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Abstract

Planets emerge from the rotating disk of gas and dust surrounding young stars. Al-
though the process of planet formation has been subject to theoretical and numer-
ical studies for several decades, it has only very recently become possible to not
only detect protoplanetary disks but also resolve their substructures. The annular
accumulations of dust observed in many protoplanetary disks are suspected to pro-
vide favourable conditions for the formation of planetary cores through runaway
growth.

To simulate the growth of rocky planets from agglomeration of dust grains,
many orders of magnitude in particle number and mass have to be spanned, neces-
sitating the use of statistical methods for abundant particles. However, the gravita-
tional influence of the heaviest bodies must be accounted for with an N-body sim-
ulation in order to correctly describe features such as radial redistribution through
gravitational scattering.A comprehensive simulation of planet formation thus needs
to combine statistical and deterministicmethods.Unlike grid-based statisticalmeth-
ods, representative particle methods allow for a natural combination with an N-
body simulation, but they are often hampered by their high computational cost.

Thiswork is geared towards simulationmethods for planet formation processes
as may occur in the dust rings observed in many protoplanetary disks. To this end,
we develop an extension of the Representative Particle Monte Carlo method, over-
coming some conceptual restrictions that heretofore impeded its use in simulating
runaway growth processes. To address the problem of computational cost, we go on
to devise a novel computational scheme for stochastic processes, herein referred to
as the bucketing scheme, that enjoys linear scaling characteristics with regard to the
number of representative particles, as opposed to the quadratic scaling characteris-
tics of the traditional scheme. The bucketing scheme is built upon interval-valued
calculations of the mutual interaction rates between representative particles, which
are often non-trivial to implement. We therefore propose an ‘interval-aware’ pro-
gramming paradigm to allow for a simpler implementation of interval-valued nu-
merical routines. We test the simulation method, the computational scheme, and
the programming paradigm by implementing a radially resolved statistical model
of collisions and dynamical heating designed for studying runaway growth among
planetesimals.

Our work lays the foundation for an efficient yet accurate hybrid simulation of
protoplanetary growth processeswith a combination of statistical and deterministic
particle-based methods.



ii

Kurzfassung

Planeten entstehen in den rotierenden Scheiben aus Gas und Staub, von welchen
junge Sterne umgeben sind.Obgleich sich in den letzten Jahrzehnten viele Arbeiten
durch theoretische Überlegungen und numerische Studien mit der Entstehung von
Planeten befaßt haben, ist erst in jüngster Zeit neben dem Nachweis protoplaneta-
rer Scheiben auch die Beobachtung ihrer inneren Struktur gelungen. Es wird ver-
mutet, daß die Bedingungen in den ringförmigen Ansammlungen von Staub, die
in vielen protoplanetaren Scheiben zu sehen sind, die Bildung von Planetenkernen
durch rapide Wachstumsprozesse begünstigen.

Um in einer Computersimulation abbilden zu können, wie sich Gesteinsplane-
ten aus der Akkumulation von Staubteilchen bilden, müssen in bezug auf Teilchen-
zahl und -masse viele Größenordnungen überspannt werden. Für sehr große Teil-
chenzahlen ist das nur mit statistischen Methoden möglich. Gleichwohl führt der
gravitative Einfluß größerer Objekte zu Erscheinungen wie der radialen Umvertei-
lung, die nur mit einer N-Körper-Methode korrekt beschrieben werden können.
Eine umfassende Simulation der Planetenentstehung muß also statistische und de-
terministische Methoden vereinen. Im Gegensatz zu gitterbasierten statistischen
Methoden eignen sich Verfahren, die mit repräsentativen Teilchen arbeiten, auf
natürliche Weise für die Verbindung mit einer N-Körper-Simulation; jedoch er-
fordern solche repräsentativen Methoden einen erheblichen Rechenaufwand, wo-
durch ihrer Nutzbarkeit Grenzen gesetzt sind.

In dieser Arbeit werden Methoden und Schemata entwickelt, um Prozesse der
Planetenentstehung simulieren zu können, wie sie in den Staubringen protoplane-
tarer Scheiben vermutet werden. Zu diesem Zweck entwickeln wir zunächst eine
Erweiterung der Representative Particle Monte Carlo-Methode, um diese für die
Modellierung rapider Wachstumsprozesse anwendbar zu machen. Um den Kos-
tenaufwand repräsentativer Teilchenmethoden zu verringern, konstruieren wir so-
dann ein neuartiges Rechenverfahren, das bucketing scheme, dessen rechnerischer
Aufwand nicht wie beim herkömmlichen Verfahren in quadratischer, sondern nur
noch in linearer Relation zur Zahl der repräsentativen Teilchen steht. Das buck-
eting scheme erfordert die Berechnung von Intervallbereichen der wechselseitigen
Interaktionsraten zwischen repräsentativen Teilchen. Umdie Anfertigung intervall-
wertiger Rechenvorschriften zu erleichtern, entwerfen wir ein Paradigma für in-
tervallsensitives Programmieren (interval-aware programming). Wir erproben die
Methode, das Rechenverfahren und das Paradigma in der Praxis, indem wir sie auf
die Simulation eines radial auflösenden statistischen Interaktionsmodells anwen-
den, das für die Untersuchung rapider Wachstumsprozesse unter Planetesimalen
entworfen wurde.

Auf Grundlage dieser Arbeit kann eine hybride Simulation zur Untersuchung
protoplanetarer Wachstumsprozesse entwickelt werden, die statistische und deter-
ministischeMethoden kombiniert, ohne daß ihre rechnerische Effizienz die Genau-
igkeit ihrer Ergebnisse beeinträchtigt.
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Introduction 1

Bill Watterson, Calvin and Hobbes, September 25, 1990 (Andrews McMeel Syndication)

Planets are assumed to emerge from the gaseous protoplanetary accretion disk surround-
ing and feeding young stars. Although the core of this hypothesis is centuries old (Kant,
1755), a self-consistent model to explain the formation of planets has not yet been de-
vised. However, great advances have been made in the last decades, owed to new exper-
imental insights into the physical collision processes (e.g. Güttler et al., 2010; Blum,
2018; Wurm and Teiser, 2021), tangible progress in the theory of planet formation (re-
viewed by Drążkowska et al., 2022), as well as new observational capabilities that un-
covered the abundance of dust substructures in protoplanetary disks (Andrews et al.,
2018). Heavy planets embedded in protoplanetary disks are known to inhibit radial in-
ward drift of dust and to cause adjacent annular dust accumulations, which are suspected
to be sites of subsequent planet formation.

This work is concerned with methods and computational schemes for simulating
the dynamics and interactions of solid bodies in protoplanetary disks. Specifically, we
set out to develop a hybrid representative particle method that can be used to study the
emergence of planetary cores from ensembles of planetesimals in planet-induced dust
traps, focussing on the smooth transition from a representative many-particles regime
to individual bodies and on an efficient computational scheme that combines rejection

1



1. INTRODUCTION

sampling with interval arithmetic to obtain linear performance scaling characteristics
with regard to the sampling resolution chosen.

1.1 Motivation

For a long time, little observational data had been available for comparison with model
predictions of planet formation. Although the outcome of the process was of course
known for our particular solar system, no direct records of previous states of this sys-
tem were accessible (it was not until the last two decades that asteroids and comets
would be probed to study the composition of planetesimals, seeWatanabe et al. (2023)),
and the existence of other planetary or even protoplanetary systems had only been con-
jectured. For lack of observational data, planet formation theory started with simple
assumptions, such as a radial power-law profile of gas density and temperature (Wei-
denschilling, 1977b), and a strong coupling of dust to gas with a constant dust-to-gas
ratio, typically assumed to be identical to the dust-to-gas ratio of „ 1 : 100 in the in-
terstellar medium (Bergin et al., 2013; Trapman et al., 2017). Weidenschilling (1977b)
constrained the total gas and dust masses and the mass compositions with the material
content of the Solar System. This ‘minimum viable’ model of the gas and dust distri-
bution of the protoplanetary disk our planetary system emerged from is known as the
MinimumMass Solar Nebula (MMSN) model (see also Hayashi, 1981b).

The gas component of the protoplanetary disk, composed mainly of hydrogen and
helium, is hard to observe directly, so observations of protoplanetary disks tend to be
geared towards the dust component or rare tracer molecules in the gas disk. Even after
the first detections of protoplanetary disks (O’dell et al., 1993) and the first confirmed
exoplanet observations in the 1990s (Wolszczan and Frail, 1992), it would still take
decades until the Atacama Large Millimeter/submillimeter Array (ALMA) was able to
resolve ring-like substructures in the dust distribution of a protoplanetary disk (ALMA
Partnership et al., 2015). The DSHARP survey (Andrews et al., 2018) subsequently
proved the abundance of radial substructures such as arcs, gaps, rings, and spirals in pro-
toplanetary disks. These features can be linked to the presence and formation of planets
in the disk, though the specific relations are not unambiguously clear. A continuing pro-
cess of planet formation seems to be a plausible explanation for their abundance (Dong
et al., 2015; Zhang et al., 2015; Teague et al., 2018).

1.1.1 Growth barriers

Planet formation is assumed to be a complex growth process starting with the agglom-
eration of sub-micrometre dust grains (Safronov, 1972; Hayashi, 1981a), which grow
until reaching approximately pebble size. Pebbles must then somehow form planetesi-
mals, that is, bodies with multi-kilometre radii that are held together by self-gravitation
rather than molecular forces. However, there are several barriers to continued growth
by coagulation. High impact speeds make a sticking outcome less likely as the mass of
target and projectile, and thus the kinetic impact energy, grows: this is referred to as
the bouncing barrier (Zsom et al., 2010) and the fragmentation barrier (Güttler et al.,
2010; Yamamoto et al., 2014; Blum, 2018; Wurm and Teiser, 2021), depending on the
presumed outcome of high-velocity collisions. Additionally, in a gas disk with a homo-
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geneous pressure gradient, particles drift inwards as a consequence of the aerodynamic
drag force exerted by the gas which moves at sub-Keplerian speed, thus acting as ‘head-
wind’. This drift is most efficient for pebble-sized objects. But if pebbles are efficiently
removed, the growth process is depleted of material; in order to be sustained, further
growth would need to occur on timescales shorter than the typical drift timescale. This
is known as the drift barrier or metre-size barrier (Adachi et al., 1976; Weidenschilling,
1977b).

1.1.2 Formation of planetesimals and planetary embryos

Johansen et al. (2007) suggested that planetesimals might form by a gravitational col-
lapse of pebble clumps incited by the streaming instability (Youdin andGoodman, 2005),
a linear instability occurring in mixed laminar streams of gas and dust particles that de-
velops unstable modes. This mode of planetesimal formation is expected to produce
planetesimals of „100 km in radius, consistent with observations from Kuiper Belt ob-
jects (Simon et al., 2016; Li et al., 2019). The formation of planetesimals with the stream-
ing instability and the conditions for its occurrence have been studied extensively by, for
instance, Johansen et al. (2012); Carrera et al. (2015); Yang et al. (2017); Sekiya and On-
ishi (2018); Klahr and Schreiber (2020); Umurhan et al. (2020). Among other insights,
it was demonstrated that a very high concentration of pebbles at the midplane was re-
quired to incite planetesimal formation. Thus, even though the streaming instability
would sidestep the bouncing and fragmentation barriers that make continued accumu-
lative growth of pebbles unviable, the radial drifting of planetesimals remains a problem.

One way to overcome the drift barrier would be a local reduction, or even reversal,
of the radial pressure gradient, causing ‘tailwind’ and making particles drift outwards.
Such a local pressure bump leads to accumulation of particles in a dust trap (e.g. Tanaka
et al., 2002; Pinilla et al., 2012). And indeed, the results of the DSHARP survey have
revealed an abundance of rings, that is, regions of high dust density, and cavities, or re-
gions depleted of dust. The presence of these gap-like substructures has been linked to
planets massive enough to carve a radial gap in the disk (Dullemond et al., 2018). Dust
and gas are coupled aerodynamically, and a gap in the gas density distribution, tracked
by a co-located gap in the dust distribution, would cause a local reversal of the radial
gas pressure gradient, which then locally reverses the radial drift direction and thus ac-
cumulates pebble-sized material, allowing for subsequent growth of structures, most
likely through gravitational collapse of pebble clumps (Stammler et al., 2019; Carrera
et al., 2021).

For bodies that have reached planetesimal size, further growth by coagulation is fea-
sible, and the fastest-growing bodies will experience runaway growth and oligarchic
growth (Kokubo and Ida, 2000, 2002; Ormel et al., 2010) through the gravitational
focussing effect (Safronov, 1972; Wetherill and Stewart, 1989; Kokubo and Ida, 1996),
forming planetary embryos. Dust and pebblesmay further contribute to efficient growth
of planetesimals and planetary embryos bymeans of pebble accretion (Ormel andKlahr,
2010; Lambrechts and Johansen, 2012), that is, the aerodynamically assisted accretion of
small bodies onto massive cores. Greatly oversimplifying, one could say that, for parti-
cles with a tight coupling to the gas such as pebbles, the damping exerted by the gas drag
force can turn a close encounter between a pebble and the planetary embryo into a grav-

3



1. INTRODUCTION

itational capture and, eventually, an accretion of the former; rather than being sharply
deflected, the pebble will settle onto the embryo. This mechanism can increase the effec-
tive impact parameter and the collision cross-section far beyond the purely gravitational
collision cross-section evenwith gravitational focussing being considered. Although not
efficient at the presumed initial size of„ 100 km planetesimals (Liu et al., 2019), pebble
accretion can significantly boost the growth rate of planetary embryos that have grown
from mutual accretion of planetesimals.

1.1.3 Substructures in protoplanetary disks

A planet embedded in a protoplanetary disk will excite spiral waves (Goldreich and
Tremaine, 1978, 1979), leading to gap opening through emergent shocks that transfer
angular momentum to the gas disk (Rafikov, 2002). For planets exceeding the thermal
mass Mth ” ph{rq3M˚, where h is the disk scale height at the orbital radius r of the
planet, the propagation of spiral waves already becomes non-linear on excitation, thus
allowing the planet to open a gap at its own orbital location. Based on standard tur-
bulent viscosity assumptions (Shakura and Sunyaev, 1973a), a simplified axisymmetric
analytical model of the gap density structure has been developed by Kanagawa et al.
(2015) and was subsequently refined by Kanagawa et al. (2017, 2020). With this analyt-
ical gap model, the structure of the gap can be related to properties of the disk and the
gap-inducing planet. Because a hypothetical planet with suitable properties can be con-
structed for most gap observations, the assumption of a gap-inducing planet is the most
flexible among the many proposed models of disk substructure formation. Such flexi-
bility also renders the model prone to overuse; for example, a single planet may open
multiple gaps, most of which are not co-located with the planet itself; from observing
these gaps alone, one might wrongly infer multiple gap-carving planets.

Several other processes are known to contribute to the formation of substructures
in the gas or dust profile, each with its own practical constraints. Beside influencing the
disk structure, some of these processes may also directly contribute to the formation
of planetesimals. One important hydrodynamical process is the streaming instability
(Youdin and Goodman, 2005), already mentioned before as a possible means of con-
verting pebble-mass particles to planetesimals through gravitational collapse, which has
been suggested to also generate dust rings (Carrera et al., 2021). The gravitational back-
reaction from highly concentrated pebbles onto the gas may also disrupt the structure of
the disk and induce a dust trap (Gonzalez et al., 2017). Gravitational instabilities, com-
prehensively discussed in the review of Kratter and Lodato (2016), can occur as the self-
gravity of the gas begins to dominate the counteracting gas pressure. For perturbations
induced by self-gravity to become unstable, the Toomre parameter Q “ csΩK{pπGΣq,
which relates the temperature (via sound speed cs) to the gas surface density, needs to be
À 1. These conditions may be plausibly met at large radii and early in the life of circum-
stellar disks, and the ensuing instability may emanate transient spirals capable of trans-
porting angular momentum and trapping dust, thus accelerating planetesimal growth
(Rice et al., 2004). There are several other hydrodynamical instabilities that can emerge
when taking into account complex physical realities beyond a smooth 1-dimensional axi-
symmetric gas-and-dust model such as the MMSNmodel and which may contribute to
the formation of the observed substructures. Two examples are the Rossbywave instabil-
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ity (RWI; cf. Lovelace et al., 1999), which can form long-lived vortices, and the vertical
shear instability (VSI; cf. Urpin and Brandenburg, 1998) that emerges from differen-
tial rotation along the vertical disk axis, which can produce an outcome similar to the
Rossby wave instability. Additionally, the impact of magnetic fields in protoplanetary
disks gives rise to magnetohydrodynamic processes which may also exhibit instabilities
and facilitate the formation of structures. The list here is by no means complete; for a
thorough review of protoplanetary disk processes that may lead to structure formation,
see Bae et al. (2023).

Planets in protoplanetary disks are difficult to observe. Compared to the number of
known dust substructures in protoplanetary disks, the number of embedded planets de-
tected so far is small. A kinematical detection of an embedded planet in a protoplanetary
disk was first claimed by Teague et al. (2018), who measured the rotation curve of the
gas disk in HD 163296 by analysing interferometric observations of CO emission. They
were able to reconstruct a gas pressure profilewith such precision that other scenarios ca-
pable of generating gaps and rings could be ruled out, while a comparison with a model
featuring two gap-carving planets showed excellent agreement. Keppler et al. (2018) dis-
covered a planet in the PDS 70 system, andHaffert et al. (2019) found a second planet in
the same system, both co-locatedwith observable gaps in the disk structure.More recent
work has documented the detection of AB Aurigae b and AS 290b (Currie et al., 2022;
Bae et al., 2022). However, such observations are rare; in most cases, non-axisymmetric
features observed in protoplanetary disks so far could not be unambiguously associated
with a planet. Nevertheless, the scarcity of confirmed gap-carving planets is not contrary
to the hypothesis that many of the observed substructures might emerge from planet-
disk interaction. As observational sensitivity and coverage increases, the inferred con-
straints are expected to tighten, andmore annular substructuresmay become eligible for
attribution to certain causes even in cases where direct detection of planets remains im-
probable. Therefore, a better understanding of the dust and gas dynamics in the vicinity
of planets is crucial to the interpretation of observational results.

1.2 Simulation techniques

Gravitational multi-body interactions involving heavy bodies are generally chaotic in
nature, which necessitates a simulation with deterministic N-body calculations. But a
gravitational N-body simulation costs n2 operations per timestep for n mutually inter-
acting bodies (barring approximations based on a multipole expansion which are not
easily applicable to scenarios with a high turnover such as a revolving protoplanetary
disk). Even if the algorithmic complexity of the simulation was lower, simulating all in-
dividual particles in such a ring would overburden every computer system existing to
date. At the same time, the bulk of the information generated by such a simulationwould
concern the individual states and fates of relatively small and plentiful particles, which
are of limited interest individually. Therefore, statistical methods are usually employed
to simulate the dynamics of highly interactive systems with a large number of bodies.
Typical examples are grid-based methods, as used in the dust model of Birnstiel et al.
(2010), or stochastic representative particle methods, such as the Monte Carlo method
used by Ormel et al. (2010).
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1.2.1 Statistical simulation methods

The conceptual advantages and disadvantages of particle-centric (‘Lagrangian’)methods,
which follow the state-space trajectories of individual particles, and grid-based (‘Eule-
rian’) methods, which simulate the distribution of particles, are well-understood. A grid-
based code will necessarily introduce numerical diffusion, which negatively affects the
precision of highly parameter-sensitive growth processes and renders grid-based meth-
ods inappropriate for the simulation of runaway growth processes (e.g. Stammler and
Birnstiel, 2022). Also, a grid-basedmethod will suffer from the so-called curse of dimen-
sionality, which refers to the fact that adding a dimension to the space of properties and
resolving it withN grid cells increases the computational effort by a factor ofN 2, thus
imposing severe computational limitations on the possible consideration of additional
parameters. Both deficiencies can be avoided by using a particle-based representative
method instead.

Conversely, because an Eulerian code operates on the discretised particle number dis-
tribution, it handles cancellation effects in a quasi-steady-state process more gracefully
than particle-based methods. For instance, colliding planetesimals may produce dust-
mass fragments, but planetesimals may also accrete dust; under certain conditions, this
cyclic process might enter a steady state where the net mass of dust barely changes even
though planetesimals produce and accrete dust all the time. A grid-based method only
operates on the sumof these effects, and because the net change in dustmass per grid cell
is small, a large timestepmay be used.Moreover, with implicit integration, stable results
may be possible to obtain for even larger timesteps. The computational cost of both grid-
based methods and particle-based methods with the traditional computational scheme
has quadratic scaling characteristics (that is, the number of operations required per time
increment scales quadratically with the number of grid cells or the number of represen-
tative particles, respectively); but a particle-based simulation must follow the evolution
of its individual constituents, and therefore it cannot benefit from near-cancellation: a
representative planetesimal in a steady-state system as sketched above will constantly
experience cratering events and accretion of dust, and a particle-based simulation will
be busy simulating themwhile a grid-based simulation only needs to operate on the net
difference in dust and can thus simply leap ahead in time.

Particle-based simulations face the additional challenge that representative weights
need to remain balanced to avoid undersampling, which impacts correctness, and over-
sampling, which is inefficient. Because representative particles may accrue representa-
tive weight during an interaction, a selection of sampling weights may become skewed
even if it was balanced initially, which effectively reduces the resolution of the simula-
tion. In the super-droplet method of Shima et al. (2009), this has proven challenging
and had to be counteracted by choosing very large numbers of representative samples to
ensure that enough resolution is retained by the end of the simulation. TheMonte Carlo
method of Ormel and Spaans (2008) relies on an explicit management of zoom factors,
which entails continuously adding new representative particles and merging existing
particles, to retain a balanced weight sampling when covering a high dynamic range of
masses. The Representative Particle Monte Carlo (RPMC) method of Zsom and Dulle-
mond (2008) is an alternative method designed for dust coagulation processes that has
the conceptual advantage that it inherently maintains an equal-weight mass sampling
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and thus avoids this complication; however, the method is built upon assumptions that
make it inapplicable to runaway growth processes, where a single body may grow to a
mass larger than the total mass fraction it was initially chosen to represent.

The growth of planetesimals has been subject tomany numerical and analytical stud-
ies, and quasi-thermal models of planetesimal kinetics such as viscous stirring and dy-
namical friction have been developed, demonstrating that planetary embryos can emerge
efficiently by means of runaway growth, and that runaway bodies will dynamically iso-
late in the oligarchic growth regime (e.g.Wetherill and Stewart, 1989; Ida, 1990; Ida and
Makino, 1992a,b; Kokubo and Ida, 1996, 1998). In Ida and Makino (1993), an N-body
code was used to study the interaction between a protoplanet and a population of plan-
etesimals and found that the protoplanet decreases its own growth rate by gravitationally
stirring the planetesimals, thereby reducing the effective collision cross-section because
gravitational focussing is less effective at higher relative velocities. Their semianalytical
formulae capture the statistics of the interaction between protoplanet and planetesimals,
but they are of inherently local nature and thus not suitable for resolving a spatially inho-
mogeneous system. This deficiencywas overcome byOrmel et al. (2010)who developed
a geometrical interaction model that incorporates radial reach and locality: using a rep-
resentative Monte Carlo method adapted from the dust coagulation method of Ormel
et al. (2007), they reproduced the orbital separation characteristics of oligarchs previ-
ously described by Kokubo and Ida (1998) who had used an N-body code.

1.2.2 Hybrid statistical and deterministic methods

Statistical models have limited applicability with regard to individual bodies. Thus, as a
planetary embryo emerges from an ensemble of planetesimals, it needs to be tracked as
an individual object in order to correctly reproduce features such as the separation from
the continuousmass distribution during runaway growth. Not all statisticalmethods are
well-suited to the emergence of individual bodies. The representative particle method
proposed by Ormel et al. (2007) naturally extends to individual bodies, whereas the
RPMC method of Zsom and Dullemond (2008) breaks down as representative bodies
begin to exceed the total mass fraction they represent.

Even if a statistical method extends to individual bodies, a statistical interaction
model cannot do justice to the chaotic nature of interactions between individual bodies.
Ida (1990) and Ida and Makino (1993) were able to describe the dynamics of a large en-
semble of highly interactive particles with quasi-thermal semianalytical formulae; but
the quasi-thermal picture cannot predict the occurrence or outcome of individual en-
counters between individual bodies, and it is therefore unclear how radial redistribution
of particles, such as migration or gap opening, could be represented correctly by statisti-
cal means. Instead, it would be desirable to simulate the interactions of heavy individual
bodies as N-body particles without foregoing the computational advantages of a statisti-
cal simulation. Such a hybrid method was hinted at by Ormel et al. (2010) but deferred
to future work. Levison et al. (2012) developed LIPAD, a hybrid of an N-body code and
a stochastic simulation. In this code, small bodies are represented as tracers whose mu-
tual interaction is implemented with a representativeMonte Carlo approach resembling
the RPMC method of Zsom and Dullemond (2008), but which can additionally inter-
act with heavy individual bodies through forces incorporated with N-body calculations.
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The number of particles represented by a given tracer shrinks as the tracer’s mass grows,
and when the tracer ends up representing only itself, it is promoted to an embryo whose
dynamics is determined strictly by N-body interactions. LIPAD was demonstrated to
describe runaway growth correctly, though when applied to the product kernel test case
of Wetherill (1990) it showed a slight inaccuracy which the authors attributed to a lack
of resolution. LIPAD has been used successfully to study oligarchic growth processes
(e.g. Voelkel et al., 2021a,b). Other authors have enriched N-body codes with statis-
tical methods as well. More recently, Turrini et al. (2019) combined an N-body code
with a radial binning method and a geometrical collision model to study the production
of dust through collisions of gravitationally stirred planetesimals, and Bernabò et al.
(2022) built upon this N-body code but replaced the binning approach with a particle-
based statistical method. Aiming to study the formation and growth of planetesimals
in a pressure bump, Lau et al. (2022) coupled the grid-based dust evolution code of
Stammler and Birnstiel (2022), based on the dust model of Birnstiel et al. (2010), with
an N-body code into a hybrid method that also includes gas drag, migration, and pebble
accretion. Assuming that planetesimals emerge from dust through the streaming insta-
bility, they elegantly bridged the gap between the two simulation methods by directly
promoting newly formed planetesimals to N-body objects.

1.3 Outline

To provide some physical context for the subsequent technical chapters, in Chapter 2 we
start by introducing some basic physical processes at work in protoplanetary disks, cul-
minating in a back-of-the-envelope model of runaway growth. We also discuss the dif-
ferent simulation methods usually employed for protoplanetary coagulation processes.

A simulation of solid body interactions that ranges from dust grains to planets is a
numeric and computational challenge because it spans so many orders of magnitude in
mass and at the same time needs to cover many degrees of freedom. Due to the sheer
number of particles in an annular dust substructure of a protoplanetary disk, themethod
must be of statistical nature; at the same time, we want to allow the emergence of self-
representing bodies which need to be treated individually, and which may have to be
handled with N-body calculations.

The RPMCmethod as originally introduced in Zsom and Dullemond (2008) works
well with dust distributions, but as a statistical method, it requires that all of the par-
ticles represented in the simulation have a high multiplicity, that is: for every repre-
sentative particle j there must be Nj " 1 non-representative particles with similar
properties. This renders the method unsuitable for runaway growth processes, where
the heaviest particles can no longer be treated stochastically. The first concern of this
work is to overcome this limitation. In Chapter 3, we formally define the RPMCmethod
of Zsom and Dullemond (2008) and subsequently extend it such that even represen-
tative particles whose multiplicity approaches unity can be treated correctly. With this
improvement, the RPMCmethod becomes suitable for simulating runaway growth. The
correctness of the method is proven analytically and verified numerically for a simpli-
fied two-component scenario. The extended method is then tested extensively with the
standard test kernels for the Smoluchowski equation, among them the product kernel
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which exhibits runaway growth characteristics, and with a synthetic test case modelled
after the gravitational focussing effect.

Our extensions to the RPMC method necessitate adding and removing represen-
tative particles during the simulation, which the original RPMC method had been de-
signed to avoid. To accurately model the transition from representative particles with
high multiplicity, or ‘swarms’, to individual bodies, swarms are split up into individual
representative particles when their particle count drops below a certain threshold value
Nth, andmay thus significantly increase the number of representative particles required.
This poses a challenge because, in the computational scheme traditionally employed
for the RPMC method, n2 interaction rates had to be computed and maintained for an
ensemble of n representative particles. In Chapter 4, we thus devise a new computa-
tional scheme, dubbed the bucketing scheme, which enables us to conduct a representa-
tive particle simulation with substantially lower requirements in computation and stor-
age. We develop cost models for the computational and memory requirements of both
the traditional scheme and the bucketing scheme, andwe verify themwith extensive per-
formance testing. With the bucketing scheme, we can easily afford the slightly higher
computational requirements of the extended RPMC method of Chapter 3, and gener-
ally RPMC simulations with much higher resolution and higher-dimensional property
spaces become viable. Moreover, we develop a location-aware extension to the buck-
eting scheme that enables us to efficiently apply the extended RPMC method to spa-
tially resolved systemswhere interactions have limited reach, as in the oligarchic growth
scenario. The efficiency of the scheme is tested with several standard tests and with a
planetesimal growth model adapted from Ormel et al. (2010), also including a simple
fragmentation model.

Although the bucketing schemehas very favourable performance characteristics com-
pared to the traditional scheme, it is not a panacea. The bucketing scheme constructs and
continually updates a grouping of representative particles in ‘buckets’ and keeps track of
themutual interaction rate bounds between all pairs of buckets, using rejection sampling
to sieve the actual events from the surplus of events generated at bucket level. To this
end, the simulationmust be able to compute interaction rate bounds for pairs of buckets,
which requires significant effort on the part of the implementor. To alleviate this effort,
interval arithmetic has proven invaluable. Although software libraries implementing
interval arithmetic are widely available, we found that implementing a given numeri-
cal routine for interval-valued arguments typically requires an approach very different
from the straightforward computation for real-valued arguments, and the numerical rou-
tine would thus have to be implemented twice – for real-valued and for interval-valued
quantities –, which is onerous and error-prone. In Chapter 5, we therefore propose a
paradigm of interval-aware programming. Interval arithmetic can be viewed as a ‘lifting’
of real-valued arithmetic operations to interval-valued arguments; thus, by means of
the composition theorem (cf. Sect. 5.1.5), a given arithmetic expression can already be
interpreted generically, that is, the same expression can be applied either to real-valued
or to interval-valued arguments. In this chapter, we carry this generic paradigm further
and apply it to partial function definitions, or equivalently, runtime branches in code.
We also demonstrate how the notion of interval-aware programming carries over into
the integer domain, and how even iterator-based algorithms can be implemented in an
interval-aware manner. The goal of this undertaking is to provide a set of tools and
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semantic guidelines that, given a conventional implementation of a numerical routine,
empower the programmer to construct an interval-aware equivalent of the routine, and
then to compile it as either a real-valued or an interval-valued routine.

We aim to study the process of planetesimal growth in the dust trap of a gap-carving
planet using the geometrical stirring and collision model developed by Ormel et al.
(2010). The model describes dynamical heating and collision processes and is designed
to study the dynamics of runaway growth. Although this model can handle interactions
between individual bodies and representative particles, it still uses statistical methods to
simulate interactions with and among individual bodies. As bodies become more mas-
sive, the outcome of a gravitational interaction becomes harder to predict statistically; in
particular, we know of no statistical model for predicting the radial redistribution of bod-
ies in a close encounter, and processes such as the planet-induced gap opening in a dis-
tribution of planetesimals cannot be simulated with this method. The extended RPMC
method was designed to be compatible with continuous external operators (such as the
aerodynamic drift induced by the protoplanetary gas disk) and deterministic N-body
methods for self-representing particles. In Chapter 6, we elaborate on our adaptation of
the geometrical model of Ormel et al. (2010) and its implementation with the extended
RPMC method and the bucketing scheme. We then sketch a hybrid simulation method
that complements the extended RPMCmethod with a continuous operator effectuating
the aerodynamic drift by the protoplanetary gas disk and with a deterministic gravita-
tional N-body code to simulate the parameter-space trajectories of self-representing par-
ticles, while maintaining the stochastic approach and the representative particle method
for the smaller bodies.

Our contributions are then summarised in Chapter 7, and the thesis is concluded
with a brief outlook towards possible future work.

1.4 Published works

Part of this work has been submitted for publication separately:

Chapter 3 has been published as Beutel and Dullemond (2023) under the title ‘An
improved Representative Particle Monte Carlo method for the simulation of particle
growth’.

Chapter 4 will be published as Beutel et al. (in press) under the title ‘Efficient simu-
lation of stochastic interactions among representative Monte Carlo particles’.

An abridged version of Chapter 5 has been published in the conference proceedings
for the Conference of Next Generation Arithmetic (CoNGA) 2023 under the title ‘A
Paradigm for Interval-Aware Programming’ (Beutel and Strzodka, 2023).

The introductory text of Chapter 3, Sects. 3.1, 3.2, 3.3.2, and 3.4.1 as well the initial
draft for Fig. 3.1 were largely contributed by Cornelis P. Dullemond. Everything else was
written by me.
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Rigid Body (sings).

Gin a body meet a body
Flyin’ through the air,

Gin a body hit a body,
Will it fly? and where?

Ilka impact has its measure,
Ne’er a ane hae I,

Yet a’ the lads they measure me,
Or, at least, they try.

Gin a body meet a body
Altogether free,

How they travel afterwards
We do not always see.

Ilka problem has its method
By analytics high;

For me, I ken na ane o’ them,
But what the waur am I?

James Clerk Maxwell, In Memory of Edward Wilson, Who Repented of what was in his Mind
to Write after Section

A star forms by gravitational collapse of a dense region in a molecular cloud. Angular
momentum conservation forces the collapsing cloud into the shape of a rotating disk as
it accretes onto the star. Most material is accreted quickly, leaving a residual disk of gas
and dust which is typically of much lower total mass than the star itself. The gas disk is
relatively long-lived, taking on the order of 107 years to vanish through slow accretion
and evaporation. It is commonly assumed that planets are composed of the dust and gas
components of this protoplanetary disk.

In this chapter, we introduce some basic physical processes at work in protoplanetary
disks. It goeswithout saying that the field of planet formation is vast and cannot possibly
be covered in its entirety.Moreover, the narrow yet heterogeneous audience of this work
may comprise not only astrophysicists but alsomathematicians and computer engineers.
Therefore, here we aim to explain just the bare necessities of the kinetic processes in
planet formation in order to provide some physical context for the simulation techniques
discussed in subsequent chapters.
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

2.1 Orbital motion

An undisturbed body or a viscosity-free parcel of gas on a perfectly circular orbit at
orbital distance r around a central star with mass M˚ moves at the Keplerian angular
velocity

ΩKprq “

c

GM˚

r3
, (2.1)

with G the gravitational constant, or at the tangential velocity

vK “ rΩK “

c

GM˚

r
. (2.2)

To derive this result, we start with Newton’s equation of motion,

F “ m:r , (2.3)

whereF is the vector of external forces and where the vector r represents the position of
the body in heliocentric coordinates, and transform it to a locally Cartesian frame which
co-rotates around the third axis with constant angular velocity Ω,

r “ R3pΩtq pa` xq . (2.4)

Here,R3p¨q is amatrix representing an active rotation around the third axis, the position
a ” ê1a represents, without loss of generality, the center of the rotating frame at time
t “ 0, and x is the frame-relative Cartesian coordinate. We obtain the transformed
equation of motion in the co-rotating frame,

F` Fcor ` Fctf “ m:x , (2.5)

with the fictitious forces

Fcor “ ´2mΩˆ 9x (Coriolis force) (2.6)
Fctf “ ´mΩˆ pΩˆ pa` xqq (centrifugal force) , (2.7)

where we definedΩ ” ê3Ω.

As we want to study the motion of the frame itself, we set x “ 0 and also 9x “ 0,
which implies Fcor “ 0. Because Ω K a, Graßmann’s identity can then be employed to
simplify the centrifugal force to

Fctf “ mΩ2a . (2.8)

With the tangential velocity of the frame

vφ “
dr

dt
“ Ωˆ r , (2.9)

whose magnitude is also vφ “ Ωr becauseΩ K vφ, we can express Eq. (2.8) as

Fctf “ m
v2φ
r
ê1 . (2.10)
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2.1. Orbital motion

By imposing steady-state conditions on the equation of motion (Eq. (2.5)), :x
!
“ 0, we

thus obtain the force balance equation,

F` Fctf “ 0 (2.11)

which implies that

F ¨ ê1 `m
v2φ
r
“ 0 . (2.12)

If the only external force is the gravitational force exerted by the central object,

F “ Fgrav “ ´
GM˚m

r2
ê1 , (2.13)

then the force balance equation is solved by Ω “ ΩK, or equivalently vφ “ vK, as given
in Eqs. (2.1–2.2).

2.1.1 General orbital motion

A circular orbit is a special case of an elliptical orbit with eccentricity e “ 0. Elliptical,
parabolic, and hyperbolic trajectories are the general solutions of the equations of mo-
tion (Eq. (2.3)) if the gravitational force of the central object is the only force considered,
a situation usually referred to as the two-body problem.

Orbital motion can be parameterised by the semimajor axis a, the eccentricity e, the
inclination i, the argument of the periapsis ω, the longitude of the ascending nodek, and
the true anomaly ν. For a given set of parameters, the position of an object in orbital
motion is given in heliocentric Cartesian coordinates as

r “ R3pkqR1piqR3pωq ¨ r ¨
`

cos ν sin ν 0
˘⊺ (2.14)

where Rjpφq denotes an active rotation matrix rotating by an angle φ about the j-th
axis, and where the orbital distance r is given by

r “
a
`

1´ e2
˘

1` e cos ν
. (2.15)

Without external forces, an orbit is defined by the time-invariant quantities a, e, i, ω,
andk, with only the true anomaly ν changing with time.

As a measure of the location of the object on its orbit, the anomaly can be defined
in different ways. The true anomaly ν has a simple geometrical meaning: it is the angle
between the periapsis and the current position of the object asmeasured from the central
object situated in the main focus of the orbital ellipse. By measuring the angle from
the geometric center of the ellipse rather than the main focus, one obtains the eccentric
anomaly ϵ which can be related to true anomaly in different ways, for instance

cos ν “
cos ϵ´ e

1´ e cos ϵ
, (2.16)

13



2. BASIC PHYSICS OF PROTOPLANETARY DISKS

or alternatively

tan
ν

2
“

c

1´ e

1´ e
tan

ϵ

2
. (2.17)

Then there is the mean anomaly M , the angle of an object on a fictitious circular orbit
with radius a. Mean anomaly is convenient because it has a linear relation to time:

M “
2π

T
pt´ t0q (2.18)

where t is the current time, t0 is some reference time, and

T “
2π

ΩK
(2.19)

is the orbital period of the body. Eccentric anomaly ϵ and mean anomalyM are related
by Kepler’s equation,

M “ ϵ´ e sin ϵ , (2.20)

which can be solved for ϵ either numerically or with a series expansion. With these
relations, the true anomaly ν can be related to time t, and thus the position of the object
r at a given time t can be predicted.

2.1.2 Many-body kinetics

Beside the gravity of the central star, bodies are subject to a number of additional forces
that can not be neglected in a realistic model. First, all massive bodies exert a gravita-
tional force. Therefore, in an ensemble of N massive bodies, body j feels the external
gravitational force

Fgrav,j “

N
ÿ

k“1,k‰j

Gmjmk
rk ´ rj

∥rk ´ rj∥2
, (2.21)

wheremk and rk are the mass and the position of object k. Furthermore, in the presence
of gas, particles feel the velocity-dependent gas drag force Fdrag. The gas-relative veloc-
ity is typically non-zero even for bodies on circular planar orbits because a viscous gas
disk will rotate at sub-Keplerian velocity, as will be discussed in Sect. 2.2.4. Additionally,
turbulent fluctuations in the gas will cause corresponding fluctuations of the gas drag
force.

For a highly coupled system in which these additional forces are significant, particle
trajectories cannot be predicted analytically or semi-analytically, and hence the parame-
terisation of the undisturbed trajectory in Eq. (2.14) is not very useful. Instead, the global
set of the coupled equations of motion (Eq. (2.3)) must be solved for the entire particle
ensemble. This is referred to as N-body simulation.

The gravitational forces betweenmassive bodies are straightforward to compute; but
to determine the gas drag force Fdrag, we first need to develop a model of the gas disk.
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2.2. Gas disk

2.2 Gas disk

From the masses and compositions of the planets in the solar system, Weidenschilling
(1977b) inferred a ‘minimum viable’ gas surface density profile that scales with r´3{2,
where r is the distance from the Sun. Based on these observations, the surface density
(that is, the vertically integrated volume density) of the gas in theMinimumMass Solar
Nebula (MMSN) model is often modelled as a power-law (Hayashi, 1981b),

ΣMMSNprq “ 1.7ˆ 103
´ r

AU

¯´3{2
g cm´2 , (2.22)

while the relation of dust to gas is assumed to match the „ 1 : 100 dust-to-gas ratio
of the interstellar medium. (It should be emphasised that neither constant dust-to-gas
ratio nor the power-law exponent of ´3

2 , which Weidenschilling (1977b) found to be
appropriate for the suspected planet-forming region of the solar system, nor generally
the power-law nature of the surface density profile are solid assumptions; the gas pro-
file cannot be observed directly, so we have to make do with plausible models.) More
generally, the gas surface density may be written

Σprq “ Σ0

ˆ

r

r0

˙p

, (2.23)

where r0 is some reference distance andΣ0 is a normalisation constant chosen such that
the surface density integrated from the inner edge rmin to the outer edge rmax matches
the assumed total disk mass,

2π

ż rmax

rmin

dr rΣprq
!
“Mdisk . (2.24)

2.2.1 Vertical structure

With the simplifying assumption that the gas is vertically isothermal, we can use the
vertical hydrostatic balance equation to infer a vertical gas density of Gaussian structure
(Armitage, 2017, §II.B.1),

ρgaspr, zq “ ρgas,0prq exp

„

´
z2

2h2prq

ȷ

, (2.25)

where ρgas denotes the volume density of the gas, z is the vertical elevation,

ρgas,0prq “
1
?
2π

Σprq

Hpprq
(2.26)

is the mid-plane gas density, and

Hpprq “
csprq

ΩKprq
(2.27)

is the pressure scale height. In a vertically isothermal disk, the speed of sound

csprq “
kBT prq

µmp
(2.28)

varies only with the distance from the star r. kB is the Boltzmann constant, mp is the
mass of the proton, and the gas is assumed to be a H2–He mixture of interstellar com-
position with an average molecular weight of µ “ 2.3.
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

2.2.2 Turbulent viscosity and radial infall

A non-viscous fluid in circumstellar motion moves on stable orbits; but in the presence
of viscosity, a steady-state inward motion emerges. As noted by Shakura and Sunyaev
(1973b), the effects of turbulence can technically be considered an effective viscosity.
Their formulation of turbulence-driven effective viscosity is usually dubbed ‘α-viscosity’
after the dimensionless parameter α. In this model, the kinematic viscosity ν is given
by

ν “ αcsHp. (2.29)

The radial velocity of gas under steady-state conditions then is

vr,gas “ ´
3

2

ν

r
, (2.30)

(Armitage, 2017, §IV.A.5), indicating an inward motion of the gas.

2.2.3 Temperature

Irradiation by the central star and viscous heating through accretion are the most sig-
nificant contributions to the temperature of the gas. Armitage (2017, §IIB,C) refers to
disks in which one of these contributions dominates as passive and active circumstellar
disks, respectively, arguing that both contributions may play a role in planet formation
contexts depending on time and orbital distance. For a simple model of a limited radial
segment of an accretion disk – for instance, a gap-carving planet together with its asso-
ciated dust trap – which does not claim accuracy as a global model, it may be reasonable
to assume a power-law relation between temperature T and orbital distance r, just as
had been done for the surface density in Eq. (2.23):

T prq “ T0

ˆ

r

r0

˙q

. (2.31)

If we additionally impose that accretion operate as a steady-state process, we can link
surface density and temperature. The gas accretion rate 9M is given as

9M “ ´2πrΣvr,gas . (2.32)

Following the line of reasoning given in Dullemond (2013), we impose steady-state con-
ditions, 9M

!
“ const and insert Eqs. (2.23) and (2.31) to obtain the relation

p` q “ ´
3

2
. (2.33)

2.2.4 Orbital velocity

In addition to the gravitational force, a gas parcel of mass m is subject to the pressure-
gradient force Fp:

Fp

m
“ ´

1

ρgas
∇p , (2.34)
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2.2. Gas disk

where p denotes the pressure. As a consequence, the force balance plays out differently
for a gas parcel than for a solid particle. By solving the force balance equation (Eq. (2.11))
for a gas parcel assuming F “ Fgrav ` Fp, we obtain the tangential gas velocity

vφ,gas “ vK

d

1`
c2s
v2K

d log p

d log r

« vK

ˆ

1`
1

2

c2s
v2K

d log p

d log r

˙

(2.35)

where pressure and density are related by the speed of sound cs,

p “ ρgasc
2
s , (2.36)

and where it was assumed that c2s{v2K ! 1. With the nebula pressure parameter η (Adachi
et al., 1976; Inaba et al., 2001),

η :“
vK ´ vφ,gas

vK
(2.37)

« ´
1

2

c2s
v2K

d log p

d log r
, (2.38)

we can conveniently express vφ,gas as

vφ,gas « vK p1´ ηq . (2.39)

In a smooth gas disk, the pressure gradient dp{dr is negative (a typical value might be
d log p{d log r “ ´2), and hence η is positive. As is evident from Eq. (2.39), the gas then
moves at sub-Keplerian velocity.

2.2.5 Planetary gaps

It can be seen in the results of the DSHARP survey (Andrews et al., 2018) that the dust
profile of protoplanetary disks is rarely observed to obey a simple power-law relation;
instead, substructures such as rings and gaps abound. If the observed cavities are linked
to the presence of gap-carving planets (Dullemond et al., 2018), a power-law relation
may still be reasonable as the envelope of the dust and gas profiles, and according mod-
els for planetary gaps ‘carved’ by embedded planets have been proposed by Kanagawa
et al. (2015, 2017, 2020). Here we describe the simplified Gaussian model of Eriksson
et al. (2021) based on Kanagawa et al. (2015), noting however that, according to Voelkel
(2022), a gap model relying solely on Kanagawa’s gap depth parameter K is oversim-
plified and inaccurate, and much better agreement with hydrodynamic simulations of
gap opening could be demonstrated with the refined but more complicated model of
(Kanagawa et al., 2017).

Given a gap-carving planet of mass Mpl at orbital distance apl, we first define the
Kanagawa parameterK:

K “

ˆ

Mpl

M˚

˙2ˆHppaplq

apl

˙

α´1 . (2.40)
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

Using the depth of the gap at the orbital location of the planet given by

Σmin

Σpaplq
“

1

1` 0.04K
, (2.41)

we define the Gaussian gap profile as

Gprq “
Σmin

Σpaplq
exp

„

´
pr ´ aplq

2

2H2
p

ȷ

. (2.42)

The surface density is then modified to include the planetary gap at location apl:

Σprq Ñ Σprq ¨ p1´Gprqq´1 . (2.43)

2.2.6 Gas drag regimes

In the coordinates of a frame co-rotating with Kepler velocity ΩK, the gas velocity vgas

at x “ 0 is

vx,gas “ vr,gas “ ´
3

2

ν

r
vy,gas “ vφ,gas ´ vK “ ´ηvK . (2.44)

Gas acts upon solid particles by means of a drag force Fdrag. The force exerted depends
on the interaction regime, which in turn depends on particle and gas properties as well
as on the relative gas velocity

δv :“ vgas ´ v , (2.45)

and acts opposite the direction of the particle motion relative to the gas,

Fdrag “ Fdrag
δv

∥δv∥
. (2.46)

To describe the kinetics of a dust particle in non-eccentric planar orbital motion im-
mersed in a gas disk, we therefore augment the external forces with the gas drag force,
F “ Fgrav ` Fdrag.

The drag timescale can be interpreted as a stopping time

ts “
mδv

Fdrag
, (2.47)

where the magnitude of the drag force Fdrag has a regime-dependent definition. Four
different regimes are considered: the Epstein regime (Epstein, 1924), in which the mean
free path of gas molecules is larger than the particle radius, and three different Stokes
regimes depending on the Reynolds number. The following treatment is adapted from
Weidenschilling (1977a) and Birnstiel et al. (2010).

The number density of gas molecules at the mid-plane is

ngas “
Ngas

V
“

p

kBT
“

ρgas
µmp

(2.48)

18



2.2. Gas disk

whereNgas indicates the number of gasmolecules around themid-plane in some volume
V , T is the gas temperature, µ is the average molecular weight of the gas, andmp is the
proton mass. Above relation follows from the ideal gas law pV “ NkBT and from
Eq. (2.28). The mean free path of a gas molecule can then be estimated as

λmfp “ pngasσH2q
´1 (2.49)

with the cross-section of H2 molecules σH2 “ 2ˆ 10´15cm2.

The gas–dust interaction operates in the Epstein regime if λmfp{R Á
4
9 , where R is

the bulk radius of the dust particle. In this case, the drag force is given as

Fdrag “
4

3
πρgasR

2ūgasδv (2.50)

with ūgas “ cs
a

8{π the mean thermal velocity of the gas molecules.¹

Outside the Epstein regime, we need to consider the Reynolds number, a dimension-
less quantity that amounts to the ratio of inertial and viscous forces:

Re “ 2
Rδv

νmol
(2.51)

where the gas molecular viscosity is

νmol “
1

2
ūgasλmfp . (2.52)

The drag force can then be expressed as

Fdrag “
π

2
R2ρgasCDδv

2 (2.53)

with a drag coefficient CD depending on the Reynolds number:

CD “ 24Re´1 for Re ă 1 ,

CD “ 24Re´0.6 for 1 ă Re ă 800 ,

CD “ 0.44 for 800 ă Re . (2.54)

Equivalently, one can provide regime-dependent definitions of the stopping time ts, as
is done, for instance, in Birnstiel et al. (2010), Eq. (10),² and then define the drag force
through the general relation

Fdrag “ m
δv

ts
. (2.55)

¹In Birnstiel et al. (2010) after Eq. (10), themean thermal velocity is erroneously stated as ū “ cs
a

π{8.
²The expression for the stopping time for 1 ă Re ă 800 (Stokes regime 2) in Eq. (10) of Birnstiel et al.

(2010) contains an error: the denominator should read 9ν0.6
molρgu

0.4 but reads 9ν0.6
molρ

1.4
g u0.4. The error

can be traced back to Whipple (1973) and was replicated in Weidenschilling (1977a) and many subsequent
publications.
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

The Stokes number St is a dimensionless number that characterises the interaction
of gas and particles. It is defined as

St “
ts

teddy
(2.56)

where teddy is the eddy turn-over time, which we take to be equal to the Kepler time
tK “ Ω´1K following Birnstiel et al. (2010). The Stokes number therefore relates the
timescale of orbital revolution to the stopping time of the particle. The smaller the value
of St, the quicker a particle ‘forgets’ its specific orbital state as it is dragged along by the
surrounding gas parcel which flows on a near-circular trajectory. On timescales greater
than ts, the orbital elements e and i thus have no secular significance as particle trajec-
tories are damped towards circularity, with deviations dominated by turbulent stirring.

2.2.7 Damping and radial drift

Because gas orbits the star at sub-Keplerian speed, vy,gas “ ´ηvK (Eq. (2.44)), a body
moving on a Keplerian orbit will be continuously exposed to a drag force, through which
potential energy is subtracted from the body’s orbit, forcing it to spiral inwards.

We followWeidenschilling (1977a) in determining the steady-state drift velocity rel-
ative to a local coordinate system co-rotating at Kepler velocity. The co-rotating coor-
dinate system introduced above is a Cartesian tangential frame; hence in a frame co-
rotating with Kepler velocity at radial position a, a particle with frame-relative position
x “ ê1pr ´ aq and velocity v will move at tangential velocity vφ “ rΩKpaq in heliocen-
tric coordinates. This velocity is notably different from the Kepler tangential velocity
rΩKprq of a particle at orbital radius r ‰ a. Thus, before imposing equilibrium condi-
tions, we first transform to a sheared coordinate system

xÑ x

vÑ u :“ v ` ê2 r
`

ΩKpaq ´ ΩKprq
˘

9vÑ 9u “ 9v ` ê2 9r

ˆ

ΩKpaq `
1

2
ΩKprq

˙

(2.57)

such that, at any relative coordinate x, a velocity u “ 0 corresponds to a velocity vφ “
ΩKprq:

Fgrav

m
`

Fdrag

m
`

Fcor

m
`

Fctf

m
“ 9u´ ê2 9r

ˆ

ΩKpaq `
1

2
ΩKprq

˙

. (2.58)

By evaluating at x “ 0, where 9r “ v “ u and Fctf ` Fgrav “ 0, and imposing equilib-
rium conditions 9u

!
“ 0, we obtain

Fdrag

m
“ ´

3

2
ê2 9xΩKpaq ` 2ê3 ˆ u . (2.59)

Using the Stokes number St (Eq. (2.56)), we can write (2.59) as a simple 2-dimensional
system of equations,

u “ vgas `

ˆ

0 2 St
´1

2 St 0

˙

u . (2.60)
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Figure 2.1: The radial equilibrium drift velocity of massive body on non-
eccentric orbit as a function of Stokes number St as per Eq. (2.61).
The drift speed converges to 0 for St Ñ 8 and settles to the inwards gas
drift speed |vr,gas| for gas-bound particles with St Ñ 0. At typical planet-
forming radii of severalAUunder typical conditions in protoplanetary disks,
the radial drift maximum for St “ 1 amounts to efficient removal of pebbles
(that is, particles of sizes between few cm and about 1m). This is known as
the metre-size barrier or the drift barrier to growth.

If the Stokes number is independent of the drift velocity, as is the case in the Epstein
regime, this system of equations has the solution

u “
1

1` St2

ˆ

1 2 St
´1

2 St 1

˙

vgas , (2.61)

and thus

ux “
1

1` St2
pvx,gas ` 2 St vy,gasq . (2.62)

The dependency of ux on St is visualised in Fig. 2.1. As is evident from Eq. (2.62), par-
ticles are bound to the gas in the St Ñ 0 limit, ux Ñ vx,gas. By equating the two terms
in Eq. (2.62), vx,gas

!
“ 2 St vy,gas, and by imposing a turbulent viscosity model as per

Eq. (2.30), we find that the two terms are of equal magnitude for St „ α, implying that
aerodynamics can be neglected for dust particles with St À α, instead assuming that
such particles simply follow the gas.

So far we have assumed that the unperturbed trajectory is non-eccentric, e “ 0,
and planar, i “ 0. Determining the radial equilibrium drift for eccentric or inclined
trajectories is more involved. For planetesimals – that is, for bodies with weak coupling
to the gas – this has been investigated analytically by Adachi et al. (1976) and refined
and verified numerically by Inaba et al. (2001), who give the following formulae for the
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steady-state change rate of semimajor axis a, eccentricity e, and inclination i:

τ

a

da

dt
“ ´2η

d

ˆ

2 p2E `Kq

3π
e

˙2

`

ˆ

2

π
sin i

˙2

` η2 , (2.63)

τ

e

de

dt
“ ´

d

ˆ

2E

π
e

˙2

`

ˆ

2

π
sin i

˙2

`

ˆ

3

2
η

˙2

, (2.64)

τ

sin i

d sin i

dt
“ ´

1

2

d

ˆ

2E

π
e

˙2

`

ˆ

8

3π
sin i

˙2

` η2 , (2.65)

whereE andK, not to be confusedwith theKanagawa parameterK defined in Eq. (2.40),
denote the elliptic integrals E ” Ep3{4q andK ” Kp3{4q, and where the characteristic
time for the drag dissipation τ used in Inaba et al. (2001), Eqs. (24–26) is given by
τ “ pSt{ΩKq η.

For non-eccentric planar trajectories, we find Eq. (2.63) to be approximately equiva-
lent to the result obtained in Eq. (2.61). To verify this, we start from Eq. (2.61), approxi-
mate St{p1 ` St2q « St´1 for St Á 1 and neglect the p1 ` St2q´1vx,gas term, finding a
result identical to the prescription of Eq. (2.63) with e “ 0, i “ 0 imposed.

When considering a group of similar particles, eccentricities and inclinations can
be assumed to follow a Rayleigh-type distribution (Ida andMakino, 1992b). Inaba et al.
(2001) state the following equations for the evolution of the dispersions xe2y and xsin2 iy:

τ

xe2y

dxe2y

dt
“ ´2

c

9

4π
E2xe2y `

1

π
xsin2 iy `

9

4
η2 , (2.66)

τ

xsin2 iy

dxsin2 iy

dt
“ ´

c

1

π
E2xe2y `

4

π
xsin2 iy ` η2 , (2.67)

2.2.8 Turbulent stirring

So far we have only considered aerodynamic interactions between gas and dust. How-
ever, given that the gas surface density is initially much higher than the surface density
of dust, onemight expect that the gravitational dust–gas interaction is significant aswell.
The gravitational interaction between planets and the gas disk must be modelled with a
multidimensional hydrodynamic simulation to correctly describe the emergence of non-
axisymmetric features such as spiral waves excited by the planet; but for many purposes,
the resultant gas density profile can be representedwith a simplified 1-dimensional semi-
analytical model as described in Sect. 2.2.5. The gravitational impact of a homogeneous
gas disk is not very interesting; however, if the gas density is subject to turbulent fluc-
tuations, as may be excited by the magnetorotational instability (MRI; cf. Balbus and
Hawley, 1991; Laughlin et al., 2004), the density fluctuations will have a noticeable ef-
fect on massive bodies. Such fluctuations can be shown to boost the eccentricity of solid
bodies (Ogihara et al., 2007; Ida et al., 2008),

e 9 γΣ r2 pΩKtq
1{2 , (2.68)

where γ is a dimensionless number representing the strength of turbulent density fluctu-
ations induced by the MRI.Consequentially, the rms eccentricity is stirred by turbulent

22



2.3. Surrogate models

fluctuations,

d
@

e2
D

dt
9 γ2

`

Σ r2
˘2

ΩK . (2.69)

The characteristic length scale of turbulent fluctuations is much greater than the size of
any solid body embedded in the gas disk; therefore, the turbulent stirring of a body is
independent of its mass and eccentricity. Turbulent stirring can thus significantly con-
tribute to the dynamical heating of the system at all mass scales.

2.3 Surrogate models

Because of the sum in Eq. (2.21), an N-body simulation of an ensemble of N particles
entails a computational complexity of order OpN2q. In presence of heavier bodies such
as planets or planetary embryos whose influence by far dominates the gravitational dy-
namics, the gravitational impact of small particles becomes negligible beyond a certain
distance, which would allow the construction of a scheme with complexityOpN logNq;
but even so, N can be enormously large, for instance, N „ 1020, and thus even com-
plexity OpNq would be unaffordable.

2.3.1 Continuummodels

Physical systems comprising extremely large numbers of particles are often treated as
continuous systems at sufficiently large scales. For the case of coagulation processes, a
continuum view has first been proposed by Smoluchowski (1916), who introduced what
is now known as the Smoluchowski coagulation equation for a continuous particle mass
distribution function fpm, tq which quantifies how the number of particles fpm, tqdm
changes in an infinitesimal mass binm P rm,m` dmq:

B

Bt
fpm, tq “ ´fpm, tq

ż 8

0
dm1λpm,m1qfpm1, tq

`
1

2

ż m

0
dm1λpm1,m´m1qfpm1, tqfpm´m1, tq . (2.70)

λpm,m1q, also named the coagulation kernel, quantifies the coagulation rate of two bod-
ies of masses m and m1. The meaning of the two terms can then be understood intu-
itively: for each infinitesimal mass bin rm,m` dmq, the number of particles in the bin
that grow to amass m̃ ě m`dmmust be subtracted from fpm, tqdm, while the number
of particles from other bins which grow to a mass m̃ P rm,m ` dmq must be added to
fpm, tqdm.

A continuous model of a discrete system has to rely on certain assumptions in or-
der to act as an adequate representation of the system. Usually, a hierarchy of scales
is established in which the effects studied by means of continuous equations operate
on scales strictly larger than the scale of quantisation where the discrete nature of the
system becomes relevant. In the case of the Smoluchowski coagulation equation, one
might first quantify the scale of the desired resolution in the mass distribution function
fpm, tq by a logarithmic mass difference ∆plogmq ” log q corresponding to a ratio of
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

masses q ą 1, and then demand that, for a continuum approach to be justified, the num-
ber of particles in any given range rm, q ¨ mq shall always be much greater than unity.
If this requirement cannot be guaranteed, the continuum method may break down, as
can be illustrated with a simple coagulation kernel for which Eq. (2.70) can be solved
analytically. Several analytical solutions are discussed in Appendix 3.A; for simplicity
let us consider the constant coagulation kernel

λpm,m1q “ Λ
!
“ const , (2.71)

for which an analytical solution is given by Eq. (3.99). Assumingm{m0 " 1, g ! 1, and
Λt " 1, we can approximate and simplify the solution,

m2fpm, tq « N0

ˆ

2

MΛ

˙2
´m

t

¯2
exp

„

´
2

m0MΛ

m

t

ȷ

. (2.72)

We find that the mass-weighted number distribution m2fpm, tq is approximately self-
similar, that is, the shape of m2fpm, tq is near-invariant under a transformation of co-
ordinates m Ñ αm, t Ñ αt, which implies that, for t Ñ 8, the peak of the mass
distribution will also grow to higher masses beyond all bounds. The self-similarity of
the mass-weighted number distribution can also be observed in Figure 3.2. However,
this cannot be correct for a coagulating system of discrete particles. Assuming the same
constant coagulation kernel (Eq. (2.71)), the entire mass M will eventually converge
into a single particle whose mass serves as a natural upper bound for the particle num-
ber distribution. The true convergence behaviour of such a discrete system of particles
is reproduced in Fig. 3.3, ending up visibly different from the boundlessly self-similar
analytic solution.

This specific problem may be avoided by representing the most massive bodies in-
dividually (cf. e.g. Weidenschilling, 1997). But there are other downsides to the contin-
uum model approach. Because an analytical solution is not available in even vaguely
realistic models, the Smoluchowski equation is usually solved numerically on a grid of
non-infinitesimal mass bins rm,m ` δmq, a technique used to model dust growth in
protoplanetary disks at least sinceWeidenschilling (1980) (see alsoWetherill and Stew-
art, 1989; Dullemond and Dominik, 2005; Birnstiel et al., 2010). However, grid-based
methods are subject to the curse of dimensionality; adding a dimension to the property
space and resolving it with N grid cells multiplies the original number of grid cells in
the simulation by a factorN ; furthermore, because all grid cells can potentially interact,
the number of operations is multiplied by a factor N 2. To evade the curse of dimen-
sionality, dynamic-average approximations have been used (e.g. Okuzumi et al., 2009).
With such an approximation, only the per-bin averages of any additional properties are
stored. This way, adding new property dimensions such as rms velocity or porous vol-
ume does not significantly add to the computational demands of the simulation; how-
ever, the number distribution is not resolved in the dimensions added to the parameter
space, which may limit the usefulness of the method.

2.3.2 Representative models

The preceding section discussed the main drawbacks of the continuummodel approach:
the continuum approximation breaks down as particle numbers become small; and a
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2.3. Surrogate models

grid-based numerical method, as is usually employed to simulate the evolution of a
continuous system, cannot resolve a high-dimensional property space without dispro-
portionate computational effort. To avoid these problems, some authors have instead
opted for a particle-based model (cf. e.g. Ormel et al., 2007; Zsom and Dullemond,
2008). The two types of models can be likened to the Eulerian and the Lagrangian pic-
ture of fluid dynamics. The Smoluchowski equation describes the flux of particles to and
from a given infinitesimal bin of masses. Conversely, a particle-based model follows the
mass trajectory of individual particles. Let the entirety of particles be indexed by num-
bers 1, . . . , N . Then, for a given particle j, the expected growth of mass is given by the
equation

d xmjy

dt
“

N
ÿ

k“1

mkλpmj ,mkq . (2.73)

For a formal derivation, see Eqs. (3.113–3.117) in Appendix 3.B.

Often, a simulation cannot afford to keep track of every individual particle in the
system. Instead, only a representative subset of n particles, which shall be indexed with
1, . . . , n, is followed. Representative approaches build upon the observation that, if there
are many particles of a certain flavour (say, cm-sized pebbles), knowing all their indi-
vidual properties (say, the precise masses of the individual pebbles) is not only compu-
tationally unviable but also not very interesting; instead, we would like to know their
statistical properties (such as the average pebble mass, or the approximate mass distri-
bution function sampled by the individual pebbles). A representative particle method
will thus choose a representative subset of all particles in the system and then simulate
only the interactions they partake in. The number distribution of all particles in the sys-
tem is then extrapolated from the ensemble of representative particles. Without going
into detail, here we only note that, for a system of n representative particles, Eq. (2.73)
can be generalised to

d xmjy

dt
“

n
ÿ

k“1

Kcoll
jk , (2.74)

whereKcoll
jk denotes the mass change rate of representative particle j due to coagulation

with particles represented by representative particle k.

Although the coagulation process may be treated as a continuous evolution of par-
ticle masses through solving Eq. (2.74) as a system of differential equations, growth by
coagulation is in fact a discrete process composed of discrete coagulation events. Thus, if
representative particle k represents a total number ofNk physical particles (that is, one
representative particle and pNk´ 1q non-representative particles), the mass change rate
may be naturally decomposed as

Kcoll
jk “ pNk ´ δjkqλ

coll
jk p∆mqjk . (2.75)

Here, δjk is the Kronecker delta used to suppress self-coagulation of the representative
particle in the case where j “ k. λcolljk is the particle collision rate for a pair of parti-
cles represented by particles j and k, respectively, and p∆mqjk is the expected change
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2. BASIC PHYSICS OF PROTOPLANETARY DISKS

of mass resulting from a coagulation of the given pair of particles. If all particles rep-
resented by representative particle k can be assumed to have the same mass mk, then
p∆mqjk “ mk, but we note that Eqs. (2.74) and (2.75) are general enough to also allow
for a more advanced concept of representation or for more nuanced collision outcomes
such as bouncing or partial fragmentation.

In this view, it seems natural to simulate particle growth as a stochastic process. In-
stead of computing the evolution of the expected masses by solving a system of coupled
differential equations continuously, we can thus employ a Monte Carlo method and
simulate a possible realisation of the discrete growth process by sampling individual
collision events. One example of a stochastic representative method will be elaborated
in Sect. 3.3, where the Representative Particle Monte Carlo (RPMC) method originally
devised by Zsom and Dullemond (2008) is defined formally. Treating coagulation as a
stochastic process will result in higher noise compared to a continuous treatment, but it
can be argued that a sampling model is more realistic. In a representative Monte Carlo
simulation of a coagulation process, a possible trajectory through state space will be
realised, whereas a continuous method must operate with expectation values and will
therefore only yield expectation values for the individual particle masses, thus implying
certain simplifying assumptions about the shape of the mass distribution such as uni-
modality. Conversely, a Monte Carlo method is agnostic of the distribution properties,
and any distribution may emerge from it.

2.3.3 Dynamical heating

Previous works (e.g. Ida, 1990; Ida and Makino, 1993; Stewart and Ida, 2000) studied
the nature of the emerging distributions of orbital eccentricity and inclination of plan-
etesimals and proposed surrogate models that describe the evolution of the distribution
average by a set of differential equations. First, the particle velocity v is decomposed as

v “ vK `∆v (2.76)

where vK “ aΩK is the velocity of a body on a perfectly circular Kepler orbit with the
same semimajor axis and∆v is the non-circular and non-planar deviation. This is some-
times referred to as the epicycle approximation. Themagnitudes of the planar and vertical
components are then related to the dispersions of eccentricity and inclination³:

@

∆v2planar
D

“ v2K
@

e2
D

(2.77)
@

∆v2vert
D

“ v2K
@

sin2 i
D

. (2.78)

For the mean square of the velocity deviation, this implies
@

∆v2
D

“ v2K
`@

e2
D

`
@

sin2 i
D˘

. (2.79)

Wenow can view the evolution of the rms eccentricity
a

xe2y and the rms inclination
a

xsin2 iy as a dynamical heating process. This idea can be traced back to Safronov (1969)
and was elaborated in, for instance, Goldreich et al. (2004) and Ormel et al. (2010); a

³Most authors use i instead of sin i, implicitly invoking the small-angle approximation.
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2.3. Surrogate models

detailed summary of the underlying reasoning is given in Ormel et al. (2010, §2.4 and
Appendices B.2.1 and B.2.3).

Dynamical heating is usually modelled as two distinct processes. First, there is vis-
cous stirring, which refers to the conversion between potential and kinetic (quasi-ther-
mal) energy. Through a gravitational exchange between two circumstellar bodies, en-
ergy is extracted from or added to their Keplerian potentials, and added to or removed
from their kinetic energy captured in x∆v2y, as in the gravitational slingshotmanoeuvre
of a space probe. Additionally, kinetic energy can be exchanged between the two inter-
acting bodies, which is referred to as dynamical friction. As pointed out by Ormel et al.
(2010, §2.4), ‘[the] distinction between the dynamical friction and viscous stirring inter-
actions should not be interpreted as meaning that these belong to two distinct encoun-
ters. In contrast, a (single) encounter will both contribute to the friction as well as the
stirring.We simply dissect collisionless encounters into a part that preserves the random
energy (dynamical friction) and a part that does not (viscous stirring) (Ida, 1990)’. Ida
and Makino (1993) and Goldreich et al. (2004) used this approach to study the dynam-
ics of a two-component system, that is, an ensemble comprising two kinds of particles
with masses m andM " m. Ormel et al. (2010) subsequently developed a generalisa-
tion of themethod, applied it to an arbitrary number of particle species, and assembled a
hybrid statistical model that can simulate collision and stirring processes in an arbitrary
distribution of particle masses. The evolution of the mean squared values of eccentricity
and inclination and of the average mass of a given representative particle with indices
j P t1, . . . , nu is then governed by a set of very general differential equations,

d

dt

@

e2j
D

“

n
ÿ

k“1

´

Pvs
jk ` Pdf

jk ` Pcoll
jk

¯

, (2.80)

d

dt

@

sin2 ij
D

“

n
ÿ

k“1

´

Qvs
jk `Qdf

jk `Qcoll
jk

¯

, (2.81)

where Pvs
jk and Qvs

jk denote the change rate of the squared rms eccentricity and squared
rms inclination, respectively, of a representative particle j due to viscous stirring by all
particles represented by representative particle k, and likewise, mutatis mutandis, for
dynamical friction and for collisions.

The statistical evolution equations in Eqs. (2.80–2.81) allow for a variety of solution
methods. Theymay be applied to a continuummodel that keeps dynamic-average values
of the rms eccentricities and rms inclinations for every mass bin; or they can be solved
as differential equations alongside a Monte Carlo simulation of a mass coagulation pro-
cess, as is done in Ormel et al. (2010). Furthermore, in a particle-based simulation, the
equations can also be treated stochastically, and individual gravitational encounters can
be simulated as aMonte Carlo process. Thus, in analogy with Eq. (2.75), the change rate
contributions may be decomposed as

P int
jk “ pNk ´ δjkqλ

int
jk

`

∆e2
˘int

jk
, (2.82)

Qint
jk “ pNk ´ δjkqλ

int
jk

`

∆sin2 i
˘int

jk
, (2.83)

where the ‘int’ superscript stands for either ‘vs’, ‘df ’, or ‘coll’ to indicate viscous stirring,
dynamical friction, or collisional encounters, where λintjk is the respectivemutual particle
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interaction rate for representative particle j and an interacting particle represented by
representative particle k, and p∆e2qintjk and p∆sin2 iqintjk are the average changes to the
mean squared eccentricity and inclination of representative particle j inflicted by the
interacting particle during an interaction.

2.4 Runaway growth

In Ormel et al. (2010), the hybrid statistical model was applied to study processes of
runaway growth in which the collision rate is boosted by gravitational focussing, sepa-
rating the heaviest bodies from the bulk of the particle mass distribution. By using the
Monte Carlo method previously developed in Ormel and Spaans (2008), the majority
of particles could be represented statistically, that is, by only tracking the rms values
of an entire group of particles. Sufficiently massive bodies could be tracked as individ-
ual objects, which is crucial for the accurate modelling of the runaway growth process.
The generalisedmodel of Ormel et al. (2010), which wewill adopt as a foundation of our
work, will be introduced in detail in Sect. 6.1. In this section we will explain the principle
of runaway growth by means of a simplified coagulation model.

We shall start by making the simplifying assumption that collisions between plan-
etesimals always lead to ‘hit-and-stick’ coagulation. In principle, planetesimals can then
grow without bounds through repeated collisional encounters. Once a body exceeds a
characteristic mass, the interaction rate of the heaviest body is boosted by gravitational
focussing, and runaway growth sets in. To understand this process conceptually, let us
model accretional growth as a simple geometrical process of a homogeneous species of
particles.

We assume that the relative motion, as defined in Eqs. (2.76–2.79), behaves quasi-
thermally, which implies isotropy,

@

e2
D

“ 2
@

sin2 i
D

. (2.84)

If we regard particlemotion as homogeneous and isotropic, we can express the geometric
collision rate of a single particle as

λ “ ρNσva , (2.85)

where ρN is the number density of particles, andwhere σ denotes the geometric collision
cross-section

σ “ πR2 (2.86)

for spherical bodies with bulk radius R. va denotes the average approach velocity, that
is, the average relative velocity at infinite distance, between any two particles, which can
be related to the velocity deviation of particles, which in our isotropic model is treated
as a random velocity,

va «
a

x∆v2y . (2.87)

28



2.4. Runaway growth

The collision rate then begets a mass growth rate

dm

dt
“ λm

“ ρNmσva . (2.88)

Let us now assume that particles obey a vertical distribution of Gaussian shape:

ρN “ ΣN
1

?
2πh

exp

„

´
z2

2h2

ȷ

(2.89)

with ΣN the surface number density of particles, where the scale height h of the distri-
bution is related to the rms inclination

a

xsin2 iy,

h « r
b

@

sin2 i
D

. (2.90)

We evaluate the number density ρN at midplane, z “ 0, and then use the decomposition
of the velocity deviation (Eq. (2.79)) and the isotropy relation (Eq. (2.84)) to find

@

sin2 i
D

“

@

∆v2
D

3v2K
, (2.91)

which in turn can be used to eliminate va in the mass growth rate:

dm

dt
« ΣNm

c

3

2π
σΩK (2.92)

where we used the relation ΩK “ vK{r from Eq. (2.2).

If planetesimals grow by coagulation, their number, and hence their number density,
will change over time. However, mass is conserved, and therefore the surface density
Σ “ ΣNm remains invariant under coagulation. We can thus infer a scaling relation
with massm by inserting the geometric collision cross-section (Eq. (2.86)) and by sub-
stituting the bulk radius R using the spherical volume relation

m “
4π

3
ρsR

3 , (2.93)

where ρs is the solid density of the planetesimals, we find the scaling relation

dm

dt
“

c

3π

2
ΣΩKR

2 (2.94)

9 m2{3 , (2.95)

and thus a growth timescale of

tm ” m

ˇ

ˇ

ˇ

ˇ

dm

dt

ˇ

ˇ

ˇ

ˇ

´1

9 m1{3 . (2.96)

The growth timescale is found to increase with the particle massm, which implies that
growth, although continuing, slows down over time.
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This changes, however, if we consider the effect of gravitational focussing (e.g. Ar-
mitage, 2017, §III.B.1). The mutual gravitational attraction increases the effective cross-
section, enhancing the geometric cross-section by a factor of p1`Θq,

σ Ñ σ p1`Θq , (2.97)

whereΘ “ v2esc{v
2
a is the Safronov number (e.g. Weidenschilling, 1989) with the escape

velocity

vesc “

c

2Gm

R
(2.98)

and with G the gravitational constant. Due to momentum conservation, the approach
velocity will decrease as bodies coagulate. Realistically, the rms velocities, related to the
approach velocity as per Eq. (2.87), will grow again sincemutual gravitational deflections
lead to dynamical heating, but at the same time they will also be damped by gas drag. As
modelling the interplay of these effects would require significantly more effort, we thus
make the very simplistic approximation of keeping va invariant under growth. Then,
Θ 9 vesc 9 m1{3, and the second term in Eq. (2.97) will eventually start to dominate,
Θ Á 1, asm grows. If we apply the p1 ` Θq factor to the mass growth rate (Eq. (2.94))
and the mass growth timescale (Eq. (2.96)), we find that, once the mass m has grown
sufficiently large that Θ " 1,

dm

dt
9 m4{3 , tm 9 m´1{3 . (2.99)

Once a critical mass has been reached and the Θ term begins to dominate, growth will
therefore speed up.

In a heterogeneous distribution of particle masses, only the heaviest bodies will en-
ter the accelerated growth regime, while the tail end of the distribution remains below
the critical mass. The most massive bodies will ‘run away’ in terms of mass, eventually
accumulating all dynamically accessible particles in their reach. This is referred to as
runaway growth. In a spatially extended system, particles can accumulate only bodies
within their gravitational reach – their ‘feeding zone’ –, which one might naïvely relate
to the Hill radius

rh “ r

ˆ

m

3M˚

˙1{3

, (2.100)

that approximately quantifies the distance from a body of mass m at orbital distance r
from the central star at which the gravitational forces of the body and the central star
are in balance. However, taking into account dynamical heating effects, Kokubo and Ida
(1998) found that the typical orbital separation between concurrent runaway bodies ends
up beingmuch larger,„10rh, than the naïve estimate of„rh. Therefore, if spatial spread
of particles is considered, the growth process may end with an ensemble of runaway
bodies at spatial separation much greater than their mutual Hill radii.

The growing runaway body dynamically stirs up the smaller planetesimals with in-
creasing efficiency as its mass increases, eventually dominating the stirring process. The
ensuing growth of the rms velocities of the smaller planetesimals, which was neglected
in above derivation, again damps the Θ term and decelerates growth. This regime is
referred to as oligarchic growth (e.g. Chambers, 2006).
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An improved Representative Particle Monte Carlo
method for the simulation of particle growth 3

Reference: This chapter has been published as Beutel and Dullemond (2023).

A rocky planet is formed out of the agglomeration of around 1040 cosmic dust parti-
cles. As dust aggregates grow by coagulation, their number decreases. But until they
have grown to hundreds of kilometres, their number still remains well above the num-
ber of particles a computer model can handle directly. The growth from micrometres to
planetesimal-sized objects therefore has to be modelled using statistical methods, often
using size distribution functions or Monte Carlo methods. However, when the particles
reach planetary masses, they must be treated individually. This can be done by defining
two classes of objects: a class of many small bodies or dust particles treated in a statis-
tical way, and a class of individual bodies such as one or more planets. This introduces
a separation between small and big objects, but it leaves open how to transition from
small to big objects, and how to treat objects of intermediate sizes.

We aim to improve the Representative Particle Monte Carlo (RPMC) method, which
is often used for the study of dust coagulation, to be able to smoothly transition from the
many-particle limit into the single-particle limit. Our new version of the RPMCmethod
allows for variable swarmmasses,making it possible to refine themass resolutionwhere
needed. It allows swarms to consist of few numbers of particles, and it includes a treat-
ment of the transition from swarm to individual particles. The correctness of themethod
for a simplified two-component test case is validated with an analytical argument. The
method is found to retain statistical balance and to accurately describe runaway growth,
as is confirmed with the standard constant kernel, linear kernel, and product kernel tests
as well as by comparison with a fiducial non-representative Monte Carlo simulation.
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3.1 Introduction

Howplanets are formed is a difficult question to answer.We know that the process starts
with micrometre-sized cosmic dust particles in a protoplanetary disk, which coagulate
and form ever larger dust aggregates (Birnstiel et al., 2016). As these aggregates grow to
a pebble size (of the order of millimetres to centimetres, henceforth conveniently called
pebbles), they may, under certain conditions, form large overdensities in the disk that
gravitationally collapse to form multi-kilometre sized planetesimals (Johansen et al.,
2009; Wahlberg Jansson and Johansen, 2014). From there onwards, these planetesi-
mals agglomerate gravitationally to form planetary embryos (Wetherill and Stewart,
1993; Kokubo and Ida, 1998), which, in turn, grow further via accretion of planetesimals
and any remaining pebbles (Safronov, 1964; Ormel and Klahr, 2010; Lambrechts and
Johansen, 2012; Bitsch et al., 2015).

One of the fundamental limiting factors of any numerical treatment of this problem
is the vast number of particles involved. To form a single Earth-like planet, we need
„1040 dust particles, „1030 pebbles, or „1010¨¨¨20 planetesimals (dependent on their
mass). This would not necessarily be a problem if we could treat these as an equilibrium
fluid, just in the waywe treat a gas. Unfortunately, solid particles behave very differently
than a gas, and thus require a more sophisticated treatment.

For small particles, the problem is often approached with a particle size distribu-
tion function npmqdm, giving the number of particles per unit volume for a particle
mass interval dm. This function is then sampled numerically on a grid in m, and the
growth and fragmentation are then modelled using a version of the Smoluchowski co-
agulation equation (Smoluchowski, 1916). This method (which we call the continuum
approach) has been used by numerous teams (e.g. Weidenschilling, 1980; Tanaka et al.,
2005; Dullemond and Dominik, 2005) and is reasonably fast and efficient. Furthermore,
it can be extended in space by adding the spatial dimensions to the coordinates (Birn-
stiel et al., 2010; Okuzumi et al., 2012; Drążkowska et al., 2019). It works very well for
small particles because they are well coupled to the gas. These particles do not have in-
dependent orbital elements, but instead largely move along with the gas, except for a
slow drift. However, with this method, it is hard to add independent particle properties.
By the Eulerian nature of such a grid-based approach, all particles have the same proper-
ties for each location and mass. Approximate methods exist to overcome this limitation
(Okuzumi et al., 2009; Stammler et al., 2017), but a full solution would require an exten-
sion of the dimensionality of the problem, creating a huge computational overhead. For
instance, by adding only a porosity parameter given by the value p, the particle distri-
bution function now becomes npm, pqdm dp. This quickly pushes the problem beyond
the limit of computational feasibility.

For large particles (planetesimals and upwards), the problem becomes even more
severe, because now the particles are large enough to acquire their own independent or-
bital elements. A distribution function treatment as described above becomes unfeasible.
Instead, the N-body method is the method of choice.

As a result of these (and other) complications, it is hard to develop a model of planet
formation that starts with dust and endswith full-grown planets. The few complete dust-
to-planets models available today involve a patchwork of different methods covering
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different size regimes (e.g. Ormel et al., 2017; Schneider and Bitsch, 2021; Emsenhuber
et al., 2021).

If we want to develop a single technique that can, at least in principle, handle large
amounts of dust particles as well as individual planet-like bodies, and everything in be-
tween, themethodmust be based on a particle sampling approach. This could be aMonte
Carlomethod (stochastic), an N-bodymethod (deterministic), or a blend of both. In this
approach it is easy to add any number of particle properties to the problem, because we
simply store these properties for each computational particle. Even if all particles are in
the same location and have the same mass, we can then still handle a heterogeneous set
of supplementary properties (porosity, charge, chemical composition, orbital elements,
etc.), which is not possible for continuum methods.

Ormel et al. (2007) developed a Monte Carlo solver for dust coagulation in which
particles can have not only a mass but also other properties such as porosity or ice con-
tent. This method stands at the basis of further works (e.g. Krijt et al., 2015) and over-
comes the limitations of the continuum methods. While the method was developed for
small particles, it has also been used for modelling runaway growth of planetesimal size
bodies (Ormel et al., 2010).

An alternativeMonte Carlomethodwas developed byZsom andDullemond (2008).
They key differencewith themethod ofOrmel et al. (2007) is that it is rigourously based
on the concept of ‘representative particles’. We therefore call this method the ‘Represen-
tative Particle Monte Carlo’ (RPMC) method and provide a brief review of the method
in Section 3.2. This method has several advantages over other methods, one of them be-
ing its robustness and simplicity. But it has, so far, only been formulated in a somewhat
restrictive sense: (1) All swarms must have the same mass, and (2) all swarms must
contain a very large number of actual particles. As a result, this method has so far only
been applied to problems of dust coagulation and fragmentation, where the number of
actual particles is so large that condition (2) is always fulfilled. In this context themethod
has been successfully used for modelling dust coagulation, compactification, and frag-
mentation based on the full complexity of laboratory measurements (Zsom et al., 2010,
2011a). It has also been used for exploring the effect of external disturbances on the pro-
toplanetary disk (Schneider and Bitsch, 2022), the effect of particle collisions during the
gravitational collapse of a pebble cloud (Wahlberg Jansson et al., 2017), and for various
other applications (e.g.Windmark et al., 2012; Drążkowska et al., 2014; Krijt and Ciesla,
2016; Krijt et al., 2016).

As the RPMC method stands, however, it cannot be used for problems where the
growth proceeds to the point when swarms become individual particles (e.g. planets). In
fact, the validity of the method, in the form presented by Zsom and Dullemond (2008),
already formally breaks down well before that. And although the equal-mass swarms
provide a certain robustness, and focus computational effort where the mass is, this
condition can also severely limit the applications of the method. There are well-known
particle growth problemswhere initially insignificant particles can grow to dominate the
process, for example the planetesimal runaway growth regime (Greenberg et al., 1978)
or the ‘lucky particle’ scenario (Windmark et al., 2012). To model these with a Monte
Carlo approach either requires a very large number of representative particles, or the
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clever splitting of swarms into smaller swarms to resolve particles of interest. This is
only possible if the method allows swarms of different masses.

The goal of this chapter is to improve the RPMCmethod such that the drawbacks (1)
and (2) are remedied. The method will then still have the advantages of robustness of
the original RPMCmethod, but will gain in flexibility and applicability so that it can be
used to model planet formation over a wide range of particle masses. In Chapter 4, we
address another problem of the RPMC method: the n2 scaling of all possible pair-wise
interactions.

3.2 Conceptual summary of the original RPMCmethod

Let us consider the problem of coagulation or fragmentation of, say,N “ 1030 particles.
Obviously we cannot model all of these particles individually. With the RPMC method
we consider, of these 1030 particles, onlyn particles which together form a representative
sample of the actual particles. The number n must be large enough that this sample
provides a good enough representation of the true distribution. At the same time, it
must be small enough to keep the computational cost manageable.

The sampling is mass-weighted. That means that a boulder with a mass of 1 000 kg
will have a million times higher chance to be one of the representative particles than a
pebble of 1 g. However, if there are amillion timesmore pebbles than boulders (meaning
that the total mass in pebbles equals the total mass in boulders), then the chance that
representative particle i happens to be a pebble is the same as that it happens to be a
boulder.

Now let us assume that representative particle i is a boulder ofmB “ 1 000 kg. We
let it undergo an event that causes it to fragment into a mass distribution nfrpmq. The
total mass of the mass distribution is still 1 000 kg:

ż mB

0
mnfrpmqdm “ mB . (3.1)

In the RPMC method, rather than splitting the numerical particle up into a large num-
ber of new numerical particles, we randomly choose a new mass for the representative
particle using the probability distribution function

ppmqdm “
mnfrpmq

mB
dm . (3.2)

In other words, we usemass-weighting to choose the new property of the representative
particle, so the sampling remains mass-weighted. All the other fragments are ‘forgotten’.
If only a single such fragmentation event were to happen, such forgetfulness would be
problematic, since a single randomly chosen particle does not represent an entire distri-
bution of fragments. But since we are dealing with very large numbers of boulders, such
fragmentation events will occur many times (each time for a different representative
particle j ‰ i). Statistically, the outcomes of many representative particles follow the
fragment mass distribution nfrpmq.

The representative particles form a representation of the real (full) collection of par-
ticles at a given time. They contain all the information we have of the system at that
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particular time. In order to reconstruct the full collection of particles from this limited
information, the RPMC method follows the principle of Ockham’s Razor: If we do not
know more than the information we currently have of the representative particles, then
the simplest assumption possible is that the other (unknown) particles are the same as
the representative ones. Given that the representative particles follow a mass-weighted
sampling, each of them represents a fraction 1{n of the total mass of solids. And so we
divide the total mass up into n equal-mass parts, and assume each part to consist of
particles with identical properties as their representative particle.

Although it might be possible to conceive different methods of extrapolating the
full distribution of particles from the set of representative particles, our simple method
has the advantage that it trivially guarantees the idempotency of the selection process.
Regardless of the how representative particles are chosen from swarms (random pick,
mass median, nearest to average, etc.), we would end up with an exactly equivalent set
of representative particles after extrapolating a full particle ensemble and selecting a new
set of representative particles.

We note that, so far, we have not used the concept of ‘swarms’. The RPMC method
does not require this concept. But to make it easier to talk about the method, and to
compare it to the ‘superparticles’ often used in computational astrophysics (e.g. Johansen
et al., 2007), it is convenient to define a swarm in the context of RPMC. The key lies
in the mass-weighted sampling used by RPMC. If the total mass of solids is M , and
we used n representative particles which are randomly sampling the solids in a mass-
weighted fashion, then we can say that each representative particle represents a fraction
1{n of the total mass of solids. We then assign to each representative particle i a swarm
ofNi particles with identical properties as the representative particle. The total mass of
the swarm isMi “ M{n, so that Ni “ Mi{mi, wheremi is the mass of the individual
representative particle. If the properties of the representative particle change, so will the
properties of the other particles in the swarm. This also means that if the representative
particle becomes more massive (i.e. mi increases) due to, for instance, a collide-and-
merge event with another particle, the other swarm particles also becomemore massive.
As the total mass of the swarm stays constant, the number of particles in the swarm
Ni will then drop. This is a purely statistical effect, not a true sudden disappearance of
particles.

To better understand how the representative particles work, it is helpful to pretend
that all particles are composites of the same elementary substance, and that a repre-
sentative particle is identified with a ‘tracer atom’ of this substance. If tracer atoms were
initially chosen at random from the entirety of atoms, then at any time the particle mass
distribution of the systemmust be approximated by the mass distribution of representa-
tive particles, assuming that the number of particles is so much larger than the number
of tracer atoms that the possibility of two tracer atoms ending up in the same parti-
cle can be neglected. In this picture, swarms just embody the simplest possible way of
extrapolating an approximate global mass distribution from the mass distribution of
representative particles.

We have not yet introduced any collisions between particles. The fragmentation
event is, so far, a purely hypothetical spontaneous event affecting only the representa-
tive particle itself. The RPMCmethod can, however, easily handle collisions. Since each
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swarm consists of truly many particles, when a representative particle of swarm j col-
lides with a particle from swarm k, the probability that it hits the representative particle
of swarm k is extremely low. Instead, it will most likely (with a probability close to 1) hit
another particle of that swarm, leaving representative particle k alone. A collision nearly
always affects both colliding particles. For instance, upon high-velocity impact, both par-
ticles can fragment. Or upon low-velocity impact, the particles canmerge. But since with
almost certainty the representative particle j will collide with a non-representative par-
ticle from swarm k, only representative particle j will fragment or merge, while repre-
sentative particle k will be entirely unaffected as it is not involved in the collision. This
means that only the properties of representative particle j, and by extrapolation those
of swarm j, are changed, while swarm k stays unaffected. This asymmetric interaction
between swarms is a key feature of the RPMC method. It means that on individual col-
lision basis the results can be skewed, but statistically over many collisions the results
are correct.

In Zsom and Dullemond (2008) the method is described in much more detail. It is
explained how to randomly sample collision events, how to modify the representative
particle involved, how to update the collisionmatrix, how to deal with pathological cases,
etc. We discuss these issues in Section 3.4.3, where we define our improved version of
the RPMC method.

An advantage of the RPMC method is that it naturally keeps the number of rep-
resentative particles unchanged, even as particles merge or shatter. While the actual
number of particles may decline (as particles coalesce) or increase (as particles shat-
ter), the number of representative particles stays, by design, the same. This avoids the
need of re-introducing computational particles as the number of particles declines (to
keep the resolution optimal), or forcefully merging particles as the number of particles
increases (to prevent runaway computational cost). Also, it naturally conserves mass.
These properties make the RPMC method exceptionally stable and robust. But this ro-
bustness comes at a cost. First, the interactions between particles become asymmetric,
which is not problematic but can be confusing. Furthermore, themethod has the basic as-
sumption of mass-weighted sampling, which automatically means that all swarms have
the same total mass, namely M{n. And the method assumes that two representative
particles have a negligible chance of colliding with each other, which requires that the
swarm mass always is huge compared to the particle mass (many particles per swarm).
Together, these disadvantages limit the applicability of the RPMC method. Addressing
these shortcomings is the purpose of this chapter.

3.3 Mathematical formalisation of the RPMCmethod

3.3.1 Fundamentals

We consider an ensemble ofN physical particles which interact through collisions. The
number N will typically be very large (say, N „ 1030). Here and in the following, we
refer to a ‘physical particle’ as any particle of the system we study, while only a (tiny)
subset of these particles, the ‘representative particles’, are stored on the computer. Each
physical particle k is associated with a particle mass mk and possibly other properties.
These particle properties, in particular the mass, may span many orders of magnitude.
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Wedenote the full set of particle properties of particle kwith the symbolqk P Q, whereQ
is the space of intrinsic properties (e.g. mass, charge, porosity) and statistical properties
(e.g. velocity dispersion).

For every pair of particles j and k, we define the raw collision rate λpqj ,qkq as
the rate (in units of s´1) at which both particles collide. It is necessarily commutative,
λpqj ,qkq “ λpqk,qjq. If the particles are distributed homogeneously and isotropically
in a volume V , the collision rate λpqj ,qkq can be written as

λpqj ,qkq “ V ´1σpqj ,qkq |∆vpqj ,qkq| , (3.3)

where σpqj ,qkq is the collision cross-section and |∆vpqj ,qkq| the average relative ve-
locity between the particles. Because particles cannot collide with themselves, we define
a true collision rate λjk which explicitly suppresses self-collision:

λjk :“ p1´ δjkqλpqj ,qkq . (3.4)

The collision rate λj of particle j with any other particle in the ensemble is given by

λj :“
N
ÿ

k“1

λjk . (3.5)

The total rate of collisions is

λ :“
N
ÿ

j“1

N
ÿ

k“j`1

λjk “
1

2

N
ÿ

j“1

λj . (3.6)

Supposing, for themoment, that we had a small enough number of physical particles
N that we can store them all on the computer (i.e. they would all be representative,
though only of themselves), we would then proceed as follows to simulate the particle
collisions. Following themethod ofGillespie (1975), we choose a random time increment

∆t “ ´λ´1 logp1´ ξq , (3.7)

where ξ is a uniform random number drawn from the interval r0, 1q. We then draw ran-
dom indices j and k from the discrete distribution defined by the joint probability

P pjqP pk|jq “
λjk
2λ

, (3.8)

where P pjq “ 1
2λj{λ is the chance that particle j is involved in the collision event and

P pk|jq “ λjk{λj is the chance that particle k is the collision partner of particle j given
that particle j will suffer a collision. We then advance the system by the time increment
∆t and let particles j and k collide. This collision will generally lead to a modification
of the properties of the particles j and k involved. It can also lead to the merging of
particles (in the case of coagulation) or to the creation of additional particles (by means
of fragmentation). Therefore, the collision rate λ has to be recomputed after a collision.
It also needs to be recomputed if the properties of the particles change bymeans of other
processes.
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… … … …

non-representative particles

(not stored)

index

…
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swarm 2
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swarm 3
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swarm 4

Figure 3.1: Indexing of the full ensemble of physical particles, with the rep-
resentative particles ordered at the beginning of the sequence.
The entirety of particles in a given ensemble is indexed from 1 to N . The
first n indices refer to RPs, and the remaining indices belong to non-RPs.
Because N may be enormously large, tracking the entirety of particles is
not feasible. Only the n RPs are actually modelled on the computer, while
the properties of the pN ´nq non-RPs are estimated from the known prop-
erties of the n representative ones.

3.3.2 Representative particles

Simulating a full ensemble of N „ 1030 particles is computationally unfeasible. We
therefore pick a representative subset of n representative particles with n ! N and simu-
late only them while still allowing them to interact with all the other physical particles.
For convenience we abbreviate ‘representative particle’ as RP henceforth.

Also for notational convenience, we assume that all physical particles are indexed
from 1 toN , but with the RPs arranged at the beginning of the ordering. In other words,
the particles with indices 1 to n are the RPs, all others are not, as illustrated in Fig. 3.1.

Let us now define the total collision rate of the RPs, or more precisely: the total colli-
sion rate of all RPs (indices 1 to n) with all physical particles (indices 1 toN ):

λ̄ :“
n
ÿ

j“1

N
ÿ

k“j`1

λjk . (3.9)

We adapt Gillespie’s method for the simulation of RPs by substituting λ̄ for λ in Eq. (3.7).
However, λ̄ is not a computable quantity because the properties of the pN´nq non-RPs
are not known. To obtain a computable estimate of λ̄, we first need to clarify how RPs
actually represent other particles.

The basic assumption underlying the RPMC method is that a RP k can be regarded
as a primus inter pares (first among equals), chosen from a larger swarm Sk of particles
whose properties are similar to qk. Here, Sk is the index set of theNk physical particles
in the swarm k belonging to RP k. In other words: the nRPs divide the total ensemble of
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N physical particles up into n swarms, each containingNk physical particles, such that

N “

n
ÿ

j“k

Nk . (3.10)

Given that, for each swarm k, we only have information about the RP k, the simplest
possible assumption about the properties of the other particles in that swarm is to say
that they are not only similar in some unspecified way, but in fact identical:

qi
!
“ qk @i P Sk . (3.11)

What still needs to be defined is how large each swarm is. This is best defined through
a conserved quantity. The only practical quantity that is strictly conserved, irrespective
of the complexity of the model, is mass. And so we divide the total mass M up into
swarms of massesMk such that

M “
ÿ

k

Mk . (3.12)

In other words: each swarm k has a massMk, which is conserved throughout the sim-
ulation, unless a swarm is deliberately split or merged. The mass of a swarm and the
number of particles in the swarm are directly related via

Mk “ Nkmk , (3.13)

where mk is the mass of each of the particles in the swarm k. In the original RPMC
method of Zsom and Dullemond (2008) all swarms by design had the same mass, so
that

Mk “
M

n
, (3.14)

whereM is the total mass in the system and n is the number of RPs, and thus also the
number of swarms. We later show that this equal-mass partitioning of swarms is not
necessary for the method to work.

3.3.3 Simulation of representative particles

To approximate the total collision rate of RPs in Eq. (3.9), we first split it in two terms,

λ̄ “
n
ÿ

j“1

¨

˝

n
ÿ

k“j`1

`

N
ÿ

k“n`1

˛

‚λjk , (3.15)

where the first term describes the collisions among RPs and the second term describes
collisions between RPs and non-representative swarm particles.

By invoking the assumption that all particles in a swarm have identical properties, as
stated by Eq. (3.11), we can replace the sum of RP–non-RP collision rates with the sum
of RP–RP collision rates multiplied with the number of non-RP particles in the swarm,

N
ÿ

k“n`1

λjk “
n
ÿ

i“1

pNi ´ 1qλpqj ,qiq for j P t1, . . . , nu . (3.16)
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We note that the raw collision rate λpqj ,qiq had to be used here instead of the true
collision rate λji. The reason is that, while a RP j cannot collide with itself, it may collide
with another particle from its own swarm. In the true collision rate, λjj had been set to
0 to avoid self-collisions, so its use in Eq. (3.16) would unphysically avoid collisions
between particles from the same swarm. Hence the use of the raw collision rate instead.

Rewriting the first term of Eq. (3.15) as
n
ÿ

j“1

n
ÿ

k“j`1

λjk “
1

2

n
ÿ

j“1

n
ÿ

k“1

λjk , (3.17)

and using Eqs. (3.4, 3.16), we find

λ̄ “
n
ÿ

j“1

n
ÿ

k“1

ˆ

Nk ´
1` δjk

2

˙

λpqj ,qkq . (3.18)

From this we can define the RP–swarm collision rate λ̄jk,

λ̄jk “

ˆ

Nk ´
1` δjk

2

˙

λpqj ,qkq , (3.19)

and the cumulative collision rate of RPs λ̄j ,

λ̄j “
n
ÿ

k“1

λ̄jk . (3.20)

Although λjk and λpqj ,qkq are commutative, λ̄jk is not.

The term ´p1 ` δjkq{2 in the above expressions accounts for the possibility that
RP j collides with a particle from swarm k that is itself a RP. The probability that this
happens is

P̃
rp
jk “

1´ δjk
Nk

. (3.21)

For such (usually rare) events, we have to avoid double-counting, because this potential
collision is also accounted for by RP k. So this collision has to be counted only half,
meaning that we have to subtract 1{2 from the number of particles Nk in the swarm k,
as done in Eq. (3.18). If j “ k, that is, if we consider collisions of RP j with members
of its own swarm, then instead of subtracting just 1{2 we have to subtract 1, because
apart from the RP itself, there are only pNj ´ 1q particles in the swarm. Hence the term
´p1` δjkq{2 in Eq. (3.18).

3.3.4 The large-particle-number approximation of the original RPMC
method

The original RPMC method now makes the additional assumption that the number of
particles per swarm is much greater than unity,

Nk " 1 @k P t1, . . . , nu . (3.22)
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This allows neglecting the probability of RP–RP collisions (P̄ rp
jk « 0).With this assump-

tion, we can define the simplified RP–swarm collision rate as

λ̃jk “ Nkλpqj ,qkq « λ̄jk (3.23)

and the simplified cumulative collision rates as

λ̃j “
n
ÿ

k“1

λ̃jk , λ̃ “
n
ÿ

j“1

λ̃j . (3.24)

Gillespie’s method is then applied to simulate RP collisions by substituting λ with λ̃ in
Eq. (3.7):

∆t “ ´λ̃´1 logp1´ ξq . (3.25)

A RP suffering a collision is then chosen by drawing an index j from the discrete distri-
bution with probability

P̃ pjq “
λ̃j

λ̃
. (3.26)

Then a collision partner from swarm k is chosen, where the index k is drawn from the
discrete distribution with the probability

P̃ pk|jq “
λ̃jk

λ̃j
. (3.27)

3.3.5 Stochastic representation of collisional outcomes

With this method we can randomly determine the time of the next collision event, the
RP j suffering a collision, and the swarm k which represents the collision partner. The
collision can have a variety of results: coagulation, fragmentation, pulverisation, crater-
ing, etc. (Güttler et al., 2010; Blum, 2018; Wurm and Teiser, 2021), and it can yield a
wide variety of particle distributions ranging from a single merged particle to an almost-
continuous spectrum of fragment masses. This raises the question of how the resulting
particle distribution can be incorporated into the simulation model.

Of course, in case of fragmentation or pulverisation, adding every resulting particle
to the simulation is infeasible. Instead, we use the sampling nature of the Monte Carlo
process to let the resulting particle distribution realise itself stochastically. Let

ncollpq;qj ,qkq “: n
coll
jk pqq (3.28)

denote the number density distribution of the resulting fragments from a collision of
RP j with a particle from swarm k. It is normalised as follows:

ż

mpqqncolljk pqqdq “ mpqjq `mpqkq , (3.29)

where mpqq is the mass of a particle with properties q, and the integration is over all
possible properties q.
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We now draw a single set of particle properties qcoll from the weighted distribution

Pjkpqq “
mpqqncolljk pqq

mpqjq `mpqkq
. (3.30)

In other words, a collision in our simulation always consumes the representative par-
ticle and replaces it with a new representative particle sampled from the particle mass
distribution of the collision outcome,

qj Ñ qcoll . (3.31)

The masses of both swarms do not change,

Mj ÑMj , Mk ÑMk . (3.32)

For a single collision, the method always chooses a single outcoming particle, so that
the number of RPs remains constant. If the collision leads tomerging, then the resulting
particlewill have amassmpqjq`mpqkq. If, instead, the collision leads to a distribution of
fragments, then the resulting particle will be a singlemass-weighted choice among those
fragments. The fragment distribution will then emerge as large numbers of collisions
lead to many samplings of similar fragment distributions.

As demonstrated in Zsom and Dullemond (2008), the RPMCmethod yields the ex-
pected result for the standard analytic coagulation tests, albeit with substantial noise
owed to the Monte Carlo nature of the method. The method also has the desirable con-
sequence that the number of RPs always remains constant, which allows for simpler
and more efficient implementation of the method. Finally, the representativeness of the
sampling remains optimal: every RP keeps representing the same total mass.

3.4 The improved RPMCmethod

As mentioned before, the RPMC method, as described in Sect. 3.3, has two major limi-
tations: (1) all swarms have the same mass and (2) all swarms must contain a very large
number of physical particles. Here we present an improved RPMC method that over-
comes these limitations. We put these improvements to the test in later sections.

3.4.1 Unequal-mass swarms

The original RPMCmethod assumed that all swarms have equal massMk “M{n. The
reason for this choice was that the representative particles were considered to be ran-
domly chosen from the full set of particles, using mass as the weight factor. This fits
well to the ‘atomistic’ picture mentioned above: we randomly pick n ‘atoms’, all having
equal weight, and then consider, for each representative atom, the dust particle it is in
to be the representative particle. This guarantees that the n representative particles to-
gether form an unbiased sampling of the full ensemble of particles.

However, as we saw in Sect. 3.3.2, the formalisation of the RPMC algorithm allows
for unequal swarmmassesMk ‰M{n, as long as the sum of all thesemasses equals the
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total massM . The way this enters into the algorithm is through the modified number
of particles per swarm

Nk “
Mk

mk
(3.33)

which appears in the collision rate calculation in Eq. (3.18). If we define the ‘weight’ of a
RP as

Wk “
Mk

M
(3.34)

then in the original RPMC method all RPs had equal weight (i.e. they were all equally
‘important’). But in the improved RPMCmethod the RPs are now no longer necessarily
of equal weight.

We can split any swarm up into a number of smaller swarms. For example, wemight
replace a RP k with weight Wk with two RPs l, m with weights Wl `Wm “ Wk. Or
to put it in terms of their swarms: we split the swarm of massMk up into two swarms
of massesMl `Mm “ Mk. Because the particles in both swarms have identical mass,
ml “ mm “ mk, the total number of particles is not changed,Nl `Nm “ Nk.

3.4.2 The limits to growth

Amuch more difficult problem is to enable the RPMCmethod to deal with swarms that
contain only a few or even just a single particle.

The original RPMCmethodwas constructed to simulate a growth process overmany
orders of magnitude with a constant number of RPs while keeping resolution optimal.
The method crucially relies on the assumption stated in Eq. (3.22) that the number of
particles in each swarm ismuch greater than unity,Nk " 1@k P t1, . . . , nu. Equivalently,
the particle mass is assumed to be much smaller than the swarm mass,mk ! Mk @k P
t1, . . . , nu. This assumption allowed the use of the simplified collision rate λ̃jk defined
in Eq. (3.23) instead of λ̄jk in Eq. (3.18), and it allowed us to keep the number of RPs n
constant because we could neglect RP–RP collisions.

When the particle mass mk is no longer negligibly small compared to the swarm
mass Mk, several problems appear with the original RPMC method. Firstly, the num-
ber of particles in a swarm is computed through Nk “ Mk{mk. Like all RP and swarm
properties,Nk is an expectation value. Therefore, a fractional swarm particle count such
as Nk “ 1.3 is not per se problematic. But if we want to treat single-particle swarms
as non-stochastic objects – for example, we might want to identify singular particles
with N-body objects in a hybrid MC/N-body simulation – we must decide for an in-
teger number of particles. However, by rounding Nk to an integer, we no longer con-
serve the total mass of the system. Secondly, by neglecting the possibility of RP–RP
collisions, we were able to adopt the simplified RP–swarm collision rate of Eq. (3.23).
λ̃jk “ Nkλpqj ,qkq. But for Nk „ 1, this collision rate significantly overestimates the
actual RP–swarm collision rate given in Eq. (3.19). In the extreme case of Nk “ 1, we
have

λ̃jk “ λpqj ,qkq ; λ̄jk “
1´ δjk

2
λpqj ,qkq . (3.35)
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(To solve this problem, one might be tempted to simply use the actual RP–swarm col-
lision rate λ̄jk instead of approximating it as λ̃jk. However, it turns out that the ap-
proximation λ̄jk « λ̃jk must be made, otherwise the RPMC method is not statistically
balanced, as demonstrated in Appendix 3.C.) Thirdly, a particle cannot grow in mass be-
yond the swarm mass:mk ďMk, whereas in reality it might do so. The original RPMC
method strictly keeps Mk constant in time, meaning that this creates an artificial up-
per bound to the mass a physical particle can acquire. When increasing the number of
swarms n, we can decrease the number of particles Nk in swarms k P t1, . . . , nu to
improve the resolution, but as a result, we also decrease the largest individual mass
mk ďMk which the simulation can represent. Finally, ifNk is not large, the probability
that RP j will collide with the RP of swarm k ‰ j is not negligibly small.

3.4.3 Extending the method

To overcome the problems outlined in the previous section, we propose some modifica-
tions to the RPMC method. As the basis of our extension, we first classify all swarms
k P t1, . . . , nu in two categories: many-particles swarms with Nk ą Nth, and few-
particles swarms with Nk ď Nth, where the simulation parameter Nth is the particle
number threshold.

Every RP is associated with a swarm. When a RP j interacts with a particle from
swarm k, we can use the above classification to define interaction regimes: the interaction
operates in themany-particles regime if both swarms j, k aremany-particles swarms, and
in the few-particles regime if at least one swarm of j, k is a few-particles swarm.

We then use the following adaption of the effective RP–swarm collision rate:

λ̃jk “ Njkλpqj ,qkq (3.36)

where we define the swarm multiplicity factor Njk:

Njk :“

#

Nk in the many-particles regime
Nk ´

1`δjk
2 in the few-particles regime

(3.37)

Interactions in the many-particles regime are handled with the conventional RPMC
method:we assume that aRP j always interactswith a non-RP from swarm k. A collision
then alters only the properties of RP j.

If the interaction operates in the few-particles regime, wemake the simplest possible
choice and impose that, in the swarm with fewer particles, all particles operate in ‘lock-
step’, that is, they all do as the RP does, at the same time. Therefore, instead of RP–
swarm interactions, we now consider swarm–swarm interactions. Imposing Nj ď Nk

without loss of generality, the result of the collision is still determined following the
procedure described in Sect. 3.3.5, qj Ñ qcoll, but the swarm massesMj andMk now
grow and shrink as mass is transferred to the swarm with fewer particles:

Mj ÑMj `Njmk , Mk ÑMk ´Njmk . (3.38)

By assumption of Nj ď Nk, the swarm massMk cannot become negative.
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Interactions in the few-particles regime will therefore upset the sampling balance:
as swarm weights change, different RPs represent different fractions of the total mass.
As was argued in Sect. 3.4.1, this does not impair the validity of the simulation, but
it may lead to inefficient use of the available RPs. The particle number threshold Nth

should therefore be chosen as small as possible so that the sampling is not unnecessarily
disequilibrated. At the same time,Nth should be large enough such that, forNk ě Nth,
the simplified RP–swarm collision rate Eq. (3.23), λ̃jk “ Nkλpqj ,qkq, only negligibly
overestimates the RP–swarm collision rate λ̄jk. In our tests we found satisfactory results
withNth „ 10.

This simple prescription allows unconstrained growth in the RPMC method while
conserving mass and keeping the RP count unchanged. However, it has some implica-
tions that are detrimental to our goal of modelling runaway growth processes with high
accuracy. First, unless Nj happens to be a power of 2, swarm self-interaction will still
result in a fractional particle number.More gravely, themethod usually does not resolve
the runaway body individually. Let us consider a swarm j representing the heaviest bod-
ies. By sweeping up smaller particles, the swarm has just become a few-particles swarm,
Nj “ Nth. Let us assume Nth “ 10. The mass of RP j will grow further by coagu-
lation of smaller bodies; but because of the mass transfer precept given in Eqs. (3.38),
the swarm body count will stay the same, Nj “ 10. In other words, we have 10 bod-
ies simultaneously experiencing runaway growth. This is at odds with the mass sepa-
ration characteristic of runaway growth, sometimes paraphrased as ‘the winner takes it
all’. Runaway growth happens when the accretion rate has a superlinear proportional-
ity with mass. Then, the body which first enters the runaway growth regime has the
largest as well as the fastest-growing accretion rate; it will separate from the particle
mass distribution and ‘starve out’ its competitors. Even worse, if bodies in the runaway
regime cannot accrete each other, and their swarms will therefore not self-interact, then
the swarm particle count cannot drop below Nth at all, and runaway bodies will never
be resolved individually.

We therefore relinquish a core property of the RPMCmethod: we allow the number
of RPs to grow. We impose that a swarm j that reaches the particle number threshold,
Nj

� Nth, is split into Nth single-particle swarms. The RP of a single-particle swarm i
withNi “ 1 represents only itself.

To accurately model a runaway process, the initial number of RPs n0 and the parti-
cle number threshold Nth must then be chosen large enough that swarms whose RPs
surpass the critical mass are already resolved individually:

Nthn
0 ą

M

mcrit
. (3.39)

There is still the question of how to handle fractional particle counts. Amany-particles
swarm k becomes a few-particles swarm as the swarm particle count falls to or below
the particle number threshold, Nk ď Nth. This can happen in two different ways: (1)
RP k may grow by accumulating mass through a collision in the many-particles regime
where the swarm mass Mk is conserved, thereby decreasing the swarm particle count
Nk “ Mk{mk; or (2) a few-particles swarm may subtract mass from swarm k through
a few-particles interaction as per Eq. (3.38). In both cases, Nk may end up non-integral.
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Some kind of compromise then has to bemadewhen splitting up swarm k into individual
RPs. Assuming non-integral Nk, some possibilities are: (i) slightly adjusting the mass
mk before the splitting such that Nk becomes an integral number; (ii) splitting up the
swarm to rNks particles, one of which is assigned a slightly lower mass pNk ´ tNkuqmk.
In our implementation we chose the latter option. We argue that, if Nth is chosen large
enough, this adjustment is of negligible significance. Furthermore, the boosting tech-
nique described in the next section will actually make the swarm particle count Nk an
integral number in most situations where a regime transition would occur.

Fragmentation can be another cause of fractional particle counts. Consider a few-
particles swarm j, Nj ď Nth whose representative particle collides with a particle from
some other swarm k, resulting in a distribution of fragment masses. As per Sect. 3.3.5,
a new mass m1j is sampled from the number density distribution of the resulting frag-
ments, while swarm j absorbs the mass of the impacting particles from swarm k as per
Eq. (3.38). The new particle number can then become non-integral, for example if a cra-
tering event leaves the new particle mass m1j only slightly smaller than the combined
mass,m1j “ p1´ ϵqpmj `mkq with ϵ ! 1:

N 1j “
M 1

j

m1j
“

Nj

1´ ϵ
« Njp1` ϵq . (3.40)

This incongruity points at a more severe problem: statistical treatment is not ap-
propriate for fragmentation of individual bodies. As an example, consider the collision
of proto-Earth and a protoplanet called Theia, an event which is hypothesised to have
formed theMoon by cratering. We assume that proto-Earth is represented by RP j with
Nj “ 1. With the collision method discussed above, the mass of proto-Earth and Theia
would be combined into a new unified swarm, and the new mass of its representative
body would be chosen from the distribution of the fragments as either cratered proto-
Earth (most likely), theMoon (with a chance of 1 : 82), or debris (unlikely). The collision
would thus likely result in a swarm of 1.0123 Earth-mass planet(s) or, on rare occasions,
82Moons. This is clearly meaningless and wrong.

To ameliorate this we suggest, for non-coagulating collisions involving self-repre-
senting RPs, to decree that every fragment whose mass exceeds a certain thresholdmth

be represented individually, and therefore to add new RPs to the simulation as required.
From the sub-mth end of the fragment distribution one can then sample one or more
statistically representative fragments as RPs. With this approach, the collision of proto-
Earth and Theia would result in two self-representing RPs of Earth andMoon mass and
one or more RPs representing a swarm of debris.

3.4.4 Boosting

Despite tracking only a small subset of the particles, the simulation still models ev-
ery single interaction of the representative particles. For wide distributions of particle
masses, this is a severe constraint on the efficiency of the simulation. For example, as-
sume that a boulder with a mass of 1 000 kg accretes pebbles of mass 1 g. To grow to
twice its initial mass, the boulder must accrete 106 pebbles, and each interaction is mod-
elled as a separate RPMC event, which slows down the simulation tremendously. This
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problem was noted by Zsom and Dullemond (2008, §2.3), who proposed to group ac-
cumulation events of small particles together, effectively decreasing the collision rate
while proportionally increasing the gain of mass during an individual event. We now
introduce a formalised version of this boosting procedure.

3.4.4.1 Grouping interactions

To overcome the inefficiency inherent in a method that tracks every individual collision
event, we want to group together similar events. To this end, we introduce a boost factor
βjk for interactions between RP j and swarm k. If the collision can be assumed to lead
to ‘hit-and-stick’ coagulation, the collision rate λ̃jk from Eq. (3.36) is substituted with
the boosted collision rate

λ̃bjk “ Nb
jkλpqj ,qkq , (3.41)

where we defined the boosted swarm multiplicity factor

Nb
jk :“ β´1jk Njk , (3.42)

and the mass transferred to the RP during a collision then is

mj Ñ m1j “ mj ` βjkmk . (3.43)

For interactions in the few-particles regime, we again impose Nj ď Nk without loss of
generality. During a boosted coagulation, mass is then transferred between swarms j
and k as per

Mj ÑM 1
j “Mj ` βjkNjmk ,

Mk ÑM 1
k “Mk ´ βjkNjmk . (3.44)

It is clear that

βjk ě 1 (3.45)

must hold, where βjk “ 1 neutralises the boosting effect. In the following we discuss
further constraints for βjk, and how a suitable boost factor can be determined while
obeying these constraints.

3.4.4.2 Constraining the boost factor

Zsom and Dullemond (2008) propose to set a mass accumulation threshold qm :“
δm{m and choose the boost factor such that each collision event grows the mass of the
larger particle by at least qm. For example, if we wanted to accept a relative mass gain of
5% during a single collision event, we would set qm “ 0.05 and choose an initial boost
factor of

β0jk :“ qm
mj

mk
. (3.46)
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The boost factor βjk is subject to additional constraints. If the collision operates in
the many-particles regime, growth by coagulation will decrease the number of particles
in swarm j as the mass of its RP grows,

N 1j “
M 1

j

m1j
“

Mj

mj ` βjkmk
. (3.47)

To avoid an abrupt ‘regime change’, we would like to avoid boosting collisions such that
the swarmparticle count falls below the particle number threshold, and hencewe require
N 1j ě Nth, which implies the constraint

βjk ď
mj

mk

ˆ

Nj

Nth
´ 1

˙

. (3.48)

For the few-particles regime, we had imposedNj ď Nk without loss of generality. This
allowed us to pretend that all particles in a swarm j grow by accumulating one particle
from swarm k each. When introducing a boost factor, we must ensure that the new
swarmmassM 1

k remains a non-negative value; hence it follows from Eq. (3.44) that the
boost factor must satisfy

βjk ď
Nk

Nj
. (3.49)

An interaction in the few-particles regime may change the mass of swarm k. If swarm k
is a many-particles swarm, the loss of mass might push its swarm particle count N 1k “
Nk ´ βjkNj belowNth, which we again want to avoid:

βjk ď
Nk ´Nth

Nj
. (3.50)

However, we want to allow for the depletion of a many-particles swarm, and thus apply
this constraint only if the swarm would not be depleted because βjk ă Nk{Nj .

To summarise, closed-form expressions for the boost factor can be given as

βjk “ max

"

1,min

"

β0jk,
mj

mk

ˆ

Nj

Nth
´ 1

˙**

(3.51)

for interactions in the many-particles regime, and as

βjk “

$

’

’

&

’

’

%

max
!

1,min
!

Nk´Nth
Nj

, β0
jk

))

ifNk ą Nth and β0jk ă
Nk
Nj

Nk
Nj

ifNk ą Nth and β0jk ě
Nk
Nj

1 ifNk ď Nth

(3.52)

for interactions in the few-particles regime.

3.4.4.3 Boosting and fragmentation

The boost factor effectively groups particles together before having themaccreted. Boost-
ing is therefore not directly applicable if collisions lead to other outcomes, such as pul-
verisation or cratering. Depending on the sophistication of the fragmentation model
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used, a given collision may lead to either coagulation or fragmentation with a certain
probability, or only a fraction of the combined mass is shattered to smaller pieces. For
an overview of the findings of laboratory studies of dust coagulation and fragmentation,
see Güttler et al. (2010); Blum (2018).

A simple way of keeping the benefits of boosting while allowing for fragmentation
is to exploit the probabilistic nature of the simulation. When simulating a collision, the
new mass of the RP is chosen randomly by sampling the fragment mass distribution as
explained in Sect. 3.3.5. If a fraction p1´ffragq of the total mass remains in one cohesive
body, then the probability that thismassive body is chosen as the RP is p1´ffragq. Equiv-
alently, one could say that the collision rate λ̃jk is decomposed in two contributions for
fragmentation and for coagulation,

λ̃jk “ ffragλ̃jk ` p1´ ffragqλ̃jk . (3.53)

A boost factor is then applied only to the partial collision rate corresponding to coagula-
tion:

λ̃bjk “ ffragλ̃jk ` β
´1
jk p1´ ffragqλ̃jk . (3.54)

Boosting decreases the effective collision rate, hence the likelihood ffrag that the RP is
sampled from the mass distribution of fragments must increase:

ffrag Ñ
ffrag

ffrag ` β
´1
jk p1´ ffragq

“: fbfrag . (3.55)

Bukhari Syed et al. (2017) shows that the transition from bouncing to fragmentation
is smooth: the mass of the largest remaining fragment

m1max “ p1´ ffragqpmj `mkq , (3.56)

which is equal to the mass of the heavier particle in the case of bouncing, m1max “

max tmj ,mku, continuously decreases as the kinetic impact energy increases. If the
swarm particle k is much lighter than RP j, mk ! mj , a large number of cratering im-
pacts are required to effectuate a significant change in the mass of the largest fragment.
Similar to coagulation events, we can also group cratering events together by generalis-
ing the initial boost factor (Eq. (3.46)) and boosted mass transfer (Eq. (3.43)) as

β0jk :“ qm
mj

|δm|
, (3.57)

mj Ñ m1j “ mj ` βjkδm , (3.58)

where the transferred mass is given as

δm :“ p1´ ffragq pmj `mkq ´mj . (3.59)

3.5 Validating the statistical balance

The RPMC method is asymmetric at its core: when operating in the many-particles
regime, it is assumed that a RP always interacts with a non-RP, and hence only the
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properties of the RP are changed. This asymmetry seems natural in the atomistic picture
illustrated in Sect. 3.2. However, in the RP–swarm picture, correctness is not obvious.
Consider the grains-and-boulders example originally given in Zsom and Dullemond
(2008, §3.1). We have an initial ensemble of particles with only two different masses:
N0

B heavy bodies with massm0
B, henceforth called boulders, andN0

g light particles with
mass mg ă m0

B, from now on referred to as grains. We assume that mass is the only
relevant particle property. We further assume that collisions are always of the hit-and-
stick type, and that they happen only between boulders and grains. Because boulders do
not collide with each other, their number cannot decrease. Likewise, because grains do
not suffer mutual collisions, they cannot grow. Therefore, the number of boulders must
remain invariant as they grow by accreting grains. In the RP–swarm picture, when a
grain-mass RP hits and accretes a boulder, its entire swarm is converted to boulders,
causing a sudden increase in the number of boulders. Conversely, when a boulder-mass
RP j accretes a grain, its mass grows,mj Ñ mj `mg, but the mass of its swarm is not
changed,Mj ÑMj . Therefore, the number of boulders in the swarm Nj “Mj{mj de-
creases,Mj{mj ÑMj{pmj`mgq. This section will formally prove that, for the specific
case of the grains-and-boulders example, the two effects indeed cancel statistically.

3.5.1 Grains and boulders

We first define the collision rate as

λpm,m1q “

$

’

&

’

%

Λpm,m1q min tm,m1u ă m0
B and

max tm,m1u ě m0
B

0 otherwise,
(3.60)

where the mutual collision rate Λpm,m1q is an arbitrary commutative function of the
massesm,m1. Boulders can therefore collide with grains, but collisions among boulders
and among grains are suppressed.

Let us now represent this system by a selection of n “ ng`nB RPs, ng of which rep-
resent the grains, and nB represent the boulders. For notational convenience, we group
the RP indices in two index sets Ig and IB at any given time t, where Ig holds the indices
of the grain-mass RPs, and the indices in IB refer to boulder-mass RPs:

Ig :“
␣

i P t1, . . . , nu : mi ă m0
B

(

,

IB :“
␣

j P t1, . . . , nu : mj ě m0
B

(

. (3.61)

In the RPMC simulation, the total number of grainsNg and total number of boulders
NB are given by

Ng “
ÿ

iPIg

Ni , NB “
ÿ

jPIB

Nj . (3.62)

With themutual collision rate between a boulder j and a grain conveniently abbreviated
as

Λj :“ Λpmg,mjq , (3.63)
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we find the RP–swarm collision rates of Eq. (3.23) to be

λ̃ij “ NjΛj “: λ̃gj ,

λ̃ji “ NiΛj (3.64)

and the cumulative collision rates of Eq. (3.24) to be

λ̃i “
ÿ

j1PIB

Nj1Λj1 ” NBxΛyB “: λ̃g ,

λ̃j “ NgΛj “: λ̃B,j , (3.65)

where i P Ig and j P IB, and where we defined the RP–swarm collision rate λ̃gj for any
grain-mass RP with boulder swarm j, the cumulative grain-mass RP collision rate λ̃g,
and the cumulative RP collision rate λ̃B,j for boulder-mass RP j. The boulder average
xXyB of a particle-specific quantityXj was defined as

xXyB ”
1

NB

ÿ

jPIB

NjXj . (3.66)

A grain-mass RP can collide with a boulder, but it thereby turns into a boulder-mass
RPwhich cannot collidewith boulders anymore by choice of the collision rate function in
Eq. (3.60). For a collision rate λ̃g, the probability that a given grain-mass RP has suffered
a collision with a boulder during time∆t is given by the exponential distribution

P pλ̃g∆tq “ 1´ e´λ̃g∆t . (3.67)

The expected number of grains at time t`∆t is therefore

E
“

N 1g
‰

“
ÿ

iPIg

e´λ̃g∆tNi

“ Ng ´ λ̃gNB∆t`Op∆t2q . (3.68)

In the limit of∆tÑ 0, this yields

dNg

dt
“ lim

∆tÑ0

E
“

N 1g
‰

´Ng

∆t
“ ´λ̃gNB , (3.69)

which is equivalent to Eq. (3.112) of the analytical model.

The RPMC method keeps swarm masses constant, M 1
j “ Mj . In the swarms that

already had bouldermass at time t, the number of bouldersmust therefore decrease over
a duration∆t:

E
“

N 1BÑB

‰

“
ÿ

jPIB

E

«

M 1
j

m1j

ff

“
ÿ

jPIB

MjE
“

pm1jq
´1
‰

. (3.70)
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Growth of boulders is a Poisson point process, so for a boulder-mass RP j P IB with
massmj at time t we have

E
“

pm1jq
´1
‰

“

8
ÿ

k“0

Poiskpλ̃B,j∆tq

mj ` kmg

“
1

mj

ˆ

1´ λ̃B,j∆t
mg

mj `mg

˙

`Op∆t2q , (3.71)

and withMj “ Njmj , Eq. (3.70) evaluates to

E
“

N 1BÑB

‰

“
ÿ

jPIB

Nj

ˆ

1´ λ̃B,j∆t
mg

mj `mg
`Op∆t2q

˙

“ NB ´Ngmg∆t
ÿ

jPIB

NjΛj

mj `mg
`Op∆t2q . (3.72)

At the same time, some of the grain-mass swarms become boulder-mass swarms after
their RP hits a boulder and becomes part of it. The chance for a grain-mass RP i P Ig to
collide with a boulder is again given by the exponential distribution given in Eq. (3.67),

P piq ” P pλ̃g∆tq “ λ̃g∆t`Op∆t2q . (3.73)

Given that RP i undergoes a collision with a boulder, we now need to determine which
boulder will be its collision partner. Because the collision rate is independent of the boul-
der mass, every boulder has the same chance of colliding with the given grain-mass RP
i. The chance P pj|iq that RP i collides with a boulder from swarm j P IB is therefore
given by the relative collision rate of a given grain with swarm j,

P pj|iq ”
λ̃gj

λ̃g
“

NjΛj

NBxΛyB
. (3.74)

If RP i collides with a boulder from swarm j, its entire swarm is converted to a swarm
of boulders. The swarm mass remains the same, M 1

i “ Mi, while the grain RP sticks
to the boulder and thereby grows to the massmg `m

1
j by time t`∆t. The number of

boulders in the new swarm will thus be

E
“

N 1i
‰

“ E

«

M 1
i

mg `m1j

ff

“MiE
“

pmg `m
1
jq
´1
‰

“
Mi

mg `mj
`Op∆tq . (3.75)

The total number of boulders in the swarms which were composed of grains at time t
but have been converted to boulders by time t`∆t is therefore

E
“

N 1gÑB

‰

“
ÿ

iPIg

P piq
ÿ

jPIB

P pj|iqE
“

N 1i
‰

“ ∆t
ÿ

iPIg

ÿ

jPIB

Nj
MiΛj

mj `mg
`Op∆t2q . (3.76)
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Noting that
ÿ

iPIg

Mi “ Ngmg , (3.77)

we find

E
“

N 1gÑB

‰

“ Ngmg∆t
ÿ

jPIB

NjΛj

mj `mg
`Op∆t2q . (3.78)

We then obtain the expected total number of boulders at time t ` ∆t by summing up
the two contributions in Eqs. (3.72) and (3.78). The contributions cancel exactly to first
order in∆t:

E
“

N 1B
‰

“ E
“

N 1BÑB

‰

` E
“

N 1gÑB

‰

!
“ NB `Op∆t2q . (3.79)

The RPMC method can thus be expected to keep the number of bouldersNB invariant,

dNB

dt
“ lim

∆tÑ0

ErN 1Bs ´NB

∆t
!
“ 0 . (3.80)

This result demonstrates in the RP–swarm picture that the two paradoxical proper-
ties exactly cancel, and that theRPMCmethod is statistically correct. It is worth pointing
out that not only the totality of dNB{dt vanishes, but for every individual j P IB, the
corresponding summands in Eqs. (3.72) + (3.78) cancel out. In other words, every swarm
of boulders maintains its own statistical balance with the totality of grains.

3.5.2 Mutating swarm masses

As pointed out in Sect. 3.4.1, it is reasonable to have each RP i represent approximately
the same relative massMi « M{n, whereM is the total mass in the system. But our
formal definition of the RPMCmethod does not impose any assumptions on the values
of swarm massesMi. This is crucial because the extension of the method presented in
Sect. 3.4.3 transfersmass between swarms. Specifically, in an interaction that operates in
the few-particles regime, a few-particles swarm – usually a single-particle swarm –may
removemass from amany-particles swarm. In the following we argue that this does not
affect the statistical balance of the method.

It should first be noted that the statistical balance only concerns many-particles
swarms, as only interactions between many-particles swarms operate in the asymmet-
ric many-particles regime. To incorporate the effect of mass transfers, we admit that the
massMi of any many-particles swarm i may be changed by an external source or sink
modelled as

dMi

dt
“Mifpmi, tq , (3.81)

where the continuous function fpm, tq is the expected relative inflow/outflow rate of
particles of mass m at time t. We justify this approach by arguing that, if k is a many-
particles swarm and j is a single-particle swarm, we haveNj “ 1 andNk ą Nth, hence
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Nj ! Nk, and therefore the change Nk Ñ Nk ´ 1 is small enough to be modelled as a
continuous process.

With the source or sink model of Eq. (3.81), swarm massM 1
i at time t `∆t can be

expanded as

E
“

M 1
i

‰

“Mi ` fpmi, tq∆t . (3.82)

This leads to a first-order deviation fromNg andNB during time increment∆t,

E
“

N 1g
‰

“ Ng `Ng

´

fg ´ λ̃g

¯

∆t`Op∆t2q , (3.83)

E
“

N 1B
‰

“ NB `NB xfyB∆t`Op∆t2q , (3.84)

where the grain inflow rate fg and the mean boulder inflow rate xfyB are defined as

fg ” fpmg, tq , xfyB ”
1

NB

ÿ

jPIB

Njfpmj , tq . (3.85)

Any influence of inflow or outflow on the mass transfer terms in Eqs. (3.72) and (3.76)
is of second order in∆t and hence does not upset the balance of Eq. (3.80). We also find

dNg

dt
“ Ng

´

fg ´ λ̃g

¯

, (3.86)

dNB

dt
“ NB xfyB , (3.87)

which is equivalent to the result found by adding the source or sink term to the analytical
model discussed in Appendix 3.B.

3.6 Numerical tests

To assess the correctness and applicability of the improved RPMC method, we run a
series of numerical tests which can be grouped in three parts.

In Sect. 3.6.1, we first simulate two well-known coagulation kernels for which ana-
lytical solutions are available, the constant and the linear kernel, leading to self-similar
mass distributions. Equivalent tests were already conducted in Zsom and Dullemond
(2008); we additionally verify that unequal samplings of themass leave the result unim-
paired as claimed in Sect. 3.4.1.

Second, in Sect. 3.6.2 we study the transition to the few-particles regime and the
simulation of runaway growth. A full-scale non-representative Monte Carlo simulation
of the constant kernel is compared to a simulation with the extended RPMC method.
We also study runaway growth by simulating the product kernel, a test kernel with an
analytical solution available which develops a very sharp runaway characteristic. Third,
we test a runaway kernel that mimics gravitational focussing, finding no effect of the
simulation parameters on the evolution of themass distribution as long as the resolution
criterion in Eq. (3.39) is met.

Third, in Sect. 3.6.3 we adopt two variants of the grains-and-boulders example given
by Zsom andDullemond (2008) for which analytical predictions can bemade.We study
how well the RPMCmethod retains the statistical balance depending on the number of
RPs used.
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Figure 3.2: Analytical solutions and RPMC simulations for standard coag-
ulation tests: (a) constant kernel λpm,m1q “ Λ “ const; (b) linear kernel
λpm,m1q “ Λ0 pm`m

1q.
The RPMC simulation runs use n “ 1 024 RPs.

3.6.1 Self-similar solutions

The constant kernel

λpm,m1q “ Λ “ const (3.88)

and the linear kernel

λpm,m1q “ Λ0 pm`m
1q (3.89)

are well-known special cases of the Smoluchowski equation Smoluchowski (1916)

B

Bt
fpm, tq “ ´fpm, tq

ż 8

0
dm1λpm,m1qfpm1, tq

`
1

2

ż m

0
dm1λpm1,m´m1qfpm1, tqfpm´m1, tq , (3.90)

an integrodifferential equation for the number density distribution fpm, tq which de-
scribes coagulation processes in a continuous mass distribution. The first term repre-
sents the loss of particles at mass m due to coagulation with other particles, while the
second term describes the gain of particles by coagulation of massesm1`pm´m1q “ m.

The results for a standard equal-mass sampling,Mk “M{n@k, are shown in Fig. 3.2,
finding very good agreement with the analytical solutions, which are summarised in
Appendix 3.A. The same tests were re-run with heterogeneous swarm mass samplings.
For the constant kernel, swarmmasses were drawn from the log-normal swarm number
density distribution

fpM 1q9 exp

„

´
plogM 1 ´ µq2

2σ2

ȷ

, (3.91)

where we identified σ ” µ{20 and chose µ such that the mean of the distribution is
exppµ ` σ2{2q “ M{n. The samples Mk were normalised such that

ř

kMk “ M “

55



3. AN IMPROVED REPRESENTATIVE PARTICLE MONTE CARLO METHOD

1020 held exactly. A log-space distribution was chosen because we wanted to assess the
resiliency of themethodnot only to small variations in swarmmass;with the log-normal
distribution given, swarmmasses span several orders ofmagnitude. For the linear kernel
test, we sampled the RPmassesmk from the initial particle number density distribution
fpm, 0q in Eq. (3.100) and then chose a constant swarm particle count Nk ” N @k
such that

ř

kmkNk “ N
ř

kmk “ M “ 1018: instead of an equal-mass sampling,
we chose an equal-count sampling of swarm masses. While this was done mainly for
reasons of simplicity, the resulting swarm mass distribution also spans a few orders
of magnitude. Both simulations yielded results not significantly different from those
obtained with equal-mass samplings, demonstrating that the RPMCmethod works well
despite considerable variations of swarm masses. The results are not shown separately
because they are visually indiscernible from those in Fig. 3.2.

3.6.2 Regime transition and runaway growth

To quantify how well the regime transition works, we study three scenarios. First, we
again run a simulation with the constant kernel in Eq. (3.88), but we let it run until all
mass is concentrated in a single particle.Wenote that the analytical solution in Eq. (3.99)
is not applicable in this case because it is a solution to the continuous Smoluchowski
equation (Eq. (3.90)), which approximates discrete coagulation processes only for par-
ticle number densities much greater than unity, fpm, tq " 1. Instead, we run a fiducial
simulation of n “ 108 RPs with swarm particle counts Nk “ 1@k – that is, every RP
only represents itself – and compare this to a regular RPMC simulation with n “ 1 024
RPs that transition into the few-particles regime as they grow. As can be seen in Fig. 3.3,
the two simulation runs are in good agreement.

Next, we study the product kernel

λpm,m1q “ Λ0mm
1 . (3.92)

The coagulation process produces a runaway particle at dimensionless time η “ 1. The
analytical solution for the product kernel is discussed in Appendix 3.A.

In Fig. 3.4 we compare the particle number density of the analytical solution in
Eq. (3.107) to an RPMC simulation with n “ 2 048RPs, finding good agreement even in
the runaway regime at η ą 1. The figure can be directly compared to Fig. 5 in Ormel and
Spaans (2008). Fig. 3.5, which is modelled after Fig. 2 in Wetherill (1990), shows the
analytical prediction for the number of particles, the mass of small bodies, and the mass
of the runaway particle. The runaway particle mass produced by the RPMC simulation
is also shown and in good agreement with the prediction.

In our third test of runaway growth, we use a collision kernel inspired by gravita-
tional focussing (cf. e.g. Armitage, 2017, §III.B.1): ,

λpm,m1q “ Λ0maxtm,m1u2{3

«

1`

ˆ

maxtm,m1u

mth

˙2{3
ff

(3.93)

with some constant coefficientΛ0 and a threshold massmth. The collision rate therefore
scales withm2{3 for masses belowmth and withm4{3 for masses above, which implies
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Figure 3.3: Transition into the few-particles regime for the constant kernel
Eq. (3.88): (a) Fiducial non-representative Monte Carlo simulation with
n “ 108 particles; (b) RPMC simulation with n “ 1 024 RPs; (c) mean
mass xmy and relative mass spread

a

xm2y{xmy2 ´ 1 of both simulations
in comparison.
The discontinuities in (a) at t “ 102 are an aliasing effect caused by his-
togram binning. (a) and (b) show snapshots of a single simulation, while
(c) shows results averaged over 10 runs, with statistical error bounds indi-
cated the by dashed curves.

that particles above the threshold mass sweep up mass much more efficiently. As with
any power-law collision rate, we expect the initial mass distribution to relax to a self-
similar state while in the9m2{3 regime. As the largest particles approach the threshold
mass, we expect them to start ‘running away’, making the mass distribution bimodal.
Finally, the most massive particle will end up accumulating all the remaining mass.

Results are given in Fig. 3.6, confirming our expectations: the initial distribution
quickly becomes self-similar and stays that way until t „ 30. After the higher-mass end
of the distribution exceeds the threshold massmth “ 107, a second peak starts to form,
clearly visible at t “ 50. At t “ 60 the runaway particles are already depleting the tail
end of the mass distribution, and almost all mass has concentrated in a single particle
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Figure 3.4: Particle mass density at different times for the product kernel
coagulation test, compared to the analytical solution in Eq. (3.107) (solid
curves).
The RPMC simulation uses n “ 2 048 particles and different values of the
particle number threshold: (a) Nth “ 1; (b) Nth “ 10. The results shown
were averaged over 5 runs, with a standard deviation indicated by the error
bars.

by t “ 80. We find no notable sensitivity to the number of RPs as long as the resolution
criterion Eq. (3.39) is satisfied.

3.6.3 Grains and boulders

We simulate the grains-and-boulders example introduced and analysed in Sect. 3.5 to
validate the results and to confirm that statistical balance is indeed retained. We first
consider a mass-independent mutual collision rate,

Λpm,m1q “ Λ0 (3.94)

with some constant Λ0. An analytical prediction for the expected mean boulder mass
xmyB and its standard deviation σmB is developed in Appendix 3.B. It is shown for differ-
ent initial conditions in Fig. 3.7. The model was then simulated with the RPMCmethod
for the same set of initial conditions; results are given in Fig. 3.8. We observe very good
agreement with the analytical prediction.

Boulders remain boulders after a hit-and-stick collision with a grain. The number of
boulders therefore cannot change, dNB{dt “ 0, and thus

NB “ N0
B . (3.95)

When simulating an ensemble of grains and boulders with the RPMCmethod, the num-
ber of boulders is

NB “

n
ÿ

j“1
mjěm

0
B

Mj

mj
. (3.96)
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Figure 3.5: Fraction of particle mass in the runaway particle for the product
kernel coagulation test, compared to the analytical solution in Eq. (3.107)
(solid curves).
The RPMC simulation uses n “ 2 048 particles and different values of the
particle number threshold: (a) Nth “ 1; (b) Nth “ 10. The results shown
were averaged over 5 runs, with a standard deviation indicated by the error
bars.

If the simulation operates in the many-particles regime, the swarm massesMj do not
change. Therefore, as boulder-mass RPs grow, the number of boulders per swarmNj “

Mj{mj decreases. At the same time, some grain-mass RPs collide with a boulder and
therefore become boulder-mass RPs. Both effects contribute to the sum in Eq. (3.96),
and as argued before we expect them to cancel exactly.

Fig. 3.9a visualises this statistical balance. As can be seen, the two contributions
operate on slightly different timescales. It is more likely for a boulder to hit a grain than
for a grain to hit a boulder; but when a boulder-mass RP accumulates a grain, it just
grows a little and thus represents slightly fewer boulders than before, whereas a grain-
mass RP that hits a boulder will instantly convert its entire swarm to boulders, causing
a surge in total boulder count. We can observe the relative smoothness of the particle
number decay as well as the more erratic particle number growth in Fig. 3.9a.

We naturally expect the resolution of the simulation to improve if we add more RPs.
The influence of the number of RPs on the accuracy of the result is studied in Fig. 3.9b
for different RP counts. The statistical precision of the final boulder mass is estimated as
the standard deviation of the final masses in repeated runs of the simulation and shown
as error bars around the mean value. We find it to be insensitive to the particle mass
ratio m0

B{mg. However, the physical spread of the mass distribution, whose standard
deviation is visualised as a filled area, does depend on the particle masses and the total
masses as predicted by Eq. (3.124),

σ8mB

m0
B

” lim
tÑ8

σmB

m0
B

“

ˆ

M0
B

M0
g

m0
B

mg

˙´1{2

. (3.97)

The larger the ratiosM0
B{M

0
g andm0

B{mg, the smaller the physical spread σmB .
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Figure 3.6: RPMC simulation with the runaway collision rate in Eq. (3.93),
a dimensionless threshold mass ofmth “ 107 (indicated by dotted red hor-
izontal line in (b)), a total mass ofM “ 1010, a homogeneous swarm mass
distribution, a particle number threshold ofNth “ 20, and n “ 2 500 RPs.
Every individual swarm i has mass Mi “ M{n; particles are resolved in-
dividually once they grow beyond the mass M{pnNthq (indicated by the
dashed orange horizontal line in (b)). Each panel shows a time series of
histograms. The mass-weighted particle number density is shown on the
vertical axis of (a), whereas in (b) the mass-weighted histogram bin counts
are colour-encoded on a logarithmic scale, and the mass of the runaway
particle is shown separately (red curve). Histogram bin counts and mass of
runaway particle are averaged over 10 runs, the error bounds of the run-
away particle being indicated by red dashed curves.

Next, we consider a mutual collision rate linearly correlated to mass,

Λpm,m1q “ Λ0

`

m`m1
˘

(3.98)

with some constant Λ0. Fig. 3.10 compares the analytical prediction of the average boul-
der mass xmyB and its standard deviation σmB derived in Appendix 3.B to an equivalent
RPMC simulation, finding very good agreement.

3.7 Discussion

The proposed extensions to the RPMC method are strictly additive in the sense that
they do not change how the method operates in the many-particles regime to which
the original RPMC method was constrained. As such, the considerations of Zsom and
Dullemond (2008, §3.2) with regard to the required number of representative particles
continue to apply. In §3.3 of the same paper, two main limitations of the method are
discussed. The first limitation – that swarms must consist of many particles – is over-
come by our extension, but the other – that, as an explicit method, the RPMC method
is ill-suited for simulating ‘stiff’ problems in which two adverse effects nearly balance
each other – remains and is in fact aggravated by our extension of the method. When
following the traditional implementation strategy, the variability of the number of repre-
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Figure 3.7: Analytical solution given in Eqs. (3.122, 3.118) to the grains-and-
boulders model introduced in Sect. 3.5 for different boulder–grain particle
mass ratios: (a) total number of grainsNg; (b) expected bouldermass xmyB.
The total mass ratio of grains and boulders isM0

B{M
0
g “ 1{6, so boulders

are expected to grow to 7 times their initial mass, as indicated by the hori-
zontal black line. The horizontal axes refer to dimensionless time τ “ ΛN0

g t.
In (b), the filled area indicates the physical spread σmB of the mass distri-
bution given by Eq. (3.124).

sentative particles in the extended method adds substantially to the computational cost;
however, in Chapter 4 we devise a different implementation strategy which is much less
sensitive to the number of RPs.

3.7.1 Limitations

The original RPMCmethodwas notwell-suited to simulate systems inwhich two strong
effects nearly balance each other, leading only to a small net change. As an example,
Zsom and Dullemond (2008, §3.3) suggests a system in which coagulation and frag-
mentation processes lead to a ‘semi-steady state’ in which particles grow and fragment
many times, and explains that, as an explicit method, the RPMCmethod must simulate
the individual growth and fragmentation processes, rendering the problem ‘stiff’. This
limitation is not removed by our extension of the method, and can in fact be further
aggravated by it: If a RP in such a system grows large enough that its swarm particle
count falls below the particle number thresholdNth, it will be split up to individual RPs.
If all of these RPs subsequently fragment to small particles which then recommence the
growth cycle, the number of RPs will steadily grow while the particle number distribu-
tion remains stable.With an ever-increasing number of RPs, the simulation will quickly
exceed its computational resources.

The root of this problem is an asymmetry in our extension of the method: we split
up swarms as their particle mass grows larger, but we never merge multiple swarms
into one. Unlike splitting, which can be done without consequences for the statistical
outcome of the simulation, merging usually entails a loss of information because the
particle properties qj , qk of two swarms j, k to be merged will rarely be exactly identi-
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Figure 3.8: RPMC simulation of the grains-and-boulders model introduced
in Sect. 3.5 for different boulder–grain particle mass ratios for comparison
with Fig. 3.7: (a) total number of grainsNg; (b) average boulder mass xmyB.
The simulation uses n “ 1 792 RPs divided into nB “ 256 boulder-mass
RPs and ng “ 6nB “ 1 536 grain-mass RPs with equal-weight swarms,
Mi “ Mj @i, j P t1, . . . , nu, and an initial number of N0

g “ 108 grains.
The boulder masses in (b) are averaged over 10 consecutive runs; the filled
area indicates the physical spread σmB of the mass distribution, and the
error bars indicate the standard deviation of the mean boulder mass over
10 runs. The horizontal black line indicates the expected final boulder mass
m8B “ 7m0

B.

cal, and hence have to be averaged over in some way. A merging step was omitted for
simplicity, and because it was deemed unnecessary for our main goal in extending the
method, which is to simulate planetesimal growth to and beyond the runaway growth
regime. However, there is nothing fundamentally precluding a merging step in the sim-
ulation, and such an addition would indeed be necessary before the method can be used
to simulate semi-steady processes (whichwould however retain their stiffness evenwith
merging).Mergingwas an integral part of theMonte Carlomethod ofOrmel and Spaans
(2008); in this method, different ‘species’ (the semantic equivalent of swarms in the
RPMC method) could be merged by averaging their properties. A concrete example of
such a merging prescription is given in Krijt et al. (2015, §3.4). A similar approach could
in principle be incorporated into the RPMC method.

3.7.2 Computational cost

It was mentioned that a growing number of RPs may significantly increase the com-
putational cost of the simulation. In the traditional implementation described in Zsom
and Dullemond (2008), n2 RP–swarm interaction rates must be computed, stored, and
updated for n RPs. Each time a swarm is split up into Nth individual RPs, this cost in-
creases accordingly. Chapter 4 explores an alternative sampling method which avoids
computing all n2 RP–swarm interaction rates. Using a bucketing scheme, this alterna-
tive sampling methodmakes the computational cost less sensitive to the number of RPs
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Figure 3.9: Further analysis of the RPMC simulation of the grains-and-
boulders model: (a) contributions to dNB{dt: dNgÑB{dt (solid curve),
´dNBÑB{dt (dashed curve); (b) statistics of final boulder mass m8B as a
function of RP count n: standard deviation of the mean over 10 runs (error
bars) and physical spread σmB (filled area).
Simulation parameters as in Fig. 3.8. In (a), the full n “ 1 792 RPs were
used; in (b), the number of RPs was varied. n was divided into nB boulder-
mass RPs and ng “ 6nB grain-mass RPs with equal-weight swarms,Mi “

Mj@i, j P t1, . . . , nu. The horizontal black line indicates the expected final
boulder massm8B “ 7m0

B.

n and more dependent on the breadth of the occupied subspace of the parameter space
Q, and thereby makes the improved RPMC method computationally viable.

3.7.3 Boosting

In Sect. 3.4.4, a boosting scheme was proposed to ensure efficient simulation of growth
processes where large bodies accrete large amounts of small bodies. Although an intu-
itive justification for the approach was given, it remained unclear how it impacted the
statistical result of the simulation. This impact can be studied by means of the grains-
and-boulders example:

In Sect. 3.6.3, we studied the influence of the boulder–grain mass ratio m0
B{mg

on the simulation outcome. We predicted (cf. Fig. 3.7) and confirmed numerically (cf.
Fig. 3.8) a spread of the final boulder mass that was anticorrelated with the boulder–
grain mass ratiom0

B{mg. Now, a boost factor βjk ą 1 would be equivalent to accreting
more massive grains with a lower collision rate, and the effect of boosting is therefore
quantitatively similar to the spread of the final boulder mass distribution in Eq. (3.97).
Although the spread of the mass distribution increases as the boulder–grain mass ratio
is increased, it was found that the fidelity of the RPMCmethod, quantified by the uncer-
tainty of the expected final boulder mass, did not depend on themass ratio (cf. Fig. 3.8b).
Analogously, boosting seems justifiable provided that the spread of the mass distri-
bution incurred does not exceed the desired precision of the result. This requirement
may be significant when dealing with sharply peaked distributions as in the grains-and-
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Figure 3.10: Average boulder mass xmyB and the physical spread σmB

for a mass-dependent collision rate Λpm,m1q “ Λ0 pm ` m1q for differ-
ent boulder–grain particle mass ratios: (a) analytical model as given by
Eqs. (3.126, 3.128); (b) RPMC simulation.
The simulation uses n “ 1 792 RPs divided into nB “ 256 boulder-mass
RPs and ng “ 6nB “ 1 536 grain-mass RPs with equal-weight swarms,
Mi “ Mj@i, j P t1, . . . , nu. The boulder masses in (b) are averaged over
10 consecutive runs; the filled area indicates the physical spread σmB of the
mass distribution, and the error bars indicate the standard deviation of the
mean boulder mass over 10 runs. The horizontal black line indicates the ex-
pected final boulder mass m8B “ 7m0

B. The total mass ratio of grains and
boulders is M0

B{M
0
g “ 1{6, so boulders are expected to grow to 7 times

their initial mass, as indicated by the horizontal black line. The horizontal
axes refer to dimensionless time τ “ ΛN0

g t.

boulders example, but it becomesmuch less restricting for ensembles with a broadmass
distribution such as the standard coagulation tests (cf. Fig. 3.2) which were conducted
with a mass accumulation threshold of qm “ 5%, leading to no significant deviation
from analytical predictions.

3.7.4 Avoiding non-integral particle numbers

As mentioned in Sect. 3.4.3, non-integral swarm particle counts Nk pose a challenge
when swarms become few-particles swarms and are thus split up to individual RPs. We
note that the boost factor implicitly helps mitigating this problem. A many-particles
swarm can become a few-particles swarm in two scenarios: (1) by accumulating mass
through a collision in the many-particles regime, or (2) by losing mass through a colli-
sion in the few-particles regime. Eq. (3.48) constrains the boost factor such that, in sce-
nario (1), the new swarmparticle count does not fall below the particle number threshold,
N 1j ě Nth, thus obtaining a ‘precision landing’ ofN 1j “ Nth if permitted by the other con-
straints. For the few-particles regime, by exhausting the constraint βjk ď Nk{Nj given
in Eq. (3.49) we can let swarm j deplete swarm k completely by choosing βjk “ Nk{Nj ,
again if permitted by the other constraints.
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3.8 Summary and conclusions

We have presented a method for stochastic simulation of particle–particle interactions.
Themethod builds upon theRPMCmethod introduced byZsomandDullemond (2008).
The most severe limitation of the RPMC method was that, due to its asymmetric con-
struction, the growth of a given representative particle was effectively constrained by
the amount of mass it represented. Our extension of the method overcomes this growth
barrier by allowing the coexistence of, and the transition between, representative parti-
cles and individual, self-representing particles. With our method, it is now possible to
accurately model runaway growth processes while largely retaining the structural ad-
vantages of the RPMC method such as the stability of the sampling weights.

In Sect. 3.2 we gave a formal definition of the RPMCmethod, whichwe subsequently
extended in Sect. 3.4.3. In Sect. 3.5 we proved for a generalised variant of the grains-and-
boulders example given in Zsom and Dullemond (2008) that, despite the asymmetry
in the modelling of interactions, the RPMC method is in fact statistically balanced and
produces correct results. Finally, in Sect. 3.6 we conducted extensive numerical testing to
validate that the extended RPMCmethod indeed produces plausible results for different
cases of orderly growth and runaway growth.

In our extended version of the RPMC method, representative particles are added to
the simulation as particles transition between the representative many-particles regime
and the individual single-particle regime. We have thereby abandoned a key feature
of the original RPMC method: a stable number of representative particles, which was
useful because it allowed for predictable performance and simple implementation. In a
traditional implementation of the RPMC method, adding new representative particles
would introduce substantial computational cost. In Chapter 4 we present an implemen-
tation strategy that not only alleviates the cost of adding near-identical representative
particles to the simulation but can also overcome the Opn2q computational complexity
and storage requirements of the traditional method.

With our extension, the RPMCmethod can be used to study growth processes over a
vast dynamic range, extending into the oligarchic regime where individual bodies arise
which cannot be treated stochastically. In this regard, it is similar to the Monte Carlo
method of Ormel and Spaans (2008); in the few-particles regime, our method indeed
faces similar challenges. A possible advantage of our method over other approaches
may be that its main benefit, constant resolution through the intrinsic preservation of
an equal-mass sampling, is retained. Interactions between many-particle swarms keep
swarm masses unchanged; and swarms can lose but not gain mass through interactions
with few-particles swarms, which implies that the resolution is never impaired.

With the proposed method, planetary growth processes can now be studied for the
entire range of masses up to full-grown planets. Regimes of runaway growth or oli-
garchic growth, where individual particles accumulate large fractions of the total mass,
can be faithfully represented. In addition, the transition to individual particles gives rise
to the possibility of embedding a representative particle Monte Carlo simulation in an-
other type of simulation which traces particles individually, for example a gravitational
N-body simulation.
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The original RPMCmethod has been used for coagulation problems involving more
than just the mass as a particle property, for instance spatial resolution (Drążkowska
et al., 2013, 2014) or additional intrinsic particle properties (e.g. Zsom et al., 2010; Krijt
and Ciesla, 2016; Krijt et al., 2016; Windmark et al., 2012). The added capability, dis-
cussed in this chapter, of transiting to the few-particles regime allows to address a variety
of problems involving the growth from pebbles, via planetesimals, to planets; runaway
and oligarchic growth, and the subsequentN-body dynamics between the oligarchs, pos-
sibly driven by pebble accretion onto these oligarchs; or planetesimal and planet forma-
tion in dust rings while incorporating the N-body dynamics of these objects, with the
newly formed planets starting to stir the pebbles and planetesimals in the ring.

3.9 Other contributors

The introductory text of Chapter 3, Sects. 3.1, 3.2, 3.3.2, and 3.4.1 as well the initial draft
for Fig. 3.1 were largely contributed by Cornelis P. Dullemond.
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Appendices

3.A Analytical solutions and equal-weight samplings for
standard coagulation tests

For the constant kernel Eq. (3.88) and initial conditions fpm, 0q “ N0δDpm´m
0q, the

Smoluchowski equation (3.90) has the analytical solution

fpm, tq “ N0g2p1´ gqm{m
0´1 ,

g ”
´

1`
τ

2

¯´1
,

τ ”MΛt (3.99)

with the total dimensionless massM (e.g. Ohtsuki et al., 1990).

Sampling an initial set of RPs with equal-weight swarms is easy because the defini-
tion of the number density distribution fpm, 0q implies that all RPs have the samemass
initially. We simply select an ensemble of n RPs with homogeneous particle massesm0

and swarm massesM{n.

For the linear kernel Eq. (3.89) with an initial number density distribution

fpm, 0q “ N0m̄
´1e´m{m̄ ,

N0 ”
M

m̄
, (3.100)

and the initial average mass m̄, the Smoluchowski equation has the analytical solution

fpm, tq “ N0m
´1 g
?
1´ g

e´m{m̄p2´gqI1

´

2
m

m̄

a

1´ g
¯

,

g ” e´τ ,

τ ”MΛ0t (3.101)

with the total dimensionless massM , where I1p¨q is the modified Bessel function of the
first kind (e.g. Ohtsuki et al., 1990).

Drawing equal-weight samples for the non-trivial initial mass distribution of the
linear kernel test is a bit more involved. Let us assume that some number density distri-
bution fpmq is to be sampled by n RPs of massesm and equal weight

M “ mNpmq
!
“
M

n
. (3.102)

Because of the equal-weight sampling, masses of RPs must instead be drawn from the
mass-weighted density distribution

fRpmq “M´1mfpmq . (3.103)

For the initial number density distribution of the linear kernel test (Eq. (3.100)), the
mass-weighted density distribution is

fRpm, 0q “ m̄´1
m

m̄
e´m{m̄ . (3.104)
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We can then draw RP masses with inverse transform sampling by first computing the
cumulative representative number density distribution

FRpm, 0q “

ż m

0
dm1fRPpm, 0q

“ 1´
´m

m̄

¯

e´m{m̄ , (3.105)

then inverting the relation ξ “ FRpm, 0q,

m “ ´m̄

„

1`W´1

ˆ

´1` ξ

e

˙ȷ

, (3.106)

whereWkpzq is the LambertW function, and then drawing a uniform random number
ξ P r0, 1q.

An analytical solution for the product kernel Eq. (3.92)was constructed byTrubnikov
(1971) and made applicable for times η ą 1 by Wetherill (1990). The particle number
density is

fpk, ηq “
p2kqk´1

k!k

´η

2

¯k´1
e´kη ,

k ”
m

m0
,

η ” Λ0N
0t , (3.107)

where m0 is the initial particle mass, N0 is the initial number of particles of mass m0,
k P N is a dimensionless mass argument, and η is a dimensionless time coordinate.

As with the constant kernel test, all particles have the same mass initially, making
the sampling of equal-weight swarms trivial.

Wetherill (1990) explains that, although the equation solved by Trubnikov (1971)
becomes inconsistent for η ą 1 when a runaway particle has separated from the con-
tinuous distribution, the solution in Eq. (3.107) still correctly describes the small body
mass distribution, that is, the mass distribution of all particles except for the runaway
particle. Using conservation of mass, we can infer the mass of the runaway particle by
direct summation of Eq. (3.107).

3.B Analytical model for grains-and-boulders test

In this sectionwe develop an analyticalmodel for the grains-and-boulders example used
in Sect. 3.5. We derive a system of differential equations for the remaining number of
grainsNg, the average bouldermass xmyB and the variance of the bouldermass distribu-
tion σ2mB

, and we give analytical expressions for the cases of constant and linear mutual
collision rates, cf. Eqs. (3.94, 3.98).

For any given grain-mass RP, the grain–boulder collision rate is

λg “
N
ÿ

j“1
mjěm

0
B

Λj “ NB xΛyB , (3.108)
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where we define the boulder average xXyB of a particle-specific quantityXj as

xXyB ”
1

NB

N
ÿ

j“1
mjěm

0
B

Xj , (3.109)

(note that in Eq. (3.66) the boulder average was defined differently in the context of the
RPMC method) and where the mutual collision rate of any grain with a boulder j was
abbreviated as

Λj :“ Λpmg,mjq , (3.110)

The number of grains Ng decreases stochastically, so we can only reason about the
expected value of Ng. At some time t, the expected value will change over a time incre-
ment∆t with the grain–boulder collision rate given in Eq. (3.108),

E
“

N 1g
‰

“ Ng p1´ λg∆tq , (3.111)

where the time dependencies of quantities X are henceforth abbreviated as X ” Xptq,
X 1 ” Xpt`∆tq. We thus obtain the differential equation

dNg

dt
“ ´NBNg xΛyB . (3.112)

The growth of a given bouldermassmj ě m0
B is described by aPoisson point process.

The chance that boulder j accumulates k grains during a given time increment∆t,

m1j “ mj ` kmg , (3.113)

is given by the Poisson distribution with the probability mass function PoiskpλB,j∆tq
defined as

Poiskpxq “
xke´x

k!
(3.114)

for which the expected value of k equals the variance,

Erks “ Varrks “ x . (3.115)

For a time increment∆t, the expected average value ofm1j is thus

E
“@

m1
D

B

‰

“ xmyB `mg xΛyB∆t . (3.116)

By taking the difference quotients to the limit∆tÑ 0, we find

d xmyB
dt

“ mgNg xΛyB , (3.117)

where we again note that the number of boulders cannot change, NB “ const. By re-
lating Eqs. (3.112) and (3.117), the average boulder mass xmyB can thus be expressed in
terms of the number of grainsNg as

xmyB “ m0
B `mg

N0
g ´Ng

NB
. (3.118)
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To find a differential equation for the variance of the boulder mass σ2mB
as a function

of time, we evaluate the variance at times t and t`∆t,

σ2mB
“
@

m2
D

B
´ xmy2B , (3.119)

σ2m1
B
“
@

m12
D

B
´
@

m1
D2

B

“
1

NB

N
ÿ

j“1
m1

jěm
0
B

8
ÿ

k“0

PoiskpNgΛj∆tq pmj ` kmgq
2

´ rxmyB `mgNg xΛyB∆ts2 . (3.120)

By subtracting Eq. (3.119) fromEq. (3.120) and taking the difference quotient for∆tÑ 0,
we obtain

dσ2mB

dt
“ xΛyBNgm

2
g ` 2mg rxmΛyB ´ xmyB xΛyBs , (3.121)

where the first term describes the shot noise originating from the discrete nature of the
collision events, and the second term represents the covariance of boulder masses and
collision rates.

For a constant mutual collision rate, Λpm,m1q “ Λ0, Eq. (3.112) is solved by expo-
nential decay,

Ng “ N0
g e
´λgt , (3.122)

where N0
g is the initial number of grains and the grain–boulder collision rate λg in

Eq. (3.108) simplifies to

λg “ NBΛ0 . (3.123)

Because collision rates and boulder masses are uncorrelated, the variance is fully deter-
mined by shot noise, and we can directly integrate Eq. (3.121):

σ2mB
“ m2

g

xmyB ´m
0
B

mg
, (3.124)

where we note that the initial variance is zero, pσ0mB
q2 “ 0, because all boulders have

the same mass initially. In a homogeneous Poisson point process, the variance of the
number of collisions equals the expected number of collisions. We see that this also
holds true for our non-homogeneous Poisson process if collision rates do not depend on
particle masses.

Let us now study a linear mutual collision rate,Λpm,m1q “ Λ0 pm`m
1qwith some

constant Λ0. By evaluating Eq. (3.109), we find

xΛyB “ Λ0 pmg ` xmyBq . (3.125)

Eq. (3.112) then has the solution

Ng “ N0
g

b

pb´ aq exp
“

bN0
g t
‰

` a
, (3.126)
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Figure 3.11: As in Fig. 3.9b, but with an initial number of onlyN0
g “ 8 ¨ 106

grains: (a) using the approximate collision rates λ̄jk « λ̃jk “ λpqj ,qkq,
and (b) using the true collision rates λ̄jk “ p1´ δjkq{2λpqj ,qkq instead.
As can be seen, using the true collision rates in the many-particles regime
would distort the statistical balance of the RPMC method.

where we defined the abbreviations

a :“ Λ0mg ,

b :“ a` Λ0

`

mg `m
0
B

˘ NB

N0
g

. (3.127)

Using Eq. (3.121) and identifying the variance as per Eq. (3.119), we find the variance of
the average boulder mass governed by the differential equation

dσ2mB

dt
“ xΛyBNgm

2
g ` 2mgΛ0σ

2
mB

, (3.128)

where the covariance term describes the broadening of the variance due to the mass
dependency of collision rates: smaller boulders will grow more slowly than average,
whereas larger boulders will sweep up grains faster.

3.C RPMC approximation and statistical balance

In Item 2 of Sect. 3.4.2, one of the problems with extending the RPMC method to few-
particles swarms was identified in the fact that the simplified RP–swarm collision rate of
Eq. (3.23) overestimates the RP–swarm collision rate Eq. (3.19), which becomes signifi-
cant forNk „ 1. An obvious way of attempting to mitigate this problemwould be to use
the RP–swarm collision rate λ̄jk instead of its approximation λ̃jk. But while this would
lead to a statistically correct interaction rate, the resulting mass distribution would be
skewed. In Fig. 3.11, it can be seen that the approximation λ̄jk « λ̃jk must be made
for the RPMC method to be statistically balanced: without the approximation, the final
boulder massm8B does not converge to the expected value of 7m0

B as the number of RPs
n is increased.
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3. AN IMPROVED REPRESENTATIVE PARTICLE MONTE CARLO METHOD

The statistical imbalance can be understood by considering the different origins of
theNg andNj factors in Eqs. (3.78) and (3.72): some originate from collision rates λ̃B,j

and λ̃gj and would hence be adjusted by summands of ´1{2 and ´ng{2, respectively,
whereas others came from summation over all grain-mass and boulder-mass swarms
and thus are not adjusted. The statistical balance equation (Eq. (3.80)) would then end
up non-zero with a spurious dependence on the simulation parameters ng and n0B.

3.D List of symbols

Across-referenced overview of themost commonly used symbols in this chapter is given
in Table 3.1.

Symbol Description Reference
βjk boost factor Sect. 3.4.4
Λpq,q1q raw grain–boulder collision rate Sect. 3.5
Λj mutual collision rate between boulder j and a grain Eq. (3.63); Eq. (3.110)
λpq,q1q raw collision rate Sect. 3.3.1
λjk true collision rate (with self-collision suppressed) Eq. (3.4)
λj cumulative collision rate of particle j Eq. (3.5)
λ total rate of collisions Eq. (3.6)
λ̄jk RP–swarm collision rate Eq. (3.19)
λ̄j cumulative collision rate of RP j Eq. (3.20)
λ̄ total rate of collisions of representative particles Eq. (3.9)
λ̃jk simplified RP–swarm collision rate Eq. (3.23)
λ̃j simplified cumulative collision rate of RP j Eq. (3.24)
λ̃ simplified total rate of collisions of representative parti-

cles
Eq. (3.24)

λ̃bjk boosted collision rate Eq. (3.41)
λg grain–boulder collision rate Eq. (3.108)
λ̃gj RP–swarm collision rate for a grain-mass RP with boul-

der j
Eq. (3.64)

λ̃g cumulative grain-mass RP collision rate Eq. (3.65)
σ2mB

variance of boulder masses Eq. (3.119)
Ig, IB index sets of grains and boulders Eqs. (3.61)
M total mass in the system Sect. 3.3.1
Mk total mass of particles in swarm k Eq. (3.13)
mg grain mass Sect. 3.5
m0

B initial boulder mass Sect. 3.5
N number of physical particles Sect. 3.3.1
Nk number of physical particles in swarm k Sect. 3.3.1
Njk swarm multiplicity factor Eq. (3.37)
Nb

jk boosted swarm multiplicity factor Eq. (3.42)
Nth particle number threshold Sect. 3.4.3
N 1g number of grains after duration∆t Eq. (3.68)
N 1BÑB number of boulders remaining in boulder-mass swarms

after duration∆t
Eq. (3.70)
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N 1gÑB number of boulders emerging from grain-mass swarms
after duration∆t

Eq. (3.76)

Ng number of grains Eq. (3.62)
N0

g initial number of grains Sect. 3.5
NB number of boulders Eq. (3.62)
n number of representative particles Sect. 3.3.2
qm mass accumulation threshold Sect. 3.4.4.2
qk properties of particle k Sect. 3.3.1
qcoll properties of particle sampled from collision outcome Sect. 3.3.5
Wk sampling weight of RP k Eq. (3.34)
x¨yB boulder average Eq. (3.66); Eq. (3.109)

Table 3.1: List of commonly used symbols.
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Efficient simulation of stochastic interactions among
representative Monte Carlo particles 4

Reference: This chapter will be published as Beutel et al. (in press).

Interaction processes between discrete particles are oftenmodelledwith stochasticmeth-
ods such as the Representative Particle Monte Carlo (RPMC) method which simulate
mutual interactions (e.g. chemical reactions, collisions, gravitational stirring) only for
a representative subset of n particles instead of all N particles in the system. However,
in the traditionally employed computational scheme the memory requirements and the
simulation runtime scale quadratically with the number of representative particles.

Wewant to develop a computational scheme that has significantly lowermemory re-
quirements and computational costs than the traditional scheme, so that highly resolved
simulationswith stochastic processes such as the RPMCmethod become feasible. In this
chapter we propose the bucketing scheme, a hybrid sampling scheme that groups similar
particles together and combines rejection sampling with a coarsened variant of the tradi-
tional discrete inverse transform sampling. For a ν-partite bucket grouping, the storage
requirements scale with n and ν2, and the computational cost per fixed time increment
scales with n ¨ ν, both thus being much less sensitive to the number of representative
particles n. Extensive performance testing demonstrates the higher efficiency and the
favourable scaling characteristics of the bucketing scheme compared to the traditional
approach, while being statistically equivalent and not introducing any new requirements
or approximations.With this improvement, the RPMCmethod can be efficiently applied
not only with very high resolution but also in scenarios where the number of represen-
tative particles increases over time, and the simulation of high-frequency interactions
(such as gravitational stirring) as a Monte Carlo process becomes viable.
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4.1 Introduction

Studying the emergent dynamics of large discrete systems in numerical simulations is
a common challenge in physics. The independent entities that constitute these systems
(e.g. molecules in chemical reaction processes, as well as dust grains and pebbles in plan-
etary formation processes) are often so numerous that a direct simulation is neither
practically possible nor desirable. For example, an Earth-like planet might be formed by
the coagulation of„1040 dust grains. The vast number of particles exceeds the capabili-
ties of every conceivable computer; also, we are not interested in the individual fates of
every single dust grain but rather in the evolution of their mass statistics.

A traditional method to model discrete systems is to view them as continuous sys-
tems whose statistical properties resemble those of the discrete system on certain scales.
The continuous surrogate model might then be governed by a set of differential equa-
tions that could be solved analytically or numerically. For example, coagulation pro-
cesses have traditionally been modelled by a coagulation equation. Given a continu-
ous particle mass distribution function fpm, tq, the Smoluchowski coagulation equa-
tion (Smoluchowski, 1916) is an integrodifferential population balance equation that
describes the change of the number of particles fpm, tqdm in an infinitesimal mass bin
m P rm,m` dms:

B

Bt
fpm, tq “ ´fpm, tq

ż 8

0
dm1λpm,m1qfpm1, tq

`
1

2

ż m

0
dm1λpm1,m´m1qfpm1, tqfpm´m1, tq , (4.1)

where the first term accounts for the loss of particles that grow to larger masses through
coagulation, and the second term comprises the particles newly formed by the coagu-
lation of lighter particles. The Smoluchowski equation can be solved numerically with
grid-based methods by representing a finite number of particle mass distribution sam-
ples with finite mass bins rm,m` δms (e.g. Weidenschilling, 1980; Tanaka et al., 2005;
Dullemond and Dominik, 2005; Brauer et al., 2008). The resolution of the grid can be
improved by reducing the width of mass bins δm, which increases the number of bins
required. However, grid-based methods suffer from the so-called curse of dimensional-
ity in multidimensional parameter spaces. In the example of protoplanetary growth, a
model that associates particles only with a mass is a drastic simplification of the planet
formation process; a more realistic treatment would have to consider the influence of
additional properties such as particle root mean square (rms) velocity v or porous parti-
cle volume V . In the continuous approach, the particle mass distribution fpm; tq would
therefore become amultidimensional particle number distribution fpm, v, V ; tq, and the
multidimensional equivalent of the Smoluchowski equation (Eq. (4.1)) would have to in-
tegrate over all dimensions of the state space. To solve the equation numerically with a
three-dimensional parameter space, the particle number distributionwould then have to
be discretised on a three-dimensional grid. For every grid cell, evaluating the right-hand
side amounts to a three-dimensional summation; for a grid of sizeNmˆNv ˆNV , this
requires pNmˆNv ˆNV q

2 arithmetic operations per timestep, whereNm,Nv, andNV

represent the number of grid cells in the dimensions of mass, rms velocity, and porosity.
Such a simulation becomes extremely expensive if all dimensions are meant to be re-
solved. However, a lot of the work done is unnecessary: the state space often is not fully
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occupied because its dimensions are not entirely uncorrelated; for instance, more mas-
sive bodies tend to be less porous due to gravitational compaction, and particles of simi-
lar mass tend to have similar rms velocities due to the quasi-thermal diffusive effects of
viscous stirring and dynamical friction. The excessive cost of higher-dimensional grids
was expounded in, for instance, Okuzumi et al. (2009), whose Eq. (3) gives an extended
Smoluchowski equation comprising an additional dimension (porous particle volume
V ). The authors subsequently argued (in their Sect. 2.2) that adding a dimension with
N bins would make the evaluation of the right-hand side of the Smoluchowski equation
more expensive by a factor of N 2, and therefore infeasible. Thus, instead of extending
the dimensionality of their grid, they devised a dynamic-average approximation for the
new parameter, tracking only the average porous volume V̄ for every mass bin rather
than resolving the porosity distribution.

Instead of simulating a discrete system as a whole or replacing it with continuous
surrogate system, the evolution of the system can also be approximated by selecting a
relatively small number of representative entities whose trajectories through state space
are then followed, and by estimating the statistical properties of the entire system from
the statistics of these representative entities. As an example, protoplanetary growth by
coagulation has been simulated with a Monte Carlo method (Ormel and Spaans, 2008;
Zsom and Dullemond, 2008; Ormel et al., 2010). The accuracy of the particle mass dis-
tribution inferred from a representative set of particles can then be improved by increas-
ing the number of representative entities simulated. Compared to continuous models,
representative sampling approaches have the advantage that they sample the state space
sparsely. Because the state space value of every representative particle is physically re-
alised, no computational effort is wasted on non-occupied parts of the state space. Also,
a mass-weighted sampling automatically increases the sampling resolution in densely
populated regions of the state space.

Although the sparsity of the state space sampling makes representative entity meth-
ods more viable for the simulation of higher-dimensional state spaces, this computa-
tional advantage is somewhat diminished by the quadratic number of possible interac-
tions. For an ensemble of n representative entities, there are n2 possible types of in-
teractions that must be considered. A Monte Carlo method that simulates individual
interactionsmust therefore know themutual rates of interaction between all entities rep-
resented by any two representative entities in the system. In the computational scheme
traditionally employed for such a simulation (Zsom and Dullemond, 2008, §2.1), all n2
interaction rates between entities j and k are computed and stored. They must be up-
dated as the properties of the entities change over the course of the simulation. For every
entity that undergoes a change, 2n interaction rates have to be recomputed, making the
representative method too demanding to model processes with both a high resolution
and frequent interaction (Ormel et al., 2010, §2.6).

In Chapter 3, we amended the Representative ParticleMonte Carlo (RPMC)method
originally conceived by Zsom and Dullemond (2008). By its construction, the origi-
nal RPMC method had the limitation that the number of particles Nj represented by
each representative particle j needed to be much greater than unity, Nj " 1, which im-
plied that the method could not be used to simulate runaway growth processes where
individual particles accumulate the bulk of the available mass. To overcome this lim-
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itation, in Chapter 3 we introduced a distinction between many-particles swarms and
few-particles swarms (a swarm being the ensemble of physical particles represented by
a given representative particle). The particle regime threshold Nth, which is a simula-
tion parameter with a typical value of ‘a few’ (Nth “ 1 and Nth “ 10 were used in
Chapter 3), separates many-particles swarms from few-particles swarms. The extended
method then establishes different interaction regimes: the interaction between many-
particles swarms is said to operate in the many-particles regime and proceeds exactly as
in the original RPMCmethod, whereas interactions between a few-particles swarm and
a many-particles swarm or between few-particles swarms, which are subsumed under
the few-particles regime, follow a different procedure under which coagulation leads to
mass transfer between swarms. This is essential for representative bodieswhich outgrow
the total mass of their swarm.

Tominimise the statistical error and allow individual growth, amany-particles swarm
j is split up intoNth individual self-representing particles once its particle countNj falls
below the particle regime threshold Nth. New representative particles are then added
to the simulation, and the representative particle of the swarm is thus replaced withNj

representative particles representing only themselves. As a consequence, a few-particles
swarm k always has a particle count Nk “ 1, although we note that this is not strictly
required by the method, and the splitting of swarmsmay be waived if, other than for the
runaway growth scenario, individual representation is not considered necessary.

Numerical methods similar to the representative Monte Carlo methods of Zsom
and Dullemond (2008), Ormel and Spaans (2008), and to the extended method devel-
oped in Chapter 3 have emerged in other fields. In particular, the ‘super-droplet’ method
of Shima et al. (2009) has gained traction in theoretical research on cloud and ice mi-
crophysics (e.g. Brdar and Seifert, 2018; Grabowski et al., 2019). The coalescence of
super-droplets (cf. Shima et al., 2009, §4.1.4) is similar to the few-particles regime of
the extended RPMC method but with particle counts Nk (ξk in the notation of Shima
et al. (2009)) not necessarily equal to 1. The super-droplet method was found to gener-
ate correct results for several test cases by Unterstrasser et al. (2017).

As a consequence of the initial weight distribution chosen, Shima et al. (2009) had
to use very large numbers (n „ 217..221) of super-droplets in their simulations. As with
the RPMC method, the cost of the traditional computational scheme scales quadrati-
cally with the number of super-droplets, which was found to be prohibitively expensive.
Shima et al. (2009) therefore proposed a sub-sampling scheme where, in a given time
interval, only „ n{2 randomly chosen interaction pairs with an up-scaled interaction
rate are considered rather than the full set of „ n2 interaction pairs. At the expense of
additional statistical noise due to the sparse sampling of the matrix of possible interac-
tions, the computational cost of this sub-sampling scheme therefore scales with n rather
than n2. The sub-sampling scheme, often referred to as ‘linear sampling’ by subsequent
publications, was not employed in the study of Unterstrasser et al. (2017), however, it
was used by Dziekan and Pawlowska (2017), who meticulously verified that it did not
adversely affect their simulation outcomes.

In chapter, we propose a novel computational scheme that significantly reduces the
cost for simulating representative entitymethods without introducing a statistical coars-
ening or requiring approximations. Taking advantage of the fact that entitieswith similar
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properties often have similar interaction rates, we group similar particles in ‘buckets’ and
then compute and update bucket–bucket interaction rates, which are obtained as upper
bounds for the enclosed entity–entity interaction rates by virtue of interval arithmetic.
The interacting entities are then chosen with rejection sampling. The proposed scheme
is an optimisation in the sense that it does not affect the statistical outcome of the sim-
ulation: no additional inaccuracies are introduced, and the stochastic process simulated
is exactly equivalent to a simulation using the traditional computational scheme.

The computational scheme presented here is key to the improvement of the Rep-
resentative Particle Monte Carlo (RPMC) method proposed in Chapter 3, which splits
up swarms as their particle count falls below the particle number threshold Nth, and
which thus dispensed with a core property of the original RPMC method, namely that
the number of representative particles in the simulation shall remain constant. A grow-
ing number of representative particles is very costly with the traditional computational
scheme where the computational effort scales quadratically with the number of repre-
sentative particles. With the computational scheme presented in this chapter, the Nth

representative particles emerging from a split swarm, whose statistical properties are
initially identical and tend to remain similar, are not excessively more expensive to sim-
ulate than a single representative particle representing the Nth particles, making the
performance impact of the many–few transition manageable.

In Sect. 4.2, we define a general stochastic process and discuss the traditional com-
putational scheme for simulating it, and we establish a cost model for its storage and
computation requirements. In Sect. 4.3, we introduce the bucketing scheme, a new sam-
pling scheme for implementing a stochastic process.We prove that it is equivalent to the
traditional sampling scheme, andwe derive a detailed costmodel demonstrating that the
computational demands no longer scale with n2. The efficient computation of interac-
tion rates is discussed in Sect. 4.4. Interactions in a spatially resolved physical system
are often modelled with a maximal radius of interaction; in Sect. 4.5 we introduce sub-
buckets to efficiently account for the fact that particles far apart cannot interact. Sect. 4.6
verifies our costmodel by numerically studying the scalability of the schemewith a set of
test problems, and then explores the conditions under which the different contributing
terms of the cost model become dominant. Some practical limitations of the proposed
scheme are discussed in Sect. 4.7.

4.2 Simulating a stochastic process

Consider an ensemble of n entities that interact through a discrete physical process (e.g.
by collidingwith each other). Each entity k is characterised by a vector of (possibly statis-
tical) properties qk P Q, where Q is the space of properties. What constitutes an entity
is purposefully left unspecified: it might be a physical body, a stochastic representative
of a swarm of physical bodies, a surrogate object representing the consolidated influence
of some physical effect, etc.

We model interactions as instantaneous events: a given interaction is assumed to
occur at a precise time t and may instantaneously alter the properties of the entities
involved. For example, if two colliding bodies j, k with masses mj , mk ‘hit and stick’,
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then at some precise time t the mass of one body instantaneously changes tomj `mk,
while the other body ceases to exist as a separate entity.

4.2.1 Simulating a Poisson point process

Let us assume that the interaction rate λjk of two entities j, k, in units of time´1, is given
by some function of the properties of entities j and k and the Kronecker delta δjk,

λjk :“ λentpqj ,qk, δjkq . (4.2)

The third argument of this entity interaction rate function λentpq,q1, δq can be used to
distinguish entity self-interaction from interaction of different entities. We emphasise
that the interaction rate function has no explicit time dependency. Therefore, if for a
given duration the properties qj , qk of entities j and k do not change, the interaction
of the entities j, k during that time interval is a homogeneous Poisson point process.
We also note that λentpq,q1, δq need not be commutative in the first two arguments q,
q1, or equivalently, that λjk need not be the same as λkj . For instance, interaction rates
are asymmetric for the RPMC method (Zsom and Dullemond, 2008), which we refer
to throughout this chapter.

The arrival time ∆t of the next event in a Poisson point process with a given inter-
action rate λ follows the exponential distribution characterised by the probability distri-
bution function

pp∆tq “ λ expr´λ∆ts . (4.3)

Using inverse transform sampling¹, we can determine a random arrival time by comput-
ing

∆t “ ´λ´1 logp1´ ξq , (4.4)

where ξ is a uniform random number drawn from the interval r0, 1q.

4.2.2 Simulating a compound Poisson process

An ensemble of n entities comprises n2 interaction processes, each of which can be con-
sidered a Poisson point process. Because an interaction of two entities j, k may change
the properties qj and qk, it may affect the interaction rates of the entities j and k with
any other entity i P t1, . . . , nu. A Poisson point process is not homogeneous if inter-
action rates can suffer intermittent changes. It follows that the sampling method of
Eq. (4.4) is applicable only if interactions are simulated in global order as a compound
Poisson process, and that all affected interaction ratesmust be recomputed after an event
has occurred.

A scheme for simulating interactions in an ensemble of n entities in global order has
first been proposed by Gillespie (1975). We now give a brief summary of this scheme.

¹An arbitrary normalised probability distribution fpxq can be sampled by means of inverse transform
sampling (e.g. Ross, 2014, §11.2.1): First, a random number ξ uniformly distributed in r0, 1q is generated.
Then, x̃ “ F´1pξq is evaluated, where F pxq is the antiderivative of fpxq and F´1pyq is its inverse. x̃ then
is a random sample distributed according to the probability density function fpxq.
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First, let λj be the cumulative interaction rate of entity j with any other entity in the
ensemble,

λj :“
ÿ

kPI
λjk , (4.5)

and let λ be the global rate of interactions,

λ :“
ÿ

jPI

ÿ

kPI
λjk “

ÿ

jPI
λj , (4.6)

where we abbreviate the set of all entity indices as

I :“ t1, . . . , nu . (4.7)

The arrival time of the next interaction can be sampled as per Eq. (4.4). We then draw
random indices j and k from the discrete distribution defined by the joint probability

P pjqP pk|jq “
λjk
λ

, (4.8)

where

P pjq “
λj
λ

(4.9)

is the chance that entity j is involved in the interaction event, and

P pk|jq “
λjk
λj

(4.10)

is the chance that, given such an interaction, it is entity k which interacts with entity
j. We then advance the system by the time increment ∆t and carry out the interac-
tion between entities j and k, allowing their properties to be altered. The interaction
may also effectuate the creation of new entities (e.g. when colliding bodies fragment to
smaller pieces) or the annihilation of entities (e.g. when colliding particles ‘stick’ and
thus merge). Therefore, the global interaction rate λ has to be recomputed after an in-
teraction.

4.2.3 Incremental updates

A routine that directly computes the global interaction rate λ for an ensemble of n en-
tities entails n2 evaluations of the entity interaction rate function λentpq,q1, δq, which
may be prohibitively expensive for large ensembles.

An interaction of entity j with entity k may inflict changes on the two entities in-
volved, wherefore the global interaction rate may change and must be recomputed. In
Zsom and Dullemond (2008, §2.1), a way of alleviating the cost of recomputing λ was
described. The authors observed that a change to the properties of entity j can only affect
the interaction rates λji, λij@i P t1, . . . , nu. Therefore, one can store the entirety of pair-
wise interaction rates λjk in a two-dimensional array and the cumulative interaction
rates λj , obtained as the column sum of the λjk array, in a one-dimensional array. Then,
when the properties of entity j change during an interaction, only a row and a column
in the λjk array have to be recomputed, and the λj array can be updated cumulatively.
At the expense of a memory buffer holding pn2 ` nq interaction rates, the interaction
rates can thus be updated with only p2n´1q evaluations of the interaction rate function.
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4.2.4 Discrete inverse transform sampling

Knowing the exact values for the global interaction rate λ, the cumulative interaction
ratesλj , and the individual interaction ratesλjk, we can determine the time interval until
the next event ∆t by sampling the exponential distribution with Eq. (4.4). To find the
indices j and k of the entities interacting, we can then employ discrete inverse transform
sampling, a discrete variant of the inverse transform sampling scheme also described by
Gillespie (1975): we first draw a uniformly distributed random number ξ P r0, 1q, and
then we compute the partial sum

j
ÿ

j1“1

P pj1q “
1

λ

j
ÿ

j1“1

λj1 (4.11)

consecutively for indices j “ 1, . . . , n, stopping and picking the first index j for which

j
ÿ

j1“1

P pj1q ą ξ , (4.12)

where P pjqwas defined in Eq. (4.9), and likewise for index k and the probability P pk|jq
defined in Eq. (4.10). With precomputed values for λj and λjk available, this operation
is a simple cumulative summation of an array, taking n summation steps on average.

4.2.5 Example: Physical bodies

How the entity interaction rate function λentpq,q1, δq should be defined depends on
what is understood by an entity. As an example, we might identify entities with indi-
vidual physical bodies that interact through collision. The raw collision rate λpq,q1q is
the rate (in units of time´1) at which two bodies with properties q, q1 are expected to col-
lide. It is necessarily commutative, λpq,q1q “ λpq1,qq. If the particles are distributed
homogeneously and isotropically in a volume V , the stochastic collision rate λpq,q1q
can be written as

λpq1,q1q “ V ´1σpq,q1q
ˇ

ˇ∆vpq,q1q
ˇ

ˇ , (4.13)

where σpq,q1q is the collision cross-section and |∆vpq,q1q| the average relative veloc-
ity between particles with properties q, q1. To account for the fact that a particle cannot
collide with itself, and to avoid double counting of mutual interactions, the entity inter-
action rate function λentpq,q1, δq would then be defined as

λentpq,q
1, δq :“

1

2
p1´ δqλpq,q1q . (4.14)

4.2.6 Example: Representative particles

Alternatively, an entity j might be identified with both a representative particle and
an associated swarm of Nj particles, with the properties of representative particle and
swarmboth captured inqj . In that case, an entity can interactwith itself (a representative
body can collide with another particle from the swarm which its entity is associated
with), and the raw interaction rate λpq,q1q is not commutative: representative particle j
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may be more likely to collide with a particle from swarm k than representative particle
k is to collide with a particle from swarm j.

The extended RPMC method introduced in Chapter 3 distinguishes between many-
particles swarms and few-particles swarms, where a swarm is a many-particles swarm if
its number of particles exceeds the particle number threshold Nth. The effective swarm
particle count is thus defined according to the interaction regime,

N effpq,q1, δq “

#

Npq1q (many-particles regime)
Npq1q ´ 1`δ

2 (few-particles regime),
(4.15)

where Npqkq ” Nk is the number of swarm particles represented by entity k, and
where an interaction between entities with properties q and q1 is said to operate in the
many-particles regime if both swarms are many-particles swarms, Npqq ą Nth and
Npq1q ą Nth, and in the few-particles regime otherwise. For the RPMC method, the
entity interaction rate function is then defined as

λentpq,q
1, δq :“ N eff

`

q,q1, δ
˘

λ
`

q,q1
˘

. (4.16)

In the few-particles regime, double counting is compensated and self-interaction is sup-
pressed for interactions between representative particles but not for interactions be-
tween a representative and a non-representative particle. In particular, becauseNth ě 1,
Eq. (4.16) degenerates to Eq. (4.14) for Npq1q “ 1.

4.2.7 Incorporating external effects

In many physical codes, multiple types of interactions have to be considered, and hence
a given process of stochastic interactions needs to be interweaved with other processes
of stochastic or deterministic nature such as direct N-body interaction or hydrodynamic
processes. Entity propertiesmay then undergo changes originating in physical processes
which are modelled by other parts of the simulation and hence not represented as dis-
crete events in the stochastic process at hand. Computing incremental updates after ev-
ery stochastic event then no longer suffices as all interaction rates can be subject to
external changes at all times. As an example, consider an ensemble of particles in quasi-
kinetic motion which populate a volume V also occupied by a gas. The gas exerts a drag
force on the particles, thus slowing them down and reducing the average relative veloc-
ity |∆vpq,q1q|, and thereby decreasing their mutual interaction rates over time as per
Eq. (4.13).

As a simple means of incorporating external effects in a stochastic simulation, one
could accumulate and coalesce external changes to entity properties and defer the recom-
putation of interaction rates until they exceed some absolute or relative change thresh-
old. When the properties of an entity are changed by more than a given relative thresh-
old, the interaction rates for the entity are updated.

4.2.8 Cost model

The memory requirements of this sampling scheme amount to approximately Cmem

floating-point values:

Cmem “ n2 ` pα` 1q ¨ n` 1 , (4.17)
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where α “ dimQ is the number of floating-point values needed to store the properties
of an entity. For the sampling process, we need to store n2 pair-wise interaction rates
and n` 1 cumulative interaction rates.

To model the computational complexity, we first define some elementary computa-
tional costs:

• Cop, the cost of performing an elementary arithmetic operation (e.g. adding two
numbers);

• Crand, the cost of generating a random number distributed uniformly in r0, 1q;

• Cλ, the cost of evaluating the entity interaction rate function λentpq,q1, δq;

• Caction, the cost of simulating an interaction between two given entities.

We are aware that, on a modern superscalar system, one cannot reason about the cost of
elementary arithmetic operations without also considering how computations are exe-
cuted and how memory is accessed. With some effort, the computational performance
of a system with arithmetic vector units can far exceed the performance predicted by a
simplistic linear costmodel, and the cost ofmemory accessesmay be anything from com-
pletely marginalised through caches, speculative execution, and other means of hiding
latency to throttling the computational power through limited bandwidth or inefficient
memory access patterns. Therefore, the cost units above are not meant to be identified
with specific quantities (such as ‘10 CPU cycles’). Instead, our cost model aims to predict
the scaling behaviour of the scheme. We use the cost units to identify which operations
scale with n2 or with n, from which we can infer which individual costs would be most
worthwhile to reduce.

To initialise the simulation, all pair-wise interaction rates between entities must be
computed and summed up column-wise. The cost of initialisation therefore is

Cinit “ n2 pCλ ` Copq ` nCop . (4.18)

To sample and simulate an interaction event, we need to draw three uniform random
numbers, traverse up to n floating-point numbers two times during the sampling pro-
cedure described in Sect. 4.2.4, and then simulate the interaction itself. Assuming that,
on average, half of the n interaction rates need to be traversed during sampling, this
amounts to a per-event cost of

Cevent « nCop ` 3Crand ` Caction . (4.19)

When the properties of an entity have changed – that is, when the entity was sub-
ject to an interaction, or when the cumulative changes of external effects have exceeded
a given threshold –, all interaction rates involving the entity need to be recomputed.
Executed as an iterative update, this has a cost of

Cupdate “ p2n´ 1q pCλ ` Copq

« 2n pCλ ` Copq . (4.20)
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To estimate how the number of interactions scales with the number of entities n, we
need tomake further assumptions on the structure of the entity interaction rate function
λentpq,q

1, δq. Let us consider the case of representative entities in Eq. (4.16) and assume
that the number of particles represented by an entity is large, Nk " 1@k. Then, we
approximate the entity interaction rate function as

λentpq,q
1, δq « Npq1qλpq,q1q . (4.21)

By definition, the global interaction rate (Eq. (4.6)) then is

λ «
n
ÿ

j,kPI
Nkλpqj ,qkq

“ n2 xNkλpqj ,qkqyjk , (4.22)

where xxjkyjk is the quantity xjk averaged over all combinations of entities j, k. In
this picture, a certain number ofN physical particles is represented by n representative
particles each associated with an entity. From

řn
k“1Nk “ N we infer

xNkyk “
N

n
, (4.23)

and because λpqj ,qkq should not depend on Nj or Nk, we argue that the mean value
xNkλpqj ,qkqyjk must be proportional to n´1. Assuming an invariant number of phys-
ical particles N , we therefore obtain an approximate scaling behaviour of λ 9 n, or
equivalently

λ « nλ̃ . (4.24)

with some average raw collision rate λ̃.

To consider the cost of changes imposed by external effects as sketched in Sect. 4.2.7,
we assume that the average rate of updates per entity triggered by external effects is
quantified by λ̃ext, independent of the number of entities. The global average rate of
external updates is therefore

λext “ nλ̃ext . (4.25)

The simulation cost rate – the cost of simulating an ensemble ofn entities for a given
time interval∆t divided by∆t – then is

Csimp∆tq

∆t
“ λ pCevent ` Cupdateq ` λextCupdate

« n2
”

λ̃ p3Cop ` 2Cλq ` λ̃ext p2Cop ` 2Cλq

ı

` n λ̃ p3Crand ` Cactionq . (4.26)

Despite being a vast improvement over direct summation, the incremental updating
scheme is still an impediment to larger-scale simulations as its costs for a fixed time
increment scale with n2.
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Figure 4.1: Schematic illustration of rejection sampling.
Given a continuous probability distribution function ppxq (solid red line)
defined on some domainD ” rx´, x`s, a single p-distributed sample x̃ P D
can be obtained as follows: First estimate an upper boundB ě ppxq @x P D
(solid blue line). Then sample a random number x̃ uniformly distributed
in I (dashed vertical line). Evaluate ppx̃q. Then accept the sample with a
probability of ppx̃q{B. Repeat until a sample is accepted.

4.3 An improved sampling scheme

In this part we devise a new scheme for computing interaction rates that avoids the n2
proportionality of the costs for storage and computation entailed by the traditional sam-
pling scheme. Using rejection sampling, a bucketing scheme, and interval arithmetic,
we develop a generally applicable method for efficiently simulating large ensembles of
representative particles.

In the traditional sampling scheme described in Sect. 4.2, the dominant cost is the
computation and storage of the entity interaction rates λjk. Not only does this cost scale
with n2, but the interaction rate may also be expensive to compute by itself, for instance
in a realistic physical collisionmodel.We therefore strive to evaluate the interaction rate
function as seldom as possible.

Exact values for λ, λj , and λjk are required to draw random samples with the discrete
inverse transform sampling scheme described in Sect. 4.2.4. Because we would like to
reduce the number of evaluations of the interaction rate function, we need to consider
alternative sampling schemes.

4.3.1 Rejection sampling

Themethod of rejection sampling, which is illustrated in Fig. 4.1, can be used to generate
event times for a non-homogeneous Poisson point process if an upper bound for the
interaction rate λ is known, cf. Ross (2014, §11.5.1). Let us assume we can obtain an
upper bound

λ` ě λ @∆t ď T , (4.27)

where t is the current time and T is the timescale on which external changes to the
system need to be considered. We can then sample a potential event at time t `∆t by
sampling a time interval ∆t from the exponential distribution given by Eq. (4.4) but
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using λ` instead of λ. If ∆t ą T , no event occurs during the timescale T ; we then
update the system by applying the external operators, compute a new timescale T 1 from
the external process and a new upper bound λ1`, and update

∆tÐ
λ`

λ1`
p∆t´ T q (4.28)

λ` Ð λ1` (4.29)
tÐ t` T (4.30)
T Ð T 1 . (4.31)

Once a small enough time interval has been sampled, ∆t ď T , we compute the exact
interaction rate λ at time t ` ∆t and choose to accept the sampled event time with a
probability of

Paccept “
λ

λ`
. (4.32)

Regardless of acceptance, we update the times as

tÐ t`∆t ,

T Ð T ´∆t . (4.33)

If the event time was accepted, we simulate an interaction by determining the indices j
and k of the interacting entities, and then repeat the process from the beginning.

This sampling scheme can also be applied to the compound Poisson process of n
entities. To this end, we take λ to be the global interaction rate in Eq. (4.6). After an
event has been accepted, the indices of the entities interacting are chosen with discrete
inverse transform sampling of the joint probability given in Eq. (4.8). The probability
that an interaction between entities j and k occurs at time t`∆t is thus

Pjk :“ PacceptP pjqP pk|jq “
λjk
λ`

. (4.34)

The proposed scheme still requires us to compute all interaction rates λjk and the
global interaction rate λ at time t`∆t in order to determine whether to accept the sam-
pled event time ∆t and to sample the indices j and k, and therefore retains the perfor-
mance characteristics of the sampling scheme for a homogeneous Poisson process. But
as we demonstrate in this chapter, the computational cost can be significantly reduced
by flexible and more granular use of upper bounds.

4.3.2 Buckets

Rejection sampling is an efficient sampling scheme only if the upper bound λ` is suffi-
ciently close to the true interaction rate λ: the more the upper bound overestimates the
interaction rate, the more sampled events have to be rejected, nevertheless each incur-
ring an evaluation of the entity interaction rate function λentpq,q1, δq.

In order to increase the efficiency of rejection sampling, we introduce the bucketing
scheme, the concept of which is explained schematically in Fig. 4.2. The basic idea is
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Figure 4.2: Schematic illustration of bucketing.
Rejection sampling as per Fig. 4.1 is inefficient if the upper bound B sig-
nificantly overestimates the probability distribution function ppxq, neces-
sitating a large number of evaluations of ppxq per accepted sample. To in-
crease efficiency, the domain D can be divided into disjoint subdomains
D1, . . . , Dν (shaded with different colours), henceforth referred to as ‘buck-
ets’. Then, separate upper bounds B1, . . . , Bν (solid blue line) can be esti-
mated for the individual buckets. To sample a value x̃ from ppxq, first choose
a bucket J P t1, . . . , νu with relative probability |DJ |{|D| using discrete in-
verse transform sampling. Then, sample a value x̃ uniformly distributed
in bucket DJ . Evaluate ppx̃q and accept the sample with a probability of
ppx̃q{BJ , and repeat the entire process until a sample has been accepted.
If the per-bucket bounds BJ are lower than the global upper bound, fewer
samples are rejected, and hence fewer evaluations of ppxq are required.

to group similar entities in ‘buckets’, then to compute upper bounds of the interaction
rates between buckets of entities. To group entities in buckets, we first need a bucketing
criterion, that is, a function B : Q Ñ J that maps a vector of entity properties q to an
elementBpqq in some discrete ordered set J. In simpler words, for any given entity j the
function Bpqjq tells which bucket this entity is in. Each bucket is uniquely identified by
an element J P J, henceforth referred to as the label of the bucket. A convenient choice
for a label would be a d-dimensional vector of integers, J ” Zd, which can be ordered
lexicographically.

With Bj we denote the label of the bucket which entity j is currently in, which we
initialise as

Bj Ð Bpqjq . (4.35)

We refer to the set of entity indices associated with a bucket with label J P J as

IJ :“ tj P I : Bj “ Ju . (4.36)

In other words, IJ is the index set of entities that are in bucket J. The number of entities
in a bucket is denoted

nJ :“ #IJ , (4.37)
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A B C D E F G

Figure 4.3: Schematic illustration of themass bucketing criterion in Eq. 4.41.
The orbs represent particles of different mass, visually represented as sur-
face area, which are grouped into seven buckets.

consistent with n “ #I, where #S refers to the cardinality of some set S. Buckets are
necessarily disjoint,

9ď

J
IJ “ I ,

ÿ

J

nJ “ n , (4.38)

meaning that each entity belongs to one, and only one, bucket. The set of occupied bucket
labels, that is, the labels of the buckets which contain at least one entity, is

B :“
␣

Bj : j P I, nBj ą 0
(

, (4.39)

the number of which is referred to as

ν :“ #B . (4.40)

Because the bucketing scheme samples the space of bucket labels J sparsely, the cost of
storage and computational effort is a function of ν.

4.3.3 Example: Representative particles with mass

Pursuing the example given in Sect. 4.2.6 further, we identify entities with representa-
tive particles.We also assume that each representative particle j has amassmj “ mpqjq,
and that the collision rate λpqj ,qkq is correlated with the massesmj andmk. The buck-
eting criterion is therefore chosen to be mass-dependent. A typical physical scenario
studied with an RPMC coagulation simulation covers a dynamic range of several orders
of magnitude in particle mass, hence a logarithmic dependency on mass is appropriate.
A simple yet effective one-dimensional bucketing criterion thus is

Bpqq “

Z

θm log10
mpqq

m0

^

(4.41)

for some reference mass m0, where mpqq is the mass of a representative particle with
properties q, and where the expression t¨u denotes the floor function. The bucket density
θm is a simulation parameter which specifies howmany buckets per mass decade should
be used, thus indirectly controlling the number of occupied buckets ν. The bucketing
criterion in Eq. (4.41) is visualised schematically in Fig. 4.3.
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As explained in Sect. 4.2.6, for the extended RPMC method, particle–swarm inter-
action rates differ between the different interaction regimes (the many-particles regime
and the few-particles regime). Therefore, it is reasonable to also use the swarm multi-
plicity as part of the bucketing criterion. Another change brought about by the extended
RPMC method is that swarm masses are allowed to vary. In the original definition of
the method, the same fraction of the total mass had been assigned to each swarm. The
interaction rate λjk has a strong dependency on the number of particles represented, as
seen in the (near-)proportionality toNpq1q in Eqs. (4.16), and therefore also depends on
the swarmmass to which the number of particles relates asNpqq “Mpqq{mpqq, where
Mpqq refers to the total mass represented by the swarm. For this reason, we also want
to have the swarm mass be part of the bucketing criterion.

For the extended RPMC method we therefore propose the following three-dimen-
sional bucketing criterion:

Bpqq “

ˆ

Cpqq,

Z

θM log10
Mpqq

M0

^

,

Z

θm log10
mpqq

m0

^˙

(4.42)

withM0 “M{n the average swarm mass,M the total mass of particles in the system,
and the bucket density θM a simulation parameter specifying the number of buckets to
use per decade of swarm masses. The classifier Cpqq is defined as

Cpqq “

#

0 ; Npqq ď Nth (few-particles swarm)
1 ; Npqq ą Nth (many-particles swarm)

(4.43)

withNth the particle regime threshold.

The traditional RPMC method always employs an equal-mass sampling,Mi “ M0

@i P I, which stays unaltered over the course of the simulation, and it entirely operates
in the many-particles regime,Ni " 1@i P I, and henceNi ą Nth @i P I. Therefore, the
first and second components of Eq. (4.42) would always evaluate to 1 and tθM u, render-
ing this bucketing criterion equivalent to Eq. (4.41) in this case.

4.3.4 Sampling an event

Let us assume that, given a bucket J and its constituent entities j P IJ , we can com-
pute its bucket properties, which we denote asQJ ; and that, given two buckets J ,K and
their associated bucket propertiesQJ ,QK , we can compute an upper bound λ`JK for the
interaction rates λjk between any entities j, k associated with these buckets,

λ`JK ě λjk @j P IJ , k P IK , (4.44)

or equivalently

λ`JK ě max
jPIJ ,kPIK

λjk . (4.45)

Bucket properties and the computation of bucket–bucket interaction rate bounds remain
unspecified here but are discussed in detail in Sect. 4.4.
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We then define the upper bounds of the cumulative interaction rates for all buckets J ,

λ`J “
ÿ

K

nKλ
`
JK , (4.46)

and the upper bound of the global interaction rate

λ` “
ÿ

J

nJλ
`
J . (4.47)

Inserting Eqs. (4.45) and (4.46) into Eq. (4.47) proves that λ` indeed constitutes an
upper bound to the global rate of interactions λ (Eq. (4.6)):

λ` ě
ÿ

JPB

ÿ

KPB
nJnK max

jPIJ ,kPIK
λjk

ě
ÿ

JPB

ÿ

KPB

ÿ

jPIJ

ÿ

kPIK

λjk

!
“

ÿ

jPI

ÿ

kPI
λjk “ λ . (4.48)

Using the upper bounds λ` and λ`JK , we can now implement the rejection sampling
scheme of Sect. 4.3.1 more efficiently by interchanging the acceptance decision and the
selection of entity indices j, k:

1. First, we randomly choose bucket indices J ,K with a probability

P pJqP pK|Jq “
nJλ

`
J

λ`
nKλ

`
JK

λ`J
“
nJnKλ

`
JK

λ`
(4.49)

using discrete inverse transform sampling as per Sect. 4.2.4.

2. We then randomly choose entity indices j P IJ , k P IK with the probability

P pj|JqP pk|Kq “
1

nJ

1

nK
(4.50)

which is independent of j and k, amounting to uniform or unweighted sampling.

3. Then we compute the interaction rate λjk of the entities chosen. The interaction
event is then accepted with a probability of

Paccept,jk “
λjk

λ`JK
. (4.51)

Combining all three probabilities, we obtain the selection probability

P pJqP pK|Jq ¨ P pj|JqP pk|Kq ¨ Paccept,jk “
λjk
λ`

(4.52)

which we find identical to the combined sampling probability Pjk in Eq. (4.34), thereby
proving that this selection process is equivalent.
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4.3.5 The bucketing algorithm

We now describe how a general compound Poisson process as defined in Sect. 4.2.2 can
be simulated with the bucketing scheme. The proposed algorithm consists of the follow-
ing steps:

1. Initialise simulation.

1.i. Distribute all entities j to buckets. To this end, for every entity j determine
the entity bucket labelBj Ð Bpqjq. Assemble a list of occupied buckets and,
for every occupied bucket, a list of the entities in it.

1.ii. For all occupied buckets J P B, compute the bucket propertiesQJ , which are
a function of the properties qj of the entities in the bucket, j P IJ .

1.iii. For all pairs of buckets J,K P B, compute bucket–bucket interaction rate
upper bounds λ`JK .

1.iv. Compute the upper bounds for the cumulative bucket interaction rate bound
λ`J for all occupied buckets J P B by summation of nKλ`JK , and compute
the upper bound of the global interaction rate λ` by summation of all nJλ`J .

2. Sample an event.

2.i. Sample an event interarrival time ∆t with Eq. (4.4) using λ` as the interac-
tion rate.

2.ii. If the time exceeds the timescale of external updates, ∆t ą T , apply the
external updates, execute Step 3 for every entity whose properties underwent
significant changes during the external update, then adjust ∆t, t, T as per
Eqs. (4.28–4.31), then start over with Step 2.i.

2.iii. It can be assumed henceforth that∆t ď T : the sampled tentative interaction
eventmay occur within the external updating timescale. Thus, using discrete
inverse transform sampling with the stored interaction rate bounds λ`, λ`J ,
and λ`JK , randomly choose the buckets J,K P B which contain the entities
possibly determined to undergo an interaction event.

2.iv. Using uniform sampling, randomly choose a pair of entities j P IJ , k P IK .
2.v. Compute the interaction rateλjk. Accept the eventwith probabilityPaccept,jk

(Eq. (4.51)).
Advance the system time by the event interarrival time, tÐ t`∆t (Eq. (4.33)).

2.vi. If the event was accepted, simulate the interaction between entities j and k,
thereby possibly altering the entity properties qj Ñ q1j , qk Ñ q1k, and then
execute Step 3 for all entities whose properties have changed (none, j, k, or
both j and k).

2.vii. Continue with Step 2.i.

3. Subroutine: Update a given entity j.

3.i. Determine the old and new bucket labels J :“ Bj , J 1 :“ B1j . Move the entity
to the new bucket if J 1 ‰ J .
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Figure 4.4: Example illustrating the data structures used to implement the
bucketing scheme as described in Sect. 4.3.6.
This example comprises an ensemble of n “ 13 entities partitioned in ν “
4 buckets, with the bucket labels being designated as A, B, C, D, ordered
lexicographically, and using 0-based numeric indices for all other indexing
purposes. Entity indices are printed in normal type. The indices of the array
entries at which the entity indices are stored in their associated buckets are
printed in italic type. Element referral is indicated by dashed lines. Some
elements of theDJ tuples were omitted in the visual representation.

3.ii. For bucket J 1, update (if necessary) or recompute (if due) the bucket proper-
ties QJ 1 .
Sect. 4.4.4 precisely defineswhat ‘updating’means andhowwedecidewhether
updating suffices or the bucket properties need to be recomputed.

3.iii. If the bucket properties were recomputed, or if the updating step caused an
alteration of the bucket properties QJ 1 of the new bucket J 1, recompute the
bucket–bucket interaction rate upper bounds λ`J 1K and λ`KJ 1 for all occupied
bucketsK P B.

3.iv. For all occupied bucketsK P B, update the cumulative interaction rate bounds
λ`K incrementally to account for any changes to nJ , nJ 1 , λ`KJ , and λ

`
KJ 1 , and

recompute λ` by summation of all nJλ`J .

4.3.6 Data structures

The efficiency of the algorithm presented in Sect. 4.3.5 is bounded by the efficiency of
its various mapping and enumeration steps. The data structures chosen to represent the
simulation state are thus of critical importance.
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In our reference implementation, we represent the simulation state with the follow-
ing data structures:

• An array pqjqjPI of length nwhich holds the entity properties for all entities j P I.

• The upper bound for the total interaction rate λ`.

• An array pDJqJPB of length ν which for every occupied bucket J P B stores a tuple

DJ :“
`

J,QJ , IJ , pλ`JKqKPB, λ
`
J

˘

(4.53)

holding the bucket label J , the bucket properties QJ , an array of entities IJ , an
array of bucket–bucket interaction data upper bounds pλ`JKqKPB, and the cumu-
lative bucket interaction rate upper bound λ`J .
The order of the entity indices in the IJ arrays is arbitrary. The order of the
pDJqJPB array is arbitrary as well but must coincide with the order of the arrays
of bucket–bucket interaction data upper bounds pλ`JKqKPB for all J P B.

• An array pJ, bJqJPB of length ν which for every occupied bucket J P B stores the
index bJ of the corresponding element in the pDJqJPB array.
The array is ordered by J .

• An array pEjqjPI of length n which for every entity j P I stores a tuple

Ej :“ pBj , ojq (4.54)

holding the bucket labels Bj and the offsets oj at which the entity indices are
stored in the array held byDBj .

The relations between the arrays pDJqJPB, pJ, bJqJPB, and pEjqjPI are exemplified in
Fig. 4.4. With these data structures, the bucketing algorithm can be implemented very
efficiently, as we shall explore in the next section.

Although a particular choice of data structures is discussed here, the bucketing al-
gorithm could of course be implemented differently. For example, instead of storing
an array of entries IJ for every bucket J P B, all entries could be stored in a single
contiguous array ordered by bucket index, thereby reducing the amount of memory re-
allocations required while increasing the cost of moving entities between buckets and
the cost of adding or removing buckets.

4.3.7 Cost model

In the following we estimate the memory requirement and the computational cost of
simulating a compound Poisson process with the bucketing scheme when implemented
with the choice of data structures described in Sect. 4.3.6.

The bucket properties QJ and the computation of upper bounds for bucket–bucket
interaction rates is discussed in Sect. 4.4. For now, without specifying them any further,
we only make two assumptions for the purpose of assessing the cost of the simulation.
Firstly, given a bucket J P B holding nJ entities, we assume that the bucket properties
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QJ can be computed by traversal of the entity properties qj of all entities in the bucket
j P IJ , and thereforewithnJ computational steps. Secondly, given the bucket properties
QJ , QK for two buckets J,K P B, we assume that an upper bound for the bucket–bucket
interaction rate λ`JK can be computed in constant time, that is, with computational effort
independent of the number of entities held by buckets J andK.

In the bucketing scheme, the same n vectors of entity properties qj as in the tradi-
tional sampling scheme need to be tracked, but in addition, only ν2 upper bounds of
bucket–bucket interaction rates as well as ν elements of per-bucket data such as bucket
properties and cumulative interaction rate upper bounds must be stored, amounting to
an approximate memory requirement of

CB
mem “ ν2 ` pα` 1q ¨ n` β ¨ ν (4.55)

floating-point values, where α “ dimQ again is the number of floating-point values
needed to represent the properties qj of some entity j, and β represents the number of
floating-point values required to store the properties QJ of some bucket J .

In addition to the elementary computational costs defined in Sect. 4.2.8, we define
the following additional costs specific to the bucketing scheme:

• CQ, the cost of updating the set of bucket properties QJ for a given bucket J P B
to account for an entity being added to or removed from the bucket;

• Cλ` , the cost of computing an upper bound for the bucket–bucket interaction rate
from two sets of bucket properties Q, Q1.

The proposed algorithm of the bucketing scheme employs dynamically sized data
structures. The runtime cost and memory overhead of dynamic memory allocation is
neglected in the following discussion.

To set up a simulation, we first traverse the list of entities j P I, evaluate the buck-
eting criterionBpqq to determine the corresponding bucket labelBj Ð Bpqjq for every
entity, store the label in the Ej array, and store the list of all bucket labels in the sorted
array of tuples pJ, bJqJPB. This can be donewith amortised pn`ν log νq operations by ac-
cumulating and subsequently sorting occupied bucket labels. For every occupied bucket
we allocate an entry in theDJ array which we refer to with the bJ index.We then iterate
through the list of entities j P I a second time, look up the bucket labels Bj in the Ej

array, locate the bucket in the pJ, bJq array with binary search, and append the entity to
the bucket’s list of entity indices pjqjPIJ , storing the entity index position in oj , which en-
tails an average number of n log ν steps. With every bucket having available a list of the
entities in it, we can now iterate through the array of buckets and compute and store the
bucket propertiesQJ for every bucket J P B at a total cost of

ř

J nJ CQ “ nCQ. Finally,
we iterate over all pairs of buckets J,K P B and compute and append the bucket–bucket
interaction rate upper bounds λ`JK to the array pλ`JKqKPB of bucket J , which has a cost
of ν2Cλ` . With ν2 arithmetic operations, we also compute the cumulative bucket inter-
action rate upper bounds λ`J and the total interaction rate upper bound λ`. The total

95



4. EFFICIENT SIMULATION OF STOCHASTIC REPRESENTATIVE PARTICLE INTERACTIONS

𝐷A
1 12ℐA:

0 1 2 3 4 5

06

A,3 D,1 A,1
B,4

B,0 B,2 C,0 D,0 A,5
A,1

B,3 A,4

1 2 3 4 5 8 9 10 11 12

𝐷B
4 7 5 11ℐB:

0 1 2 3

10

3

4

…𝐸𝑗 𝑗∈ℐ
: ……

Figure 4.5: Example demonstrating how to move an entity to a different
bucket in Op1q steps.
To move entity 4 from bucket A to bucket B, append an element to the list
of entities in bucket B, and move the last entity in bucket A to the previ-
ous location of entity 4. Only two elements in the array pEjqjPI have to be
updated. Element movement is symbolised with solid lines, and element
referral is indicated by dashed lines. Addition and removal of entries to and
from arrays is indicated with boxes of green and red colour, respectively.

cost of initialising the simulation thus amounts to

CB
init “

`

n` ν ` ν2 ` ν log ν ` n log ν
˘

Cop

` nCQ

` ν2Cλ` . (4.56)

Sampling an event candidate requires drawing one uniform random number for
choosing an interarrival time, two random numbers and ν additions on average for de-
termining a pair of buckets, and another two random numbers for choosing entity in-
dices. An event candidate can be accepted or rejected, which is decided by computing
the interaction rate between the entities sampled to determine the acceptance probabil-
ity (Eq. (4.51)) and by choosing whether to accept by drawing another random number.
Let us assume that the average probability of acceptance is p P p0, 1s; then, for one event
to be simulated, p´1 candidates have to be drawn on average, and the cost of sampling
an event therefore is

CB
event « p´1ν Cop

` p´1 p6Crand ` Cλq

` Caction . (4.57)

When the properties qj of an entity j are changed either by an interaction or by ex-
ternal events, the bucket propertiesQJ of the corresponding bucket J “ Bj , all bucket–
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Figure 4.6: Analytical solutions and RPMC simulations for the coagulation
test with the linear kernel (Eq. (4.63)) using the bucketing scheme.
The RPMC simulation runs use n “ 1 024 and n “ 65 536 representative
particles, respectively.

bucket interaction rate bounds involving bucket J , and all cumulative bucket interaction
rate bounds need to be updated. Locating the bucket of entity j in the sorted array of tu-
ples pJ, bJqJPB with binary search requires log ν comparisons on average, and updating
the upper bound for the interaction rate λ` requires recomputing and summing up an
average number of ν bucket–bucket interaction rate bounds, amounting to an approxi-
mated cost of

CB
update « CQ

` pν ` log νqCop

` ν Cλ` . (4.58)

Entities sometimes need to bemoved to another bucket, and as a consequence, buck-
ets sometimes need to be added and removed. With the data structures adopted for our
reference implementation, either operation can be performed in amortised Op1q steps
with a manoeuvre sketched in Fig. 4.5 which we refer to as ‘castling’ because of its vague
resemblance of the eponymous chess move.

Following the reasoning in Sect. 4.2.8, we estimate the simulation cost rate as

CB
simp∆tq

∆t
“ λ

`

CB
event ` C

B
update

˘

` λextC
B
update (4.59)

«
`

p´1n ν
˘

λ̃ Cop

`
`

p´1n
˘

λ̃ p6Crand ` Cλq

` pn νq
”

λ̃` λ̃ext

ı

pCλ` ` Copq

` n
”

λ̃ pCQ ` Cactionq ` λ̃extCQ

ı

, (4.60)

where a pn log νq rλ̃` λ̃extsCop term has been neglected.
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The cost estimate ismore complex than the estimate given for the traditional scheme
in Eq. (4.26), but it is evident that no term scales with n2 or with n log n. However,
we observe that, because buckets are allocated sparsely, there cannot be more occupied
buckets than entities,

n
!
ě ν , (4.61)

and thus n ν is an upper bound to ν2: the cost rate of the bucketing scheme thus scales
at least quadratically with the number of buckets, just as the cost rate of the traditional
implementation scales quadratically with the number of entities.

The average probability of acceptance p quantifies the efficiency of the bucketing
scheme. For an inefficient bucketing scheme, p is very small, and hence p´1 is large, al-
lowing the first two terms in Eq. (4.60), which comprise the cost of rejection sampling,
to dominate the simulation cost rate. Conversely, if the bucketing scheme is efficient,
p, and thus p´1 as well, approaches unity, allowing the latter two terms in Eq. (4.60)
to dominate. If we adjust the balance between rejection sampling and updating by re-
fining or coarsening the bucketing scheme, or by making the bucketing scheme slightly
hysteretic (cf. Sect. 4.4.5), then we can achieve better overall performance, as studied in
Sect. 4.6.3.5.

4.4 Computing interaction rate bounds

In our description of the bucketing algorithm in Sect. 4.3.5, two aspects had remained
unspecified: the nature and purpose of the bucket propertiesQJ , and the computation of
upper bounds for bucket–bucket interaction rates λ`JK from bucket properties QJ , QK

of two buckets J,K P B.

The definition of bucket–bucket interaction rate upper bounds given in Eq. (4.45)
suggests that bounds could be computed as

λ`JK Ð max
jPIJ ,kPIK

λjk (4.62)

for two given buckets J,K P B. Naïvely, this would require the evaluation of the entity–
entity interaction rateλjk for all pairs of entities j P IJ and k P IK , and thereforenJ ¨nK
evaluations of the entity interaction rate function λentpq,q1, δq. Because, for ν occupied
buckets, a total number of ν2 bucket–bucket interaction rate upper bounds need to be
computed, and because

ř

J nJ “ n, this amounts to n2 evaluations of λentpq,q1, δq,
which would be prohibitively expensive. But Eq. (4.62) can be evaluated much more
efficiently, as we shall now demonstrate with an example.

4.4.1 Example: Linear kernel

The linear kernel

λpm,m1q “ λ0 ¨
`

m`m1
˘

(4.63)

with some constant λ0 leads to a special case of the Smoluchowski equation (Eq. (4.1))
for which the equation can be solved analytically (e.g. Ohtsuki et al., 1990), and which
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Figure 4.7: RPMC simulations for the coagulation test with the runaway
kernel (Eq. (4.69)) using the bucketing scheme.
The RPMC simulation runs use n “ 2 048 and n “ 65 536 representative
particles, respectively, and a particle regime threshold of Nth “ 10. The
dimensionless threshold mass ofmth “ 107, marking the point where run-
away growth ensues, is indicated by the dotted red horizontal lines, and the
dashed orange lines indicates the representative particle mass M{pnNthq

at which swarms are split up into individual particles. The plots show time
series of histograms of the mass-weighted particle number density with
bin counts colour-encoded on a logarithmic scale. The runaway particle is
shown separately (red curve). Results have been averaged over 10 runs; the
shaded surroundings of the red curve indicate the error bounds of the run-
away particle mass.

is hence often used to verify numerical methods for the simulation of coagulation pro-
cesses. In a representative particle simulationwhere all swarms aremany-particle swarms,
Nk " 1@k P I, the particle–swarm interaction rate λjk would then be

λjk “ Nkλ0 ¨ pmj `mkq (4.64)

as per Eq. (4.16). Inserting this expression into Eq. (4.62), we find that a bucket–bucket
interaction rate bound can be computed as a function of bucket-specific upper bounds,

λ`JK Ð max
jPIJ ,kPIK

λ0 pNkmj `Mkq

“ λ0

„

max
kPIK

Nk max
jPIJ

mj `
M

n

ȷ

“ λ0

„

N`Km
`
J `

M

n

ȷ

, (4.65)

where we used the swarm massMk “ Nkmk, assumed an equal-mass sampling where
every swarm holds the same fraction of the total massM,

Mk “
M
n
@k P I , (4.66)
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and where the notation

x´K :“ min
kPIK

xk , x`K :“ max
kPIK

xk (4.67)

refers to the bucket-specific lower and upper bounds x´K , x
`
K of some property xk for

entities k in a bucketK. Computing a bucket-specific upper bound only requires traver-
sal of all entities in the bucket, and hence nJ operations for a bucket J , or n operations
for all buckets. In the case of the linear kernel, we could therefore define the bucket
properties as a tuple

QJ :“
`

m`J , N
`
J

˘

, (4.68)

which for any bucket J can be computed with nJ operations. Subsequently, given the
bucket propertiesQJ ,QK of two buckets J andK, a bucket–bucket interaction rate up-
per bound λ`JK can be computed directly as per Eq. (4.65), therebymeeting the complex-
ity requirements stated in Sect. 4.3.7. We note that the upper bound given by Eq. (4.65)
is optimal: it is an exact upper bound on the particle–swarm interaction rates λjk for
j P IJ , k P IK , or in other words: no better bound exists. This quality is difficult to
retain except in the simplest of cases.

Results for anRPMC simulation of coagulationwith the linear kernel using the buck-
eting scheme are shown in Fig. 4.6. The analytical solution is given as a reference.

4.4.2 Example: Runaway kernel

As another example, we consider the runaway kernel, a test kernel modelled after the
gravitational focussing effect (cf. e.g. Armitage, 2017, §III.B.1) which was introduced in
Sect. 3.6.2 for the purpose of studying the swarm regime transition:

λpm,m1q “ λ0maxpm,m1q2{3

«

1`

ˆ

maxpm,m1q

mth

˙2{3
ff

, (4.69)

where λ0 is some constant andmth is a threshold mass.

As with the linear kernel, an upper bound of the bucket–bucket interaction rate can
be given in terms of bucket-specific bounds,

λ`JK Ð λ0N
`
K

´

m`J,K

¯2{3

»

–1`

˜

m`J,K
mth

¸2{3
fi

fl , (4.70)

where we used the abbreviationm`J,K ” maxtm`J ,m
`
Ku, the submultiplicativity of the

maximum norm,

max
i
pai ¨ biq ď max

i
ai ¨max

i
bi (4.71)

for sequences of positive semi-definite quantities paiqi, pbiqi, and themonotonicity of ex-
ponentiation. Although this upper bound is no longer exact², it can be obtained directly

²As a counterexample, let us considerM “ 24, n “ 3,m1 “ 1
8
,m2 “ 1,m3 “ 8, and a two-bucket

grouping B “ tA,Bu with IA “ t1, 3u and IB “ t2u. Then, the upper bound of the mutual interaction
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Figure 4.8: Raw interaction rate λpq,q1q and entity interaction rate
λentpq,q

1, δq for the runaway kernel (Eq. (4.69)).
Parameters are: λ0 “ 10´10, threshold mass mth “ 107, total mass
M “ 1011, n “ 2 048 representative particles, particle regime threshold
Nth “ 10. Many-particles swarms (Npqq ą Nth) are assumed to have
homogeneous swarm massMpqq “ M{n, whereas few-particles swarms
(Npqq ď Nth) are assumed to have been split up to represent only them-
selves, Npqq “ 1, and thus have swarm mass Mpqq “ mpqq; hence the
discontinuity atmcrit.

from bucket properties

QJ :“
`

m`J , N
`
J

˘

, (4.72)

and thus also meets the complexity requirements stated in Sect. 4.3.7.

Results for an RPMC simulation of coagulation with the runaway kernel using the
bucketing scheme are shown in Fig. 4.7. The runaway kernel is shown in Fig. 4.8 along
with the emerging entity interaction rate λentpq,q1, δq. For comparison, two snapshots
from the RPMC simulation are given in Fig. 4.9. In both figures, a discontinuity can be
observed as swarmsNk are split up once their swarmparticle countNk no longer exceeds
the particle regime thresholdNth. Self-representing particles, that is, representative par-
ticles k with a swarm particle count of Nk “ 1, cannot interact with their own swarm,
hence their self-interaction rate is λkk “ 0, as seen in the lower left panel of Fig. 4.9.
Indices are grouped by buckets, and the corresponding bucket–bucket interaction rate
bounds λ`JK are shown in the right panels of Fig. 4.9.

rate for buckets A, B obtained with Eq. (4.70) is λ`
AB “ 2 176, whereas the exact upper bound would be

λ`
AB “ 160.

We emphasise that, to demonstrate the inexactness of the bound in a simple example, we had to use a
counterintuitive bucket grouping, with the heaviest and the lightest particle in the same bucket and the
average-mass particle in another bucket. The excessiveness of bounds is attenuated by a bucketing scheme
that is monotonic in every dimension of the bucket label.
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Figure 4.9: Snapshots of the entity interaction rates λjk and correspond-
ing bucket–bucket interaction rate bounds λ`JK for the runaway kernel
(Eq. (4.69)) in an RPMC simulation at different times t “ 8, t “ 25.
The particle masses of representative particles j and k are indicated at the
sides. Parameters as in Fig. 4.8; bucketing as per Eq. (4.42) using θM “

θm “ 2.
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4.4. Computing interaction rate bounds

4.4.3 General interaction rate bounds

We demonstrated how to efficiently compute upper bounds for the bucket–bucket inter-
action rates for the examples given in Sects. 4.4.1 and 4.4.2 by defining a set of bucket-
specific upper bounds as bucket properties, inserting the respective interaction rate func-
tion into Eq. (4.62), and rewriting the upper-bound estimate as a function of the bucket
properties. The generalisation of this approach leads to the concept of interval arith-
metic, which is briefly introduced in Appendix 4.A along with interval notation such
as rxs ” rx´, x`s and the Fundamental Theorem of Interval Arithmetic. For a more
thorough introduction to interval arithmetic, refer to Hickey et al. (2001); Moore et al.
(2009); Alefeld and Herzberger (2012).

By virtue of the Fundamental Theorem of Interval Arithmetic, we can obtain an in-
terval extension of the linear kernel (Eq. (4.63)),

Λ
`

rms ,
“

m1
‰˘

“ λ0 ¨
`

rms `
“

m1
‰˘

, (4.73)

and likewise of the runaway kernel (Eq (4.69)),

Λ
`

rms ,
“

m1
‰˘

“ λ0 ¨
`

Max
`

rms ,
“

m1
‰˘ ˘2{3

ˆ

«

1`

ˆ

Maxprms , rm1sq

mth

˙2{3
ff

, (4.74)

where the exact interval extension of themax function is given by

Maxprxs , rysq “
“

max
`

x´, y´
˘

,max
`

x`, y`
˘‰

. (4.75)

Likewise, for the RPMC method with any raw collision rate function λpq,q1q with
an interval extension Λprqs, rq1sq, an interval extension of the entity interaction rate
function λentpq,q1, δq in Eq. (4.16) can be obtained as

Λent

`

rqs ,
“

q1
‰

,∆
˘

:“ N eff
`

rqs ,
“

q1
‰

,∆
˘

Λ
`

rqs ,
“

q1
‰˘

, (4.76)

where rqs denotes a vector of intervals, and where∆ Ď t0, 1u,∆ ‰ H is a set containing
1 if the interaction can be an entity self-interaction and 0 if the interaction can be an
interaction between different entities (and may thus contain both 0 and 1). Equivalently,
we might state

rλJKs “
”

N eff
JK

ı

ΛprqJ s , rqKsq , (4.77)

where we abbreviate the effective swarm particle count and its interval extension as

N eff
jk :“ N effpqj ,qk, δjkq , (4.78)

”

N eff
JK

ı

:“ N effprqJ s , rqKs ,∆JKq , (4.79)

and where the set-valued self-interaction indicator ∆JK , the set extension of δjk, is
given by

∆JK :“

$

’

&

’

%

t0u if J ‰ K

t1u if J “ K and nJ “ 1

t0, 1u if J “ K and nJ ą 1 ,

(4.80)
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4. EFFICIENT SIMULATION OF STOCHASTIC REPRESENTATIVE PARTICLE INTERACTIONS

in accordance with the definition of ∆ given above: considering that we know only the
buckets J ,K which hold the interacting entities, we know that the interaction cannot be
an entity self-interaction if the interacting entities are in different buckets, and that it is
necessarily an entity self-interaction if both are in the samebucket and if that bucket only
holds one entity. Otherwise, both self-interaction and non-self-interaction are possible.

In Sect. 3.4.4, the notion of boosting was introduced as a means of grouping together
multiple similar events, and the boosted interaction rate was defined as

λjk :“ Nb
jkλpqj ,qkq , (4.81)

where βjk, indicating the number of events grouped together, is the boost factor for an in-
teraction of representative particle j with swarm k, and where we introduced the boosted
swarm multiplicity factor Nb

jk as

Nb
jk :“

N eff
jk

βjk

!
“ Njk V

eff
jk (4.82)

with the boosted swarm particle count Njk “ Nk{βjk and the effective swarm particle
count correction factor V eff

jk “ N eff
jk {Nk. A large value of βjk counteracts a large number

of swarm particlesNk, and hence an interval extension of λjk can be obtained using the
algebraically favourable rendering of Eq. (4.82),

rλJKs :“ rNJKs ¨

”

V eff
JK

ı

¨ ΛprqJ s , rqKsq . (4.83)

Here, the interval extensions of rNJKs and rV eff
JKs are obtained by composition as per

the Fundamental Theorem of Interval Arithmetic, following the paradigm devised in
subsequent Chapter 5 to obtain interval extensions of piecewise-defined functions such
asN effpq,q1, δq.

We thus define the bucket properties QJ for a bucket J as a vector of intervals of
property bounds,

QJ :“ rqJ s . (4.84)

We note, however, that it may be useful, and allow for tighter results in the interval
extension of the interaction rate function, if we augmentQJ with intervals of bounds of
additional derived properties, as done in Eq. (4.68) for the linear kernel where we had
defined the bucket properties QJ to include bounds for the particle propertymj as well
as the derived propertyNj “ pM{nq{mj .

4.4.4 Updating bucket properties

We computed and stored an initial set of bucket property bounds QJ “ rqJ s for all
occupied buckets J P B as the Cartesian product of element-wise intervals

rqJ s ” rqJ,1s ˆ ¨ ¨ ¨ ˆ rqJ,ds , (4.85)

rqJ,ss ” rq
´
J,s, q

`
J,ss Ð

„

min
jPIJ

qj,s,max
jPIJ

qj,s

ȷ

, (4.86)
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where s denotes the component index of the d-dimensional property vector q. We some-
times abuse notation by employing the quantity itself as a placeholder for its index or
its component, for instance writing qj,m instead of qj,1, and use the component and the
quantity interchangeably, mj “ mpqjq “ qj,m. For example, if entity properties con-
sisted of a mass m and a charge c, the property vector would be qj “ pmj , cjq; index
s ” m would refer to the mass dimension and index s ” c would refer to the charge
dimension.

During simulation, an interaction between entities j and k usually changes some of
their properties qj , qk. When the properties of an entity j change, the bucket property
bounds rqJ s, rqJ 1s of the entity’s old and new buckets J and J 1 (which may be identical)
may also change. This is not always the case, though. As an example, consider a bucket
with label A which contains three particles with massesm1 “ 1 g,m2 “ 3 g, andm3 “

7 g. Presume that particle 2 suffers an interaction that grows its mass tom12 “ 4 g. Then
the bucket property bounds for bucketA does not change; the minimum and maximum
mass of any particle in the bucket are still 1 g and 7 g. In this case, the interaction rate
bounds, which are a function of the bucket property bounds (Eq. (4.76) in the case of
the RPMCmethod), do not change either and thus need not be recomputed in Step 3.iii,
and no updates need to be performed in Step 3.iv of the bucketing algorithm.

Now let us instead assume that particle 3 undergoes a collision and grows to mass
m13 “ 12 g. If the bucketing criterion Bpqq still places particle 3 in the same bucket A,
its bucket property bounds has to expand given that the maximum particle mass in the
bucket is now 12 g; subsequently, the bucket interaction rate bounds for bucket J need
to be recomputed in Step 3.iii, and the cumulative bucket interaction rate bounds need
to be updated in Step 3.iv. Expanding the bucket property bounds is an operation with
constant complexity, entailing only amin andmax function call per bucket property, and
thus is of negligible cost compared to the subsequent recomputation of interaction rate
bounds and updating of cumulative interaction rate bounds.

Let us consider a third example: particle 3 still grows to m13 “ 12 g but the bucket-
ing criterion Bpqq now places it in a different bucket with label B. Let the bucket mass
bounds of bucketB be rmBs “ r11 g, 18 gs. The bucket property bounds of bucketB thus
do not change, and no interaction rate bounds need to be recomputed in Step 3.iii. How-
ever, the number of entities nA and nB in buckets A and B have changed, and therefore
in Step 3.iv the cumulative bucket interaction rate bounds must be updated.

So far we only described the expansion of bucket property bounds. It is possible that
the bounds rqJ s currently stored for a bucket J are wider than necessary for the parti-
cles remaining in the bucket. In the third example considered above, this is the case for
bucketA after particle 3 has been relocated to bucket B. Excessive property bounds lead
to excessive interaction rate bounds and thus to an unnecessarily high rejection rate in
the sampling step. We therefore strive to keep bucket property bounds tight. But while
we could always recompute the bounds of a bucket J to keep them as tight as possi-
ble, this would come at a cost of nJ operations because all entities in the bucket would
need to be processed. We therefore defer this recomputation by counting the number of
times an entity in bucket J has changed since the last recomputation of bounds. Once
the number exceeds the number of entities in the bucket nJ times the number of occu-
pied buckets ν, the bucket property bounds rqJ s are recomputed as per Eqs. (4.85–4.86).
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This recomputation then occurs every nJ ¨ ν updates at most, and thus has constant
amortised computational cost per update. We also recompute the bounds if the number
of rejected events exceeds a certain threshold such as n and if particles have been added
to or removed from the bucket since the last recomputation. This recomputation also
has constant amortised computational cost per simulated event.

4.4.5 Widening

If a simulation has to process a large number of events which only cause very slight
changes to entity properties, it may spend a disproportionate fraction of its time updat-
ing bucket–bucket interaction rate bounds. In such a situation, it may be beneficial to
choose slightly wider bucket bounds, which we refer to as widening. To widen a bucket
means that, whenever a bucket’s property bounds are recomputed, its bounds are ex-
tended a little beyond the minimum and maximum property values of all entities in the
bucket. So, instead of initialising the bucket property bounds with the minimum and
maximum as per Eq. (4.86), they are widened as

rqJ,ss Ð

«

w´s

ˆ

min
jPIJ

qj,s

˙

, w`s

ˆ

max
jPIJ

qj,s

˙

ff

, (4.87)

where s again denotes a component (e.g.mass, charge) of the vector of propertiesq. How
property s is to be widened can be specified by the user-supplied widening functions
w´s p¨q and w`s p¨q. The widening strategy should align with the bucketing criterion; for
example, if a property such as mass is used for logarithmic bucketing as in Eqs. (4.41)
and (4.42), it is best widened multiplicatively:

w˘mpm
1q “ m1 ¨ 10˘f{θm , (4.88)

where f P r0, 1q is a simulation parameter indicating by which fraction of their width
buckets should overlap. Conversely, a property used as a linear bucketing criterionwould
best be widened additively. For example, for a linear bucketing criterion such as

Bpqq “

Z

θx
xpqq ´ x0

δx

^

, (4.89)

where δx is a characteristic length and θx is the simulation parameter controlling the
bucket width, a suitable widening function would be

w˘x px
1q “ x1 ˘ f δx . (4.90)

With widening, bucket property bounds exceed the strict bounds of the property val-
ues of their entities. This usually leads to overlapping buckets, and hence to a hysteresis
effect in the bucket assignment of entities; with widening, an entity j may still reside
in a bucket Bj different from the bucket it would be assigned to if the bucketing cri-
terion Bpqjq was re-evaluated with its current properties qj . Therefore, the likelihood
is increased that a particle can remain in the same bucket after its properties undergo
minuscule changes; bucket property bounds need to be updated (that is, extended or re-
computed) less often, and the subsequent recomputations of bucket–bucket interaction
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rate bounds in Step 3.iii of the bucketing algorithm are avoided, all at the expense of a
higher likelihood of rejection. The widening parameter f can thus be used to balance
the sampling and the updating parts of the simulation. The impact of this parameter is
studied experimentally in Sect. 4.6.3.5.

4.4.6 Efficiency and correctness

As observed in Sect. 4.4.1, it is usually not possible to estimate exact bounds if the inter-
action rate function is non-trivial. This does not constitute a problem – the bucketing
scheme only requires an upper bound, not necessarily an exact one – but can negatively
impact performance. By overestimating the bucket–bucket interaction rate, the accep-
tance probability in Eq. (4.51) decreases, and as a result we have to sample a larger num-
ber of potential events which are ultimately rejected. For optimal sampling performance,
we thus desire a tight estimate of the bucket–bucket interaction rate upper bound. In a
simulation which entails a large number of events bringing about only minute changes,
some sampling performance may be traded for fewer updates, as proposed in Sect. 4.4.5,
by widening the bucket property bounds by some fraction.

Regardless of whether a bound is exact or inexact, the fraction of rejected events is
high if the entity–entity interaction rates λjk between entities in two given buckets J ,
K span many orders of magnitude. The computational cost of the simulation therefore
depends on a suitable definition of the bucketing criterion Bpqq, chosen such that the
interaction rates λjk between entities in any two buckets are of similar magnitude, and
on a carefully crafted interval extension of the interaction kernel which avoids excess in
the computation of bounds.

The bucketing criterion indirectly controls the number of occupied buckets ν, and the
simulation cost scales linearly with ν according to Eq. (4.60). The bucketing criterion
thus must find a compromise between a small number of buckets and a high rate of
acceptance. With an inefficient bucketing criterion, the bucketing scheme can still be
prohibitively expensive compared to the traditional inverse transform sampling scheme.
But even with a suitable bucketing criterion, the traditional schememay outperform the
bucketing scheme for small numbers of entities n.

We conclude this section by again emphasising that the correctness of the scheme is
in no way affected by the choice of a bucketing criterion or by the chosen upper bound
estimate for the interaction rate. The bucketing scheme is statistically equivalent to the
traditional sampling scheme; it does not impose additional physical or statistical require-
ments and does not introduce new approximations. The results of a simulation con-
ducted with the bucketing scheme thus statistically matches the results obtained with a
traditional computational scheme; the simulation may only execute faster if an efficient
bucketing criterion was chosen and if the upper bound estimates are not excessive. The
correctness of the results is verified explicitly in Sect. 4.4.1, where the simulation result
is compared to an analytical solution in Fig. 4.6. We also emphasise that the bucketing
scheme had been used to run all simulations conducted in Chapter 3, of whichmany had
been compared to analytical solutions as well.
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4.5 Locality

In simple geometric interaction models such as Eq. (4.13), the particle distribution is
assumed to be homogeneous and isotropic. Often, however, a physical system features
spatial inhomogeneities. For example, in a protoplanetary disk, the gas and dust density
distribution may exhibit radial features such as rings, an amassment of dust grains, and
cavities, a radial zone with little or no material (e.g. Huang et al., 2018).

To resolve spatial features in a stochastic simulation, we first augment the vector
of entity properties qj with one or more components representing the location of the
entity. In this section, we shall assume that the location of an entity j is represented
by a one-dimensional quantity, noting that our approach can be generalised to higher
dimensionality.

4.5.1 Local bucketing criteria

Typically, discrete interactions between entities are modelled as having a maximal spa-
tial distance up to which interactions are possible. For example, two bodies j and k can
collide only if their distance at their closest approach, represented by the impact param-
eter b, is not greater than their interaction radius Rcoll,

b
!
ď Rcoll , (4.91)

which for massless spherical bodies is the sum of their bulk radii Rj and Rk,

Rcoll “ Rj `Rk . (4.92)

If the bodies are massive, collisions are possible at impact parameters greater thanRj`

Rk because themutual gravitational attraction boosts the effective collision cross-section,
an effect known as gravitational focussing (e.g. Armitage, 2017, §III.B.1):

Rcoll “ pRj `Rkq p1`Θq , (4.93)

whereΘ “ 2Gpmj `mkq{rpRj `Rkqv
2
as is the Safronov number (e.g. Weidenschilling,

1989) withG the gravitational constant and va the approach velocity, the relative velocity
at infinite distance. Assuming both bodies have circular planar orbits around the same
central object, a lower bound for the impact parameter can be obtained as the difference
of their semimajor axes,

b ě |aj ´ ak| . (4.94)

If the orbit of a body is eccentric, its apsides (the points nearest to and farthest from the
central object) have an orbital distance of a p1 ´ eq and a p1 ` eq, respectively, where a
and e are the semimajor axis and the eccentricity of the orbit. Therefore, for two entities
j, k with eccentric orbits, the interaction radius is enhanced further,

Rcoll “ pRj `Rkq p1`Θq ` ajej ` akek . (4.95)

It is clear that, if the lower bound for the impact parameter between two entities
exceeds their maximal interaction distance, they cannot possibly interact. The raw inter-
action rate function λpqj ,qkqmust take this into account and evaluate to 0 if the entities

108



4.5. Locality

j, k are not in reach, implying thatλjk “ 0 in this case. But this does not hold true for the
interval extension ΛprqJ s, rqKsq if a non-local bucketing criterion is used which places
entities with similar intrinsic properties in the same bucket regardless of their orbital
position. For example, with the mass bucketing criterion of Eq. (4.41), the interactions
between buckets J andK contribute a term nJnKλ

`
JK to the upper bound of the global

interaction rate λ` (Eq. (4.47)), implying that every entity in bucket J could possibly
interact with any entity in bucket K with a maximal interaction rate of λ`JK . In reality,
the number of entity pairs from buckets J andK which could possibly interact may be
much smaller than nJnK simply because many entity pairs would be out of reach. A
non-local bucketing criterion therefore results in an excessive rejection rate, as events
for out-of-reach entity pairs pj, kq are generated and must be rejected individually by
evaluating λpqj ,qkq.

An obvious remedy would be to use a local bucketing criterion instead. A local vari-
ant of themass bucketing criterion given in Eq. (4.41)might additionally use the location
aj ” apqjq as a criterion for bucket labeling,

Bpqq “

ˆZ

θm log10
mpqq

m0

^

,

Z

apqq ´ a0
δa

^˙

, (4.96)

where a0 is some reference location, and where δa is the spatial width of a bucket. If the
interval extensionΛprqJ s, rqKsq of the raw interaction rate is crafted with sufficient care,
it evaluates to 0 if the entities in the two buckets J andK are always out of reach.

Although this approach is valid, it is not very practical. First, it is not clear how δa
should be chosen. Let the interaction radius of two entities j, k be given by a function

Rjk ” Rpqj ,qkq . (4.97)

We could then set the smallest occurrent interaction radius as δa,

δa „ min
j,kPI

Rjk . (4.98)

In a representative particlemethod, we usually have to impose a lower limitRjk ě Rmin,
where the simulation parameter Rmin represents the smallest length to be resolved by
the simulation, because of the finite number of representative entities. This gives rise to
a good approximation for Eq. (4.98),

δa „ Rmin . (4.99)

We note that this choice of δa would grow the number of occupied buckets ν dramati-
cally. Even worse: as the number of representative particles n is increased, we are able to
afford a better resolution; but shrinkingRmin, and thus δa, then grows the number of oc-
cupied buckets ν even further. As we had found in Sect. 4.3.7, the cost of the simulation
strongly depends on the total number of occupied buckets ν: the memory requirements
(Eq. (4.55)) scale with ν2, and the simulation cost rate (Eq. (4.60)) scales with n ¨ ν in
the dominant terms. Even though the number of out-of-reach rejections can be greatly
reduced with a local bucketing criterion, it is questionable whether this outweighs the
cost of updating all the additional buckets.
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4.5.2 Local sub-buckets

We would like to retain the benefit of a local bucketing criterion – elimination of most
out-of-reach rejections–without having to pay for an exploding number of buckets. This
desire gives rise to the notion of spatial sub-bucketing. The basic idea is that the entities
in a given bucket are grouped in sub-buckets according to their location. Interaction
rate bounds are computed for bucket–bucket pairings as before, but when computing
an upper bound of the global interaction rate λ, the sub-buckets are used to estimate
a maximal number of entity pairs n`JK ď nJnK from buckets J and K which could
possibly interact, resulting in a better bound of the global interaction rate λ,

λ`loc “
ÿ

J

ÿ

K

n`JKλ
`
JK (4.100)

ď
ÿ

J

ÿ

K

nJnKλ
`
JK “ λ` , (4.101)

cf. Eqs. (4.46–4.47). Ideally, n`JK ! nJnK , and thus λ`loc ! λ`.

Let an entity j be associated with a dimensionless location lj ” lpqjq. Given a sub-
bucket s of bucket J and a second bucket K, we need an efficient means of locating
and enumerating the sub-buckets t in bucket K which are in reach of sub-bucket s. A
sub-bucket t is considered ‘in reach’ if any of the entities it might hold could possibly
interact with any entity possibly in s. For reasons that become apparent as this predicate
is specified more precisely, the rounding behaviour of floating-point arithmetic makes
it unsuitable for determining the range of reachable sub-buckets; we therefore opt to
employ integer arithmetic instead. Sub-bucket widths therefore need to be granular, that
is, multiples of some common length scale. This length scale is represented as unity in
the dimensionless location l; on this dimensionless scale, the width of a sub-bucket is
always a positive integer, a multiple of 1.

Location l can be defined according to the nature of the spatial coordinate. For exam-
ple, the location of a body on some circumstellar orbit could be defined in terms of its
semimajor axis a as

lpqq :“ dmin
apqq ´ a0
Rmin

, (4.102)

where the integer-valued simulation parameter dmin ą 0 is a granularity measure, a0
is some reference position, and Rmin is the minimal resolved length scale. lj ” lpqjq

then represents the location of entity j relative to the reference position a0 in units of
pRmin{wminq.

In accordancewith the definition of location lpqq, the sub-bucketing scheme requires
a function

djk ” dpqj ,qkq (4.103)

which quantifies the interaction distance between entities j and k, and its interval exten-
sion

rdJKs “ DprqJ s , rqKsq . (4.104)
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A dimensionless equivalent of the interaction radius introduced in Sect. 4.5.1, the inter-
action distance is defined as the greatest location distance at which two entities with
entity properties q and q1 could possibly interact,

ˇ

ˇlpqq ´ l
`

q1
˘ˇ

ˇ

!
ď d

`

q,q1
˘

. (4.105)

For a location defined as a linear function of the semimajor axis as in Eq. (4.102), the
interaction distance is given in terms of the interaction radius (Eq. (4.97)) as

d
`

q,q1
˘

:“ dmin
Rpq,q1q

Rmin
. (4.106)

Other definitions of location and distance are possible as long as the domain of locations
is a one-dimensional metric space with a Euclidean distance measure. For example, if
interaction radii tend to scale with the position, Rjj 9 aj , then a logarithmic definition
would be more appropriate. Such a definition is elaborated in Appendix 4.B.

After entities have been grouped into buckets, the width of the sub-buckets in a
bucket J is chosen as

wJ :“ max
␣

dmin,
P

d`JJ
T(

. (4.107)

With the linear definition of location and distance in Eqs. (4.102) and (4.106), imposing
dmin as a lower bound ensures that a sub-bucket cannot be narrower than the minimum
resolved length scale. The bucket self-interaction distance is a reasonable compromise
for bucket size because, inmost physical models, interaction radii are of vaguely additive
nature,

2Rpq,q1q „ Rpq,qq `Rpq1,q1q . (4.108)

Given an entity j in bucket J , the sub-bucket index sj ” sJpljq of j is then defined
as

sJplq :“

Z

l

wJ
`

1

2

^

. (4.109)

For every bucket, the simulation maintains a dynamic array of records indexed with s,
where every record stores a dynamic array of entity indices in that sub-bucket. As before,
entities can be moved between buckets and sub-buckets with constant complexity using
the ‘castling’ manoeuvre (cf. Fig. 4.5).

4.5.3 Sub-bucket reach

By inverting Eq. (4.109), we find the range of entity locations associated with a given
sub-bucket index s to be the interval-valued function

LJpsq :“ wJ

ˆ

rs, s` 1q ´
1

2

˙

. (4.110)

A sub-bucket s from bucket J and a sub-bucket t from bucketK shall be called in reach
of each other if an entity that would be grouped in sub-bucket s could possibly be within
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the rounded interaction distance bound rd`JKs of any entity that would belong in sub-
bucket t, as visualised in Fig. 4.10. Given a sub-bucket s in a bucket J , we can thus
combine Eqs. (4.109) and (4.110) to obtain the interval of sub-bucket indices UK,Jpsq in
bucketK which are in reach of s:

UK,Jpsq :“ SK
`

LJpsq ˘
P

d`JK
T˘

, (4.111)

where the ‘˘’ is sloppy interval notation,
“

a, b
˘

˘ c “
“

a´ |c|, b` |c|
˘

, (4.112)

and where SKprlsq is the interval extension of sKplq,

SKprlsq “

Z

rls

wK
`

1

2

^

. (4.113)

Using the identity
X

ra, bq
\

“
“

tau , rb´ 1s
‰

, (4.114)

we insert definitions into Eq. (4.111) to find

UK,Jpsq “

«[

wJ p2s´ 1q ´
`

2
P

d`JK
T

´ wK

˘

2wK

_

,

S

wJ p2s` 1q `
`

2
P

d`JK
T

´ wK

˘

2wK

Wff

. (4.115)

According to Eq. (4.107),wJ andwK are integers, and therefore both interval bounds
in Eq. (4.115) are fractions of integers. To understand why this is significant, let us pre-
tend that the unrounded interaction distance bound d`JK , rather than

P

d`JK
T

, had been
used to define the notion of being ‘in reach’ in Eq. (4.111) and the sub-bucket width in
Eq. (4.107). Floating-point additions, multiplications, and divisions are subject to round-
ing error, which can lead to significant differences inUK,Jpsq if the value of the fractions
in Eq. (4.115) is close to an integer. We note that being ‘in reach’ is a commutative rela-
tion,

t P UK,Jpsq ô s P UJ,Kptq . (4.116)

However, due to different accumulation of rounding errors in the different algebraic
computations of UK,Jpsq and UJ,Kptq, a sub-bucket t from bucket K might be deemed
in reach of a sub-bucket s from bucket J , while at the same time s would not be con-
sidered in reach of t. In the incremental updating approach explained in the subsequent
Sect. 4.5.4, this would violate consistency. Conversely, if both numerators and denomi-
nators in Eq. (4.115) are assured to be integer, the calculation can be done with integer
arithmetic, and no rounding error can occur. (For completeness let us add that, due to
the rounding guarantees provided by most floating-point formats, the calculation can
actually be done in floating-point arithmetic so long as numerator and denominator re-
main integer and lie within the contiguous range of integers that can be represented
exactly by the floating-point format.)
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Figure 4.10: Sub-bucket grouping with interaction distance bounds.
The sub-buckets of two buckets A and B and the entities populating them
are shown. Sub-bucket indices as per Eq. (4.109) are indicated in italic type.
The arrows indicate: the range of possible A–B interactions, as per the
bucket interaction distance bound d`AB, for the entity highlighted in red
(gray, dotted); the range and the rounded range of possible interactions for
sub-bucket 1 from bucketA (blue, dotted, and solid). In bucketB, the range
of sub-buckets UB,Ap1q in reach of sub-bucket 1 from bucketA (Eq. (4.111))
are highlighted.

4.5.4 Bounding the number of possible interactions

Let now nJ,s denote the number of entities in sub-bucket s of bucket J . To compute the
upper bound of possibly interacting entity pairs n`JK , we have to iterate through all sub-
buckets s in bucket J , obtain the sub-buckets UK,Jpsq from bucketK which are in reach
of s, and then accumulate the product nJ,snJ,t for all t P UK,Jpsq:

n`JK :“
ÿ

s

ÿ

tPUK,J psq

nJ,snK,t

“
ÿ

s

nJ,snK,J,s , (4.117)
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where we abbreviate the number of entities in bucketK reachable from sub-bucket s of
bucket J as

nK,J,s :“
ÿ

tPUK,J psq

nK,t . (4.118)

n`JK is commutative, n`JK “ n`KJ , because the notion of being in reach is commuta-
tive as stated by Eq. (4.116). The interval bounds of the sequence of intervals pUK,Jpsqqs
are monotonic, which is to say: a sub-bucket ps ` 1q does not reach further back than
sub-bucket s, and sub-bucket s does not reach further forward than sub-bucket ps` 1q.
Therefore, the nested sum can be efficiently computed with a ‘moving window’ scheme.
To this end, we iterate over sub-buckets s of bucket J . For every sub-bucket s, we com-
pute the range of reachable sub-buckets UK,Jpsq in bucket K. This range is compared
to the range reachable by the previous sub-bucket ps´ 1q. We compute nK,J,s by taking
the previous value nK,J,ps´1q and adding and subtracting sub-bucket entity counts nJ,t
for sub-buckets t as they fall in and out of reach. As we iterate through sub-buckets s,
we cumulate the product nJ,snK,J,s. If the number of occupied sub-buckets in a bucket
J are denoted νJ , computing n`JK as per Eq. (4.117) requires only νJ evaluations of the
function UK,Jpsq and two concomitant passes through the νK sub-buckets of bucketK.

When an entity j is updated in Step 3 of the bucketing algorithm, it may have to be
moved from one bucket J to another bucket J 1 ‰ J , or it may move from sub-bucket s
to a different sub-bucket s1 ‰ s of the same bucket J 1 “ J . In either case, the cumulative
values n`JK and n`J 1K must be updated, which can be done incrementally. Let δnJ,s̃ de-
note the number of entities to be added (or removed, if δ is negative) to (or from) some
sub-bucket s̃ of some bucket J :

nJ,s̃ Ñ nJ,s̃
1 ” nJ,s̃ ` δnJ,s̃ . (4.119)

To see how n`JK changes, we subtract the old value n`JK from the new value n`JK
1:

δn`JK ” n`JK
1
´ n`JK . (4.120)

If J “ K, the δnJ,s̃ may appear in both of the factors in Eq. (4.117). We therefore have
to distinguish between J “ K and J ‰ K. With some algebraic transformations we
obtain

δn`JK “

#

δnJ,s̃ ¨ nK,J,s̃ if J ‰ K

δnJ,s̃ ¨ pδnJ,s̃ ` 2nK,J,s̃q if J “ K ,
(4.121)

where we used the number of reachable entities nK,J,s defined in Eq. (4.118). Just as
the updated quantity n`JK itself, the incremental update δn`JK is commutative, δn`JK “
δn`KJ . Computing δn`JK is less expensive than recomputing n`JK

1, with the cost being
near-proportional to the reach of sub-bucket s̃.

4.5.5 Sampling

If the global interaction rate bound λ` (Eq. (4.101)) is estimated as the sum of products
nJnKλ

`
JK for bucketsJ andK, every possible combination of entities j P IJ and k P IK
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is considered with the same relative probability. The entity indices j and k can therefore
be sampled independently, as done in Step 2.iv of the bucketing algorithm. However, if
the sub-bucketing scheme is used, the local upper bound λ`loc (Eq. (4.100)) is computed
instead as the sum of products n`JKλ

`
JK . We must therefore first sample the sub-bucket

pairing s, t which contain the interacting entities j, k.

To sample s and t, we first draw a uniformly random integer ζ P N0 X r0, n
`
JKq. We

then use the ‘moving window’ scheme described in Sect. 4.5.4 to cumulate the sum over
nJ,snK,J,s, stopping just before the cumulative value, which shall be denoted ψ, begins
to exceed ζ. This determines the sub-bucket s of bucket J from which entity j is taken.
Sub-bucket t of bucket K is determined by cumulating values nK,t for all sub-buckets
in reach of sub-buckets s until the cumulative value exceeds pζ ´ψq. Once s and t have
been determined, entity indices j and k are selected randomly with uniform probability
from the arrays of entities held by the sub-buckets s and t.

4.6 Performance

The efficiency of the bucketing scheme has been studied formally in Sect. 4.3.7. In this
section we empirically assess the computational efficiency of the scheme for two syn-
thetic test cases as well as for a sophisticated physical model which comprises growth
by coagulation, viscous stirring, and dynamical friction.

4.6.1 Linear kernel

In our first test, we simulate a coagulation process with the linear kernel (Eq. (4.63)) for
different numbers of representative particles n using both the traditional inverse trans-
form sampling scheme and the proposed bucketing scheme. Benchmark results for the
linear kernel test are shown in Fig. 4.11, which shows the runtime for a single-threaded
simulation of the linear kernel until t “ 16; the specifications of the benchmark com-
puter are given in Appendix 4.C. For the test we used simple mass bucketing as per
Eq. (4.41) with two buckets per mass decade, θm “ 2. The bucketing is very efficient in
this case; the average probability of event acceptance is measured to be p „ 0.18, and
the average number of active buckets is xνy „ 18, and is only weakly dependent on the
value of n.

The gradual decreases in efficiency of the traditional scheme compared to the fitted
n2 curve can be correlated with increased memory latency as the size of the simulation
data begins to exceed the on-chip caches. This is reasonable, as the computation of inter-
action rates for the linear kernel is arithmetically trivial (a single addition), which allows
us to simplify the cost models of Sects. 4.2.8 and 4.3.7 using Cλ « Cop. We thus expect
the traditional scheme to run into a bandwidth limit. Conversely, the simulation data re-
quired for the bucketing scheme fits the per-socket inclusive L3 cache of our benchmark
machine for all values ofn examined. Results for the runswithn “ 1 024 andn “ 65 536
are reproduced in 4.6, showing increasingly accurate simulation of the desired outcome.
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Figure 4.11: Performance analysis of the linear kernel test for the traditional
scheme and the bucketing scheme.
The evolution of the linear kernel is simulated until t “ 16. The dashed
lines show fitted curves for simplified cost models linear and quadratic in
n. The vertical dotted lines indicate the number of representative particles
n for which the simulation data of either scheme exceeds the sizes of the
L1 cache, the per-core L2 cache, the per-socket inclusive L3 cache, and the
main memory of the benchmark machine.

4.6.2 Runaway kernel

Our second test investigates the runaway kernel (Eq. (4.69)). Unlike the linear kernel,
which we studied in the many-particles regime because the analytical solution assumes
continuous particle number densities, the runaway kernel is designed to test the run-
away growth of an individual particle, and hence encompasses the transition from the
many-particles regime to the few-particles regime. In the extended RPMCmethod, this
transition occurs for a swarm k when the swarm particle count Nk falls below the par-
ticle regime threshold Nth. The swarm is then split into Nth individual representative
particles each having a swarm particle count of 1, that is, representing only themselves,
and the total number of representative particles n increases accordingly.

The runaway kernel test has scaling characteristics similar to the linear kernel test,
as can be seen in Fig. 4.12, which shows the runtime for a single-threaded simulation of
the runaway kernel until t “ 70. Because the number of representative particles varies,
runtimes are shown for the event-averaged number of representative particles xny, with
the initial and maximal number of representative particles indicated separately. As for
the linear kernel, super-quadratic inefficiencies of the traditional scheme can be corre-
lated with the large working set size exceeding the on-chip caches; the interaction rate is
almost as trivial to compute as for the linear kernel (assuming that the powers pmkq

2{3,
which are computationally expensive, have been precomputed and cached for each parti-
cle k), so we again expect to eventually be bandwidth-limited. The slightly super-linear
runtime of the bucketing scheme for xny Á 3¨105 can be attributed to the event-averaged
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Figure 4.12: Performance analysis of the runaway kernel test for the tradi-
tional scheme and the bucketing scheme.
The evolution of the runaway kernel is simulated until t “ 70. The dashed
lines show fitted curves for simplified cost models linear and quadratic in n.
The solid lines show the runtime for the event-averaged number of repre-
sentative particles. For each tested configuration (solid horizontal lines), the
initial number of representative particles (circle) and the maximum num-
ber of representative particles in the simulation (right arrow) are indicated.
The vertical dotted lines indicate the number of representative particles n
for which the simulation data of either scheme exceeds the sizes of the per-
core L2 cache, the per-socket inclusive L3 cache, and the main memory of
the benchmark machine.

number of occupied buckets xνy which grows slightly (from „ 10 to „ 20) as xny in-
creases. The number of occupied buckets increases because, with more representative
particles available, more of the tail end of the distribution can be resolved, as is evident
from Fig. 4.7.

4.6.3 Collision and velocity evolution

Although the bucketing scheme was demonstrated to perform substantially better than
the traditional implementation for the linear and runaway kernel tests, we note that in
these synthetic test cases, entities have only two properties: particle mass and swarm
mass. As argued in Sect. 4.1, one of the main reasons to choose a Monte Carlo method
over a grid-based method is that more properties can be added easily, whereas doing
so in a grid-based method would increase the dimensionality of the grid, leading to
soon-prohibitive costs in terms of both memory and computation resources. The com-
putational scheme traditionally employed for the RPMC method is not sensitive to the
dimensionality of the parameter space. This is not necessarily true for the bucketing
scheme. If the particle–particle interaction rate is influenced by multiple properties –
say, mass and rms velocity –, then the bucketing criterion should consider each of these
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properties in separate dimensions, similar to what had been done in the refined three-
dimensional bucketing criterion in Eq. (4.42). The bucketing scheme can be likened to
a grid method in the subspace of the property space considered by the bucketing crite-
rion; adding an additional property dimension to the bucketing criterion thus adds to
the dimensionality of the grid. The curse of dimensionality is somewhat attenuated be-
cause the bucketing scheme uses a sparse grid of buckets, but even if the occurrence of
different particle properties is perfectly correlated (e.g. a light particle always has a high
rms velocity, and a heavy particle is always rather slow) the number of occupied buck-
ets likely increases by some factor for every additional property considered, which can
become significant if many additional properties are introduced. To assess the perfor-
mance of the bucketing scheme with more than one particle property, we therefore turn
to a more realistic example.

4.6.3.1 Ormel’s model

Ormel et al. (2010) have presented a comprehensive stochastic model for the simulation
of runaway growth of protoplanetary bodies. The model comprises collisional encoun-
ters (leading to coagulation or fragmentation), gravitational interactions (modelled as
viscous stirring and dynamical friction, which are stochastic surrogate models for the ex-
change of kinetic energy between particles), and also gas drag forces and turbulent stir-
ring. Collisional encounters were simulated with theMonte Carlomethod of Ormel and
Spaans (2008). Gravitational encounters, however, could not be simulatedwith aMonte
Carlomethod because of the excessive cost of computing interaction rate updates: ‘[...] it
is too demanding to treat collisionless encounters also on an event-based approach. Due
to their increased gravitational focussing [...] collisionless encounters are more frequent
than collisional interactions by several orders of magnitude, especially when the system
relaxes to a quasi-steady state in velocity space’ (Ormel et al., 2010, §2.6).

To test the bucketing scheme in a more likely scenario, we use it to simulate the
stochastic growth model introduced by Ormel et al. (2010), henceforth referred to as
Ormel’s model. However, unlike the original implementation, we model both collisional
and gravitational encounters as events, which has become feasible thanks to the in-
creased computational efficiency of the bucketing scheme. We simplify the model by
neglecting the influence of the gas (effectively setting the gas density to ρgas “ 0).With-
out a gas, there is no turbulent stirring and no gas drag. Apart from this, our model is
identical to the model presented in Ormel et al. (2010) save for minute technical details.
An extension of Ormel’s model implemented with the bucketing scheme is elaborated in
Sect. 6.1; in the following we shall only briefly summarise the gist of the model before
proposing a suitable bucketing criterion.

In our implementation of Ormel’s model, an entity k is equipped with the follow-
ing properties: swarm massMk, particle mass mk, orbital radius rk, planar rms velocity
vk, vertical rms velocity vz,k, and solid density ρk. For a representative particle j and
a swarm k, the interaction rates for collisions, dynamical friction events, and viscous
stirring events are denoted λcoljk , λdfjk, and λvsjk. A swarm of particles k is confined to
a radial annulus of rrk ´ hx,k, rk ` hx,ks, where the scale length is given by hx,k “
maxtRmin, vk{Ωprkqu for many-particles swarms (that is, swarms k withNk ą Nth) or
by hx,k “ vk{Ωprkq for few-particles swarms (Nk ď Nth). Rmin is a simulation parame-
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ter which bounds the radial resolution of the simulation, and Ωprq “
a

GM˚{r3 is the
Keplerian rotational frequency of a body on a circular orbit around a central object of
massM˚ with G the gravitational constant. Because swarms are split up at the many-
particles Ñ few-particles transition, few-particles swarms contain only a single self-
representing particle. Individual particles are not statistical representatives, and there-
fore imposing a minimal effective scale length is not necessary.

In Ormel’s model, colliding particles can coagulate or fragment. In the very simple
collision model parameterised by the effective coefficient of restitution ϵ, outcomes other
than coagulation are possible only in the superescape regime, that is, if the approach
velocity of the colliding particles exceeds their mutual escape velocity. It is assumed that,
upon collision of particles j and k, a fraction ffrag of the combined mass pmj`mkq ends
up as fragments. For simplicity, a uniform fragment size of Rfrag “ 1 cm is assumed
(slightly different fromOrmel et al. (2010) who usedRfrag “ 1mm andRfrag “ 10 cm).
The mass fraction depends on the particle masses and the kinetic energy of the impact,

ffrag “
ϵEcol

1
2 pmj `mkq v2esc

, (4.122)

where vesc “
a

4Gpmj `mkq{pRj `Rkq is the mutual escape velocity, and where the
kinetic energy of the impact is

Ecol “
1

2

mjmk

mj `mk
v2a (4.123)

with va the particle approach velocity. How exactly this fragmentation model can be
incorporated into the extended RPMC method will be discussed in Sect. 4.6.3.1 of the
subsequent chapter.

For the three types of interaction – collisions, viscous stirring, dynamical friction
–, the interaction radii Rcol

jk , Rdf
jk, and Rvs

jk can be computed; two entities j, k can only
interact if the particles they represent can get closer than the respective interaction ra-
dius. Interaction rate, interaction radius, and interaction outcome are also dependent on
the velocity regime. Interactions of particles with low rms velocities operate in the shear-
dominated regime, whereas a higher rms velocity places the interaction in the dispersion-
dominated regime. A pair of particles with a stochastic relative velocity faster than their
mutual escape velocity is in the superescape regimewhere viscous stirring and dynamical
friction are irrelevant and where the effect of gravitational focussing is negligible.

Determining interaction rates or interaction radii for either type of interaction is
complicated. Among other things, for a representative particle j and a swarm k the ge-
ometric overlap of the ‘living zones’ of the two swarms has to be computed, and the
routines containmultiple if–else branches to distinguish between the different velocity
regimes. In contrast to the synthetic linear and runaway kernel test cases of Sects. 4.6.1
and 4.6.2, the computation of interaction rates thus costs muchmore than a single arith-
metic operation, Cλ " Cop, which means that the simulation remains compute-bound
for much larger working-set sizes than with the synthetic tests.

For the bucketing scheme, an interval extension of the interaction rate function is
required. Due to the inherent complexity of the interaction rate function, constructing
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a corresponding interval extension by hand would be very laborious and error-prone.
Instead, we use the interval-aware programming paradigm set forth in Chapter 5 to im-
plement the routines for computing interaction rates such that they can return either a
real value for real-valued input arguments or an interval for interval-valued input argu-
ments.

For all but the simplest operations, interval arithmetic is disproportionately expen-
sive compared to real arithmetic. As an example, computing the sum of two intervals
requires only two additions, but computing the product of two intervals requires at least
four multiplications, three min, and three max operations (cf. e.g. Hickey et al., 2001).
As a result, the estimation of a bucket–bucket interaction rate upper bound is notably
costlier than the computation of a particle–swarm interaction rate, Cλ` " Cλ. As per
the cost models in Eqs. (4.26) and (4.60), it is thus possible that the traditional scheme
outperforms the bucketing scheme for relatively small numbers of representative parti-
cles, n „ ν.

To test the bucketing scheme with Ormel’s model, we adopt the following test sce-
nario, which is a gas-free version of the 1AU test case in Ormel et al. (2010). We simu-
late a protoplanetary system with a central star of solar mass,M˚ “ Ms with a narrow
annulus at a0 “ 1AU of width ∆a “ 0.04AU that is uniformly populated by proto-
planetary objects of initial mass m0 “ 4.8 ¨ 1018 g and solid density ρ “ 3 g{cm3. The
mass surface density inside the ring is Σ0 “ 16.7 g{cm2. The particles have an initial
rms velocity of v0 “ 4.7 ¨ 102 cm{s. The gas density is assumed to be ρgas “ 0 for sim-
plicity. To avoid undersampling, the radial resolution of the simulation is constrained
by Rmin “ ∆a{64. The simulation is then run for a duration of 1.8 ¨ 105 years of sim-
ulated time, modelling the interplay of particle coagulation and velocity evolution as a
series of individual events. We test the model with two different values for the coeffi-
cient of restitution: ϵ “ 0, which implies that no fragmentation occurs and collisions
always lead to coagulation; and ϵ “ 0.01, a value corresponding to a ‘rubble pile’ model
of planetesimals (Ormel et al., 2010, §2.5.2).

The test particles are sampledwithn randomly chosen representative particles, where
n is varied during different simulation runs. Every representative particle k initially rep-
resents an equal-weight fraction of the total mass, Mk “ M{n, where the total mass
is

M “ 2πr∆r ¨ Σ0 « 0.16M‘ . (4.124)

In the bucketing criterion, all properties which quantitatively affect the interaction rate
are considered separately:

Bpqq “

ˆ

Cpqq,

Z

θM log10
Mpqq

M0

^

,

Z

θm log10
mpqq

m0

^

,

Z

θv log10
vpqq

v0

^

,

Z

θv log10
vzpqq

v0

^˙

, (4.125)

where Cpqq is the swarm regime classifier defined in Eq. (4.43), particle mass, swarm
mass, and planar and vertical rms velocities of a representative particle with properties
q are given by mpqq, Mpqq, vpqq, and vzpqq, respectively, and where the simulation
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parameters θm, θM , and θv control the number of buckets per decade of the respective
quantity. Unless indicated otherwise, we adopt the values θm “ θM “ 6, θv “ 5. Ormel’s
model is employed to study runaway growth, which means that some representative
particles transition into the few-particles regime where individual particles can absorb
up the mass of other swarms. Following the discussion in Chapter 3, we adopt a particle
regime threshold of Nth “ 10.

The described physical system is not homogeneous. From the range-limited stirring
and coagulation processes, structures emerge on certain length scales, and therefore spa-
tial resolution is required so these structures can be properly resolved. We therefore
take advantage of the sub-bucketing extension of the bucketing scheme introduced in
Sect. 4.5. In our simulations, we use a sub-bucket granularity of dmin “ 8. Because the
interaction radii tend to scale with the orbital radius, we adopt the logarithmic definition
of the interaction distance given in Appendix 4.B.

4.6.3.2 Boosting

As assessed byOrmel et al. (2010), the number of events that need to be simulated is vast
because ‘[...] theMCcode does not recognize that the collective effect of these encounters
cancels out, but instead resolves the strongly fluctuating velocities of the bodies, which
render the code very inefficient’. (Ormel et al., 2010, §2.6, cont’d) Although theMC sim-
ulation of the velocity evolution becomes feasible with the bucketing scheme, the gen-
eral inefficiency of the model remains. However, the model can be made more efficient
by applying the boosting technique, previously described for coagulation in Chapter 3,
to stirring and friction events.With boosting, gravitational interactions which transport
minuscule amounts of kinetic energy are grouped together, decreasing the rate while
correspondingly increasing the kinetic energy transfer. Although this is an approxima-
tion, it does not impair the main benefit of simulating gravitational interactions with a
Monte Carlo method, which is that sudden discrete changes of kinetic energy (a heavy
particle ‘kicking’ a light one) can be modelled correctly. Unless noted otherwise, we ap-
ply the boosting technique to all our simulations of Ormel’s model for collision events
as well as for viscous stirring and dynamical friction, using a mass growth rate of 5%
and an rms velocity change rate of 2%.

4.6.3.3 Results

A typical result obtained with the simplified Ormel’s model showing the emergence of
oligarchs is reproduced in Fig. 4.13 with three snapshots at t “ 1.3 ˆ 104 yr, t “ 3.8 ˆ
104 yr, and t “ 1.8 ˆ 105 yr. Results for two runs with ϵ “ 0 (no fragmentation) and
ϵ “ 0.01 (corresponding to a rubble pile model) are shown.

When comparing the results to Fig. 9 of Ormel et al. (2010), we note that the dis-
tribution structure of the colour-encoded dynamical temperature visibly differs; in par-
ticular, the correlation between particle sizeR and rms eccentricity seems absent in our
result. This may be due to the negligence of the gas disk in our simplification of Ormel’s
model. A gas disk would orbit the central body at a lower orbital velocity and thus exert
a gas drag force which effectively damps the rms eccentricities and rms inclinations (cf.
Inaba et al., 2001) of massive bodies. The damping rate of a body is correlated with its
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Figure 4.13: Results for the simplified Ormel’s model starting with n0 “
32 768 representative particles.
Top row: ϵ “ 0 (no fragmentation); bottom row: ϵ “ 0.01 (rubble pile
model). Every swarm is represented by a spherical shape with a colour indi-
cating its planar rms eccentricity. The area covered by the shape represents
the mass in the swarm. All swarms initially have the same mass, but in-
dividual particles can accrete mass held by other swarms and thereby grow
beyond their initial swarm size. The vertical lines indicate the critical radius
Rcrit (Eq. (4.126)) which marks the approximate boundary between many-
particles and few-particles swarms.

surface-to-volume ratio, and thus damping is more effective for smaller bodies, an ef-
fect that can be observed in Fig. 9 of Ormel et al. (2010) but not in our results. Another
difference is the slight radial compaction visible in our results, which stems from the
fact that, in our simulation, the boundaries in the radial dimension r are unconstrained,
whereas Ormel et al. (2010) used periodic boundaries.

Including fragmentation has the obvious consequence that some mass is removed
from the swarms of planetesimal-sized bodies. Fragments are assumed to be tightly cou-
pled to the gas (the presence of which we conceptually assume even though we ignore
its other effects here), and hence they neither self-accrete nor contribute to viscous stir-
ring or dynamical friction. Instead, they are available as a mass reservoir for accreting
planetesimals. This leads to a visible dissipation of masses in the lower end of the mass
distribution.With fragmentation, the emerging oligarchs grow to slightly larger masses
in the same amount of time, an observation consistent with Fig. 10 ofOrmel et al. (2010)
and in accordance withWetherill and Stewart (1993), who found that including fragmen-
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tation enables a self-regulation of the viscous stirring process, reducing the average rms
velocities and thus increasing the effective collision cross-sections, which shortens the
runaway growth timescale.

The dashed vertical lines in Fig. 4.13 indicate the spherical particle radius

Rcrit “

˜

mcrit
4
3πρ

¸

1
3

(4.126)

corresponding to the critical massmcrit defined as

mcrit “
M

n0Nth
(4.127)

(cf. Eq. (3.39)). Thismass segregatesmany-particles and few-particles swarms under the
simplifying assumption that there are n0 swarmswhich all represent an equal fraction of
the total mass,Mk “M{n0 @k. Representative particles with a mass greater thanmcrit

tend to be few-particles swarms, and because the RPMCmethod splits up swarms once
their particle number falls below the particle number thresholdNth, such particles then
are self-representing. The corresponding increase of resolution is visible in the vicinity
ofmcrit.

Although the geometric model employed by Ormel et al. (2010) for collisions, vis-
cous stirring and dynamical friction works well as a statistical model for swarms com-
prising many particles, its assumptions break down for interactions between individual
particles which have individual, not statistical, orbital properties. Specifically, features
such as orbital resonances or radial redistribution cannot be reproduced with the geo-
metric interaction model. Therefore, self-representing bodies exceeding a certain mass
should be simulated with an N-body code. The inclusion of an N-body code exceeds the
scope of this chapter, so we follow Ormel et al. (2010) in unconditionally applying the
statistical interaction models for all swarms k regardless of their particle mass mk or
particle count Nk.

4.6.3.4 Performance

Although the runtime performance is no longer dominated by memory access times,
the memory usage of the simulation poses a practical constraint for the possible scaling.
In Fig. 4.14, the memory cost of simulating Ormel’s model is explored for a variety of
representative particle counts n and occupied bucket counts ν. It is evident that the tradi-
tional scheme soon exhausts the available memory when increasing resolution beyond
n “ 103 representative particles. In contrast, the memory cost of the bucketing scheme
is much lower overall and scales with n ¨ ν2. To understand the kinks, we remember
that buckets are allocated sparsely; because each entity is assigned to one and only one
bucket, the number of entities n acts as an upper bound to the number of occupied buck-
ets ν.

A performance analysis of Ormel’s model comparing the traditional scheme and the
bucketing scheme is reproduced in Fig. 4.15. The bucketing scheme again performs sub-
stantially better than the traditional scheme. Because of the relatively high bucket den-
sity chosen with θm “ θM “ 6, θv “ 5, the number of occupied buckets ν is large (sat-
urating around ν „ 350), and thus the cost for bucket updating is relatively high even
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Figure 4.14: Memory cost analysis of simulating Ormel’s model.
The dashed and solid lines show the memory required for simulating
Ormel’s model with the traditional implementation and the bucketing
scheme, respectively. Some cache sizes and the main memory size of the
benchmark machine are indicated with horizontal dotted lines.

for a small number of entities n. However, the computational cost grows only weakly
as the number of entities n increases, even bettering the scaling behaviour predicted by
the cost model of Sect. 4.3.7, as demonstrated by the ad hoc„n2{3 cost model fit which
seems to closely match the observed simulation performance.

Our analytical cost model does not explain the apparent sub-linear scaling of the
bucketing scheme observed in Fig. 4.15. It is possible that the scaling may ultimately
become linear in n, as predicted by the cost model, for even larger values of n which
we did not test. We note, however, that we have not investigated the cost impact of the
sub-bucketing extension of our scheme, which might cause the different scaling charac-
teristics. An extended cost model would have to entail some analytical representation
of the effects of constrained reachability, which we found difficult enough to eschew the
effort.

The spatial resolution of the system is limited by the simulation parameter Rmin,
which here was chosen as Rmin “ ∆a{64. Because we want to investigate the scaling
behaviour of the bucketing scheme, this simulation parameter has remained invariant
over all simulation parameter sets. Normally, this parameter would be chosen such as to
avoid undersampling, which implies that it would be inversely proportional to the num-
ber of representative particles used, Rmin 9 n´1. Choosing a larger Rmin for smaller
n would imply that swarms may be effectively spread out farther, allowing interactions
between particles farther apart, and therefore allowing more interaction events and pre-
sumably slowing down the simulation. Conversely, choosing a smaller Rmin for larger
n, and thereby increasing the resolution of the simulation, would allow swarms to oc-
cupy narrower annuli, and thus decrease the number of interaction events because more
particle pairings would be out of reach. Reducing Rmin for larger n would thus presum-
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Figure 4.15: Performance analysis of Ormel’s model for the traditional
scheme and the bucketing scheme with boosted dynamical friction and vis-
cous stirring.
Left column: ϵ “ 0 (no fragmentation); right column: ϵ “ 0.01 (rubble
pile model). In the top panels, the dashed lines show fitted curves for sim-
plified cost models linear and quadratic in n, and an additional ad hoc fit
with a n2{3 proportionality. The solid lines show the runtime for the event-
averaged number of representative particles. For each tested configuration
(solid horizontal lines), the initial number of representative particles (cir-
cle) and the maximum number of representative particles in the simulation
(right arrow) are indicated. The bottom panels show the average number of
occupied buckets for each of the simulation parameter sets.

ably speed up the simulation. We also note that, even without explicitly reducing Rmin,
spatial resolution improves with increasing n because, as explained in Sect. 4.6.3.1,Rmin

is not imposed as a minimum effective scale length for particles which are represented
individually; withmore representative particles available to sample the system, the tran-
sition to individual particles occurs at lowermasses, and therefore at an earlier time. This
effect may also play into the sub-linear efficiency scaling observed.

The average number of occupied buckets shown in the bottom panels of Fig. 4.15
steadily increases at first, then seems to saturate for n Á 4ˆ103 (and begins to decrease
slightly for larger n), indicating, though not conclusively proving, that n Á 4ˆ 103 rep-
resentative particles may be sufficient in covering the full dynamic range of the system,
and, conversely, that the system may suffer from undersampling for n À 4ˆ 103. After
the average number of occupied buckets plateaus for 4ˆ 103 À n À 105, it again begins
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to grow for n Á 105. This may indicate that the system is ‘over-resolved’: by increas-
ing n0, the critical massmcrit (Eq. (4.127)) of regime transition is reduced, and swarms
become few-particles swarms already at lower particle masses. By its design, the origi-
nal RPMC method has a self-balancing property: all swarms retain the fraction of the
total mass they were initialised with. Specifically, in an equal-weight sampling, every
swarm k would be initialised with the same fractionMk “ M{n of the total mass M,
and therefore the ensemble of swarms would always remain an equal-weight sampling,
which is beneficial because it maximises the sampling efficiency. In the extended RPMC
method, the self-balancing property could be retained only for many-particles swarms.
Therefore, by excessively increasing the resolution, and in turn by pushing the critical
mass mcrit of regime transition far below the threshold mass for runaway growth, the
statistical self-balancing property is gradually lost, leading to an increase in the average
number of occupied buckets, which in turn slightly impairs the scaling characteristics.

As is evident from Fig. 4.15, the inclusion of a fragmentation model does not signifi-
cantly affect the performance characteristics of the bucketing scheme. It was mentioned
in Chapter 3 that the RPMC method, the same as any Lagrangian method, is ‘ill-suited
for simulating “stiff” problems in which two adverse effects nearly balance each other’.
One could imagine a system with a steady-state mass distribution which nevertheless
exhibits active growth and fragmentation; in such a system, a Lagrangian method has
to follow the individual particles as they cycle through the growth and fragmentation
process. This is, however, not the case in our fragmentation test: although mass is ex-
changed in both directions (planetesimals collide and form fragments, and fragments
are accreted by planetesimals), the system does not have steady-state characteristics;
instead, the system steadily evolves towards larger bodies (oligarchs) which eventually
become dynamically isolated and thus are unlikely to fragment further.

Sect. 3.7.1 also elaborated that the ‘stiffness’ problem is aggravated by the proposed
extension of the RPMC method because swarms that repeatedly follow the growth–
fragmentation cycle may be repeatedly split up over the course of the simulation, lead-
ing to a steady growth in the number of representative particles. It was subsequently
proposed that a merging step be incorporated to counteract the problem when simulat-
ing a system with steady-state characteristics. This advice remains appropriate with the
bucketing scheme, although we note that the nature of the bucketing scheme helps re-
duce the cost induced by unnecessarily splitting up swarms since swarms with similar
characteristics typically end up in the same bucket.

4.6.3.5 Impact of simulation parameters

The simulation parameters θm, θM , and θv, representing bucket densities in the respec-
tive dimensions of the space of bucket labels, need to be chosen large enough that the
bucket–bucket interaction rate upper bounds are not excessive, which would lead to a
very high probability of rejection and render the sampling process inefficient. At the
same time, said parameters must be chosen as small as possible so as to minimise the
total number of buckets occupied, and thereby minimise the cost of updating buckets
and recomputing bucket–bucket interaction rates.

Fig. 4.16 demonstrates how these contradicting requirements lead to a practical trade-
off. In the first panel, we see that, by increasing bucket densities, resulting in narrower
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Figure 4.16: Parameter study of the bucket densities θv, θm, θM in Ormel’s
model.
The two panels show the average probability of event acceptance p and the
per-event runtime cost, respectively, as functions of the rms velocity bucket
density θv and themass bucket densities θm “ θM . The simulation uses the
setup described in Sect. 4.6.3.1 with boosting, as in Fig. 4.15, for an initial
number of n0 “ 4 096 representative particles.

bucket parameter intervals, we can improve the quality of the bucket–bucket interaction
rate bounds. With better bounds, the likelihood of rejection is lower, and the average
probability of event acceptance p is higher. If fewer events need to be sampled only to
be ultimately rejected, the simulation should run faster. In the second panel we can see,
however, that the increased number of buckets which results from choosing a higher
bucket density increases the cost of bucket updates, which at some point exceeds the
gains from a higher acceptance probability. For the given set of parameters, a good choice
for bucket density might thus be θv “ θm “ θM “ 5.

If similar events of low impact are aggregated, as done by the boosting technique
mentioned in Sect. 4.6.3.2, the benefit of bucket widening is negligible. The simulation
results in Figs. 4.15 and 4.16 have been run with boosting enabled. In these simulations,
widening has proved unnecessary, and hence a widening fraction of f “ 0 has been
adopted. However, if the simulation is run without boosting, viscous stirring and dy-
namical friction events abound, rendering the simulation substantially slower. Widen-
ing can be useful in this situation, as demonstrated by Fig. 4.17. The bucketing scheme
is very efficient in this case, yielding average acceptance probabilities of p „ 40%; how-
ever, because of the exorbitant number of events, a single simulation run takes between
one and two hours to complete even though the width of the annulus has been reduced
and the number of representative particles is relatively low. (A simulation employing
the traditional scheme did not complete within the 8 h time limit of our benchmark ma-
chine.) Simulating viscous stirring and dynamical friction events asMonte Carlo events
without boosting, albeit possible with the bucketing scheme, is thus not very practical.
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Figure 4.17: Parameter study of the widening fraction f in Ormel’s model
without boosting.
For this test, the width of the annulus was reduced to ∆a “ 0.0025AU,
fragmentation was suppressed (ϵ “ 0), and the system was sampled with
an initial number of n0 “ 128 representative particles.

4.7 Discussion

For the synthetic test cases of Sects. 4.6.1 and 4.6.2, the proposed scheme shows a clear
performance advantage over the traditional scheme. However, in the case of a more
realistic test case simulating the interplay of multiple effects such as hit-and-stick co-
agulation and gravitational stirring, as studied with Ormel’s model in Sect. 4.6.3, we
note that the high dimensionality of the parameter space poses a challenge for the buck-
eting scheme. For competitive performance, we had to adapt the bucketing criterion of
Eq. (4.125) which gave rise to a five-dimensional space of bucket labels and use relatively
high bucket densities θm, θM , θv, resulting in a relatively large number of„450 occupied
buckets on average. Even with a high-dimensional bucketing criterion and a high bucket
density, the bucketing scheme has substantially outperformed the traditional scheme for
larger entity counts n, showing superior and even sub-linear scaling characteristics for
the range of parameters tested.

4.7.1 Limitations

Althoughwe advertise the bucketing scheme as a general-purpose computational scheme
for Monte Carlo simulations of compound Poisson processes, there are some practical
limitations to its usefulness. The most obvious limitation is the conceptual complex-
ity of the scheme, which makes it challenging to implement. We hope to alleviate this
concern somewhat by subsequently publishing our implementation, written in C++20
and designed with reusability in mind, as an open-source software package. Neverthe-
less, a user of the package needs to understand how the scheme works in order to use it
effectively.
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Another requirement thatmay be challenging to satisfy is the need for an interaction
rate function which can either operate on real values or on intervals. Although software
packages for interval arithmetic are available (e.g. Brönnimann et al., 2006; Goualard,
2015) and the subsequent Chapter 5 sets forth a notion of interval-aware programming,
devising an efficient interval extension of an arbitrary calculation is an unsolved problem
and requires thorough mathematical study of the calculation and meticulous avoidance
or containment of the so-called dependency problem that is inherent to interval arith-
metic (e.g. Gustafson, 2017a, §16.2f).

4.7.2 Possible improvements

The lower memory requirements of the bucketing scheme allow to push the boundaries
of our simulation much further than would be possible with the traditional scheme,
as outlined in Fig. 4.14. In addition, the bucketing scheme outperforms the traditional
scheme in every scenario tested, often scaling with n as opposed to the n2 scaling of the
traditional scheme. Nevertheless, our tests also expose some limitations of the bucket-
ing scheme. An obvious limitation is the sequential nature of the algorithm. Also, as we
saw in Sect. 4.6.3.5, selecting an efficient set of simulation parameters is not easy and
may require a parameter study.

It had been argued in Sect. 4.3.7 that the cost rate of the bucketing scheme scales at
least quadratically in the number of occupied buckets ν; therefore, if the bucket density is
chosen such that ν is large, the cost of the simulation can be very high even for moderate
entity counts n, and higher than the cost of the traditional scheme due to the greater cost
and the excess of interval-valued calculations. This can be observed at the lower end of
Fig. 4.15: in a run with an initial number of n0 “ 512 representative particles, the bucket-
ing scheme even performs slightly worse than the traditional scheme. We note that this
run is notmeaningful physically because the system is severely undersampled with only
n0 “ 512 representative particles; still, we would want to better the traditional scheme
with a significant margin even for smaller entity counts n. We saw in Sect. 4.6.3.5 that
the bucket density must be chosen as a trade-off between a lower number of occupied
buckets ν and low rejection rates due to tighter estimates for the bucket–bucket interac-
tion rate. This trade-off plays out differently for different entity counts n, and indeed the
simulation with n0 “ 512 could have been sped up by selecting lower bucket densities.
Our observations raise the question of whether and how the scheme could be improved
towards better performance without having to conduct parameter studies and tuning of
simulation parameters.

4.7.2.1 Parallelisation

Our reference implementation of both the traditional scheme and the bucketing scheme
is a sequential code. It runs in a single thread and does not take advantage of modern
multi-core processors or massively parallel architectures such as GPUs. Although the
proposed design of the scheme is of inherently sequential nature due to the global or-
dering of events, the two main simulation steps – sampling an event and recomputing
bucket–bucket interaction rate upper bounds – could be parallelised straightforwardly.
In the vernacular of parallel computing, the updating step would be considered ‘embar-
rassingly parallel’. In the sampling step, the overhead caused by rejection sampling could
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be mitigated by sampling P events concurrently, where P P N` is the degree of par-
allelism desired, and discarding all but the first of the sampled events that were not
rejected.

In parallel computers, synchronising state globally is a very expensive operation.
When pushing the simulation to larger scales, the global ordering of the events will
eventually become a bottleneck. A massively parallel computational scheme would pre-
sumably want to employ a ‘divide and conquer’ approach, assigning a fraction of the
total particle ensemble to each worker. The forgiving nature of the bucketing scheme –
its tolerance of minute changes of entity properties within the bucket property bounds
– would prove beneficial in the inevitable merging of concurrently simulated events.

4.7.2.2 Adaptive bucketing

In all bucketing criteria proposed so far, the number of buckets per decade (or the linear
equivalent) had to be chosen explicitly as a simulation parameter. Choosing appropri-
ate simulation parameters requires some knowledge of the simulated model, and often
some parameter study as well. But with a set of simulation parameters that assures rea-
sonably efficient rejection sampling, the total number of buckets required can be too
large, rendering bucket updates very costly.

But the number of buckets per decade need not be fixed. Different parameter values
could be used over the course of the simulation, or even for different decades. In fact,
the way the bucketing scheme is constructed, the bucketing criterionBpqq can return an
arbitrary result without impairing the correctness of the simulation; in particular it may
return different results when called at different times. Specifically,Bpqq could also refer
to some global state g (such as the current simulated time) or to simulation state s (such
as the current number of occupied buckets) and should thus be writtenBpq,g, sq. Using
this freedom, a bucketing criterion could incorporate a feedback loop. For example, for
every bucket J currently occupied we could maintain a running average of the number
of rejections required to sample an event for a representative particle in this bucket. If
the required number of rejections, weighted by the relative interaction rate weight of
the bucket

nJλ
`
J

@

nJλ
`
J

D “ ν nJ
λ`J
λ`

(4.128)

is low (a good reference value might be 2nJ , the number of updates that would need to
be computed had the traditional scheme been used inside the bucket instead of rejection
sampling), the bucketing criterion may ‘zoom out’, locally coarsening the bucketing cri-
terion and thereby allowing the bucket to be merged with adjacent buckets which also
have been zoomed out of. Conversely, if the required number of rejections is very high
in a zoomed-out bucket, then the bucketing criterion would ‘zoom in’, thus redistribut-
ing all entities in the bucket to finer-grained buckets. Simulation parameters such as θm,
θM , θv would be retained, but they would only set the highest possible resolution of the
bucketing criterion.
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4.8 Summary and conclusions

We have presented a novel computational scheme for the simulation of a stochastic pro-
cess. The scheme combines a variant of the traditional sampling scheme with rejection
sampling by grouping entities in a sparse grid of buckets, applying the discrete inverse
transform sampling scheme to the buckets, and then selecting entities by means of re-
jection sampling. The scheme is made generally applicable by employing interval arith-
metic to compute interval-valued interaction rates. It was shown to outperform the tra-
ditional scheme in terms of computational complexity andmemory requirement as well
as in practical performance and scalability for a variety of numerical tests.

In Sect. 4.2, we recounted how a stochastic process can be simulated with the tradi-
tional scheme that can be traced back to Gillespie (1975). A cost model for memory and
computational resources was derived in Sect. 4.2.8. The bucketing scheme was then in-
troduced in Sect. 4.3. The simulation algorithm and the associated data structures were
defined in Sects. 4.3.5 and 4.3.6, and a cost model for the bucketing scheme was derived
in Sect. 4.3.7. Sect. 4.4 discussed the matter of computing interaction rate bounds with
interval arithmetic, along with strategies to increase the efficiency of the updating step.
In order to exploit the locally constrained nature ofmost physical interactionmodels, we
then introduced the notion of sub-bucketing in Sect. 4.5. In Sect. 4.6, we test the buck-
eting scheme for two simple synthetic test cases and one more realistic elaborate model
based on Ormel et al. (2010), finding superior performance and scaling characteristics
with regard to the number of representative particles n in all cases. Some parameter
studies regarding the simulation parameters were then conducted in Sect. 4.6.3.5.

In Chapter 3, we had extended the RPMC method to allow for smooth transition
into the runaway growth regime where bodies need to be treated individually. The tran-
sition happens abruptly: a swarm of Nth particles is replaced with Nth individual self-
representing particles. Mitigating the performance impact of adding new representative
particles to a RPMC simulation, which the original RPMC method of Zsom and Dulle-
mond (2008) had been designed to avoid, was the original goal of devising the bucket-
ing scheme. With the proposed scheme, representative particles can now be added and
removed at amortised constant computational cost. According to our cost model, the
simulation cost rate scales with n ¨ ν with the number of buckets ν at most weakly de-
pendent on n, which is substantially better than the traditional scheme for which the
cost rate is proportional to n2. The predicted scaling behaviour has been found to be
accurate in simple homogeneous test cases. In our study of a complex test case with spa-
tial resolution, we found the cost rate of the bucketing scheme to scale even sub-linearly
with n.
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Appendices

4.A Interval arithmetic

It is commonplace in mathematical notation to apply scalar functions to sets, as in

sinR “ r´1, 1s . (4.129)

Such notation makes implicit use of the intuitive set extension, which could be defined
for some scalar function f : D Ñ R and for some subdomain S Ď D as

F : PpDq Ñ PpRq ,
F pSq :“ tfpxq |x P Su . (4.130)

Although convenient in formal reasoning, computation with general sets is not feasible
numerically because there is no obvious closed-form representation for arbitrary sets.
However, we can construct a similar technique that is practically computable by con-
straining ourselves to closed intervals, that is, closed connected subsets of R. Intervals
can be represented numerically as an ordered tuple of two numbers a and b with a ď b,
which constitute the lower and upper bound of the interval. The corresponding closed
interval is usually referred to as ra, bs.

Let us first introduce some notation.We denote the set of all intervals in some closed
connected subset S Ď R̄ of the affinely extended real numbers R̄ “ RY t´8,`8u as

rSs :“
␣

ra, bs : a, b P S, a ď b
(

. (4.131)

We shall henceforth denote interval-valued quantities as rxs, identifying the bounds of
a closed interval rxs as

rxs ” rx´, x`s , (4.132)

and also use an analogous shorthand notation for vector-valued quantities v P Ru,

rvs ”
“

v´,v`
‰

, (4.133)

where an interval of vector-valued quantities rv´,v`s is understood as the Cartesian
product of element-wise intervals,

“

v´,v`
‰

:“
“

v´1 , v
`
1

‰

ˆ ¨ ¨ ¨ ˆ
“

v´u , v
`
u

‰

, (4.134)

and where the u-dimensional space of vectors of intervals is denoted as rR̄su.

For some real-valued function f : S̄ Ñ R̄ defined on a subset S Ď R̄, any function
F : rSs Ñ rR̄s shall be called an interval extension of f if

fpxq P F prxsq @x P rxs @ rxs P rSs , (4.135)

that is, F is an interval extension of a function f if, for every interval rxs, the interval
F prxsq contains the value fpxq for every value x in the interval rxs.
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Closed-form interval extensions can be defined for all elementary arithmetic opera-
tions. For example, for addition and negation:

rxs ` rys :“ rx´ ` y´, x` ` y`s , (4.136)
´rxs :“ r´x`,´x´s . (4.137)

For any monotonically increasing function g : S Ñ R̄, an exact interval extension is
given by

Gprxsq “
“

gpx´q, gpx`q
‰

. (4.138)

A theorem often referred to as the ‘Fundamental Theorem of Interval Arithmetic’ states
that, given a closed-form real-valued arithmetic expression composed of real-valued ar-
guments, an interval extension can be obtained by syntactically replacing every real-
valued function and operator with its interval extension (e.g. Hickey et al., 2001). In
practice, this means that interval extensions are composable: if some real-valued func-
tion f has an algebraic closed-form definition for whose building blocks (such as elemen-
tary arithmetic operations) interval extensions are known, then an interval extension of
f can be constructed with a syntactic transformation.

4.B Logarithmic location and distance

Let an interaction radius function Rpq,q1q be given as defined in Sect. 4.5. Further, let
the position of entity j be given by aj ” apqjq. Let us also assume that interaction
radii approximately scale with the position. As an example, for representative parti-
cles j, k in a protoplanetary disk where the rms velocities are low (the Hill regime), the
interaction radius for collisions might be determined by the dimensionless Hill radius
rh “

a

m{p3M˚q,

Rcoll,jk “ 2.5 ajk max trh,j , rh,ku , (4.139)

where ajk “
?
ajak is the geometric average of the semimajor axes of representative

particles j and k. With a non-local bucketing scheme such as Eq. (4.125), two represen-
tative particles j, j1 of equal mass mj “ mj1 but located at different semimajor axes
a1j ą aj end up in the same bucket J . For a lighter particle k, mk ă mj , the interac-
tion radii would therefore differ, Rcoll,j1k ą Rcoll,jk. For a bucket K of lighter particles,
m`K ă m`J , the bucket–bucket interaction radius bound R`coll,JK would then be exces-
sive for particle j, and may thus lead to tentative collision events between particles too
far apart which will ultimately be rejected.

To avoid this, we define locations and interaction distances as scale-free quantities.
First, we define the scale-free interaction width

ωcoll,jk :“
Rcoll,jk

ajk
“ max trh,j , rh,ku . (4.140)

A scale-free definition of location can be given as

lpqq :“ γ log
apqq

a0
(4.141)
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with a normalisation factor γ to be defined later.

To define the distance measure dpq,q1q, we first recall that two particles with prop-
erties q and q1 can interact only if their impact parameter, estimated as b ě |a ´ a1| as
per Eq. (4.94), is not greater than their interaction radius,

ˇ

ˇa´ a1
ˇ

ˇ ď R
`

q,q1
˘

. (4.142)

The interaction range of some particle with properties q thus is the interval of semimajor
axes ra1s of particles with properties q1 with which interaction may be possible.

Now let us assume that, rather than the interaction radius Rpq,q1q, the interaction
width ωpq,q1q is known, where

ω
`

q,q1
˘ !
“
Rpq,q1q
?
a a1

. (4.143)

Inserting Eq. (4.143) into Eq. (4.142), we thus find the interaction range for some particle
at semimajor axis a and interaction width ω to be defined implicitly by

ˇ

ˇa´ a1
ˇ

ˇ ď
?
a a1ω . (4.144)

Solving Eq. (4.144) for a1 yields

a1 P a

«

1`
1

2
ω2 ˘ ω

c

ω2

4
` 1

ff

, (4.145)

where we again use sloppy interval notation, rx˘ ys “ rx´ |y|, x` |y|s.

The interaction distance dpq,q1q is defined by the Euclidean relation of Eq. (4.105).
We insert Eq. (4.141) and take the values of a1 farthest from a at which interaction could
possibly occur as per Eq. (4.145), finding

d
`

q,q1
˘

“ γ log

ˇ

ˇ

ˇ

ˇ

ˇ

1`
1

2
ω2 ˘ ω

c

ω2

4
` 1

ˇ

ˇ

ˇ

ˇ

ˇ

“ γ log

˜

1`
1

2
ω2 ` ω

c

ω2

4
` 1

¸

, (4.146)

where we abbreviated ω ” ωpq,q1q. The normalisation factor γ is then defined by relat-
ing the minimum interaction width

ωmin :“
Rmin

a0
, (4.147)

which represents the smallest length resolved by the simulation at the reference radius,
to an interaction distance of dmin:

γ ”
dmin

1` 1
2ω

2
min ` ωmin

b

ω2
min
4 ` 1

. (4.148)
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4.C Benchmark computer specifications

The performance benchmarks shown in Figs. 4.11, 4.12 and 4.15 were run as exclusive
single-threaded jobs on machines with one CPU of type Intel Xeon E3-1585 v5 (Skylake-
H, 4 cores, 3.5–3.9 GHz) and with 64GiB of random-access memory.

The parameter studies shown in Figs. 4.16 and 4.17 were run as concurrent single-
threaded jobs on machines with one CPU of type AMD Epyc 7662 (Zen 2, 64 cores,
2–3.3 GHz) and with 256GiB of random-access memory.

4.D List of symbols

Across-referenced overview of themost commonly used symbols in this chapter is given
in Table 4.1.

Symbol Description Reference
λjk interaction rate between entities j and k Eq. (4.2)
λentpq,q

1, δq entity interaction rate function Eq. (4.2);
Eq. (4.16) (RPMC method)

λj cumulative interaction rate of entity j Eq. (4.5)
λ global rate of interactions Eq. (4.6)
λ`JK upper bound for interaction rate be-

tween buckets J andK
Eqs. (4.44–4.45)

λ`J upper bound of cumulative interaction
rate for bucket J

Eq. (4.46)

λ` upper bound of global cumulative inter-
action rate

Eq. (4.47)

λ`loc locality-aware upper bound of global cu-
mulative interaction rate

Eq. (4.100)

ν “ #B number of occupied (non-empty) buck-
ets

Eq. (4.40)

νJ number of sub-buckets in bucket J Sect. 4.5.4
θx bucket density with regard to entity

property x
Eq. (4.35);
Eqs. (4.41) and (4.42) (test kernels);
Eq. (4.125) (Ormel’s model)

Bj label of bucket currently associated with
entity j

Eq. (4.35)

B set of labels of occupied (non-empty)
buckets

Eq. (4.39)

Bpqq bucketing criterion Eq. (4.35);
Eqs. (4.41) and (4.42) (test kernels);
Eq. (4.125) (Ormel’s model)

Cpqq regime classifier (RPMC method) Eq. (4.43)
djk “
dpqj ,qkq

interaction distance between entities j
and k

Eqs. (4.103), (4.146)

I “
t1, . . . , nu

set of all entity indices Eq. (4.7)
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IJ set of entity indices in bucket J Eq. (4.36)
lj “ lpqjq location of entity j Sect. 4.5.2; Eqs. (4.102), (4.141)
M total mass (RPMC method) Sect. 4.4
Mk total mass of swarm k (RPMC method) Sect. 4.4
mk mass of representative particle k (RPMC

method)
Sect. 4.4

n number of entities Sect. 4.2.2
nJ “ #IJ number of entities in bucket J Eq. (4.37)
n`JK maximal number of entity pairs in buck-

ets J ,K which could possibly interact
Eqs. (4.100), (4.117)

N effpq,q1, δq effective swarm particle count (RPMC
method)

Eq. (4.15)

Nth particle regime threshold Sect. 4.1
Nk number of particles in swarm k (RPMC

method)
Sect. 4.4

Paccept “

λ{λ`
probability of acceptance of sampled
event

Eq. (4.32)

Pjk “

λjk{λ
`

probability of interaction between enti-
ties j and k occurring at time t`∆t

Eq. (4.34)

Paccept,jk “

λjk{λ
`
JK

probability of acceptance of event sam-
pled for entities j, k from buckets J ,K

Eq. (4.51)

qj P Q vector of properties of entity j Sect. 4.2
QJ vector of property bound intervals of

bucket J
Sect. 4.3.4; Eq. (4.84)

Rjk “

Rpqj ,qkq

interaction radius between entities j and
k

Eq. (4.97)

Rmin smallest resolved length scale Sect. 4.5
sj “ sJpljq sub-bucket index of entity j in bucket J Eq. (4.109)
t current time Sect. 4.3.1
∆t event interarrival time Eq. (4.4)
T timescale on which changes inflicted by

external operators must be considered
Sect. 4.3.1

w˘x px
1q widening functions Sect. 4.4.5

wJ sub-bucket width in bucket J Eq. (4.107)
rxs, rvs, rSs abbreviated interval notation Appendix 4.A

Table 4.1: List of commonly used symbols.
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References:Anexcerpt of this chapter has been published inBeutel and Strzodka (2023).
This chapter adds the following contributions: the illustration in Fig. 5.1; the formal treat-
ment of interval-aware branching in Sect. 5.3.3; the inference of constraints in Sect. 5.4.1;
extension to discrete-valued intervals in Sect. 5.5 and Sects. 5.6.1–5.6.2.

Interval arithmetic is a well-known method for obtaining exact bounds on computa-
tional results even with inexact input data and numerical error introduced by finite-
precision numerics. The posit format, which aims to surpass the precision efficiency of
the conventional IEEE 754 floating-point format, is accompanied by valids, an adaption
and generalisation of interval arithmetic. A calculation can be performed either with
posits or with valids, yielding either an approximate result with high computational ef-
ficiency or rigorous lower and upper bounds on the result. However, Boolean relational
predicates such as a ă b are ambiguous when applied to overlapping intervals, leading
to logical inconsistency no matter how the ambiguity is resolved. A numerical routine
which has data-dependent branches can thus return incorrect results when applied to
intervals or valids.

In this chapter we propose to define relational predicates for interval types as set-
valued predicates instead of Boolean predicates. The proposed relational predicates are
logically consistent and have intuitive projections to the two-element Boolean algebra.
Using these predicates, we can express a calculation with data-dependent branches such
that it can operate either on numbers or on intervals, while easily constraining interval-
valued comparands by the branch condition. With such interval-aware code we can ob-
tain either an approximate result or good interval bounds. We have developed a C++
library which implements the proposed concepts for traditional interval arithmetic. Fur-
thermore, we have adapted it to a posit and valid implementation, demonstrating the
viability of the concept with both traditional and more recent interval formats.
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5.1 Introduction

Numerical calculations often involve and result in quantities whose exact value is not
known. This can have a variety of reasons: some numbers cannot be represented exactly
by the finite-precision number formats used for a calculation; some numerical methods
yield only approximate results; and sometimes the input values are not known exactly.

Uncertainties of input values are often propagatedwith semianalyticalmethods such
as Gaussian error propagation. Conceptually, for every uncertain scalar value, its stan-
dard deviation is tracked along with the value, and rules for propagating the standard de-
viation through a mathematical calculation can be stated with methods of calculus (Ku,
1966). Using these rules, a numerical routine could be adapted such that it propagates
Gaussian uncertainties along with the quantities it operates on, yielding a result along
with an uncertainty as the result of the calculation. This transformation can even be
mechanised by employing Automatic Differentiation (e.g. Christianson and Cox, 2006;
Le, 2016). However, the simplicity of the method and its automatic applicability can be
deceiving. For the method to be appropriate, certain mathematical requirements must
be met concerning, for instance, the differentiability of the calculation and the statistical
properties of input data, such as underlying distribution and correlation between quan-
tities. Even when the error propagation method is applicable, a propagated uncertainty
has only statistical meaning; even if exact lower and upper bounds of input quantities
were known, only confidence limits but no precise bounds could be given for derived
quantities.

The desire to propagate exact lower and upper bounds through a calculation led to
the development of interval arithmetic (Moore, 1966; Moore et al., 2009; Alefeld and
Herzberger, 2012). The underlying idea is that, for a routine which operates on real
numbers and yields a real number as a result, an interval extension of the routine can
be constructed which operates on lower and upper bounds of real numbers and yields a
lower and upper bound of the result. For example, let us consider the real-valued func-
tion

fpa, bq :“ a` b . (5.1)

Given two values ã and b̃ which are not known precisely but can be constrained with
known lower and upper bounds, Ã´ ď ã ď Ã` and B̃´ ď b̃ ď B̃`, we would like to
infer lower and upper bounds on fpã, b̃q. To this end, we construct an interval extension
of f ,

F pA,Bq :“ A`B . (5.2)

where A ” rA´, A`s, B ” rB´, B`s denote real-valued intervals, and where interval-
valued addition is defined as

A`B “ rA´, A`s ` rB´, B`s :“ rA´ `B´, A` `B`s . (5.3)

The interval extension of f now gives a bounding interval for fpã, b̃q:

fpã, b̃q
!
P F pÃ, B̃q ” F

`

rÃ´, Ã`s, rB̃´, B̃`s
˘

. (5.4)
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5.1.1 Set extension

The interval extension is a derivative of the set extension, a commonplace notion inmath-
ematical reasoning where sets are used as arguments of functions defined for set ele-
ments. For example, one might write

sin r0, πq “ r0, 1s (5.5)

as a shorthand for
␣

sinx : x P r0, πq
(

“ r0, 1s , (5.6)

therein using the implicitly defined set extension of a given unary function f : RÑ R:

f : PpRq Ñ PpRq ,S ÞÑ
␣

fpxq : x P S
(

, (5.7)

wherePpSq is the powerset of some setS . This definition of the set extension is intuitive
and generalises to functions with higher-dimensional domains and codomains.

Functions such as sin : RÑ R are computable in the sense that they can be approx-
imated in floating-point arithmetic in a straightforward manner, with efficient imple-
mentations widely available. For a function defined in terms of arithmetic operations, a
floating-point equivalent of the function can then often be constructed by individually
mapping the constituting operations to their floating-point equivalents, rendering the
function computable as well.

This does not apply to set-extended functions: a set may hold a finite, a countably
infinite, or an uncountably infinite number of elements, and the set extension of a func-
tion may map a set of either cardinality to a set with a different cardinality. A general
set has no obvious numerical representation.

5.1.2 Interval extension

Apractical way of handling the set extension numerically is to represent sets by enclosing
intervals. Let us denote the set of all intervals in some contiguous closed subset S Ď R̄
of the affinely extended real numbers R̄ “ RY t´8,`8u as

rSs :“
␣

ra, bs : a, b P S, a ď b
(

. (5.8)

For a function f : S Ñ R̄, an interval extension F : rSs Ñ rR̄s of the function f is then
characterised by the property of inclusion,

@X P rSs @x P X : fpxq P F
`

X
˘

. (5.9)

Although similar definitions can be made for half-open or open intervals pX´, X`s,
rX´, X`q, pX´, X`q, here we will consider only closed intervals X ” rX´, X`s to
keep it simple. An interval extension F of a function f is called precise if, for every
interval X in the domain of f , F pXq is identical to the minimal enclosing interval of
the image of f onX:

@X P rSs : F
`

X
˘ !
“ I

“

fpXq
‰

, (5.10)
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where the minimal enclosing interval of some non-empty closed set S Ď R̄ is defined as

IrSs :“ rinf S, supSs . (5.11)

The definitions of an interval extension and of the precise interval extension trivially
generalise to functions of higher arity.

Precise interval extensions can be given for all elementary arithmetic operators, are
trivially obtained for all monotonic unary functions, and can be obtained with some
effort for piecewise monotonic functions.

5.1.3 Posits

Posits, also known as type III unums, are an alternative number format proposed by
Gustafson and Yonemoto (2017), among other things designed to be simpler than IEEE
754 floats both conceptually and in terms of the required implementation effort. One of
the key differences in the initial proposal was that ‘[there] are no “NaN” (not-a-number)
bit representations with posits; instead, the calculation is interrupted, and the interrupt
handler can be set to report the error and its cause, or invoke a workaround and continue
computing’ (Gustafson and Yonemoto, 2017, §2.4), although more recent revisions of
the posit specification have revised the stance that invalid calculations must cause an
interrupt (Posit Working Group, 2022).

Posits can represent one special value which is not a real number. This value is usu-
ally designated as complex infinity, ˘8. The revised posit specification subsumes the
special value under the umbrella term not a real (NaR) and states the following guid-
ing principle for it: ‘If an operation usually produces real-valued output, any NaR input
produces NaR output’, making NaR semantically equivalent to the ‘quiet NaN’ value in
IEEE 754 floating-point arithmetic, that is, a special value which propagates the state
of invalidity through calculations. However, for the purpose of comparisons the posit
specification treats the special value as negative infinity, ´8: according to Gustafson
and Yonemoto (2017, §2.4), ‘[posits] share the same a ă b relation as signed integers’,
and because the special value is represented as the bit pattern with only the most signif-
icant bit set, it corresponds to the smallest representable integer in a two’s complement
representation, and is thus considered ‘less than’ any other representable value, a corol-
lary explicitly confirmed by the posit specification (Posit Working Group, 2022).

5.1.4 Valids

In Gustafson and Yonemoto (2017), posits were introduced along with valids, defined
as ‘a pair of equal-size posits, each ending in a ubit’, with the ubit indicating ‘whether a
real number is an exact float or lies in the open interval between adjacent floats’. Argu-
ing that posits and IEEE 754 floats were designed to be ‘cheap, fast and “good enough”
for an established set of applications’, valids were proposed as the rigorous counterpart
of posits, allowing determination of exact lower and upper bounds of numerically com-
puted quantities, as can be achieved for floating-point numbers with traditional interval
arithmetic.

A valid usually represents an open, half-open, or closed interval of real numbers.
Unlike posits, valids have not been defined exactly by Gustafson (2017b). However, a
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formal definition of valids has been proposed by Schärtl (2021), who also developed an
implementation of posits and valids—to our knowledge, the only existing and publicly
accessible implementation of valids at this time—as part of the aarith library (Keszöcze
et al., 2021). The definition of valids given by Schärtl (2021) adheres to the principle
of having all possible bit patterns correspond to legitimate value representations which
had been upheld in the definition of posits and was reinforced with regard to valids in
Gustafson (2017b).With this definition, a valid can represent the following types of sets:

• the empty set ∅;

• the full set RY tNaRu;

• regular valids, that is, unit sets containing a single real value tau, the proper inter-
vals ra, bs, pa, bs, ra, bq, pa, bq, and the improper intervals p´8, bs, p´8, bq, ra,8q,
pa,8q, and p´8,8q “ R, where a, b P R, a ă b;

• irregular valids, the complements of regular valids, that is, the set difference pRY
tNaRuqzV of the full set and a given regular valid V Ĺ R; among them a unit set
tNaRu containing the NaR value.

Valids are conceptually similar to intervals in traditional interval arithmetic, but can be
considered superior in several ways, in particular because half-open and open intervals
can be represented, whereas traditional interval arithmetic is defined only for closed
intervals.

5.1.5 Composition theorem

Given some interval extensions F , G of the functions f : R̄ Ñ R̄ and g : S Ñ R̄, we
observe that the composition of the interval extensions F ˝ G is an interval extension
of the composition f ˝ g:

@X P rSs @x P X : pf ˝ gqpxq P
`

F ˝G
˘`

X
˘

. (5.12)

This theorem, which can be trivially extended to n-ary functions, has been referred to as
the ‘Fundamental Theorem of Interval Arithmetic’ (Hickey et al., 2001; IEEE Computer
Society, 2015). It is the underlying foundation of most practical applications of interval
arithmetic: given some closed-form scalar arithmetic expression, an interval extension
of the expression can be obtainedwith a syntactical transformation by substituting every
scalar operation with a corresponding interval extension. The interval extension of an
arithmetic expression obtained in this manner is called the natural interval extension of
the expression.

As an example, an interval extension of the algebraic expression

x2 ´ 2x (5.13)

can be obtained with a syntactic replacement by replacing real-valued operation with its
interval extension, yielding a composition of interval extensions,

X2 ´ 2X , (5.14)
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where we defined some elementary interval operations as

rX´, X`s2 :“

$

’

&

’

%

“

0, pmax t´X´, X`uq
2 ‰ if 0 P X

“

pX´q
2
, pX`q

2 ‰ ifX´ ą 0
“

pX`q
2
, pX´q

2 ‰ ifX` ă 0

(5.15)

arX´, X`s :“

#

“

aX´, aX`
‰

if a ě 0
“

aX`, aX´
‰

if a ă 0
(5.16)

´rX´, X`s :“ r´X`,´X´s (5.17)
X ` Y :“ rX´ ` Y ´, X` ` Y `s . (5.18)

We only state the definitions for closed intervals for simplicity, but analogous definitions
for half-open and open intervals are known.

The notion of mapping scalar arithmetic expressions to interval-valued expressions
and taking advantage of their composability is then known as interval arithmetic (Moore,
1966; Moore et al., 2009; Alefeld and Herzberger, 2012). It has found a variety of uses,
among them systematic containment of numerical rounding errors, propagation of un-
certainties, constraint programming, and error analysis (e.g. Kearfott, 2000; Kearfott
and Kreinovich, 2013). Efforts have been made towards efficient implementation with
IEEE 754 floating-point numbers (Hickey et al., 2001) and efficient use of existing SIMD
instructions for interval computations (Goualard, 2009). The IEEE Standard 1788 for In-
terval Arithmetic (IEEE Computer Society, 2015, 2018) formalises a set of concepts and
operations common to different flavours of interval arithmetic and also specifies op-
tional IEEE 754 compatibility. Software packages for interval arithmetic are available for
various programming languages (e.g. Brönnimann et al., 2006; Goualard, 2015) which
supply the interval extensions of elementary arithmetic operations as building blocks,
often overloading arithmetic operators to allow for a natural syntactical representation
which resembles the original real-valued calculation.

Despite the availability of a generalmapping of scalar-valued expressions to interval-
valued expressions, it would be unreasonable to expect that regular scalar code could au-
tomatically be extended to intervals. Evenwhen an automatic transformation is possible,
the results are oftenworse—that is, they yield intervalswider than necessary—compared
to an interval-specific implementation, largely due to the dependency problem, discussed
in Appendix 5.A.

5.1.6 Relational predicates

Another reason why scalar code may be unfit for intervals is the ambiguity of relational
predicates. Even a simple routine, such as an implementation of themax function

maxpa, bq :“

#

b if a ă b

a if a ě b ,
(5.19)

may have data-dependent branches, usually conditioned on Boolean relational predi-
cates such as a ă b. For real numbers a and b, such a relational predicate is either true
or false. However, it is not clear how relational predicates for intervals would be inter-
preted. Given two intervals A :“ rA´, A`s and B :“ rB´, B`s, the predicate A ă B
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might reasonably be true or false if the intervals are disjoint; but the relational predicate
becomes ambiguous for overlapping intervals. If A´ ă B` but A` ą B´, then for
some values a P A and b P B the predicate a ă b holds true, but a1 ă b1 is false for other
values a1 P A and b1 P B.

Most software packages which implement interval arithmetic define Boolean rela-
tional predicates for intervals, resolving this ambiguity by settling for a particular inter-
pretation. The two obvious interpretations are often referred to as ‘certainly’ and ‘pos-
sibly’ (e.g. Sun Microsystems, Inc., 2001; Brönnimann et al., 2006; Goualard, 2015),
where ‘certainly’ uses the definition

A „ B :ô @a P A, b P B : a „ b (5.20)

and ‘possibly’ is defined by

A „ B :ô Da P A, b P B : a „ b , (5.21)

with ‘„’ representing a comparison: “, ‰, ă, ď, ą, ě.

However, opting for just one interpretation of the relational operators has several un-
fortunate consequences. Resembling the scalar relational operators syntactically, they
are easy tomistake for equivalence relations or total orderings which are usually defined
by relational operators“,ă, orď, thus leading to undefined behaviour when used with
common algorithms and data structures. Their inherent and unavoidable logical incon-
sistencies lead to brittle code, the semantics of which can be inadvertently altered by
seemingly innocuous transformations. In fact, this problem is not specific to interval
arithmetic. A similar problem appears already with the relational predicates for IEEE
754 floating-point types, which define a special value not a number (NaN) that has no
ordering relation with real-valued or infinite floats.

In Sect. 5.2, we study the relational predicates commonly defined for floats, intervals,
and type III unums (posits and valids), pointing out their shortcomings and exploring
some of the consequences. In Sect. 5.3, we propose an alternative definition of set-valued
relational predicates, which we then employ to write interval-aware code, that is, code
which can operate either on scalars or on intervals, by taking advantage of the expressive
freedom of the C++ programming language. In Sect. 5.4, we demonstrate how interval
bounds can be tightened by inferring constraints from relational predicates, and how
this technique can be used to obtain better bounds. In Sect. 5.5, these concepts are then
adapted to intervals of discrete sets such as integers and random-access iterators. Finally,
our reference implementation is briefly discussed in Sect. 5.6.

5.2 Relational predicates

The set of real numbers R is totally ordered by theď relation. This does not necessarily
hold true for sets of floating-point values, which are often used to approximately repre-
sent real numbers in numerical calculations. However, the fact that the ordering is only
partial is often ignored by programmers, leading to surprising and misleading results
when dealing with unordered values.
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1 template <typename T>
2 T max(T a, T b) {
3 if (a < b) return b;
4 else return a;
5 }

Listing 5.1: Definition of a genericmax function (Eq. (5.19)) in C++.

1 constexpr float empty = NAN;
2 template <std::floating_point T>
3 T max(T a, T b) {
4 T x = empty;
5 if (a < b) x = b;
6 if (a >= b) x = a;
7 return x;
8 }

Listing 5.2: NaN-aware definition of the max function in C++.

1 template <typename T>
2 T max2(T a, T b) {
3 T x = empty;
4 if (possibly(a < b)) assign_partial(x, b);
5 if (possibly(a >= b)) assign_partial(x, a);
6 return x;
7 }

Listing 5.3: Interval-aware definition of a generic max function in C++.

1 template <typename T>
2 T max3(T a, T b) {
3 T x = empty;
4 auto c = (a < b);
5 if (possibly(c)) {
6 auto bc = constrain(b, c);
7 assign_partial(x, bc);
8 }
9 if (possibly(!c)) {
10 auto ac = constrain(a, !c);
11 assign_partial(x, ac);
12 }
13 return x;
14 }

Listing 5.4: Optimal interval-aware definition of a generic max function in
C++.
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5.2.1 IEEE 754 floating-point numbers

The most prominent example of a set of floating-point values not totally ordered by the
ď relation is the IEEE 754 floating-point format (IEEE Computer Society, 2019). In ad-
dition to a finite subset of the real numbers, an IEEE 754 floating-point value, referred to
as ‘float’ henceforth, can represent positive and negative infinity as well as a range of spe-
cial values subsumed under the term ‘not a number’ (NaN). These values, which emerge
for example as the result of undefined arithmetic operations such as 0˜0, have no order-
ing relation with real-valued or infinite floats; they are unordered values in the partially
ordered set of floats. NaN values tend to have ‘contagious’ semantics: according to the
IEEE 754 standard, an arithmetic operation that involves at least one NaN value should
produce a NaN as output value (IEEE Computer Society, 2019, §6.2.3). Although the
philosophical and practical value of NaNs has been disputed—some authors have called
it a ‘logical error [to assign] a number to something that is, by definition, not a number’
(Gustafson and Yonemoto, 2017)—, their contagious nature helps by propagating arith-
metic undefinedness, clearly marking the result of a calculation invalid if it comprises
an invalid operation or operates on invalid input, and thereby preventing oversight of
mathematical or logical mistakes.

Unlike floats, integral and Boolean data types usually have no representation of an
invalid value. Therefore, a NaN cannot be propagated to an integral or Boolean result.
To avoid sweeping errors under the rug, the IEEE 754 standard specifies that attempting
to convert a NaN value to an integer type without a NaN representation shall cause an
invalid operation exception (IEEE Computer Society, 2019, §5.8). Likewise, the standard
defines unordered-signaling predicates “, ą, ě, ă, ď, ‘intended for use by programs not
written to take into account the possibility of NaN operands’ (IEEE Computer Society,
2019, §5.11), which cause an invalid operation exception if either operand is NaN.

Unfortunately, many implementations do not obey the IEEE 754 standard with re-
gard to float-to-integer conversion and relational predicates. Most C and C++ compil-
ers (e.g. GCC, Clang, Microsoft Visual C++) do not raise an invalid operation exception
when converting a NaN value to an integer type, and the relational operators“,ą,ě,ă,
ď for floats are usually taken to be the unordered-quiet predicateswhich evaluate to false
if either operand is NaN.With NaNs, the negations of unordered-quiet predicatesą,ě,
ă, ď are not equivalent to their inversion: for instance, the predicate x ą NaN is false,
and thus its logical negation ␣px ą NaNq is true; but the inverse predicate x ď NaN is
also false, and therefore ␣px ą yq and x ď y are not equivalent.

The consequences are most easily observed with the mundane library function max,
of which a possible definition is given in Listing 5.1. This definition of the max function
has two flaws: it is not strictly commutative, and it does not always propagate NaN
values. Both flaws are readily demonstrated by evaluating max(0.f, NAN) and max(NAN,
0.f), which yield 0.f and NaN, respectively. The flaws can both be attributed to the non-
equivalence of negated and inverted relational predicates: the else clause,which amounts
to a logical negation of the if condition in Line 2, has the semantic meaning ‘a ě b or a,
b unordered’, which differs from the semantic meaning ‘a ě b’ that was intended by the
programmer.
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One possibility of rectifying these flaws would be to explicitly check for a partial
ordering. We instead opt to express the function with a default value and without using
logical negations, cf. Listing 5.2. Instead of expressing the piecewise function definition
as the usual if–else chain, we use independent if statements with the understanding
that none of them might be executed, in which case the default value empty is returned.

Expressing the relational conditionswithout logical negations resulted in the desired
semantics in this case; but the actual rules for NaN-sensitive programming are necessar-
ily more complicated. A NaN-aware program may employ logical negations but must
place them carefully to ensure that a NaN argument ends up ‘on the correct side’ of a
relational predicate. For example, let an interval ra, bs be defined by the two numbers a
and b with a ď b. We could ensure that two floats a, b define a valid interval with the
following runtime check:

1 if (!(a <= b)) throw std::invalid_argument(”no interval”);

This code appears to be unnecessarily convoluted, and an unsuspectingmaintainermight
be tempted to ‘simplify’ it:

1 if (a > b) throw std::invalid_argument(”no interval”);

But this apparent simplification changes the semantics of the code with regard to NaN
arguments: the first version throws an exception if either a or b is NaN, whereas the
second version does not.

Both examples highlight the inherent brittleness of NaN-sensitive code. Addition-
ally, the fact that the unordered-quiet flavour of the equality predicate evaluates to false
if either argument is NaN is often overlooked but has confusing implications of its own.
A NaN value does not compare equal with itself, implying that negated self-comparison
can evaluate to true:

1 if (a != a) throw std::invalid_argument(”a is NaN”);

Being non-reflexive, the equality predicate thus cannot be an equivalence relation, which
undermines an elementary assumption commonly made for regular types. For general-
purpose algorithms and data structures which rely on an equivalence relation (e.g. hash
sets), or which require that an equivalence relation can be obtained from the relational
predicate < using logical negation and the identity a “ b ô ␣pa ă b _ a ą bq (e.g.
sort, binary search), the occurrence of NaNs thus silently causes undefined behaviour,
which may become manifest in ‘impossible’ runtime actions or seemingly inexplicable
corruption of data structures.

To formalise our observations: a set of relational predicates“,‰,ă,ď shall be called
logically consistent if the following identities hold for all values a, b:

a “ b ô ␣pa ‰ bq , (5.22)
a ă b ô ␣pb ď aq , (5.23)
a “ b ô ␣pa ă b_ b ă aq . (5.24)

The unordered-quiet predicates for floats are not logically consistent, as neither of the
three identities holds true in the presence of the NaN value. NaN-sensitive code thus
must not rely on either of these identities.
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5.2.2 Posits

Because the NaR value is treated as negative infinity in the context of relational compar-
isons, a conforming posit implementation will exhibit no surprising behaviour with re-
lational comparisons: the relational predicates are logically consistent as per Eqs. (5.22–
5.24), the equality predicate“ defines an equivalence relation, and the predicatesă and
ď define a strict and a non-strict total order, respectively, on the set of all posit values.
A max function implemented as in Listing 5.1 remains commutative in the face of NaRs;
however, it does not promote invalidity: if only one argument is NaR, the other argu-
ment, which always compares greater than NaR, will be returned.

Diverging from the posit specification, some implementations of posits (e.g. Schärtl,
2021) do awaywith the ambivalent interpretation of theNaR value and consistently take
it to be complex infinity, defining the ordering predicate ă as false if either operand is
˘8. With this interpretation, the set of relational predicates is not logically consistent,
and the incongruence discussed for NaN floats in Sect. 5.2.1 will arise.

5.2.3 Valids and intervals

Lacking a formal definition, the exact semantics originally envisioned for valids, in par-
ticular the semantics of the relational predicates for valids, are not known. However,
valids are modelled after ubounds (cf. Gustafson, 2017b, §3.6), an interval-like construct
based on type I unums; and ‘[for] a ubound u to be less than a ubound v, the maximum
of u must be less than the minimum of v‘ (Gustafson, 2017a, §8.1). The ubound inter-
pretation of relational ordering thus corresponds to ‘certainly’ semantics of Eq. (5.20).
In the implementation of Schärtl (2021), the same semantics had been chosen for valids,
with the caveat that the NaR value is treated as complex infinity, and thus as unordered
with regard to real numbers.

Gustafson (2017a) also discusses predicates for equality and inequality. Given two
valids X , Y , an obvious candidate for an equality relation would be set equality, which
is an equivalence relation. However, as noted in Gustafson (2017a, §8.2), a different
notion of equality, there referred to as ‘not nowhere equal’, is often more useful. This
notionmatches the ‘possibly’ interpretation of Eq. (5.21). Unlike the set equality relation,
it does not constitute an equivalence relation because it is not transitive. Likewise, one
could also define an equality relation with ‘certainly’ semantics; in this interpretation,
two sets would be considered ‘certainly equal’ only if either set is empty or if both sets
are identical single-element sets, and the“ relationwould not be an equivalence relation
because it is not reflexive.

Whichever interpretation of the relational predicates is chosen, it can easily be veri-
fied that the set of interval predicates“,‰,ă,ď cannot be logically consistent. Checking
the definitions of Eqs. (5.22–5.24) with the counterexample a “ b “ r0, 1s, we find all
three identities invalid using either the ‘certainly’ or the ‘possibly’ semantics for rela-
tional predicates. The consequences are similar to those discussed for floats with NaN
values in Sect. 5.2.1. To illustrate, let us consider how the generic implementation of the
max function given in Listing 5.1 would behave if the relational predicates adhered to
‘certainly’ or ‘possibly’ semantics. Comparing with the set extension of the max func-

147



5. A PARADIGM FOR INTERVAL-AWARE PROGRAMMING

fiducial result ‘possibly’ semantics ‘certainly’ semantics
A B MaxpA,Bq maxpA,Bq maxpB,Aq maxpA,Bq maxpB,Aq
r0, 2s r3, 6s r3, 6s r3, 6s r3, 6s r3, 6s r3, 6s
r2, 4s r3, 6s r3, 6s r3, 6s r2, 4s r2, 4s r3, 6s
r4, 5s r3, 6s r4, 6s r3, 6s r4, 5s r4, 5s r3, 6s

Table 5.1: Results of the generic max function in Listing 5.1 for different
interval arguments assuming either ‘possibly’ or ‘certainly’ semantics for
relational predicates, compared to fiducial results as per Eq. (5.25).
Wrong results are highlighted with red background, excessive results (i.e.
resulting intervals which contain but also exceed the fiducial result) are
highlighted with yellow background.

tion

MaxpX,Y q :“ tmaxpx, yq |x P X, y P Y u , (5.25)

here taken as the fiducial result, we see in Table 5.1 that, for both ‘certainly’ and ‘possibly’
semantics, the generic implementation of themax function is not correct, and not even
commutative.

5.3 Set-valued logic

According to Gustafson (2017b), posits and valids are considered ‘two modes of oper-
ation, selectable by the user’. Although the referenced work acknowledges that ‘algo-
rithms for valids are often quite different from the ones for floats, and vice versa’, it
implies that valids and posits should be exchangeable to some extent, for instance in the
recommendation that ‘valids are for where you need a provable bound on the answer.
Or when you are still developing an algorithm and debugging its numerical behavior’.
Traditional interval arithmetic has often been used in a similar manner, relying on the
‘Fundamental Theorem of Interval Arithmetic’ discussed in Sect. 5.1. Defining relational
predicates seems to be worthwhile and even necessary to allow writing generic code
which can work with either scalar values or with intervals or valids. This section ex-
plores how to define relational predicates in a way that retains logical consistency and
avoids the pitfalls discussed in Sect. 5.2.

5.3.1 Set-extended relational predicates

Although Boolean relational predicates can be and have been defined for floats with
NaNs, for intervals, and for valids, in the preceding sections we have seen that they are
logically inconsistent, which makes them error-prone even in targeted use. Moreover,
they lack properties commonly expected from relational predicates in generic code such
as reflexivity and transitivity, and thus easily lead to unexpected or undefined behaviour.

The core of the problem is the definition of relational predicates as Boolean predi-
cates. For real numbers, the Boolean relational predicates“,‰,ă,ď are intuitive, well-
defined, and logically consistent; “ is an equivalence relation, ă defines a strict total
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A^B
B

None False True Both

A

None None None None None
False None False False False
True None False True Both
Both None False Both Both

A_B
B

None False True Both

A

None None None None None
False None False True Both
True None True True True
Both None Both True Both

A ␣A

None None
False True
True False
Both Both

Table 5.2: Truth tables for conjunction, disjunction, and negation in the
PpBq logic as per Eqs. (5.28–5.30).

order, and ď defines a non-strict total order. But let us consider how floats with NaNs
would be represented mathematically. A float can be either some real number or ‘not
a number’; in mathematical terms, it is either a unit set txu containing a real number
x P R, or the empty set. Likewise, valids can represent certain subsets of R Y tNaRu,
including the empty set. But if floats and intervals represent sets of real numbers, then
relational predicates of floats or intervals should represent sets of Booleans. Given a
Boolean predicate „: R ˆ R Ñ B, where B “ tfalse, trueu denotes the two-element
Boolean algebra, we can thus define a general set extension of the predicate as

A „ B :“
␣

a „ b | a P A, b P B
(

(5.26)

for any two subsets A,B Ď R.

Expressing this in a procedural manner, to assemble the relational predicate A „

B we start with an empty set. Then, if any pair of elements a P A, b P B exists for
which the Boolean relational predicate a „ b does not hold true, we insert false into
the set. Likewise, if any pair of elements a P A, b P B exists for which the Boolean
relational predicate a „ b holds true, we insert true into the set. We end up with one of
the following sets: ∅, tfalseu, ttrueu, or tfalse, trueu, in other words: with an element
of the powerset of the two-element Boolean algebra,PpBq, which itself is a 4-valued logic.
We identify its elements with the following intuitive names:

None ” ∅ , False ” tfalseu , True ” ttrueu , Both ” tfalse, trueu . (5.27)
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A POSSIBLYA ALWAYSA CONTINGENTA VACUOUSA
None false true false true
False false false false false
True true true false false
Both true false true false

Table 5.3: Truth tables for Boolean projections from PpBq as per Eqs. (5.31–
5.34).

We can infer the truth tables for thePpBq logic, reproduced in Table 5.2, by defining their
logical operators ^, _, ␣ as set extensions of the corresponding Boolean operators:

U ^ V :“
␣

u^ v |u P U, v P V
(

, (5.28)
U _ V :“

␣

u_ v |u P U, v P V
(

, (5.29)
␣U :“

␣

␣u |u P U
(

(5.30)

for any two subsets of the Boolean powerset logic U, V P PpBq. When defined as a set
extension as per Eq. (5.26), the relational predicates “, ‰, ă, ď are logically consistent
because the identities given in Eqs. (5.22–5.24) hold.

Programs usually employ relational predicates to make binary choices: to jump or
not to jump, tertium non datur. Thus, if relational predicates are PpBq-valued instead
of B-valued, a program must be able to interpret them as Boolean value somehow. We
thus need to define suitable projections. Following up on the previous attempts to define
relational predicates for intervals, we find the two intuitive projections POSSIBLY and
ALWAYS, defined as

POSSIBLYU :“ true P U , (5.31)
ALWAYSU :“ false R U (5.32)

for any set-valued elementU P PpBq.We emphasise that, by virtue of its antisymmetric
definition, the ALWAYS projection yields vacuous truth for an empty set U . We go on to
define two more useful projections:

CONTINGENTU :“ pU ” Bothq , (5.33)
VACUOUSU :“ pU ” ∅q . (5.34)

Truth tables for all four projections are shown in Table 5.3.

With the POSSIBLY and ALWAYS projections, we can interpret a given relational predi-
cate as having either ‘possibly’ or ‘certainly’ semantics. But unlike in previous attempts
at defining relational predicates for intervals, the semantic interpretation is not attached
to the predicate itself. A projection can be applied to a more complex logical expression
as well, such as POSSIBLY px ă ´1_x ą 1q or ALWAYS pa ď x ă bq, allowing for intuitive
expressive freedom. Because the relational operators do not evaluate to Boolean values,
they are not directly compatible with algorithms or data structures expecting Boolean
predicates, thereby forcing the user to explicitly choose a particular projection.
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P R̄
x x2

P R̄ě0

x2 ď 1 x2 ď 1

X X2 X2 ď 1 Dx P X : x2 ď 1

P B P B

P rR̄s Y tHu P
“

R̄ě0

‰

Y tHu P PpBq P B

X X 2 X 2 ď 1 Dx P X : x2 ď 1
P PpR̄q P P

`

R̄ě0

˘

P PpBq P B

true P ¨¨ ď 1p¨q2

POSSIBLY ¨¨ ď 1p¨q2

id¨ ď 1p¨q2

scalar operations

powerset liftings

interval projections

Figure 5.1: Diagram of algebraic relations between scalar arithmetic, arith-
metic lifted to powersets, and interval arithmetic.
The set extension, cf. Eq. (5.7), is an intuitive lifting of arithmetic operations
from sets to powersets. Because sets have no obvious numerical represen-
tation, we project sets X to enclosing intervals IrX s, which can be repre-
sented with a tuple of floating-point numbers. Instead of applying arith-
metic operations to sets, we perform surrogate computations on their inter-
val projections.

The relation of interval arithmetic and Boolean powerset logic is perhaps best un-
derstood by viewing interval arithmetic as a projection of set arithmetic. Functions can
be trivially ‘lifted’ from elements to sets of elements, as was done for unary real-valued
functions in Eq. (5.7). The ‘lifting’ of a function then maps sets from the powerset of the
function’s domain to the powerset of its codomain. Thus, a predicate p : R̄ Ñ B would
be ‘lifted’ to a set-valued predicateP : PpR̄q Ñ PpBq. One could say that we use interval
arithmetic as a computable surrogate of set arithmetic, in which Boolean powerset logic
naturally emerges. The algebraic relations are visualised with an example in Figure 5.1.

5.3.2 Writing NaN-aware code

We revisit the precondition-checking examples from Sect. 5.2.1. Given two scalar num-
bers a and b, we want to verify that they define a valid interval by asserting that a ď b. If
floats were considered sets containing either a single real number or nothing to indicate
NaN (‘not a number’), and if the relational operators for floats were defined according
to Eq. (5.26) and returned PpBq values, we would write the check as

1 if (!possibly(a <= b)) {
2 throw std::invalid_argument(”no interval”);
3 }

If either a or b was NaN, the predicate a <= b would evaluate to None, and possibly(None)
is false; therefore, a NaN value will trigger the exception.

The check can be simplified to avoid the negation.However, the negation of a Boolean
condition is not the same as a logical negation of the set-valued predicate. Thanks to the
Boolean projections, the difference is evident: ␣POSSIBLYU is clearly a different logical
statement than POSSIBLY␣U . We find that the following intuitive identities hold among
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projections:

␣ALWAYSU ô POSSIBLY␣U (5.35)
␣POSSIBLYU ô ALWAYS␣U (5.36)

CONTINGENTU ô POSSIBLYU ^ POSSIBLY␣U (5.37)
VACUOUSU ô ALWAYSU ^ ALWAYS␣U (5.38)

Using Eq. (5.36), we can thus rewrite the check as
1 if (always(!(a <= b))) {
2 throw std::invalid_argument(”no interval”);
3 }

and, taking advantage of logical consistency, we can get rid of the negation by inverting
the relational operator with the identity Eq. (5.23):

1 if (always(a > b)) {
2 throw std::invalid_argument(”no interval”);
3 }

which is as close as possible to the simplest but NaN-ignorant condition a ą b in
Sect. 5.2.1.

5.3.3 Interval extension of piecewise-defined functions

With the interval-extended relational operators and the Boolean projections available,
we can now specify how to obtain interval extensions for piecewise-defined functions.

Given a series of contiguous subsets S1, . . . ,Sn Ď R̄, a series of functions g1 :
S1 Ñ R̄, . . . , gn : Sn Ñ R̄ defined on these subsets, and a series of Boolean predicates
p1, . . . , pn : R̄Ñ B, let a function f : R̄Ñ R̄ be defined by cases:

fpxq :“

$

’

’

&

’

’

%

g1pxq, if p1pxq
...

...
gnpxq, if pnpxq

(5.39)

Now, let us assume that, for every j P t1, . . . , nu, Gj : rSjs Ñ rR̄s is an interval ex-
tension of the function gj , and Pj : PpR̄q Ñ PpBq is the set extension of the Boolean
predicate pj : R̄Ñ B. Then, the notation

F
`

X
˘

:“

$

’

’

&

’

’

%

G1

`

X
˘

, if P1

`

X
˘

...
...

Gn

`

X
˘

, if Pn

`

X
˘

(5.40)

is taken to refer to the minimal enclosing interval of the union of the intervals GjpXq
for which the Boolean projection POSSIBLYPjpXq is true ,

F
`

X
˘

:“ I

«

ď

jPJ
Gj

`

X
˘

ff

,

J :“
␣

j P t1, . . . , nu : POSSIBLYPj

`

X
˘(

. (5.41)

152



5.3. Set-valued logic

In other words, the resulting interval is defined to enclose the intervals obtained by all
branchesGjpXq forwhich the predicate pjpxqmight evaluate to true for any valuex P X .
The function F : rR̄s Ñ rR̄s therefore is an interval extension of the function f : R̄Ñ R̄.
Again, the definition can be trivially generalised to functions and predicates of higher
arity.

Using the basic notation introduced in Eq. (5.40), we can now obtain an interval
extension of themax function by a syntactic transformation of Eq. (5.19),

Max
␣

A,B
(

:“

#

B if A ă B

A if A ě B .
(5.42)

5.3.4 Writing interval-aware code

Taking advantage of the syntactic resemblence of a piecewise-defined function and its
interval extension as defined in Sect. 5.3.3, we can express a routine like themax function
such that it yields correct results for floats, posits, intervals, and valids (and also for floats
with NaNs if the C++ language actually allowed redefining their built-in comparison
operators).

In Listing 5.3 we give a new definition of a generic max function. The function sig-
nature is identical to the first definition in Listing 5.1, but the function was restructured
in a fashion similar to the version in Listing 5.2: instead of if–else chains, if branches
are expressed independently with the understanding that none, one, or multiple branches
might be executed. Instead of directly returning a result, values are now accumulated in
a local result variable, which is initialised with some generic empty value, empty, which
equals NaN for floats, NaR for posits, an empty set for valids, or an uninitialised value
for float-valued intervals. The branch condition a ă b is assumed to be set-valued,
pa ă bq P PpBq, and hence a Boolean projection has to be used to make a branching
decision.

For multi-valued arguments a or b (i.e. intervals or valids), the two Boolean condi-
tions possibly(a < b) and possibly(a >= b) are not necessarily exclusive: if both arguments
overlap, both conditions evaluate to true , and both branches are executed. To avoid that
an assignment from the previous branch is overwritten, conditional assignmentmust be
performed with a function assign_partial. For floats or posits, assign_partial(x, a) as-
serts that x is still empty and then executes the assignment x = a. For intervals and valids,
assign_partial(x, a) widens the set represented by x such that it encloses a.

Some results for the revised max2 function of Listing 5.3 are shown in Table 5.4. The
max routine is now commutative and returns correct results for all cases, although some
results are too wide.

We emphasise that the C++ language does not allow to redefine operators such as
== and < for built-in data types such as float. Therefore, when calling the revised max2
function with arguments of type float, relational comparisons would in reality exhibit
the traditional unordered-quiet behaviour. To actually obtain the results for NaN floats
in Table 5.4, a user-defined data type would have to be created which wraps float but
has set-valued relational operators.
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fiducial result experimental results
domain type A B MaxpA,Bq max2pA,Bq max2pB,Aq

floats NaN 0 NaN NaN NaN
posits NaR 0 0 0 0
posits NaR NaR NaR NaR NaR

intervals r0, 2s r3, 6s r3, 6s r3, 6s r3, 6s
intervals r0, 2s r3, 6s r3, 6s r3, 6s r3, 6s
intervals r2, 4s r3, 6s r3, 6s r2, 6s r2, 6s
intervals r4, 5s r3, 6s r4, 6s r3, 6s r3, 6s
valids NaR 0 0 0 0
valids NaR NaR NaR NaR NaR
valids r2, 4s p3,8q p3,8q r2,8q r2,8q
valids r2, 4s r´8, 6s r2, 6s r´8, 6s r´8, 6s
valids r2, 4s 3sp6 r2,8q r´8,8q r´8,8q

Table 5.4: Results of the revised interval-aware genericmax function in List-
ing 5.3 for different interval arguments, compared to fiducial results as per
Eq. (5.25).
Excessive results (that is, resulting intervals which contain but also exceed
the fiducial result) are highlighted with yellow background. For floats and
intervals, NaN is considered semantically equivalent to the empty set. For
posits and valids, NaR is treated as negative infinity. Intervals cannot repre-
sent the empty set, but our interval datatype permits an uninitialised state.
With ‘3sp6’ we denote the irregular valid pRY tNaRuqzp3, 6s.

5.4 Constraints

To understand why some of the results returned by max2 are wider than necessary, con-
sider the example of a “ r2, 4s, b “ r3, 6s. Because the two intervals overlap, both
relational predicates a ă b and a ě b evaluate to Both , which is then mapped to true
by the POSSIBLY projection. The assign_partial(x, b) statement in the first branch finds
x uninitialised and thus initialises it with r3, 6s, the value of b. In the second branch, the
statement assign_partial(x, a) widens the interval x such that it encloses all of a.

This behaviour is clearly suboptimal. Although not obvious in this case, it is also
wrong. The underlying problem is more clearly illustrated by a different example in
which the domains of the piecewise subfunctions actually differ. Let a function s : R̄Ñ
R̄ be defined as

spxq :“

#?
x if x ě 0

0 if x ă 0
(5.43)

and implemented conventionally in Listing 5.5. We note that the first case
?
x is defined

only on a domain R̄ě0. Therefore, if we attempt to construct an interval extension of s
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1 float clampedSqrt(float x) {
2 if (x >= 0) return sqrt(x);
3 else return 0;
4 }

Listing 5.5: Definition of a clamped square root function in C++.

1 template <typename T>
2 T clampedSqrt2(T x) {
3 T y = empty;
4 if (possibly(x >= 0)) assign_partial(y, sqrt(x));
5 if (possibly(x < 0)) assign_partial(y, 0);
6 return y;
7 }

Listing 5.6: Interval-aware but ill-defined clamped square root function in
C++.

as per Eq. (5.40),

S
`

X
˘

:“

#?
X ifX ě 0

0 ifX ă 0 ,
(5.44)

and implement it as demonstrated in Listing 5.6, we end up with an undefined result for
interval arguments reaching below 0,

S
`

r´1, 1s
˘

“ I
”

a

r´1, 1s, 0
ı

“ ? (5.45)

because
?
¨ is not well-defined on codomain R̄ for negative arguments. However, as per

its predicate, the first case of the piecewise-defined function should contribute only for
argumentsě 0. Practically spoken, when passing the interval r´1, 4s to the clampedSqrt2
function in Listing 5.6, both branches are executed, and the sqrt function, which is not
defined for negative arguments, is thus called with an interval argument r´1, 4s. Thus,
in defining the interval extension F pXq for a piecewise-defined function fpxq, we need
to somehow constrain the intervalX for the individual cases according to the guarding
predicate.

Because the first case in Eq. (5.43) is guarded by the condition x ě 0, we know that
the expression

?
x will be evaluated only for non-negative arguments x. One can argue

that, similarly, in Eq. (5.44) the intervalX could be constrained to non-negative values
before evaluating

?
X . The following interval extensionwould be perfectly well-defined:

S
`

X
˘

:“

#

a

X X R̄ě0 ifX ě 0

0 ifX ă 0 ,
(5.46)

How, and under which circumstances, can the necessary constraints of interval argu-
ments be inferred from the guarding predicates?
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1 template <typename T>
2 T clampedSqrt3(T x) {
3 T y = empty;
4 auto c = (x >= 0);
5 if (possibly(c)) {
6 auto xc = constrain(x, c);
7 assign_partial(y, sqrt(xc));
8 }
9 if (possibly(!c)) {
10 assign_partial(y, 0);
11 }
12 return y;
13 }

Listing 5.7: Corrected interval-aware clamped square root function in C++.

5.4.1 Inferring constraints

We first note that, for general predicates P : rR̄s Ñ PpBq, no simple rule for automati-
cally inferring constraints on the argument can be given. In order to ‘read off’ a constraint
on an interval X from a relational expression, the expression would need to be recast
as a logical combination of constraints of type ‘X „ A’, which may require inverting an
arbitrary function. For example, the constraint X2 ď 1 would have to be transformed
to the expression X ě ´1 ^ X ď 1. However, if we impose that constraints are to be
stated in a normalised form composed of ‘X „ A’-type relational expressions, which
often is already the case in piecewise-defined functions, we can give a general rule for
inferring constraints for intervalsX from logical expressions.We emphasise that the re-
quirement of linearity is imposed only for practical reasons; it could be overcome by an
implementation capable of symbolically solving the predicate expression for the variable
to be constrained.

In the following, we define the constraint operator X|P for an interval X and a set-
valued predicate expressionP . First, the predicate expressionP is evaluated; if it isFalse ,
the constraint operator has no effect,

X|P :“ X if P “ False . (5.47)

If P evaluates to either True or Both , the constraint operator is defined as follows. For
any relational expression which does not directly refer to the interval being constrained,
the constraint operator has no effect:

X|
`

Y „ Z
˘

:“ X . (5.48)

For elementary relational constraints ofX , we have the following rules:

X|
`

X “ A
˘

:“ X XA , (5.49)
X|

`

X ě A
˘

:“
“

maxtX´, A´u, X`
‰

, (5.50)
X|

`

X ď A
˘

:“
“

X´,mintX`, A`u
‰

(5.51)

using the notation X ” rX´, X`s, A ” rA´, A`s throughout. In order to infer opti-
mal constraints from the relational operators ‰, ă and ą, we would need to be able to
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represent half-open and open intervals. But our system only handles closed intervals for
reasons of simplicity, and so we have to leave relational expressions with ‰, ă, and ą
under-constrained:

X|
`

X ‰ A
˘

:“ X , (5.52)
X|

`

X ą A
˘

:“ X|
`

X ě A
˘

, (5.53)
X|

`

X ă A
˘

:“ X|
`

X ď A
˘

. (5.54)

We then define recurrence relations for predicate expressions composed from predicate
subexpressions by logical operators ^ and _:

X|
`

P1 ^ P2

˘

:“ I
“`

X|P1

˘

X
`

X|P2

˘‰

, (5.55)
X|

`

P1 _ P2

˘

:“ I
“`

X|P1

˘

Y
`

X|P2

˘‰

, (5.56)

pointing out that the constraintX|
`

P1^P2

˘

would not be well-defined if P1^P2 eval-
uated to False because thenX|P1 andX|P2 would not overlap.

Any logical negation ␣ in a predicate expression shall be resolved by applying De
Morgan’s laws and by inverting relational operators:

␣
`

P1 ^ P2

˘

Ñ
`

␣P1

˘

_
`

␣P2

˘

, (5.57)
␣
`

P1 _ P2

˘

Ñ
`

␣P1

˘

^
`

␣P2

˘

, (5.58)
␣
`

X “ Y
˘

Ñ X ‰ Y , (5.59)
␣
`

X ‰ Y
˘

Ñ X “ Y , (5.60)
␣
`

X ă Y
˘

Ñ X ě Y , (5.61)
␣
`

X ď Y
˘

Ñ X ą Y , (5.62)
␣
`

X ą Y
˘

Ñ X ď Y , (5.63)
␣
`

X ě Y
˘

Ñ X ă Y . (5.64)

Using the constraint operator defined by this set of rules, we can now refine the interval
extension method for piecewise-defined functions previously given in Eq. (5.41):

F
`

X
˘

:“ I

«

ď

jPJ
Gj

`

X|Pj

˘

ff

,

J :“
␣

j P t1, . . . , nu : POSSIBLYPj

`

X
˘(

, (5.65)

that is, when evaluating the interval-valued functionGj , we automatically constrain its
argumentX by its guarding predicate expression Pj .

With the refined definition of Eq. (5.65), the interval extensions of the max and s
functions in Eqs. (5.42) and (5.44), which were obtained by a simple syntactic trans-
formation of the scalar expressions in Eqs. (5.19) and (5.43), become well-defined and
precise interval extensions.

The automatic inference of constraints is demonstrated in the final revisions of the
max and clampedSqrt functions in Listings 5.4 and 5.7. The updated results for the max3
function are presented in Table 5.5. In both code listings, the logical condition is stored in
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fiducial result experimental results
domain type A B MaxpA,Bq max3pA,Bq max3pB,Aq
intervals r2, 4s r3, 6s r3, 6s r3, 6s r3, 6s
intervals r4, 5s r3, 6s r4, 6s r4, 6s r4, 6s
valids r2, 4s p3,8q p3,8q p3,8q p3,8q
valids r2, 4s r´8, 6s r2, 6s r2, 6s r2, 6s
valids r2, 4s 3sp6 r2,8q r2,8q r2,8q

Table 5.5: Results of the revised interval-aware genericmax function in List-
ing 5.4 for different interval arguments, compared to fiducial results as per
Eq. (5.25).
Results which are now optimally tight are highlighted with green back-
ground.

a variable c, from which the constrain function then infers which constraints the given
interval can be subjected to. In max3, Line 6, the constrain function imposes the con-
straint a ă b on the variable b and returns its constrained value; for example, if a and
b are closed intervals, a ” rA´, A`s, b ” rB´, B`s, then constrain(b,c) infers the
constrained interval

“

B´c , B
`
c

‰

“

#

pA´, B`s if A´ ě B´

rB´, B`s if A´ ă B´,
(5.66)

in the first case omitting the part of the interval rB´, A´s for which the condition can
never be fulfilled. Because traditional interval arithmetic does not represent half-open
intervals, the slightly excessive closed interval rA´, B`s is produced instead of the cor-
rect interval pA´, B`s. With valids, the half-open interval can be represented correctly,
and hence more accurate constraints are possible.

Thanks to inference of constraints, both max3 and clampedSqrt3 are well-defined in-
terval extensions returning optimal results. In Listing 5.8, we also demonstrate how the
technique applies to multiple branches, specifically for clamped linear interpolation,

ypxq “

$

’

&

’

%

y1 if x ă x1

y1 `
x´x1
x2´x1

py2 ´ y1q if x1 ď x ď x2

y2 if x ą x2 ,

(5.67)

also yielding optimal results. The inferred constraint ensures that the quotient px ´
x1qpx2 ´ x1q in the x1 ď x ă x2 branch never exceeds r0, 1s.

5.5 Discrete-valued intervals

In Sect. 5.1, interval notation and the interval extension have been defined for affinely
extended real numbers. But the notion of interval arithmetic can be easily extended to
discrete ordered sets such as integers or to entities resembling integer differences, such
as pointers, or random-access iterators in C++.
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1 template <typename T, typename FloatT>
2 T interpolateLinear(T x,
3 FloatT x1, FloatT x2, FloatT y1, FloatT y2) {
4 T y = empty;
5 auto below = (x < x1);
6 if (possibly(below)) assign_partial(y, y1);
7 auto above = (x > x2);
8 if (possibly(above)) assign_partial(y, y2);
9 auto c = !below & !above;
10 if (possibly(c)) {
11 auto xc = constrain(x, c);
12 assign_partial(y,
13 y1 + (xc ‐ x1)/(x2 ‐ x1)*(y2 ‐ y1));
14 }
15 return y;
16 }

Listing 5.8: Interval-aware linear interpolation in C++.

The definitions of the set of intervals in Eq. (5.8), of the interval extension in Eqs. (5.9)
and (5.10), and of the minimum enclosing interval in Eq. (5.11) can be naturally adapted
to discrete domains and to operations defined thereon.

Like for real numbers, it is possible to construct precise interval extensions with con-
stant computational complexity for elementary arithmetic operators and for monotonic
unary functions, and the composition theorem in Eq. (5.12), which also applies to func-
tions defined on discrete-valued domains, can be used to construct interval extensions,
albeit not necessarily precise ones, with constant computational cost.

In a discrete ordered set, an element i can be uniquely associatedwith its predecessor
and its successor, which we refer to as pred i and succ i. For integers, predecessor and
successor can simply be defined as

pred i :“ i´ 1 , succ i :“ i` 1 . (5.68)

5.5.1 Precise discrete interval extensions

Because the values enclosed by an interval in a discrete domain can be enumerated, a
precise interval extension of a discrete function can be obtained and even computed
straightforwardly. Given a discrete function xi for discrete arguments i and a discrete-
valued interval I ” rI´, I`swith finite width |I| ” I`´ I´ ă 8, a computable precise
interval extension of xi can be obtained through enumeration:

XI “ I
“␣

xi : i P I
(‰

. (5.69)

We point out that the cost of computing the interval extension through enumeration
is proportional to 1 ` |I|, which makes this approach viable only for relatively narrow
intervals.
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5.5.2 Constraining discrete-valued intervals

In Sect. 5.1.2 we opted to neglect the dedicated treatment of half-open and open intervals.
As a consequence, when defining the constraint operator X|P in Sect. 5.4.1 we had to
leave intervals under-constrained for relational expressions with ‰, ă, and ą.

For discrete finite-valued domains, a distinction between closed, half-open, and open
intervals is unnecessary because well-defined open or half-open intervals ri, jq, pk, ls,
and pm,nq can be identifiedwith closed intervals ri, pred js, rsucc k, ls, and rsuccm, predns.
Therefore, when applying relational constraints to discrete-valued intervals, we can now
further refine the rules for the relational operators ‰, ą, and ă given in Sect. 5.4.1,
Eqs. (5.52–5.54):

I|
`

I ‰ A
˘

:“

$

’

&

’

%

rsucc I´, I`s if A´ “ A` “ I´

rI´, pred I`s if A´ “ A` “ I`

I otherwise,
(5.70)

I|
`

I ą A
˘

:“
“

maxtI´, succA´u, I`
‰

, (5.71)
I|
`

I ă A
˘

:“
“

I´,mintI`, predA`u
‰

. (5.72)

5.5.3 Partitioned sequences

Discrete functions, represented here as sequences of values such as pxiqni“1, are often
used for purposes of lookup. For example, let some continuous function fpxq be sampled
at n sampling points x1, . . . , xn and the sampling values be stored in a sequence yi :“
fpxiq. Then, to approximate the function fpxq by a first-order interpolation scheme,
the indices i, j of the sampling points xi, xj adjacent to the given value x are located,
and an interpolated result is computed as a function of xi, xj , yi, and yj . The necessary
lookup operations can be implemented withOplog nq operations if the sampling points
are ordered, xi ă xi`1. We now define some operators useful for looking up element
indices.

Let pbiqni“1, bi P B be a partitioned sequence of Boolean values, which is to say: the
sequence is ordered such that the elements biwhich areTrue precede the elementswhich
are False . Then, the partition point index operator is defined to evaluate to the index i of
the first element bi in the sequence which is False , or to n`1 if there is no such element:

part
“

pbiq
n
i“1

‰

:“

$

&

%

min
iPt1,...,nu,␣bi

i if Di P t1, . . . , nu : ␣bi

n` 1 otherwise .
(5.73)

We note that, because pbiqni“1 is a partitioned sequence, the partition point index can be
determined with binary search, and hence with Oplog nq operations.

For an ordered sequence pxiqni“1, xi ď xi`1, we can define the lower bound index
operator which evaluates to the index i of the first element xi not smaller than the given
comparand x. Together with the analogous upper bound index operator which identifies
the index of the first element greater than x, it can be defined in terms of the partition
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point index operator:

lower
“

pxiq
n
i“1;x

‰

:“ part
“

pxi ă xqni“1
‰

, (5.74)
upper

“

pxiq
n
i“1;x

‰

:“ part
“

pxi ď xqni“1
‰

. (5.75)

The precise interval extension of the partition point index operator, whichwill accept
a sequence of Boolean powerset elements, pKiq

n
i“1,K P PpBq, can be constructed as

Part
“

pKiq
n
i“1

‰

:“
”

part
“

pALWAYSKiq
n
i“1

‰

, part
“

pPOSSIBLYKiq
n
i“1

‰

ı

. (5.76)

Precise interval extensions of the lower bound and upper bound index operators can
then be given by a natural syntactic transformation:

Lower
“

pxiq
n
i“1;X

‰

“ Part
”

`

xi ă X
˘n

i“1

ı

, (5.77)

Upper
“

pxiq
n
i“1;X

‰

“ Part
”

`

xi ď X
˘n

i“1

ı

(5.78)

for an interval argumentX ” rX´, X`s.

5.5.4 Example: Nearest-neighbour interpolation

Let S denote a domain, and let a discrete sampling of some continuous function be given
by an ordered sequence of sampling points pxiqni“1, xi P S , xi ă xi`1, and a correspond-
ing sequence of sampling values pyiqni“1. A nearest-neighbour interpolation between
n ě 2 points of support can be defined in a directly computable form by means of the
partition point index operator:

interp0
“

pxi, yiq
n
i“1;x

‰

:“ yk

with k :“ part
”

`

1
2px

1
i ` x

1
i`1q ă x

˘n´1

i“1

ı

. (5.79)

wherein the expression
xi ` xi`1

2
for i P t1, . . . , n´ 1u (5.80)

denotes themidpoint between sampling points i and i`1. The precise interval extension
of the operator interp0rpxi, yiqni“1;xs is obtained by syntactically transforming scalar
values x and k to intervalsX andK,

Interp0
“

pxi, yiq
n
i“1;X

‰

:“ yK

withK ” Part
”

`

1
2px

1
i ` x

1
i`1q ă X

˘n´1

i“1

ı

. (5.81)

5.5.5 Example: Linear interpolation

For n ě 2, a linear interpolation of the samples can be constructed similarly,

interp1
“

pxi, yiq
n
i“1;x

‰

:“

$

’

&

’

%

y1 if k “ 1

interp1k´1
“

pxi, yiq
n
i“1;x

‰

if 1 ă k ď n

yn if k “ n` 1

with k :“ lower
“

pxiq
n
i“1;x

‰

, (5.82)

161



5. A PARADIGM FOR INTERVAL-AWARE PROGRAMMING

where for 1 ď i ă n the piecewise linear interpolation between sampling points i and
i` 1 is given by

interp1i
“

pxj , yjq
n
j“1;x

‰

:“ yi `
x´ xi
xi`1 ´ xi

pyi`1 ´ yiq . (5.83)

Given the natural interval extension of Eq. (5.83),

Interp1i
“

pxj , yjq
n
j“1;X

‰

“ yi `
X ´ xi
xi`1 ´ xi

pyi`1 ´ yiq , (5.84)

an interval extension of the linear interpolation operator in Eq. (5.82) could be con-
structed with the usual syntactic transformations xÑ X , k Ñ K andwith enumeration
of k P K as per Eq. (5.69):

Interp1
“

pxi, yiq
n
i“1;X

‰

“

$

’

&

’

%

y1 ifK “ 1

Interp1K´1
“

pxi, yiq
n
i“1;X

‰

if 1 ă K ď n

yn ifK “ n` 1

withK :“ Lower
“

pxiq
n
i“1;X

‰

, (5.85)

However, we note that such an interval extension would be ill-defined. The piecewise
linear interpolation between sampling points xi and xi`1 is valid only for arguments x
between the sampling points, xi ď x ď xi`1; therefore, if the interval X covers one
or more points of support, X´ ă xi ă X`, it will exceed the domain of the interval-
extended operator Interp1i rpxj , yjqnj“1;Xs. The enumeration rule of Eq. (5.69) is not
sufficient here: when enumerating the indices i of the sampling points that enclose the
intervalX we must also constrain the interval such that xi ď X ď xi`1.

5.5.6 Partitioned function definitions

Let S be some domain and T some set, and let ppiqni“1 be a partitioned sequence of
Boolean predicates pi : S Ñ B, that is, a sequence ordered such that the sequence of
Booleans ppipxqqni“1 is partitioned for every x P S. Also, let pgiqni“0 be a sequence of
functions

g0 :S|p␣P1q Ñ T ,

gi :S
ˇ

ˇ

`

Pi ^␣Pi`1

˘

Ñ T for 1 ď i ă n ,

gn :S|Pn Ñ T (5.86)

where we naturally extend the constraint operator to sets,

S|P :“
␣

x P S : P pxq
(

. (5.87)

A partitioned function is a function fpxq defined as

fpxq :“

$

’

’

’

’

&

’

’

’

’

%

g0pxq if ␣P1pxq, k “ 0

gkpxq if Pkpxq ^ ␣Pk`1pxq

for 1 ď k ă n

gnpxq if Pnpxq, k “ n

(5.88)
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with the branch k determined in Oplog nq steps as

k ” part
”

`

Pipxq
˘n

i“1

ı

´ 1 . (5.89)

An interval extension of the function fpxq is then given by

F pXq :“

$

’

’

’

’

&

’

’

’

’

%

G0

`

X
˘

if ␣P1

`

X
˘

, k “ 0

Gk

`

X
˘

if Pk

`

X
˘

^␣Pk`1

`

X
˘

for 1 ď k ă n

Gn

`

X
˘

if Pn

`

X
˘

, k “ n

(5.90)

with the contributing branches k P K determined by enumeration,

k P K ” Part
”

`

PipXq
˘n

i“1

ı

´ 1 . (5.91)

For the special case of pipxq :“ xi ă x with an ordered sequence pxiqni“1, the parti-
tioned function fpxq simplifies to

fpxq :“

$

’

’

’

’

&

’

’

’

’

%

g0pxq if x ď x1, k “ 0

gkpxq if xk ă x ď xk`1

for 1 ď k ă n

gnpxq if xn ă x, k “ n

(5.92)

with the branch k determined as

k ” lower
“

pxiq
n
i“1;x

‰

. (5.93)

and analogously for pipxq :“ xi ď x and upperrpxiqni“1;xs.

We can now define the linear interpolation operator as a partitioned function:

interp1
“

pxi, yiq
n
i“1;x

‰

:“

$

’

’

’

’

&

’

’

’

’

%

y1 if x ď x1, k “ 0

interp1k
“

pxi, yiq
n
i“1;x

‰

if xk ă x ď xk`1

for 1 ď k ă n

yn if xn ă x, k “ n ,

with k :“ lower
“

pxiq
n
i“1;x

‰

. (5.94)

The natural interval extension of this rendering now leads to the correct constraints
being inferred for the argument intervalX of the piecewise linear interpolation function
interp1krpxi, yiq

n
i“1;xs:

Interp1
“

pxi, yiq
n
i“1;X

‰

:“

$

’

’

’

’

&

’

’

’

’

%

y1 ifX ď x1, k “ 0

Interp1k
“

pxi, yiq
n
i“1;X

‰

if xk ă X ď xk`1

for 1 ď k ă n

yn if xn ă X, k “ n ,

with k P K :“ Lower
“

pxiq
n
i“1;X
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1 template <std::floating_point T>
2 T
3 interpolate_nearest_neighbour(
4 ranges::random_access_range auto&& xs,
5 ranges::random_access_range auto&& ys,
6 T x) {
7 dim n = ranges::ssize(xs);
8 assert(n >= 2);
9 assert(ranges::ssize(ys) == n);
10

11 auto it = ranges::partition_point(
12 index_range(n ‐ 1),
13 [&](index i) {
14 auto xhalf = std::midpoint(
15 xs[i], xs[i+1]);
16 return xhalf < x;
17 });
18 auto i = *it;
19 return at(ys, i);
20 }
21 // usage:
22 // auto xs = std::array{ 1., 2., 4., 8.};
23 // auto ys = std::array{ 1., 3., 9., ‐3. };
24 // double x = ...;
25 // auto y = interpolate_nearest_neighbour(xs, ys, x);

Listing 5.9: C++ implementation of Eq. (5.79) (nearest-neighbour
interpolation) for scalar types.

5.6 Implementation

In Sect. 5.3.3, we defined a notation for piecewise definitions of interval-valued func-
tions which is syntactically equivalent to the usual notation for piecewise-defined scalar-
valued functions, thereby extending the previously introduced notion of a natural inter-
val extension to piecewise function definitions. The notion of interval-valued piecewise
function definitions was further refined in Sect. 5.4.1 with the introduction of the con-
straint operator. In Sect. 5.5, we studied the extension of interval arithmetic to discrete
domains, and we introduced the notion of a partitioned function definition as a general-
isation of piecewise function definition.

Transformation rules resembling this transformation of piecewise-defined functions
can be given for software routines operating on scalar values in order to obtain routines
which operate on intervals, similar to how arithmetic computations are adapted for other
extensions of scalar arithmetic that have monadic structure, for instance, vectorisation
(Karpiński and McDonald, 2017; Mabille and Corlay, 2022), automatic differentiation
(Hogan, 2014), or automatic propagation of Gaussian uncertainties. With the generic
programming facilities of expressive languages such as C++, it is even possible to write
routines in such a way that they can be compiled either for scalar values, with little or
no decrease in efficiency compared to a specialised scalar version, or for interval values.
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1 template <floating_point_interval_arg T>
2 T
3 interpolate_nearest_neighbour(
4 ranges::random_access_range auto&& xs,
5 ranges::random_access_range auto&& ys,
6 T x) {
7 dim n = ranges::ssize(xs);
8 assert(n >= 2);
9 assert(ranges::ssize(ys) == n);
10

11 auto [_, it] = intervals::partition_point(
12 index_range(n ‐ 1),
13 [&](index i) {
14 auto xhalf = std::midpoint(
15 xs[i], xs[i+1]);
16 return xhalf < x;
17 });
18 auto i = *it;
19 return at(ys, i);
20 }
21 // usage:
22 // auto xs = std::array{ 1., 2., 4., 8.};
23 // auto ys = std::array{ 1., 3., 9., ‐3. };
24 // auto x = ...; // ‘double‘ or ‘interval<double>‘
25 // auto y = interpolate_nearest_neighbour(xs, ys, x);

Listing 5.10: C++ implementation of Eq. (5.79) (nearest-neighbour
interpolation) as a generic function, and instantiation for scalar types and
for interval types

We have developed a C++ library, aptly named intervals (Beutel, 2022), which im-
plements traditional interval arithmetic along with PpBq-valued relational predicates,
Boolean projections, and automatic inference of constraints. We note that, unlike other
packages such as GAOL (Goualard, 2015), our implementation does not yet have spe-
cial precautions for floating-point rounding, such as ensuring that the lower bound is
always rounded towards´8 and the upper bound is rounded towards`8 to make sure
the true result is included in the result interval, and although it was crafted with effi-
ciency in mind, no effort has been made to ensure that certain patterns of machine code
such as vector instructions are generated.

The library defines a class template interval<T>, which represents a closed interval of
values of a floating-point, integer, or random-access iterator type T, and a class template
set<B> which represents an element of the powerset of the type B. Unary and binary
arithmetic operations +, ‐, *, / are overloaded for interval<T> if T is an arithmetic type,
and interval overloads are provided for standard mathematical functions such as sin(x),
sqrt(x), or log(x), and for somemathematical functions not present in the C++ Standard
Library such as square(x) or frac(x).

Relational operators <, <=, >, >=, ==, != are defined for arguments of either interval<T>
and set<bool> type, all mapping to types convertible to set<bool>, and comparison opera-
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tors ==, != are defined for all types set<T>. The operators for logical conjunction, disjunc-
tion and negation &, |, ! – but not the short-circuiting variants && and ||¹ – are defined
for set<bool>.

Additional function definitions such as possibly, constrain, assign_partial are pro-
vided to enable interval-aware programming as demonstrated in Listings 5.4, 5.7, and
5.8. When instantiated for non-interval types, these functions degenerate to trivial op-
erations and introduce no runtime overhead, in particular possibly(c) becomes c, con
strain(x,c) becomes x, and assign_partial(y,x) becomes y = x.

With the intervals library, functions can be implemented in an interval-aware man-
ner, that is, with assignments and branches expressed such that an interval extension can
automatically be generated by the compiler. For this to work, branch conditions must
be expressed such that all interval-conditioned branches can be taken. This implies that
we cannot use else clauses on if clauses with interval-dependent conditions, nor can we
use interval-conditioned goto-like statements such as return, break, or continue.

5.6.1 Discrete interval extensions

A scalar implementation of the nearest-neighbour interpolation operator (Eq. (5.79)) is
shown in Listing 5.9. A generic version which supports both scalar and interval types is
shown in Listing 5.10; the only required change is replacing std::ranges::partition_‐
pointwith the algorithm of the same name from the intervals package. The std::ranges
::partition_point algorithm from the C++ Standard Library implements the partition
point index operator (Eq. (5.73)); it accepts a range and a predicate the range is parti-
tioned by and returns an iterator referencing the partition point. The ‘intervals’ package
defines a partition_point algorithm with a similar interface which can operate on either
Boolean or Ks

3 predicates and returns an iterator or an interval of iterators, respectively.
With the index_range and index_iterator classes, index values can be used as iterators,
which enables the use of index-based instead of value-based predicates in algorithms de-
signed for iterable ranges. An index-based predicate is necessary here because in Line 15
we access two adjacent values to compute the midpoints between sampling points xhalf,
cf. Eq. (5.80). In Line 18, dereferencing the index iterator it extracts its index, and in Line
19, the i-th element of range ys is returned.When calling interpolate_nearest_neighbour
with an interval-valued argument x, partition_point returns an interval of iterators it,
which upon dereferencing becomes an interval of indices i. Calling the at function with
an index interval returns an interval of values using enumeration (Eq. (5.69)).

5.6.2 Partitioned functions and discrete-valued constraints

Our final example demonstrates how a partitioned function can be implemented gener-
ically in C++ using the example of the linear interpolation operator (Eq. (5.94)). In
Listing 5.11, a scalar implementation of the linear interpolation operator is given, and
evolved to a generic scalar/interval version in Listing 5.12.

The lower-bound and upper-bound index operators lower and upper were defined
as special cases of the partition point index operator part. Likewise, the C++ Standard

¹As per conventional advice, the short-circuiting operators && and || should never be overloaded (e.g.
Meyers, 1995, Item 7), which we nevertheless tried and quickly came to regret.
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Library defines algorithms std::ranges::lower_bound and std::ranges::upper_bound as
special cases of the std::ranges::partition_point algorithm. These algorithms accept an
ordered range of elements and a comparand and return an iterator to the lower-bound
or upper-bound element in the range. The ‘intervals’ package defines similar algorithms
lower_bound and upper_boundwhich support both scalar-valued and interval-valued com-
parands and return an iterator or a range of iterators, respectively. In addition, they
return a range of predicates which can be used to constrain a comparand interval.

To make piecewise linear interpolation interval-aware, as has been done in List-
ing 5.12, we use the lower_bound implementation from the intervals library.

In Listings 5.11 and 5.12, the lower-bound iterator of comparand x is obtained with
the lower_bound algorithm in Line 11.When calledwith an interval argument lower_bound
returns a set of predicates preds and an interval of lower-bound iterators pos. An interval
of segment indices i can then be obtained by subtraction, as is done in Line 12. After the
boundary cases have been dealt with in Lines 14–22, the piecewise linear interpolation
is handled in Line 23ff. Given a discrete-valued interval i, the function enumerate(i)
returns the range of values in the interval. In Line 25ff, the indices in the interval of
indices i are then iterated over, and for each index the piecewise linear interpolation is
computed, wherein the argument x is constrained by preds[i], the partitioning predicate
which corresponds to the range index i. When instantiated for normal floating-point
types T, the code in 5.12 is equivalent to Listing 5.11 because the loop over j collapses to
a single iteration with j “ i.

We note that the refined inference of constraints on discrete-valued intervals in
Eqs. (5.70–5.72) is crucial here. In Line 24, the interval of indices i is constrained by
the expression !below & !above, which expands to (i != 0) & (i != n). The constrain func-
tion will thus narrow i such that it contains neither the start index i=0 nor the end index
i=n of the range xs, which would result in out-of-bound range indexing in Lines 26–29.

5.6.3 Posits and valids

As a proof of concept, we ported the interval-aware infrastructure of the intervals li-
brary to posits and valids starting from the posit and valid implementation developed by
Schärtl (2021) as part of the aarith library (Keszöcze et al., 2021), thereby demonstrat-
ing that valid-aware programs can bewritten using the same principles. Themultitude of
possible combinations of closed, half-open, open intervals and irregular valids renders
constraint inference much more complicated than for the closed intervals of traditional
interval arithmetics, but in reward the inferred constraints can bemore precise thanwith
traditional interval arithmetic.

5.7 Discussion

The transformation of general unconstrained Boolean control flow and assignment (in-
cluding else clauses and goto-like statements) to interval-extendable control flow and
conditional assignment could to some extent be automated. In fact, the proposed model
of interval-extendable control flow bears many similarities to the stream-processing
model used to program GPUs or SIMD registers of CPUs, and compilers such as CUDA
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1 template <std::floating_point T>
2 T
3 interpolate_linear(
4 ranges::random_access_range auto&& xs,
5 ranges::random_access_range auto&& ys,
6 T x) {
7 dim n = ranges::ssize(xs);
8 assert(n >= 2);
9 assert(ranges::ssize(ys) == n);
10

11 auto pos = ranges::lower_bound(xs, x);
12 index i = pos ‐ ranges::begin(xs);
13

14 auto result = T{ };
15 bool below = (i == 0);
16 if (below) {
17 result = ys[0];
18 }
19 bool above = (i == n);
20 if (above) {
21 result = ys[n‐1];
22 }
23 if (!below && !above) {
24

25

26 auto x0 = xs[i‐1];
27 auto x1 = xs[i];
28 auto y0 = ys[i‐1];
29 auto y1 = ys[i];
30

31 result =
32 y0 + (x‐x0)/(x1‐x0)*(y1‐y0);
33

34 }
35 return result;
36 }
37 // usage:
38 // auto xs = std::array{ 1., 2., 4., 8.};
39 // auto ys = std::array{ 1., 3., 9., ‐3. };
40 // double x = ...;
41 // auto y = interpolate_linear(xs, ys, x);

Listing 5.11: C++ implementation of Eq. (5.94) (linear interpolation) for
scalar types
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1 template <floating_point_interval_arg T>
2 T
3 interpolate_linear(
4 ranges::random_access_range auto&& xs,
5 ranges::random_access_range auto&& ys,
6 T x) {
7 dim n = ranges::ssize(xs);
8 assert(n >= 2);
9 assert(ranges::ssize(ys) == n);
10

11 auto [preds, pos] = intervals::lower_bound(xs, x);
12 auto i = pos ‐ ranges::begin(xs);
13

14 auto result = T{ };
15 auto below = (i == 0);
16 if (possibly(below)) {
17 assign_partial(result, ys[0]);
18 }
19 auto above = (i == n);
20 if (possibly(above)) {
21 assign_partial(result, ys[n‐1]);
22 }
23 if (auto c = !below & !above; possibly(c)) {
24 auto ic = constrain(i, c);
25 for (index j : enumerate(ic)) {
26 auto x0 = xs[j‐1];
27 auto x1 = xs[j];
28 auto y0 = ys[j‐1];
29 auto y1 = ys[j];
30 auto xc = constrain(x, preds[j]);
31 assign_partial(result,
32 y0 + (xc‐x0)/(x1‐x0)*(y1‐y0));
33 }
34 }
35 return result;
36 }
37 // usage:
38 // auto xs = std::array{ 1., 2., 4., 8.};
39 // auto ys = std::array{ 1., 3., 9., ‐3. };
40 // auto x = ...; // ‘double‘ or ‘interval<double>‘
41 // auto y = interpolate_linear(xs, ys, x);

Listing 5.12: C++ implementation of Eq. (5.94) (linear interpolation) as a
generic function, and instantiation for scalar and interval types
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(NVIDIA, 2022) or ISPC (Pharr and Mark, 2012) are known to automatically trans-
form branches to masked operations, which are akin to partial assignments in interval-
extendable code. However, it is unclear to which extent the algebraic transformations
often necessary in order to obtain sufficiently narrow result intervals (cf. Sect. 5.1.5) can
be mechanised as well. Also, a programmer may wish to improve either the tightness
or the computational efficiency of an interval extension by taking advantage of mathe-
matical properties of the underlying expression such as monotonicity of which a com-
piler does not know. Therefore, instead of investing significant engineering effort into a
domain-specific compiler which can automate only part of the transformation anyway,
we preferred to provide a lightweight set of tools and rules for interval-aware program-
ming.

Although our library has been written in C++, we emphasise that the proposed
paradigm is not specific to this language. In fact, the handling of logical constraints and
branch assignment with constrain and assign_partial, while consistent and straight-
forward, is still verbose in our implementation; a domain-specific language aware of
set-valued logical predicates and relational constraints could provide more concise syn-
tax and automatically infer and apply constraints, possibly even non-linear constraints,
inside branches.

With the tools presented here, existing numerical routines may be adapted to sup-
port interval-valued arguments. Although our effort was prompted by the need to com-
pute interaction rate bounds for the bucketing scheme introduced in Chapter 4, the
interval-aware programming paradigm may be useful for other purposes. For instance,
interval arithmetic is often used to bound the numerical error necessarily incurred from
finite-precision arithmetic. With the proposed programming paradigm, existing code
may be more easily adapted for support of rounding error analysis.

The practical benefit of error analysis with interval arithmetic is often limited by the
expansive nature of interval–interval products, yielding resulting intervals which are
correct but useless due to being too large. Often, the results are unnecessarily exces-
sive because interval arithmetic cannot account for correlations that may exist between
operands. The desire to track correlations between quantities has led to the development
of refined arithmetic concepts such as affine arithmetic (de Figueiredo and Stolfi, 2004).
The paradigm proposed in this chapter can in principle be applied to such higher-order
refinements of interval arithmetic as well, although we note that arithmetic operations
on intervals and inference of constraints will be much more complicated.

5.8 Conclusion

In this chapter we have discussed the shortcomings of traditional definitions of rela-
tional predicates for IEEE 754 floating-point types, intervals, and valids. Pursuing the
goal of writing interval-aware code, that is, code that can work either with numbers or
with intervals, we have proposed a set-valued definition of relational predicates as a
better alternative, overcoming the logical inconsistencies inherent to Boolean relational
predicates on intervals and allowing for intuitive expression of conditionals with inter-
vals.We have demonstrated that branch conditions composed from relational predicates
can be used to constrain interval arguments inside the branch, and that the inference of
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constraints from a logical predicate can be automated.We have tested the viability of the
proposed ideas by developing a library, intervals, which implements the proposed tech-
niques for traditional interval arithmetic. Additionally, we have augmented an existing
implementation of valids with the proposed set-valued relational predicates and worked
out the corresponding constraint inference logic for valids, showing that the same prin-
ciples can be applied to write valid-aware code, allowing for more accurate constraints
since valids can also represent half-open or open intervals.
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Appendices

5.A The dependency problem

The dependency problem (e.g. Gustafson, 2017a, §16.2f), is a fundamental limitation of
interval arithmetic which is rooted in the fact that correlations or dependencies between
quantities cannot be represented in their bounding intervals, resulting in unnecessarily
loose bounds. The problem becomes apparent already in the simple example first given
in Eqs. (5.13–5.14) of Sect. 5.1.5: as per the Fundamental Theorem of Interval Arithmetic
(IEEEComputer Society, 2015;Hickey et al., 2001), an interval extension of the algebraic
expression

x2 ´ 2x (5.96)

can be obtained as the composition of interval extensions of the constituting operations,

X2 ´ 2X , (5.97)

where X ” rX´, X`s denotes an interval, and where we relied on the definitions of
some elementary interval operations given in Eqs. (5.15–5.18). Inserting the interval
X “ r0, 1s into Eq. (5.97), we obtain

r0, 1s2 ´ 2r0, 1s “ r0, 1s ´ r0, 2s “ r´2, 1s . (5.98)

However, if we first recast the expression in Eq. (5.96) as

px´ 1q2 ´ 1 , (5.99)

then inserting X “ r0, 1s into its syntactic interval extension pX ´ 1q2 ´ 1 yields the
much narrower and, in fact, optimal interval bounds r´1, 0s. The two scalar expressions
of Eqs. (5.96) and (5.99) may be equivalent, but their syntactic interval extensions are
not.

5.B Code dependencies

To avoid redundancy, the #include statements and some other declarations needed
to compile the code were omitted in our listings. Listing 5.13 shows the statements and
declarations that need to be prepended to each of the listings in this chapter.
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1 // C++ Standard Library
2 #include <array>
3 #include <cmath>
4 #include <ranges>
5 #include <cassert>
6 #include <cstddef>
7 #include <concepts>
8 #include <algorithm>
9 namespace ranges = std::ranges;
10 using std::sqrt;
11 using index = std::ptrdiff_t;
12 using dim = std::ptrdiff_t;
13

14 // intervals
15 #include <intervals/set.hpp>
16 #include <intervals/interval.hpp>
17 #include <intervals/algorithm.hpp>
18 using namespace intervals;

Listing 5.13: Common prefix code for all C++ examples which use the
intervals library.
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Combining deterministic and stochastic methods to
simulate dust dynamics in protoplanetary disks 6

Wenn man nur an sich denkt, kann man nicht glauben, daß man Irrtümer
begeht, und kommt also nicht weiter. Darum muß man an jene denken, die
nach einem weiterarbeiten. Nur so verhindert man, daß etwas fertig wird.
Bertolt Brecht, Geschichten vom Herrn Keuner

The preceding chapters have been very technical, straying far from the original goal of
the thesis, which we shall now recall: to study the growth of planetesimals under influ-
ence of a nearby dust-trapping planet, and to investigate under which conditions plan-
etesimals in a dust trap can grow to protoplanetary mass.

In our envisioned dust trap scenario, planetesimals initially abound, and a stochastic
method such as the Representative Particle Monte Carlo (RPMC) method discussed in
Chapter 3 is therefore well-suited for simulating their dynamics. However, to account
for the physical realities of a protoplanetary disk, a simulation must cover more than
just coagulation processes. Collisions may result not only in coagulation but also in cra-
tering, pulverisation, or bouncing. Also, bodies interact not only through collisions but
gravitationally as well. The effects of mutual gravitational deflection of abundant bodies
can be modelled statistically, which blends well with the Monte Carlo method used to
simulate collisions. However, a statistical treatment of gravitational deflections breaks
down as growing planetesimals enter the runaway regime, accumulating all mass in
their gravitational reach and becoming unique objects. Likewise, we know of no statisti-
cal model to describe how a dust-trapping planet affects the kinetics of planetesimals in
its vicinity. For lack of a surrogate model, the dynamics emerging from the gravitational
forces exerted by heavy individual bodies must be simulated with an N-body code.

As explained in Chapter 1, the significance of the dust trap scenario stems from the
fact that, without the presence of a planet or some other irregularity in the radial gas
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profile, bodies approaching centimetre to metre size would rapidly drift inwards, which
would deplete thematerial available for further growth. This drift barrier renders the for-
mation of planetary embryos through continuous growth improbable in protoplanetary
disks with homogeneous density profiles. By locally reversing the pressure gradient of
the gas disk, a dust-trapping planet effectively suspends the drift barrier, allowing bodies
to accumulate in a ring around the local pressure maximum, and thereby establishing
favourable conditions for continued growth. The dust–gas interaction is well-studied,
and analytical or semi-analytical models of the damping of orbital parameters by the
gas disk have been proposed (Adachi et al., 1976; Inaba et al., 2001), which can be im-
plemented as continuous operators.

The RPMC method simulates a series of discrete events. At its core, the method
needs to stochastically choose the interarrival time of the subsequent event based on
the current state of the physical system. This approach is obviously inaccurate if exter-
nal factors may have changed the system by the time the next event arrives. A rough
framework for external operators in a simulation of discrete events has been sketched
in Sect. 4.2.7.

This chapter is structured as follows. We start in Sect. 6.1 by introducing the statis-
tical model of mutual collisional and collisionless encounters devised by Ormel et al.
(2010), which has been referred to as Ormel’s model in Chapter 4. Ormel’s model also
incorporates a simple model of fragmentation. Although the subject of fragmentation
had been briefly touched in Sect. 3.4.4.3, its appropriate treatment requires more effort.
Sect. 6.2 elaborates how fragmentation can be implemented effectively in the extended
RPMC method. Then, in Sect. 6.3 we assemble a comprehensive model of gas-induced
damping for bodies of a wide range of masses, from sub-µm-sized dust grains to planets.
Aiming to form a coherent interaction model of the constituent parts of a protoplane-
tary disk, in Sect. 6.4 we briefly sketch the design of a hybrid simulation method that
combines the statistical models of collisional and collisionless encounters with the gas-
induced damping model and the direct (N-body) approach for simulating the kinetics
of massive individual bodies. We conclude the chapter in Sect. 6.5 by discussing the
remaining challenges in constructing a comprehensive simulation method.

6.1 Ormel’s model

In Sects. 2.3.2–2.3.3 we sketched the foundations of a representative model for simu-
lating particle growth processes during planet formation. In particular, we introduced
a set of very general equations for the evolution of particle masses and rms velocities
(Eqs. (2.74;2.80–2.81)).We explained how thismodel naturally enables a stochastic sim-
ulation of the interaction process, arguing that, even though a Monte Carlo method
might appear to be an approximation of a continuous process, this is not the case as the
interactions modelled are of discrete nature. A collision between representative particle
j and a particle represented by representative particle k is not a gradual process: it either
does or does not occur, and if it occurs, the squared rms eccentricity xe2jy is changed by
the full p∆e2qcolljk , and (assuming a hit-and-stick collision) the mass mj grows by mk.
Likewise, in the dynamical heating model, a close gravitational encounter is a discrete
and not a gradual process. This is significant because certain encounters, such as heavy
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bodies viscously stirring small bodies, lead to a rapid and discontinuous change in par-
ticle properties (we may again consider the gravity assist manoeuvre undertaken by a
space probe as an example), which would render a continuous system of equations ‘stiff’,
and thus challenging to solve with a continuous method.

The decomposition of the contributions to the change rate terms into an interaction
rate and a change (Eqs. (2.75;2.82–2.83)) therefore occurs naturally, and expressions for
the two components can be derived by making certain geometrical assumptions and im-
posing certain symmetries. In this section, we adapt such a geometrical model of the
collision and stirring process fromOrmel et al. (2010), who used it to simulate runaway
growth of protoplanetary bodies. Ormel’s model, as it shall be called henceforth, com-
prises collisional encounters (leading to coagulation or fragmentation), gravitational in-
teractions (modelled as viscous stirring and dynamical friction), gas drag forces, and
turbulent stirring. In the following, we present a slight generalisation of Ormel’s model
and give expressions for interaction rates and change terms.

Ormel’s model is a representative particle model: the trajectories of n representative
particles through their state space, extrapolating the full particle distribution from the
set of representative particles. Throughout this chapter, we use the notation and termi-
nology introduced for the RPMC method in Chapter 3, though we note that Ormel’s
model is not specific to a particular method and can be simulated by other means (as
was done by Ormel et al. (2010) who used a different Monte Carlo method combined
with a quasi-continuous evolution of rms velocities).

In our adaptation of Ormel’s model, a representative particle k has the following
properties: particle mass mk, swarm mass Mk and swarm particle count Nk, which are
related throughMk “ Nkmk; orbital radius rk; planar rms velocity vk and vertical rms
velocity vz,k; and solid density ρk. A swarm of particles k is assumed to be located in a
radial annulus of rrk ´ hx,k, rk ` hx,ks. The scale length is defined to be

hx,k “

$

’

&

’

%

max

"

Rmin,
vk

ΩKprkq

*

for many-particles swarms
vk

ΩKprkq
for few-particles swarms.

(6.1)

The simulation parameterRmin bounds the radial resolution of the statistical simulation;
but since a few-particles swarm contains only one individual self-representing particle,
it is not treated statistically, and no minimal effective scale length needs to be imposed.
Similarly to the scale length, the scale height of swarm k is defined as

hz,k “
vz,k

ΩKprkq
(6.2)

(but see Sect. 6.3.2 and Eq. (6.88) regarding the scale height for dust particles).

For a representative particle j and a swarm k, we refer to the interaction rates for col-
lisions, dynamical friction events, and viscous stirring events as λcolljk , λdfjk, and λvsjk. Inter-
action rates can be computed by imposing very simple geometric assumptions built upon
interaction radii that are specific to the type of interaction considered. Interaction radii
constrain the radial and vertical separations at which two given particles from swarms j
and k can possibly interact. Let us assume that we know the exact positions of particles
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j and k at a given time. Specifically, let the radial and vertical separations of the two
particles be quantified by ∆r and ∆z. Then, the two particles can possibly interact if
and only if Rint,min

r,jk ď ∆r ď Rint
r,jk andR

int,min
z,jk ď ∆z ď Rint

z,jk.

6.1.1 A simple geometrical interaction model

With a representativemethod, we cannot assume that the exact positions of particles are
known. A representative particle may have a known specific position at a given time, but
itmay represent an entire swarmof particles that have similar properties but are situated
elsewhere. For example, a dust particle may represent a spatially homogeneous ring of
dust particles of a givenmass. Therefore, when computing interaction rates λintjk between
swarms, certain assumptions on the spatial distribution of the swarms must be made.
Such assumptions are embodied in a geometricalmodel. A geometricalmodel can be used
to decompose the interaction rate λintjk into a product of a interaction timescale τ intjk and
geometric factors accounting for the overlap of the swarm distributions. The geometric
factors must take into account theminimal andmaximal interaction radiiRint,min

r,jk ,Rint
r,jk,

and Rint,min
z,jk , Rint

z,jk. These geometric factors are referred to as filling factors.

In our framework, the interaction timescale τ intjk is not further specified. A good esti-
mate can often be found using dimensional analysis or by comparison with an existing
local interaction model, as is demonstrated with an example below. In a realistic model,
we may additionally calibrate the interaction timescale with a fiducial N-body simu-
lation, as was done indirectly in Ormel et al. (2010) by comparing with models from
literature.

Regarding the geometrical interaction model which Ormel’s model is built upon, we
first point out that the derivation of the interaction rate as provided by Ormel et al.
(2010) is somewhat incomplete. As indicated by their Fig. 22, the authors appear to
have used a rigorous geometrical model to compute their interaction rates; however,
this model is not formally specified. The semi-formal sketch of its derivation in Ap-
pendix C is misleading, as the interaction model visualised in their Fig. 22 cannot be
derived from the strictly local interaction rate stated in their Eq. (C1). The shortcomings
of the local interaction model that would emerge from this equation are briefly explored
in Appendix 6.A. In this section, we formally construct a proper geometrical model of
non-local interactions equivalent to the geometricalmodel visualised in Fig. 22 ofOrmel
et al. (2010).

A general expression for the non-local interaction rate between any two particles from
swarms j and k can be given as

λjk “

ż

d3xnjpxq

ż

d3x1 nkpx
1qKjkpx

1 ´ xq , (6.3)

where Kjkpx
1 ´ xq, of unit ptime´1q, is the interaction kernel for two particles from

swarms j and k at some distance∆x :“ x1´x. As a simple geometrical approximation,
the number density distribution of a swarm i is modelled as

nipxq ” Njn
p1q
i pxq , (6.4)

n
p1q
i pxq ” r´1i n

p1q
r,i prq ˆ n

p1q
φ,ipφq ˆ n

p1q
z,i pzq , (6.5)
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where the ‘p1q’ superscript indicates a number density distribution for a single particle
of the swarm, and where the radial, azimuthal, and vertical distributions are defined as

n
p1q
r,i prq “

#

p2hx,iq
´1 pri ´ hx,iq ď r ď pri ` hx,iq

0 otherwise,

n
p1q
φ,ipφq “ p2πq

´1 ,

n
p1q
z,i pzq “

#

p2hz,iq
´1 ´hz,i ď z ď hz,i

0 otherwise,
(6.6)

in other words, the swarm is assumed to be distributed homogeneously in a toroidal ring
of central radius ri and with rectangular cross-section 2hx,iˆ2hz,i. We assume that any
azimuthal features that may emerge are smoothed out due to the gravitational coupling
of the particles in the swarm, and can thus be neglected. We further assume that the
interaction kernel can be decomposed into an interaction timescale τjk and independent
radial and vertical components,

Kjkpx
1 ´ xq ”

1

8
pτjkq

´1 κr,jkpr
1 ´ rqκz,jkpz

1 ´ zq , (6.7)

the factor 1
8 being motivated geometrically as will become apparent later on. We define

the dimensionless interaction terms κr,jkp∆rq, κz,jkp∆zq such that particles can interact
only if their vertical and orbital distance lieswithin theminimal andmaximal interaction
radii denoted as Rmin

r,jk, Rr,jk and Rmin
z,jk, Rz,jk:

κr,jkp∆rq ”

$

&

%

´

2 pRr,jk ´R
min
r,jkq

¯´1
Rmin

r,jk ď |∆r| ď Rr,jk

0 otherwise

κz,jkp∆zq ”

$

&

%

´

2 pRz,jk ´R
min
z,jkq

¯´1
Rmin

z,jk ď |∆z| ď Rz,jk

0 otherwise
(6.8)

Inserting these definitions into the non-local interaction rate (Eq. (6.3)), we find that we
can decompose it as a product of the dimensionless radial and vertical filling factors ϕr,jk,
ϕz,jk,

λjk “
1

8
pτjkq

´1NjNk ϕr,jk ϕz,jk , (6.9)

which we define as

ϕr,jk :“

ż 8

0
dr r r´1j n

p1q
r,j prq

ż 8

0
dr1 r1 r´1k n

p1q
r,kpr

1qκr,jkpr
1 ´ rq , (6.10)

ϕz,jk :“

ż

dz n
p1q
z,j pzq

ż

dz1 n
p1q
z,kpz

1qκz,jkpz
1 ´ zq . (6.11)

Let us first evaluate the vertical filling factor ϕz,jk:

ϕz,jk “

ż

db κz,jkpbq

ż

dz n
p1q
z,j pzqn

p1q
z,kpz ` bq

”

ż

db κz,jkpbq ξz,jkpbq

” Ξz,jkpRz,jkq ´ Ξz,jk

`

Rmin
z,jk

˘

` Ξz,jk

`

´Rmin
z,jk

˘

´ Ξz,jkp´Rz,jkq (6.12)
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where we define the vertical distance distribution ξz,jkpbq,

ξz,jkpbq :“

ż

dz n
p1q
z,j pzqn

p1q
z,kpz ` bq , (6.13)

and its antiderivative Ξz,jkpbq, the cumulative vertical distance distribution,

Ξz,jkpbq :“

ż b

´8

db1ξz,jkpb
1q . (6.14)

The vertical distance distribution is antisymmetric under transposition, ξz,jkpbq “ ξz,kjp´bq;
the filling factor ϕz,jk is thus symmetric under transposition because κz,jkp∆zq is an
even function. For notational convenience we therefore impose without loss of gener-
ality that hz,j ď hz,k. In order to evaluate the filling factor, we then integrate ξz,jkpbq
piece-wise:

ξz,jkpbq “
”

p2hz,jqp2hz,kq
ı´1

max
!

0;min thz,j ;hz,k ´ bu ´max t´hz,j ;´hz,k ´ bu
)

“

”

p2hz,jqp2hz,kq
ı´1

ˆ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if b ď b1

b´ b1 if b1 ď b ď b2

2hz,j if b2 ď b ď b3

b4 ´ b if b3 ď b ď b4

0 if b4 ď b ,

(6.15)

Ξz,jkpbq “
”

p2hz,jqp2hz,kq
ı´1

ˆ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if b ď b1
1
2pb´ b1q

2 if b1 ď b ď b2

2hz,j pb´ b2 ` hz,jq if b2 ď b ď b3

p2hz,jqp2hz,kq ´
1
2pb4 ´ bq

2 if b3 ď b ď b4

p2hz,jqp2hz,kq if b4 ď b ,

(6.16)

where we defined b1 ă b2 ď b3 ă b4 as

b1 :“ ´hz,j ´ hz,k ,

b2 :“ hz,j ´ hz,k ,

b3 :“ ´hz,j ` hz,k ,

b4 :“ hz,j ` hz,k . (6.17)

To better understand this result, let us first consider the special case Rmin
z,jk “ 0, Rz,jk !

hz,j , hz,k, where we can approximate

ξz,jkpbq «
”

p2hz,jqp2hz,kq
ı´1

#

min thz,j ;hz,ku ´max t´hz,j ;´hz,ku if |b| ď Rz,jk

0 otherwise

“

#

p2hz,kq
´1 if |b| ď Rz,jk

0 otherwise,
(6.18)

Ξz,jkpbq «

$

’

&

’

%

0 if b ă ´Rz,jk

p2hz,kq
´1pRz,jk ` bq if ´Rz,jk ď b ď Rz,jk

p2hz,kq
´1p2Rz,jkq if Rz,jk ď b ,

(6.19)
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and thus obtain

ϕz,jk «
Rz,jk

hz,k
. (6.20)

Contrariwise, in the special case Rmin
z,jk “ 0, Rz,jk " hz,j , hz,k we find

ϕz,jk “ Ξz,jkpRz,jkq ´ Ξz,jk

`

Rmin
z,jk

˘

` Ξz,jk

`

´Rmin
z,jk

˘

´ Ξz,jkp´Rz,jkq

“ Ξz,jkp8q ´ Ξz,jkp´8q

“ 1 . (6.21)

Both cases are in agreement with the simplified expression

ϕz,jk “ min

"

1,
Rz,jk

hz,k

*

(6.22)

given in Ormel et al. (2010, Appendix C, Eq. (C6)).¹

Evaluating the radial filling factor (Eq. (6.10)) is somewhat more involved. First, we
argue that the annulus width of the swarm distribution can be assumed to be much
smaller than the orbital radii of the particles, hx,j ! rj , hx,k ! rk. The support of the
radial single-particle number density distribution np1qr,j prq is therefore positive-valued,
i.e. r ą 0@r P supp

␣

n
p1q
r,j

(

. Therefore we may arbitrarily extend the lower integral
limits:

ϕr,jk
!
“

ż 8

´8

dr
r

rj
n
p1q
r,j prq

ż 8

´8

dr1
r1

rk
n
p1q
r,kpr

1qκr,jkpr
1 ´ rq (6.23)

Thiswill prove convenientwhen changing variables. Again invoking the narrow-annulus
assumption, we also approximate r{rj « 1, r1{rk « 1:

ϕr,jk «

ż

dr n
p1q
r,j prq

ż

dr1 n
p1q
r,kpr

1qKr,jkpr
1 ´ rq

“

ż

dbKr,jkpbq

ż

dr n
p1q
r,j prqn

p1q
r,kpr ` bq

”

ż

dbKr,jkpbqξr,jkpbq

” Ξr,jkpRr,jkq ´ Ξr,jkpR
min
r,jkq ` Ξr,jkp´R

min
r,jkq ´ Ξr,jkp´Rr,jkq (6.24)

where the radial distance distribution ξr,jkpbq and the cumulative radial distance dis-
tribution Ξr,jkpbq were defined analogously to the vertical distance distributions. Us-
ing the same symmetry argument, we again impose without loss of generality that
hx,j ď hx,k. The piece-wise definitions of the radial distance distributions ξr,jkpbq and
Ξr,jkpbq then read equivalent to the expressions derived for the vertical distance distri-
butions (Eqs. (6.15) and (6.16)) but with b1 ă b2 ď b3 ă b4 defined as

b1 :“ rk ´ rj ´ hx,j ´ hx,k ,

b2 :“ rk ´ rj ` hx,j ´ hx,k ,

b3 :“ rk ´ rj ´ hx,j ` hx,k ,

b4 :“ rk ´ rj ` hx,j ` hx,k . (6.25)

¹Note that said equation reads ‘ϕz “ minpheff{Rz, 1q’ but should in fact read ‘ϕz “ minpRz{heff , 1q’,
as is evident from the paragraph directly preceding it.
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For comparison, we consider the special case Rmin
r,jk “ 0, Rr,jk ! hx,j , hx,k and rj “ rk,

in which we obtain the approximate radial filling factor

ϕr,jk «
Rr,jk

hx,k
, (6.26)

again in agreement with the result given in Ormel et al. (2010), Appendix C.

Although Eq. (6.22) gives a pragmatic approximation for the vertical filling factor
ϕz,jk, the radial filling factor ϕz,jk cannot be approximated in the same manner because
we generally cannot assume that rj “ rk. Therefore, when computing the interaction
rate λjk, the radial filling factor must be evaluated using the full expression in Eq. (6.24)
to correctly account for partial overlap of the volumes occupied by swarms j and k.

We now demonstrate how an estimate for the interaction timescale τjk can be given
by comparing our geometrical model to the usual particle-in-a-box estimate of the local
interaction rate for collisions. To this end, let us assume that the radial and vertical scale
lengths of the two swarms j, k are identical, hx,j “ hx,k ” hr and hz,j “ hzk ” hz , and
that the swarms have the same central orbital radius, rj “ rk ” r. These assumptions
imply that the two swarms occupy the same volume

V “ p2πrqp2hrqp2hzq . (6.27)

If we additionally impose that the minimal interaction radii are 0 and the maximal in-
teraction radii are much smaller than the respective scale lengths, Rmin

r,jj “ 0, Rr,jj !

hr,j , Rmin
z,jj “ 0, and Rz,jj ! hz,j , we can approximate the filling factors according to

Eqs. (6.20) and (6.26), obtaining

λcolljk “
1

8
pτjkq

´1NjNk
Rr,jk

hr

Rz,jk

hz
. (6.28)

This may now be compared with a particle-in-a-box estimate:

λcoll,localjk “ NjNkV
´1σva , (6.29)

where σ “ πRr,jkRz,jk is the geometric interaction cross-section and va is the mutual
approach velocity of the two particles. By imposing λcolljk „ λcoll,localjk we thus find the
interaction timescale to be

τ colljk „

”va
a

ı´1
. (6.30)

We point out that this simple estimate does not consider gravitational focussing. More
realistic estimates are presented in the following section.

6.1.2 Nomenclature

In the following sections, we state the interaction radii and the interaction timescales
for different types of interactions. We start by introducing a number of symbols, mostly
adopting the nomenclature used in Ormel et al. (2010).

Each swarm j of particles is associated with a particle massmj ; a mean orbital radius
rj ; a planar rms velocity vj “ rjxe

2
jy

1{2 and a vertical rms velocity vz,j “ rjxsin
2 ijy

1{2,
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where xe2jy1{2 and xsin2 ijy1{2 are the rms eccentricities and rms inclinations, respec-
tively; a particle bulk density ρj ; and the number of particles in the swarmNj . The Hill
radius and the Hill velocity of a particle are defined to be

Rh,j :“ rj

ˆ

mj

3M˚

˙1{3

, vh,j :“ ΩK,jRh,j , (6.31)

where M˚ is the mass of the central object and ΩK,j “ pGM˚{r
3
j q

1{2 is the average
Keplerian angular velocity of particles in swarm j with the gravitational constantG. The
average solid radius of assumedly spherical particles in swarm j is given as

Rj :“

ˆ

4

3
πρj

˙´1{3

m
1{3
j . (6.32)

When considering interactions between two particles from swarms j and k, we refer
to the smaller and larger masses asm andM , respectively. We also define the velocities
vm, vz,m as the planar and vertical rms ‘velocities of the lighter particle’, though this
applies only asymptotically in the technical definition we adopt:

vm :“ blendpmj ,mk; vj , vkq , (6.33)
vz,m :“ blendpmj ,mk; vz,j , vz,kq , (6.34)

which uses a form of linear interpolation,

blendpa, b;x, yq :“ ra` bs´1 pax` byq . (6.35)

This alternative definition has the advantage that it is commutative, yielding the same
result under transposition of indices ifmj “ mk but vj ‰ vk (and it is better suited for
interval extension which is required for the bucketing scheme). Likewise, the mutual
Hill radius Rh and mutual Hill velocity vh are defined as Hill radius and velocity of the
heavier particle.

In Ormel et al. (2010), the relative planar and vertical rms velocities are approxi-
mated as

w “ max tvj ; vku , wz “ max tvz,j ; vz,ku . (6.36)

In our generalised model, we also want to take particle drift velocities into account. In
the presence of a gas disk, particles are subject to a systematic radial and azimuthal drift
induced by the gas drag forces. The drift velocities of a particle depend on its Stokes num-
ber; for interactions between different particle species, a systematic difference between
drift velocities must therefore also be taken into account. We therefore approximate the
planar impact velocity as

w :“
b

max
␣

v2j ; v
2
k

(

` pvr,j ´ vr,kq
2
` pvφ,j ´ vφ,kq

2 . (6.37)

An equation for the drift velocity u in a sheared rotating coordinate system was given
in Eq. (2.60); we further discuss its general solution in Sect. 6.3.1. At the origin of the
sheared rotating coordinate system, x “ 0, the radial and azimuthal drift velocities vr,
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vφ relate to u as vr “ ux and vφ “ vK ` uy. The contribution of the settling speed to
the vertical impact velocity wz is neglected in this model.

The escape velocity for a particle in swarm j is

v2esc,j :“
2Gmj

Rj
. (6.38)

With the combined bulk radius of two particles

Rs :“ Rj `Rk , (6.39)

the mutual escape velocity of two particles is

v2esc :“
2Gpmj `mkq

Rs
(6.40)

and can be approximated as

v2esc « max
␣

v2esc,j ; v
2
esc,k

(

(6.41)

where we emphasise that the approximation is not only asymptotically correct but also
exact for the important special casemj “ mk, Rj “ Rk.

We also define the abbreviations

hx,max :“ max thx,j ;hx,ku , hz,max :“ max thz,j ;hz,ku . (6.42)

6.1.3 Viscous stirring

In the case of viscous stirring, we distinguish between the superescape regime (vesc ď w),
the dispersion-dominated (d.d.) regime (2.5 vh ď w ď vesc), and the shear-dominated
(s.d.) regime (w ď 2.5 vh). No stirring takes place in the superescape regime. For the
other regimes, the interaction radii are defined to be

Rvs,min
r,jk “ 0 , (6.43)

Rvs
r,jk “

#

Rvs,0 in s.d. regime, or in d.d. regime for Rvs,0 ă w{ΩK

Rvs,d in d.d. regime for Rvs,0 ě w{ΩK ,
(6.44)

Rvs,min
z,jk “ 0 , (6.45)

Rz,jk “ Rvs,0 , (6.46)

where

Rvs,0 :“

$

’

&

’

%

Rs
v2esc
vmw

in d.d. regime

2.5Rh in s.d. regime,

Rvs,d :“ Rh

c

6vh
vm

. (6.47)
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In to Ormel et al. (2010), Appendix B.2.3, the change in velocity due to viscous stir-
ring is given as

`

∆v2
˘

jk
:“

ˆ

mj

mj `mk

˙2

p∆vvs,0q2 (6.48)

where

∆vvs,0 :“

#

vm in d.d. regime
2.5vh in s.d. regime.

(6.49)

By comparison with Ormel et al. (2010) (B24)², we infer an interaction timescale of

τvsjk “

„

2hz,max

a
ΩK log Λ

ȷ´1

(6.50)

with a ‘Coulomb factor’ Λ “ expp1q ` hx,max{Rr,jk. We also take the changes in rms
eccentricities and rms inclinations to be

ˆ

p∆e2qvsjk
p∆sin2 iqvsjk

˙

“

ˆ

fvspβq
fvsz pβq

˙ˆ

mj

mj `mk

˙2

pvvsq2 , (6.51)

where β “ vz,j{vj , and where the calibration factors fvspβq, fvsz pβq are given by
ˆ

fvspβq
fvsz pβq

˙

«
8

π2

ˆ

IvsP pβq
IvsQ pβq

˙

in d.d. regime (6.52)
ˆ

fvspβq
fvsz pβq

˙

«

ˆ

3.0
1.1phz,max{R

vsq2

˙

in s.d. regime (6.53)

using functions IvsP pβq, IvsQ pβq defined in Ohtsuki et al. (2002) and approximated by
Ormel et al. (2010) as

IvsP pβq « 2.439´ 8.242 expp´3.396βq , (6.54)
IvsQ pβq « ´0.459` 3.807 expp´2.931βq . (6.55)

6.1.4 Dynamical friction

With regard to dynamical friction, the same distinction between the superescape regime
(vesc ď w), the dispersion-dominated (d.d.) regime (2.5 vh ď w ď vesc), and the shear-
dominated (s.d.) regime (w ď 2.5 vh) is made. Dynamical friction also does not operate
in the superescape regime. For the other regimes, the interaction radii are defined to be

Rdf,min
r,jk “ 0 , Rr,jk “ Rdf,0 (6.56)

Rdf,min
z,jk “ 0 , Rz,jk “ Rdf,0 , (6.57)

where

Rdf,0 :“

$

’

&

’

%

Rs
v2esc
w2

in d.d. regime

2.5Rh in s.d. regime,
(6.58)

²Note that Ormel et al. (2010), Eq. (B24) is missing a factor of ΩK.
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and where the interaction timescale τdfjk is given by

´

τdfjk

¯´1
“
va
a
, (6.59)

that is, no calibration factors are applied. The approach velocity va is given by

va “

#

2hx,maxΩK in d.d. regime
3.2vh in s.d. regime.

(6.60)

Following Ormel et al. (2010), (B12a,b), we take dynamical friction to be an elas-
tic collision and, by averaging over head-on and tail-on collisions, obtain the average
velocity changes

∆pv2M q
df “ ´

4m

pM `mq2

´

Mv2M ´mv2m

¯

∆pv2mq
df “

4M

pM `mq2

´

Mv2M ´mv2m

¯

, (6.61)

which amount to a change in rms eccentricities and rms inclinations as

ˆ

p∆e2qdfjk
p∆sin2 iqdfjk

˙

“
4mk

pmj `mkq
2

«

´mj

˜ A

e2j

E

@

sin2 ij
D

¸

`mk

ˆ @

e2k
D

@

sin2 ik
D

˙

ff

. (6.62)

6.1.5 Collisions

The dynamics of collision are slightly different depending on the velocity regime. We
distinguish between the superescape regime, vesc ď w; the dispersion-dominated regime,
2.5 vh ď w ď vesc; and the Hill regime, w ď vh.³

By comparing with Ormel et al. (2010), (B4), we find an interaction timescale τvsjk to
be given by

`

τvsjk
˘´1

“

$

’

’

&

’

’

%

2hz,max

a
ΩK, in superescape or d.d. regime

fhit
3.2vh
a

, in Hill regime,
(6.63)

where the probability that a projectile that has entered the Hill sphere of the target ac-
tually collides with it is approximated by

fhit « A3 ˆ
bcol
Rh

ˆmin

"

1;
bcol
hz,max

*

, (6.64)

bcol :“ Rs
vesc
2.5vh

«
a

RsRh (6.65)

³It is unclear from Ormel et al. (2010) whether the omission of the range vh ď w ď 2.5vh is inten-
tional.
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as suggested in Ormel et al. (2010), Eq. (B9).A3 « 2.9 is the 3-body calibration factor.⁴
The interaction radii for collisions are

Rcoll,min
r,jk “

#

0 in superescape or d.d. regime
1.7Rh in s.d. regime,

(6.66)

Rcoll
r,jk “ Rcoll , (6.67)

Rcoll,min
z,jk “ 0 , (6.68)

Rcoll
z,jk “ Rcoll , (6.69)

where

Rcoll “

$

’

&

’

%

Rs

c

A1 `A2
v2esc
w2

in superescape or d.d. regime

2.5Rh in Hill regime
(6.70)

with the calibration factors A1 “ 0.90, A2 “ 1.5. Unlike Ormel et al. (2010), we follow
the prescription in Greenzweig and Lissauer (1992, Eq. (17)) and use the gravitational
focussing factor (Eq. (6.70)) instead of explicitly distinguishing between the superescape
regime and the dispersion-dominated regime.

If the collision leads to coagulation, we infer from local conservation of momentum
that the new velocity of the coagulated particle will be

v1j “
mjvj `mkvk

mj `mk
, (6.71)

and hence obtain a change of rms eccentricities and rms inclinations

ˆ

p∆e2qvsjk
p∆sin2 iqvsjk

˙

“
mk

pmj `mkq
2

«

´p2mj `mkq

˜ A

e2j

E

@

sin2 ij
D

¸

`mk

ˆ @

e2k
D

@

sin2 ik
D

˙

ff

,

(6.72)

equivalent to the velocity change for inelastic collisions given in Ormel et al. (2010,
Eqs. (B14a,b)).⁵

In a realistic collisionmodel, not all colliding bodies will hit and stick. Depending on
the impact velocity, the porosity, and themasses of the two bodies, partial fragmentation,
or cratering, is a likely outcome. Unlike for coagulation, we cannot simply infer the
velocities of the fragments because only the total momentum is conserved. Lacking a
more sophisticated model for the distribution of fragment velocities, we therefore make
the simplest possible assumption that the rms velocities of all the bodies resulting from
a collision matches the updated rms velocities as per Eqs. (6.72).

⁴Note that, in Ormel et al. (2010), the calibration factorA3 erroneously appears in both Eqs. (B8) and
(B9), whereas it presumably should appear only in Eq. (B9).

⁵Note that Eq. (B14b) of Ormel et al. (2010) mentions v when it supposedly means to refer to vm.
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6.1.6 Differences from the original model

In this section we have formally introduced Ormel’s geometrical interaction model for
stochastic collision, viscous stirring, and dynamical friction processes. Notably, we de-
viate from the model of Ormel et al. (2010) and its implementation in a few regards.

First, we simulate viscous stirring and dynamical friction events as Monte Carlo
events, which has become feasible thanks to the increased efficiency of the bucketing
scheme. However, as mentioned in Sect. 4.6.3.2, the mutual changes in rms velocities
inflicted by the close encounter of two particles are oftenminuscule, we use the boosting
technique not only for collisions but also for viscous stirring and dynamical friction.

Another notable discrepancy is that we do not set up a grid of ‘zones’, which is how
the radial resolution limit is implemented in Ormel et al. (2010) (where the zone width
∆a corresponds to Rmin in our formalism). Instead, we have modified the definition of
the scale length in Eq. (6.1) to enforce the resolution limits, but only for stochastic par-
ticles, not for self-representing bodies. The multi-zone setup of Ormel et al. (2010) not
only introduces a resolution limit but presumably also helps in speeding up the interac-
tion rate updating for the representative bodies. For the bucketing scheme, a comparable
computational advantage is attained bymeans of sub-bucketing as discussed in Sect. 4.5.
Although radial sub-bucketing bears some similarities to radial zones, it is a detail of the
computational scheme and thus, unlike themulti-zone approach, is imperceptible by the
physical model being simulated.

We also differ in our definition of the planar impact velocity in Eq. (6.37), which
takes into account systematic velocity differences caused by different drift speeds, and
we also adopt a different definition of the ‘velocities of the lighter particle’ vm and vz,m
(Eqs. (6.33–6.34)). We do not know if our reconstruction of the geometric filling factors
in Sect. 6.1.1 are exactly equivalent to the geometric filling factors used by Ormel et al.
(2010) because the authors have not provided an exact definition.More slight discrepan-
cies may exist, but we believe that our adaptation is otherwise very close to the original
model.

6.2 Fragmentation and the RPMCmethod

The treatment of fragmentation in the RPMCmethod was first discussed in Sect. 3.4.4.3,
where a rudimentary approach for including a fragmentation model had been proposed.
Citing Bukhari Syed et al. (2017), we had argued that the mass of the largest remain-
ing fragment continuously decreases with increasing energy of the kinetic impact. This
relation blends well with the simple collision model of Ormel et al. (2010), which was
previously referenced in Sect. 4.6.3.1 of Chapter 4. In Ormel’s model, a certain fraction
ffrag of the combined mass of the colliding particles is converted to fragments, which
are assumed to be of uniform sizeRfrag for the sake of simplicity. Because the fragment
size is usually assumed small enough to be effectively gas-bound bymeans of very short
stopping times, rms velocities are irrelevant for fragments. The fraction ffrag is a func-
tion of the mass of the colliding bodies j and k and of the impact velocity va,

ffrag “
ϵEcol

1
2 pmj `mkq v2esc

, (6.73)
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with the kinetic energy of the impact given by

Ecol “
1

2

mjmk

mj `mk
v2a . (6.74)

The effective coefficient of restitution ϵ is a free parameter that can be chosen to account
for the inelastic collision characteristics of loosely bound (‘rubble pile’) material.

Being agnostic to the individual characteristics of the sampled particles, the origi-
nal RPMC method with its equal-weight sampling adapts well to collision processes
that include fragmentation. In accordance with the ‘atomistic’ picture, the properties of
the representative particle are chosen anew from the weighted distribution of particle
properties after every collision (Eq. (3.30)). Combining boosting with a fragmentation
model is possible as well, and the procedure suggested in Sect. 3.4.4.3 may serve as an
approximation. However, there are two intricacies worthy of further consideration.

Firstly, a fragmentation model comprising a fractional loss of mass, as embodied by
Eq. (6.73), is not fully done justice with the simple linear mass transfer model repre-
sented by Eqs. (3.58,3.59). With this model, the resulting mass of the largest cohesive
body after β collisions would be

mco “ p1´ βffragqmj ` p1´ ffragqβ mk , (6.75)

where we abbreviated the boost factor as β ” βjk. In other words, the combined mass
of the β impactors is added at once before the fraction of fragmented mass is subtracted
from it. This, however, neglects the ‘compound interest’ effect: according to the colli-
sion model, fragments are produced at every impact, and thus the contribution of the
impactors to the total mass of fragments must scale approximately quadratically with β.

The second difficulty is more severe and pertains the generalisation of the RPMC
method developed in Chapter 3. Interactions in the few-particles regime may involve
individually resolved bodies; if a part of their mass is converted to fragments, we would
expect to retain them as individual bodies. But the mass of the fragments must also be
represented to ensure that overall mass is conserved. At the same time, adding a rep-
resentative particle to the simulation every time a collision produces fragments would
cause the number of representative particles n to grow excessively as soon there is the
slightest chance of fragmentation.

To address both problems, in this section we outline a more systematic means of
incorporating a fragmentation model in a RPMC simulation.

6.2.1 Boosted fragmentation

For a slightly more general fragmentation model, let us assume that, given two particles
j, k undergoing a collision, we can compute the total mass fraction ffrag that is converted
to fragments, while the remainder of the combined mass pmj ` mkq remains in one
cohesive body. ffrag is assumed to be relatively insensitive to small changes to the mass
mj , implying that it can be assumed constant throughout a series of collision events
grouped together for the purpose of boosting. We impose no particular distribution of
mass fragments ncolljk pqq.
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Let a representative particle j now undergo a sequence of collision events with par-
ticles from swarm k. Let pmpnqj qn denote the ensuing sequence of masses of the cohesive
body, with mp0qj ” mj being the initial mass. Our fragmentation model then implies
the iterative relation

m
pn`1q
j “ fco

´

m
pnq
j `mk

¯

, (6.76)

where fco :“ p1 ´ ffragq is the total mass fraction remaining in one cohesive body in
each collision. The iterative relation can be collapsed to a non-iterative expressionmpβqj

by using a geometric series,

mco :“ m
pβq
j “ pfcoq

βmj ` fco
pfcoq

β ´ 1

fco ´ 1
mk . (6.77)

In the context of boosting, we can always assume that ffrag ! 1 because, if the total
mass fraction converted to fragments in a single collision was significant, no boosting
would be needed in the first place, and above mass relation would not be exercised be-
yond β “ 1. But if ffrag ! 1, fco will be numerically ill-conditioned when using a con-
ventional floating-point representation. To illustrate, let ffrag ” Aˆ 2B be represented
with a normalisedmantissaA, 12 ă A ď 1, and an exponentB in a base-2 floating-point
format. Representing fco in the same normalised manner, fco ” C ˆ 2D, we find that
C “ p1 ´ A ˆ 2Bq and D “ 0 because fco „ 1. Therefore, the entire dynamic range
captured by the exponent of ffrag must be accommodated in the mantissa of fco. If B is
too small, the subtraction inC “ p1´Aˆ2Bqwill underflow, yieldingC “ 1. As a con-
sequence, Eq. (6.77) is not numerically viable.We therefore approximate the expression
with a series expansion to first order in ffrag:

mco « p1´ β ffragqmj `

ˆ

1´
β ` 1

2
ffrag

˙

β mk , (6.78)

finding a significant difference from Eq. (6.75).

6.2.2 Fragmentation and the boost factor

The initial estimate for the boost factor was given in Sect. 3.4.4, Eq. (3.46) as

β0 :“ qm
mj

mk
(6.79)

and later refined for fragmentation in Eq. (3.57). Regarding this refined estimatewe point
out that, in the case of bouncing,mco “ mj , the transferred mass δm is 0, rendering the
estimate ill-defined. To avoid this problem, we instead propose that the boost factor be
chosen such that the total mass transferred from swarm k to representative particle j
does not exceed the mass accumulation threshold, βmk À qmmj . The original estimate
(Eqs. (3.46) and (6.79)) therefore remains a suitable estimate even when considering
fragmentation. However, for the first-order approximation in Eq. (6.78) to remain suffi-
ciently accurate, we additionally want to ensure that β ffrag À qm, and we thus impose
the constraint

β ď
qm
ffrag

. (6.80)
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In Sect. 3.4.4.2, we had introduced constraints (Eqs. (3.48) and (3.50)) for the boost
factor β designed to favour an outcomewhere the swarm particle countmade a precision
landing onN 1j “ Nth if admitted by the other constraints. This was intended to ease the
splitting up of swarms into individual self-representing particles at the particle regime
thresholdNth. However, these constraints are detrimental for outcomes other than hit-
and-stick collisions. First, they are not easy to adapt to our generalised fragmentation
model. Eqs. (3.48) and (3.50) were derived by inverting the functionmcopβq for β, which
worked reasonably well without fragmentation where mcopβq “ mj ` βmk. However,
even with the first-order approximation of Eq. (6.78), the dependence of mcopβq on β
is quadratic, and its inverse would again need to be approximated to avoid subsequent
numerical issues. For simplicity, we therefore abandon the two constraints for particles
that undergo partial fragmentation, allowing an average relative deviation from the in-
dividual particle mass by a factor of qm{2 upon swarm split-up.

6.2.3 Fragmentation in the few-particles regime

Although fragmentation naturally fits in the framework of the original RPMC method,
it is unclear how to proceed if partial fragmentation occurs in the few-particles regime,
that is, in an interaction between a few-particles swarm and a many-particles swarm
or in an interaction between two few-particles swarms, both entailing transfer of mass
between swarms. Our choice is determined by three requirements: the total mass shall
always be conserved; the part of individually represented bodies that is not converted
to fragments shall remain represented individually; and the number of representative
particles shall not grow excessively.

As far as coagulation was concerned, the extended RPMC method had been for-
mulated such that, even though it was designed to split up swarms when their particle
count dropped belowNth, it could still operate correctly without the split-up if the indi-
vidual representation of bodies in few-particle swarms was not deemed necessary. For
runaway growth, individual representation is necessary, but this may not be the case
for other applications; as an example, the few-particles regime of the RPMC method
without the splitting bears some similarity to the super-droplet method of Shima et al.
(2009) originally developed for atmospheric cloud microphysics. However, in our treat-
ment of coagulation and fragmentation, allowing few-particles swarms k with Nk ą 1,
besides being unfavourable for any physical scenario with runaway growth character-
istics, would make it difficult to avoid adding new representative particles in collisions
between few-particles swarms. Therefore, in the following treatment we impose that
swarms k whose swarm particle count falls below Nth be always split up into Nth in-
dividual self-representing particles. For a few-particles swarm k, we can thus assume
Nk “ 1 henceforth.

In an interaction between a representative particle j with Nj ą Nth with a many-
particles swarm k, only the properties of representative particle j can change. Therefore,
if the collision between particle j with a particle from swarm k happens to produce frag-
ments, the newmass of representative particle j will be sampled from the fragmentmass
distribution as per Eq. (3.30).
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Let us now consider the interaction of two self-representing particles j and k. In this
case, no boosting occurs, β “ 1, and hence Eq. (6.78) degenerates to

mco “ p1´ ffragq pmj `mkq . (6.81)

Representative particle j will represent the combined mass. If ffrag “ 0, the two par-
ticles coagulate fully; in this case, representative particle k may be removed from the
simulation. If ffrag ą 0, the new mass of representative particle k will be sampled from
the weighted distribution of fragment masses. Because fragments tend to be light, the
number of particles in the new swarm N 1k will probably be larger than Nth, rendering
swarm k amany-particles swarm.Only in the unlikely event thatN 1k ď Nth does swarm
k need to be split up into individual self-representing particles.

Next, we consider the interaction of a self-representing particle j with a particle from
many-particles swarm k. The interaction produces a cohesive body of mass mco and a
total mass of fragments

Mfrag “ mj ` βmk ´mco , (6.82)

leaving behind a swarm of particles of massmk with a total mass of

Mrem “Mk ´ βmk . (6.83)

Here, representative particle j is chosen to represent the cohesive mass mco. A new
representative particle k is then sampled from the totality of the pNk ´ βq old swarm
particles and the distribution of fragments. The probability that k keeps representing
the remains of the original swarm are

P “
Mrem

Mrem `Mfrag
. (6.84)

The procedure laid out here has proven adequate for simulating collision processes
that exhibit partial fragmentation. A test run with Ormel’s model with and without par-
tial fragmentation has been conducted in Sect. 4.6.3.3, both running with comparable
efficiency (cf. Fig. 4.15).

6.3 Gas drag model

Particles in a protoplanetary disk are subject to gas drag forces that depend on their gas-
relative velocity. In the simple axisymmetric gas model introduced in Chapter 1, the gas
is assumed to orbit the star with a tangential velocity that differs from the velocity of
an undisturbed test body on a circular orbit. The gas drag force alters the orbital po-
sitions, the (rms) eccentricities, and the (rms) inclinations of representative particles,
with particularly dramatic effect for pebble-sized objects as discussed in Sect. 2.2.7. In
this section, we describe how the gas drag force can be taken into account for particles
of different masses.
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6.3.1 Estimating the Stokes number

For a given object on a circular orbit with semimajor axis a and Stokes number St, an ex-
pression for the gas-relative velocity in a co-rotating frame was given in Eq. (2.61). This
is sufficient if the drag timescale, represented by the Stokes number St, does not depend
on the drift velocity, as would be the case in the Epstein regime. However, if the particle
operates in one of the Stokes regimes, the drag timescale depends on the frame-relative
gas velocity vgas, and Eq. (2.60) becomes a non-linear system of equations with no ob-
vious analytical solution. This difficulty was first acknowledged in Sect. 4 of Weiden-
schilling (1977a), who applied some algebraic transformations, established a quadratic
relation between ux and uy, and then proposed a method to solve the transformed set
of equations numerically. However, we found it much simpler to interpret Eq. (2.61) as
a prescription of an iterative method,

Stp0q :“ 1 ,

upn`1q :“
1

1`
`

Stpnq
˘2

ˆ

1 2 Stpnq

´1
2 St

pnq 1

˙

vgas ,

Stpn`1q :“ St
´

ˇ

ˇvgas ´ upn`1q
ˇ

ˇ

¯

, (6.85)

where Stp∆vq denotes the Stokes number of a particle with gas-relative velocity ∆v
as per Eqs. (2.51–2.55). Although we did not attempt to prove the convergence of this
method formally, it was found to converge to sufficient accuracy within three or four
iterations for all parameter combinations relevant to our purpose. We use this method
to estimate the Stokes numbers of the particles in the simulation, neglecting eccentricity
and inclination for this purpose.

6.3.2 Gas drag regimes

To account for gas drag, particles simulated with N-body calculations may be directly
subjected to the gas drag force Fdrag defined in Sect. 2.2.6. However, for orbits with
moderate eccentricities and inclinations it would also be sufficient to impose equilib-
rium conditions and to impose the damping relations of Inaba et al. (2001) which were
introduced in Sect. 2.2.7. These damping relations are also applicable for representative
particles for which only rms eccentricity and rms inclination are tracked. However, the
differential equation in Eq. (2.63) is not applicable for St ! 1, as can be seen by com-
puting the limit for StÑ 0. Noting that the damping process of (rms) eccentricities and
(rms) inclinations can be quantified by damping timescales,

te :“ e

ˇ

ˇ

ˇ

ˇ

de

dt

ˇ

ˇ

ˇ

ˇ

´1

, txe2y :“ xe
2y

ˇ

ˇ

ˇ

ˇ

dxe2y

dt

ˇ

ˇ

ˇ

ˇ

´1

, (6.86)

ti :“ sin i

ˇ

ˇ

ˇ

ˇ

d sin i

dt

ˇ

ˇ

ˇ

ˇ

´1

, txi2y :“ xsin
2 iy

ˇ

ˇ

ˇ

ˇ

dxsin2 iy

dt

ˇ

ˇ

ˇ

ˇ

´1

, (6.87)

we argue that, when studying secular disk dynamics, quantities damped on timescales
shorter than the timescale of an orbital revolution can be neglected. By equating above
damping timescales with Ω´1K , we thus find that (rms) eccentricities and (rms) incli-
nations are negligible for bodies with St À 1. Therefore, for bodies with St À 1, we
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explicitly force e Ð 0 and i Ð 0, or xe2y Ð 0 and xsin2 iy Ð 0, respectively. With-
out eccentricity and inclination, the radial drift of the body may be simulated with the
simpler relation of Eq. (2.62) that, unlike Eq. (2.63), is applicable for all values of St.

Turbulent stirring, governed by Eq. (2.69), is a consequence of gas density fluctua-
tions and operates at all mass scales. Mathematically, this stirring relation effectuates
non-zero rms eccentricities for all bodies, which seems to be in conflict with our prag-
matic choice of forcing xe2y Ð 0. It can be argued that secular orbital parameters such
as eccentricity and inclination become meaningless for particles with stopping times
shorter than their orbital period. Nevertheless, turbulent stirring remains a relevant in-
fluence for light particles with short stopping times. But rather than generating an (rms)
eccentricity, it leads to a radial and vertical ‘spread’ in the distribution of dust particles.
The damping induced by gas drag counteracts the turbulent stirring and effectuates a
vertical settling of particles. By equating the timescales for the settling and stirring pro-
cesses, Birnstiel et al. (2010) derived the dust scale height

hd “ Hp ¨min

#

1,

c

α

min tSt, 1{2u ¨
`

1` St2
˘

+

. (6.88)

For particles with St À 1, the scale height hz is thus determined by the dust scale height
hd, not by the relation given in Eq. (6.2).

6.4 A hybrid of deterministic and stochastic models

In many gravitational N-body codes, a particle may operate in one of two modes. An
active particle exerts gravitational force on all other particles, whereas a passive particle
does not. Passive particles ‘feel’ the gravitational pull of active particles, but they do
not themselves pull other particles, effectively operating as massless test particles. A
passive particle also does not participate in collisions. Although kinetically equivalent
to a massless particle as far as the N-body calculations are concerned, a passive particle
need not be massless as long as its gravitational influence is accounted for by means
other than direct N-body calculations. Because only active particles exert gravitational
forces through the N-body code, an implementation may choose to manage active and
passive particles separately, thus allowing for a more efficient implementation. Ideally,
the computational cost per N-body timestep then scales with n ¨ nactive, where n is the
total number of N-body (active and passive) particles in the simulation, and nactive is
the number of active particles.

This distinction between active and passive particles naturally enables the embed-
ding of a stochastic representative particle method. In such a design, the representative
particle of a many-particles swarm also participates in the N-body simulation as a pas-
sive particle, while individual self-representing bodies in the stochastic simulation are
identified with active N-body particles. Thereby, all particles can undergo radial redis-
tribution through gravitational scattering, and gap opening by protoplanets can be mod-
elled correctly. Any gravitational encounters and collisions with the swarms of (passive)
representative particles are mediated by stochastic means, using geometrical surrogate
models such as Ormel’s model of collisions, viscous stirring and dynamical friction pre-
sented in Sect. 6.1. Assuming that only a small number of oligarchs emerge from run-
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effectuating gas dust pebble planetesimal embryo planet
Stj À α Stj „ 1 Stj " 1 …

affected … Nj " 1 Nj “ 1 …
gas gas model gap model
dust coupled
pebble drift
planetesimal drift + viscous stirring &
embryo damping; dynamical friction

N-body

planet turbulence

Table 6.1: Overview of kinetic interactions between different constituents
of the protoplanetary disk.
A static axisymmetric gas model was proposed in Sect. 2.2 and augmented
with a simple planetary gap model in Sect. 2.2.5. ‘Drift’ refers to the radial
drift according to the simple model in Eq. (2.62), whereas ‘drift + damp-
ing’ designates the combined drift and damping model in Eqs. (2.63–2.67).
‘Turbulence’ refers to the turbulent stirring model in Eq. (2.69). ‘N-body’
implies that the corresponding interactions are mediated through direct N-
body forces. Viscous stirring and dynamical friction as per Ormel’s model
are described in Sect. 6.1.

effectuating gas dust pebble planetesimal embryo planet
Stj À α Stj „ 1 Stj " 1 …

affected … Nj " 1 Nj “ 1 …
gas
dust
pebble SI; stochastic
planetesimal stochastic
embryo
planet

N-body

Table 6.2: Overview of collisional and mass-accreting interactions between
different constituents of the protoplanetary disk.
‘SI’ refers to an effective model for generating planetesimals from gravita-
tional collapse as mentioned in Sect. 6.4. Stochastic collisions are handled
by Ormel’s model described in Sect. 6.1.

away growth, nactive ! n, the computational cost of the N-body calculations thus re-
mains manageable even if the tail end of the mass distribution is highly resolved.

Ormel’s model of dynamical heating only comprises the exchange of kinetic and
potential energy during close encounters and thus neglects larger-scale gravitational ef-
fects, that is, dust self-gravity. With the average dust-to-gas ratio being „ 1 : 100, we
would expect the long-range gravitational influence of dust to be dwarfed by the grav-
ity exerted by the gas, which would have to be considered by a more sophisticated gas
model. However, the local density of dust may be much higher under planet-forming
conditions and specifically in dust traps, and may contribute to the formation of plan-
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etesimals through gravitational collapse (Johansen et al., 2007), which would be very
expensive to simulate. Instead, an effective model for planetesimal formation as pro-
posed by Drążkowska and Dullemond (2014); Drążkowska et al. (2016) could be used,
similar to what has been done by Lau et al. (2022). Such a model would continuously
convert dust and pebbles to planetesimals if a density threshold is exceeded.

In Tables 6.1 and 6.2 we give a visual overview of the interactions between gas and
various types of solids in a protoplanetary disk according to the proposed hybrid simu-
lation method. The tables show quite clearly that several types of interactions are com-
pletely neglected. Specifically, dust is assumed to couple to the gas, and its contribution
to gravitational deflections of other solid particles is ignored. The proposed model also
ignores how the gas disk density is affected gravitationally by solid bodies, with the
exception of planets whose influence is represented in the axisymmetric planetary gap
model. Despite not participating in dynamical heating processes, dust particles can be
accreted by other solid particles, and thereby contribute directly and indirectly to pro-
toplanetary growth. In Ormel’s model, there is no mutual coagulation of dust grains;
but even though the role of dust coagulation may be less relevant at the stage where
planetesimals abound, an end-to-end model of planet formation has to start with dust
and hence needs to simulate the dust evolution as well. The evolution of dust is often
simulated with grid-based methods (e.g. Birnstiel et al., 2010; Stammler and Birnstiel,
2022). Monte Carlo methods have been used as well to model dust growth (Zsom et al.,
2010, 2011b; Krijt et al., 2015), but their scalability is constrained by their high computa-
tional cost. We believe that the bucketing scheme renders Monte Carlo methods a more
competitive choice for implementing dust coagulation models.

6.5 Summary

This chapter documents our effort to assemble a holistic simulation for the purpose
of studying growth processes in protoplanetary dust traps. To this end, the extended
RPMC method has been used to simulate collision and dynamical heating interactions
stochastically as per Ormel’s model, which was elaborated in Sect. 6.1. The extended
RPMC method had only rudimentary provisions for collision outcomes other than ‘hit-
and-stick’ coagulation; this was rectified in Sect. 6.2, where a viable representation of
fragmentation models for the extended RPMC method was developed. Ormel’s model
and the refined fragmentation model have been used to test the bucketing scheme with
a ‘realistic’ scenario in Sect. 4.6.3. In a sense, Sects. 6.1 and 6.2 thus are physical sup-
plements to the technical Chapter 4, providing the comprehensive details required for
reproducing our results.

Going beyond the representative statistical simulation, Sect. 6.3 introduces an ex-
ternal operator representing a simple gas disk model with provisions for planet-induced
pressure bumps. Sect. 6.4 then discusses how a representative particle simulation can
be combined with an N-body simulation, which is crucial for correctly reproducing the
orbital dynamics of individual bodies, such as planets or planetary embryos, and for
simulating radial scattering and redistribution which are not accounted for by the ge-
ometrical interaction models used for the stochastic representative particle simulation.
Although we have built a prototype implementation of such a hybrid stochastic and de-
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terministic simulation, this effort is incomplete, and several challenges still have to be
addressed before our code can be used effectively. Here we briefly discuss some of these
challenges.

As discussed in Sect. 4.7.2, the bucketing scheme, like any computational scheme,
would greatly benefit from a parallel implementation. The bucketing scheme mainly
comprises two types of computation: updating the bucket–bucket interaction rate bounds,
and sampling interaction events. The former is easily parallelised, but we found an effi-
cient parallelisation of the latter very difficult to achieve. As proposed in Sect. 4.7.2.1, the
rejection sampling processmight be parallelised by sampling not only the next event but
the next P events concurrently, with P P N` being the degree of parallelism. Because
sampling potential events is relatively cheap, we also have to compute the likelihood of
rejection concurrently in order to benefit from parallelisation. However, this is not triv-
ial because events ultimately have to be simulated in order. An interaction event might
alter the properties of the interacting entities, which may cause their interaction rates
to change. As a consequence, the likelihood of rejection of future events may change
as well. Rejection likelihoods already computed for future events may then have to be
discarded, which would render our parallel scheme inefficient. At first glance, this prob-
lem may seem negligible because we observed relatively low rates of event acceptance
in realistic simulations („1%, cf. Fig. 4.16); a rejected potential event cannot alter entity
properties, and if „ 99% of potential events ended up being rejected, one would expect
that future event samplings rarely need to be discarded. However, this picture changes if
we augment the stochastic representative particle simulation with an external operator,
such as the gas drag forces discussed in Sect. 6.3, and with an N-body code, as proposed
in Sect. 6.4. A continuous external operator inflicts continuous changes upon all par-
ticles affected by it; regardless of the average rate of acceptance, a projection of future
event rejection likelihoods is difficult if external operators can modify particle proper-
ties at any time. Despite these difficulties, we believe that the sampling process can
still be parallelised effectively even in the presence of external operators since the alter-
ation of particle properties does not strictly necessitate the re-evaluation of all projected
future potential events involving the particle. Because particle properties will usually
undergo small changes, the likelihood of acceptance will often be similar. The overlap
between the old and the new acceptance likelihood can be quantified, allowing to retain
many event samplings, discarding only some of them while interspersing them with
additional potential events. We have begun to explore this strategy with a prototype
implementation, noting however that its completion must be left to future work.
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Appendix

6.A Local and non-local interactions

In Eq. (C1) of Ormel et al. (2010, Appendix C), the general interaction rate between any
two particles from swarms j and k is given as

λjk “

ż

d3xnjpxqnkpxqσpxqva , (6.89)

wherenipxq is the number density distribution of the particles in swarm i, σpxq “ πRxRz

is the interaction cross-section composed of the geometric interaction radii Rx and Rz ,
and va is the approach velocity. The interaction rate is then decomposed into filling fac-
tors:

λjk “
πvaNjNk

4p2πaq
ϕxϕz , (6.90)

ϕx :“

ż

db P pbqP̄intpbq , (6.91)

ϕz :“

ż

dz
2Rz

p2hjqp2hkq
, (6.92)

where the refined version of the filling factor we give in Eq. (6.91) was ‘reverse-engi-
neered’ from Fig. 22 of Ormel et al. (2010). Nj is the number of particles in swarm j,
a is the orbital radius of interaction (presumably an average between the orbital radii
of representative particles j and k), and hj “ rjpxsin

2 i2jyq
1{2 is the scale height. The

distance distribution P pbq is given in Ormel et al. (2010, Eq. (C7)) as

P pbq “

ż

dxPjpxqPkpx` bq (6.93)

where Pjpxq is the normalised radial particle density distribution of swarm j. The char-
acteristic function P̄intpbq used in Eq. (6.91) determines whether two particles at radial
distance b can interact; it can be defined as

P̄intpbq “

#

1 if Rmin
int ď |b| ď Rint

0 otherwise,
(6.94)

thus formally stating that two particles can interact if their orbital distance is not smaller
than Rmin

int and not greater than Rint. With the simple geometric assumption that the
orbital radii of particles in swarm j are distributed homogeneously in an interval of
orbital radii r P rrj ´ hx,j , rj ` hx,js, the radial particle density distribution can then be
expressed in terms of a characteristic function,

Pjpxq :“

„
ż

dx1P̄jpr
1q

ȷ´1

P̄jprq

“ p2hx,jq
´1P̄jprq , (6.95)
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where the characteristic function is given as

P̄jpxq “

#

1 if |x´ rj | ď hx,j

0 otherwise.
(6.96)

Particles interact through gravitation, slightly or severely bending their respective
trajectories, or by collision. Gravitational interaction is non-local, that is, particles can
exert gravitational force onto each other despite having a non-negligible distance; and
even collisions, which are necessarily local, require consideration of the non-local gravi-
tational focussing effect (e.g. Armitage, 2017, §III.B.1). However, Eq. (6.89) only defines
a local interaction rate. This implies the assumption that

a

|σ| ! V 1{3, or equivalently,
that Rx ! hx and Rz ! hz , that is, the interaction lengths are assumed to be smaller
than the extents of the population volume by orders of magnitude. These assumptions
clearly do not hold for massive runaway bodies whose gravitational reach may greatly
exceed their scale length hx “ re and their scale height hz “ r sin i. Despite starting
their considerations with a local interaction rate, Ormel et al. (2010) do not actually
assume locality; they take precautions to allow for Rx „ hx and Rz „ hz specifically,
and their decomposition of the interaction rate, which we reproduced in Eq. (6.90), is
consistent even for non-local interactions. We note, however, that Eq. (6.90) cannot be
derived from the local definition of the interaction rate in Eq. (6.89), thus suspecting
that the authors have in fact worked with a non-local definition of the interaction rate
but have refrained from elaborating on it in their publication.
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Summary 7

Bill Watterson, Calvin and Hobbes, September 26, 1990 (Andrews McMeel Syndication)

This work was motivated by the desire to study protoplanetary growth processes in
planet-induced dust traps, a scenario that is challenging to simulate. Although gravita-
tional interactions among lighter bodies such as planetesimals can be adequately mod-
elled with statistical means, they may also undergo gravitational scattering by planets
or runaway bodies and should therefore be subject to N-body calculations as well. How-
ever, due to the great number of planetesimals needed to form a planet, individual repre-
sentation is impractical. At the same time, the eponymous dust component of the solid
material in a dust trap, which is aerodynamically coupled to the gas disk, needs to be
considered as it may significantly contribute to the growth of planetesimals.

Grid-basedmethods,which have proven successful for the simulation of dust growth,
are inadequate for runaway growth processes, and particle-based simulation methods
that allow for a natural transition from representative to individual bodies would there-
fore be preferable. However, the representative particle methods developed thus far
faced several challenges, such as the necessity tomaintain a balance of sampling weights
in the methods of Ormel and Spaans (2008) and Shima et al. (2009), or an effective up-
per bound to the mass of individual representative particles in the RPMC method of
Zsom and Dullemond (2008). Another impediment to the adoption of particle-based
stochastic methods is their high computational cost.
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In Chapter 3, a stochastic simulation method has been developed which, though be-
ing generally applicable to representative particle simulations, is adequate specifically
for the simulation of runaway particle growth as may occur in a dust trap. To this end,
the RPMC method of Zsom and Dullemond (2008) has been extended such that un-
restricted growth is possible, and the method can now correctly handle individual par-
ticles such as runaway bodies that emerge from a representatively sampled system of
abundant particles. Besides conducting the usual numerical tests, we have proven the
statistical correctness of the RPMC method by analytical means for a generalised two-
component test case, hoping to dispel remaining doubts with regard to the soundness
of the method.

A novel computational scheme for stochastic interactions among representative par-
ticles has then been devised in Chapter 4. By using a dynamically updated grouping of
‘buckets’ together with a hybrid sampling scheme, the proposed computational scheme
has been demonstrated to have linear or better scaling characteristics with regard to
the sampling resolution, which is a substantial improvement over the quadratic scaling
characteristics of the traditional computational scheme.

In order to use the bucketing scheme, a routine for computing upper bounds to the
interaction rates between groups of particles is required. Though near-trivial for sim-
ple test kernels, the manual implementation of such a routine for realistic interaction
kernels would be tedious and error-prone. In Chapter 5 we have therefore developed
a generic programming paradigm for interval arithmetic that enables a programmer to
implement a numerical routine in such a way that it may be used either as a direct com-
putation or as a bounds estimation routine.

We have put our method and computational scheme to the test by adopting the
interval-aware programming paradigm in our implementation of the interaction rate
routines of a spatially resolved statistical model for the evolution of planetesimals. The
detailed interaction model, taken from Ormel et al. (2010), has been described in Chap-
ter 6, along with a proposed design for a hybrid deterministic and stochastic simulation
that combines the extended RPMC method with an N-body code.

7.1 Discussion and outlook

Although our work wasmotivated by astrophysical research interests, this thesis resides
within the domain of computer science and engineering, and its contributions to the field
of astrophysics aremethodical in nature. As a representative particle-basedmethodwith
support for the emergence of individual self-representing particles, the RPMC method
lends itself to being complemented with an N-body code. Also, with the increased effi-
ciency of the bucketing scheme, the RPMC method may be a compelling alternative to
grid-based methods such as DustPy (Stammler and Birnstiel, 2022) for simulating the
growth of dust particles that precedes the formation of planetesimals. Even though the
construction of such a hybrid of deterministic and stochastic particle-basedmethods and
the study of possible emergence of planets in dust traps must be left to future work, we
believe that this thesis makes a tangible contribution towards such a hybrid simulation
method.
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Another implementation of a hybrid code has been put forth with LIPAD (Levison
et al., 2012), which is a hybrid particle-based stochastic and deterministic code that bears
many similarities to our vision of a hybrid simulationmethod. Unfortunately, the source
code of LIPAD has not been made public, so our insights into the inner workings or the
computational demands of LIPAD are limited. However, we surmise that our refine-
ment of the RPMC method with regard to the ‘regime transition’ from representative
to individual particles may be beneficial for LIPAD, which suffers from slight accuracy
issues with regard to the onset of runaway growth (cf. Levison et al., 2012, Fig. 7); and
the bucketing scheme may be generally useful in simulating the stochastic interactions
much more efficiently, allowing for a higher overall resolution.

Regardless of our extension, the RPMC method retains the general disadvantage
of particle-based methods that it is inefficient under stiff equilibrium conditions where
different processes cancel each other. As remarked in Sect. 3.7.1, the ‘regime transition’
characteristic of our extended method may rather aggravate the problem, leading to an
explosion in the number of representative particles and thereby dramatically increasing
the computational cost. For simulating steady-state systems, a grid-based method may
thus be more appropriate. Although we found no evidence of an exploding number of
representative particles in our own simulation of a protoplanetary growth model with
fragmentation, it would be reasonable to obviate the problem by further amending the
RPMC method with a merging prescription for similar representative particles as done
by, for instance, Krijt et al. (2015, §3.4).

Interval arithmetic has rarely been employed to speed up rejection sampling. One
such attempt was ventured by Sainudiin and York (2009), who combined a rejection
sampling scheme with a sampling estimator built upon interval arithmetic. The authors
point out that the interval bounds obtained for the target shape function needs to be
tight, and the dimension of the parameter space needs to be low, for their scheme to be
efficient. As illustrated by Fig. 4.16, our independently developed method similarly suf-
fers from low acceptance rates (of order „1%) when used with complicated interaction
rate functions defined on a high-dimensional property space, requiring a highly resolved
grid of buckets and significant constructive effort in crafting an efficiently interval-aware
interaction rate function to even get this far. However, even with its low sampling ef-
ficiency, the bucketing scheme was found to be a substantial improvement over the
traditional sampling scheme, owed mostly to the reduced costs of the interaction rate
updating.

Among the technical advancements conceivable for the bucketing scheme, a paral-
lel implementation strategy is the most striking one. Modern computers use massively
parallel designs, and hence parallel execution is paramount for efficiency. Although we
believe that the bucketing scheme leaves ample opportunities for parallelisation, design-
ing an economical concurrent rejection sampling scheme is not a trivial endeavour.

The bucketing scheme was devised for the purpose of implementing the extended
RPMC method more efficiently, but we emphasise that it generally applies to the simu-
lation of compound Poisson point processes, and it may also find use as an alternative to
adaptive rejection sampling techniques. Likewise, even though the paradigm of interval-
aware programming was developed for easier application of the bucketing scheme, we
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believe that it can be more generally useful, for instance in applying arithmetic error
analysis to existing numerical routines.

7.2 Conclusion

With the extended RPMC method and the bucketing scheme presented in this work, a
representative particle method is now available that can simulate interaction processes
spanning a high dynamic range of masses while retaining a balance of sampling weights.
With considerable but not prohibitive effort, numerical routines for computing particle
interaction rates can be made interval-aware, thus allowing the use of the bucketing
scheme whose computational demands scale linearly, as opposed to quadratically, with
the number of representative particles.

The extended RPMC method is particularly suited for the simulation of runaway
growth processes in protoplanetary disks. With the efficiency of the bucketing scheme,
very high resolution can be achieved, and the simulation of highly interactive processes
such as the dynamical heating of planetesimals with a Monte Carlo method becomes
affordable. We believe that the extended RPMC method is well-suited for being com-
bined with an N-body simulation, and that the ensuing hybrid simulation will be useful
for studying the growth dynamics in a planet-induced dust trap, retaining high resolu-
tion at moderate cost while correctly describing gap opening and radial redistribution of
particles through close gravitational encounters.
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List of Acronyms 8

ALMA Atacama Large Millimeter/submillimeter Array . . . . . . . . . . . . . 2

IEEE Institute of Electrical and Electronics Engineers

MMSN MinimumMass Solar Nebula . . . . . . . . . . . . . . . . . . . . . . . 2

NaN not a number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

NaR not a real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

rms root mean square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

RP Representative Particle

RPMC Representative Particle Monte Carlo . . . . . . . . . . . . . . . . . . . . 6
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