [209]

a(†) → α(∗), (4.17)

which amounts to a lowest-order expansion of the Wigner-Weyl cor-
respondence rules. Consequently, the Hamiltonian operator H(a,a†)

reduces to a classical Hamiltonian function H(α, α∗) of the complex-
valued phase-space coordinates (α, α∗).

In general, the von Neumann equation

i∂tO(t) = [O(t),H ], (4.18)

for some time-dependent operator O, can be translated into an equa-
tion of motion for the operator’s Weyl symbol O in phase space via
the Moyal bracket

{A, B}MB =
A
2

sin
[
2
(←−

∂ α
−→
∂ α∗ −

←−
∂ α∗
−→
∂ α

)]
B, (4.19)

which results in [209]

i∂tO(t) = {O(t), H}MB. (4.20)
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In TWA, one is interested in the evolution of the elementary c-numbers
α representing the mode operators to leading order, for which Eq. (4.20)
simplifies to the classical Poisson bracket

i∂tα(t) = {α(t), H}PB = ∂α∗(t)H, (4.21)

since all higher-order derivatives vanish.
In the case when multiple modes are coupled Eq. (4.21) defines a

system of coupled differential equations that may be solved numer-
ically using a suited integrator. The initial conditions of the system
α⃗(0) are obtained as Monte Carlo samples from the initial Wigner
W-distribution, for which two cases are relevant. When considering
the vacuum |0⟩, the Wigner W-distribution takes the form of a two-
dimensional Gaussian, which is centered at the origin and contains no
correlations, i.e.

|ψ⟩ = |0⟩ ⇐⇒ α ∼ N
[

0,
1
2

]
+ iN

[
0,

1
2

]
. (4.22)

The samples of coherent states |γ⟩ have the same variance but are
displaced by the square root of their mean particle number ⟨n⟩ = |γ|2
from the origin

|ψ⟩ = |γ⟩ ⇐⇒ α ∼ N
[

Re(γ),
1
2

]
+ iN

[
Im(γ),

1
2

]
, (4.23)

since |γ⟩ itself is obtained by acting with the displacement operator
D(γ) on the vacuum, see (2.57).

In the presence of thermal fluctuations, the pure vacuum state |0⟩ is
replaced by the thermal ensemble ρ ∝ exp

(
−βa†a

)
with the inverse

temperature β = 1/T. Accordingly, the standard deviations of the
Wigner W-distribution are rescaled as

1
2
→
√

1 + 2nBE(β)
1
2

, (4.24)

which is equivalent to adding nBE(β) to both variances, where

nBE(β) =
1

eβ − 1
(4.25)

denotes the Bose-Einstein distribution.
The expectation value of some observable O is obtained as the

stochastic average over all generated samples

⟨O⟩TWA =
1
|S| ∑

α∈S
O (α, α∗) , (4.26)

where S denotes the set of all samples. Note here that we again rely
on the correspondence between O and O given in Eq. (4.17).

Having introduced all necessary tools in TWA, we want to briefly
comment on its regimes of applicability. In the limit of high occupa-
tions ⟨n⟩ ≫ 1 and initial states with minimal fluctuations, i.e. coherent



4.2 truncated wigner approximation 53

states, the operator to c-number correspondence Eq. (4.17) is a justi-
fied simplification, since the relative fluctuations scale as 1/

√
⟨n⟩. The

fluctuations of the initial state are herein represented accurately, as
they correspond to exact samples of the Wigner W-distribution of the
initial state |ψ⟩, while only those fluctuations and inference effects are
due to the unitary evolution under H are not captured. In the limit
h̄ → 0, the dynamics generated by TWA become exact. For a more
thorough picture on this matter, see Ref. [273], in which the impossi-
bility of quantum phase-space trajectories for generic (i.e. anharmonic)
quantum systems is discussed. For further reading regarding TWA
and other semiclassical techniques, we refer the reader to [209] and
[274].
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T I M E - D E P E N D E N T VA R I AT I O N A L P R I N C I P L E F O R
O P E N Q UA N T U M S Y S T E M S W I T H A RT I F I C I A L
N E U R A L N E T W O R K S

5.1 contributions

This chapter presents the publication in [A]. Martin Gärttner proposed
the project and I developed the code and ran all simulations in collab-
oration with Markus Schmitt. All authors contributed to the writing
of the text. A GPU- and cluster-ready implementation of the utilized
algorithms can be found as part of the published jVMC library [G].

5.2 motivation

As discussed in Chapter 2 and Chapter 4, the numerical simulation
of many-body quantum systems is a highly challenging endeavor,
even more so if we consider the case of open quantum systems (see
Section 2.3). Neural quantum states were quickly adapted for those
instances, relying on purification schemes of the density matrix [162–
165]. We herein formulate another way to use neural quantum states
to encode the dissipative evolution of the density matrix building on
the POVM formalism that was discussed in Section 2.4. Our work is
similar in this regard to [168], but while we rely on an explicit update
rule, Luo et. al. employ an iterative optimization scheme.

© 2024 American Physical Society
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We develop a variational approach to simulating the dynamics of open quantum many-body systems
using deep autoregressive neural networks. The parameters of a compressed representation of a mixed
quantum state are adapted dynamically according to the Lindblad master equation by employing a time-
dependent variational principle. We illustrate our approach by solving the dissipative quantum Heisenberg
model in one dimension for up to 40 spins and in two dimensions for a 4 × 4 system and by applying it to
the simulation of confinement dynamics in the presence of dissipation.

DOI: 10.1103/PhysRevLett.127.230501

Introduction.—Solving the quantum many-body prob-
lem where it is analytically intractable constitutes a
formidable challenge due to the inherent curse of dimen-
sionality with growing system size. Today, two main routes
are pursued to address this issue. On the one hand, the
boundaries of classical computation are pushed by the
development of tailored numerical techniques that build on
the inherent structure of the quantum state of interest to find
compressed representations using a subexponential number
of variational parameters [1–4]. On the other hand, recent
years have brought tremendous progress in the realiz-
ation of quantum simulators as originally envisioned by
Feynman [5,6], which emulate paradigmatic quantum
many-body models using precisely controlled synthetic
quantum systems of ultracold atoms in optical lattices
[7–13], trapped ions [14–16], Rydberg atoms [17–19], and
many more [20–31]. These “noisy intermediate-scale
quantum” (NISQ) simulators [32] already present a valu-
able expansion of our scientific toolbox, enabling the
discovery of new physical phenomena [12,18,19,31,33–
35]. In particular, they challenge the numerical state of the
art and open up largely uncharted terrain, e.g., nonequili-
brium quantum matter in two spatial dimensions. As the
term NISQ implies, the openness of these quantum systems
will play a central role for near-term applications, and
accounting for it appropriately is one of the key challenges.
In this work, we present a novel way to simulate the

dynamics of open quantum systems (OQS) using a neural
network encoding of the quantum state, which is relevant
for two reasons: In view of the recent experimental
developments, computational tools that can keep up with
the system sizes of quantum simulators also in intermediate
spatial dimensions are highly desired as they allow us to
certify experimental observations and provide a link to

theoretical models. Simultaneously, the exploration of
phenomena associated with driven dissipative systems is
a major aim in itself, for which our approach opens new
possibilities.
The state of an OQS is described by the density operator

ρ̂, whose dynamics, for Markovian systems, is governed by
a Lindblad master equation. For a system of N spin-1=2
particles considered here the curse of dimensionality
manifests in the 4N coefficients necessary to fully represent
ρ̂, which limits exact numerical treatments to small N.
Various numerical methods have been developed to reduce
this complexity [36], each coming with different strengths
and limitations. Stochastic Monte Carlo wave function
(MCWF) methods [37–41] achieve a quadratic improve-
ment of the N scaling at the cost of requiring statistical
averaging. Semiclassical [42–45] and mean-field-like
methods [46,47] provide a polynomial scaling in N but
often suffer from uncontrolled approximations and numeri-
cal instabilities. Tensor network based approaches [1,2,48–
56] are limited to weakly entangled states and require
further approximations if applied in dimensions d > 1 [57–
59]. A recently introduced class of methods, that can
potentially resolve many of these issues are neural network
quantum states (NQS) [60–75]. NQS have been applied
successfully to OQS [76–79]. A natural approach is to
employ a latent state purification [80]; however, this
procedure has so far been restricted to shallow neural
network architectures. A more recent work uses a prob-
abilistic representation of the quantum state [64] which
allows the use of deeper, more expressive networks but has
the drawback of being forced to globally optimize the
network parameters in each time step.
Here we introduce a numerical approach, summarized

graphically in Fig. 1, that is not restricted in terms of
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network architectures and operates based on explicit
second-order local updates, thus overcoming structural
and technical limitations of previously proposed methods.
The derivation of a first-order differential equation for the
time dependence of variational parameters in the context
of a probabilistic formulation of quantum mechanics is a
central result of our work. Thereby, our method expands the
capabilities of previous approaches [64,76] in terms of
system sizes and timescales reached reliably. This is
demonstrated by the application to benchmark problems
of spin systems in 1D and 2D geometries and by showing a
first physics-motivated application.
Probabilistic representation.—Any quantum state ρ̂ can

be represented equivalently as a probability distribution P
over measurement outcomes using positive operator valued
measures (POVMs) [61,62,64,81]:

Pa ¼ trðρ̂M̂aÞ; ð1Þ

where M̂a ¼ M̂a1 ⊗ :: ⊗ M̂aN are measurement operators
associated with the outcome a ¼ a1::aN of a tomograph-
ically complete measurement on N spins. We choose M̂i to
be the symmetric informationally complete-POVM (SIC-
POVM), or tetrahedral POVM [61]. Its elements are
obtained from the definitionMa ¼ ð1þ s⃗a · σ⃗Þ=4, in which
the s⃗a form a tetrahedron on the surface of the Bloch sphere
and σ⃗ denotes the vector of Pauli matrices. Inverting Eq. (1)
gives

ρ̂ ¼ PaT−1aa0M̂a0 ð2Þ

with the overlap matrix Taa0 ¼ trðM̂aM̂a0 Þ, where implicit
summation over repeated indices is assumed from here on.
Since the POVM elements M̂a form an operator basis,
observables can be decomposed as Ô ¼ ΩaM̂a and their
expectation values become hÔi ¼ PaΩa. Compared to the
complex-valued density matrix or its purification, the
probabilistic representation has the advantage that it allows
us to directly leverage the highly sophisticated toolbox for
generative models developed in recent years by the
machine learning (ML) community [82–84].
The dynamics of Markovian OQS is described by the

Lindblad master equation [36]

_̂ρ ¼ −i½Ĥ; ρ̂� þ γ
X

i

ðL̂iρ̂L̂i† −
1

2
fL̂i†L̂i; ρ̂gÞ; ð3Þ

with ½:; :� (f·; ·g) denoting the (anti-)commutator. The
operators L̂i are commonly referred to as jump operators
and are representative of the dissipative processes that the
system is subject to. Differentiating Eq. (1) and inserting
Eqs. (3) and (2) allows us to state the master equation in the
probabilistic formulation:

_Pa ¼ LabPb: ð4Þ

The full expression for the Lindbladian L is given in the
Supplemental Material [85]. Crucially, L is sparse since the
restriction to one- and two-body interactions in Eq. (3) is
preserved in the probabilistic reformulation, allowing us to
evaluate its action efficiently.
Nonetheless, Eq. (4) is numerically intractable for many-

body systems, because of the exponentially large number of
coefficients Pa. In the following we employ a variational
approximation by introducing a trial distribution Pa

θ with
variational parameters θ, see Fig. 1. The compressed
representation of the state in a polynomial number of
variational parameters renders the approach numerically
feasible.
Time dependent variational principle for POVMs.—The

main theoretical contribution of our work is a time
dependent variational principle (TDVP) for POVM-
probability distributions which dictates the time depend-
ence of the network parameters θðtÞ by determining the
closest approximation of the Lindbladian dynamics within
the variational manifold. The starting point is a distance
measure DðP;QÞ for probability distributions P, Q.
Assuming a small time step τ at time t with associated
network parameters θðtÞ, the aim is to minimize the
distance between the updated POVM-probability distribu-
tion Pa

θðtÞþ_θτ
and the time-propagated distribution Pa

θðtÞ þ
τLabPb

θðtÞ that follows from Eq. (4). We found that two

natural choices for the distance measure D are equivalent
for this purpose, because they describe locally identical
geometries. The first is the Hellinger distance DHðP;QÞ ¼
1 − FðP;QÞ, which is defined via the Bhattacharyya co-
efficient (or classical fidelity) FðP;QÞ ¼ P

a

ffiffiffiffiffiffiffiffiffiffiffi
PaQa

p
. The

second is the Kullback-Leibler divergence DKLðP;QÞ ¼P
a P

a logðPa=QaÞ. In both cases, a second order

FIG. 1. Illustration of the variational approach to OQS dynam-
ics. On the left, the standard density matrix formalism is shown
along with the equivalent probabilistic formulation using
POVMs. The right-hand side shows the variational approach,
in which an artificial neural network is used as an ansatz function
for the probability distribution over POVM outcomes. The main
contribution of this work is the TDVP illustrated in the bottom
box which leads to a general and accurate scheme for updating
the network parameters according to the dynamics dictated by the
master equation.
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consistent small-τ expansion of DH=KLðPa
θðtÞþ_θτ

; Pa
θðtÞ þ

τLabPb
θðtÞÞ and subsequently demanding stationarity to

find the optimal parameter update _θ yields the TDVP
equation

Skk0 _θk0 ¼ Fk: ð5Þ
Here, S denotes the Fisher-metric Skk0 ¼ hOa

kO
a
k0 ica∼P, Fk ¼

hOa
kL

abðPb=PaÞica∼P and the repeated indices a inside the
brackets are not summed over. The brackets denote con-
nected correlation functions hABic ¼ hABi − hAihBi of
expectation values with respect to the POVM-distribution
P and Oa

k ¼ ∂θk logP
a. We provide a detailed derivation of

Eq. (5) in the Supplemental Material [85]. It is worth noting
that for models that are normalized by default [such as
recurrent neural networks (RNNs)] hOa

ki ¼ 0. Usually,
Eq. (5) is ill conditioned and needs to be regularized.
Here, advanced regularization schemes such as described in
Ref. [63] are applicable but they did not turn out to be
crucial for the test cases we consider.
The TDVP equation (5) exhibits a number of features

beneficial for the numerical time evolution of θðtÞ. As a
result of the employed short-time expansion, the variational
optimization problem becomes convex and information
about the local geometry of the variational manifold is
taken into account in the form of the Fisher-metric S. Upon
inverting S, the differential equation can be solved straight-
forwardly with explicit integration schemes. Importantly,
Monte Carlo sampling is only required once per time step.
These features are in contrast to the implicit integration
scheme presented in Ref. [64], where Monte Carlo sam-
pling is required at each optimization step performed for the
iterative global minimization of a nonconvex cost function.

Network architecture.—Neural networks are highly non-
linear universal function approximators in the limit of large
networks [86–88]. For the purpose of generative modeling
autoregressive networks are advantageous, because they
enable direct generation of uncorrelated samples; therefore,
various autoregressive architectures have recently been
explored for NQS [64,65,89–91]. In the following, we
employ RNNs, which belong to this family of network
architectures (see Supplemental Material [85] for details).
Numerical results.—To illustrate the accuracy and scal-

ability of our method we apply it to the anisotropic
Heisenberg model,

Ĥ ¼
X

hiji
ðJxX̂iX̂j þ JyŶiŶj þ JzẐiẐjÞ þ

X

i

hzẐi; ð6Þ

with nearest neighbor interactions and periodic boundary
conditions, which was also used in Ref. [64] as a bench-
mark system. The considered decoherence channel is
spontaneous decay given by the jump operator L̂ ¼ σ̂− ¼
ðX̂ − iŶÞ=2 acting on each spin. We obtain benchmark data
using exact simulations for N ¼ 10 spins and test our
approach in the case of N ¼ 10 [85] andN ¼ 40 [Figs. 2(a)
and 2(b)] spins, where we compare magnetizations and
next-nearest neighbor correlators. Since finite-size effects
are negligible to good approximation for systems with more
than N ¼ 10 spins, we can use the exact data for N ¼ 10
spins as comparison for the case of N ¼ 40 spins studied in
the main text. The noise in the correlation signal is due to
the finite number of samples that are used to evaluate the
observables. One observes slight deviations in the corre-
lation functions, which may be attributed to both an
imperfect choice of hyperparameters and the stochastic

(a) (c)

(b) (d)

FIG. 2. (a) and (b) Mean magnetizations and next-nearest neighbor connected correlation functions [e.g., CXXðd ¼ 2Þ ¼P
ihX̂iX̂iþ2ic=N] as a function of time in the anisotropic 1D Heisenberg model for N ¼ 40 spins starting in the product state

hŶi ¼ −1. Nearest neighbor couplings are given by J⃗=γ ¼ ð2; 0; 1Þ, hz=γ ¼ 1 and the dissipation channel is L̂ ¼ σ̂− ¼ 1
2
ðX̂ − iŶÞ. The

exact data are obtained for N ¼ 10 spins. (c) and (d) Mean z magnetizations and nearest neighbor connected correlation functions (for
Jy=γ ¼ 1.8) in a 4 × 4 anisotropic 2D Heisenberg lattice with nearest neighbor couplings J⃗=γ ¼ ½0.9; 1.0ð1.8Þ; 1.0� and the same decay
as in (a) and (b), starting in the product state hẐi ¼ 1.
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nature of the proposed method. We found that the sample
size needed to reach a given precision does not need to be
increased when transitioning to larger systems, as the
overall noise decreases thanks to a self-averaging effect
in the translationally invariant system.
Figures 2(c) and 2(d) show results for a 4 × 4 lattice

initialized in a product state with hẐi ¼ 1. In panel (c) we
compare the magnetization for two different parameter
choices to results from MCWF stochastic integration with
500 trajectories, showing perfect agreement. Exact inte-
gration of Eq. (3) would be exceedingly costly in this case.
We provide a comparison of a 3 × 3 lattice to exact
dynamics in the Supplemental Material [85], which shall
serve as a numerically exact benchmark. Nearest neighbor
correlations shown in panel (d) for the case of Jy=γ ¼ 1.8
show small deviations at late times, which we attribute to
the finite number of samples used for estimating the
updates _θ [85].
Having benchmarked our approach on generic spin

models, we now apply it to a physical scenario to gauge
the effect of decoherene for large problem instances. It was
recently shown that confinement dynamics, as found for
quarks in quantum chromodynamics, can be realized in
the Ising spin model with transverse and longitudinal
fields [92]

Ĥ ¼
X

hiji
JzẐiẐj þ

X

i

ðhzẐi þ hxX̂iÞ: ð7Þ

In this system pairs of domain walls form after a quench.
For hz ¼ 0 these domain walls can propagate freely while
for finite hz the separation between them comes with an
energy cost leading to confinement. This phenomenon
manifests in a buildup of dominant spin-spin correlations
that is limited to short distances and a much weaker light-
cone spreading due to the propagation of bound domain-
wall pairs. Signatures of this effect have been observed
recently for moderate system sizes on IBMQ [93].
Here we study in what way dissipation influences the

signature spreading of spatio-temporal correlations. We
consider single particle dephasing L̂ ¼ Ẑ as the dissipation
channel, significantly altering the nature of the spreading
on timescales γt≳ 1.
Figure 3 shows results for a typical scenario with a

dephasing rate of γ ¼ 0.25J and N ¼ 32. The magnetiza-
tion [panel (a)] initially shows coherent oscillations (inset)
which are quickly damped out followed by a slow relax-
ation of all magnetizations towards zero. The dashed lines
show MCWF simulations for N ¼ 16.
The top half of panel (b) shows the correlation dynamics

in the considered dissipative scenario using the hitherto
described numerical approach. For comparison, we show
the corresponding unitary dynamics simulated using matrix
product states (MPS) [1,2] on the bottom half of panel (b).
In the unitary case correlations initially show a light-cone

spreading. In contrast, the dissipative dynamics deviates
from this light cone even for short times as the dissipation
results in correlation growth that we find to be consistent
with diffusive spreading on intermediate timescales [85].
At long times all correlations decay and the system
approaches the featureless steady state ρ̂ðt → ∞Þ ∝ 1.
The ability to simulate these dynamics is a direct

consequence of the polynomial scaling of the described
ansatz. The system size of the MCWF-approach (N ¼ 16)
is plotted in panel (b) as a dashed gray line. As is obvious
from the chosen color-scale cutoff,the MCWF-approach
suffers from finite-size effects at around Jt ¼ 40 when
correlations beyond d ¼ 8 build up. This is also the time at
which the z magnetization in panel (a) deviates, suggesting
that this deviation is due to finite-size effects present in the
MCWF simulation.

(a)

(b)

FIG. 3. (a) Mean magnetizations in a spin chain of length N ¼
32 with the quench parameters hx=Jz ¼ 0.25, hz=Jz ¼ 0.05 and
the dissipation channel L̂ ¼ Ẑ with relative strength γ=Jz ¼ 0.25
compared to MCWF-data forN ¼ 16 spins starting in the product
state hẐi ¼ 1. (b) Spreading of correlations in the spin chain.
Top: Dissipative system with γ ¼ 0.25, Bottom: MPS simulation
of the unitary system where γ ¼ 0.0. After an initial linear light-
cone spreading, the nature of the dissipative propagation grows
more diffusive, before all correlations eventually vanish. Notice
that the slight deviations in panel (a) coincide with the time at
which the dissipative correlations cross the MCWF system size
boundary.
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Discussion and outlook.—We have introduced a novel
method that allows the variational simulation of open
quantum dynamics based on the efficient encoding of
the quantum state in an artificial neural network and
demonstrated its potential. Our method scales approxi-
mately cubically with the number of spins N, since the
computationally intense part is obtaining F in Eq. (5). For
that purpose, the nonvanishing entries of Lab, the cost of
evaluating a plain RNN, and the incorporation of transla-
tional symmetry each contribute a factor of N to the
computational cost. Importantly, however, the algorithm
admits massive parallelization, e.g., on GPU clusters
[63,94], which allows for extensive control of the total
compute wall time. Here, different levels of parallelization
are exploited: The algorithm permits treating the samples
independently from each other, allowing us to employ
multiple accelerators which communicate via MPI. At the
same time, the batched network evaluation of the configu-
rations allows for convenient vectorization of the compu-
tations on the single accelerator level.
For future research it will be crucial to better understand

the limitations of finite network architectures to represent
physically relevant quantum states. An obvious short-
coming of the probabilistic state representation is that
the positivity of the density operator is not guaranteed;
understanding the consequences will be key for further
progress.
The presented combination of the probabilistic formu-

lation of mixed quantum states with a TDVP opens new
possibilities for the investigation of driven-dissipative
many-body systems in regimes that are challenging for
other approaches, for example, to study two-dimensional
systems or the propagation of information across large
distances [95,96]. Future work employing the TDVP for
OQS could address the emergence of glassy dynamics [97–
100] or self-organization in OQS [101,102]. Furthermore,
the developed technique is not restricted to solving the
Lindblad equation; it could be generalized for other use
cases of master equations with large discrete configuration
space, such as disease dynamics models [103,104] or the
chemical master equation [105].
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Derivation of the TDVP equation

The basic idea of a TDVP is to minimize the distance

D

(
Pθ(t) + Ṗθ(t)τ, Pθ(t) +

∑
k

∂Pθ(t)

∂θk
θ̇kτ

)
, (8)

between the evolved state at time t + τ and the net-
work with a set of yet unknown update parameters θ̇ at
each time t. Here, we exemplarily derive Eq. (5) from the
Hellinger distance DH(P,Q), i.e. by maximizing the clas-
sical fidelity F (P,Q) = 1 − DH(P,Q). As noted in the
main text, an equivalent derivation is possible using the
Kullback-Leibler divergence DKL. For better readability,
we drop the time index and continue with the optimality
condition

0 =
∂

∂θ̇k
F

(
P + Ṗ τ, P +

∑
k′

∂P

∂θk′
θ̇k′τ

)

=
∂

∂θ̇k

∑
a

P a
√

1 + aτ + bτ2,

(9)

where a and b are given by

a =
∂ logP a

∂t
+
∑
k′

∂ logP a

∂θk′
θ̇k′ ,

b =
∂ logP a

∂t

∑
k′

∂ logP a

∂θk′
θ̇k′ .

(10)

Next we perform a second order expansion of the square
root in the time step τ :

√
1 + aτ + bτ2 = 1 +

aτ

2
+
τ2

8
(4b− a2) +O(τ3). (11)

Using that the normalization of P is conserved under
the time evolution one finds that the term linear in τ
vanishes:

P aa =
∑
a

(
Ṗ a +

∑
k′

∂P a

∂θk′
θ̇k′

)

=
∑
k′

θ̇k′
∂

∂θk′

∑
a

P a

=
∑
k′

θ̇k′
∂

∂θk′
1

= 0.

(12)

Thus, the optimality condition becomes

0 =
∂

∂θ̇k

∑
a

P a

P a2

(
4Ṗ a

∑
k′

∂P a

∂θk′
θ̇k′ − (Ṗ a +

∑
k′

∂P a

∂θk′
θ̇k′)

2

)

= − ∂

∂θ̇k

∑
a

P a

P a2

(
Ṗ a −

∑
k′

∂P a

∂θk′
θ̇k′

)2

= − ∂

∂θ̇k

∑
a

P a

(
∂ logP a

∂t
−
∑
k′

∂ logP a

∂θk′
θ̇k′

)2

= 2
∑
a

P a logP a

∂θk

(
∂ logP a

∂t
−
∑
k′

∂ logP a

∂θk′
θ̇k′

)
.

(13)
Dropping the factor of 2 we obtain an equation for the
optimal parameter update θ̇:

0 =
∑
a

P a ∂ logP a

∂t

∂ logP a

∂θk︸ ︷︷ ︸
=Fk

−
∑
k′

∑
a

P a ∂ logP a

∂θk

∂ logP a

∂θk′︸ ︷︷ ︸
=Skk′

θ̇k′ .

(14)

Importantly we can now tackle the sum over the expo-
nentially many indices a by sampling according to the
encoded probabilities P a since both F and S are pro-
portional to P a. This is a unique property of DH and
DKL while other distance measures, as for example the
L2 norm, do not lead to expressions of a form that can be
efficiently evaluated from Monte Carlo samples. Further,
inserting the probabilistic form of the Lindblad master
equation leads to

Fk =
∑
a

P a ∂ logP a

∂t

∂ logP a

∂θk

=

〈
LabP

b

P a

∂ logP a

∂θk

〉
a∼P

(15)

and

Skk′ =
∑
a

P a ∂ logP a

∂θk

∂ logP a

∂θk′

=

〈
∂ logP a

∂θk

∂ logP a

∂θk′

〉
a∼P

.

(16)

The same derivation can be carried out without assuming
normalization. In this case the form of S and F is altered



to

P a → P a∑
b P

b

logP a → logP a − log
∑
b

Pb

∂ logP a

∂θk
→ ∂ logP a

∂θk
−
〈
∂ logP a

∂θk

〉
a∼P

∂ logP a

∂t
→ ∂ logP a

∂t
−
〈
∂ logP a

∂t

〉
a∼P

,

(17)

where the last two lines are obtained using

∂

∂θk

(
logP a − log

∑
b

Pb

)

=
∂ logP a

∂θk
−
∑

b
∂Pb

∂θk∑
c P

c

=
∂ logP a

∂θk
−
∑
b

Pb∑
c P

c

∂ logPb

∂θk

=
∂ logP a

∂θk
−
〈
∂ logP a

∂θk

〉
a∼P

.

(18)

Here, the log derivative trick was used in the third line
and we renamed the dummy indices b and c in the last
step. One may proceed similarly for the time deriva-
tive. Overall, this leaves us with the connected correlator
structure described in the main text

Skk′ = 〈Oa
kO

a
k′〉a∼P − 〈O

a
k〉a∼P 〈O

a
k′〉a∼P

Fk =

〈
LabP

b

P a
Oa
k

〉
a∼P
− 〈Oa

k〉a∼P

〈
LabP

b

P a

〉
a∼P

.

(19)

We finally arrive at

θ̇k = S̃−1kk′Fk′ (20)

where the tilde is due to the fact that we cannot invert
S directly but rather need to regularize it because it is
usually ill-conditioned. One can easily show that the up-
dates that were found are indeed maxima of the fidelity:

∂2

∂θ̇2k
F (P a + Ṗ aτ, P a +

∑
k′

∂P a

∂θk′
θ̇k′τ)

=
∂

∂θ̇k
(Fk − Skk′ θ̇k′)

=− Skk′δk′k
=− Skk

=−
〈

(Oa
k − 〈Oa

k〉)
2
〉
a∼P

≤0.

(21)

Observables and Operators in the POVM-formalism

As described in the main text, the POVM-distribution
P is obtained as expectation values of the respective
POVM-operators M̂ ,

P a = tr
(
ρ̂M̂a

)
, (22)

where M̂a = M̂a1 ⊗ ..⊗ M̂aN are product operators. For
IC-POVMs with the minimal number of (d2)N elements,
where d is the local Hilbert space dimension (d = 2 for
spins), this relation can be inverted:

ρ̂ = P aT−1aa
′
M̂a′

, (23)

with the overlap matrix T aa′
= tr

(
M̂aM̂a′

)
. We note

that not every normalized probability distribution in-
serted into Eq. (23) results in a physical density matrix,
as the positivity of ρ̂ is not ensured. The equation de-
scribing the dynamics of P can be obtained from Eq. (23)
and the Lindblad master equation according to

Ṗ a = tr
(

˙̂ρM̂a
)

= LabPb. (24)

The the part of the linear map L resulting from the von-
Neumann term, i.e. the part accounting for the unitary
evolution, is

Ṗ a = tr
(
−i
[
Ĥ, ρ̂

]
M̂a
)

= tr
(
−i
[
Ĥ, T−1bb

′
M̂b′

]
M̂a
)
Pb

= tr
(
−iĤ

[
T−1bb

′
M̂b′

, M̂a
])
Pb

= UabPb,

(25)

where the cyclicity of the trace was used in the last line.
A similar expression can be found for the dissipative part

Dab = γ tr
(∑

i

L̂iT−1bb
′
M̂b′

L̂i
†
M̂a

− 1

2
L̂i

†
L̂i
{
T−1bb

′
M̂b′

, M̂a
})
,

(26)

from which we set L together according to

Lab = Uab +Dab. (27)

The expectation value of any observable in physical index
space may be correspondingly expressed in the POVM-

formalism replacing 〈Ô〉 = tr
(
ρ̂Ô
)

by 〈Ô〉 = P aΩa. The

numerical values of the coefficients Ωa are obtained in
similar fashion as the Lindbladian operator L, namely
by substituting ρ̂ according to Eq. (23)

〈Ô〉 = tr
(
ρ̂Ô
)

= P aT−1aa
′
tr
(
M̂a′

Ô
)

= P aΩa. (28)



Details of the RNN-architecture

As described in the main text, the RNN encodes the
probability distribution P a as a product of conditionals,
P a =

∏
i P (ai|a<i). The formula implies that the net-

work’s knowledge of previous POVM outcomes a<i may
alter the estimation of POVM outcome probabilities at
site i. In the network architecture, this is ensured by
passing a hidden state to the next lattice site where it
enters the computation of the probability output. This
hidden state may be regarded as a latent embedding of
physical contextual information, and is required to accu-
rately encode correlations in the physical system. Our
results are obtained using standard RNN cells which are
known to have exponentially decaying correlation length
[110]. In scenarios, where this is expected to be insuffi-
cient, more advanced cells, such as the Long Short Term
Memory (LSTM) [83], whose correlation length decays
algebraically [110], or the transformer [84] may be used
instead.

Since the RNN architecture was originally developed to
tackle tasks associated with serial data, some changes are
required in order to make it suitable for quantum applica-
tions. For one, to allow the treatment of 2D systems the
RNN evaluation and sampling schemes need to be gener-
alized. Here, we adapt a scheme, introduced in [65], that
treats correlations along both spatial direction on equal
footing. Additionally, we enforce all symmetries present
in the Lindbladian L by averaging all symmetry-invariant
outcome configurations [65]. These include translational
symmetries as well as point symmetries. We emphasize,
that explicitly restoring these symmetries in our ansatz
improved the accuracies of observables substantially.

Furthermore, we here lay out how the network is ini-
tialized. Product states, which form typical initial states
in non-equilibrium time evolution, may be encoded to
numerical precision in the network, by setting the biases
of the output layer to the logarithm of the to be encoded
1-particle probability distribution while simultaneously
setting all weights connecting to the output layer to zero.
We may therefore attribute all accumulated error to im-
precise updates during time-evolution and note that no
preceding computations are required.

For our simulations we use RNNs implemented in the
open source machine learning library JAX [108]. An
RNN is a generative model that works on sequential data,
in which the bits of the sequential data are processed
in an iterative fashion. The RNN fulfills two tasks: It
assigns probabilities to a given POVM outcome config-
uration and, as a generative model, is capable of exact
sampling, meaning that it can be programmed to out-
put sample POVM configurations in agreement with the
assigned probabilities. This is a major advantage of au-
toregressive networks compared to other network archi-
tectures, in which the sampling step is carried out using

Markov Chain Monte Carlo schemes, which potentially
may be plagued by long autocorrelation times.

An RNN-cell is the basic building block of an RNN;
RNN-cells may be stacked to form the complete RNN,
increasing the representational power of the network. Let
us first limit our considerations to RNNs with one layer,
i.e. single RNN-cells. The input to every RNN-cell con-
sists of two parts: For one, the physical POVM outcomes
a = a1..aN are fed into the model piece by piece. Here,
each outcome is transformed to a one-hot encoded vec-
tor of length 4. Simultaneously, a hidden state of length
l which is initialized to zero, i.e. h0 = 0 is fed into the
model. The first step consists of finding the first proba-
bility appearing in P a =

∏
i P (ai|a<i), i.e. P (a1). First,

a new hidden state is computed

h1 = φ (Wh · h0 +Wa · a0 + bh) . (29)

a0 is an input of length 4 carrying zeros, similar to the
empty input h0 of length l. The parameters W l(a) con-
sequently are matrices with shape l× l (l× 4), while the
bias vector bh has length l. We choose the element-wise
activation function φ to be the Exponential Linear Unit
(ELU)

φ(x) =

{
x x > 0,
α (ex − 1) x ≤ 0.

(30)

Two more sets of parameters Ws (bs) with shape 4 × l
(4) enter the computation of the output of the RNN-cell,

P (a1) = σ (Ws · h1 + bs) . (31)

Here σ denotes the softmax-activation,

σ(x)i =
exi∑
i e
xi

(32)

and the summation includes the four possible POVM-
outcomes, allowing to interpret P a1 as a proper discrete
probability distribution. Depending on the task at hand,
one may either store the probability of a POVM outcome
of interest or sample the first POVM outcome from P a1 .

Obtaining an expression for P (a2|a1) is identical to the
hitherto described procedure, by substituting h0 for h1

and a0 for a1 and, more generally, hi for hi+1 and ai for
ai+1 in the following steps. Here, the ‘recurrent‘ nature
becomes apparent, since the same parameters, i.e. the
same network, is used in every computation step.

If one desires to use deeper networks with K layers,
Eq. (29) changes to

hki = φ
(
W k
h · hki−1 +W k

a · hk−1i + bkh
)
. (33)

hki is then called the hidden state at layer k at lattice
site i. The computation of P (ai|a<i) is still analogous to
Eq. (31), i.e.

P (ai|a<i) = σ
(
Ws · hKi + bs

)
. (34)



As the product of these probabilities becomes exponen-
tially small in the system size N , one stores the logarithm
of the conditional probability instead of the probability
itself.

In two-dimensional systems, the situation is slightly
more involved. One might be tempted to map the 2D sys-
tem in a snake-like fashion to a one-dimensional system.
However, using this method one observes that correlators
of vertical neighbours are not encoded accurately as in-
formation may potentially get lost upon long traversing
times in horizontal direction [65]. Instead, we opt to pass
hidden states in a two-dimensional fashion, incorporating
the dimensionality of the system as shown in Ref. [65].
Herein, we once again change Eq. (33) to read

hkij = φ
(
W k
h · hki−1j +W k

h · hkij−1 +W k
a · hk−1ij + bkh

)
.

(35)
This method can in principle be extended to three di-
mensional systems.

Comparison to exact numerical simulations for small
system sizes

To obtain uncontroversial benchmarks, we test our
method in system size regimes where exact dynamics is
feasible. As benchmark systems we choose the 1D and
2D systems described in the main text in Fig. 2 and re-
duce the system size to N = 10 spins in the 1D case and

a 3× 3 lattice in the 2D case.

Dissipative confinement correlations

One question that arises in relation with Fig. 3 in the
main text is how the spreading of correlations is to be de-
scribed in the dissipative setting. As decoherence gener-
ically leads to classical transport dynamics one may ex-
pect diffusive growth of correlation that is proportional
to
√
t in contrast to the unitary linear light-cone pro-

portional to t. This intuition, however, can only hold
in an intermediate time regime since at long times the
system will relax to its steady state prohibiting an in-
definite growth of correlations. In the present case of
single particle dephasing noise the steady state is given
by ρ̂(t→∞) ∝ 1, as is easily verified by the observation
that the unity operator commutes with Ĥ and similar
for the dissipative part of the evolution Eq. (3) of the
main text. This means that all correlations will eventu-
ally decay to zero again in the long-time limit. One ob-
serves that correlations indeed start to disappear again
at around Jt ∼ 70 in the considered setting. Neverthe-
less, the spreading of correlations at intermediate times
is consistent with a square-root, as shown in Fig. 5 where
the dashed line is a fit to the first passage data points of
a given threshold.
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FIG. 4. (a) and (b): Mean magnetizations and next-nearest neighbour connected correlation functions (e.g. CXX(d = 2) =∑
i〈X̂iX̂i+2〉c/N) as a function of time in the anisotropic 1D Heisenberg model for N = 10 spins starting in the product state

〈Ŷ 〉 = −1. Nearest neighbor couplings are given by ~J/γ = (2, 0, 1), hz/γ = 1 and the dissipation channel is L̂ = σ̂− = 1
2
(X̂−iŶ ).

The exact data is obtained for N = 10 spins. (c) and (d): Mean z-magnetizations and nearest neighbour connected correlation

functions (for Jy/γ = 1.8) in a 3×3 anisotropic 2D Heisenberg lattice with nearest neighbor couplings ~J/γ = (0.9, 1.0(1.8), 1.0)

and the same decay as in (a) and (b), starting in the product state 〈Ẑ〉 = 1.
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FIG. 5. Spreading of correlations in the dissipative confine-
ment model discussed in the main text (Fig. 3). The data
points are obtained as the first passages where CZZ(d) ≥
0.002 and the fitted curve y = ax1/b yields b = 2.04.

Figure Number of layers Layer size Number of parameters Number of Samples Integration tol. ε

Fig. 2 (1D) 3 20 2224 80.000 1e-05

Fig. 2 (2D, Jy/γ = 1.0) 5 12 2224 8.000 1e-02

Fig. 2 (2D, Jy/γ = 1.8) 3 20 3504 80.000 5e-03

Fig. 3 5 12 1456 160.000 1e-03

TABLE I. Hyperparameters that were used for the different figures in the main text. The integration tolerance is with respect
to the S-matrix scheme proposed in [63].





6
VA R I AT I O N A L M O N T E C A R L O A P P R O A C H T O
PA RT I A L D I F F E R E N T I A L E Q UAT I O N S W I T H
N E U R A L N E T W O R K S

6.1 contributions

This chapter presents the publication in [B]. I proposed the project,
developed the code, and ran all simulations, with Martin Gärttner
acting as a supervisor. All authors contributed to the writing of the
text. An implementation based on the jVMC library [G] can be found
on GitHub.

6.2 motivation

The evolution equation of the variational parameters that encode the
probability distribution in [A] is not tailored to POVM distributions but
is generally applicable to probabilistic dynamics. Thus we can extend
its application also to continuous scenarios that become challenging
to model in high-dimensional settings when relying on discretiza-
tion schemes, due to the curse of dimensionality that is inherent to
high-dimensional grids. Instead, we may employ a suited network
architecture, such as a normalizing flow discussed in Section 3.2.5, to
build a variational model of the probability density, thereby circum-
venting the need for high-dimensional grids.
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Abstract
The accurate numerical solution of partial differential equations (PDEs) is a central task in
numerical analysis allowing to model a wide range of natural phenomena by employing specialized
solvers depending on the scenario of application. Here, we develop a variational approach for
solving PDEs governing the evolution of high dimensional probability distributions. Our approach
naturally works on the unbounded continuous domain and encodes the full probability density
function through its variational parameters, which are adapted dynamically during the evolution
to optimally reflect the dynamics of the density. In contrast to previous works, this dynamical
adaptation of the parameters is carried out using an explicit prescription avoiding iterative gradient
descent. For the considered benchmark cases we observe excellent agreement with numerical
solutions as well as analytical solutions for tasks that are challenging for traditional computational
approaches.

1. Introduction

The description of nearly all processes in nature is formalized and modelled by means of differential
equations, which dictate the evolution of a system given its initial state. Examples include the Navier–Stokes
equation in fluid mechanics [1–4], the Schrödinger equation in quantum mechanics [5–7], and the
Fokker–Planck equation governing diffusive processes [8–15]. Analytical solutions of these equations are
only available in special cases and, generally, one is forced to resort to numerical techniques. A significant
effort during the last century was made to improve the numerical solutions of differential equations [16–18].
There are numerous properties a numerical solver should ideally fulfil, rendering the field quite diverse, with
many specialized solvers being developed [19].

Here, we focus on modelling the dynamics of d-dimensional probability density functions (PDFs) by
means of an ansatz function, which in our case is given by an artificial neural network (ANN), as illustrated
in figure 1. We consider evolution equations of Fokker–Planck form

∂tp=−
d∑
i

∂xiµip+
d∑
ij

∂xi∂xjDijp, (1)

where µ ∈ Rd is the drift and D ∈ Rd×d is the positive semi-definite diffusion matrix and it is understood
that p, µ and D are evaluated at position x and time t.

PDFs arise naturally across many disciplines, describing, for example, the phase space evolution of
(quantum) matter [20, 21], the positions of particles subject to Brownian motion [11], the density of fluids
[1] or stock prices in finance [15]. For many of these scenarios the PDF evolution is described by a diffusion
process, meaning that the path of a single sampled point evolves according to a stochastic differential
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Figure 1. Illustration of the variational approach for a simple diffusion process in 2D. The parameters θ(t= 0) of the artificial
neural network encode a Gaussian at time t= 0 and are adapted such that they accurately track the time evolution dictated by the
diffusion equation until later times t= 2, representing a Gaussian with increased variance.

equation (SDE) [22]. In the limit of averaging infinitely many stochastic trajectories one recovers the
evolution of the PDF.

Consequently, the temporal evolution of probability densities can be obtained by either directly solving
equation (1) via spatial discretization (grid based solvers), or by solving the corresponding stochastic
dynamics for a large number of sample points (particle based solvers). The former approach, while allowing
to control the discretization error via the grid spacing, suffers from the curse of dimensionality [23, 24] as the
computational cost scales exponentially in the spatial dimension, restricting its applicability to low
dimensional cases. The latter approach solves the SDE associated to the Fokker–Planck equation through the
Feynman–Kac formula for an ensemble of points sampled from the initial distribution [25, 26]. While suited
to compute observables, such as moments of the distribution, in high dimensions, there is no direct way to
obtain estimates for functionals of the distribution as an expression for p is lacking [27–29].

In this work, we present a new tool that overcomes the aforementioned limitations of traditional
methods by combining variational Monte-Carlo (VMC) with normalizing flows (NFs). While VMC is a long
established technique in quantum many-body physics [30–33], NFs are a relatively novel class of ANNs also
known as invertible neural networks (INNs) [34]. They have been applied with remarkable success to long
standing problems in statistical physics [35], inference and data generation [34, 36–40], as well as quantum
field theories [41, 42]. Here, we understand the NF as an ansatz function for the time-dependent density. The
choice of the ansatz-function is a degree of freedom in our approach and can be adapted to the problem at
hand exploiting prior knowledge about the function class the time-dependent density belongs to. Among the
possible choices, ANNs are a promising class of ansatz functions, as they may become universal function
approximators in the infinite parameter limit, which applies to lesser extent to NFs [43, 44]. Adjusting the
parameters of the ansatz function to the dynamics dictated by equation (1) is achieved by a time-dependent
variational principle (TDVP), which maps the dynamics of the PDF onto the variational manifold generated
by the ansatz function [32, 33, 45]. Crucially, the approach is self-contained and at no point relies on data
generated from other solvers, in contrast to prior works using neural networks to solve partial differential
equations (PDEs) [46–49], allowing us to obtain numerical solutions for tasks that are challenging for
grid-based or particle-based solvers. Our approach differs from the popular physics informed neural
networks (PINNs) [50, 51] in that we do not carry out a costly global gradient-descent based optimization in
each time step to update the models’ parameters, but rather follow an explicit, analytically derived time
derivative of the network parameters which is given by the TDVP. We are particularly interested in
high-dimensional scenarios which are infeasible to solve with grid-based methods and in quantities which
are not easily obtainable by modelling many stochastic processes, such as functionals of the PDF. Indeed we
show that, using the developed approach, we can reliably estimate differential entropies in a Monte Carlo
fashion requiring only a few thousand samples. We benchmark our approach for the case of an
eight-dimensional heat equation and a six-dimensional dissipative phase space evolution.

2. Normalizing flows

While we employ neural networks as ansatz functions, we emphasize that the derived TDVP is applicable to
any parameterized density, such as Gaussian mixture models or energy-based estimators. We use NFs [34, 36]
to model densities as they have many desirable properties, among which are (a) a guarantee of normalization
for any set of parameters θ, (b) a tractable likelihood and (c) the ability to generate independent samples
without the need to resort to Markov Chains. NFs parameterize densities by assuming a latent distribution π
which is transformed into the distribution of interest by a trainable and invertible map fθ,

x= fθ(z)with z∼ π. (2)

2
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Usually, π is chosen to be a ‘simple’ distribution, e.g. a Gaussian, such that its samples z can be generated
easily. The probability associated with the point x is proportional to π(f−1

θ (x)) times the determinant of the
Jacobian of the transformation,

pθ(x) = π(f−1
θ (x))

∣∣∣∣ det(∂f−1
θ (x)

∂x

) ∣∣∣∣ . (3)

The function fθ is composed from a series of invertible transformations fθ =φ1
θ ◦ .. ◦φN

θ which are
explained in detail in the supplemental material (SM). Importantly, the Jacobian of the function is tractable
meaning that its determinant is efficiently inferred when computing a forward pass, an operation carried out
whenever the real space probability is evaluated at some point of interest. By stacking many of these ‘coupling
blocks’ φi, the function fθ becomes an expressive coordinate transform, that is, however, incapable of
changing the tail behaviour of the latent space distribution [52]. We overcome this problem by dynamically
adapting the latent space distribution π to reflect dynamical changes in the tails of the distribution. This is
explained in more detail below and in the SM.

3. Time-dependent variational principle

The idea of the TDVP originated in the context of VMC [30] where it has been applied extensively to solve
problems in quantum-many-body physics, with a growing interest in the use of neural networks as
variational ansatz functions [32, 33, 45, 53]. Its aim is to locally search for the closest approximation to the
dynamics of the density within the variational manifold. Concretely, one aims to solve

argmin
θ̇

D(pθ(t)+τθ̇,pθ(t) + τ ṗθ(t)) (4)

whereD is a suitable distance measure between probability distributions, τ denotes a small time step, ṗθ(t) is

the derivative given by equation (1), and θ̇ is the unknown corresponding parameter time derivative. The
solution to equation (4) can be found by requiring the derivative with respect to θ̇ to be zero. By expanding
equation (4) to second order in τ one finds

Skk ′ θ̇k ′ = Fk. (5)

We defer the details of this derivation to the SM. Here Skk ′ = ⟨Ok(x)Ok ′(x)⟩x∼pθ(t) denotes the Fisher
information metric and Fk = ⟨Ok(x)∂t log(pθ(t)(x))⟩x∼pθ(t) is a force term, where Ok denotes the
(logarithmic) variational derivative Ok(x) = ∂θk log(pθ(t)(x))and ∂t log(pθ(t)(x)) is given by the RHS of the to
be solved PDE. Here ⟨·⟩x∼pθ(t) denotes an expectation value evaluated through Monte Carlo sampling from
the model distribution pθ(t). Notice, that we heavily rely on the differentiability of the ansatz function pθ(t)
with respect to both variational parameters and spatial coordinates. The latter frequently appear on the RHS
of equation (1) and are thus required for computing ṗθ(t). This is in striking contrast to grid-based
techniques which require making grid cells finer for higher accuracy. Here, instead, we have access to the
exact derivatives through automatic differentiation. The choice of distance measure to compare the two
probability distributions is not arbitrary as the form of S and F directly depends on it. In order to obtain
expressions of S and F that can be efficiently estimated through a finite number of samples, we found that
both the Hellinger distanceDH(p,q) = 1− F(p,q) = 1−

´ √
pqdx and the Kullback–Leibler (KL) divergence

DKL(p,q) =
´
p log(p/q)dx yield the same result of the desired form. Care has to be taken when solving

equation (5) for θ̇, as the inverse of Smay not exist. This is the case if directions in parameter space are
present along which the probabilities are stationary, which can be dealt with by regularization procedures
[33, 53].

4. Problem setup

We are interested in solving initial value problems, for which the initial density distribution p(0,x) = u(x) is
given along with the RHS of equation (1) which governs its evolution. To exactly encode the initial
distribution u(x) in the model pθ(t=0), the latent distribution is set to u(x) and the parameters of the map
fθ(t=0) are chosen such that it represents the identity map fθ(t=0)(x) = x. If the initial distribution cannot be
given in closed form and therefore cannot be set analytically as the latent space distribution π, the network
may be trained on its samples to approximately encode it at time t= 0. Then a solver is used which integrates
the parameters according to equation (5).

3
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Figure 2. Evolution of the differential entropy under a heat equation for different initial distributions. While analytical
comparison data is available in the case of a Gaussian initial distribution, we compare to numerical data for the Student-t
obtained with finite differences on a 1D Grid. Inset: adjustment of the latent space distribution π by changing its parameter ν
dynamically in time.

5. Application 1: diffusion in high dimensions

As a first benchmark scenario we consider the heat equation in d= 8 dimensions. The heat equation appears
across many disciplines ranging from engineering [54, 55] and molecular motion [11] to the pricing of
financial derivatives given by the famous Black–Scholes equation [56, 57] and reads

∂tp(t,x) = D∆xp(t,x). (6)

Importantly, an analytical solution exists against which we can benchmark, making the described scenario a
good showcase of the proposed approach. The solution is given by a convolution of the initial distribution
p(0,x) with the ‘heat kernel’ Φ(t,x) = (4πt)−(d/2) exp(−x2/4Dt) [58], which is the Green’s function to
equation (6), such that

p(t,x) =

ˆ
p(0,y)Φ(t,x− y)dy. (7)

We aim to observe the growth of the differential entropy

S(t) =−
ˆ

p(t,x) log(p(t,x))dx=−⟨log(p(t,x))⟩x∼p(t,x) (8)

with time, a task, which is challenging or even intractable using other numerical techniques in high
dimensions for the reasons mentioned above [23, 24, 27–29]. In the case of a Gaussian distribution for
p(0,x) with zero mean and unit covariance matrix, we obtain a Gaussian of larger variance at later points in
time, in which case we observe perfect agreement between the analytical solution and the one obtained using
the INN as shown in figure 2. If we choose a Student-t distribution as initial distribution, i.e.

p(0,x)∝
(
1+

x2

ν

)−(ν+d)/2

(9)

with ν= 2 we can no longer compare to the analytical solution as the involved integrals become infeasible to
solve. However, by exploiting the spherical symmetry of the problem, we can map the evolution to an
effective 1D problem of the radial dependency of p which we can approximately solve on a grid using finite
differences. The grid based solution and that obtained using the INN are generally in good agreement. We
observe a slight difference which we attribute to technical challenges of the grid-based approach, which we
discuss more elaborately in the SM.

6. Application 2: diffusion in classical phase space

As a second demonstration of the proposed approach we consider classical Hamiltonian dynamics in phase
space with additional diffusion. Concretely, we choose the Hamiltonian H to represent coupled harmonic
oscillators (coupling strength k) which are in contact with heat baths of different temperatures T i, such that
the solution does not factorize in the eigenbasis of H. We provide the Hamiltonian and its generated phase
space flow in the SM. The heat baths lead to diffusion in phatse space, which implies that sampled points of
the distribution evolve according to an SDE. We show that the INN faithfully estimates moments of the

4
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Figure 3. (a) and (b) Evolution of the first two moments of the phase space distribution ρ estimated from 10.000 samples for
three coupled harmonic oscillators with dissipation given by the temperatures kBT/mω2 = (10,3,1) and all other parameters
chosen to be unity. The initial distribution in phase space is a Gaussian with unit variance centered at the position x= (1,0,0)T

and momentum p= (0,1,0)T. (c) and (d) Three uncoupled oscillators (k= 0) coupled to the same heat bath at temperature
kBT/mω2 = 10. In (c) the value of the six-dimensional integral around a hypersphere with radius r centered at the origin is
shown, while in (d) the estimation of the differential entropy equation (8) using the INN is displayed. Both are shown to converge
to the expected value of the steady state. The initial distribution is a Gaussian with identity covariance matrix centered at
x= (1,1,1)T and zero momentum.

distribution, probabilities (i.e. integrals over finite domains) as well as functionals of the PDF that
correspond to integrals over the entire domain.

The described system obeys the following Fokker–Planck equation [59]

∂tρ(t,x,p) =
[
− ∂pH · ∂x+ ∂xH · ∂p+

γ
(
p · ∂p+mkB

∑
i
Ti∂

2
pi

)]
ρ(t,x,p),

(10)

whose corresponding SDE is given by [59]

dxi = ∂piHdt,

dpi =− [γpi + ∂xiH]dt+
√
λidwi.

(11)

Here, λi =
√
2mγkBTi, dwi =Πi

√
dt is the Wiener process with zero average ⟨dwi⟩= 0 and standard scaling

⟨dw2
i ⟩= dt implying that Π is drawn from a standard Gaussian Π∼N (0,1). For simplicity we choose all

quantities except T i equal to unity.
In the case of heat baths of equal temperatures Ti = T and vanishing coupling (k= 0) the system assumes

a thermal steady state of Gaussian form in the long time limit given by the Gibbs-ensemble

ρSS = exp(−H/kBT)/Z

= exp

(
−1

2
(mω2x2 + p2/m)/kBT

)
/Z,

(12)

with Z=
´
exp(−H/kBT)dxdp the partition function, where the Gaussian form allows to compare against

analytical results.
We consider four quantities of interest which we evaluate by drawing 10.000 samples from the INN, see

figure 3. The first two quantities are the means and variances of the distribution evolved for the case of
different T i and k= 1. Here, comparison against estimates from solving the SDE for the same number of
sampled points is straight forward and one observes excellent agreement between both methods. To obtain
an easy benchmark case for integral and entropy estimation, we choose k= 0 and Ti = T such that the steady
state is Gaussian, see equation (12). We choose the integration volumes to be hyperspheres of radius r
centered at the origin allowing for analytical evaluation of the Gaussian integral. The values of these integrals
correspond to the probability of finding the system inside the hypersphere. Using the INN, we can estimate
such integrals in a Monte-Carlo fashion by uniformly sampling points xi from inside the integration domain
and average the associated probabilities pθ(xi), which are shown to converge to the analytically obtained
steady-state value in figure 2(c).

Finally, we again focus on the differential entropy (equation (8)), where figure 3(d) shows that our
method succeeds to predict the differential entropy with low noise while converging to the expected steady
state value.
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7. Conclusion and outlook

We have introduced a variational approach to the dynamics of continuous probability distributions using
NFs and demonstrated its power by applying it to paradigmatic benchmark problems. Our method is widely
applicable, even beyond the Fokker–Planck form (1), e.g. to cases with non-local terms [60]. Its unique
strength lies in estimating functionals of probability densities in high dimensions enabled by the availability
of exact samples with tractable likelihood. We emphasize that other approaches such as PINN [50] require
solving a large-scale non-convex optimization problem in each time step, which the TDVP replaces by the
explicit update rule (5) (see SM for further discussion). The form of the ansatz function can be chosen
flexibly and is not required to be a neural network. The only restrictions are that (a) samples from its
distribution may be obtained and (b) derivatives with respect to inputs and parameters are computable.
While building NFs using stacked coupling blocks is a popular approach, other flow architectures exist and it
would be interesting to investigate their potential in solving PDEs in the future. Since the TDVP can also
work with non-normalized probabilities, also energy based models would be viable ansatz functions
although this would mean that samples would have to be obtained by resorting to Markov-chains.

For the utilized architecture we found that challenges exist when trying to solve chaotic dynamics. We
believe this to be caused by the high amount of information of the phase space distribution which needs to
be encoded using comparably few parameters. Additionally, we found it challenging to model distributions
whose tail behaviour deviated from that of the latent space distribution. In the example shown in figure 2
this could be dealt with by elevating ν to be a variational parameter, which would tend to infinity for late
times, representing the exact tail behaviour of the real space distribution. However, if the real space tail
behaviour cannot be accurately modelled in latent space, e.g. because its form is not known beforehand, one
cannot expect to accurately model the distribution on the entire domain.

Data availability statement

The code used for this project is based on the jVMC library [61], making use of flax [62] and jax [63] and is
available under GitHub: RehMoritz/vmc_pde. The repository also contains the data from figures 2 and 3.
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Derivation of the TDVP Equation

The basic idea of a TDVP is to minimize the distance

D

(
pθ(t) + ṗθ(t)τ, pθ(t) +

∑
k

∂pθ(t)

∂θk
θ̇kτ

)
, (13)

between the evolved state at time t+ τ and the updated
network state with respect to the parameter updates θ̇
at each time t. Here, we exemplarily derive Eq. (5) from
the Hellinger distance DH(p, q) =

∫ √
p(x)q(x)dx, i.e. by

maximizing the classical fidelity F (p, q) = 1 − DH(p, q).
As noted in the main text, an equivalent derivation is pos-
sible using the Kullback-Leibler divergence DKL which
leads to the same result. For better readability, we drop
the time index and continue with the optimality condi-
tion

0 =
∂

∂θ̇k
F

(
p+ ṗτ, p+

∑
k′

∂p

∂θk′
θ̇k′τ

)

=
∂

∂θ̇k

∫
p(x)

√
1 + aτ + bτ2dx,

(14)

where a and b are given by

a =
∂ log p(x)

∂t
+
∑
k′

∂ log p(x)

∂θk′
θ̇k′ ,

b =
∂ log p(x)

∂t

∑
k′

∂ log p(x)

∂θk′
θ̇k′ .

(15)

Next we perform a second order expansion of the square
root in the (small) time step τ :

√
1 + aτ + bτ2 = 1 +

aτ

2
+

τ2

8
(4b− a2) +O(τ3). (16)

Using that the normalization of p is conserved under the
time evolution one finds that the term linear in τ van-
ishes:

p(x)a =

∫ (
ṗ(x) +

∑
k′

∂p(x)

∂θk′
θ̇k′

)
dx

=
∑
k′

θ̇k′
∂

∂θk′

∫
p(x)dx

=
∑
k′

θ̇k′
∂

∂θk′
1

= 0.

(17)

Thus, the optimality condition becomes

0 =
∂

∂θ̇k

∫
p(x)

p(x)2

(
4ṗ(x)

∑
k′

∂p(x)

∂θk′
θ̇k′

−(ṗ(x) +
∑
k′

∂p(x)

∂θk′
θ̇k′)2

)
dx

= − ∂

∂θ̇k

∫
p(x)

p(x2)

(
ṗ(x)−

∑
k′

∂p(x)

∂θk′
θ̇k′

)2

dx

= − ∂

∂θ̇k

∫
p(x)

(
∂ log p(x)

∂t
−
∑
k′

∂ log p(x)

∂θk′
θ̇k′

)2

dx

= 2

∫
p(x)

log p(x)

∂θk

(
∂ log p(x)

∂t
−
∑
k′

∂ log p(x)

∂θk′
θ̇k′

)
dx.

(18)
Dropping the factor of 2 we obtain an equation for the
optimal parameter update θ̇:

0 =

∫
p(x)

∂ log p(x)

∂t

∂ log p(x)

∂θk
dx︸ ︷︷ ︸

=Fk

−
∑
k′

∫
p(x)

∂ log p(x)

∂θk

∂ log p(x)

∂θk′
dx︸ ︷︷ ︸

=Skk′

θ̇k′

=

〈
∂ log p(x)

∂t

∂ log p(x)

∂θk

〉
x∼p

−
∑
k′

〈
∂ log p(x)

∂θk

∂ log p(x)

∂θk′

〉
x∼p

θ̇k′ .

(19)

Importantly, we can now evaluate the integral by sam-
pling according to the encoded probabilities p(x) since
the integrand is proportional to p(x) for both F and S.
This is a unique property of the distance measures DH

and DKL while other distance measures, as for example
the L2 norm, do not lead to expressions of a form that
can be efficiently evaluated from Monte Carlo samples.
The same derivation can be carried out without assum-
ing normalization. In this case the form of S and F is
altered to

p(x) → p(x)∫
p(x)dx

log p(x) → log p(x)− log

∫
p(x)dx

∂ log p(x)

∂θk
→ ∂ log p(x)

∂θk
−
〈
∂ log p(x)

∂θk

〉
x∼p

∂ log p(x)

∂t
→ ∂ log p(x)

∂t
−
〈
∂ log p(x)

∂t

〉
x∼p

,

(20)



where the last two lines are obtained using

∂

∂θk

(
log p(x)− log

∫
p(x)dx

)
=
∂ log p(x)

∂θk
−
∫ ∂p(x)

∂θk
dx∫

p(x′)dx′

=
∂ log p(x)

∂θk
−
∫

p(x)∫
p(x′)dx′

∂ log p(x)

∂θk
dx

=
∂ log p(x)

∂θk
−
〈
∂ log p(x)

∂θk

〉
x∼p

.

(21)

Here, the log derivative trick was used in the third line.
One may proceed similarly for the time derivative. Over-
all, this leaves us with a connected correlator structure
instead of a simple correlator

Skk′ =⟨Ok(x)Ok′(x)⟩x∼pθ(t)

−⟨Ok(x)⟩x∼pθ(t)⟨Ok′(x)⟩x∼pθ(t),

Fk =⟨Ok(x)∂t log(pθ(t)(x))⟩x∼pθ(t)

−⟨Ok(x)⟩x∼pθ(t)
⟨∂t log(pθ(t)(x))⟩x∼pθ(t)

(22)

with Ok the (logarithmic) variational derivative

Ok(x) = ∂θk log(pθ(t)(x)). (23)

We finally arrive at

θ̇k = S̃−1
kk′Fk′ (24)

where the tilde is due to the fact that we cannot invert S
itself but rather need to regularize it because it is usually
rank-deficient. One can show that the updates that were
found are indeed maxima of the fidelity:

∂2

∂θ̇2k
F (p+ τ ṗ, p+ τ

∑
k′

∂p

∂θk′
θ̇k′)

=
∂

∂θ̇k
(Fk −

∑
k′

Skk′ θ̇k′)

=−
∑
k′

Skk′δk′k

=− Skk

=−
〈
(Ok(x)− ⟨Ok(x)⟩)2

〉
x∼p

≤0.

(25)

Approximation Error

The adjustment of the parameters to reflect changes
in the probability carries an associated error, as the pa-
rameters can usually not be changed to perfectly reflect

the time derivatives of all the sampled points used to es-
timate F . The TDVP allows to quantify this error by
estimating the residual

r(t) =
1

Ns

∑
i

∣∣∣∣∣ṗ(t,xi)−
∑
k

∂p(t,xi)

∂θk
θ̇k

∣∣∣∣∣
2

. (26)

Computational Complexity

Here we compare the computational complexity of the
explicit variational method that we are proposing to an
iterative gradient descent based technique.

The operations carried out in the gradient descent
based procedure are given in Alg. 1. To summarize,
the algorithm computes time derivatives at the sampled
points using the differential operator F , which depends
on the PDE under scrutiny (e.g. F = D∆x in the case
of the heat equation, see Eq. (6)) . The time derivatives,
weighted with some small time step τ , are added to the
current probability values pθ(xi) and define the new re-
gression targets. Using a loss function that is minimal
when the encoded distribution agrees with the new re-
gression targets, one searches for a new solution in the
parameter space. Once a convergence criterion is met,
the search stops and continues with the next time step.
This search can become costly, since the optimization
problem is in general non-convex without convergence
guarantees. It is therefore beneficial to avoid the itera-
tive search using a closed form, as lined out in Alg. 2.

Algorithm 1 Iterative Gradient Descent

1: procedure timeStep(pθ)
2: K ← {x1, ..,xN} ▷ obtain sample set K
3: ∂tpθ(xi)← F(pθ)(xi) ▷ get time derivatives at each x
4:

5: while convergence criteria is not met do
6: L←

∑
iD (pθ(xi), pθ(xi) + τ∂tpθ(xi)) ▷ Define

Loss function, Derivative acts on first argument in D
7: θ ← θ + η∇θL ▷ Gradient descent step

8:

9: return θ

Algorithm 2 Explicit second order scheme

1: procedure timeStep(pθ)
2: K ← {x1, ..,xN} ▷ obtain sample set K
3: ∂tpθ(xi)← F(pθ)(xi) ▷ get time derivatives at each x
4:

5: Skk′ ← 1/N
∑

i∈S Ok(xi)Ok′(xi)
6: Fk ← 1/N

∑
i∈S Ok(xi)∂t log (pθ(xi))

7: θ̇k ← S−1
kk′Fk′

8: θ ← θ + τ θ̇
9:

10: return θ



FIG. 4. Illustration of a coupling block. Top: Forward pass,
corresponding to Eq. (27). Bottom: Inverse pass, correspond-
ing to Eq. (28).

The proposed algorithm also relies on obtaining sam-
ples from the distribution for which then time derivatives
are computed. Beyond that, we require the logarith-
mic variational derivatives of the probabilities Ok(x) =
∂θk log (pθ(x)). Obtaining these derivatives is of similar
computational cost compared to a single gradient descent
step in Alg. 1, as such a step also requires the differentia-
tion of the probabilities at all sample positions. However,
using the explicit scheme, this operation needs to be car-
ried out only once. Additionally, we need to add these
derivatives together, as shown in lines 5 and 6 of Alg. 2,
an operation with negligible computational cost. To ar-
rive at the time derivatives of the parameters θ̇, we need
to invert the S matrix, which has cubic computational
cost in the number of network parameters. In practice,
there are many more computationally efficient ways than
actually computing the inverse, which allow to reduce the
computational cost of this step. While this step limits
the number of network parameters that can practically
be used, and thus the expressivity of the ansatz, we have
not found this to be a limiting factor in the application
considered in this work.

The runtimes of the examples we presented all lie below
half an hour on a single NVIDIA A100 GPU.

Normalizing Flows

For the definition of the normalizing flow we use the
Real-NVP type coupling blocks introduced in [34] and
depicted in Fig. 4. Each coupling block φi splits the
input into two parts u1 and u2 which is done in a random
but fixed way. The transformations in a single coupling
block are defined by four networks s1, t1, s2, t2 that
change the input as follows:

v1 = u1 ⊙ exp(s2(u2)) + t2(u2),

v2 = u2 ⊙ exp(s1(v1)) + t1(v1).
(27)

The inverse of this transformation is given by:

u2 = (v2 − t1(v1))⊙ exp(−s1(v1)),

u1 = (v1 − t2(u2))⊙ exp(−s2(u2)).
(28)

Here ⊙ means element-wise multiplication. The net-
works s and t are built equivalently as two layer feed-
forward networks with half as many nodes in each layer
as there are dimensions. In some cases we found it useful
to not include the additive t networks. Additionally, we
allowed the network to adjust the mean µ and the covari-
ance matrix Σ of the distribution in latent space directly,
potentially along with parameters ϑ of the distribution,
e.g. ν in the case of the Student-t, such that

π = π(µθ,Σθ, ϑθ). (29)

We parameterize Σ using either the Cholesky decompo-
sition or by setting Σ = 1 + AAT , where we found the
latter to be more stable numerically for simulating the
heat equation. Network details are listed in in Table I.

Figure Input Dim. # Coupling Blocks # Layers Net t # Parameters # Samples π

Fig. 2 8 4 2 No 392 10.000 Student-t / Gauss

Fig. 3 6 4 2 Yes 234 10.000 Gauss

TABLE I. Hyperparameters that were used for the different figures in the main text.

Isotropic Heat Equation as a 1D Problem

Here we describe the procedure with which the refer-
ence data for Fig. 2 in the main text was obtained in the
case of a Student-t initial distribution and give an expla-
nation for the slight discrepancies observed in Fig. 2 in
the main text.

The heat equation

∂tp(t,x) = D∆p(t,x) (30)

can be recast as a 1D problem if the initial condition
p(t,x) = u(x) features a spherical symmetry. This is the

case if it is fully described by a mean µ and a covariance
matrix Σ, as this allows to rescale coordinates such that
the new distribution obeys µ = 0 and Σ = 1 enabling us
to write p(t,x) as p(t, r), where r = |x|.
Then, the spherical form of the Laplacian may be ex-

ploited

∆ = ∂2
r +

d− 1

r
∂r, (31)

where d is the dimension of the distribution. The evo-
lution of the distribution can then be solved using finite
differences on a 1D grid. Note however, that there are



0 1 2 3 4 5
Dt

0.1

0.0

0.1

0.2
En

tro
py

 D
iff

.
INN - Baseline

Gauss
Student-t

FIG. 5. Differences between entropy estimates of the INN
compared to the baseline methods from Fig. 2 in the main
text. Systematic deviations are visible for the case of the
Student-t, which we attribute to problems with the baseline
method as layed out below.

caveats associated with this procedure as the second term
of Eq. (31) has a divergence for r → 0. For the diffusion
cases we considered, the distribution p(t, r) has a maxi-
mum at r = 0, irrespective of the time t, implying that
also the numerator ∂tp(t, r) vanishes. This necessitates
the use of L’Hôspital’s rule to write

lim
r→0

∂rp

r
=

∂2
rp

∂rr
= ∂2

rp. (32)

We work with equidistant grid cells of size δ = 4 · 10−3

and set a cutoff at r = 100. We employ L’Hôspital ap-
proximation for the first 10 grid cells, i.e. for r ∈ [0, 10δ],

which we found to be necessary for numerical stability.
This implies however, that also the reference data is not
free of approximations, which may be particularly inter-
esting as we did not observe the INN curve to come closer
to the reference data when increasing the network size.
This could be viewed as an indication that it is not nec-
essarily the INN whose curve is deviating from the true
entropy, but rather the data obtained from the 1D grid-
method described in this section. The difference between
INN and grid-based result is shown in Fig. 5.

Phase Space Evolution

The phase space evolution of the example discussed in
Fig. 3 of the main text is governed by the Hamiltonian
H, which we choose to be

H =
∑
i

1

2
(mω2x2

i +p2i /m)+k
∑
i

(xi−x(i+1)%N )2, (33)

such that k gives the strength of the coupling between
oscillators. The resulting phase space flow is given by

ẋi =∂pi
H,

ṗi =− ∂xi
H.

(34)

If one considers damping in phase space, the following
Fokker-Planck equation is obtained [60]

∂tρ(t,x,p) = [−∂pH · ∂x + ∂xH · ∂p+
γ
(
p · ∂p +mkB

∑
iTi∂

2
pi

)]
ρ(t,x,p).

(35)





7
O P T I M I Z I N G D E S I G N C H O I C E S F O R N E U R A L
Q UA N T U M S TAT E S

7.1 contributions

This chapter presents the publication in [C]. The proposal of the
project stemmed from joint discussions between Martin Gäerttner,
Markus Schmitt, and me. I developed the code and ran all simulations,
with Martin Gärttner and Markus Schmitt acting as supervisors. All
authors contributed to the writing of the text. A GPU- and cluster-
ready implementation of the utilized algorithms can be found as part
of the published jVMC library [G].

7.2 motivation

While various different architectures have been proposed for neu-
ral quantum state applications (see Section 3.2.1, Section 3.2.2, Sec-
tion 3.2.3), there is little insight into which architectures work best
in what circumstances. We here set out to test the capabilities of the
most popular neural quantum state architectures when trying to find
ground states of stoquastic Hamiltonians as well as frustrated spin
systems that feature a non-trivial sign structure. We choose ground
state searches as a benchmark task as it is a problem of high relevance,
while simultaneously featuring a clear performance metric, namely
the lowest achieved energy.

© 2024 American Physical Society
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Neural quantum states are a new family of variational Ansätze for quantum-many body wave functions with
advantageous properties in the notoriously challenging case of two spatial dimensions. Since their introduction,
a wide variety of different network architectures have been employed to study paradigmatic models in quantum
many-body physics with a particular focus on quantum spin models. Nonetheless, many questions remain about
the effect that the choice of architecture has on the performance on a given task. In this work, we present
a unified comparison of a selection of popular network architectures and symmetrization schemes employed
for ground-state searches of prototypical spin Hamiltonians, namely, the two-dimensional transverse-field Ising
model and the J1-J2 model. In the presence of a nontrivial sign structure of the ground states, we find that the
details of symmetrization crucially influence the performance. We describe this effect in detail and discuss its
consequences, especially for autoregressive models, as their direct sampling procedure is not compatible with
the symmetrization procedure that we found to be optimal.

DOI: 10.1103/PhysRevB.107.195115

I. INTRODUCTION

Many intriguing phenomena in condensed matter physics
emerge in strongly interacting many-body systems, which
rarely allow for analytical solutions. Theoretical attempts to
understand a problem of interest therefore usually rely on
numerical techniques. However, the exponential scaling of
required computational resources with the number of system
constituents implies that true many-body settings involving
hundreds of qubits or more are not amenable to naive classical
computational approaches [1].

Therefore, variational approaches have become popular
[2–4] aiming to efficiently parametrize the physically rele-
vant “corner” of Hilbert space [5–7]. Such approaches reduce
the number of required parameters to be subexponential, cir-
cumventing the curse of dimensionality, at the expense of
generality. Various methods have been developed that fall
into this category. Tensor network states (TNS) [2,3] and
neural quantum states (NQS) [4] are particularly popular and
important in the case of many-body spin systems because
both are versatile and numerically exact in the sense that the
accuracy can be systematically controlled with self-consistent
convergence checks. Tensor network approaches comprise
many different Ansätze [8–15], which are generally composed
of a number of tensors with a specific bond dimension, that
regulates their expressivity. Matrix product states (MPS) [2]
form the best studied example of TNS, and allow to encode
weakly entangled states in one dimension with great success,
especially in conjunction with the celebrated density ma-

*moritz.reh@kip.uni-heidelberg.de

trix renormalization group (DMRG) algorithm [16,17]. MPS
constitute an ideal tool to efficiently represent ground states
of one-dimensional gapped Hamiltonians, which feature an
area law of entanglement [6]. Their limitation is set by the
exponential growth of the required bond dimension with en-
tanglement entropy and more involved TNS were devised to
mitigate this issue [18]. While instances of TNS exist which
deal with two-dimensional (2D) settings [3,13,18], this regime
remains particularly challenging.

Neural quantum states therefore received a lot of attention
upon their introduction as they presented a potential remedy
to some of the aforementioned shortcomings of TNS, due to
several factors. For one, opposed to the DMRG algorithm,
the design of NQS and its associated optimization algorithms
do not rely on any spatial structure, rendering them ideal
candidates for 2D settings [4,19]. Second, NQS allow for
unprecedented flexibility; in principle, any network that maps
a spin configuration, i.e., a computational basis state, to an
associated complex wave-function coefficient presents a valid
Ansatz [19–25]. Finally, it has been demonstrated that NQS
can indeed encode volume-law entangled states without in-
troducing exponential cost [26–29] in stark contrast to TNS
approaches. This observation serves as a strong motivation
for the further exploration of NQS and its yet undetermined
limitations.

In this work we aim to shed light on the latter question,
focusing mainly on the differences introduced by different
network architectures and symmetrization schemes. To this
end, we optimize various networks that have been proposed
for the use as Ansatz wave functions to represent the ground
state of prototypical 2D spin Hamiltonians. We focus on in-
termediate network sizes, which allows us to comparatively

2469-9950/2023/107(19)/195115(10) 195115-1 ©2023 American Physical Society
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study intrinsic network biases. In order to connect to the ex-
isting literature, we choose the 12 × 12 transverse-field Ising
model (TFIM) [20,21] and J1-J2 model [30–32] at lattice size
6 × 6 and 10 × 10.

The paper is organized as follows: At first we give an
introduction to variational Monte Carlo (VMC) and NQS,
by introducing the employed optimization strategy (Sec. II),
the different architectures we benchmarked (Sec. III), as well
as the different symmetrization options (Sec. IV). We then
present the results on the 2D TFIM as well as the 2D J1-
J2 model, where we put an emphasis on the interplay of
the symmetrization strategy and the learned sign structure
(Sec. V) and discuss implications for autoregressive networks
(Sec. VI).

II. VARIATIONAL MONTE CARLO

In variational Monte Carlo one parametrizes a wave func-
tion as

|ψθ〉 =
∑

s

ψθ (s) |s〉 , (1)

where s = (s1, . . . , sN ) labels the computational basis states
of the system composed of N degrees of freedom and θ de-
notes the vector of variational parameters. Using this Ansatz
function, one can estimate the expectation values of operators
Ô according to

〈Ô〉 = 〈ψθ| Ô |ψθ〉 =
∑
ss′

ψθ (s)∗Oss′ψθ (s′)

=
∑
ss′

|ψθ (s)|2Oss′
ψθ (s′)
ψθ (s)

=
〈∑

s′
Oss′

ψθ (s′)
ψθ (s)

〉
, (2)

where 〈·〉 denotes the Monte Carlo (MC) average with respect
to the probability distribution |ψθ (s)|2 from here on. The lo-
cal estimator Oloc(s) = ∑

s′ Oss′ψθ (s′)/ψθ (s) can be evaluated
efficiently for local operators Ô, meaning that the sample size
required to reach a certain precision does not scale with the
total system size. This renders the estimation of 〈Ô〉 efficient
[33]. For variationally approximating ground states, we can
take Ô to be the system’s Hamiltonian Ĥ , compute its ex-
pectation value, and, since we assumed differentiability with
respect to θ, optimize by gradient descent. A more elaborate
approach uses information about the local curvature of the
variational manifold, as measured by the Fubini-Study metric,
in form of the quantum geometric tensor S = 〈〈�∗

k (s)�k′ (s)〉〉,
where �k (s) = ∂θk ln ψθ (s) and 〈〈AB〉〉 = 〈AB〉 − 〈A〉〈B〉. This
results in the commonly used stochastic reconfiguration (SR)
algorithm [34], in which the parameter update rule is given by

θ
(n+1)
k = θ

(n)
k − τ

∑
k′

Re(S−1)kk′Fk′ |θ=θ(n) . (3)

Here, Fk = ∂θk 〈Eloc(s)〉 = 2 Re(〈〈�∗
k (s)Eloc(s)〉〉) and τ is the

update step size. As S can be rank deficient, regularization
techniques need to be applied upon computing the inverse
[4,19]. In this work, we achieve regularization by scaling
all diagonal entries of S by a factor of 1 + δ1 and adding
an identity matrix scaled with δ2 to S. During optimiza-
tion a second-order Runge-Kutta integrator with adaptive
(imaginary-) time step τ is employed to obtain the integrated

evolution of the network parameters. Further details are given
in Appendix A.

III. NEURAL QUANTUM STATES

Neural quantum states form a particular class of functions
that can be used as an Ansatz, ψθ , in the VMC framework de-
scribed in Sec. II. In this case, the Ansatz function is given by
an artificial neural network (ANN), which defines a nonlinear
differentiable map from spin configurations s to the associ-
ated (generally complex) wave-function coefficient ψθ (s). In
fact, it is common practice to have the ANN produce the
logarithmic wave-function coefficient χθ (s) such that ψθ (s) ≡
exp[χθ (s)] can accurately capture coefficients over multiple
orders of magnitude. Typically, neural networks are built up
in layers which iteratively transform the input to a desired
output, constituting a very general class of function approx-
imators that are particularly attractive due to their flexibility
in construction and the existence of universal approximation
theorems, stating that neural networks can approximate any
function given sufficiently many parameters [35–38].

Various architectures have been proposed for the use in
NQS applications, but a broad comparative benchmark within
a unified study is so far missing. We attribute this to both the
technical difficulties of implementation and the many details
concerning the structure and optimization of the networks,
which can have a strong effect on performance. Especially the
choice of hyperparameters as well as architecture details, e.g.,
whether amplitude and phase are treated by separate networks
or in a unified scheme, can be challenging.

We design the networks to encode both phase and ampli-
tude simultaneously, except for the case of the TFIM where
no phase is modeled since the ground state is known to
be positive [39]. When the network models both phase and
amplitude, we design the feed-forward-based architectures as
holomorphic maps, using complex parameters and outputting
a single complex number χθ (s). The recurrent architectures,
in contrast, do not define holomorphic maps and therefore uti-
lize real parameters. For detailed explanations on the utilized
networks see Appendix B.

Within this work we consider the following network archi-
tectures:

Restricted Boltzmann machines. The earliest NQS archi-
tectures relied on a dense single-layer feed-forward network,
usually referred to as restricted Boltzmann machine (RBM) in
the NQS context [4,27,30,40–43]. Due to the dense connectiv-
ity, the spatial structure of the input is not natively represented
by the network architecture. To add a notion of locality to
the RBM Ansatz one can include the product of physically
coupled spins as input features to obtain a correlator RBM
(CorrRBM), as proposed in [22].

Convolutional neural networks. A further generaliza-
tion of RBMs are convolutional neural networks (CNN)
[19,32,44,45]. The layers in deep CNNs are defined by a
number of filters of a certain width, thereby allowing great
flexibility in the design of the network. By choosing the depth,
i.e., the number of layers to one, and the filter size such that it
spans the entire system one obtains a translationally invariant
RBM, meaning that symmetrized RBMs are a strict subclass
of CNNs. By using smaller filters and multiple layers, an
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intrinsic representation of locality in the network is restored
based on a hierarchical representation of features, loosely
reminiscent of tree tensor networks (TTN) [11] or the mul-
tiscale entanglement renormalization Ansatz (MERA) [12].
In analogy to the CorrRBM, adding correlations of the spin
configurations to the input extends the CNN to a correlator
CNN (“CorrCNN”).

Recurrent networks. A very different form of Ansatz is
obtained by substituting the feed-forward-based network with
a recurrent architecture, which assigns the coefficient ψθ (s) as
a product ψθ (s) = ψθ (s1) · ψθ (s2|s1) · . . . · ψθ (sN |sN−1 . . . s1)
[20,21,46–49]. A central motivation for this construction is
the fact that such architectures allow for autoregressive sam-
pling. This means that a new independent sample can be
generated with a single network evaluation, such that no
Markov chain Monte Carlo (MCMC) with potentially long
autocorrelation or thermalization times is required. A recur-
rent architecture is defined by a cell containing the variational
parameters. It is then iteratively scanned over the input, i.e.,
the spin configuration s = (s1, . . . , sN ), while storing infor-
mation about previous sites in a hidden state ht that fulfills
the recurrence relation ht+1 = f (ht , st ). Since it is always the
same cell that is scanned over the input sequence, the number
of variational parameters does not grow with the system size;
this can enhance efficiency, but, on the other hand, the inher-
ently sequential design does not allow for parallelization. The
architecture of the recurrent cell is highly customizable; we
refer to the vanilla recurrent neural network with a single layer
as “RNN,” and use the abbreviations “LSTM” and “GRU” for
the long short-term memory [50] and gated recurrent unit [51],
respectively.

IV. SYMMETRIES

When the Hamiltonian describing the spin system exhibits
certain symmetries, such as invariance under translations,
rotations, reflections, or parity symmetry, its ground state
exhibits the same symmetries. This a priori knowledge of
properties that the ground-state wave function must fulfill can
be used to restrict the variational optimization to the correct
symmetry sector and thereby to enhance the performance of
the algorithm. Since not all of the considered network archi-
tectures can be composed of equivariant layers to incorporate
symmetry [52], we instead follow the common approach
to symmetrize the wave function by averaging procedures
of all symmetry-equivalent configurations as is commonly
done [19,20,30]. The symmetrized coefficient ψS

θ (s) will then
read as ψS

θ (s) = Avg{ψθ (σ (s))|σ ∈ S} with S the set of all
symmetry operations and Avg denoting one of the three sym-
metrization methods listed below. In fact, we will show that
the details of this symmetrization procedure are crucial for
the performance of the algorithm and that not all architectures
are amenable to the symmetrization procedure we found to be
optimal. We differentiate between three different procedures
for defining symmetrized wave-function coefficients ψS

θ (s)
from the network outputs χθ (s).

(i) Bare-symmetry:

ψS
θ (s) = exp

⎛
⎝ 1

|S|
∑

s′∈S(s)

χθ (s′)

⎞
⎠. (4)

(ii) Exp-symmetry:

ψS
θ (s) = 1

|S|
∑

s′∈S(s)

exp(χθ (s′)). (5)

(iii) Sep-symmetry:

ψS
θ (s) =

√√√√ 1

|S|
∑

s′∈S(s)

exp(2 Re[χθ (s′)])

× exp

⎡
⎣i arg

⎛
⎝ ∑

s′∈S(s)

exp(i Im[χθ (s′)])

⎞
⎠

⎤
⎦. (6)

Equation (5) is a natural choice when the ANN output is
considered to be the logarithmic wave-function coefficient.
Another option to proceed is to exponentiate the logarithmic
coefficients prior to averaging, as done in Eq. (5), resulting
in a symmetrization procedure with the potential that phases
may positively or negatively interfere, as opposed to Eqs. (4)
and (6). Finally, the symmetrization procedure in Eq. (6) is
designed to be compatible with an autoregressive property,
which is lost when choosing one of the other options. The
reason for this is that the relation∑

s′∈S(s)

∣∣ψS
θ (s′)

∣∣2 =
∑

s′∈S(s)

|ψθ (s′)|2 (7)

has to be fulfilled for direct sampling. The only way to
generate a new configuration from the distribution encoded
in an autoregressive network is to sequentially sample the
local configurations si from the conditional probabilities
|ψθ (si|si−1 . . . s1)|2. Following this procedure, symmetry-
equivalent configurations will in general not be generated with
identical probability. However, if Eq. (7) holds, the frequency
of samples from one equivalence class matches its probability
given by the symmetrized Ansatz ψS

θ (s), which is sufficient
for a representative set of samples.

All presented symmetrization options have been applied in
previous works: The bare option was, for example, used in
[19], the exponential option in [30], and the separate option
in [20]. Our contribution is a direct comparison between these
options, applied to the same physical problem with otherwise
identical network architectures.

V. RESULTS

In the following we will examine the performance of
different networks on the TFIM and J1-J2 model on a two-
dimensional square lattice. Since we want to learn about the
distinct representational power of the networks, they are de-
signed to have approximately the same number of parameters
(see Table II in Appendix C). Note that this can imply dif-
ferent computational costs for the different networks, as for
example the evaluation of autoregressive architectures is more
demanding than for a feed-forward architecture. We trained
the networks until convergence was reached, irrespective of
computational cost. Details of the network architectures and
obtained energies can be found in Appendix B.
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FIG. 1. Performance of the tested network architectures for find-
ing the ground state of the 2D 12 × 12 TFIM at different magnetic
field strengths. Here all networks use the bare symmetrization as
no phase is modeled. In (a) the deviation from the lowest observed
energy density is shown for the magnetic fields h ∈ [2, 3, 4]. The
data points are artificially shifted horizontally such that differences
are more easily visible. Error bars quantify statistical fluctuation of
the estimator. In (b) the energy variance per spin is plotted, which
serves as an additional performance indicator. The QMC and MPS
data were taken from [20,21].

A. Transverse-field Ising model

The transverse-field Ising model

Ĥ = −J
∑
〈i j〉

σ̂ i
z σ̂

j
z − h

∑
i

σ̂ i
x (8)

on a 2D square lattice features an Ising interaction between
nearest neighbors and an external field in the x direction,
giving rise to a quantum phase transition from a ferromag-
netic to a paramagnetic phase at h = hc ≈ 3.044J [53]. The
stoquastic nature of the Hamiltonian [39] make it an ideal
benchmark case for various approximative methods, such as
quantum Monte Carlo (QMC) and MPS. We compare to both
techniques with data taken from [20,21].

The stoquasticity implies a positive ground-state wave
function, meaning that the NQS networks do not need to
encode a complex phase. Here, we limit ourselves to the bare
symmetry option. We employ open boundary conditions, to
allow for comparisons with [20,21].

We present our results in Fig. 1. Figure 1(a) shows the
deviation of the predicted ground-state energy density from
the lowest value attained by the various networks and QMC
and MPS at each field strength h ∈ [2, 3, 4]. In order to ease
the legibility we shifted the field strengths slightly. In addition,
since no exact numerical benchmark value for the energy itself
can be given, we consider the variance of the energy estimate
as a performance indicator, that vanishes when the network
represents an eigenstate of the system, such as the ground
state. Figure 1(b) shows the energy variance as a function of

field strength for the various network architectures. The first
observation is that for all architectures, performance depends
significantly on the strength of the magnetic field. In the
region of the critical value performance diminishes as one
might expect, as correlations grow longer ranged. The worst
performance is, however, found at h = 0.91hc slightly away
from the critical point, which might be an indicator of finite-
size effects being present. For the differences between the
networks it is more difficult to make out clear trends. While
the RBM and correlator RBM architecture seem to give the
worst performance, CNN and correlator CNN perform better,
which indicates that increasing the depth of the network at the
expense of smaller filter sizes is beneficial, especially in the
ferromagnetic phase. Autoregressive nets perform reasonably
well for all values of h, especially in the paramagnetic regime
where they outperform the other architectures. Interestingly,
the details of the recurrent cell do not seem to have an influ-
ence in this scenario as RNN, LSTM, and GRU show almost
identical performance. Here, we also want to note that the
employed stochastic reconfiguration method in conjunction
with RNNs allows to obtain lower energies compared to their
original introduction in [20], that utilized larger networks
while giving up on second-order accurate gradients.

We conclude that the ground state of the stoquastic TFIM
can be approximated well, without major differences among
network architectures. In the following, we therefore shift our
attention to the 2D J1-J2 model, i.e., a nonstoquastic Hamilto-
nian with a nontrivial sign structure. At the point J2 = 0.5J1

the ground state is maximally frustrated, giving rise to exotic
phases such as a spin liquid and valence bond solid state [30],
which are characterized by high entanglement and the absence
of an energy gap.

B. J1-J2 model

The J1-J2 model features competing antiferromagnetic
Heisenberg couplings between nearest- and next-nearest
neighbors, with respective strengths J1 and J2, such that

Ĥ = J1

∑
〈i j〉

σ̂ i · σ̂ j + J2

∑
〈〈i j〉〉

σ̂ i · σ̂ j . (9)

It has been the focus of numerous works, especially in the
context of neural quantum states [30,32,54–56], due to its
challenging nature that is characteristic for 2D frustrated
ground states. Depending on the relative strength of inter-
actions, one finds the system in the Néel (J2 � 0.49J1) or
striped (J2 � 0.61J1) phase, while a spin liquid and valence
bond solid phase exists between the two [54]. All of our
experiments are carried out at the point J2/J1 = 0.5, where
frustration is maximal and we employ periodic boundaries.
The abundance of symmetries reduces the size of the relevant
Hilbert space sector, allowing to exactly compute the ground-
state energy for a lattice of size 6 × 6, which serves as a
reference value.

Due to the nonstoquastic nature of the Hamiltonian, the
ground state is not positive and therefore a major challenge
consists in finding the ground-state sign structure [31,57,58].
At J1 = 0 or J2 = 0, the phase follows the Marshall-Peierls
sign rule, which states that the sign of each coefficient ψ (s)
is (−1)N↑∈A(s), where A denotes one of the two sublattices
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FIG. 2. Results on the 2D 6 × 6 J1-J2 model. In (a) and (b) the performance of the different architectures is depicted as a function of
observables of interest. The error bars which are smaller than the filled in circles are omitted. In (c), the effect of the different symmetrization
procedures is shown for the case of the RBM architecture, leaving all other specifications of the network unchanged. In (d), sampled wave-
function coefficients of the network are depicted in the complex plane for the symmetrizations shown in (c), with a logarithmic scale for the
absolute value. Only in the exponential case were we able to observe a nontrivial sign structure with deviations from the Marshall sign rule, in
which there were samples on the opposite site of the bulk.

and N↑∈A(s) is the number of up spins in configuration s on
sublattice A. When going to finite ratios J2/J1, the Marshall
sign rule does no longer hold exactly, but presents a good
approximation. Hence, we choose to hard code the sign rule
in form of a transformed Hamiltonian, which is also explained
in Appendix D, and let the network learn deviations from it.
We therefore change the design of the feed-forward-based
architectures to holomorphic maps with complex network
parameters, while the autoregressive architectures stay non-
holomorphic maps using real parameters but are allowed to
model a phase.

Additionally, the ground state is known to lie in the zero
magnetization sector, implying that the wave-function coef-
ficients are only nonzero for configurations s with the same
number of up and down spins. We exploit this by only con-
structing sample configurations that fulfill this condition.

As was demonstrated in [30], supplying the network with
physical information in form of symmetries improves per-
formance dramatically. We therefore symmetrize our Ansatz
function with all four present symmetries, i.e., translations,
the C4 point group, and the Z2 spin-flip symmetry. As de-
scribed previously, different options regarding the details of
symmetrization exist, and the data presented below reveal that
these details have significant effect on the performance of the
algorithm.

Let us, however, first examine the performance differ-
ences between the different network architectures, shown in
Figs. 2(a) and 2(b). We show the deviation of the energy
density from the exact ground-state value as a function of the
total magnetization

Ŝ2 =
∑

i j

σ̂ i · σ̂ j (10)

and as a function of the structure factor

χ̂ =
∑

i j

σ̂ i · σ̂ je
iq·(ri−r j ) (11)

for q = (π, π ), where the sum runs over all pairs of lattice
sites. The choice of these observables is physically motivated:
The Hamiltonian’s SU(2) symmetry implies that the ground
state fulfills 〈Ŝ2〉 = 0, and thus the deviation from zero serves

as another figure of merit for the approximation quality. The
structure factor is a crucial observable providing insight into
the magnetization structure, i.e., whether the striped or Néel
phase is observed. The observables are estimated using 104

samples. The error bars shown in the figure are obtained
by estimating the observables based on 10 independently
drawn sample sets and determining the fluctuations between
them. The feed-forward architectures, employing the expo-
nential symmetrization strategy, perform significantly better
compared to the autoregressive networks using the separate
(sep-)symmetrization strategy. In Fig. 2(c) we compare the
effect of the three different strategies for the RBM. The ex-
ponential option, utilized in [30], performs best by far. Other
strategies, that were, for example, used in [19,20], perform
considerably worse for the given task.

In a next step, we provide an analysis revealing the ori-
gin of the observed performance differences. Concretely, we
examine the capability of the different symmetrization meth-
ods to capture deviations from the Marshall sign rule. In
Fig. 2(d) we show argument and amplitude of the complex
wave-function coefficients that are obtained by sampling the
NQS; notice that all coefficients from one wave function can
be rotated by an arbitrary angle in the polar plot, correspond-
ing to an irrelevant global phase. Importantly, deviations from
the Marshall sign rule are only observed in the case of exp-
symmetrization, while the other methods only optimize the
wave-function amplitudes, thus not being able to reveal the
nontrivial physics in this problem. This explains the inferior
performance of the alternative symmetrization schemes ob-
served in Fig. 2(c). This, of course, does not mean that we
cannot model such behavior with the other strategies: it can,
however, hint at the fact that finding such sets of variational
parameters using the stochastic reconfiguration algorithm is
challenging.

We now discuss the implications of this finding. In
autoregressive architectures, samples are drawn from the
unsymmetrized distribution since we cannot average over
all symmetry-invariant configurations while sampling. One
therefore needs to ensure that the symmetrized probability
measure of a configuration is equal to the nonsymmetrized
one, ruling out the exponential symmetrization strategy in
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FIG. 3. Learning curve of an RNN with the sep-symmetry and
exact samples (green) compared to the same network using the expo-
nential symmetrization strategy with MCMC samples (orange). As
is clearly visible, the network profits greatly from the exponential
symmetrization strategy which is, however, incompatible with exact
sampling, thereby taking away the major benefit of autoregressive
architectures.

conjunction with autoregressive samples, since it violates
Eq. (7) and similarly for the bare symmetrization. To verify
the influence of the chosen symmetrization on the per-
formance also for recurrent architectures, we compare the
performance of a sep-symmetrized RNN optimized using
autoregressive sampling to its exp-symmetrized counterpart
with MCMC sampling in Fig. 3. The performance difference
again reveals that the exponential symmetrization procedure
significantly improves the quality of the results, although it
prohibits autoregressive samples. Therefore, the limited flex-
ibility in choosing the symmetrization scheme constitutes a
significant drawback for autoregressive architectures when
trying to learn the nontrivial sign structures of the frustrated
ground state.

Having found clear indication that the details of sym-
metrization influence the results, we now give an intuitive
understanding as to why this may be the case. One immediate
observation is the fact that only in the exponential case the
phase can influence the final amplitude since the coefficients
may positively or negatively interfere, yielding a potential
gain in expressivity. Similarly, if the prediction of the phase
were random (or noisy) for a given spin configuration, the
sum of these noisy coefficients would be small in absolute
value. Thereby, it seems plausible that in the case of bad
generalization of the ANN, the resulting coefficients are auto-
matically suppressed. The interplay between complex phases
and amplitudes can also affect the optimization: The log-
arithmic derivatives �k (s) = ∂θk ln |ψS

θ | + ∂θk arg[ψS
θ ] of the

symmetrized coefficients consist of the sum of the gradients
of the (logarithm) amplitude and the complex phase. If only
the amplitudes of the nonsymmetrized coefficients ψθ (s) con-
tribute to the symmetrized amplitude, as is the case for the
bare- and sep-symmetrizations, its gradients with respect to
the complex phases of ψθ (s) vanish. This is in contrast to
the exp-symmetry case, where the gradients of the symmetric
amplitude with respect to the nonsymmetric phases generally
take finite values since they influence the symmetrized ampli-
tude.

TABLE I. Ground-state energies achieved with neural network
quantum states on the 10 × 10 J1-J2 model with periodic boundary
conditions at the point J2/J1 = 0.5. References [56] and [54] incor-
porate projection procedures, thereby providing physical information
beyond symmetries which are not present in the other approaches.

Architecture Energy Reference

CNN −0.473591 [55]
CNN −0.49516(1) [32]
RBM + GP −0.49575(2) [56]
CNN −0.49586(4) This work
RBM + PP −0.497629(1) [54]

C. Large system sizes

Having gained insight into network specific advantages
and disadvantages, we finally want to answer the question
which network architectures can be deemed suitable to scale
up to larger system sizes. To consider an architecture scalable
we demand that both the number of its parameters and the
network evaluation cost should at most grow mildly with
system size N . The RBMs and its variants violate the first
requirement as the number of parameters grows quadratically
given a constant ratio α between the number of hidden and
visible neurons. For recurrent networks, one finds a quadratic
scaling of the evaluation cost, as the cost of evaluating a single
(unsymmetrized) configuration grows linear with system size
since the cell needs to be scanned over longer inputs, while
symmetrization gives another factor N .

This leaves CNNs as the only viable option, as they allow
for subquadratic growth of parameters using small filter sizes
in deep architectures, still allowing for system-wide corre-
lations, and evaluations that approximately scale linearly in
system size since the filters need to be scanned over larger
inputs. Since we saw in Fig. 2 that adding correlation input
features does not add to performance, we test the CNN on
a 10 × 10 lattice and compare to previous works in Table I.
All listed energies stem from NQS approaches, where those
that used physically informed input in addition to the NQS are
marked with a “+.” The additional input is using variational
parameters that define the weight of the projection of the basis
state onto a physically motivated state, such as a pair state in
the pair-projection (PP) algorithm or a Gutzwiller-projected
(GP) state. The performance of the CNN presented here is
comparable to [56], without using any physically informed
input.

VI. CONCLUSION AND OUTLOOK

In this work, we systematically compared the performance
of different network architectures and symmetrization strate-
gies when trying to find ground states of many-body spin
Hamiltonians. While there are no clear trends visible in the
case of the 2D TFIM model, the disparities in the J1-J2 model
are pronounced, where the feed-forward architectures clearly
outperform the autoregressive architectures. We identified the
details of the symmetrization strategy as a key to higher per-
formance, which hinders learning the correct sign structure
if not done correctly. Specifically, it is imperative to add the
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wave-function coefficients of all symmetry-invariant config-
urations such that they may interfere positively or negatively
as laid out in Eq. (5). It is thus not sufficient to restrict the
search space to the right symmetry sector; the details of the
symmetrization procedure play a crucial role.

This finding has direct implications for autoregressive ar-
chitectures since their sampling strategy is not amenable to
the exponential symmetrization strategy described in Eq. (5),
as it violates Eq. (7). We make this explicit in Fig. 3, by
showing that an autoregressive model using MCMC sam-
ples outperforms the same model with exact samples if the
symmetrization strategy is such that interference among the
coefficients is possible. Therefore, learning quantum states
which feature a nontrivial sign structure appears at least
challenging with autoregressive models, if symmetrization is
required at the same time. However, it is to be noted that more
elaborate optimization strategies, such as [59,60], as well
as slightly altered design choices [61] may potentially yield
improved results. We conclude that the RNN’s performance
strongly depends on the physical model in question and add
that there may of course be physical models in which an
autoregressive network outperforms its competitors.

We conjecture that further progress will rely on sym-
metrical wave-function Ansätze that support good scaling
characteristics to larger system sizes. The symmetry-invariant
map should add up the generated coefficients using the exp-
symmetry operation allowing for readily learning a nontrivial
sign structure as opposed to the other cases. We have found the
CNN architecture to be suitable for this purpose and demon-
strated comparable performance to previous works, which
amended NQS wave functions with additional physical bias.

Note added. Recently, Ref. [62] appeared, which also
studies the J1-J2 model on the square lattice using group
convolutional neural networks (GCNNs). The findings of that
work support our claim that the exponential operation prior to
summation is crucial for optimizing performance.

The code developed for this project relies on the jVMC
library [63], that can be found on [64]. Data are available upon
request.
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APPENDIX A: REGULARIZATION, INVERSION, AND
IMAGINARY-TIME EVOLUTION

As laid out in the main text, the stochastic reconfiguration
algorithm culminates in the parameter evolution equation∑

k′
Re(S−1)kk′ θ̇k′ = Fk . (A1)

Since S can be singular, rendering its inverse ill defined, one
needs to regularize S in order to solve for θ̇. We achieve this
in two steps, first multiplying all diagonal elements with a
factor 1 + δ1 and then adding δ2 to all diagonal entries. We
choose δ1 on the order of 10 and let it decay exponentially
during optimization, while δ2 is fixed around 10−4. We then
find θ̇ using a linear solver (we used the JAX implementation of
the SCIPY linear solver jax.scipy.linalg.solve) before
integrating θ using a second-order Runge-Kutta scheme with
adaptive step size [19].

APPENDIX B: NEURAL NETWORK ARCHITECTURES

Restricted Boltzmann machines (RBMs). A dense, single-
layer feed-forward network with N input and M hidden
neurons is, somewhat imprecisely [67], referred to as RBM
in the NQS literature. Its output is the sum of the hid-
den layer with an activation function applied. Usually, this
function is chosen to be the logarithm of the hyperbolic co-
sine. In the complex plane, this function has poles at z =
iπ (1/2 + n) for integer n, which is why we choose to approx-
imate the activation function with its first two nonvanishing
Taylor series terms, mitigating this problem. The number
of parameters for a network with weights and biases are
given by

nP = 2NM + 2M, (B1)

where the factor of 2 arises since all parameters are complex.
In varying the number of hidden neurons M, one can control
the complexity and expressivity of the network. The dense
layer bears no physical motivation, as it is irrespective of
locality, begging the question for more physically motivated
architectures.

Convolutional neural networks (CNNs). In contrast to
RBMs, CNNs allow to keep a notion of locality, by using
filter sizes that are smaller than the system size. These are
scanned over the input, automatically respecting translational
equivariance. CNNs allow to be made more expressive by
tuning the depth (D), filter size (SF ), and the number of filters
and channels (NF ). Without biases, the resulting number of
parameters is

nP = 2
D∑

d=1

Sd
F Ni

F Ni−1
F , (B2)

with N0
F = 1 for the input spin configuration. In the end, the

output is summed over the channel dimension before expo-
nentiating and summation over the remaining dimensions, in
order to implement the exp-symmetrization option.

Correlation networks. In order to guide the network to-
wards the important features of the input configuration, [22]
proposes to add correlations of coupled spins explicitly to
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TABLE II. Characteristics of the networks that were utilized throughout the paper.

Figure or Table Name No. of Parameters Symmetry Specifications Energies

1 RBM 2592 Bare M = 18 h = 2: −2.4095998(9)
h = 3: −3.1739016(5)

h = 4: −4.12179829(5)
1 CNN 2594 Bare D = 2, NF = [24, 2], SF = [6 × 6, 6 × 6] h = 2: −2.4096025(2)

h = 3: −3.1739014(3)
h = 4: −4.12179815(3)

1 CorrRBM 2645 Bare M = 5 h = 2: −2.4096017(7)
h = 3: −3.173896(1)

h = 4: −4.1217980(6)
1 CorrCNN 2483 Bare D = 2, NF = [20, 3], SF = [7 × 7, 5 × 5] h = 2: −2.4096024(2)

h = 3: −3.1739024(4)
h = 4: −4.1217981(2)

1 RNN 2411 Sep nh = 33 h = 2: −2.4096024(4)
h = 3: −3.1739023(2)

h = 4: −4.12179805(8)
1 LSTM 2463 Sep nh = 19 h = 2: −2.4096028(5)

h = 3: −3.1739022(2)
h = 4: −4.12179812(6)

1 GRU 2490 Sep nh = 21 h = 2: −2.4096024(4)
h = 3: −3.1739023(2)

h = 4: −4.12179805(8)
2(a) + 2(b) RBM 3996 Exp M = 54 −0.50364(2)
2(a) + 2(b) CNN 3962 Exp D = 2, NF = [60, 1], SF = [4 × 4, 4 × 4] −0.50357(4)
2(a) + 2(b) CorrRBM 4060 Exp M = 14 −0.5032(1)
2(a) + 2(b) CorrCNN 3872 Exp D = 2, NF = [15, 1], SF = [8 × 8, 8 × 8] −0.50340(7)
2(a) + 2(b) RNN 4138 Sep nh = 44 −0.5017(1)
2(a) + 2(b) LSTM 4010 Sep nh = 24 −0.5014(1)
2(a) + 2(b) GRU 4160 Sep nh = 27 −0.5015(1)
2(c) + 2(d) RBM 3996 Bare M = 54 −0.4965(1)
2(c) + 2(d) RBM 3996 Exp M = 54 −0.50355(3)
2(c) + 2(d) RBM 3996 Sep M = 54 −0.4981(1)
3 RNN 3442 Exp nh = 40 −0.5036(2)
3 RNN 3442 Sep nh = 40 −0.5017(3)
I CNN 10952 Exp D = 2, NF = [75, 1], SF = [6 × 6, 6 × 6] −0.49586(4)

the input of the network. In order to test the proposal, we
add a new input for every link between interacting spins and
define its value to be the product of the interacting spins in
the {+1,−1} representation, such that features from aligned
(antialigned) spins enter as +1 (−1). As this procedure simply
alters the input configuration, it is in principle applicable
to any (nonautoregressive) architecture. This is because the
autoregressive sampling procedure cannot use correlations
between spins that were not sampled yet. The number of
parameters the correlation networks use is given by the same
formulas as previously, but with N substituted by N + Nc,
where Nc are the number of couplings between spins in the
Hamiltonian.

Recurrent neural networks (RNNs). Recurrent net-
works scan a cell f over the input configuration s,
while maintaining a memory in a hidden state vector
h with length nh. This allows to compute and sample
the wave function based on conditionals, ψθ (s) = ψθ (s1) ·
ψθ (s2|s1) · . . . · ψθ (sN |sN−1 . . . s1) [20,21,46–49]. The condi-
tionals are obtained using ht+1 = f (ht , st ), before computing

ψθ (st+1|st . . . s1) = g(ht+1), where g is a dense layer with two
outputs that we interpret as ln(|ψ |) and arg(ψ ) and from
which we compute both ψθ (↑ |st . . . s1) and ψθ (↓ |st . . . s1).
Since the conditional wave functions are normalized to allow
for autoregressive sampling, they do not correspond to holo-
morphic functions, which is why we employ real parameters
for all recurrent models to predict amplitude and phase as two
distinct outputs of the network. In two dimensions, the hidden
states ht and st are formed by concatenating the hidden states
and spin configurations of the top and right (left) neighbors of
the currently considered site, depending on whether the site is
located on an even (odd) row [20].

Different architectures have been proposed for the cell f .
In the easiest case, a “vanilla” RNN cell is used (referred to
as RNN in the main text), which is defined as a single affine
map between inputs and the output with an additional acti-
vation function. More complicated cells, such as the LSTM
(long short-term memory [50]) or GRU (gated recurrent unit
[51]) cell use additional “gates” that allow to keep or discard
information from previous sites. As the number of parameters
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in these architectures is not easily given, we omit a formula
for its calculation at this point and refer the reader to [50,51]
for further details.

APPENDIX C: NETWORK SPECIFICATIONS

We summarize the details of the networks, in particular
network sizes and symmetries, for all networks that were used
in the paper in Table II.

APPENDIX D: MARSHALL SIGN RULE

The Marshall sign rule gives the exact sign for each coeffi-
cient ψ (s) in the J1-J2 model for J1 = 0 or J2 = 0. As defined
in the main text, it assigns the sign (−1)N↑∈A(s), where A

denotes one of the two sublattices and N↑∈A(s) is the num-
ber of up spins in configuration s on sublattice A. It can
equivalently be understood as a gauge transformation of the
Hamiltonian, which then reads as

H ′ = J1

∑
〈i j〉

( − σ̂ i
xσ̂

j
x − σ̂ i

yσ̂
j

y + σ̂ i
z σ̂

j
z

) + J2

∑
〈〈i j〉〉

σ̂ i · σ̂ j .

(D1)

Away from the points J1 = 0 and J2 = 0 the sign rule does
no longer hold exactly but presents a good approximation,
which we use as a starting point from which we aim to learn
the correct deviations. Recovering the physics of the original
Hamiltonian from H ′ is achieved by flipping all x and y
correlators with support on both sublattices.
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8
A R E A L AW S F O R C L A S S I C A L E N T R O P I E S I N A
S P I N - 1 B O S E - E I N S T E I N C O N D E N S AT E

8.1 contributions

This chapter presents a finalized draft of the work in [D]. Tobias
Haas originally proposed the project, and the proposal was refined
in joint discussions between Tobias Haas, Martin Gärttner, Yannick
Deller, Helmut Strobel, Markus Oberthaler, and me. Tobias Haas and
I ran all simulations in close collaboration, with the analytical model
implemented by Tobias Haas and the truncated Wigner simulation,
discussed in Section 4.2, implemented by me. Tobias Haas and I wrote
the initial draft of the manuscript and all other authors helped in
refining it.

8.2 motivation

The area-law is a central aspect of many-body quantum theory with im-
portant implications regarding classical simulatability, see Section 2.2
and the discussion in Chapter 4. It is typically observed in quantum
entropies, such as the von Neumann or Rényi entropy of the den-
sity operator [190]. We will herein show that this quantum feature
is preserved when transitioning to a phase-space description of the
system and provide a detailed proposal of how this can be tested
experimentally in a Spin-1 Bose-Einstein condensate as discussed
in Section 2.7.
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We investigate the information extractable from measurement distributions of two non-commuting
spin observables in a multi-well spin-1 Bose-Einstein condensate. We provide a variety of analytic
and numerical evidence that suitably chosen classical entropies and classical mutual informations
thereof contain the typical feature of quantum entropies known in quantum field theories, that is,
the area law, even in the non-Gaussian regime and for a non-zero temperature. Towards a feasible
experimental implementation, we estimate entropic quantities from a finite number of samples without
any additional assumptions on the underlying quantum state using k-nearest neighbor estimators.

I. INTRODUCTION

The scaling of entropic measures associated with the
quantum state of a spatial subregion is one of the central
characteristics describing how quantum information and
entanglement are encoded in spacetime. Originally dis-
covered by Bekenstein in the context of black hole physics
[1, 2] (see also [3–6]), the entropy of a subregion is, to
leading order, proportional to the area of its enclosing
surface – rather than the subregion’s volume – which is
conveniently referred to as the area law. Over the last
two decades, much theoretical evidence has been gathered
for its appearance in various contexts, including, for in-
stance, quantum field theory [7–12], quantum many-body
systems [13–15], tensor networks [16] and thermalization
[17]. Also, it has been shown to occur for measures of
correlations between the subregion of interest and its
complement, e.g. the quantum mutual information [18].

Considerably less evidence is available on the experi-
mental side, which can be traced back to the notoriously
difficult task of extracting the local quantum state, i.e.
performing full quantum state tomography. So far, the
area law has been observed only for a handful of degrees
of freedom for which entropic measures can be reduced to
direct observables. This includes, for example, a study of
a six-site Bose-Hubbard system where the Rényi-2 quan-
tum entropy is read out via two-copy interference [19, 20]
and a trapped ion quantum simulator of ten qubits [21],
in which the same quantity was extracted using random
measurements [22].
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The task of accessing the quantum state is even more
challenging for continuous quantum many-body systems,
which are in principle described by quantum fields over
continuous positions as well as infinite-dimensional local
Hilbert spaces. A recent ultracold atom experiment re-
ported an area law for the quantum mutual information
under the assumption that the underlying quantum state
is of Gaussian form, in which case measurements of two-
point correlation functions suffice to calculate entropic
quantities [23]. Nevertheless, studies beyond the Gaussian
case have remained elusive so far.

What all aforementioned approaches, theoretical as well
as experimental, have in common, is their reliance on a
quantum entropy as an indicator for the area law-like
behavior of quantum correlations. However, it has been
shown recently that the appearance of the area law is by
no means restricted to such quantum entropies: when
considering phase-space representations and measurement
distributions of the quantum state instead, their corre-
sponding classical entropies reveal the area law in the
next-to-leading order terms, i.e. when classical contribu-
tions are subtracted properly [24].

Prominent examples of such distributions are the
Wigner W -distribution [25], its marginals and the Husimi
Q-distribution [26, 27] (see [28–30] for reviews on phase-
space methods). Especially the latter is of particular
interest as it is a non-negative and normalized function
in phase space, which allows for well-defined entropic de-
scriptions [31–36]. Further, its usefulness for witnessing
entanglement has already been demonstrated theoreti-
cally in terms of entropic measures [37–39] as well as
experimentally [40, 41].

Although all phase-space distributions contain the very
same information as the density operator, estimating their
associated classical differential entropies is a significantly
simpler task than reconstructing the full many-body quan-
tum state and computing its quantum entropy. The out-
come of a typical experimental setting can be thought
of as a sample drawn from a given distribution (usually
the marginals of the Wigner W - or the full Husimi Q-
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distribution are considered), see e.g. [40–48]. In principle,
one could then attempt to infer the corresponding distri-
bution from these samples, which is equivalent to state
tomography when considering a full phase-space distribu-
tion, and calculate its entropy thereafter. However, the
need for reconstructing the underlying distribution can
be bypassed by employing sophisticated methods to esti-
mate the entropy from the sampled data directly. In this
context, a widely-used approach is the k-nearest neighbor
(kNN) method, which produces an asymptotically unbi-
ased estimate for the entropy without any assumptions
on the underlying distribution [49–63].

In this work, we consider an experimentally friendly
scenario in which the built-up of an area law over time
is expected: the post-quench dynamics of a multi-well
spin-1 Bose-Einstein condensate (BEC). In what follows,
we simulate the dynamics using the truncated Wigner
approximation (TWA) and employ the kNN method to
estimate subtracted classical entropies as well as classical
mutual informations of phase-space distributions from
sampled data. We provide detailed numerical evidence for
the appearance of the area law for classical entropies in a
variety of scenarios, including, for instance, non-Gaussian
states and varying system sizes, and under typical experi-
mental constraints, e.g., thermal fluctuations and finite
sample size. Our simulation results are supported by
an analytical model covering the early-time dynamics,
which allows for a straightforward evaluation of all en-
tropic quantities. With our findings, we pave the ground
for an experimental observation of the area law in a con-
tinuous quantum many-body system without any prior
assumptions on the underlying quantum state.

In this work, we present a detailed description of how
the area law can be accessed from classical entropies,
both from a theoretical and a practical perspective. In
[64], we provide a concise summary of our findings and
additionally discuss the process of local thermalization in
terms of such entropies.

The remainder of this paper is organized as follows. In
section II, we introduce the model system of our interest –
a spin-1 Bose-Einstein condensate in the multi-well setup
– with a special focus on the Hamiltonian and the spin
observables. We proceed with mapping this system to a
continuous-variable quantum system described by canoni-
cal commutation relations using the so-called undepleted
pump approximation in section III. Therein, we also put
forward phase-space representations of quantum states
and show how these are related to the measurement dis-
tributions of the spin observables. The two approaches
for simulating the dynamics, i.e. the truncated Wigner
approximation for the full Hamiltonian and an approxi-
mate, analytically solvable model valid for early times are
discussed in section IV. For the latter, we employ meth-
ods from Gaussian quantum information theory, which we
describe in detail. Thereupon, in section V, we introduce
the necessary background on the area law of quantum and
classical entropies in phase space. Then, we describe the
kNN machinery for estimating entropies from sampled

data and benchmark the method for several cases being
relevant for its application to the system of our interest
in section VI. Finally, we provide our main results in
section VII. After a comparison of the analytical model
with the TWA approach (section VIIA) we show plenty
of evidence for the emergence of the area law over time
for a variety of classical entropies (section VII B), which
is followed by systematic studies of its robustness. More
precisely, we consider strongly non-Gaussian distributions
(section VIIC), a thermal initial state (section VIID),
boundary effects (section VII E), varying system size (sec-
tion VII F), varying sample size (section VIIG) and dif-
ferent types of boundary conditions (section VIIH). A
comprehensive discussion of our results and some future
prospects are given in section VIII.

Notation. We employ natural units ℏ = kB = 1, denote
quantum operators by bold letters, e.g. ϕ, and classical
variables by normal letters, e.g. ϕ, (similarly for opera-
tions on operators / matrices, e.g. Tr{ρ} / det{γ}) and
equip vacuum expressions with a bar, e.g. Q̄. Further,
we use upper indices to refer to a specific well, e.g. Qj

for the j-th. well, or to a subsystem of a bipartition AB,
e.g. QA, and put lower indices for the hyperfine levels,
e.g. a0, or relative modes, e.g. a±.

II. MULTI-WELL SPIN-1 BEC

We begin with a discussion of the multi-well setup
of coupled spin-1 Bose-Einstein condensates. Then, we
introduce the Hamiltonian governing the corresponding
dynamics and the typical observables in such systems.

A. Setup

We consider an experimental setup consisting of a spin-1
BEC with ferromagnetic spin coupling, based on Lithium-
7 [65, 66]. We assume the condensate’s geometry to be
quasi one-dimensional, realizable via tight confinement
along the radial direction, which can be implemented
experimentally by ensuring that the radial trapping fre-
quency is much larger than the longitudinal one, i.e.
ωr ≫ ωl. In the longitudinal direction, the BEC is further
subjected to an optical lattice potential, which divides
the overall BEC into N smaller-size BECs, which we refer
to as wells. The depth of the optical lattice controls the
potential barrier between neighboring wells. When tuned
to sufficiently small energies, atoms can tunnel between
neighboring wells, which establishes a nearest-neighbor in-
teraction between the local degrees of freedom. This setup
constitutes a discretized approximation to a continuous
quantum field.

The internal degrees of freedom encoding the spin-
1 system are the three hyperfine levels mF = 0,±1 of
the F = 1 spin manifold of the electronic ground state.
Initially, we consider all atoms to be prepared in themF =
0 mode. Thereafter, spin-changing collisions triggered by
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off-resonant microwave dressing lead to the side modes
being dynamically populated [65, 67, 68]. As this process
is symmetric with respect to the side modes, the linear
Zeeman shift is not relevant and hence, only the quadratic
Zeeman shift is relevant for the dynamics.

We consider tunneling to only take place in the side
modes and not in the initially macroscopically populated
zero mode, such that information exchange between wells
through tunneling only takes place after the generation
of side mode population. Experimentally, this can be
achieved, for example, by working in a state-dependent
lattice, such that the side modes are weaker trapped than
the zero mode. Another possibility is to tune the spin-
changing collisions into resonance with excited states of
the side modes and work in a deep optical lattice, such
that atoms transferred to the side modes acquire enough
kinetic energy to tunnel to neighboring sites of the deep
optical lattice, whereas the kinetic energy of atoms in the
zero mode remains insufficient for tunneling.

B. Modes and Hilbert space

We are interested in the dynamics of the internal degrees
of freedom characterized by the three hyperfine levels
mF ∈ {−1, 0, 1}. To each hyperfine level mF and well j
we associate a set of independent bosonic creation and
annihilation operators[

aj
mF

,aj′†
m′

F

]
= δjj

′
δmFm′

F
, (1)

where the upper index labels the N ∈ N <∞ wells such
that j ∈ {1, ..., N}. For a single well j the underlying
Hilbert space Hj is a Fock space constructed from multi-
particle states

|nj1, n
j
0, n

j
−1⟩ ≡

(aj†
1 )n

j
1(aj†

0 )n
j
0(aj†

−1)
nj
−1√

nj1!n
j
0!n

j
−1!

|0, 0, 0⟩ , (2)

with the tensor product notation |., ., .⟩ = |.⟩ ⊗ |.⟩ ⊗ |.⟩
understood and the number of particles njmF

in mode
j and level mF being defined as the eigenvalue of the
corresponding particle number operator

N j
mF

= aj†
mF

aj
mF

. (3)

Accordingly, the total number of particles in well j is
measured by the operator

N j =

1∑
mF=−1

N j
mF

, (4)

which has the eigenvalue nj =
∑1

mF=−1 n
j
mF

. Then, the
full Hilbert space is obtained by taking the tensor product
with respect to all wells, i.e. H = ⊗N

j=1Hj , such that a
generic element of the full Fock basis reads

|n11, n10, n1−1; ...;n
N
1 , n

N
0 , n

N
−1⟩ ≡

N⊗
j=1

|nj1, n
j
0, n

j
−1⟩ . (5)

C. Hamiltonian

The full Hamiltonian is composed of two main terms:
a single-well Hamiltonian Hj

sw describing the on-site dy-
namics of well j as well as a tunneling Hamiltonian Hj

t
encoding the coupling between neighboring wells j and
j + 1, such that in total we have

H =

N∑
j=1

Hj
sw +

N or N−1∑
j=1

Hj
t . (6)

For the sake of generality, we keep the type of boundary
conditions open at this point. More precisely, we allow
for periodic or open boundary conditions, which are im-
plemented by the second sum in (6) running up to N or
N − 1, i.e. coupling the first and the last well or not,
respectively.

The single-well Hamiltonian for well j is given by

Hj
sw = c0 N

j
(
N j − 1

)
+ c1

[ (
N j

0 − (1/2)1
)(

N j
1 +N j

−1

)
+ aj†

0 aj†
0 aj

1a
j
−1 + aj†

1 aj†
−1a

j
0a

j
0

]
+ q

(
N j

1 +N j
−1

)
,

(7)

and has been investigated in great detail, see e.g.
[40, 41, 65, 67, 69, 70]. It contains three contributions:
First, the on-site density-density interaction c0 > 0 de-
scribing the repulsive interaction of atoms regardless of
their hyperfine levels (petrol ellipse in Figure 1). Second,
the spin-changing collision interaction c1 < 0 encoding
the generation of spin pairs in the mF = ±1 hyperfine
levels from the mF = 0 level (red arrows). For clarity, we
omitted the mean-field shifts in the second line of Eq. (7).
Third, we included the quadratic q > 0 Zeemann shift
(gray arrows, respectively).

The tunneling between equal hyperfine levels mF = ±1
of neighboring wells j and j + 1 is described by

Hj
t = −J

∑
mF=±1

(
aj†
mF

aj+1
mF

+ a(j+1)†
mF

aj
mF

)
, (8)

with a non-negative tunnel rate J ≥ 0 (blue arrows).
Note again that the mF = 0 mode does not couple to
neighboring wells and also that in the limit J → 0 the
wells evolve independently.

D. Observables: Spin operators

The local observables in every well are the eight spin
operators forming a representation of the Lie algebra
su(3) [65, 67]. They are constructed following the Jordan-
Schwinger map [71, 72]: starting from an irreducible
representation of the eight three-dimensional matrices Gα

of su(3) defined via

[Gα, Gβ ] = fαβγGγ , (9)
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1 2 3 4 5 ...

-1

0

+1

j

mF

c0

J J

J J
c1

c1q

Figure 1: Illustration of the dynamics generated by the
five contributions to the full Hamiltonian (6) for the
j = 3 well. First-order (tunneling) and second-order
(collisions) processes are indicated by dashed and solid
arrows, respectively, while the energy shift due to the
Zeemann effect is depicted by a dotted arrow.

where fαβγ are the so-called structure constants (we omit
their explicit form here) and α ∈ {1, ..., 8} labels the
matrices, the local quantum operators Gj

α obeying the
very same algebra are constructed following

Gj
α =

1∑
mF ,mF ′=−1

aj†
mF

(Gα)mFmF ′ a
j
mF ′ , (10)

with (Gα)mFmF ′ denoting the (mF ,mF ′)-th. entry of the
spin matrix Gα.

A common choice for the su(3) matrices Gα is made by
first constructing a su(2) subspace (see [67] for explicit
expressions for the corresponding matrices) via

[Sj
α, S

j
β ] = iϵαβγS

j
γ , (11)

where α, β, γ ∈ {x, y, z}, and thereupon deriving the three
corresponding spin operators from (10), leading to

Sj
x =

1√
2

[
aj†
0

(
aj
1 + aj

−1

)
+
(
aj†
1 + aj†

−1

)
aj
0

]
,

Sj
y =

i√
2

[
aj†
0

(
aj
1 − aj

−1

)
−
(
aj†
1 − aj†

−1

)
aj
0

]
,

Sj
z = aj†

1 aj
1 − aj†

−1a
j
−1.

(12)

The remaining five operators are the so-called quadrupole
operators defined as

Qj
αβ = {Sj

α,S
j
β} −

4

3
δαβ1, (13)

with {., .} denoting the anticommutator. Here Qj
yz and

Qj
xz are of special interest, which read

Qj
yz =

i√
2

[
aj†
0

(
aj
1 + aj

−1

)
−
(
aj†
1 + aj†

−1

)
aj
0

]
,

Qj
xz =

1√
2

[
aj†
0

(
aj
1 − aj

−1

)
+
(
aj†
1 − aj†

−1

)
aj
0

]
.

(14)

E. Readout schemes

We will analyze the system by gathering information
about the measurement distributions of the variable pairs
(Sj

x,Q
j
yz) over multiple wells. We discuss methods for

reading out two types of such distributions in the follow-
ing.

1. Separate detection

In BEC experiments the population of each mode,
njmF

= ⟨N j
mF
⟩ is detected through absorption imaging

after Stern-Gerlach separation of the different mF compo-
nents. From this the z-component of the local spin can be
extracted as Sj

z = nj1 − n
j
−1. Other spin components can

be measured by applying a radio-frequency (rf) magnetic
field prior to the absorption imaging. For a frequency
matching the linear Zeeman shift, resonant Rabi oscilla-
tions are driven, described by the Hamiltonian (in the
rotating wave approximation) [69, 70]

Hrf =

N∑
j=1

Ωrf

[
cos(ϕrf)S

j
y − sin(ϕrf)S

j
x

]
(15)

Here, Ωrf is the Rabi frequency of the drive and ϕrf is a
tunable phase. Applying the drive for a time t = π/(2Ωrf)
thus allows one to map the spin along an arbitrary direc-
tion of the equatorial plane of the spin sphere onto Sj

z . In
the case where the mF = 0 mode is a coherent state with
population far larger than the side modes, this scheme
is analogous to homodyne detection in optics, where the
signal mode(s) are mixed with a local oscillator mode on
a beam splitter to extract the field quadratures [73].

To toggle between measurements of spin operators and
quadrupole operators one can add a time delay before the
application of the rf-rotation. By tuning the quadratic
Zeeman shift and the microwave dressing field in the single-
well Hamiltonian Eq. (7) the mF = 0 mode acquires a
relative phase. For instance, measuring Qj

yz instead of
Sj
x requires an additional phase of π/2.

2. Simultaneous detection

Sophisticated methods to extract joint distributions
over (Sj

x,Q
j
yz), or equivalently (Sj

y,Q
j
xz), in close anal-

ogy to the heterodyne detection protocol in quantum
optics [29, 30, 74, 75] have been experimentally realized
rather recently [40, 41, 70]. For this, one exploits the avail-
ability of additional, initially unoccupied, internal levels,
in our example the F = 2 hyperfine manifold with five ad-
ditional Zeeman levels. Using microwave fields resonantly
coupling the levels of the F = 1 manifold with those of
the F = 2 manifold, one can realize analogs of beam
splitter operations between them. Splitting each mode
equally and subsequently applying different rf-rotations
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in the two manifolds realizes the simultaneous detection
of, for example, Sj

x and Qj
yz (see Ref. [40] for details).

In the case of the mF = 0 mode being macroscopically
occupied, this corresponds to sampling from the Husimi
Q-distribution in the phase space spanned by Sj

x and Qj
yz

(see section III for details).

III. FROM A SPIN-1 BEC TO A
CONTINUOUS-VARIABLE QUANTUM SYSTEM

We point out the connection between the system of
our interest, a multi-well spin-1 BEC, and a continuous-
variable quantum system describing coupled bosonic os-
cillator modes. Thereupon, we introduce several kinds of
phase-space descriptions.

A. Undepleted pump approximation

The undepleted pump regime captures the early-time
dynamics of the Hamiltonian (6) when initially preparing
the polar ground state of the spin-1 BEC in every well,
i.e.

|ψ(0)⟩ = |0, α, 0⟩⊗N (16)

where |α⟩ is the local coherent state of the zero mode
with mean particle number n = |α|2. For large values n
the mF = 0 mode is macroscopically populated compared
to the side modes mF = ±1 in every well, i.e.

⟨N j
0 ⟩ ≫ ⟨N

j
±1⟩ , (17)

for all j, which is equivalent to

nj = ⟨N j⟩ ≊ ⟨N j
0 ⟩ . (18)

Under the above assumptions, we can approximate the
mF = 0 mode operators by their norms

aj
0 = aj†

0 ≊
√
nj , (19)

such that N j
0 ≊ nj . Then, the full Hamiltonian (6)

simplifies to

Hup =

N∑
j=1

[
c0

(
aj†
1 aj†

1 aj
1a

j
1 + aj†

−1a
j†
−1a

j
−1a

j
−1 + 2N j

1N
j
−1

)
+ c̃j1

(
aj
1a

j
−1 + aj†

1 aj†
−1

)
+
(
q̃j + c0n

j
) (

N j
1 +N j

−1

)]

− J
N or N−1∑

j=1

(
aj†
−1a

j+1
−1 + a

(j+1)†
−1 aj

−1

+ aj†
1 aj+1

1 + a
(j+1)†
1 aj

1

)
+Hoffset.

(20)

Here, we defined the rescaled couplings

c̃j1 = c1n
j , q̃j = c1

(
nj − 1

2

)
+ q, (21)

as well as a constant offset term

Hoffset = c0

N∑
j=1

(nj)2, (22)

which we will drop in the following.

B. Relative modes and canonically conjugate
variables

In the undepleted pump regime, the relevant degrees
of freedom and their Hamiltonian (20) can be mapped to
a continuous-variable quantum system. To that end, we
introduce the relative mode operators between the side
modes

aj
± =

1√
2

(
aj
1 ± aj

−1

)
, (23)

which also represent independent bosonic modes, since
(1) implies

[aj
±,a

j′†
± ] = δjj′ , [aj

±,a
j′†
∓ ] = 0. (24)

Their associated canonical operators are defined as

ϕj
± =

1√
2

(
aj†
± + aj

±

)
, πj

± =
i√
2

(
aj†
± − aj

±

)
, (25)

which fulfill the canonical commutation relations[
ϕj

±,π
j′

±

]
= iδjj

′
,
[
ϕj

±,π
j′

∓

]
= 0. (26)

Interestingly, in the undepleted pump regime, the two
pairs of canonical operators are equivalent to pairs of spin
operators up to normalization, to wit

Sj
x =
√
2njϕj

+, Qj
yz = −

√
2njπj

+,

Sj
y =
√
2njϕj

−, Qj
xz = −

√
2njπj

−,
(27)

which follows from using (19) in (12) and (14). This shows
that, for short times, the relevant degrees of freedom
mimic two pairs of canonical variables and hence the local
Hilbert spaces Hj decompose as Hj = Hj

+ ⊗H
j
−

Next, we express the Hamiltonian (20) in terms of the
newly defined operators (see Appendix A for details). We
find the general decomposition

Hup = H+
up +H−

up +Hmix
up , (28)

where the form-equivalent H+
up and H−

up contain all terms
with only + or −modes, respectively, while Hmix

up contains
all terms mixing the two relative modes ±. In terms of
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-

+

j

±

J J

J J
c0

c0

c0-c̃1

+c̃1

q̃

q̃

Figure 2: Sketch of the dynamics in the undepleted pump
regime generated by (28) (in analogy to Figure 1).

relative mode operators, these two types of Hamiltonians
read

H±
up =

N∑
j=1

[
c0 a

j†
±aj

±a
j†
±aj

±

+
[
q̃j + c0

(
nj − 1

)]
N j

±

± c̃j1
2

(
aj†
±aj†

± + aj
±a

j
±

)]

− J
N or N−1∑

j=1

(
aj†
±aj+1

± + a
(j+1)†
± aj

±

)
,

Hmix
up = 2c0

N∑
j=1

N j
+N

j
−,

(29)

whose dynamics are sketched in Figure 2. From the latter
formulas, it becomes apparent that in the undepleted
pump regime the relative mode operators, or equivalently
the two pairs of canonical operators, constitute a com-
plete set of observables for characterizing the early-time
dynamics. Further, the dynamics within the ± phase
spaces differ only by a sign in the ±c̃1 term.

C. Canonical phase-space

As the observables of our interest now correspond to con-
tinuous variables, we can faithfully apply the powerful con-
cepts of phase-space descriptions. The two sets of canon-
ical operators (ϕj

±,π
j
±) span the two two-dimensional

canonical phase spaces for well j, which are known to
be isomorphic to the Euclidean plane R2 with measure
[76, 77] ∫

dϕj± dπj
±. (30)

The field operators are conveniently combined into a
single vector χj

± by defining χj
± = ϕj

± for j ∈ [1, N ] and
χj

± = πj−N
± for j ∈ [N + 1, 2N ], which we formally write

as [74, 75]

χ± = (ϕ±,π±)
T = (ϕ1

±, . . . ,ϕ
N
± ,π

1
±, . . . ,π

N
± )T . (31)

The canonical commutation relations (26) become

[χj
±,χ

j′

±] = iΩjj′1, (32)

where

Ω = (iσ2)⊗ 1N (33)

denotes the symplectic metric revealing the symplectic
structure of the canonical phase space and σ2 is the second
Pauli matrix.

For every well j we define the set of canonical coherent
states associated with the relative modes ± as displaced
vacuum states [29, 30, 74, 75], i.e.

|αj
±⟩ = D(αj

±) |0
j
±⟩ , (34)

where D(αj
±) is the unitary displacement operator

D(αj
±) = eα

j
±aj†

± −α∗j
± aj

± , (35)

with the complex-valued phase fields being parameterized
in terms of cartesian coordinates as

αj
± =

1√
2

(
ϕj± + iπj

±

)
. (36)

Importantly, the set of coherent states constitutes an
overcomplete basis, i.e. the coherent states defined in (34)
resolve the identity in the ± subspaces

1 =

∫
dϕj±π

j
±

2π
|αj

±⟩ ⟨α
j
±| , (37)

but are not orthogonal to each other.

D. Phase space distributions

The phase-space picture enables the description of the
system’s state ρj in terms of classical phase-space distribu-
tions. In the following, we will consider the distributions
associated with either the + or the − mode, whose corre-
sponding density operators are obtained via the partial
trace ρj

± = Tr∓{ρj}.

1. Wigner W -distribution

The arguably most prominent phase-space representa-
tion is the Wigner W -distribution [25], which is defined
as the Fourier transform of the characteristic function,
namely [74]

Wj
± ≡ W

j
±(ϕ

j
±, π

j
±)

=

∫
dϕ̃j± dπ̃j

±
2π

e−i(ϕj
±,πj

±)Ω(ϕ̃j
±,π̃j

±)T

×Tr
{
ρj
± e

i(ϕj
±,πj

±)Ω(ϕ̃j
±,π̃j

±)T
}
.

(38)
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Here, we have chosen the normalization such that Wj
±

is normalized to unity with respect to the phase-space
integral measure (30), i.e.

1 = Tr
{
ρj
±

}
=

∫
dϕj± dπj

±W
j
±. (39)

It is well-known that the Wigner W -distribution can be-
come negative when the underlying state is non-classical
[78]. However, we note that both our simulation ap-
proaches are naturally based on positive Wigner W -
distributions (see section IV).

2. Marginal distributions

Next, we introduce the measurement distributions over
the canonical operators

f j± ≡ f
j
±(ϕ

j
±) = Tr

{
ρj
± |ϕ

j
±⟩ ⟨ϕ

j
±|
}
,

gj± ≡ g
j
±(π

j
±) = Tr

{
ρj
± |π

j
±⟩ ⟨π

j
±|
}
,

(40)

with the eigenvalue equations

ϕj
± |ϕ

j
±⟩ = ϕj± |ϕ

j
±⟩ , πj

± |π
j
±⟩ = πj

± |π
j
±⟩ , (41)

understood. The distributions (40) are true probability
density functions with normalizations

1 = Tr
{
ρj
±

}
=

∫
dϕj± f

j
± =

∫
dπj

± g
j
±, (42)

and can be identified with the marginals of the Wigner
W -distributions

f j± =

∫
dπj

±W
j
±, gj± =

∫
dϕj±W

j
±. (43)

As such, they encode the full information of ϕj± and πj
±,

but no information about their correlations. Hence, in
the special case when ϕj± and πj

± are uncorrelated, the
corresponding Wigner W -distribution decomposes into a
product W j

± = f j± g
j
±.

The separate detection scheme, or homodyne detection
[79], described in section II E 1 approximately corresponds
to sampling from the marginal distributions. Fundamen-
tally, of course, this cannot generally be an exact corre-
spondence for any finite atom number, as the detected
quantities nj

mF
have a discrete spectrum (detected atom

numbers), while the desired Wigner marginals are contin-
uous. However, in the undepleted pump approximation,
the Wigner marginals are generally well-approximated by
the homodyne statistics [69, 70].

3. Husimi Q-distribution

Since the coherent state projectors |αj
±⟩ ⟨α

j
±| are non-

negative and resolve the identity, they constitute a posi-

tive operator-valued measure (POVM). The correspond-
ing measurement distribution is the so-called Husimi Q-
distribution [26]

Qj
± ≡ Q

j
±(ϕ

j
±, π

j
±) = Tr

{
ρj
± |α

j
±⟩ ⟨α

j
±|
}
. (44)

While the Wigner W -distribution can be negative, the
Husimi Q-distribution is always non-negative [27], since
it stems from a POVM. More generally, it is bounded by
0 ≤ Qj

± ≤ 1 [29, 30]. The normalization is induced by
(37), leading to

1 = Tr
{
ρj
±

}
=

∫
dϕj± dπj

±
2π

Qj
±. (45)

When operating in the regime nj0 ≫ nj±1 the simulta-
neous detection scheme described in section II E 2 can be
identified with the so-called eight-port-homodyne detec-
tion in quantum optics (also referred to as heterodyne
detection). In this scheme, each measurement corresponds
to drawing a sample from the Husimi-Q-distribution of
the signal field [80].

IV. SIMULATING THE DYNAMICS

We simulate the dynamics of the spin-1 BEC in two
different approximations. To capture most of the full
Hamiltonian and to check the validity of the undepleted
pump approximation, we perform a truncated Wigner
simulation, see section IVA. Additionally, we derive an
analytically solvable model based on (28) in section IV B.

A. Truncated Wigner Approximation

In the regime of high occupations, it is usually infeasible
to exactly solve the exponentially complex dynamics in
the full Hilbert space H. Instead, as the populations
are increased, the role of quantum fluctuations compared
to the mean-field dynamics grows smaller and hence the
predictions made by approximate techniques become more
and more accurate, justifying a semiclassical approach
to the problem. One such semiclassical technique is the
truncated Wigner approximation (TWA). At its core, all
mode operators (we drop all indices in this subsection for
brevity) are replaced by complex numbers [81]

a(†) → α(∗), (46)

which amounts to a lowest-order expansion of the Wigner-
Weyl correspondence rules. Consequently, the Hamilto-
nian operator H(a,a†) reduces to a classical Hamiltonian
function H(α, α∗) of the complex-valued phase-space co-
ordinates (α, α∗).

In general, the von Neumann equation

i∂tO(t) = [O(t),H], (47)
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for some time-dependent operator O, can be translated
into an equation of motion for the operator’s Weyl symbol
O in phase space via the Moyal bracket

{A,B}MB =
A

2
sin
[
2
(←−
∂ α
−→
∂ α∗ −

←−
∂ α∗
−→
∂ α

)]
B, (48)

which results in [81]

i∂tO(t) = {O(t), H}MB. (49)

In TWA, one is interested in the evolution of the ele-
mentary c-numbers α representing the mode operators to
leading order, for which Eq. (49) simplifies to the classical
Poisson bracket

i∂tα(t) = ∂α∗(t)H, (50)

since all higher-order derivatives vanish.
In the case when multiple modes are coupled as for

the Hamiltonian of interest in Eq. (6), Eq. (50) defines
a system of coupled differential equations that may be
solved numerically using a suited integrator. Before being
propagated in time, the initial set of coordinates α(0)
of a given well j and mode mF is obtained as Monte
Carlo samples from the initial Wigner W -distribution,
for which two cases are relevant. When considering the
vacuum |0⟩, the Wigner W -distribution takes the form of
a Gaussian, which is centered at the origin and contains
no correlations, i.e.

|ψ⟩ = |0⟩ ⇐⇒ α ∼ N
[
0,

1

2

]
+ iN

[
0,

1

2

]
. (51)

The samples of coherent states |γ⟩ have the same variance
but are displaced by the square root of their mean particle
number ⟨N⟩ = |γ|2 from the origin

|ψ⟩ = |γ⟩ ⇐⇒ α ∼ N
[
Re(γ),

1

2

]
+ iN

[
Im(γ),

1

2

]
,

(52)
since |γ⟩ itself is obtained by acting with the displacement
operator D(γ) on the vacuum, see (34).

In the presence of thermal fluctuations, the pure
vacuum state |0⟩ is replaced by the thermal ensemble
ρ ∝ exp

(
−βa†a

)
with the inverse temperature β = 1/T .

Accordingly, the standard deviations of the Wigner W -
distribution are rescaled as

1

2
→
√
1 + 2nBE(β)

1

2
, (53)

which is equivalent to adding nBE(β) to both variances,
where

nBE(β) =
1

eβ − 1
(54)

denotes the Bose-Einstein distribution.
Then, the expectation value of some observable O is

obtained as the stochastic average over all generated
samples

⟨O⟩TWA =
1

|S|
∑
α∈S

O (α, α∗) , (55)

where S denotes the set of all samples. Note here that
we again rely on the correspondence between O and O
given in Eq. (46).

Having introduced all necessary tools in TWA, we want
to briefly comment on its regimes of applicability. In the
limit of high occupations n ≫ 1 and initial states with
minimal fluctuations, i.e. coherent states, the operator
to c-number correspondence Eq. (46) is a justified sim-
plification, since the relative fluctuations scale as 1/

√
n.

The fluctuations of the initial state are herein represented
accurately, as they correspond to exact samples of the
Wigner W -distribution of the initial state |ψ⟩, while only
those fluctuations that build up during the evolution due
to the unitary evolution under H are not captured. In
the limit ℏ→ 0, the dynamics generated by TWA become
exact. For a more thorough picture of this matter, see
Ref. [82], in which the impossibility of quantum phase-
space trajectories for generic (i.e. anharmonic) quantum
systems is discussed. For further reading regarding TWA
and other semiclassical techniques we refer the reader to
[81] and [83].

B. Gaussian Model

Interestingly, the short-time dynamics can be described
by a simple Gaussian model to a reasonable extent, which
we discuss next.

1. Gaussian Hamiltonian

Starting from the undepleted pump Hamiltonian (28),
we make two simplifying assumptions: First, we neglect
the atomic collisions between the atoms, i.e. set c0 ≊ 0,
which amounts to dropping all fourth- and one second-
order contribution in (29). This results in a vanishing
mixing Hamiltonian Hmix

up ≊ 0, which disentangles the ±
phase spaces and hence allows us to study their dynamics
independently. Second, despite no explicit translational
invariance, an approximate invariance exists in the center
of the lattice. Since boundary effects are negligible for
the subsystem of our interest (see section VA), we can
assume all parameters to be equal across all wells, i.e.
q̃j ≊ q̃, c̃j1 ≊ c̃1 and nj ≊ n.

The resulting Hamiltonian is Gaussian, i.e. of second
order in the relative mode operators, and reads for the +
mode (the − mode can be treated on equal footing)

H+
up,Gauss =

N∑
j=1

[
q̃N j

+ +
c̃1
2

(
aj
+a

j
+ + aj†

+aj†
+

)]

+ J

N or N−1∑
j=1

(
aj†
+aj+1

+ + a
(j+1)†
+ aj

+

)
.

(56)

The dynamics generated by the latter Hamiltonian is
illustrated in Figure 3. As a result of its simple form,
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Figure 3: Sketch of the dynamics in the Gaussian regime
generated by (56) (in analogy to Figure 1).

we can provide a more detailed description of how the
different terms in (56) contribute to the overall dynamics
(see Figure 4): The first term proportional to q̃ causes
a local rotation (green dashed circle in d)), while the
second term proportional to c̃1 generates local squeezing
(red dashed arrows in d)). Both act locally on the j-th. +
phase space. The coupling term proportional to J builds
up correlations between the wells (blue solid arrow in
i)) by stretching the local distributions proportionally to
each other (see g) versus h)).

One may also express (56) through the canonical field
operators (see Appendix A for details), leading to

H+
up,Gauss =

1

2

N∑
j=1

[
λ+
(
ϕj

+

)2
+ λ−

(
πj
+

)2 ]

− J
N or N−1∑

j=1

(
ϕj

+ϕ
j+1
+ + πj

+π
j+1
+

)

≡ 1

2

2N∑
j,j′=1

χjT
+ Λjj′ χj′

+,

(57)

where we introduced the two new couplings

λ± = q̃ ± c̃1 (58)

for brevity1 and the so-called Hamiltonian matrix Λ. The
latter is a 2N × 2N , real and symmetric matrix of block-
diagonal form

Λ =

(
Λ+ 0
0 Λ−

)
, (59)

where Λ+ and Λ− describe the dynamics of the fields ϕj
+

and the momentum fields πj
+, respectively. Both have the

same form with non-vanishing entries only on the three

1 Note here that λ± does not refer to the ± phase spaces.

leading diagonals for open boundary conditions, i.e.

Λ± =


λ± −J 0 0
−J λ± −J 0

0 −J λ±
. . .

0 0
. . . . . .

 , (60)

and additionally a contribution −J in the first and last
anti-diagonal entries for periodic boundary conditions.
Hence, the diagonal entries in (60) describe single wells,
while the next-to-leading diagonals (and possibly the outer
two entries of the anti-diagonal) contain the coupling be-
tween neighboring wells. We also note that the Hamilto-
nian (57) is bounded from below by a positive number,
i.e. has a positive-energy ground state, when λ± ≥ 0,
which is fulfilled if q ≥ c1/2 and hence in particular for
non-negative q ≥ 0.

2. Mean and covariance matrix

It is well known that Gaussian Hamiltonians map Gaus-
sian states to Gaussian states [74, 75]. Since the initial
state |0, α, 0⟩⊗N from Eq. (16) corresponds to an uncorre-
lated set of local vacua in the + phase spaces, the initial
state in the undepleted pump approximation is indeed
Gaussian. Hence, the dynamics generated by (57) is fully
encoded in the two lowest-order moments of the quantum
state ρ+, i.e. its field expectation values

χj
+ = Tr{ρ+ χj

+} (61)

and its covariance matrix [74, 75]

γjj
′

+ =
1

2
Tr{ρ+{χj

+ − χ
j
+,χ

j′

+ − χ
j′

+}}. (62)

The latter is a real, symmetric, and non-negative 2N -
dimensional matrix of block form

γ+ =

(
M+ T+
T T
+ N+

)
, (63)

and contains the two fundamental two-point correlation
functions

Mjj′

+ = Tr
{
ρ+ ϕj

+ϕ
j′

+

}
− ϕj+ϕ

j′

+,

N jj′

+ = Tr
{
ρ+ πj

+π
j′

+

}
− πj

+π
j′

+ ,
(64)

as well as the mixed correlator

T jj′

+ = Tr
{
ρ+ ϕj

+π
j′

+

}
− i

2
δjj′ − ϕj+π

j′

+ . (65)

Importantly, the covariance matrix is constrained by the
Robertson-Schrödinger uncertainty relation in the form
of a lower bound to its determinant [84–86]

det γ+ ≥
1

22N
, (66)
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Figure 4: Illustrations of the effects of the three terms in the Gaussian Hamiltonian (56) on the + phase-space
distributions for N = 9 wells and open boundary conditions. The rows show the initial state, an evolved state for
uncoupled wells, i.e. J = 0, and an evolved state for coupled wells, i.e. J > 0, respectively, while the columns depict
the phase-space distributions of the first well, the fifth well in the center as well as the correlations in the fields between
these two wells, respectively. For t = 0, see a)-c), all wells are in the same state, and the wells are uncorrelated. When
the uncoupled system has evolved, see d)-f), all local distributions are equally squeezed (red dashed arrows) and
rotated (green dashed arrow) by c̃1 and q̃, respectively, and remain uncorrelated. For a non-zero tunnel rate J > 0, see
g)-i), the local distributions are stretched proportionally (note that the stretching is equal across the wells for periodic
boundary conditions), and correlations between the wells built up (blue solid arrow).

with equality if and only if ρ+ corresponds to a pure
Gaussian state [74, 75]. Thus, for our analytical model,
det γ+ > 1/22N encodes mixedness of ρ+ (see also sec-
tion V B 2).

Importantly, χ+ and γ+ correspond to the first- and
second-order moments of the Wigner W -distribution W+,
and the diagonal entries of γ+ are encoded in f+ and g+.
While χ+ is also the mean of the Husimi Q-distribution
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Q+, its covariance matrix V+ acquires an additional contri-
bution, which is a consequence of Q+ being a convolution
of W+, resulting in

V+ = γ+ +
1

2
1. (67)

3. Symplectic time evolution

The effect of the Hamiltonian (57) on the two lowest-
order moments can be described by symplectic transfor-
mations in phase space [74, 75]. To that end, we recall
a few basics of Gaussian quantum information theory.
The Hamiltonian H+

up,Gauss generates the time evolution
of the initial state ρ+(0) at t = 0 via the unitary time
evolution operator

U+
up,Gauss(t) = e−itH+

up,Gauss , (68)

in the sense that

ρ+(t) = U+
up,Gauss(t)ρ+(0)U

+†
up,Gauss(t). (69)

In phase space, the unitary transformation U+
up,Gauss(t)

corresponds to a symplectic transformation S+up,Gauss(t),
that is, a transformation which preserves the commutator
in phase space (see Eq. (32)), i.e. leaves the symplectic
form Ω invariant

S+up,Gauss(t) ΩS
+,T
up,Gauss(t) = Ω. (70)

When the Hamiltonian is written as a bilinear form as
in the second line in (57), the symplectic time evolution
matrix can be expressed through the Hamiltonian matrix
Λ via [74, 75]

S+up,Gauss(t) = etΩΛ. (71)

This matrix can directly be applied to the two lowest-
order moments of ρ+, yielding the simple time evolution
equations [74, 75]

χ+(t) = S+up,Gauss(t)χ+(0),

γ+(t) = S+up,Gauss(t) γ+(0)S
+T
up,Gauss(t).

(72)

Since the initial state is the uncoupled vacuum state, we
have χ+(0) = 0, and hence all phase-space distributions
remain centered around the origin, i.e.

χ+(t) = χ+(0) = 0. (73)

Instead, the initial covariance matrix

γ+(0) =
1

2
1, (74)

evolves non-trivially following the second line of (72),
which can be computed analytically for a given set of
parameters.

Note that for a non-zero initial temperature, the initial
covariance matrix is also proportional to the identity, but
the variances increase due to thermal fluctuations, which
results in

γ+(0) =

[
1

2
+ nBE(β)

]
1. (75)

Note also that adding half the identity to γ+(t) gives
the time-evolved covariance matrix V+(t) of the Husimi
Q-distribution. Since SST = 1 for all symplectic matrices
S one may equally apply the symplectic transformation
directly to the defining equation of V+, i.e. (67).

4. Comment on field theory correspondence

At last, we comment on the field theory the Gaussian
Hamiltonian (57) reproduces when taking the continuum
limit. To that end, we introduce a lattice spacing ϵ and
define the field operators

ϕ+(x) ≡
1√
ϵ
ϕj

+, π+(x) ≡
1√
ϵ
πj
+, (76)

which fulfill the distribution-valued commutation relations

[ϕ+(x),π+(x
′)] = iδ(x− x′), (77)

in the continuum limit ϵ → 0. Then, using (76) in (57)
together with

ϕ+(x+ ϵ) = ϕ+(x) + ϵ ∂xϕ+(x) +O(ϵ2), (78)

analogously for π+(x+ ϵ), results in

H+
up,Gauss =

1

2

∫
dx
[
κ+(x)ϕ2

+(x) + κ−(x)π2
+(x)

]
,

(79)
with the differential operators

κ±(x) = λ± + 1 + Jϵ ∂x, (80)

to leading order in ϵ. Hence, a reasonable continuum
limit requires the limit of infinite coupling J →∞ with
the product Jϵ kept fixed, which effectively implements
ϵ = 1/J → 0.

V. AREA LAW IN PHASE SPACE

We now discuss the scaling behaviors of quantum en-
tropies associated with a subsystem. Then, we define
classical entropies of the phase space distributions intro-
duced in section IIID and provide mathematical as well
as heuristic arguments for why these entropies encode the
area law.
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A. Quantum entropies

We consider a subsystem of five wells from the N total
wells, which can exchange energy and particles with its
complement and therefore should be considered an open
quantum system. We partition this subsystem into a
subregion A consisting of the first 0 ≤M ≤ 5 wells and its
complement B composed out of the remaining 5−M wells
(see Figure 5). The multi-well setup offers the possibility
to study the discretized version of a continuous quantum
field theory with the wells corresponding to lattice points.
The local states associated with the subregions are, as
usual, defined via the partial trace

ρA
+ = TrB{ρ+} (81)

and analogous for ρB
+. The local mixedness of A is con-

veniently measured by the von Neumann entanglement
entropy [87]

S(ρA
+) = −Tr{ρA

+ lnρA
+}, (82)

which serves as an entanglement measure if and only if
the bipartite state ρ+ is pure, in which case S(ρA

+) > 0 if
and only if A and B are entangled and S(ρA

+) = 0 if not.
However, when the bipartite state is mixed, for example,
due to the presence of thermal fluctuations or coupling to
the environment as considered here, one typically studies
the quantum mutual information instead. It is defined as
[88, 89]

I(ρA
+ : ρB

+) = Tr
{
ρ+

(
lnρ+ − lnρA

+ ⊗ ρB
+

)}
, (83)

or as

I(ρA
+ : ρB

+) = S(ρA
+) + S(ρB

+)− S(ρ+), (84)

if all three terms on the right are finite, and serves as
the measure for the total correlations between A and B
being zero if and only if ρ+ = ρA

+ ⊗ ρB
+. Note that when

the initial state is pure, the entanglement entropy and
the quantum mutual information are proportional to each
other, i.e. I(ρA

+ : ρB
+) = 2S(ρA

+).
Both quantities have been studied extensively for a large

variety of quantum field theories and quantum many-body
systems and it is well-known that for typical states of
Hamiltonians with local interactions, they scale with the
area of the entangling surface separating A and B, see
e.g. [7, 8, 10, 11, 15] for reviews. In this context, states
are called typical for example when they lie sufficiently
close to the ground state of the Hamiltonian or when they
are generated from an initial product state on short time
scales after a quench [15]. In the following, we shall be
concerned with the latter scenario.

For our setup, three competing length scales are relevant
for the precise scaling with subsystem size M of the
aforementioned quantum entropies: the system sizeN , the
(initial) inverse temperature β = 1/T , and the subsystem
size M itself. When the dominating scale is M , i.e. when

0 L

1 N1 M 5… …

A B

Figure 5: The open subsystem of interest (colored) is
partitioned into A (blue) and B (red).

we consider the subinterval size being small compared to
the system size and the inverse temperature M ≪ N, β,
then the entanglement entropy scales logarithmically (blue
solid curve in Figure 6) [7, 8, 10, 11]

S(ρA
+) ∼ κ1 ln (M + κ2) + κ3, (85)

with κi being real constants. We normalize all entropic
quantities such that they vanish at M = 0, resulting in
the constraint

κ2 = e−κ3/κ1 , (86)

and hence only κ1 and κ3 are independent. Typically, κ1
is universal, i.e. regularization independent, especially
in conformal field theories where it corresponds to the
central charge, while κ3 is usually not.

When instead N is dominant, i.e. when the subinterval
size is of the order of the system size M ∼ N and the
temperature is still small N ≪ β, the so-called finite-size
area law holds (petrol dashed curve) [7, 8]

S(ρA
+) ∼ κ1 ln

[
N

π
sin

(
πM

N

)
+ κ2

]
+ κ3, (87)

again with the constraint (86) understood. Since the
quantum state of the whole system is close to being pure
in this case, we have S(ρA

+)→ 0 when M → N . Further,
in the limit of small M ≪ N , the latter equation reduces
to (85) since (N/π) sin(πM/N) =M to first order in M .

If finite-temperature effects become relevant, i.e. for
β ∼ N , we instead expect a scaling of the form (red
dotted curve) [7, 8]

S(ρA
+) ∼ κ1 ln

[
β

π
sinh

(
πM

β

)
+ κ2

]
+ κ3, (88)

again with (86) understood. In this case, the entropy
remains finite if computed for the whole system due to
additional (classical) mixedness. While for small temper-
atures β ≫ N we obtain back (85), large temperatures
β ≪ N lead to an extensive entropy obeying a volume
law (green dot-dashed curve)

S(ρA
+) ∼ κ1M, (89)

in which case classical correlations dominate over the
quantum ones.

Remarkably, the quantum mutual information follows
the finite-size area law (87) in all of the four considered
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Figure 6: Scaling of the entanglement entropy S(ρA
+) with

subsystem size M for the four archetypal scenarios: large
system size at zero temperature (blue curve), finite system
size at zero temperature (petrol curve), finite temperature
(red curve) and high temperature (green curve). For small
M , the first three curves converge.

cases [18]. In particular, even if thermal fluctuations
prevent the appearance of the area law in the entropies,
the extensive contributions drop out when considering
the quantum mutual information, which demonstrates its
utility for observing an area law in actual experiments.

B. Classical entropies

We now introduce various entropic measures in the
phase space associated with subsystem A (subsystem B
and the full subsystem AB can be treated on equal foot-
ing). To that end, we shall group the set of corresponding
local field variables according to

χA
+ = (ϕA+, π

A
+)

T = (ϕ1+, ..., ϕ
M
+ , π

1
+, ..., π

M
+ )T . (90)

Then, the distributions corresponding to A are obtained
via integrating out all degrees of freedom belonging to
subsystem B, for instance

WA
+ =

∫
dϕB+ dπB

+W+, (91)

and similarly for the other two types of phase space dis-
tributions.

1. Standard entropies

Let us start with the Wigner entropy, which is defined
as the differential entropy of the Wigner W -distribution,
namely

S(WA
+ ) = −

∫
dϕA+ dπA

+WA
+ lnWA

+ . (92)

It is well-defined, i.e. real, provided that WA
+ ≥ 0, other-

wise it becomes complex-valued. A lower bound encoding
the uncertainty principle has been conjectured in [90–92]
and reads

S(WA
+ ) ≥ S(W̄A

+ ) =M(1 + lnπ), (93)

with equality if and only if WA
+ corresponds to a product

of pure Gaussian states.
The marginal entropy of fA+ is defined as

S(fA+ ) = −
∫

dϕA+ f
A
+ ln fA+ , (94)

and analogously for gA+. Since fA+ and gA+ are true proba-
bility density functions, their entropies are always well-
defined. The corresponding entropic uncertainty relation
has been put forward by Białynicki-Birula and Mycielski
[93–96] (see also [97, 98] for reviews)

S(fA+ ) + S(gA+) ≥ S(f̄A+ ) + S(ḡA+) =M(1 + lnπ), (95)

which contains the same bound as the Wigner entropy
conjecture (93). In fact, (95) would be a simple conse-
quence of (93) when using the subadditivity of entropy,
namely

S(WA
+ ) ≤ S(fA+ ) + S(gA+), (96)

with equality if and only if WA
+ = fA+ gA+. However, the

bound in (95) is less tight since it is attained only for
products of squeezed vacuum states.

At last, we introduce the Wehrl entropy [31, 32]

S(QA
+) = −

∫
dϕA+ dπA

+

(2π)M
QA

+ lnQA
+, (97)

which is also always well-defined since QA
+ ≥ 0. It is

bounded from below by the Wehrl-Lieb inequality [31–34]

S(QA
+) ≥ S(Q̄A

+) =M, (98)

which is tight if and only if the state is a product of pure
coherent states. It is also bounded by the Wigner and
quantum entropies [37]

S(QA
+) ≥ S(WA

+ )−M lnπ, S(ρA
+). (99)

Note here that the additional constant −M lnπ is a result
of the different normalizations of the Wigner W - and
Husimi Q-distributions. Therefore, (98) would also be a
direct consequence of (93).

The three aforementioned types of entropies have in
common that their lower bounds (93), (95) and (98) are
attained for a product of pure vacuum states and scale
with the volume of the subsystem A. In this sense, all
these entropies are classical to leading order for arbitrary
states with the main contribution coming from the vac-
uum, in contrast to the quantum entropies introduced
in section VA which vanish for all pure states. In what
follows, we will argue that quantum features such as the
area law are still present in classical entropies, but hidden
in the next-to-leading order terms.
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2. Subtracted entropies

Recently, it has been argued that quantum features
such as the area law of the entanglement entropy are also
present in classical entropies when the leading order exten-
sive contributions are subtracted [24]. Based on this idea,
we define subtracted classical entropies by subtracting the
extensive vacuum contributions appearing in the bounds
of the corresponding entropic uncertainty relations, to wit

∆S(WA
+ ) ≡ S(WA

+ )− S(W̄A
+ ),

∆S(fA+ , g
A
+) ≡ S(fA+ ) + S(gA+)− S(f̄A+ )− S(ḡA+),

∆S(QA
+) ≡ S(QA

+)− S(Q̄A
+).

(100)

Let us provide some simple arguments for why these
entropies encode the very same features as their quantum
analogs in the following.

First, we consider Gaussian quantum states, which
provide a reasonable first-order approximation to the
states generated by the Hamiltonian (6), see section IV B.
A general Gaussian Wigner W -distribution is of the form

WA
+ =

1

ZA
+

e−
1
2 (χ

A
+)T (γA

+ )−1χA
+ , (101)

with ZA
+ = (2π)M

√
det γA+ being a normalization con-

stant. Computing the subtracted Wigner entropy for
such a state gives [75, 99]

∆S(WA
+ ) =

1

2
ln
(
22M det γA+

)
= S2(ρ

A
+), (102)

where

S2(ρ
A
+) = − lnTr{(ρA

+)
2} (103)

denotes the quantum Rényi-2 entropy of the state ρA
+

that corresponds to WA
+ . Hence, the subtracted Wigner

entropy coincides with a quantum entropy for Gaussian
states. For completeness, let us also give the Gaussian
expressions for the Husimi-based quantities, which read

QA
+ =

1

ZA
+

e−
1
2 (χ

A
+)T (V A

+ )−1χA
+ , (104)

with ZA
+ =

√
detV A

+ and

∆S(QA
+) =

1

2
ln detV A

+ . (105)

Note, however, that these entropies can not be related
with quantum entropies in general.

For arbitrary states, including Wigner-negative states, a
general relation between subtracted classical and quantum
entropies can only be established for the subtracted Rényi-
2 Wigner entropy [100, 101]

∆S2(WA
+ ) = S2(ρ

A
+). (106)

Note here that the entropic order alters the lower bound
in the corresponding entropic uncertainty relation and
hence a different term compared to ∆S(WA

+ ) has to sub-
tracted. Although the relation (106) can not be general-
ized to other subtracted Rényi-Wigner entropies, it has
been shown in [24] that the crucial feature of quantum en-
tropies, i.e. the area law, is present for the entire family of
subtracted Rényi-Wigner entropies beyond the Gaussian
case, indicating that the area law may also appear for the
classical entropies defined in (100), which we investigate
in detail in section VII.

C. Classical mutual informations

Let us also introduce classical mutual informations as
measures for correlations in phase space. For Wigner-
positive states, we define the Wigner mutual information

I(WA
+ :WB

+ ) = S(WA
+ ) + S(WB

+ )− S(W+), (107)

while for general states we define the marginal mutual
informations

I(fA+ : fB+ ) = S(fA+ ) + S(fB+ )− S(f+), (108)

(similarly for g+) and the Wehrl mutual information [37]

I(QA
+ : QB

+) = S(QA
+) + S(QB

+)− S(Q+). (109)

All of them are non-negative functionals being zero if
and only if the two local distributions on A and B are
uncorrelated.

It has been shown that every classical mutual informa-
tion is a lower bound to the quantum mutual information
[37, 102]. In particular, we have

I(WA
+ :WB

+ ), I(QA
+ : QB

+) ≤ I(ρA
+ : ρB

+), (110)

indicating that classical mutual informations do not cap-
ture all correlations in general. However, the bound (110)
is expected to be tighter than the standard second-order
lower bounds on the quantum mutual information in terms
of two-point correlation functions (which only faithfully
describe Gaussian correlations).

In contrast to classical entropies, extensive contribu-
tions naturally cancel when considering classical mutual
informations. For example, decomposing (107) in the
sense of (84) shows that

I(WA
+ :WB

+ ) = ∆S(WA
+ ) +∆S(WB

+ )−∆S(W+), (111)

since the vacuum is uncorrelated, i.e. S(W̄+) = S(W̄A
+ ) +

S(W̄B
+ ). For Gaussian states, we can find a relation

analogous to (102), which reads [99]

I(WA
+ :WB

+ ) =
1

2
ln

det γA+ det γB+
det γ+

= I2(ρ
A
+ : ρB

+),

(112)
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with the Rényi-2 mutual information being defined as

I2(ρ
A
+ : ρB

+) = S2(ρ
A
+) + S2(ρ

B
+)− S2(ρ+). (113)

Fortunately, the partly heuristic arguments for the appear-
ance of the area law for classical entropies in section V B 2
can be made rigorous when considering classical mutual
informations by adapting the argument in [18]. To that
end, we first note that all three Hamiltonians (6), (28)
and (56) can be decomposed according to

H = HA +HB +H∂ , (114)

where HA and HB denote the Hamiltonians of subsys-
tems A and B, respectively, while H∂ contains the local
interactions coupling A to B. Further, we consider the
rather general class of thermal states for a given Hamilto-
nian H, i.e.

ρ+ =
1

Z
e−βH , (115)

which are typically of non-Gaussian form. Then, every
distribution O+ over measurement outcomes o+ corre-
sponding to some POVM O+ can be written as

O+ =
1

Z
e−βH , (116)

with the classical Hamiltonian H being defined implicitly
via

Tr{e−H O+} = e−H . (117)

For such a distribution, the classical entropy evaluates to

S(O+) = lnZ + β ⟨H⟩O+
, (118)

where

⟨H⟩O+
=

∫
do+O+(o+)H (119)

is the classical energy expectation value with respect to
the distribution O+(o+). Using (118), we find that the
(classical) free energy is nothing but

F (O+) ≡ −
lnZ

β
= ⟨H⟩O+

− S(O+)

β
. (120)

The latter is minimized by the thermal distribution O+,
a fact which can be derived, for instance, using the non-
negativity of the classical relative entropy of any given
distribution with respect to the thermal distribution O+.
As a special case, we can conclude that the thermal free
energy is bounded from above by the free energy of the
corresponding product distribution, i.e.

F (O+) ≤ F (OA
+OB

+). (121)

Expanding the latter inequality in the sense of (120) and
using the additivity of classical entropies for product
distributions yields

S(OA
+) + S(OB

+)− S(O+)

≤ β
(
⟨H⟩OA

+ OB
+
− ⟨H⟩O+

)
.

(122)

The decomposition (114) implies

⟨H⟩OA
+ OB

+
− ⟨H⟩O+

= ⟨H∂⟩OA
+ OB

+
− ⟨H∂⟩O+

, (123)

which, together with the definition of the classical mutual
information, finally leads to

I(OA
+ : OB

+) ≤ β
(
⟨H∂⟩OA

+ OB
+
− ⟨H∂⟩O+

)
. (124)

The derived upper bound on the classical mutual informa-
tion is a function of the classical boundary Hamiltonian
H∂ only, which proves the area law for all variants of
classical mutual information, including the three of our
interest, for local interactions and thermal states.

VI. ENTROPY ESTIMATION

We now turn to the challenging task of estimating clas-
sical entropies from finitely many samples. Albeit being a
general problem, it arises especially for the system of our
interest, since experimental runs are particularly costly.
To that end, we rely on suitable k-nearest-neighbor esti-
mators and benchmark their validity for various scenarios.
For our implementation, we utilize the ‘Non-parametric
Entropy Estimation Toolbox’ for Python publicly avail-
able at [103].

A. k-nearest-neighbor estimator

The integrals that give the Wigner or Wehrl entropy,
Eqs. (92) and (97), respectively, are in general hard to
estimate from samples. Unless the distribution is of a
specific form, such as a Gaussian, that allows reexpressing
the entropy through low-order correlators, one must use
the available samples to approximate local densities of
the distribution. A straightforward approach is to bin the
samples onto a grid and use the relative frequencies in
the histogram as approximations for the local densities.
While this procedure presents an asymptotically unbiased
estimator in the limit of infinite samples and small bins,
it is problematic in practice, since the binning procedure
presents an information bottleneck as it coarse grains the
information about the precise sample position.

A more elaborate approach is to use the k-nearest-
neighbor (kNN) statistics of the sample set to approximate
local densities [49–63]. The intuition behind the nearest-
neighbor statistics is that samples with short distances to
their neighbors are located in regions of high probability
density, while samples which are located in regions of low
probability density have nearest neighbors that are far
away. A formalization of this intuition allows to construct
an asymptotically unbiased discretization-free estimator
Ŝ for differential entropies [49, 56]

Ŝ(k,Ns) = g(k,Ns, d) +
d

Ns

Ns∑
i=1

log ϵi(k) (125)
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Figure 7: Benchmark of the entropy estimator Ŝ for distributions that allow for an analytic comparison to S. In
a), we visualize the algorithm for a few Gaussian samples in d = 2 dimensions, with two random samples selected
and two choices for the hyperparameter k, namely k = 2 and k = 4. The only assumption of the estimator is
constant density in the light green and cyan circles respectively, an assumption less justified the larger k. Both k-th
neighbors are shown in black. In b) we benchmark the entropy estimator on a squeezed covariance matrix in d = 2
dimensions with squeezing parameter γ, where large γ correspond to strong squeezing. The covariance matrix is given
by Σ = (1+ γJ)/ det(1+ γJ)1/d where J is the matrix of all ones. All error bars are obtained from ten independent
estimates and we use offsets on the x axis to aid in differentiating the different data points. In c) we let γ = 0 and
vary the dimension d, observing decreasing performance with increasing dimension, as is expected. In d) we tune away
from the Gaussian regime in d = 4 dimensions, using a generalized normal distribution [104] parameterized by β with
scale α chosen such that the entropy S takes the value of a standard normal distribution in d = 4 dimensions. As can
be seen from the density function in Eq. (127), small values of β correspond to heavy tails, β = 2 corresponds to a
Gaussian shape, and the support of the distribution shrinks to the interval [−1, 1] for β →∞. We denote the sample
set size with Ns and choose the nearest neighbor parameter k to be three in all experiments.

where d is the dimension of the distribution, Ns is the
number of samples and ϵi(k) is the distance of the i-th
sample to its k-th neighbor. The term g(k,Ns, d) is a
constant that is independent of the samples and is given
by [49, 56]

g(k,Ns, d) = −ψ(k) + ψ(Ns) + log(cd), (126)

where ψ is the digamma function and cd is the volume of
the d-dimensional unit ball.

The asymptotical unbiasedness of the estimator means
that one is guaranteed to obtain the true entropy in the
limit of infinitely many samples, which directly stems from
the observation that the sample distances must shrink to
zero in this limit. This is in contrast to approaches that
fit a probability density function of a specific form to the
data, which may result in more accurate estimates in the
regime of few samples, but will generally not converge to
the true value when the amount of samples is increased.

We aim to give an intuitive picture of the kNN method
in Figure 7 a), where the spheres, for which constant
density is assumed, are drawn for k = 2 and k = 4 for two

different samples. This example reveals the only trade-off
in the kNN algorithm, which is the so-called hyperparam-
eter choice k. For small k, the assumption of constant
density has stronger justification as the spheres are neces-
sarily smaller compared to larger k. This, however, comes
at the expense of stronger fluctuations, meaning larger
statistical uncertainties. These can be systematically re-
duced by choosing larger k, as the volume of the spheres
shows a power law in the dimension of the distribution.
Typically, k is set to k = 3 or similar, depending on the
situation at hand [103].

Since the estimation of differential entropies from sam-
ples is a task of fundamental interest [105] with applica-
tions ranging from statistics [106–108] to signal processing
[109, 110] to machine learning and pattern recognition
[111–114], various other paths beside the aforementioned
one have been explored [115]. There exists a rich lit-
erature for non-parametric entropy estimators, that do
not assume a specific form of the underlying probability
density [49–55, 57–63]. These are either based on near-
est neighbor statistics or arrive at an estimate for the
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local density by using kernel density estimates. Recently,
machine learning-inspired techniques have been explored.
Giving up on the non-parametric property of the estima-
tor results in the loss of the asymptotically unbiasedness
at possibly increased performance. Numerous works have
been put forward in this regard, with applications of
estimating entropies[116] and mutual informations [117].

B. Benchmarks in low dimensions

We showcase the performance of the estimator for Gaus-
sian distributions in Figure 7 b). The data points are
obtained from 10 independent runs, meaning that a to-
tal of 10Ns data points were generated, from which we
extracted means and standard deviations on the relative
deviations (Ŝ − S)/S. We study the performance of the
algorithm in d = 2 dimensions as a function of the squeez-
ing parameter γ, where γ = 0 corresponds to a normal
distribution and large γ implies higher squeezing. Here,
S = 2.83 for all values of γ. A central assumption in the
derivation of the expression in Eq. (125) is uniform density
inside the d-dimensional ball with radius ϵi(k) between
sample i and its k-th neighbor. For larger squeezing, this
assumption is violated more strongly, since the squeezing
introduces a preferred direction at odds with the assumed
isotropy, resulting in worse performance for larger γ.

C. Scaling with dimension

In Figure 7 c), we benchmark the estimator on a stan-
dard normal distribution for increasing dimension. The
higher dimension implies that the assumption of constant
density inside the d-dimensional spheres of radius ϵi(k)
must hold for larger volumes if the number of samples is
held constant. This will generally result in worse perfor-
mance, as demonstrated.

D. Tuning away from the Gaussian regime

To test the estimator’s performance away from the
Gaussian regime, we benchmark it on a generalized normal
distribution [104]. The latter has a probability density of
the form

fGND(x;µ, α, β) =
β

2αΓ(1/β)
exp

(
−
∣∣∣∣x− µα

∣∣∣∣β
)
, (127)

with mean µ, scale α > 0, shape β > 0 and Γ denoting
the gamma function. In Figure 7 d), we vary α and β in
such a way that the true entropy S is kept constant at the
value corresponding to the standard normal distribution
in d = 4 dimensions, for which α = 1/2, β = 2, i.e.
S = 5.67. We observe the worst performance for small
values of β, i.e. in the regime of heavy tails, which is
expected as the central assumption of constant density of

the employed estimator needs to hold for larger regions in
space. For large values of β and sufficiently many samples,
the results improve (for Ns = 5000 (50000) the relative
deviations for β = 1, β = 3 and β = 9 are -0.008, -0.007
and 0.003 (-0.004, -0.003 and -0.001)), in line with the
intuition that the entropy of a uniform distribution should
be easy to estimate. However, for Ns = 50 and Ns = 500
samples, this intuition seems to be misleading as the best
performance is observed for β = 1 and β = 3, respectively,
which resemble Gaussian-like distributions.

VII. RESULTS

We are now ready to present our main results: analyti-
cal and numerical observations of the area law for classical
entropies. After a general comparison of the analytical
model and TWA in terms of two-point correlators and
entropic quantities, we systematically study typical ef-
fects, including non-Gaussian features, a thermal initial
state, the influence of the subsystem’s position within the
total system, the total system size, the dependence of the
estimated entropies on the number of samples and finally
two types of boundary conditions.

Unless specified differently, we use the values c1 =
−1/n, n = 1000, such that our energy scale is given
by |nc1| = 1 (note that this renders all parameters and
other quantities of our interest dimensionless). Further,
we consider Lithium-7 for which c0 = 2c1, set q = 2J
with J = 2 and test N = 20 wells with open boundary
conditions at the three different times t = 0.5, 0.75, 1.
From the 20 wells, we study five wells located in the center
of the lattice, i.e. wells 8, 9, 10, 11, 12, and neglect the
remaining 15 wells from our examination, leaving us with
the subsystem depicted in Figure 5. We assume the initial
temperature to be zero, i.e. T = 0, and base the entropy
estimation on 104 samples. We systematically vary these
parameters one by one and investigate their influences
from section VIIC to section VIIH. The plotted curves
are either dashed or solid, corresponding to interpolations
or fits of the (finite-size) area or the volume law.

A. Correlation matrices

As a first qualitative comparison between the analytical
model and the truncated Wigner approximation that takes
into account all interactions contained in Eq. (6), we show
the correlation matrices between the phase-space variables
ϕ+ and π+ in Figure 8 for the five wells under scrutiny at
the three different times. The correlation matrix is given
by the normalized covariances

Cjj′

+ =
γjj

′

+√
γjj+ γj

′j′

+

, (128)

thereby rendering all entries to lie between -1 and 1. We
want to emphasize that the analytical model is fully char-
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Figure 8: Time evolution of the correlation matrices (128) generated by the analytic Hamiltonian (57) (left column)
and the TWA simulation (middle column) together with their difference (right column).

acterized by the observables in Eq. (128), reducing the
complexity of extracting entropies to an extraction of
its second moments. In contrast to that, the full Hamil-
tonian Eq. (6) contains more complex, i.e. higher-order
terms, meaning that observables that contain higher-order
fluctuations are required to fully characterize entropies.

Since the initial polar state (t = 0) in (16) is uncorre-
lated, its correlation matrix is the identity matrix. Dur-
ing the evolution, correlations between different wells are
building up through the transport of atoms permitted by

the tunnel Hamiltonian given in Eq. (8). Simultaneously,
correlations between ϕj+ and πj

+ within one well are gener-
ated through the internal dynamics in Eq. (7), leading to
the complex structures visible in Figure 8. Remarkably,
the analytical model captures most of the features visible
in the normalized second-order correlators for the three
times considered, with the absolute value of deviations
not exceeding 1% (see right column).

Note, however, that this analysis does not permit any
statements about the agreement of higher-order moments.
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These can in principle deviate from a Gaussian prediction,
due to the presence of fourth-order terms in Eq. (6).
Crucially, we therefore do not assume the distribution to
obey a specific functional form in our subsequent analysis
of sample data generated by the means of TWA with
regards to entropic quantities.

The good agreement between the two models leads us
to conclude that the analytical model is a justified ap-
proximation in regimes where the contribution of fourth-
order terms to the full Hamiltonian Eq. (6) is negligible.
These regimes are characterized by small values of c0,
i.e. Lithium-7, and large values of q, such that the unde-
pleted pump approximation (see section III A) is justified.
Furthermore, we expect the approximations made by the
analytical model to be valid, especially for early times,
which is why we restrict ourselves to times up to t = 1.
An extended discussion for later times can be found in
section VII C and in [64].

B. Observation of the area law

Having gained a qualitative understanding of the dy-
namics generated by the Hamiltonian (6), we now turn our
attention to the dynamics of entropic quantities associated
with the quantum state’s phase space and measurement
distributions. In this context, we want to discuss our main
result Figure 9, which demonstrates the numerical obser-
vation of the area law from experimentally extractable
quantities without assuming a specific functional form
of the quantum state. Crucially, we only require 104

samples to estimate entropies of up to ten-dimensional
distributions, which we deem experimentally feasible.

In the following, we consider the three distributions of
interest, namely

• the Wigner W -distribution, introduced in Eq. (38)
which has mainly theoretical interest due to its
connection to quantum entropies in the early-time
regime and its restricted accessibility,

• its marginal distributions, introduced in Eq. (40),
motivated by the fact that they allow for direct ex-
perimental extraction as described in section II E 1,

• and finally the Husimi Q-distribution, introduced
in Eq. (44) and directly measurable in experiments
using the readout techniques explored in [40, 41]
and described in section II E 2,

for subsystem A of varying size M , such that B con-
tains 5−M wells (see Figure 5). For the aforementioned
distributions, we compute the absolute and subtracted
entropies as well as the mutual information for the evolu-
tion times t = 0.5, t = 0.75, and t = 1. We compare the
numerical TWA data (open markers) to the analytical
data (solid markers) and fit (finite-size) area laws (solid
lines).

We first discuss the absolute entropies shown in the first
row of Figure 9, i.e. a), b), c). All entropies show similar

linear behavior and the area law is masked behind the
leading order terms. These leading order contributions
are subtracted in Figure 9 d), e) and f), as discussed in
section V B 2, unveiling the area law in form of the typical
logarithmic growth in all three types of distributions.
Finally, the finite-size area law becomes apparent in all
three classical mutual informations, see Figure 9 g) - i).

At this point, let us emphasize the challenges associated
with the task of estimating the subtracted entropies: We
are interested in the estimation of entropies of up to ten-
dimensional distributions at an accuracy that is between
one and two orders of magnitude higher than the signal
itself (consider e.g. ∆S(WA

+ )/S(WA
+ ) ≈ 0.03 for M = 5

wells at t = 0.5). Under this perspective, we consider
the agreement between analytical and TWA results as
remarkable.

This concludes the presentation of our main results. In
the following, we carry out ablative studies to demon-
strate the genericness of our experimental proposal. In
particular, we explore later times (section VIIC), where
the distributions show stronger non-Gaussian features,
consider imperfectly prepared, thermal initial states (sec-
tion VIID) and investigate the influence of boundary
effects by shifting the position of the five wells within
the total system of N = 20 wells (section VIIE). We
also reduce the total system to N = 5 wells to hunt
the finite-size area law for the subtracted entropies (sec-
tion VII F). Finally, we aim to shed light on the sample
complexity associated with these tasks when utilizing
the kNN-estimator (section VII G) before considering the
effect of periodic boundary conditions (section VII H).

C. Distributions: Gaussian versus non-Gaussian

To test the influence of non-Gaussian features of the
distribution we consider the parameters q = 2 and J = 0.5
at later times, namely t = 2, t = 3, and t = 4. We expect
stronger non-Gaussian features to emerge for smaller val-
ues of q, as we cross the polar to easy-plane ferromagnet
phase transition [68], due to the (less detuned) squeezing
generated by c1. Similar to Figure 8, we plot the discrep-
ancies between the correlation matrices obtained with the
analytical model and TWA for the three different times.
Figure 10 shows the differences now become more pro-
nounced, growing as large as 0.1, more than an order of
magnitude larger compared to Figure 8. We particularly
expect the analytical model to mainly give reliable results
for the early time dynamics, so a disparity between the
two is expected.

To gain more intuition about the characteristics of the
distribution at those times, we show samples (ϕ1+, π

1
+)

of the Wigner W -distribution of the first well in the
second row of Figure 10, with all other degrees of freedom
integrated out. While the local distribution at t = 2 still
seems relatively Gaussian, an analysis of its 4th-moments
reveals that Gaussianity is already strongly violated, with
Isserlis’ theorem [118] showing relative deviations as large
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Figure 9: The upper, middle, and lower rows correspond to absolute entropies, subtracted entropies, and mutual
information, respectively, while the left, middle, and right columns show Wigner, marginal, and Wehrl quantities. Solid
(open) markers correspond to analytical (TWA) data, while solid lines depict fitted curves. The fit function for d) - f)
is the area law (85), with an additional extensive term for a) - c). For g) - i), we fit the finite-size area law (87).

as 4%. For t = 3 (t = 4) these deviations grow as
large as 17% (60%). Hence, also the entropic quantities
show stronger deviations. In the case of the Wigner W -
distribution in Figure 10 g) substantial differences occur
for more wells and late times, as the high dimensionality as
well as the strong non-Gaussian features make it difficult
for the estimator to reliably estimate the entropies using
the 104 available samples. The mutual information shown
in Figure 10 h) and i), show strong deviations between
TWA and the analytical model, although a quantitative
comparison does not seem meaningful given the strong
non-Gaussian features shown in Figure 10 d) - f). A
more informative observation is that the estimates of
the mutual informations still change significantly upon
increasing the sample size by one order of magnitude,
albeit not changing their functional form. In the case
of the Wigner mutual information, this underestimation
is around 15% with respect to the currently given data,
while it is around 7% for the Wehrl mutual information.
We attribute this difference to the increased smoothness

of the Husimi Q-distribution compared to the Wigner
W -distribution.

D. Initial state: vacuum versus thermal

Up to now, our discussion has not been concerned with
experimental imperfections such as thermal noise. We
here want to address this issue by considering thermal
initial states that undergo the unitary evolution. These
initial states are characterized by a temperature scale β
that we choose to be on the order of a tenth of the system
size, such that β = 2. The thermal fluctuations alter the
computations of the dynamics by adding thermal noise
to the quantum one-half, see Eqs. (53) and (75).

As expected, the subtracted Wigner entropy ∆S(WA
+ )

rather features an extensive volume law than an area law,
as can be seen in Figure 11 a). When computing both
the Wigner and Wehrl mutual information in Figure 11
b) and c), we observe the finite-size area law in both
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Figure 10: The differences between the analytical model and TWA in the correlation matrices are shown in a), b) and
c) for the three times t = 1, t = 2 and t = 3, respectively, and q = 2, J = 0.5. The discrepancies grow as large as 0.1,
such that we can no longer meaningfully speak about agreement between the methods. The non-Gaussian form of the
underlying phase-space distributions is illustrated in d) - f) in terms of sample points (ϕ1+, π

1
+) of the first well. The

corresponding subtracted Wigner entropy, Wigner mutual information, and Wehrl mutual information are shown in g)
- i), for the analytical model (solid markers, only up to t = 2) as well as TWA (open markers). We observe the area
law for the former and the finite-size area law for the two latter quantities, also in the non-Gaussian regime.

instances, just as in Figure 9. The Wigner mutual infor-
mation shows the same quantitative behavior observed
in Figure 9 g), since the contributions due to the initial
thermal noise cancel out. In contrast, the Wehrl mutual
information, is increased compared to Figure 9 i). We
attribute this to the inequality (110) becoming tight in
the infinite temperature limit [102] (this is also evident

from (67): the additional term (1/2)1 becomes irrelevant
in this case). Importantly, the finite-size area law (87)
describes the measurable and noisy data well, rendering
the proposal robust against thermal noise. Hence, the
considered measurement distributions indeed describe a
suited setup to observe the area law experimentally.
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Figure 11: Entropic curves for a thermal initial state with T = 1/2. The fits correspond to the area law in a) and the
finite-size area law in b) and c), respectively.
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Figure 12: Entropic curves for the wells M = 1− 5 (upper row) and M = 3− 7 (lower row), i.e. when picking five
wells out of N = 20 and partitioning these five wells into two subsystems as shown in Figure 5. Near the boundary,
the area laws are strongly distorted by boundary effects, illustrated by the interpolated curves in a) - c). Further away
from the boundary, boundary effects become only relevant when the boundary information had enough time to affect
local quantities (note that all curves at t = 1 are interpolations), see e.g. the asymmetry of the mutual informations in
e) and f).

E. Subsystem position: center vs. outward

In this subsection, we will choose the position of the
subsystem within the bigger system to be wells M = 1−5
and M = 3− 7, to investigate how the boundary affects
the area law.

After computing the subtracted Wigner entropy as well
as the Wigner and Wehrl mutual informations for the two
subsystem positions, we find the data to be well described
by the area law for those instances where boundary effects
are irrelevant. The upper row in Figure 12 shows that the
subsystem 1-5 is strongly affected by the boundary on the
left, and no area law can be observed. In contrast, the data
shown in the lower for the subsystem 3-7 is captured well

by the fitted curves, albeit the mutual informations are
showing some slight asymmetry for t = 1.0, i.e. when the
boundary information has had sufficient time to propagate
to the considered subsystem.

F. System size: large vs. small

In contrast to the previous discussion, we now restrict
the total system to N = 5 wells such that the evolution
within the considered region is unitary. The small system
size implies that the dynamics is dominated by boundary
effects and the regular logarithmic area law is replaced by
the finite-size area law also in the case of the subtracted
classical entropies. More precisely, since the density ma-
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Figure 13: When the total system size equals the subsystem size, i.e. when N = 5, the area law for the subtracted
classical entropies translates into a finite-size area law reflecting the purity of the global state. We remark the
underperformance of the entropy estimator for the subtracted Wigner entropies in a) and that the build-up of the
finite-size area law only occurs after a transient phase around t = 0.5. In both cases, the dashed curves correspond to
interpolations, which we show for illustrative purposes.
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Figure 14: The feasibility of the entropy estimator is checked by varying sample size, where dashed, solid, and dotted
lines correspond to 103, 104, and 105 samples. All curves are fits, the only exception being the 103 curve at t = 0.5 in
c). The convergence between 104 and 105 samples becomes visible especially for the subtracted Wigner entropy in a)
and the Wehrl mutual information in c).

trix of the five-well system remains pure throughout the
evolution, the subtracted Wigner entropy returns to the
value zero once the entire system is considered, as shown
in Figure 13 a). The reason why this is not captured with
the TWA data is due to an insufficient amount of samples.
Upon increasing the sample number to 105, the subtracted
Wigner entropy is much closer to zero for M = 5 wells
(0.00, 0.06, and 0.18 instead of 0.06, 0.20, and 0.34 for
t = 0.50, t = 0.75 and t = 1.00). The Wigner and Wehrl
mutual information both feature the area law, but only
starting at later times t ≥ 0.75.

G. Sample size: small versus large

Thus far, we estimated entropies of the distributions
generated through TWA using 104 samples, without ques-
tioning whether the kNN estimator had converged for
the given sample set. Similar to the benchmarks pre-
sented in section VI A, we want to better understand the
sample complexity of the entropy estimation using the
kNN-estimator. To this end, we carry out the estimations
of the subtracted Wigner entropy, the Wigner mutual
information and the Wehrl mutual information in Fig-

ure 14 a), b) and c), respectively, for 103, 104 and 105

samples, indicated through dashed, solid and dotted lines
respectively.

The subtracted Wigner entropy seems to be converged
for all times when using 104 samples, as no significant
differences exist to the data points that were obtained
using 105 samples. The biggest visual differences exist
for the Wigner mutual information for late times, which
however mainly stem from the different scale between
Figure 14 a) and b). For the experimentally relevant
Wehrl mutual information, we observe convergence for 104
samples for almost all times, with an even further reduced
scale compared to b), rendering a potential experimental
implementation efficient.

H. Boundary conditions: open versus periodic

While experimental setups will typically use open
boundary conditions, a question of theoretical interest
is whether the presented framework is sensitive to the
type of boundaries that are employed. Therefore, we
modify the tunnel Hamiltonian (8) to also allow atoms
to jump from the last to the first well and show the same
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Figure 15: Entropic curves for periodic boundary conditions. As boundary effects are negligible for the subsystem
under consideration, all curves agree with those in Figure 9 to a good extent.

quantities as previously in Figure 15. Also in this setting,
we find that the area law persists. More precisely, the
curves resemble those obtained for open boundary con-
ditions (Figure 9), since the the considered subsystem is
sufficiently far away from the total system’s boundaries.

VIII. DISCUSSION

We have demonstrated the experimental feasibility of
observing the area law in the subtracted classical entropies
and mutual informations of measurable distributions in a
multi-well spin-1 Bose-Einstein condensate using numeri-
cal techniques. As a testbed, we chose a system consisting
of 20 wells that feature internal dynamics as well as tunnel-
ing among wells and read out two observables that obey a
canonical commutation relation for early times. Focusing
on a subregion of five wells, we find (finite-size) area laws
in the Wigner distribution, its marginals as well as the
Husimi-Q distribution, where the latter two lend them-
selves to experimental investigation using independent
subsequent measurements [119] and a readout technique
proposed in [40, 41], respectively. We have shown that
all types of subtracted entropies as well as mutual infor-
mations are quantities worth studying in order to observe
the area law and substantiated its robustness with re-
spect to changing various parameters of the experimental
setup from section VII C to section VII H. The discussed
area laws are observed dynamically, meaning that the
underlying distributions are generated through quenches
rather than ground-state preparations, simplifying the ex-
perimental requirements. The proposed procedure makes
no assumptions regarding the functional form of the dis-
tribution under scrutiny, by estimating its differential
entropy using a suited k-nearest-neighbor estimator to
locally estimate the density at each sample point. In
section VII G we demonstrated that for the estimator to
converge we require on the order of 104 samples, which
we deem experimentally feasible.

We simulated the system’s dynamics using an analytical
model derived from the full Hamiltonian and TWA. While
the analytical model only features quadratic terms corre-
sponding to an integrable system, the dynamics predicted

by the TWA are more intricate and lead to late-time
equilibration due to finite particle number and the non-
integrable nature of the mean-field equations of motion.
We accordingly found agreement between the two meth-
ods at early times and found pronounced differences at
times t ≥ 2. Particularly for parameter choices that fea-
ture stronger non-Gaussian features, such as a lower value
of q violating the undepleted pump approximation more
strongly, we observed greater disparities between TWA
and the analytical model.

In the non-Gaussian regime, we found the kNN-
estimator to require more samples to reach convergence,
hinting at the difficulty of estimating entropies of ten-
dimensional distributions while being agnostic to their
functional form. As the kNN estimator is asymptotically
unbiased, it is always possible to increase or decrease the
sample size, to check whether the estimator has converged.
We wish to state that while the kNN-estimator has a great
appeal due to the guarantee of converging to the true
entropy using sufficiently many samples, the estimation
of differential entropies is a long-standing challenge and
various ideas have been put forward to tackle the task
more efficiently [49–63, 103, 105–117]. Of particular inter-
est is the variational approach, which consists of adapting
the parameters of a defined function by maximizing the
likelihood of the observed samples. While this approach
can work well, it is i) generally difficult to build a class of
functions that includes the observed density distribution
and ii) challenging to converge to the global minimum,
rendering the approach uncontrolled. However, future
research may aim to build functional forms that are di-
rected at estimating the densities generated by specific
classes of Hamiltonians, for which one may hope to arrive
at more efficient estimators. Nevertheless, this would
come at the expense of losing generality, which may be
a significant drawback when applying the methodology
to an experiment that suffers from undesired noise effects
that one cannot account for analytically.

Having established the presence of quantum features
in entropies of classical distributions, one can envision
various ways forward. It will be interesting to further
investigate which other platforms lend themselves to the
herein-discussed approach and obey the area law. Par-
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ticularly systems that are fully described by the set of
observables being read out and systems with other types
of degrees of freedom that are constrained by algebras
different from canonical commutation relations are of
interest. For instance, one may consider the hitherto dis-
cussed spin-1 BEC in the pseudo-spin 1/2 configuration,
in which case three spin operators forming an su(2) alge-
bra constitute a complete representation of the system’s
state with the phase space distribution being represented
on a sphere [76, 119]. But also non-atomic setups, such
as integrated photonic waveguides may present promising
candidate systems. We emphasize that the herein pre-
sented approach and analyses are applicable to any setup
capable of preparing or dynamically generating an area
law.

It will be equally interesting to see which other quan-
tum phenomena can be accessed using classical entropies
of measurement distributions. In this context, let us also
highlight the two accompanying publications that study
thermalization and the long time limit of the herein dis-
cussed system through the lens of classical entropies [64]
and a work that is concerned with showing the generality
of the area law for classical entropies [24].
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Appendix A: Operator identities for the undepleted
pump regime

We list a few identities to reexpress the Hamiltonian
(20) in terms of the relative modes as well as the canonical
variables. For the step from the local modes to the relative
modes we invert (23), which yields

aj
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1√
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, aj

−1 =
1√
2

(
aj
+ − aj

−

)
, (A1)

leading to the identities
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For the step from relative modes operators to canonical
operators we invert (25), which gives

aj
± =

1√
2

(
ϕj

± + iπj
±

)
, (A3)

implying the identities
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This chapter presents a finalized draft of the work in [E]. Tobias
Haas originally proposed the project, and the proposal was refined
in joint discussions between Tobias Haas, Martin Gärttner, Yannick
Deller, Helmut Strobel, Markus Oberthaler, and me. Tobias Haas and
I ran all simulations in close collaboration, with the analytical model
implemented by Tobias Haas and the truncated Wigner simulation,
as discussed in Section 4.2, implemented by me. Tobias Haas and I
wrote the initial draft of the manuscript and all other authors helped
in refining it.

9.2 motivation

We take the preceding discussion in Chapter 8 as motivation to demon-
strate that the interplay between quantum thermalization and the
transition from an area to a volume law is also maintained within the
phase-space description. To this end, we explore the late-time regime
where the local phase-space distributions become stationary. We again
base our findings on classical simulations of quenches of a Spin-1
Bose-Einstein condensate, as discussed in Section 2.7, and understand
our contributions as an experimental proposal.
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The scaling of local quantum entropies is of utmost interest for characterizing quantum fields,
many-body systems, and gravity. Despite their importance, being nonlinear functionals of the
underlying quantum state hinders their theoretical as well as experimental accessibility. Here, we
show that suitably chosen classical entropies capture the very same features as their quantum
analogs for an experimentally relevant setting. We describe the post-quench dynamics of a multi-well
spin-1 Bose-Einstein condensate from an initial product state via measurement distributions of spin
observables and estimate the corresponding entropies using the asymptotically unbiased k-nearest
neighbor method. We observe the dynamical build-up of quantum correlations signaled by an
area law, as well as local thermalization revealed by a transition to a volume law, both in regimes
characterized by non-Gaussian quantum states. We emphasize that all relevant features can be
observed at small sample numbers without assuming a specific functional form of the distributions,
rendering our method directly applicable to a large variety of models and experimental platforms.

Introduction — The quantum entropy of a spatial subre-
gion has proven to serve as a ubiquitous tool for studying
the spatio-temporal structure of entanglement [1] and
its role in various quantum phenomena, including local
thermalization [2–5], quantum phase transitions [6], infor-
mation scrambling [7–9] and black hole physics [10–13].
Arguably the most sought-after phenomenon in this con-
text is the area law, which is signaled by a logarithmic
growth of the local entropy for one-dimensional systems
[14–22]. It appears in particular for the experimentally
accessible scenario of a system prepared in a pure prod-
uct state when the couplings of a local Hamiltonian are
quenched before the system has thermalized locally [22].
In the latter case, the local entropy rather obeys a volume
law, allowing for a macroscopic description using only a
few thermodynamic quantities like temperature.

The main drawback of quantum entropic descriptions
for many-body phencomena is their reliance on the knowl-
edge of the full density matrix, which typically grows ex-
ponentially with the number of microscopic constituents.
This especially has so far restricted the experimental ac-
cess of quantum entropies to systems consisting of a few
particles [23–25], as full tomography of the quantum state
is, with no further assumptions, infeasible for larger sys-
tems approaching mesoscopic scales. For continuous sys-
tems, area laws have only been experimentally reported
in a Gaussian scenario [26], while generally applicable
methods have remained elusive.

Recently, the necessity of considering exclusively quan-
tum entropies to probe quantum phenomena has been
questioned. Suitably chosen classical entropies of (quasi-)
probability distributions do also encode area and volume
laws [27]. This ansatz naturally overcomes the need for

reconstructing the full quantum state – both for theo-
retical and experimental investigations. This method is
specifically suitable for experimental platforms, which can
directly sample from such distributions, see for example
[28–36].

Here we show that area and volume laws are observ-
able in state-of-the-art experiments with multi-well spin-1
Bose-Einstein condensates (BECs) [37, 38] by considering
entropies of measurement distributions over spin observ-
ables. Starting from an initial product state, we find
area laws being dynamically generated for intermediate
evolution times following a quench, thereby confirming
the growth of entanglement until the system thermal-
izes locally, where the same entropies exhibit volume law
behavior. Importantly, we do so without assuming the
functional form of the state and only rely on observables
that are directly obtainable in standard experimental
readouts [26, 31, 34–36], while reducing the sample com-
plexity to a feasible level. We comprehensively discuss
our method, including systematic checks for its validity
and generality, in [39].

Notation — We use natural units ℏ = kB = 1, write
bold (normal) letters for quantum operators O (classical
variables O) as well as their traces and equip vacuum
expressions with a bar, e.g. ρ̄.

Multi-Well Spin-1 BEC — We consider a one-
dimensional spin-1 BEC that extends over 20 wells,
described by bosonic mode operators [aj

mF
,aj′†

m′
F
] =

δjj
′
δmFm′

F
with j ∈ {1, ..., N} and mF ∈ {0,±1}. Start-

ing from an initial product state with all zero modes
(mF = 0) being occupied coherently by n = 103 atoms,
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Figure 1: a) Illustration of relevant processes. The ±1 modes of a spin-1 BEC are coupled to the 0 mode by
spin-changing collisions with strength c1 < 0 (red) and detuned by the quadratic Zeeman-shift q > 0 (green). The
atoms in the ±1 modes may hop to neighboring wells with strength J > 0 (blue). b) The full system consists of 20
wells, from which we exclusively analyze the five wells 8− 12. We partition this subsystem into a left part A (blue)
and a right part B (red) and study the scalings of information and correlation measures with A’s system size M . c)
Samples of the Wigner W -distribution of the left-most well in subsystem A at time t = 4. The entropy is estimated
from samples using the kNN-estimator by analyzing the distribution of distances to the k-th. neighbor for each sample,
see magnified inset. Non-Gaussian features arise for higher-dimensional multi-well distributions, as measured by the
relative entropy, see [40].

we consider a quench described by the Hamiltonian

H =

20∑
j=1

q
(
N j

1 +N j
−1

)
+ c0 N

j
(
N j − 1

)
+ c1

[ (
N j

0 − (1/2)1
)(

N j
1 +N j

−1

)
+ aj†

0 aj†
0 aj

1a
j
−1 + aj†

1 aj†
−1a

j
0a

j
0

]
− J

19∑
j=1

∑
mF=±1

(
aj†
mF

aj+1
mF

+ a(j+1)†
mF

aj
mF

)
,

(1)

featuring dynamics within single wells (first sum) as well
as correlation build-up among wells (second sum), see
Figure 1 a).

For early times, the zero mode is occupied macroscop-
ically and the evolution is dominated by second-order
fluctuations, such that (1) is well-approximated by an
analytically solvable Gaussian model, which follows from
treating the zero mode classically and dropping density-
density interactions (see [39] for details)

Hup,Gauss =

20∑
j=1

[
q̃N j +

c̃1
2

(
ajaj + aj†aj†)]

− J

19∑
j=1

(
aj†aj+1 + a(j+1)†aj

)
.

(2)

Here, we introduced the relative mode operators aj =
(aj

1 + aj
−1)/

√
2 as well as the rescaled couplings c̃1 = c1n

and q̃ = c1
(
n− 1

2

)
+ q.

Beyond this regime, the mesoscopic occupation justifies
employing semi-classical approaches such as the truncated

Wigner approximation (TWA), in which the mode oper-
ators are demoted to c-numbers that obey an evolution
dictated by classical mean field equations [41, 42]. The
resulting model correctly captures the quantum fluctu-
ations of the initial state, while neglecting higher-order
corrections in ℏ for its evolution.

Measurement distributions — We analyze the informa-
tion content of a subsystem of five wells (see Figure 1
b)) in terms of measurement distributions using phase-
space methods. We focus on the two normalized spin-1
observables [37, 38]

ϕj ≡ Sj
x√
2n

=
1√
2

[
aj†
0

(
aj
1 + aj

−1

)
+ h.c.

]
/
√
2n,

πj ≡ −
Qj

yz√
2n

=
−i√
2

[
aj†
0

(
aj
1 + aj

−1

)
− h.c.

]
/
√
2n,

(3)

which form a set of independent canonical operators
[ϕj ,πj′ ] = iδjj

′
1 with corresponding bosonic mode oper-

ators aj ,aj† in the early-time regime [39]. Their Wigner
W -distribution is defined via [43]

Wj ≡ Wj(ϕj , πj)

=

∫
dϕ̃j dπ̃j

2π
e−i(ϕj ,πj)Ω(ϕ̃j ,π̃j)T

× Tr
{
ρj ei(ϕ

j ,πj)Ω(ϕ̃j ,π̃j)T
}
,

(4)

with the symplectic form Ω = iσ2 and σ2 being the sec-
ond Pauli matrix. As Wj is only accessible through
costly Wigner tomography [44, 45], it is mainly of
theoretical interest. Let us therefore also introduce
more experimentally convenient distributions, namely
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the Wigner marginals f j ≡ f j(ϕj) =
∫
dπjWj and

gj ≡ gj(πj) =
∫
dϕjWj , accessible through homodyne

measurements [28], as well as the Husimi Q-distribution,
which is obtained by projecting onto the coherent states
|αj⟩ = exp (αjaj† − αj∗aj) |0j⟩ [31, 34–36, 46], with
αj = (ϕj + iπj)/

√
2, leading to [47, 48]

Qj ≡ Qj(ϕj , πj) = Tr
{
ρj |αj⟩ ⟨αj |

}
. (5)

Information and correlations from classical distribu-
tions — To analyze the local information content of the
subsystem, we consider differential entropies of the classi-
cal distributions OA with respect to its left part A (see
Figure 1 b))

S(OA) = −
∫

dµA OA lnOA, (6)

where the integral measure dµA depends on the distri-
bution under scrutiny [49]. We note that (6) is always
well-defined for the non-negative marginal and Husimi
Q-distributions, but is restricted to Wigner-positive states
when applied to WA, which is an assumption implicitly
made when working within TWA or Gaussian models.

Being measures of disorder, classical entropies over in-
compatible observables are bounded from below by their
vacuum values via entropic uncertainty relations [50–55]
(see [56, 57] for reviews). When considered for quantum
many-body systems, these bounds scale with the num-
ber of modes, i.e. S(ŌA) ∼ M , showing that classical
entropies are extensive to leading order as a result of
vacuum contributions [58, 59]. However, as shown in [27],
scalings induced by quantum phenomena, such as the
area law, manifest themselves in the next-to-leading order
terms. Thus, we define the so-called subtracted classical
entropies as [27]

∆S(OA) ≡ S(OA)− S(ŌA), (7)

with the extensive vacuum contribution S(ŌA) ∼ M
being subtracted [60].

Let us further consider the classical version of the
archetypical measure for correlations between the left
and right parts of the subsystem, that is, the classical
mutual information

I(OA : OB) = S(OA) + S(OB)− S(O). (8)

Being already defined via a relative entropic measure,
no vacuum contributions have to be subtracted to reveal
quantum features.

Connections to quantum information theory — In the
context of the Gaussian model (2), the connection be-
tween subtracted classical and quantum entropies be-
comes a simple equality: in this case, we can establish
∆S(WA) = S2(ρ

A), where S2(ρ
A) denotes the Rényi-

2 entropy of the density matrix associated to WA [61].
Beyond Gaussianity, such simple relations can only be

established for the subtracted Rényi-2 entropy of WA [62].
However, in the following, we provide strong evidence that
the scaling of the subtracted classical entropies (7) also
extends to the non-Gaussian interacting case.

Furthermore, a connection to the quantum mutual in-
formation in the case of Gaussian states is straightforward
and reads I(WA : WB) = I2(ρ

A : ρB) [61]. More gener-
ally, classical mutual informations constitute lower bounds
to their quantum analogs by the uncertainty principle, i.e.
[54, 63]

I(OA : OB) ≤ I(ρA : ρB), (9)

which are expected to be tighter than second-moment
bounds beyond Gaussian states [64]. An immediate con-
sequence of (9) is that the standard argument for the
appearance of the area law for local interactions and ther-
mal states presented in [65] applies also to any classical
mutual information (see also [39]). Hence, classical mutual
information, albeit typically not capturing all quantum
correlations, shows the finite-size area law whenever its
quantum analog does.

Methods — We generate 104 synthetic samples for the
three distributions of our interest using TWA to simulate
an experiment showcasing the feasibility of the proposed
approach. In contrast to the estimation of low-order
moments, extracting entropic quantities from a set of
samples is more involved, since they are functionals of
the underlying distributions. Given a set of samples, we
employ the established k-nearest neighbor (kNN) method
devised in [66–68] using information about the statistics
of the nearest neighbors of each sample (see Figure 1 c)),
to arrive at an estimate of its local density. These results
are validated against the analytically solvable model (2)
in the early-time regime. We give a more comprehensive
validation of the kNN-estimator for our setup in [39].
Further, we define an energy scale by setting nc1 = −1,
consider Lithium-7 with c0 = −2c1 and set the quench
parameters to q = 4, J = 2, for which non-Gaussian
features arise around t = 3.

While the total system undergoes a unitary evolution
dictated by the Hamiltonian in Eq. (1), the considered
subsystem does not, as its entanglement with the rest
of the system implies a mixed reduced density matrix
[69]. In the following, we demonstrate the area law and
local thermalization for the theoretically interesting, but
experimentally difficult to access subtracted Wigner en-
tropy, as well as for the experimentally amenable sub-
tracted marginal entropy sum ∆S(fA) + ∆S(gA), and
the so-called Wehrl mutual information I(QA : QB) (the
remaining three quantities are presented in [40]).

Area law — We first study the early-time regime, that
is, t ≤ 4, in the upper row of Figure 2. At t = 0, the
subsystem is in a pure product state, and all entropic
measures evaluate to zero. Around t = 1, correlations
among the wells start to build up, causing subsystem A to
become entangled with its complement B. In this regime,
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Figure 2: Analysis regarding the presence of area and volume laws at early times t = 0, 1, 2, 3, 4 (upper row) and late
times t = 4, 5, 6, 7, 8 (lower row), respectively. Open (closed) plot markers denote TWA (analytic) results and the
corresponding solid (dashed) curves are fits. In the early-time regime, we observe the subtracted classical entropies to
fulfill a logarithmic growth with subsystem size in the sense of (10) (see [40] for the standard Wigner entropy). Their
sublinear scaling is highlighted for t = 4 by straight lines (gray dotted), which are fitted to the first two data points.
In accordance, we also find the finite-size area law (11) for the Wehrl mutual information. These findings hold true for
both the TWA and the analytical approach, which agree in the Gaussian regime, i.e. up to t = 3 [40], thereby also
validating the kNN estimator. For later times, the area law of the subtracted classical entropies tends into a stationary
volume law (12), thereby demonstrating local thermalization. After the stationary point t = 7, the local temperature
can be extracted via their inclines, which consistently yields T ≈ 5. The appearance of local thermalization is further
supported by the decreasing correlations between A and B towards zero as revealed by the evolution of the Wehrl
mutual information.

subtracted classical entropies obey the area law, i.e. a
logarithmic growth with system size M ,

∆S(OA) = κ1 ln (M + κ2) + κ3, (10)

just as one would expect for the entanglement entropy [14–
22]. The fit parameters κi are constrained by κ2 = e−κ3/κ1

to ensure ∆S(OA) = 0 when M = 0. Around t = 3,
the distributions begin to exhibit non-Gaussian features,
which we quantify by the relative entropy with respect to
the closest Gaussian distribution, see [40].

Similarly, the Wehrl mutual information signals the
generation of correlations between A and B in terms of
the finite-size area law [14]

I(OA : OB) = κ1 ln

[
5

π
sin

(
πM

5

)
+ κ2

]
+ κ3, (11)

which incorporates the reflection symmetry around M =
2.5. Again, the behavior coincides with what is expected
for the quantum mutual information [65], with maximal
correlations occurring at t = 4.

Local thermalization — For later times, i.e. in the
regime t ≥ 4 (lower row of Figure 2), the subtracted

classical entropies transition from an intermediate stage
around t = 5 to an extensive growth with system size
at t = 7. The latter remains stationary beyond t = 7,
signaling that the system has thermalized locally in the
considered degrees of freedom, with the remaining system
serving as a heat bath. In this case, all entropies of our
interest obey the volume law [3]

∆S(OA) = βM, (12)

where β = 1/T denotes the inverse local temperature.
Indeed, both final entropic curves show an incline of
T ≈ 5, illustrating how the local temperature can be
extracted from classical entropies by simple means. We
have checked that this temperature depends only weakly
on the quench parameters, as the dominating energy scale
is set by the fourth-order term proportional to c0 in (1).

While the classical entropies become extensive, the
Wehrl mutual information still obeys the finite-size area
law (11) for later times, which also highlights its robust-
ness against thermal fluctuations. In contrast to the early-
time dynamics, the correlations between A and B now
decline monotonically towards local thermal equilibrium.



5

Discussion — We have demonstrated that quantum
many-body phenomena can be probed with classical en-
tropies by considering a concrete model system that can
be readily realized experimentally. Specifically, we have
shown that it is possible to observe the area law, that is,
the characteristic logarithmic growth of the entanglement
entropy, and the volume law, which indicates local ther-
malization, via subtracted classical entropies and mutual
informations of experimentally accessible measurement
distributions. Crucially, we have not assumed the state
to obey a specific functional form and only relied on 104

samples which we deem experimentally feasible. Future
work will address what other parallels between classi-
cal entropies and quantum entropies exist, especially for
other degrees of freedom, and whether they also lend
themselves as easily to experimental implementations as
in the discussed work.
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Supplementary material

I. CLASSICAL WIGNER ENTROPY

We illustrate the extensive growth of standard classical
entropies by plotting the full classical Wigner entropy, i.e.
without subtracting the vacuum contribution, in Figure 1.
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Figure 1. Time evolution of the full Wigner entropy S(WA)
for which the leading-order volume law is apparent for all
times. The area law is barely visible on top of the extensive
growth in the early-time regime, i.e. for 0 < t ≤ 4. Note that
at t = 0 we have S(WA) = S(W̄A) = M(1 + lnπ) ≈ 2.144M .

II. NON-GAUSSIANITY

We consider a Gaussian model distribution

WA,Gauss =
1

ZA
e−

1
2 (χ

A)T (γA)−1χA

, (1)

where χA = (ϕA, πA)T is a vector in phase space,
(γA)jj

′
= Tr{ρA{χj−χj ,χj′−χj′}}/2 denotes the covari-

ance matrix and ZA = (2π)M
√
det γA is a normalization

constant. To assess the non-Gaussianity of a given dis-
tribution, WA, we introduce the Wigner relative entropy
with respect to the nearest Gaussian distribution, i.e.
the distribution with the same first- and second-order
moments [1, 2]

S(WA∥WA,Gauss) =

∫
dµA WA ln

WA

WA,Gauss . (2)

Then, WA is (non-)Gaussian if and only if
S(WA∥WA,Gauss)(>) = 0. The non-negativity of
the Wigner relative entropy translates into a Gaussian
upper bound on the subtracted Wigner entropy, i.e.
∆S(WA) ≤ ∆S(WA,Gauss), showing that resolving
non-Gaussian features decreases the missing informa-
tion about the underlying distribution. In this sense,

S(WA∥WA,Gauss) measures the additional information
encoded in WA with respect to WA,Gauss.

To calculate the Wigner relative entropy (2) without
reconstructing any distribution, we use (1) and perform
a few straightforward simplifications, leading to

S(WA∥WA,Gauss) = ∆S(WA,Gauss)−∆S(WA). (3)

While ∆S(WA) is estimated using the kNN method, the
subtracted Wigner entropy of the nearest Gaussian distri-
bution is computed via

∆S(WA,Gauss) =
1

2
ln det

(
2γA

)
, (4)

such that only the covariance matrix has to be extracted
from the TWA samples. We show the resulting relative
entropy curves in Figure 2 for all times discussed in the
main text.
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Figure 2. Time evolution of the non-Gaussianity measure
S(WA∥WA,Gauss). Single-well distributions look rather Gaus-
sian, while non-Gaussian features become apparent for larger
subsystems. The non-Gaussianity is negligible for early times
and peaks around t ≈ 5, for which the relative information
difference is ∼ 8%. We checked negative values at M = 5 for
early times are caused by an insufficient number of samples,
see [3] for details.

III. MODE OCCUPATIONS FOR LATE TIMES

A priori, it is unclear whether TWA gives meaningful
results in the late-time limit where local thermalization
occurs. As a semi-classical approximation, TWA is ex-
pected to hold whenever the momentum modes are occu-
pied mesoscopically, that is, filled up to at least roughly
one order of magnitude above the quantum one-half [4–7].
In Figure 3, we confirm that this condition is fulfilled for
late times by plotting the momentum-mode occupations
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Figure 3. Dynamics of the momentum-mode occupations for the zero mode (left), the side modes (middle) and their sum (right).
The atom number n = 2× 104 and the quantum one-half (three-half) are depicted by dotted and dashed lines, respectively.

nmF
(k) = ⟨ak†mF

akmF
⟩ for the zero mode (left panel), the

side modes (middle panel) and their sum (right panel).
IV. OTHER CLASSICAL

INFORMATION-THEORETIC MEASURES

In analogy to Fig. 2 in the main text, we show the
dynamics of the subtracted Wehrl entropy ∆S(QA),
the Wigner mutual information I(WA : WB) and the
marginal mutual information sum I(fA : fB)+I(gA : gB)
in Figure 4. All quantities behave as expected from Fig. 2.
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Figure 4. Same analysis as in Fig. 2 in the main text for the subtracted Wehrl entropy (left column), the Wigner mutual
information (middle column) and the marginal mutual information sum (right column). All observed quantum features carry
over to these three quantities as well. The local temperature T ≈ 5 is also observed for the subtracted Wehrl entropy. Note here
that the latter is based on the differently normalized Husimi Q-distribution, which we accounted for by subtracting M ln 2.
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C O N C L U S I O N A N D O U T L O O K

We have herein presented the results of various different projects that
lie at the intersection of quantum and classical physics as well as
semiclassical and variational simulation methods. The scope of the
discussed topics is relatively broad and their only common theme is
their numerical character. Let us thus give separate closing remarks
for each of them.

10.1 neural quantum states

The rapid developments in machine learning caused profound conse-
quences in all natural sciences. The arguably most famous example
is the advent of AlphaFold [275], which allows to predict the three
dimensional structures of proteins up to atomic accuracy based on
their amino acid sequence. But also variational approaches in the
context of quantum many-body physics, as those discussed in this
thesis (see Chapter 5 and Chapter 7), have profited tremendously from
machine learning inspired techniques, opening up novel paths to solve
the quantum many-body problem [121].

Today, neural quantum states give state-of-the-art results for chal-
lenging problems in two or more dimensions, such as for the real-time
evolution of spin systems [154] as well as for ground states of frus-
trated spin models [98, 99], fermionic gases [170, 171] and molecules
[172]. The projects that originated in the context of this thesis aim to
push the range of scenarios applicable to treatment with neural quan-
tum states and try to improve our understanding of their properties.

Chapter 5 introduces a novel method to simulate the dynamics of
open quantum systems, based on the framework of positive opera-
tor valued measures, thereby translating the problem of modeling a
complex-valued density matrix to that of a discrete, real-valued prob-
ability distribution. Naturally, this opens up the door to employing
various tools aimed at encoding probability distributions that have
been developed within the machine learning community. The main
drawback of this approach is the loss of a guarantee for the positivity
of the density operator, since there exist probability distributions for
which the eigenvalues can turn negative [207]. Nevertheless, we found
this approach to be very competitive compared to other neural quan-
tum state techniques. Future research may aim to use this method to
explore phenomena of open quantum systems that so far eluded clas-
sical simulation schemes. Also, it would be interesting to benchmark
the performance of network architectures beyond recurrent networks.

139
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Particularly, convolutional networks seem to be a promising path for-
ward, given their striking performance for unitary time evolutions
[154].

Chapter 7 aims to shed light on the performance differences among
different network architectures in ground state optimizations and their
underlying reasons. As discussed in Section 4.1 the requirements for
neural quantum states are slim; they must merely map basis configura-
tions onto complex-valued coefficients in a differentiable fashion and
thus a whole zoo of network architectures exists for the use as neural
quantum states. We find that the ground states of stoquastic Hamilto-
nians, meaning those, that do not feature a sign rule, are easy to learn.
Here, all network architectures give similar performances. However,
when turning to frustrated models, pronounced differences arise. We
identify the symmetrization procedure as a crucial switch towards
learning the correct signs and show that autoregressive architectures
are by design not optimally suited to handle such scenarios. Recent
works investigate the limit of much larger network architectures while
still employing second-order optimizers, relying on a reformulation
of the stochastic reconfiguration method given in Eq. (4.12) [98, 99].
It would be highly interesting to investigate whether the observed
performance differences continue to exist in those regimes.

Generally, neural quantum states have been demonstrated to be a
highly promising technique for a wide range of applications. Never-
theless, their optimization is not without challenges, often relies on
intuition, and can depend on seemingly unimportant design choices,
such as the precise symmetrization scheme [C]. Thus, for neural quan-
tum states to become mainstream applications that can be reliably
used in new scenarios of interest, there exist numerous hurdles that
future research must address. Subjectively, the most pressing question
concerns stability during optimization which can be impaired due to
many different factors, such as stochastic noise [159], initialization of
the network parameters, infinities in the activation functions, particu-
larly when using holomorphic networks, and even numerical precision
[272] as well as whether to interpret the output as the coefficient ψ(⃗s)
or its logarithm ln (ψ(⃗s)) [99]. These problems are even more striking
in the case of real-time evolution, as a deviation from the correct
trajectory is bound to have a compounding effect for the following
times. In the context of this thesis, we at one point aimed to model
the dynamics of the fermionic t−V model in two dimensions [276].
While early attempts on small 4× 4 lattices gave promising results,
scaling to larger 6× 6 lattices proved challenging without an obvious
cause.
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10.2 generalizations to classical dynamics

The project presented in Chapter 6 adapts the techniques developed
in Chapter 5 and generalizes them to continuous probability densities,
where the curse of dimensionality arises from discretizing continuous
space in high dimensions. By using a suited ansatz function, such
as an invertible neural network, we may reduce the computational
complexity to a scaling that is subexponential. The price to pay is that
the ability to store arbitrary densities on grids is replaced by only
being able to represent those densities which can be encoded using
the variational parameters of the ansatz function. We emphasize that
a key advantage of normalizing flows lies in their ability to generate
exact samples with normalized probabilities, allowing straightforward
estimations of functionals of the distribution, such as its differential
entropy.

The studied examples either allow for analytical or numerical so-
lutions so that we have a clear benchmark available. For future appli-
cations, it would be interesting to probe those regimes and types of
partial differential equations where other methods are bound to fail
so that we can examine when the variational Monte-Carlo approach
gives an edge over existing techniques.

10.3 area and volume laws in bose-einstein condensates

In Chapter 8 and Chapter 9 we explore the presence of area- and
volume-laws in the phase-space descriptions of spin-1 Bose-Einstein
condensates following a quench from an initial product state. While
area laws are typically observed for the quantum entropies of ground
states, their presence in states obtained from a quench is also estab-
lished [190]. What is novel here, is that these quantum features carry
over to the classical, i.e. differential entropies of phase-space descrip-
tions of quantum systems upon subtraction of the extensive vacuum
contributions.

Chapter 8 lays out the theoretical and numerical techniques that
are employed in detail. In short, we synthetically generate samples
of both the Wigner W- and Husimi Q-distribution (see Eqs. (2.60)
and (2.64)) and estimate their entropy and mutual information using a
general, asymptotically unbiased k-nearest neighbor estimator, while
keeping the number of samples required for convergence at an experi-
mentally feasible level. To ascertain the stability of the proposal with
respect to measurement details such as quench parameters, readout
time, thermal noise, subsystem position, system size, and boundary
conditions we carry out ablative studies where we alter a single of the
aforementioned settings. While we may safely confirm the presence of
the area law in most of these cases, going to strongly non-Gaussian
states proves challenging for the estimator. In Chapter 9 we extend
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our analysis to later times and observe the transition from an area- to
a volume-law as the system thermalizes, thus allowing an information
theoretical perspective on quantum thermalization from phase-space
descriptions (also see Section 2.8).

As the presence of these information-theoretical phenomena in
phase-space distributions is novel [277], various paths forward can be
envisioned. For example, one could imagine carrying out a similar
analysis for the ground state of the system at hand, although it may
be expected that the experimental preparation of such states is con-
siderably more challenging, as coherence during the adiabatic state
preparation must be ensured. One might also extend the analysis at
hand to two-dimensional setups, where area laws in the entanglement
entropy for bosonic systems have been proven rigorously [278–281].
However, such considerations must always take into account the sam-
ple complexity to reach convergence when estimating the entropy.
Thus, it may also be interesting to think about entropy estimation
schemes that incorporate a physical prior, such as continuous normal-
izing flows that may be restricted to only encode such flows that are
in agreement with Hamiltonian dynamics [282–284].
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Güler, Chi-Ho Wai, Yannick Grimm, Benjamin Glogauer, and Bianca
Benner. Also, I have had the best time living together with Annika
Jungk, Tim Ahrens, Hannah von Ammon, Lorenz Paetzke, Maike
Gnutzmann, Lorenzo Biasi, and Firat & Mira Terzi.

I want to thank my family for their continuous support ever since I
decided to study physics more than eight years ago. It has been a great
time and I am glad that you were all part of it. I am deeply saddened
that my dad is no longer around to witness this final chapter of my
academic journey.

Finally, I want to express my deepest gratitude to Antonia, my
partner and best friend. Coming home to you never ceases to put a
smile on my face. I am so looking forward to all the time ahead of us :)


	Dedication
	Abstract
	Zusammenfassung
	Publications
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	 Background
	1 Introduction
	1.1 Quantum Simulation
	1.2 Neural Quantum States

	2 Quantum Theory
	2.1 Mathematical Formalism
	2.2 Subsystems, Entanglement and Quantum Information
	2.3 Dynamics of Open Quantum Systems
	2.4 Positive Operator Valued Measures (POVMs)
	2.5 Bosonic Modes
	2.6 Phase-Space Representations of Bosonic Modes
	2.7 Spin-1 Bose-Einstein Condensates
	2.8 Thermalization of Closed Quantum Systems

	3 Machine Learning
	3.1 Generative Modeling
	3.1.1 Sampling from high-dimensional Distributions
	3.1.2 Expressivity

	3.2 Neural Network Architectures
	3.2.1 Restricted Boltzmann Machines (RBMs)
	3.2.2 Convolutional Neural Networks (CNNs)
	3.2.3 Recurrent Neural Networks (RNNs)
	3.2.4 Graph Neural Networks (GNNs)
	3.2.5 Invertible Neural Networks (INNs)


	4 Classical Simulation Techniques
	4.1 Neural Quantum States
	4.1.1 Expectation Values of Operators
	4.1.2 Generation of Samples
	4.1.3 Ground State Optimization
	4.1.4 Unitary Time Evolution

	4.2 Truncated Wigner Approximation


	 Results
	5 Time-Dependent Variational Principle for Open Quantum Systems with Artificial Neural Networks
	5.1 Contributions
	5.2 Motivation

	6 Variational Monte Carlo Approach to Partial Differential Equations with Neural Networks
	6.1 Contributions
	6.2 Motivation

	7 Optimizing Design Choices for Neural Quantum States
	7.1 Contributions
	7.2 Motivation

	8 Area laws for Classical Entropies in a Spin-1 Bose-Einstein Condensate
	8.1 Contributions
	8.2 Motivation

	9 Area laws and Thermalization from Classical Entropies in a Spin-1 Bose-Einstein Condensate
	9.1 Contributions
	9.2 Motivation

	10 Conclusion and Outlook
	10.1 Neural Quantum States
	10.2 Generalizations to Classical Dynamics
	10.3 Area and Volume Laws in Bose-Einstein Condensates

	 Bibliography
	Acknowledgments


	PRL2021_Supp.pdf
	Time-Dependent Variational Principle for Open Quantum Systems with Artificial Neural Networks
	Derivation of the TDVP equation
	Observables and Operators in the POVM-formalism
	Details of the RNN-architecture
	Comparison to exact numerical simulations for small system sizes
	Dissipative confinement correlations


	MLST2022.pdf
	Variational Monte Carlo approach to partial differential equations with neural networks
	1. Introduction
	2. Normalizing flows
	3. Time-dependent variational principle
	4. Problem setup
	5. Application 1: diffusion in high dimensions
	6. Application 2: diffusion in classical phase space
	7. Conclusion and outlook
	References


	MLST2022_Supp.pdf
	Variational Monte Carlo Approach to Partial Differential Equations with Neural Networks
	Derivation of the TDVP Equation
	Approximation Error
	Computational Complexity
	Normalizing Flows
	Isotropic Heat Equation as a 1D Problem
	Phase Space Evolution


	BECPRA.pdf
	Area laws for classical entropies in a spin-1 Bose-Einstein condensate
	Abstract
	Introduction
	Multi-well spin-1 BEC
	Setup
	Modes and Hilbert space
	Hamiltonian
	Observables: Spin operators
	Readout schemes
	Separate detection
	Simultaneous detection


	From a spin-1 BEC to a continuous-variable quantum system
	Undepleted pump approximation
	Relative modes and canonically conjugate variables
	Canonical phase-space
	Phase space distributions
	Wigner W-distribution
	Marginal distributions
	Husimi Q-distribution


	Simulating the Dynamics
	Truncated Wigner Approximation
	Gaussian Model
	Gaussian Hamiltonian
	Mean and covariance matrix
	Symplectic time evolution
	Comment on field theory correspondence


	Area law in phase space
	Quantum entropies
	Classical entropies
	Standard entropies
	Subtracted entropies

	Classical mutual informations

	Entropy Estimation
	k-nearest-neighbor estimator
	Benchmarks in low dimensions
	Scaling with dimension
	Tuning away from the Gaussian regime

	Results
	Correlation matrices
	Observation of the area law
	Distributions: Gaussian versus non-Gaussian
	Initial state: vacuum versus thermal
	Subsystem position: center vs. outward
	System size: large vs. small
	Sample size: small versus large
	Boundary conditions: open versus periodic

	Discussion
	Acknowledgements
	Operator identities for the undepleted pump regime
	References


	BECPRL.pdf
	Area laws and thermalization from classical entropies in a spin-1 Bose-Einstein condensate
	Abstract
	References


	BECPRL_Supp.pdf
	Supplementary material
	Classical Wigner entropy
	Non-Gaussianity
	Mode occupations for late times
	Other classical information-theoretic measures
	References



