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ABSTRACT

Astronomy is as old as mankind. Its progress and evolution in history has been paral-
lel to the very process of human development. The advent of modern physical sciences
caused an exponential progress in astronomy and, by extension, astrophysics, which has
seen amazing development over the twentieth century, and especially in the first decades
of the newmillennium. In this work we firmly set one foot in astrophysics and the other
in scientific visualization, while we develop and use the latter to respond to scientific re-
search questions posed by the former. This thesis has been interdisciplinary since its very
inception. It bases on scientific visualization and computer graphics and aims at provid-
ing and developing methods and techniques particularly designed to help analyze and
understand astrophysical systems and processes. It is composed of two distinct parts:
In the first part of this thesis, we borrow from the field of vector field topology, classi-

cally concerned with the non-inertial dynamics of static and time-dependent flows, and
develop and extend it to enable the study of force-induced, inertial systems, like those gov-
erning most of our universe. We then focus on the various time dimensions ingrained in
vector field topology, and introduce a framework for its analysis and exploration based on
novel derived aggregation fields that capture various properties of the underlying system,
and present them in digestible representations in order to aid in the interpretation and
analysis of the time domain. Finally, we address the very underlying structures that define
complex dynamical systems, and provide a quantitative approach for their extraction and
subsequent analysis.
The second part of this thesis concerns itself with the exploration and representation

of very-large astrometric and astrophysical datasets. In this part, we base on computer
graphics and visualization, and develop a technique to efficiently and interactively navi-
gate through catalogs of billions of objects, introduce amethod to effectively use floating-
point arithmetic in the representation of the known universe without suffering from
precision loss, propose a novel logarithmic function to enable limited-resolution depth
buffers to function for astronomically large scenes, and present an integrated visualiza-
tion of relativistic effects, including relativistic aberration due to the observer’s motion
and gravitational waves.
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ZUSAMMENFASSUNG

Die Astronomie ist so alt wie die Menschheit. Ihr Fortschritt und ihre Entwicklung
in der Geschichte verliefen parallel zum Prozess der menschlichen Entwicklung selbst.
Das Aufkommen der modernen physikalischen Wissenschaften führte zu einem expo-
nentiellen Fortschritt in der Astronomie und damit auch in der Astrophysik, die sich
im Laufe des zwanzigsten Jahrhundert und insbesondere in den ersten Jahrzehnten des
neuen Jahrtausends eine erstaunliche Entwicklung genommen hat. In dieser Arbeit
setzen wir einen Fuß in die Astrophysik und den anderen in die wissenschaftliche Vi-
sualisierung, während wir letztere entwickeln und nutzen, um auf wissenschaftliche
Forschungsfragen zu antworten, die von ersterer aufgeworfen werden. Diese Arbeit ist
von Anfang an interdisziplinär angelegt. Sie basiert auf wissenschaftlicher Visualisierung
und Computergrafik und zielt darauf ab, Methoden und Techniken bereitzustellen und
zu entwickeln, die speziell dazu dienen, astrophysikalische Systeme und Prozesse zu
analysieren und zu verstehen. Sie besteht aus zwei verschiedenen Teilen:

Im ersten Teil dieser Arbeit nehmen wir Anleihen aus dem Bereich der Vektor-
feldtopologie, die sich klassischerweise mit der nichtinertialen Dynamik statischer und
zeitabhängiger Strömungen befasst, und entwickeln und erweitern sie, um die Unter-
suchung kräfteinduzierter, inertialer Systeme zu ermöglichen, wie sie den größten Teil
unseresUniversums bestimmen. Anschließend konzentrierenwir uns auf die verschiede-
nen Zeitdimensionen, die in der Vektorfeldtopologie enthalten sind, und führen einen
Rahmen für ihre Analyse und Erforschung ein, der auf neuartigen abgeleiteten Aggrega-
tionsfeldern Aggregationsfelder, die verschiedene Eigenschaften des zugrundeliegenden
Systems erfassen und sie in verdaulichenDarstellungen, umdie Interpretation undAnal-
yse des Zeitbereichs zu erleichtern. Schließlich werden wir befassen wir uns mit den zu-
grundeliegenden Strukturen, die komplexe dynamische Systeme definieren, und bieten
einen quantitativen Ansatz für deren Extraktion und Analyse.

Der zweite Teil dieser Arbeit befasst sich mit der Erforschung und Visualisierung sehr
großer astrometrischer und astrophysikalischer Datensätze. In diesem Teil stützen wir
uns auf Computergrafik und Visualisierung und entwickeln eine Technik zur effizien-
ten und interaktiven Navigation durch Kataloge mit Milliarden von Objekten, stellen
eine Methode zur effektiven Nutzung der Fließkommaarithmetik bei der Darstellung
des bekannten Universums ohne Präzisionsverlust vor, führen eine neuartige logarith-
mische Funktion ein, um die Nutzung des Tiefenpuffers mit begrenzter Auflösung für
astronomisch große Szenen zu ermöglichen, und präsentieren eine integrierte Visual-
isierung relativistischer Effekte, einschließlich relativistischer Aberration aufgrund von
Beobachterbewegungen und Gravitationswellen.
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Computer science is nomore about computers than

astronomy is about telescopes.

—Edsger W. Dijkstra

1 Introduction

A
stronomy is arguably the oldest of all the natural sciences, with its origins in
calendrical, cosmological, mythological and religious practices and beliefs. The
constant presence of celestial lights in the night sky has been a fundamental

and pivotal factor in the development of important human activities such as science and
technology across history. Humans have wondered about the celestial spectacle and have
tried to decipher its mechanics for as long as there has been a human race. Hundreds
of thousands of years ago, ancient human beings looked at the skies and saw a plethora
of bodies of different sizes and colors moving around in puzzling, albeit consistent and
understandable patterns. The cosmic backdrop back then was not much different from
what we can see today, if only a little bit less polluted by light, but the interpretations
and explanations of the phenomena have changed fundamentally, initially driven by raw
unaided observation and superstition, and now by the methodical and tireless process of
scientific inquiry and discovery.

Some seven thousand years ago, a group of nomads living in the current location of
the Nubian desert in Egypt became the first known humans to record the motion of the
stars using a stone circle to mark the advent of the summer solstice. They were but the
first ofmanymore. For thousands of years, societies all over the world have been building
massive stone calendars and aligning themwith the Sun and the stars tomark the passage
of seasons. The locations and monuments are so numerous that an entire field of study,
Archaeoastronomy, is devoted to the study of the role that astronomy has had in society
and culture across history, and how humans have understood the phenomena in the sky
and developed science and technology around it.

Indue time,Astronomywoulddevelop inparts ofChina, India, Egypt, Europe,Amer-
ica, and theMiddleEast, rendering the acquiredprofoundknowledgeof the stars essential
to the development of early agricultural societies. As time went by, civilizations all over
the planet nurtured and developed the astronomical discipline, often times in an isolated

1



1 Introduction

manner, becoming increasingly dependent on it. They would accurately record the po-
sitions of stars and other celestial bodies with respect to time, name them, and group
them into constellations. Thousands of years would need to pass until such rigorous and
methodical observations were applied to other fields like physics or biology.

Visual aids and representations have played a significant role in the development of
astronomy during its history. The early rock-circle calendars can actually be understood
as proto-visualization devices. These include the alignments of stones that indicate the
rising of certain celestial bodies, or the calendar circles that point in the direction of the
sunrise in the summer solstice.

Nowadays visualization is everywhere. It is, almost by definition, an inter-disciplinary
enterprise used to help analyze and understandmany phenomena in amultitude of fields.
Today, we understand that stars are not small lights positioned on a celestial dome above
us moving around in two-dimensional patterns, but physical objects subject to the same
laws and processes that are under effect here on the surface of Earth. We understand that
the movement of stars, galaxies, and even the fate of the universe itself is predominantly
determined by one of the four fundamental forces of nature, the force of gravity.

This thesis is concerned with the topic of developing effective methods to help un-
derstand and analyze astrophysical processes and systems. The chaotic motion present
in gravitational systems can be analyzed and understood with well-established topology-
based flow visualization techniques. Such techniques typically deal with massless parti-
cles, leaving systems like most of those found in astronomy out. Currently, this is a fla-
grant gap in the visualization literature that we aim to mend. Additionally, astronomical
systems have a strong dependence on the time dimension, not only in terms of when they
happen, but also for how long do they last. Current flow visualization methods are typ-
ically ad-hoc in this respect, providing little support to visualize the time components.
We also address this in the present work. Finally, direct visualizations of astronomical
concepts such as star fields are becoming more andmore relevant as new data from space
missions such as Gaia become available. In these exciting times, Gaia crafts the largest
multi-dimensional star catalog ever known to man, with star numbers in the billions.
Representing, visualizing and interactively exploring such a dataset in an accurate and
realistic manner is no trivial task, especially if we are to take into account not only the
two- or three-dimensional positions of stars, but also their brightnesses, colors, and even
motions across the sky.

Therefore, the first part of this thesis is dedicated to developing a visualization frame-
work suitable for studying and analyzing inertial systems using established topology-
based flow visualization techniques, and providing a toolset for analyzing the time com-
ponent in such systems. The second part of this thesis is concerned with the realistic

2



1.1 Structure of this thesis

representation and interactive exploration of very large astrometric star catalogs like the
ones curated by the Gaia mission with its successive data releases.

1.1 Structure of this thesis

This thesis is logically structured into two distinct parts, wrapped between an introduc-
tion and a closure or conclusion. The introduction chapter, which you are reading right
now, proceeds with a listing of the contributions of this thesis.
The first part comprises Chapters 2–5, and develops a methodology to apply classical

topology and flow visualization techniques to the astrophysical world.

• Chapter 2 contains an introduction to the field of flow visualization, includ-
ing steady and unsteady flows, vector fields, vector field topology, dynamical sys-
tems, Lagrangian coherent structures (LCS) and the finite-time Lyapunov expo-
nent (FTLE).

• Chapter 3 builds upon the classical topology-based flow visualization field and de-
velops amethod to extend the traditional FTLE formulation to the inertial dynam-
ics most commonly found in astrophysical systems.

• Chapter 4 establishes a visual analysis framework to aid in the studyof the temporal
dimensions of dynamical systems by developing a set of aggregation functions in a
novel aggregation space.

• Chapter 5 presents an attempt to quantify, formalize and understand the many
parameters involved in the extraction process of the features known as Lagrangian
coherent structures, which separate regions with distinct dynamics. LCS are key
to the successful use of topology to understand and analyze dynamical systems.

The second part contains Chapters 6 and 7, and presents large-scale astrometric and
astrophysical representation and visualization techniques in the broader context of the
Gaia mission and its data releases.

• Chapter 6 provides an introduction to computer graphics, rendering and acceler-
ation strategies like culling and level-of-detail structures.

• Chapter 7 introduces Gaia Sky, a project that enables the interactive visualization
of the largest star map ever created, containing close to two billion objects and
provided by the Gaia data releases.

Finally, the conclusion chapter wraps everything up, provides a summary of the main
contributions and a discussion, and ponders about the possible future work.

3



1 Introduction

In this thesis, important terms are typeset in italics when they are first introduced.
They are then described and cross-referenced in the index, at the end of the document.
Acronyms are also defined when they are first introduced. A list of acronyms with their
meanings is also provided at the end.

1.2 Contributions

Research on the field of vector field topology is well-established and ongoing. The main
aim of this thesis is the development of methods to provide a better understanding of
astrophysical processes and systems, and to enable the interactive exploration of large as-
trometric catalogs. Themain contributions of this work are outlined and summarized in
the following paragraphs:

Topology of Inertial Dynamics (Chapter 3, [Sag+17]). Traditional vector field
topology ismainly concernedwith the dynamics ofmassless particles andhas a close focus
on velocity. This approach leaves out the inertial, force-induced dynamics that dominate
large parts of the universe. Therefore, we present a method that adapts traditional vector
field visualization to inertial dynamics bymeans of a decomposition of the FTLE into the
phase-space contributions of position spread and velocity spread, introduce novel tech-
niques to aid in the visualization and interpretation of the resulting high-dimensional
space, and develop a full framework to aid in the analysis of such complex systems.

Visual Analysis of the FTLE (Chapter 4, [SJS20]). The above approach deals
with a constrained adaptation of FTLE to the inertial case, but it omits the analysis of
the various time dimensions in a global, integrated way. Thus, we introduce a method
that enables the detailed analysis and exploration of dynamical systems with respect to
their initial and transport times. We do so by presenting a set of aggregation functions
that measure and capture essential properties of the system and present them in a visual
way. These aggregation functions include basic statistical properties, height ridge quan-
tities, aliasing information and a measure of domain connectedness.

Robust Extraction of LCS (Chapter 5). LCSvisualization is an essential part of vec-
tor field topology, as it constraints and separates the domain into regionswith distinct dy-
namics, providing insight. Typically, LCS are extracted by means of height ridges in the
FTLE, but this method is often unreliable and requires of much tweaking to produce
satisfactory results. Therefore, in order to complement the previous works, we present a
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method to the extraction of LCS with quantitative guarantees, aimed at simplifying the
process of determining these structures in a dynamical system.

Gaia Sky (Chapter 7, [Sag+19]). While the previous contributions have offered
novel methods and techniques with the aim of enabling the analysis and the extraction
of concealed information in astrophysical systems, in this last part we adopt amore direct
approach. Here, we look at the direct representation and interactive exploration of very
large astrometric and astrophysical datasets, presenting a system capable of representing
billions of objects reliably and interactively. To that effect, we introduce a new level-of-
detail structure tailored to stars, and we present approaches to eliminate floating-point
issues derived from the representation of astronomically large scenes and to improve the
default sampling scheme of the depth buffer. Wewrap it up by introducing an integrated
representation of relativistic aberration and gravitational waves.

1.3 Notation

Allmathematical symbols and equations in this document are introducedwhen they first
appear. Relevant concepts are introduced and typeset in italics the first time they appear,
and are cross-referenced to the rest of the document in the Index section at the end. All
acronyms are also introduced when they first appear. The Acronyms section, at the end
of the document, contains a list of all acronyms with their meaning.

1.4 Publications

Some parts of this thesis are based on the following peer-reviewed papers previously
published in scientific journals:

A. Sagristà, S. Jordan, A. Just, F.Dias, L. G.Nonato, and F. Sadlo. “Topological Analy-

sis of Inertial Dynamics”. IEEETransactions onVisualization andComputer Graphics 23:1, 2017,

pp. 950–959

A. Sagristà, S. Jordan, T.Müller, and F. Sadlo. “Gaia Sky: Navigating the Gaia Catalog”.

IEEE Transactions on Visualization and Computer Graphics 25:1, 2019, pp. 1070–1079

A. Sagristà, S. Jordan, and F. Sadlo. “Visual Analysis of the Finite-Time Lyapunov Expo-

nent”. Computer Graphics Forum 39:3, 2020, pp. 331–342
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National boundaries are not evident when we

view the Earth from space. Fanatical ethnic or re-

ligious or national chauvinisms are a little diffi-

cult to maintain when we see our planet as a frag-

ile blue crescent fading to become an inconspicuous

point of light against the bastion of the stars.

—Carl Sagan

2 Flow Visualization Fundamentals

F
low visualization is the discipline of analyzing vector field data by means of vi-
sual presentation, exploration, and analysis. It attempts to make flow patterns
visible with the aim of visually acquiring quantitative and qualitative informa-

tion on the underlying properties of the field.

In this chapter, we provide the basic notions necessary to follow the rest of the first
part of this thesis. We start with an overview on flow visualization and vector fields in Sec-
tions 2.1–2.4, and later cover in detail feature-based visualization methods, with steady
and unsteady vector field topology in Section 2.5.

2.1 Vector Fields

Vector fields and their analysis are essential for many fields of science and engineering.
They give rise to families of transformations of space called flows, and are typically used
to represent the velocities of moving fluids or the evolution of forces in space. Vector
fields can be pictured as a collection of arrows, each with its own direction and magni-
tude, embedded in space. We can distinguish two types of vector fields: time-independent

vector fields, also referred to as steady flows, and time-dependent vector fields, also referred
to as unsteady flows.

A vector field is a mapping f : Rn 7→ R
m that assigns each point x = (x1, . . . ,xn)

⊤ of
a domain Ω ⊆ R

n a vector in R
m. Here, we focus on the case where both the space and

the vectors are in Ω, i.e., they have the same dimensionality (n = m). Therefore, we can
define a vector field as

u(x) = u(x1, . . . ,xn) : Ω → Ω. (2.1)
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2 Flow Visualization Fundamentals

We can make it explicit and assign a vector u = ui = (u1, . . . ,un)
⊤ to each position x,

u(x) =







u1(x1, . . . ,xn)
...

un(x1, . . . ,xn)






. (2.2)

Steady flows are usually represented by instantaneous, time-independent vector fields.
They are also called static vector fields. When all the time derivatives of a flowfield vanish,
then, the flow field is considered a steady flow.

An unsteady flow, on the other hand, does change over time, and thus is represented
by a mapping that assigns a vector to each point of the domain and to each time. This
kind of flow is usually given as a time-dependent vector field,

u(x, t) = u(x1, . . . ,xn, t) : Ω×T → Ω. (2.3)

In mathematics, vector fields and differential equations may be considered two faces
of the same thing. Specifically, time-independent vector fields are the same thing as au-
tonomous ordinary differential equations (ODE), which do not explicitly depend on
time. The location of amassless particle x(τ), seeded in a steady flow at x(t0) = x0 and
observed after a certain integration time τ is the solution of the autonomous ODE

ẋ(τ) = u(x(τ)). (2.4)

By contrast, the location of that same particle in an unsteady flow is given by

ẋ(t) = u(x(t), t), (2.5)

which, together with an initial condition x(t0) = x0, becomes an initial value prob-

lem (IVP) whose solution is the integral curve

x(t) = x0 +
∫ t

t0

u(x(τ),τ)dτ. (2.6)

As we will see shortly, this curve is called trajectory or pathline, and describes the path of
a massless particle released in the vector field at position x0 and time t0.
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2.2 Flow VisualizationMethods

2.1.1 Flow Map

Wecanuse the concept of pathline to introduce theflowmap, represented byφφφ T
t0
(x). The

flow map represents the location of particles seeded at position x and time t0 after their
integration in the vector field u over an advection time T . In other words, it is a mapping
from the seed positions x of particles released at time t0 to their final positions at the end
of their respective pathlines after advection for time T . The flowmap is defined as:

φφφ T
t0
(x) = x+

∫ t0+T

t0

x(τ) dτ. (2.7)

2.2 Flow Visualization Methods

There are essentially three different types of flow visualizationmethod families. They are
direct methods, geometry-based methods and feature-based methods. They are outlined
below and developed further in the forthcoming sections.

Direct methods. Direct methods (Section 2.3) are characterized by the representa-
tion of a set of primitives that directly encode properties and features of the underlying
field. Glyph and quiver plots (Figure 2.1) are examples of this. They tend to suffer from
occlusion problems, especially with three and higher dimensions.

Geometry-based methods. Geometry-basedmethods represent the flow using geo-
metric primitives such as lines and surfaces. Integral curves (Section 2.4) are a prominent
example of geometry-based methods.

Feature-based methods. These are based on the identification of prominent or con-
spicuous parts or characteristics of the field. Among the most prominent feature-based
methods in flow visualization are the so-called topology-based methods (Section 2.5).
These methods are based on the determination of the topological features of the field,
which describe the flowwith respect to an ensemble of locations and areas with coherent
behavior. The subsequent chapters in this first part are mostly concerned with topology-
based methods.

2.3 Direct Visualization

Vector fields can be visualized using direct techniques like glyphs, which are markers
used to visually represent pieces of data, where the characteristics of a graphical entity
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2 Flow Visualization Fundamentals

directly encode attributes of the data record. In glyph-based visualization, the dataset is
typically presented as a collection of glyphs. Glyphs are a ubiquitous visualization tool
found in a large variety of applications. They are intuitive, easy to implement, and con-
vey relatively little uncertainty compared to other techniques. Sometimes also referred
to as icons, glyphs are geometric primitives that can be used to visualize different data
quantities by a set of visual properties including their size, color, shape, orientation, etc.
The widespread consensus for a long time was that just knowing the basic properties of
glyph-based visualization would be enough for its successful application and usage, but
it has been shown that only well-designed glyphs are actually useful [CM84]. An effec-
tive glyph visualization should choose and combine different visual properties. General
guidelines for successful glyph visualization have been proposed by Ward [War08] and
Lie et al. [LKH09]. In the domain of flow visualization, vector fields can be represented
with quiver plots (also known as hedgehog plots), where the vectors are expressed as glyph
arrows located at their positions in the field, encoding orientation and magnitude. Fig-
ure 2.1 provides an example of a glyph-based visualization for a simple vector field and
different quantities represented by different glyph properties. Even though the produc-
tion and interpretation of these visualizations is straightforward, for our purposes, quiver
plots tend to be unpractical and cumbersome, and provide little insight into the dynam-
ics of the flow, especially in 3D and higher dimensional domains. Some of their issues
are:

1. They require animation to represent time dependency.
2. It is often unclear whether the arrows represent vector values at their start, middle

or endpoint. This needs to be specified as additional context.
3. Arrow length can represent the vectormagnitude, but scaling is usually unsatisfac-

tory. Too large scaling results in occlusion, too small scaling hides direction, and
using a fixed length omits vector magnitude information.

2.4 Integral Curves

Direct methods are straightforward to produce and interpret, but are limited in applica-
tion. An alternative common approach is the use of integral geometry, which is based on
the trajectories of the particles themselves. The integration of such massless particles in
vector fields leads to different types of curves, which are globally referred to as integral
curves, or field lines. When the values of a vector field are interpreted as velocity, four
types of curves are defined, namely streamlines, pathlines, streaklines, and timelines.
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x

y

(a)

x

y

(b)

x

y

(c)

Figure 2.1: Example of an unsteady flow represented by arrow glyphs with different properties.
In (a) the direction of the vector field at each location is represented by the orientation of the
glyphs, and the magnitude is mapped to the length of the arrows. In this representation color is
not used. In (b) the direction of the vectors in the field is also represented by the orientation and
their magnitude is color-mapped. In this representation all arrows have the same length, leading
to a cluttered visualization. Finally, (c) represents directionwith the orientation andmagnitude is
mapped to both arrow length and color. In general, glyph representations like these have several
additional problems like being able to only represent an isolated time snapshot or the difficulty of
choosing the right scaling, which correctly balances occlusion and direction representation.

2.4.1 Streamlines

Streamlines (Figure 2.3a) represent contours of the field, showing the motion of the
whole field at one instant of time. In time-dependent vector fields, instantaneous stream-
lines for a fixed time T are defined as

uT (x) = u(x,T ). (2.8)

Streamlines are then the solution to the corresponding integral curve

x(t) = x0 +
∫ t

t0

u(x(τ),T )dτ. (2.9)

Streamlines are always tangent to the vectors of the field, and show the direction in
which non-inertial particles will travel when released at any position and point in time.
They represent the whole motion of the field at a single time snapshot, so they would
still need animations to represent the time component. They are extracted in unsteady
flows by integrating a particle trajectory at a constant time T . Streamlines are solutions
to Equation 2.9, always exist and cannot cross each other, since they are unique. In non-
steady flows streamlines are of lesser importance, especially when compared to pathlines,
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Figure 2.2: Example of an unsteady flow represented with streamlines at different times. The
time slices are shown at t = 0.05 s (a), t = 0.1 s (b), t = 0.15 s (c) and t = 0.2 s (d). Themagnitude
of the vector field at each location is mapped to color. As we move in time from (a) to (d), we
see different regions formed by concentric lines appear and sometimes break up and evolve into
multiple ones. This obviously provides some insight, but streamline plots can still only show a
static vector field, or a single time slice of a time-dependent one. More advanced techniques can
be used, like Line Integral Convolution, but they still represent only a static picture.

as they do not describe true particle trajectories. An example of streamline-based vector
field visualization is shown in Figure 2.2.

2.4.2 Pathlines

Also referred to as trajectories, pathlines (Figure 2.3b) describe the path of massless par-
ticles released in a flow at time t0 and at position x0. A pathline is the solution of Equa-
tion 2.6. Pathline-based visualization techniques applied to unsteady flows usually pro-
duce cluttered plots where the pathlines intersect and cross each other. They must be
used with care in static visualization, but they are very well suited for dynamic visual-
ization. In unsteady flows, pathlines are equal to the particles’ trajectories as they move
through the time-varying vector field. In a physical experiment, pathlines can be obtained
by capturing long exposures of tracer particles as they advect with the flow.

2.4.3 Streaklines

Streaklines (Figure 2.3c) are obtained by continually releasing particles at a fixed location
and taking a snapshot of the generated pattern at a fixed later time. The advected trail
of particles forms a curve that visualizes the change of the flow at a certain location over
time, also called temporal coherence.

Streaklines starting at a position y and captured at time tn are generated using the fol-
lowing recipe:
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2.4 Integral Curves

1. For each time sample t0, . . . , tn solve the IVP

ẋ(t) = u(xi(t), t), xi(ti) = y. (2.10)

2. Extract the point xi(tn) from each integral curve xi(t).
3. Connect the points to form the streakline.

Note that the time interval between the release of the particles must often be refined in
an adaptive fashion to avoid consecutive particles diverging too much.

2.4.4 Timelines

Timelines (Figure 2.3d) are obtained by injecting particles densely on a seed curve c(u)

at distinct times and taking a snapshot of the generated pattern at a fixed later time. They
show the propagation of a line ofmassless particles in time, as well as the spatial coherence
between particles seeded at the same time along a curve. In physical experiments they
can be produced by placing a wire into a fluid and applying current pulses. Each pulse
generates small bubbles which are advected with the flow, producing the timeline. They
are typically defined as

t(u) = φφφ τ
t (c(u)). (2.11)

Similarly to streaklines, timelines starting at seeds yi on the curve and captured at time t j

can be generated as follows:

1. For each point sample y0, . . . ,yn on the curve, solve the IVP

ẋ(t) = u(xi(t), t), xi(t0) = yi. (2.12)

2. Extract the point xi(t j) from each integral curve xi(t).
3. Finally, connect the points to form the timeline.

The result of this algorithm is a timeline for time t j. Similarly to streaklines, the spa-
tial interval in timelines often requires adaptive refinement to prevent close-by particles
diverging too much.

2.4.5 Discussion

In steady flows, streamlines, pathlines, and streaklines are identical. Streaklines and time-
lines are computationally more expensive than only solving a single IVP, since they are
based on releasing more than one particle and computing their pathlines. Computing
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(a) streamline (b) pathline (c) streakline (d) timeline

Figure 2.3: Space-time illustrations of integral curves. In orange, the fourmain types: (a) stream-
lines, (b) pathlines, (c) streaklines, and (d) timelines. In the case of streaklines and timelines, their
inception pathlines are also shown in blue.

streamlines, pathlines, and their derived streak and timelines, has several issues typically
related to the appropriate choice of the integration method and step size, and the choice
of the global and local point location method used. In this work, we use the fourth-order
Runge-Kutta (RK4) integration scheme to compute all integral curves.

Similarly to the direct visualization methods, visualizations using integral curves also
often suffer from occlusion and cluttering problems, especially in three dimensions, un-
less they are used locally and with measure to illustrate particular localized behaviors
or properties. Seeding integral curves at the nodes in regular grids is typically not a
good idea. Some works have been done on the placement of such lines, like the origi-
nal work of Turk and Banks exploring the placement of streamlines using an adaptive
image-space method based on maintaining line density to achieve equal spacing [TB96].
Additional occlusion mitigation and global placement approaches have been proposed
for two-dimensional [JL97] and three-dimensional [FG98] flow visualization, also utiliz-
ing flow features in the dataset [VKP00] or context-based methods [Sch+07].

2.5 Vector Field Topology

Before Helman andHesselink introduced vector field topology to the visualization com-
munity [HH89; HH91], the visualization of complex flows was accomplished with ex-
perimental techniques, e.g., seeding smoke or tracing patterns on the surface of a flow.
These approaches are certainly not well suited for modern times, with datasets ever in-
creasing in complexity, dimensionality and size. Vector field topology (VFT) aims to help
in the endeavor of analyzing and understanding the transport in flows, and is often used
to simplify the representation of a vector field, while enabling deeper insight into the very
structure of the field. VFT addresses the challenge of representing vector fields in a com-
prehensivemanner through the identification of topological features, which are elements
that reveal the most essential structure of the vector field. Typically, this is achieved via
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the detection and classification of critical points, which are isolated zeros of the vector
field, and manifolds seeded in direction of the eigenvectors of the gradient matrix at these
points, extracted by streamline or stream surface integration.

Among these, the codimension-one manifolds (surfaces in three-dimensional flows,
or curves in two-dimensional flows) that separate the flow into regions that behave dif-
ferently. Particularly, we distinguish two specially interesting scenarios where these struc-
tures are involved. First, the ones where the flow close to a structure attaches or separates
from it, leading to attachment and separation lines. Second, the structures where stream-
lines that start arbitrarily close to each other at either side of the structure actually end in
very different areas. These second type of structures is of paramount importance in VFT
and, together with the analysis of critical points, conforms its basis. Asimov [Asi93] offers
a very good starting point to the literature on steady vector field topology, and the next
sections provide a short summary thereof.

2.5.1 Critical Points

Critical points are positions in the flow field domain where the velocity vanishes and the
Jacobian has full rank (non-zero eigenvalues and non-zero determinant). The vectors at
critical points are zero. Critical points can be characterized according to the behavior
of the streamlines in the vicinity of the point. When a streamline leads into one of this
points, the streamline converges, as the tangent is not defined (themagnitudes of the vec-
tors around the point approach zero). In this case, a streamline that starts at a particular
position x0 with u(x0) = 0 degenerates to a point. This kind of point is called constant
orbit or stationary point. These points are also called isolated if they are not adjacent to
others, i.e., the vector field in the surrounding area takes all possible directions.

Critical points can be classified to a first-order approximation according to the real and
imaginary parts of the eigenvalues of the Jacobianmatrix in the neighborhoodof the posi-
tion of the critical point. Visualizations of higher-order critical points (i.e., points where
the determinant of the Jacobian matrix at the point is zero) are addressed by Scheuer-
mann et al. [Sch+97] andWeinkauf et al. [Wei+05]. In a first classification, hyperbolic crit-
ical points are those whose eigenvalues of the velocity gradient have nonzero real parts.
Hyperbolic critical points imply local stability, meaning that they are stable against small
perturbations of the vector field. In this case, perturbations do neither change the topol-
ogy of the vector field nor the general trend and direction of the streamlines. In a more
thorough classification based on the real and imaginary parts of the eigenvalues of the
Jacobian (Table 2.1), we can define, for 2D vector fields, the six major types of critical
points as saddles (positive and negative real parts, imaginary parts equal to zero), repelling
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(a) (b) (c) (d) (e) (f)

Figure 2.4: Illustrations of the types of critical points: saddle (a), source or repelling node (b),
sink or attracting node (c), center (d), repelling focus (e) and attracting focus (f). Colored vectors
represent eigenvectors corresponding to negative (blue) and positive (red) eigenvalues.

nodes (positive real parts, imaginary parts equal to zero), attracting nodes (negative real
parts, imaginary parts equal to zero), centers (zero real parts, nonzero opposite signs in
imaginary parts), repelling focuses, also known as sources (positive real parts, non-zero
opposite signs in imaginary parts) and attracting focuses, also known as sinks (negative
real parts, non-zero opposite signs in imaginary parts). Illustrations of the various types
of critical points are provided in Figure 2.4 and the eigenvalue classification is condensed
inTable 2.1. Figure 2.5 showcases a vector fieldwith four centers and a saddle-type critical
point. Qualitatively speaking, the imaginary parts of the eigenvalues represent circulat-
ing flow patterns, and the real parts represent the attracting and repelling behavior of the
flow. For instance, a positive real part indicates a repelling node (source), while a nega-
tive real part indicates an attractive node (sink). Complex eigenvalues indicate rotation
around the point. There are other types of points, like attachment and detachment nodes

(see gray circles in Figure 2.5), related to the attachment and separation lines mentioned
above, where streamlines end at walls where the velocity is zero, or boundary incoming
and outgoing nodes, where streamlines leave the domain of available data of the vector
field, but these have a comparatively minor importance (i.e., boundaries are somewhat
artificial and often depend on the arbitrary region of study) and are not covered here.

Out of all of the critical point types, saddle points are special in the sense that only four
streamlines converge at the point itself. At the saddle point, the streamlines are tangent to
the eigenvectors of the Jacobian, with one eigenvector direction converging to the critical
point and one converging in reverse time. These sets of streamlines are codimension-
one (i.e. lines in 2D fields, two dimensional surfaces in 3D) stable and unstable mani-
folds [Asi93]. The stable manifolds converge to the critical point or a periodic orbit in
forward time and separate regions of the domain where the dynamics of the flow are dis-
tinct. When we release two particles at either side of such a stable manifold and integrate
them in forward time, they diverge from each other. In contrast, unstablemanifolds con-
verge to the critical point or a periodic orbit in backward time. If we release particles
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at either side of an unstable manifold, they diverge from each other when integrated in
backward (negative) time.

2.5.2 Separatrices

As we have seen in the previous section, the eigenvector orientations define the type of
critical points. For example, saddle-type critical points have streamlines converging to-
ward the critical point along one of the eigenvectors fromboth sides (magenta lines in Fig-
ure 2.5), and diverging from the critical point along the other eigenvector to both sides
(green lines in Figure 2.5). In the neighborhood of a sink-type critical point, all stream-
lines converge to the critical point along all directions, and in a source-type critical point
the streamlines diverge along all directions. Saddle-type critical points, then, are special
because they are related to distinguished streamlines.

In two-dimensional vector fields, streamlines that converge to a saddle-type critical
point in forward time and converge to it in backward time are known as the separatri-
ces of the vector field, because they separate regions of qualitatively distinct behavior in
the vector field. These separatrices are of much importance in vector field topology, as,
together with the set of all critical points, make up the topological skeleton of the field.

In two-dimensional and three-dimensional vector fields, the set of all streamlines that
converge to a critical point or periodic orbit in forward or backward time is called an
invariant manifold.

Table 2.1:Classification of critical points by the real and imaginary parts of the eigenvalues of the
Jacobian matrix around the point. ℜ1 and ℜ2 indicate the real parts of the eigenvalues, and ℑ1

and ℑ2 indicate their imaginary parts. When the imagniary parts are nonzero, we have complex-
conjugate eigenvalues.

Type ℜ1 ℜ2 ℑ1 ℑ2

saddle < 0 > 0 0 0

repelling focus > 0 > 0 6= 0 6= 0

attracting focus < 0 < 0 6= 0 6= 0

center 0 0 6= 0 6= 0

source > 0 > 0 0 0

sink < 0 < 0 0 0
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2 Flow Visualization Fundamentals

Figure 2.5: Streamline representation of the same vector field displayed in Figure 2.1 with a
saddle-type critical point (light green circle), four centers (dark green circles) and eight boundary
attachment nodes (gray circles). Stable manifolds (blue lines) converge towards the saddle-type
critical points, while unstable manifolds (red lines) diverge from it. Two particles in magenta and
yellow released at either side of the stable manifold diverge from each other when integrated in
forward time. The stable manifold separates trajectories of particles in forward time, providing a
boundary between regions with different behavior.

2.5.3 Lagrangian Coherent Structures

Since traditional VFT builds on streamlines rather than pathlines, it has the major draw-
back that it is only meaningful for steady vector fields. The major reason for that is that
in unsteady vector fields, the pathlines are different to streamlines, and both the critical
points and the separatrices tend to move about in a way that is not consistent with time-
dependent advection. VFT is then able to give only an instantaneous view on the vector
field, which is only directly interpretable for stationary vector fields or isolated time snap-
shots. In the past, unsteady vector fields were analyzed in this fashion by using vector
field topology methods in isolated time steps, but this approach proved hard to interpret
and did not result in useful insight into the real behavior of the flow along the tempo-
ral dimension. Shadden et al. [SLM05] showed that the separatrices extracted from time
snapshots can actually diverge a lot fromwhere the actual flow separation resides in time-
dependent vector fields. The advantage of the coherent structures discussed here is that
they reveal the true behavior of the flow in a physically motivated, easy to interpret man-
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ner. Other approaches to the topology-related visualization of unsteady vector fieldswere
presented by Theisel et al. [The+04] and Shi et al. [Shi+06].

Lagrangian coherent structures (LCS) are the time-dependent counterpart to separa-
trices. They are distinguished manifolds of coherent behavior in flows that exert a major
influence on nearby trajectories over a time interval. These structures are solution tra-
jectories that differ from their neighbors in their origin or destination, thus dividing dy-
namically distinct regions in the flow, revealing geometry which is usually hidden when
analyzing the vector field with more direct visualization techniques. In contrast to the
separatrices of VFT, they tend to be insensitive to short-term perturbations and small-
scale noise due to their Lagrangian definition. LCS of unsteady flows are also unsteady,
so they tend to move and deform over time. LCS, like separatrices, are attracting if in-
finitesimal perturbations converge to these structures in forward time and repelling if
they are attracting in backward time. Therefore, these structures help in the analysis of
time-dependent systems and are a good tool to understand transport. LCS have been
proven along the years to be very useful in a broad range of applications. Nowadays,
LCS are mainly extracted as height ridges in derived fields, like the finite-time Lyapunov

exponent (FTLE). An excellent introduction to the field of time-dependent vector field
topology is provided by Pobitzer et al. [Pob+11], and an overall survey on topology-based
methods by Heine et al. [Hei+16]. Recent advances in streak-based topology are covered
by Sadlo, Üffinger, andMachado et. al. [Mac+16; SW10; ÜSE13].

In the next sections, we first introduce the classical Lyapunov exponent, and later have
a look at its time-dependent counterpart, the FTLE, to conclude with an overview on
height ridges and their extraction mechanisms.

2.5.4 Lyapunov Exponent

Before properly introducing the FTLE,wemust first quickly cover the classicalLyapunov
exponent (LE). Its main motivation is that small differences in initial values of a dynami-
cal system can grow into very large differences over time, which is an intrinsic property of
deterministic chaos. The reason for this is the exponential growth of those small initial
differences, or perturbations. The differences grow in respect to the size they have reached
in the previous moment in time, so the larger they are, the faster they grow. The classical
Lyapunov exponent, named after the Russian mathematician Aleksandr Mikhailovich
Lyapunov, is a measure of the rate of growth of these generic perturbations. This expo-
nent indicates the speed with which two initially close dynamics diverge (if the LE is pos-
itive) or converge (if it is negative) in phase space. Generally speaking, phase space is the
space containing all possible states of a physical system. In this thesis, we use phase space
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as the space containing the positions and velocities. If we have the perturbation δδδ t0(x),
which is applied at position x at time t0, the LE represents the limit of its growth for
|T | → ∞ and ‖δδδ t0(x)‖→ 0, and is defined as

σt0(x) = lim
|T |→∞

lim
‖δδδ t0

(x)‖→0

1

|T |
ln
‖δδδ T

t0
(x)‖

‖δδδ t0(x)‖
, (2.13)

with δδδ T
t0
(x) being the (grown) perturbation at time t0 +T , i.e., the distance between the

endpoints of the two trajectories (Figure 2.7a). Notice that the limit ‖δδδ t0(x)‖ → 0 en-
sures that the two trajectories stay sufficiently close to each other, i.e., that they allow for
a linearization of the vector field between them, for the entire advection time T .

The LE hence indicates how rapidly a complex system of several interdependent dy-
namics tends to run up to deterministic chaos. The inverse value of the LE indicates the
so-called Lyapunov time. This is the time it takes for an initial perturbation to reach a
certain magnitude, thus allowing certain conclusions about the predictability of the sys-
tem. The Lyapunov time provides an estimate for determining the time period a system
is expected to be predictable.

2.5.5 Finite-Time Lyapunov Exponent

The classical LE is quite useful in the study of ergodic theory for time-independent dy-
namical systems. However, the dynamical systems of practical importance for this work
are time-dependent and only computed or measured over a finite amount of time. Due
to its asymptotic nature, the original LE is not well suited for analyzing time-dependent
dynamical systems, or those that are not defined over an infinite time interval, so their
practical value is rather limited in these scenarios. Lately, finite-time Lyapunov exponent
fields have become the most popular tool to analyze and gain insight into the behavior of
coherent structures in unsteady flows [Pob+11].

The FTLE (Figure 2.6) is a scalar measure of the separation of trajectories that are
seeded simultaneously at time t0 close to each other, i.e., at distanceδδδ t0(x), and integrated
for an advection duration T (Figure 2.7a). For an n-dimensional vector field, there are n

Lyapunov exponents. Notice, that in general, trajectories correspond to pathlines (Sec-
tion 2.4) in this context, i.e., the paths of massless particles in a time-dependent vector
field u(x, t), released at their seed points and obtained by solving the respective initial
value problems. In that sense, one can consider x being the seed position of one trajec-
tory and x+δδδ t0(x) the seed of another. The finite-time Lyapunov exponent, in contrast
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2.5 Vector Field Topology

x

y

Figure 2.6: Example of a forward-time FTLE field extracted with a resolution of 1600×1600

and t0 = 0.09 s and T = 0.088 s using the Buoyant Flow dataset. Darker regions indicate higher
FTLE values, while lighter areas are mapped to low FTLE values. The sharper dark-blue lines are
candidates to local maxima, and represent repelling LCS.

to the regular LE in Equation 2.13, measures this separation only for a predefined finite
advection time T :

σT
t0
(x) = lim

‖δδδ t0
(x)‖→0

1

|T |
ln
‖δδδ T

t0
(x)‖

‖δδδ t0(x)‖
. (2.14)

Note that in both formulations (LE and FTLE), δδδ t0(x) has to be oriented such that the
obtained value is maximal.

For at least three decades, the FTLE has been indeed computed by testing different
orientations of δδδ t0(x), until Haller [Hal01] provided an estimate based on the flow map.
As we have already seen in Section 2.1, the flow map φφφ T

t0
: x 7→ φφφ T

t0
is a mapping from

the seed points x of trajectories started at time t0 to their respective endpoints φφφ T
t0
after

advection for time T . Consequently, its gradient, i.e., Jacobian, ∇φφφ T
t0
captures the spread

of this mapping, i.e., captures the spread of the endpoints, and thus the norm of this
tensor provides an estimate for ‖δδδ T

t0
(x)‖/‖δδδ t0(x)‖, leading to the following formulation

of the FTLE:

σT
t0
(x) =

1

|T |
ln
∥

∥∇φφφ T
t0
(x)
∥

∥

2
, (2.15)

with ‖A‖2 representing the spectral norm of tensor A, i.e., the square root of the largest
eigenvalue of A⊤A for a matrix A. This formulation of the FTLE is used in the major part
of the visualization literature and is used here as well.
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det∇u < 0

x+δδδ t0(x)
x

δδδ T
t0
(x)

(a)

det∇u < 0

(b)

Figure 2.7: (a) Separation (‖δδδ T
t0
(x)‖/‖δδδ t0(x)‖) of trajectories (black) by hyperbolic region

(det∇u(x, t)< 0, green). Notice that the lifetimeTχ and the strength |χ| of the hyperbolic region
have to be sufficient to cause such a separation. (b) As T increases, i.e., trajectories become longer,
LCS tend to become longer too (in this case grow to bottom left, since further trajectories reach
the hyperbolic region. At the same time, ridges (dashed) in the FTLE field (red, higher values by
higher saturation) that were existing before (are closer to the hyperbolic region) become sharper
because separation becomes stronger.

LCS visualization and analysis is nowadays predominantly based on the FTLE.
Haller [Hal01] showed that LCS can be obtained by detecting local extrema in the FTLE.
This was later confirmed with quantitative guarantees by Shadden et al. [SLM05]. Ac-
cording to Haller, attracting LCS can be obtained as ridges (approximated as height
ridges, see Section 2.5.7) in the backward-time FTLE, and repelling LCS can be obtained
as ridges in the forward-time FTLE. The resulting stable and unstable manifolds de-
scribed in Sections 2.5.1 and 2.5.2 have their counterparts in steady, non time-dependent
VFT in repelling and attracting LCS, respectively.

Four example FTLE fields captured using the Buoyant Flow dataset with the same t0

and T , and different resolutions and height ridge extraction are shown in Figure 2.8.

FTLE and Inertial Dynamics. While traditional FTLE deals with the dynamics of
massless, non-inertial particles in flows, in Chapter 3, we present a novel extension to
the analysis of inertial systems based on topology in general, and the FTLE in particular.
Similar approaches have been presented before, like those by Sapsis andHaller, Peng and
Dabiri, and Günther and Theisel, all in the field of inertial particles driven by fluid flow.
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2.5 Vector Field Topology

Our approach, in contrast, is not restricted to flows, adopts a more general stance, and
is able to accommodate systems driven by gravitational interactions and electromagnetic
forces. Studying the flow-induced dynamics of inertial particles is a rather evolved topic
with various applications from, e.g., meteorology [SH09], biology [SPH11], and multi-
component or multi-phase flow [RRV14]. Recent works outside visualization include
those by Sapsis and Haller [SPH11], and Peng and Dabiri [PD09]. Sudharsan al. [SBR16]
gives a good introduction into this field. In the domain of visualization, the first work
of Günther et al. [Gün+13] provides techniques and introduced new concepts for in-
tegral curves of flow-induced motion of inertial particles. Subsequently, Günther and
Theisel extend the concept of vortex core lines to flow-induced motion of inertial parti-
cles [GT14].More recently, they presented a counterpart [GT16a] to vector field topology
for steady-state flow-inducedmotion of inertial particles, a respective concept [GT15] for
time-dependent flow inspired by the FTLEwith focus on the separation of flow-induced
inertial trajectories due to mass, and a solution [GT16b] to the demanding source inver-
sion problem in flow-induced transport of inertial particles.

Also recently,Garaboa-Paz andPérez-Muñuzuri [GP15] extendFTLE forflow-induced
inertial trajectories in incompressible flow to phase space, i.e., they investigate the impact
of the variation of initial velocity, similar to our approach but as a whole (without sepa-
rating position and velocity as we do in Chapter 3). Although all these works analyze the
motion of inertial particles, they are all defined in terms of the dynamics of inertial par-
ticles induced by fluid flow. This motion is obtained by an empirical model ([Gün+13],
Equation 1), defining acceleration as a function of the velocity of the particle, flow field
velocity, and other accelerations. Thus, the problem of motion of flow-induced inertial
particles is a special case of the problems that we address with our technique in Chap-
ter 3, i.e., we have no specific constraints on the acceleration of inertial particles. Also, in
all these previous works (except for the topology approach [GT16a] and the phase-space
approach [GP15]), initial velocity is assumed constant, which does not make it necessary
to treat the problem in 2n-dimensional phase space, as we do.

FTLE Visual-Based Analysis. In Chapter 4, we put our focus on the interdepen-
dence between t0 and T . Our approach is based on the formulation of aggregation fields
in the t0–T space, to help to analyze and explore dynamical datasets bymeans of theFTLE
and the LCS. Probably due to the very high computational cost of the FTLE and the
difficulties associated with making it interactive, this is the first work that applies visual
analyticsmethods, which focus on the analytical reasoning enabled by interactive visual
interfaces, to aid in the application and interpretation of FTLE-based flow analysis. We
combine the FTLE and flow visualizationwith an integrated interactive visualization sys-
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tem in Chapter 3, but this has also been attempted before, for example, in the realm fluid
dynamics in general [Sch+99]. Our work here also borrows fromWeiskopf’s exploration
of GPU-based interactive visualization techniques of scalar and vector fields [Wei07].

We also find some important work in the domain of systems research in visualization.
For instance, the Visualization Toolkit [SML04], VisTrails [Bav+05], ParaView [AGL05],

VisIt [Chi+12], the Insight Toolkit [JMI15], Diderot [Kin+16], VTK-m [Mor+16] or the
very recent Topology Toolkit [Tie+18] are good candidates. In this field, the Topology
Toolkit implements most of the techniques mentioned above and offers an open-source
platform for topological analysis in visualization, while VisTrails offers a provenance in-
frastructurewhichmaintains a detailed history of data andworkflows in the visualization
process. The latter would represent a fine companion to our system in order to ensure
the persistence and reproducibility of results.

The visual analysis of time-dependent data and flow fields has also been attempted be-
fore. For instance, Aigner et al. [Aig+07] study the introduction of time as an additional
dimension in visual analytics, Bürger et al. [Bür+07] integrate local feature detectors in
the visual analysis of time-dependent flow simulations, Shi et al. [Shi+07] present an ap-
proach to visually analyze time-dependent flow fields through the behavior of pathlines,
andDoleisch, Hauser and co-authors [DGH03; Dol+04] study the visual analysis of com-
plex time-dependent flow simulations and real data. In this context, the technique in-
troduced in Chapter 4 provides an interactive analysis of trajectories, and introduces the
concept of FTLE aggregation fields, which attempt to capture global trends and features
in the seeding and advection time dimensions.

2.5.6 Finite-Size Lyapunov Exponent

An extension to the concept of FTLE was proposed by Aurell et al. [Aur+97] where in-
stead of measuring the growth rate of finite-time perturbations, a finite-size approach is
adopted. The finite-size Lyapunov exponent (FSLE) limits the maximum separation s be-
tween pathlines andmeasures the time needed to reach it. It coincides with the FTLE for
sufficiently small perturbations, but diverges significantly otherwise. The FSLE approach
is motivated by the necessity of creating a measure that is independent of the advection
time T , since different regions may require different choices of advection time. In the
same fashion as Haller’s formulation of the FTLE (Equation 2.15), we can formulate the
FSLE σ s

t0
with a given separation factor s as:

σ s
t0
=

1

|Ts|
lns, (2.16)
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with a minimal |Ts| such that
∥

∥

∥∇φφφ Ts
t0
(x)
∥

∥

∥

2
= s (2.17)

holds true. In these equations, Ts is the time required for a small perturbation to reach a
separation of s. The FSLE is undefined in the locations of the domain where a separation
of s is never reached.

2.5.7 Height Ridges

Nowadays, the most prominent method for extracting LCS from a time-dependent vec-
tor field are height ridges in the FTLE field. A codimension-one ((n− 1)-dimensional)
height ridge in a scalar field s(x), with x ∈ Ω, can be obtained according to Eberly [Ebe96]
by extracting the zero-isocontour from a derived scalar field:

∇s(x) ·εεεmin(x) = 0 , (2.18)

where εεεmin(x) is the minor eigenvector of the Hessian ∇∇s(x), with the additional re-
quirement of the minor eigenvalue λmin of the Hessian being negative. In discrete (grid-
based) settings, this isocontour extraction can be accomplished based on the marching
squares algorithm [LC87], with an additional step that makes eigenvector orientation
consistent [FP01]. Additionally, it is common to suppress spurious solutions (noise) by
rejecting those parts of the solutions where λmin is not sufficiently small, i.e., one requires
λmin < τλ with a user-defined threshold τλ 6 0. When necessary, especially in Chap-
ter 4, we also employ such filtering in our examples, and document our choice for τλ

accordingly. Additionally, the work by Peikert and Sadlo [PS] explores and assesses fur-
ther methods for height ridge computation and filtering.

In Section 5.1.1, we provide an introduction to cross-flux in the context of LCS, and
show how it has been used as a measure to evaluate whether ridges are good candidates
for LCS. In Section 5.1.2, we delve into more practical matters, and explore the interde-
pendence in FTLE between the advection time, i.e., the time length we use as a basis to
our analysis, and the sampling resolution, showing that higher advection times typically
require higher resolutions.

As demonstrated in Figure 2.8, themain issuewith height ridge extraction fromFTLE
fields is typically not (numerical) noise due to the involved second derivatives, but aliasing
and ridges that are closer together than the support size of the discrete second-derivative
operator, affecting estimation of the Hessian. We address both issues in Sections 4.2.3
and 4.2.4. Much work has been done on height ridges in the past. Garth et al., and
Sadlo and Peikert present works on direct visualization of FTLE and LCS [Gar+09;
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SP09]. Other approaches to ridge extraction attempt to solve the numerical noise prob-
lem, including the filtered AMR ridge extraction by Sadlo et al. [SP07], which is based
on the determination of the gradient by least squares and also works for unstructured
grids (grids with irregular connectivity), and the feature extraction method by Kindl-
mann et al. [Kin+18], implemented in Diderot [Kin+16], which solves the numerical
noise issue by using ray casting and advanced interpolation schemes. Many applications
and derivations have followed, such as the analysis of area-preserving maps [Tri+12a],
tensor fields [Hla+11; Tri+12b], computational steering [Ame+11], dynamics of inertial
particles [GT17], advection-diffusion flow [SKE14]. Other approaches to ridge extrac-
tion involved alternative computation methods, such as the local approach by Kasten et
al. [Kas+09], cell tracking [Kuh+14], grid advection [SRP11], streak-based topology [SW10;

ÜSE13], and higher-order evaluation [Üff+12]. Although some of these approaches for-
mulate refinement criteria, these are similar to those used for adaptive refinement men-
tioned above, i.e., they are not quantitative with respect to LCS properties such as cross-
flux. None of these approaches has, however, employed physically-quantitative measures
for assessing the quality of LCS visualization, as we do in Chapter 5.
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Figure 2.8: Height ridge extraction from the Buoyant Flow dataset with four different FTLE
field resolutions of 100×100 (a), 400×400 (b), 800×800 (c), and 1600×1600 (d), with iden-
tical t0 = 0.09 s and T = 0.088 s. In each case, the ridge filter threshold τλ has been adjusted ac-
cording to an expert’s choice to −0.07(a), −0.06(b), −0.04(c), and −0.03(d). The resolutions (a)
and (b) are not able to capture the two aligned, very close ridges in the bottom right quadrant (i)
in (a) and (b). However, the ridges are already present, albeit broken, when we increase the res-
olution (c), and they are much better captured at (d), although even higher resolution would be
required. The ridge (ii) is present in (c) but disappears when we double the resolution (d) due to
its insufficient sharpness with respect to the increased resolution.
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Man must rise above the Earth—to the top of

the atmosphere and beyond—for only thus will he

fully understand the world in which he lives.

—Socrates

3 Topology of Inertial Dynamics

T
raditional vector field visualization has a close focus on velocity, and is typ-
ically concerned about the dynamics of massless, non-inertial particles. This
chapter develops a novel approach to the analysis of the force-induced dynam-

ics of inertial particles. These forces can arise from acceleration fields such as gravitation,
but also be dependent on the particle dynamics itself, as in the case of magnetism. Com-
pared tomassless particles, the velocity of an inertial particle is not determined solely by its
position and time in a vector field. In contrast, its initial velocity can be arbitrary and im-
pacts the dynamics over its entire lifetime. This results in a four-dimensional problem for
2D setups, and a six-dimensional problem for the 3D case. The approach presented here
avoids this increase in dimensionality and tackles the visualization by an integrated topo-
logical analysis approach. The utility of this approach is demonstrated using a synthetic
time-dependent acceleration field, a system of magnetic dipoles, and N-body particle sys-
tems both in 2D and 3D.

Our everyday life and large parts of the universe are dominated by masses, and the var-
ious forces acting upon them. In the continuous setup, prominent examples are accelera-
tion caused by gravitation between bodies, electrostatics, and magnetism. Some of these
accelerations can be represented as time-dependent vector fields. However, most tradi-
tional techniques for vector field visualization have either instantaneous (local) scope, or
are based on the kinematics of massless particles, and thus cannot provide appropriate
insight into the dynamics of inertial particles. Beyond that, phenomena like magnetic
interaction cannot be represented by vector fields in terms of acceleration.

Topological analysis of vector fields ismotivated by the aim to separate their spatiotem-
poral domain into regions of qualitatively different behavior. For steady vector fields, this
is typically achieved by extraction of streamlines that converge in forward or reverse time
direction to isolated zeros of the vector field, known as separatrices and critical points. For
time-dependent vector fields, Lagrangian coherent structures, which can be obtained as
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ridges in the FTLE field, are a counterpart to separatrices, separating regions of qualita-
tively different behavior for a prescribed time interval.

In this chapter, we present a technique for the analysis of the inertial dynamics of point
masses. In contrast to traditional massless particles, whose velocity is given by the vector
field at the respective position and time, velocity of inertial particles is also part of the
underlying initial value problem. In other words, instead of solving an IVP in space only,
it needs to be solved in phase space, which includes the degrees of freedom of velocity.
This leads to an increase of dimension by a factor of two, leading to four-dimensional
problems for 2D spatial problems, and six-dimensional problems for 3D spatial config-
urations. We avoid the difficulties with higher-dimensional visualization by separating
position and velocity in our approach, which makes sense also from a purely practical
point of view, as position and velocity have very different physical meanings and play dis-
tinct roles in dynamical systems.

The contributions in this chapter include:

• A counterpart to the finite-time Lyapunov exponent for the analysis of arbitrary
inertial dynamics in phase space,

• derived concepts that constrain initial values for analysis,
• decomposition into spread due to velocity and position,
• dimensional stacking for phase-space navigation, and
• a concept to analyze the multiplicity in the underlying maps.

3.1 Method

This section describes the method to adapt regular non-inertial FTLE to inertial,
acceleration-driven systems.

3.1.1 Inertial Dynamics

The subject of visualization in our approach is inertial dynamics in terms of accelerations.
One source of accelerations are time-dependent acceleration fields

a(x, t) = (a1(x1, . . . ,xn, t), . . . ,an(x1, . . . ,xn, t))
⊤ (3.1)

assigning each point x := (x1, . . . ,xn)
⊤ at time t in the domain Ω ⊆ R

n ×R a vector
a ∈ R

n with accelerations ai, i = 1, . . . ,n in the respective dimensions. The trajectory
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x(t) is fully determined by an IVP starting at time t0 at initial position x0 := x(t0) with
initial velocity

ẋ0 := ẋ(t0) =

(

dx1(t)

d t
, . . . ,

dxn(t)

d t

)⊤
∣

∣

∣

∣

∣

t=t0

. (3.2)

We first reformulate the IVP in phase space, which is the space composed by the position
and velocity spaces:

ξξξ (t0) :=

(

x0

ẋ0

)

,
d

d t
ξξξ (t) =

(

ẋ(t)

ẍ(t)

)

=

(

ẋ(t)

a(x(t), t)

)

, (3.3)

with ξξξ (t) representing the path of a point mass in phase space. Using the representa-
tion in phase space, we now can formulate the inertial dynamics of such a particle in the
acceleration field:

dtξξξ (t) =

(

ẋ(t)

a(x(t), t)

)

. (3.4)

The resulting integral formulation

ξξξ (t) = ξξξ (t0)+
∫ t

t0

(

ẋ(τ)

a(x(τ),τ)

)

dτ (3.5)

represents a coupled system, i.e., one needs to solve

x(t) = x0 +
∫ t

t0

ẋ(τ)dτ (3.6)

and concurrently

ẋ(t) = ẋ0 +
∫ t

t0

a(x(τ),τ)dτ, (3.7)

i.e., Equation 3.6 is needed in Equation 3.7, and vice versa. In our implementation, we
accomplish this for time t and time step ∆t by means of a coupled fourth-order Runge-
Kutta integration scheme:

x1 = x(t), ẋ1 = ẋ(t), a1 = a(x1, t), (3.8)

x2 = x1 + ẋ1∆t/2, ẋ2 = ẋ1 +a1∆t/2, a2 = a(x2, t +∆t/2), (3.9)

x3 = x1 + ẋ2∆t/2, ẋ3 = ẋ1 +a2∆t/2, a3 = a(x3, t +∆t/2), (3.10)

x4 = x1 + ẋ3∆t, ẋ4 = ẋ1 +a3∆t, a4 = a(x4, t +∆t). (3.11)
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From this, we obtain the newposition x(t+∆t) and velocity ẋ(t+∆t) from the previous
x(t) and ẋ(t) as follows:

x(t +∆t) = x1 +(ẋ1 +2ẋ2 +2ẋ3 + ẋ4)∆t/6, (3.12)

ẋ(t +∆t) = ẋ1 +(a1 +2a2 +2a3 +a4)∆t/6. (3.13)

In our experiments, we obtained sufficiently accurate results with fixed step size RK4,
although the application of adaptive approaches, such as the Runge-Kutta-Fehlberg
method, would be likewise possible.

For phenomena, such as magnetic interaction, where acceleration cannot be rep-
resented by a vector field, we replace a(x, t) with an appropriate function, e.g.,
a(t,x(t), ẋ(t), . . .), in the above formulation.

3.1.2 Finite-Time Mapping

Now that we can solve for the dynamics of point masses over finite advection times T ,
we can investigate some of their properties. We assume that the underlying accelerations
a(·) are continuous (which is, e.g., the case for N-body systems, magnetism, and tensor-
product linearly interpolated fields) both in space and time. In analogy to streamlines in
vector fields, this leads to the fact that the pathlines or trajectories ξξξ (t) of point masses
cannot intersect in phase space. Thus, trajectories can converge but cannot reach the same
point in phase spacewithin finite time intervals. In otherwords, the phase-spacemapping

ΦΦΦT
t0

: ξξξ (t0) 7→ ξξξ (t0 +T ) (3.14)

is bijective. As a consequence, in phase space, manifolds of point masses can only de-
form due to inertial dynamics, but not self-intersect or tear apart or merge, i.e., they are
topologically invariant.

Figure 3.1 shows an example of a two-manifold of point masses (varying in initial ve-
locity) after transport for a finite time interval. In the spatial projection (Figure 3.1c) and
in the velocity projection (Figure 3.1d), one can observe overlaps, but there are no self-
intersections in four-dimensional phase space. In contrast, Figure 3.2 shows the same
configuration but with a constrained initial velocity. Overlaps are also present in the final
configurations of this example.

The insight that the mapping is bijective in phase space has a practical impact: we can
always reverse the direction of integration, i.e., we can integrate in reverse direction from
ξξξ (t0+T ) toξξξ (t0). Wewill exploit this property in Section 3.1.7 to find correspondences.
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(a) initial position (b) initial velocity (c) final position (d) final velocity

Figure 3.1: Analysis of gravitation-induced inertial dynamics, for the 2D Nine-Body example,
with bodies (purple dots, mass-proportional), trajectories (colored), and their seeds (white dots).
Views: Initial position (a), initial velocity (b), final position (c), and final velocity (d), with axes
denoting x-position (red), y-position (green), x-velocity (magenta), and y-velocity (cyan). Initial
position has been constrained to 0 (yellow dot in (a)), resulting in degrees of freedom of initial
velocity only, which is visualized with PS-FTLE-V (b). All samples of the 600×600 PS-FTLE-V
grid after inertial transport for time T shown by dots in (c) and (d) (initial x-velocity mapped to
blue channel, initial y-velocity to green channel). © 2017 IEEE.

3.1.3 Phase-Space Finite-Time Lyapunov Exponent

As we have already covered in Section 2.5, topological analysis aims at providing a parti-
tioning of the domain into parts of qualitatively different behavior. For time-dependent
vector fields, where massless particles are assumed to strictly follow the vector field, the
finite-time Lyapunov exponent [Hal01] field represents the maximum spatial spread of
massless particles started at time t0 infinitesimally close to position x, and has proven
successful in revealing their topology. The FTLE has the formulation shown in Equa-
tion 2.15, repeated here for convenience:

σT
t0
(x) =

1

|T |
ln
∥

∥∇φφφ T
t0
(x)
∥

∥

2
. (3.15)

with φφφ T
t0
(x) representing the flow map which maps massless particles started at x and

time t0 to their position after advection for time T , and ‖ · ‖2 representing the spectral
norm (i.e., for a matrix A the square root of the largest eigenvalue of A⊤A). Ridges in
this field indicate Lagrangian coherent structures (LCS) [SLM05], which are typically
codimension-one subsets (ridges) of the domain and separate qualitatively different re-
gions for the finite advection time T .

35



3 Topology of Inertial Dynamics

(a) initial position (b) initial velocity (c) final position (d) final velocity

Figure 3.2: Same as Figure 3.1, but with initial velocity constrained to 0 (yellow point in (b)) and
thus PS-FTLE-P field in (a). © 2017 IEEE.

A straightforward approach to analyze inertial dynamics is to apply the FTLE concept
to the inertial flow map

ΦΦΦT
t0
(ξξξ ) := ξξξ +

∫ t0+T

t0

(

ẋ(τ)

a(x(τ),τ)

)

dτ (3.16)

in phase space, leading to the phase-space finite-time Lyapunov exponent (PS-FTLE):

ςT
t0
(ξξξ ) :=

1

|T |
ln
∥

∥∇ΦΦΦT
t0
(ξξξ )
∥

∥

2
. (3.17)

The PS-FTLE is a (time-dependent) scalar field in the 2n-dimensional phase-space do-
main, i.e., for 2D spatial problems it is a 4D scalar field, and for 3D cases it is 6D scalar
field. These fields can’t be directly visualized, we must explore more elaborate methods.

Multidimensional projection (MP) methods [LV10] have been one of the main alter-
natives to visualize data residing in spaces with dimension larger than three, and could
thus provide solutions to visualize the 2n-dimensional phase-space finite-time Lyapunov
exponent field that we introduce in Chapter 3. Projection methods aim to map data to
a visual space such that distances are preserved as much as possible, thus making possible
the visual analysis of neighborhood structures present in the original data. In fact, in the
context of visualization, MP techniques have mainly been used for the visual inspection
of clusters and their properties [JPN15], since the analysis of more complex structures is
not so straightforwardwithMPmethods. However,MP techniques are difficult to apply
and even more difficult to interpret in the context of phase space of inertial particles.

In this fashion, these higher-dimensional fields could be visualized by interactive hyper-
slicing [WL93] or similar approaches, but in these cases the overall picture would need to
be “constructed” mentally, which would be cumbersome due to the typically very com-
plex structure of (PS-)FTLE fields. Another approach would be to make use of dimen-
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sionality reduction techniques, which aim to map points from 4D (or 6D) to a visual
space preserving distances as much as possible [LV10]. Figure 3.3 shows the point cloud
resulting from a projection of “ridge points” in 4D to a two-dimensional visual space us-
ing t-SNE [VH08] as projection mechanism. The ridge points approximate the ridges
by selecting those nodes of a regular 504 sampling grid (resolution limited by memory
requirements of t-SNE) with PS-FTLE value larger than 0.85. The t-SNE projection

method has been chosen as projection mechanism due to its ability to reveal groups of
similar instances in the visual space. Figure 3.3a shows the resulting projected points col-
ored according to their proximity in 4D (close points have similar colors). As one can see,
t-SNE is performing well in terms of neighborhood preservation. Figure 3.3b depicts the
samepoint cloud as in Figure 3.3a, but colored according to cluster labels so as to facilitate
group identification. Clusters were computed in the visual space using an agglomerative
clustering algorithm [XW05]. Although some clusters clearly show up in the projection,
it is difficult to figure out from the projection layout the interplay among the ridges, that
is, the resulting clusters do not provide a direct notion of the true separating structures in
phase space, nor their properties with respect to inertial dynamics. Moreover, t-SNE took
about 36 s to perform the mapping of 5.726 ridge points, hampering interactive applica-
tions. Computationallymore efficient projectionmethods could be used, but interactive
rates would hardly be reached by this means only.

3.1.4 Constrained PS-FTLE

To avoid the abovementioned difficulties with visualization of higher-dimensional fields,
we decouple, to the necessary extent, the analysis of the phase space with respect to po-
sition and velocity, which allows us to avoid an increase of dimensionality. Thus, our
approach requires only 2D visualization for 2D problems, and 3D visualization for 3D
problems. The central idea of our approach is to constrain the degrees of freedom of the
initial condition during interactive analysis by selection, but to enable exploration of this
choice, supported by a representation that provides overall context and a notion of the
impact of the choice. By definition, and also with respect tomost research questions, po-
sition and velocity play different roles. Thus, in our approach, either initial position or
initial velocity are constrained during the interactive process, and the remaining degrees
of freedom are those of initial velocity or initial position, respectively.

Assume that we want to shoot a mass ballistically (governed by gravitation only) from
a given point. In this case, the initial position is determined by the launching pad (yellow
point in Figure 3.1a). Thus, the remaining degrees of freedom are the initial velocity, the
starting time, and the duration of flight. Starting time t0 and duration of flight T are
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Figure 3.3: Ridge points mapped from 4D to 2D using t-SNE projection. (a) Neighbor points
in 4D are close in the projection. (b) Agglomerative clustering cannot provide a direct notion of
the original separating structures in 4D phase space. © 2017 IEEE.

treated as in FTLE-based examinations described above, i.e., they are typically explored
by the user or given by the problem under investigation. This means, they are not treated
as a degree of freedom during these types of analysis. Thus, initial velocity are the only
degrees of freedom that would need to be examined in this example. The space spanned
by t0 and T is examined in detail in Chapter 4 instead.

In our example, the degrees of freedom of initial velocity are represented by the range
of the initial velocity view (Figure 3.1b), and interactive exploration in that view can be
accomplished by inertial trajectories starting with the respective velocity and (predeter-
mined initial position) from Figure 3.1a. Since the true trajectory is in phase space, it of
course also has a velocity component, which represents a respective trajectory in the ini-
tial velocity view. Of course, exhaustive exploration by such interactive trajectories would
be cumbersome. But by employing the concept of the PS-FTLE with respect to the re-
maining degrees of freedom (in this example initial velocity), we can provide a concise
representation of the structure of the problem, i.e., of the regions with similar inertial
dynamics (Figure 3.1b).

We accomplish this by constraining the PS-FTLE to a fixed initial velocity ẋ0, resulting
in the PS-FTLE-P:
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or by constraining the PS-FTLE to a fixed initial positionx0, resulting in thePS-FTLE-V :
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∂ ẋn

)

ΦΦΦT
t0

(

x0

ẋ
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are 2n×nmatrices both leading to an n×nmatrix and thus n eigenvalues during spectral
norm computation. Note also that both variants capture spread in phase space, since in
general,ΦΦΦT

t0
(ξξξ )maps to varying position and varying velocity, irrespective if initial posi-

tion or initial velocity are kept constant or not. We denote ẋ0ςT
t0
(x)PS-FTLE-P because it

captures phase-space spread in terms of varying initial position, and x0ςT
t0
(ẋ) PS-FTLE-V

since it represents phase-space spread due to varying initial velocity. Please see Figure 3.2a
for an example of PS-FTLE-P, and Figure 3.1b for a respective example of PS-FTLE-V.
We omit a color legend, because for topological analysis based on FTLE variants, only a
qualitative view is needed. We employ a colormap that maps low values to blue, medium
to white, and large to red. One can nicely see in these illustrative examples how the con-
strained PS-FTLE captures the topological structure of inertial dynamics, i.e., how ridges
in these fields separate regions of qualitatively different inertial dynamics (exemplified
with selected inertial trajectories).

3.1.5 Decomposition of PS-FTLE

The ridges in the PS-FTLE-P and the PS-FTLE-V separate qualitatively different regions
in initial position or initial velocity, respectively. By this, they provide a concise repre-
sentation of inertial dynamics with respect to initial position and velocity. Nevertheless,
these fields (and thus also their ridges) represent combined spread only: it is not possible
to tell to what extent the detected spread is due to varying final position, and to what
extent it is due to varying final velocity.

Thismotivates, as a complementary visualization component, to decomposePS-FTLE
into a part that represents position spread, and another part that represents velocity
spread. Due to the abovementioned difficulties with higher-dimensional visualization,
we do not provide examples for decomposing the PS-FTLE itself. Instead, we decompose
both the PS-FTLE-P and PS-FTLE-V into two fields each. To this end, we first decom-
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pose the inertial flow map ΦΦΦT
t0
(ξξξ ) into a part Φ̄ΦΦ

T
t0
(ξξξ ) that maps to position, and a part
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T
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(ξξξ ) that maps to velocity:
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This allows us to decompose PS-FTLE-P into position separation:
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(being identical to IFTLE [PD09]), and velocity separation:
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Accordingly, we also decompose PS-FTLE-V into position separation:
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and velocity separation:
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Figure 3.4 exemplifies the utility of these decompositions for the case of the 2DNine-
Body example. Note that these measures have different units and thus their combined
visualization cannot provide a quantitative view: ẋ0ς̄T

t0
(x) has unit 1, ẋ0ς̃T

t0
(x) has unit

s−1, x0ς̄T
t0
(ẋ)has unit s, and x0ς̃T

t0
(ẋ)has unit 1. Their combination to color channels (red

and green in our implementation) can only provide qualitative insights and relations. We
therefore normalize them prior to mapping to color. For Figure 3.4, the maximum of
position spread of 264.478 has been mapped to maximum red level, and the maximum
of velocity spread of 342.153 s−1 to maximum green level. Observe that the nested ring
structure around the bodies ismore clear in Figure 3.4b than in Figure 3.4c, revealing that
different types of orbits (different periodicities and thus differentKepler orbital times) are
more pronounced with respect to position than velocity.

On the other hand, close inspection of Figure 3.4c reveals that the respective ridges en-
closing the bodies reveal a very thin valley line at their center. We examined this case, but
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(a) (b)

(i)

(c) (d)

Figure 3.4: Decomposition of PS-FTLE-P ((a) from Figure 3.2a) into position separation
ẋ0ς̄T

t0
(x) (b) (mapped to red channel), and velocity separation ẋ0ς̃T

t0
(x) (c) (mapped to green chan-

nel). (d)Combination of both channels reveals relative contribution of position spread and veloc-
ity spread. Observe that the ridge where the two trajectories are seeded ismore yellowish, and thus
position spread is there stronger in relation to velocity spread. This is consistent with the distance
of their endpoints in position space (e.g., (d)) and velocity space (Figure 3.2b). Note that both
position spread and velocity spread have been normalized because they have different units (1 for
ẋ0ς̄T

t0
(x), and s−1 for ẋ0ς̃T

t0
(x)). The very thin valleys within the ridges in region (i) are examined

in detail in Figure 3.5. © 2017 IEEE.

zooming in did not yield any significant increase the gap width. Nevertheless, Figure 3.5
shows that the valleys are caused by trajectories “returning” in velocity space, caused by
the deceleration of particles as they pass a nearby mass. This example demonstrates that
structures that can be observed in the PS-FTLE and represent a superposition of position
and velocity spreads can often be analyzed in more detail by our decomposition tech-
nique.

3.1.6 Stacked PS-FTLE

So far, we have shown how phase space can be analyzed using PS-FTLE-P and PS-FTLE-
V, i.e., by constraining the underlying IVP either by selecting an initial position or by
selecting an initial velocity. A limitation with this approach alone would be, however,
that this selection would not be supported, i.e., that the user would need to explore this
choice “blindly” without guidance.

This motivates our stacked PS-FTLE (SPS-FTLE) approach. The SPS-FTLE is in-
spired by dimensional stacking [LWW90; WBT97] of discrete data in information visu-
alization. Assume we are in the configuration where PS-FTLE-V is used, i.e., where ini-
tial position is constrained and the remaining degrees of freedom are initial velocity (Fig-
ure 3.1). In this setup, PS-FTLE-V is displayed in the initial velocity view, and the initial
position view contained so far only a point representing the selected initial position. To
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(a) (b)

Figure 3.5: (a) Valleys within ridges of velocity separation (green), within range (i) of Figure 3.4c,
with trajectories (colored lines). (b) Same trajectories in velocity space. One can see (zoomed
regions) that the valleys separate trajectories with increasing velocitymagnitude from those where
velocitymagnitude decreases again (“returning” velocity curves). The point ofmaximumvelocity
magnitude (farthest from origin in (b)) corresponds to shortest distance frommass body (purple
point in (a)). © 2017 IEEE.

support this selection, we provide context in the respective view (in this setup the initial
position view) by presenting there the respective stacked PS-FTLE field.

For the described configuration, the SPS-FTLE representation in the initial position
view consists of a grid that discretizes the initial position range, andwithin each cell of this
grid, the PS-FTLE-V field is represented that results if the center of the respective cell is
used as initial position (see Figure 3.6a). To avoid unnecessarily long computation times,
the resolutionof thePS-FTLE-Vfieldswithin the cells is kept low (100×100 in this case).
For the opposite configuration, i.e., where initial velocity is constrained, the SPS-FTLE
field discretizes the range of initial velocity into cells instead, and each cell contains the
respective PS-FTLE-P field.

Because the large-scale structure of the SPS-FTLE representation is hard to perceive at
medium zoom levels (i.e., one has to zoom out rather far to see the overall structure), we
additionally generate a discretized version of the SPS-FTLE representation. This rep-
resentation is obtained by “merging” the PS-FTLE field within each cell “into a sin-
gle pixel” which is then shown at the respective resolution, i.e., each cell (or “pixel”) of
the discretized version represents the respective PS-FTLE-P or PS-FTLE-V field (see Fig-
ure 3.6b). In our implementation, the field within a cell is “merged” to a single value
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(a) initial position (b) initial position

Figure 3.6: Stacked PS-FTLE at the example of the 2D Nine-Body example. (a) Stacked PS-
FTLE with zoomed region (17× 17 cells of the stacked PS-FTLE grid). Observe that each cell
contains the respective PS-FTLE-Vfield (e.g., Figure 3.1b). (b)Discretized version of (a), using the
average operator, for better context at medium zoom levels. In our interactive implementation,
there is a transition from (b) to (a) as the user zooms into the stacked PS-FTLE representation.
© 2017 IEEE.

using the maximum or average operator. Whereas taking the maximum provides a more
conservative view, i.e., high values of the resulting field indicate the maximum separation
that appears in the PS-FTLE and thus regions with low values are likely to be of inferior
interest, the average operator provides a more quantitative view and, in our experiments,
it provided more specific guidance.

3.1.7 Multiplicity Maps

So far, we focused on the views of initial position (e.g., Figure 3.1a) and initial velocity
(e.g., Figure 3.1b). There, the constrained PS-FTLE, its decomposition, and its stacking
enable the analysis of inertial dynamics with respect to the initial values of the IVP. As ex-
emplified by the trajectories in Figure 3.1 and Figure 3.2, such analysis can answer various
research questions (see also Section 3.3). This is similar to traditional (advection-based)
FTLE visualization, which is considering the initial view only, i.e., traditional FTLE “re-
sides” at time t0; the state at time t0 +T , that the flow map maps to, is typically not ana-
lyzed. One reason why this final state is typically not analyzed is that the traditional flow
mapφφφ T

t0
(x) only represents a deformation without overlap (which follows from an argu-
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mentation similar to that in Section 3.1.2), i.e., it is a continuous bijective mapping from
the seeds x(t0) to the end points x(t0 +T ) of the respective trajectories.

As discussed in Section 3.1.2, the inertial flow mapΦΦΦT
t0
(ξξξ ) represents a bijective map-

ping in phase space. However, as discussed there too, thismapping is typically not bijective
anymore in the respective spatial projections (e.g., Figures 3.1c and 3.2c) and velocity pro-
jections (e.g., Figures 3.1d and 3.2d): the n-dimensional manifold defined by the degrees
of freedom of initial velocity or initial position, respectively, typically exhibits overlap,
i.e., folds. In other words, a point in the final position view or final velocity view is of-
ten reached by more than one IVP. As we will see, analyzing these properties provides
answers to relevant research questions and thus motivates our final component for anal-
ysis of inertial dynamics:multiplicity mapsSo far, we visualized in the final position view
(e.g., Figure 3.1c) and final velocity view (e.g., Figure 3.1d) the spatial and velocity pro-
jections of the sample points of the constrained PS-FTLE. Since constrained PS-FTLE is
sampled in the domain of initial position or initial velocity, it represents an n-manifold
with a parametrization induced by these degrees of freedom. Figures 3.1c and 3.1d already
provide an impression how the n-manifold resides when projected to the space or velocity
domain, since the x-component of the initial value is mapped to the blue channel and the
y-component to green. Nevertheless, due to the discrete sampling and due to occlusion
of the points, this kind of visualization does not provide themultiplicity of themapping,
i.e., it does not show how many IVPs reach a given point in the projections of the final
state. The position multiplicity map
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represents how many IVPs starting at time t0 reach a given position x after time T . Its
counterpart is the velocity multiplicity map
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which counts how many IVPs starting at time t0 reach a given velocity ẋ after inertial
transport for time T .

In the context of constrained PS-FTLE, both the PS-FTLE-P and the PS-FTLE-V lead
each to a respective position multiplicity map and a velocity multiplicity map. The PS-
FTLE-P leads to the position multiplicity map
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and velocity multiplicity map
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}∣

∣

∣

∣

, (3.29)

whereas PS-FTLE-V leads to the position multiplicity map
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ẏ | Φ̄ΦΦ
T
t0

(

x0

ẏ
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and velocity multiplicity map
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Figure 3.7i shows a position multiplicity map ẋ0µ(x)T
t0
for the Quad-Gyre example, in-

duced by PS-FTLE-P. For better display, we apply a logarithmic scaling and use the same
colormap as for the constrained PS-FTLE results. Such representations of the multiplic-
itymap provide insight into howmany IVPs reach a respective point or velocity, but they
do not reveal which IVPs reach which region. To this end, we perform a connected com-
ponent labeling of the multiplicity maps, i.e., we detect connected components in the
map that exhibit the samemultiplicity, i.e., that are reached by the same number of IVPs.
Figure 3.7j shows the connected component labeling for the multiplicity map from Fig-
ure 3.7i. To reveal the correspondences between the initial values and the connected com-
ponents in the projection of the final state, wemap the connected component labels back
to the initial state. We achieve this by looking up for each sample in its final state in phase
space the connected component label from the multiplicity field at its projection, and
then apply the label to the respective initial value, resulting in a corresponding labeling
in the initial position space or velocity space (Figure 3.7e). Together with Figure 3.7j),
this reveals the correspondences of the inertial IVPs, i.e., one can see which connected
components in the multiplicity map are caused by which regions of initial values.

Nevertheless, since both the connected components in the multiplicity map and the
corresponding initial regions can be comparably large, this visualization does not provide
information on exactly which initial valuesmap towhich final state. We address this issue
by two complementary approaches. First, we add grid lines that are also mapped to the
corresponding view. Second, and more specific, we allow the user to interactively select
regions in the final state and display the corresponding initial values (sample points) that
reach those regions (Figures 3.8b and 3.8c). This way, the labels and grid lines provide

45



3 Topology of Inertial Dynamics

(a) initial position (b) initial velocity (c) initial position (d) initial position (e) initial position

(f) final position (g) final position ×
speed

(h) final position (i) final position
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(j) final position

Figure 3.7: PS-FTLE and multiplicity for in Quad-Gyre example. Seed of inertial trajectory by
white dot, final state by black dot. (a) PS-FTLE-P. (b) Selected initial velocity (yellow dot) with
stacked PS-FTLE-P for context. (f) Final position of phase-space samples. (g) 3Dmesh represen-
tation with final position× final speed (velocity magnitude, blue axis). (h) Position multiplicity
map ẋ0µ(x)T

t0
induced by PS-FTLE-P shows howmany IVPs reach a given final position. (c)Mul-

tiplicities from (h) mapped to respective initial position view show how many other IVPs reach
the same final position (e.g., dark blue (1) means that no other IVP reaches the same final state).
Boundaries aremapped: left→orange, right→yellow, top→cyan, bottom→green. (d),(i) Same
as (c),(h) but with two levels of adaptive refinement. See how adaptive refinement improves the
map. Observe also that some edges were already sharp in (h) because they originate from silhou-
ettes of the folded 2-manifold. The color mapping (but not the multiplicities) typically changes
during refinement because silhouettes representing almost “oblique”manifold regions are subject
to “discretization noise” (e.g., at bottom boundary), typically caused by particles that are stopped
at the domain boundary. (j) Connected components in (i), withmultiplicity numbers. Note that
in our prototype, these numbers are provided by hovering the mouse over the respective region.
(e) Labels from (j)mapped to corresponding initial position. Grid lines (regular in initial space (c),
(d), and (e)) provide visual cue to the mapping. © 2017 IEEE.
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(a) initial position

(i)

(b) final position (c) initial velocity (d) final position

Figure 3.8: Analysis of inertial dynamics at the example of the 2DNine-Body example. (a) Nine
stationary bodies (purple) inducing gravitational field. The initial position of our 4002 inertial
particles has beenmanually selected (yellow point), whereas their initial velocity is given by a uni-
form sampling of the initial velocity space (c). (b) Positions of the samples after inertial transport
for time T . We select a small region of interest (i) that we would like to reach from the initial
position. This provides the initial velocities (cyan dots in (c)) that lead to the desired region of
interest. (c) Inertial trajectories in velocity space, together with phase-space finite-time Lyapunov
exponent (color-coded), providing the topological structure and thus regions of similar inertial
dynamics. (d) The trajectories in position space show how the desired location can be reached.
© 2017 IEEE.

context information, and the interactive selection of samples provides explicit informa-
tion on which IVPs reach which state due to inertial dynamics.

Computation of Multiplicity Maps

Figure 3.9 illustrates the computation of multiplicity maps and the connected compo-
nents therein. As depicted in Figure 3.9a, the n degrees of freedom (i.e., initial position
or velocity range) of the constrained PS-FTLE field are sampled on a uniform grid and
a mesh is obtained using Delaunay triangulation. We then transport each sample by the
inertial IVP to its final state in phase space (Figure 3.9b). For a positionmultiplicity map,
these points are then projected to position space, otherwise they are projected to velocity
space (in both cases, the n-manifold is projected from 2n-dimensional phase space to nD).
Let us assume, without loss of generality, that we construct a position multiplicity map.
A ray is shot through each of the projected samples and the intersections between the ray
and the triangles of the projected mesh are counted, providing the multiplicity count for
each sample (Figures 3.9c and 3.9d). This count can then be directly visualized in the
initial space (e.g., Figure 3.7d). However, visualization of this map in the final state (e.g.,
Figure 3.7i) is nontrivial because the n-manifold typically exhibits overlap, and rendering,
e.g., using blending, would result in artifacts due to strongly stretched triangles which are
generated due to the typically very strong distortions due to finite-time dynamics. There-
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(a) (b)
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Figure 3.9:Multiplicitymap computation. (a) Regular discretization and triangulation of initial
space, yielding a flat manifold. (b) Manifold is transformed after transport, third dimension here
by mapping to a quantity, e.g., velocity magnitude. (c) Vertex multiplicities represent number
of ray intersections with triangles. (d) Intersections are determined in projected space. (e) Re-
finement (red) is performed for quads with edges that join vertices with different multiplicities
(numbers). Projected vertices (from green and blue quad) are triangulated (dotted) to compute
connected components in final space. (f) The quad to be refined is subdivided into four subcells
by adding five new samples in the initial space. The process (triangulation, multiplicity computa-
tion) is then repeated with the new samples. (g) Connected components labeling by traversal in
final space, with connectivity defined by equality of multiplicity. © 2017 IEEE.

fore, we instead employ Delaunay triangulation of the projected samples after transport
(Figure 3.9e, dotted edges). Then, the planarmesh containingmultiplicity values defined
at the samples can be rendered (based on barycentric interpolation). The connected com-
ponent labeling (Figure 3.9g) is achieved by identifying the connected subgraphs where
all the vertices have the same multiplicity count. After labeling, the connected compo-
nents can be visualized in the final state (Figure 3.7j), or mapped back to the initial value
space (Figure 3.7e). The optional step of refinement can be processed once the sample
multiplicity counts are in place. In that case, we identify the edges that join samples with
different multiplicity and subdivide the quads in the initial uniform grid into four sub-
cells, and then repeat the process until convergence or a maximum depth is reached (Fig-
ures 3.9e and 3.9f, red quad and green/blue samples).

3.2 Implementation Details

Our implementation uses CUDA (through PyCuda bindings [Klö+13]), when possible,
for the processing, and OpenGL (through VisPy gloo bindings [Vis]) for the rendering.
We use Python as a general-purpose scripting language to launch the CUDA kernels,
fetch the data and pass them toOpenGL for rendering, and to construct andmanage the
GUI. Some functions cannot be fully implemented in the parallel paradigm that CUDA
offers. In such cases we rely on the CPU.

A special use case is the processing of the PS-FTLE field, which is computed in each
time step. In this case, a CPU synchronization step between the flow map and the PS-
FTLEkernels is needed. Some operations are fully implemented inCUDA (the flowmap
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computation, all variants of the PS-FTLE, and the interactive trajectories), while others
are implemented on the CPU and partially accelerated using CUDA kernels at some key
points like the multiplicity maps, the adaptive sampling, and the stacked PS-FTLE. Fi-
nally, we have a few operations fully implemented on the CPU, such as the Delaunay
triangulation (which uses the Qhull [BDH96] library through SciPy [JOP+01]).

In order to access the vector field or N-body simulation data on the GPU, we use tex-
tures. These textures consist of a T ×N ×M matrix in the case of 2D vector fields, and
a T ×N ×M ×L matrix in the case of 3D vector fields, where T is the number of time
steps and N,M,L are the dimensions of the vector field. In the case of N-body systems,
the textures consist of aT ×N matrix, whereT is the number of time steps in the original
N-body simulation and N is the number of bodies.

Due to the flexibility and symmetry of our approach, we foundwriting a singleCUDA
kernel for each operationwould render the systemunmaintainable. In order to tackle this
issue, we set up a templating structure which generates and compiles all possible combi-
nations of kernel files. These kernel files are then accessed and run through indexed tables
which are queried using the application’s current internal state model. So, for example,
the kernel which computes the force acting on a test particle is used to compute the tra-
jectories but also the flow map, and the code is different depending on the input field in
use (N-body simulation or vector field).

We have a total of 30 template files (2 046 code lines) which produce, after templating,
40 compilable kernel files. The number of code lines of all final kernel files combined
after templating is 9 107.

3.3 Results

Weexemplify our approachusingone analytic example (Section3.3.1), a two-dimensional
N-body system (Section 3.3.2), a system based on two-dimensional electromagnetic in-
teractions (Section 3.3.3), and a three-dimensional N-body system (Section 3.3.4).

3.3.1 Quad-Gyre

Our first example has been presented by Shadden et al. [SLM05] for the analysis of La-
grangian coherent structures. It represents a time-dependent vector field given in the fol-
lowing analytic representation:

a(x, t) =

(

−πAsin(π f (x, t))cos(πy)

πAcos(π f (x, t))sin(πy)d f
dx

)

(3.32)
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3 Topology of Inertial Dynamics

with f (x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt), b(t) = 1− 2ε sin(ωt), x = (x,y)⊤,
ε = 0.25,ω = π/5, and A = 0.1. We sampled this field at a resolution of 50×50 nodes
and 100 time steps in the spatial range x ∈ [−1,1]× [−1,1] and temporal range [0,20].
Note that we use this y-range instead of the often employed y-range [0,1], leading to a
y-symmetric field with four time-dependent vortices instead of two.

We interpret this vector field as an accelerationfield and employ our analysis technique.
Initial time t0 = 0s and transport time T = 3.046s, with zero initial velocity, resulting
in a PS-FTLE-P visualization (Figure 3.7a). One can see from the inertial trajectory that
mass released at the respective position reaches the upper half, which would not be possi-
ble by advection. Looking at the multiplicity map in initial position space (Figure 3.7d),
one can see that many of the ridges in the PS-FTLE-P are caused by the domain bound-
aries (orange, yellow, cyan, or green color) of our sampled vector field. The reason for
this is that inertial particles reaching the domain boundary are stopped and accumulate
there. The shown trajectory is seeded within one of the regions with low PS-FTLE-P
value, representing trajectories that do not reach the boundary. The refined multiplicity
map (Figure 3.7i) and in particular its connected component labeling with multiplicity
numbers (Figure 3.7j) provide insight into the folding of the manifold at final position
and thus inertial dynamics, which would not be possible from direct visualization of the
final positions by points (Figure 3.7f).

3.3.2 2D Nine-Body System

A traditional problem that involves inertial dynamics is the motion of masses in gravi-
tation fields. To this end, we integrated a N-body simulation in our interactive imple-
mentation. The 2D Nine-Body example consists of nine bodies with different masses at
fixed positions. To avoid singularities at the body centers, a softening length [Deh01; RS]

is employed and visualized with gray circles. Our approach is used to analyze the gravita-
tional field induced by the bodies. Please see the accompanying video for further exam-
ples, where the bodies also undergo inertial dynamics. In all these cases, the initial value
problems (point masses) underlying our technique are influenced only by the gravita-
tional field of the bodies, i.e., the test particles do not influence each other. Although this
could be accomplished at some additional computational cost, it would formost research
questions be inappropriate, because our approach, in accordance with traditional FTLE,
aims at analyzing the choice of an IVP, not the analysis of mutually dependent test parti-
cles interacting with the bodies and themselves. Figures 3.1, 3.2 and 3.8 provide an anal-
ysis using PS-FTLE-V and PS-FTLE-P fields. It can be nicely seen how ridges in the PS-
FTLE-V field separate different inertial dynamics with respect to initial velocity, whereas
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(a) initial position (b) initial position (c) final position (d) final position

Figure 3.10: Position multiplicity map in 2DNine-Body example. (c) Position multiplicity map
ẋ0µ(x)T

t0
, induced by PS-FTLE-P. (a) Multiplicities from (c) mapped to corresponding initial val-

ues. (d) Connected components in (c). (b) Component labels from (d) at respective initial posi-
tions. © 2017 IEEE.

the PS-FTLE-P shows regions of different inertial dynamics due to varying initial posi-
tion. Since these constrained PS-FTLEfields represent a superposition of position spread
and velocity spread, we investigated these spreads individually by PS-FTLE decomposi-
tion (Figure 3.4). This analysis provided a surprising result: position spread captures the
variation in dynamics around the gravitational bodies better than velocity spread. On the
other hand, the large-scale ridges in velocity spread exhibit very thin valley lines (discussed
in Section 3.1.5 and Figure 3.5). Figure 3.6a shows stacked PS-FTLE-V that supports the
choice of an initial position, i.e., helps navigate the 2n-dimensional phase space. Finally,
we investigated multiplicity maps (Figure 3.10). We have chosen for this the same trans-
port time T = 4.246s, as for the other result images. Figure 3.10b reveals the chaotic
inertial dynamics of this example at this transport time: one can observe “islands of sta-
bility in a sea of chaos”. Due to the extremely strong stretching (see stretched grid lines
in Figures 3.10c and 3.10d) and mixing of trajectories (i.e., chaotic transport), the con-
nected components of the position multiplicity map are disrupted in chaotic “noise”,
too (Figure 3.10d), and the grid is distorted to an extent that would require extremely
high refinement. Nevertheless, as can be seen in Figure 3.10a, themultiplicity-labeled ini-
tial position representation is still able to provide a good notion of IVP multiplicity: it
shows for each initial value the count of other IVPs reaching the same final state (observe
the quantization of this image which represents these counts).

3.3.3 Magnetic Dipoles

Our approach lends itself for the analysis of any type of inertial dynamics. We exemplify
this with a special case that cannot be represented by an acceleration (vector) field: the
motion of charged particles due to Lorenz forces, i.e., the motion of such particles in
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3 Topology of Inertial Dynamics

(a) initial position (b) initial velocity

Figure 3.11: Magnetic Dipoles example. (a) Initial position set to 0 (yellow dot), with magnetic
dipoles (magnetic moment by dot color) and trajectories (colored lines). (b) PS-FTLE-V visualiz-
ing regions of qualitatively different dynamics induced by Lorenz force, with seeds (white dots).
© 2017 IEEE.

magnetic fields. Such dynamics exhibits “helical” motion which not only depends on
the strength of the magnetic field, but also on the velocity of the charged particle. For
clarity and ease of representation, we have chosen a configuration that results in purely
2D dynamics. Nevertheless, it would be straightforward to adapt the next example (Sec-
tion 3.3.4), which examines 3D N-body systems, accordingly.

Our example follows the 2DNine-Body example in that it exhibits discrete objects (in
this case magnetic dipoles) with varying properties (in this case different magnetic mo-
ment), and it also employs a softening length to avoid numerical issues due to singular-
ities at the dipole centers. To obtain purely 2D inertial dynamics, all dipoles are located
on, and oriented perpendicular to, the xy-plane, and we examine only initial xy-positions
and initial xy-velocities. Note that, as in the case of the 2D Nine-Body example, this
simulation is integrated in our interactive visualization system and thus does not involve
artificial domain boundaries and is fully parametrizable.

Because initial velocity plays themore important role, wefix initial position to0 and in-
vestigate the problem using PS-FTLE-V (Figure 3.11b). We chose two inertial trajectories
by selecting different initial velocities (see also their spatial representation in Figure 3.11a)
to exemplify the different dynamics of the regions in the PS-FTLE-V field, which are sep-
arated by respective ridges. We do not provide here the point-based visualization of final

52



3.4 Performance Analysis

(a) initial position (b) initial velocity (c) final position (d) final velocity

Figure 3.12: 3D Two-Body example. (a) Height ridge surfaces of PS-FTLE-P nicely separate dif-
ferent types (periodicities) of orbits (bodies by purple spheres, trajectories bywhite tubes, seeds by
white spheres). (b) Respective trajectories in velocity space (note that we did not introduce a new
color scheme for 3D velocity axes). (c) Final positions of PS-FTLE-P samples. (d) Final velocities.
© 2017 IEEE.

position and final velocity, because they are both heavily convoluted and provide little
insight.

3.3.4 3D Two-Body System

Asour last example, we exemplify that our approach lends itself equallywell for the visual-
ization of 3Dproblems. To this end, we set up a 3Dvariant of theNine-Body example. In
this case, we have two bodies that are not fixed but move according to an N-body system
in 3D, i.e., they orbit each other. Figure 3.12 shows our results for an initial velocity of 0,
transport time T = 12s, with a PS-FTLE-P sampling grid of 1203, running at about 3.1
FPS, without including theN-body simulation, which is pre-computed. Instead of direct
visualization of the constrainedPS-FTLEfield, we extracted height ridge surfaces [Ebe96].

3.4 Performance Analysis

Wehave run two series of performance tests to analyze how the number of time steps and
the grid resolution affect the compute time. To run the tests, we have used the 2DNine-
Body examplewith a softening length e2 = 0.05. All tests have been run on a systemwith
Manjaro Linux 15.12, kernel 4.4.5.1, 16 GB of RAM memory, an Intel Core i7-4790K
CPU at 4.4 GHz, and a GeForce GTX 970 4 GB graphics card. For the performance
analysis, if not stated differently, we have used the 2D Nine-Body example with a trans-
port time T = 4.0s, a time step ∆t = 0.001s, and a grid of 400×400 particles. We have
found that the computing time scales linearly with the number of steps, see Table 3.1 for
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the performance results. To analyze the impact of grid resolution, we have chosen four
representative resolutions, 200× 200, 400× 400, 600× 600, and 800× 800. The re-
sults show (Table 3.1) that the computing time also scales linearly with the number of
samples, as expected.

The stacked PS-FTLE example in Figure 3.6 took 2682.239 s to compute, of which
2653.038 s where spent running CUDA kernels. The rest was invested in the CPU loop.
The multiplicity maps without adaptive sampling with the Quad-Gyre dataset shown in
Figures 3.7c and 3.7h took 177.121 s to compute, of which 1.584 s were spent computing
vertex multiplicity, 149.454 s in Delaunay triangulation, and 0.733 s in the final color
mapping. The two levels of adaptive sampling used to produce Figures 3.7d, 3.7e, 3.7i
and 3.7j took 6866.671 s to compute. The multiplicity maps without connectivity of
this same example, after the adaptive sampling, took 202.827 s, of which 6.394 s were
for computing vertex multiplicity, 96.855 s for Delaunay triangulation, and 1.460 s for
the final color mapping. Finally, the version with connected components of the same
example took 245.657 s to compute, of which 6.375 s was needed for computing vertex
multiplicity, 94.764 s for Delaunay triangulation, and 48.478 s were spent in connected
component labeling. Figure 3.13 shows the impact of the variation of the step size, as used
for the measurements. Figure 3.14 shows the resolutions used for the measurements.

Table 3.1: Performance results in frames per second for different grid resolutions and time steps.
T = 4.0s in all tests. © 2017 IEEE.

Test Fig. Grid ∆t Steps Samples FPS

Grid

3.14a 200×200

0.001 4 000

40 000 1.0080

3.14b 400×400 160 000 0.2899

3.14c 600×600 360 000 0.1322

3.14d 800×800 640 000 0.0748

∆t

3.13a

400×400

0.1 40

160 000

77.230

3.13b 0.01 400 10.120

3.13c 0.001 4 000 1.008

3.13d 0.0001 40 000 0.107
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(a) ∆t = 0.1s (b) ∆t = 0.01s (c) ∆t = 0.001s (d) ∆t = 0.0001s

Figure 3.13: PS-FTLE-P with different step sizes using the Nine-Body example (grid 400×400,
T = 4.0s). (a) Integrationwith∆t = 0.1s results in severe artifacts, whereas with (d), no artifacts
are perceivable. In the accompanying video, we set ∆t between 0.001s and 0.02s depending on
the experiment. See Table 3.1 for respective performance measurements. © 2017 IEEE.

(a) 200×200 (b) 400×400 (c) 600×600 (d) 800×800

Figure 3.14: PS-FTLE-Pwith different grid resolutions using theNine-Body example (T = 4.0s,
∆t = 0.001s). (a)With a grid resolution of 200×200, samples can clearly be seen and fine struc-
tures cannot be resolved, whereas with (d), very fine structures can be resolved. In the accompa-
nying video, we used a grid resolution of 200× 200 in the introduction and multiplicity maps
sections, and a grid resolution of 100×100 in the stacked PS-FTLE section. © 2017 IEEE.

3.5 Discussion

In this chapter, we presented a novel approach for the analysis of inertial dynamics in
terms of initial value problems in n-dimensional space. For this, we extended the concept
of the finite-time Lyapunov exponent (FTLE) to 2n-dimensional phase space, leading
to phase-space FTLE (PS-FTLE). By introducing constrained PS-FTLE, we are able to
avoid direct visualization of this higher-dimensional space, leading to visualization in nD.
To enable the analysis of the contribution of position spread versus velocity spread, we
introduced decomposition of the PS-FTLE. To provide guidance for the exploration of
the 2n-dimensional space of initial values, we presented stacked PS-FTLE. Finally, for the
analysis of the interrelation of initial value problems in phase space, we presented multi-
plicity maps, their effective refinement, computation of connected components therein,
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3 Topology of Inertial Dynamics

and complemented this approach with interactive selection of initial values with respect
to final states.

As future work, we plan to apply our approach to various fields in science and engi-
neering, and investigate novel approaches for analysis of systems with dimension larger
than three, including time.
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The history of astronomy is a history of receding

horizons.

—Edwin P. Hubble

4 Visual Analysis of the FTLE

I
n the previous chapter, we have extended the regular, non-inertial FTLE formu-
lation to be able to capture and analyze the complexity of the inertial motion
found in most astrophysical systems. As mentioned in Section 3.1.4, we have

treated neither the starting time t0 nor the advection or transport time T as degrees of
freedom, and thus we do not currently have a mechanism at our disposal to truly explore
these dimensions. However, astrophysical systems, such as the stars in an open cluster,
whose movement is only governed by gravitational interactions, are very dependent on
these two quantities. In this chapter, we build upon the previous and, focusing in the
time domain, we develop a methodology to visually analyze dynamical systems in the
context of their various time dimensions.

In time-dependent flow, advection and inertia-based transport do not only depend on
where a tracer material is injected into the flow and for what duration it is transported,
but also at what time it is released. Essentially, and omitting initial velocity for simplic-
ity’s sake, for an n-dimensional time-dependent vector field u(x, t) which assigns a vec-
tor u ∈R

n to each position x ∈ Ω ⊂R
n within the spatial domainΩ at time t, advection

is defined by the seeding position x, the chosen seeding time t0, and the advection dura-
tion T . Thus, it has n+2 degrees of freedom, or in other words, n+2 dimensions.

Since exploring the entire (n+2)-dimensional space would be prohibitively tedious,
summarization and reduction strategies have proven very useful. As we have seen
in Chapter 2, in steady (time-independent) vector fields, this is achieved with traditional
vector field topology, which is based on instantaneous advection curves, knownas stream-
lines (Section 2.4.1). Those streamlines that converge in forward or reverse time to saddle-
type critical points, which are isolated zeros of u(x), separate such regions, and are thus
named separatrices. In time-dependent flow, LCS (Section2.5.3) take over the role of sep-
aratrices. As we have shown in Section 2.5.7, andmotivated byHaller [Hal01] and shown
by Shadden et al. [SLM05],LCS can be obtained as ridges, i.e., typically codimension-one
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manifolds with locally highest value, in the finite-time Lyapunov exponent (FTLE) field.
The FTLE field σT

t0
(x) is a scalar field in the n-dimensional domain Ω, and the (n− 1)-

dimensional LCS provide such a summarization and reduction—however, only for the
seeding time t0 and advection time T used to compute the FTLE field.

Although the FTLE is a very powerful tool for understanding advection in time-
dependent flow, it has not reached wide application yet. Its comparably high compu-
tational cost (a trajectory has to be computed for each of its sample points in space and
time)might not be themain reason for that, since several acceleration strategies have been
proposed [Gar+07; SP07; SRP11]. It is muchmore its highly intricate parametrization and
difficult interpretation that impede successful application by the non-expert. For exam-
ple, T has to be chosen large enough to capture the phenomenon of interest, but small
enough to prevent aliasing at the chosen spatial resolution of σT

t0
(x). Also, analysis of

the two-dimensional space spanned by t0 and T for relevant structure is not amenable by
direct interactive exploration without supporting context. It is the goal of this chapter
to provide an approach that overcomes such issues and helps FTLE-based flow analysis
reach its deserved applications by making it easier to apply and interpret. Although large
parts of our technique generalize to any dimension, we focus on two-dimensional vector
fields and leave the extension to 3D for future work.

The contributions of this chapter include:

• The concept of aggregation functions in the t0–T space, and
• aggregation function definitions to analyze: basic properties,
• height ridge configurations,
• aliasing and resolution issues, and
• the overall “connectedness” of FTLE fields.
• Finally, an integrated framework to aid in the exploration and analysis of these ag-
gregation functions and the FTLE.

4.1 Basic concepts

Fundamental concepts of LCS andFTLE arewell covered in Sections 2.5.3 and 2.5.5. An
introduction to height ridges is provided in Section 2.5.7. In this present section we only
discuss the points relevant only to this chapter. As we have seen in Section 2.5.5, FTLE
is a measure of separation of particles seeded at nearby points at time t0 after advection
time T , and has the formulation shown in Equation 2.15, repeated here for convenience:

σT
t0
(x) =

1

|T |
ln
∥

∥∇φφφ T
t0
(x)
∥

∥

2
. (4.1)
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Note that increasing T typically leads to a decrease of the overall FTLE values, since the
particles would need to diverge exponentially over the entire duration T to keep the over-
all FTLE values constant. We counteract this effect, which can hinder visual analysis of
FTLE behavior, by optional multiplication of the FTLE values with |T |, prior to, e.g.,
applying aggregation functions (see Section 4.2). Notice also that the sampling of the
FTLE grid does not need to (and typically does not) coincide with the grid nodes of the
vector fieldu(x, t). In fact, the spatial resolution of the FTLE grid is an important param-
eter, which needs to be chosen sufficiently high to prevent aliasing, or in other words, to
appropriately capture the structure of the FTLE. Furthermore, we do not employ accel-
eration strategies for FTLE computation (except for parallel computation on the GPU),
and we sample it for a region of interest of the space spanned by t0 and T , including de-
rived measures, which leads to very expensive computation. Thus, in this chapter we
employ pre-processing, which, however, is carried out as a batch process since it requires
no user interaction whatsoever.

4.2 Method

We now describe our visual analytics approach in terms of derived measures and their vi-
sual representation. In Section 4.3, we focus on interaction and implementation aspects,
followed by an evaluation in Section 4.4. Performance and optimization considerations
are discussed in detail in Section 4.5.

4.2.1 Aggregation Fields

Themost basic challenge with FTLE-based flow visualization is the selection of a seeding
time t0 together with an appropriate advection time T . In addition, the temporal struc-
ture of vector fields can be very rich, making it difficult to determine relevant instants
of time t0. Notice that it is common practice in FTLE-based visualization to choose a
T and then use it to compute the FTLE field σT

t0
(x) for a finely resolved sequence of

t0, leading to respective animations. Whereas such animated visualizations might work
quite well once the spatiotemporal region of interest, as well as the appropriate advection
time, has been determined, they do not provide temporal context, nor do they support
finding such relevant regions of interest. Additionally, the exploration of t0 is compli-
cated by the fact that t0 and T are intertwined—their selections impact each other. And
furthermore, processes at different locations and different times t0 in a given vector field
typically require different choices ofT , imposing hard challenges in choosing appropriate
combinations of t0 and T .
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t0

T

(a)

t0

T

(b)

t0

T

(c)

t0

T

(d)
Figure 4.1: Basic aggregation functions for the Quad-Gyre dataset with aggregation field reso-
lution Gagg = 200×200, FTLE resolution G = 200×200, t0 ∈ [0,8], and T ∈ [1,8]. fσavg (b)
displays a very soft structure apart from the direct proportionality with T . By contrast, fσmax

(a)
captures the periodicity of the dataset surprisinglywell. We also provide, for comparison, the 95th
percentile (c), and the sum of squares (d) aggregation fields.

We support the exploration of regions of interest in the space spanned by t0 and T

(denoted Ωt0,T ) by introducing aggregation fields fα(y):

fα : Ωt0,T → R , (4.2)

which map each point y ∈ Ωt0,T ⊂ R
2 to the scalar result of an aggregation function α .

That is, each point y corresponds to an FTLE field σT
t0
(x), and the aggregation function

α : (Ω → R)→ R (4.3)

takes the field σT
t0
(x) as input and outputs a single scalar value. Aggregation fields are

displayed in the aggregation panel (Figure 4.9) of our system, providing insight intoΩt0,T

in FTLE-based flow analysis. Notice that we map t0 to the abscissa and T to the ordinate
in the visual analytics framework.

We found the following aggregation functions particularly useful for summarizing im-
portant properties and trends of FTLE fields and LCS in a single scalar value. We divide
them into four distinct groups according to their use: basic aggregation (Section 4.2.2),
ridge aggregation (Section 4.2.3), aliasing aggregation (Section 4.2.4), and region aggre-
gation (Section 4.2.5).

4.2.2 Basic Aggregation Functions

As motivated above, a basic need in FTLE-based flow visualization is to support the ex-
ploration of combinations of t0 and T . We evaluated the summarization of an FTLE
field for each y ∈ Ωt0,T by aggregation functions computing its minimum, maximum,

60



4.2 Method

average, median, sum of squares, root mean square, and 95th percentile—and identified
the maximum and average as the generally most useful ones. The maximum aggregation
function is defined as follows:

σmax(σ
T
t0
(x)) := max

x̂∈Ω̂
σT

t0
(x̂) , (4.4)

with Ω̂ being the discrete domain of the FTLE field, i.e., the set of sampling grid nodes
of our node-based representation ofσT

t0
(x), and x̂ representing such a node. An example

of the resulting aggregation field fσmax(y) is shown in Figure 4.1a.

The average aggregation function is defined as:

σavg(σ
T
t0
(x)) :=

1

|Ω̂|
∑

x̂∈Ω̂

σT
t0
(x̂) , (4.5)

with |Ω̂| being the cardinality of Ω̂, i.e., the number of nodes in the FTLE sampling
grid. An example for the aggregation field fσavg(y) resulting from the average aggregation
function σavg(·) is shown in Figure 4.1b.

4.2.3 Ridge Aggregation Functions

Since FTLE ridges represent LCS, which in turn are the topological features of time-
dependent vector fields, the total amount of ridges is a basic measure for the topological
structure of a time-dependent vector field. Thus, our first ridge aggregation function

ρlen(σ
T
t0
(x)) := ∑

r∈R

µ(r) , (4.6)

simplymeasures the total length of all height ridges extracted from the FTLEfieldσT
t0
(x),

with R being the set of all ridges (in polyline representation), and µ(r) measuring the
length of ridge r. Figure 4.3 shows an example result of the ridge extraction process and is
annotatedwith the respectiveρlen values. Figure 4.2a shows the aggregation field fρlen(y),
resulting from the ridge length aggregation function ρlen(·).

The number of ridges, on the other hand, can capture if ridges are disrupted, e.g., due
to insufficient resolution of the FTLE field. This is a major issue in FTLE-based visual-
ization (Figure 2.8). Thus, our next ridge aggregation function

ρcnt(σ
T
t0
(x)) := |R| , (4.7)
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t0

T

(a)

t0

T

(b)

t0

T

(c)
Figure 4.2: fρlen (a), fρcnt (b), and fρ̂len(k)

(c) aggregation fields, applied to theQuad-Gyre dataset,
with τλ = −0.05 and the same parameters as for Figure 4.1. Note that (a) shows a rather contin-
uous field, while (b) contains only integer numbers of ridges, and (c) displays a similar structure
due to its dependency on the number of ridges. Additionally, while ρlen increases with T due to
longer, sharper ridges, ρ̂len(k) exhibits in (c), toward higher T values, a sharp drop in the quality
of extracted ridges caused by aliasing. The rather noisy top part in all fields shows that the chosen
spatial resolution is unable to capture the ridges at high T values well, so they break up in an un-
predictable manner causing these patterns.

counts the number of height ridges extracted from the FTLEfieldσT
t0
(x), with |R| being

the number of elements inR. Figure 4.2b shows the respective aggregation field fρcnt(y).
SinceLCS, i.e., FTLE ridges, separate regions of qualitatively different time-dependent

advection, their individual length is also important—a long ridge represents a larger bar-
rier in the domain and thus also represents a more significant topological structure (Fig-
ure 4.3). This motivates our last ridge aggregation function

ρ̂len(k)(σ
T
t0
(x)) :=

1

|R| ∑
r∈R

µ(r)k , (4.8)

which measures the averaged kth power of the ridge lengths. It provides a good measure
of the overall quality of the ridge extraction stage, and, implicitly, discretization quality
(appropriateness of the resolution) of the FTLE field. Figure 4.2c shows the respective
aggregation field fρ̂len(k)

(y) for k = 1.

4.2.4 Aliasing Aggregation Function

The ridge count ρcnt(·) and ridge length power ρ̂len(k)(·) aggregation functions are al-
ready able to indicate aliasing issues in the FTLE field σT

t0
(x). However, they do that

only indirectly via the properties of the ridges extracted from σT
t0
(x). Since these ridge

aggregation functions also capture the structure of the LCS and are thus superimposed
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Figure 4.3: Samedataset as Figures 4.1 and4.2, showing the result (yellow) of the ridge extraction
process with seeding time t0 = 4.0 s and advection time T = 2.75 s (a), corresponding to the red
dots in Figure 4.2, and T = 6.25 s (b), corresponding to the blue dots in Figure 4.2. The value of
ρlen in (a) is 5.09 , and 12.18 in (b). The aggregation fields show trends which would otherwise be
impossible to observe just by looking at the single FTLEfields (higher values by higher saturation).

byLCSproperties, we complement themwith a newaggregation function that quantifies
aliasing in a direct way.

Aliasing in FTLE fields, as apparent in Figure 2.8a, is caused by a too low FTLE field
resolution compared to the gradients (frequencies) of the FTLE field. It is in particular
the very low width of FTLE ridges that makes the FTLE field so hard to sample. This
is all the more challenging as this width is related inversely to the advection duration T .
That is, the larger T , the longer typically the LCS, and the sharper the FTLE ridges be-
come. In confined domains, the flow has to turn at some point and will cause the ridges
to fold, leading to closely adjacent ridges by the so-called stretching and folding mecha-
nism [Sma67]. To the best of our knowledge, there is no analytic result on the relation
between FTLE advection time and ridge width, but due to the underlying assumption of
exponential divergence, and motivated by our observations, we assume that ridge width
decreases exponentially, too, which imposes a very hard challenge on appropriate FTLE
sampling. That is, increasing T typically requires much stronger increase of the spatial
sampling resolution, otherwise aliasing will appear.

Motivated by theNyquist–Shannon sampling theorem, we indicate aliasing by analyz-
ing the frequency spectrum of the FTLE field. That is, we use the Fourier transform to
obtain the 2D spectrum of the field, and measure the amplitude of the highest frequen-
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Figure 4.4: Aliasing aggregation field fνsum(2)

for the Quad-Gyre dataset with resolution
G = 25×25 (a), 50×50 (b), 100×100 (c), 200×200 (d), 400×400 (e), and 800×800 (f).
Gagg is, in all cases, 200 , T ∈ [1,8], and t0 ∈ [0,8]. Note the dependency of the aliasing aggrega-
tion field on advection time T , and how the aliasing pattern moves to larger T (top) as the field
resolution G increases.

cies in that spectrum. Our motivation to do so is that if the original signal (in our case
the underlying true FTLE field that we are discretizing using the discrete flow map) had
frequencies higher than the Nyquist frequency, it would be very likely that the highest
frequencies in the discretized signal (our sampled FTLE field) have non-negligible am-
plitudes. Conversely, negligible amplitudes in the highest frequencies in the FTLE can
indicate appropriate sampling.

We realize such aquantificationof the amplitudeof thehighest frequencies of anFTLE
field σT

t0
(x) by first transforming it to the 2D frequency domain Ω̃ ⊂ R

2 using the fast
Fourier transform [CT65], resulting in the spectrum σ̃T

t0
(ξξξ ) for ξξξ ∈ Ω̃. Notice that in

this representation, zero frequency is at the origin ξξξ 0 = 0 and Ω̃ is symmetric about the
origin. As a consequence, points ξξξ at equal distance ν from the origin, i.e., ‖ξξξ‖ = ν ,
represent equal frequencies, or in other words, circles in Ω̃ ⊂ R

2 (about the origin with
radius ν) represent all amplitudes belonging to the frequency ν . Thus, to quantify the
amplitude of the m highest percent of frequencies in the FTLE field σT

t0
(x), we define

the following aliasing aggregation function, which integrates the spectrum σ̃T
t0
(ξξξ ) along

these circles:
νsum(m) :=

∫∫

ξξξ∈X

σ̃T
t0
(ξξξ )dξξξ , (4.9)

with
X :=

{

ξξξ ′
∣

∣

∣ ‖ξξξ ′‖ ≥ 100−m
100

ν̂
}

, (4.10)

and with ξξξ ′ ∈ Ω̃, and ν̂ being the Nyquist frequency, i.e., the spatial resolution of our
discretized σT

t0
(x).

Figure 4.4 shows the resulting aliasing aggregation field fνsum(m)
(y) for choices of in-

creasing FTLE resolution. One can see that as the FTLE resolution increases, the area
within Ωt0,T with negligible highest frequencies (low aliasing) extends to the top, i.e.,
our aggregation indicates that longer advection times T can be used.
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Figure 4.5: Aliasing aggregation field fνsum(2)

mapped to the green channel, and fρ̂len(k)
(a), and

fρlen (b) mapped to the red channel for the dataset from Figures 4.2a, 4.2c, and 4.4d. Note that
in (a), the fields are somewhat complementary because the ridge quality decreases as the aliasing
problems increase, whereas in (b), they both show the same increasing trend with T .

Typically, a correlation between the amount of aliasing and the ridge length aggrega-
tion ρlen(·) can be observed. The main cause for this is that aliasing is typically caused by
very sharp (thin) ridges, that cannot be resolved with the chosen spatial resolution. As
discussed above, such long and sharp ridges appear in particular with longer advection
times—and if the resolution is chosen too low, ridge extraction typically produces dis-
rupted lines, which reflects in low ρ̂len(k) values (top in Figure 4.2c). Our systemprovides
the option tomap aggregation fields to different color channels for combined analysis for
such purposes, as demonstrated in Figure 4.5.

4.2.5 Region Aggregation Functions

Our final aggregation function goes one step further and focuses on the interpretation of
FTLE fields. As discussed, FTLE ridges, the LCS, separate regions of qualitatively differ-
ent time-dependent flow behavior. However, whereas separatrices in steady vector field
topology indeed separate such regions entirely (assuming integration time of the stream-
lines goes to infinity), LCS typically do not. That is, LCS do generally not partition the
domain—they typically leave gaps (see Figure 4.3b). The reason for that is that topology
of aperiodic time-dependent flow does usually not have the opportunity to consider the
limit case T → ∞. Instead, finite-time considerations (with respect to finite advection
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time T ) have to be employed, leaving gaps between LCS due to the time-local nature of
the topological processes.

We account for these circumstances by introducing a measure to quantify the connect-
edness of the domainΩwith respect to “obstacles”, which in our case are the FTLE ridges.
Due to the high computational complexity of thismeasure, we define a separate (typically
lower-resolution) sampling grid in the FTLE domain Ω, whose grid nodes we denote
ŷ ∈ D (Figure 4.6 contains a comparison of different ŷ-resolutions). We then discretize
the FTLE ridge set R at the resolution of the FTLE (at nodes ẑ), by setting ridge nodes
as “background” (white in Figure 4.6) and non-ridge nodes to “foreground”. In other
words, we binarize the ridge lines into the grid ẑ, and collect its foreground nodes in a
set F and its background nodes in a set B. Based on that, we define our connectedness
field γ(ẑ) at a given node ẑ as follows:

γ(ẑ) :=
1

|F | ∑
ŷ∈ D

µ(A∗(ẑ, ŷ)) , (4.11)

with |F |being thenumber of foreground, i.e., non-ridgenodes,A∗(ẑ, ŷ)being the short-
est path between nodes ẑ and ŷ according to the A∗ algorithm (avoiding the background,
i.e., ridge obstacles), and µ(·) being the length of such a path. If such a shortest path be-
tween two foreground nodes ẑ and ŷ does not exist (e.g., because it is completely blocked
by LCS and/or boundaries), the distance is set to the perimeter of the domain Ω. If one
of the nodes (or both) are contained inB, the respective length is set to zero. Figures 4.7c
and 4.7d show an example of the connectedness field resulting from the respective ridge
configurations (orange lines).

To obtain an aggregation field, we need to combine all values of the connectedness
field γ(ẑ) into a single scalar value. We accomplish this by employing the basic aggregation
functions (Section 4.2.2) to γ(ẑ) instead of σT

t0
(x), resulting in the region aggregation

fields fγmax(y) (Figure 4.7a) and fγavg(y) (Figure 4.7b).

Even though there is a correlation between the total ridge length aggregation
field fρlen(y) and the connectedness aggregation field fγ(y) (Figure 4.8), the latter is able
to account for almost isolated or even closed regions, in contrast. Additionally, fρlen(y)

does not take into account the configuration and layout of the ridges in terms of topo-
logical structure.
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Figure 4.6: The same connectedness field of the Quad-Gyre dataset with FTLE resolution
G = 50×50 and different ŷ-resolutions Gs = 5×5 (a), Gs = 10×10 (b), and the same as G,
Gs = 50×50 (c). Observe the small difference between the version where Gs = G (c) and the
version using a hundred times less samples (a). This example shows that the connectedness of the
dataset is equally well captured by all sampling resolutions.
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Figure 4.7: Region aggregationfields (a)–(b) andconnectedness fields (c)–(d) for theQuad-Gyre
dataset. Resolutions areGagg = 200×200 andG = 50×50. fγavg (b) shows a strong dependency
on T , but also some changes along t0, indicating different degrees of connectedness for different
time settings. By contrast, fγmax (a) clearly displays the fieldswhich have closed areas in yellow. The
red marker corresponds to the connectedness field (c), at t0 = 2.3 s and T = 5.0 s, which exhibits
no closed regions. On the other hand, the blue marker in (a) corresponds to (d), at t0 = 5.3 s and
T = 5.6 s, which has four isolated regions. In the connectedness fields, the ridge lines (orange) are
rasterized in white.

4.3 System Description

The system is composed of a modular, interactive and customizable front-end and a ver-
satile computing back-end, which enable the user to analyze, examine, and understand
the temporal and spatial properties of the system under study. The software can be set
up using command line arguments, to compute a user-selected list of aggregation fields,
or it can load precomputed runs from files. Additional options include starting an inter-
active session or only compute in the background, and persisting the results to disk. The

67



4 Visual Analysis of the FTLE

4 6 8 10 12 14
ρlen

0.02

0.03

0.04

0.05

0.06
Av

er
ag

e c
on

ne
cte

dn
es
s

Figure 4.8: Scatterplot with density coloring of ρlen (yellow = high), with respect to the average
region aggregation field fγavg , for the Quad-Gyre dataset. Note that for shorter ridge lengths, the
relation is quasi-linear, but as the total ridge length increases, the values of the average region ag-
gregation field spread out, giving rise to very different connectedness configurations for fieldswith
the same total ridge length. The clusters centered around different average connectedness values
(0.02, 0.045, 0.055) correspond to different closed-region configurations. For instance, the top-
most cluster contains all configurationswhere themap is vertically divided into two similarly-sized
disconnected regions. The second cluster corresponds to configurations where roughly a quarter
of the map is a closed region (see Figure 4.7d). The rest corresponds to different configurations
of smaller-sized closed regions. Note that within each cluster, there is a considerable deviation
in average connectedness, proving that this aggregation function is actually able to measure the
connectedness quite well, even when closed regions are present.

software will be open sourced and published at a later date. In the following, we describe
its capabilities and features in detail.

Main layout. Our system consists of two panels laid out side-by-side (Figures 4.9
and 4.10), plus a set of UI elements and controls in charge of receiving and presenting
information to the user. The left panel ① contains the aggregation field displaying one
or more of the aggregation functions, optionally with logarithmic scale. The panel right
next to it ② displays the FTLE field for a selected location in the aggregation space. The
FTLE field panel is automatically updated as the user hovers the cursor over the aggrega-
tion field.
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4.3 System Description

Aggregation panel. The aggregationpanel① contains the currently selected aggrega-
tion field with the user-selected resolution Gagg = Nt0 ×NT . Two timelines are available
to the left and bottom of the aggregation panel ③. These contain six “field icons” at dif-
ferent positions in t0 (bottom) and T (left) space. The timelines are also automatically
updated with the active mouse position in the aggregation field. Additionally, we dis-
play integrated hyperbolicity det(∇u(x)) of the vector field (which tends to quantify the
separating dynamics causing LCS) aligned with the seeding time on the horizontal axis,
below the timeline④. A color legend is provided to the right of the aggregation panel⑤,
and it is updated automatically when the aggregation field changes.

FTLE panel. The FTLE panel ② displays the finite-time Lyapunov exponent field
for the active coordinate in the aggregation panel, with the user-selected resolution G =

N ×M . It is recomputed and updated automatically whenever this coordinate changes.
Moving the pointer within the FTLE panel, while pressing the control key, spawns a tra-
jectory seed, which follows the pointer movement. Clicking on the field while pressing
the control key creates permanent trajectory seeds. All used colormap schemes can be
changed at runtime using theViewmenu. The system allows for global and local scaling
of colormaps. All images in this chapter use local scaling. The colormaps used by default
include the blues colormap (white to blue, used in regular FTLE fields), the inferno col-
ormap (black to purple to orange to yellow, used in the aggregation fields) and the viridis
colormap (purple to blue to green to yellow, used in the region aggregation fields).

Contours and ridges. Similarity contours can be computed in the aggregation panel
in order to aid in the visual exploration of the aggregation field. Ridge extraction can be
applied to either the aggregation or the FTLE fields. The ridge extraction threshold (τλ )
defaults to the one used for the computation of the ridge aggregation fields. The system
also supports interactive exploration of different values for τλ .

Three-way exploration. The system supports a three-way simultaneous exploration
mode (Figure 4.5) for aggregation fields. Any two or three aggregation fields may be
mapped to the red, green, and blue channels, in order to explore their combined proper-
ties. If the desired exploration concerns only two aggregation fields, a default ’zero’ aggre-
gation field is provided, ready to be selected andmapped to any color channel to mute it.
More interestingly, a three-way exploration mechanism is also offered in the FTLE field
panel. Once enabled, the user can successively click on positions in the aggregation panel
to map the corresponding fields to the red, green, and blue channels. The mapping se-
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Figure 4.9: Illustration of the components in our system. Aggregation panel①, FTLE panel②,
vertical and horizontal timelines③, vector field hyperbolicity panel④, aggregation field color leg-
end ⑤, UI controls ⑥, contextual information pane ⑦, output console ⑧, main menu ⑨, and
status bar ⑩.

quence starts over with the fourth click. Any trajectory seeds present in the field view are
updated using the coordinates last FTLE field computed by the system.

Caching capabilities. The aggregators are computed once per dataset and set of ini-
tial parameters and persisted to a file. The fields are typically computed in real time, es-
pecially when their computational complexity is low enough that the available hardware
can perform the task in an interactive manner. For the cases in which that is not possible,
fields, ridges and other elements can be cached during the computing phase and persisted
alongwith the aggregators in order to enable fast exploration and analysis. This is, in fact,
the default mode when distance maps are enabled, as they are far too costly to be com-
puted in real time during an interactive session. Along with the aggregators and possibly
the fields and ridges, the full state of the application is also persisted, containing all the
starting parameters and options.

Input/output controls. The controls are positioned to the right of the FTLEpanel⑥,
and contain the necessary elements tomanage the behavior and settings of the current ses-
sion. In order to guide the user through the visual analysis process and improve under-
standing, the system offers a contextual information box⑦, which shows comprehensive
information of the currently selected/highlighted elements. The current output log is
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Figure 4.10: Screen shot with the layout and appearance of our framework. The user interface
is divided into three main vertical areas: the forward integration, the reverse integration and the
console output.

shown in the console output panel ⑧. The top menu bar ⑨ contains shortcuts to many
functions, such as saving the current session, exporting views to image files, changing
color maps or pausing the update thread. Finally, a summary of the state of the current
session is displayed at the bottom of the window, in the status bar ⑩. The resolution of
the aggregation and FTLE fields, the extents of t0 and T , the caching status, and some
global state flags are displayed here.

Contextual information box. The information is updated live as the user hovers over
different UI elements, and offers straightforward notes on what the element is and does,
as well as tips on how to use it to maximize its usefulness during the exploratory process.

Export functions. In order to produce publication-quality visuals, the system offers a
handy export feature which is able to export the contents of any panel to images in PNG
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and EPS formats. The export process renders the different layers (surface, primitive ele-
ments, text, etc.) of the selected view to high-resolution off-screen buffers and produces
high-quality files. Additionally, it also blends all the layers together to produce the final
high- and low-resolution images of the scene. Sometimes, some aggregation fields display
strong dependencies on either t0 or T . In order to aid in the analysis of such cases, pro-
jection profile plots of either aggregation field axes for any aggregation function can be
automatically computed and exported to files as well.

4.4 Results

Our recommended exploration flow, as gathered by the experts’ experience with the tool,
starts by analyzing the basic aggregation in order to get a sense of the general trends that
may be captured by the fast statistical functions, followed by the ridge and aliasing ag-
gregation fields, which help narrow down the most interesting parameter subspaces, to
end with the region aggregation to gain insight into the connectedness properties of the
dataset. The system allows, if required, interactive exploration of the FTLE fields in con-
text with the aggregation space, as well as interactive fine-tuning of key parameters such
as the ridge extraction threshold. Additionally, recomputation of interesting sub-spaces
at different resolutions and with different parameters may also be required. With these
guidelines in mind, we analyze an analytic example (Section 4.4.1), a 2D fluid dynam-
ics simulation (Section 4.4.2), a constructed dataset based on appearing Gaussian vor-
tices (Section 4.4.3), an inertialN-body system (Section 4.4.4), and an atmospheric wind
dataset based on real measurements (Section 4.4.5).

4.4.1 Quad-Gyre

We have already used this example in Section 3.3.1. It was introduced by Shadden et
al. [SLM05] for the analysis of Lagrangian coherent structures. The vector field is de-
fined by the analytic representation shown in Equation 3.32. We sampled the field at a
resolution of 50× 50 and 100 time steps in the spatial range x ∈ [−1,1]× [−1,1] and
temporal range [0,20]. Note that we use this y-range instead of the often employed [0,1],
leading to a y-symmetric field with four time-dependent vortices instead of two.

We compute all basic, ridge, aliasing, and region aggregation fields for T ∈ [1,8] and
t0 ∈ [0,8]. Starting with the basic aggregation fields in Figure 4.1, we can see in fσavg

(Figure 4.1b) very vague recurring features in t0 and a strong dependency on T . This
periodicity is captured much better by fσmax (Figure 4.1a). A particular feature of this
dataset is that when the main vertical LCS crosses from right to left and vice-versa, it is
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less sharp, resulting in lower FTLE values. This is captured by fσmax and shown as a val-
ley. fρlen shows an obvious proportionality with T (Figure 4.2a), and some extra periodic
structure that shows variations in the total length of ridges. Figure 4.3 shows the actual
FTLE field and ridges with two different advection times for this dataset. fρ̂len(k)

(Fig-
ure 4.2c) shows that the central values of T (between 3 s and 5 s) are the best candidates
for high-quality ridges. An interactive exploration with the system reveals that at higher
T values, the ridges break up, and the current resolution is not able to capture themwell.
The aliasing aggregation field supports this analysis. Figure 4.4a shows that the field reso-
lution of25×25 is unable to properly sample the field anywhere in the aggregation space,
whereas Figure 4.4e shows that the resolution of 400× 400 does not present problems
when T < 4s. In particular, looking at the aliasing field for the resolution of 200×200

(Figure 4.4d) for which fρ̂len(k)
has been computed (Figure 4.2c), we discover that areas

with lower fρ̂len(k)
values (i.e., low-quality ridges) coincide with regions with high aliasing

indication. Figure 4.5a shows both aggregation fields in the same image for comparison.
We determine that we would need a higher resolution to effectively capture the ridges
in that area. Finally, the maximum region aggregation field (Figure 4.7a) is able to sepa-
rate the configurations which have disconnected areas from the rest and provides a clear
picture of the degree of connectedness of the fields in the aggregation space.

4.4.2 Buoyant Flow

The Buoyant Flow dataset is a fluid dynamics simulation of air current moving around
in a container with a heated bottom wall and a cooled top wall. Figure 4.12 shows basic
and ridge aggregation fields for this dataset. We can see in fρlen (Figure 4.12b) that most
of the structure is concentrated away from low t0 and T values, but once it shows up,
it exhibits little variation. We can infer that the Lagrangian coherent structures, repre-
sented by the ridges, move around with the field but the total number stays more or less
constant, which indicates their high quality. Figure 4.11 contains a comparative analysis
of the aliasing aggregation field with two different resolutions, 100×100 (Figure 4.11a)
and 400×400 (Figure 4.11b). Observe how the aliasing problems diminish considerably
with this factor of four increase in field resolution. We can be quite confident that the
field is sampled correctly across the whole aggregation space, except for a very small prob-
lematic zone close to the bottom left. Figure 4.13 shows the Buoyant Flow FTLE with
varying resolutions and identical τλ . Our system, as demonstrated in the accompanying
video, supports interactive exploration of such parameters.
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Figure 4.11: Aliasing aggregation fields (Gagg = 500×500) for the Buoyant Flow dataset with
G = 100×100 (a) andG = 400×400 (b). Observe how the aliasing values decrease significantly
with the increased resolution.

4.4.3 Three Gaussian Vortices

TheThreeGaussian Vortices dataset is a constructed vector field based on a blend of sim-
pler fields generated using a mixture of programmatic rules and time-dependent analyti-
cal functions. It consists of three vortices, each spatiallymaskedwith aGaussian function,
that appear at different times and positions on top of a uniform velocity field to the right.
The basic aggregation fields fσmax (Figure 4.14a) and fσavg (Figure 4.14b) capture the gen-
eral trend quite well. fσavg captures the moment when each vortex appears. Figure 4.14c
shows that fρlen additionally captures the location of the vortices in the aggregation space
in terms of ridges, providing a very good picture of interesting parameter combinations
for this dataset. To that effect, the illuminated areas represent the subspaces of (t0,T )
where one, two, and three vortices are in the field and cause sufficient sharpness in the
FTLE field so that the ridge extraction algorithm succeeds.

4.4.4 5-Body

We now demonstrate the utility of our approach to handle fields other than traditional
FTLE. In this example, we use an inertialN-body systemwith five bodies. The simulated
bodies start more or less evenly distributed in space and interact freely over time (Fig-
ure 4.17). We use the phase-space finite-time Lyapunov exponent field (PS-FTLE) in-
troduced in Section 3.1.3, which extends the regular FTLE to the dynamics of inertial
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Figure 4.12: Buoyant Flow dataset with Gagg = 500×500 and G = 400×400, t0 ∈ [0,0.3],
and T ∈ [0.01,0.1]. All fields fσmax

(a), fρlen (b), and fρcnt (c) show a similar structure with this
dataset. The ridge aggregation fields, however, show that the LCS are only sharp enough to be
detected as ridges at high T values.
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Figure 4.13: FTLE fields extracted from the Buoyant Flow dataset with G = 100×100 (a),
G = 400×400 (b), G = 800×800 (c), and G = 1600×1600 (d) with identical t0 = 0.09 s,
T = 0.088 s (red marker in Figure 4.11), and τλ = −0.04 in all cases. Observe how the same τλ

value leads to very different ridge configurations, depending on the resolution.

systems, with initial velocity constrained to 000 (PS-FTLE-P). The aggregation fields (Fig-
ure 4.16) exhibit more structure than most previous datasets. fσmax and fρlen clearly
show the dispersion of the bodies toward higher t0, i.e., the bodies exit the region of
study toward the end of the time range. Figure 4.17 provides a PS-FTLE-P sequence
for this dataset. The aliasing aggregation fields for G = 100× 100 (Figure 4.16c) and
G = 300× 300 (Figure 4.16d) show that, even though the aliasing decreases consider-
ably in some regions, a resolution of 300 is still insufficient. The PS-FTLE-P folds over
and over close to the bodies, which the shown resolution is not able to capture appropri-
ately. The region aggregation fields for this dataset (Figure 4.15) hint at configurations
at which the ridges isolate disconnected regions (yellow zones in Figure 4.15b), and con-
figurations where the ridges do not quite close at the given resolution and thus produce
lower connectedness values.

75



4 Visual Analysis of the FTLE

t0

T

(a)

t0

T

(b)

t0

T

(c)

x

y

(d)
Figure 4.14: Three Gaussian Vortices dataset with Gagg = G = 400×400, t0 ∈ [40,170], T ∈
[1,20], and τλ =−0.04 fσmax

(a) captures themaximumvalue in the FTLEfield, only showing the
boundary where the first vortex appears, while fσavg (b) captures the average of all values, clearly
displaying additional structure as each of the three vortices appears. fρlen (c) shows the contri-
bution of each of the three vortices, as they appear, in the form of ridge length. The red, green,
and blue markers correspond to the same T = 18 s and different t0 of 100 s, 133 s, and 160 s, re-
spectively. (d) shows the three FTLE fields corresponding to the three points in (c), mapped to
the red, green, and blue channels. The bottom vortex appears at around t0 = 75 s and stays there
until the end, thus showing white (red + green + blue). The middle vortex is still present when
the top-most one appears, thus showing in cyan (green + blue).

Stefan Jordan, one of our coauthors and an expert astrophysicist, has evaluated the tool
with the 5-Body dataset: The system is able to guide to some interesting events like close-
body interactions around t0 = 1.6, showing up as a valley in the maximum and ridge
length aggregation fields. Even though, to the best of our knowledge, FTLE has never
been used in astronomy, the identification of relevant events and features with such a
tool could aid in the interpretation and understanding of theoretical astronomical data
like N-body and hydrodynamic simulations, the merging of galaxies, the dissolution of
star clusters, star and planetary system formation and, convection in stars.

4.4.5 Atmospheric Wind

This dataset was generated by the Copernicus Climate Change Service (2020) and con-
tains observations of wind velocity in the area of longitudes between 30° and 60° east and
latitudes between −15° and 15°, corresponding to the region around the horn of Africa,
for December 1 to 3, 2019. This is a rather complex dataset, but it is easy to identify
the day–night cycles by investigating the aggregation fields in Figure 4.18. The maxi-
mum aggregation field Figure 4.18a proves to be the poorest at capturing it, but it shows
some interesting additional structure. However, both fσavg (Figure 4.18b) and fρ̂len(k)

(Fig-
ure 4.18c) show that periodic trend, with the latter revealing the nights as times of higher
activity with more pronounced ridges.
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Figure 4.15: Average (a) andmaximum (b) region aggregation fields for the 5-Body dataset with
Gagg = 100×100 andG = 50×50, togetherwith the actual connectedness fields at t0 =0.057 s,
T = 2.68 s (c), and t0 = 3.44 s, T = 1.87 s (d), corresponding to the red and green dots in the
aggregation fields, respectively.
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Figure 4.16: Aggregation fields for the 5-Body dataset. fσmax

(a), fρlen (b) with G = 300×300,
and aliasing aggregation fields with G = 100 (c) and G = 300×300 (d). Gagg = 300×300,
t0 ∈ [0,6.5], and T ∈ [1,3] in all cases. The aliasing aggregation fields suggest that the chosen
resolution is too low for this dataset, irrespective of (reasonable) advection times.

4.5 Implementation and Performance

The reference application is implemented using Python and the Qt5 GUI library via
PyQt5. Much of the computationally intensive operations ((PS-)FTLE fields, trajecto-
ries (or pathlines), connectedness, ridges, reverse integration, etc.) are implemented in
highly parallel CUDA kernels andmanaged via PyCuda [Klö+13]. These are laid out and
structured using a tailor-made templating system that is able to construct and compile the
needed kernel on-demand from a large set of templates. The templating system produces
67 different single kernels, amounting to 20 thousand lines of CUDA code in total. The
graphical representation in the panels is handled by the OpenGL abstraction layer, pro-
vided by the library VisPy [Vis], and extra care was put into implementing efficient and
speedy updating and streaming solutions for all graphical components. The project has
11540 lines of code in total, 8421 of which are in Python, 2580 in CUDA, 179 in Bash
scripts, 220 in GLSL, and 140 in HTML.
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Figure 4.17: PS-FTLE-P fields for the 5-Body dataset with G = 300×300, T = 2.8 s, and
t0 = 0.25 s (a), t0 = 2.25 s (b), t0 = 4.25 s (c), and t0 = 6.26 s (d). The radius of the bodies (yellow
dots) is proportional to the mass. The five bodies start evenly spread, with different initial veloci-
ties, then interact with each other and disappear to the right.

4.5.1 Performance Analysis

The computational complexity of this project resides mainly in the computation of
the field matrix in the aggregation space. The grid resolution of both the aggregation
field (Gagg) and the FTLE fields (G), plus the current advection duration Ti and inte-
gration step ∆ti, define the number of operations to compute to obtain the flow map as
Nt0 ·NT ·N ·M · (Ti/∆ti). The interactivity performance analysis (Table 4.1) shows that
the FTLE field frame time is proportional to the number of samples, but the sample time
actually decreases slightly as the resolution increases. This may hint at a better GPU oc-
cupancy rate with higher resolutions, thus leading to lower sample times.

The precomputation performance analysis (Table 4.2) measures the computation of
the aggregation fields. We run different aggregation field resolutions of the same dataset
with three different cumulative aggregation function sets: the basic and aliasing aggre-

Table 4.1: Interactivity performance results with the Quad-Gyre dataset in average frame time,
and sample time for different G values, and fixed ∆t = 0.001 s and T = 4.0 s. The ‘Steps’ column
refers to the integration steps per seed (i.e., T/∆t). Timings in seconds.

G Steps Samples Frame time Sample time

50×50

4 000

2 500 0.038 0.152 ·10−4

100×100 10 000 0.108 0.108 ·10−4

200×200 40 000 0.364 0.091 ·10−4

400×400 160 000 1.281 0.080 ·10−4

800×800 640 000 4.988 0.078 ·10−4
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gation functions (B), the ridge aggregation functions (R), and the region aggregation
functions (D). Each set contains the previous, as the ridge extraction is a prerequisite
for computing the connectedness, and the basic aggregation fields are always computed.
The ridge extraction and connectedness operations are done per field, without batching
(see Section 4.5.2), and that reflects in their cost, with increments of a few hundreds per-
cent for ridge extraction, and tens of thousands percent for region aggregation.

4.5.2 Optimization

Optimizations have been implemented in order tomaximize parallelism on theGPU, im-
prove core occupancy, and minimize CPU synchronization points. In order to do so, we
batch the T dimension of the aggregation space into the main kernels, so that each com-
putes NT FTLE fields. We found that batching T is the most beneficial, because we can
significantly shorten the computation time of the flow map by choosing an integration
step ∆t, NT , and T extent [T0,T1], so that (T1 −T0)/NT is divisible by ∆t. This allows us
to compute the flowmap only once for the highest T setting (i.e., the top of the aggrega-
tion field) and sample it for the rest.

Other, more straightforward, optimization strategies include full GPU implementa-
tions of A* and ridge extraction. The resolution at which the connectedness fields can
be computed is limited by per-threadmemory constraints. We found that connectedness
fields more than Gs = 50× 50 could not be computed on the GPU with the available
hardware (Nvidia GTX 970 and 1070).

In order to speed up the processing of these very computationally expensive distance
maps, we donot compute all possible paths fromeach seed point to every other seed point

Table 4.2: Pre-computation performance results with the Quad-Gyre dataset in total compute
time for different aggregation field resolutions, and using only the basic and aliasing aggregation
functions (B), additionally the ridge aggregation functions (R), and additionally the region ag-
gregation functions (D). The fixed parameters for this analysis are G = 50×50, Gs = 10×10,
t0 ∈ [0,8], and T ∈ [1,8]. All timings are in seconds.

Gagg B B+R B+R+D

5×5 0.5 0.7 (+47%) 348.6 (+45651%)
50×50 11.9 40.1 (+236%) 29 990.2 (+74508%)

100×100 39.6 149.5 (+276%) 135 627.0 (+90610%)
200×200 142.3 590.3 (+314%) 480 310.5 (+81261%)
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in the map, but we introduce an extra parameter, the seed grid size Gs. Gs is the size of
a regular grid that we lay out on top of the field to define the end points of the paths.
So, if we are computing the connectedness function of resolution G = 50×50, with no
walls, and a seed grid size ofGs = 50×50, we need to compute 502∗492 = 6002500A*
paths. Using a seed grid size of Gs = 5×5 we only need 62 500 A* computations, while
the results are very close to the case where we use a full seed grid size (Figure 4.6).

4.6 Discussion

In this chapter, we presented a novel approach to the visual analysis of finite-time Lya-
punov exponent based flow visualization, andwe have demonstrated its usefulness with a
variety of simulated and analytical datasets. We have introduced a set of aggregation func-
tions that are able to capture different aspects of the underlying fields. We have found
that the basic aggregation captures general trends very well, while the aliasing aggrega-
tion helps determine whether the discretization is sufficient, especially when the LCS are
sharp. The ridge aggregation is able to identify areas with high-quality ridges and the re-
gion aggregation helps assess the topological “connectedness” of the dataset under study.

We leave as future work the determination of an approximate optimal resolution by
means of heuristics that use information from the aliasing and ridge aggregation func-
tions. Also, we plan to addmore aggregation functions and extend the current ones, pos-
sibly with extra dimensions. A three-dimensional ridge aggregation field with τλ as an
additional dimension could prove useful at analyzing the ridge extraction threshold sub-
space. Another obvious candidate for an additional dimension is the FTLE resolutionG,
but that would imply deep changes in the current precomputation engine.
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Figure 4.18: TheAtmosphericWind dataset represents wind data of a region close to the eastern
coast ofAfrica (d). We apply our systemwithGagg = 300×300 andG = 400×400, t0 ∈ [0,60],
T ∈ [1,10], and τλ =−0.08 fσmax

(a) showsmaximumFTLE values increasingwith t0 andT , with
some additional substructure causedby the ever-changingwindpatterns, while fσavg (b) reveals pe-
riodic structure. fρ̂len(k)

(c) exhibits three vertical regionswith high quality ridges. The FTLEfields
are captured at the same T = 9.5 h and different t0 = 15.8 h (e), and t00 28 h (f), corresponding
to the red and blue markers in the aggregation fields, respectively. We seed pairs of trajectories at
close locations to aid exploration. For instance, the ridge (i), not present in (e), appears in (f) (see
the lower seed spiraling into the vortex causing a larger separation). Other trajectories also reveal
greater separation in (f). Interactive exploration reveals that this trend is maintained along the
bright bands in (c).
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The strongest affection and utmost zeal should

promote the studies concerned with the most beau-

tiful objects. This is the discipline that deals with

the universe’s divine revolutions, the stars’ mo-

tions, sizes, distances, risings and settings.

—Nicolaus Coepernicus

5 Robust Extraction of Lagrangian

Coherent Structures

I
n the previous chapter, we have developed a methodology to visually analyze
time-dependent flow in the context of the FTLE.We have based one of the ag-
gregation functions on the LCS, which are obtained as height ridges extracted

from the field. However, this height ridge extraction process presents several issues, and
is typically a quite challenging and involved task, usually necessitating of a considerable
amount of trial and error work due to the many parameters involved. In this chapter, we
present an approach to quantify the extraction of LCS as height ridges in the FTLE and
introduce a metric-based method to select LCS visualization parameters.

Various approaches have been presented for extracting these separating structures in
time-dependent vector fields, and a multitude of variants has been derived that enables
the analysis of a wide range of applications. The major part of these approaches captures
LCS bymeans of extracting locally maximizingmanifolds (ridges) in derived scalar fields,
such as the FTLE. These fields, in turn, are typically computed by means of the flow
map, amapping from seed points of trajectories to their respective endpoints. A common
issue in feature extraction, however, is the difficulty of adjusting the parameters of the
extraction technique. In the case of Lagrangian coherent structures by ridge extraction
from derived scalar fields, there are two parameters that need to be determined for the
flowmap, i.e., the advection duration (i) for the trajectories and the spatial resolution (ii)
of the seed points, followed by at least one parameter for suppressing weak and erroneous
ridge parts by means of a threshold (iii).

Adjusting three parameters is already a difficult undertaking if the features are defined
locally and have a clear interpretation, such as in the case of, e.g., edge detection in image
processing. However, in the case of Lagrangian coherent structures, this task is incompa-
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rably more demanding due to the non-local effect of these parameters, their intertwined
interrelation, and mutual impact on properties such as:

(a) time scale, related to parameter (i),

(b) aliasing, related to parameters (i) and (ii), and

(c) cross-flux, related to parameters (i), (ii), and (iii).

An increase of the trajectory advection duration (i) provides a larger time scale (a) for
analysis, and ridge regions that are sharper and exhibit lower cross-flux (c), and thus better
represent LCS. However, at the same time, this causes more and longer ridges that tend
to clutter, which leads, together with their increased sharpness, to aliasing (b), and thus
requires higher resolution (ii) of the flow map. That is, one needs to balance advection
duration vs. resolution, taking into account expressiveness in terms of sufficiently low
cross-flux. An additional constraint for this balancing is computational cost, since each
sample of the flow map requires a costly trajectory integration, and thus the total cost
scales linearly with the number of samples and advection duration.

Given that a suitable advection time together with a respective resolution have been
determined, a remaining problem is that not all parts of the resulting ridges have same
expressiveness, i.e., one needs to filter (iii), i.e., reject, ridge parts that exhibit a too high
cross-flux and thus do not act as separating LCS.

The determination of a suitable advection time together with a respective resolution,
and thefiltering of the ridges, have been accomplisheduntil now in a visually-guided itera-
tive process. That is, one typically determines the advection duration, the resolution, and
the filtering threshold(s) in an intertwined trial-and-errormanner, guided by the required
computational cost, the desired time scope of investigation, and by visual assessment of
the “quality” of the resulting ridges. The filtering has been mainly accomplished by em-
ploying a visually determined threshold that rejects ridge regions which exhibit a too low
FTLE value or insufficient sharpness.

Obviously, this procedure is not clearly defined, requires substantial experience to ap-
ply and interpret, provides no quantitative guarantees, is hard to reproduce, and is—
last but not least—tedious. This altogether might be responsible why LCS, although
regarded a useful tool, did not yet reach wide application in science and engineering.

In this chapter, we present an approach that, amongothermeasures, quantifies (a), (b),
and (c), takes quantitative user inputs, andprovides automatic selectionof theparameters
(ii) and (iii) in a quantitative, reproducible, effective, and easy-to-interpret manner.

The contributions in this chapter include:

• quantitative measures to asses the quality of LCS visualizations,
• metric-based selection of LCS visualization parameters,
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• a quantitative ridge filtering approach based on cross-flux, and
• as a consequence, reliable and easy-to-use LCS visualization.

5.1 Basic Concepts

An introduction to LCS visualization by means of ridge extraction from derived fields is
provided in Section 2.5. Their relation to cross-flux is discussed in detail in Section 5.1.1
below. The FTLE itself is introduced in Section 2.5.5, and its interconnection with reso-
lution is explored in Section 5.1.2. Height ridges are discussed in depth in Section 2.5.7.
This provides thebasis for the techniquedeveloped in this chapter, detailed inSection5.2.

5.1.1 Cross-Flux

Whereas the classical LE (Section 2.5.4) was primarily introduced as a measure for pre-
dictability, i.e., to quantify the butterfly effect in terms of error growth, the FTLE
has become a valuable tool for topological analysis of time-dependent vector fields.
Haller [Hal01] proposed and Shadden et al. [SLM05] defined ridges (Section 2.5.7) in
the FTLE field to represent LCS. In an n-dimensional continuous time-dependent vec-
tor field u(x, t) in a domain Ω ⊆ R

n with x ∈ R
n and t ∈ R, LCS represent (n− 1)-

dimensional manifolds that separate qualitatively different regions of the vector field.
Shadden et al. have shown that a ridge in the FTLE field does only represent an LCS
if its cross-flux, i.e., the flux of the underlying time-dependent vector field u(x, t) across
the (moving) ridge, is sufficiently low. Shadden et al. derive a theoretical analysis for this
cross-flux, and alsomeasure it by extracting ridges for a given time t0 from the FTLE field
σT

t0
(x), seeding points along these ridges, advecting these points to a later time t0+Tγ , and

measuring the distance of these advected points to the ridges extracted from σT
t0+Tγ

(x)

(Figure 5.2a). In other words, they measure to what extent the ridges from consecutive
(increasing t0) FTLE fields move like material lines, i.e., advect as sets of massless particles
in u(x, t).

We want to note here, however, that this approach can be affected by the repelling be-
havior of an LCS. Ridges in forward-time FTLE (obtained with forward integration, i.e.,
T > 0) represent repelling LCS, i.e., they repel particles in forward time. In other words,
a perturbation perpendicular to the LCS will grow exponentially in forward time. The
opposite holds for reverse-time FTLE (with T < 0), i.e., ridges in reverse FTLE repel par-
ticles in reverse time and attract particles in forward time, which is why they are denoted
attracting LCS. Since these perturbations grow exponentially, and because exponential
growth starts very slowly, it is the case that if the FTLE ridges used for the material line
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test are extracted at sufficient accuracy, the cross-fluxwill dominate the repellingbehavior.
However, if the accuracy is insufficient, the repelling behavior can dominate the cross-
flux. However, in either case the measure is useful, because both effects add up, and thus
provide a conservative measure for the quality of LCS extraction. In consistency with
Shadden et al.’s approach, we denote the discrepancy between the advected material line
and the respective FTLE ridges “cross-flux”, even though itmight include LCS repulsion.
Nevertheless, in Section 5.2.1, wepresent an extensionof Shadden et al.’s approachwhich
makes it more expressive and thus better suited to assess the quality of LCS visualization.

Besides this repulsion, there are mainly three reasons why an FTLE ridge can exhibit a
high cross-flux and thus does not represent anLCS: First, the lifetimeTχ of thehyperbolic
region (Figures 2.7a and 5.2b) that causes the ridge might be too short in relation to its
hyperbolic strength

|χ|= min(0,−det∇u(x, t)) (5.1)

to cause sufficient particle separation. In such a case, the hyperbolic region does not con-
tribute an LCS. Second, the advection time T might be chosen too short compared to
the strength of the hyperbolic region. In this case, the lifetime of the hyperbolic region is
longer than T , and increasing T will reduce the cross-flux and thus enable the extraction
of the LCS. Third, there might be no hyperbolic region involved, and particle separation
is caused by shear flow. FTLE ridges caused by shear do not separate different regions,
they exhibit (except for degenerate configurations in unidirectional flow) high cross-flux,
and thus do not represent LCS. Notice the related but algorithmically and numerically
demanding concept of Haller [Hal11] to avoid extraction of shear-induced manifolds.

Until now, FTLE ridges have beenfilteredbymeans of thresholding of the FTLEvalue,
or by their “sharpness” by thresholding of the respective eigenvalue of theHessian [SP07],
both on a qualitative “purely visual” basis. In Section 5.2.1, we present a cross-flux-based
technique for FTLE ridge filtering that ensures that the resulting ridges represent LCS
with respect to a predefined maximum cross-flux.

5.1.2 FTLE and Resolution

So far, we discussed both the LE and the FTLE in terms of infinitesimal sampling res-
olution (‖δδδ t0(x)‖ → 0, or continuous flow maps. Since the LE was motivated by pre-
dictability analysis in terms of the exponential growth of a perturbation due to an under-
lying linear vector field (thus the abovementioned linearization of the field), one needs to
involve the limit ‖δδδ t0(x)‖→ 0 when computing the LE for predictability.

Haller [Hal01] states that, in contrast to theLE,where a discretized computationwould
fail due to exponential growth of errors, the FTLE could be computed with sufficient fi-
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Figure 5.1: FTLE resolution and LCS in Buoyant Flow dataset. (a) Low resolution (100×100)
FTLE (T = 0.075s, t0 = 0.2s, higher by more saturation). (b) Same as (a), but at higher reso-
lution (1000×1000) reveals closely adjacent LCS (arrows), which could not be distinguished in
(a). (c) Same as (b), but with advection time T = 0.2s. This increase of T by a factor less than
three reveals finely folded LCS due to chaotic advection.

nite resolution, if T is limited accordingly. However, this would require that the trajecto-
ries stay close enough to allow for the linearization, which, however, cannot be achieved
inmost practical LCS visualizations, because for useful choices of T the flowmap resolu-
tion would need to be extremely high. However, as common practice and the validations
by Shadden et al. regarding FTLE ridge cross-flux have shown, such an incredibly high
resolution is not needed when the FTLE is used for topological analysis, since we do not
need to estimate a rate of perturbation growth, aswould be needed for predictability anal-
ysis. For topological analysis, we only need to make sure that we seed trajectories along
both sides of an LCS, i.e., that we do not miss regions that separate LCS.

Figures 5.1a and 5.1b show twodifferent resolutions of a regionwith close-byLCS, as is
often encountered. The underlying process responsible for LCS “convergence” is known
as “thinning and folding”, where thinning is caused by the stretching effect of the hy-
perbolic region, and folding takes place because the flow needs to return after some time
since it is typically constrained to a finite range in space. This thinning and foldingmech-
anism is responsible for so-called chaotic advection, and in our case, because LCS advect
with the flow as material lines do, LCS are also folded and stretched, rapidly leading to
very closely adjacent LCS (see Figure 5.1c for the same region as shown in Figure 5.1b
but with only roughly three times higher advection time T ). Thus, for reliable LCS visu-
alization, a technique is needed that can detect such undersampling and possibly adapt
the resolution with respect to a given advection time. In Section 5.2.2, we present such
a technique that provides an LCS consistency measure for a given advection time T and
resolution, and a refinement based on that in Section 5.2.3.
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Figure 5.2: Cross-flux computation. (a) Our technique measures, for each vertex vi (blue dots)
of FTLE ridge (black) at time t0 (extracted from σT

t0
(x)), the closest distance di

Tγ (dotted) from
the respective pathline endpoint (blue circle) to the FTLE ridge (black) extracted at time t0 +Tγ

from σT
t0+Tγ

(x). The same analysis is conducted in reverse direction, i.e., di
−Tγ is computed for

−Tγ , and for each vertex vi, the minimum of di
Tγ and di

−Tγ is taken. The reason for going in
both directions is to avoid “truncation” of LCS at the ends of their lifetime (as opposed to Shad-
den et al. [SLM05]). Such a temporal truncation would, e.g., happen for FTLE ridges extracted
from σT

t0
(x) in (b) because the FTLE σT

t0+Tγ
(x) (computed at time t0 +Tγ , dashed) would not ex-

hibit a ridge anymore since the lifetime Tχ of the hyperbolic region does not extend into its time
scope. Nevertheless, doing the cross-flux test at t0 − Tγ (dotted) would work because forward
FTLE σT

t0−Tγ
(x) would capture the hyperbolic region at that time. Hyperbolic strength |χ| by

green, forward FTLE by red, and reverse by blue.

5.2 Method

Ourmethod consists of twomain components: an approach to assess thequality of FTLE
ridges (and filter them) with respect to their cross-flux (Section 5.2.1), and an approach
that quantifies their sampling issues with respect to “LCS consistency” (Section 5.2.2).
These two components are integrated, i.e., the cross-flux measure is used to filter the re-
sult from height ridge extraction, and this filtered result is then tested with the ridge con-
sistency measure. If this consistency measure is insufficient, the sampling resolution is
automatically increased until a consistent result is obtained (Section 5.2.3).
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Figure 5.3: Cross-flux-based filtering of FTLE ridges in Quad-Gyre dataset (FTLE resolution
800× 800, T = 5.0s, t0 = 0s). (Depending on the viewer, you might need to zoom into the
electronic version of this thesis for the vector-graphics representation.) (a) Raw ridges, i.e., Hes-
sian eigenvalue threshold τH = 0. (b) Some spurious ridges suppressed (where minor Hessian
eigenvalue> τH =−10−6/µφφφ

1.3, with µφφφ being flowmap cell size). This threshold is used for all
our results, except for the remaining images in this figure. (c) For illustration purposes (to avoid
visual clutter), we set here τH =−6 ·10−6/µφφφ

1.3 for (c)–(f). (d)σT
t0
(x)mapped to green channel,

σT
t0+Tγ

(x) to red, and σT
t0−Tγ

(x) to blue, together with respective ridge extractions (green, red, and
blue lines, respectively), with Tγ = 1s. (e) Same as (d), but with particle paths for Tγ (orange), and
−Tγ (cyan), and with ridge from σT

t0
(x) (green in (d)) now colored by resulting cross-flux discrep-

ancy (black: ∆γ = 0, magenta: ∆γ = µφφφ , green: ∆γ > µφφφ ). (f) Resulting LCS visualization.

5.2.1 FTLE Ridge Cross-Flux

As discussed by Shadden et al. [SLM05] and in Section 5.1.1, LCS advect as material lines
do. That is, if one puts particles on an LCS at time t0 and advects these particles to
time t0 +Tγ along pathlines, they will be located on the corresponding LCS at that later
time (Figure 5.2a). Notice, however, that this assumes that the lifetime Tχ of the hyper-
bolic region that causes the LCS is sufficiently long with respect to Tγ , i.e., that it extends
into the time interval [t0 +Tγ , t0 +Tγ +T ] (Figure 5.2b). If this is not the case, as for the

89



5 Robust Extraction of LCS

illustrated t0 where t0+Tγ (dashed) is located after the hyperbolic region has disappeared,
the respective LCS might not be present at time t0 +Tγ anymore.

Whereas Shadden et al.’s focuswas on the theoretical derivation of the cross-flux across
LCS caused by permanently present hyperbolic regions, they evaluated this flux numeri-
cally only for an isolated FTLE ridge. In this chapter, we present a technique that quan-
tifies the cross-flux of ridges extracted from practical FTLE fields (containing many and
adjacent ridges, including spurious ones), and conducts this measurement forward and
reverse, to avoid truncation (Figure 5.2b). More important, instead of relating the mea-
sured cross-flux to a theoretical limit which is assuming hyperbolic activity over the en-
tire FTLE integration time T , we present an approach to filter FTLE height ridges with
respect to their physical quality bymeans of a single threshold, i.e., bymeans of the cross-
flux time Tγ . We achieve this by relating this time to the sampling properties of height
ridge extraction and the cross-flux across the respective LCS.

The basis of our approach follows the idea by Shadden et al., i.e., we seed particles
at the ridges of the respective FTLE field σT

t0
(x) at time t0, in our case at each vertex vi

of the height ridges extracted according to Eberly’s [Ebe96] formulation. We then ad-
vect these particles (along pathlines) for the cross-flux time Tγ , and measure the shortest
distance di

Tγ of these advected particles to the height ridges extracted from the FTLE
field σT

t0+Tγ
(x) at time t0 + Tγ (Figure 5.2a). This provides us with a distance di

Tγ for
each vertex vi of the original ridge, i.e., its “advection discrepancy”. To avoid the tem-
poral truncation due to missing LCS at time t0 + Tγ , we additionally advect a particle
from each vertex vi in reverse direction, i.e., for cross flux time−Tγ , measure its respec-
tive closest distance di

−Tγ to the ridges extracted from σT
t0−Tγ

(x) (dotted in Figure 5.2b),
and determine cross-flux discrepancy

∆γ = min(di
Tγ ,di

−Tγ ) . (5.2)

A straightforward application of this concept would be to choose a user-defined cross-
flux timeTγ togetherwith a user-defined threshold for the resulting cross-flux discrepancy
∆γ , and reject those parts of the ridges where ∆γ exceeds this threshold. This approach
would, however, exhibit two major shortcomings: First, it would be unclear how these
two choices should be made because they are closely but nonlinearly related, i.e., increas-
ingTγ tends to increase∆γ because the cross-flux is “integrated” for a longer time. Second,
andmore important, we experienced problemswith this approach if the raw ridge extrac-
tion (before our filtering) contains closely adjacent ridges, which typically happens due
to noise (Figure 5.3a, (b)) or due to the abovementioned folding of LCS (Section 5.1.2
and Figure 5.1c). In such cases of high ridge density, di

Tγ and di
−Tγ would be limited by
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the distance to the next (possibly unrelated) FTLE ridge. This means, that if the corre-
sponding LCSwould be farther away from an advected particle than an other (erroneous
ridge or close-by LCS), the shortest distance would be to this unrelated ridge, leading to
too small ∆γ , and thus leading to false-positive LCS extraction after cross-flux filtering.

As shownby Shadden et al., LCS exhibit negligible cross-flux. Thismeans that for flow
maps that are not sampled at extremely high resolution and if sufficient advection time T

is used (whichwewant to assess indirectly via ourmeasure), the cross-flux discrepancy∆γ

should primarily reflect the inaccuracies due to ridge extraction (see the deviation of the
black polylines in Figure 5.2a from the redLCS), which are in the order of the size of a cell
of the flowmap. Notice that these inaccuracies would even grow during advection of the
particles for cross-flux time Tγ , because the respective LCS are repelling. Nevertheless,
consistent with the discussion above, the repelling behavior was small in our investiga-
tions based on pathlines, i.e., the true cross-flux was clearly dominating. Together with
the issue of possibly too low∆γ due to erroneous ridges or close-by LCS discussed above,
this motivates us to limit ∆γ to the cell size µφφφ of the flowmap:

∆γ < µφφφ . (5.3)

As a result, we have only one parameter left to control the quality of our LCS extraction
with respect to cross-flux: the cross-flux time Tγ . The second (implicit) parameter is the
resolution of the flowmap. In Section 5.2.3, wewill present an approach to automatically
increase this resolution of the flow map to obtain results that consistently sample LCS,
which brings both concepts into relation. But for this, we first need a respective LCS
consistency criterion, which is introduced in Section 5.2.2.

Our technique can be applied to the raw ridge extraction result, as shown in Fig-
ure 5.3a. This would, however, put particles on spurious ridges that are generated due to
(numerical) noise, and thus cause a high computational cost because each of these parti-
cles needs to be advected byTγ along a pathline. As proposed by Sadlo and Peikert [SP07],
we suppress erroneous (and thus “unsharp”) ridge parts by testing for each ridge vertex if
the minor Hessian eigenvalue is below a threshold τH . Figure 5.3b shows a respective re-
sult with τH =−10−6/µφφφ

1.3. Note that the purpose of this threshold is simply to speed
up computation by removing noise, one can set τH = 0 if this is not desired. Wemade this
threshold a function of the flow map cell size µφφφ to compensate for the change of ridge
sharpness as the resolution of the flowmap is increased (used for the automatic resolution
adaptation in Section5.2.3). Wedetermined the exponent of1.3by testing our technique
with different datasets, resolutions, and FTLE advection timesT—anduse this threshold
function for all our results. Nonetheless, this way of automatically choosing a threshold
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5 Robust Extraction of LCS

for suppressing noise can, of course, only be a heuristics. We therefore recommend, as we
do in our implementation and is shown in our results below, to provide and check visual
feedback, or—more safe—to set τH = 0.

For illustration purposes (to avoid visual clutter), we set τH =−6 ·10−6/µφφφ
1.3 in Fig-

ure 5.3c–(f). This filtering (Figure 5.3c) also represents a traditional LCS visualization by
means of filtered FTLE ridges, i.e., τH was chosen on a “visual qualitative basis”. Compar-
ing this visualization, however, with the result of our technique (Figure 5.3f) and examin-
ing its quality with respect to cross-flux (as seen by forward and reverse particle advection
pathlines in Figure 5.3e and the consistency of their endpoints with the red and green
ridges) clearly shows the advantage of our quantitative approach. It is apparent that our
quantitative LCS visualization technique removed the (green) parts in that image that
should not be considered LCS due to substantially higher cross-flux.

5.2.2 FTLE Ridge Consistency

So far, the cross-flux-based filtering of FTLE ridges from Section 5.2.1 enables us to filter
FTLE ridges with respect to the advection property in a quantitativemanner, i.e., accord-
ing to the extent they advect as material lines. According to Shadden et al., this is a suffi-
cient requirement for FTLE ridges to represent LCS. A remaining question is, however,
the quality of their discretization. This question is of very high importance, because LCS
tend to be closely adjacent, exhibit folds, and the FTLE tends to suffer from very strong
aliasing at LCS because the sharpness of its ridges increases with advection time T . This
makes FTLE fields very hard to sample in practice. Beyond that, it is a typical situation
that one extracts an FTLE ridge at a certain resolution, but when the resolution of the
FTLE is increased, it turns out that what has been considered a single LCS is composed
of a large number of LCS instead (cf. Figures 5.1a and 5.1b).

Existing approaches that employ adaptive sampling of the FTLE field [Gar+07; SP07]

guide their refinement by the local variation of the FTLEfield at the current resolution. A
common problemwith these approaches is, however, that they only have a “phenomeno-
logical” view on the FTLE field, and that one typically needs to increase the sampling
resolution very substantially before the FTLE field reveals that an apparent LCS actually
consists of several ones.

Coming back to the assessment of the quality of LCS visualizations, a possible but un-
feasible approach would be to increase the sampling resolution or zoom in interactively,
compute the respective FTLEfield, extract the ridges therefrom, and visually examine the
differences. However, this approach would be tedious, and—more important—would
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Figure 5.4: Ridge consistency computation. Finely folded LCS (red), together with discretized
ridge extraction (black) thereof, and “front” and “back” seed manifolds (blue points above and
below, respectively). The endpoints of trajectories seeded at blue points exhibit irregularitieswhen
seedmanifold crosses an LCS (left), or when folds are “shortcut” because the discretized ridge did
not capture them (bottom right). Ridge (LCS) consistency is determined for each ridge edge e j

from themaximumof the standarddeviationof the lengths of f j−1, f j, and f j+1, and the standard
deviation of the lengths of b j−1, b j, and b j+1.

likely require an enormous increase in resolution to be able to identify that there are, e.g.,
two LCS instead of one.

We follow a different approach here, motivated by the properties of LCS. An LCS
separates regions of qualitatively different behavior of a vector field. Thus, there is qual-
itatively similar pathline behavior on either side of an LCS. As illustrated in the “upper
half” of Figure 5.4, this means that if we regularly seed pathlines at the same time and
of equal integration time along one side of an LCS, the endpoints of these pathlines will
form amanifold that is “regularly” sampled (regular meaning here that this sampling will
in general not be uniform but that the distances between the endpoints will vary con-
tinuously). The reason for this is that if there would be large gaps, i.e., “jumps” in the
placement of the endpoints, this would have been captured by an LCS that would have
been located between the respective seeds of our sampling along the original LCS, thus
leading to a contradiction.

Without loss of generality, letLLL T
t0
(s)∈R

n be anLCS in ann-dimensional vector field,
i.e., due to the continuity assumption on the vector field, be a (n−1)-manifold obtained
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Figure 5.5: Ridge consistency computation at the example of the Quad-Gyre dataset (FTLE by
red, T = 5s, t0 = 0s). (a) Resolution 100×100, with FTLE ridges filtered with cross-flux (Tγ =
1second), and seed manifold trajectories (blue in Figure 5.4) started at ridge segments with low
LCS consistency (top, cyanish) and high LCS consistency (bottom, yellowish). Ridge segment
consistency by good (black) to low (green). (b) For comparison, ridge segments for same case but
computed from 200×200 FTLEfield. One can observe better LCS consistency due to the higher
resolution used.

at time t0 for advection time T , with parametrization s ∈R
n−1, and letNNN T

t0
(s) ∈R

n be
its normal. Then, we can generate a seed manifold

FFF
T
t0
(s) =LLL

T
t0
(s)+d ·NNN T

t0
(s) (5.4)

at its “front”, and a seed manifold

BBB
T
t0
(s) =LLL

T
t0
(s)−d ·NNN T

t0
(s) (5.5)

at its “back”, which are both offset from the LCS in normal direction by distance d.

Using the flowmapφφφ T
t0
, we can obtain the advected front seed manifold and advected

back seed manifold

FFF
T

t0
(s) = φφφ T

t0

(

FFF
T
t0
(s)
)

, BBB
T

t0
(s) = φφφ T

t0

(

BBB
T
t0
(s)
)

, (5.6)

respectively. Notice that since both the vector field and the LCS are continuous by as-
sumption, the advected manifolds are continuous too. The manifolds will typically un-
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dergo stretching and squeezing as they are advected by the flow, leading to a continuous
variation of their parametrization, which is can be captured by their gradient

∇sFFF
T

t0
(s) and ∇sBBB

T

t0
(s) (5.7)

with respect to s.

Let us now assume that the seed manifolds are generated from an FTLE ridgeRRRT
t0
(s)

instead of the LCS LLL T
t0
(s), and that because RRRT

t0
(s) does not represent LLL T

t0
(s) suffi-

ciently well, at least one of the seed manifolds crosses the true LCS. Assume the black
polyline in Figure 5.4 to represent our discretizedRRRT

t0
(s), the upper sequence of blue dots

(one generated from each vertex of the ridge polyline and offset to the “front”) the dis-
cretized seed manifold, and the leftmost blue dot of this sequence to be on the other side
of the LCS (red). One can see that, since the LCS separates different trajectory behavior
and therefore this trajectory has different shape, the segment f j−3 is very long compared
to its neighbors, e.g., segment f j−2. Inotherwords, the fact that the seedmanifold crossed
the LCS caused a strong spread in endpoints of the trajectories. Such seedmanifold cross-
ings happen, for example, whenmultiple LCS are captured by a single ridge polyline, and
the LCS are diverging, as illustrated at the left of the figure. Because LCS originate at
hyperbolic regions and are folded therefrom, such openings in the folding need to take
place, and thus provide a point for detecting insufficient sampling of an LCS.

An other problem that can arise with LCS sampling are local folds, i.e., situations as
illustrated in the bottom half of Figure 5.4. The behavior of trajectories (and thus their
endpoints) seeded along the lower side of the LCS (illustrated by orange dots) is by def-
inition coherent (following the same argumentation as above). This includes, however,
the trajectories started “within” the fold, i.e., the concave region containing the orange
dots. The dotted blue trajectories seeded within that region illustrate the behavior of the
trajectories, and one can observe that the endpoints of the dotted trajectories form a reg-
ular sampling together with the blue trajectories seeded outside the fold. However, since
our discretized ridge (polyline) did not capture the fold, its discrete seed manifolds (the
lower sequence of non-dashed trajectories) do not capture it neither—leading to a strong
spread of the advectedmanifold, i.e., the segment b j+1 is much longer than its neighbors
b j and b j+2.

These two mechanisms enable us to measure the LCS consistency of a discretized
FTLE ridge by seeding trajectories along it and evaluating the behavior of their endpoints.
We describe our approach here for 2D vector fields, although its extension for 3D vector
fields is straightforward.
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5 Robust Extraction of LCS

For each segment e j of the ridge polyline, we determine its segment neighbors e j−1

and e j+1, collect their four vertices they contain (at their ends respectively less), and seed
a trajectory at each vertex, offset in forward direction of the tangent normal at distance d

(blue “front”, upper dots in Figure 5.4). Each of these trajectories is integrated for time
T , leading to the respective advected segments f j−1, f j, and f j+1. We then compute the
standard deviation of the lengths of these three segments, and divide this standard devia-
tion by the size of the physical domain of the dataset to make it dimensionless, leading to
the front ridge coherency measure ρ

γ f

j . We do the same for each vertex in reverse direc-
tion of the tangent normal, leading to the back ridge coherency measure ρ

γb

j . The LCS
consistency measure for a ridge segment e j is then given as

ρ
γ
j =−max(ρ

γb

j ,ρ
γ f

j ) . (5.8)

Note that this is a negative value, i.e., that ρ
γ
j = 0 indicates full consistency.

For a given LCS visualization (i.e., a set of FTLE ridges), we quantify its total LCS
consistency

ργ = min
j∈RRRT

t0
(s)

ρ
γ
j (5.9)

as theminimumover all its segments, i.e.,ργ provides a conservativemeasurewith respect
to LCS consistency.

5.2.3 Automatic Adjustment of Resolution

Now we are at the point to integrate the two presented techniques, i.e., the cross-flux-
based filtering of FTLE ridges (Section 5.2.1) and the LCS consistency measure (Sec-
tion 5.2.2), into their intended from.

The cross-flux-based ridge filtering enforces LCS visualization quality by filtering, i.e.,
rejecting, ridge regions with a too high cross-flux discrepancy ∆γ . The ridge consistency
measure ργ , on the other hand, only quantifies the quality of LCS visualizations with
respect to LCS sampling. These properties make them an ideal bundle for LCS visual-
ization, i.e., the former filters an LCS visualization to reach a certain cross-flux quality,
whereas the latter takes this filtered LCS visualization and determines if its resolution is
sufficient with respect to the present LCS, or if its resolution needs to be increased. Re-
member that our cross-flux measure takes the cross-flux time Tγ as user input and relates
it to FTLE resolution. Thus, if the LCS consistency measure suggests to increase resolu-
tion, the cross-flux measure will automatically steer and adjust the filtering with respect
to this new resolution.
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Our integrated approach works as follows: The user prescribes the desired quality of
the LCS visualization with respect to cross-flux by providing a cross-flux time Tγ , and
with respect to LCS sampling consistency by providing a threshold τρ . He also defines a
minimum (initial) FTLE resolution, the FTLE advection time T , and the desired instant
of time t0. Our approach then computes the FTLE for this resolution, advection time,
and t0, extracts the ridges therefrom, filters these ridges with respect to cross-flux using
Tγ , and subsequently evaluates that result with the LCS consistency ργ . If

ργ <−τρ , (5.10)

the approach increases the resolution (in our implementation, we double the resolution
in each dimension) and reiterates the procedure with this increased resolution. Other-
wise, the process stops, i.e., has converged, and the last filtered FTLE ridges represent the
result. To avoid very long computation times (which are rather readily reached because
accurate LCS visualization necessitates surprisingly high resolutions, as shown below in
our analysis), we stop the process if a maximum resolution is reached.
Since increasing resolution constrains the tolerable cross-flux during cross-flux-based

filtering, our procedure will always converge at least trivially because if the prescribed
ridge consistency τρ cannot be reached, the cross-flux filtering will eventually eliminate
all ridge segments. Nonetheless, as our analyses below show, our technique converges in
practical applications non-trivially, i.e., the ridge consistency is reached before cross-flux
error hinders further cross-flux consistent extraction, however, given that the compute
resources are available.

5.2.4 Implementation Details

We compute the FTLE (the flowmap) onCartesian sampling grids, and compute deriva-
tives with central differences (and forward/backward differences at the boundaries). We
compute the Hessian, needed for height ridge extraction, as the gradient of the gradi-
ent. All FTLE fields, flowmaps, trajectories, gradients andHessians, the adapted march-
ing squares algorithm for ridge extraction, and the minimum distance from a point to a
set of polylines used in cross-flux computation are vectorized operations implemented in
CUDAkernels and run on theGPU in parallel. The backbone of the program gathering,
transforming, and streaming the data to the kernels is implemented in Python.
As discussed previously, the bottleneck in terms of computing resources is typically

the graphics memory, which may be exhausted as the resolution increases, depending on
the amount available in the graphics card. In order to mitigate this, our implementa-
tion includes an automatic adaptive domain subdivision process that identifies and gen-
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Figure 5.6: Automatic adaptive resolution at work. The top row contains the regular runs with
thewhole domain for the Buoyant Flow dataset withT = 0.07 and the resolutions 200×200 (a),
400× 400 (b), 800× 800 (c) and 1600× 1600 (d). The latter did not converge, with four seg-
ments with ργ over the threshold τρ = 0.0625, laid out in a single region, around the two walls.
The bottom row contains this automatically-generated region with zoom z = ×2 (e). This one
did not converge, with 21 segments over the threshold laid out in two separate regions, so the sys-
tem spawned two additional regions with zoom z = ×4, shown in (f) and (g). Of these, the first
one (f) did not converge due to 4 segments with ργ over the threshold, but the maximum target
resolution was reached, so the system did not subdivide further. The second one (g) converged
successfully at this depth.

erates sub-regions recursively (Figure 5.6). If themaximum resolution is reachedwithout
achieving convergence, the algorithmfirst detects the areas which contain non-converged
features within the current setting. Then, it delimitates sub-regions within the domain
around these features by setting the appropriate parameters (i.e. zoom and pan), and
finally it processes them in sequence, in a recursive manner (i.e. if the sub-regions them-
selves do not converge, additional levels are created automatically until convergence is
achieved). The end result is a tree of sub-regions, with the full domain as the root node.
Any node can have as many children as necessary.

This process works well enough in most cases, but it has some shortcomings:
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1. The sub-domain extent may become too small with respect to the Tγ , so that there
is not enough room for the features to show up.

2. At high T values, as the effective resolution increases, the features may become
too sharp, leading to a trivial convergence due to a lack of LCS, as discussed above
in Section 5.2.3.

5.3 Results

Our approach is based on the cross-flux quality measure proposed and both analytically
andnumerically evaluatedbyShadden et al. [SLM05]. Because this analysis and evaluation
has been conducted at high detail, we concentrate here on the evaluation of our second
main component, the quantification of LCS consistency, and the refinement (adapta-
tion of resolution) it steers in a intertwinedmanner together with our formulation of the
cross-flux discrepancy (since both concepts are related via the cell size of the flowmap).
Because this interplay of these two techniques cannot be analyzed individually, we con-

ducted several analyses of the convergence properties of our approach. To that end, we
investigated the combination of different advection times T , ridge consistency thresh-
olds τρ , and cross-flux timesTγ , resulting in several matrices of images together with data.
In each field of these matrices, our technique adapts the resolution of the flow map (by
increasing it) until no ridge line segment violates the condition in Equation 5.10, or until
the maximum resolution has been reached.
Figure 5.7 provides such a series of tests within a region of interest in the Quad-

Gyre dataset [SLM05],with different advection times and different thresholds to explore
the convergence of our method in relation to the threshold value τρ . These tests used
Tγ = 0.5s. We observe that in this region of theQuad-Gyre dataset, convergencewasmet
in all but themost restrictive quality setting and the highest advection time (T = 11.0s).
In this most restrictive case, where the threshold τρ = 0.03126, i.e., where the standard
deviation of advected seedmanifold segments exceeds3.126%of the domain size, conver-
gencewas notmet for the highest advection time even at a grid resolution of 3200×3200.
We stopped our investigation here due to increased computation times (Figure 5.8).
Figure 5.10 shows the same matrix but using different Tγ values and a fixed τρ set to

0.0625. In this case, all runs converged at different resolutions depending on the advec-
tion time and Tγ . We observe that the largest Tγ setting we tested (rightmost column)
converged much earlier than the others. This is due to a comparably large Tγ , leading to
early convergence with respect to cross-flux discrepancy.
The top row of Figure 5.9 displays a region of the Quad-Gyre dataset with a resolu-

tion of 100×100 and different τρ values, frommost restrictive (left) to most permissive
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Figure 5.7: Ridge consistency test for the Quad-Gyre for different advection times T =
{11,9,7,5} (top-to-bottom) and thresholds τρ = {0.03126,0.0625,0.125,0.25} (left-to-
right). The tabulated values represent grid resolution vs. number of segments with ridge con-
sistency value above the threshold. Converged values are highlighted in green.

(right). Note how the coloring of the ridges changes according to the threshold value.
The bottom row shows the convergence series for the same run with τρ = 0.03125. As
resolution increases the number of segments with ργ value above the threshold decreases
until convergence ismet at resolution800×800, where all segments are below the thresh-
old. This series corresponds to the first image in the third row in Figure 5.9.
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Figure 5.8: Convergence runs for Buoyant Flow dataset with different advection times. T =
{0.05,0.075,0.1} from left-to-right. None of these runs converged, even though T = 0.05 at
1600×1600 was very close to doing so with only 9 segments above τρ (0.03126 in these runs).
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Figure 5.9:Ridge consistency test of theQuad-Gyre for different τρ values at fixed grid resolution
of 100×100 (top row) and for fixed τρ = 0.03125 and varying grid resolutions (bottom row).

As a second example, we applied our technique to a time-dependent 2D flow simula-
tion of heat-driven air flow in a closed container with two barriers. We tested different
settings for advection time T , but none of them converged. As is provided in the images,
one can see that leftmost run almost converged with only nine segments violating the
threshold τρ . It can be seen, that while the case for T = 0.05 almost converged and is
expected to converge with only a few more resolution increases, we do not expect con-
vergence with the higher advection times, even if the resolution would be considerably
increased. We account this fact to the prominently present chaotic advection dynamics
in this dataset, which on the one hand required rather high advection times to exhibit
sufficiently small cross-flux, but at the same time led to a topological complexity that re-
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quires a very high sampling for LCS consistent sampling. This result shows, that LCS
visualization without large compute resources has to be subject to substantial error due
to LCS inconsistent sampling.

5.4 Performance Analysis

The following tables show some execution times for the convergence runswith theQuad-
Gyre dataset. The run times are separated by cross-flux and ridge consistency time. The
cross-flux values include the computationof the field and the ridge extraction at t0, t0+Tγ

and t0−Tγ , and also the cross-flux processing itself. Computing the fields and extracting
the ridges is by far the more expensive part in terms of run time. The ridge consistency
values include only the ridge consistency processing.

Table 5.1 shows the run times for different resolutions and a fixed advection time
T = 11.0s. Table 5.2 shows the run times for different advection times at a resolution
of 1600×1600. The performance measurements for the results shown in Figure 5.8 are
displayed in Table 5.3 and provide a more detailed view on each of the single runs per-
formed with this dataset. Here the compute time is not divided into cross-flux and ridge
consistency, but rather the whole run time from start to end is shown for each resolution.

The RAMmemory consumed in the worst-case run, the top-left 3200×3200 image
shown in Figure 5.9, was 563.03125MB. TheGPUmemory usage never went above 400
MB in any of the runs. All tests have been run on a machine with CentOS Linux release

Table 5.1: Performance results for different resolutions and fixed advection time T = 11.0s.

1002 2002 4002 8002 16002 32002

cross-flux 1 s 3 s 12 s 44 s 173 s 679 s
ridge consistency 1 s 2 s 2 s 4 s 5 s 7 s

Table 5.2: Performance results for different advection times and fixed resolution grid 1600 ×
1600.

T = 5.0s T = 7.0s T = 9.0s T = 11.0s

cross-flux 418 s 222 s 191 s 182 s
ridge consistency 19 s 19 s 25 s 38 s
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7.2.1511, kernel 3.10.0-327.el7.x86_64, 528 MB of RAM, an Intel(R) Xeon(R) CPU
E5-2630 v3 at 2.40GHz and a pair of GTX Titan X 12 GB graphics cards.

5.5 Discussion

In this chapter, we presented, to the best of our knowledge, the first technique for visu-
alization of Lagrangian coherent structures with quantitative error control, taking into
account the intrinsic properties of LCS. We developed a technique for cross-flux-based
filtering of FTLE ridges, and an approach to refine the FTLE resolution to ensure LCS
consistent sampling. Whereas our experiments converged for various settings for the an-
alytic Quad-Gyre example, obtaining accurate results with respect to cross-flux and LCS
consistency turned out to be a challenge for the simulated dataset representing buoyant
flow. This finding is, after all, not surprising, given the fact that many—if not most—
FTLEvisualizations underresolve LCS, leading to the fact that if the FTLE is recomputed
at higher resolution, one typically observes additional LCS that could not be expected at
the lower resolution. Whilewe obtained good results with τρ set to 0.0625 of the domain
size, also with respect to quality of the obtained results in our convergence tests, i.e., the
investigated examples perfectly matched our expectations, a future direction of research
could include researching other measures for the quantification of LCS consistency.
As future work, we would also like to investigate the quality of (and respective extrac-

tion of) LCS defined by valleys in the finite-size Lyapunov exponent (FSLE) [Aur+97].
This quantity suffers less from aliasing, but has not yet been covered thoroughly both in
applications aswell as in analysis. Last but not least, wewould like to extendour approach
to 3D vector fields, whichwould, however, increase computation times even further, and
require compute clusters for obtaining real-world results at high accuracy regarding cross-
flux and LCS consistency.

Table 5.3: Detailed performance results for each run of the Buoyant Flow dataset (shown in Fig-
ure 5.8).

T = 0.05s T = 0.075s T = 0.1s

100×100 7 s 9 s 9 s
200×200 15 s 21 s 27 s
400×400 43 s 56 s 75 s
800×800 299 s 211 s 223 s
1600×1600 4825 s 1706 s 1064 s
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Figure 5.10: Look-ahead test for the Quad-Gyre for different advection times T = {11,9,7,5}
(top-to-bottom) and look-ahead times Tγ = {0.25,0.5,1.0,2.0} (left-to-right). The tabulated
values represent grid resolution vs. number of segments with ridge consistency value above the
threshold. Converged values are highlighted in green.
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Donot look at stars as bright spots only. Try to take

in the vastness of the universe.

—Maria Mitchell

6 Computer Graphics and Rendering

Fundamentals

I
n the first part of this work, we have developed novel methods and techniques
in order to aid in the analysis and extraction of concealed information in as-
trophysical datasets, even though these methods are generic enough that they

can be used and applied elsewhere in the greater flow visualization domain. We have so
far based our approaches on concepts from vector field topology, and extended them to
time-dependent inertial systems and phase space. We have also explored the time domain,
while providing a comprehensive visual analysis framework to do so, and attempted to as-
sist andquantify the extraction of structures that separate regionswith distinct dynamics.

In contrast, this second part deals with the interactive representation and rendering
of large-scale astrophysical systems in general, and astrometric data in particular. An ex-
ample of such data are the extremely large star catalogs acquired by the Gaia mission. In
this introductory chapter, we start with a comprehensive overview on computer graph-
ics and rendering (Section 6.1) and later move on to methods and techniques typically
used to achieve interactivity and improve performancewith large scenes anddatasets (Sec-
tion 6.2). Finally, we provide a quick introduction to floating-point numbers, the most
common and efficient decimal number representation used nowadays in graphics hard-
ware, and an assessment of the precision of floating-point arithmetic (Section 6.3). These
topics are very relevant to the work that follows in Chapter 7.

6.1 Rendering and Hardware

Rendering is one of the major topics in computer graphics (CG) and visual computing,
and it is an essential part of the visualization process. It is usually the final step in the
visualization pipeline, where models and other elements are given their final appearance.
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Typically, rendering involves acquiring and processing information on geometry, view-
point, lighting, texture and shading in order to produce a final image, also called render,
which represents an impression of a (virtual) scene. The process by which a graphics sys-
tem produces this final image is called rendering pipeline.

6.1.1 Computer Graphics Overview

Nowadays, a large part of the rendering process is carried out in specific hardware de-
vices called graphics processors (GP or GPU) that execute operations independently from
the central processing unit (CPU). While the whole process can be implemented entirely
in software, and that is how it was initially, GPUs make it possible for the CPU to send
away rendering commands and continue the execution of other tasks in an asynchronous
manner. Apart from this off-loading of graphics tasks, they also accelerate the rendering
process by implementing hardware architectures that are extremely fast at dealing with
the kinds of operations involved in rendering. GPUs typically contain several types of
electronic circuits in charge of different operations in the rendering pipeline, like texture
mapping units (TMU), stream processors (pixel and vertex shading units) or geometry
processors. All of these form the greater component of the graphics and compute ar-
ray (GCA). The interaction with such hardware devices is abstracted to users by graphics
application programming interfaces (APIs), which help them write graphics code that
runs in a large variety of different GPU devices. OpenGL and Vulkan, both developed
and maintained by the Khronos Group, are examples of cross-language, cross-platform
and standard graphics APIs. The implementation of these standard APIs is usually left
to the hardware manufacturers, which ship them in the form of graphics drivers. The
communication is carried out via a rendering library (usually provided by the operating
system), which in turn sends commands to the driver, which translates them to specific
low-level instructions that the hardware can understand.

Modern 3D graphics boards usually (but not always) contain their ownmemory chip,
called the video random access memory (VRAM). VRAM is directly wired to the GCA.
It is much faster for theGCA to fetch andmodify data fromVRAM than from themain
system random access memory (RAM). The VRAM usually holds the information that
makes up the scene, like vertex buffer objects (VBO) and vertex array objects (VAO), to-
gether with the render buffers, textures and auxiliary information. In a simple, double-
buffering scheme, the front color buffer contains the pixel data that is currently visible in
the viewport, which is the area of the display that contains the rendered image. The back
color buffer is the location ofVRAMtowhich the data for the next frame are rendered. In
triple-buffering and other more complex schemes, the back color buffer is actually com-

108



6.1 Rendering and Hardware

posed by more than one single buffer in an attempt to maximize performance and mini-
mize artifacts derived frombuffer swapping. The back buffer is not seen and exists so that
the scene can be rendered in its entirety before being presented to the display. Typically,
the front and back buffers are exchanged in the buffer swap operation once an image has
finished rendering. This can be done by changing their memory addresses, or by actually
copying the contents of the backbuffer to the front buffer. Thebuffer swap is usually syn-
chronized with the refresh rate of the display device to avoid an artifact known as screen
tearing. VRAM also holds the depth buffer, also referred to as z-buffer (the name stem-
ming from the convention that the z-axis in camera coordinates points directly out of the
display screen). For each pixel in the image, the depth buffer stores a value that represents
how far away it is, or how deep it lies in the image. The depth buffer is essential to per-
form hidden surface elimination by only allowing a pixel to be drawn to the color buffer
if its depth value is less than the currently stored depth for that pixel. The depth values
are measured as a distance from the virtual camera through which the scene is observed.
The distance function most commonly implemented by default is a nonlinear function
that improves the resolution of areas very close to the virtual camera and degrades rapidly
when moving away from it. Most graphics APIs allow for the depth buffer to be pro-
grammatically accessed and written from user code in order to enable different distance
functions to be implemented.

6.1.2 Rendering Equation

The rendering equation, also referred to as the reflectance equation, was introduced si-
multaneously byKajiya [Kaj86] and Immel [ICG86]. It is an integral approximate descrip-
tion of the spectral radiance of a particular location in space based on the emitted spectral
radiance and the reflectance distribution function. The radiance is all the radiant flux
emitted, reflected, received and transmitted by a surface, per unit solid angle per unit pro-
jected area. The form in which the equation is presented is very well suited for computer
graphics and includes contributions from different factors. The radiance from a position
x and directed outward along direction ωo is described as

Lo(x,ωo) = Le(x,ωo)+
∫

Ω
fr(x,ωi → ωo)Li(x,ωi)(ωi ·n) dωi. (6.1)

The spectral radiance Lo is the addition of two terms. First, the emitted spectral radi-
ance Le along the outward direction ωo, which may be due to an emissive property of
the material itself, or to its temperature as described by the black-body radiation. Sec-
ond, the integral over Ω (shown in Figure 6.1 as the unit hemisphere centered around

109



6 Computer Graphics and Rendering Fundamentals

Figure 6.1: Ω is the unit hemisphere centered at position x around the surface normal n.

the surface normal n containing all possible values of ωi) of the bidirectional reflectance
distribution function (BDRF) fr, which is the proportion of light reflected from ωi to
ωo at position x, the spectral radiance Li coming towards x from ωi and the weakening
factor of outward irradiance due to incident angle. In other words, the equation simply
describes the transport intensity of light along a direction as the sum of the light emitted
along that direction and the total light intensity which is scattered towards that direction
coming from every other possible direction. The rendering equation is spatially homoge-
neous and linear. Even though the equation is quite general, it does not cover every single
aspect of light transport and scattering in full. For instance, it includes neither refrac-
tion phenomena nor subsurface scattering effects. Respective extensions to model these
phenomena resulted in the bidirectional scattering distribution function (BSDF), com-
prising the bidirectional reflectance distribution function (BRDF) and the bidirectional
transmittance distribution function (BTDF), and others. Note, however, that it is recur-
sive, since in order to evaluate the observed radiance Lo, one must know the incoming
radiance Li toward position x. This makes it actually astronomically expensive to evalu-
ate reliably and exhaustively without using approximations like Monte Carlo methods.
Hence, in practical applications such approximations are always used.

6.1.3 The Rendering Pipeline

The rendering pipeline, also known as graphics pipeline, describes the conceptual steps
thatmust be followed in order to render a 3D scene to a 2Ddisplay ormonitor. The steps
required in the rendering process depend on both the software and the hardware avail-
able, and there is no universal rendering pipeline that fits all cases. Tracing every single
photon in a scene and computing its effects is impractical and completely out of the scope
of even the most powerful computing systems on Earth, so many rendering algorithms
based on different approximation techniques have been researched extensively. The pro-
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cesses by which the final image is produced may vary significantly from one to the other.
We can distinguish between the following families of algorithms:

Rasterization. Rasterization is the process of geometrically projecting objects in a
scene to an image plane. It uses a primitive-by-primitive approach, based on the de-
termination of the affected pixels for each primitive. It typically uses very coarse, non-
physically based techniques to approximate illumination, even though the boundary be-
tween rasterization-based graphics and higher-fidelity methods has become fuzzier lately.
Nowadays, rasterization is sometimes combined with localized ray-marching and ray-
tracing techniques aided by hardware in order to ramp up the graphical fidelity of scenes.
Rasterization is still themost commonmethod used to produce interactive visualization.

Ray casting. Ray casting algorithmsparse the geometryof the scenepixel-by-pixel and
line-by-line from a specific point of view. Rays are cast outwards from this point of view
and, if objects are intersected, the respective color value is evaluated using several meth-
ods. The optical laws used in these methods are usually quite basic, but the rendering
speed can be orders of magnitude faster than ray tracing.

Ray tracing. Ray tracing is quite similar to ray casting, but it aims at a greater realism
by more accurately simulating the flow of light. While ray casting computes pixel colors
on collision, ray tracing recursively traces additional light rays that sample the radiance
incident on the point that the ray hit. Ray tracing is typically used to approximate the
solution to the rendering equation by applying Monte Carlo methods.

In this section, we describe the rasterization rendering pipeline only, since it is themost
common method to produce interactive graphics on common hardware. The typical
scene that is to be rendered as 3D graphics is composed of many separate objects that
fully define it. The geometry of these objects is represented by a list of vertices usually
containing additional structural and geometrical information like normal vectors, indices
or texture coordinates. The primitive type also needs to be specified. It indicates how the
vertices are connected to each other in order to form shapes (points, lines, triangles, etc.).
These vertex data are prepared in the CPU and conform, together with associated sup-
porting and texture data, one of the most important input data and starting point of the
rendering pipeline.

The rendering pipeline has three main stages: the application stage, the vertex trans-
formation stage and the rasterization stage.
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Application Stage

This step is concerned with the preprocessing and manipulation of the rendering data
into formats suitable to be rendered. This stage is carried out by the application in the
CPU. During this stage, changes are made to the scene by means of input devices in the
form of camera adjustments or input data modifications. The new scene is then passed
to the next step.

Vertex Transformation Stage

Geometrical data in three-dimensional coordinates are passed to the graphics hardware.
This stage transforms these data into geometry that can be drawn into a two-dimensional
viewport via a set of transformation matrices that must be prepared beforehand, as illus-
trated in Figure 6.2. Specifically, the coordinates are usually sent in in model space (local
coordinates). These are then transformed to world space bymeans of themodel transfor-

mation Mmodel. Then, world coordinates are converted into the camera space by means
of the view transformation Mview. Then, these are projected into the homogeneous clip
space using the projection transformation Mproj to be finally transformed to screen space
using the viewport transformation. The transformation from object coordinates pobj to
clip coordinates pclip is described with the given equation:

pclip = Mproj ·Mview ·Mmodel ·pobj. (6.2)

After that, only the viewport transformation needs to be applied to get the coordinates
in screen space. All of these matrices are typically set up in the application stage and sent
to the GPU, where user shader code is in charge of applying them to the vertices. The
shader code that works on vertices and transforms them is known as vertex shader.

Rasterization Stage

Once themodel has been clipped and transformed into screen orwindow space, theGPU
needs to determinewhat pixels in the viewport are ’hit’ bywhich graphics primitives. Ras-
terization is the process of filling the horizontal spans of pixels belonging to a primitive.
All data items associated with a vertex (position in screen space, normal vector, texture
coordinates, color, etc.) are interpolated for each pixel, conforming, together with that
pixel’s calculated depth value, what is called a fragment.

The steps involved in the rasterization stage are outlined in Figure 6.3. First, an appli-
cationmay decidewhether to apply face culling or not. In the face culling process, applied
to polygonal primitives, the faces facing away from or towards the camera are eliminated.
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Figure 6.2: Local object coordinates are converted to world coordinates via the model matrix.
The view matrix is applied to world coordinates to get view coordinates, which combined with
the projection matrix yield clip space coordinates.

This step is usually configurable via the graphics API. Then, rasterization is applied on
the remaining primitives, producing the fragments. Another user program known as the
fragment shader is in charge of computing color, depth and possibly other values for each
fragment. Typically, in a per-vertex-lighting scenario, the fragment color is simply the in-
terpolated value from each of the vertices of the primitive, and the depth value is their
interpolated depth at the fragment’s position. However, this step can be as involved and
complicated as necessary, with different levels of lighting approximation being traded off
to performance. Some models, like the Phong shading model, are very simple and physi-
cally inaccurate. Others, like physically-based rendering (PBR) attempt tomodel the flow
of light realistically at the expense of computing power.
In a final stage, additional configurable fragment operations are applied to the remain-

ing fragments. Most of these operations determine whether a fragment is to be drawn to
the viewport or discarded altogether. Examples are the pixel ownership test, which checks
whether a fragment lies in the region of the viewport that is currently visible, or the depth
test, which compares the depth value of the current fragmentwith thedepth value already
stored in the depth buffer at the fragment’s location. Some of these operations can also
be moved into the fragment shading stage. The very final fragment operation combines
the current fragment values with the values of the fragment at the same position in the
color buffer, and is known as blending. We cover it in detail in Section 6.1.7.

6.1.4 Coordinate Systems

As we have seen in Section 6.1.3, there are several reference systems involved in the se-
ries of transformations that bring an object from its local coordinate system to normal-

ized device coordinates (NDC), where the whole geometry is between−1.0 and 1.0 in all
three dimensions, to the final screen or window coordinates. Transforming coordinates
to NDC and screen coordinates is typically accomplished in a gradual fashion, step-by-
step, where we transform the vertex coordinates to several distinct coordinate systems.
The reasoning behind this many coordinate systems is that some operations make more
sense, are easier to process or simpler to code in certain coordinate systems. We can dis-
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Figure 6.3: First, face culling optionally eliminates forward or backward-facing faces. Then, the
remaining graphics primitives undergo rasterization and are converted to fragments. These frag-
ments are shaded in the fragment shader and finally undergo some configurable fragment opera-
tions.

tinguish between five different coordinate systems (Figure 6.4): Local (or object) space,
world space, view space, clip space and screen space. As we have seen in the geometry
stage section, we employ different matrices to transform from one coordinate system to
another. Thesematrices are typically produced and prepared in the CPU, and sent to the
GPU as accessory data items to the rendering data themselves.

Local space. The coordinate system that is local to every object is known as local or
object space. 3D objects and models are defined, when they are being created, in this
space. Typically, the model is centered around the coordinate system origin [0,0,0].

World space. The global coordinate system that all objects in a scene share is known
as world space. It is application-dependent and is used to position the objects and ele-
ments of a scene relative to each other. Each object has its own transform matrix, called
the model matrix Mmodel, which transforms the object’s local coordinates to world co-
ordinates. This matrix is used to place the object in the world with a given position, ori-
entation and size. The application can, for instance, make the object move simply by
manipulating the translation of this transformation matrix.

View space. The coordinate system centered on the camera and aligned with its di-
rection and up vectors is known as view space. The view space contains the coordinates as
seen from the camera’s point of view. This is typically accomplished using a combination
of translations and rotations stored inside the view matrix Mview.

Clip space. This space contains all the visible coordinates normalized in the [−1,1]

range. Vertices that are not visible due to falling outside of the viewing volume have coor-
dinates outside this range. To convert view coordinates to clip coordinates the projection
matrix Mproj is used. This matrix specifies the range of coordinates in each dimension.
The process bywhich this is determined depends on the type of projection used. The two
most common projections are the perspective projection, typically used in scenes repre-
senting a three-dimensional space, and orthographic projection, commonly used in two-
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(a) (b) (c) (d) (e)
Figure 6.4: Detailed look at themost common reference systems involved in the geometry trans-
formation of a scene. Every vertex of every object starts in local coordinates (a), which are then
translated to world coordinates (b) using the model matrix Mmodel. World coordinates are trans-
formed to view coordinates (c), which corresponds to the scene viewed from the perspective of
the camera (at the top looking down), with the camera’s view matrix Mview. These coordinates
are then normalized and projected to clip space (d) using the camera projection matrix Mproj. Fi-
nally, the viewport transformation converts from clip coordinates to screen space (e) so that the
coordinates in [−1,1] are mapped to the range defined by the viewport.

dimensional scenes. The view volume contains all objects and entities that are visible, and
is known as view frustum. Once all vertices are transformed to clip space, a perspective
division operation is carried out. In this operation, the position components are divided
by the homogeneous component in order to transform 4D clip space coordinates to 3D
NDC. This is automatically performed at the end of the vertex transformation step.

Screen space. Also known as window space, screen space coordinates are simply clip
coordinates mapped to the range defined by the viewport. This is usually a window in
a windowing system, but it can also span the full display, or even multiple displays, de-
pending on the setup. Screen coordinates are typically in the range [0,1].

6.1.5 Projections and Frustum

The projection matrix Mproj is applied to transform from view coordinates to clip coor-
dinates. It defines the frustum, which is the view volume containing everything that will
be rendered. Objects and geometry outside the frustum are culled and discarded. The
projection matrix usually takes two froms, where each defines its own unique frustum:
orthographic or perspective.

Orthographic projection. This projection defines a cube-like frustum defined by its
height, width and the near and far distances determining the near and far clipping planes
respectively. This projection maps coordinates to the 2D plane of the display directly,
and it is used mainly for 2D applications. Once projected, all objects have the same size
in the clipping plane regardless of their position in the z-space.
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Perspective projection. The perspective projection takes into account the phenom-
ena where far away objects appear smaller and close-by objects are larger. This effect is
called perspective. The frustum in a perspective matrix (Figure 6.5) is defined by a field
of view angle α and a near and far distances, zn and z f , defining the near and far clip-
ping planes. The perspective projection matrix maps a given frustum range to clip space
and also manipulates thew value of each vertex coordinate in such a way that the further
away a vertex coordinate is from the viewer, the higher the w becomes. Coordinates in
clip space are in the [−w,w] range, and anything outside is clipped. Coordinates in clip
space are applied the perspective division by w, mapping them to [−1,1]. Each compo-
nent the vertex coordinate is divided by itsw, giving smaller vertex coordinates the further
away the vertex is from the camera.

6.1.6 Depth Testing

Depth testing is an essential fragment operation in the graphics pipeline. It prevents ge-
ometry to be rendered out-of-order in the z-space, and it does sowithout sorting it before-
hand. The depth test uses the depth buffer, which has the same size as the color buffer,
and stores depth information per fragment. Typically, the precision of the depth buffer
is 16-, 24- or 32-bit floating-point numbers.

The depth test is carried out as one of the fragment operations in the final stage after
the fragment shading. In this test, the depth value of each fragment is compared against
the depth value stored at the fragment’s position in the depth buffer. Typically, the test
passes (i.e., the fragment is not discarded) when the depth value of the fragment is less
than the one found in the depth buffer. This condition, however, can be manipulated
in most current graphics APIs. When the test passes, the depth value at the fragment’s
location in the depth buffer is updatedwith the fragment’s depth value, and the fragment
continues along the pipeline.

The values in the depth buffer are normalized to the z range in clip coordinates. How-
ever, the z-values in view space can be any value between the frustum’s near and far planes.
The depth test function transforms fromview-space z-values to clip-space normalized co-
ordinates. The obvious way of doing so is using the linear function f (z), defined as

f (z) =
z− zn

z f − zn

, (6.3)

where z is the z-value in view-space and zn and z f are the distances to the near and far
clipping planes of the frustum in view-space. In practice a linear depth buffer like this
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Figure 6.5: The view volume, or frustum, is the volume between the near and far plane as deter-
mined from the camera. In the image, the perspective camera defines the frustum using the field
of view angle α , the near distance zn and the far distance z f . The inside of the volume is mapped
to [0,1]. The yellow object has all vertices in this range, so it is located inside the frustum and its
coordinates get transformed to view and clip spaces. The magenta object’s coordinates are out of
this range, and are discarded in the frustum culling stage.

is almost never used because of perspective projection properties. Usually, a non-linear
function proportional to 1/z is a more sensible choice,

f (z) =
1/z−1/zn

1/z f −1/zn

. (6.4)

This provides higher depth precision closer to the near plane at the expense of lower
precision at higher distances. This function performswell in small scenes. In them, depth
values are greatly dominated by the small z-values, providing a large depth precision for
objects close by. Note that this function yields non-linear values in clip-space. Practi-
cally, the function is embedded within the projection matrix Mproj, so when coordinates
are transformed from view space to clip space, and then to screen space, the non-linear
equation is applied.

6.1.7 Blending

The very final fragment operation is known as blending. This operation calculates a new
color from the fragment’s final color and the color already stored in the color buffer at the
fragment’s location. The blending equation is quite powerful, and most graphics APIs
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allow it to be completely configured. It describes how to weight and combine the source
and destination colors to obtain the final resulting color:

C̄result = C̄source · F̄source +C̄dest · F̄dest . (6.5)

Here, C̄source is the source color, the output of the fragment shader. C̄dest is the des-
tination color, which is the color currently stored at the fragment’s location in the color
buffer. F̄source and F̄dest are the source and destination color factor values. These are used
toweight the impact of the source and destination colors in the result, respectively. These
factors arewhatmakes this equation so powerful. Setting them to the source alpha (trans-
parency value) and oneminus the source alphawe get the standard alpha blending, which
simulates transparency and takes into account the order of the fragments. If we set them
both to one, we get additive blending. Most graphics APIs allow for a full customization
of both the shape of the blending equation and the factor values.

6.1.8 Frame Buffers, Textures, and Post-processing

Frame buffer objects are a combination of a color buffer, a depth buffer and a stencil
buffer. These buffers reside in GPU memory and can be created and destroyed at will.
They are typically used as render buffers as holders of the output of the render process.
Frame buffers are necessary for off-screen rendering, where a scene is rendered but not
presented on screen. For example, the result of the shadow map pass is a scene with the
depth information from the point of view of each light. This is rendered to an off-screen
frame buffer and used as input in later render stages. The color and depth buffers of
a frame buffer can be sent into shaders in the form of texture attachments. Rendering
a scene to a frame buffer with a texture attachment allows us to use that texture as in-
put in our shaders to perform post-processing. Post-processing is a group of operations
that are performed usually at the end of the render process and act on the final image
or render. There are countless effects and operations that can be implemented via post-
processing, such as bloom, lens flare, anti-aliasing, cell-shading, screen-space reflections
and much more. Any effect whose name starts with ‘screen-space’ is implemented as a
post-processing operation.

6.2 Interactivity and Performance

There are several techniques to improve the performance and interactivity of graphics
applications bymaking them produce frames faster. These techniques can be categorized
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into two big groups: culling strategies and spatial structures. Even though there may be
some overlap between them, we approach them separately in the present work.

6.2.1 Culling strategies

In three-dimensional rendering of complex scenes typically only a tiny subset of the scene
is visible from a given location at a given time. The determination of this subset is what
is known as the visibility problem, and mainly has two solutions: visible surface deter-
mination and hidden surface determination, also known as culling. While the former
determines the visible set without checking all the geometry, the latter works from the
full scene and removes all invisible parts to approximate the visible set.

Culling strategies attempt to eliminate as many elements as possible from a scene in
the early stages of the rendering pipeline in order to render only the absolutely essential
ones. The most important culling algorithms are discussed below.

View-frustum culling. As noted in Section 6.1.5, a virtual camera is defined by a pro-
jectionmatrix, which encodes the information of the viewing frustum. The viewing frus-
tum is the volume that contains all visible objects in a scene, and is defined by the six
planes front, back, top, bottom, left and right, which together form a cut pyramid. View-
frustum culling refers to the process of discarding the geometry elements that fall outside
this volume. The naive version of this process tests every object against the six planes,
leading to an asymptotic complexity of O(n). However, we have seen that in the clip
space the coordinates are normalized device coordinates after the perspective division, in
[−1,1], so this check becomes a trivial comparison and is quite fast and straightforward.

Back-face culling. A model object is composed of vertices and faces. In average,
roughly half of the faces are visible from the camera at a particular moment in time. This
means that half of the faces are not visible at all, so there is no need to process them.
Back-face culling applies only to polygonal graphics primitives and is typically performed
before the rasterization process begins. It looks for faces which are facing away from the
camera and discards them. These faces correspond to the unseen far side of the model,
so they can (most times) be safely discarded. In order to detect the back-facing faces the
winding order of the vertex data is used. The winding order is the order in which the
vertices of a triangle are defined when the model is created. This order can be clockwise
or counter-clockwise. By default, triangles defined with counter-clockwise vertices are
processed as front-facing triangles. Since the actual winding order is calculated at the ras-
terization stage after the vertex transformations have already completed, the vertices are
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seen from the viewer’s point of view. In this case, all we have to do to cull back-facing
triangles is check their winding order from our perspective. If it is reversed, the primitive
can be safely discarded.

Occlusion culling. Occlusion culling is the process of removing objects that are hid-
den by other objects in a scene from the viewpoint. Frustum culling and back-face culling
are usually not enough, especially in dense, complex scenes. The third culling strategy,
occlusion culling, attempts to identify the visible parts of the scene, thus reducing the
number of primitives rendered. Occlusion culling is often cell-based. The most promi-
nent technique to is based on binary space partitioning (BSP), where space is split with
a plane to two half-spaces, which are again recursively split. This can be used to force a
strict back-to-front ordering [Fol+90]. Occlusion culling is typically based on the poten-
tially visible set (PVS) [Tel92],which evaluates for each cell a set of visible cells, which are
then used at rendering time to discard non-visible cells beforehand. PVS-based culling is
conservative, as it always overestimates the set of visible cells in order to avoid artifacts.
Additionally, since the PVS determination can be quite expensive, in some cases the sets
are precomputed. Occlusion culling algorithms can be typically classified depending on
the following many criteria:

Online vs. offline. A major distinction is whether the technique precomputes and
stores visibility data beforehand orwhether it dynamically evaluates and computes
it during the course of its run time.

Image vs. object space. Object-basedmethods use the geometry of the whole object to
determine visibility. Image-based methods, in contrast, operate on the visual rep-
resentation of an object when broken into fragments in the rasterization stage.

Conservative vs. approximate. Conservative techniques overestimate the visible set,
guaranteeing the fidelity of the rendered scene at the expense of speed. Approxi-
mate techniques may underestimate the visible set, resulting in rendering artifacts
and popping.

Continuous vs. discrete. Continuous methods determine the visibility in all view di-
rections in the image. In contrast, discrete methods determine the visibility only
for a subset of view directions, e.g., a single direction for each pixel in the image.

Individual vs. global. Individual methods determine whether objects are fully oc-
cluded by other objects individually. Global methods can also determine whether
an object is fully occluded by the combined geometries of two or more other ob-
jects from a viewpoint.

Coherence use. Algorithms can exploit different types of coherence, like spatial (the vis-
ible parts of a scene tend to consist of a group of compact sets or regions), ray-space
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(similar sets of rays tend to have the same visibility) or temporal (visibility at two
successive moments tends to be coherent despite small changes in the scene).

PVS-based arbitrary geometry occlusion culling. Recently, PVS-based occlu-
sion culling algorithms for more general environments have been proposed. These al-
gorithms follow the PVS principle in that they try to find a tight overestimation of the
true PVS for a given cell. The algorithm by Schaufler et al. [Sch+00] first discretizes the
scene by building an octree containing empty, boundary and opaque nodes. Then, they
find opaque (solid) octree nodes, and, for all view nodes, check what portion of space the
node definitely occludes with respect to any position in the view node. Only the nodes
not hidden are inserted into the PVS for the cell node. The approach is also well suited
for finding the definitely hidden parts of terrain in terrain rendering. An alternative algo-
rithm to the problem by Durand et al. [Dur+00] introduces extended projections to find
the PVS for viewing cells. Both presented algorithms can handle occluder fusion. This
means that two or more occluders positioned in the same screen region from the point
of view of the observer can hide an object even if none of them could do it alone.

Contribution culling. Contribution culling is an example of a non-conservative
method, as it discards objects if their screen projection is small, introducing artifacts such
as popping. The term “aggressive culling” is sometimes used to refer to this family of
non-conservative methods [AM04]. In other words, contribution culling is the process
of removing objects that do not contribute significantly to the final image due to their
small size or large distance. This form of culling is still very often used in some applica-
tions. To smooth out the transitions and avoid popping, distance fog is sometimes added.
Another common technique is to replace objects with their lower-fidelity versions with a
lower level-of-detail (LOD) when they are sufficiently far from the viewpoint.

6.2.2 Spatial Data Structures

A solution to the visibility problem can be conservatively approximated by using spatial
structures that exploit spatial and temporal coherence, like the algorithm by Coorg et
al. [CT97]. There are various ways to store and represent the objects of a scene in a com-
puter system, depending on the final aim: point clouds, volume data, edge lists or math-
ematical analytical curves and surfaces. Here, as well as in the rest of this introduction,
we focus on the point-based and triangular geometry often used to approximate surfaces.
The spatial structures we discuss are well suited to store such geometry, even though in
some cases may also accommodate other representations. Storing scene data in a linear,
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naive fashion is unsuited for all but the most basic use cases, as there is no efficient way to
access the needed spatial information to perform the culling operations.

Since there are many possible structures, their unique properties must be compared
and balanced with the needs of a particular application. There is the spatial complexity
(in memory and disk), the generation and update complexity, and the code complexity
necessary to support its use. Typically, due to its nature, only hierarchical spatial struc-
tures are well suited for most uses; if an object is not visible, all of its children are also not
visible. Most of the structures discussed here are complimentary. This means that they
can be combined to approach different problems within a single application.system.

Non-Hierarchical Grids

In non-hierarchical grids, the space is divided only once using a unique structure for the
entire scene. There are no further recursive sub-divisions, so their use, especially in scenes
with large distance ranges, is quite limited. The most clear candidates are uniform and
non-uniform grids.

Uniform grids. Uniform (regular) grids represent the simplest conceivable way to di-
vide space. In these, the space is divided into cells of equal size, covering the whole world.
Such partitioning suffers from both performance and scalability problems when used for
complex scenes with large environments, or when the object density is far from uniform
across the world. Advantages of this method are the simplicity of set-up and use. The use
of a uniformgrid for dynamic scene occlusion culling is explored byBatagelo et al. [BS02].

Non-uniform grids. Non-uniform, irregular grids trade higher a generating cost for
a higher efficiency at accommodating the geometry and objects in a scene. Non-uniform
grids have splitting planes which are still axis-aligned, but they can be position arbitrarily
along the axes. These grids are typicallymade up of non-equally-sized cells, and their con-
figuration is closely coupled with the scene at a specific time. In this case, whenever there
are variations in the scene the grid may need to be re-generated from scratch. Irregular
grids are better at dealing with anisotropic scenes where the object density varies from
region to region.

Hierarchical Grids

Hierarchical grids are able to subdivide space recursively at each cell when needed, solving
the problematic large scenes which span over very large distances.
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(a) (b) (c)
Figure 6.6: An example of a uniform grid (a), a non-uniform grid (b), and a recursive grid (c).

Recursive grids. Recursive grids are still quite simple. They simply bring the concept
of recursivity into uniform grids. Their construction process is as follows: start by setting
up a uniform grid on the scene. Then for each cell whose object count is higher than
a defined threshold, recursively create a new grid with a smaller scale, and repeat. The
concept is similar to the BSP or the octree, but in this case a cell is subdivided into an
arbitrary number of cells instead of two or eight.

Quadtrees and Octrees

Quadtrees and octrees are actually the same data structure, but while quadtrees are two-
dimensional, octrees are three-dimensional. An octree (Figure 6.7) is a data structure that
subdivides space hierarchically and recursively in which each node, also called octant, has
exactly eight (four for quadtrees) children nodes. They have been shown to be very effec-
tive atmanaging large 3Dpoint clouds [EBN11]. The root node is set up so that it encloses
all the objects in the set, and is subdivided further in accordance to defined density rules.
Typically, octrees are used as a supporting structure to a level-of-detail method, and store
coarser version of objects and entities in higher-level nodes, and finer, more detailed ones
in the bottom nodes. Since the octree organizes space partitions hierarchically, its traver-
sal can be easily implemented using a simple visibility condition based on the solid angle
of the octant, or on the distance from the viewpoint to the octant and its size. Depth-first
traversal and access operations on octrees have an asymptotic complexity of O(logn).

However, octrees are not particularly well suited to dynamic scenes with fast-moving
objects. While local re-generations and re-balancing operations are possible, they are not
perfect and usually require of a full rebuilding after a certain time. There are several vari-
ants of the octree, like the octree-R, where the splitting planes inside subdivided octants
are arbitrarily positioned, or the loose octree, which is a regular octree where all the oc-
tants are subdivided down to a certain depth.
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Figure 6.7: Example of an octree with four levels, 0 to 3. At the root level (salmon) only the
front-top-right node is subdivided (yellow), belonging to the first level. The same front-top-right
node is further subdivided into the second level (green). This, in its turn, is subdivided into the
third level, where the blue node belongs.

BSP Trees

Binary search partitioning (BSP) is a technique developed by Schumacker et al. [Sch69],
based on recursively subdividing space into two convex sets by using codimension-one
manifolds. In the 3D case, these manifolds are two-dimensional planes. The subdivision
continues until one or more requirements are met. This partitioning scheme is typically
represented by a data structure known as a BSP tree, which can be seen as a generalization
of other spatial data structures like the k-d tree Section 6.2.2.

This technique was initially used in the context of 3D computer graphics because it
provides effortless back-to-front sorting of primitives and polygons, enabling the efficient
integration and usage of the painter’s algorithm [FKN80]. In this algorithm, polygons are
rendered in a descending order of distance to the viewpoint, back to front, leading to far
away polygons being rendered first and closer ones being rendered last. This algorithm
requires a time-consuming sorting of the polygons, and is unable to render correctly parts
where two or more polygons overlap. Even though nowadays the usage of the z-buffer
renders the painter’s algorithm unnecessary, BSP trees are still widely used.

BSP trees are typically quite expensive to set up, construct and update because of the
expensive search of the best splitting plane at each division, and are not particularly well-
suited to dynamic scenes. The time complexity for creating a BSP tree is O(n2 logn),
where n is the number of objects in the scene.
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k-d trees

A k-dimensional tree (k-d tree) is a special version of the BSP tree that only uses axis-
aligned splitting planes. In contrast, the splitting planes in BSP trees used to speed up
the painter’s algorithm are polygon-aligned. This data structure organizes points in a k-
dimensional space, and is used inmany applications, likemultidimensional space searches
or creating point clouds.
In eachnode of a k-d tree is a k-dimensional point. Eachnon-leaf node generates a split-

ting codimension-one plane that divides the space into two parts known as half-spaces.
Points to each side of this plane are represented by either children subtrees.
There are very many variations of the k-d tree. For instance, the implicit k-d tree is

defined by an implicit splitting function, the min/max k-d tree associates a minimum
and maximum value to each node, and the relaxed k-d tree uses arbitrary discriminants
for each node.

6.2.3 Level-of-Detail

Most of the material we have seen in the previous sections can be applied to implement
level-of-detail (LOD) into an application. LOD typically refers to the complexity of a 3D
model representation of an object, but it can also be generalized to culling strategies and
visibility determination. All in all, we can distinguish between two separate categories:
object LOD and view-dependent LOD.

Object LOD. Object LOD has entire objects as the principal subject of the levels of
detail. For example, several versions of the same 3D model for an object with increasing
fidelity and complexity canbe used depending on a heuristic function. This canbe as sim-
ple as a set of conditions basedonparticular physical quantities like distance or solid angle.
This scenario is an example of discrete level-of-detail (DLOD), where several separate ver-
sions of an asset are created and exchanged in fullwhenneeded. This discrete nature of the
levels usually results in visible artifacts like popping when the exchange happens. These
artifacts can be mitigated by smoothly morphing between levels. In contrast, continuous
level-of-detail (CLOD) uses a structure that contains a variable spectrum of detail. This
structure can be queried to provide the appropriate level-of-detail in each situation.

View-dependent LOD. In view-dependent LOD the principal subject of the levels of
detail is not an entire object, but the geometry and polygons themselves. These methods
allow detail to be dynamically added and subtracted from parts of a polygon mesh based
on control parameters which are typically view-dependent. This is especially well-suited
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for large, complex objects that span over large areas. In such cases, it may make sense to
use the highest-detail level for areas close to the viewpoint, while keeping distant parts
coarser. The most obvious candidate to view-dependent LOD is tessellation, which is al-
ready supported by all themajor graphics APIs. Tessellation is the process of dynamically
subdividing a polygonal mesh based on some rules.

6.3 Floating-Point Precision

There are severalmechanismsbywhichnumbers canbe represented in computer systems.
Nowadays, mostGPUs are optimized forfloating-point representation, which enables the
representationof real numbers as an approximation that trades off range andprecision. In
this part we focus on the IEEE 754 [IEE19] standard introduced in 1985, which is widely
adopted and used.

In floating-point arithmetic, numbers have a base β , which is always assumed to be
even, and a precision p. Numbers are represented with a fixed number of bits, typically
32 or 64. These bits are distributed between the significand (also known asmantissa) and
the exponent. Each of these is represented with a fix number of bits, and together they
conform the floating-point representation

±d.dd . . .d ×β e, (6.6)

where d.dd . . .d is the significand, β is the base and e is the exponent. More precisely,
±d0.d1d2 . . .dp−1 ×β e represents the number

±
(

d0 +d1β−1 + · · ·+dp−1β−(p−1)
)

β e,0 ≤ di < β . (6.7)

Two additional parameters, emin and emax, represent theminimum andmaximum values
for the exponent, and depend on the number of bits assigned to it. These, together with
p and β , determine the representable range.

The term floating point indicates that the decimal point (also known as radix point)
can “float”, or move around and be placed anywhere with respect to the significant digits
of the number by means of the exponent, in a representation similar to scientific nota-
tion. The problematic stems from the fact that Equation 6.6 represents a finite set. The
distribution of this finite set in R is what typically produces loss of precision when rep-
resenting large enough numbers.
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If β = 10 and p = 3, then the number 0.1 can be represented exactly as 1.00×10−1.
However, if β = 2 and p = 24, it cannot be represented exactly. The approximate repre-
sentation 1.10011001100110011001101×2−4 is then used.

A real numbermay not be exactly representable as a floating-point number due to two
main reasons. The first one is outlined in the 0.1 example above, where the real number
lies strictly between two floating-point numbers and neither of them represents it exactly.
The second one happens when the number is out of range, i.e., its absolute value is either
larger than ββ emax or smaller than ββ emin . When this happens, IEEE 754 defines two
special “infinity” values ±∞. Precision issues in graphical representation systems have
their grounds on the first case.

Intuitively, one can think of this floating-point representation as a set of buckets laid
out in the real number space containing each the same number of items. The number of
items that each bucket holds is the same, and depends on p, or the number of bits used
for themantissa. Each of this items is a single real number that can be represented exactly.
The size of the buckets, i.e., the range of real numbers it covers, varies depending on how
far away from the origin, zero, the bucket is. Close to the origin, the buckets cover a very
short range, so lots of very close-by real numbers can be represented. When the absolute
value of the exponent increases, i.e., wemove away from the origin in either direction, the
buckets gradually cover larger and larger ranges, resulting in the representable numbers
being further apart from each other. Since only a small subset of exact real numbers can
be represented with this system, a rounding mechanism is in place. In the case of IEEE
754, the rule is to round to the nearest value, and in the case of a tie, round to whichever
value is even.

6.3.1 Relative Errors

Since rounding is an essential part in the floating-point representation process, measur-
ing the errors is important. In general, if the floating-point number d.dd . . .d ×β e rep-
resents z, then it is in error by

|d.dd . . .d − (z/β e)|β p−1 (6.8)

units in the last place. As an example, if the real number 0.0314159 is represented with
3.14×10−2, then it is in error by0.159units in the last place. Note that the errors increase
as the represented numbers get larger.
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6.3.2 Catastrophic Cancellation

As a result of the formalization of floating-point representation, the relative error com-
mitted using floating-point arithmetic when subtracting two large and nearby quantities
can be very large. Therefore, the evaluation of an expression containing an effective sub-
traction (explicit or implicit in the signs of the operators) may result in a large enough
relative error so that all the digits are meaningless. When subtracting nearby operands,
the most significant digits match and cancel each other, leaving only the less significant
digits as a result. This phenomena is known as cancellation. There are two types: catas-
trophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding errors.
In this case, when they are subtracted cancellation may cause many significant digits to
disappear, leaving behind only digits polluted by rounding error. This happens in a ma-
jor degree the larger and more similar the operands are. In contrast, benign cancellation
occurs when subtracting exactly known quantities, i.e., quantities that have no rounding
error. In this case, the difference has a small relative error and no harm is done.
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We find, therefore, under this orderly arrange-

ment, a wonderful symmetry in the universe, and

a definite relation of harmony in the motion and

magnitude of the orbs, of a kind that is not possible

to obtain in any other way.

— Johannes Kepler

7 Gaia Sky

T
hese are exciting times for astronomy and astrometry research. The Gaia satel-
lite, launched back in December 2013, has been measuring since July 2014 the
star positions and proper motions of roughly one percent of the stellar content

of our Milky Way, a spiral galaxy populated with 100–300 billion stars. It has two fields
of view, separated by an angle of 106.5◦, which are projected on the same focal plane
by a complex system of mirrors. With 106 CCD sensors and about a billion pixels, it is
the largest camera to ever be flown into space. DPAC, the Data Processing and Analysis
Consortium, is the multinational endeavor with institutions from more than 20 coun-
tries responsible for data processing and construction of the final Gaia catalog. However,
the release of this catalog is rolled out in an incremental fashion. The Gaia Data Release
1 (DR1), published in September 2016, contains a catalog of over 1.1 billion 2D star
positions. Additionally, more than two million parallaxes and proper motions (angular
velocities of stars in the sky, as observed fromGaia) could be derived using cross-matching
techniques with earlier catalogs, such as Tycho-2 [Høg+00] and Hipparcos [Per+97], en-
abling this part of the star map to raise into the third dimension, as well as 250,000 ra-
dial velocities by cross-matching with RAVE [RAV+17] data. The second data release,
DR2, was released April 25, 2018. Based on more than 22 months of data collection,
it represents the largest leap the Gaia catalog will ever make. It contains the positions,
parallaxes, proper motions, magnitudes, and colors of more than 1.3 billion stars. Ad-
ditionally, it offers more than 7 million radial velocities, half a million variable stars, and
about 14 thousand asteroid orbits. It can be considered the first real Gaia dataset, and it
is enabling astronomers to study the history, composition, and structure of our galaxy in
great detail. Since then, the early third Gaia data release (eDR3) was published Decem-
ber 3, 2020, and represents a big leap in accuracy and a moderate leap in raw numbers
when compared to DR2. In this chapter, we will use ‘DR2+’ to refer to any Gaia catalog
containing three dimensional positions formore than a billion stars, i.e., any catalog after
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Gaia’s first data release. The appeal of such amission goes well beyond astronomy, and in
order to spark an interest in the laymen, clear and simplemessages and attention-catching
media material are usually required. In this chapter, we present a free and open-source
software package called Gaia Sky (Figure 7.1), created with the main objective of deliver-
ing the Gaia catalog to related research areas and the general public, and enabling anyone
to gain insight into not only the mission and its catalog, but also supporting astrometric,
astronomic, and cosmological research.

The contributions of this chapter include:
• A newmagnitude–space level-of-detail octree structure,
• a floating camera approach to address single-precision floating-point number ac-
curacy issues,

• a novel depth buffer function to address high-dynamic distance ranges,
• integrated visualization of relativistic effects, and
• the representation of proper motions of stars.

7.1 Other Astronomy Visualization Frameworks

There are, of course, several tools and frameworks that have different aims and propose
distinct approaches to Gaia and astronomy visualization in general. We can distinguish
between two groups: 3D universe software and Gaia-tailored visualization tools.

In the Gaia visualization domain, the Gaia Archive Visualization Service [Moi+17] of-
fers a web-based interactive visual exploration tool, that features direct access to the Gaia
catalog in a visual collaborative environment based on 2D linked views. It also features a
three-dimensional representation of the star catalog, albeit quite limited in functionality
and scope. Topcat [Tay05] is a desktop tool for operations on astronomical catalogs and
tables. It offers 2D and 3D plotting and is focused on astronomy use cases. Since version
4.2-1, it supports GBIN files, the native Gaia data format. Topcat is widely used in the
larger astrophysics community. Vaex [BV18], although not Gaia-specific, was initially de-
veloped within the context of DPAC, and is a visualization and exploration tool for big
tabular data with its own volume rendering package. Gaia Sky focuses on a direct spatial
representation of the catalog, but all these tools can be used in conjunction with Gaia
Sky via SAMP [Tay+11], a messaging protocol that enables astronomy software tools to
interoperate and communicate, in order to provide additional functionality.

Several similar systems fall in the category of planetarium systems that runon full dome
setups (Section 7.1.1). Other, more closely related packages to Gaia Sky are comprised
by open-source, freely available 3D universe software packages that run on laptops and
desktop computers. In this category, we find Open Space (Section 7.1.2), Celestia (Sec-
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Figure 7.1: Screenshot of Gaia Sky with Saturn and some of its moons, the Milky Way Star
Clusters catalog indicated by yellowish spherical meshes, semi-transparent isosurfaces of OB star
densities, and stars from Gaia showing parts of the MilkyWay galaxy. © 2019 IEEE.

tion 7.1.3), and Space Engine (Section 7.1.4), even though this last one is proprietary and
neither open source nor free.

7.1.1 Planetarium Systems

In the realm of 3D universe software, Uniview [Kla+10],Digistar [ES], andMitaka [4D2]

are the main players in planetaria software worldwide, and offer advanced, visually ap-
pealing simulations that run on multi-projector dome systems. All of them enable a full
three-dimensional representation and traversal of the known universe. Star Strider [FMJ]

is a planetarium and virtual spaceship application that offers a 3D star chart and includes
a representation of relativistic aberration and Doppler-shift.

7.1.2 Open Space

Open Space [Boc+17] is an open-source interactive data visualization framework designed
to visualize the entire Universe. We have evaluated its latest available public version,
0.16.0, which is a beta release. The package is only available for Windows and macOS in
executable form, even though it can be built from source for Linux. On the other hand,
Gaia Sky is out of beta since version 1.0.0 and provides off-the-shelf builds for Linux
(rpm, deb, aur, sh, flatpak), macOS (dmg), andWindows (64-bit installer).
Thedefault dataset is downloaded automatically at startupofOpenSpace andcontains

a lot of data of the Solar System and its space missions. It implements virtual texturing
to provide high resolution views of planetary surfaces, and it also makes use of height
maps. Even though Gaia Sky can accommodate this kind of data, by default only the
planets, a selection of moons, some minor planets, 14,000 asteroids, and the Oort cloud
are provided. Also, Gaia Sky also does implement terrain level-of-detail and use height
maps, but it lacks virtual textures as of today.
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Open Space uses a scene graph for its internal model, like Gaia Sky. Open Space, how-
ever, makes use of the more complex Dynamic Scene Graph [Axe+17] approach to be
able to represent a high dynamic range of distances. Gaia Sky, on the other hand, uses the
floating camera approach (Section 7.2.2) to avoid floating-point precision issues.

7.1.3 Celestia

Celestia has been around formany years, even though its development was stopped from
2011 to 2017. The current build is version 1.6.2.2 on Windows and macOS, and 1.6.2.1
onLinux. It still usesHipparcos as themain catalog (120K stars), and it ismainly focused
on the Solar System, including virtual texturing for handling on-demand high-resolution
textures of planetary surfaces and SPICE kernels for Solar System objects. Gaia Sky, in
contrast, can handle much larger catalogs, but does not implement virtual texturing. Ce-
lestia has built over the years a vibrant and active community, producing different data
packs. It also offers mobile ports for iOS and Android.

7.1.4 Space Engine

Space Engine is proprietary closed-source software andWindows-only. It borrows heav-
ily from the gaming industry, making use of impressive graphics, particle effects, and pro-
cedurally generated environments and worlds. As a star catalog, it uses Hipparcos. It
contains only 130K real objects, counting stars and other object types. Gaia Sky’s fo-
cus, on the other hand, lays not so much on graphics but on the efficient traversal and
representation of the star catalog and other astrophysical data.

7.2 Gaia Sky

Our framework, named Gaia Sky [Saga] (Figure 7.1), is an open-source endeavor devel-
oped since 2014 in the framework of the Data Processing and Analysis Consortium of
ESA’s Gaia cornerstone astronomymission. Gaia aims at creating a six-dimensional map
of more than one billion stars with positions and velocities. In this context, the main
mission of Gaia Sky is to deliver an off-the-shelf visualization of the Gaia catalog, and to
aid in the production of outreach material. However, it has a wide range of other ap-
plications, from scientific to purely recreational. For instance, it was used within DPAC
to help visualize and understand the stray light path, an optical issue with the spacecraft
construction arisen in its first months of operation.
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Gaia Sky contains a full simulation of our Solar System, with all its planets, dwarf plan-
ets, themainmoons, and thousandsof asteroids and asteroidorbits. In its current version,
it allows for the exploration of Gaia eDR3. We offer different datasets based on DR2+
data, selected according to different parallax relative error criteria. They contain from 5
million stars tomore than 600million. Other included data are star clusters, extragalactic
sources, and derived structures, like isodensity surfaces of stars, dust, andHII regions (see
Figure 7.2). Beyond that, Gaia Sky also enables the visualization ofGaia’s trajectory from
Earth to its site of operation, 1.5×106 km behind the Earth away from the Sun, where it
follows a Lissajous orbit around the Lagrangian point L2 (see Figure 7.3), and the octree
structure, the Gaia data is stored in (Figure 7.4).

The main strength of Gaia Sky, however, is that it can handle catalogs in the hundreds
ofmillions of objects. Themain challenges, that led to novel design solutions inGaia Sky,
include the efficient handling of these data to enable interactive exploration, andmanag-
ing the very large range of scales with sufficient numerical precision. Gaia Sky also fea-
tures, besides a large number of exploration tools, a scripting interface, which can be ac-
cessed by directly running the scripts, or via aRESTAPI, a variety of stereoscopicmodes,
a panorama (360◦) mode, a planetarium output mode together withmultiple projection
common data interchange (MPCDI) support for multi-projector systems, and VR sup-
port via the OpenVR API. Additionally, a camera recorder utility enables the recording
and later playback of the full camera state at a user-defined frame rate. Before we provide
a detailed description of the system (Section 7.3), we describe our data representation
technique (Section 7.2.1), our approach to ensure sufficient numerical precision (Sec-
tion 7.2.2), our solution to the depth buffer precision problem (Section 7.2.3) and a rep-
resentation of relativistic effects (Section 7.2.4). A discussion on the performance of the
system, together with a comparison to other similar solutions, is provided in Section 7.4.

7.2.1 Data Representation and Access

One of the central challenges in the conception and development of Gaia Sky was the
effective handling of the large star catalog. Compared to other star catalogs, DR2+ are
large in several regards. First, they are large in the number of stars. DR2+ contain well
over a billion stars with, however, varying quality of the line-of-sight distance (denoted
parallax relative error). Here, we use a subset of 601 million stars for which the paral-
lax relative error is smaller than 90.0%. This is orders of magnitude larger than previous
3D star catalogs. We offer a selection of eDR3-based star catalogs on our data repository.
The largest of them contains 1.46 billion stars and uses the geometrical Bayesian distance
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(a) (b)
Figure 7.2: (a) Objects from the DR2 Open Clusters (OCDR2) catalog indicated by spherical
meshes, with a logarithmic galactic grid in blue. (b) Semi-transparent isosurfaces of dust (black),
HII regions (red), and hot OB stars (blue-purple) [Jar]. The blue circle sits at the 2.5 kpc mark
from the Sun, located at the center of the picture.

(a) (b)
Figure 7.3: (a) Gaia trajectory from Earth to its site of operation, the Lagrangian point L2, and
its Lissajous orbit. The scales are adapted such that both parts can be shown together. In the
background we can see the orbit trails of other Solar System objects and some stars of the eDR3
catalog. (b) The CCD array of Gaia in the FOV camera mode of Gaia Sky.

determination method by Bailer-Jones et al. [Bai+21]. Second, DR2+ are large in terms
of spatial scales. Our Milky Way galaxy spans about 1× 1021 m in its diameter, but on
the other hand, the dimensions of the Gaia spacecraft are only a few meters. Third, it is
large in the range of star brightnesses. In contrast to most previous catalogs, DR2+ in-
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(a) (b) (c)
Figure 7.4: Octree structure of Gaia Sky using the eDR3 bayesian distances catalog [Bai+21]
with 1.47 billion stars. (a) displays a close-up viewof theMilkyWay and the inner octree structure,
while (b) and (c) show successively farther scenes that contain the full octree.

clude astrometric data, spanning roughly 18 orders of magnitude in brightness [Gai+18].
These different high dynamic ranges are intertwined, and an effective exploration and
navigation system needs to take this information into account and exploit it. A tailored
level-of-detail (LOD) structure with streaming capabilities is therefore comprising a cen-
tral part of Gaia Sky’s core system. In many applications, LOD is accomplished by an
octree (Section 6.2.2), whose higher levels contain coarser approximations of the scene
components, usually called impostors, while lower levels contain more detailed versions.
During navigation, these octrees are traversed, and distance-based culling is employed to
decide on the visibility of each of the octants of the octree. The idea underlying these ap-
proaches is to omit detail that the observer cannot perceive, i.e., to omit detail that would
appear too small, because it is too far away compared to its size.

InGaia Sky, however, we follow a different approach, because there are substantial dif-
ferences between typical scenes and Gaia data. First, stars are, by nature, discrete. That
is, although they are huge objects, they are clearly confined and, given the incredible dis-
tances between them, they have to be considered points on galactic scales. Therefore,
using smoothed and coarsened representations as impostors for sets of stars would not
be an optimal choice, as the impostors would need to remain consistent from all viewing
directions. Additionally, stars in Gaia Sky can move during the simulation due to their
proper motions, and their shading parameters can be manipulated in real-time, making
it even harder to use impostors. At the same time, the visibility of stars is not determined
by their distance alone—it is the combination of their absolute brightness (which is de-
fined for a fixed distance of 10parsec) together with their distance to the observer (and
possibly extinction) that is responsible if a star can be perceived or not. These considera-
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tions motivate our main contribution regarding star catalog representation in Gaia Sky:
magnitude–space level-of-detail (MS-LOD).

We exploit the correlation between distance, absolute star brightness, and apparent
star brightness by constructing an octree that contains the stars sorted by absolute mag-
nitude in a descending manner. That is, the root level contains the brightest stars, and
lower levels progressively contain fainter and fainter stars. Additionally, the mapping of
magnitudes to octree levels is bijective, so that each level contains a well-defined range of
absolute magnitudes, and a given absolute magnitude can only be assigned to one level.
Figure 7.5 shows an example for the stars in the first eight levels of the octree, from depth
zero, the root (a), to level seven (h). Due to the non-uniform distribution of stars and the
limited number of stars in each octant, some irregularities can be seen because the stars
of a level are inspected in an isolatedmanner here. From (a) to (d), the number of stars in
each level is nearly the same, but the brightness of the stars decreases, as does the overall
brightness of the resulting image. From (f) to (h), the brightness of the stars still decreases,
but the number of octants as well as the number of stars increases. That is in particular
the case because there are manymore faint stars in the Universe than bright ones. Hence,
because of the additive blending, the overall image brightness strongly increases as we
move to deeper levels, from (a) to (h).

Octree construction. For the construction of the MS-LOD octree structure, the
whole catalog needs to be loaded into memory, where the stars are sorted by absolute
magnitude from brightest to faintest. The starting point is the Cartesian axis-aligned
bounding box that contains all the stars, and that serves as the root of the octree. The re-
cursive subdivision of the octree is controlled by the parameterNσ which is themaximum
number of stars in an octant.

In practice, we start with level n = 0 and fill the root node with the Nσ brightest stars.
If there aremore stars thanNσ , we subdivide the root into its 8 octants. Then, in the next
level, we take stars from the top of the (brightest) list and assign them to the correspond-
ing level octant, determined by the position of the star, until an octant reaches Nσ stars.
Next, we proceed one level deeper and start over. This procedure is carried out recursively
until no star is left. Thus, a small Nσ leads to larger octrees with more octants, whereas
a larger value leads to smaller, more compact octrees which are faster to process but have
more stars in each node. Nevertheless, this has only an effect on performance and not
on visual appearance. Note that this octree constructionmethod provides amapping be-
tween absolute magnitude and depth level, which adapts automatically to the absolute
magnitude distribution of the input catalog. This partitioning in magnitude space be-

136



7.2 Gaia Sky

(a) 0 / 100K (b) 1 / 166K (c) 2 / 167K (d) 3 / 287K

(e) 4 / 521K (f) 5 / 1.54M (g) 6 / 4.48M (h) 7 / 14.4M
Figure 7.5: View of all the stars in the first eight levels of the octree of the catalog with a parallax
relative error up to 90% (601 million stars). Captions provide octree depth / number of stars in
respective level. © 2019 IEEE.

tween depths guarantees that brighter stars will always be visible from farther away than
fainter stars.

Octree traversal. For rendering, theoctree is traversed and the visibility of eachoctant
is determined using a user-defined view angle Θ, which is compared to the solid angle θi

of each octant i with respect to the position of the camera. Hence, Θ represents a draw
distance measure by defining a threshold below which the octants are not visible, and
abovewhich they become visible. Octant i is visible ifθi ≥Θ and it intersects the camera’s
view frustum. Figure 7.7 explores different scenarios with varying camera distances and
octant sizes.

When an octant is visible, its stars are sent to the rendering system, and its children
octants, if any, are processed the same way. If an octant is not visible, its stars are not
rendered and its children octants are not processed. Without any further modifications,
however, this would yield pop-ins of octants, as shown in Figure 7.6. Therefore, we em-
ploy a LOD smoothing mechanism to fade-in octants (and its stars) into view. This is
accomplished by a linear mapping of the solid angle θi to [0,1], with θi = Θ mapping to
zero, and θi = Θ+ r mapping to one, where r is an offset to be used as a masking value
for the star shader. Usually, the star shading (Section 7.3.6) automatically renders distant,
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(a) (b)
Figure 7.6: (a) Direct octree traversal based on the view angle Θ alone may yield pop-ins of
octants. (b) LOD smoothing to fade-in the octants and eliminate pop-ins.

faint stars invisible, but this entirely depends onΘ. Thus, large values forΘmake pop-ins
more probable and the smoothing more useful.

7.2.2 Floating Camera

Gaia Sky contains a scene which represents vast distance ranges, from centimeters to
gigaparsecs, far beyond what can be represented using 32-bit floating-point arithmetic
(see Section 6.3). To avoid such issues, we follow a new approach which is somewhat
complementary to previous ones like, e.g., the dynamic scene graph proposed by Axels-
son et al. [Axe+17] or the logarithmic landmarks introduced by Li et al. [LFH06].

The idea is to keep the camera at the origin of the global coordinate system at all times,
and offsetting the whole scene graph so that the current camera is always located at po-
sition (0 0 0) , as shown in 7.8b. In practice, we add a new node at the top of the scene
graph (Figure 7.15) with a translation by the inverse of the camera position vector, which
is updated every frame. In detail, we split the standard vertex transformation pipeline
from object space to the camera’s clip space into two parts:

pclip = Mproj ·Mview ·Mmodel ·pobj = Mproj ·Mmv ·pobj. (7.1)

The crucial step is the transformation defined by the model-view matrix Mmv between
object coordinates, pobj, and camera coordinates. For that, we use the high-performance
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(a) (b)
Figure 7.7: Two different octree traversal scenarios. In (a), we have the camera at different dis-
tances from the same octant. At the top, the camera is far enough so that θi < Θ holds and the
octant is thus not observed. At the bottom, the camera is closer to the octant, allowing θi to be-
come greater than Θ, making the octant observed. In (b) we have the camera at the same distance
from two differently-sized octants. At the top, the octant’s solid angle θi is large enoguh to be
observed. At the bottom the octant is much smaller (i.e. belongs to a deeper level in the octree
and contains fainter stars), to the point where θi < Θ, rendering it not observed.

arbitrary-precision floating-point operations from the Apfloat library on the CPU to
handle every transformation within the scene graph. The resulting model-view matrix is
then uploaded to the GPU, where we can still use single float precision shaders to convert
from local camera coordinates to clip coordinates pclip, and finally determine screen co-
ordinates. Figure 7.9 shows the Gaia telescope model which is located in the Lagrangian
point L2, about 1.5 million kilometers behind the Earth away from the Sun, while the
camera is only 275.04m away from the telescope. Hence, the model matrix Mmodel

consists of a translation vector for Gaia with a length of 1.5× 1011 m (distance Sun–
Earth) plus 1.5×109 m, while the viewmatrix Mview consists of a translation vector of a
similar length. Using global coordinates and standard 32-bit floating-point shaders, this
yields jittering of the vertices due to the lack of floating point precision in a phenomenon
known as catastrophic cancellation (Section 6.3.2), and finally leads to incorrect per-pixel
lighting (Figure 7.9a). Note that in Figure 7.9a, we even had to artificially reduce the
distance to Gaia down to 1200km because rendering broke down completely for larger
distances. With our method (Figure 7.9b) based on the arbitrary-precision model-view
matrix calculation on the CPU, there is no jittering problem because distances of a few
centimeters compared to the relative distance between camera and the telescope can be
handled by single float precision.
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(a) (b)
Figure 7.8: Classic camera setup (a), where a camera forwardmovement implies an update of the
translation part of the camera view matrix (yellow vector) in the global world coordinate system
(in red and blue). In contrast, our method (b) floats the reference system to the camera position
and applies the inverse translation to all the objects in the scene. Note that, from the camera’s
point-of-view, the relative movement experienced by the planet is exactly the same.

The floating camera approach provides a simple and effective way to handle a high
dynamic range of distances without precision issues. It achieves this by just adding a
translation to the transformation matrices. In comparison, the Dynamic Scene Graph
requires the camera to be moved around in the scene graph, and its position to be taken
into account when computing the transformations applied to all nodes.

7.2.3 Logarithmic depth buffer

In the previous section we have addressed the numeric representation in the context of
floating-point arithmetic of a large scene with vastly different distance ranges. This prob-
lem is also present when we calculate the z-value that goes into the depth buffer. The
depth buffer, as we have seen in Section 6.1.6, contains the depth value of the fragment
nearest to the camera at each pixel position. It avoids the need for sorting the geometry
before the rendering stage, speeding up the whole process.

Inmost graphics hardware, the depth buffer has a precision of 16 to 24 bits. While this
is sufficient for small, contained scenes, in larger worlds where occlusion elements can be
seen at large distances this might not be enough. Gaia Sky represents very small objects of
a few hundreds of centimeters, such as satellites or spacecraft, together in the same scene
with very large occluding structures spanning over vast distances of parsecs and kilopar-
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(a) (b)
Figure 7.9: (a) Straightforward vertex transformation using 32-bit floating point precision leads
to jitter. The resultingmisaligned structures of themodel lead towrongper-pixel lighting. (b)Our
floating camera approach does not exhibit these issues. © 2019 IEEE.

secs, like star density isosurface meshes or dust clouds. The classical depth buffer function
shown in Equation 6.4 is a non-linear function proportional to 1/z overwhelmingly fa-
voring precision close to the camera by sacrificing it at far away distances. For instance,
in the classical function, the far half of the frustum volume in z is mapped to the last 2%
of our available z values in the [0,1] between the near and far planes of the frustum. Un-
fortunately, the classical configuration means that most of the depth buffer’s precision is
essentially wasted. For our purposes, thismethod gives excessive precision for object close
to the near plane, and almost none for objects further away. In Gaia Sky, this results in
large and distant objects to be assigned totally incorrect z-values. As seen in Figure 7.10,
images are rendered incorrectly, where far away polygons are drawn over closer ones.

Commonmethods to address this issue involve moving the near plane further away or
partitioning of the z space into two or more segments to address near and far geometry
separately. Both these methods bring on their own sets of problems. Moving the near
plane away helps with improving the precision at large distances, but closer objects are no
longer visible, as they fall outside of the viewing frustum. On the other hand, partitioning
the z space into different regions adds complexity and can get hard to manage, especially
as the number of partitions increases.

Our approach uses a different depth function altogether. This function moves some
of the wasted precision from nearby areas to distant ones. We choose as the basis of our
z-value distribution a logarithmic function that depends on the fragment’s z value, the
far plane distance z f and a constantC that determines the resolution near the camera:

f (z,C,z f ) =
log(Cz+1)

log(Cz f +1)
. (7.2)
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(a) (b)
Figure 7.10: (a) A scene with star density iso-surface meshes and dust cloud structures is ren-
dered incorrectly using the classical depth buffer function. The mesh label, in yellow, is several
kiloparsecs behind the green surface that is rendered behind it. While the dust clouds are not visi-
ble when they should be, most of the bright stars are visible but they should be occluded. (b) Our
logarithmic depth buffer approach addresses this issue by employing part of the precision wasted
onnearby objects to improve depth determination over thewhole distance range. The dust clouds
are correctly rendered and visible in the distance.

The resolution of this function at a distance d, for a givenC and n bits of z-buffer can
be computed as

r(d,C,n,z f ) =
log(Cz f +1)

2nC/(Cd +1)
, (7.3)

which, along with a far better utilization of the available depth buffer precision almost
gets us rid of the near clipping plane. In our tests we have seen that aC value of 1×107

gives us good results, but this is heavily linked to the scaling of internal distance units, so
it varies from application to application.

Figure 7.11 contains a visualization of various depth buffer functions, including the
classical and the logarithmic ones.

7.2.4 Relativistic Effects

Gaia Sky implements a couple of relativistic effects, namely relativistic aberration and the
apparent visual distortion due to gravitational waves. Both effects are implemented in an
integrated way, i.e. acting on the whole of the geometry in the scene, and are turned off at
code level using the shader pre-processor, which minimizes the general overhead to zero
when the effects are turned off.
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Figure 7.11: Acomparisonbetween the linear depthbuffer (blue, dashed), the classical non-linear
function (orange) and our logarithmic depth buffer function (green with C = 1, magenta with
C = 10) for world z range in [1,100], mapped in the x-axis. Observe how the classical function
is heavily biased towards lower z-values, while neglecting higher ones. In contrast, our approach
provides a better depth distribution by using a logarithmic function.

Relativistic Aberration. The relativistic aberration of light is a special-relativity ef-
fect that arises when an observer moves at a velocity v close to the speed of light c. In
that case, the rays of light from each source that reach the observer are tilted towards the
observer’s direction of motion, which yields an apparent reduction of the effective angle
ϑ between the velocity direction and the light source to the apparent angle ϑ ′ according
to the aberration formula

cosϑ ′ =
cosϑ +β

1+β cosϑ
, β =

v

c
. (7.4)

This has a strong apparent minification effect in the direction of motion and a strong
magnification effect in the opposite direction. As a result, it is even possible that objects,
which are actually behind the observer, appear to be in front of her.

Figure 7.12 shows Gaia Sky in relativistic spacecraft mode. While the spacecraft keeps
its position relative to the camera, the velocity is increased fromzero to nearly the absolute
speed limit c. The relativistic aberration is non-linear, which means that even for high
velocities, the effect is rather small, and only for velocities near the speed of light, the
tilting toward the direction of motion increases dramatically. In that case, even objects
which are actually behind the spacecraft, like the Sun in Figure 7.12d, appear in front of
the observer. The increasing brightness of the stars is due to the additive blending of the
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(a) 0 c (b) 0.5 c (c) 0.9 c (d) 0.99 c (e) 0.999 c (f) 0.9999 c
Figure 7.12: Gaia Sky in relativistic spacecraft mode, with increasing velocity. Even with half
the speed of light, v = 0.5c, the relativistic aberration is rather weak. The closer the spacecraft
approaches the absolute speed limit c, the stronger the aberration becomes. © 2019 IEEE.

star shading. Although this does not show the correct behavior, it is quite similar to the
searchlight effect, which causes an increasing brightness in the direction of motion and a
strong decreasing brightness in the opposite direction. The searchlight effect, as well as
the relativistic Doppler shift, are, however, not implemented yet. A detailed discussion
of the relativistic effects is out of the scope of this work, and we refer the reader to, e.g.,
Müller et al. [MKA08].

Gravitational Waves. Gravitational waves are a general relativistic effect, which pro-
duces a disturbance in the curvature of spacetime, generated by acceleratedmasses. These
waves propagate outward from their source at the speed of light. Gaia Sky implements
the visual effects that an observer would perceive in such an event, based on themodel by
Klioner [Kli18]. There are a few parameters (4 amplitudes/polarization and the wave fre-
quency) which can be adjusted according to the source. The current model used in Gaia
Sky has a few caveats. First, it is only valid for slowly moving observers, with velocities
much smaller than the speed of light. Second, the usual amplitude (strain) of the gravi-
tational wave is very small, but can be artificially exaggerated for visualization purposes.
And third, such sources of gravitational waves of the model—supermassive binary black
holes in the centers of galaxies—are typically short-living (few thousands of years), so ad-
justing the parameters according to the simulation time might be in order. Figure 7.13
shows the influence of the apparent distortion due to a gravitational wave on the view of
Mars and its moon Phobos.

7.3 System

This section provides a bird’s eye view of the system parts, which are not novel, but
nevertheless essential to the system as a whole. Gaia Sky is implemented using Java
and OpenGL. The OpenGL bindings are provided by the Lightweight Java Game Li-
brary [LWJ], and an additional framework layer, libGDX [Lib], is used for its caching,
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(a) (b) (c)
Figure 7.13: Apparent distortion due to a gravitational wave on the view of Mars and its largest
moon Phobos. © 2019 IEEE.

batching, and loading utilities. The choice of Java as a main platform is due to the ab-
straction provided by the JVM, which makes it easy to port to and maintain several plat-
forms, one of themain requirements of the project. Furthermore, the language of choice
of DPAC for the data processing of the Gaia data is Java, and there exists a vast code base
with interdependent libraries and utilities, to compute, for example, the attitude quater-
nions of the satellite, whichwouldneed tobe all translated to another language otherwise.
Additionally, the default use of the just-in-time compiler, which gives the compiler access
to runtime information not available to native languages, plus the avoidance of garbage
collection as much as possible by using object pools and custom collections, helps min-
imizing the impact of using such a platform for a real-time graphics application where
high frame rates are needed. Performance hot-spot functions, such as matrix operations,
are implemented in plain C and called using the Java Native Interface (JNI).

7.3.1 Main Loop

At its highest level, the system implements a very simple update–render loop, in charge of
updating the model objects and rendering them each frame. The loop also computes the
amount of time elapsed since the last iteration, and passes it on to the update and render
stages. An effort is currently ongoing to migrate the object-oriented structure into an
entity component system (ECS) and to parallelize some of the update processes.

7.3.2 Structure

Gaia Sky is structured into modules, each with a defined set of responsibilities. Only
five main modules compose the backbone of Gaia Sky, as seen in Figure 7.14: the user
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Figure 7.14: Gaia Sky component structure. The interactions captured by the UI are processed
and the relevant events are posted to the event manager, which broadcasts them to the relevant
parties. The object model is updated continuously, and its entities are added to the render lists,
which are used by the rendering system to display the scene. © 2019 IEEE.

interface module, the event manager, the object model, the rendering system, and the
scripting engine. Below, we give a brief overview of the individual modules, and provide
detailed descriptions in the subsequent sections.

User interface. This module is in charge of managing all interactions with the user.
Among its responsibilities are generating and rendering the graphical user interfaces, as
well as listening and processing the user’s input events through the input listeners. The
user interface is skinnable and supports HiDPI themes. The communication of the user
interface module with other modules is accomplished by means of the event manager.

Event manager. This component is a generic registry, where event producers and
consumers are connected via a centralized hub. Any entity can publish and subscribe
to events of interest. The event manager reacts to events synchronously and sequentially.
Actions can be specified to be processed after the current loop cycle has finished, ensuring
thread safety and consistent state of the object model.
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Object model. The object model contains andmanages all the scene objects, and is in
charge of updating their state during every iteration of the main loop.

Rendering system. This module is in charge of rendering the scene. Objects are
routed from the object model to the rendering system using a number of render lists.
These lists are used by the renderer objects, producing different kinds of visuals for each
element. Initially, the objects to be rendered are contained in a series of render lists, which
are previously filled up in the update stage, where the objects themselves decide how they
are to be represented visually. These render lists are used by the scene graph renderer ob-
jects, which produce different kinds of render outputs from the same scene graph.

Scripting engine. Finally, the scripting engine is a component that allows for the exe-
cution of Python scripts using an API to access andmodify the internal state of Gaia Sky
with ease and precision.

7.3.3 User Interface

The user interface contains the graphical user interface objects and the input event lis-
teners. It controls and directs all the information flow between the user and the relevant
components of Gaia Sky.

There are several GUI objects in Gaia Sky which can be registered and unregistered at
will depending on certain conditions. Some GUI objects’ life span is short-lived, like the
loadingGUI, which is only ever usedwhenGaia Sky starts up, and initially loads data and
allocates resources, while others live as long as the program itself. When the screen mode
changes fromnormal to stereoscopic, the regular GUI is unregistered and the stereoGUI
is registered. The user interface is skinnable (four different skins are provided), can be
arbitrarily scaled to accommodate HiDPI displays, and is internationalized. This inter-
nationalization system pulls text elements from a series of files corresponding to different
languages. So far, it contains, additionally to the base English file, translations to Spanish,
German, French, Catalan, Slovenian, Russian and Bulgarian.

The input event listeners define and implement the input interactions available via
input interfaces, like keyboards, mice, game controllers, or VR controllers. The control
scheme may change from mode to mode, and so do the input event listeners, which are
registered and unregistered when needed, in the same fashion as the GUI objects.
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7.3.4 Event Manager

The event manager is a general hub which routes and directs most of the information
flowing through Gaia Sky. It contains a registry where listener objects can register to cer-
tain events, which, when posted, trigger notifications on the listeners. All listeners need
to follow a contract similar to the observer pattern, in order to be notified when an event,
they have registered to, is posted. Once an event is posted to the eventmanager, the notifi-
cations to the listeners are sent immediately in a synchronous and sequential way. It is the
responsibility of the listeners to parse the event data, and handle any errors thatmay come
up. Events can be posted from any thread, and the subsequent actions, implemented by
the listeners, are run immediately in the same thread. However, these actions may make
use of a post-runnable job queue, which allows for posting jobs thatwill be run right after
the render stage in the main thread, ensuring thread safety and a consistent state of the
object model.

7.3.5 Object Model

The object model holds all the objects in the scene. These objects are organized into a
scene graph (Figure 7.15), a tree-like data structure in which geometrical transformations
are inherited from parent to children. All objects in the object model are categorized
into component types, which organize the objects according to their typology. Available
component types are stars, planets, moons, satellites, asteroids, clusters, labels, grids, or-
bits, atmospheres [ONe05], constellations, constellation boundaries, galaxies, topological
information, locations, arbitrary meshes, titles, and others. These component types are
mainly used to implement the switch-on/off behavior, to prevent all data being displayed
at once, and thus cluttering the viewport.

Gaia Sky uses a global equatorial Cartesian reference systemwith the origin at the Sun.
All objects need to be translated to that reference system during the loading phase. As
catalogs are usually given in heliocentric coordinates, and so is Gaia’s, a translation is not
necessary. TheMilkyWay node represents theMilkyWay object, and needs a translation
of about 8kpc from the position of the Sun. Other datasets, such as the Nearby Galax-
ies (NBG) or the Sloan Digital Sky Survey (SDSS, distant galaxies and quasars), are also
children of the Universe node. Finally, the “Sun” node represents both, the star and the
barycenter of the Solar System. All objects in the Solar System are descendants of the Sun
in the scene graph.
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Figure 7.15: Part of the scene graph used inGaia Sky, with floating camera at the root. The global
reference system is centered around the “Sun”. © 2019 IEEE.

Data Loaders

Gaia Sky handles many different kinds of data, and their loading mechanisms can vary
substantially. In a broad sense, the types can be organized into two large groups: particle
data and non-particle data.

Particle data. Stars, galaxies, and essentially all data which are point-based, and come
from astronomical catalogs, are particle data. They usually have a single node represent-
ing them in the scene graph. The different catalog formats are supported through the
STIL Java library [Tay05], including VOTable [Och+13], FITS, ASCII, CSV, and GBIN.
The STIL loader relies on Unified Content Descriptors (UCD) [Der+04] defined by the
International Virtual Observatory Association (IVOA) to assign units and semantics to
each data column. Gaia Sky also uses an own binary format that is very compact and can
be memory-mapped very easily for increased performance. As an example, Figure 7.16
shows the catalog descriptor file for one of the eDR3 particle datasets.

Non-particle data. Any non point-based data, such as planets, orbits, constellations,
locations, satellites, grids, and others, have their own object in the data model, and their
own node in the scene graph. These data are usually loaded from JSON files, using a
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1 "name": "eDR3 - default",

2 "version": 2,

3 "type": "catalog-lod",

4 "mingsversion": 30002,

5 "description": "Gaia eDR3 default: 20%/1.5% bright/faint parallax relative error.",

6 "link": "http://gaia.ari.uni-heidelberg.de/gaiasky/files/autodownload/",

7 "size": 1199686648,

8 "nobjects": 14950954,

9 "data": [

10 {

11 "loader": "gaiasky.data.group.OctreeGroupLoader",

12 "files": [ "data/catalog/edr3-default/particles/", "data/catalog/edr3-default/metadata.bin" ],

13 "epoch": 2016.0

14 }]

Figure 7.16: Example descriptor of the default eDR3 catalog. It contains metadata, and the
octree loader, which provides the level-of-detail metadata file, containing the actual tree structure
and all its nodes, and the folder where the actual star data files are.

specific set of loaders that match attributes by name via reflection. Each of the files de-
fines a few one-to-many relationships which specify what files are to be loaded by which
data loaders. The default loader (JSONLoader) is in charge of fetching the data in sev-
eral JSON files, such as meshes.json, planets.json, or locations.json. Figure 7.17
shows, as an example, a snippet of planets.json, which defines the planet Earth. The
definition contains somephysical properties, such as the size, the apparentmagnitude, the
atmospheric scattering wavelength values, or the rotation elements. It also contains the
name of the orbit object, the coordinates provider (in this case, we use VSOP87 [Bre82],
a semi-analytic model for high-precision calculation of planetary ephemerides), and vari-
ous renderingproperties, such as the typeofmodel or thebase, specular, normal,metallic,
roughness and emissive texture file paths.

Levels of Detail

Once the octree is constructed, Gaia Sky loads its structural metadata and traverses it at
each frame, selecting the “visible” nodes and sending them to the relevant renderer.

If the catalog is large anddoes not fit intomemory, as is the case ofmostDR2+catalogs,
Gaia Sky implements a streaming loader solution, depicted in Figure 7.18. This loader
relies on the octree data pages (octants) to be distributed in different files. The loader
defines two queues, a load queue, which is a priority queue weighted by the inverse of the
depth of the octant in the tree—lower-depth octants containing brighter stars are loaded
first—and an unload queue, which contains all loaded octants sorted by access date—
octants that have not been visited for the longest time are in the head. In this case, each
time an octant is visited, the culling algorithm is run to determine its visibility. If it is
visible, we query its state (not_loaded, loaded, queued, or loading). If the octant is not
yet loaded, it is added to the load priority queue. If it is loaded, its state in the unload
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1 "name": "Earth",

2 "wikiname": "Earth",

3 "color": [.13, .26, .89, 1.0],

4 "size": 6371.1,

5 "ct": "Planets",

6 "absmag": -2.78,

7 "parent": "Sun",

8 "impl": "gaiasky.scenegraph.Planet",

9 "refplane": "ecliptic",

10
11 "coordinates": { "impl": "EarthVSOP87",

12 "orbitname": "Earth orbit" },

13
14 "rotation": { "period": 23.93447117,

15 "axialtilt": -23.4392911,

16 "inclination": 0.0,

17 "meridianangle": 180.0 },

18
19 "model": {

20 "type": "sphere",

21 "params": {

22 "quality": 180,

23 "diameter": 1.0 },

24 "texture": {

25 "diffuse": "data/tex/base/earth-day*.jpg",

26 "specular":

"data/tex/base/earth-specular*.jpg",

27 "normal": "data/tex/base/earth-normal*.jpg",

28 "emissive": "data/tex/base/earth-night*.jpg" }

29 },

30
31 "cloud": {

32 "size": 6395.0,

33 "cloud": "data/tex/base/earth-cloud*.jpg",

34 "params": {

35 "quality": 200,

36 "diameter": 2.0 }

37 },

38
39 "atmosphere": {

40 "size": 6450.0,

41 "wavelengths": [0.650, 0.570, 0.475],

42 "m_Kr": 0.0025,

43 "m_Km": 0.001,

44 "params": {

45 "quality": 180,

46 "diameter": 2.0 }

47 }

Figure 7.17: JSON definition of the Earth object within the planets.json file. Images with
an asterisk are given in different resolutions according to the quality defined in the configuration
settings. All units are described in the documentation [Sagb].

Figure 7.18: Streaming catalog loader. Adding objects to the load queue causes the system
to send an interruption to the daemon thread, which then unloads the objects in the unload
queue and loads the objects in the load queue. Finally, metadata like constellations are updated.
© 2019 IEEE.

queue is updated (it is removed and added to the head). Depending on I/O bandwidth
and latency of the file system, the streaming loader may cause pop-ins if the loading of a
data page is slower than the camera. The actual loading and unloading of data is handled
by a background daemon thread.
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Render Lists Interface

MODEL BILLBOARD LINE STAR GROUP ...

Renderable Object

register()

Regular Stereo Panorama VR ...

Scene Graph Renderers

Model
Batch
Renderer

Billboard
Star
Renderer

Line
Quad
Renderer

Star
Group
Renderer

...

Graphics API

Figure 7.19: Detailed viewof the rendering system. The incoming render lists are routed through
the scene graph renderers and to the actual renderer objects, which communicate directlywith the
graphics API. The render lists are filled in the update stage, where objects compute their visibility,
and decide how they are to be rendered. After initiating the render stage, the pre-processing stage
is run, followed by the scene rendering. Finally, the post-processing stage yields the output image,
which runs the pre-passes for different effects and store them in FBOs. After that, the scene is
rendered with the currently active SGR. The actual rendering of the scene is done with a set of
render objects called render systems. Each render system gets a render target list, prepares the
rendering environment and renders the object. Finally, the post-processing stage is run and the
result is copied to the screen buffer. © 2019 IEEE.

7.3.6 Rendering System

The rendering system, depicted in Figure 7.19, is in charge of rendering the scene to the
active render targets. Possible render targets are the display, image files, or the VR API.
Themain renderingpipeline consists of fourmain stages executed in a sequentialmanner:
the pre-passes, the scene rendering, and the post-processing stage. They are described in
the following sections.

Pre-Pass Stage

The first stage is the pre-pass stage. In this stage, the scene is rendered to FBOs using
different techniques, to be used in later stages.
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Shadow map pass. The shadow map pass gathers the relevant model objects, posi-
tions the camera at a certain distance in the direction of the light source, and renders a
depth map. This will later be used by the models to compute the shadows. Gaia Sky im-
plements an adaptive shadowmapping solution instead of a global one because the depth
map resolutions needed for such a sparse scene, where there are huge distances between
the objects, which are themselves very small, are simply not feasible with current hard-
ware. For eachmodel in viewwe render a single depthmap using an orthographic camera
that contains the whole model and minimizes the space at the margins. This depth map
is used in the rendering stage to render the shadows casted on the model by itself. This
maximizes the shadow quality and resolution at the expense of inter-object shadows. A
possible improvement to the technique is to determine what objects may cast shadows
on what objects and render the shadowmaps for groups of objects which are sufficiently
close together, setting some limits on what is acceptable in terms of resolution to avoid
jagged shadows.

Occlusion pass. The occlusion pass renders close-up stars and models using a solid
black color into a single low-resolution FBO. This is later used in the light glow post-
processing effect, which estimates the number of visible fragments of each star and over-
lays a light glow effect, which spills over the rest of the geometry.

Scene Rendering Stage

The next stage is the actual scene rendering. After the update phase, the render lists are
prepared tobeusedby the relevant scene graph renderer (SGR)object, once thepre-passes
have been rendered. The responsibility of the SGR objects is to prepare the render envi-
ronment (viewport, post-processing FBOs, etc.), call each render systemwith the relevant
render list, and run the post-processing stage. Since the rendering and the post-processing
may need to happen more than once—for instance, the stereoscopic mode renders the
scene twice— these two stages are handled by the SGR objects.

Gaia Sky has four SGR objects. The normal SGR, the 360° panorama SGR (Fig-
ure 7.20a), the Gaia FOV SGR (Figure 7.3b), which projects both fields of view of Gaia
on a single viewport, and overlays the CCD array configuration, effectively producing a
visualization of what the Gaia satellite ‘sees’, and the stereoscopic SGR. Additionally, the
VR spinoff adds an OpenVR SGR.

The render systems are in charge of handling and rendering a render list each, corre-
sponding to a render group. The render systems are constructed andmanaged automati-
cally, and the routing of the correct render list to the relevant render system is also done in
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a manner transparent to the rest of the program. Each render system, then, corresponds
to a render group.

Post-Processing Stage

The final stage, which is actually handled by the SGRobjects, is the post-processing stage,
where a series of filters is defined and runs on the result of the rendering stage. Filters can
be easily linked and composited by the use of ping-pong buffers. The lens flare, anti-
aliasing (FXAA [Lot09] andNFAA [Sty]), light glow, camera motion blur (Figure 7.21c),
bloom (Figure 7.21b) and unsharp mask effects are all run as post-processing filters.

Shaders

Gaia Sky features a wide variety of shaders, which are in charge of producing the final
picture. The models are rendered using per-pixel lighting. Lines can be rendered either
as primitives or using polyline quadstrips. In order to render stars as realistically as possi-
ble, we determine their visual appearance and RGB color using their measured apparent
magnitude and photometric intensities in the two Gaia photometric bands. To achieve
a realistic and physically based star rendering, we first compute the absolute magnitude,
which is the brightness of a star at a distance of 10 parsecs, using the apparentmagnitude.
Then, we correct it using the extinction value found in the catalog, if present, or we apply
a simple analytic galactic dust model otherwise. Finally, we convert the absolute magni-
tude to a flux, from which we can compute a pseudo size. This pseudo size is used for
rendering purposes only. The size is passed into the star shader and used in conjunction
with the star brightness, the star size, and the starminimumopacity settings to determine
its representation in pixels, see Figure 7.22. If the star is close enough, it is shaded using a
textured billboard. The star colors are computed from the effective temperature value in
the catalog, if present, or using the conversion from BP-RP (blue minus red photomet-
ric intensity values) to effective temperature as discussed by Jordi et al. [Jor+10]. Finally,
we convert the effective temperature of each star to a triplet of RGB values suitable for
rendering using an algorithm based on best fits by T. Helland [Hel].

Stars and Proper Motions Rendering

Small star catalogs in Gaia Sky are represented by a single object in the octree. This object
contains a buffer with the data for all stars (position, proper motion, color, magnitude,
etc.), plus some supporting metadata. All these data are streamed to VRAM during the
first draw call and are kept there until the catalog is removed or the application exits. This
essentially means that the floating camera approach is not applied to every single star at
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(a) (b)
Figure 7.20: The panorama scene graph renderer (a) generates images, which can be encoded
into 360◦-videos, whereas the output of the planetariummode (b) is dedicated to fulldome plan-
etarium shows. © 2019 IEEE.

(a) (b) (c)
Figure 7.21: A scene near Mars’ moon Phobos with post-processing turned off Figure 7.21a.
Bloom 7.21b and camera motion blur (c) are carried out in the post-processing pass.

each frame. Instead, stars are sent to theGPU as VBOs of float attributes. A configurable
set of background threads continuously index and update the stars, so that close-by stars
are always well indexed and quickly accessible. Accuracy problems would become appar-
ent only when the camera gets close to a particular star. Thus, for the few stars which
are close to the camera, Gaia Sky switches to a billboard-based rendering and applies the
floating camera transformation, eliminating the need to transform all stars at every frame.

Proper motions are instantaneous angular velocities of stars in the sky. Tangential ve-
locity vectors can be calculated when combining proper motions with parallaxes. Ad-
ditionally, when radial velocities are also available, 3D velocity vectors can be obtained.
Gaia Sky features support for both tangential velocities and full 3D vectors. The rep-
resentation of proper motions in Gaia Sky is done via a straight-line integration in the
vertex stage of the star shader, given the instantaneous propermotion vector and the sim-
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(a) σ = 0.25 (b) σ = 0.5 (c) σ = 0.75 (d) σ = 1.0

Figure 7.22: View toward the center of the Milky Way rendered with user-defined, increasing
star pseudo-size σ . The larger σ the larger the stars appear, but due to the additive blending, the
central region becomes overdense.

ulation time. This enables real-time starmovement when the time speed is set sufficiently
high. Since the represented star velocities are only a first-order approximation to the real
motion, we limit the explorable time range, allowing us to use a static octree structure.
Additionally, proper motion vectors can also be represented (Figure 7.23), with a length
proportional to the magnitude of the proper motion vector, and several color options,
like color-coded arrows by direction or magnitude, redshift with respect to the Sun and
to the camera, etc.

Relativistic Effects Rendering

Both relativistic aberration and gravitational waves act at vertex level in Gaia Sky. The
relativistic effects manager is in charge of updating the parameters and matrices needed
for the relativistic effects. It is updated every frame with the camera and the current time.
During the rendering stage, the shader programs are chosen depending on the active rel-
ativistic effects, the respective uniform values are set (velocity direction vector and speed
for the relativistic aberration and transformation matrix, wave frequency, wave parame-
ters, and time for the gravitational waves) and the draw call is issued normally. The shader
programs include functions to apply the relativistic transformations to the positions of
vertices according to the current state, passed via the uniform values. In the vertex shader,
the uniform values are gathered and passed on to these functions, which compute a new
position for each vertex. This is done for every vertex rendered by Gaia Sky that needs to
be affected by the relativistic effects.

7.3.7 Time Control

There are two principal time frames in Gaia Sky. The real wall clock time t and the simu-
lation time frame τ are linked using a warp speed factor, which applies to t and indicates
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Figure 7.23: View of theHyades star cluster with overlayed propermotions. Colors are mapped
to direction and the arrow lengths are proportional to the speed. In this cluster, we have stars for
which we do have their radial velocity information (pointing to the top-left) and stars for which
we do not (pointing to the bottom-left).

how fast the simulation time passes with respect to the wall clock time. The warp speed
factor is user-controlled and enables time-lapse effects. While t is used to update all the
entities that need a direct connection to the real time, such as the integration of the forces
acting on a spacecraft, τ is used to update all properties of entities that need a temporal
reference frame such as the proper motions of stars, the planets’ positions and orienta-
tions, or the locations of asteroids.

7.3.8 Scripting Engine

The scripting engine enables the executionof user scripts tomanage and control the inter-
nal state of Gaia Sky. The script manager handles the high-level asynchronous execution
of scripts and defines a maximum number of concurrent scripts by a cap in the thread
pool size. Each new script runs in a separate thread and it is interpreted alongside the
main thread of Gaia Sky by the interpreter. The scripting interface is of paramount im-
portance for the production of outreachmaterial and the creation of stories. Figure 7.24
shows an example script which includes a camera motion between the Sun and the Earth
with some text overlays.
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7.3.9 Camera Recording and Playback

Gaia Sky offers a native method for recording and playing camera files in order to aid
in the production of audiovisual material. Camera files are recorded at a user-defined
frame rate, and contain a series of values defining the time and the camera state at each
frame. Each row in a camera file contains the current τ , as well as the camera’s position,
direction, and up vector. The frame rate is modified automatically and artificially when
a camera file is being recorded. Camera files can be played back directly from the UI or
using the scripting API. Additionally, a keyframe system is implemented, enabling the
visual definition of camera paths by defining camera positions and orientations within
the scene. This sequence of key frames is then exported to a regular camera file. The tran-
sition between positions and orientations is interpolated using a user-defined algorithm.
Currently, Catmull-Rom splines and linear interpolation are available.

7.3.10 Camera Modes

There are four main camera modes in Gaia Sky, which affect camera behavior and capa-
bilities in various ways.

The focus modemakes the camera automatically track a focus object. The camera nor-
mally points at the object, even though the view direction can be changed, remaining
relative to the focus’ position. It is possible to lock the position to the focus, so that the
relative position of the camera with respect to the focus is maintained, and also its orien-
tation so that the camera rotates with the object. The freemode allows for free roaming in
the scene. Formaximummovement freedom, a game controllerwith two analog joysticks
can be used. The velocity scaling depends on the distance to either the closest model ob-
ject, or to the origin of the reference system. TheGaia FOVmode, shown in Figure 7.3b,
projects both fields of view of Gaia on the screen and overlays the CCD configuration in
focal plane. This allows the user to see what the current simulation of the Gaia satellite
sees. The spacecraft mode, shown in Figure 7.12, puts the user in command of a space-
craft with a realistic engine model with thrust, a power multiplier, and an optional drag.
The mode brings up the spacecraft GUI, which contains visual elements to control the
spacecraft parameters, aswell as an attitude indicatorwidgetwith the positions of the cur-
rent velocity and anti-velocity vectors. Finally, there are two camera behaviors available.
The cinematic camera behavior implements camera movement using the steering behav-
ior principles laid out byRaynolds [Ray99],which yields very smooth cameramovements
suitable for creating videos and camera paths. The non-cinematic camera behavior is a
much more responsive implementation, more suited for interactive use.
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1 from py4j.clientserver import ClientServer, JavaParameters

2
3 gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True))

4 gs = gateway.entry_point

5
6 gs.disableInput()

7 gs.cameraStop()

8
9 gs.setRotationCameraSpeed(20)

10 gs.setTurningCameraSpeed(20)

11 gs.setCameraSpeed(20)

12
13 gs.goToObject("Sol", 20.0, 4.5)

14 gs.setHeadlineMessage("This is the Sun, our star")

15
16 gs.sleep(4)

17
18 gs.clearAllMessages()

19 gs.goToObject("Earth", 20.0, 6.5)

20 gs.setHeadlineMessage("This is the Earth, our home")

21
22 gs.enableInput()

Figure 7.24: SimpleGaia Sky script. First, the environment is prepared, and the values for certain
camera properties are set. Then, we move the camera to the Sun and to the Earth, printing some
messages on-screen. The API is fully documented in the official Gaia Sky documentation [Sagb].

7.3.11 Video Modes

There are five video output modes implemented in Gaia Sky, each mode corresponding
to a different scene graph renderer, as discussed in Section 7.3.6.

The normal mode (the default) produces the output to screen as a single scene. The
planetariummode, shown in Figure 7.20b, is coupled with the frame output system to
produce image sequences in azimuthal equidistant projectionwhich can be encoded into
fulldome videos. The stereoscopicmode renders the scene twice, where either parallel view,
cross-eye, anaglyphic red-cyan, 3DTV, or VR profile (Figure 7.25) can be selected. The
eye separation is a function of the distance to the focus object or can be set to a fixed
value. The VRmode is implemented in the VR spinoff branch of Gaia Sky, and makes
use of theOpenVRAPI,which is responsible for the necessary image transformations for
the supported headsets. Finally, in the panoramamode (Figure 7.20a), the whole scene
around the camera is pre-rendered six times with 90°×90° field-of-view into a cubemap
to create 360°-videos.

7.3.12 SAMP Integration

Gaia Sky also provides a basic integration with the Simple ApplicationMessaging Proto-
col (SAMP, [Tay+11]), which enables interoperability of astronomical software by sharing
data and providing linked views. On startup, Gaia Sky looks for a preexisting SAMPhub.
If found, a connection is attempted. If not found, Gaia Sky attempts further lookups at
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Figure 7.25: Viewof Saturnusing theVRprofile in the stereoscopicmode. The scene is rendered
twice, side-by-side, and an additional lens transformation is applied in the post-processing stage.

regular intervals of ten seconds. The only format supported by Gaia Sky through SAMP
is VOTable, through the STIL data loader. The implemented features areVOTable load-
ing, row highlighting, selection broadcast, and point at sky coordinate. Since Gaia Sky only
represents 3D data, some assumptions are made upon receiving tables from other pro-
grams via SAMP. If Gaia Sky does not find enough information in the table metadata to
reconstruct positions, the table is discarded. SAMP enables complex use cases like load-
ing a table into Topcat from VO, creating histograms and plots, and sending the table
to Gaia Sky for closer inspection in a galactic context (even VR), while providing inter-
application linked views.

7.4 Performance

Gaia Sky targets common everyday systems such as laptops and desktop computers. The
minimum system requirements are rather forgiving, due to the possibility to set low
settings for graphics quality. A system with an Intel Core i3 CPU, Intel HD 4000 or
NVIDIA GeForce 8400 GS with 1GB of VRAM, 4GB RAM, and at least 1GB of
free disc space should suffice. The frame rate of Gaia Sky depends largely on the used
graphics card, the graphics settings, and the type of objects that are enabled. For instance,
certain graphics quality settings will fetch higher resolution textures and use higher sam-
ple counts for some effects, which will lead to lower frame rates on most systems. In the
LOD approach, the draw distance has obviously a huge impact on the frame rate, as it
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determines the amount of data that needs to be fetched in the background, as well as the
number of stars on screen. In general, the application runs at very high frame rates on
gaming-grade GPUs such as NVIDIA’s GTX lines. The GTX 1070, for example, is able
to pull between 150 and 200fps with 5 million stars on screen. Low-power integrated
IntelGPUs, such as theUHD620, common inultrabooks, run at between30 and60fps,
depending on what elements are enabled and/or visible. It is, however, difficult to assess
the performance in a general manner, due to the sheer number of options given to the
user in terms of visuals and quality settings.

The different SGRs have an obvious impact on the performance. Every loop cycle, the
object model is updated only once, but depending on the SGR in use, it may be rendered
more than once. The stereoscopic SGR renders the scene twice with different cameras,
as does the VR SGR. The panorama SGR renders the scene six times and then processes
the equirectangular projection.

The eDR3 raw dataset contains around 1.8 billion sources and weights 800GB. In
the preparation step, which is done only once, the octree is generated. Using the default
eDR3 catalog (parallax relative error of 20.0% for bright stars and 1.5% for faint stars),
yielding a catalog of roughly14million stars, and a subdivision thresholdNσ = 100,000,
a systemwith2TBofRAM(only30TBofmemorywere allocated to the generationpro-
cess) takes about two hours. Of these, 1.9hours are spent reading the catalog into mem-
ory, 1minute is spent actually processing and generating the octree, and the rest (25s) for
writing the results. In the case of the geometric Bayesian distances catalog, the resulting
dataset contains 1.46 billion stars. The generation of this octree took about 18.5hours,
of which 12.5hours were spent loading the data, 5.16hours generating the octree, and
the rest writing the results.

7.4.1 Performance Comparison

Wehave evaluated the performance of other similar systems yielding the following results.
All evaluations were carried out using the same system, with an i7-7700, an NVIDIA
GTX 1070, and 16 GB of RAM.

Open Space. The default star catalog in Open Space contains hundreds of thou-
sands of stars. The frame rate we experienced was around 30–40 fps when inside the
Solar System, and around 150 fps when navigating the stars. The frame rate in Open
Space is inversely dependent on the speed of time, reaching 1 fps when time speed is
200 days/second. Gaia Sky can handle many more stars at higher frame rates, and a de-
pendency on the time scale does not exist.
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Celestia. Using the default settings and reasonably modern hardware, Celestia runs
at a stable 60 fps. This includes, however, a limiting magnitude of 7.0mag, which con-
tains only 14K stars. When the limiting magnitude is increased to the maximum setting
(only 12.0mag), the frame rate decreased to 40–50 fps. This may pose problems regard-
ing scalability to larger star catalogs. Gaia Sky is able and ready to handle catalogs orders
of magnitudes larger, without frame rate issues.

Space Engine. The performance of Space Engine is difficult to compare to that of
Gaia Sky due to the heavy usage of graphical effects in the former. Space Engine needs a
very powerful GPU to achieve stable frame rates. In that case, most of the time, it runs
at 60 fps. However, Gaia Sky can handle many more objects, and the frame rates are
typically higher.

7.5 Discussion

In this chapter, we presented a system for visualizing the star catalogs acquired by the
Gaia mission, with a special focus on the big data available starting with its Data Release
2, comprising 1.46 billion stars. Due to its large size, this is the first star catalog that
requires effective handling of such data. The fact that DR2+ includes brightness infor-
mation and, in particular, high precision three-dimensional positional data, motivated
our approach of magnitude–space level-of-detail, a data access mechanism specially tai-
lored for the requirements of interactive stellar visualization. To handle the large range of
scales numerically, we presented a respective CPU/GPU approach for camera computa-
tions, partially based on arbitrary-precision floating point calculation. We also presented
our recent additions to the system, including relativistic aberration, and simulation of the
visual effects of gravitational waves.
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There is no absolute up or down, as Aristotle

taught; no absolute position in space; but the po-

sition of a body is relative to that of other bodies.

Everywhere there is incessant relative change in po-

sition throughout the universe, and the observer is

always at the center of things.

—Giordano Bruno

8 Conclusion

T
his final chapter provides an overview of the methods and techniques intro-
duced and presented in this thesis, along with a summary and a review of the
possible future work that has already been discussed at the end of each chapter.

8.1 Contributions

Even though the two parts of this thesismay seem very different and even unrelated, there
exist many ties linking them in the underlying field of astrophysics visualization. For in-
stance, in the first part, we adapt the traditional non-inertial vector field topology of un-
steady flows to inertial dynamical systems, which may or may not be translatable with a
vector field. This opens the door to direct application in many domains of science, most
prominently, but not restricted to, astrophysics, where the dynamics of most systems are
inherently inertial. Then, we develop an integrated visual analysis methodology aimed
at revealing hidden structure in dynamical systems while providing the means to better
determine the appropriate and most interesting initial and transport times, using conve-
nient, easily to interpret aggregation fields. Again, this may have applications in astro-
physics, e.g., assisting the analysis and understanding of star cluster simulations. We also
introduce an integrated method to quantify the “goodness” of LCS extracted as height
ridges in the FTLE field, which moves us in the direction of enabling the topological
analysis of complex dynamical systems with quantitative guarantees. This is equally ap-
plicable to astrophysics, as it is in many other domains of science. The second part of this
thesis concerns itself with the direct visualization and handling of an astronomically large
star catalog, while enabling its interactive exploration, analysis, and traversal.

The main contributions of this thesis to the fields of vector field topology and visual-
ization of large astrometric data are as follows.
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In Chapter 3, we presented a novel approach for the analysis of inertial dynamics. We
have extended the concept of the FTLE to the 2n-dimensional phase space, containing
not only positions, but also velocities, resulting in the PS-FTLE. We have enabled the
visualization of this new higher-dimensional field by means of constraining the contri-
butions of position and velocity (PS-FTLE-P and PS-FTLE-V respectively), converting
it froma2n-dimensional to amanageablen-dimensional problem. Wehave alsopresented
the stacked PS-FTLE employing dimensional stacking, with the aimof providing context
and guidance to the exploratory analysis process. We have also introduced the concept of
multiplicity maps in the context of the PS-FTLE, in order to visualize overlapping re-
gions derived from inertial motion. Finally, we have presented an integrated interactive
framework that includes all the methods and techniques described above and enables in-
teractive exploration and analysis of complex inertial dynamical datasets.

In Chapter 4, we introduced an approach to the visual analysis of the FTLE, by de-
veloping a set of aggregation functions that capture distinct essential properties of the
underlying fields. These include basic statistical functions, height ridge properties, anti-
aliasing measures, and a global region ‘connectedness’ assessment.

In Chapter 5, we developed and presented a methodology to quantify the importance
of height ridges as extracted from the FTLE field, and their fitness as candidates to La-
grangian coherent structures. The quantification is based on the cross-flux filtering of
ridges and a novel LCS consistency measure. We also introduced a novel approach to as-
sist in the automatic determination of the best resolution that captures the LCS at the
desired quality level. This process is based on an automatic adaptive domain subdivi-
sion that autonomously selects regions of interest based on the cross-flux and consistency
quantities. Even though we have proven the technique to work on simple, constructed
datasets, we could notmeet the convergence criteria withmore complex flow simulations
due to them requiring very high resolutions. To that regard, more research is needed to
ensure the global consistency and usefulness of the method.

Finally, inChapter 4, we presented an integrated system to represent and visualize very
large star and point-based catalogs, like the ones produced by the Gaia mission. In this
fashion, we have presentedMS-LOD, a level-of-detail data structure tailored to star visu-
alization that takes into account star magnitudes to produce a seamless representation of
the galaxy from any point of view. We have also addressed the inescapable floating-point
precision issues encountered when rendering high dynamic distance ranges by introduc-
ing the floating camera. Finally, we have presented a logarithmic depth buffer to avoid
z-buffer resolution problems due to poor depth precision at high distances.

164



8.2 FutureWork

8.2 Future Work

We can conceive many ways in which the works presented in this thesis could be ex-
panded, the most obvious one being the additional assessment and evaluation needed
in order to consider our LCS quantitative error control methodology ready for prime
time. Application to more datasets is certainly required, and additional adjustments to
the techniquemay also be needed, possibly by introducing a better initial ridge extraction
method. In a general sense, the first part of this thesis provides the groundwork to enable
flow visualization techniques to be applied to additional fields of science and engineering,
such as astrophysics. The methods presented have so far been applied to comparatively
small datasets. Since these expand and built upon vector field topology and the FTLE,
which typically has a very high computational cost (more so when paired with ridge ex-
traction and other LCS visualizations), we do not expect direct application to the field of
astrophysics anytime soon. An interesting direction for future research would be in the
developmentofdomain-specific acceleration techniques to enable this gapbetween small,
contained systems to very large datasets to be bridged. The second part, with Gaia Sky, is
anongoing endeavor and is in active development. New features are introducedwith each
new version, and every new Gaia data release is an opportunity to not only release a new
batch of catalogs, but also to develop and integrate the new complimentary data products
such as spectra, variable stars, solar system objects, integrated star trajectories, exoplanets,
or extrasolar star systems, accompanied by respective visualization techniques.
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Acronyms

API Application programming interface
ASCII American standard code for information interchange
BDRF Bidirectional reflectance distribution function
BP Blue photometer
BRDF Bidirectional reflectance distribution function
BSDF Bidirectional scattering distribution function
BSP Binary space partitioning
BTDF Bidirectional transmittance distribution function
CCD Charge-coupled device
CG Computer graphics
CLOD Continuous level-of-detail
CPU Central processing unit
CSV Comma-separated values
CUDA Compute unified device architecture
DLOD Discrete level-of-detail
DPAC Gaia data processing and analysis consortium
DR1 (Gaia) data release 1
DR2 (Gaia) data release 2
DR3 (Gaia) data release 3
ECS Entity component system
eDR3 Early Gaia data release 3
FBO Frame buffer object
FITS Flexible image transport system
FOV Field of view
FPS Frames per second
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Acronyms

FTLE Finite-time Lypaunov exponent
FXAA Fast approximate anti-aliasing
GBIN Gaia binary format
GCA Graphics and compute array
GLSL OpenGL shading language
GP Graphics processor
GPU Graphics processing unit
HiDPI High dots per inch (high pixel density)
HTML Hypertext markup language
IVP Initial value problem
JNI Java native interface
JSON JavaScript object notation
JVM Java virtual machine
LE Lypaunov exponent
LOD Level-of-detail
MP Multidimensional projection
MPCDI Multiple projector common data interchange
MS-LOD Magnitude–space level-of-detail
NDC Normalized device coordinates
NFAA Normal filter anti-aliasing
OCDR2 Open clusters DR2 catalog
ODE Ordinary differential equation
PBR Physically based rendering
PDE Partial differential equation
PS-FTLE Phase-space finite-time Lypaunov exponent
PVS Potentially Visible Set
RAM Random access memory
RAVE Radial velocity experiment
REST Representational state transfer
RGB Red, green, blue (color model)
RK4 Fourth order Runge-Kutta
ROI Region of interest
RP Red photometer
SAMP Simple application messaging protocol
SGR Scene graph renderer
STIL Starlink tables infrastructure library
TMA Texture mapping unit
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Acronyms

UCD Unified content descriptor
UI User interface
VAO Vertex array object
VBO Vertex buffer object
VFT Vector field topology
VO Virtual observatory
VR Virtual reality
VRAM Video random access memory
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