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Abstract

The goal of this thesis are numerical studies of the era of reionization, which took place

at about a 150 million years to a billion years after the Big Bang. Since reionization is

a process driven by radiation, a major fraction of this work is dedicated to numerical

methods for radiative transfer. In particular, we develop the Sweep method, which

allows us to study reionization within large cosmological simulations. We begin by in-

troducing the basics of the Sweep algorithm and its implementation in the simulation

code Arepo. We discuss the motivation behind it, how it integrates with the rest of

Arepo and perform a number of tests to assess its performance and physical accuracy.

We find that the Sweep method does not only produce physically accurate results, but

does so in a very efficient manner, even when applied to large simulations on a large

number of processors. We then proceed by introducing the standalone radiative trans-

fer postprocessing code Subsweep in which we add a variety of improvements to the

original Sweep method, in particular the addition of sub-timesteps. We perform a

number of additional tests to verify that Subsweep correctly solves a number of physi-

cal problems and show that sub-timesteps can drastically improve performance of the

Sweep algorithm when applied to problems with heterogeneous environments without

sacrificing accuracy. Finally, we apply Subsweep to the cosmological simulation suite

TNG in order to recreate the era of reionization in the TNG universe. We find that

Subsweep allows us to study the spatial structure of reionization in detail and that we

can reproduce the observational constraints on the history of reionization reasonably

well.
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Zusammenfassung

Das Ziel dieser Arbeit ist die numerische Untersuchung, des Zeitalters der Reion-

isierung, das etwa 150 Millionen bis eine Milliarde Jahre nach dem Urknall stattfand.

Da die Reionisierung ein Prozess ist, der durch Strahlung vorangetrieben wird, wid-

met sich ein wesentlicher Teil dieser Arbeit der Entwiklung numerischer Methoden für

den Strahlungstransport.

Insbesondere entwickeln wir die Sweep-Methode, die es uns ermöglicht, die Reion-

isierung innerhalb großer kosmologischer Simulationen zu untersuchen. Wir beginnen

mit einer Einführung in die Grundlagen des Sweep-Algorithmus und seiner Imple-

mentierung im Simulationscode Arepo. Wir erläutern die Motivation hinter der

Methode, wie sie sich mit dem Rest von Arepo integriert und führen eine Reihe von

Tests durch, um ihre Effizienz und physikalische Genauigkeit zu bewerten. Wir stellen

fest, dass die Sweep-Methode nicht nur physikalisch genaue Ergebnisse liefert, sondern

dies auch auf sehr effiziente Weise tut, selbst wenn sie auf großen Simulationen mit

einer Vielzahl von Prozessoren angewendet wird.

Daraufhin stellen wir den eigenständigen Strahlungstransport Code Subsweep vor,

in dem wir eine Vielzahl von Verbesserungen gegenüber der originalen Sweep-Methode

hinzufügen, insbesondere die Einführung einer Zeitschritt-Hierarchie. Wir führen eine

Reihe zusätzlicher Tests durch, um zu überprüfen, dass Subsweep eine Reihe von

physikalischen Problemen korrekt löst, und zeigen, dass die Zeitschritthierarchie die

Effizient des Sweep-Algorithmus erheblich verbessern kann, wenn sie auf Probleme

mit heterogenen Umgebungen angewendet werden, ohne dabei die Genauigkeit zu

beeinträchtigen.

Schließlich wenden wir Subsweep auf die kosmologische Simulationsreihe TNG an

um das Zeitalter der Reionisierung in dem TNG-Universum nachzubilden. Wir stellen

fest, dass Subsweep es uns erlaubt die räumliche Struktur der Reionisierung im Detail

nachzuvollziehen und das wir Daten aus Beobachtungen reproduzieren können.
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Chapter 1

Introduction

1.1 Motivation

Radiation emitted from stars, accretion disks around black holes, supernovae and other

astronomical objects is an important ingredient in understanding the structure of the

universe. Not only is radiation the primary phenomenon by which we can observe the

universe, but it also plays an important role in the evolution of the universe itself.

The earliest light we are able to observe stems from the time of recombination and

is measured today as the so-called cosmic microwave background which has given us

detailed insight into the structure of the very early universe. Hundreds of millions of

years later, the first stars formed and the light they emitted began to gradually affect

and shape the universe around it and played a major role in creating the complex,

heterogeneous universe we see today.

One of the processes which is believed to be caused by the light emitted from the

first stars is the reionization of the intergalactic medium. After recombination, the

universe consisted primarily of neutral hydrogen. As the first stars form, the high-

energy light they emit begins to slowly ionize the hydrogen around them, forming

ionized bubbles. As time passes and more and more stars and other radiating objects

form, the bubbles continue growing in size until they begin to overlap and eventually

cover essentially the entire universe. While we do have a basic understanding of how

this process took place, there are still a number of open questions about reionization.

For example, the timeline of reionization is still relatively unconstrained with estimates

of the beginning ranging between z = 15 − 40 [Abel et al., 2002, Iliev et al., 2008,

Wise and Abel, 2008] and the end being estimated to somewhere between z ≈ 5.5−8.

There is also some uncertainty as to how much reionization is driven by stars and how

much of it is caused by other radiation sources, such as the accretion disks of active

galactic nuclei.
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2 Outline

Observations of the early universe play a crucial role in improving our understand-

ing of reionization quantitatively and qualitatively. However, numerical simulations

of these non-linear processes are another important tool that can not only provide

valuable information about the process itself, but can also tell us whether our under-

standing of the effects causing it is correct.

In this thesis, we will focus on studying reionization using numerical methods. The

numerical treatment of the equations that describe the transport of radiation from the

sources to the gas surrounding it is a challenging problem. Therefore, this work focuses

to a large degree on the numerical methods themselves. In particular, we introduce

the Sweep method for radiative transfer, verify its correctness in a number of test

problems and describe its advantages. We first discuss the original implementation

of the Sweep method in the simulation code Arepo [Springel, 2010b]. Afterwards, we

extend the discussion to the standalone postprocessing code Subsweep which includes

an extended Sweep method which introduces a method for performing sub-timesteps

in coupled systems of radiative transfer and radiation chemistry.

After the discussion of the Sweep method and of related numerical methods, we

will bring our focus to the application of Subsweep in order to study Reionization on

the TNG simulations [Marinacci et al., 2018, Naiman et al., 2018, Nelson et al., 2018,

2019, 2021, Pillepich et al., 2018, 2019, Springel et al., 2018].

1.2 Outline

This work is split into six chapters.

In this first chapter, we give the motivation behind this work and briefly present

the overall structure of the thesis.

The second chapter is concerned with the available theories and methods under-

lying this work. In the first half of the second chapter, we give a broad overview of

the theoretical background of cosmology in general and reionization in particular. We

briefly discuss the observational evidence and the leading cosmological model ΛCDM.

The second half discusses some commonly used simulation methods in Astrophysics

for numerical studies of Gravitation, Hydrodynamics and Radiative Transfer.

The third chapter is based on a publication on the Sweep algorithm for Astro-

physics. It introduces the concept of transport sweeps as an effective solution for

Radiative Transfer and discusses our implementation of the method in the simulation

code Arepo. We show a number of tests performed with the method in order to show

that it produces physically accurate results efficiently, even for large problem sets.

The fourth chapter introduces the standalone code Subsweep for radiative transfer
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postprocessing and discusses its implementation details as well the sub-timestepping

procedure, which is the major improvement to the Sweep method that Subsweep in-

troduces. We test Subsweep in a variety of physical setups and find that it produces

accurate results and that sub-timesteps can drastically improve performance, partic-

ularly for large simulations with highly heterogeneous media.

In the fifth chapter, we employ Subsweep in order to study the era of reionization

in a set of postprocessing simulations performed on results of the TNG simulation

suite. We find that our code reproduces the history of reionization reasonably well

and compare the results to a number of observational constraints.

Finally, the sixth chapter concludes this thesis and provides a brief discussion of

interesting directions for future research.





Chapter 2

Theory

In this chapter, we give a brief, general overview of the theoretical framework of

cosmology in context and then focus in particular on the era of reionization.

2.1 Cosmology

Physical cosmology is the study of the evolution of the universe from its very early

beginnings to the present time and beyond. In the last century, this field has made a

lot of advances culminating in what is now seen as the standard model of cosmology,

ΛCDM.

2.1.1 ΛCDM

One of the most fundamental realizations in physical cosmology is the observation that

galaxies appear to move away from us, with more distant galaxies moving away faster

than those nearer to us [Hubble, 1929, Lemâıtre, 1927]. Under the assumption of the

cosmological principle, which states that the we humans do not live in a particularly

special place with respect to the fundamental laws of physics, the remaining, natural

interpretation of this observation is that the universe is continuously expanding, such

that even objects that are at rest will be observed as receding from us.

This expansion is expressed as the time evolution of the scale factor a(t), which

determines physical distance. Given a comoving distance D, that is a distance that is

not subject to the expansion of the universe, we find that the corresponding physical

distance is d = Da(t). The scale factor is defined such that at the time of the Big Bang

tB, a(tB) = 0 whereas at the present time (t = 0), a(0) = 1. The Hubble parameter

H is the quantity describing the rate of expansion and is defined by H(t) = ȧ(t)
a(t)

. We

also define the redshift z = 1
a
− 1, which is a convenient quantity to use as a measure

5



6 Cosmology
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Figure 2.1. From Collaboration [2020]: The 2018 Planck map of the temperature

anisotropies of the CMB. Color scale shows the magnitude of the anisotropy, while

the black lines show the polarization.

of cosmological time, since it can be directly observed and does not depend on the

parameters of the underlying model.

The current leading theory of cosmology is the Lambda-Cold Dark Matter model

(ΛCDM), in which the universe is described as flat and homogeneous (on large scales)

and with its behavior driven by the primary constituents of dark energy (Λ), cold

dark matter (CDM) and ordinary, baryonic matter.

In ΛCDM, the evolution of the Hubble parameter is given by

H(t)2 = H(0)2
(
ΩΛa

−3 + Ωka
−2 + (Ωm + Ωb)a

−3 + Ωrada
−4
)
, (2.1)

where ΩΛ,0 is the dark energy density parameter, Ωk,0 is the curvature parameter, Ωm,0

is the matter energy density and Ωrad,0 is the radiation energy density parameter.

The predictions made by this equation have made it possible to strongly con-

straint the cosmological parameters via observations. For example, the most re-

cent observations of the angular power spectrum of fluctuations in the Cosmic Mi-

crowave Background (CMB) by the Planck missions [Collaboration, 2020] give values

of H0 = (67.4 ± 0.5) km s−1Mpc−1, Ωm = 0.315 ± 0.007, Ωlambda = 0.679 ± 0.013,

Ωb = 0.049 00 ± 0.000 48, and σ8 = 0.811 ± 0.006, where H0 is the Hubble constant,

Ωm is the matter density parameter, ΩΛ is the dark energy density parameter, Ωb is

the baryon mass density parameter and σ8 is the matter fluctuation parameter.

Other methods for constraining the cosmological parameters include
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1. The evolution of the supernova luminosity as a function of time [Perlmutter

et al., 1999].

2. Baryonic acoustic oscillations [Eisenstein and Hu, 1998, Viel et al., 2002] used

as a standard ruler.

3. Comparison of theoretical predictions and observations of the abundance of mas-

sive haloes [Peebles et al., 1989].

4. The relative mass fractions of species in Big Bang Nucleosynthesis [Cyburt et al.,

2016, Walker et al., 1991].

2.1.2 Evolution of the universe in ΛCDM

In the early stages, the ΛCDM universe consisted primarily of low-velocity dark mat-

ter, with density perturbations described by the primordial power spectrum which

describes the density fluctuations as a function of length scale and is characterized

by the slope ns = 0.962. The present day universe is much more heterogeneous, with

most of the objects having been aggregated onto the filaments that describe the large

scale structure of the universe. At the intersection of filaments are galaxy clusters,

which themselves contain hundreds or thousands of galaxies, each of which contains,

on average, hundreds of billions of stars. A major ongoing research question is un-

derstanding the formation of these large scale structures. The currently prevailing

picture is that large scale structures form from the bottom up - from smaller scale

structures.

In the very early stages of the universe, the expansion of space causes a gradual,

adiabatic cooling of the hot matter that is distributed homogeneously throughout

space. At t = 400.000 years, it has cooled enough for radiation to decouple from

matter, thus allowing protons and electrons to recombine into hydrogen atoms. The

radiation originating from this process is responsible for the cosmic microwave back-

ground which we observe today, redshifted by a factor of z = 1100. After this point,

the universe contains no luminous sources and is therefore dark, an era called the Dark

Ages. Small quantum fluctuations in the matter distribution which formed after the

Big Bang lead to small overdensities, which become larger and larger over time due to

gravity pulling more and more mass into overdense regions. These overdensities will

eventually become large enough to form the first galaxies and galaxy clusters. The

stars in these galaxies create light, ending the Dark Ages and beginning the process

of reionization.
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Figure 2.2. From [Barkana and Loeb, 2001]: Cooling rates in erg cm3 s−1 for atomic

hydrogen (solid, red line) and molecular hydrogen (dashed, blue line) as a function of

temperature.

2.2 Star formation

Understanding star formation is an active area of research and is difficult even in

the present-day universe. Our current understanding of star formation in the early

universe is based on the theory of present-day star formation. The currently prevailing

theory is that stars form when large molecular clouds, which were previously stabilized

against gravitational collapse by their own gas pressure exceed a critical mass and

begin collapsing. Since gas pressure increases with the temperature of the gas, efficient

cooling is an essential ingredient of star formation. As shown in Fig. 2.2, in pristine

gas, the primary coolants are molecular and atomic hydrogen for T < 1 × 104K

and T > 1 × 104K respectively, and there are no efficient coolants for gas below

T < 1 × 103K, which prevents clouds below virial temperatures of 1 × 103K from

collapsing. When the gas is enriched with metals, more cooling processes become

available, which in turn enables smaller and smaller clouds to collapse, increasing star

formation efficiency.

This is the underlying reason for the observation that the first generations of stars

are much more massive than average stars today - the extremely low metallicities in

the primordial gas prevented smaller stars from forming.

From cosmological simulations, we estimate the redshift at which the first stars

form to be around z = 20 to z = 30 [Yoshida, 2019].
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2.3 Reionization

As the first stars form, their photons begin ionizing the surrounding neutral hydrogen

in the IGM. Over time, the entire universe becomes ionized, in a process called reion-

ization. It is still an open question when reionization took place, how it proceeded

and which radiation sources were responsible for it. Predictions for the beginning

of reionization range from z ≈ 30 − 40 [Iliev et al., 2008, Wise and Abel, 2008] to

z ≈ 15− 20 [Abel et al., 2002]. Reionization initially forms isolated, ionized bubbles

which then expand and eventually cover the entire universe [Iliev et al., 2008, Lidz

et al., 2007]. These timings are based on predictions made by cosmological simulations

and therefore depend quite strongly on model specific details and parameters.

2.3.1 Observational evidence

Gunn-Peterson Troughs

Observational evidence of reionization comes from multiple sources. One example are

Gunn-Peterson Troughs [Gunn and Peterson, 1965] in the spectra of high redshift

quasars. As light from a quasar encounters neutral hydrogen, an absorption line is

created at the Lyman-α wavelength. Since the spectrum is continuously redshifted

as it travels, each cloud of neutral hydrogen causes an absorption line at a different

wavelength, creating a feature that is called a Lyman-α forest. From this spectrum,

it can be inferred at which redshift the light from the quasar stopped encountering

neutral hydrogen clouds, which in turn provides an estimate for the timing of the end

of reionization.

The Gunn-Peterson optical depth to Lyman-α photons is given by

τ = 4.9× 105
(
Ω0h

2

0.13

)−0.5(
Ωbh

2

0.02

)
1 + z

7
xHI, (2.2)

where Ω0 is the matter density of the universe and h = H
100 km s−1 Mpc−1 . Even for small

xHI, the optical depth becomes large, so that the signal is fully absorbed. This means

that the optical depth can only be used to probe the final stages of reionization, where

the gas is mostly ionized already.

Results using this method estimate the end of reionization at around z = 5.5 to

6 [Becker et al., 2001, Fan et al., 2002, 2006a,b].

Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a remnant of recombination. Before

recombination, photons had low mean free path lengths due to Thomson Scattering
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Figure 2.3. From Fan et al. [2006b]: Spectra of nineteen quasars between 5.74 <

z < 6.42, clearly exhibiting Gunn-Peterson troughs at different wavelengths.

on the free electrons of the ionized hydrogen. After recombination, hydrogen was

neutral so that photons could travel freely. The photons of the CMB follow a black

body spectrum with temperature T = 2.725(1 + z) K with small fluctuations on the

order of 1× 10−5K.

If electrons are created due to reionization, those electrons can cause Thomson

scattering of photons which in turn causes a damping proportional to e−τes where τes

is the Thomson scattering optical depth. Via this effect, the patchy nature of ionized

regions during reionization cause a measurable effect on the anisotropy of the CMB

[Doré et al., 2007, Santos et al., 2003].

Another effect of Thomson Scattering off of free electrons is the polarization of

the CMB. There are two modes of polarization, E-mode and B-mode, in analogy to

electrostatics. With respect to reionization, the important mode is the E-mode which

has a vanishing curl and is created through Thomson scattering. The polarization

introduces anisotropies at large angular scales in the power spectrum which can be

used to estimate the timing of reionization.

Combining these CMB observations leads to estimates of the redshift of reioniza-

tion of z=7.68+-0.79 [Planck Collaboration, 2014], where it is assumed that reioniza-

tion takes place instantly everywhere.
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Figure 2.4. From Pritchard and Loeb [2012]: The upper panel shows representative

slices through a cosmological simulation for the corresponding time. The bottom

panel shows the 21-cm signal shown as the brightness temperature relative to the

CMB temperature as a function of frequency at which the signal is received.

21cm Line

Possibly the most accurate observational evidence of reionization is provided by the

21cm line. This line corresponds to a hyperfine spin-flip transition in the ground state

of neutral hydrogen with a energy differential of E = hc
21 cm

= 5.9 µeV. Since the signal
is at radio wavelengths, it can be observed from the ground. Using this signal, a 3D

map of the neutral hydrogen distribution can be created by mapping the 21cm line

according to redshift as λ(z) = 21 cm(1 + z).

The brightness temperature TB of the 21cm line follows the proportionality

TB ∝ 7mK(1 + δ)xHI

(
1− TCMB

TS

)
(1 + z)1/2, (2.3)

where TCMB is the CMB temperature and TS is the spin temperature of hydrogen. Its

complicated evolution is shown in Fig. 2.4. Initially, at very high redshifts z > 200,

the spin temperature is coupled to the CMB temperature, so that the brightness

temperature is 0 and no 21cm signal is detected. At lower redshifts, 200 > z > 40,

the hydrogen cools and the spin temperature decreases, so that the cold gas can

be seen in absorption relative to the CMB. The first stars create Lyman-α photons

which lead to a strong coupling between the spin temperature and the hydrogen gas

temperature. Initially, this leads to an absorption signal, but as the gas heats, it

becomes an emission signal.
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Figure 2.5. From Nelson et al. [2019]: Comparison of a variety of large cosmological

simulations along two primary axes: The cosmological volume / the number of resolved

galaxies, as well as the mass resolution.

2.4 Simulating Reionization

One of the best sources of constraints for reionization is given by cosmological sim-

ulations. Here, we are going to discuss some of the challenges that arise in these

simulations.

2.4.1 Size and Resolution

On one hand, the size of a cosmological simulation needs to be sufficiently large in

order to be representative for the whole universe and to reduce the error introduced

through cosmic variance. The typical order of magnitude for a desirable box size is

about 100Mpc [Iliev et al., 2014, Shin et al., 2008]. A look at reionization in particular

yields a similar estimate, with sizes of ionized bubbles being about 100Mpc at z = 6.

On the other hand, as shown in Fig. 2.5, if computational cost is kept fixed,

increasing the size of the box implies higher mass of the individual elements in the

simulation and therefore worse resolution of the smallest structures in the simulation

(typically galaxies), which implies an overall reduction of accuracy of the simulation.



Simulation methods 13

2.4.2 Escape Fractions

Due to the limited ability of even modern computing hardware to simultaneously

accurately resolve the interstellar medium at comparatively small length scales while

still simulating cosmologically relevant box sizes, many relevant physical processes,

such as star formation and supernovae are implemented by sub-grid models (see, for

example, Springel and Hernquist [2003]) which provide an effective way to represent

the physics of processes taking place at length scales below the resolution limit.

One such effect that is particularly relevant to understanding reionization is the

absorption of UV radiation before it leaves a galaxy, giving rise to the escape fraction

fesc defined as the fraction of photons leaving the galaxy to the total number of photons

that were emitted originally. The value of the escape fraction depends on galaxy

properties, due to different dust opacities and densities and strongly constraining its

value is difficult. Observational evidence on Lyman-α radiation gives an approximate

dependence on the redshift that behaves as fesc ∝ (1 + z)2.6±0.2 [Hayes et al., 2011]

between 0.3 < z < 6.0. In cosmological simulations, it is often taken to be between

10% and 20% [Finkelstein et al., 2019, Robertson et al., 2015].

2.5 Simulation methods

2.5.1 Introduction

One of the most useful tools for understanding the evolution of the early universe

are computer simulations. In these, the equations describing the relevant physical

phenomena such as gravity and hydrodynamics are solved in a discretized way and

the system is evolved for the desired amount of time. Even simulations which contain

only dark matter, that is, matter that does not interact with itself other than through

gravity, replicate the large-scale structure of the universe well and have proved in-

valuable in aiding our understanding of cosmology [Efstathiou et al., 1985, Jenkins

et al., 2001, Navarro et al., 1997]. However, if more accuracy and smaller length scales

are desired, including the physics of baryons, such as hydrodynamics and radiation is

necessary. In this section we will give a brief overview over some of the approaches to

solving the different equations.

2.5.2 Gravity

Numerical techniques for simulations in which point-like objects interact via gravity,

often called N-body simulations have a long history. The primary objective of all



14 Simulation methods

these techniques is to compute the force on the j-th particle Fj, given by

Fj =
N∑
i=1

Fij, (2.4)

where Fij is the gravitational force exerted by particle j on the particle i, which is

given by the Newtonian force

Fij = −Gmimj
ri − rj

|ri − rj|3
, (2.5)

where G is the gravitational constant, mi and mj are the masses and ri, rj are the

positions of the respective particles.

It should be noted that for our purposes, we will limit ourselves to low enough

densities, such that any effects of general relativity can be neglected and we are allowed

to treat gravity in a purely Newtonian framework.

The trivial and exact method for solving Equation 2.5 in which each force compo-

nent Fij is computed individually is simple to implement but prohibitively expensive

for anything but the smallest number of particles, due to its computational cost scaling

with O(n2).

In practice, approximate methods are used in which the force terms are not com-

puted exactly. It can be shown that errors introduced by such approximations can be

contained reasonably well [Hernquist et al., 1993].

A well-known class of methods for the approximation of the force terms in Equa-

tion 2.5 is given by hierarchical multipole methods that are based on spatial tree

structures. The basic idea here is to observe that the force exerted on a particle by

a group of particles can be expressed in terms of a multipole expansion (up to a de-

sired order) and that the error from this approximation can be kept under a desired

threshold as long as the opening angle (the angle under which the single particle sees

the group) is small enough. With this idea, large groups of particles can be grouped

together and computed at once, instead of having to compute the force terms indi-

vidually for each particle in the group.

In order to make use of this approximation, one often employs hierarchical de-

composition of the space, using, for example oct-trees, as in the original Barnes-Hut

tree paper [Barnes and Hut, 1986], but other tree structures such as KD-trees [Stadel,

2001] can be used as well.

In another class of methods [Hockney and Eastwood, 2021], an auxiliary mesh

is constructed. Mesh cells are then assigned a density via a variety of assignment

schemes, such as nearest-grid-point, cloud-in-cell, etc. which vary primarily in the

number of cells that the mass is distributed into and the weights given to each cell
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involved in the assignment. Using the density field obtained in this way, the Poisson

equation for the gravitational potential

∇2Φ = 4πGρ, (2.6)

is then solved.

Methods for solving the Poisson equation fall into two main categories. The first

category is given by iterative solvers in which the problem is solved in real space,

such as the simple Gauss-Seidel method. Often, one employs strategies such as the

Multigrid method [Brandt, 1977], in which the equation is solved on a number of

different refinement levels of the grid in order to deal with the long-ranged nature of

the Poisson equation. Intuitively, the coarser refinement levels in a Multigrid method

help with quickly approximating the large-scale solution of the equation, while the

finest levels solve the short length scales.

The second category of solvers for the Poisson equations solve the problem by

performing a Fourier transform. The intuition behind this idea is given by the fact that

the solution to the Poisson equation can be expressed as a convolution of the Greens

function with the gravitational potential. In Fourier-space, the expensive operation of

a convolution turns into multiplication, which can be efficiently calculated. In order

to make the Fourier transform itself fast enough, algorithms such as the fast Fourier

Transform (FFT) are used [Cooley and Tukey, 1965].

As a last note on this topic, it should be stated that many state-of-the-art codes

for solving the gravitational N-body problem combine these approaches, such that

each approach can be used in the area where it performs best. One famous example

of this is the TreePM method that combines Tree based solvers for the evaluation of

short-range forces of highly clustered particles with the extremely high performance of

Fourier-transform-based Particle-Mesh for evaluation of the long-ranged forces [Bagla,

2002, Xu, 1995].

2.5.3 Hydrodynamics

For our purposes, the equations of hydrodynamics are the Euler equations given by

three equations that describe the conservation of mass, momentum and energy re-

spectively. Written in vector notation, the equations read

∂

∂t


ρ

ρv

ρ

+∇


ρv

ρvvT + p

(ρe+ p)v

 = 0 (2.7)
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where ρ is the density of the fluid, v is the velocity field, e = u+ v2

2
is the total energy

per mass of the fluid with the thermal energy per mass u and p is the pressure of the

gas which can be derived by an equation of state, for example

p = (γ − 1)ρu (2.8)

where γ is the adiabatic index defined by the ratio of specific heats γ = cp
cv
.

Traditionally, there are two main categories of approaches to solving Equation 2.7.

In the Eulerian approach, the equations are discretized onto a fixed grid that does

not move with the fluid. In order to allow the mesh to adapt to large variations in

the density, a technique called adaptive mesh refinement is often used, in which the

mesh is refined locally wherever the density exceeds a certain threshold. Eulerian

approaches are often simple to implement and yield relatively good results. However,

they suffer from their lack of Galilean invariance, such that results change depending

on whether a bulk velocity is present or not [Tasker et al., 2008, Wadsley et al., 2008],

as well as from their inherent mixing behavior, which introduces unphysical entropy

into the system [Trac et al., 2007] and the structure of the grid can introduce artificial,

undesired symmetries into the system.

The other main category of solvers uses a Lagrangian approach, in which the fluid is

discretized by a set of particles which follow the flow velocity. Lagrangian approaches

have a major advantage in that they adapt to the density variations inherent in

cosmological simulations and automatically refine regions of high densities. However,

they struggle with resolving shocks and can suppress fluid instabilities [Agertz et al.,

2007].

The simulation code Arepo [Springel, 2010a,b] takes a hybrid approach to the

problem of fluid dynamics in which the equations are solved in the Eulerian way on

an unstructured Voronoi mesh which is generated by a set of Lagrangian points which

move along the velocity field. This method, while difficult to implement, combines

the benefits of Eulerian and Lagrangian approaches and resolves shocks well without

introducing artificial symmetries.

2.5.4 Radiative transfer

In cosmological simulations, the proper treatment of radiation emitted from stars,

galaxies, AGN, etc. is an important aspect for two reasons. Firstly, radiation is one

of our best observational probes into the early universe and being able to incorporate

radiation into the simulations facilitates comparison between simulations and obser-

vations. Secondly, the radiation and its interaction with matter plays a key role in

the formation of many astrophysical objects, such as stars, black holes and galaxies.
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However, computationally, solving radiative transfer in cosmological simulations

remains a challenging problem for a variety of reasons. The most fundamental reason

is the high dimensionality of the quantity of interest, specific intensity, and the partial

differential equation describing its behavior, with three spatial dimensions, one tem-

poral dimension, two angular dimensions (neglecting polarization), and a frequency

dimension, adding up to a total of seven dimensions. Another reason is that the

radiative transfer equation (RTE) itself changes its nature from being an elliptical

partial differential equation in regions in which scattering dominates, to a hyperbolic

equation in regions with long mean free paths. This makes development of a numeri-

cal solver which can efficiently solve the equation in all physical regimes particularly

challenging. Moreover, most of the time, we are not just interested in the radiation

field, but in its effect on the matter in our simulations. In practice, this means that

we do not need to solve only the RTE, but the coupled system of the RTE and the

radiation chemistry equations which describe how the photons are absorbed, scattered

and created by the gas and in turn ionize, heat or otherwise modify the state of the

gas.

The relevant quantity in radiative transfer is the specific radiative intensity Iν(r, t, Ω̂),

with frequency ν, spatial position r, time t and solid angle Ω̂ given in units of

Wm−2 sr−1Hz−1. The RTE is given by [Rybicki and Lightman, 1985]

1

c

∂

∂t
Iν + Ω̂ ·∇Iν = jν − (k̄ν,s + k̄ν,a)Iν +

1

4π

∫
S

kν,s(Ω
′)IνdΩ

′. (2.9)

Here, c is the speed of light, jν is the emission coefficient, k̄ν,a is the absorption

coefficient,
∫
S
denotes the integral over the unit sphere with Ω′ being the solid angle

relative to Ω̂. The equation equates the rate of change of the radiative intensity along

the direction Ω̂ to a number of local processes which affect the intensity, namely

absorption, scattering and sources. The total scattering coefficient k̄ν,s is defined

via the angle-dependent scattering coefficient kν,s(Ω
′) as k̄ν,s =

∫
S
kν,s(Ω

′)dΩ′. For

simplicity, we will assume isotropic scattering such that kν,s(Ω) = k̄ν,s. If the material

coefficients (the source term and the absorption and scattering coefficients) change

on timescales which are smaller than the typical light crossing time of the system, an

often made assumption is the so-called infinite speed of light approximation in which

we drop the first term of Eq. 2.9, obtaining

Ω̂ ·∇Iν = jν − (k̄ν,s + k̄ν,a)Iν +
k̄ν,s
4π

∫
S

IνdΩ
′. (2.10)

A common approximation method in order to make the RTE more tractable is the

so-called source iteration, in which the RTE is solved first under the assumption of
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no scattering, i.e.

Ω̂ ·∇I0ν = j0ν − (k̄ν,a + k̄ν,s)I
0
ν , (2.11)

where j0ν = jν .

We then use the obtained intensity I0ν to compute the local scattering terms given

by the integral on the right-hand side of Eq. 2.10, which we then re-introduce as an

effective source term j1ν = j0ν + k̄ν,s
4π

∫
S
IνdΩ

′. Given this new source term, we then

solve eq. Eq. 2.11 again, to obtain I1ν , which will be used to compute j2ν , and so on.

This process is iterated until the intensity converges.

Using source iteration, the remaining problem is solving the scattering-less RTE.

In the following, we will discuss some common methods for solving this problem.

Long characteristics

One of the most intuitive methods for solving radiative transfer is the long-characteristics

method, which is also often called raytracing [Abel and Wandelt, 2002, Abel et al.,

1999a, Mihalas and Weibel-Mihalas, 1999]. Here, the intensity is computed by explic-

itly integrating the RTE along rays from each source to each cell. This method has

the advantage of being relatively straightforward to implement and highly accurate.

However, in practice it becomes expensive quite quickly, since the runtime of the algo-

rithm depends linearly on the number of sources and it is difficult to parallelize since

tracing a ray through the system requires non-local information.

A modification of this method, the short-characteristics method traces rays only

up towards a certain, reasonable distance which makes the method easier to parallelize

and cuts the cost of tracing the rays by a large amount.

Moment-based methods

In moment-based methods, the RTE isn’t solved directly. Instead, a number of mo-

ments of the equations are computed. For example, the first moment of the time-

dependent RTE is obtained by integrating Eq. 3.2 over a frequency range ν1 to ν2 and

over Ω, and given by

∂E

∂t
+∇F = J −KρcE, (2.12)

where E =
∫
S
Iν(r, t,Ω)dΩ is the zeroth moment of intensity, namely the radiation

energy density, F is the radiative flux, J is the source energy density and K is the

mean opacity between v1 and v2 and ρ is the local gas mass density. In order to

solve the resulting moment equations, a closure relation is needed which relates two
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of these moments. For example, in the flux limited diffusion approach [Levermore

and Pomraning, 1981], the closure relation relates the flux to the energy density

via F = −c∇E
3Kρ

. While flux limited diffusion works well in optically thick media, it

does not conserve photon direction in optically thin media and therefore also fails

to form shadows behind dense objects. Another commonly used method, the M1

method [Dubroca and Feugeas, 1999, Levermore and Pomraning, 1981, Ripoll et al.,

2001] assumes a different closure relation between the second moment (the radiation

pressure tensor P and the energy density given by

P = E

(
1− χ
2

I+
3χ− 1

2
n⊗ n

)
, (2.13)

where n = F
|F | , χ = 3+4f2

5+2
√

4−3f2
and f = |F |

cE
.

This closure relation is a good trade off between requiring only local quantities to

be computed, while still conserving photon transport direction reasonably well and

has been used successfully in many applications [Bieri et al., 2017, Costa et al., 2018,

Rosdahl and Teyssier, 2015].

One problem with moment based methods in general is that information travels

only one or a few cells during each timestep. While this is completely acceptable

in many scenarios, it does cause problems in media with very long mean free paths

and high resolution, where photons might have to travel many cells before they are

absorbed, so that solving the system becomes computationally expensive.

Simplex

The SimpleX algorithm [Kruip et al., 2010, Ritzerveld and Icke, 2006] is another

approach which can be considered similar to a short-characteristics method. In this

method, radiative transfer is performed on a Delaunay triangulation generated from

points which are sampled such that they are equidistant in mean free paths, which

simplifies the transport step. In this method, photons are transported as discrete

packages which travel from cell to cell via a set of transport rules that are chosen

depending on the setup of the simulation.

For our purposes, the Simplex methods suffers from a similar problem to that of

moment based methods, in that transporting photons in situations with long mean

free paths can become prohibitively expensive.

Monte-Carlo methods

Another class of methods is given by Monte-Carlo methods [Dullemond et al., 2012,

Noebauer and Sim, 2019, Oxley and Woolfson, 2003]. Here, the RTE is not discretized
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but instead the radiation is represented by a number of test particles (often called

photon packets) which are introduced into the simulation. Individual test particles

can move, scatter, and be absorbed. Which of these processes takes place is determined

stochastically by choosing from an appropriate probability distribution, such that the

resulting bulk behavior of the photons represented by these test particles replicates

the solution to the radiative transfer equations. A primary benefit of such methods

is that they are often very intuitive to think about and implement. In particular,

scattering is a process that is very easily handled by Monte-Carlo methods while it

can represent a massive challenge for other methods.

Monte-Carlo methods also have the benefit of being easy to parallelize. As long

as the spatial domain decomposition assigns an even distribution of radiative transfer

work to each processor, the most intuitive approach to parallelization is also a good one

- distribute photon packets according to the spatial decomposition and transfer photon

packets that leave the boundaries of the simulation box to the processor responsible

for the position they moved to.

The primary downside of the Monte-Carlo approach is not specific to radiative

transfer - as a statistical method, it naturally suffers from statistical noise. Reducing

the noise in order to obtain an accurate solution is the main challenge of any such

method. Increasing the number of photon packets n which are tracked during the

simulation will increase the signal-to-noise ratio as
√
n, but of course it will increase

the computational cost of the simulation linearly with n.

2.5.5 Comparison of radiative transfer methods

Understanding the advantages of drawbacks of different methods of radiative transfer,

in particular with respect to astrophysical problems has been an ongoing challenge.

There have been efforts to compare a large number of astrophysical radiative transfer

codes with each other [Iliev et al., 2006, 2009], but the question of which method to

choose for a given problem is still a difficult one to answer.

Evaluating the accuracy of the solutions can already be comparatively difficult,

since not too many physical scenarios exist in which analytical solutions are known.

This means that often, one has to compare different numerical methods with each

other in order to assess the accuracy.

Another aspect that one might compare between different radiative transfer codes

is their computational performance, as well as their parallel scaling, which can vary

drastically depending on the numerical method chosen.

Due to the nature of the radiative transfer equation, different methods often excel

at different physical scenarios. While moment based methods might shine in optically
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thick environments with lots of scattering, they might have difficulties in settings with

predominantly optically thin gas.

Moreover, while some codes might naturally work with an arbitrary number of

different photon frequencies, others choose to track only few or just a single photon

frequency, and make up for the loss in accuracy by a drastic increase in performance.

Finally, codes may be differentiated by the ease with which they integrate with

the other parts of a cosmological simulation, such as hydrodynamics and star forma-

tion. On one end of the spectrum is radiative transfer post-processing, in which only

radiative transfer and radiation chemistry are solved for a given simulation. This can

provide many benefits such as the simplicity of the implementation and the fact that

one can optimize the code for radiative transfer without regarding the other computa-

tionally intensive processes. However, it misses any feedback effect that the radiation

can have on the gas. On the other side, there are fully integrated radiative trans-

fer implementations which run simultaneously with hydrodynamics, star formation,

gravity and all other processes modeled in the simulation, which increases the physical

consistency of the result at an often large cost of computational resources.





Chapter 3

Sweep: The method

This chapter is based on the publication (Peter et al. 2023) published by the Monthly

Notices of the Royal Astronomical Society in 2023. I am the first author and wrote the

majority of the paper with editing contributions from R.S. Klessen, Guido Kanschat,

S.C.O. Glover and Peter Bastian. The code of the sweep module in Arepo (written in

C) was written by me. The sweep code interfaces with the SPRAI module which was

written by Ondrej Jaura. In this chapter, we describe the basic structure of the sweep

method for radiative transfer and how it integrates into Arepo and interfaces with the

chemistry code. The code is tested in a number of standard tests in which we study

the expansion of an HII region and test the performance of the code in scaling tests.

3.1 Introduction

The era of reionization is an important period in the history of the universe, during

which the composition of the intergalactic medium transitioned from mostly neutral to

highly ionized. This period marks an important transition between the early universe

which was largely homogeneous with small fluctuations and the highly structured and

complex universe we see at present days [see e.g. Loeb and Barkana, 2001, Wise, 2019,

Zaroubi, 2013].

One way to understand the process of reionization is with numerical simulations.

However, modeling reionization is a numerically challenging problem. Whereas the

physics of the early universe was dominated by gravity, reionization is driven by

the first stars and galaxies. In order to understand reionization, it is necessary to

accurately model the formation and feedback processes of these small objects. The

small dwarf galaxies which are believed to be the dominant sources of ionizing photons

only have sizes of ∼ 1 kpc in size, whereas in order to obtain representative samples,

the simulated volume of space needs to be sufficiently large, with lengths on the order

23
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of hundreds of Mpc [Iliev et al., 2014]. This implies a vast range of length scales

that need to be represented in any numerical model. The need to simulate such large

volumes of space also implies that we must be able to follow the effects of ionizing

radiation from a very large number of sources. Together, these requirements strongly

constrain our choice of algorithm for modeling the transport of ionizing photons in the

early Universe. or example, ray tracing with long characteristics [Abel et al., 1999b,

Mihalas and Weibel-Mihalas, 1999, Whalen and Norman, 2006], a method which has

been used with great success to model individual HII regions in the local Universe

[e.g. Kim et al., 2018, Peters et al., 2010] is completely impractical in this context, as

its computational cost scales as the product of the number of ionizing sources and the

number of resolution elements in the simulation, Nsource × Ncell. This motivates the

search for approaches that are independent of the number of ionizing sources.

In this paper, we focus on the astrophysical simulation package Arepo [Springel,

2010b]. Arepo solves the gravitational equation and the magneto-hydrodynamical

equations for a magnetized gas on a co-moving Voronoi grid. It also has different

physics modules, including treatments of stellar feedback (supernovae, radiation) and

non-equilibrium chemistry. The main goal of this project is optimizing the perfor-

mance of radiative transfer in Arepo.

Radiative transfer is an especially challenging problem for numerical simulations

for a number of reasons [Mihalas and Weibel-Mihalas, 1999]. The first is the high

dimensionality of the relevant physical quantity: radiation intensity, which depends

on three spatial, two directional, one temporal and one frequency dimension leading

to a total of seven dimensions. Furthermore, the properties of the local medium,

such as the emissivity, absorptivity and fraction of scattered photons are important

for the solution of the radiative equation while at the same time being dependent on

the radiation, thus creating a need for iterative schemes to obtain solutions of the

full equations. In addition, the radiative transfer equation changes its mathematical

properties from being elliptical in optically thick regions to being hyperbolic in opti-

cally thin regions, thus making it difficult to choose a specialized solver suited for a

particular type of equation that works across all scales of optical depth.

One class of methods with this property are moment-based methods, where one

solves the moments of the radiative transfer equation with some approximate closure

relation. This can lead to drastically improved performance at the cost of precision.

A number of moment-based methods exists, which differ primarily in the choice of

closure relation, which is typically given by an approximate expression for the Ed-

dington tensor. One example of a moment-based method is the flux limited diffusion

approach [Levermore and Pomraning, 1981, Whitehouse and Bate, 2004] in which the
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closure relation is derived under the assumption of slowly varying intensity and the

purpose of the flux limiter is to ensure that changes in the radiation field cannot

propagate faster than the speed of light. Flux-limited diffusion has been applied to

various astrophysical problems [e.g. Boss, 2008, Krumholz et al., 2007], but the high

diffiusivity of the method and its consequent inability to properly account for shad-

owing [see e.g. Hayes and Norman, 2003] make it a poor choice for modeling ionizing

radiation.

A moment-based method with a different closure relation is given by the optically

thin variable Eddington tensor method in which the Eddington tensor is calculated

by assuming that all lines of sight to the sources in the simulation are optically thin

[Gnedin and Abel, 2001b]. This algorithm is efficient, but its accuracy is highly

problem-dependent.

The radiative transfer equation can also be solved by Monte Carlo methods, in

which rays are represented by photon packets [Dullemond et al., 2012, Oxley and

Woolfson, 2003]. Each photon packet is appropriately sampled from the distribu-

tion of sources which then interact with the gas according to their properties. This

approach has the advantage of requiring few approximations to the equations them-

selves, so that the quality of the results is determined primarily by the number of

photon packets emitted. A disadvantage of this approach is the presence of statistical

noise, with a signal to noise ratio that scales as SNR ∝ √n, where n is the number

of photon packets. In addition, this method is difficult to parallelize in situations

where duplicating the entire grid structure on every processor is impractical owing to

the memory requirements, a situation we often find ourselves in when simulating e.g.

cosmic reionization.

In this paper, we focus on the astrophysical simulation package Arepo [Springel,

2010b]. Arepo solves the gravitational equation and the magneto-hydrodynamical

equations for a magnetized gas on a co-moving Voronoi grid. It also has different

physics modules, including treatments of stellar feedback (supernovae, radiation) and

non-equilibrium chemistry. The main goal of this project is optimizing the perfor-

mance of radiative transfer in Arepo.

Some of the currently available methods for radiative transfer in Arepo that have

computational costs that are largely independent of the number of sources are the M1

method, which is a moment-based method based on the M1 closure relation [Kannan

et al., 2019], the Monte-Carlo radiation hydrodynamics method MCRT [Smith et al.,

2020] and the SimpleX method [Chang et al., 2020, Jiang et al., 2014, Ritzerveld and

Icke, 2006]. While the M1 method is comparatively fast, it suffers from numerical

problems inherent to moment-based methods, such as the two-beam instability [Ros-
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dahl et al., 2013]. The MCRT method employs a number of techniques to improve

upon Monte-Carlo radiative transfer. Currently, it is not viable to perform simulations

of galaxy formation with this approach but improvements to the method are still in

active development. The original SimpleX method is similar to a short-characteristics

scheme and does not require angular discretization. However, it suffers from numer-

ical diffusion, which was the reason for the development of SimpleX2 [Paardekooper

et al., 2010] and its implementation in Arepo, SPRAI [Jaura et al., 2018, 2020]. In

these methods, angular discretization is introduced, effectively making them discrete

ordinate methods. Discrete ordinates methods have the advantage that they do not

require any physically motivated approximations such that in principle, any numerical

artifacts can be reduced by an increase in the resolution.

Simplex2 and SPRAI work as follows. At the beginning of every time step, photons

are created at source cells and distributed equally into all directional bins. Then, in

every iteration, photons from a directional bin are transported from a Voronoi cell to

its d most straightforward neighbors along that direction. The photon density is then

used to update the local chemistry of the cell and some of the photons are scattered

by re-distributing into the other directional bins. This process is iterated until all of

the photons have been absorbed. This method performs well in optically thick regions

in which the mean free path is short. However, in optically thin regions, this method

requires many iterations, increasing computation times drastically.

Our proposed change to this algorithm is based on transport sweeps [Koch et al.,

1991]. The idea is that, for a given direction, a cell is only solved once all its upwind

neighbors along that direction have been solved. The main benefit of this method

is that, in the absence of scattering, such a re-ordering allows us to obtain the full

photon density field in a single sweep. In order to incorporate scattering, the sweep

needs to be iterated.

The drawback of this method is that it induces an ordering on the cells due to

the dependencies of cells on their upwind neighbors. While the dependency graph is

trivial for regular grids, this is not the case for a Voronoi grid. At the same time, the

code needs to be parallelized. Our current solution to these problems is task-based

parallelism [Zeyao and Lianxiang, 2004] in which a task is a pair of a Voronoi cell

and a given directional bin. For each task, we keep track of the number of unsolved

upwind neighbors and only solve those tasks for which this number is zero. In this way,

the dependency graph is never explicitly constructed but we still obtain a topological

ordering of the cells.

This paper is structured as follows. In Section 3.2 we discuss the problem of

radiative transfer in general (Section 3.2.2) before the concept of radiative transport
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sweeps (Section 3.2.5) and the concrete implementation details which allow the code to

run on large numbers of processors in parallel (Section 3.2.4) are introduced. We also

discuss how to handle problems with periodic boundaries in the concept of transport

sweeps (Section 3.2.7). In Section 3.3, we present a number of tests in order to

demonstrate that our code reproduces physically correct results (Section 3.3.1, 3.3.2,

3.3.3, 3.3.4). We also study the computational performance of the code, especially in

respect to its parallelization in Section 3.3.5 and 3.3.6. Finally, we conclude this paper

and present some potential extensions of the code as well as possible applications in

Section 3.4.

3.2 Methods

3.2.1 Structure of the code

In this paper we discuss an implementation of radiative transfer for the astrophysical

simulation code Arepo [Springel, 2010b]. The structure of our code is based very

closely on SPRAI, an existing radiative transfer module for Arepo whose design and

operation is described in Jaura et al. [2018, 2020]. Indeed, the code shares SPRAI’s in-

terface between radiative transfer and the SGChem chemistry module.1 We therefore

do not discuss this aspect of the code here and refer the reader interested in details

of this coupling to Jaura et al. [2018, 2020].

The defining characteristic of Arepo is that the hydrodynamical equations are

solved on a Voronoi grid which is generated by points that are co-moving with the

gas instead of a Eulerian grid with an adaptive mesh refinement scheme. This has

the benefit of avoiding numerical artifacts caused by the structure of the grid while

simultaneously adapting the grid to the gas density automatically.

The goal of the radiative transfer code is to solve the radiative transfer equation to

obtain the radiative fluxes in all cells. These fluxes are then passed to the chemistry

module which requires the fluxes to calculate the detailed chemical composition of the

medium as well as the corresponding heating and ionization rates.

Arepo uses an adaptive timestepping approach in which regions that require

higher accuracy are solved with a smaller timestep. Due to this, the full Voronoi grid

is only available on the synchronization timesteps, i.e. the timesteps during which

every cell is updated. Our current implementation of the radiative transfer method

1SGChem implements various different chemical networks. In this paper, we use its primordial

chemistry network, first implemented in Arepo by Hartwig et al. [2015] and more recently updated

by Schauer et al. [2019]
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requires the full grid, so that we can only perform radiative transfer calculations dur-

ing those synchronization steps. For the substeps, the radiative fluxes between cells

are assumed to remain constant, keeping the value of the previous synchronization

step. The validity of this approximation depends on the ratio of the lowest hydrody-

namical/gravity timestep to the full synchronization timestep as well as on the ratio

of the timescale at which hydrodynamics and gravity take place to the timescale of

radiative transfer and the photo-chemistry. At the cost of code performance, the ef-

fect of the approximation can be reduced by limiting the highest timestep. For the

tests performed in this paper, this approximation has been acceptable. In the future,

extensions to the implementation can be considered in which radiative transfer takes

place on the substeps as well, which would require adjusting the cell timestep criterion

to take radiative transfer into account.

3.2.2 Radiative transfer

The quantity of interest in the problem of radiative transfer is the specific radiative

intensity Iν(r, t, Ω̂), with frequency ν, spatial position r, time t and solid angle Ω̂ given

in units of Wm−2 sr−1Hz−1. The radiative transfer equation is given by [Rybicki and

Lightman, 1985].

1

c

∂

∂t
Iν + Ω̂ ·∇Iν = jν − (k̄ν,s + k̄ν,a)Iν +

1

4π

∫
S

kν,s(Ω
′)IνdΩ

′. (3.1)

It relates the rate of change of the radiative intensity along the line with solid angle

Ω̂. Here, c is the speed of light, jν is the emission coefficient, k̄ν,a is the absorption

coefficient,
∫
S
denotes the integral over the unit sphere with Ω′ being the solid angle

relative to Ω̂. The total scattering coefficient k̄ν,s is defined via the angle-dependent

scattering coefficient kν,s(Ω
′) as k̄ν,s =

∫
S
kν,s(Ω

′)dΩ′. From now on, we will assume

isotropic scattering such that kν,s(Ω) = k̄ν,s. If the timescales on which the material

coefficients (the source term and the absorption and scattering coefficients) change

are all smaller than the typical light crossing time of the system, we can safely make

the so-called infinite speed of light approximation in which we drop the first term of

Eq. 3.1.

With these two assumptions we obtain

Ω̂ ·∇Iν = jν − (k̄ν,s + k̄ν,a)Iν +
k̄ν,s
4π

∫
S

IνdΩ
′. (3.2)

In order to solve this equation numerically, we need to find a discretization scheme,

of which there are many for the radiative transfer problem. Here, we will focus on the

discrete ordinate method in which the equation is discretized in all variables: time
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Ω

Figure 3.1. Illustration of the radiative processes described by Eq. 3.2 for a single

grid cell: Incoming (brown) and outgoing (teal) radiation, sources (green), absorption

(blue) and scattering (into considered solid angle: orange, out of it: red)

t, position r, frequency, ν and the angular component Ω. The physical intuition

behind Eq. 3.2 when applied to a small volume is illustrated in Fig. 3.1. The sources

of radiation in this cell are through incoming radiation from cells to the left (brown

arrows), the source term j directly (green arrow) or scattering into Ω from a different

Ω′ (orange arrow). Radiation from the cell is either scattered out of this Ω (red

arrow), absorbed (blue arrow) or leaves the cell towards the right (teal arrows). Thus,

the neighboring cells fall into two categories: Cells upwind along Ω (brown arrows) –

in order to solve the local equations, we require the incoming specific intensities from

those cells. Cells downwind along Ω (teal arrows) – these depend on the local solution

of the intensity for their own solution.

The discretized radiative transfer equation takes the form of a large, coupled sys-

tem of equations. There are many different approaches to solving this problem. Which

of these methods is the best strongly depends on the physical nature of the simulation.

In very optically thick media, scattering dominates, which means the equations are

elliptical and thus diffusive in nature. On the other hand, in optically thin media, the

equations become hyperbolic and long-ranged.
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3.2.3 Source iteration

An obvious approach to solve the resulting equations is to construct the full matrix

describing the system and to apply an iterative solver such as the Generalized minimal

residual method [Saad and Schultz, 1986] until convergence is reached. Due to the

high dimensionality of the equation (three spatial, two angular and one frequency

dimension), this quickly becomes infeasible due to the sheer size of the resulting

matrix.

A different, well-known approach is known as source iteration which is given by

Algorithm 1. Here, convergence of Iν can be defined in a number of ways. The

definition we choose is given by the condition

∀r∀Ω :
|I iν(r,Ω)− I i−1

ν (r,Ω)|
I i−1
ν (r,Ω)

< ϵ, (3.3)

where ϵ is a free parameter and should be chosen to be small.

1: Guess initial intensity I0ν . For example: I0ν = 0.

2: while I iν not converged do

3: Compute source terms (using I iν for scattering).

4: Solve Eq. 3.2 to obtain I i+1
ν using source terms for each Ω and

each ν.

Algorithm 1: Source iteration

The idea is to use an iterative scheme in which scattering is treated as a constant

source term. This is still an iterative method, as the scattering source terms are re-

computed after every iteration. This approach is suited best for optically thin media

where scattering is not dominant and the source iteration converges quickly.

The main benefit of this is that it removes the coupling between the terms of

different Ω, so that instead of solving one large coupled system of equations, Step 4

of Algorithm 1 only requires us to solve one smaller system of equations for each Ω.

In the following, we will show that there is an efficient way to solve such a system of

equations under certain conditions. In principle, we would like to simply iterate over

the grid once and solve Eq. 3.2 for each grid cell to obtain an exact solution. However,

as discussed previously, the equation gives rise to local dependencies that require us

to solve upwind cells before their downwind neighbors.

As illustrated in Fig. 3.2, we can understand these local dependencies as a directed

graph in which the nodes are the grid cells and an edge from the cell c1 to the cell

c2 corresponds to a dependency of c2 on c1. Under the assumption that the graph

is acyclic (which we can easily prove to be true for the induced dependency graph
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Figure 3.2. Left: Illustration of a 2D Voronoi grid and the dependencies induced by

the sweep ordering for a sweep towards the right. Right: The directed, acyclic graph

corresponding to the dependencies.

of a Voronoi grid, such as the one used in Arepo; see Appendix A.1), there is a

topological ordering of the grid cells, such that any cell in the ordering only depends

on the cells that come before it. This is analogous to a re-ordering of the cells of the

matrix describing the system of equations (in which each non-zero entry corresponds

to an edge in the dependency graph) such that the matrix becomes lower triangular

and can be solved in one pass through the matrix. Such a pass through the cells of

the system is called a transport sweep.

3.2.4 Parallelization

The sweep is clearly the most computationally intensive part of the source iteration

algorithm (Algorithm 1). In order to apply this algorithm to large systems on modern

hardware, we require some form of parallelization. The easiest way of parallelizing

this algorithm would be to distribute the solution of different frequencies ν and angles

Ω onto the processors. One problem with this method is that for very large numbers

of processors there might simply not be enough different ν and Ω to efficiently employ

all of them. Moreover, parallelizing over Ω and ν requires the information about the

grid to be present on every processor, which, due to memory requirements, quickly

becomes infeasible for large simulations. Due to these concerns, we choose to use a

spatial decomposition of the grid.

For fully structured, euclidean grids, a sweeping algorithm and a domain decom-
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position that optimizes the parallel performance of the sweep is given by the Koch-

Baker-Alcouffe algorithm (Baker [2016], Koch et al. [1991]). This algorithm assumes

that the number of processors N can be factorized as N = Nx · Ny. The domain is

then subdivided Nx times along the x axis and Ny times along the y axis, resulting

in a decomposition of the domain into N columns. Each processor is then assigned

one of the columns. For any direction Ω, any column has at most three faces with

upwind dependencies (it will have fewer dependencies only if Ω is aligned with one

of the coordinate axes). If those upwind dependencies are fulfilled, the column can

be solved in its entirety without further communication. Of particular importance is

that the solution of the upwind columns does not depend on incoming fluxes of the

downwind column. For unstructured grids, the latter statement does not hold, and a

sweep can require many cycles of back-and-forth communication between neighboring

columns. This makes the problem of finding the optimal domain decomposition for

unstructured grids much harder.

In this work, we decide to use the already available domain decomposition in

Arepo (which is used for example for the hydrodynamics and gravity solvers) in

order to simplify the problem and to reduce memory requirements. The domain

decomposition employed in Arepo is based on the space-filling-curve approach. The

idea of this approach is to simplify the optimization problem by arranging all the

cells of the three dimensional computational domain on a one dimensional line and

then dividing that line into a number of domains with approximately equal estimated

workload. The advantage of using a space filling curve (such as the Peano-Hilbert

curve) for this 1D to 3D mapping is that it results in reasonably localized domains

(since the space filling curve maps points that are close in 1D to points that are

close in 3D), thus reducing the amount of communication required. In Arepo, the

estimated workload of a cell is given by a sum of the estimated work required for the

gravitational and hydrodynamical calculations. In principle, this estimate could be

extended to include the workload due to radiative transfer, thus possibly reducing the

overall time to solution by accelerating radiative transfer at the cost of a reduction in

load balance for gravity and hydrodynamics. However, for the sake of simplicity we

choose not to do this in this work.

The remaining problem is to find an algorithm that performs the sweep across the

entire grid which itself is distributed on different processors. One challenge in this is

that it is infeasible to calculate the topological ordering of the global dependency graph

because this would require gathering the necessary information onto a single core or

employing a parallel algorithm for topological sorting. In the following section, we

discuss our strategy for dealing with this problem, in which the topological ordering is
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never explicitly computed but instead implicitly adhered to by a task-based parallelism

approach. This method is based on Pautz [2002].

3.2.5 The sweep algorithm

In the following, we define a task as a tuple (c,Ω) of a cell c and a sweeping direction

Ω. Solving a task means solving Eq. 3.2 in the cell c for the direction Ω for all

frequencies ν. Note that we have excluded frequency from the definition of a task

because we choose to solve all available frequencies at once whenever we solve a task.

For transport sweeps on structured grids, it is common to group the directions (for

example into octants for a Cartesian grid) such that directions in the same group have

the same dependency graph. On an unstructured grid, two directions that are almost

parallel can still have different dependency graphs, so we choose to do no grouping of

the directions.

For any task t = (c,Ω), we can define d(t) / u(t) to be the set of cells which

are downwind / upwind of c with respect to Ω. For a given grid cell at r, both d(t)

and u(t) can easily be obtained in a single loop through the neighbors, by counting

a neighbor at position rn as downwind if (rn − r) ·Ω > 0 and as upwind otherwise.

This operation can be done without any communication to other processors, since

Arepo ensures that grid cells belonging to other processors that are neighbors of

any local cell are always present as local ghost particles and that the positions of

the ghost particle is equivalent to the position of the corresponding cell on the other

processor. Crucially, this ensures that the downwind/upwind neighbor relationship is

always symmetric, even across processor boundaries.

With this, the unparallelized version of the algorithm to solve Step 4 in Algorithm 1

is given by 2. Note that this algorithm requires non-periodic boundary conditions,

which guarantees that at least one cell has u(t) = 0. Extensions to periodic boundaries

will be discussed in Section 3.2.7. Since the dependency graph is acyclic, this algorithm

will always terminate.

For cells on the boundary, which have no upwind dependencies, the incoming fluxes

are obtained from the boundary conditions. Fixed boundary conditions in which the

value of the incoming radiation is Iv = 0 represent the simplest case. In Arepo,

fixed boundaries are represented by cells with a connection to the first tetrahedron

from which the grid was constructed and which encompasses the entire computational

domain. A discussion of periodic boundaries (represented by ghost cells which stand

for a particle on the other side of the boundary) will follow in Section 3.2.7.

The exact way in which the radiative intensity is calculated from the upwind fluxes

in Step 7 will be discussed in Section 3.2.6.
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1: initialize task queue q ← {}
2: for all Ω and all cells c in grid do

3: count number of required upwind fluxes n(c,Ω)← |u(t)|
4: if n(c,Ω) = 0 then add task (c,Ω) to q

5: while q not empty do

6: get first task t = (c,Ω) from q

7: solve t using upwind fluxes

8: for downwind neighbor cd in d(t) do

9: reduce missing upwind flux count n(cd,Ω) by 1.

10: if n(cd,Ω) = 0 then add task (cd,Ω) to q.

Algorithm 2: Single-core sweep

1: initialize task queue q ← {}
2: initialize send queues for each processor i holding downwind neighbors of any of

the cells in the domain of the current processor: si ← {}
3: for all Ω and all cells c in grid do

4: count number of required upwind fluxes n(c,Ω)← u(t)

5: if n(c,Ω) = 0 then add task (c,Ω) to q

6: while any cell unsolved or any si not empty do

7: for each incoming message (flux f along Ω into cell c) do

8: reduce missing upwind flux count n(c,Ω) by 1.

9: if n(c,Ω) = 0 then add task (c,Ω) to q.

10: while q nonempty do

11: get first task t = (c,Ω) from q

12: solve t using upwind fluxes

13: for downwind neighbor cd in d(t) do

14: if cd is remote cell on processor i then

15: add flux to send queue si

16: else

17: reduce missing upwind flux count n(cd,Ω) by 1.

18: if n(cd,Ω) = 0 then add task (cd,Ω) to q.

19: send all messages in si

Algorithm 3: Parallel sweep
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What we have described so far only works on a single processor. In order to

parallelize, we introduce Algorithm 3, in which we communicate fluxes across processor

domain boundaries. Here, we had to make an implementation choice regarding the

communication scheme. The arguably simplest approach would be to send each flux

immediately as we encounter it in Step 15. The benefit of this is that any downwind

processor depending on the flux of this cell would be able to immediately obtain

the required flux, thus potentially avoiding idle time. In practice however, we found

this approach to be too inefficient because of the communication delays it causes.

Therefore, we chose to buffer the fluxes in send queues and only send messages when

there is nothing left to solve with the flux information we currently have. This reduced

the delays due to communication significantly and improved the scaling behavior in

the idealized test cases.

Note that Algorithm 3 solves the sweep for different directions Ω concurrently.

This is intentional, since it improves the parallel efficiency of the code. If sweeps

for different directions were performed in serial, processors with domains that are

downwind in the direction of the sweep will be idle in the beginning of the sweep,

while processors with domains that are upwind will be idle at the end.

Note that a similar problem appears despite the parallel execution of different

directions. It is called pipe fill or pipe drain [Vermaak et al., 2020], and appears when

the number of domains becomes large enough that there are inner regions which cannot

start sweeping until outer regions are resolved. For an illustration of this effect, see

Fig. 3.3, which shows a simplified case of a square-shaped domain decomposed into 16

subdomains. As the figure shows, both the first and the last two directional sweeps will

be performed while the central cores are idle, which reduces parallel efficiency. As the

number of cores grows, so does the duration of the pipe fill/drain phenomenon. Note,

that in Algorithm 3, a partial sweep in a single direction is not necessarily finished

before one in another direction is started, thus exacerbating the problem, compared

to the scenario depicted in Fig. 3.3. In addition to this, the domain decomposition

and the dependency graph in Fig. 3.3 is much simpler than in an actual run of our

code, due to the unstructured grid and the fact that the domain decomposition in our

case has to be done with an eye towards the gravity and hydrodynamics solvers.

One such problem which arises due to the unstructured grid is what we call re-

entry dependencies. They appear when the sweep direction is close to being aligned

with the boundary between two domains. In such cases, the dependencies can form a

zig-zag pattern, such as the one depicted in Fig. 3.4. In such a scenario, the number

of cells which can be solved locally before communication to the neighboring domain

is required is very low. In the extreme, but not unrealistic, case depicted in Fig. 3.4,
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Pipe Fill

Pipe Drain

Figure 3.3. Illustration of the pipe fill/drain phenomenon. Each square denotes

a computational domain belonging to a single processor. The arrows denote the

direction of the sweep performed in that processor, while colors correspond to the

(relative) time at which the sweep in that direction was first started, with red being

before green which in turn denotes a time before blue. A white square without arrow

means that the processor is currently idle.
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Ω

Figure 3.4. Illustration of re-entry dependencies arising in scenarios where the

sweep direction is aligned with the boundary between two domains. The red/blue

color of the cells corresponds to the domain in which they reside. Blue arrows denote

a dependency requiring inter-processor communication from the blue domain to the

red, whereas red arrows denote communication from red to blue.

each processor can solve only one cell before having to communicate the resulting

flux. While the effect is slightly alleviated by the fact that processors are not required

to finish the solution of one sweep direction before starting the next, this still slows

down the code significantly, mainly due to the additional delay each communication

introduces.

The problems described above can be solved partially by improved scheduling and

communication strategies. The main goal of such strategies is for the processors in

the outer regions to solve the tasks required by those in the center as quickly as

possible [Adams et al., 2019] and to communicate the resulting fluxes immediately.

Such prioritization can greatly improve the parallel efficiency of this code by reducing

the pipe-fill/drain effect. For the sake of simplicity and to check whether this sweeping

approach is feasible for the radiative transfer in Arepo, in this paper, we use a very

simple prioritization strategy which prioritizes finishing one sweep direction before

starting another one.

Another possible optimization is to intentionally omit certain fluxes between cells,

thus removing dependencies from the graph. Doing so means that the result of the

transport sweep is only an approximation and obtaining the solution would require it-

erating over a number of sweeps. However, if the right dependencies are removed (e.g.

the re-entry dependencies discussed above), the performance improvement can poten-

tially be large enough to offset the additional cost due to the iteration [Lucero Lorca,

2018].
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b) c)a)

Figure 3.5. Illustration of the three different transport schemes. The black arrow

represents the sweeping direction Ω. The dotted lines represent the solid angle cor-

responding to the direction Ω. The shading of the downwind cells represents the flux

that the cells would receive, with white meaning no incoming flux and red meaning a

high amount of incoming flux. a) Distribution proportional to fraction of area of the

cell interfaces to the total area; b) Choosing the n most straightforward neighbors;

c) Choosing the n most straightforward neighbors along a random vector in the solid

angle corresponding to the direction.

3.2.6 Transport methods

In order to calculate the (downwind) fluxes out of a cell, given the source terms,

absorption coefficients and the incoming (upwind) fluxes, we need to decide on a

transport scheme with which we can solve Eq. 3.2.

Three such schemes are depicted in Fig. 3.5. Note that the solid angle correspond-

ing to a given direction is given by 4π
Ndir

where Ndir is the number of directions in our

discretization.

In the first scheme, in Panel a), the outgoing flux Fi of radiation for the direction

Ω to a downwind neighbor i is given according to the distribution

Fi = F
Ai (ni ·Ω)∑N
j=1Aj (nj ·Ω)

, (3.4)

where F is the total outgoing flux (given by the sum of non-absorbed incoming radia-

tion and the radiation created by the source term of this cell), nj is the normal of the

Voronoi face connecting the cell and the neighbor j and Aj is the area of that face. The

Simplex2 method [Kruip et al., 2010, Paardekooper et al., 2010], which is the basis for

the SPRAI implementation in Arepo [Jaura et al., 2018], introduces an additional

transport method (called direction-conserving transport) in which the incoming flux

is distributed equally onto n neighbors with the most straight-forward face normals

along Ω, see Panel b) in Fig. 3.5. The authors showed that n = ndim, with ndim being

the number of spatial dimensions is the optimal choice for direction-conserving trans-
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port. The idea of this scheme is to reduce numerical diffusion. However, this comes

at the cost of amplifying the effect that the angular discretization into a number of

discrete directions introduces, namely that radiation is transported along preferential

directions [Jaura et al., 2018], something that becomes very apparent in optically thin

media where the mean free path is long. In principle, this behavior could be alleviated

by increasing the number of directions. However, this increases memory requirements

and computation time. In SPRAI this problem is solved in two ways.

Firstly, a slightly modified version of the direction conserving transport is employed

in which the direction in which radiation will be transported is decided on a cell-by-

cell basis. For each cell, instead of transporting radiation along Ωi, a vector Ω′
i is

chosen randomly, with the only condition being that Ω′
i is closer to Ωi than any of

the angles Ωj for i ̸= j (in other words, Ω′
i should be within the solid angle that Ωi

corresponds to). This method is illustrated in Panel c) in Fig. 3.5. We choose not to

implement this transport method for sweep, because it would require us to implement

the random choice of Ω′ in a deterministic fashion, in order to allow us to properly

count the number of upwind/downwind dependencies. The drawback of this is that

our results will not agree exactly with those of SPRAI, even in the absence of any

scattering, because of the different choice of transport method.

The second way in which SPRAI reduces preferential directions is that any radia-

tive transfer step may be subdivided into Nrot substeps, each with the source terms

reduced by a factor of 1/Nrot. For each step, the radiation chemistry is updated ac-

cording to the resulting intensity field. After every substep, the directions Ωi are

rotated to new directions Ωi = R(θ, ϕ) ·Ω′
i where R(θ, ϕ) is the rotation matrix and

the spherical coordinate-angles θ and ϕ are randomly chosen as θ ∈ [0, π], ϕ ∈ [0, 2π].

The remapping between angle-dependent quantities, such as the intensity is then

done via Iν(r,Ω
′
i) =

∑Ndir

j=1 cijIν(r,Ω
′) where Ndir is the number of discrete directions

and the interpolation coefficients cij depend on the choice of interpolation and obey

∀i : ∑Ndir

j=1 cij = 1 For simplicity, we choose cij =
∆Sij

∆Si
, where ∆Sij is the solid angle

that Ωi and Ωj share and ∆Si is the solid angle corresponding to any direction Ωi.

This random rotation of the directions effectively smears out preferential directions

at the cost of additional computation time.

In SPRAI, radiation travels one cell at a time before the scattering terms are re-

computed. This process is repeated until all photons are absorbed. Throughout this,

SPRAI needs the directions to remain constant (otherwise, direction would not be

conserved for more than a cell length). In the sweep method, the directions only need

to remain constant throughout one single sweep. This means we can combine the

source iteration (Algorithm 1) and the rotation of the directions, potentially saving
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many iterations.

In all our tests, we use the first transport method in which outgoing fluxes are

simply assigned via the geometry of the cell. A potential benefit of the direction

conserving transport method is that it reduces the average number of downwind de-

pendencies per cell from 15.54/2 ≈ 7.8 (since the average number of neighbors in a

3D-Voronoi grid is 15.54) to the number of dimensions, ndim = 3, thus making the

dependency graph thinner.

3.2.7 Periodic Boundary Conditions

In simulations of the period of reionization, the simulated volume is often selected as a

box which is supposed to be representative of the universe. During a normal simulation

of such a box using gravity and hydrodynamics, periodic boundary conditions are

employed to effectively model the influence of the adjacent regions of space without

having to simulate those regions explicitly. The same idea applies to the radiative

transfer. Using periodic boundaries, any photons leaving the box can re-enter it from

the opposing side. If the box is large enough to be statistically representative, then

this re-entry models the light from the neighboring regions.

In order to introduce periodic boundary conditions in simulations, the standard

approach is to add a mirror image of each boundary cell on the other side of the grid,

i.e. to add the same cell with its position shifted by the box size L. These mirror

images are called ghost cells in Arepo. Fluxes going into such a ghost cell will then

be treated as incoming fluxes into the corresponding normal cell.

In transport sweeps, introducing such ghost cells at the boundaries poses an ad-

ditional challenge. As illustrated in Fig. 3.6, after the inclusion of the ghost cells, the

induced dependency graph becomes cyclic. Clearly, no topological ordering exists for

cyclic graphs. Simply applying Algorithm 3 to a grid with periodic boundaries thus

cannot work - the algorithm would never terminate.

In order to solve this, we use an iterative approach, similar to Alg. 1. Any radiation

going out of the boundaries of the computational domain is added to the effective

source term of its periodic ghost cell for the next iteration. This breaks the cyclic

dependencies induced by the periodic boundary condition but still ensures that any

outgoing radiation is re-introduced into the box.

There are numerous choices for how to define convergence for this iterative method.

We use the relative difference in the source terms jni (where i denotes the cell and n

denotes the iteration number) as an error

En
i =

jni − jn−1
i

jni + jn−1
i

. (3.5)
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Figure 3.6. Left: Illustration of a 2D Voronoi grid and the dependencies induced

by the sweep ordering for a sweep towards the right under the assumption of periodic

boundary conditions. Solid boundaries and gray background represent normal cells,

dashed boundaries and white background represent periodic ghost cells. Right: The

directed, cyclic graph corresponding to the dependencies.

The iteration is stopped if ∀i : Ei < ϵ, where ϵ is the convergence threshold which can

be chosen by the user. Additionally, we define a maximum number of iterations after

which the algorithm will terminate, even if there are still cells which exceed the error

threshold.

Clearly, if the number of iterations needed in order to reach convergence in the

source terms of the periodic boundary iteration is nit,pbc, while the number of itera-

tions needed to relax the terms introduced due to scattering (Algorithm 1) is nit,scat,

this iterative scheme increases the overall runtime of the algorithm by a factor of

nit,pbcnit,scat compared to the runtime of a single sweep. In order to improve on this,

an interesting approach could be to combine the two iterative schemes, such that the

source terms due to scattering and the periodic boundary conditions are calculated

at the same time. If doing so does not change the behavior of the individual schemes,

this would reduce the runtime overhead to max(nit,pbc, nit,scat).

As a way to reduce nit,pbc, we tried an approach we call “warm starting” in which

the final values of the source terms obtained in a previous RT step are used as an initial

guess in the next step, instead of using jni = 0 as a guess. This is made technically

challenging by the fact that the grid might change between one RT step and the next,

for example by removing cells from the computation or by introducing new ones in

adaptive refinement schemes. As a guess for the source term for any newly created

cell we use jni = 0.
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3.3 Tests

For all the test simulations we make the following choices regarding the parameters of

the numerical discretization. For the frequency discretization, we choose a single fre-

quency bin corresponding to photons in the range (13.6 eV,∞), i.e. with enough energy

to ionize hydrogen.2 For the angular discretization, we use 84 directions isotropically

distributed over the unit sphere generated by simulated annealing [Jaura et al., 2018].

The code supports other numbers of directions but we choose 84 as a compromise

between lower numbers which reduce the accuracy of the solution and higher numbers

which increase memory consumption and overall runtime and to be consistent with

the results of Jaura et al. [2018], where the number of directions was also chosen to

be 84.

We useNrot = 5 random rotations of the directions in every time step. We find that

this number of rotations is sufficient to smooth out any obvious preferential directions

in the results and still small enough to keep the run time reasonable.

For all tests, we fix the hydrogen ionization cross section at σH = 5.38×10−18 cm2,

corresponding to the value for a 14.4 eV photon, and the case B recombination rate

coefficient to a constant value αB = 2.59× 10−13 cm3 s−1.

3.3.1 Expansion tests

We consider first the idealized scenario of an ionizing source surrounded by a ho-

mogeneous distribution of neutral atomic hydrogen. Here, the source will form a

spherical region of ionized hydrogen around it, known as an HII region. Strömgren

[1939] showed that in ionization equilibrium, the radius of this region is given by the

Strömgren radius,

RSt =

(
3Nγ

4παBnenH+

)1/3

, (3.6)

where αB(T ) is the case B recombination coefficient of hydrogen and ne is the electron

number density. Given that the medium inside the spherical region is highly ionized,

it follows that ne ≈ nH+ .

In the initial phase of the evolution, the expansion is simply driven by radiation

which ionizes the neutral gas just beyond the ionization front (I-front). It takes place

at very high velocities, compared to the speed of sound in the ionized gas cs, so that

the hydrodynamical response of the gas is irrelevant for the movement of the ionization

front. This initial, rapid expansion is called the R-type expansion (R=rarefied).

2Note that Sweep can readily deal with multiple energy bins; we make this choice here purely for

simplicity.
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Under the assumption that the density of the gas remains constant, the time-

evolution of the radius of the ionization sphere is given by

Rr(t) = RSt

(
1− e−t/trec

)1/3
, (3.7)

where trec = (αBnH)
−1 is the recombination time.

Once the radius of the sphere reaches the Strömgren radius, the second phase

of the evolution, called D-type (D=dense) begins. In this phase, the expansion of

the sphere is driven by a pressure gradient between the ionized, inner region and

the neutral, outer region. This pressure gradient is caused by the large temperature

difference between the two regions. In this second phase, the I-front is preceded by a

shock front since it moves at velocities that are supersonic in the neutral medium but

subsonic in the ionized medium. An analytical expression for the radius of the sphere

as a function of time was first derived by Spitzer [1978] and is given by

Rd(t) = RSt

(
1 +

7

4

cst

RSt

)4/7

, (3.8)

where t = 0 here corresponds to the time at which the ionization front transitions

from R-type to D-type.

R-type expansion

As a first test of the radiative transfer code, we study the R-type expansion of a HII

region. The following tests are performed at 3 different resolutions of 323, 643, and

1283 cells. We use the same initial conditions as those in the R-type expansion test

in Jaura et al. [2018] and Baczynski et al. [2015], in order to compare our results.

The simulation box is a cube with side length L = 12.8 kpc. At the center of the

box is a idealized point source which emits photons at a rate of Ṅγ = 1 × 1049 s−1.

The box is initialized with a gas with homogeneous number density nH = 10−3 cm−3.

With these parameters, we find values of RSt = 6.79 kpc for the Strömgren radius and

trec = 122.4Myr for the recombination time. We initialize the gas as being purely

neutral hydrogen (i.e. xH = 1, xH+ = 0). Since the density response of the gas is

irrelevant for the R-type expansion, we run the simulation without hydrodynamics,

so that only radiative transfer and ionization chemistry take place.

In order to compare the time evolution of the radius of the ionized sphere to

the analytical prediction, we need to define the radius of the sphere. In the simple

analytical model, there is a sharp transition between the ionized and the non-ionized

regions. However, in our simulation, due to the limited resolution of the grid, the

transition region has a finite size. This means that a different definition of the radius
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Figure 3.7. R-type expansion of a ionization front in a uniform medium. Top panel:

Radius R(t) of the ionization sphere normalized by the Strömgren radius RSt as a

function of time t, normalized by the recombination time trec. Blue dots: Numerical

results for Sweep. Red triangles: Numerical results for SPRAI, Solid lines: Results for

323 particles, Dashed lines: Results for 643 particles, Dotted lines: Results for 1283

particles. Green line: Analytical prediction Rr(t) given by Eq. 3.7. Bottom panel:

Relative error |R(t)−Rr(t)| /Rr(t)

of the sphere is required. Here, we define the radius R(t) as the radius at which the

average ionization is xH+ = xH = 0.5, i.e.∫
S(R)

drxH(r) = 0.5, (3.9)

where S(R) denotes the surface of the sphere of radius R around the origin. To

calculate the value of this integral in practice, we average the HII abundance over a

spherical shell of a given thickness ∆≪ R.

In the upper panel of Fig. 3.7, the radius R(t) (normalized by the Strömgren

radius RSt) of the ionized sphere is shown as a function of time (normalized by the

recombination time trec). In the lower panel, the relative error of the results compared

to the analytical prediction is shown as a function of time. The results are shown for

the three resolutions. For each resolution, we also show a comparison to the results

obtained by performing the same simulation with the SPRAI code, as well as to the

analytical prediction given by Eq. 3.7.

The comparison of analytical prediction and the simulation results shows that,

while after the first timestep, the error is on the order of ≈ 8%, it decreases with
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time and drops below 1% for all resolutions towards the end of the simulation. In

contrast to our expectations, the agreement with the analytical prediction decreases

with increasing resolution. While the simulation with 1283 particles shows a relative

error of ≈ 0.8% at the end of the simulation, the simulation with 323 particles drops

to an error of ≈ 0.1% at the same time. We do not have an intuitive explanation

for these results. However, we emphasize that the analytical prediction assumes a

perfectly sharp boundary, which does not exist in practice, where the boundary has

an associated thickness. Due to this, the value of the radius depends quite strongly

on the definition of the radius in Eq. 3.9. While the choice of a ionization threshold

0.5 is intuitive, a different value will give rise to different radii and therefore change

the dependence of the relative error on the resolution of the simulation.

For all resolutions, the results of Sweep and SPRAI agree very well, which increases

our confidence in the numerical results. There is no clear difference between the

relative errors of the two codes. While the relative error is slightly lower for Sweep

at 1283, the exact opposite is visible at 643 where SPRAI shows slightly lower errors.

At 323, the results of both codes agree well with the analytical prediction and show

virtually no difference in the relative error.

D-type expansion

Our D-type expansion test is set up very similar to the R-type test. The main quali-

tative difference between the two setups is that we need to take hydrodynamics into

account, since the D-type expansion is due to the gas response driven by the thermal

pressure between the inner, ionized region and the outer, neutral region. As in the

R-type test, we chose our parameters as in Jaura et al. [2018], in order to facilitate

comparison. We perform the D-type expansion for the 1283 resolution case.

In order to use the analytical prediction given by Eq. 3.8, we need to obtain a

value for the speed of sound in the ionized medium cs. In principle, one could obtain

the speed of sound using the temperature of the ionized medium via

cs =

√
γkBTavg
µmH

, (3.10)

where γ = 5
3
is the adiabatic index, µ is the mean molecular weight (in atomic units)

and mH is the atomic mass of hydrogen.

However, this is difficult in practice, since the temperature is not constant inside

the ionized sphere. Therefore, we treat the speed of sound cs as a fit parameter to

our data, which is consistent with the approach in Jaura et al. [2018]. In doing so, we

obtain a value of 12.8 km s−1 corresponding to an average temperature Tavg = 11 914K.
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Figure 3.8. D-type expansion of a ionization front in a uniform medium. Top panel:

Radius R(t) of the ionization sphere normalized by the Strömgren radius RSt as a

function of time t, normalized by the recombination time trec. Blue dots: Numerical

results for Sweep. Red triangles: Numerical results for SPRAI, Green line: Analytical

prediction Rd(t) given by Eq. 3.8. Bottom panel: Relative error |R(t)−Rd(t)| /Rd(t)

In the top panel Fig. 3.8, the dependence of the radius of the ionization sphere,

normalized by the Strömgren radius RSt is shown as a function of the time, normalized

by the recombination time trec as well as the analytical prediction given by Eq. 3.8.

The prediction describes the behavior for R(t) > RSt, but we also display the solution

at lower times, starting at t = trec and find that it describes the data quite well even

in this range. This is confirmed by the relative error of the data with respect to the

analytical prediction, shown in the lower panel of Fig. 3.8. Beginning at t = trec the

error never exceeds 1%. We find no discernible difference in the relative error between

the results of Sweep and SPRAI, solidifying the fact that Sweep produces physically

correct results.

Since this is the only test involving hydrodynamics, we will also discuss the relative

performance of radiative transfer compared to the other parts of the code here, even

though it should be noted that such a performance comparison is problem dependent.

In a run using Sweep, the radiative transfer takes up approximately 75% of the total

computation time, with Voronoi grid construction (12%) and hydrodynamics (10%)

using up most of the remaining time. While this implies that in this test radiative

transfer is by far the most expensive part of the code, Sweep still vastly outperforms

SPRAI (which takes up ≈ 98% of the total run time) by a factor of ≈ 16.



Tests 47

y
[p
c]

-10

0

10

10+0
10+1
10+2
10+3
10+4
10+5
10+6
10+7

R
[s
−
1
·c
m

−
3
]

y
[p
c]

-10

0

10

10+0
10+1
10+2
10+3
10+4
10+5
10+6
10+7

R
[s
−
1
·c
m

−
3
]

y
[p
c]

x [pc]

-10

0

10

-10 0 10

x [pc]

-10 0 10

x [pc]

-10 0 10

x [pc]

-10 0 10
10+0
10+1
10+2
10+3
10+4
10+5
10+6
10+7

R
[s
−
1
·c
m

−
3
]

1283

643

323

t = 3.2 kyr t = 32 kyr t = 48 kyr SPRAI

Figure 3.9. The photon rate R in a slice through the z = 0-plane of the simulation

box. First row: 323 particles, Second row: 643 particles, Third row: 1283. First

column: Sweep at t = 3.2 kyr, second column: Sweep at t = 32 kyr, third column:

t = 48 kyr, last column: SPRAI at t = 48 kyr. The white dashed line represents the

over-dense clump. White solid circles represent the position of the sources. The black

dashed lines delineate the shape of an ideal shadow behind the clump.

3.3.2 Shadowing behavior of radiation field behind a clump

The previous tests have established that the Sweep method replicates results obtained

with SPRAI. However, due to the spherical symmetry, the directional dependence of

the radiation is not tested in the expansion tests. To do so, we perform another test

in which we study how well dense objects cast shadows behind them.

This test is set up in the same way as the corresponding test in Jaura et al. [2018]

and we will use the results obtained by the SPRAI method as a basis for comparison.

The simulation takes place in a box of side length L = 32 pc, filled with neutral

hydrogen at a number density of nH = 1 cm−3 everywhere except in the center of the

box where a dense clump at number density nH = 1000 cm−3 and radius R = 4pc

is placed. The temperature of the gas is set to T = 1000K. Two point sources are

placed at r1 = (−14, 0, 0) pc and r2 = (0,−14, 0) pc, both emitting photons at a rate

of Nγ = 1.61× 1048 s−1. The time-step of the simulation is ∆t = 0.32 kyr.

An analysis of this test, which includes hydrodynamics and discusses the tempera-



48 Tests

ture, pressure, and density response has been performed in the original SPRAI paper

[Jaura et al., 2018]. Since the code coupling the radiative transfer to the hydrody-

namics of Arepo is the same as the one used in SPRAI, any results obtained there

are also valid for our method. Since we are interested only in the photon rate field

resulting from the simulations, we perform these simulations without hydrodynamics.

Here, the photon rate R(r, t) is defined as the number of photons in the frequency bin

corresponding to the ionization of hydrogen at 13.6 eV per unit time per unit volume,

i.e. as R(r, t) = 1
13.6 eV

∫
Ω
Iν(r,Ω, t)dΩ. In Figure 3.9, the photon rate R is shown as

a slice through the simulation box along the x-y plane for different times (columns)

and resolutions (rows). For each resolution, the result obtained with SPRAI is shown

for the last time (i.e. t = 48 kyr).

It is clear that the over-dense clump acts as an obstacle and initially prevents

photons from entering its shadow. However, due to numerical diffusion, the shadow

is not as sharp as expected in the exact solution. As time progresses, the photon rate

in the (theoretical) shadow behind the clump increases, because the regions between

the sources and the shadow have become ionized and stopped absorbing photons.

With increasing resolution, the effect of numerical diffusion decreases and the shadow

becomes more defined.

In order to quantify the shadowing behavior and to compare Sweep and SPRAI

as well as the quality of the shadow at different resolutions, we calculate the mass

averaged fraction of ionized hydrogen in the volume of the shadow. The volume is

given by the intersection of two (infinitely extended) cones, with their tips at r1 and

r2 respectively and their base determined by the great circle lying in the over-dense

clump. In the 2D slice shown in Fig. 3.9, this volume VS corresponds to the area

between the white dashed circle and the black dashed lines. This fraction x̄H is given

by

xH =

∫
VS
xH(r)ρ(r)dV∫
VS
ρ(r)dV

, (3.11)

where xH(r) is the abundance of ionized hydrogen at position r and ρ(r) denotes the

mass density at position r.

In Figure 3.10, xH is shown as a function of time. Neither Sweep nor SPRAI

form a perfect shadow, demonstrated by the fact that the ionization fraction begins

to increase at t ≈ 20 kyr. Before this time, the ionization front has not reached the

region behind the over-dense clump. Clearly, the shadowing behavior improves with

higher resolutions. This is in line with the explanation that the protrusion of the

ionization front into the shadow is due to numerical diffusion, since higher resolutions

decrease the effect of numerical diffusion. We also find that Sweep forms a slightly
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Figure 3.10. The average hydrogen abundance xH (see Eq. 3.11) in the shadow

volume as a function of time for both Sweep (blue) and SPRAI (red) for three different

resolutions: 1283 (solid line), 643 (dashed line) and 323 (dotted line),

more defined shadow, with the ionization fraction strictly below the values for SPRAI

for all times and resolutions.

3.3.3 Scattering

In order to test the source iteration scheme described in Section 3.2.3, we test a

setup similar to the illumination of a dense clump described in Section 3.3.2. The

only difference is that this test setup will only use one source positioned at r1 =

(−4.8, 0, 0) pc, which is very close to the dense clump positioned in the center (which

has radius r = 4pc), creating a large shadow behind the clump.

In order to test that our implementation of the source iteration reproduces scat-

tering in a physical manner, we perform a number of simulations in which we vary

only the effective scattering cross section. For simplicity, we choose a model in which

the scattering coefficient is entirely independent of the chemical composition of the

gas, with the scattered fraction of the intensity in a cell given by

(dIν)s = Iν
(
1− e−dnnucleonsσs

)
, (3.12)

where ν is the incoming intensity, nnucleons is the column density of nucleons in the cell,

σs is the effective cross section of the scattering. The column density is calculated as

dnnucleons = n⟨dr⟩, (3.13)
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with the number density of nucleons n and the mean distance traveled in the cell ⟨dr⟩.
For more details of these calculations see Section 2.2 in Jaura et al. [2018]

For the resolution of the tests, we chose n = 1283 particles for all test simulations.

We vary the scattering cross section as σs = 0 cm−2, 5 × 10−22 cm−2, 1 × 1021 cm−2,

and 1× 1020 cm−2. In addition, we vary the number of source iterations performed as

nit,scat = 2, 3, 4 in order to check the convergence of the method.

We intuitively expect the shadow to become less and less prominent as the scat-

tering cross section increases, due to the influx of scatter light on the low density

gas.

The results of these tests at t = 40 kyr are shown in Fig. 3.11. Even for σs = 0 cm−2,

the ionized regions protrude substantially beyond the ideal shadow. This is the same

numerical diffusion we already observed in Section 3.3.2. However, the shadow volume

clearly decreases for increasing values of the scattering cross sections until the shadow

vanishes almost entirely at σs = 5 × 1021 cm−2. We also note that the number of

iterations barely affects the result after nit,scat = 2, implying that the method converges

rather quickly in this test case.

3.3.4 Periodic Boundary Conditions

As discussed in Section 3.2.7, Sweep handles periodic boundary conditions by an

iterative scheme. In order to show that this scheme produces physical results, we

perform a test similar to the R-type expansion in Section 3.3.1. We chose the case

with a resolution of n = 323. The primary difference in this new test is the position

of the point source, which we move to r = (6.336, 0, 0) kpc. Since the same box size

of L = 12.8 kpc is used, that corresponds to a source located very close to the right

boundary of the simulation box.

In Figure 3.13, the mean relative error given by Eq. 3.5 is shown as a function of

the number of periodic boundary iterations at different times with and without warm

starting. The first clear trend that can be seen is that while the initial error remains

roughly constant throughout time, the speed of the convergence decreases drastically.

While it takes Nit = 6 iterations to reach an error of E < 10−10 for the first timestep at

t = 14.5Myr, it takes Nit = 14 iterations to reach the same threshold at t = 43.5Myr.

We believe that this effect is partially due to re-entry dependencies - a cell very

close the the right boundary at x = 6.4 kpc will often have downwind dependencies at

the left side of the boundary at x = −6.4 kpc, especially for a sweep direction which

is close to being contained within the y-z plane. The cells on the other side of the

boundary will then often have downwind neighbors on the right side of the boundary.

The effective distance traveled of photons along such re-entry dependencies is strongly
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Figure 3.11. The abundance of ionized hydrogen xH+ at t = 40 kyr in a slice through

the z-plane of the simulation box. The x and y axis show the x and y position in

the box respectively. The dark dashed circle indicates the position of the over-dense

clump. The dashed lines indicate indicate the boundaries of a hypothetical, perfectly

sharp shadow. Top left: σs = 0 cm−2, Top center: σs = 5 × 10−22 cm−2, Top right:

σs = 1 × 10−21 cm−2, Bottom: σs = 5 × 1021 cm−2, Bottom left: nit,scat = 2, Bottom

center: nit,scat = 3, Bottom right: nit,scat = 4,
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function of the number of iterations Nit for the periodic boundary conditions test
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determined by the number of iterations Nit since it takes one full iteration for the

information about those photons to travel one cell.

This effect is exacerbated due to the location of the source in the test setup de-

scribed above, since it is located very close to the boundary. This means that a high

number of photons will be traveling along the boundary in a direction parallel to the

y-z plane.

In Figure 3.13, the mean relative error given by Eq. 3.5 is shown as a function

of the number of periodic boundary iterations at different times with and without

warmstarting.

As another test of the convergence of the iterative scheme, we calculate the radius

of the ionized bubble as a function of time and compare the result to the analytical

prediction. The simulations in this test are equal to those in Section 3.3.1, with

the only difference being the position of the source in the box, requiring the proper

treatment of periodic boundary conditions in order to reproduce the behavior of the

R-type expansion. We choose the box with 323 particles and perform simulations with

iteration counts 1 ≤ nit,pbc ≤ 20. All other parameters are chosen equal to those in

Section 3.3.1.

Figure 3.14 shows the relative error between the radius of the ionized sphere and the
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Figure 3.14. Relative error of the radius of the ionized sphere in the R-type ex-

pansion in a uniform medium with a source located at the boundary of the box as a

function of the number of periodic boundary iterations nit,pbc. The gray area signifies

the approximate level of error expected due to the difference between numerical results

and analytical prediction for a R-type expansion in the absence of periodic boundary

conditions.

analytical prediction as a function of the number of periodic iterations. As expected,

the error decreases with the number of periodic iterations. After approximately 5 iter-

ations, the error reaches values below 10−3, at which point it is indistinguishable from

the error between the analytical prediction and the numerical results (see Fig. 3.7)

which means that any discussion of the exact behavior of the error below that point

is futile.

3.3.5 Strong Scaling

After the physical tests, we now discuss the scaling behavior of the Sweep method.

We begin by studying the strong scaling, i.e. the dependence of the time to solution

T of a problem of fixed time on the number n of computing cores. It is customary to

study the scaling behavior of the code by comparing the time to solution t(n) for a

run on n cores to the time to solution tbase for a base case at nbase (typically, nbase = 1)

cores. The time to solution of an ideally parallelized code tideal decreases as

tideal(n) =
tbase

n/nbase

. (3.14)
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The parallel speedup S is defined as

S(n) =
tbase
t(n)

, (3.15)

and it follows from Eq. 3.14 that the speedup of an ideally parallelized code Sideal is

given by

Sideal(n) =
n

nbase

. (3.16)

We also define the parallel efficiency ϵ(n) as the fraction of the achieved speedup:

ϵ(n) =
S(n)

Sideal

=
S(n)

n/nbase

. (3.17)

For these tests, we use the same simulation setup as in the shadowing test described

in Section 3.3.2. We study three different fixed problem sizes with 323, 2563 and 5123

Voronoi cells respectively. For each problem, we perform simulations for different

numbers of cores. In the case of 323 particles, we use a range from n = 1 to n = 512.

For 2563 we use n = 96 to n = 2048 and for 5123, we perform runs from n = 2048

to n = 8192 cores. For the smallest case of 323 particles, we compare our results to

the SPRAI code. We did not include a comparison to SPRAI for the larger problem

sizes, since the run-time grew too large.

In Fig. 3.15, the parallel speedup is shown as a function of the number of compute

cores in comparison to the ideal behavior given by Eq. 3.16 for each of the three

problem sizes. For low core numbers, both SPRAI and Sweep scale well with the

number of cores. At n = 96 cores the speedup of Sweep is S(96) ≈ 40 with SPRAI

being slightly faster at S(96) ≈ 48, corresponding to parallel efficiencies of ϵ(96) =

42% and ϵ(96) = 50% respectively. At higher core numbers, the rate of increase in the

speedup declines, the parallel efficiency drops to ϵ(512) = 28% for SPRAI and 20% for

Sweep. This behavior is to be expected, since the ratio of the required inter-process

communication to communicate the fluxes crossing processor domains to the amount

of cells to solve locally decreases as the number of cores increases.

For the higher resolution runs, the rate of decrease in the efficiency of Sweep is

lower. Comparing the run with 2563 particles at n = 96 to that with n = 2048

shows a decrease in parallel efficiency to ≈ 60%. For the run with 5123 particles,

the parallel efficiency increases beyond 1. Such a result may initially seem counter-

intuitive, but can be explained by the fact that for some numbers of cores the domain

decomposition turns out to be particularly unfortunate, decreasing the efficiency of

Sweep due to worse scheduling behavior or similar effects. If such a case is used as

the reference simulation to which simulations at higher core numbers are compared

the result are parallel efficiencies larger than 1.
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Figure 3.15. Top: The parallel speedup of S(n) as a function of the number of cores

n. For Sweep, three problem sizes are shown: 323 (blue circles), 2563 (red triangles),

5123 (green triangles). For SPRAI, we show the problem size 323 (purple diamonds).

For each problem size, the ideal, linear scaling behavior with respect to the base cases

nbase = 1 for 323, nbase = 96 for 2563 and nbase = 2048 for 5123 is given by Eq. 3.16 is

shown as the dashed line. Bottom: The parallel efficiency (defined in Eq. 3.17) as a

function of the number of cores for the same configurations.
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This, along with the fact that the real run-time of the code is hidden, highlights

the fundamental problem with simply comparing the speedup of two codes without

comparing their respective run times, since the parallel efficiency improves as the

single-core performance of the parallel part of the code decreases.

Therefore, it is important to show the run time of the code. In order to compare

the run times of different problem sizes in a reasonable manner, we define the time

per task as

ttask(n) =
nt(n)

NdirNcellsNfreq

, (3.18)

whereNdir is the number of directions (84 in our case), Ncells is the number of cells (323,

2563 and 5123, depending on the problem size) and Nfreq is the number of frequencies.

This is the effective time it takes a single core to solve a single cell in a single direction

for a single frequency. For an ideally parallelized code, ttask is independent of the

number of cores. This definition allows a comparison across different problem sizes by

looking at the effective loss in performance given by ttask(1)/ttask(n), which we believe

is a realistic assessment of the performance of the code between runs of vastly different

numbers of cores.

In Fig. 3.16, the time per task is shown as a function of the number of cores for the

three different problem sizes. The figure shows that the two codes obtain very different

run times on this particular test. Whereas the scaling behavior of the two codes are

very similar, Sweep outperforms SPRAI by a factor of ≈ 20 at n = 1 cores. It is

important to note, however, that this result does not hold for any kind of simulation,

since Sweep is written with a focus on simulations of reionization, where mean free

path lengths are potentially high, while SPRAI performs comparatively well in dense

media.

The lower panel of Fig. 3.16 shows the effective performance ttask(1)/ttask(n). This

demonstrates that, while the effective performance of Sweep decreases with the num-

ber of cores, it only decreases to ≈ 20% at n = 8192 cores.

3.3.6 Weak Scaling

As another test of the parallel efficiency of Sweep with increasing number of cores,

we perform a weak scaling test by increasing the problem size in proportion to the

number of cores, thus keeping the number of cells per core constant. The speedup of

an ideally parallelized algorithm in the weak scaling case is given by

S(n) = 1. (3.19)

As a base case, we choose the n = 1 case with a resolution of 323 cells, identical

to the corresponding n = 1 simulation in the strong scaling test. In addition to the
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of cores n for three problem sizes: 323 (blue), 2563 (red), 5123 (green). Bottom: The
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base case we perform simulations for n = 8, 48, 480 (528 for SPRAI, due to memory

requirements) and 4096 cores with resolutions of 643, 1283, 2563 and 5123 particles

respectively3. We do not include the case of 4096 cores on 5123 particles for SPRAI,

due to slightly increased memory requirements making a run on this number of cores

difficult.

Figure 3.17 shows the speedup as a function of the number of cores n, which, in

the case of weak scaling is equivalent to the parallel efficiency. The speedup initially

drops quite quickly, to values of ∼ 22% for Sweep and ∼ 9% for SPRAI at n = 48

cores. However, the speedup does not decrease further and remains at similar values

until n = 4096 cores.

We believe that the initial decrease in efficiency is due to the overhead in com-

munication compared to the base case of n = 1 cores. In particular, the re-entry

dependencies discussed in Section 3.2.5 significantly slow down performance due to

the amount of communication in which very few fluxes are exchanged.

While some parallel efficiency will be lost due to the increasing amount of commu-

nication for higher number of cores, another effect diminishing the parallel efficiency

is the “pipe fill” described in Section 3.2.5, since cores whose domains lie in the inner

regions of the simulation box cannot begin solving before those with domains in the

outer regions have finished their sweep. At low numbers of cores (n = 1 or n = 8), no

such domains exist, since every domain is adjacent to a boundary of the simulation

box. As the number of cores increases, the number of inner regions increases and

parallel efficiency decreases. In order to check whether this effect is already affecting

our results and decreasing the parallel efficiency significantly, we generated program

output which displayed the timing at which the first task is solved for each core. This

allowed us to estimate the amount of performance lost due to idle time. We found

that for n = 4096, this delay is still insignificant compared to the communication

overhead.

3.4 Conclusion

In this paper, we introduced a sweep-based radiative transfer method which we im-

plemented for the moving-mesh hydrodynamics code Arepo. The method solves the

radiative transfer equation under the assumption of an infinite speed of light and a

steady state solution. As a first test of our implementation of the code, we studied

the expansion of an HII region around a point source for the R-type and the D-type

3Note that the ratio of particles to cores does not remain exactly constant because of the number

of cores was required to be divisible by 48
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regime and compared the results to the analytical predictions as well as results ob-

tained with the SPRAI code. We also performed a test which allowed us to study

the shadowing behavior behind a dense blob of gas. For all the tests, we find good

agreement with our results and the results obtained via SPRAI.

In addition, we performed tests to better understand whether the source iteration

method employed correctly deals with scattering. To ensure that the code can also

handle periodic boundary conditions we performed a series of tests similar to the R-

type expansion but with a source very close to the boundaries of the box. We find

that after ∼5 iterations of the periodic boundary sources, the results are virtually

indistinguishable from those of the standard R-type test.

We also analyze the parallel efficiency of our code in order to assess whether large-

scale simulations would be feasible with this method. To this end, we perform strong

and weak scaling tests. For the strong scaling, we find similar scaling behavior between

SPRAI and Sweep for the smallest test case (323 particles), with Sweep outperforming

SPRAI by a factor of ∼10 in the actual runtime. We find a constant, slow decrease in

the parallel efficiency down to ∼20% at 512 cores for the smallest test case, however

comparing the run time per cell between the large test cases (5123 particles) at 8192

cores and the smallest at 1 cores, we find that Sweep still operates at ∼20% efficiency.

In the case of weak scaling, the parallel efficiency decreases quite significantly with the

number of cores. However, Sweep still performs better than SPRAI by a factor of 4

at n = 512 with a parallel efficiency of ∼25% at 4096 cores. We expect the reduction

in efficiency to be due to the fact that the domains of some cores are located in the

inner region of the entire computational domain.

One possible measure to improve parallel efficiency is to change the domain de-

composition. This is made more complicated due to the fact that sweep is intended to

run in parallel to gravitation and hydrodynamics. In addition, estimating the amount

of computational work for a single Voronoi cell is straightforward for gravitation and

hydrodynamics, but difficult in general for radiative transfer, where assigning the cell

to a certain core not only increases the total work load of that core but also affects

the global scheduling problem.

Finally, we note that although we have developed Sweep with the goal of modeling

cosmological reionization, the algorithm itself is far more general than this and could

readily be adapted for use in other applications in which it is advantageous to have a

method for modeling radiation transfer that is independent of the number of sources.





Chapter 4

Subsweep: Subsweep: A code for

radiative transfer postprocessing

based on the Sweep method

In this chapter we describe the Subsweep code for radiative transfer postprocessing.

Subsweep is a standalone code that takes outputs from hydrodynamical simulations

and produces the dynamically evolving solution to radiative transfer of the simula-

tion. We also introduce the sub-timestepping improvement to the Sweep algorithm

described in Chapter 3, which allows cell timesteps to adapt to the local properties of

the medium, improving performance of the algorithm drastically.

Here, we describe the motivation behind the code, describe the relevant algorithms

for domain decomposition, grid construction and radiative chemistry as well as the

sub-timestepping improvement and its implementation. Eventually, we test the code

on a variety of physical setups, such as the expansion of a HII region, its shadowing

behavior, its ability to treat periodic boundary conditions and test the performance

of the sub-timestepping algorithm.

4.1 Introduction

Reionization is the process in which the universe shifts from being fully neutral to be-

ing almost completely ionized everywhere. This is an important part of the transition

from the primordial, homogeneous universe to the present-day universe which is full

of heterogeneous, complex structures [see e.g. Loeb and Barkana, 2001, Wise, 2019,

Zaroubi, 2013].

We want to understand reionization by performing a set of simulations in which

radiative transfer and radiation chemistry are evolved on large cosmological simula-

63
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tions such as the TNG simulations [Marinacci et al., 2018, Naiman et al., 2018, Nelson

et al., 2018, 2019, 2021, Pillepich et al., 2018, 2019, Springel et al., 2018].

Here, we introduce a new code Subsweep which aims to solve radiative transfer

and radiation chemistry on large inputs, such as those from cosmological simulations.

Radiative transfer is the physical theory that describes the propagation of radia-

tion and its interactions with matter, such as absorption and scattering [Mihalas and

Weibel-Mihalas, 1999]. There are multiple reasons why radiative transfer is a partic-

ularly challenging numerical problem, beginning with the high dimensionality of the

quantity of interest: specific intensity which depends on three spatial, two directional,

one temporal and one frequency dimension leading to a total of seven dimensions.

In addition, the radiative transfer equation can be seen as an elliptical equation in

optically thick media and as a hyperbolic equation in optically thin media, making

it particularly difficult to select a single solution method that works well across the

entire parameter space. Furthermore, we are primarily interested in physical scenarios

in which the properties of the medium in which the radiation is transported change

due to the influence of the radiation. At the same time, the radiation transport itself

is dependent on the properties of the underlying medium (such as emissivity and opac-

ity), calling for a solution to the coupled equations of radiative transfer and radiation

chemistry.

Moment-based methods, where one solves the moments of the radiative transfer

equation with some approximate closure relation, as opposed to the full radiative

transfer equation, are a leading class of methods. This approximation can lead to

drastically improved performance while decreasing the overall accuracy of the result.

All moment-based methods need to choose a closure relation, which is typically given

in terms of an expression for the Eddington tensor. One of the first examples of a

moment-based method is the flux limited diffusion approach [Levermore and Pom-

raning, 1981, Whitehouse and Bate, 2004] in which one assumes that the intensity

varies sufficiently slowly, and introduces a flux limiter to ensure that the signal speed

of the radiation field remains lower than the speed of light. Flux-limited diffusion

has been successfully applied in astrophysics [e.g. Boss, 2008, Krumholz et al., 2007],

but its main drawback is its diffusive nature which results in a lack of proper shadow

formation [see e.g. Hayes and Norman, 2003].

Another example of a moment-based method is the optically thin variable Edding-

ton tensor method in which the Eddington tensor is computed under the assumption

that all lines of sight to the sources in the simulation are optically thin [Gnedin and

Abel, 2001b]. While efficient, this algorithm is applicable only to a comparatively

narrow range of problems.
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The M1 method is another moment-based method based on the M1 closure rela-

tion [Kannan et al., 2019]. While it is comparatively fast, it suffers from numerical

problems inherent to moment-based methods, such as the two-beam instability [Ros-

dahl et al., 2013].

Another class of methods is given by Monte Carlo approaches, in which radiation is

represented by individual photon packets [Dullemond et al., 2012, Oxley andWoolfson,

2003]. Packets are created by sampling them according to a probability distribution

and interacting with the matter following statistical predictions. These distributions

are determined by the properties of the gas. A primary advantage of these methods is

that their accuracy is determined by the number of emitted photon packets, making it

easily tunable. Inherent to the nature of the method is statistical noise, with a signal

to noise ratio that scales as SNR ∝ √n, where n is the number of photon packets.

In Peter et al. [2023], we introduced the Sweep method, which is a very efficient way

of computing the exact solution to the scattering-less radiative transfer equation in

parallel on large inputs based on the concept of transport sweeps [Koch et al., 1991,

Zeyao and Lianxiang, 2004]. Transport sweeps are a subclass of discrete ordinate

methods, in which the radiative transfer equation is solved simply by discretizing it

in all of the available variables (time, space, frequency and angle). During a sweep,

scattering is assumed to be negligible, such that the radiative transfer equations for

different angles decouple. In order to solve the resulting equations efficiently, the

algorithm computes an ad-hoc topological sorting of the grid with respect to the

direction of the sweep, resulting in a method that computes the exact solution to the

equation in a single pass through the grid. We have found the resulting method to be

very performant and accurate at the same time.

Our previous implementation of Sweep within the cosmological simulation code

Arepo [Springel, 2010b] worked well on medium sized inputs, but a major problem

was the fact that it could only perform global operations in which radiative transfer is

performed on the entire box, before a global chemistry update is performed. This lim-

itation makes large runs prohibitively expensive since the need for a small timestep in

one of the cells of the entire simulation will imply a small global timestep everywhere.

In this paper, we introduce the standalone radiative transfer postprocessing code

Subsweep, which deals with this problem by introducing a substepping procedure, sim-

ilar to the sub-timestepping in modern hydrodynamical codes. This method works by

assigning grid cells individual timesteps, which are chosen from a power-of-two hier-

archy and adapted to the local, physical timescales of processes relevant to radiative

transfer. Transport sweeps are then performed according to this timestep assignment

in a physically consistent way, resulting in a computation in which cells with very
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low desired timesteps can be evolved accurately without sacrificing performance by

strictly adhering to a global, low timestep.

We also find that this new method drastically alleviates the computational cost of

incorporating periodic boundary conditions, one of the main challenges for the initial

version of the Sweep algorithm. Previously, periodic boundary conditions were imple-

mented by source iteration - photon fluxes leaving the simulation box are introduced

as a source term for a subsequent sweep, until convergence is reached. In the new

substepping approach, we use the concept of Warmstarting - periodic source term

of the previous iteration are used as a guess for the the new timestep. By applying

this concept also to the sub-timestep sweeps, we find that sufficient accuracy for our

applications is reached without performing any additional source iterations.

This paper is structured as follows. In Section 4.2, we discuss the implementation

details of Subsweep, with a particular focus on the spatial domain decomposition

(Section 4.2.2), the construction of the Voronoi grid (Section 4.2.3) before we focus

on radiative transfer in general and the Sweep method in particular (Section 4.2.4)

before we introduce the substepping approach (Section 4.2.5) and end with the details

of our radiation chemistry solver (Section 4.2.9). Afterwards, we perform a number

of tests of our code (Section 4.3), showing the physical accuracy of the results in an

R-Type expansion test in the normal case (Section 4.3.1) and the case of the expansion

happening across a periodic boundary (Section 4.3.2) and perform a test to study the

shadowing behavior of the code (Section 4.3.3). We assess the performance of the

substepping method by performing a one-dimensional R-Type expansion on a large

span of parameters (Section 4.3.4) and perform a brief series of tests for the radiation

chemistry solver (Section 4.2.9). Finally, we conclude this paper and discuss future

extensions of the code as well as possible applications in Section 4.4.

4.2 Methods

4.2.1 General structure of the code

In this paper we discuss the Subsweep simulation code1 which is a standalone code for

postprocessing of large cosmological simulations. Currently, the code works with out-

puts ofArepo implementations, but extensions for output formats of other simulation

codes are possible. The code requires data specifying the coordinates, temperatures

and chemical compositions of a number of cells. Source terms can either be explic-

itly specified by the user or will be computed from a set of source cells (such as star

1Source code publicly available at https://github.com/tehforsch/subsweep
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particles in the case of Arepo) which also needs to be present in the inputs. It will

then distribute the data onto the desired number of cores (which we briefly discuss

in 4.2.2), construct a the Voronoi grid (discussed in 4.2.3) and solve the radiative

transfer equation coupled to radiation chemistry and write out the intermediate and

final results of the computation. Documentation for the usage of the code is available

alongside the source code. The code is written with a particular focus on the post-

processing of high-redshift cosmological simulations and reionization, but extensions

incorporating present-day chemistry into the code should be straightforward.

4.2.2 Domain decomposition

In order to run our code in parallel, we have to distribute the available data over

multiple cores. We choose to use a simplified version of a standard Peano-Hilbert

space-filling curve approach to spatial domain decompositioning which we will briefly

describe in the following.

The first goal that the domain decomposition tries to solve is to distribute the

particles onto the n cores 1 . . . n in such a way that the total runtime of the program

is minimized. Since this is a very difficult optimization problem to solve in general,

we make it more concrete by defining two primary goals of the domain decomposition.

The first goal is the minimization of the load imbalance max{Li}−min{Li}
max{Li} where the load

Li on core i can be defined in a variety of ways, which we will discuss later.

The second goal is to keep the total time spent communicating as low as possible.

This requirement is almost equivalent to minimizing the surface area of the intersection

between the domains, because shared interfaces are where communication needs to

take place in order to solve them.

A third priority that is specific to transport sweep algorithms is that even if goals

1 and 2 are fulfilled optimally, the resulting sweep can still be slow if the cells are

arranged in such a way that not all cores can work simultaneously due to the task

dependencies that need to be fulfilled (see the discussion in 3.2.5).

For structured grids, a domain decomposition that optimizes the parallel perfor-

mance of the transport sweep is given by the Koch-Baker-Alcouffe algorithm [Baker

and Koch, 1998, Koch et al., 1991]. For unstructured grids, optimizing the perfor-

mance by the domain decomposition is difficult in general, which has been discussed

in detail [Adams et al., 2019, Vermaak et al., 2020].

Here, we will briefly discuss our implementation of a well-known, approach based

on space-filling curves that can solve requirements 1 and 2 simultaneously. For now,

we find that even though we do not optimize explicitly for the third goal, i.e. the

sweep scheduling, the resulting performance is enough for our purposes.
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In our case, a space-filling curve is given by a mapping f and its inverse f−1

between a one-dimensional interval and all the possible floating point positions in the

three-dimensional simulation box with side length L

f : [cmin, cmax]→ [0, L]3, (4.1)

f−1 : [0, L]3 → [cmin, cmax], (4.2)

where cmin and cmax are the minimum and maximum values of the domain of the

space filling curve respectively. We call f(r) the key of a particle at position r. The

basic idea of a domain decomposition using such a space filling curve is to move the

three-dimensional optimization problem of distributing a set of points {pj ∈ [0, L]3}
onto n cores 1 . . . n to a more tractable, one-dimensional problem. In our case, this

one-dimensional problem is the problem of finding cut-offs si for i = 1 . . . n − 1 so

that the load balance is minimized if each core i gets assigned the points {pj | si−1 <

f−1(pj) < si}, where we take s0 = cmin and sn = cmax. If the space-filling curve is

chosen such that it maps close-by points on the interval [cmin, cmax] to close-by points

in three dimensional space, the resulting distribution of points will form reasonably

compact domains. A common choice for such a curve is the Hilbert curve.

In order to execute the domain decomposition using the Hilbert curve, we require

the load function Li(c1, c2) which computes the total load of the particles on core i

between the keys c1 and c2. Here, we assume that the load can be computed as a sum

over the load for each particle.

1: procedure Find si

2: Initial guess: si ← si−1 +
cmax−si−1

n−i

3: for d← 1, dmax do

4: For each rank k, compute Lk(si−1, si).

5: Compute L←∑n
k=1 Lk(si−1, si) via a global sum.

6: if L = Llocal then return si

7: else if L < Ldesired then

8: si ← si+cmax

2

9: else if L > Llocal then

10: si ← si+si−1

2
return si

Algorithm 4: Cut-off search

In order to find the distributions of the keys si we proceed as follows:

1. For each core, compute the keys for all local particles and sort them, so that
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computing the load function Li(c1, c2) becomes a cheap operation for any keys

c1, c2.

2. Compute the total load of the entire simulation Ltotal =
∑n

i=1 Li(cmin, cmax) (via

a global sum).

3. Compute the desired load on each core as Ldesired = Ltotal

n
.

4. Using this, compute the cutoffs si, starting with s1 using the parallel search

described in Alg. 4.

4.2.3 Construction of the Voronoi Grid

In order to perform the Sweep algorithm over a set of points, we need to construct

a Mesh, so that we can determine the connectivity of cells. In order to avoid any

additional numerical artifacts, we decide to use a similar mesh as the one that was

used in the code which generated the outputs which we are trying to post-process

using Subsweep. Since we are mostly interested in postprocessing simulation outputs

of Arepo, we choose to use a Voronoi grid, which is the mesh that Arepo is based

on.

There are many different algorithms for constructing Voronoi grids. For simplicity,

the one here is based closely on the method described in Springel [2010b]. The method

is based on incremental insertion [Bowyer, 1981, Watson, 1981], extended to allow

construction of the grid for a point set distributed onto multiple cores.

Construction of the Local Delaunay triangulation

The Voronoi grid is constructed from its dual, the Delaunay triangulation. The serial

incremental insertion algorithm for constructing the Delaunay triangulation proceeds

as follows: Given a set of N mesh-generating points {pi | 1 ≤ i ≤ N}, begin with

an all-encompassing tetrahedron, i.e. one that is large enough to contain all points

pi. Now, for every point p, locate the tetrahedron in the triangulation which contains

p. How exactly this is done in a performant way is described in Section 4.2.3. Using

p, we split the tetrahedron containing p into 4 new tetrahedra. After the split, the

resulting triangulation is not necessary Delaunay. In order to restore Delaunayhood,

we begin by putting each of the 4 newly formed tetrahedra on a stack. For each

tetrahedron t in the stack, we find the face F which is opposite of p in t. We then

find the tetrahedron t′ which is on the other side of F , and locate the point p′ which

is opposite of F within t′. If p′ is contained in the circumcircle around t, then the face

F violates the Delaunay criterion and needs to be removed. To do so we perform a
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flip orientation on the two tetrahedra t and t′ which will result in a number of new

tetrahedra, each of which will now have to be checked for Delaunayhood, so we put

them on the stack as well. Once the stack is empty, Delaunayhood has been restored

again and we can begin inserting the next point.

The flip operation between two tetrahedra t and t′, their shared face F and the two

points p and p′ opposite of F in each of the tetrahedra respectively works as follows:

Compute the intersection point q of the face F with the line between p and p′. If q lies

inside F , we perform a 2-to-3-flip, in which the two tetrahedra are replaced by three.

If the intersection point lies outside one of the edges of F , we take into account the

neighboring tetrahedron along that edge and perform the opposite operation - a 3-to-2

flip - in which the three tetrahedra are converted to two. If the intersection point lies

outside two edges, the flip can be skipped. It can be shown [Edelsbrunner and Shah,

1996] that flipping the remaining violating edges will restore Delaunayhood. For more

information on this procedure see Springel [2010b].

Point location

While inserting a point p into the triangulation, we need to locate the tetrahedron

containing p. This is performed by the simple ”jump and walk” method. The method

works by using a priority queue q. We initialize q as containing only the last tetra-

hedron that was inserted into the triangulation. Now we iteratively take the highest

priority tetrahedron t out of the queue. If t contains p, return t. If t does not contain

p, we add all the neighboring tetrahedra of t to q with their priority determined by

their distance to p (so that tetrahedra closest to p are searched first). The method

performs the best if the order of the points inserted into the triangulation is such that

two points inserted after another are also at similar positions (which in turn makes

the initial guess better). In order to achieve this, we begin the construction by sorting

all points according to their Peano-Hilbert key.

Parallel Delaunay construction

In principle, we would like to construct the global Delaunay triangulation Tglobal on all

of the points in the entire simulation. In practice, we are limited to those points that

are available on each core. All we can do is to construct a local triangulation Tlocal

over all of the local points. The goal of the triangulation is to provide connection

information and in order for it to be useful, this connection information has to be

consistent with what the other cores see. It is clear that in order to do so and

preserve Delaunayhood we need to import points that lie on other cores, which we

call halo points. More precisely, we we want to construct Tlocal in such a way that it is
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consistent with Tglobal, in the sense that for every local point p, the set of tetrahedra

{t|t ∈ Tlocal, p ∈ t} is the same as {t|t ∈ Tglobal, p ∈ t}. Note that this requirement

does not extend to halo points, allowing us to stop importing additional halo points

once all local points are consistent in the above sense.

Here, we will describe the algorithm for the halo search. The goal here is to

import every necessary halo point in order to reach a consistent local triangulation,

while importing as few as possible superfluous points in order to speed up the grid

generation and keep memory overhead as low as possible. The basic idea is that a

tetrahedron t is consistent with the global triangulation Tglobal iff we have imported

the set of all points {p|p ∈ C(t)} from all other cores, where C(t) is the circumcircle

of the tetrahedron. To do so, we begin by constructing the Delaunay triangulation

of all local points T 0
local. Initially, we flag every tetrahedron in the triangulation as

”undecided” and then iterate on the following process:

For every undecided tetrahedron t, we compute the circumcircle C(t) = (c, r) with

center c and radius r. Given the circumcircle C(t), we compute the search radius

r′. Search other cores for all points p that are within r′ distance of c which we have

not imported locally yet. If there is no such point anywhere (which means we have

imported all points that could be contained in the circumcircle of the tetrahedron),

flag the tetrahedron as ”decided”. Otherwise, we add all points p to the list of newly

imported points. Now, we construct T i+1
local by inserting the set of all newly imported

points into T i
local. We flag any newly created tetrahedron which contains a local point

as undecided.

Here, the search radius r′ is computed as follows: If the radius of the circumcircle

r is smaller than the average expected size of a Voronoi tetrahedron l̄, then r′ = r.

Otherwise, we use r′ = l̄, unless we have previously performed a radius search for

this tetrahedron before, in which case we use r′ = r′previous ∗ α where α > 1 is a free

parameter. This is done because in the first few iterations of the triangulation, very

large tetrahedra tend to form because we are not yet aware of the presence of very

nearby points on other cores. If we blindly performed a radius search with the radius

of the circumcircle r, we might unnecessarily import a large number of points from

other cores. However, if the triangulation should contain this large tetrahedron, the

exponentially increasing search radius will ensure that we perform a search with the

proper radius within a reasonable number of iterations.

If periodic boundaries are desired, the same procedure described above, which

imports halo points from other ranks can also import periodic haloes (i.e. points

that represent a point shifted by a multiple of the box size along one or more axes)

both from other cores and from the set of local points. All that is required is that
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the radius search which searches for all points within a given radius of a given point

takes periodic boundary conditions into account. Since constructing the distributed

triangulation requires many radius searches, we need to perform the radius search

quickly. To do so, we construct a standard Oct-tree on the set of all local points

which reduces point search to a O(n log n) operation.

Degeneracies

Another difficulty in creating Delaunay triangulation is how to deal with degenerate

cases and those that are close to being degenerate. One solution to this problem is

to perform all operations in arbitrary precision arithmetic. However, this will reduce

the performance of the code drastically. In Subsweep we take an approach similar to

the one in Springel [2010b] where we perform the critical checks (such as the checks

that ask whether a point is contained in a tetrahedron or whether a tetrahedron is

positively oriented) in floating point arithmetic first. If the result of the floating point

operation is at risk of being qualitatively wrong due to numerical round-off errors,

we perform it again in arbitrary precision arithmetic. In the current code, we do

not deal with truly degenerate cases (for example, a point lying exactly on a face of

a tetrahedron) because we find them to be extremely rare in practice, however it is

possible to extend the method to account for degeneracies. For more information on

this procedure, we refer to Springel [2010b].

4.2.4 The Sweep algorithm

We introduced the Sweep algorithm in the context of Astrophysics in 3.2.5. Here,

we will briefly recap the basics of the algorithm in order to explain the required

fundamentals for understanding the extensions we will introduce in later sections.

Given the specific radiative intensity Iν(r, t, Ω̂), with frequency ν, spatial position

r, time t and solid angle Ω̂ given in units of Wm−2 sr−1Hz−1, the general Radiative

Transfer Equation(RTE) reads [Rybicki and Lightman, 1985]

1

c

∂

∂t
Iν + Ω̂ ·∇Iν = jν − (k̄ν,s + k̄ν,a)Iν +

1

4π

∫
S

kν,s(Ω
′)IνdΩ

′. (4.3)

In the case of Subsweep, we assume that scattering terms are negligible and make

the infinite speed of light assumption, so that we obtain

Ω̂ ·∇Iν = jν − k̄ν,aIν . (4.4)

For more details on these assumptions see Peter et al. [2023].
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Ω

Figure 4.1. Illustration of the radiative processes described by Eq. 4.4 for a single

grid cell: Incoming (orange) and outgoing (red) radiation, sources (green), absorption

(blue)

The Sweep method is a discrete ordinate method, which means that it solves the

RTE by discretizing it in every variable, that is in space, time, angle and frequency.

Equation 4.4 can be intuitively understood using the illustration in Fig. 4.1, which

shows the processes affecting a small volume of space. Sources of radiation in this

volume are through incoming radiation from cells to the left (brown arrows), the source

term j directly (green arrow). Radiation from the cell is either absorbed (blue arrow)

or leaves the cell towards the right (teal arrows). The neighboring cells therefore fall

into two categories. Cells upwind of the cell along Ω (brown arrows) need to have

their solution computed before this cell, since we require the incoming fluxes from

those cells to solve the local problem. Cells downwind of the cell require the outgoing

fluxes of the local solution in order to be solved.

The crucial idea of the Sweep method is that it finds a topological sorting of the

partial order induced by the upwind-downwind relation, such that the exact solution

to the (scattering-less) RTE can be obtained in ndir passes through the grid, where

ndir is the number of bins into which we choose discretize the angular directions. It is

crucial that the upwind-downwind relation is transitive, so that it is a partial order

(which is equivalent to there being no cycles in the directed graph induced by the

order), because otherwise a topological sorting of the cells does not exist. We have

shown in A.1 that this is always true for such an ordering induced by a Voronoi grid,
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which is the only type of grid that we are going to work with in this paper. It should

be noted that the ordering is trivially acyclic for Euclidean grids or grids generated

by adaptive mesh refinement, so that the Sweep algorithm can also be used in another

type of grid that is widely used in Astrophysics.

1: initialize task queue q ← {}
2: for all Ω and all cells c in grid do

3: count number of required upwind fluxes n(c,Ω)← u(t)

4: if n(c,Ω) = 0 then add task (c,Ω) to q

5: while q not empty do

6: get first task t = (c,Ω) from q

7: solve t using upwind fluxes

8: for downwind neighbor cd in d(t) do

9: reduce missing upwind flux count n(cd,Ω) by 1.

10: if n(cd,Ω) = 0 then add task (cd,Ω) to q.

Algorithm 5: Single-core sweep

The single-core sweep algorithm is described in Algorithm 5. In order to find

the topological sorting, the Sweep algorithm starts the computation by computing

an upwind count for each direction and each cell which is simply the number of cells

upwind of the cell in the given direction. The idea is to keep track of the set of all

(cell, direction) pairs which can currently be solved, which are those whose upwind

neighbors have already been solved. Whenever we solve a task, we reduce the upwind

count of all its downwind dependencies by 1. If the upwind count of this dependency

is now zero, we put this dependency into the task queue. Once the queue is empty,

we have solved all tasks and have obtained the solution to the RTE. The grid being

acyclic guarantees that this algorithm always terminates.

In order to perform the algorithm described in Alg.5 in parallel on many cores

with a spatial domain decomposition, a number of modifications need to be made

to the algorithm. The basic idea of algorithm does not change in the parallelized

version of the code. The main difference is that we need to take task dependencies

between different cores into account. Previously, having solved a task meant that

we could simply reduce the upwind count of all its downwind dependencies by one.

Now, the downwind dependencies of a task might be on a different core. In this

case, we send a message to that core consisting of the outgoing fluxes of the local

cell, the id of the downwind cell and the direction of the task. As soon as the other

core receives that message, it will reduce the upwind count for the corresponding cell
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1: initialize task queue q ← {}
2: initialize send queues for each processor i holding downwind neighbors of any of

the cells in the domain of the current processor: si ← {}
3: for all Ω and all cells c in grid do

4: count number of required upwind fluxes n(c,Ω)← u(t)

5: if n(c,Ω) = 0 then add task (c,Ω) to q

6: while any cell unsolved or any si not empty do

7: for each incoming message (flux f along Ω into cell c) do

8: reduce missing upwind flux count n(c,Ω) by 1.

9: if n(c,Ω) = 0 then add task (c,Ω) to q.

10: nsolved = 0

11: while q nonempty and nsolved < Nmax do

12: get first task t = (c,Ω) from q

13: solve t using upwind fluxes

14: nsolved += 1

15: for downwind neighbor cd in d(t) do

16: if cd is remote cell on processor i then

17: add flux to send queue si

18: else

19: reduce missing upwind flux count n(cd,Ω) by 1.

20: if n(cd,Ω) = 0 then add task (cd,Ω) to q.

21: send all messages in si

Algorithm 6: Parallel sweep
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by one (and add it to the solve queue if the upwind count is 0 at this point). In

order to improve performance, messages are not sent immediately, since sending lots

of small messages tends to increase communication overhead and reduce performance

as a result. The opposite strategy of sending messages only after all tasks that are

solvable locally have been solved also comes with performance drawbacks, since it can

cause long waiting times on neighboring cores who cannot perform any work before

receiving new incoming fluxes. In practice, we therefore use an intermediate approach

where we solve at most Nmax local tasks before new messages are sent and received.

Here, Nmax is a free parameter and the two extremes are recovered for Nmax = 1 and

Nmax =∞ respectively. In order for this parallel algorithm to terminate, it is crucial

that all cores agree on the connections between their local cells. If this is not the case,

cores can end up waiting for incoming messages that will never be sent, causing infinite

deadlocks. The property that all cores agree on the interfaces between their boundary

cells is ensured by the particular way in which grid construction is performed by the

algorithm described in Section 4.2.3.

4.2.5 Substepping

The main problem with the Sweep algorithm above is that the entire grid operates

on the same timestep. This is not a problem for the RTE alone, since, given our

assumption of infinite speed of light, it is independent of time and therefore reaches a

steady-state solution immediately. However, we are interested in solutions of the RTE

coupled to the radiation chemistry equations, which are manifestly time-dependent.

In practice, a large fraction of the cells in the simulation are either fully ionized

or fully neutral and have settled into an equilibrium where their chemistry update

could be performed at high timesteps. However, cells along ionization fronts require

comparatively low timesteps in order to accurately integrate both the RTE and the

chemical equations. With the previous sweep algorithm, the only option was to use

a low value for the global timestep, which in turn means that solving the system for

the desired amount of time requires a higher number of sweeps.

In the following, we will introduce a modification to the Sweep algorithm which

allows cells to perform sub-timesteps, if required. Effectively, this solves the global

timestep problem by letting cells choose their desired timestep. In the following, we

will explain how this algorithm works in practice. An illustration of the algorithm is

shown in Figure 4.2.

In order to do so, we introduce n different timestep levels. Each cell c is assigned

to a timestep level l(c). During a full timestep ∆tmax, a cell at timestep level 0

receives one update for a full timestep ∆tmax. cells at level l receive 2l updates with
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Figure 4.2. Illustration of the Sweep substepping procedure. The rectangles repre-

sent cells, with the color of the cell indicating how far the cell has been integrated.

A fully blue cell has not been integrated at all, while a green cell has been integrated

for a total of ∆tmax. Arrows represent fluxes going into the cell which are computed

during the sweep steps. Black arrows denote normal fluxes, while orange arrows rep-

resent boundary terms for the sweep. Each row represents either a sweep (denoted by

S) or a chemistry update (denoted by C) at the corresponding level l. The last row

represents the final state with each cell having been fully integrated.
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a timestep of 2−l∆tmax. At the end of each full timestep, each cell computes the

timescale at which its relevant quantities change. In our case, this timescale is given

by the minimum tmin of the three timescales at which the temperature T , the ionized

hydrogen fraction xH II and the photon flux F change:

tmin = min

[∣∣∣∣Ti + Ti−1

Ti − Ti−1

∣∣∣∣ , ∣∣∣∣xHII,i + xHII,i−1

xHII,i − xHII,i−1

∣∣∣∣ , ∣∣∣∣Fi + Fi−1

Fi − Fi−1

∣∣∣∣ , ] (4.5)

where i− 1 and i refer to the values in the previous partial sweep and the current one

respectively. This timescale is used to compute a desired timestep

∆tdesired = xtmin (4.6)

where x ∈ (0, 1] is a dimensionless free parameter which controls the accuracy of the

integration. This desired timestep is then used to determine the timestep level l′ of

the cell for the next full timestep as

l′ =

⌈
log2

∆tmax

∆tdesired

⌉
(4.7)

for the entire next full timestep. In order to keep a fixed number of levels n, the value

of l′ will be reduced to at most n− 1 and increased to at least 0. Modifications of this

method where cells can change their timestep level in the middle of a full timestep are

possible, but for reasons of simplicity, we have not implemented them at this point.

Given the distribution of the cells onto the n timestep levels 0 . . . n−1, we introduce
the following terminology: A “partial sweep” at level l, or l-sweep is a sweep of all

the cells which are at level l or higher. During a l-sweep, we call cells ”active” if their

timestep level l′ fulfills l′ >= l, i.e. if they are involved in the l-sweep. A “full sweep” is

the procedure by which the system is integrated for a full timestep ∆tmax and consists

of 1 0-sweep, 1 1-sweeps, 2 2-sweeps, 4 3-sweeps, . . . , and 2n−2 (n− 1)-sweeps. The

order in which they are performed is illustrated in Fig. 4.2.

Since only the cells at levels larger or equal than l participate in an l-sweep, we

need to decide how to treat the incoming fluxes from cells which are at levels below

l. In this method, the fluxes of all cells at timestep levels 0 . . . l− 1 are kept constant

and effectively treated as boundary conditions for the cells at higher levels. During

the l-sweep, the fluxes going into each active cell c are corrected by computing

F ′
out − Fout = f(F ′

in, c)− f(Fin, c) (4.8)

where Fout is the value of the flux before the partial sweep, Fin is the incoming flux

term before the partial sweep, F ′
in is the incoming flux in this partial sweep and f is
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the function that computes the outgoing fluxes given the incoming fluxes and crucially

depends on the chemical composition which might change during a chemistry update.

This function depends on the implementation of the chemistry and its exact form

in our hydrogen-only chemistry implementation will be discussed in Section 4.2.9.

Outgoing fluxes of a cell are either used directly as input into other local cells, or

communicated to other cores, as in the original sweep algorithm without substepping.

Flux corrections are applied to cells whether or not the target cell itself is active.

Once the l-sweep is finished, all cells c have their chemistry updated by ∆tmax2
−l(c).

This means that at this moment, cells at higher levels (and therefore lower timesteps)

have experienced ”less” time, than those at lower levels. This will be corrected by

performing additional partial sweeps on the higher levels, so that at the end of a

full sweep, each particle has been integrated for exactly ∆tmax. It should also be

noted that consistency is guaranteed in the sense that the order in which the partial

sweeps are performed guarantees that for any given partial sweep, all active cells have

experienced the same amount of time. After every full sweep, the cells are moved onto

their new timestep level, according to their desired timestep (see Eq. 4.7). Crucially,

after the timestep levels have been updated, each core communicates the new timestep

level of each of its cells which has a neighbor on another core to that core. This is

important because all of the cores have to agree on which cells are active at each level.

If they do not agree on this, one of the cores will expect incoming fluxes over the

interface shared by the two cells while the other will not send those fluxes, resulting

in a deadlock of the partial sweep.

4.2.6 Wind up

At the beginning of the simulation, we do not know how to distribute the cells onto the

timestep levels, since we have no prior data on the timescales at which their relevant

quantities will change. If we had to guess the timestep level of any cell, the only

reasonable choice we can make in order to not violate the timestep criterion of any

single cell, is to place all cells in the highest level (the lowest timestep). However,

performing a full sweep in this setup would require a total of 2n+1 − 1 sweeps of the

entire grid, an extremely expensive operation. In order to avoid this, we compute

the timescales of each cell by placing each cell in level n − 1 and beginning with a

(n− 1)-sweep, i.e. a sweep at the smallest allowed timestep (2−(n−1)∆tmax). We then

allow each cell to move one level down, if its desired timestep is large enough, and

perform a n − 2 sweep, and so on. In the end, we have performed n partial sweeps

and have simulated a total time of
∑n

i=0 2
−i∆tmax =

(
1− 2−(n−1)

)
∆tmax. In order to

align the time intervals with multiples of ∆tmax, we perform one more partial sweep
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of all cells with timestep 2−(n−1)∆tmax which will bring the total simulated time to

∆tmax. From now on, every timestep will be performed by a full sweep, which totals

∆tmax.

4.2.7 Periodic Boundary Conditions

Periodic boundary conditions are an important tool to study cosmological volumes of

space self-consistently, by allowing effects from the matter outside of the simulation

box to be approximately modeled by the contents of the simulation box itself. In the

case of radiative transfer, this means re-introducing photons that escape the box on

one side to the mirrored position on the opposite side.

In 4.2.3, we discussed how periodic boundaries are taken into consideration during

mesh construction. This means that each cell at the boundary of the box knows the

location of its periodic neighbors. As discussed in 3.2.7, there is no obvious, self-

consistent way of re-introducing outgoing photons within a single sweep. However, we

can make use of the source iteration algorithm and treat fluxes that leave the bound-

aries of the simulation box as source terms for the next iteration of the algorithm.

Each iteration then approximates the true periodic source terms until convergence is

reached. However, applying this approach to a full sweep has the obvious drawback

that every iteration takes exactly as long as the original sweep. Since a full sweep over

the grid is an expensive operation, repeating it a number of times in order to reach

an acceptable level of convergence can quickly become infeasible.

In 3.2.7 we discussed the concept of Warmstarting, where the resulting fluxes from

previous sweeps are re-introduced in the next iteration in order to speed up conver-

gence. Moreover, Warmstarting integrates extremely well with the sub-timestepping

approach introduced in Subsweep. To do so, we use the outgoing periodic fluxes of

every partial sweep as incoming fluxes into the corresponding cells for the next partial

sweep. This has a number of benefits. Primarily, it changes the algorithm so that

it does not require a global cost (re-running the full sweep) in order to fix an often

local problem (convergence of the periodic fluxes in the cells with the most activity).

Instead, the algorithm naturally adapts itself to the local requirements and decreases

the timestep in cells with particularly bad convergence behavior with respect to pe-

riodic boundary conditions. It should be noted that this happens without requiring

any timestep criterion specific to periodic boundary conditions - cells that have not

converged to their true periodic fluxes will automatically reduce the timestep, since

that derives (among other things) from the rate of change in the flux terms, as shown

in Eq. 4.5. This combination of Warmstarting and substepping has proven so effective

that we have chosen not to implement any global iteration on levels of full sweeps in
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Subsweep.

4.2.8 Rotations

As discussed for the original Sweep implementation in 3.2.6, we perform rotations of

the directional bins between transport sweeps in order to smooth out the effect that

the discretization of the directional bins has on the result. The preferential directions

introduced by this discretization can easily lead to very apparent star-shaped artifacts

in the hydrogen ionization fraction around strong sources.

In Subsweep, we keep this approach to smoothing out preferential directions. Here,

remapping the flux corrections from one timestep to the next becomes important. As

in the original implementation, the directions Ωi are rotated to new directions Ωi =

R(θ, ϕ) · Ω′
i where R(θ, ϕ) is the rotation matrix for the spherical coordinate-angles

θ and ϕ. The angles are chosen from a uniform distribution of θ ∈ [0, π], ϕ ∈ [0, 2π].

Remapping of the fluxes onto the new angular bins is then done via F (r,Ω′
i) =∑Ndir

j=1
∆Sij

∆Si
F (r,Ω′) where Ndir is the number of directional bins, the interpolation

coefficients ∆Sij are given by the solid angle that Ωi and Ωj share and ∆Si is the

solid angle corresponding to any direction Ωi.

These rotations are performed only after every full Sweep and not after partial

Sweeps. It is possible in principle to rotate the bins also after every partial Sweep, but

doing so can have a very strong, discontinuous effect on the convergence timescale of

some cells. In order to safely incorporate sub-timestep rotations into the substepping

approach, we think it is necessary to introduce the ability for cells to change their

desired timestep during partial sweeps, not only during full sweeps. Therefore, we

have chosen not to introduce this additional complexity to the algorithm.

The drawback of this choice is that if the full-sweep timestep ∆tmax is chosen to

be large compared to the timescales at which ionization fronts move a large amount of

cells (which is desirable in order to fully take advantage of the substepping approach),

artifacts due to preferential directions can be visible. In order to avoid these artifacts,

the full-sweep timestep has to be decreased, increasing computation time.

4.2.9 Radiation Chemistry

The implementation of the radiation chemistry in our code follows Rosdahl et al.

[2013] closely. In the current form, the code only treats the ionization, heating and

cooling of hydrogen in a primordial gas. We assume zero helium in our code. However,

extensions to incorporate helium or more complex chemistry networks are possible and

intended in the structure of the code. This includes adding more frequency bins for the
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radiative transfer. In the current form, we use one frequency bin which incorporates

all frequencies f ≥ 13.6 eV.

The chemical state of a cell c is described by the state vector: U = (T, xH II)

alongside its (constant) density ρ. The first thing that the implementation of the

chemistry needs to provide is the function f(F, c) discussed in Section 4.2.5. This

function computes the outgoing photon flux of a cell c given the incoming flux F

which depends on the chemical state U of the cell. For our hydrogen-only chemistry,

this function is given by

f(F, c) = Fe−nH Iσd, (4.9)

where nH I is the density of neutral hydrogen, σ is the number weighted average cross

section for photons with 13.6 eV < ν < ∞ and d = 3

√
3V
4π

is the approximate size of

the cell (V is the volume of the cell). In principle we could be more consistent in

our choice of cell size by computing the effective length of the cell along the given

direction Ω of the sweep, but did not do so in order to keep this as simple as possible.

1: procedure Update(∆T )

2: Remember initial state Uinit ← (T, xH II)

3: Compute T ′ ← TemperatureUpdate(∆t).

4: if
∣∣T ′−T

T

∣∣ > ϵ then

5: U ← Uinit

6: Update(∆T/2)

7: Update(∆T/2)

8: return

9: else

10: T ← T ′

11: Compute x′H II ← IonizationFractionUpdate(∆t).

12: if
∣∣∣x′

H II−xH II

xH II

∣∣∣ > ϵ then

13: U ← Uinit

14: Update(∆T/2)

15: Update(∆T/2)

16: return

17: else

18: xH II ← x′H II

Algorithm 7: Chemistry update

The basic chemistry update of a cell, given the incoming photon flux F of photons

above 13.6 eV proceeds as in Algorithm 7.
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Temperature update

The temperature update is performed by solving the equation

∂T

∂t
=
mpµ (γ − 1)

ρkB
Λ (4.10)

where mp is the mass of the proton, µ is the average mass of the particles in the gas

in units of mp, γ is the adiabatic index, kB is the Boltzmann constant, ρ is the mass

density of the gas and Λ is the total combined heating and cooling term. In our case,

we assume that the gas consists only of hydrogen, so that µ = 1
1+xH II

where xH II is

the hydrogen ionization fraction.

Λ is given by a sum of the photo-heating term and the sum of all cooling processes

Λ = Hphoto + (ζ(T ) + ψ(T ))nenH I + (η(T ) + Θ(T ))nenH II + ω̄(T )ne (4.11)

where Hphoto describes photo-heating, ne, nH I and nH II are the (number-)density of

electrons, neutral hydrogen and ionized hydrogen respectively and the other terms de-

scribe cooling due to collisional ionization ζ(T ), collisional excitation ψ(T ), recombina-

tion η(T ), Bremsstrahlung Θ(T ) and Compton cooling ω̄(T ). We use the on-the-spot

approximation in which we assume that every case-A recombination (that is, recom-

bination to the ground state) will emit a photon which is immediately re-absorbed

by the surrounding neutral atoms so that it results in no additional recombination.

Therefore η(T ) denotes the cooling rate of case-B recombination only.

We solve Equation 4.10 by updating the temperature via a semi-implicit formula-

tion given by

T t+∆t = T t +
µΛ

ρkB
(γ−1)mp∆t

− Λ′ . (4.12)

Here, Λ′ = ∂Λ
∂T

is the derivative of the total heating rate with respect to temperature.

The full expression for all the heating and cooling terms is given in A.2.

The equation describing the evolution of nH II is given by

∂nH II

∂t
= nH I (β(T )ne + Γ)− α(T )nH IIne (4.13)

where β(T ) is the electron collisional ionization rate, α(T ) is the case-B recombination

rate and Γ is the photoionization rate, which is computed as
∑nfaces

i=1

∑ndir

j=1 Fi,j, where

nfaces is the number of neighboring faces of the cell, ndir is the number of discrete

directions and Fi,j is the incoming photon flux from a given neighbor in the given

direction, where Fi,j = 0 if the neighbor is downwind in the given direction.
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4.3 Tests

4.3.1 R-type expansion of a HII region

Here we study the R-type expansion of a HII-region. Strömgren [1939] showed that a

point source in a medium consisting of hydrogen with uniform density will eventually

create a spherical HII-region with radius Rst =
(

3Ṅ
4παB(T )n2

e

)
where Ṅ is the rate of

ionizing photons emitted from the source, αB is the case-B recombination coefficient

as a function of temperature T and ne is the electron density. If we assume that the

gas inside the ionized region is fully ionized then nH ≈ ne and we find that the time

evolution of the system is given by

R(t) = RSt

(
1− et/trec

)
. (4.14)

where the recombination time trec is given by trec = 1
nHαB(T )

. This test is set up in

exactly the same way as in Jaura et al. [2018] and Baczynski et al. [2015], as well as the

corresponding test in Section 3.3.1. We use a cubic simulation box with L = 12.8 kpc

filled with hydrogen with a homogeneous density of nH = 1 × 10−3 cm−3 which is

assumed to be fully neutral in the beginning. In the center of the box, we place

a single source which emits ionizing photons (of energy E > 13.6 eV ) at a rate of

Ṅ = 1 × 1049 1/s. During the test, we disable photo-heating and all cooling terms

and keep the temperature at T = 100K everywhere and fix the case-B recombination

coefficient to αB = 2.59× 10−13 cm3s. We perform this test for a number of different

resolutions, n = 323, 643, 1283, 2563. The top panel of Figure 4.3 shows the numerical

result for the radius of the ionized bubble as a function of time, compared to the

analytical expression given by Equation 4.14. In the bottom panel, the relative error

between the simulation result and the analytical prediction is shown. The radius of

the ionized bubble is defined as the radius r at which a small spherical shell with radius

r has an average ionization of xHII = 0.5. For more details regarding the computation

of this value, see Section 3.3.1.

The runs at all resolutions follow the analytical prediction closely with relative

errors of below 2% for all values the initial phase of the expansion where t < 0.1trec.

It should be noted that the general trend is that error increases with increasing res-

olution, a result that we have also seen in the Sweep implementation of Arepo in

Section 3.3.1. While this is counter-intuitive, we note that the analytical prediction

assumes a perfectly sharp boundary, something that is clearly not the case in the

numerical solution to the problem. This means that the value of the radius depends

strongly on its definition, so that small deviations in the radius are not necessarily

meaningful.
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Figure 4.3. Top panel: The value of the radius of the ionized bubble at the

center of the simulation box, normalized by the Strömgren radius RSt as a function

of time normalized by the recombination time trec. Different lines represent different

resolutions 323 (blue), 643 (red), 1283 (green), 2563 (purple) with the orange, dashed

line representing the analytical prediction given by Eq. 4.14. Bottom panel: The

relative error |R(t)−Rr(t)| /Rr(t) between the analytical prediction and the numerical

results as a function of t/trec.
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Figure 4.4. A slice through the box in the plane z = 6.4 kpc at t=20Myr. The

color shows different values of the ionization fraction with blue being neutral and red

being ionized.

4.3.2 Periodic test

In order to test the behavior of the algorithm in setups with periodic boundary con-

ditions, we perform a test similar to the one in Section 3.3.4. In this test we perform

a R-type expansion of a HII region as in the previous section (Section 4.3.1). The dif-

ference between the two simulations is that in this test, the source is placed not in the

center box but right at the boundary in the x-direction at position r = (0, 6.4, 6.4) kpc.

A slice through the box illustrating the setup of the test is shown in Fig. 4.4.

In the simulation there is no cell at exactly that position, so the source term will

be introduced into a cell that is slightly to the right (i.e. at positive x) of r, namely

at r = (ϵ, 6.4, 6.4) kpc, where ϵ > 0 is small. Since the source is placed so close to

the edge of the simulation box at x = 0, any photons originating at the source with

a direction to the left must first pass through the (periodic) boundary before they

re-enter from the other side and begin having an effect on the gas. Since the only

symmetry breaking element in this setup is the simulation box itself, an accurate solver

should produce a reasonably symmetric result, up to the precision determined by the

resolution of the simulation. If photons exiting the boundary are not re-introduced

on the other side consistently, we will notice a lack of ionization in the right side of

the box, compared to the left side.

In order to quantify how well our solver deals with periodic boundary conditions,

we compute the asymmetry a, defined as the relative difference between the average
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ionization fraction in the left side of the box and the right side of the box given by

a =

∣∣∣∣ x̄HII, left − x̄HII, left

x̄HII, left + x̄HII, left

∣∣∣∣ (4.15)

where the (volume-)averaged ionization fractions x̄HII, left and x̄HII, right are defined

as

x̄HII, left = f(ϵ, L/2 + ϵ)

and

x̄HII, right = f(0, ϵ) + f(L/2 + ϵ, L),

with

f(x1, x2) =
2

V

∫ x2

x1

dx

∫ L/2

−L/2

dy

∫ L/2

−L/2

dz xHII.

That is, the two averages are computed over the left- and right- halves of the simulation

box as seen from the source at ϵ, which corresponds to the left- and right- halves of

the box except for the small ϵ-sized sliver on the left.

From our implementation of periodic boundary conditions, we can expect that

smaller timesteps will achieve more accurate results than larger timesteps, since the

initial estimate of the photon fluxes is given simply by the fluxes from the previous

timestep - if the timestep itself is small, the prediction will be more accurate. However,

the main goal of this test is not to just test the behavior of the solver with respect to

the timestep, but to check whether allowing the solver to perform sub-timesteps has a

positive effect on the accuracy. In order to test this, we perform the simulation setup

described above for a variety of timesteps and different numbers of sub-timestep levels

n and compute the periodic asymmetry given by Eq. 4.15.

In Fig. 4.5 we show the asymmetry a as a function of the number of timestep levels

n for different values of the maximum timestep ∆tmax. Initially, it should be noted that

the asymmetry is already quite small, with values below a < 0.4% even at a timestep

of ∆tmax = 400 kyr, which corresponds to ∆tmax ≈ 3
1000

trec (the recombination time in

this test is the same as in 4.3.1). Despite this, we still see the expected overall trend,

which is that the asymmetry decreases as the timestep decreases, in approximately

linear fashion. Moreover, allowing sub-timestepping to use more levels also decreases

the asymmetry, with a clear downwards trend for n <= 5. At n = 6 and n = 7

the asymmetry increases temporarily. While this may initially seem worrying, the

magnitude of the asymmetry is already below the values that we can reasonably

expect to resolve given the relatively low resolution of this test. We also note that the

numerical result of this test is quite strongly dependent on the exact value of ϵ - while

changing it slightly does not change the overall trend, it does change the absolute

values of the asymmetry, especially for values below a < 0.001.
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Figure 4.5. The asymmetry of the average ionization fraction (see Eq. 4.15) as a

function of the number of timestep levels used for the test. The different lines are

different values for the maximum timestep used.

4.3.3 Shadowing behavior behind an overdense clump

Due to the radial symmetry of the R-type expansion test shown in Section 4.3.1, it

does not test the directional properties of the radiative transfer itself very well. In

order to better test the behavior of sweep, we perform the following test which is also

identical to the test setup in Jaura et al. [2018] and Baczynski et al. [2015] and in

Section 3.3.2. In this test, we study the formation of a shadow behind an overdense

clump. To do so, we set up a box of length L = 32 pc. The box is filled with hydrogen

with a spatially varying density with

nH(x) =

1000 cm−3 where |x| < 4 pc

1 cm−3 else
(4.16)

We place two point sources at r1 = (−14, 0, 0) pc and r2 = (0,−14, 0) pc, which emit

photons at a rate of Ṅ = 1.61 × 1048 s−1. An analysis of this test, which includes

hydrodynamics and discusses the temperature, pressure, and density response has

been performed in the original SPRAI paper [Jaura et al., 2018].

In Figure 4.6, we show the rate of photons in units of cm−3s−1 in a slice through

the simulation box along the x-y plane for different times (columns) and resolutions

(rows). We find that the Sweep algorithm will correctly form a shadow behind the

overdense clump. However, due to numerical diffusion, the shadow does not follow the

theoretically expected form exactly. Because of this, the region behind the overdense
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Figure 4.6. The photon rate R in a slice through the z = 0-plane of the simulation

box. First row: 323 particles, Second row: 643 particles, Third row: 1283. First

column: t = 3.0 kyr, second column: t = 32 kyr, third column: t = 48 kyr, The

black dashed circle represents the overdense clump. White solid circles represent the

position of the sources. The black dashed lines delineate the shape of an ideal shadow

behind the clump.
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Figure 4.7. The average hydrogen abundance xH (see Eq. 4.17) in the shadow volume

as a function of time for Subsweep (solid lines) and the original Sweep implementation

in Arepo (dashed lines) for three different resolutions: 1283 (green), 643 (blue) and

323 (red),

clump will slow begin to ionize. In order to quantify the shadowing behavior we

calculate the mass averaged fraction of ionized hydrogen in the volume of the shadow.

The volume is given by the intersection of two (infinitely extended) cones, with their

tips at r1 and r2 respectively and their base determined by the great circle lying in

the overdense clump. The overdense clump itself is excluded from the volume. In

the 2D slice shown in Fig. 4.6, this volume VS corresponds to the area between the

black dashed circle and the black lines . The average ionization fraction in the shadow

region x̄H is given by

xH =

∫
VS
xH(r)ρ(r)dV∫
VS
ρ(r)dV

, (4.17)

where xH(r) is the abundance of ionized hydrogen at position r and rho(r) denotes

the mass density at position r.

Figure 4.7, xH is shown as a function of time. The ionization fraction begins to

increase at t ≈ 20 kyr, demonstrating that Sweep does not form a perfect shadow.

The shadowing behavior improves going from lower resolution to higher resolution.

This is in line with the explanation that the protrusion of the ionization front into the

shadow is due to numerical diffusion, since higher resolutions decrease the effect of
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numerical diffusion. We also find that for low resolutions (323, 643), Subsweep forms a

better shadow than the Arepo Sweep implementation, especially at late times, while

Arepo Sweep performs better in the high resolution case 1283. It might be surprising

that there are different results at all, considering the fact that the two implementa-

tions use the same algorithm for the radiation transport. The difference between the

two implementations that is relevant to this test is that the chemistry updates are

performed differently. The Arepo version of Sweep will perform a radiation chem-

istry update for each time a directional sweep encounters a cell. In Subsweep, cell

abundances are fixed until the end of the sub-timestep and therefore remain the same

for each directional sweep. This can result in different behavior at the ionization front.

4.3.4 1D R-type expansion

In order to test the behavior of the substepping algorithm, we perform a test in which

we study the expansion of an ionization front in a one dimensional box filled with

hydrogen of uniform number density n = 1 × 10−4 cm−3. The medium extends from

0 to L. The gas is kept at a constant temperature T = 100K. A source emitting

a constant flux of ionizing photons of 1 × 105 cm−2s−1 in the direction towards the

right is placed at x = 0. The time evolution of this system is characterized by the

formation of an ionized region of all cells with 0 < x < R(t) where R(t) is the length

of this ionized region as a function of time and given by R(t) = Rst,1d

(
1− e−t/trec,1d

)
.

Here Rst,1d = F
αBn2 is the one-dimensional Strömgren length and trec,1d = 1

αBn
is the

recombination time.

For the numerical simulation of the system, we divide the interval into N equidis-

tant cells with width L
N

along the line. The leftmost cell contains the source. In this

test, we only perform sweeps in one direction (pointing to the right). In practice, the

ionization front will not be infinitely thin but extend over several cells. If N is large

enough such that the ionization front is well-resolved, we can expect the analytical

expression for the total ionized volume fraction xanalytical =
R(t)
L

to accurately predict

the numerical result xnumerical , so that we can define a simulation to have converged

to the right result if

|xnumerical − xanalytical| < ϵ (4.18)

where ϵ > 0 is the error tolerance which we choose to be ϵ = 1%. Our goal is

to study the convergence behavior of the sweep algorithm in this system. In order

to do so, we perform runs with different values for the maximum number of allowed

timestep levels n, namely n = 1, 2, 3, 4, 5 and 6 as well as different numbers of cells

N = 160, 320, 640, 1280, 2560, 5120 and 10 240. For each set of values of n and
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Figure 4.8. Top panel: The largest converging timestep ∆t as a function of the

number of particles N . The different lines represent runs with different number of

allowed timestep levels n. Bottom panel: The total runtime trun divided by the

number of particles N .

N , our goal is to find the highest value of the timestep ∆t for which the simulation

reaches the correct result, i.e. where Eq. 4.18 holds.

In Figure 4.8, we show the maximum converging timestep ∆tmax as a function of N

for each value of n. For low values of N , adding more timestep levels does not result

in a meaningfully different result. However, as N increases, the separation between

runs at different n becomes clear, with higher values of n resulting in an increase in

the highest possible converging timestep. This result clearly demonstrates that using

substepping allows us to use higher timesteps while still converging to the physically

correct result. In fact, each additional substepping level allows us to increase the

maximum timestep ∆tmax by a factor of two, which is the expected outcome.

It should be noted that this is a trivial implication if all cells were kept on the lowest

timestep during the simulation, since in this case the subsweeping algorithm reduces
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to performing 2n−1 sweeps of the full system with a timestep of 2−(n−1)∆tmax each.

In order to demonstrate that this is not the case and that we have gained something

from the subsweeping, the bottom panel of Fig. 4.8 shows the total runtime trun of

the corresponding simulation in the top panel, divided by the number of particles

n. This clearly shows that, for large N , using more timestep levels alleviates the

need to use a global, low timestep which in turn reduces simulation time significantly,

while still producing physically accurate results. For small N , the substepping does

not improve performance and at times will even decrease performance. One possible

explanation for this could be that most if not all of the cells in the simulations are

at a very low timestep. While having a lot of timestep levels will not change the

numerical result of the simulation, it can decrease performance due to the additional

computational overhead of communicating the levels of each of the cells multiple times

for each timestep.

4.3.5 Tests of the radiation chemistry

In order to test the radiation chemistry, we perform a series of tests that follow those

performed Rosdahl et al. [2013] as closely as possible. The difference between the

two setups is that our radiation chemistry solver does not incorporate Helium, so

some of the results can look different. However, we still expect the results to look

qualitatively similar. For all these tests, we take a single cell which we initialize

with a given temperature, density, fraction of ionized hydrogen and ionizing flux.

We perform tests with all possible combinations of Densities between 1 × 10−8, 1 ×
10−6, 1×10−4, 1×10−2, 1 and 1×102cm−3, initial ionized hydrogen fractions between

0, 0.2, 0.5, 0.8 and 1.0, initial temperatures between 1×103, 1.6×104, 1.8×105, 3×
106 and 1 × 108K and either zero ionizing photon flux, or a ionizing photon flux

of 1 × 105 photons/s/cm2. For all of these configurations, we perform normal time

evolution tests in which we let the system evolve freely. For each test, we let the

system evolve for a total time of 10Gyr.

In Fig. 4.9 we show the hydrogen ionization fraction as a function of time. We find

that most configurations eventually converge, but both the limit and the convergence

time vary drastically between the different configuration.

In the case of zero ionizing flux (top panel of Fig. 4.9), the configurations that

do not converge are those with very low densities (n <= 1 × 10−6 cm−3). There,

recombination rates and collisional ionization rates are extremely low due to the n2

dependence. The lack of ionizing flux results in zero photoionization, so that the

ionization fraction in these cells remains constant over extremely long times. In all

other cases, we find that the ionization fraction always converges either to 0 or 1. At
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high enough densities (n >= 1 × 10−2 cm−3), the cell always ends up fully neutral

after long enough times. If the initial temperature is high enough and the density

low enough, the cell can become fully ionized, although it might eventually become

neutral again on extremely long timescales, but this would require running the tests

for even longer timescales. Since timescales of longer than 10Gyr are not relevant for

our application we will refrain from running these tests for even longer.

If an ionizing flux of F = 1 × 105 s−1 cm−2 is present (bottom panel of Fig. 4.9),

virtually all configurations at low densities are immediately ionized. Only at com-

paratively high densities (n >= 1 cm−3), recombination can dominate such that cells

reach an equilibrium value (of approximately xHII = 0.4 for n = 1 cm−3 and very close

to xHII = 0.0 for n = 1× 102 cm−3).

In Fig. 4.10 we show the temperature as a function of time for all test cases. As

above, most configurations eventually converge, with the exception of zero ionizing

flux in the case of very low densities. In the absence of an ionizing flux (top panel of

Fig. 4.10), cells never heat and cool down on timescales determined by their densities.

For the case of an ionizing flux of F = 1 × 105 s−1 cm−2 (bottom panel of Fig. 4.10),

equilibrium temperatures are on the order of 1× 104K, with convergence time being

strongly affected by the cell density.

4.4 Conclusion

In this chapter, we discussed the radiative transfer postprocessing code Subsweep.

Subsweep is a standalone code that takes input from astrophysical, hydrodynamics

simulations codes (currently only Arepo is supported, but extensions are easily pos-

sible) and performs radiative transfer on the input. We discussed the choice and

implementation of the domain decomposition as well as the algorithm for the Voronoi

grid / Delaunay triangulation employed to efficiently construct a Voronoi grid in par-

allel.

We briefly discussed the original Sweep method, which is a discrete ordinate

method which gives the exact solution to the scattering-less radiative transfer equa-

tion in a single pass over the grid in order to introduce the main feature of Subsweep

- the extension of the transport sweep method to incorporate sub-timestep sweeps in

order to solve the coupled system of radiative transfer and radiation chemistry more

efficiently We described how the substepping is implemented by performing a hier-

archy of timesteps in which individual cells are evolved according to their required

timestep criterion as opposed to being evolved alongside all other cells in a global

timestep.
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F = 0

F = 1× 105 s−1 cm−2

Figure 4.9. The time evolution of the ionized hydrogen ionization fraction for dif-

ferent values of the density in the cell (columns), different initial temperatures (rows)

and different values of the initial ionized fraction (line colors). Top panel: no ionizing

flux. Bottom panel: with an ionizing flux of 1× 105 s−1 cm−2
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F = 0

F = 1× 105 s−1 cm−2

Figure 4.10. The time evolution of the cell temperature for different values of the

density in the cell (columns), different initial temperatures (rows) and different values

of the initial ionized fraction (line colors). Top panel: no ionizing flux. Bottom panel:

with an ionizing flux of 1× 105 s−1 cm−2
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We tested the code on an R-type expansion of a ionized bubble in a medium of

homogeneous density and found good agreement with the analytical prediction for this

test. We also performed a test in which we studied the formation of a shadow behind

an overdense clump. We found that the method performs well, but found significant

differences in its behavior compared to the original Arepo implementation of Sweep.

We believe that this difference is due to the different chemistry implementations as

well as the slightly different treatment of photon fluxes between the two methods.

We investigated the performance of the sub-timestepping in a 1D-test in which

we studied the equivalent of an R-type expansion. This allowed quickly varying pa-

rameters over a large range of values. We find that substepping does allow for larger

maximum timesteps without sacrificing the accuracy of the solution, which in turns

results in a reduction of the overall time to solution.

Our test of the R-type expansion around an ionizing source close to the boundary

of the simulation box shows that sub-timesteps help significantly with reducing the

overall cost in simulation time that a proper source iteration to convergence incurs.

In fact, we find that for our application, the combination of substepping with Warm-

starting (re-using the fluxes from a previous iteration) is enough to reach good levels

of accuracy in simulations with periodic boundary conditions.

We also briefly discuss and test the implementation of radiation chemistry in Sub-

sweep, which is a simple explicit solver with internal substepping that tracks hydrogen

and the corresponding ionization and heating processes.

The primary extension to this method that could drastically improve performance

is to allow cells to change their timestep level in between full sweeps, in order to quickly

react to sudden a sudden increase or decrease in the required timestep, something

we chose not to do because of the additional complexity that comes along with the

implementation. Doing so could help with increasing the accuracy of the integration

(in the case of a suddenly decreasing timestep) and improve performance (in the case

of a suddenly increasing timestep).

We believe that this new improvement to the Sweep method is a significant step in

order to incorporate it into a full cosmological simulation with hydrodynamics, gravity

and a proper treatment of star formation. Previously, the requirement of a global

Sweep timestep that applies to all cells prevented Sweep from accurately integrating

the cells that required it without incurring a large cost in computational time. One

challenge with such an implementation is that most state-of-the-art cosmological codes

already contain their own internal sub-timestep hierarchy, usually for both gravity

and hydrodynamics. The inclusion of the Subsweep method would require properly

integrating with those timestepping schemes, especially the hydrodynamical one, since
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they interact - radiative transfer can lead to increases in temperature which could

lead to a reduced hydrodynamical timestep. Vice versa, hydrodynamical interaction

can also a sudden increase in the required accuracy of the integration of radiative

transfer. However, despite all of this additional complexity, we believe that integration

of the Subsweep method into a full hydrodynamical code could potentially yield large

benefits by bringing a method that efficiently computes very accurate solutions to the

radiative transfer equations to cosmological simulations.



Chapter 5

Studying Reionization via

Postprocessing of the TNG

simulations

In this chapter, we employ the radiative transfer code Subsweep which we introduced

in Chapter 4 in order to study the era of reionization on the outputs of the TNG

simulations. We introduce our remapping approach to postprocessing, discuss the

source model and the setup of the TNG simulations that we use. We use the resulting

simulations to find a reasonable value for the effective escape fraction and verify the

physical accuracy of our results by studying the spatial behavior of reionization and

the state of the ISM and the IGM in our simulations.

5.1 Introduction

5.1.1 Motivation

The cosmic microwave background (CMB) radiation originated during the recombi-

nation epoch of the Universe, approximately at a redshift of z ≈ 1100 resulting in

a minimal residual free electron fraction. However, observations of the present-day

Universe indicate a highly ionized intergalactic medium (IGM), as evidenced by the

absence of Gunn-Peterson troughs [Gunn and Peterson, 1965] in nearby quasar ab-

sorption spectra. Thus, we are led to believe that there is an ’epoch of reionization’

(EoR) during which the hydrogen in the IGM was reionized, likely by photons emitted

by stars and quasars [Barkana and Loeb, 2001, Fan et al., 2006a]. This process likely

began around z ≈ 7− 10 for hydrogen and later for helium around z ≈ 3, influenced

by the harder radiation emitted by quasars [Schaye et al., 2000]. Observations of

99
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distant quasars seem to confirm that reionization was largely completed by z = 6

[Fan et al., 2006b]. Combined with the observed high value of the optical depth to

electron scattering inferred from the CMB [Bennett et al., 2013, Collaboration, 2020],

this implies that reionization likely began before z ≈ 7. However, the duration and

spatial properties of this process, as well as the source population causing reionization

remain areas of ongoing observational and theoretical investigation.

In the coming decades, a new generation of advanced instruments will revolutionize

our ability to observe Reionization phenomena. The James Webb Space Telescope

(JWST) began observations in 2022 and the Extremely Large Telescope (ELT) will

soon be operational, allowing us to target galaxies involved in the reionization process.

Additionally, forthcoming radio experiments like the Square Kilometre Array (SKA)

will offer opportunities for direct examination of the density and spatial distribution

of neutral Hydrogen gas. Understanding and interpreting these new datasets will

require extensive modeling and simulation efforts to uncover the underlying physical

constraints of Reionization.

Various theoretical models have been developed to understand cosmic reioniza-

tion, often employing semi-analytic methods or radiative transfer post-processing of

dark matter simulation outputs. Notably, the excursion set approach to reioniza-

tion developed in Furlanetto et al. [2004] has been widely utilized in analytical and

semi-numerical models [Alvarez and Abel, 2007, Mesinger and Furlanetto, 2007].

Recent advancements have enabled the development of full radiation hydrodynam-

ics simulations that simultaneously track cosmic reionization and structure formation

in a self-consistent manner. While pioneering work such as Gnedin and Abel [2001a]

laid the foundation for these kinds of simulations, it has only recently become feasible

to study cosmological volumes in detail, allowing for the exploration of radiative feed-

back processes on galaxy formation, such as inhomogeneous photoionization heating

[Paardekooper et al., 2013, Petkova and Springel, 2011].

Theoretical investigations suggest that the primary contributors to reionization

are likely small, star-forming galaxies at high redshifts. While Pop-III stars may

contribute to the production of high redshift photons, their overall impact is considered

small compared to that of small galaxies [Paardekooper et al., 2013, Wise and Abel,

2008, Wise et al., 2014]. Similarly, active galactic nuclei (AGN) are not expected

to play a critical role at high redshift due to their limited total luminosity [Faucher-

Giguère et al., 2009, Hopkins et al., 2007]. Instead, it is proposed that small proto-

galaxies, with stellar masses around 104M⊙ or lower, dominate the ionizing budget,

potentially initiating reionization earlier [Ahn et al., 2012, Paardekooper et al., 2013].

Recent advancements in cosmological hydrodynamic simulations, such as the Il-
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lustris, Eagle and TNG projects [Marinacci et al., 2018, Naiman et al., 2018, Nelson

et al., 2018, 2021, Pillepich et al., 2018, Schaye et al., 2015, Springel et al., 2018, Vo-

gelsberger et al., 2014a,b], have produced realistic galaxy populations both at z = 0

and high redshifts, incorporating sub-grid models of feedback processes that regulate

star formation. Ideally, we would like to study the era of reionization self consistently

within the framework of such hydrodynamical simulations. However, due to compu-

tational constraints we will focus on postprocessing studies in which radiative transfer

is performed on the simulation outputs. This has the primary drawback that feedback

from the radiation is not taken into account.

Previous studies such as Bauer et al. [2015] have performed such postprocessing

analysis of the Illustris simulations. In this chapter, we will focus on postprocessing

of the TNG simulations using our novel Subsweep method, which we introduced in

Chapters 3 and 4.

5.2 Methods

5.2.1 Remapping of temperatures and ionization fractions

Ideally, we would like to model reionization of the model universe self-consistently,

by incorporating on-the-fly radiative transfer using the Sweep algorithm alongside

the simulation. In practice, large cosmological simulations are already extremely

computationally intensive and already stretch available resources to the maximum. As

we have already discussed in 3.2.2, radiative transfer is an extremely expensive process

by itself, both due to the intractable nature of the underlying equation and the large

dimensionality of the quantity of interest, specific intensity. Another complication

for incorporating radiative transfer on-the-fly into hydrodynamic simulations is that

the thermal feedback of the radiation can rapidly heat the gas surrounding sources of

ionizing photons. This feedback can drastically reduce the timestep required for the

accurate numerical integration of the hydrodynamical equations in a large number of

cells, which can, in turn, increase the amount of work that has to be performed as well

as affect processor load balance negatively. Moreover, depending on the hydrodynamic

solver, one must be very careful in order to guarantee numerical stability of the solver

in the presence of such sudden changes in the temperature, often requiring some sort

of anticipatory mechanisms that can predict approximately where feedback will have

an effect shortly after. While this is a common challenge for feedback mechanisms

in general, very local feedback processes such as supernova feedback tend to be more

predictable, both in time and location than radiative transfer, which can, by its nature,
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have a strong, sudden impact on gas far away from the original photon sources.

The above arguments do not make applications of Sweep to large hydrodynamical

cosmological simulations impossible, but they do make it technically challenging. For

this reason, we decide to first pursue a simpler approach in which we only use Sweep

as a form of postprocessing of the TNG simulations. The basic idea is that if every

quantity except the chemical composition of the gas and the temperature are kept fixed

and radiative transfer along with chemical evolution of the local cells is performed

for a long enough time, the system will eventually reach an equilibrium state on a

timescale Teq. One might initially expect that Teq is quite small, such that given any

snapshot of the TNG simulations, we could quickly reach equilibrium and could use

this equilibrium state as a good guess for the state in which the same TNG snapshot

would have been if radiative transfer had been performed along with the simulation.

However, in practice, we find that Teq is large compared to the times between two

subsequent snapshots of TNG. This means that, in running our Sweep simulation all

the way to equilibrium, we are computing a state that is already inconsistent with

TNG. Here, we will describe a method to deal with this problem in a more dynamic

fashion.

In the beginning, we take the first TNG snapshot at the first redshift z1 which we

are interested and evolve the system using radiative transfer and chemistry until we

reach the redshift of the next TNG snapshot at z2. Now, we have two different sources

of information about our system at z2. The TNG snapshot gives the structure on which

we would like to continue our computation. This includes the positions of the particles

which may have moved, been refined or de-refined and also includes updated densities,

heating and changes in the chemistry due to feedback processes (other than radiative

transfer) and newly formed stars. The output of the Subsweep run has data on the

chemical composition of the gas and heating due to the radiation. In order to combine

the individual bits of information that both of these snapshots contain, we perform

a procedure that we call remapping. Since we’d like to continue with the grid of the

TNG snapshot, we need to map the information of our previous Sweep result onto the

new TNG snapshot. In order to do so, we loop over all of the particles in the new TNG

snapshot and perform a nearest-neighbor lookup on all of the particles in the Subsweep

snapshot to find the closest particle. Given the values of temperature and ionization

fraction in the TNG snapshot (Ttng, xi,tng) and the temperature and ionization fraction

of the Subsweep snapshot (Tsweep, xi,sweep) we then set the real value to the maximum

of each of the quantities: T = max (Ttng, Tsweep), xi = max (xi,tng, xi,sweep). Using

this remapping procedure we retain the ionization and heating of the Sweep result,

which has the largest effect in the IGM without overwriting these effects where they
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take place in TNG itself, which can become ionized for example due to collisional

reionization in the high density regions.

In order to perform the nearest-neighbor lookup above efficiently, we first perform

the domain decomposition according to the description in Section 4.2.2 using the

positional data of the particles in the TNG snapshot. Then, we load the particle

data of the corresponding Subsweep snapshot. The data is first distributed among

all processors to allow efficient parallel read-in of the file and then re-distributed

according to the same domain decomposition that we used for the TNG particles. We

then construct a KD-tree over the TNG particles and first use a local nearest-neighbor

lookup in which every processor determines the closest particle from the Subsweep

snapshot that it contains locally. Since both data sets have been distributed due to

the same domain decomposition, this local nearest neighbor will also be the global

nearest neighbor most of the time. However, there are cases where a particle on some

other processor might be closer. To obtain the right data in this case, each processor

checks which other processors have a domain that is close enough (that is, closer

than the local nearest neighbor) that a tree search should be performed on them. All

particles with this property are then sent to the respective processors and a KD-tree

lookup is performed on them. Anytime we find a particle that is even closer than

the local nearest neighbor, it is reported back to the origin processor alongside the

temperature and chemical abundances needed for the remapping.

5.2.2 Preventing cooling

During the Subsweep simulation, any heating due to hydrodynamic effects or feed-

back mechanisms such as supernovae that are present in the original TNG simulations

cannot be accounted for. This means that, if left untouched, some of the dense gas

in galaxies would immediately start cooling rapidly due to - for example - recombi-

nation. However, this cooling is not only spurious, but could also strongly affect the

result of radiative transfer. In order to prevent this undesirable effect from occurring,

we prevent any net cooling and net recombination in all cells of the simulation. Ef-

fectively, this is done by constraining the change in hydrogen ionization fraction and

temperature to always be positive. Care must be taken to also apply this constraint

during substeps of the chemistry, in order to prevent the solver from internally cooling

during its own substeps, resulting in either invalid physical states or a large drain on

performance due to the requirement of very small timesteps.

This fairly drastic operation of preventing cooling and recombination is based on

the reasonable assumption that the majority of gas will only heat and ionize during

recombination. While it is of course possible that small local pockets of gas would
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Figure 5.1. The interpolation table for the emissivity in s−1M−1
⊙ as a function of

stellar metallicity Z and stellar age τ .

cool and recombine, for example if they are temporarily shielded from radiation by a

dense cloud of gas, we believe that this is a reasonable assumption to more accurately

model the large scale structure of reionization.

5.2.3 Source model

In order to model radiative transfer, we require an expression for the luminosity of

the particles corresponding to stars in our simulations. Here, we are only interested

in hydrogen reionization and therefore consider only photons with energies above

E = 13.65 eV. We employ the Binary Population and Spectral Synthesis model

(BPASS) [Eldridge et al., 2017], specifically v2.2.1 with binary populations, a top-

heavy Kroupa IMF which is cut off at stellar masses above 100M⊙.

We compute the luminosity L via

L =
M

M⊙
L̄(Z, τ), (5.1)

where M is the mass of the star particle and L̄(Z, τ) is an interpolation function

based on the metallicity Z and age τ of the star particle. The interpolation is per-

formed via linear interpolation between the two closest values in a pre-computed table

of luminosities (see Fig. 5.1). The values show a clear dependence on both metallicity

and age, with the emissivity decreasing slightly with increasing metallicity and de-

creasing strongly with increasing age. For each star particle, we use the value of the
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metallicity of the TNG output and compute the age from the stellar formation time.

Using the interpolated value of the emissivity, we multiply by the mass of the stellar

particle to get the total luminosity L in photons per second. In order to incorpo-

rate the source terms into Subsweep, we map each star particle to its closest Voronoi

cell by performing a parallel KD-tree lookup (for performance reasons, the lookup is

implemented analogously to the lookup described in 5.2.1).

5.2.4 Escape fraction

The escape fraction, defined as the ratio of photons escaping a galaxy to the num-

ber of photons originally emitted is a crucial quantity in the study of reionization.

At the heart of the problem is the difficult challenge of simultaneously simulating a

large enough volume of space in order to obtain a cosmologically representative re-

sult and at the same time obtain high enough resolution in each individual galaxy of

the simulation in order to accurately model the inner-galactic processes. Since even

state-of-the-art simulations such as TNG cannot currently span all of these orders of

magnitude, the result is that some of the interstellar medium will not be accurately

modeled in the simulation. For our purposes, that means that the absorption of pho-

tons due to the dense ISM is usually underestimated, resulting in an overall larger

number of photons available for reionization of the IGM than otherwise. In order to

account for this fact, we introduce the artificial escape fraction f , a free parameter

that accounts for this effect by reducing the amount of emitted photons. It should be

noted that f may very well evolve with time and models such as the one proposed in

[Kuhlen and Faucher-Giguère, 2012] have proposed a model for the time evolution of

the escape fraction. For simplicity, we will assume an escape fraction that is constant

in time in this work.

This artificial escape fraction f is also clearly dependent on the resolution of the

underlying simulation. High resolution simulations will naturally resolve the ISM

more accurately, leading to higher densities and thus higher absorption, which in turn

means that the artificial escape fraction which we introduce does not need to be as

low.

For our simulation results, we will briefly look at a number of simulations with

different values of the escape fraction in order to roughly reproduce the ionization

behavior we expect. However, it should be noted that this method can be improved

by deriving the escape fraction, either from first principles, by performing a subset of

high resolution simulations or by estimating a functional dependence of the artificial

escape fraction on the resolution of the simulation, for example by computing clumping

factors. For simplicity, in this work, we resort to simply leaving f as a free parameter,
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but emphasize that this can be improved upon.

5.3 Results

5.3.1 Setting up the TNG simulation for postprocessing

In these results, we use Subsweep to perform radiative transfer postprocessing of the

TNG100-3 box [Marinacci et al., 2018, Naiman et al., 2018, Nelson et al., 2018, 2021,

Pillepich et al., 2018, Springel et al., 2018]. This is a lower resolution version of the

original TNG100 (TNG100-1) simulation. Compared to the full simulation which

consists of 18203 gas particles, the TNG100-3 box has a quarter of the resolution

per axis, for a total of 4553 gas particles. Other than the resolution, most of the

parameters of the simulation are the same between the TNG100-1 and TNG100-

3. The simulation box represents a volume with side length of 75 cMpc h−1. The

cosmological parameters are based on the data from the 2015 release of the Planck

collaboration [Planck Collaboration et al., 2016]. In particular, Ωm = 0.3089,ΩΛ =

0.6911,Ωb = 0.0486 and h = 0.6774. The original TNG100 simulation started at

redshift z = 127 and ran until z = 0. Since we are mostly interested in reionization,

we will only perform radiative transfer postprocessing for the time of interest. In

this box, the first star forms at z ≈ 11.9, but we find that luminosities do not reach

significant levels until about z = 8.5, which is where we begin the postprocessing.

Before we begin postprocessing, we perform a rerun of the TNG100-3 box from

z = 127 until z = 5 in order to achieve two things.

First of all, we disable the ultraviolet background (UVBG) of the original simu-

lation. The UVBG was introduced in the original simulations in order to introduce

effective reionization without requiring radiative transfer. Since this is exactly the

process we want to study in more detail, we disable the UVBG, so that ionization

and heating due to ultraviolet radiation can be computed by Subsweep. It should be

noted that disabling the UVBG does mean that any feedback due to heating that had

been introduced is not present in our rerun of the simulation.

The second reason for the rerun is that we want to reduce the time differential

between subsequent output snapshots of the simulation. This is done in order to, at

any given time, minimize the discrepancy between the original TNG result and the

current snapshot being postprocessed in Subsweep.
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5.3.2 Postprocessing

Using the outputs of the simulation with higher output frequency and no ultraviolet

background radiation, we now use Subsweep to perform radiative transfer postpro-

cessing of the simulation outputs. In this section we will detail our choice of Subsweep

parameters for these simulations.

For all of the following simulations, we use the following parameters: For the

number of directional bins, we choose ndir = 84. The safety parameter x (see Eq. 4.6)

that controls the accuracy of the integration is chosen as x = 10 %.

All simulations are performed with periodic boundaries enabled. As discussed in

Section 4.2.7, we do not perform any additional periodic boundary iterations, since

we deem the combination of Warmstarting and substepping to result in acceptable

accuracy.

Simulation output of the relevant fields in every cell is performed every 50Myr,

but some quantities are computed within the simulation and output at every timestep.

These include the volume- and mass- averaged ionization fraction, temperature, pho-

toionization rate and information about the performance of the code as well as the

placement of the particles on the timestepping hierarchy.

For the initial conditions, we take the first snapshot of the TNG simulation and

use it to initialize the fractions of ionized hydrogen and temperatures for all cells.

Densities are taken as-is from the TNG values and not modified during the Subsweep

run, except for the (relatively small) effect due to expansion during the Subsweep

run, which are changed according to ρ(t) =
(

a(t)
a(0)

)−3

ρ(0) where ρ(t) and a(t) are the

density and scale factor at the time t since the beginning of the simulation (so that

ρ(0) and a(0) are the initial density and scale factor).

5.3.3 Escape fraction

As a first step, our goal is to find an appropriate value for the artificial escape fraction

f . To this end, we perform 4 different simulations with f = 0.1, 0.2, 0.3 and 0.5.

For each simulation, we compute the (mass- and volume-) averaged neutral hydrogen

fraction as a function of redshift.

Figure 5.2 shows the neutral fraction as a function of redshift compared to a

number of constraints on the volume-weighted average obtained from a variety of

observational and computational methods [Becker et al., 2015, Bosman et al., 2022,

Ďurovč́ıková et al., 2020, Fan et al., 2006b, McGreer et al., 2015, Ouchi et al., 2010,

Tilvi et al., 2014, Totani et al., 2016]. First of all, we find that the overall shape of

the reionization history is reproduced by our results well within the statistical error
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Figure 5.2. The hydrogen neutral fraction xHI as a function of redshift z. Blue:

Subsweep result with f = 0.1. Red: Subsweep result with f = 0.2. Green: Subsweep

result with f = 0.3. Purple: Subsweep result with f = 0.5. Solid lines: volume

average. Dashed lines: mass average. Axes in linear scale for xHI > 0.1 and in log-

scale below xHI < 0.1. The constraints and their corresponding uncertainties apply to

the volume-averaged fraction and are obtained from Lyman-α forests [Becker et al.,

2015, Bosman et al., 2022, Fan et al., 2006b, Tilvi et al., 2014], quasar damping wings

[Ďurovč́ıková et al., 2020], gamma ray burst damping wings [Totani et al., 2016],

measurements of the Lyman alpha luminosity function (Lyα LF) [Ouchi et al., 2010]

as well as dark pixel analysis [McGreer et al., 2015].
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∆tmax n

1.0Myr 2

1.0Myr 6

4.0Myr 2

4.0Myr 4

4.0Myr 6

Table 5.1. The different simulations we perform in order to assess the timestep

parameters. Shown are the number of timestep levels n and the maximum timestep

∆tmax.

bars given by the various observational constraints. As expected, the neutral fraction

starts out at 1 at z = 8.5 before slowly decreasing as the first ionized bubbles form

around the first stars. Reionization begins to accelerate at z = 7.5 with xHI reaching

0.1 by z = 7 and z = 5.5, depending on the escape fraction. At xHI ≈ 1 × 10−4, the

mass and volume average begin drifting apart significantly, with the volume average

tapering off before the mass average. Even at z = 5, neither average has converged

fully. We also reproduce the tail, in which reionization slows down drastically as the

amount of non-ionized gas in the box is depleted more and more. While we do not

have very strong constraints on the neutral fraction, we find that the simulation with

f = 0.2 fits the observational constraints best, so that we will proceed all further tests

by performing simulations with this value of f .

All trajectories show a number of small discontinuities, which occur due to switch-

ing the underlying TNG snapshot during postprocessing. Switching snapshots requires

a remapping of the quantities, which can lead to a sudden change in the averages over

the entire volume. Moreover, using a new TNG snapshot means a change in the spa-

tial distribution of sources and their luminosities, which can lead to non-continuous

behavior as well.

5.3.4 Timestep parameters

In order to check whether we have chosen reasonable numerical parameters, we per-

form a set of simulations on the 4553 TNG-100 box in which we vary the used timestep

parameters, the maximum allowed timestep ∆tmax and the number of sub-timestep

levels n. We perform five simulations with f = 0.4 and vary the parameters as shown

in 5.1.

In order to check whether our timestep parameters are reasonable, we compute

the neutral fraction of hydrogen as a function of redshift for each of these simulations.
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Figure 5.3 shows the obtained results. We find that each time we decrease the effective

timestep (by lowering ∆tmax or increasing n, ionization takes place slightly earlier.

This is consistent with our expectations, and the tests we performed in 4.3, which

show that ionization fronts move slower if the effective timesteps are too large.

We find that, initially, decreasing the timestep has a drastic effect on the result.

For example, the run with ∆tmax = 4Myr, n = 2 clearly does not resolve ionization

fronts properly, leading to a much delayed timing of reionization to a degree that is

unacceptable in terms of its accuracy. On the other hand, we find that, for example,

the two runs with ∆tmax = 4Myr, n = 6 and ∆tmax = 1Myr, n = 6, which differ in

their effective timestep by a factor of 4, both give very similar results for the history of

reionization and differ by an amount that is well within what we consider acceptable.

We note that this result holds only for this particular box. Should the physi-

cal setup, in particular the resolution, of the simulation change, another set of such

convergence tests will be required in order to ensure that the results are physically

accurate. Given that we have confirmed that the results convergence reasonably for

the run with ∆tmax = 1Myr, n = 6, we will now proceed our analysis using the results

from this run only.

5.3.5 Spatial Distribution

In Fig. 5.4, we show a slice through the center of the box in the x− y plane at three

different redshifts z = 7.9, 6.9 and 6.4. Shown are the temperature T , the ionization

fraction xHII and the density ρ. The picture shows the stages of reionization, beginning

with a number of small bubbles forming around the most luminous galaxies. This is

followed up by expansion of those bubbles until they eventually overlap and begin

to increase in size before they eventually cover the entire box. The overall picture is

consistent with the idea that overdense regions are ionized before underdense regions

[Bauer et al., 2015, Razoumov et al., 2002]. Due to the ionizing radiation, the gas

in the IGM is heated up until it eventually reaches temperatures of about 2 × 104K

almost everywhere.

We define the ionization redshift zion and the ionization time tion as the first red-

shift/time at which

xHII = 0.5. (5.2)

Using the ionization time, we also define the ionization velocity vion as

vion = ∇tion, (5.3)
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Figure 5.3. The hydrogen neutral fraction xHI as a function of redshift z. Blue:

∆tmax = 1Myr, n = 2, Red: ∆tmax = 1Myr, n = 6, Green: ∆tmax = 4Myr, n = 2,

Purple: ∆tmax = 4Myr, n = 4, Brown: ∆tmax = 4Myr, n = 6, Solid lines: volume

average. Dashed lines: mass average. Axes in linear scale for xHI > 0.1 and in log-scale

below xHI < 0.1. The constraints and their corresponding uncertainties are obtained

from Lyman-α forests [Becker et al., 2015, Bosman et al., 2022, Fan et al., 2006b,

Tilvi et al., 2014], quasar damping wings [Ďurovč́ıková et al., 2020], gamma ray burst

damping wings [Totani et al., 2016], measurements of the Lyman alpha luminosity

function (Lyα LF) [Ouchi et al., 2010] as well as dark pixel analysis [McGreer et al.,

2015].
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Figure 5.4. A slice through the simulated volume at z = 37.5Mpc. Rows represent

different quantities: Top row: Temperature T in K. Middle row: Ionized hydrogen

fraction xHII. Bottom row: Density ρ in g−1 cm−3. Columns represent different red-

shifts. Left column: z = 7.9 Middle column: z = 6.9 Right column: z = 6.4
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Figure 5.5. The ionization redshift zion (see Eq. 5.2) in a slice along the x− y axis

through the box at z = 37.5Mpc. The arrows denote the velocity vion of the ionization

front at the given point in space, computed as per Eq. 5.3 (Gaussian smoothed with

a characteristic length of L = 5kpc.

which we will use as a proxy for the direction and speed with which the ionization front

moves. These definitions allows us to capture both spatial and temporal information

in a single slice through the box, such as in Fig. 5.5, which shows the ionization

redshift as well as the ionization velocity.

The results show the initial bubbles as fairly well-defined. We note that some of

the bubbles have a particularly sharp edge, at which the expansion of the ionization

front seems to stop. This can partially be explained by the fact that, as discussed in

5.2.3, the dependence of the source term on stellar age is quite strong, such that a

small number of young stars can dominate reionization in the entire bubble. As those

stars age and lose a sizable fraction of their luminosity, the size of the bubble is now

large compared to the expected size for an R-type expansion with the given source

term and the given density of the medium, leading to stagnation of the expansion.

5.3.6 State of the Gas

Figure 5.6 shows temperature-density histograms of the simulation box at two different

redshifts z = 8.16 and z = 6.66. At z = 8.16, reionization has barely begun. At this

point, the low-density gas of the IGM with about 1×10−28 g cm−3 to 1×10−26 g cm−3

is determined by the TNG model and spans a wide range of temperatures from T =

1 × 101K to about T = 1 × 104K. The high density gas above 1 × 10−24 g cm−3

is constrained extremely strongly by the equation of state to temperatures between
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Figure 5.6. Central panel of each figure: Histograms of density ρ in g cm−3 vs.

temperature T in K for all cells in the simulation. Logarithmic color scale. Right

and top panel: One-dimensional histograms of densities (top panel) and temperatures

(right panel). Left figure: z = 8.16. Right figure: z = 6.66.

5× 104K and 5× 105K. Local feedback processes have caused a small fraction of the

medium-density gas to reach temperatures of about 1× 106K.

At z = 6.66 reionization has progressed to a point where approximately 60 % of

the volume is ionized. This can be seen in the histogram primarily due to the strong

peak at approximately T = 3 × 104K, 5 × 10−27 g cm−3 which corresponds to the

heated, ionized IGM. At the same time, the extremely hot gas with temperatures of

about T = 1× 106K is still present. This ability to capture both the feedback due to

photoionization as it is modeled by Subsweep while also incorporating local feedback

from the TNG model is the primary advantage of the remapping approach described

in 5.2.1.

Figure 5.7 shows temperature-ionization fraction histograms of the simulation box

at two different redshifts z = 8.16 and z = 6.66. Similar to the temperature density

histograms, the gas is initially (at z = 8.16) split in a bimodal distribution, with one

peak at completely neutral gas which spans temperatures from T = 7K to T = 2 ×
104K and a second peak at fully ionized gas spanning temperatures from T = 1×104K
to T = 5×106K. The former peak is caused by the IGM which is completely neutral at

this redshift and the latter peak corresponds to the gas heated from feedback processes

in TNG. As reionization progresses (at z = 6.66), we see that some of the neutral gas

has been ionized and heated, occupying the previously seen peak at T = 3× 104K.
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Figure 5.7. Central panel of each figure: Histograms of ionization fraction xHII vs.

temperature T in K for all cells in the simulation. Logarithmic color scale. Right

and top panel: One-dimensional histograms of ionization fractions (top panel) and

temperatures (right panel). Left figure: z = 8.16. Right figure: z = 6.66.

The overall picture is corroborated by Fig. 5.8, which shows the mass-averaged

temperature in K as a function of redshift z in three different density bins. The

lowest density bins follows a comparably smooth distribution, increasing from an

average temperature of about 2× 103K at z = 8 to about 3× 104K at z = 5.

In comparison, the medium and high density bins show a very different evolution.

While the gas is also heated over time, with average temperature increasing from

approximately 1× 104K to 2× 105K for the medium density gas and from 6× 104K

to 1 × 106K for the high density gas, this increase does not occur smoothly but in

a series of jumps. These jumps are due to the remapping of the values from the

TNG simulations, in which the local feedback in galaxies can cause the gas to heat to

very high temperatures. The effect is especially apparent for lower redshifts, where

radiation feedback does not increase the temperature of the dense gas anymore so

that the temperature stays almost constant during each individual Subsweep run but

is then increased as the values are updated from the next TNG snapshot.

5.3.7 Photoionization Rate

In Fig. 5.9 we show the volume-averaged photoionization rate Γ as a function of

redshift z, in comparison to observational constraints from [Calverley et al., 2011,

D’Aloisio et al., 2018]. Each individual simulation initially starts out with a lower
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Figure 5.8. The mass-averaged temperature T in K as a function of redshift z for

three different bins of the density ρ: Blue: 1 × 10−29 g cm−3 < ρ < 1 × 10−27 g cm−3.

Red: 1 × 10−27 g cm−3 < ρ < 1 × 10−25 g cm−3. Green: 1 × 10−25 g cm−3 < ρ <

1× 10−23 g cm−3.

photoionization rate before it rapidly increases and begins plateauing. We believe that

this effect is mostly of numerical nature and caused by the solver not having converged,

so that the eventual plateau is a more reasonable value for the photoionization rate.

However, we still find that our simulations have a stronger rate of ionization than

observations in the z = 5 to z = 6 range, up to a factor of 10.

5.3.8 Performance

In Table 5.2, we show a number of the simulations we have performed along their

computational cost. Each run was performed on 512 cores. For each run, we show

the number of timestep levels n, the maximum timestep ∆tmax, as well as the total

runtime cost, which is the sum of the time taken by each individual simulation times

the number of cores used (512). The overall cost is only a measure of how expensive

the simulation is to run, but does not take into account the different levels of accuracy

achieved by each simulation, which is why we also show the total runtime cost divided

by the number of lowest-timestep sweeps, which takes into account the additional

cost that simulations at lower timesteps and simulations with different numbers of

timestep levels require. We find that all of our simulations are reasonably cheap

to run. These results also show that sub-timestep sweeps help increasing accuracy

without decreasing the overall runtime cost, as can be seen in the comparison of the

run with n = 4,∆tmax = 4Myr and that with n = 2,∆tmax = 1Myr, which have the
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Figure 5.9. The ionization rate Γ in photons/s as a function of redshift z. Blue:

Simulation result. Red: Constraints from [Calverley et al., 2011]. Purple: Constraints

from [D’Aloisio et al., 2018].

∆tmax n cost [core h] cost / sweep [core h]

1.0Myr 2 7.378× 103 8.30

1.0Myr 6 1.91× 104 1.98

4.0Myr 2 2.27× 103 7.51

4.0Myr 4 3.92× 103 4.27

4.0Myr 6 7.66× 103 2.42

Table 5.2. Performance data on different simulation runs. For each run, we show

the number of timestep levels n, the maximum timestep ∆tmax, the total runtime cost

in core hours, as well as the total runtime cost divided by the number of sweeps at

the lowest timestep level.

same effective minimum timestep but differ in the total cost by about a factor of 2.

5.4 Conclusion

In this chapter, we have applied our numerical radiative transfer postprocessing code

Subsweep to the TNG simulations. In particular, we performed a set of simulations in

which we studied reionization of a low-resolution version of the TNG100 simulation.

To this end we performed a rerun of the simulation itself without the ultraviolet

background in order to give full responsibility over reionization to Subsweep. The

simulations themselves were performed by a sequence of sub-simulations beginning

from redshift z = 8.5 to z = 5. The result of each sub-simulation is then combined
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with the next TNG snapshot by remapping temperatures and ionization fraction to

the respective maximum of each result. This method helps incorporate both the

heating and ionization from the ionizing radiation within Subsweep, as well as from

local feedback processes, such as supernovae into the final result.

As a source model, we use an interpolated version of the BPASS tables according

to stellar age and metallicity, under the assumption of a Kroupa IMF and a high mass

cutoff. We only perform hydrogen reionization and therefore only regard a single

frequency bin of photons above E = 13.65 eV.

We performed a series of simulations which differ in their effective escape fraction

in order to find that, while all of the simulations we performed reproduce the overall

shape of the time evolution of reionization, the simulation with f = 0.2 seems to

give the best fit to the observational constraints. We then studied the simulation

with f = 0.2 in more detail. We begin by studying the spatial distribution and the

formation of ionized bubbles and find that our results are compatible with the idea

that reionization happens in the high density medium around galaxies first before

forming bubbles that eventually cover the medium density gas and low density IGM.

We also find that the state of the gas is consistent with our expectations. Initially,

the box starts out at relatively low temperatures everywhere except in the high density

regions surrounding the galaxies. As reionization progresses, more and more of the

gas is ionized and heated up, until a large fraction of the gas has temperatures of

T = 3 × 104K and above. Our comparison of the ultraviolet background produced

by radiative transfer in our simulations to the constraints given by observations finds

that we overestimate the photoionization rate by a factor of up to 10.

In future work, we aim to perform this set of simulations for higher resolution

versions of the TNG box. We have already confirmed in a number of test runs that

Subsweep is capable of handling those larger boxes with reasonable amounts of com-

putational effort, so that running the simulations and performing the data analysis is

the only work left to do.

Another interesting approach to making these results more accurate is to incor-

porate Helium, both for its effects on Hydrogen reionization and for the separate

problem of understanding HeII reionization in more detail. Incorporating Helium

would increase the amount of memory required for these simulations drastically, due

to the additional required bin of photon frequencies. However, we believe that the

increase in computational cost would be much less than the expected factor of 2, due

to the fact that the most costly operation during a Sweep is the dependency counting

and iteration through the grid, which would still only need to be performed once.

Moreover, the simulation would have to be performed for a longer physical time, since
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Helium reionization is expected to occur later, increasing the amount of computational

time required. Another improvement that should be considered in order to accurately

study Helium reionization is to extend the source model to incorporate AGNs, which

are believed to be crucial for Helium reionization.





Chapter 6

Conclusion

In this work, we developed the novel Sweep method for radiative transfer in astro-

physical applications. We discuss both the original implementation of Sweep in the

cosmological simulation codeArepo [Springel, 2010b], as well as the standalone radia-

tive transfer postprocessing code Subsweep. Ultimately, we use Subsweep to perform

postprocessing of the TNG simulations with the intent to study the era of reionization

in the TNG universe.

6.1 Summary

In the methodological part of this work, we describe the Sweep algorithm and its

implementation details in Chapters 3 and 4. The Sweep algorithm enables the effi-

cient and highly parallel computation of accurate solutions to the radiative transfer

equation. It falls in the category of discrete ordinate methods in which the radiative

transfer equation is solved via discretization in every variable, namely time, space,

frequency and direction. In this work we focus primarily on Voronoi grids, but the

method extends to a variety of other spatial discretizations, such as adaptive mesh re-

finement. In order to solve the resulting discrete equation, Sweep performs an ad-hoc

topological sorting of the dependency graph induced by the neighborhood property of

the grid (Section 3.2.5, Section 3.2.4 and Section 3.2.6). To ensure that the induced

dependency graph is acyclic, the Sweep procedure performs source iteration in order

to account for both scattering and periodic boundary conditions, requiring solutions

only for the scattering-less radiative transfer equation (Section 3.2.3, Section 3.2.7).

Sweep is then integrated closely with a radiation chemistry solver, such as the

SPRAI/SGChem modules in Arepo [Glover and Jappsen, 2007, Jaura et al., 2018] or

a standalone radiation chemistry solver in the case of Subsweep. One of the major ad-

vantages of Subsweep over its predecessor is the ability to perform adaptive timestep-
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ping in order to avoid the need for a global, low timestep. This is not necessary for the

solution to the radiative transfer equation itself (which relaxes instantaneously under

the infinite-speed-of-light assumption), but is absolutely crucial in order to allow the

combined system of radiation chemistry and radiative transfer to follow the physical

trajectory accurately.

We tested both Sweep and Subsweep extensively in this work with a variety of

physical tests, such as the R-type expansion of a spherical ionized bubble around

a single source in a medium of uniform density (Section 3.3.1, Section 4.3.1), the

D-type expansion (Section 3.3.1) and the formation of shadows behind overdense re-

gions (Section 4.3.3 and Section 3.3.2). We also performed a variety of tests in order

to verify the behavior of both codes in the presence of periodic boundary conditions

(Section 3.3.4 and Section 4.3.2) and its ability to include scattering (Section 3.3.3).

Moreover, we studied the computational performance and ability to parallelize of the

algorithm (Section 3.3.5, Section 3.3.6) as well as the performance of the substepping

method and its ability to cut down on the overall runtime of the solver without sacri-

ficing accuracy in addition to its ability to alleviate the need for additional iterations

of the solver in order to account for periodic boundary conditions (Section 4.3.4).

Overall, we find that the Sweep method performs excellently on our test prob-

lems, and scales extremely efficiently on a larger number of processors, enabling the

incorporation of radiative transfer into large simulations.

In the scientific part of this work (Chapter 5), we studied the era of reionization

in the context of the TNG simulation suite, in particular on a lower resolution version

of the TNG100 simulations [Marinacci et al., 2018, Naiman et al., 2018, Nelson et al.,

2018, 2021, Pillepich et al., 2018, Springel et al., 2018]. To this end, we employ

radiative transfer postprocessing using the Subsweep code. In order to incorporate

the effects of local feedback, such as supernovae in our postprocessed results, we

perform a hybrid approach in which we postprocess each individual output of the

TNG simulation for the time between it and the next output and then perform a

remapping procedure (Section 5.2.1) in which temperature and ionization fractions

are mapped onto the grid given by the next snapshot. In this manner, we incorporate

radiative transfer while still following the overall evolution of the TNG box closely. In

order to consistently treat radiative transfer, we perform our simulations on a result

that is obtained by rerunning the TNG100 model without an ultraviolet background

(Section 5.3.1).

Using our method, we find that we are able to reproduce the history of reionization

closely, as long as the value of the effective escape fraction is chosen to account for the

absorption of the unresolved part of the dense ISM (Discussion in Section 5.2.4, results
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in Section 5.3.3). After ensuring that we choose reasonable parameters for our solver

(Section 5.3.4), we study the history of reionization and its spatial distribution (Sec-

tion 5.3.5), the state of the gas during reionization (Section 5.3.6) and compare values

of the photoionization rate to constraints (Section 5.3.7) before we briefly discuss the

performance of the code in these simulations (Section 5.3.8).

6.2 Outlook

Subsweep was developed with the goal of postprocessing the TNG simulations. While

we have shown that our method works and can be applied successfully, we have only

discussed results for a low resolution box. In the future, we aim to perform post-

processing of either the second highest resolution of TNG100 (with 9103 particles) or

TNG50 (with 10803 particles) or the full resolution of TNG100 (with 18203 particles).

Higher resolution simulations will enable more precise analysis of reionization, espe-

cially with a focus on the properties of the ISM. We have already established that

postprocessing of the second highest resolution is feasible and not overly expensive

by performing a series of proof-of-concept runs. However, we still need to perform a

rerun of the hydrodynamic simulation itself without the ultraviolet background, inves-

tigate the required parameters, namely the effective escape fraction and the timestep

parameters and perform the full set of simulations.

Eventually, an obvious next step in this work is to perform simulations akin to the

TNG simulations but with on-the-fly radiative transfer feedback, focusing on the era of

reionization in particular. We believe that the Sweep method is a great candidate as a

method for on-the-fly simulations, owing to the fact that the method produces accurate

results while requiring relatively few computational resources, which is essential in

such extremely costly simulations.

Despite the good performance and parallel scaling of Sweep, radiative transfer is

still an extremely expensive computation, such that incorporating it into hydrody-

namic simulations is a challenge. In our original implementation of Sweep within

Arepo, we found that radiative transfer can often require a large fraction of the over-

all runtime of the simulation, so that any such simulations could potentially become

very costly to run.

We believe that one very important improvement on the path to fully integrated

hydrodynamical simulations with Sweep is the sub-timestepping procedure which we

discussed in this work. From a theoretical standpoint, this method should integrate

perfectly well into a hydrodynamical setup. However, from an implementation stand-

point, doing so is a challenge. In most cases, the hydrodynamics solver itself already
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has a system for sub-timesteps in place and the introduction of another, independent

timestep hierarchy can significantly increase code complexity. Moreover, while the

two hierarchies need to be independent to provide their full benefits, they still affect

each other, for example through heating caused by radiative feedback lowering the

required hydrodynamical timestep in a cell. Any such implementation is not only

complex by itself but also needs to be tested rigorously for accuracy and stability.

Despite all of these complications, we believe that fully integrated radiative trans-

fer in hydrodynamical cosmological simulations is a necessary step in order to fully

understand the complex processes involved in structure formation and the era of reion-

ization in particular.
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A.1 Proof that sweep dependency graphs induced

by Voronoi grids are acyclic

The solution of a cell c′ in a sweep in the directionΩ depends on fluxes of a neighboring

cell c if the normal n of the face connecting c and c′ (defined such that it points towards

c′) fulfills

n ·Ω > 0. (A.1)

In a Voronoi grid, the face normal n is given by

n =
p′ − p

|p′ − p| , (A.2)

where p and p′ are the Delaunay points corresponding to the respective Voronoi cells.

Now assume that there is a cycle c1, c2, . . . , cn, cn+1 in the dependencies, such that

each cell in the cycle depends on the next and cn+1 is the same cell as c1. Now, clearly

Ω ·
(

n∑
i=1

(pi+1 − pi)

)
= Ω · 0, (A.3)

but combining Eq. A.1 with Eq. A.2 yields that each term in the sum in Eq. A.3 is

larger than zero, which is a contradiction. Therefore, there are no cycles in the sweep

dependencies induced by a Voronoi grid.
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A.2 Details of the radiation chemistry

Here, we specify the exact equations used in our radiation chemistry solver described

in Section 4.2.9. The photo-heating term Hphoto is given by

Hphoto = Γ
(
1− e−nH Iσl

)
(Eavg − ERyd), (A.4)

where Γ is the photon rate in s−1 cm−3, Eavg is the number-averaged photon energy,

which for consistency with the BPASS values is chosen as 18.028 eV and ERyd =

13.65 eV is the Rydberg energy. Collisional ionization rates β(T ) and collisional ion-

ization cooling rates ζ(T ) are given by [Cen, 1992]

β(T ) = 5.85× 10−11 cm3 s−1
√
T/(1K)

(
1 +

√
T/ (1× 105K)

)−1

e−157 809K/T (A.5)

ζ(T ) = 1.27× 10−21 erg cm3 s−1
√
T/(1K)

(
1 +

√
T/ (1× 105K)

)−1

e−157 809K/T .

(A.6)

Collisional excitation rates ψ(T ) are given by [Cen, 1992]

ψ(T ) = 7.5× 10−19 erg cm3 s−1
√
T/(1K)

(
1 +

√
T/ (1× 105K)

)−1

e−118 348K/T .

(A.7)

As discussed in 4.2.9, we use the on-the-spot approximation and therefore only con-

sider case-B recombination. The case-B recombination rates α(T ) and recombination

cooling rates η(T ) are given by [Hui and Gnedin, 1997]

α(T ) = 1.269× 10−13 cm3 s−1T
λ1.503

(1 + (λ/0.522)0.47)1.923
(A.8)

η(T ) = 3.435× 10−30 erg cm3 s−1K−1T
λ1.97

(1 + (λ/2.25)0.376)3.72
, (A.9)

where λ = 315 614K/T . The Bremsstrahlung cooling rate coefficient Θ(T ) is given

by [Osterbrock and Ferland, 2006]

Θ(T ) = 1.42× 10−27 erg cm3 s−1
√
T/(1K) (A.10)

Compton cooling ω̄(T ) is defined as [Haiman et al., 1996]

ω̄(T ) = 1.017× 10−37 erg s−1

(
2.727

a

)4(
T − 2.727

a

)
, (A.11)

where 2.727K/a is the CMB temperature and a is the cosmological scale factor. Our

chemistry solver also uses the temperature derivatives of the rate coefficients, which

are obtained by symbolic differentiation.

The value of the heating and cooling rates are shown in Fig. A.1.
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Figure A.1. The value of the different cooling rates as a function of temperature.
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dius RSt as a function of time t, normalized by the recombination time

trec. Blue dots: Numerical results for Sweep. Red triangles: Numer-

ical results for SPRAI, Solid lines: Results for 323 particles, Dashed

lines: Results for 643 particles, Dotted lines: Results for 1283 particles.

Green line: Analytical prediction Rr(t) given by Eq. 3.7. Bottom panel:

Relative error |R(t)−Rr(t)| /Rr(t) . . . . . . . . . . . . . . . . . . . . 44



List of Figures 153

3.8 D-type expansion of a ionization front in a uniform medium. Top panel:

Radius R(t) of the ionization sphere normalized by the Strömgren ra-
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