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1. INTRODUCTION 

 

The neuroscience of spatial cognition is a very heated field of research today. The 

reasons for this are numerous and varied, and among them there are the following 

two: 

 

-It has been an important catalyzer for the import of mathematical and computational 

techniques to address the so-called higher cognitive functions. The methodological 

challenges that brought cognitive science apart from cognitive neuroscience in the 

1990s1 (Kriegeskorte and Douglas, 2018) have been partially resolved. This resolution 

has led – and continues to lead – to important insights on how brain systems perform 

cognitively relevant computations. Therefore, the field is reinvigorating the hopes of 

those seeking a synthesis of cognitive science, neuroscience and even engineering and 

computer science. 

 

-The award of the 2014 Nobel Prize in Physiology or Medicine to John O’Keefe, Edvard 

Moser and May-Britt Moser for the characterization of place cells and grid cells, 

prominent neuronal substrata of spatial cognition, has only but aggrandized the field 

and promoted the already substantial attention paid to it.  

 

These two pieces of the recent story of the neuroscience of spatial cognition are reasons 

for excitement, which is much needed to overcome further theoretical, technical and 

methodological problems. However, it should be acknowledged how challenging 

representation/information and function ascription is in cognitive neuroscience, as I 

will try to show in this work. What follows is a segmented introduction to spatial 

behavior, spatial cognition, their neurobiological substrates, and the main challenge 

 
1 Cognitive science usually follows a top-bottom approach, while cognitive neuroscience favors a 
bottom-top approach. Cognitive science built “boxes and arrows” models of cognition in its effort to 
elaborate useful descriptions of higher cognitive functions. Cognitive neuroscience, on the other hand, 
while tolerating this approach and trying to map the boxes’ cognitive modules onto the brain, suffered 
in terms of computational rigor and neurobiological plausibility, finally resulting in the two disciplines 
parting ways.  
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that this work intends to note and address: the complex and equivocal character of the 

relation among 1) material substrata, 2) cognition/information, and 3) function.  

 

 

1.1  Spatial navigation  

 

Spatial navigation is considered a key ability for survival in many organisms, from 

small and relatively simple insects to complex mammals like primates and humans. 

Therefore, it is a basic behavioral function. The function is ubiquitous in the animal 

kingdom. It is crucial for prey seeking/predator avoidance, foraging, returning to safe 

environments, hiding food for winter, pollinating flowers, and much more. In fact, 

given the evolutive importance of spatial navigation, one could infer the existence of 

shared or similar mechanisms in classes of organisms that share sizeable portions of 

recent evolutive paths – like complex mammals, or certain insects. Insects (perhaps the 

most studied are bees and ants) must forage and return to a starting or reference point 

(the colony, the nest, the hive) for survival, and they seem to share common 

mechanisms that put them in a different class to that of mammals (Collett et al, 2013). 

In this work, nonetheless, when describing the neurobiological substrata of spatial 

navigation, the focus resides on mammals: the so-called “mammal brain” is a 

generality based on the notion that mammals display significant brain structure 

similarity across species. 

 

Spatial navigation has been more studied, documented and characterized in mammals 

than in any other class (in the taxonomic rank sense). There are several reasons for this. 

The most obvious one is that humans belong in the class “mammals”, and the hopes 

of finding connections between basic and applied science are bigger here. A bit of 

speculation leads to other reasons. It may be easier to perform finer experiments and 

isolate relevant variables with mammals. Maybe their cognition is more complex and 

interesting as a whole to the eyes of scientists: spatial navigation is linked to cognitive 

abilities like memory (spatial working, short-term and long-term memory, visual 

memory, object memory…), after all, and spatial navigation could be a bridge to the 
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understanding of higher cognition. Be the reasons anthropocentric, technical or 

utilitarian, it is this way and it shows. For instance, there are many standardized 

experimental procedures to study spatial navigation in rodents: paradigmatic 

experimental settings such as the radial maze (Olton and Samuelson, 1976) and the 

Morris water maze (Morris, 1981), virtual reality settings, and so forth. There is also a 

substantial amount of human experimentation, such as taxi/bus driver experiments 

(for instance, Maguire et al., 2000; Maguire et al., 2006), virtual reality/videogame 

based experiments, etc.  

 

Spatial navigation has been characterized as a process that relies on both allothetic and 

idiothetic information. Allothetic information is about environmental cues outside the 

organism itself (for instance, visual, auditory, olfactory, and tactile cues/landmarks, 

and environmental geometry) that act as spatial references. An illustrative example is 

sailors using the position of the stars to navigate the sea. On the other hand, idiothetic 

– or internal – information refers to information related to the subject, which is mostly 

derived from self-motion, and includes vestibular, proprioceptive, motor efference 

copy and optic flow information (Poulter et al., 2018), and can also act as spatial 

reference. In fact, they can be experimentally dissociated, for example in virtual reality 

(Tennant et al., 2018). Both types of information complement each other, and their 

mismatch leads to confusion. In such situation, or when one type of information is 

absent, the organism may adopt allocentric or egocentric navigation strategies, 

depending on whether it predominantly relies on allothethic or idiothetic information 

respectively. In the specific situation that allocentric information is completely or for 

the most part absent (or disregarded due to incoherency), many species resort to a 

navigational strategy termed “path integration” which consists on the vector 

calculation of a return path after venturing away from a starting position (Jander, 1957; 

Görner, 1958; Mittelstaedt and Mittelstaedt, 1980; Müller and Wehner, 1988). 

 

Prolongued reliance on path integration and absence of allothetic information leads to 

cumulative error over time. An organism can try to orientate in space in the absence 

of allothetic information (darkness, silence, no smells, no tactile cues) with certain 

degree of precision, but eventually the accumulated error will make it inefficient to 
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perform the spatial navigation task in question. Valerio and Taube (2012), for instance, 

found that both the length of the outward trip and the number of head turns are 

associated with a higher error probability when rats path-integrate and return to a 

reference point. This suggests that the more traveled distance and head turns need to 

be integrated, the more error is accumulated. 

 

However, I mentioned before that allothetic and idiothetic information are 

complementary, and the sudden or increased availability of the former can help correct 

cumulative error during path integration (Ethienne et al., 1996; Ethienne et al., 2000; 

Ethienne et al., 2004). It is proposed that the path integrator can be reset by just 

establishing minimal contact with environmental boundaries, since it realigns grid cell 

activity (Hardcastle et al., 2015), which as we will see, is the proposed neurobiological 

substratum of path integration. In fact, environmental boundaries seem to exert a deep 

and more generalized influence on grid cell activity, like on its orientation, scaling and 

hexagonality (Stensola et al., 2012; Krupic et al, 2015; Krupic et al., 2018). 

 

 

1.2  The cognitive approach to spatial behavior 

 

Even if one could start from a much earlier point in history, for the purposes of this 

introduction this story begins with the transition from behaviorism, one of the most 

prominent schools of thought in psychology during the first half of the 20th century, to 

cognitivism. Cognitive neuroscience, after all, presupposes and is based on many 

postulates of cognitivism. Therefore, I will not present here an overview of different 

accounts of behavior and the mind in general, or spatial navigation in particular. 

Instead, I will restrict the theoretical background to the cognitive turn (more often 

called “cognitive revolution”) and the cognitive approach to spatial behavior.   

 

I mentioned before the link between spatial navigation and higher cognition as a 

potential source of interest and motivation for researchers to study spatial navigation 

in mammals. This link entails bold metaphysical assumptions, at least as many as 
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cognitivism itself (of which the most prominent are perhaps ontological commitments 

to mental representations and a causal direction from mind to behavior).2  

 

Cognitive neuroscience and, by extension, computational neuroscience,3 are framed 

by the postulates of cognitivism. In order to better understand the difficulties and 

endeavors of the field, it is important to make them explicit. A precise and 

encompassing account of cognitivism falls out of the scope of this work, and hence not 

much space can be dedicated to it. However, the following quotes by Gerrans (2014) 

are illustrative of my simplified overview: 1) cognitive neuroscience conceives 

“persons as complex, hierarchically-organized information processing systems 

implemented in neural wetware” (p. 16), 2) the mind in such neural wetware “uses 

representations of the world and its own states to control behaviour” (p. 47).  

Furthermore, and to the dismay of many anthropologists, some degree of universality 

seems to be endorsed by cognitivist approaches, as psychologist Steven Pinker (2002) 

argues: one of the key ideas that defined the cognitive revolution is the existence of 

"universal mental mechanisms can underlie superficial variation across cultures" (p. 

37). Miller and Chomsky, two of the figures responsible for crafting the snowball 

which would become the cognitive revolution, propose paradigmatic examples of this 

idea in the form of “the magical number seven, plus or minus two: some limits on our 

capacity for processing information” and universal grammar4 respectively (Miller, 

1956; Chomsky, 1955/1956; published 1975; Chomsky, 1959; Chomsky, 1962).  

 
2 This is not to say that alternatives do not entail metaphysical assumptions, axioms, ungrounded 
ground premises and basically starting points that cannot ultimately be in turn justified by a ground of 
grounds. The reasons to adhere to some accounts or frameworks over others (say, cognitivism over 
behaviorism), or to some subaccounts over others (say, varieties of computationalism and 
functionalism), even if sometimes foreclosed under the guise of common sense or epistemological 
virtue, have an important pragmatic dimension. 
3 Strictly speaking, computational approaches and in general the logic of information processing do not 
necessarily entail cognitivism (see, for instance, Copeland and Shagrir, 2013). Still, in practice, 
computational neuroscience is usually understood as a subdiscipline of cognitive neuroscience. 
Therefore, likely due to the current dominance of cognitivism, computational neuroscience is 
cognitively framed.  However, the inverse does not apply: it is commonly accepted that not all accounts 
of cognition are computational. The result is that, while in principle none of the two disciplines must 
entail each other, computational neuroscience is understood and practiced as a subtype of cognitive 
neuroscience: all computational neuroscience is cognitivist but not all cognitive neuroscience is 
computational. 
4 Chomsky’s idea of universal grammar purports to explain the generation of sentences in daily life by 
appealing to inner and innate transformation rules, and is inspired by the languages of the at the time 
incipient field of computer science. 
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Today, spatial navigation is studied via the uncontested, foreclosed lens of a cognitivist 

framework. But this not the only framework possible and certainly not the only one 

that has been applied to spatial navigation. Behaviorism was one of these frameworks. 

The classical example of behavioral account of spatial navigation (but also problem 

solving more broadly) is Thorndike’s work on cats finding their way out of puzzle 

boxes, leading to his Law of Effect:  stimulus-response (S-R) associations are reinforced 

if they bring about “satisfactory” outcomes, and complex behaviors are concatenations 

of S-R associations the apprehension of which is subjected to gradual learning via trial 

and error (Thorndike, 1898; Thorndike, 1905). 

 

The seminal work leading to a cognitive framing of spatial behavior came from the 

hand of Tolman in the form of the cognitive map theory. Consistently with Kant’s 

epistemology5 but never acknowledging him, he claimed that rat’s and men’s spatial 

behavior cannot be explained by mere S-R associations. For example, when standard 

or familiar routes are unavailable, rats can reach a goal navigating alternative paths in 

absence of previous direct experience with them (Tolman et al., 1946a; Tolman et al., 

1946b). An internal representation of space may, however, govern complex spatial 

behaviors like this, both in rats and humans (Tolman, 1948). Thus, Tolman´s work 

initiated a shift from a behaviorist account of spatial behavior to a cognitivist one: the 

complexity of spatial behavior cannot be explained by reinforcement-based learning; 

instead, there is a mental representation which causally accounts for spatial behavior.  

 
5 The most commonly accepted historical sketch is the following: Kant offers in his critiques a synthetic 
alternative to Cartesian (series of logical inferences/deductions based on self-evident premises) and 
Humean (the rejection of a rationalist model based on sufficiently reliable premises and rules of 
deduction, and the proposal of empirical observation as the foundation of knowledge) epistemologies. 
Kant thus proposes two dichotomies, a priori - a posteriori, and analytic - synthetic. The a priori is 
independent of experience, and the a posteriori is based on experience. The analytic does not add 
knowledge beyond the content present within its own concepts and premises (the cat is a mammal), 
while the synthetic does (the cat is brown). Kant concedes to Descartes that we can create knowledge 
without observing (synthetic - a priori), as when doing mathematics or metaphysics, but he also concedes 
to Hume that observation is critical for all other types of knowledge. Of course, now that knowledge 
does not depend exclusively on the Cartesian method (logical inferences) or mere observation (raw 
input from the senses), there is an epistemic subject that plays a key role in intelligibility, in creating 
and ordering knowledge. The Kantian version is that this epistemic subject has two basic a priori forms 
of sensible intuition which frame the world: time and space. Cognitivists usually put forward notions 
similar to such a priori forms, but Tolman’s cognitive map theory is a special case because it fits one of 
the two Kantian pure forms of intuition. 
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Endorsing Tolman’s cognitive theory of spatial behavior has two substantial 

consequences. The first is that a departure from associative learning entails, in turn, a 

departure from neural learning processes grounding it (or at least, the need to build 

on them to accommodate representations and information processing). The second is 

that a cognitive representation of space is such a broad concept that is of little use if it 

is not further decomposed. For instance, for an animal to perform efficient spatial 

behavior, it must represent the metric characteristics of the environment, allothetic 

environmental cues, its position within it, its moving direction, its speed, and so forth. 

Furthermore, there must be neurobiological substrata responsible for these 

representations, and the understanding of such substrata may further clarify the 

representations and the manner in which information is processed (note the epistemic 

circularity involved). 

 

All in all, the task of cognitive neuroscience is to answer the following question: which 

biological substrates sustains which representations, which causally account for which 

behavior more or less universally across organisms of the same species? 

 

I cannot overstate the magnitude of this apparently simple “pairing” task. I will only 

sketch three difficulties: 

 

1) Although the quest to find the neurobiological substratum of something seems to 

suggest a pairing process, we cannot forget there are actually three levels at stake: 

neurobiology, cognition (representations/information) and behavior. It does not 

suffice with pairing neurobiology and representations, or neurobiology with behavior, 

or representations with behavior. This sounds obvious but its implications are usually 

not so in practice. For instance, from the fact that a neurobiological substratum is 

involved in some behavior (for example, the behavior may be disrupted after the 

inactivation of the substratum in question), it does not follow that such a substratum 

represents a specific content related to such behavior, but intuitively, one could be 

tempted to establish such link. 
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2) It is especially problematic to ascertain the character of the supposed representations 

emerging from neurological substrata. The failure of phrenology is widely known, and 

leaves much room for improvement. However, the metaphysical assumptions of 

cognitivism, and the fact that the mapping is supposed to link two very distinct realms 

– the material and the mental – suggest that it is possible that improvement may come 

only in degrees. I will not review here the literature about the possibility of explanatory 

models establishing causality from matter to mind. I will briefly note that: 

 

- Specific forms of mental representation are inferred from both neurobiological 

bases and behavior, not obtained as a material product. Causal links between 

neurological bases and behavior (matter – matter, or mechanism) are less 

problematic, while mental representations are convenient ontologies that fill the 

explanatory gap between the two – hence the causal direction from cognition to 

behavior of cognitivism. Being non-material, however, their precise formulation 

enjoys plenty of elbowroom, and takes the form that better fits the explanatory 

gap in a given practical context. Because of this, these ontologies are usually 

inspired by familiar material objects and concepts (computers, maps, 

compasses, speedometers, vectors, computation…). 

 

- Gradual improvement may be a matter of fine-tuning correlations between the 

neurobiological substrata and the representation. Raichle (2009) presents a 

historical sketch of brain-mind mapping that fits a picture of progressive fine-

tuning, starting with Italian psychologist Angelo Mosso noting a correlation 

between mathematical calculations and increased brain blood flow (obviously, 

a lack of blood flow would hinder the ability to perform mathematical 

calculations –manifested verbally, or via pen and paper). From this fact it does 

not follow, however, that from blood flow a mind emerges, and especially not 

concrete mental ontologies (e.g. abstract mathematical objects).  

 

- Progress in cognitive neuroscience may also be a matter of fine-tuning the 

specific cognitive ontologies in the much pragmatic and instrumentalist sense 

that they better assist with filling explanatory gaps. In this line, it should be 



13 
 

noted that the theoretical construct of cognitive maps itself has been called into 

question (Bennett et al., 1996). Perhaps, eventually something better that an 

improvement that comes in degrees will be achieved by filling matter-matter 

explanatory gaps, discarding cognitivism altogether, and leading to yet another 

paradigm. Without advocating the latter radical scientific revolution, part of the 

discussion on the experimental results in this dissertation commits to this 

pragmatic view of cognitive representations. 

 

3) There is some degree of epistemic circularity in the process. Certain behaviors are 

intuitively explained by a cognitivist framework. We choose to commit to the Kantian 

spatial a priori, a certain causal directionality, representationalism, and specific 

representational forms assisted by references to material observables (here, 

neurobiological and behavioral) that only underdetermine abstract ontologies. Then, 

these abstract ontologies become in turn the reference to investigate the 

neurobiological bases and overt behavior. And again, in turn, this investigation fine-

tunes the representations to which we commit. This process works in a never-ending 

loop without a certain starting point: historically, did the observation of behavior lead 

to the idea that a mind causes it? Or did mental intuitions precede the observation of 

behavior? Probably this is not the right way to look at an issue that is subjected to such 

a co-production of the elements involved. More importantly, there is no ending point 

either. As Quine famously showed some decades ago, metaphysical notions and 

theoretical frameworks in general inevitably frame empirical observations (Quine, 

1951); therefore, there is no such thing as neutral observations of nature, observations 

a neutral standpoint. Hence, empirical observations cannot be used to put metaphysics 

to the test. The point is then not to ground metaphysics in physis (nature), an enterprise 

which has been shown time and again to be deceptive and misleading. The point is not 

to reach the “real” abstract representations of nature (or even to determine whether 

these exist in a metaphysically strong sense). The point is to build a coherent, 

harmonical picture that puts cognitivism and its metaphysical postulates to work 

together with neurobiological and behavioral knowledge, in a way that is optimized 

for each scientific practice. In fact, this very task forecloses the issue of whether there 

are causally active representations arising from matter: it is a framework, an axiom of 
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the approach, a bedrock belief, a Wittgensteinian hinge proposition on which the rest 

builds, not something to be ascertained.  

In this section I have tried to provide some context about the tasks of cognitive 

neuroscience. In addition, I have sketched some of the most prominent challenges. All 

in all, if we decide to commit to cognitivism, we need to bear in mind that cells, cell 

networks or brain structures, regardless of their behavioral functions, may not 

straightforwardly align with representation and information concepts that, for one 

reason or another, are intuitive to us. Now that the complicated picture has been 

sketched, I will briefly present the neuronal bases of spatial representations and 

behavior, with an emphasis on grid cells in the medial entorhinal cortex (MEC).  

 

 

1.3 The neurobiological substrata of spatial navigation  

 

1.3.1 Place cells 

 

An early observation in rats showed that some hippocampal cells selectively fire when 

the animal is in a given region of the environment (O’Keefe and Dostrovsky, 1971). A 

few years later, O’Keefe recorded cells from the cornus ammonis region 1 (CA1) and 

coined the term “place units” to name neurons the activity of which is tuned to the 

animal’s presence in a specific region of the environment (O’Keefe, 1976). These results 

were interpreted as providing support for the cognitive map theory, so that the 

internal cognitive map would be encoded by the hippocampus. Soon after, O’Keefe 

and Nadel published their seminal book the Hippocampus as a Cognitive Map (O’Keefe 

and Nadel, 1978), setting the groundwork for a broad research program on the 

neurobiological bases of spatial cognition. The firing activity of place cells may 

undergo a significant phenomenon called “remapping”, consisting in significant 

changes in their firing activity (firing rate and/or place field location changes) that are 

well documented by now. It usually follows from geometrical and contextual changes 
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in the environment (Bostock et al., 1991; Muller and Kubie, 1987). For this reason, it is 

unlikely that they are the most elemental basis of path integration. Place cells are 

thought to encode information about location and environment at the 

population/ensemble level rather than individually (Wilson and McNaughton, 1993).  

 

 

1.3.2 Head-direction cells  

 

The next spatially-tuned type of cell discovered was purported to represent a key type 

of information for spatial navigation: angular directionality, or at least, the heading 

direction of the animal. The cells encoding this information, called head-direction (HD) 

cells were first reported by Ranck (1984), and subsequently better characterized by 

Taube and his collaborators (Taube et al. 1990a, b). Although they were first found in 

the postsubiculum, further research located HD cells in the posterior cortex (Chen et 

al., 1994), the anterior nuclei of the thalamus (Taube, 1995), the entorhinal cortex 

(Sargolini et al., 2006) and the nucleus reuniens of the thalamus (Jankowski et al., 2014), 

among other areas. Each of these cells reach their peak firing rate when the animal 

faces the cell’s preferred direction. HD cells typically have an approximately 90º wide 

response field, their preferred direction lying in the middle of the field, and their firing 

rate progressively decreasing as the animal’s head direction deviates from the cell’s 

preferred direction (Taube et al, 1990a).  

 

Moreover, rotation of the environment or prominent visual cues translate to a similar 

rotation of the cells’ firing field, which shows that HD cells are anchored to allothetic 

cues, that is, external stimuli (Taube et al., 1990b). However, HD cells also respond to 

idiothetic input like proprioceptive information when, for instance, allothetic input is 

not available (Yoder et al., 2011). Taken together, this suggests that HD cells may 

employ spatial representations to assist with path integration. The fact that HD cell 

activity correlates with path integration performance (Valerio et al., 2012) and the 

additional fact that path integration impairment follows from HD signal disruption 

provide further evidence in this direction (Butler et al., 2017).  
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13.3 Border cells 

 

The existence of cells firing at the boundaries of the environment or at a certain 

distance from it have been reported in the subiculum (Barry et al., 2006), the MEC 

(Savelli et al., 2008; Solstad et al., 2008) and the pre- and parasubiculum (Boccara et al., 

2010). There is some terminological heterogeneity regarding the name of these cells: 

the terms “boundary vector cell”, “boundary cell” and “border cell” are used 

somewhat interchangeably, but I will not address this issue here. 

Border cells are thought to correct error accumulation in grid cell activity (Hardcastle 

et al., 2015; Pollock et al., 2018). I shall come back to this in the section describing grid 

cells. 

 

 

1.3.4 Speed cells 

 

Very recently, the existence of cells the activity of which is context-invariantly tuned 

to the running speed of the animal has been reported in the MEC (Kropff et al., 2015). 

These cells increase their firing rate linearly as a function of movement speed. Since 

they maintain their activity across contexts and in the dark, it has been proposed that 

they provide a speed code that is altogether independent of visual input. This kind of 

information, just like information on angular direction, is required for path integration. 

The fact that MEC speed cells and grid cells (but not hippocampal place cells) are 

linked by a common prospective bias suggests that the latter may integrate speed 

information in order to enable path integration. 
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1.3.5 Grid cells 

 

Finally, we arrive to the most important type of cell for the purpose of this work: grid 

cells. First reported in 2005 in the medial entorhinal cortex (MEC), these cells display 

multiple place fields arranged hexagonally (Hafting et al., 2005). Their activity is 

preserved in the dark, and unlike that of place cells, is largely invariant across contexts 

(Hafting et al., 2005; Allen et al., 2014). For this reason, they have been called “low 

dimensional”, in contrast to place cells, which by virtue of encoding context-specific 

representations are “high dimensional” (Fyhn et al., 2007). Moreover, the periodicity 

of their activity fields suggests that grid cells must integrate information about the 

angular direction and speed of movement. It has been shown that the disruption of the 

head direction signal in turns impairs grid cell activity (Winter et al., 2015). All in all, 

by displaying a low-dimensional, context invariant signal, and likely integrating 

angular direction and speed information, it is likely that they are involved in path 

integration by providing a universal metric of the environment and the position of the 

animal therein (Fuhs and Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 

2007; Moser and Moser, 2008; Burak and Fiete, 2009). This hypothesis is supported by 

the fact that knockout mice lacking GluA1-containing AMPA receptors show both a 

selective disruption of grid cell activity – but not of the HD signal and speed 

modulation – and impaired path integration performance (Allen et al., 2014).  

 

However, after prolonged absence of cues, the grid signal accumulates error due to 

intrinsic noise (Burgess et al., 2007; Burak and Fiete, 2009). Visual cues anchor both the 

grid cell signal and the head direction signal that it integrates, and correct error 

accumulation (Goodridge and Taube, 1995; Knierim et al., 1995; Skaggs et al., 1995; 

McNaughton et al, 1996; Hafting et al., 2005; Allen et al., 2014; Evans et al., 2016). 

Environmental boundaries correct grid cell signal error accumulation as well 

(Hardcastle et al., 2015), and may improve path integration performance. This may be 

the reason why grid cell activity persisted relatively undisrupted (showing a mild 

decrease in spatial selectivity) in darkness during relatively long periods of time in 

Hafting et al. (2005). and Allen et al. (2014). It is worth noting that the arena boundaries 

were walled in Hardcastle et al. (2015). 
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Nonetheless, non-metric cues and environmental borders may do more than just 

correcting error accumulation; it is not so clear to what extent grid cell activity is 

context-invariant. Non-standard arena shapes can distort grid symmetry, 

homogeneity, scale and field size (Krupic et al., 2015; Stensola et al., 2015). It has also 

been shown that the color and odor of the enclosure exert translational changes (but 

no orientation, scale or rate changes) in the grid signal. The former observation argues 

against the possibility of grid cells being the neurobiological substratum of the 

representation of a universal metric of space and perhaps of the path integration 

function, or at least for a more complicated picture on how grid cells work. The latter 

observation suggests that grid cells may represent more heterogeneous information 

than previously thought, although this evidence is still weak.  

 

 

1.4 Aim of this work 

 

The possibility that visual cues exert broader effects on the activity of grid cells than 

just anchoring it remains open. First, it may be that in darkness and in the absence of 

walls in the environmental boundaries and other contaminating variables, visual 

information is more critical than previously thought. If so, this would undermine the 

notion that grid cells are the main substratum for path integration. Second, it may be 

the case that the modification of non-metric, contextual visual cues exert changes in 

the grid cell code. If so, grid cells would encode heterogeneous information instead of 

an invariant, universal metric of space. This work sets out to test these two possibilities 

by recording the activity of grid cells and other spatially selective MEC neurons in 

mice running in environments where access to visual landmarks was manipulated. 
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2. MATERIALS AND METHODS 

 

Two experiments employing two different mice cohorts were carried out (all data is 

available at the Dryad Digital Repository: 10.5061/dryad.c261c; Pérez-Escobar et al., 

2016a): a circular arena experiment, and a linear track experiment. Sections 2.1-2.3 

were common to both experiments. Sections 2.4-2.9 refer to the circular arena 

experiment, while sections 2.9 and 2.10 refer to the linear track experiment. Some 

methods for the detection of spatially selective cells in 2.5 were used for the cell 

detection phase the linear track experiment. Histological procedures (2.12) were 

common to both experiments. 

 

 

 

2.1 Surgical procedure  
 
This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

All experiments were carried out in 3–6 month-old male wild type C57BL/6 mice and 

were approved by the Governmental Supervisory Panel on Animal Experiments of 

Baden-Württemberg in Karlsruhe (35–9185.81/G 50/14). Mice were singly housed and 

kept on a 12 hr light-dark schedule with all procedures performed during the light 

phase. The mouse cages were 26 cm long, 20 cm wide and 14 cm high. The cage floor 

was covered with 2 cm of saw dust and 1–2 facial tissues were placed in the cage. Mice 

were implanted with 4 movable tetrodes in each hemisphere. The tetrodes were 

constructed from 4 12 mm-diameter tungsten wires (California Fine Wire Company, 

Grover Beach, California) and held in a microdrive assembly that allowed them to be 

moved individually. Before implantation, tetrodes were gold plated to reduce their 

impedance to 300–500 kΩ. 

 

Mice were anesthetized with isoflurane (1–3%) and placed into a stereotaxic apparatus. 

The skull was exposed and four anchor screws were inserted into the skull. Two 
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screws located above the cerebellum served as ground and reference signals. The 

following coordinates were used (ML: ± 3.1 mm from bregma, AP: 0.2 mm from 

transverse sinus, 6° in the posterior direction). The tetrodes were lowered into the 

cortex and the microdrive was fixed to the skull with dental cement. Mice were given 

one to two weeks to recover after surgery. 

 

 
 

2.2 Recording system, spike extraction and spike clustering  
 
This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

The animals were connected to the data acquisition system (RHD2000-Series Amplifier 

Evaluation System, Intan Technologies, analog bandwidth 0.09–7603.77 Hz) via a 

lightweight cable and the signal was sampled at 20 kHz. Action potentials were 

detected off-line from the bandpass-filtered signal (800–5000 Hz). Waveform 

parameters were obtained from a principal component analysis and clusters of spikes 

were automatically generated using Klustakwik. Spike clusters were refined manually 

with a graphical interface program. Cluster separation quality was assessed from the 

spike-time autocorrelation and isolation distance. A refractory period ratio was 

calculated from the spike-time autocorrelation (from 0 to 25 ms, bin size: 0.5 ms). The 

mean number of spikes from 0 to 1.5 ms was divided by the maximum number of 

spikes in any bin between 5 and 25 ms. Clusters with a refractory period ratio larger 

than 0.125 were not kept. In addition, clusters with an isolation distance (Schmitzer-

Torbert et al., 2005) shorter than 5 were excluded from the analysis. 

 

Two infrared-LEDs (wave length 940 nm), one large and one small, were attached to 

the headstage. The large and small LEDs were located ahead and behind the head of 

the animal, respectively, with a distance of 8 cm between their centers. An infrared 

video camera (resolution of 10 pixels/cm, DMK 23FM021, The Imaging Source) 

monitored the LEDs at 50 Hz. The location and head direction of the animal were 

tracked on-line with custom software. 
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2.3 Initial training 
 
This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

After the recovery period, mice were put on a food restriction diet to reduce their 

weight to 85% of their normal free-feeding weight. They were then trained 3 times a 

day (3 x 10 min) to run in a 70 x 70 cm open field to retrieve food rewards (AIN-76A 

Rodent tablets 5 mg, TestDiet) delivered at random locations from pellet dispensers 

located above the ceiling of the recording environment (CT-ENV-203-5 pellet 

dispenser, MedAssociates). The pellet dispensers were controlled by a microcontroller 

(Arduino Uno) and the inter-delivery intervals ranged from 20 to 40 s. 

 

After 2 days of training, the procedure continued (3 x 15 min) but the mice were 

connected to the recording system. The tetrodes were lowered on each day and the 

raw signals were monitored on an oscilloscope. Recordings began when large theta 

oscillations were observed on most tetrodes (Fyhn et al., 2008). The tetrodes were also 

lowered by approximately 25–50 µm at the end of each recording session. 

 

 

 

2.4 Circular arena 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

The apparatus consisted of an elevated (4.5 cm) gray circular PVC unwalled platform 

(80 cm diameter) located in the center of a gray square box (100 x 100 x 19.5 cm). The 

square box was filled with water up to 3 cm to prevent the animal from getting off the 

circular arena. The recording environment was surrounded by opaque black curtains. 

On every side of the box, a LED panel provided a polarizing cue to the animal (90° 

angle between the lights). The light panels consisted of black aluminum sheets (46 cm 

x 33 cm) with two horizontal LED strips (45 cm long, 25 cm apart from each other; color 
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temperature: 3000 K, Ribbon Slim Top, Ledxon Group, powered by 6 1.2 V batteries). 

These light panels were the only potential source of visible light in the recording 

environment. An audio speaker located directly above the arena emitted a white noise, 

overshadowing uncontrolled auditory cues. 

 

After initial training, the mouse was transported from the holding room to the 

recording room in an opaque circular container (15 cm diameter) and underwent a 

disorientation procedure in which the container was spun 5 times clockwise and 5 

times counterclockwise (approximately 1 rotation/s). The mouse was connected to the 

recording system outside of the curtains, and it was carried within the holding box 

into the enclosure and placed on the arena. After closing the curtains around the 

apparatus, the recording started and the experimenter left the room for the duration 

of the recording session. The mouse had no prior experience of the recording room 

before the first recording session. 

 

The light panels were controlled by a microcontroller (Arduino Uno) via a 4-channel 

relay module. For each recording session, two of the four light panels were chosen 

randomly and only these two lights were used during the recording session (referred 

to as l1 and l2). The location of l1 and l2 varied randomly across days in the same 

animal. A session started with a baseline of 10 min with l1 turned on, followed by 2 

min in darkness and a series of 60 2-min trials, alternating between light and dark 

trials. Only one light was switched on during a given light trial, and the order of 

presentation of the two lights was random. At the end of the light-dark trial sequence, 

an additional baseline of 10 min with l2 turned on was performed. The experimenter 

entered the recording room, the mouse was removed from the recording environment 

and the tetrodes were lowered by approximately 25–50 µm. To ensure that mice visited 

every location on the elevated arena, food rewards were delivered at random positions 

during recording sessions. 
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2.5 Identification of spatially selective neurons 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

Data analysis was performed in the R software environment and the source code is 

available at https://github.com/kevin-allen/prog_perez_escobar_2016. Spatial firing 

rate maps were generated by dividing the environment into 2 x 2 cm bins. The time 

spent in each bin was calculated and the resulting occupancy map was smoothed with 

a Gaussian kernel (s.d = 3 cm). The number of spikes emitted as the animal was in each 

bin was divided by the corresponding bin of the occupancy map to obtain the firing 

rate map, which was then smoothed with a Gaussian kernel function (s.d = 3 cm). Only 

periods when the mouse ran faster than 3 cm/s were considered. The spatial 

information score (Skaggs et al., 1996) was defined as follows: 

 

 

 
 
 
where pi is the occupancy probability of bin i in the firing map, 𝜆i is the firing rate of 

bin i, and 𝜆 is the mean firing rate of the neuron. 

 

Spatial autocorrelations were calculated from the firing rate maps. Peaks in the 

autocorrelation matrix were defined as > 10 adjacent bins with values > 0.1. The 60° 

periodicity in the spatial autocorrelation matrix was estimated as follows (Sargolini, 

2006). A circular region of the spatial autocorrelation matrix containing up to six peaks 

and excluding the central peak was defined. Pearson correlation coefficients (r) were 

calculated between this circular region of the matrix and a rotated version of itself (by 

30°, 60°, 90°, 120°, and 150°). A grid score was obtained from the formula: 

 
 
 

https://github.com/kevin-allen/prog_perez_escobar_2016
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Significance thresholds for information and grid scores were obtained by shifting the 

position data by at least 20 s before recalculating both scores. This procedure was 

repeated 100 times for each neuron in order to obtain surrogate distributions. The 95th 

percentiles of the null distributions were used as significance thresholds. Neurons with 

a significant grid score during both 10-min baselines or during one baseline and l2 

trials were defined as grid cells. The spacing of a grid cell was defined as the mean 

distance from the central peak to the vertices of the inner hexagon in the spatial 

autocorrelation. 

 

Border cells were identified using a border score calculated from two variables (CM0.5 

and DM). The pixels of a firing rate map that were directly adjacent to the periphery 

of the arena were identified. Firing fields, defined as groups of adjacent pixels with a 

firing rate larger than 20% of the peak firing rate of the map and covering at least 40 

cm2, were detected. For each field, the proportion of the pixels along the periphery that 

were also part of the field was calculated. CM was defined as the maximum proportion 

obtained over all possible fields. Because the firing fields of a border cell in circular 

environment typically cover up to half of the periphery, the variable CM0.5 was defined 

as (1 - |(0.5 – CM)| ∗ 2). CM0.5 had a value of 1 when the firing field covered half of the 

periphery and a value of 0 when the field covered all of the periphery or nothing of 

the periphery. DM was the mean shortest distance to the periphery for pixels that were 

part of a firing field, weighted by the firing rate in each pixel. DM was then normalized 

as follows. For each pixel in the map, the shortest distance to the periphery was 

calculated. The largest value obtained over all map pixels was the value used for the 

normalization. The border score was defined as (CM0.5 – DM)∕(CM0.5 + DM). 

Significance level was obtained with the same shuffling procedure as for information 

and grid scores. Border cells were defined as cells with a significant border score 

during both baselines or during one baseline and l2 trials. 
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As most border cells in a circular environment cover only a section of the periphery 

(Solstad et al., 2008), a polarity score for each map was calculated too. For each pixel 

of the map, a vector was created. Its direction was that of the pixel relative to the center 

of the map and its length was set to the firing rate in that pixel. The map polarity score 

was defined as the length of the resulting vector after summing individual vectors and 

normalizing the length by the sum of the firing rate of all pixels in the map. 

 

Irregular spatially selective cells were neurons that were not classified as grid or 

border cells and that had a significant spatial information score during both baselines 

or during one baseline and l2 trials. 

 

Head-direction cells were identified by constructing a histogram with the firing rate 

of a neuron as a function of head direction (10° per bin). The mean vector length of the 

histogram was used as a measure of head direction selectivity. A null distribution of 

mean vector length was obtained by shifting the head direction data by at least 20 s 

before recalculating the mean vector length. This shuffling procedure was repeated 

100 times for each neuron and the 95th percentile of the surrogate distribution served 

as significance level. Head-direction cells had a significant vector length and a peak 

firing rate above 5 Hz during both baselines or during one baseline and l2 trials. 

 

To identify speed-modulated cells, the instantaneous firing rate of the neurons was 

calculated. The number of spikes in 1 ms time windows was counted and a 

convolution between this spike count array and a Gaussian kernel (s.d = 100 ms) was 

performed. The resulting vector was integrated over 100 ms time windows. Periods 

during which the mice ran slower than 3 cm/s were removed from the analysis. 

Running speed was estimated every 20 ms. A speed score was defined as the Pearson 

correlation coefficient between the instantaneous firing rate and the running speed of 

the animal. Chance levels were obtained with a shuffling procedure (n = 100) in which 

the speed vector was shifted by at least 20 s before calculating speed scores. To be 

considered a speed-modulated cell, the neuron had to have a speed score above the 

95th percentile of the surrogate distribution during both baselines or during one 

baseline and l2 trials. 
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2.6 Stability of firing rate maps 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

To assess the stability of the spatial firing patterns during dark trials, d1 trials were 

divided into 12 blocks of 10 s. Maps were constructed for the 12 blocks, concatenating 

homologous blocks across trials of a given condition. The stability of the map in each 

block was obtained by calculating the correlation coefficient between the block specific 

firing map and the map containing all 120-s l1 trials. As controls, the l1 trials were also 

divided into 12 blocks and the maps observed during each block were compared to 

the maps containing all 120-s l1 trials. 

 
 
 
 

2.7 Spike distance metric 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

Error accumulation in the spikes of grid cells was estimated by the spike distance 

metric (SDM) (Hardcastle et al., 2015). For each cell, a firing rate map was constructed 

using the first 60 s of l1 trials. A firing field was defined as an area of at least 20 cm2 in 

which each bin had a firing rate above the 75th percentile of the rate distribution of all 

bins in the map. The center of mass of each firing field was calculated. The radius of a 

firing field was equal to the radius of a circle with an area equal to that of the firing 

field. For each spike, the distance of the animal location at the time of the spike to the 

closest firing field center of mass was calculated. SDM was this distance divided by 

the mean radius of all detected fields in the firing rate map. SDM was calculated for 

spikes fired in the last 60 s of l1 trials and the entire d1 trials. 
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2.8 Distance coding by grid cells 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

Spike-triggered firing rate maps were constructed by taking each spike of a neuron as 

a reference spike and considering only data of the next 10 s. The position data within 

each time window were shifted so that the reference spike was aligned to position (0,0). 

The space surrounding the reference spikes was divided into 2 x 2 cm bins and both 

the occupancy maps and the resulting spike-triggered firing rate maps were smoothed 

with a Gaussian kernel (s.d = 2 cm). To obtain a distance tuning curve, the bins of the 

spike-triggered firing rate map were used to calculate the mean firing rate as a function 

of distance from the reference spikes. The distance was normalized by dividing it by 

the spacing of the grid cell measured during the first baseline of the recording session. 

A distance score was defined as (𝜆1 – 𝜆0.5)/(𝜆1 + 𝜆0.5) where 𝜆 indicates the firing rate 

of a neuron at a given normalized distance. Chance levels for distance scores were 

obtained by shifting the spike trains by at least 20 s relative to the position data before 

recalculating the scores. Only grid cells with a spacing shorter than 50 cm were used 

in the distance analysis. 

 

 
 

2.9 Detection of putative excitatory connections 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

Putative excitatory connections were detected as narrow peaks in the spike-time 

crosscorrelations of simultaneously recorded neurons (from –50 to 50 ms, bin size = 

0.5 ms) (Csicsvari et al., 1998; Marshall et al., 2002; Maurer et al., 2006; Mizuseki et al., 

2009; Latuske et al., 2015). The crosscorrelations of all pairs of simultaneously recorded 

neurons were constructed. Crosscorrelations containing fewer than 300 spikes were 

excluded from the analysis. The bins from –10 to 0 ms and from 10 to 50 ms served to 
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calculate baseline mean and s.d. A peak at short latency in a crosscorrelation was 

defined as at least one bin between 0.5 and 4 ms that was above 6 s.d. from the baseline 

mean. A pair of cells was not considered if the baseline was not stable, i.e. if a bin 

between –10 and 0 ms or between 10 and 50 ms exceeded 75% of the short latency peak. 

 
 
 
 
 

2.10 Linear track experiment 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

A second cohort of mice was trained to run on a linear track. The linear track (80 x 5.4 

cm) was made of wood and painted gray. The walls along the long axis of the maze 

were 1 cm high, except for the last 6.5 cm at the two extremities where the walls were 

3 cm high. The walls of the short axis of the track were 16 cm high. A food well and an 

infrared beam were located 2 and 5 cm away from both ends of the track, respectively. 

Breaking the beam triggered the release of a food pellet at the opposite end of the track. 

Two gray walls (80 cm long x 28 cm high) were located 25 cm away from the long 

edges of the linear track. A single row of 48 LEDs (80 cm long) was attached to one of 

the side walls. On the opposite wall, 4 rows of 12 LEDs (20 cm long) were attached, 

aligned to one end of the track. The LEDs were the only potential source of visible light 

in the recording environment when the mouse ran on the linear track. 

 

After initial training (see above), the mice were trained on the linear track 3 times a 

day for 10 min. During the first 2 days, food pellets were placed randomly on the track 

during training. The pellets were progressively moved away from the center of the 

maze over the next 2 days. Thereafter, pellets were only delivered upon infrared beam 

breaks. The recording cable was connected to the mouse during the subsequent 

training sessions (15 min) and training continued until the mouse performed 

approximately 40–55 runs within 15 min. 
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Recording sessions with the linear track started with 20 min of exploration in a 70 x 70 

cm open field with normal light illumination, followed by 20 min in a rest box (25 x 25 

cm). The recording session continued with 3 20-min trials on the linear track separated 

by 20-min trials in the rest box. There were 3 lighting conditions (l1, l2 and d) on the 

linear track. The order of presentation was random and the condition changed every 

5th run on the track. In l1, a single row of LEDs was turned on. There was no other 

visible light source in the room. In l2, the 4 rows of LEDs were turned on instead of the 

single LED row. In d, all LEDs were turned off. Only recording sessions with at least 

20 blocks of 5 runs on the track were considered for analysis. 

 

Identification of spatially selective neurons in mice trained on the linear track was 

performed using the data from the square open field. The 95th percentiles of the 

surrogate distributions served as significance levels for each spatial score. The border 

score was defined as (CM – DM)∕(CM + DM). 

 

 

 

2.11 Linear firing rate maps 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

The position data on the linear track were linearized by calculating the regression line 

of the two-dimensional position data. Each position coordinate was moved to the 

closest point on the regression line. Linear firing rate maps were calculated like two-

dimensional firing rate maps (same parameters and smoothing), with the exception 

that the data were unidimensional and runs toward each end of the track were treated 

separately. 
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2.12 Histology 
 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

To confirm tetrode location, mice were deeply anesthetized with ketamine and 

xylazine, and perfused transcardially using saline, followed by 4% paraformaldehyde. 

The brains were removed and stored in 4% paraformaldehyde at 4°C overnight. The 

brains were then sliced in 50 mm-thick slices and stained with cresyl violet. 

 

 

 

3. RESULTS 

 

3.1 Circular arena experiment: broad effects of lack of visual 

information on spatially selective MEC neurons 

 
This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

First, recordings from the MEC were performed in mice exploring an elevated circular 

arena (Figure 1A). The only potential sources of visible light were 4 identical LED 

panels located around the arena. Recording sessions included a sequence of 60 2-min 

trials, alternating between light and dark trials (Figure 1B). On most recording 

sessions, 2 different light panels were used (l1 and l2) with a 90° or 180° angle between 

them. Dark trials following l1 and l2 trials were referred to as d1 and d2 trials, 

respectively. Histological examination showed that most recording sites were in the 

MEC (75.51%, 37 out of 49) or at the transition between the MEC and the 

parasubiculum (12.24%, 6 out of 49) (see Figure 1C for some samples; the complete 

source data can be accessed from “https://elifesciences.org/articles/16937/figures” 

under “Figure 1—source data 1” and “Figure 1—source data 2”). Another 12.24% (6 

https://elifesciences.org/articles/16937/figures
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out of 49) of the recording sites were in the parasubiculum. Of the tetrode tracks in the 

MEC, 86.49% had reached layer II by the last recording session. A total of 880 neurons 

were recorded in 8 mice (89 recording sessions). 

 

 
 
Figure 1. Recording protocol and cue control of MEC spatial representations. (A) Schematic of the 
recording apparatus. Left: Side perspective. An elevated circular arena was located within a square box 
filled with water. Note that half of the black curtain and two light panels were omitted for better 
visualization. Right: Top view. Four LED panels were positioned outside the box at 90° to each other. 
(B) Recording protocol. Two lights out of four were selected at the beginning of each recording session 
(l1 and l2). The protocol started and ended with a 10-min baseline, one with each light (Baseline l1 and 
Baseline l2). In between were 60 2-min trials (T), alternating between light and dark trials. The 
presentation of the two lights (l1 and l2) followed a random sequence. Only one light could be switched 
on at any time. (C) Sagittal brain sections showing the location of the recording sites (red dots) in the 
MEC. (D) Examples of firing rate maps of two grid cells (left, one cell on each row), two irregular 
spatially selective neurons (middle) and two border cells (right) during trials with l1 and l2. Top and 
bottom rows contained cells recorded with l1 and l2 being at 90° and 180° to each other, respectively. 
The numbers above the firing rate maps are the peak firing rates. (E) Correlations between l1 and l2 
maps after rotating l2 maps in 10° steps, plotted separately for sessions with 90° and 180° between l1 
and l2. Taken from Pérez-Escobar et al., (2016b) with kind permission from eLife Sciences Publications 
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3.1.1 Visual landmarks anchor MEC spatial representations 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

It was first tested whether the orientation of MEC spatial representations was 

controlled by the position of the light source (Muller and Kubie, 1987; Goodridge and 

Taube, 1995; Hafting et al., 2005). It was found that the firing fields of grid cells, border 

cells and irregular spatially selective neurons rotated around the center of the arena to 

follow the position of the light (Figure 1D). Correlations between maps of l1 and l2 

trials were calculated after rotating l2 maps (Figure 1E). Peak correlations were 

obtained near 90° and 180° for recording sessions in which the angle between l1 and l2 

was 90° and 180°, respectively. Thus, during light trials, the light panels acted as 

dominant polarization cues. 

 

 

 

3.1.2 Rapid degradation of grid cell periodicity in absence of visual 

Landmarks 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

It was investigated whether grid cells maintained a stable grid firing pattern in 

darkness. Surprisingly, the periodic firing was not visible in most rate maps of dark 

trials (Figure 2A). Grid scores and information scores were much lower during d1 

trials compared to l1 trials (Figure 2B; paired Wilcoxon signed rank test, l1 vs d1, n = 

139 grid cells, grid score: v = 9223, p<10-16, information score: v = 9722, p<10-16). The 

reductions in grid periodicity and spatial information content were also significant 

when comparing the medians of individual mice in which at least 5 grid cells were 

recorded (Figure 2C; paired Wilcoxon signed rank test, n = 6 mice, grid score: v = 21, 

p=0.031, information score: v = 21, p=0.031). Moreover, these alterations remained 

significant when limiting the analysis to neurons recorded from hemispheres in which 
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all tetrode tips were located in the MEC (referred to as MEC tetrodes) (paired Wilcoxon 

signed rank test, n = 75 grid cells, grid score: v = 2708, p<10-11, information score: v = 

2846, p<10-14). Thus, visual landmarks were required to stabilize the grid firing pattern. 

 

The grid pattern observed during light trials was present during the first few seconds 

in darkness. Trials were divided into 12 10-s blocks. The block firing maps were 

correlated to the complete l1 maps to obtain a measure of map similarity relative to l1 

trials (Figure 2D). During d1 trials, map similarity was initially high and decreased 

during the first 30 s (paired Wilcoxon signed rank test, n = 132, b1-b2: p<10-16, b2-b3: 

p=0.00053). Block 3 was not different from block 4 (p=0.17). This indicates that the 

stable periodic pattern was only present during the first 30 s in darkness. Similar 

conclusions were reached when using the spike distance metric (Hardcastle et al., 

2015) to quantify the accumulation of error in grid cell spikes during d1 trials (Figure 

3). Interestingly, when the l1 LED panel was turned back on, map similarity during 

the first 10 s was lower than during the subsequent l1 block (Figure 2D, p<10-15). Thus, 

the reinstatement of the grid pattern by visual stimuli occurred over the course of 

several seconds. 

 

Pairs of grid cells with a similar spacing exhibit very stable firing associations; cells 

that fire together in one environment also fire together in a different environment 

(Fyhn et al., 2007; Yoon et al., 2013; Allen et al., 2014). Therefore, it was assessed 

whether the firing associations between grid cells were maintained even when the grid 

patterns were not stable. The instantaneous firing rate of grid cells was calculated (time 

window: 100 ms, gaussian smoothing kernel s.d: 100 ms) and the correlation 

coefficients between instantaneous firing rate vectors served as a measure of firing rate 

association. As expected, firing rate associations for pairs of grid cells were stable from 

l1 to l2 trials (Figure 2E, Pearson correlation of firing rate associations in l1 and l2 trials, 

n = 186 grid cell pairs, r = 0.968, p<10-16). Despite instability in the spatial firing patterns 

of grid cells during dark trials, the firing rate associations of grid cells were to a large 

extent preserved during d1 trials (Figure 2E, r = 0.926, p<10-16). The median firing rate 
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of grid cells was slightly lower during dark trials than during light trials (Figure 2F; 

paired Wilcoxon signed rank test v = 6048, p=0.0129). 

 

 

Figure 2. Rapid degradation of grid cell periodicity in absence of visual landmarks. (A) Firing maps 
of 6 grid cells during light and dark trials. (B) Distribution of grid and information scores of grid cells 
during l1 and d1 trials. The dotted blue line represents the surrogate (Shuf) distribution. (C) Grid and 
information scores during l1 and d1 trials for individual mice with at least 5 recorded grid cells. (D) 
Map similarity between 10-s block maps and l1 maps (left column in panel A). (E) Left: Firing rate 
associations of pairs of grid cells during l1 and l2 trials. Right: Firing rate associations of pairs of grid 
cells during l1 and d1 trials. (F) Mean firing rate of grid cells. Taken from Pérez-Escobar et al., (2016b) 
with kind permission from eLife Sciences Publications 
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Figure 3. Spike distance metric (SDM) during light and dark trials reveals rapid grid pattern 
disruption in darkness. (A) Firing maps of 4 grid cells during light and dark trials. (B) SDM values of 
individual spikes as a function of time; darkness onset at time 0.  (C) SDM value probability during light 
and dark trials. (D) SDM value over time for real (black) and surrogate (grey) data; darkness onset at 
time 0. (E) SDM value increases as a function of time; note how most of the increase happens in the first 
few seconds; darkness onset at time 0. Taken from Pérez-Escobar et al., (2016b) with kind permission 
from eLife Sciences Publications 
 
 

 

 

 

3.1.3 Partly preserved distance coding by grid cells in darkness 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

The loss of grid periodicity in darkness could be due to a slow translational drift of the 

grid pattern relative to the recording environment. If this is the case, the grid pattern 

should be visible in spike-triggered rate maps in which the effect of slow translational 

drift is minimized by resetting the position data each time a cell fires a spike (Figure 
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4A) (Bonnevie et al., 2013; Allen et al., 2014). In these maps, each spike in turn served 

as a reference spike and the position of the animal in the 10 s following a reference 

spike was shifted so that the position of the animal at the time of the reference spike 

was (0,0). Spike-triggered maps of grid cells during light trials often showed a central 

field surrounded by 6 fields (Figure 4A). During dark trials, the surrounding fields 

were less distinct or sometimes appeared as a ring of elevated activity. Accordingly, 

grid scores calculated from the spike-triggered maps were lower during d1 than l1 

trials (n = 139 grid cells, median l1: 0.054, median d1: –0.062, v = 12246, p=0.00011). 

Thus, the impairment in grid periodicity in darkness cannot be fully explained by a 

slow translational drift. 

 

It was next tested whether the modulation of firing rate as a function of distance was 

preserved in darkness. Distance coding by grid cells was visualized by plotting 

distance tuning curves, i.e. the mean firing rate of a grid cell as a function of the 

distance from reference spikes (Figure 4A). To perform population analysis, distance 

was normalized to the grid spacing measured during the first baseline. The increase in 

firing rate at the first period of the grid cells (Figure 4B; normalized distance = 1) was 

quantified with a distance score, which was defined as (𝜆1 – 𝜆0.5)/(𝜆1 + 𝜆0.5), where 𝜆0.5 

and 𝜆1 represent the firing rate of a neuron at normalized distance 0.5 and 1, 

respectively. Distance scores were smaller during dark trials than during light trials 

(Figure 4C; paired Wilcoxon signed rank test, n = 50 grid cells, v = 1181, p<10-7), but 

distance scores in darkness were still above chance levels (v = 1006, p=0.00038). Taken 

together, the results indicate that estimation of distance by grid cells over short periods 

(10 s) was partially preserved in darkness. Moreover, the ring of activity in the spike-

triggered maps of some grid cells in darkness suggests that the orientation of the grid 

pattern was not stable. 
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Figure 4. Distance coding in grid cells. (A) Examples of firing rate maps, spike-triggered firing maps 
and distance tuning curves of 4 grid cells during light and dark trials. The scale bars for firing maps 
represent 20 cm. (B) Mean distance tuning curves of grid cells. Distance was normalized to the spacing 
of each grid cell. (C) Distance score of grid cells during l1 and d1 trials for real and surrogate (Shuf) 
data. Taken from Pérez-Escobar et al., (2016b) with kind permission from eLife Sciences Publications 
 
 
 
 
 
 

3.1.4 Influence of visual information on speed coding in the MEC 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

It has been suggested that a population of entorhinal neurons provides a context-

invariant running speed estimate (Kropff et al., 2015). It was assessed whether the 

speed-rate function of speed-modulated MEC cells was preserved when visual inputs 

were absent. The correlation coefficients between instantaneous firing rate vectors and 

running speed served as speed scores to identify cells with significant speed 

modulation. Examples of neurons with significant speed modulation are shown on 

Figure 5A. Out of 880 MEC neurons, 304 (34.55%) had a speed score above chance 

levels (Figure 5B). Speed scores were negatively correlated with spatial information 
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scores (Pearson correlation, n = 880, r = –0.146, p<10-5), but several spatially selective 

neurons had significant speed scores (grid cells: 67 out of 139, irregular spatially 

selective cells: 54 out of 226, border cells: 11 out of 63, head-direction cells: 30 out of 

85). Speed scores were positively correlated with mean firing rates (n = 880, r = 0.238, 

p<10-13). 

 

The presence of visual cues changed the speed code (Figure 5A). Most speed-

modulated cells had a lower firing rate at a given speed during dark trials (Figure 5C, 

at 20–25 cm/s, 222 out of 304 cells, contingency chi-square test, l2 = 64.47, df = 1, p<10-

16). The slopes of the regression line between speed and firing rate were steeper during 

light than dark trials (Figure 5D; paired Wilcoxon signed rank test, n = 304, median, 

light: 0.065, dark: 0.038, v = 35346, p<10-15). The intercepts (predicted firing rate during 

immobility) were also higher during light than dark trials (Figure 5E; median, light: 

2.621, dark: 2.428, v = 31050, p<10-7). Speed scores were higher during light than dark 

trials (Figure 5F; median, light: 0.086, dark: 0.060, v = 32735, p<10-10). These changes in 

slopes, intercepts and speed scores were also present when considering only neurons 

recorded from MEC tetrodes (n = 144 speed-modulated cells, slope: p<10-13, intercept: 

p=0.0017, speed score: p<10-9) or when using the median score of each mouse as a 

statistical unit (n = 8 mice, slope: p=0.0078, intercept: p=0.016, speed score: p=0.039). 

The rate modulation by visual stimuli was sufficiently large that speed-modulated 

cells had a lower mean firing rate during dark trials (paired Wilcoxon signed rank test, 

n = 304, median, light: 3.47 Hz, dark: 2.89 Hz, v = 33797, p<10-12) even though running 

speed was higher during these trials (paired Wilcoxon signed rank test, n = 89 

recording sessions, median, light: 12.70 cm/s, dark: 14.81 cm/s, v = 124, p<10-14). The 

median change of firing rate from d1 to l1 trials, expressed as a percentage, was 12.36%. 

Thus, the rate response of speed-modulated neurons is determined by both internal 

self-motion cues and visual information. 

 

Several speed-modulated cells have a high firing rate, which suggests that these might 

be PV-expressing MEC interneurons (Buetfering et al., 2014; Kropff et al., 2015). 

Whether PV-expressing interneurons were more likely to be classified as speed cells 
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than other MEC neurons was put to the test by re-examining the data from Buetfering 

and co-workers (Buetfering et al., 2014). The activity of 140 optogenetically-identified 

PV-expressing interneurons was examined alongside that of 996 other MEC neurons 

(Figure 5G). The speed score was used to identify speed-modulated cells (380 out of 

1136 neurons, threshold = 0.079) in mice exploring an open field. The proportion of 

speed modulated cells was higher in the PV population than in other non-identified 

MEC neurons (Figure 5H; PV-expressing: 72 speed cells out of 140 neurons, 51.4%, 

other neurons: 308 out of 996 neurons, 27.1%, contingency chi-square test, l2 = 22.27, 

df = 1, p<10-6). 

 

PV-expressing MEC neurons receive strong excitatory inputs from local neurons 

(Couey et al., 2013; Pastoll et al., 2013; Buetfering et al., 2014). Therefore, it was 

investigated whether the reduction in the firing rate of some high firing rate speed-

modulated cells in darkness could be explained by changes in local excitatory inputs. 

Putative monosynaptic excitatory connections between MEC neurons were identified 

from spike-train crosscorrelations (Figure 5I) (Royer et al., 2012; Buetfering et al., 2014). 

Out of 10,880 crosscorrelograms, 61 (0.56%) showed a low latency peak indicative of 

excitatory connections. All connected pairs were made up of neurons recorded on the 

same tetrode. The percentage of putative excitatory connections for pairs of cells 

recorded on the same tetrode was 1.85 %. 

 

Within functionally coupled neurons, speed-modulated cells were more likely to be 

post-synaptic (24 out of 42) than pre-synaptic (18 out of 58 neurons) neurons (l2 = 

5.7868, df = 1, p=0.0162). The firing rate of the cells presynaptic to speed-modulated 

cells was lower during dark than light trials (Figure 5J; paired Wilcoxon signed rank 

test, n = 37, v = 555, p=0.0016). The firing rate of the post-synaptic speed-modulated 

cells was also lower during dark trials (Figure 5K; n = 24, median, light: 18.44 Hz, dark: 

15.44 Hz, v = 264, p=0.00057). Moreover, the firing rate of presynaptic neurons 

increased with running speed (Figure 5L; paired Wilcoxon signed rank test, difference 

rate 2.5 cm/s vs 27.5 cm/s, n = 37 light: v = 113, p=0.00016, dark: v = 109, p=0.00012). 

Thus, the change in firing rate of some speed-modulated interneurons in darkness can 

be explained by a reduced local excitatory input. 
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Figure 5. Visual stimuli alter the MEC speed code. (A) Examples of firing rate maps and speed tuning 
curves during light and dark trials for cells with a significant speed score. (B) Real (purple line) and 
surrogate (solid black bars) distributions of speed scores from MEC neurons. The dotted blue line 
indicates the threshold for statistical significance. (C) Mean normalized firing rate (± s.e.m) of speed-
modulated cells as a function of running speed during l1 and d1 trials. (D, E and F) Difference of speed 
rate slopes, intercepts and speed scores of speed-modulated cells during l1 and d1 trials. The dotted 
lines indicate chance levels. (G) Firing rate map, response to laser stimulation and speed tuning curve 
of two PV-expressing neurons. (H) Percentage of speed-modulated cells in PV-expressing neurons (pv) 
and in non-identified MEC neurons (ni). (I) Example of a putative excitatory connection involving a 
post-synaptic speed cell. Left: spike-time autocorrelations of putative pre- (top) and post-synaptic 
(middle) neurons. Right: firing rate maps during light trials. Bottom: spike-time crosscorrelation of the 
two neurons. The blue color indicates the peak detection period. (J) Mean firing rate during light and 
dark trials of putative presynaptic neurons with excitatory interactions with a speed cell. (K) Mean 
firing rate during light and dark trials of speed cells receiving putative excitatory connections from a 
local neuron. (L) Mean firing rate (± s.e.m) as function of running speed of putative presynaptic neurons 
with excitatory interactions with a speed cell. **p<0.01. Taken from Pérez-Escobar et al., (2016b) with 
kind permission from eLife Sciences Publications 
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3.1.5 Impaired border representation in darkness 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

As mentioned before, border cells are thought to anchor grid cell fields to the geometry 

of an environment (Barry et al., 2007; Solstad et al., 2008; Lever et al., 2009; Evans et al., 

2016; Hardcastle et al., 2015). The effect of visual landmarks on the firing of border 

cells was assessed. The activity of border cells during light trials was restricted to the 

periphery of the circular arena and usually covered less than half of the total 

circumference. In darkness, the activity of several border cells was no longer limited 

to the periphery of the arena (Figure 6A). A quantification of how restricted the firing 

of border cells was to the periphery of the arena was performed (DM, see Materials 

and Methods section 2.4). The firing of border cells was less concentrated at the 

periphery during d1 trials (Figure 6B; paired Wilcoxon signed rank test, n = 63 border 

cells, v = 271, p<10-7). In addition, the polarity of the firing maps was reduced during 

d1 trials compared to l1 trials (see Materials and Methods, Figure 6C; v = 1698, p<10-

6). Similar findings were observed when limiting the analysis to border cells recorded 

from MEC tetrodes (n = 38 border cells, DM: v = 156, p=0.0014, map polarity: v = 552, 

p=0.008). When using the median of each mouse as a statistical unit, a significant 

reduction of DM in darkness was observed (n = 7 mice, v = 1, p=0.031), but the 

reduction in map polarity in darkness did not reach significance level (n = 7 mice, v = 

24, p=0.11). 
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Figure 6. Impairment of border representation in darkness. (A) Firing maps of 5 border cells during 
light and dark trials. (B) Borderness (DM) of the firing rate maps of border cells during light and dark 
trials. (C) Polarity of the firing rate maps of border cells during light and dark trials. Taken from 
Pérez-Escobar et al., (2016b) with kind permission from eLife Sciences Publications 
 
 
 
 
 

3.1.6 Reduced head-direction selectivity in darkness 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

A total of 85 head-direction cells were recorded on the circular arena. Changes in head 

direction selectivity were quantified using the mean vector length of the rate/head 

direction histograms of head-direction cells. As shown in Figure 7A, most head-

direction cells had reduced head direction selectivity during dark trials compared to 

light trials. Head direction vector length of head-direction cells were lower during d1 

trials than l1 trials (Figure 7B, paired Wilcoxon signed rank test, v = 3617, p<10-15). A 
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similar conclusion was reached when limiting the analysis to MEC tetrodes (n = 54 

head-direction cells, v = 1457, p<10-10) or when using the median of each mouse as a 

statistical unit (n = 8 mice, v = 36, p=0.0078). 

 

 

 

Figure 7. Reduced head direction selectivity in darkness. (A) Firing maps of 5 head-direction cells 
during light and dark trials. (B) Head direction vector length of head-direction cells during l1 and d1 
trials. Taken from Pérez-Escobar et al., (2016b) with kind permission from eLife Sciences Publications 
 
 

 

3.1.7 Firing rate changes in MEC neurons between light and dark trials 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 
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Next, it was investigated whether the firing rate of MEC neurons changed significantly 

when visual landmarks were eliminated. For each neuron, a rate discrimination index 

was obtained using: (𝜆light – 𝜆dark)/(𝜆light + 𝜆dark), where 𝜆light and 𝜆dark are the mean firing 

rate during light and dark trials, respectively. Significance levels were obtained on a 

cell-by-cell basis by shuffling trial identities 500 times to obtain a distribution of 

discrimination indices. The 99th percentiles of the surrogate distributions served as 

significance levels. Only periods during which the running speed of the mice was 

between 5 and 20 cm/s were used. Examples of neurons with a significant rate change 

between light and dark trials are shown in Figure 8A. For some neurons, the firing rate 

changes between trial types were readily visible in their instantaneous firing rate 

(Figure 8B). When all recorded neurons were considered, the median rate 

discrimination index (0.072) was significantly larger than 0, demonstrating that MEC 

neurons tend to have higher firing rates when visual landmarks are present (Figure 

8C, paired Wilcoxon signed rank test, n = 880, v = 289120, p<10-16). This rate change 

was also significant when only neurons recorded from MEC tetrodes were considered 

(n = 447, v = 76177, p<10-16) or when the median rate discrimination index of each 

mouse was used as a statistical unit (n = 8 mice, v = 36, p=0.0078). Out of 880 MEC 

neurons, 503 (57.2%) significantly changed their firing rate between light and dark 

trials. These neurons were more likely to reduce (76.74%) than increase (23.26%) their 

firing rate in darkness (l2 = 143.86, df = 1, p<10-16). The proportion of significant 

neurons in the different functional cell types is shown in Figure 8D. Border cells were 

more likely than grid cells to change their firing rate depending on the presence of 

visual landmarks (l2 = 11.845, df = 5, p=0.037).  

 

It was also tested whether putative interneurons (cells with a mean firing rate > 10 Hz, 

n = 133) and putative principal cells (cells with a mean firing rate < 5 Hz, n = 694) were 

equally likely to change their mean firing rate depending on the presence of visual 

landmarks. The probability of observing significant rate change between light and 

dark trials was similar for interneurons and principal cells (interneurons: 0.617, 

principal cells: 0.549, l2 = 1.802, df = 1, p=0.18). 
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Figure 8. Firing rate changes of MEC neurons between light and dark trials. (A) Firing maps and mean 
firing rates during light and dark trials for 6 neurons. The number above each bar plot is the rate 
discrimination index. (B) Examples of instantaneous firing rates of 3 neurons during light and dark 
trials (smoothing kernel width s.d = 900 ms). (C) Distribution of the rate discrimination indices for all 
recorded neurons (including putative interneurons). Most neurons had a positive discrimination index, 
indicating higher firing rates during light trials. The dotted line indicates chance level. (D) Proportion 
of neurons with a significant rate change between light and dark trials in different functionally defined 
cell types (Grid: grid cells, Place: irregular spatially selective cells, Border: border cells, HD: head-
direction cells, Speed: speed-modulated cells, UID: unidentified cells). Taken from Pérez-Escobar et al., 
(2016b) with kind permission from eLife Sciences Publications 
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3.2 Linear track experiment: Firing rate changes associated with 

nonmetric contextual cue manipulation in 1D environment 

 

This section is taken from Pérez-Escobar et al. (2016b) with minor changes and with 

kind permission from eLife Sciences Publications. 

 

The results presented so far indicate that the firing rate of MEC neurons is modulated 

by the presence of visual landmarks. This suggests that the firing rate of spatially 

selective neurons in the MEC could also convey information about the distinct visual 

stimuli present in an environment. For this reason, a second experiment with a new 

cohort of mice was carried out in order to test whether the rate code of MEC neurons 

discriminates different nonmetric visual landmarks (or contexts) in an otherwise 

unchanged environment. The activity of 479 neurons (5 mice, 48 recording sessions) 

was recorded as mice ran back and forth on a linear track flanked by two side walls 

(Figure 9A). Histological analysis indicated that 14 recording sites were in the MEC, 4 

in the MEC/parasubiculum border, and 13 in the parasubiculum (source data can be 

accessed from “https://elifesciences.org/articles/16937/figures” under “Figure 8—

source data 1” and “Figure 8—source data 2”). There were 3 lighting conditions (l1, l2 

and d). In l1, a single row of 48 LEDs on one wall was turned on. In l2, 4 rows of 12 

LEDs located on the opposite wall were turned on. In d, all LEDs were turned off. The 

condition was changed randomly every 5th run. Thus, the only difference between l1 

and l2 conditions was the LED pattern that was turned on and the geometry of the 

apparatus remained unchanged. 

 

A 20-min exploration trial in a square open field preceded the linear track trials and 

served to identify the different functional cell types (Figure 9B). 138 grid cells, 28 

border cells and 133 irregular spatially selective cells were recorded on the track. 

Linear firing rate maps were calculated for the 3 lighting conditions, plotting the maps 

with different running direction separately. Figure 9B shows examples of spatially 

selective neurons with clear firing rate changes between the 3 conditions (l1, l2 and d). 

 

https://elifesciences.org/articles/16937/figures
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A quantitative analysis of the linear firing rate maps was performed, including only 

grid cells, border cells and irregular spatially selective cells. Spatial information scores 

were not significantly different between l1 and l2 conditions (Figure 9C, paired 

Wilcoxon signed rank test, n = 299 neurons, v = 21632, p=0.60), but were lower in 

darkness (l1 vs d, v = 34469, p<10-16). For most neurons, the location of the firing fields 

appeared to be preserved across the 3 conditions. Indeed, the median correlation 

coefficient between linear rate maps of l1 and l2 was 0.92 (Figure 9D). The correlation 

coefficients were slightly lower between l1 and d (median: 0.81, paired Wilcoxon 

signed rank test, l1-l2 vs l1-d r values: v = 31909, p=10-10). Thus, there was no major 

reorganization of the firing fields between conditions. 

 

To identify neurons with significant firing rate changes between conditions, a shuffling 

procedure in which the identity of the conditions was reassigned randomly 500 times 

was used to obtain chance levels for rate differences. The difference observed at each 

bin of the linear rate maps was compared to those of the surrogate distribution. 

Neurons with more than 5 bins in which the observed difference had a probability 

below 0.01 were considered significant. Approximately half of all recorded neurons 

showed significant changes between l1 and l2 conditions (245 out of 479, 51.1%). The 

proportion of neurons with significant rate changes was the same across all 

functionally defined cell types (Figure 9E, l2 = 9.259, df = 5, p=0.10). When considering 

only neurons recorded from MEC tetrodes, 35.3% (24 out of 68) of the neurons showed 

significant differences between l1 and l2 conditions. The percentage of neurons with 

significant rate changes between l1 and d conditions was 70.8% (339 out of 479) when 

considering all recorded neurons and 50% (34 out of 68) when limiting the analysis to 

neurons recorded from MEC tetrodes. These results demonstrate that the firing rate of 

MEC neurons along the linear track conveys information about distinct nonmetric 

contextual cues. 
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Figure 9. Nonmetric contextual visual cues affect firing rates of MEC neurons in a 1D environment. 
(A) Schematic of the linear track and side walls. The linear track was flanked by two side walls on which 
LED arrays were attached. In the first context (l1, left), a single row of LEDs on one wall was turned on. 
In the other context (l2, right), 4 shorter rows of LEDs on the opposite wall were turned on. All LEDs 
were turned off during dark (d) trials. (B) Example of neurons with firing rate changes between the 
different conditions. First column, firing rate maps in the square open field. Next two columns, linear 
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firing rate maps for the 3 conditions, plotted separately for each running direction. Note that the range 
of the y-axes varies. (C) Spatial information scores (median, first and third quartiles) in the 3 conditions. 
(D) Stability of linear firing rate maps (correlation coefficient) between l1 and l2 conditions. (E) 
Proportion of neurons with a significant rate change between l1 and l2 across functionally defined cell 
types (Grid: grid cells, Place: irregular spatially selective cells, Border: border cells, HD: head-direction 
cells, Speed: speed-modulated cells, UID: unidentified cells). Taken from Pérez-Escobar et al., (2016b) 
with kind permission from eLife Sciences Publications 
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4. DISCUSSION 

This study has aimed to better characterize the effects of visual information on the 

activity of spatially selective cells in the MEC. The main conclusions that emanate from 

the results are: 

 

1) Visual information is critical for the grid cell firing pattern. Its absence results in its 

rapid destabilization. 

 

2) The speed code of MEC cells depends on visual information.  

 

3) Visual information modulates the firing rate of all principal MEC cell types, 

suggesting heterogeneous information encoding. 

 

4) Associating a cognitive ontology (or several) to a cell type, although tempting, may 

be problematic.  

 

 

4.1 Effects of the removal of visual input on spatially selective cells in 

the MEC 

 

A few sentences from Pérez-Escobar et al. (2016b) have been paraphrased and 

integrated into a broader discussion in this section. 

 

The hexagonal firing pattern of grid cells disappears just a few seconds after visual 

input deprivation, which is at odds with previous findings (Hafting et al., 2005; Allen 

et al., 2014). There are a few differences between the circular arena experiment and the 

experimental setups from Hafting et al. (2005) and Allen et al. (2014) that may explain 

this dissimilitude. First, in the circular arena experiment trials there were two 

polarizing visual cues (two distinct LED panels) that repeatedly caused reorientations 

of the MEC spatial representations. In case of uncontrolled cues in the arena (e.g. intra-
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trial feces), these would be too unreliable to anchor grid cells, since the changing LED 

panel orientation overrides them. Second, the circular arena had no walls. This 

removes potential uncontrolled olfactory and tactile cues. Third, and relatedly to the 

second point, border cells seem to play an important role in correcting grid cell error 

accumulation (Hardcastle et al., 2015), but border cells were particularly sensitive to 

the lack of visual information in the circular arena. A disrupted border cell activity, 

perhaps due to a lack of uncontrolled wall-related cues, may contribute in turn to the 

disruption of the hexagonal firing pattern of grid cells. This shows that visual input is 

much more important for grid cell signal stability than previously thought. 

 

Just when these results were published, another lab reported similar findings: grid 

cells lose their hexagonal firing patter seconds after the onset of darkness (Chen et al., 

2016). The authors used a standard walled arena and no cue rotations. Since they found 

a mildly impaired head direction signal but a significantly inaccurate computation of 

linear displacement, they hypothesize that the cause of the grid cell disruption that 

they found was caused by the latter factor: the loss of the grid cell firing pattern could 

be due to a flawed integration of speed information by grid cells. However, in the 

circular arena experiment, a substantial impairment of the head direction signal was 

found too. In any case, since grid cells in principle would need to rely on information 

on both angular direction and speed in order to compute self-motion in the dark, it 

would only take the disruption of one of the two codes for the grid cell firing pattern 

to break down. 

 

Moreover, the fact that speed-modulated cells decreased their firing rate in the dark 

also differs with previous findings. It has been reported that the MEC speed code is 

context-invariant (Kropff et al., 2015). This was not the case in the circular arena 

experiment. Self-motion alone did not preserve the speed code. One hypothesis is that 

optic flow may be needed to preserve it. A modeling study argues for the plausibility 

optic flow contributing to grid cell periodicity (Raudies et al., 2012). An explanation 

for the decreased firing rate of mostly GABAergic speed-modulated cells in the MEC 

is that cells pre-synaptic to them decreased their firing rate in the dark too. Since speed-
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modulated cells have been reported in several brain regions (McNaughton et al., 1983; 

Saleem et al., 2013; Bender et al., 2015; Fuhrmann et al., 2015), the precise pathways 

responsible for the speed tuning of MEC cells and whether these signals depend on 

visual information should be ascertained. 

 

Moreover, in the absence of visual information in the circular arena experiment, a 

substantial proportion of MEC cells showed different firing rates (usually lower) with 

respect to lighting conditions. Therefore, the level of activity in the MEC depends on 

visual input. Of all functional cell types, border cells were the most affected by the loss 

of visual information, closely followed by head-direction cells. A potential explanation 

of the lower firing rates of MEC cells in darkness is that afferents from the postrhinal 

cortex to the MEC conveying visual information to the MEC (Burwell and Amaral, 

1998a, 1998b) depolarizing principal neurons (Koganezawa et al., 2015) are less active 

in the absence of visual input.  

 

 

4.2 Heterogeneous information encoding 

 

A few sentences from Pérez-Escobar et al. (2016b) have been paraphrased and 

integrated into a broader discussion in this section. 

 

About half of total cells of all principal cell types showed firing rate changes in 

response to manipulation of nonmetric contextual cues in the linear track experiment, 

including grid cells. Therefore, the firing rate of grid cells is context-dependent; grid 

cells encode contextual information rather than representing an invariant, universal 

metric of space. The significance of these rate changes is substantial: after the 

publication of this research, it has been shown that rate changes in MEC neurons, 

especially after depolarization rather than hyperpolarization, in turn provoke 

widespread changes in the activity of hippocampal place cells (Kanter et al., 2017). The 

authors hypothesize that grid cells may convey contextual information to place cells. 
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Alternatively, since there are reciprocal connections from place to grid cells (Bonnevie 

et al., 2013), grid cells may inherit contextual information from place cells. 

 

Soon before these results were published, it was suggested that grid cells can encode 

object information during conditional discrimination tasks (Keene et al., 2016). The 

results emanating from the linear track experiment are complementary to this, 

showing that nonmetric contextual manipulations cause grid cell firing rate changes 

in the absence of behavioral demands: mice did not have to adapt their behavior to 

contextual changes. Furthermore, it has recently been observed that exploration of 

different enclosures produces Ca2+ activity changes MEC Reelin+ cells (Kitamura et al., 

2015). The results here described suggest that some of the context-specific cells of the 

MEC are indeed classical spatially selective cell types. Moreover, after the publication 

of these results, the fact that grid cells undergo firing rate alterations and other activity 

changes in response to nonmetric manipulations has been corroborated by other labs 

(Diehl et al., 2017; Boccara et al., 2019). See section 4.3 for more literature posterior to 

the results reported in this dissertation building on this direction.  

  

The precise character of the rate changes of grid cells during 1D navigation in the linear 

track experiment or when performing memory tasks remains to be further clarified. A 

likely scenario is that the location of grid firing fields is very stable following 

contextual changes, and only in-field firing rates are altered. Firing rate changes are 

common in hippocampal place cells during 2D navigation (Leutgeb et al., 2005) and 

memory tasks (Lipton et al., 2007; Ferbinteanu et al., 2011; Allen et al., 2012; Ainge et 

al., 2012). Another possibility is that the firing rate changes observes reflect a shift in 

the location of the grid firing fields causes by nonmetric contextual cues (Marozzi et 

al., 2015). If one considers 1D firing maps on the track as slices through the 2D map of 

the neurons (Yoon et al., 2016), the 1D maps of grid cells in two contexts on the linear 

track could be considered as slices with different phases or orientations. It is also 

possible that the contextual cues affect the periodicity of the underlying 2D grid lattice 

(Krupic et al., 2015; Stensola et al., 2015). While both hypotheses are in principle 

plausible, the high correlations between the linear firing rate maps in the two contexts 
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indicate that the change of field location was minimal. Anyway, regardless of the 

precise underlying mechanisms, the outcome of nonmetric contextual manipulations 

during 1D navigation is the alteration of the firing rate of grid cells. Therefore, their 

activity is context-dependent. Grid cells provide information not only about the 

position of the organism during navigation, but also about the specific context wherein 

the organism is. 

 

 

4.3 Research building on the effects of visual landmarks and context-

specificity of grid cell activity shown in this work 

 

Before I discuss the implications of these results on behavior (path integration) and 

cognitive representations in sections 4.4 and 4.5 respectively, I discuss the reception of 

my work since its publication and related posterior findings. 

 

First, some studies have corroborated and further qualified non-metric codes in grid 

cell activity. Diehl et al. (2017) have shown that grid and other spatially selective MEC 

cells respond to changes of environmental features (in the case of grid cells this is 

manifested as firing rate changes, in consonance with my results). Similarly, Ismakov 

et al. (2017) have reported that the peak field firing rate distribution of grid cells 

remaps after context change. Aronov et al. (2017) have discovered that the activity of 

some grid cells is modulated by task-dependent auditory frequencies. Chen et al. 

(2019) have shown that the activity of grid cells responds to environmental cues, albeit 

less than place cells. Cholvin, Hainmueller and Bartos (2021) have observed that MEC 

boutons with a grid-like firing activity convey contextual information to the 

hippocampus, where this information becomes more reliable. Some have suggested 

that grid cells may play a role in the organization of general, conceptual knowledge 

and concept learning (Constantinescu, O’Reilly and Behrens, 2016; Mok and Love, 

2019; note that the latter suggest that grid cell activity does not constitute 

representations but a mechanism for error monitoring of hippocampal 
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representations). It has also been found that grid cell activity encodes spatial 

information beyond the intrinsic metric properties of an environment, like 

combinations of several cues (Hardcastle et al., 2017) and the location of goals (Boccara 

et al., 2019; Butler, Hardcastle and Giocomo, 2019). Last, an interesting study by 

Dannenberg et al. (2020) provides an alternative explanation to the conclusions that I 

draw in this dissertation and in Pérez-Escobar et al. (2016b) that the firing rates of MEC 

neurons is higher during light conditions than in darkness, and that it encodes non-

metric properties of the environment. Dannerberg et al. show that non-informative 

light projected to the retina increases the firing rates of MEC neurons and argue that 

this is enough to account for the different firing rates in light and dark conditions. 

However, I have also shown that the firing rates of MEC neurons, including grid cells, 

are different across two different light conditions, which makes it implausible that 

non-informative light is the only factor accounting for firing rate differences.  

 

Second, more studies have investigated the effect of visual landmarks on the spatial 

code of the MEC. Savelli, Luck and Knierim (2017) have provided further evidence of 

the effect of visual cues outside the metric space on grid cells: the grid pattern does not 

adjust properly to rotation of the metric arena when this rotation conflicts with cues 

outside the metric boundaries. Furthermore, it has been shown that MEC cells encode 

spatial cues (Kinkhabwala et al., 2020); it is possible that these cells, also known as cue 

cells, project to grid cells, thereby correcting error accumulation similarly to border 

cells. The result reported in this dissertation that grid cells require visual landmarks to 

preserve their grid firing pattern has been hypothesized to account for the discovery 

that some head-direction cells are driven by visual landmarks instead of being merely 

anchored to them (Kornienko et al., 2018). 
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4.4 Path integration and representationalism 

 

As discussed in the introduction, the fact that environmental boundaries can alter grid 

cell periodicity raised doubt on whether grid cells encoded a universal metric of space 

and played a substantial role in path integration. The fact that grid cells change their 

firing rate in response to contextual manipulations may be interpreted as further 

challenging these notions as well. However, as I pointed out in section 1.2 of the 

introduction, cognitive representation and behavioral function are issues that, while 

finding confluence points and overlapping to some degree, deserve their own 

individual treatments. In fact, as we saw, representationalism could be dropped 

altogether, and that would not necessarily preclude the search for neuronal bases of 

behavior: an alternative approach would account for the relationship between 

neuronal substrata and overt behavior. What representationalism does is assisting 

with making inferences about the roles of substrata in behavior. For instance, that a 

given substrate represents A instead of A’ may lead to the inference that it is involved 

in behavior B instead of behavior B’, without getting into the material details. This may 

be useful, but we should not lose sight of what representationalism is from a practical 

perspective: a convenient approach filling explanatory gaps in what would otherwise 

be a materialistic and mechanistic approach (currently the gold standard in other 

scientific fields). In a strictly materialistic and mechanistic approach, when the gap is 

bridged (or almost bridged), some say that representations become at best redundant 

(Piccinini and Craver, 2011), and if we decide to commit to materialism in a 

metaphysically strong sense, misleading. This is a clarification on common views 

about scientific practices and metaphysical notions, not my own take on the 

metaphysical character of nature – which may or may not be dualistic, and which does 

not matter in this context.  

 

Be it as it may, this clarification on representationalism in cognitive neuroscience is 

useful to understand the following: if we understand representations heuristically, as 

bridges closing explanatory gaps, we must be aware of both the heuristic value of the 

approach and its limitations. One of the limitations is that the bridging may not be 
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entirely accurate. For this reason, even if we commit to representationalism and find 

that grid cells do not represent an invariant, universal metric of space, but instead their 

activity does not fit a readily intuitive category, grid cells may still be functionally 

related to certain behavioral functions like path integration – they may just not be the 

sole substrate implicated, and they may be implicated in other behaviors too. 

Moreover, the conclusion that grid cells encode heterogeneous information implicitly 

relies on intuitive categories themselves: one says that the information is 

“heterogeneous” or “multimodal” because it does not adjust to any pure category 

already available to us (like Euclidian space from elemental mathematics, or artifacts 

like maps, compasses, and so forth).  

 

Indeed, recent studies have provided evidence that grid cells are functionally related 

to path integration. Grid cell spatial selectivity correlates with integrated distance in 

rats and humans (Chen et al., 2015; Jacob et al., 2019). Moreover, a recent study 

removed NMDA receptors from retro-hippocampal regions of mice, achieving a 

selective disruption of grid cell activity in the form of lower grid periodicity and spatial 

selectivity while sparing head direction, border, and speed signals (Gil et al., 2018). 

The authors found that this selective disruption is linked to impaired path integration 

performance. However, all things considered, the fact that grid cells seem to be needed 

for path integration does not necessarily entail that they represent a universal metric 

of space, or even that they represent at all for that matter.  

 

 

4.5 Alternative takes on representations 

 

It was initially thought that place cells provided a pure spatial signal, but eventually 

they were shown to encode heterogeneous information, mixing spatial, goal and 

context information (see Mallory and Giocomo [2018] for a review). The hope of 

finding a universal metric of space did not die, and potential neurobiological substrata 

were traced back to the MEC (the main source of cortical input to the hippocampus). 

However, we have seen that multimodal information is already present in the MEC. 
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There is nothing wrong with certain approaches or “hopes” (in the form of given 

cognitive ontologies or representationalism in general) as long as the hope in question 

turns out to be pragmatic, yielding concrete useful insights and discoveries: they may 

go perpetually unfulfilled, or tautologically self-fulfilled, but still, they may lead to 

useful insights and findings (in this case, that certain neurobiological substrata are 

related to path integration). 

However, I want to make the point that, at the very least, alternative possibilities 

should be considered. Metaphysics aside, just like the transition from behaviorism to 

cognitivism happened on pragmatic grounds – it turned out to be useful because it 

provided easy explanations of complex behavior – potential further reframings should 

be considered on similar grounds at any given point. In fact, the very pragmatic value 

of hopes, intuitions and strategies may be compromised if they are mistaken for 

something else – for instance, truth factories by epistemic virtue. There are at least four 

alternatives worth considering: 

 

1) Investigating alternative coding strategies without a substantial modification of 

spatial cognitive ontologies. This option has been chosen by recent mainstream 

literature in cognitive neuroscience aiming to refine the cognitive representations at 

stake (Hardcastle et al., 2017; Bellmund et al., 2018; Grieves, Duvelle and Dudchenko, 

2018; Mok and Love, 2019; Rodríguez-Domínguez and Caplan, 2019; Chen et al., 2019; 

Han, Wu and Lai, 2020; Keinath et al., 2020; Taube and Shinder, 2020; Vandrey, 

Duncan and Ainge, 2021; Tennant et al., 2022). It is worth noting that some more exotic 

options, like embodied cognition, have been explored in philosophy and science, but I 

will not review them here. 

 

2) Casting doubt on intuitive cognitive ontologies, while staying committed to 

representationalism. The idea that the brain is bound by our cognitive ontologies of 

preference should be contested. It could be argued that individual cells or broader 

brain processes align with our categories, because concepts and ideas emerge from the 

brain as well: if the brain processes information and this in turn determines how we 

perceive the world, it could be the case that our cognitive ontologies align with the 
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brain. In a sense, this would be the biggest hope of someone trying to naturalize Kant’s 

pure intuition. Furthermore, the cross-cultural prevalence of spatial – although 

heterogeneous – concepts seems to support this idea. However, this does not confirm 

that we speak of space because we “process space”, rather than we look for spatial 

information in the brain because we happen to speak of space. If that was the case, 

every other type of concept we use would be subjected to the same treatment. 

However, some concepts overlap, and others do not exist harmonically with each 

other. Furthermore, cognitive ontologies come to be and disappear across time, while 

brains remain relatively stable. Last, most cognitive ontologies are not shared across 

cultures either. Therefore, the view that the brain is subjected to spatial cognitive 

ontologies should be contested at least on metaphysical grounds. In principle, there is 

no reason to hold the belief that the brain must respect our commonsense intuitions. It 

has been suggested that the fact that mainstream cognitive neuroscience adheres to 

intuitive categories like time, space and numerosity is due to the relatively young age 

and lack of maturity of the discipline (Bueti and Walsh, 2009). In a more general 

direction, it has been argued that some coding strategies considered in the scientific 

practice have been influenced by artifact analogies more than just heuristically (Pérez-

Escobar, 2020), and that artifact analogies have important limitations in biology 

(Nicholson, 2012; Nicholson, 2013; Nicholson, 2014). Therefore, this strategy would 

benefit from constant skepticism and pragmatism on the selected cognitive ontologies.  

 

3) Adopting a deflationary perspective on representationalism. Philosopher of 

cognitive science Frances Egan has extensively argued that most cognitive ontologies 

are useful fictions that help us make sense of brain processes (Egan, 2014; Egan, 2017; 

Egan, 2019; Egan, 2020). However, she does not discard representationalism 

altogether, as she argues that there are fundamental mathematical relations between 

components (cells, ensembles) governing information processing in the brain. While 

intuitive cognitive ontologies are merely a heuristic “gloss” over computation in her 

view – which does not mean they should be readily discarded – mathematics may 

describe real brain dynamics. However, this approach requires caution: as I have noted 

elsewhere (Pérez-Escobar, 2020) some mathematical descriptions emerge from artifact 
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analogies (for instance, analogies between a compass and head-direction cells) and are 

in practice configured to depend on and promote the use of cognitive ontologies via 

epistemic circularity and teleological explanations. The presence of mathematical 

computations does not imply the absence of cognitive representations, and often, they 

are presented as an overall package. This may happen because, among other reasons, 

mathematical models may act not as descriptions but as rules on how phenomena 

ought to be described (Pérez-Escobar, 2022). 

 

4) Doing without representationalism altogether (eliminativism/physical 

reductionism). Since cognitive neuroscientists often treat representations, including 

spatial representations, as substantial – rather than heuristic – elements of their 

research programs (Sullivan, 2010a; Sullivan, 2010b), this approach requires a major 

overhaul of the discipline. 

 

I want to stress again that, while this can be understood as a metaphysical issue or a 

matter of truth or falsity (Ramsey, 2020), it would be wise to pay attention to the history 

of science in general (for the classical work on scientific revolutions: Kuhn, 1962; for 

the argument that there is no such thing as the scientific method: Feyerabend, 1975) 

and the history of cognitivism in particular (as outlined in this work), and see it as a 

pragmatic matter instead: one about seeing how far the view that the brain processes 

spatial information in a certain way (or information at all) takes us, compared to the 

alternatives (for a recent, broader defense of content pragmatism, see Coelho 

Mollo,  [2020]). After all, our commitments of this kind provide a frame for the truths 

we subsequently find (and vice versa). Just like the cognitive revolution came to 

reframe important theoretical issues when it was deemed appropriate to transcend 

behaviorism, we should be ready to evaluate the need for revisionary work on the 

foundations of cognitive neuroscience and representationalism in particular when/if 

the time is due. 
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5. SUMMARY 

This work has investigated the activity of spatially selective neurons in the medial 

entorhinal cortex following manipulations of non-metric properties of the 

environment. The types of neurons investigated were head-direction cells, border 

cells, speed cells, and especially, grid cells. The latter type of cells is thought to encode 

a universal Euclidian metric of space and be the main neurobiological substrata for 

path integration. 

The main findings are: 1) The removal of visual landmarks caused the grid cell and 

head-direction cell signals to break down, the speed code to change, and the border 

cell activity to be less confined to the borders of the arena, and 2) the manipulation of 

non-metric, visual features of the environment affected the firing rate code of grid cells, 

head-direction cells, border cells and speed cells, thus revealing the context specificity 

of their activity. 

Because of such a context specificity, these fundings argue against the notion that grid 

cells act as the neurobiological substratum of a cognitive representation of a universal 

Euclidian metric of space. A similar conclusion holds for other cell types. In turn, these 

results raise doubt about the possibility of ascribing intuitive spatial categories (maps, 

compasses, speedometers…) to specific cell types in a way that the brain and our 

intuitions display similar conceptual structures. However, this does not undermine 

the possibility that certain cell types may play prominent roles in behaviors like path 

integration; instead, it suggests a much more complicated functional role than what 

our heuristic spatial intuitions may capture. 
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6. ZUSAMMENFASSUNG 

In dieser Arbeit wurde die Aktivität räumlich selektiver Neuronen im medialen 

entorhinalen Kortex nach Manipulationen nicht-metrischer Eigenschaften der 

Umgebung untersucht. Bei den untersuchten Neuronen handelte es sich um 

Kopfrichtungszellen, Randzellen, Geschwindigkeitszellen und insbesondere um 

Gitterzellen. Es wird angenommen, dass der letztgenannte Zelltyp eine universelle 

euklidische Metrik des Raums kodiert und das wichtigste neurobiologische Substrat 

für die Pfadintegration darstellt. 

Die wichtigsten Ergebnisse sind: 1) Die Entfernung visueller Orientierungspunkte 

führte dazu, dass die Signale der Gitterzellen und der Kopf-Richtungs-Zellen 

zusammenbrachen, sich der Geschwindigkeitscode änderte und die Aktivität der 

Randzellen weniger auf die Grenzen der Arena beschränkt war, und 2) die 

Manipulation nicht-metrischer, visueller Merkmale der Umgebung wirkte sich auf 

den Feuerratencode der Gitterzellen, der Kopf-Richtungs-Zellen, der Randzellen und 

der Geschwindigkeitszellen aus, wodurch die Kontextspezifität ihrer Aktivität 

deutlich wurde. 

Aufgrund dieser Kontextspezifität sprechen diese Befunde gegen die Vorstellung, 

dass Gitterzellen als neurobiologisches Substrat einer kognitiven Repräsentation einer 

universellen euklidischen Metrik des Raums fungieren. Eine ähnliche 

Schlussfolgerung gilt auch für andere Zelltypen. Diese Ergebnisse lassen wiederum 

Zweifel an der Möglichkeit aufkommen, intuitive räumliche Kategorien (Karten, 

Kompasse, Geschwindigkeitsmesser...) bestimmten Zelltypen zuzuordnen, so dass 

das Gehirn und unsere Intuitionen ähnliche konzeptuelle Strukturen aufweisen. Dies 

untergräbt jedoch nicht die Möglichkeit, dass bestimmte Zelltypen eine herausragende 

Rolle bei Verhaltensweisen wie der Pfadintegration spielen; es deutet vielmehr auf 

eine viel kompliziertere funktionelle Rolle hin, als sie unsere heuristischen räumlichen 

Intuitionen erfassen können. 
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