
DISSERTATION

submitted

to the

Combined Faculty of Natural Sciences and Mathematics

of

Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Siva Karthik Mustikovela

Born in: Hyderabad, India

Oral examination:

Solving Computer Vision Problems through Self-Supervision and

Generative Image Synthesis

Advisor: Prof. Dr. Carsten Rother

Acknowledgments

There are numerous people I would like to acknowledge and I cannot thank them
enough for being with me throughout my journey. First of all, I thank my supervisor,
Prof. Carsten Rother for giving me an amazing opportunity to pursue my doctoral stud-
ies under his supervision. He believed in me throughout, challenged me with new ideas,
guided me and provided a lot of academic and industrial opportunities.
Prof. Andreas Geiger also played an influential role during my journey where I was
fortunate enough to collaborate with him in several projects. He guided me about ap-
proaching research through a clear and organized way, tackling failures and pushing the
boundaries of research.
I had the fortune of doing two internships at Nvidia research where I collaborated with
Dr. Jan Kautz, Dr. Varun Jampani, Dr. Shalini De Mello, Dr. Umar Iqbal, Dr. Sifei
Liu and Aayush Prakash. These internships were the most exciting and enriching parts
of my doctoral journey. I would like to thank Dr. Jan Kautz and Dr. Varun Jampani for
gracing me with an internship opportunity the first time. Varun is a role model for me
who provided exceptional support throughout my internship and even after it ended. He
taught me research focus, rigor and exposed me to radical new ideas. During my sec-
ond internship I was mentored by Dr. Shalini De Mello who has been a very influential
mentor in my life. She was extremely supportive in various aspects and it particularly
mattered since it was a remote internship during COVID-19 pandemic. She was always
available to advise for research, personal struggles and encouraged me to pursue bold
ideas.
I had the most amazing company I could have asked for in terms of colleagues or rather
friends for life. I cannot imagine myself going though this process without my lab mates
Omid, Hassan, Weihao and Sid. They made the struggles enjoyable with super hilarious
conversations, helpful and kind acts, emotional support, technical discussions and awe-
some food. I can never forget the long sleepless nights at the lab where we are sharing
the stress about our research while having laughing fits. I could not have asked for better

v

vi

lab mates. My time at Nvidia was fun filled because of my amazing co-interns, Vinu,
Abhishek, Ekta, Adrian, Zahra and Shoaib.
Being thankful or grateful to my parents (Krishna, Aruna) and my sister (Sravani) would
be an understatement for what they have gone through, sacrificed and how they sup-
ported me during this journey. They thoroughly encouraged me to pursue my dreams.
They emotionally supported me when I was feeling low, shared my happiness when I
succeeded and inspired me to excel at life. I could not have asked for more from them.
I would forever be indebted to them for their support. I also met my amazing girlfriend
and now wife, Vinita during my journey and she has been an incredible support sys-
tem throughout. She constantly motivated me to push my boundaries, encouraged me
to take up new challenges, patiently listened to my rants, advised me to deal with my
problems and supported me with all my decisions. Most importantly, she believed in
my ability and patiently waited for me to go through this journey. I cannot be grateful
enough for all our late night phone calls during our long distance relationship which
were majorly about us having fun conversations, celebrating out little wins, sharing our
struggles, motivating and encouraging each other. I would also like to thank my cousin,
Teja who stayed with me through the pandemic making it a little more bearable when
we had fun conversations, arguments, pondered about life and made amazing tea. He
taught me optimism and hope when met with challenges in life.

Abstract

Computer vision models require large amounts of labeled data for training which is er-
ror prone, time consuming and notoriously hard to acquire. It is specifically difficult to
obtain labels for fine grained geometry based tasks like object viewpoint estimation and
geometry estimation. Obtaining large scale object detection labels for changing oper-
ating domains is also time consuming. Synthetic data is an alternative but has a huge
domain gap compared to real world images which leads to models to under perform on
real images. On the other hand, it is relatively easy to mine large amounts of unlabeled
images of an object category from the internet. We seek to answer the whether such
unlabeled collections of in-the-wild images can be successfully utilized to train com-
puter vision models purely via self-supervision. We propose methods to learn object
viewpoint estimation, object detection, controllable image generation and decomposi-
tion purely through self-supervision using unlabeled images in an analysis-by-synthesis
paradigm. For object viewpoint estimation, we leverage a viewpoint aware image syn-
thesis network as a form of self-supervision to train our viewpoint estimation network
by coupling both the models through cycle-consistency. Our method performs compet-
itively compared to fully supervised methods for objects like faces, cars, busses and
trains. For self-supervised object detection, we leverage a generative model which pro-
vides control over 3D location and orientation of the synthesized object, using which we
also obtain the bounding box of the object. The synthesized image and bounding box
are used to train the object detector. The object detection accuracies indicate that we
outperform existing baselines considerably and surpass other synthetic data based de-
tection methods. Finally, we propose a method to learn geometrically controlled image
generation and decomposition using class specific unpaired real world images and 3D
CAD models. We jointly model the forward process of image generation and inverse
process of image decomposition. We are able to generate highly realistic images with
fine grained control over shape, appearance and reflections. Our results indicate that
computer vision tasks can be learned through self-supervision and can achieve perfor-
mance similar to either supervised methods or synthetic data based methods.

vii

Zusammenfassung

Computer-Vision-Modelle erfordern große Mengen an gelabelten Daten für das Train-
ing, was fehleranfällig, zeitaufwändig und notoriously schwer zu beschaffen ist. Es
ist besonders schwierig, Labels für feinkörnige geometriebasierte Aufgaben wie die
Schätzung derObjektperspektive und dieGeometrieschätzung zu erhalten. Das Beschaf-
fen von groß angelegten Labels für die Objekterkennung in sich verändernden Betriebs-
domänen ist ebenfalls zeitaufwändig. Synthetische Daten sind eine Alternative, weisen
jedoch eine erhebliche Domänenlücke im Vergleich zu echten Weltbildern auf, was
dazu führt, dass Modelle auf echten Bildern unterdurchschnittlich abschneiden. Ander-
erseits ist es relativ einfach, große Mengen ungelabelter Bilder einer Objektkategorie
aus dem Internet zu gewinnen. Wir versuchen zu beantworten, ob solche ungelabelten
Sammlungen von Bildern aus freier Wildbahn erfolgreich genutzt werden können, um
Computer-Vision-Modelle ausschließlich über Selbstüberwachung zu trainieren. Wir
schlagenMethoden vor, um die Schätzung der Objektperspektive, die Objekterkennung,
die steuerbare Bildgenerierung und die Zerlegung ausschließlich durch Selbstüberwachung
unter Verwendung ungelabelter Bilder in einem Analyse-durch-Synthese-Paradigma zu
erlernen. Für die Schätzung der Objektperspektive nutzen wir ein perspektivbewusstes
Bildsynthese-Netzwerk als Form der Selbstüberwachung, um unser Perspektivschätzungsnet-
zwerk zu trainieren, indem wir beide Modelle durch Zykluskonsistenz koppeln. Un-
sere Methode ist wettbewerbsfähig im Vergleich zu vollständig überwachten Methoden
für Objekte wie Gesichter, Autos, Busse und Züge. Für die selbstüberwachte Objek-
terkennung nutzen wir ein generatives Modell, das die Kontrolle über den 3D-Standort
und die Ausrichtung des synthetisierten Objekts bietet, mit dem wir auch den Begren-
zungsrahmen des Objekts erhalten. Das synthetisierte Bild und der Begrenzungsrah-
men werden zur Schulung des Objekterkenners verwendet. Die Genauigkeit der Objek-
terkennung zeigt, dass wir vorhandene Baselines erheblich übertreffen und andere auf
synthetischen Daten basierende Erkennungsmethoden überbieten. Schließlich schlagen
wir eine Methode vor, um die geometrisch gesteuerte Bildgenerierung und Zerlegung

ix

x

unter Verwendung klassenspezifischer ungleichartiger realer Weltbilder und 3D-CAD-
Modelle zu erlernen. Wir modellieren gemeinsam den Vorwärtsprozess der Bildgener-
ierung und den inversen Prozess der Bildzerlegung. Wir können äußerst realistische
Bilder mit feinkörniger Kontrolle über Form, Erscheinungsbild und Reflexionen gener-
ieren. Unsere Ergebnisse deuten darauf hin, dass Computer-Vision-Aufgaben durch
Selbstüberwachung erlernt werden können und eine Leistung erreichen können, die der
von überwachtenMethoden oder auf synthetischen Daten basierendenMethoden ähnelt.

Contents

1 Introduction 1

1.1 Supervised Learning in Computer Vision 2

1.2 Challenges in data acquisition . 4

1.3 Self-Supervision in Computer Vision 6

1.4 Generative Adversarial Networks . 7

1.5 Motivation . 9

1.6 Contributions . 10

1.7 List of published research papers . 12

1.8 Thesis outline . 14

2 Learning Viewpoint Estimation Through Self-Supervision 15

2.1 Introduction . 15

2.2 Related Work . 18

2.3 Self-Supervised Viewpoint Learning 19

2.3.1 Generative Consistency . 21

2.3.2 Discriminator Loss . 23

2.3.3 Symmetry Constraint . 23

2.4 Viewpoint-Aware Synthesis Network 24

2.5 Experiments . 27

2.5.1 Head Pose Estimation . 28

2.5.2 Generalization to Other Object Categories 31

xi

xii Contents

2.6 Conclusions . 33

3 Self-Supervised Object Detection via Generative Image Synthesis 35

3.1 Introduction . 35

3.2 Related Work . 38

3.3 Self-Supervised Object Detection . 39

3.3.1 Problem Setup . 39

3.3.2 Overview of SSOD . 40

3.3.3 Pose-Aware Synthesis . 41

3.3.4 Object Detection Adaptation 44

3.3.5 Target Data Adaptation . 45

3.3.6 Training Procedure . 47

3.4 Experiments . 48

3.4.1 Datasets and Evaluation . 48

3.4.2 Ablation Study . 49

3.4.3 Comparisons to State-of-the-Art 51

3.4.4 Additional Dataset . 53

3.4.5 Discussion on Results . 54

3.5 Conclusion . 54

4 Learning Image Synthesis andDecomposition ThroughMutual Supervision 55

4.1 Introduction . 55

4.2 Related Work . 58

4.3 Method . 60

4.3.1 Cycle Consistency . 61

4.3.2 Shared Adversarial Loss . 62

4.3.3 Implementation and Training 63

4.4 Experiments . 64

4.4.1 Baselines . 65

4.4.2 Deferred Neural Rendering . 66

Contents xiii

4.4.3 Intrinsic Image Decomposition 70

4.4.4 Results on ShapeNet Airplanes 72

4.5 Conclusion . 73

5 Conclusion 75

List of Figures

1.1 Semantic Understanding tasks . 2

1.2 Object pose estimation examples . 3

1.3 Geometric Understanding tasks . 4

1.4 Cityscapes Labeling example . 4

1.5 Examples from Generative Adversarial Networks 9

2.1 Self-supervised viewpoint learning . 16

2.2 Approach overview . 20

2.3 Generative consistency . 22

2.4 Synthesis network overview . 24

2.5 Synthesis results . 26

2.6 Viewpoint estimation results. We visually show the results of (a) head
pose estimation on the BIWI [41] dataset and of viewpoint estimation
on the test sets of the (b) car, (c) bus and (d) train categories from the
PASCAL3D+ [183] dataset. Solid arrows indicate predicted viewpoints,
while the dashed arrows indicate their GT values. Our self-supervised
method performs well for a wide range of head poses, identities and
facial expressions. It also successfully handles different object appear-
ances and lighting conditions from the car, bus and train categories. We
show additional results in the supplementary material. 32

xv

xvi List of Figures

3.1 Self-Supervised Object Detection. We learn object detection purely
using natural image collections without bounding box labels. We lever-
age controllable GANs to synthesize images and to detect objects to-
gether in a tightly coupled framework. We learn image synthesis from
unlabeled singe-object source images (e.g., Compcars [185]) and opti-
mally adapt our framework to any multi-object unlabeled target dataset
(e.g., KITTI [48]). 36

3.2 Overview of Self-Supervised Object Detection. SSOD contains three
modules: (a) a pose-aware synthesis module that generates images with
objects in pre-defined poses using a controllable GAN for training ob-
ject detectors; (b) an object detection adaptation module that guides the
synthesis process to be optimal for the downstream task of object de-
tection and the (c) a target data adaption module that helps SSOD to
adapt optimally to a target data distribution. We train all modules in a
tightly-coupled end-to-end manner. 40

3.3 Pose-Aware Synthesis Network (S) Overview. S takes as input sep-
arate style codes (z) and poses (v, l) for the background and one/more
foreground objects; transforms their respective learned 3D codes with
the provided poses; and synthesizes images after passing them through
several 3D convolutional, 2D projection and 2D convolutional layers.
We use the provided poses to compute 2D bounding box labels for the
synthesized objects. 43

3.4 Qualitative analysis of image synthesis. The columns show images
generated by (a) BlockGAN [132] at 64 × 64; and by S for (b) SSOD
trained without Lfg, Lbg, and Lmso; (c) SSOD trained without Lmso; and
(d) the full SSOD model. Each row has images generated with the same
pose, and foreground and background style codes. Rows (b)-(d) show
256 × 256 sized images. 52

3.5 Precision-recall curves on KITTI. Curves for SSOD with IOU thresh-
olds of 0.5 (bold lines) and 0.45 (dashed lines). 54

4.1 Deferred Neural Rendering and Intrinsic Image Decomposition 56

4.2 Intrinsic autoencoder overview . 60

4.3 Images generated using our Deferred Neural Renderer 66

4.4 Qualitative Comparison with baselines on Neural Rendering 67

4.5 Images generated using models trained with ablated inputs 68

4.6 Results of our intrinsic decomposition network on real images 71

List of Figures xvii

4.7 Comparison with Baselines for intrinsic decomposition 71

4.8 Images generated by our network trained on airplanes from ShapeNet . 73

List of Tables

2.1 Head pose estimation ablation studies and SOTA comparisons. Av-
erage absolute angular error for azimuth, elevation and tilt Euler an-
gles in degrees together with the mean absolute error (MAE) for the
BIWI [41] dataset. 29

2.2 Improved head pose estimation with fine-tuning. Average angular er-
ror for each of the Euler angles together with mean average error (MAE)
on data of 30% held-out sequences of the BIWI [41] dataset and fine-
tuning on the remaining 70%without using their annotations. All values
are in degrees. 30

2.3 Generalization to other object categories, median error. We show the
median geodesic errors (in degrees) for the car, bus and train categories. 34

2.4 Generalization to other object categories, inlier count. We show the
percentage of images with geodesic error less than π/6 for the car, bus
and train categories. 34

3.1 Ablation study on KITTI. Rows 1-3: BlockGAN in S trained with-
out coupling to the detector at different image resolutions; rows 4-6:
different ablated versions of SSOD each with one component removed;
and row 7: full SSOD model. Columns 1-3: mAP value at IOU 0.5 for
KITTI’s Easy, Medium, Hard and All cases; and columns 4-6: Sinkhorn,
KID, and FID scores to compare object regions in synthesized and real-
world KITTI images. 49

3.2 Comparisons to SOTA. Object detection performance (mAP at IOU
0.5) on KITTI of SSOD and various SOTA methods. 52

3.3 Performance on Cityscapes. Object detection performance (mAP at
IOU 0.5) and synthetic data quality analysis (Sinkorn) on Cityscapes. . 53

xix

xx List of Tables

4.1 FID and KID between real images and generated samples 69

4.2 Human Subject Study . 70

4.3 Errors for the Intrinsic Decomposition Task 72

“One day, in retrospect, the years of struggle will strike you as the most beautiful.”

Sigmund Freud

Chapter 1

Introduction

Computer Vision has progressed extensively with the development of several methods
that can understand a given scene at various levels of granularity. Current daymodels are
able to achieve unprecedented accuracy at scene understanding tasks like image classifi-
cation, semantic and instance segmentation, object detection and object pose estimation
to name a few. Simultaneously, there have also been significant advances in generative
models which are able to synthesize high quality realistic images which are able to trick
humans into thinking they are real images. Convolutional Neural Networks played an
integral role in building advanced computer vision algorithms for scene understanding
tasks. CNNs are trained with large amounts of labeled data to achieve impressive scene
understanding performance. The efforts to build large amount of high quality labeled
datasets enabled the training of such complex data hungry algorithms. In a standard
supervised setting, CNNs are trained using a large amount of paired labeled data in the
form of (input, label). The input could be from sensor modalities like 2D RGB im-
ages, 3D point clouds, audio, text, etc. The label provides a target that the model should
predict depending on the task it is being trained for.

1

2 Supervised Learning in Computer Vision

1.1 Supervised Learning in Computer Vision

Semantic Understanding. There are several common computer vision tasks to provide
a high-level semantic understanding of a given scene and the objects, namely, image
classification, semantic segmentation, object detection, instance segmentation (Fig 1.1).
Image classification is the task of categorizing an image into a predefined set of classes
requiring a simple categorical label per image as target annotation. Semantic segmen-
tation is a more granular task that classifies each pixel in the image and hence requires
dense pixel-wise class label target annotations. Furthermore, object detection is a task
that localizes the objects present in a scene by predicting their bounding boxes and simul-
taneously assigning a class to each of the predicted objects. Instance segmentation takes
this one step further by predicting a dense pixel level mask of each detected object in the
scene. Object detection and instance segmentation models require target annotations in
the form of individual bounding box and fine-grained masks for each of the object in the
scene. Object detection is a fundamental task in computer vision that enables machines
to interpret and interact with the visual world. For e.g. object detection is essential for
self-driving cars and other autonomous vehicles to recognize and track pedestrians, other
vehicles, traffic signs, and obstacles in real-time, ensuring safe navigation.

Figure 1.1. Semantic understanding tasks in computer vision. (a) Image classification
predicts an object category per image. (b) Semantic segmentation is more fine grained
and predicts an object category per pixel. (c) Object detection predicts a bounding box
for each object in the image. (d) Instance segmentation further predicts a pixel level
object mask. Image from [1]

.

Geometric Understanding. Computer vision tasks like pose estimation, object recon-
struction, depth estimation, optical flow estimation, scene flow estimation, etc., provide

Supervised Learning in Computer Vision 3

a geometric understanding of the scene. Object pose estimation and 3D object detection
models recover the three dimensional location (x, y, z) and three dimensional orienta-
tion (azimuth, elevation, tilt) of an object requiring fine grained continuous valued six
dimensional annotations (Fig 1.2). Object reconstruction models predict the fine geo-
metric shape of an object allowing us to recover a computerized model of the object
requiring object level six dimensional pose annotations along with a corresponding 3D
computerized model of the object. Both object pose estimation and reconstruction are
vital tasks for applications like autonomous driving, augmented reality, robotic manipu-
lation, etc. At the scene level, depth estimation (Fig 1.3(c)) recovers a pixel wise depth
value indicating the distance of that point from the camera in 3D space. Optical flow
(Fig 1.3(d)) tracks all pixels in a scene and associates them with the pixels in the next
temporal scene. While depth estimation models require pixel wise depth annotations
in camera frame, optical flow models need pixel wise tracking ground truth indicating
pixel wise associations across temporal frames.

Figure 1.2. (a) Example of 6D object pose estimation in indoor scenes from Scan2CAD
dataset [8]. Chairs, table and computer monitor are aligned and annotated with the cor-
responding 3D CAD models. Image from [62]. (b) Example of outdoor 3D object de-
tection labels from KITTI dataset [49].

4 Challenges in data acquisition

Figure 1.3. Geometric scene understanding tasks in computer vision. (a) Image at time
t (b) Image at time t+1 (c) Pixel wise depth prediction of the scene (d) Pixel wise optical
flow prediction of the scene.

1.2 Challenges in data acquisition

Semantic Scene understanding. High-level semantic understanding tasks need pixel
wise masks and corresponding categorical class labels which require extensive human
effort and are also expensive to obtain. Works like [33] (Cityscapes), [129] (Mapil-
lary) provide densely annotated pixel wise semantic and instance annotations for RGB
images in street scenes for autonomous scene understanding applications (Fig 1.4). To
create these datasets, it takes about 90 minutes to annotate each image with semantic
and instances masks, which is extremely time consuming.

Figure 1.4. Example from Cityscapes outdoor scene understanding dataset. Each image
is overlaid with the corresponding pixel wise dense category labels.

3D object detection. 3D bounding box annotations or object pose annotations present
the additional challenge of manually estimating the rotation and translation of an object
with respect to a canonical frame to accurately place the bounding box covering the ob-

Challenges in data acquisition 5

ject. This could be highly ambiguous for humans and gets erroneous when the objects
are occluded or farther away from the camera (Fig 1.2(b)). Datasets like PASCAL-
3D+[183] provide an annotated rotation and location of an object along with a corre-
sponding CAD model associated with the object. This is extremely challenging since
we need a 3D CAD model that exactly matches with the object in consideration and
further assign an exact location and pose which is highly ambiguous (Fig 1.2(a)). SUN
RGB-D dataset [168] provides 3D bounding boxes for objects present in an indoor scene
captured with 3D sensors. It is reported that about 2,051 hours were required to obtain
bounding boxes for about 65k 3D object annotations averaging about 2 minutes per ob-
ject bounding box. Assuming about 15 objects per scene it would take about 30 minutes
to annotate a scene.

An advantage in the above mentioned tasks like semantic segmentation and object detec-
tion is the possibility of perception of ground truth by humans for verification and quality
assessment. For e.g., semantic or instance annotations, 3D or 2D bounding boxes can
be overlaid on images to verify if they rightly fit the object. On the other hand, geo-
metric scene understanding tasks (Fig 1.3) usually require annotations that are multi-
dimensional, continuous valued and associative. Scene depth estimation requires pixel
wise depth annotations which is extremely difficult and near impossible for humans to
annotate at fine pixel level. Depth annotations are generally obtained by simultaneously
capturing RGB images and the corresponding LiDAR scans at the same time followed
by calibrating and registering the images and scans [49], [47]. This allows us to capture
accurate pixel wise depth for outdoor scenes which however is sparse due to the sparsity
of LiDAR scans. For indoor scenes, depth for corresponding RGB images is obtained
through time-of-flight cameras like Kinect. Optical flow on the other hand requires pix-
els to be tracked across time through pairs of images. It is practically impossible for
humans to annotate for optical flow and pixel level association across time. To obtain
optical flow ground truth, images and LiDAR scans are registered across time and the
3D points from LiDAR scans projected into the next frame to obtain pixel level cor-
respondences [49]. This is a very complicated approach and does not scale well when
there are multiple dynamic objects in a scene.

Synthetic data. One possibility of addressing the abovementioned challenges in acquir-

6 Self-Supervision in Computer Vision

ing real data is to leverage computer graphics to generate synthetic datasets [45], [157],
[155]. Computer graphics pipelines allow us easy access to various kinds of high quality
pixel-precise annotations like segmentation, bounding boxes, depth, optical flow, object
pose, etc. This makes it easier to create high-quality labeled datasets for training. Syn-
thetic data generation also allows us to precisely control the composition of the scene
according to our need enabling us to capture highly diverse scenarios that might be rare
or difficult to capture in the real world. However, there are a few major shortcomings
associated with synthetic data. Synthetic datasets suffer from domain gap due to inher-
ent differences between synthetic and real data distributions and hence models trained
solely on synthetic data may not always generalize well to real-world scenarios. Addi-
tionally, synthetic datasets require skilled artists who can create assets by modeling real
world objects, compose scenes in graphics pipelines and create high quality near real
world imagery which in itself is a heavily studied problem in computer graphics. To this
end, synthetic data can only be used in combination with real data and cannot entirely
replace it to train computer vision models.

As it can be seen in the above mentioned examples, obtaining ground truth for real
images is extremely expensive, cumbersome and in some cases untractable. On the other
hand, building synthetic datasets poses challenges due to the domain gap and expertise
required to build them. The goal of this thesis is to explore methods which let us learn
computer vision models without using annotated training data either from real or syn-
thetic setting, merely by using large collections of images. We explore how fundamental
problems in computer vision like pose estimation, object detection, image generation
and image decomposition can be solved by training models through the paradigm of
analysis-by-synthesis and self-supervision without the need of annotated training data.

1.3 Self-Supervision in Computer Vision

Self-supervised learning has shown remarkable success in various computer vision tasks,
including image classification, object detection, and segmentation. It has the advantage
of being able to learn meaningful representations from large, unlabeled datasets, which

Generative Adversarial Networks 7

is especially valuable when labeled data is scarce or expensive to obtain. Recently, self-
supervised methods like SimCLR [28], MoCo [63], BYOL [59], PIRL [123], Dino [23]
have demonstrated tremendous success at learning powerful representations for image
classification with needing extensive labeled data. Such methods only require a very
minute amount of labeled data to align the learned representations to the object cate-
gories. These methods generally learn representations through a pretext task like image
colorization, image augmentation, contrastive learning, sorting a sequence of frames,
inpainting images, etc. Features from an intermediate layer are then fed to an MLP clas-
sifier for ImageNet classification. On the other hand, there has also been significant
progress in self-supervised learning of other computer vision tasks. Methods like [53],
[54], [52], [61], [148] use stereo imagery or sequential frames to learn depth estimation
of outdoor driving scenes. These methods learn by predicting depth and warping it to
either the paired stereo frame or the next temporal frame. The resulting warped image
is then compared to reference stereo or temporal image to compute loss and penalize the
model. Similarly, [83], [115] learn optical flow computation in a self-supervised setup
only by using videos. Self-supervised object reconstruction is proposed in [86], [110]
which can recover 3D textured object meshed from 2D images. SCOPS [75] and [80]
propose methods to learn object part segmentation and keypoint detection only using
unlabeled 2D images. All of the above mentioned methods bypass the need for labeled
data and solely learn from unlabeled 2D images. These are particularly impactful since
obtaining ground truth for the above tasks is extremely expensive and sometimes in-
tractable as mentioned in 1.2. In this thesis, we further explore other computer vision
tasks like object pose estimation, object detection, image generation and decomposition
which can be learned through self-supervision only using image collections.

1.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [55] are a common and powerful class of
machine learning models which have successfully demonstrated the ability to model
the distribution of natural images and further generate realistic looking image samples.

8 Generative Adversarial Networks

Vanilla unconditional models like [91], [19], [92] are able to generate high resolution im-
ages very similar to the real images they are trained on. GANs consist of two networks,
a Generator (G) and a discriminator (D) during training. In the vanilla setup, the gener-
ator G takes a vector z sampled from a predetermined distribution as input and produces
an image I ′ = G(z). The discriminator, D is another network which either takes a real
image I or fake (generated) image I ′ and identifies whether the image presented to it is
synthesized by G (from fake distribution) or real distribution. While vanilla GAN mod-
els are able to generate highly realistic images compared to natural images (Fig 1.5(a)),
the generated images are not controllable. To address this, several methods have been
proposed to condition the generator on various inputs like object category, style, text,
semantic composition, object pose, object location, etc. Image translation GANs like
[200], [77] were one of the first models to introduce conditional GANs where the input
to G is not just a random vector but an alternative representation or a map of the image
we want from the generator (Fig 1.5(b,c)). Such conditional GANs are tasked to trans-
late an image provided to G into another image. For e.g. G could translate a semantic
map into its corresponding image, a gray scale image into a color image, a binary edge
image into its color image,etc. Models like [179], [140] further improved the perfor-
mance of semantic map condition based image generation by achieving high level of
realism of synthesized images (Fig 1.5(b)). [193] demonstrated that G could be condi-
tioned on textual inputs to control the characteristics of generated images. At a more fine
grained level, [130] showed the possibility of having fine grained control over the pose
of generated image using pose conditioned generator (Fig 1.5(d)). On the other hand
[133] allowed control over the location of an object in the synthesized scene. While the
above mentioned works are a few methods of conditioning GANs, there are numerous
methods of controlling the generated images developed over the past few years, some of
which are discussed in [88]. A key takeaway from the above methods is the possibility
of controlling the high level or fine-grained attributes of scenes and objects in the gen-
erated images. An efficient generator is able to take a parametric control p as input and
faithfully incorporate the required characteristics into the generated image I ′ = G(p).
The synthesized image can in turn be analyzed by a downstream task network to predict
the parameters used to produce the image. This effectively becomes a self learning loop

Motivation 9

where (I ′, p) can be used as training samples and is one of the major building blocks of
this thesis.

Figure 1.5. Examples produced by various Generative Adversarial Networks. (a)
Image samples from StyleGAN[92]. (b) Conditional image generation results from
Pix2PixHD[179] which uses semantic maps as input to generate RGB images. (c) Exam-
ple from CUT[139] which can translate images between domains. (d) Images generated
from viewpoint controlled generative model HoloGAN[130].

1.5 Motivation

The motivation for this thesis originates from two major factors. The first comes from
the challenges involved in data acquisition as described in sec 1.2. While data collection
is plausible for some tasks like object detection, it is expensive both in terms of time and
human effort. On the other hand, data collection for tasks like pose estimation, geome-
try estimation, etc is ambiguous, error prone and some times untractable through human

10 Contributions

means. Secondly, parametrically controllable GANs discussed in 1.4 enable us to steer
the characteristics required like pose, style, geometry, etc., in a generated image. Con-
trollable generative models can effectively be used to create (label, image) pairs (I ′, p)
where p is the input to synthesis network and I ′ is the synthesized image. This pair can
further be used to train the down stream computer vision task where I ′ serves as the in-
put image and p serves as the label. This forms an analysis-by-synthesis cycle where the
synthesis network is coupled with the analysis (task) network to form a self-supervised
learning system which only required unlabeled real world images as training data. The
goal of this thesis is to leverage this controllable image generation in an analysis-by-
synthesis paradigm to train computer vision models only by using large collections of
unlabeled images. Through this thesis, we explore self-supervised learning of three ma-
jor computer vision problems, namely, object viewpoint estimation, object detection
and image decomposition. We learn each of these tasks through self-supervision in an
analysis-by-synthesis framework through losses and constraints tailored to each of these
specific problems. Below is the summary of the main contributions of this thesis.

1.6 Contributions

To summarize, the main contributions of thesis are:

• An analysis-by-synthesis framework for learning viewpoint estimation in a purely
self-supervised manner by leveraging cycle-consistency losses between a view-
point estimation and a viewpoint aware synthesis network. Self-supervision here
refers to the fact that the only true supervisory signal that the network has is the
input image itself. We couple a viewpoint network with a synthesis network to
form a complete cycle and train both together. To self-supervise viewpoint esti-
mation, we leverage cycle-consistency losses between the viewpoint estimation
(analysis) network and a viewpoint aware generative (synthesis) network, along
with losses for viewpoint and appearance disentanglement, and object-specific
symmetry priors.We introduce generative, symmetric and adversarial constraints
which self-supervise viewpoint estimation learning just from object image col-

Contributions 11

lections. We perform experiments for head pose estimation on the BIWI dataset
[41] and for viewpoint estimation of cars, buses and trains on the challenging
Pascal3D+ [183] dataset and demonstrate competitive accuracy in comparison to
fully-supervised approaches. As per our knowledge, this is one of first works to
explore the problem of self-supervised viewpoint learning for general objects and
we believe that our work would serve as a robust baseline for future work.

• A self-supervised object detection framework SSOD via controllable generative
synthesis, which uses only real world images without any kind of bounding box
annotations. We use unlabeled image collections to learn to synthesize objects in
a controlled way with pre defined object properties. We achieve this by leveraging
controllable GANs, which provide control over the 3D location and orientation of
an object. Using the synthesized images and the bounding boxes obtained using
the corresponding input object properties we train the object detection network.
We propose an end-to-end analysis-by-synthesis framework, which can optimally
adapt the synthesis network to both the downstream task of object detection and
to a target dataset in a purely self-supervised manner without requiring bounding
box-labels and without using 3D CAD assets – a multi-faceted challenge not ad-
dressed previously. Our experiments on two real-world datasets KITTI [47] and
Cityscapes [34] show ∼2x performance improvement over SOTA image-based
self-supervised object detection methods. To our understanding, this is the first
work that explores the use of controllable GANs to learn object detection only
using image collections.Also, without using 3D CAD assets, SSOD outperforms
on average, the rendering-based baseline of Meta-Sim2 [37] which uses graphics
engines to produce synthetic data and train object detectors.

• We propose the Intrinsic Autoencoder, a method to jointly train photo-realistic
image synthesis and intrinsic image decomposition using cycle consistency losses
without using any paired annotated data. While several supervised methods have
been proposed for this task, acquiring a dataset of images with accurately aligned
3D models is very difficult. The main contribution of this work is to lift this re-
striction by training a neural rendering algorithm from unpaired data. We propose

12 List of published research papers

a model for joint generation of realistic images from synthetic 3Dmodels while si-
multaneously decomposing real images into their intrinsic shape and appearance
properties. In contrast to a traditional graphics pipeline, our approach does not
require to specify all scene properties, such as material parameters and lighting
manually. Instead, we learn photo-realistic deferred rendering from a small set
of 3D models and a larger collection of unaligned real images, both of which are
easy to acquire in practice. We propose a shared discriminator network that en-
ables better generalization and proves key for learning both tasks without paired
training data. Our experiments confirm that a joint treatment of rendering and
decomposition is indeed beneficial and that our approach outperforms state-of-
the-art image-to-image translation baselines both qualitatively and quantitatively.

1.7 List of published research papers

The remaining chapters of this thesis are based on the following published research pa-
pers.

• Mustikovela, S. K., Jampani, V., De Mello, S., Liu, S., Iqbal, U., Rother, C., &
Kautz, J., Self-Supervised Viewpoint Learning From Image Collections. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)
2020

• Mustikovela, S. K., and De Mello, S., Prakash, A., Iqbal, U., Liu, S., Nguyen-
Phuoc T., Rother, C., &Kautz, J., Self-SupervisedObject Detection viaGenerative
Image Synthesis. In Proceedings of the International Conference on Computer
Vision (ICCV) 2021

• Mustikovela, S. K.∗, Alhaija, H. A.∗, Thies, J., Jampani, V., Nießner, M., Geiger,
A., & Rother, C. Intrinsic Autoencoders for Joint Deferred Neural Rendering and
Intrinsic Image Decomposition. In International Conference on 3D Vision (3DV)
2020 [5].
(∗: Equal contributions)

List of published research papers 13

Declaration: The idea for this paper and the initial implementation was done by
Hassan Abu Alhaija. I led the first stage of experiments and development while
Hassan was doing an internship. After returning, Hassan led the second stage of
experiments. The paper writing has been jointly written with him.

Additionally, I contributed to the following related research papers during working on
this thesis. They will not be discussed here.

• KarthikMustikovela, S.∗, Behl, A.∗, Hosseini Jafari, O.∗, Alhaija, H. A., Rother,
C., &Geiger, A. Bounding boxes, segmentations and object coordinates: How im-
portant is recognition for 3d scene flow estimation in autonomous driving scenar-
ios? In Proceedings of the International Conference on Computer Vision (ICCV)
2017 [10].

• Mustikovela, S. K.∗ , Hosseini Jafari, O.∗„ Pertsch, K., Brachmann, E., & Rother,
C. iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. In
Asian Conference on Computer Vision (ACCV) 2018 [2].

• Alhaija, H. A.,Mustikovela, S. K., Mescheder, L., Geiger, A., & Rother, C. Aug-
mented reality meets deep learning for car instance segmentation in urban scenes.
In British machine vision conference (BMVC) 2017 [4].

• Alhaija, H. A.,Mustikovela, S. K., Mescheder, L., Geiger, A., & Rother, C. Aug-
mented reality meets computer vision: Efficient data generation for urban driving
scenes. International Journal of Computer Vision (IJCV), 2018 [3].

• Alhaija, H. A., Mustikovela, S. K., Geiger, A., & Rother, C. Geometric image
synthesis. In Asian Conference on Computer Vision (ACCV) 2018 [2].

• Mustikovela, S. K., Yang, M., & Rother, C. Can Ground Truth Label Propaga-
tion from Video help Semantic Segmentation? In Video Segmentation Workshop,
European Conference on Computer Vision (ECCV) 2016.

14 Thesis outline

1.8 Thesis outline

The remaining part of the thesis is structured as follows. In Chapter 2 we explore and
present the topic of self-supervised viewpoint learning of objects by using unlabeled
image collections. In Chapter 3 we discuss a method to learn object detection in a
self-supervised manner through generative image synthesis. Chapter 4 discusses our
approach to jointly learn controllable image synthesis and intrinsic decomposition using
unpaired natural images and 3D CAD models. Finally, in Chapter 5 we conclude with
a discussion and possible future directions following this thesis.

Chapter 2

Learning Viewpoint Estimation
Through Self-Supervision

2.1 Introduction

3D understanding of objects from 2D images is a fundamental computer vision prob-
lem. Object viewpoint (azimuth, elevation and tilt angles) estimation provides a pivotal
link between 2D imagery and the corresponding 3D geometric understanding. In this
work, we tackle the problem of object viewpoint estimation from a single image. Given
its central role in 3D geometric understanding, viewpoint estimation is useful in several
vision tasks such as object manipulation [181], 3D reconstruction [103], image synthe-
sis [30] to name a few. Estimating viewpoint from a single image is highly challenging
due to the inherent ambiguity of 3D understanding from a 2D image. Learning-based
approaches, e.g., [58, 60, 112, 120, 169, 177, 186, 199], using neural networks that lever-
age a large amount of annotated training data, have demonstrated impressive viewpoint
estimation accuracy. A key requirement for such approaches is the availability of large-
scale human annotated datasets, which is very difficult to obtain. A standard way to
annotate viewpoints is by manually finding and aligning a rough morphable 3D or CAD
model to images [41, 183, 202], which is a tedious and slow process. This makes it
challenging to create large-scale datasets with viewpoint annotations. Most existing

15

16 Introduction

Figure 2.1. Self-supervised viewpoint learning. We learn a single-image object view-
point estimation network for each category (face or car) using only a collection of images
without ground truth.

works [43, 58, 60, 112, 169, 202] either rely on human-annotated viewpoints or aug-
ment real-world data with synthetic data. Some works [58] also leverage CAD models
during viewpoint inference.

In this work, we propose a self-supervised learning technique for viewpoint estima-
tion of general objects that learns from an object image collection without the need for
any viewpoint annotations (Figure 3.1). By image collection, we mean a set of images
containing objects of a category of interest (say, faces or cars). Since viewpoint estima-
tion assumes known object bounding boxes, we also assume that the image collection
consists of tightly bounded object images. Being self-supervised in nature, our approach
provides an important advancement in viewpoint estimation as it alleviates the need for
costly viewpoint annotations. It also enables viewpoint learning on object categories
that do not have any existing ground-truth annotations.

Following the analysis-by-synthesis paradigm, we leverage a viewpoint aware im-
age synthesis network as a form of self-supervision to train our viewpoint estimation net-
work. We couple the viewpoint network with the synthesis network to form a complete
cycle and train both together. To self-supervise viewpoint estimation, we leverage cycle-

Introduction 17

consistency losses between the viewpoint estimation (analysis) network and a viewpoint
aware generative (synthesis) network, along with losses for viewpoint and appearance
disentanglement, and object-specific symmetry priors. During inference, we only need
the viewpoint estimation network, without the synthesis network, making viewpoint in-
ference simple and fast for practical purposes. As per our knowledge, ours is the first
self-supervised viewpoint learning framework that learns 3D viewpoint of general ob-
jects from image collections in-the-wild. We empirically validate our approach on the
human head pose estimation task, which on its own has attracted considerable atten-
tion [20, 25, 60, 102, 170, 186, 187, 202] in computer vision research. We demonstrate
that the results obtained by our self-supervised technique are comparable to those of
fully-supervised approaches. In addition, we also demonstrate significant performance
improvements when compared to viewpoints estimated with self-supervisedly learned
keypoint predictors. To showcase the generalization of our technique, we analyzed our
approach on object classes such as cars, buses, and trains from the challenging Pas-
cal3D+ [183] dataset. We believe this work opens up further research in self-supervised
viewpoint learning and would also serve as a robust baseline for future work.

To summarize, our main contributions are:

• We propose a novel analysis-by-synthesis framework for learning viewpoint esti-
mation in a purely self-supervised manner by leveraging cycle-consistency losses
between a viewpoint estimation and a viewpoint aware synthesis network. To our
understanding, this is one of first works to explore the problem of self-supervised
viewpoint learning for general objects.

• We introduce generative, symmetric and adversarial constraints which self-supervise
viewpoint estimation learning just from object image collections.

• We perform experiments for head pose estimation on the BIWI dataset [41] and for
viewpoint estimation of cars, buses and trains on the challenging Pascal3D+ [183]
dataset and demonstrate competitive accuracy in comparison to fully-supervised
approaches.

18 Related Work

2.2 Related Work

Viewpoint estimation Several successful learning-based viewpoint estimation tech-
niques have been developed for general object categories that either regress orientation
directly [112, 120, 125, 147, 169, 177]; locate 2D keypoints and fit them to 3D key-
points [58, 145, 199]; or predict 3D shape and viewpoint parameters [103]. These tech-
niques require object viewpoint annotations during training, either in the form of angular
values; or 2D and 3D keypoints and use large annotated datasets, e.g., Pascal3D+ [183]
and ObjectNet3D [182] with 12 and 100 categories, respectively. These datasets were
annotated via a tedious manual process of aligning best-matched 3D models to images
– a procedure that is not scalable easily to larger numbers of images or categories. To
circumvent this problem, existing viewpoint algorithms augment real-world data with
synthetic images [43, 58, 112, 169]; assume auxiliary supervision and learn the related
aspects (e.g., 3D keypoints) along with viewpoint [171, 199]; or try to learn from very
few labeled examples of novel categories [176].

Headpose estimation Separate from the above-mentionedworks, learning-based head
pose estimation techniques have also been studied extensively [20, 25, 60, 102, 170, 186,
187, 202]. These works learn to either predict facial landmarks from data with varying
levels of supervision ranging from full [20, 102, 170, 187, 202], partial [70], or no su-
pervision [75, 198]; or learn to regress head orientation directly in a fully-supervised
manner [25, 60, 158, 186]. The latter methods perform better than those that predict
facial points [186]. To avoid manual annotation of head pose, prior works also use
synthetic datasets [60, 202]. On the other hand, several works [42, 160, 173, 175] pro-
pose learning-based approaches for dense 3D reconstruction of faces via in-the-wild
image collections and some use analysis-by-synthesis [173, 175]. However, they are
not purely self-supervised and use either facial landmarks [173], dense 3D surfaces [42]
or both [175] as supervision.

Self-supervised object attribute discovery Several recent works try to discover 2D
object attributes like landmarks [79, 174, 198] and part segmentation [32, 75] in a self-
supervised manner. These works are orthogonal to ours as we estimate 3D viewpoint.

Self-Supervised Viewpoint Learning 19

Some other works such as [64, 76, 104] make use of differentiable rendering frame-
works to learn 3D shape and/or camera viewpoint from a single or multi-view image
collections. Because of heavy reliance on differentiable rendering, these works mainly
operate on synthetic images. In contrast, our approach can learn viewpoints from im-
age collections in the wild. Some works learn 3D reconstruction from in-the-wild image
collections, but use annotated object silhouettes along with other annotations such as 2D
semantic keypoints [87], category-level 3D templates [100]; or multiple views of each
object instance [94, 135, 180]. In contrast, we use no additional supervision other than
the image collections that comprise of independent object images. To the best we know,
no prior works propose to learn viewpoint of general objects in a purely self-supervised
manner from in-the-wild image collections.

2.3 Self-Supervised Viewpoint Learning

Problem setupWe learn a viewpoint estimation network V using an in-the-wild image
collection {I} of a specific object category without annotations. Since viewpoint esti-
mation assumes tightly cropped object images, we also assume that our image collection
is composed of cropped object images. Figure 3.1 shows some samples in the face and
car image collections. During inference, the viewpoint network V takes a single object
image I as input and predicts the object 3D viewpoint v̂.

Viewpoint representation To represent an object viewpoint v̂, we use three Euler an-
gles, namely azimuth (â), elevation (ê) and in-plane rotation (t̂) describing the rotations
around fixed 3D axes. For the ease of viewpoint regression, we represent each Euler
angle, e.g., a ∈ [0, 2π], as a point on a unit circle with 2D coordinates (cos(a), sin(a)).
Following [112], instead of predicting co-ordinates on a 360◦ circle, we predict a positive
unit vector in the first quadrant with |â| = (| cos(â)|, | sin(â)|) and also the category of the
combination of signs of sin(â) and cos(â) indicated by sign(â)= (sign(cos(â)), sign(sin(â)) ∈
{(+, +), (+, −), (−, +), (−, −)}. Given the predicted |â| and sign(â) from the view-
point network, we can construct cos(â)= sign(cos(â))| cos(â)| and sin(â)= sign(sin(â))| sin(â)|.
The predicted Euler angle â can finally be computed as tanh(sin(â)/ cos(â)). In short,

20 Self-Supervised Viewpoint Learning

Figure 2.2. Approach overview. We use generative consistency, symmetry and dis-
criminator losses to supervise the viewpoint network with a collection of images without
annotations.

the viewpoint network performs both regression to predict a positive unit vector |a| and
also classification to predict the probability of sign(a).

Approach overview and motivationWe learn the viewpoint network V using a set of
self-supervised losses as illustrated in Figure 2.2. To formulate these losses we use three
different constraints, namely generative consistency, a symmetry constraint and a dis-
criminator loss. Generative consistency forms the core of the self-supervised constraints
to train our viewpoint network and is inspired from the popular analysis-by-synthesis
learning paradigm [103]. This framework tries to tackle inverse problems (such as view-
point estimation) by modelling the forward process of image or feature synthesis. A syn-
thesis function S models the process of generating an image of an object from a basic
representation and a set of parameters. The goal of the analysis function is to infer the
underlying parameters which can best explain the formation of an observed input image.
Bayesian frameworks such as [191] and inverse graphics [82, 94, 103, 116, 189] form
some of the popular techniques that are based on the analysis-by-synthesis paradigm. In
our setup, we consider the viewpoint network V as the analysis function.

Wemodel the synthesis functionS, with a viewpoint aware image generationmodel.

Self-Supervised Viewpoint Learning 21

Recent advances in Generative Adversarial Networks (GAN) [29, 93, 131] have shown
that it is possible to generate high-quality images with fine-grained control over pa-
rameters like appearance, style, viewpoint, etc. Inspired by these works, our synthesis
network generates an image, given an input v, which controls the viewpoint of the object
and an input vector z, which controls the style of the object in the synthesized image.
By coupling both the analysis (V) and synthesis (S) networks in a cycle, we learn both
the networks in a self-supervised manner using cyclic consistency constraints described
in 2.3.1 and shown in Figure 2.3. Since the synthesis network can generate high quality
images based on controllable inputs v and z, these synthesized images can in turn be
used as input to the analysis network (V) along with v, z as the pseudo ground-truth.
On the other hand, for a real world image, if V predicts the correct viewpoint and style,
these can be utilized by S to produce a similar looking image. This effectively functions
as image reconstruction-based supervision. In addition to this, similar to [29, 131] the
analysis network also functions as a discriminator, evaluating whether the synthesized
images are real or fake. Using a widely prevalent observation that several real-world
objects are symmetric, we also enforce a prior constraint via a symmetry loss function
to train the viewpoint network. Object symmetry has been used in previous supervised
techniques such as [120] for data augmentation, but not as a loss function. In the follow-
ing, we first describe the various loss constraints used to train the viewpoint network V
while assuming that we already have a trained synthesis network S. In Section 2.4, we
describe the loss constraints used to train the synthesis network S.

2.3.1 Generative Consistency

As Figure 2.3 illustrates, we couple the viewpoint network V with the synthesis network
S to create a circular flow of information resulting in two consistency losses: (a) image
consistency and (b) style and viewpoint consistency.

Image consistency Given a real image I sampled from a given image collection {I},
we first predict its viewpoint v̂ and style code ẑ via the viewpoint network V . Then, we
pass the predicted v̂ and ẑ into the synthesis network S to create the synthetic image Îs.
To train the viewpoint network, we use the image consistency between the input image

22 Self-Supervised Viewpoint Learning

Figure 2.3. Generative consistency. The two cyclic (a) image consistency (Limc) and
(b) style and viewpoint consistency (Lsv) losses make up generative consistency. The
input to each cycle is highlighted in yellow. Image consistency enforces that an input
real image, after viewpoint estimation and synthesis, matches its reconstructed synthetic
version. Style and viewpoint consistency enforces that the input style and viewpoint
provided for synthesis are correctly reproduced by the viewpoint network.

I and corresponding synthetic image Is with a perceptual loss:

Limc = 1 − ⟨Φ(I), Φ(Îs)⟩, (2.1)

whereΦ(.) denotes the conv5 features of an ImageNet-trained [36]VGG16 classifier [166]
and ⟨., .⟩ denotes the cosine distance. Figure 2.3(a) illustrates the image consistency cy-
cle.

Style and viewpoint consistencyAs illustrated in Figure 2.3(b), we create another circu-
lar flow of information with the viewpoint and synthesis networks, but this time starting
with a random viewpoint vs and a style code zs, both sampled from uniform distri-
butions, and input them to the synthesis network to create an image Is = S(vs, zs).
We then pass the synthetic image Is to the viewpoint network V that predicts its view-
point v̂s and the style code ẑs. We use the sampled viewpoint and style codes for the
synthetic image Is as a pseudo GT to train the viewpoint network. Following [112],
the viewpoint consistency loss Lv(v̂1, v̂2) between two viewpoints v̂1 = (â1, ê1, t̂1)
and v̂2 = (â2, ê2, t̂2) has two components for each Euler angle: (i) cosine proximity
between the positive unit vectors L|a|

v = −⟨|â1)|, |â2|⟩ and (ii) the cross-entropy loss
Lsign(a)

v between the classification probabilities of sign(â1) and sign(â2). The viewpoint

Self-Supervised Viewpoint Learning 23

consistency loss Lv is a sum of the cross-entropy and cosine proximity losses for all the
three Euler angles:

Lv(v̂1, v̂2) =
∑

ϕ∈a,e,t

L|ϕ|
v + Lsign(ϕ)

v . (2.2)

The overall style and viewpoint loss between the sampled (vs, zs) and the predicted
(v̂s, ẑs) is hence:

Lsv = ∥zs − ẑs∥2
2 + Lv(vs, v̂s). (2.3)

While viewpoint consistency enforces that V learns correct viewpoints for synthetic im-
ages, image consistency helps to ensure that V generalizes well to real images as well,
and hence avoids over-fitting to images synthesized by S.

2.3.2 Discriminator Loss

V also predicts a score ĉ indicating whether an input image is real or synthetic. It thus
acts as a discriminator in a typical GAN [55] setting, helping the synthesis network
create more realistic images. We use the discriminator loss from Wasserstein-GAN [7]
to update the viewpoint network using:

Ldis = −Ex∼preal [c] + Ex̂∼psynth [ĉ], (2.4)

where c = V(x) and ĉ = V(x̂) are the predicted class scores for the real and the synthe-
sized images, respectively.

2.3.3 Symmetry Constraint

Symmetry is a strong prior observed inmany commonplace object categories, e.g., faces,
boats, cars, airplanes, etc. For categories with symmetry, we propose to leverage an
additional symmetry constraint. Given an image I of an object with viewpoint (a, e, t),
the GT viewpoint of the object in a horizontally flipped image flip(I) is given by (-a, e,-
t). We enforce a symmetry constraint on the viewpoint network’s outputs (v̂, ẑ) and
(v̂∗, ẑ∗) for a given image I and its horizontally flipped version flip(I), respectively.
Let v̂=(â, ê, t̂) and v̂∗=(â∗, ê∗, t̂∗) and we denote the flipped viewpoint of the flipped
image as v̂∗

f=(-â∗, ê∗,-t̂∗). The symmetry loss is given as

24 Viewpoint-Aware Synthesis Network

3D
Code

3D
 C

on
vn

et

3D
 C

on
vn

et

2D
 C

on
vn

et

Synthesized
Image

2D
Projection

Style
Code

𝑧"

View
Point𝑣"

3D
Rotation

Figure 2.4. Synthesis network overview. The network takes viewpoint vs and style
code zs to produce a viewpoint aware image.

Lsym = D(v̂, v̂∗
f) + ∥ẑ − ẑ∗∥2

2 . (2.5)

Effectively, for a given horizontally flipped image pair, we regularize that the network
predicts similar magnitudes for all the angles and opposite directions for azimuth and tilt.
Additionally, the above loss enforces that the style of the flipped image pair is consistent.

Our overall loss to train the viewpoint network V is a linear combination of the
aforementioned loss functions:

LV = λ1Lsym + λ2Limc + λ3Lsv + λ4Ldis, (2.6)

where the parameters {λi} determine the relative importance of the different losses,
which we empirically determine using a grid search.

2.4 Viewpoint-Aware Synthesis Network

Recent advances in GANs such as InfoGAN [29], StyleGAN [93] and HoloGAN [131]
demonstrate the possibility of conditional image synthesis where we can control the syn-
thesized object’s attributes such as object class, viewpoint, style, geometry, etc. A key
insight that we make use of in our synthesis network and which is also used in recent
GANs such as HoloGAN [131] and other works[101, 167, 201], is that one can instill
3D geometric meaning into the network’s latent representations by performing explicit
geometric transformations such as rotation on them. A similar idea has also been used
successfully with other generative models such as auto-encoders [69, 142, 153]. Our

Viewpoint-Aware Synthesis Network 25

viewpoint-aware synthesis network has a similar architecture to HoloGAN [131], but
is tailored for the needs of viewpoint estimation. HoloGAN is a pure generative model
with GAN losses to ensure realism and an identity loss to reproduce the input style code,
but lacks a corresponding viewpoint prediction network. In this work, since we focus on
viewpoint estimation, we introduce tight coupling of HoloGAN with a viewpoint pre-
diction network and several novel loss functions to train it in a manner that is conducive
to accurate viewpoint prediction.

Synthesis network overview Figure 3.3 illustrates the design of the synthesis network.
The network S takes a style code zs and a viewpoint vs to produce a corresponding
object image Is. The goal of S is to learn a disentangled 3D representation of an object,
which can be used to synthesize objects in various viewpoints and styles, hence aiding
in the supervision of the viewpoint network V . We first pass a learnable canonical 3D
latent code through a 3D network, which applies 3D convolutions to it. Then, we rotate
the resulting 3D representation with vs and pass through an additional 3D network. We
project this viewpoint-aware learned 3D code on to 2D using a simple orthographic pro-
jection unit. Finally, we pass the resulting 2D representation through a StyleGAN [93]-
like 2D network to produce a synthesized image. The style and appearance of the image
is controlled by the sampled style code zs. Following StyleGAN [93], the style code zs

affects the style of the resulting image via adaptive instance normalization [72] in both
the 3D and 2D representations. For stable training, we freeze V while training S and
vice versa.

Loss functions Like the viewpoint network, we use several constraints to train the syn-
thesis network, which are designed to improve viewpoint estimation. The first is the
standard adversarial loss used in training Wasserstein-GAN[7]:

Ladv = −Ex̂∼psynth [ĉ] (2.7)

where ĉ = V(x̂) is the class membership score predicted by V for a synthesized image.
The second is a paired version of the style and viewpoint consistency loss (Eqn. 2.3)
described in Section 2.3.1, where we propose to use multiple paired (zs, vs) samples to
enforce style and viewpoint consistency and to better disentangle the latent representa-

26 Viewpoint-Aware Synthesis Network

Figure 2.5. Synthesis results. Example synthetic images of (a) faces and (b) cars gen-
erated by the viewpoint-aware generator S . For each row the style vector z is constant,
whereas the viewpoint is varied monotonically along the azimuth (first row), elevation
(second row) and tilt (third row) dimensions.

tions of S. The third is a flip image consistency loss. Note that, in contrast to our work,
InfoGAN [29] and HoloGAN [131] only use adversarial and style consistency losses.

Style and viewpoint consistency with paired samples Since we train the viewpoint
network with images synthesized by S, it is very important for S to be sensitive and re-
sponsive to its input style zs and viewpoint vs parameters. An ideal S would perfectly
disentangle vs and zs. That means, if we fix zs and vary vs, the resulting object images

Experiments 27

should have the same style, but varying viewpoints. On the other hand, if we fix vs and
vary zs, the resulting object images should have different styles, but a fixed viewpoint.
We enforce this constraint with a paired version of the style and viewpoint consistency
(Eqn. 2.3) loss where we sample 3 different pairs of (zs, vs) values by varying one pa-
rameter at a time as: {(z0

s, v0
s), (z0

s, v1
s), (z1

s, v1
s)}. We refer to this paired style and

viewpoint loss as Lsv,pair . The ablation study in Section 2.5 suggests that this paired
style and viewpoint loss helps to train a better synthesis network for our intended task
of viewpoint estimation. We also observe qualitatively that the synthesis network suc-
cessfully disentangles the viewpoints and styles of the generated images. Some example
images synthesized by S for faces and cars are shown in Figure 2.5. Each row uses a
fixed style code zs and we monotonically vary the input viewpoint vs by changing one
of its a, e or t values across the columns.

Flip image consistency This is similar to the symmetry constraint used to train the view-
point network, but applied to synthesized images. Flip image consistency forces S to
synthesize horizontally flipped images when we input appropriately flipped viewpoints.
For the pairs S(vs, zs) = Is and S(v∗

s, zs) = I∗
s , where v∗ has opposite signs for the a

and t values of vs, the flip consistency loss is defined as:

Lfc = ∥Is − flip(I∗
s)∥1 (2.8)

where flip(I∗
s) is the horizontally flipped version of I∗

s .

The overall loss for the synthesis network is given by:

LS = λ5Ladv + λ6Lsv,pair + λ7Lfc (2.9)

where the parameters {λi} are the relative weights of the losses which we determine
empirically using grid search.

2.5 Experiments

We empirically validate our approach with extensive experiments on head pose estima-
tion and viewpoint estimation on other object categories of buses, cars and trains. We

28 Experiments

refer to our approach as ‘SSV’.

Implementation and training details We implement our framework in Pytorch[143].
We provide all network architecture details, and run-time and memory analyses in the
supplementary material.

Viewpoint calibrationThe output of SSV for a given image I is (â, ê, t̂). However, since
SSV is self-supervised, the co-ordinate system for predictions need not correspond to
the actual canonical co-ordinate system of GT annotations. For quantitative evaluation,
following the standard practice in self-supervised learning of features [22, 38, 196] and
landmarks [75, 174, 198], we fit a linear regressor that maps the predictions of SSV to
GT viewpoints using 100 randomly chosen images from the target test dataset. Note that
this calibration with a linear regressor only rotates the predicted viewpoints to the GT
canonical frame of reference. We do not update or learn our SSV network during this
step.

2.5.1 Head Pose Estimation

Human faces have a special place among objects for viewpoint estimation and head
pose estimation has attracted considerable research attention [20, 25, 60, 102, 170, 186,
187, 202]. The availability of large-scale datasets [41, 159] and the existence of ample
research provides a unique opportunity to perform extensive experimental analysis of
our technique on head pose estimation.

Datasets and evaluation metric For training, we use the 300W-LP [159] dataset, which
combines several in-the-wild face datasets. It contains 122,450 face images with diverse
viewpoints, created by fitting a 3D face morphable model [16] to face images and ren-
dering them from various viewpoints. Note that we only use the images from this dataset
to train SSV and not their GT viewpoint annotations. We evaluate our framework on the
BIWI [41] dataset which contains 15,677 images across 24 sets of video sequences of
20 subjects in a wide variety of viewpoints. We use the MTCNN face detector to detect
all faces [195]. We compute average absolute errors (AE) for azimuth, elevation and tilt
between the predictions and GT. We also report the mean absolute error (MAE) of these

Experiments 29

Method Azimuth Elevation Tilt MAE

Se
lf-
Su
pe
rv
is
ed

LMDIS [198] + PnP 16.8 26.1 5.6 16.1
IMM [79] + PnP 14.8 22.4 5.5 14.2
SCOPS [75] + PnP 15.7 13.8 7.3 12.3
HoloGAN [131] 8.9 15.5 5.0 9.8
HoloGAN [131] with v 7.0 15.1 5.1 9.0

SSV w/o Lsym + Limc 6.8 13.0 5.2 8.3
SSV w/o Limc 6.9 10.3 4.4 7.2
SSV-Full 6.0 9.8 4.4 6.7

Su
pe
rv
is
ed

3DDFA [202] 36.2 12.3 8.7 19.1
KEPLER [102] 8.8 17.3 16.2 13.9
DLib [96] 16.8 13.8 6.1 12.2
FAN [20] 8.5 7.4 7.6 7.8
Hopenet [158] 5.1 6.9 3.3 5.1
FSA [186] 4.2 4.9 2.7 4.0

Table 2.1. Head pose estimation ablation studies and SOTA comparisons. Average
absolute angular error for azimuth, elevation and tilt Euler angles in degrees together
with the mean absolute error (MAE) for the BIWI [41] dataset.

three errors.

Ablation studyWe empirically evaluate the different self-supervised constraints used to
train the viewpoint network. Table 2.1 shows that for head pose estimation, using all the
proposed constraints (SSV-Full) results in our best MAE of 6.7◦. Removing the image
consistency constraint Limc leads to an MAE to 7.2◦ and further removing the symmetry
constraint Lsym results in an MAE of 8.3◦. These results demonstrate the usefulness of
the generative image consistency and symmetry constraints in our framework.

Additionally, we evaluate the effect of using the paired style and viewpoint loss
Lsv,pair to train the viewpoint-aware synthesis network S . We observe that when we
train S without Lsv,pair , our viewpoint network (SSV-full model) results in AE values
of 7.8◦ (azimuth), 11.1◦ (elevation), 4.2◦ (tilt) and an MAE of 7.7◦. This represents a 1◦

increase from the corresponding MAE value of 6.7◦ for the SSV-full, where S is trained
with Lsv,pair (Table 2.1, SSV-full). This shows that our paired style and viewpoint loss
helps to better train the image synthesis network for the task of viewpoint estimation.

30 Experiments

Method Azimuth Elevation Tilt MAE

Se
lf-
Su
p SSV non-refined 6.9 9.4 4.2 6.8

SSV refined on BIWI 4.9 8.5 4.2 5.8

Su
pe
rv
is
ed FSA [186] 2.8 4.2 3.6 3.6

DeepHP [126] 5.6 5.1 - -
RNNFace [60] 3.9 4.0 3.0 3.6

Table 2.2. Improved head pose estimationwith fine-tuning. Average angular error for
each of the Euler angles together with mean average error (MAE) on data of 30% held-
out sequences of the BIWI [41] dataset and fine-tuning on the remaining 70% without
using their annotations. All values are in degrees.

Comparison with self-supervised methods Since SSV is a self-supervised viewpoint
estimation work, there is no existing work that we can directly compare against. One
could also obtain head pose from predicted face landmarks and we compare against
recent state-of-the-art self-supervised landmark estimation (LMDIS [198], IMM [79])
and part discovery techniques (SCOPS [75]). We fit a linear regressor that maps the
self-supervisedly learned semantic face part centers from SCOPS and landmarks from
LMDIS, IMM to five canonical facial landmarks (left-eye center, right-eye center, nose
tip and mouth corners). Then we fit an average 3D face model to these facial landmarks
with the Perspective-n-Point (PnP) algorithm [106] to estimate head pose. We also quan-
tify HoloGAN’s [131] performance at viewpoint estimation, by training a viewpoint
network with images synthesized by it under different input viewpoints (as pseudo GT).
Alternatively, we train HoloGANwith an additional viewpoint output and a correspond-
ing additional loss for it. For both these latter approaches, we additionally use viewpoint
calibration, similar to SSV. We consider these works as our closest baselines because of
their self-supervised training. The MAE results in Table 2.1 indicate that SSV performs
considerably better than all the competing self-supervised methods.

Comparison with supervised methods As a reference, we also report the metrics for
the recent state-of-the-art fully-supervised methods. Table 2.1 shows the results for both
the keypoint-based [20, 96, 102, 202] and keypoint-free [158, 186] methods. The latter
methods learn to directly regress head orientation values from networks. The results
indicate that ‘SSV-Full’, despite being purely self-supervised, can obtain comparable

Experiments 31

results to fully supervised techniques. In addition, we notice that SSV-Full (with MAE
6.7◦) outperforms all the keypoint-based supervised methods [20, 96, 102, 202], where
FAN [20] has the best MAE of 7.8◦.

Refinement on BIWI dataset The results reported thus far are with training on the
300W-LP [159] dataset. Following some recent works [60, 126, 186], we use 70% (16)
of the image sequences in the BIWI dataset to fine-tune our model. Since our method
is self-supervised, we just use images from BIWI without the annotations. We use the
remaining 30% (8) image sequences for evaluation. The results of our model along with
those of the state-of-the-art supervised models are reported in Table 2.2. After refine-
ment with the BIWI dataset’s images, the MAE of SSV significantly reduces to 5.8◦.
This demonstrates that SSV can improve its performance with the availability of images
that match the target domain, even without GT annotations. We also show qualitative
results of head pose estimation for this refined SSV-Full model in Figure 2.6(a). It per-
forms robustly to large variations in head pose, identity and expression.

2.5.2 Generalization to Other Object Categories

SSV is not specific to faces and can be used to learn viewpoints of other object categories.
To demonstrate its generalization ability, we additionally train and evaluate SSV on the
categories of cars, buses and trains.

Datasets and evaluation metric Since SSV is completely self-supervised, the train-
ing image collection has to be reasonably large to cover all possible object viewpoints
while covering diversity in other image aspects such as appearance, lighting etc. For
this reason, we leverage large-scale image collections from both the existing datasets
and the internet to train our network. For the car category, we use the CompCars [185]
dataset, which is a fine-grained car model classification dataset containing 137,000 car
images in various viewpoints. For the ‘train’ and ‘bus’ categories, we use the OpenIm-
ages [11, 137, 138] dataset which contains about 12,000 images of each of these cate-
gories. Additionally, we mine about 30,000 images from Google image search for each
category. None of the aforementioned datasets have viewpoint annotations. This also

32 Experiments

demonstrates the ability of SSV to consume large-scale internet image collections that
come without any viewpoint annotations.

We evaluate the performance of the trained SSV model on the test sets of the chal-
lenging Pascal3D+ [183] dataset. The images in this dataset have extreme shape, ap-
pearance and viewpoint variations. Following [112, 120, 147, 177], we estimate the
azimuth, elevation and tilt values, given the GT object location. To compute the er-
ror between the predicted and GT viewpoints, we follow the standard geodesic distance
∆(Rgt, Rp) =

∥∥∥log RT
gtRp

∥∥∥
F

/
√

2 between the predicted rotation matrix Rp constructed
using viewpoint predictions and Rgt constructed using GT viewpoints [112]. Using this
distance metric, we report the median geodesic error (Med. Error) for the test set. Ad-
ditionally, we also compute the percentage of inlier predictions whose error is less than
π/6 (Acc@π/6).

(a) Faces (b) Cars (c) Buses (d) Trains

Figure 2.6. Viewpoint estimation results. We visually show the results of (a) head
pose estimation on the BIWI [41] dataset and of viewpoint estimation on the test sets of
the (b) car, (c) bus and (d) train categories from the PASCAL3D+ [183] dataset. Solid
arrows indicate predicted viewpoints, while the dashed arrows indicate their GT values.
Our self-supervised method performs well for a wide range of head poses, identities and
facial expressions. It also successfully handles different object appearances and lighting
conditions from the car, bus and train categories. We show additional results in the
supplementary material.

Baselines For head pose estimation, we compared with self-supervised landmark [75,
79, 198] discovery techniques coupled with the PnP algorithm for head pose estimation
by fitting them to an average 3D face. For objects like cars with full 360◦ azimuth rota-
tion, we notice that the landmarks produced by SCOPS [75] and LMDIS [198] cannot
be used for reasonable viewpoint estimates. This is because SCOPS is primarily a self
supervised part segmentation framework which does not distinguish between front and
rear parts of the car. Since the keypoints we compute are the centers of part segments, the

Conclusions 33

resulting keypoints cannot distinguish such parts. LMDIS on the other hand produces
keypoints only for the side profiles of cars. Hence, we use another baseline technique
for comparisons on cars, trains and buses. Following the insights from [75, 174] that
features learned by image classification networks are equivariant to object rotation, we
learn a linear regressor that maps the Conv5 features of a pre-trained VGG network [166]
to the viewpoint of an object. To train this baseline, we use the VGG image features and
the GT viewpoint annotations in the Pascal3D+ training dataset [183]. We use the same
Pascal3D+ annotations used to calibrate SSV’s predicted viewpoints to GT canonical
viewpoint axes. We consider this as a self-supervised baseline since we are not using
GT annotations for feature learning but only to map the features to viewpoint predic-
tions. We refer to this baseline as VGG-View. As an additional baseline, we train Holo-
GAN [131] with an additional viewpoint output and a corresponding loss for it. The
viewpoint predictions are calibrated, similar to SSV.

ComparisonsWe compare SSV to our baselines and also to several state-of-the-art su-
pervised viewpoint estimation methods on the Pascal3D+ test dataset. Table 2.3 indi-
cates that SSV significantly outperforms the baselines. With respect to supervised meth-
ods, SSV performs comparably to Tulsiani et al. [177] and Mahendran et al. [120] in
terms of Median error. Interestingly for the ‘train’ category, SSV performs even better
than supervised methods. These results demonstrate the general applicability of SSV for
viewpoint learning on different object categories. We show some qualitative results for
these categories in Figure 2.6(b)-(d).

2.6 Conclusions
In this work we investigate the largely unexplored problem of learning viewpoint es-
timation in a self-supervised manner from collections of un-annotated object images.
We design a viewpoint learning framework that receives supervision from a viewpoint-
aware synthesis network; and from additional symmetry and adversarial constraints. We
further supervise our synthesis network with additional losses to better control its im-
age synthesis process. We show that our technique outperforms existing self-supervised
techniques and performs competitively to fully-supervised ones on several object cate-
gories like faces, cars, buses and trains.

34 Conclusions

Method Car Bus Train

Se
lf-
Su
p VGG-View 34.2 19.0 9.4

HoloGAN [131] with v 16.3 14.2 9.7

SSV-Full 10.1 9.0 5.3

Su
pe
rv
is
ed Tulsiani et al. [177] 9.1 5.8 8.7

Mahendran et al. [120] 8.1 4.3 7.3
Liao et al. [112] 5.2 3.4 6.1
Grabner et al. [58] 5.1 3.3 6.7

Table 2.3. Generalization to other object categories, median error. We show the
median geodesic errors (in degrees) for the car, bus and train categories.

Method Car Bus Train

Se
lf-
su
p VGG-View 0.43 0.69 0.82

HoloGAN [131] with v 0.52 0.73 0.81

SSV-Full 0.67 0.82 0.96

Su
pe
rv
is
ed Tulsiani et al. [177] 0.89 0.98 0.80

Mahendran et al. [120] - - -
Liao et al. [112] 0.93 0.97 0.84
Grabner et al. [58] 0.93 0.97 0.80

Table 2.4. Generalization to other object categories, inlier count. We show the per-
centage of images with geodesic error less than π/6 for the car, bus and train categories.

Chapter 3

Self-Supervised Object Detection via
Generative Image Synthesis

3.1 Introduction

Object detection plays a crucial role in various autonomous vision pipelines, e.g., in
robotics and self-driving. Convolutional neural networks-based detection methods, such
as [113, 150], have achieved impressive performance. However, they are fully-supervised
and require large amounts of human annotated data, which is time-consuming to acquire
for all object types and operating environments. They also do not scale well when target
domains change, e.g., from one city to another in self-driving.

To reduce annotations, some existingworks train detectors without requiring bound-
ing box annotations and follow two paradigms. The first is of self/weakly supervised
object detection methods [151, 152, 192], which either use image-level object presence
labels (a.k.a. self-supervision) or point/scribble annotations (a.k.a weak-supervision).
They also rely on high-quality object proposals detected by methods requiring human
annotations [203]. The second paradigm is of rendering-basedmethods, includingMeta-
Sim [90] and Meta-Sim2 [37], which learn object detection from synthetically rendered
images. Creating them, however, requires large collections of high-quality 3D CAD

35

36 Introduction

Controllable
Generative
Synthesis

Input
Parameters

Unlabeled Source Data

Unlabeled Target Data

Learn Image Synthesis

Learn Target Distribution

Annotation

Synthesized
Image

Detection
Network

Inference

Training

Target Test Image

Detections

Figure 3.1. Self-Supervised Object Detection. We learn object detection purely using
natural image collections without bounding box labels. We leverage controllable GANs
to synthesize images and to detect objects together in a tightly coupled framework. We
learn image synthesis from unlabeled singe-object source images (e.g., Compcars [185])
and optimally adapt our framework to any multi-object unlabeled target dataset (e.g.,
KITTI [48]).

models for all the objects in the scene, manual scene setups and expensive rendering
engines. Such images also tends to have a large domain gap from real-world ones.

Recently, there has been much progress in making Generative Adversarial Net-
works (GANs) [56] controllable using input parameters like shape, viewpoint, position
and keypoints [131, 132, 134, 161], opening up the possibility of synthesizing images
with desired attributes. Controllable GANs have also been used successfully to learn
other vision tasks, e.g., viewpoint [127] and keypoints [79, 174, 198] estimation in a
self-supervised manner, but have not been explored previously for self-supervised ob-
ject detection.

Inspired by these, we propose the first end-to-end analysis-by-synthesis framework

Introduction 37

for self-supervised object detection using controllable GANs, called SSOD (Fig. 3.1).
We learn to both synthesize images and detect objects purely using unlabeled image col-
lections, i.e., without requiring bounding box-labels and without using 3D CAD assets
– a multi-faceted challenge not addressed previously. We learn a generator for object
image synthesis using real-world single-object image collections without bounding box
labels. By leveraging controllable GANs, which provide control over the 3D location
and orientation of an object, we also obtain its corresponding bounding box annotation.
To optimally train SSOD, we tightly couple the synthesis and detection networks in an
end-to-end fashion and train them jointly. Finally, we learn to optimally adapt SSOD to
a multi-object target dataset, also without requiring labels for it and improve accuracy
further.

We validate SSOD on the challenging KITTI [48] and Cityscapes [33] datasets
for car object detection. SSOD outperforms the best prior image-based self-supervised
object detection method Wetectron [152] with significantly better detection accuracy.
Furthermore, even without using any 3D CAD assets or scene layout priors it also sur-
passes the best rendering-based method Meta-Sim2 [37]. To the best of our knowledge,
SSOD is the first work to explore using controllable GANs for fully self-supervised ob-
ject detection. Hence, it opens up a new paradigm for advancing further research in this
area. SSOD significantly outperforms all competing image-based methods and serves
as a strong baseline for future work.

To summarize, our main contributions are:

• We propose a novel self-supervised object detection framework via controllable
generative synthesis, which uses only image collectionswithout any kind of bound-
ing box annotations.

• We propose an end-to-end analysis-by-synthesis framework, which can optimally
adapt the synthesizer to both the downstream task of object detection and to a
target dataset in a purely self-supervised manner.

• Our experiments on two real-world datasets show∼2x performance improvement
over SOTA image-based self-supervised object detection methods. Also, without

38 Related Work

using 3D CAD assets, SSOD outperforms on average, the rendering-based base-
line of Meta-Sim2 [37].

3.2 Related Work

Self-supervised task learning. Several recent works attempt to learn a variety of
2D and 3D computer vision tasks in a self-supervised manner. In 2D computer vi-
sion, several works tackle the problem of object keypoint estimation [79, 174, 198]
and part segmentation [32, 75]. [12] obtains an object mask along with the generated
image. However, there is no control over the pose and style of the generated object.
Alongside, in 3D computer vision, there are several attempts to learn object reconstruc-
tion [87, 100, 108, 109], viewpoint estimation [127] and point cloud estimation [128].
These works present interesting approaches to address their respective problems for sin-
gle object images, but do not address multi-object analysis.

Concurrently, there has also been tremendous progress in high-quality controllable
generative synthesis using learned 3D object representations [40, 131, 132, 134, 161]
or implicit representations [122, 156, 194]. Some of these works have been used in
analysis-by-synthesis frameworks to solve computer vision tasks, including 3D recon-
struction [65, 66, 108, 109], viewpoint estimation [127] and keypoint estimation [79].
However, no prior work explores self-supervised object detection via controllable GANs
and we are the first work to do so.

Weakly supervised object detection. Recent works also address the problem of self-
supervised object detection using only a collection of images and image-level tags of
object presence. Such methods pose the problem either in a multiple instance [13, 46,
151, 172, 192], discriminative [165], curriculum [89, 152, 197] or self-taught [85] learn-
ing framework. However, such methods rely heavily on object proposals generated by
methods like [6, 178, 203], which, themselves, need low-level edge-based annotations
from humans. Additionally, they also cannot modify or control input images according
to the requirements of the detector or a target dataset. In contrast we learn a controllable
synthesis module, to synthesize images that maximize the detector’s performance on a

Self-Supervised Object Detection 39

target dataset.

Learning object detection from synthetic data. Works like [21, 37, 45, 90, 146, 154]
learn object detection through synthetic data from graphics renderers. [154] obtains syn-
thetic images and annotations from a game engine. In [21, 45], the authors exactly mimic
real world dataset (e.g., KITTI [48]) in a synthetic simulator. In [146], the authors syn-
thesize scenes by randomizing location, orientations and textures of objects of interest in
a scene. In Meta-Sim [90] and Meta-Sim2 [37], the authors propose a strategy to learn
optimal scene parameters to generate images similar to a target dataset. While methods
like [21, 45] use annotations from real world datasets to mimic the datasets in synthetic
worlds, other methods like [37, 146, 154] generate synthetic data without using any real
world annotations. While these approaches learn only from rendered data, they require
3D CAD models of objects and scenes along with rendering setups, both of which are
expensive to acquire. Moreover, graphics renderers are often not differentiable mak-
ing it difficult to learn and propagate gradients through them for learning a downstream
task. Also, synthetic data introduces a domain gap with respect to real target data both
in terms of appearance and layout of scenes that affects detection accuracy. In contrast,
our goal is to learn both data generation and object detection from real-world images
without bounding box annotations and without requiring 3D CAD models or rendering
setups. Our GAN-based framework allows us to adapt to the distribution of the target
data and synthesize data that is optimal for the downstream task.

3.3 Self-Supervised Object Detection

3.3.1 Problem Setup

Our goal is to learn a detection network F , which best detects objects (e.g., cars) in
a target domain (e.g., outdoor driving scenes from a city). We further assume that we
have available to us an unlabeled image collection {It} from the target domain each
containing an unknown number of objects per image (see examples in Fig. 3.1). To
train F , we leverage object images and their bounding box annotations synthesized by a
controllable generative network S, which, in turn, is also learnt using unlabeled object

40 Self-Supervised Object Detection

Synthesis
Network (𝑆)

MLP

Background Synthesized
Image

Object Detection Adaptation

Detection
Net (𝐹)

Pose

𝑧𝑏

(𝑣𝑏,𝑙𝑏)

Style

Foreground

Target Data Adaptation
MLP

Pose

𝑧𝑓

(𝑣𝑓 ,𝑙𝑓)

Style

𝐷𝑚𝑠𝑜

Annotation

𝐿𝑚𝑠𝑜

𝐿𝑑𝑒𝑡

*
𝐷𝑓𝑔

𝐷𝑏𝑔 𝐿𝑏𝑔

𝐿𝑓𝑔
𝐻

Sinkhorn
Distance

Pose-Aware Synthesis

High-confidence Detections from {It}

(a) (b)

(c)𝐷𝑠𝑐𝑛 𝐿𝑠𝑐𝑛

Cropped synth.
object

Real Image

Cropped synth. objects

Synth Obj.

Synth
Background

Real
Background

𝐼𝑔

𝐴𝑔

𝐼𝑐

Crop

𝐼𝑔

𝐼𝑐
Real Obj.

Appearance Adaptation Object Scale Adaptation

Figure 3.2. Overview of Self-Supervised Object Detection. SSOD contains three
modules: (a) a pose-aware synthesis module that generates images with objects in pre-
defined poses using a controllable GAN for training object detectors; (b) an object de-
tection adaptation module that guides the synthesis process to be optimal for the down-
stream task of object detection and the (c) a target data adaption module that helps SSOD
to adapt optimally to a target data distribution. We train all modules in a tightly-coupled
end-to-end manner.

collections. Specifically, to learn S, we use an additional sufficiently large unlabeled
(bounding box annotation free) single-object source collection {Is}, containing images
with only one object per image, but not necessarily from the target domain where the
detector must operate (see examples in Fig. 3.1). We discuss more about the need for
this assumption in Sec 3.3.3. We train our system with both {It} and {Is}, and evaluate
it on a held-out labeled validation set from the target domain, which is disjoint from {It}
and is never used for training.

3.3.2 Overview of SSOD

We present an overview of SSOD in Fig. 3.2. It contains three modules: (a) a pose-aware
synthesis; (b) an object detection adaptation and (c) a target data adaption module.

The pose-aware synthesis module (Fig. 3.2(a)) contains a controllable synthesis
network S. We model S by a pose-aware generator, which synthesizes images {Ig} of
objects conditioned on the pose parameters (viewpoint (v) and location (l)) and obtain
2D bounding box annotations {Ag} for them. Using the synthesized image-annotation

Self-Supervised Object Detection 41

pairs ⟨Ig,Ag⟩, along with images from {It}, we train the object detector F . The object
detection adaptationmodule (Fig. 3.2(b)) is designed to provide feedback to the synthesis
network S to optimally adapt it to the downstream task of object detection. It tightly
couples the object detector F and synthesizer S for joint end-to-end training and also
introduces specific losses to guide the synthesis process towards better object detection
learning.

Lastly, the target data adaptation module (Fig. 3.2(c)) helps reduce the domain gap
between the images synthesized by S and those in the target domain {It}. It does so by
introducing a set of spatially localized discriminative networks, which adapt the synthe-
sis network S towards generating images closer to the target data distribution in terms
of overall image appearance and scale of objects.

We train SSOD in two stages – uncoupled and coupled. During uncoupled training,
we pre-train the synthesis network S on {Is} without feedback from other modules.
Next, we synthesize image-annotation pairs with S and use them along with {It} to pre-
train F . During the next coupled training phase, we jointly fine-tune SSOD’s modules
with both the source {Is} and target {It} images, and the data synthesized by S. We
alternatively train S in one iteration and all other networks in the next one. We describe
all the modules of SSOD in detail in the following sections.

3.3.3 Pose-Aware Synthesis

Our pose-aware synthesis network S is inspired by the recent BlockGAN [132], which
has several desirable properties for object detection. It allows control over style, pose
and number of objects in the scene by disentangling the background and foreground
objects. Its architecture is illustrated in Fig. 3.3. To make BlockGAN [132] amenable
to target data adaptation, we augment it with MLP blocks which learn to modify style
vectors for both the foreground and background before they are input to the generator,
such that the synthesized images are closer to the target dataset (Fig. 3.3).

The synthesis network S generates a scene Ig containing the foreground object in
the specified location and orientation. The network contains category specific learnable
canonical 3D codes for foreground and background objects, which are randomly initial-

42 Self-Supervised Object Detection

ized and updated during training. The 3D latent code of each object is passed through
a corresponding set of 3D convolutions where the style of the object is controlled by
input 1D style code vectors (from a uniform distribution) zf for the foreground and zb

for the background through AdaIN (Fig. 3.3). These 3D features are further transformed
using their input poses (vf , lf) for one or more foreground objects. The value of vf

represents azimuth of the object and lf represents its horizontal and depth translation.
Each object is processed separately in its own 3D convolution branch. The resulting 3D
features of all objects are collated using an element-wise maximum operation and then
projected onto 2D using a perspective camera transformation followed by a set of 2D
convolutions to yield Ig. The original BlockGAN [132] generates images at a resolution
of 64 × 64. For our S, we modify it and adopt the strategy of progressive growing of
GANs [91, 92] to increase its synthesis resolution to 256 × 256.

We train S in a GAN setup with an adversarial loss [7]Lscn computed using a scene
discriminator Dscn as:

Lscn = −EIg∼psynth [Dscn(Ig)], (3.1)

where Dscn(Ig) is the class membership score predicted by the scene discriminator Dscn

for a synthesized image. This is one among several losses that we use to train S. The
real images input to Dscn are sampled from {Is}.

To train S , we use a large set of real images with fixed and known (n) number of
objects in each real image {Is} without any requirement of bounding box annotations.
Since we know n (in our case one object per image), while training S we can synthesize
images with the same number of objects to pass to the discriminator, making it easier
to train the generator. Having a single object image collection is not a requirement to
train S and it has been shown in [132] that it can be trained successfully with 2 or more
objects per image. However, having a large image collection {Is} with known number
of objects is crucial for training S. Our attempts to train it with a target image collection
{It} of city driving scenes, e.g. KITTI, with unknown number of objects per image were
unsuccessful (details in supplementary material Sec. 4).

Self-Supervised Object Detection 43

2
D

 C
o

n
v

2D
Project

Scene
Compose

3D
Transform

3D
Code

Foreground 1

Style1 Pose1

3
D

 C
o

n
v

(𝑣𝑏 , 𝑙𝑏)

3
D

 C
o

n
v

3D
Code

Background

Style Pose

3D Box
Projection

Compute
2D Box

Synthesized Image

3D
Transform

𝑧𝑏

𝑧𝑓 (𝑣𝑓, 𝑙𝑓)MLP

MLP

3D
Transform

3D
Code 3

D
 C

o
n

v

MLPStyle2 𝑧𝑓

Foreground 2

(𝑣𝑓, 𝑙𝑓)Pose2

3D Box
Projection

Compute
2D Box

𝐼𝑔

𝐴𝑔Annotation

𝐴𝑔Annotation

Figure 3.3. Pose-Aware Synthesis Network (S) Overview. S takes as input separate
style codes (z) and poses (v, l) for the background and one/more foreground objects;
transforms their respective learned 3D codes with the provided poses; and synthesizes
images after passing them through several 3D convolutional, 2D projection and 2D con-
volutional layers. We use the provided poses to compute 2D bounding box labels for the
synthesized objects.

Obtaining Bounding Box Annotations

The synthesis network S can generate a foreground object using a pose (vf , lf). This
key property allows us to localize the object in the synthesized image and to create a
2D bounding box (BBox) annotation for it. We use the mean 3D bounding box (in real-
world dimensions) of the object class and project it forward onto the 2D image plane
usingS’s known cameramatrix and the object’s pre-defined pose (vf , lf) via perspective
projection. The camera matrix is fixed for all synthesized images. We obtain the 2D
bounding boxAg for the synthesized image Ig by computing themaximum andminimum
coordinates of the projected 3D bounding box in the image plane. This procedure is
illustrated in Fig. 3.3. The paired data ⟨Ig, Ag⟩ can then be used to train the object
detection network F .

44 Self-Supervised Object Detection

3.3.4 Object Detection Adaptation

We introduce a set of objectives, which supervise S to synthesize images that are optimal
for learning object detectors. These include an (a) object detection loss and (b) a multi-
scale object synthesis loss, which we describe next.

Object Detection Loss

In our setup, we tightly couple the object detection network F to S such that it provides
feedback to S (Fig. 3.2(b)). The object detection network F is a standard Feature Pyra-
mid Network [113], which takes 2D images as input and predicts bounding boxes for
the object. It is trained using the standard object detection losses (Ldet) [113]. While
training SSOD, we compute the object detection lossLdet for the image-annotation pairs
⟨Ig,Ag⟩ synthesized by S and use it as an additional loss term for updating the weights
of S.

Multi-scale Object Synthesis Loss

It is important forS to be able to synthesize high quality images at varied object depths/scales,
such that F can be optimally trained with diverse data. Hence, to extend the range of
depths for which S generates high-quality objects, we introduce amulti-scale object syn-
thesis loss, Lmso (Fig. 3.2(b)). To compute it, we use a synthesized image Ig’s bounding
box Ag and crop (in a differentiable manner) an image Ic using a dilated version of Ag

with a unit aspect ratio such that the context around the object is considered. Further,
we resize Ic to 256 × 256. We then pass Ic to a multi-scale object discriminator Dmso.
This makes the generated images match the appearance of the real images, with less
surrounding background and simultaneously improves image quality. The real images
input to Dmso are images from the source collection {Is}, also of size 256 × 256. The
multi-scale object synthesis loss, Lmso is then given by:

Lmso = −EIc∼psynth [Dmso(Ic)], (3.2)

where Dmso(Ic) is the realism score predicted by Dmso for the image crop Ic.

Self-Supervised Object Detection 45

3.3.5 Target Data Adaptation

We train S with single-object images {Is} acquired from a collection, which do not
necessarily come from the final target domain. Hence, there may be a domain gap be-
tween the images synthesized by S and those from the target domain (see examples in
Fig. 3.1 and Fig. 3.4). This makes F , trained on images synthesized by S, perform sub-
optimally on the target domain. To address this, we introduce a target data adaptation
module (Fig. 3.2(c)), whose focus is to adapt S such that it can synthesize images closer
to the target data distribution. It uses foreground and background appearance losses to
supervise training of S, which make the synthesized images match the target domain.
Additionally, it contains an object scale adaption block to match the scale of synthesised
objects to the ones in the target domain. We align the synthesized data to the distribu-
tion of the target dataset without using any bounding box annotations. We describe these
various components in detail.

Foreground Appearance Loss

Wecompute the foreground appearance lossLfg via a patch-based [78] discriminatorDfg

(Fig. 3.2(c)). It takes the synthesized image-annotation pair ⟨Ig, Ag⟩ as input and predicts
a 2D class probability map, ĉfg = Dfg(Ig), where ĉfg is the patch-wise realism score
for the synthesized image Ig. The foreground appearance loss (Lfg) for the synthesis
network S is given by:

Lfg = −EIg∼psynth [ĉfg] ∗ Mg, (3.3)

where ∗ indicates element-wise multiplication. Mg masks the loss to be computed only
for the foreground region of the synthesized image. The real images used to train this
discriminator come from the target collection {It}. We acquire them by using the pre-
trained object detection network F created during the first phase of uncoupled training
(described in Sec. 3.3.2). Specifically, we infer bounding boxes for the images in the
target dataset {It} using the pre-trained F and select a subset of images {Pt} with de-
tection confidence>0.9. This forms an image-annotation pair ⟨Pt, Mt⟩, where Mt is the
corresponding binary mask for the detected foreground objects in image Pt. The loss
for training the discriminator Dfg is computed as:

46 Self-Supervised Object Detection

Ldfg = −EIt∼preal [ct] ∗ Mt + EIg∼psynth [ĉfg] ∗ Mg, (3.4)

where ct is the patch-wise classification score predicted by Dfg for a real image.

Background Appearance Loss

The background discriminatorDbg is also a patch-based discriminator (Fig. 3.2(c)), which
predicts the realism of the background region in Ig with respect to the target data {It}.
We compute the background mask by inverting the binary foreground mask Mg. The
background appearance loss for the synthesis network, S is given by

Lbg = −EIg∼psynth [ĉbg] ∗ (1 − Mg), (3.5)

where ĉbg = Dbg(Ig) predicts the patch-wise realism score for the background region of
the generated image.

The real images used to train Dbg are obtained by identifying patches in the tar-
get collection {It} where no foreground objects are present. To this end, we leverage
pre-trained image classification networks and class-specific gradient-based localization
maps using Grad-CAM [162]. Through this, we identify patches {Ib

t} in the target col-
lection {It} that do not contain the object of interest. They serve as real samples of
background images used to train Dbg. The loss for training Dbg is computed as:

Ldbg = −EIb
t ∼preal

[cb
t] + EIg∼psynth [ĉbg] ∗ (1 − Mg), (3.6)

where cb
t is the patch-wise classification score predicted by Dbg for a real image.

With Lfg and Lbg we only update the components of S that affect its style and ap-
pearance. These include (a) the parameters of the MLP blocks (Fig. 3.3), which modify
the foreground and background style codes and (b) the weights of 2D convolution lay-
ers. The foreground and background patches are obtained from the synthesized images
using the annotations computed by our method (Sec. 3.3.3). Empirically, we observe
this is effective enough in learning the foreground and background distributions of the
target domain.

Self-Supervised Object Detection 47

Object Scale Adaptation

We also find the optimal set of the object depth parameters that should be input into S
to achieve the best performance on the target domain via this module. To this end, we
use S to synthesize image-annotation pairs ⟨Idr

g , Adr
g ⟩ for multiple different object depth

ranges Θ={dr} and also obtain {αdr}, which is the collection of cropped synthesized
objects. Depth d is one of the components of the location parameter l used to specify the
synthesized object’s pose. We sample depth values uniformly within each depth range
dr. For each depth range dr, we train a detectorFdr with its corresponding synthetic data
⟨Idr

g , Adr
g ⟩. We use Fdr to detect all object bounding boxes {βdr} in the target collection

{It}, which have confidence>0.85. Finally we compute the optimal input depth interval
for synthesis as:

do = argmin
di

H(Φ(αdi), Φ(βdi)), (3.7)

where Φ computes the conv5 features of a pre-trained image classification VGG [166])
network and H is the Sinkhorn distance [35] between the two feature distributions. We
use a single corresponding detector trained with the optimum depth range do for the final
evaluation on the target test data.

3.3.6 Training Procedure

We adopt a stage-wise training strategy to learn SSOD.
Uncoupled Training. We first pre-train S and F separately. We train the generator S,
supervised by the discriminators Dscn and Dmso, using the source collection {Is} only.
We then synthesize images with S containing 1 or 2 objects and compute their labels.
We use them, along with real background regions extracted from the target data {Ib

t}
using Grad-CAM [162] (described in Sec. 3.3.5) to pre-train F .

Coupled Training. During this stage we couple all the networks together in an end-
to-end manner and fine-tune them together with source {Is} and target {It} collections,
and the data synthesized by S. We also adapt SSOD to the target data in this stage. We
use a GAN-like training strategy and alternatively train S in one iteration and all other
networks Dscn, F , Dmso, Dfg and Dbg in the next one. Here S is supervised by all other
modules and the total loss for training it is:

48 Experiments

Lsyn =λscn Lscn + λmso Lmso + λdet Ldet

+ λfg Lfg + λbg Lbg,
(3.8)

where {λi} are the relativeweights of the various losses. Lastly, as discussed in Sec. 3.3.5
we find the optimal set of input object depth parameters for S that align synthesized data
further to the target distribution.

3.4 Experiments

We validate SSOD for detecting “car” objects in outdoor driving scenes. We assess
quantitative performance using the standard mean Average Precision (mAP) metric at
an Intersection-Over-Union (IOU) of 0.5. We provide network architecture and training
details in the supplementary.

3.4.1 Datasets and Evaluation

Weuse three datasets containing images of car objects to train and evaluate SSOD: (a) the
Compcars dataset [185] as the single-car source dataset and (b) twomulti-car KITTI [48]
and Cityscapes [33] target datasets containing outdoor driving scenes. During training,
we do not use bounding box annotations for any of these datasets.

Compcars. The Compcars dataset [185] is an in-the-wild collection of 137,000 images
with one car per image. It provides good diversity in car appearances, orientations and
moderate diversity in scales (see examples Fig. 3.1). We use it as the source image
collection {Is} to train our controllable viewpoint-aware synthesis network S.

KITTI. The challenging KITTI [48] dataset contains 375 × 1242 sized outdoor driving
scenes with zero or multiple cars per image with heavy occlusions, reflections and ex-
treme lighting (see examples in Fig. 3.1). We use it as one of our target datasets {It}.
We split it into disjoint training (6000 unlabeled images) and validation (1000 labeled
images) sets. We report the mAP for Easy, Medium and Hard and all cases [48] of the
its validation set.

Experiments 49

Method Coupled Easy ↑ Medium ↑ Hard ↑ All ↑ Sinkhorn [35] ↓ KID [15] ↓ FID [67] ↓

BlockGAN [132] 64 7 65.1 48.3 40.5 51.3 0.486 0.048 8.3
BlockGAN [132] 128 7 69.4 49.9 44.2 54.5 0.483 0.046 7.8
BlockGAN [132] 256 7 72.7 52.1 44.8 56.5 0.481 0.045 7.61

SSOD w/o Lfg + Lbg ✓ 74.7 59.3 52.7 62.2 0.475 0.042 7.22
SSOD w/o Lmso ✓ 78.3 65.6 53.5 65.8 0.471 0.040 6.86
SSOD w/o OSA ✓ 76.1 61.3 50.9 62.7 0.475 0.042 7.23

SSOD-Full ✓ 80.8 68.1 56.6 68.4 0.465 0.037 6.37

Table 3.1. Ablation study on KITTI. Rows 1-3: BlockGAN in S trained without cou-
pling to the detector at different image resolutions; rows 4-6: different ablated versions
of SSOD each with one component removed; and row 7: full SSOD model. Columns
1-3: mAP value at IOU 0.5 for KITTI’s Easy, Medium, Hard and All cases; and columns
4-6: Sinkhorn, KID, and FID scores to compare object regions in synthesized and real-
world KITTI images.

Cityscapes. Similarly toKITTI, we also evaluate SSODon the challengingCityscapes [33]
outdoor driving target dataset with images of size 512 × 1024. We use the version pro-
vided by [44] containing bounding box annotations. We split it into disjoint training
(3000 unlabeled images) and validation (1000 labeled images) sets as provided in [44].

3.4.2 Ablation Study

We conduct ablation studies on the KITTI dataset to evaluate the contribution of each
individual component of SSOD (Table 3.1). We evaluate object detection performance
using mAP, and compute SinkHorn [35], KID [15] and FID [67] scores to compare the
appearance of the synthesized foreground objects to objects in KITTI.

Quality of annotations Firstly, we estimate the accuracy of annotations obtained from
our pipeline. For 260 images synthesized by the generator, we manually annotate the
bounding boxes andmeasure themAP between them and the annotations by our pipeline.
It is 0.95 at an IoU of 0.5, which is reasonable for learning object detectors.

Uncoupled Training. We evaluate the efficacy of simply training the object detector F
with images synthesized by S, when each of these networks is trained separately with-
out coupling. We compare the original BlockGAN [132] with an image resolution of
64 × 64 to two of its variants with image resolutions 128 × 128 and 256 × 256 that

50 Experiments

we train as described in Sec. 3.3.3. The results are shown in the top three rows of Ta-
ble 3.1. They indicate that synthesized foreground objects at higher resolutions improve
the Sinkhorn, KID and FID metrics, which, in turn, translate to corresponding gains in
the object detector’s performance as well. The improvements in visual quality achieved
by higher resolution synthesis are also evident in the first two columns of Fig. 3.4. We
further observed that training the detector without background target images found with
Grad-CAM results in false positive detections and reduces mAP from 56.5 to 51.6.

Coupled Training. Next, we evaluate the performance of variants of SSOD trained with
coupled synthesis (S) and object detection (F) networks. We evaluate four variants of
SSOD: (a) without the target data appearance adaption losses described in Sec. 3.3.5
(SSOD w/o Lfg + Lbg); (b) without the multi-scale object synthesis loss Lmso described
in Sec. 3.3.4 (SSODw/oLmso); (c) without adaptation to the target dataset’s object scales
as described in Sec. 3.3.5 (SSOD w/o OSA); and (d) the full SSOD model (SSOD-full).
We observe that, across the board, all variants of SSOD trained with a coupled detector
(bottom four rows of Table 3.1) perform significantly better than those without (top
three rows of Table 3.1). This result verifies the usefulness of our proposed end-to-end
framework, which adapts the synthesis network S to both the downstream task of object
detection as well as to the target dataset’s distribution. The best performance, overall,
is achieved by our full SSOD model with the highest mAP score of 68.4. Removing
each of our individual proposed modules for target data appearance adaptation (SSOD
w/o Lfg + Lbg), target object scale adaptation (SSOD w/o OSA) and multi-object scale
synthesis (SSOD w/o Lmso) from SSOD-Full result in a reduction in its performance,
with the target data appearance adaption model affecting SSOD’s detection accuracy the
most.

Qualitative Analysis. We qualitatively evaluate the effect of our proposed losses on
the images synthesized by S. In each row of Fig. 3.4 we show images synthesized with
the same foreground and background style codes, but with variants of the network S
trained with a different set of losses in each column. Columns 2-4 are at a resolution of
256 × 256. We vary the foreground and background style codes across the rows. All
objects are synthesized at a large depth from the camera. Fig. 3.4(a) shows the images

Experiments 51

SSOD-Full
𝐿𝑚𝑠𝑜𝐿𝑓𝑔

SSOD w/o
𝐿𝑏𝑔+

BlockGAN SSOD w/o
𝐿𝑚𝑠𝑜+

(a) (b) (c) (d)

Figure 3.4. Qualitative analysis of image synthesis. The columns show images gen-
erated by (a) BlockGAN [132] at 64 × 64; and by S for (b) SSOD trained without Lfg,
Lbg, and Lmso; (c) SSOD trained without Lmso; and (d) the full SSOD model. Each row
has images generated with the same pose, and foreground and background style codes.
Rows (b)-(d) show 256 × 256 sized images.

synthesized by the original BlockGAN [132] at a resolution of 64×64 suffers from poor
quality. Fig. 3.4(b) shows the synthesized images by our method when trained with the
coupled object detector at higher resolution, leads to better visibility. By adding target
data appearance adaptation losses (Lfg +Lbg), images (Fig. 3.4(c)) match the appearance
of target distribution. Finally, adding the multi-scale object synthesis loss Lmso leads to
the best result (high visual quality and appearance alignment to the target distribution).
These qualitative results corroborate with their quantitative counterparts: Sinkhorn, KID
and FID metrics in Table 3.2.

52 Experiments

Method 3D Assets Easy↑ Medium↑ Hard↑ All↑

PCL [172] 7 47.3 32.9 19.4 33.2
Wetectron [152] 7 51.3 37.9 25.1 38.1
SSOD-Full (ours) 7 80.8 68.1 56.6 68.4

Meta-Sim* [90] ✓ 65.9 66.3 66.0 66.0
Meta-Sim2 [37] ✓ 67.0 67.0 66.2 66.7

Table 3.2. Comparisons to SOTA. Object detection performance (mAP at IOU 0.5) on
KITTI of SSOD and various SOTA methods.

3.4.3 Comparisons to State-of-the-Art

On the KITTI dataset, we compare SSOD to existing methods, Wetectron [152] and
PCL [172], capable of training object detectors without requiring bounding box annota-
tions. These methods similar to SSOD, train object detectors solely with unlabeled im-
age collections. They also do not use 3D CAD models and hence are the most directly
comparable methods to SSOD. Wetectron [152] is the best-performing prior method.
We train Wetectron and PCL with a combination of Compcars [185] and KITTI’s [48]
training set; use image-level labels for the presence/absence of the object; get object pro-
posals from Edgeboxes [203]; and evaluate it on KITTI’s validation set. The results are
in Table 3.2. Compared to Wetectron (mAP of 38.1 for All) and PCL (mAP of 33.2 for
All), SSOD (mAP of 68.4 for All) has ∼2X better detection accuracy. We believe that
SSOD’s superior performance results from its use of a pose-aware synthesizer to gen-
erate data for training object detectors. The GAN improves the training data’s diversity
and also optimally adapts to the task of object detection on target data.

We also compare SSOD to SOTA rendering-based methods Meta-Sim [90] and
Meta-Sim2 [37]. They train object detectors purely using synthetically rendered data
and evaluate on unlabeled real-world datasets. They require large libraries of 3D CAD
models and hence use strong geometric priors. In contrast, SSOD does not use any
3D CAD assets. In fact, its synthesis network can be viewed as a controllable renderer
learned only from object image collections without geometric priors. Interestingly, even
without using any strong geometric priors, SSOD surpasses both Meta-Sim and Meta-

*We report detection accuracy values for the version of Meta-Sim that does not use labeled validation
images from the KITTI [48] dataset.

Experiments 53

Method mAP↑ Sinkhorn↓

Wetectron [152] 18.2 0.549
BlockGAN [132] 256 22.7 0.531
SSOD w/o Lfg + Lbg 27.2 0.520
SSOD w/o Lmso 28.5 0.515
SSOD w/o OSA 29.1 0.514

SSOD-Full 31.3 0.506

Table 3.3. Performance on Cityscapes. Object detection performance (mAP at IOU
0.5) and synthetic data quality analysis (Sinkorn) on Cityscapes.

Sim2 for Easy, Medium and All cases in KITTI (Table 3.2). For Hard cases, SSOD
performs lower than Meta-Sim and Meta-Sim2, mostly due its low image quality for
occluded objects and its lower 2D bounding box label precision (see Sec. 3.4.5). Nev-
ertheless, it is exciting that even without using 3D assets and by merely learning from
image collections, SSOD can compete with rendering-based methods, which require
significant supervision.

3.4.4 Additional Dataset

An advantage of SSOD is that it can adapt to different target datasets. To validate this,
we additionally evaluate it’s performance on Cityscapes [33]. We evaluate the full SSOD
model trained on Compcars and Cityscapes; its ablated versions with specific individual
components removed (as described in Sec. 3.4.2 – Coupled Training); BlockGAN in
S not coupled with the detector and trained with Compcars only; and the competing
Wetectron method trained on Compcars and Cityscapes (Table 3.3). Similar to KITTI,
for Cityscapes too, SSOD-Full achieves the best performance (mAP of 31.3). Removing
Lfg + Lbg, which help adapt SSOD to Cityscapes, affects its performance the most. All
variants of SSOD jointly trained with the detector perform better than the uncoupled
BlockGAN in S. SSOD-Full also performs significantly better than Wetectron (mAP of
18.2).

54 Conclusion

Figure 3.5. Precision-recall curves on KITTI. Curves for SSOD with IOU thresholds
of 0.5 (bold lines) and 0.45 (dashed lines).

3.4.5 Discussion on Results

SSOD suffers from low recall for the Hard cases in KITTI as it fails to detect heavily
occluded cars (examples in supplementary material). Fig. 3.5 shows SSOD’s precision-
recall curves on KITTI for IOU thresholds: 0.5 (solid) and 0.45 (dashed). Also, with
a lower IOU threshold of 0.45 its mAP improves: 80.8 to 83.5 (Easy), 68.1 to 73.2
(Medium) and 56.6 and 63.6 (Hard). This indicates that improving the precision of
the synthesized objects’ bounding boxes labels can lead to improvements in SSOD’s
performance.

3.5 Conclusion

SSOD is the first work to leverage controllable GANs to learn object detectors in a self-
supervised manner with unlabelled image collections. It not only opens up an exciting
new research paradigm in the area, but also shows that significant detection accuracy
can be achieved by using controllable image synthesis. Controllable GANs are able to
synthesize data with diversity and realism to train object detectors. They also allow the
flexibility to adapt them optimally via end-to-end training to the downstream detection
task and target domains. With the rapid progression of controllable GANs, we envision
that the gains acquired there would lead to further improvements on GAN-based self-
supervised object detection.

Chapter 4

Learning Image Synthesis and
Decomposition Through Mutual
Supervision

4.1 Introduction

State-of-the-art sampling-based rendering engines (e.g., Mitsuba [81]) are able to gen-
erate photo-realistic images of virtual objects which are nearly indistinguishable from
real-world photographs. However, this is not an easy task to accomplish since all intrin-
sic physical aspects of the virtual object must be accurately modeled, such as accurate
3D geometry, detailed textures and physically-based materials. While some of these in-
trinsics are abundant on the internet, such as the geometry of 3D objects (e.g. Turbosquid
and 3D Warehouse), others are hard to obtain, such as high-quality materials – ideally
in the form of a highly-accurate spatially-varying BRDF. In addition, sophisticated and
slow rendering algorithms with many tunable parameters (lighting, environment map,
camera model, post-processing) are required for turning 3D content into photo-realistic
images. These parameters are often tuned individually with each rendered image, mak-
ing it hard to create a large and diverse set of rendered images. On the other hand,
obtaining a large number of real images which capture the complex interaction of light

55

56 Introduction

Figure 4.1. Deferred Neural Rendering and Intrinsic Image Decomposition. At
training time, our model exploits normals, albedo and reflections from a small set of
3D models as well as a large set of unpaired RGB images of the same object category.
Our model solves two tasks simultaneously: (i) generating photo-realistic images given
the input geometry and basic intrinsic properties, and (ii) decomposing real images back
into their intrinsic components.

with scene geometry and surface properties is easy. This makes the idea of learning
neural image synthesis from real images very attractive.

Several works on conditional image generation [27, 77, 141, 179] have exploited
paired datasets of real images with semantic information, including semantic segmenta-
tion [27, 141] and body part labels [105] for training realistic image synthesis models.
However, such sparse inputs only allow limited control over the generated image. This
limits the applicability of these methods, e.g., in virtual reality or video game simula-
tions where precise control over the output is essential. Training a conditional image
generation model from richer control inputs would require a large dataset of paired real
images with pixel aligned intrinsic properties such as 3D structure, textures, materials
and reflections. Obtaining such a dataset is hard in practice.

Our goal is to take a step towards learning a highly controllable realistic image

Introduction 57

synthesis model without requiring real world images with aligned 3D models. Our key
insight is that learning the inverse task of intrinsic decomposition is helpful for learning
image synthesis from real images and vice-versa. We therefore train both, the forward
rendering process and the reverse intrinsic decomposition process, jointly using a single
objective as illustrated in Fig. 4.1. Inspired by recent results in unpaired image-to-image
translation [73, 114, 200], we train our model using an small set of synthetic 3D models
of an object category as well as a large unpaired dataset of real images of the same
category.

Towards this goal, we exploit a technique from real-time rendering calledDeferred
Rendering which splits the rendering process into two stages and thus improves effi-
ciency. In the first stage, the geometry of the scene along with its textures and material
properties are projected onto a 2D pixel grid, resulting in a set of 2D intrinsic images
which capture the geometry and appearance of the object. This step is efficient since
it does not require physically accurate path tracing but relies on simple rendering oper-
ations. In the second “deferred” stage, lighting, shading and textural details are added
to form the final rendered image. Our goal is to replace this second deferred stage of
the rendering process with a neural network which we call Deferred Neural Render-
ing (DNR) network. To ensure that the input information is represented in the output
image, we decompose it back into its intrinsics using a second Intrisic Image Decompo-
sition (IID) network. However, we found that using this cycle alone leads to overfitting,
especially in the IID network. To improve the IID network, we introduce a second De-
composition cycle in which we train the IID network to decompose real images.

Overall, our model follows a similar dual cycle training setup as proposed in [200]
and [190]. However, an important conceptual difference to these works is that our task is
not a one-to-one but a one-to-manymapping. Different realistic images can be generated
from the same set of intrinsic maps as the intrinsics do not uniquely define the image.
Likewise, a single image can be explained using different intrinsic decompositions due
to projection from the higher dimensional intrinsics into the RGB image space.

We therefore introduce a shared adversarial discriminator between the input and the
reconstruction at the end of each cycle. Our model enables both highly photo-realistic

58 Related Work

image synthesis and accurate intrinsic image decomposition. We summarize our main
contributions as follows:

• We propose the Intrinsic Autoencoder, a method to jointly train photo-realistic
image synthesis and intrinsic image decomposition using cycle consistency losses
without using any paired data.

• We propose a shared discriminator network that enables better generalization and
proves key for learning both tasks without paired training data.

• We analyze the importance of various model components using quantitative met-
rics and human experiments. We also show that our method recovers accurate
intrinsic maps from challenging real images.

4.2 Related Work

Differentiable Rendering. A standard way of synthesizing images from a given ge-
ometry and material is to use rendering engines. Several works try to implement the
rendering process in a differentiable manner, amenable to neural networks. The work
of [17] used differentiable rendering with deformable face models for face reconstruc-
tion. The works of [118] and [95] proposed rasterization-based differentiable renderers
but only support local illumination. In order to support more realistic image formation,
some other works [26, 50, 51, 107] propose to back-propagate though path tracing. Dif-
ferentiable rasterizers are relatively fast, but at the same time highly restrictive as they
do not support complex global illumination. While differentiable path tracers produce
more realistic images, they are usually quite slow, thus restricting their usage to specific
applications. Another drawback of differentiable renderers is that they require a detailed
representation of the rendering input in terms of geometry, illumination, materials and
viewpoint. In this work, we bypass the specification of complex image formation by
training a CNN to directly generate realistic images from given geometry and material
inputs.

Related Work 59

Neural Image Synthesis. Generative models such as Generative Adversarial Networks
[57] and Variational Auto-Encoders (VAE) [98] are widely use to synthesize realistic im-
ages from a latent code. In contrast, our goal is to perform conditional image synthesis
which allows more fine-grained control over the image generation process. Some pop-
ular conditional image generation approaches are label-to-image translation [124, 136],
image-to-image translation [27, 39, 77, 114, 179, 200] and text-to-image generation [71,
149, 184, 193]. Earlier works [27, 39, 77] on conditional image-to-image generation are
mostly supervised with paired data from both domains. Several works [114, 200] pro-
pose a way to use unpaired data from both domains for conditional image generation.
Other advances in conditional image generation include innovations in network archi-
tectures and loss functions for generating high resolution images [179] and generating
multiple diverse images [31, 73, 74, 188]. In this work, we develop a model for photo-
realistic geometry-to-image translation using only unpaired training data as supervision.
Our work is closely related to [2] which also considers geometry-to-image translation,
but requires paired training data. Our work belongs to the family of unpaired conditional
image generation models with architecture and losses (e.g., shared discriminator) spe-
cialized for the geometry-to-image translation. Our model outperforms state-of-the-art
unpaired image-to-image translation models [73, 200] by a large margin.

Intrinsic Image Decomposition is a long standing problem in computer vision. [9]
poses the task as an optimization problem with a set of hand-crafted priors for shape,
shading albedo etc. On the other hand supervised methods like [84, 163, 164] use syn-
thetic data to train the model followed by refinement on real images. However, synthetic
data might not capture all the real world statistics and models trained with synthetic data
might now generalize well to real images. Recently, several self-supervised intrinsic
decomposition methods have been proposed [111, 117, 119]. [117] uses single images
during both training and inference stages. [111, 119] make use of multiview images or
video sequences of the scene during training and infer on a single image . Our work falls
in the realm of self-supervised intrinsic image decomposition. We do not use any paired
synthetic data or multiview sequences to train out model. Instead, we rely on jointly
training models for neural rendering and image decomposition.

60 Method

Figure 4.2. Intrinsic Autoencoder. Our model comprises two cycles: The first cycle
(blue) auto-encodes a set of intrinsics rendered from 3D CAD models using appearance
as latent representation. The second cycle (red) auto-encodes real images using image
intrinsics as representation. Consistency is achieved through a combination of cycle
losses and shared adversarial losses. Networks sharing the same weights are illustrated
with the same color (green/yellow).

4.3 Method

Our Intrinsic Autoencoder model (Fig. 4.2) consists of two generator networksR andH
for Deferred Neural Rendering and Intrinsic Image Decomposition, respectively. The
Deferred Neural Rendering Network R : M → Î takes as input a set of intrinsic maps
M = {A, N, F}. The object’s surface normal vectors in the view coordinate system
N ∈ RH×W ×3 provides the Deferred Neural Rendering Network important information
about the local shape of the object which is necessary for creating shading and reflec-
tion in the output image. The albedo A ∈ RH×W ×3 is a pixel-wise RGB value that de-
scribes the material or texture color at every pixel, ignoring any lighting effects. Finally,
the environment reflections F ∈ RH×W ×3 are computed by projecting a high dynamic
range environment map onto the 3D model. Note that this simple projection operation
does not involve any complicated sampling or ray-tracing operations. As shown in our
experiments, the Deferred Neural Renderer can also be trained with a subset of those
inputs since it is able to compensate for the missing information. The DNR network

Method 61

R : M → Î transforms all the input intrinsics M into a realistic image Î ∈ RH×W ×3

that corresponds to the input intrinsics. Similarly, the Intrinsic Image Decomposition
(IID) network H : I → M̂ performs the opposite task by taking an input image I and
predicting its intrinsics M̂ ∈ RH×W ×9.
Supervised training of R and H on real data is typically difficult due to the lack of real
training image and intrinsics pairs (Ir, Mr). Instead, we use a combination of cycle-
consistency losses and adversarial losses that require no paired training examples. This
allows us to leverage a large dataset of real images {I i

r}n
i=0 and an unpaired set of syn-

thetically generated intrinsic maps {M i
s}m

i=0. In the following, we detail our cycle con-
sistency losses and the novel shared adversarial losses.

4.3.1 Cycle Consistency

Rendering Cycle. The goal of the rendering cycle is to train R in order to produce
realistic images Îs = R(Ms) from synthetic intrinsic maps Ms. To train R without
paired data, we use the inverse transformationHwhich decomposes the predicted image
Îs back into its intrinsic maps M̂s = H(R(Ms)) as illustrated in Fig. 4.2. We encourage
consistency of the intrinsics using the rendering cycle consistency loss which is defined
as the Smooth-L1 distance between the input and reconstructed intrinsics

Lren(R, H, Ms) = ∥H(R(Ms)) − Ms∥1. (4.1)

Decomposition Cycle. Similarly, we train H to generate intrinsic maps M̂r = H(Ir)
from real images Ir. To ensure consistency with the input Ir, the output intrinsics M̂r

are passed to the deferred neural renderer R to reconstruct the image Îr = R(H(Ir)).
The decomposition cycle consistency loss is defined by:

Ldec(R, H, Ir) = ∥R(H(Ir)) − Ir∥1. (4.2)

The combined cycle consistency loss is then defined as:

Lcyc(R, H, Ir, Ms) = Lren(R, H, Ms) + Ldec(R, H, Ir) (4.3)

62 Method

To ensure that the predicted normals N̂s = HN(Ir) and the reconstructed real normals
N̂r = HN(R(Ms)) are properly normalized, we exploit an additional normalization loss
Lnorm:

Lnorm(R, H, I) =| 1 − ∥HN(Ir)∥2 | + | 1 − ∥HN(R(Ms))∥2 |

4.3.2 Shared Adversarial Loss

While the cycle consistency loss ensures that the network input can be reconstructed
from its output, it does not place any importance on the realism of that output. Addition-
ally, the cycle consistency loss assumes a one-to-one deterministic mapping between
the input and output. While this is a reasonable condition for some image-to-image
translation tasks [200], it is violated when translating between images and their intrinsic
properties. Decomposing an RGB image into its high-dimensional intrinsic properties
is a one-to-many transformation since multiple decompositions can be consistent at the
same time with the same image, e.g., a gray patch may correspond to a gray diffuse sur-
face or a black glossy surface with specular highlight. Likewise, the process of creating
an image from an incomplete set of intrinsic properties involves making additional pre-
dictions about missing attributes like lighting conditions, optical aberrations, noise or
higher-order light interactions. To better capture this multi-modal relationship, we use
an adversarial loss between the input and its reconstruction.

An adversarial discriminator D is a classification model trained to predict if a data
sample is produced by a generative model or if it stems from the true data distribution.
To train our Intrinsic Autoencoder, we use two adversarial discriminators, DI for dis-
criminating generated images Î{s,r} from real images Ir, andDM for discriminating gen-
erated intrinsic maps M̂{r,s} from synthetic intrinsic maps Ms. The discriminators help
our model to learn the distribution of real images and synthetic intrinsics by optimizing
the following adversarial [57] loss function

Ladv(R, H, DI , DM) = LI
adv(R, H, DI) + LM

adv(R, H, DM) (4.4)

where

Method 63

LI
adv(R, H, DI) = log(DI(Ir)) + log(1 − DI(R(Ms))

+ log(1 − DI(R(H(Ir)))
(4.5)

is our novel shared adversarial image loss which discriminates both between the
real image Ir and the generated synthetic image Îs = R(Ms), as well as between the
real image Ir and the reconstructed real image Îr = R(H(Ir)). Similarly, we define the
shared adversarial intrinsic loss as

LM
adv(R, H, DM) = log(DM(Ms)) + log(1 − DM (H(Ir))

+ log(1 − DM (H(R(Ms))))
(4.6)

Using the reconstructed inputs Îr and M̂s in addition to the generated samples Îs and M̂r

for training DI and DM makes the discriminators more robust and prevents overfitting.
This is especially important when a relatively small number of 3D objects are used to
create the synthetic intrinsic maps which can lead to a discriminator that recognizes the
model features rather that the image realism.

4.3.3 Implementation and Training

We train our Intrinsic Autoencoder networksR, H in addition to the adversarial discrim-
inators DM , DI from scratch by optimizing the joint objective

min
R,H

max
DI ,DM

Lcyc + Lnorm + Ladv (4.7)

Our framework is implemented in PyTorch [144] and trained using Adam [97] with a
learning rate of 0.0002. The Deferred Neural Rendering Network is a coarse-to-fine
generator introduced in [179] for the deferred neural rendering network. The input to
the network is of size 256 × 512 constructed by concatenating normals, albedo and re-
flections. The output of the network is an RGB image of size 256 × 512 × 3. We use
three networksH = {HN ,HA,HF} for estimating the surface normalsN , AlbedoA and
environment reflections F , respectively, from an image I . Each network has a ResNet
architecture with 5 ResNet blocks.

64 Experiments

Adversarial Discriminator Networks. Since the local structure of the generated im-
ages is mostly controlled by the input intrinsics, we want the image discriminator DI to
mainly focus on the global realism of the output. To address this, we use a multi-scale
PatchGAN [179] discriminator which comprises two fully-convolutional networks that
classify the local image patches at two scales, full and half resolution. The discriminator
outputs a realism score for each patch instead of a single prediction per image. This has
been shown to produce more detailed images for similar conditional image generation
tasks [77, 179, 200]. The intrinsics discriminator DM has the same architecture except
that the input is a 9-channel stack combining all three intrinsic maps. We found that
using a single discriminator for the combination of the intrinsic maps performs better
than separate networks for each. This is likely due to the inter-dependence between the
different intrinsic properties that allows the discriminator to detect inconsistencies be-
tween the generated intrinsic maps. We provide more architecture and training details
in the supplementary material.

4.4 Experiments

Synthetic Data Generation. To generate the synthetic training data, we use dataset
from [3] containing 28 3D car models covering 6 car categories (SUV, sedan, hatch-
back, station wagon, mini-van and van). Apart from the geometry, we do not need any
physically-based materials or textures for the models. Instead, we assign to each car part
a simple material with only two properties, the color and a scalar glossiness factor for
computing reflection maps. We assign each 3D car part a fixed material from a set of
18 fixed materials. Additionally, we randomly pick one of 15 materials with different
colors for the car body during the rendering process. Next, a camera position is ran-
domly chosen within a radius of 8 meters and a maximum height of 3 meters. We use
a fast OpenGL based rendering engine which operates at around 3 frames per second
including the model loading time. It outputs the surface normals of the car model in the
camera coordinate space and the albedo channels indicating the material color at each
pixel without any lighting or shading. Finally, we produce the environmental reflections

Experiments 65

by using a 360 degree environment map from [3]. These kind of reflections are very ef-
ficient to compute since they only require the view vector and the surface normal and
do not rely on expensive path-tracing. We render 20,000 synthetic samples of normals,
albedo and reflections.

Real training data. We obtain the real images from a fine grained car classification
dataset presented in [99]. For convenience, we refer to this as the real car dataset. It
contains 16,000 images of cars captured in various lighting conditions, resolutions and
poses and with different camera sensors and lenses.

4.4.1 Baselines

Since our goal is to train with only unpaired data, we choose to benchmark our method
against two state-of-the-art unpaired image generation approaches, CycleGAN[200] and
MUNIT[73]. However, since both methods were originally designed for image-to-
image translation rather than deferred rendering, we setup two additional strong base-
lines that highlight the importance of our contributions in improving the quality of our
results.
CycleGAN and MUNIT. CycleGAN[200] is a generic method for translating between
two domains without available paired data. MUNIT[73] aims at producing a diverse set
of translations between different domains. We modify the two methods slightly to use
our stacked 9 channel synthetic intrinsic maps as inputs.
Without shared discriminator. In this setup, we do not use the shared adversarial dis-
criminator discussed in 4.3.2. Instead, we only use the discriminator DI between gen-
erated image Îs, real image Ir. Similarly, the discriminator DM is used only between
synthetic intrinsics Ms and generated intrinsics M̂r.
Only rendering cycle. Here, we train the model using only the deferred rendering cycle
discussed in (Sec. 4.3.1) and do not use the decomposition cycle.

66 Experiments

Figure 4.3. Images generated using our Deferred Neural Renderer. Inputs to the
network are intrinsic maps consisting of albedo, normals and reflections, shown above
the generated images.

4.4.2 Deferred Neural Rendering

To evaluate our approach for deferred neural rendering, we use the networkR to produce
images given synthetic intrinsic maps (albedo, normals, reflections) and compare it to
other baselines, both qualitatively and quantitatively.

Qualitative results

Fig. 4.3 shows car images generated using our deferred neural renderer from the input
synthetic intrinsic maps shown above them. The car models in the evaluation set have
been previously seen by the generator, but the unique combination of pose and paint
color has not been seen during training. Our approach is able to generate detailed photo-
realistic images of cars with consistent geometry and distinct parts. We emphasize that
the deferred neural rendering network is trained without any rendered or real geometry-
image pairs. Instead, it is able to learn the appearance of different car parts from a large
set of real car images. For more results see supplementary *

In Fig. 4.4 we compare the results of our full model to various baselines. The

*https://youtu.be/FOWoCeOAiug

https://youtu.be/FOWoCeOAiug

Experiments 67

Figure 4.4. Qualitative Comparison with baselines on Neural Rendering. Inputs
to the network are intrinsic maps consisting of albedo, normals and reflections, shown
above the generated images. Additional higher resolution results are provided in the
supplementary materials.

results clearly show the improvements in visual quality achieved when using our full
model. Specifically, MUNIT appears to be unable to preserve the geometry and albedo
of the input in the generated image, CycleGAN images has significant artefacts on the
windows, body, etc. When training our model without the shared discriminator, the
resulting images suffer from irregular reflection patterns and a noisy image. This is

68 Experiments

likely due to the strong overfitting required by the network to reproduce the input image
exactly when using only an L1 loss. The model trained without the decomposition cycle
is not able to preserve the input intrinsics in terms of albedo and reflection.

In figure 4.5, we show the effect of input intrinsic maps on the quality of rendered
images. When the model is trained only with normals as intrinsic input, the geome-
try of the result is well rendered but the color of different parts poorly defined. The
model trained on both normals and albedo demonstrates sharper image quality but the
hallucinated reflections by the network lacks lack realistic details. Finally, using the en-
vironmental reflections helps the network produce consistent and realistic images with
sharp details.

Figure 4.5. Images generated using models trained with ablated inputs.

Quantitative results

We evaluate the quality of generated images using Fréchet Inception Distance(FID) [68]
and Kernel Inception Distance(KID) [14]. Both metrics compute the distance between
the features of two sets of images, obtained from a pre-trained CNN. Table 4.1 presents
both the FID and KID between the images generated using various methods and the real
images. Our full model achieves the lowest FID and KID values (47.6, 4.2) indicating
that the rendered images from our model are closest to the distribution of real images
compared to MUNIT [73] and CycleGAN [200]. Further, when we ablate each of the
intrinsic map inputs, both FID and KID increase substantially. Notably, in the case of

Experiments 69

w/ w/o
Cycle Shared Decom. w/o w/o w/o
GAN MUNIT Ours Discr Cyc. A N F

FID 103.3 99.0 47.6 59.2 99.6 88.7 60.2 56.7
KID 10.2 13.5 4.2 4.8 11.8 5.4 4.9 5.9

Table 4.1. FID and KID between real images and generated samples. All inputs are
provided to the generator (Albedo, Normals and Reflections).

ablating albedo input, the highest increase in distances can be observed (88.7, 5.4), im-
plying its importance for photo-realistic image generation. We conclude that albedo is
the most important for our task followed by normals and reflections maps. In both cases
where we ablate the decomposition cycle or rendering cycle, we observe a huge increase
in the distances signifying the importance of using both cycle consistency losses during
training. Finally, training with the setup of separate discriminators as mentioned in 4.4.1
leads to an increase in the distances.

Human Experiments

We design two experiments to measure the visual realism of generated car images using
the Amazon Mechanical Turk platform to crowd source human evaluations. For each
comparison, we presented 40 human subjects each with 50 image pairs to choose the
more realistic looking image. The results are presented in Table 4.2. The first row
presents experiments where one image is picked from the real images and the other is
from one of the synthesis methods and presented in a random order. Images from our
full model seem to be most confused with real car image since only 67.5% of choices
were correct while in 32.5% of the trials the subjects choose our images to be the real
one.
In the second experiment subjects are presented with an image generated by our full
model and a matching image generated by one other synthesis methods. The results in
the second row of Table 4.2 show that subjects choose our results to be more realistic
over 80% of times when compare to CycleGAN and MUNIT. This clearly indicates a

70 Experiments

Cycle w/o Shared w/o Decom
GAN MUNIT Ours Discr. Cyc.

Real Im 77.7% 75.6% 67.5% 68.9% 71.0%
Ours 80.0% 85.8% – 57.6% 63.8%

Table 4.2. Human Subject Study. Comparisons to identify realistic images in an A/B
test using Amazon Mechanical Turk. The numbers indicate the ratio of trials where the
image from real or our model was chosen as more realistic compared to the image from
the method on the header.

high level of visual quality of our generated images compared to those generated from
existing methods. On the other hand, images from our ablated models appear to be much
closer to our full model visual quality.

4.4.3 Intrinsic Image Decomposition

Qualitative results

In fig. 4.6, we show that the intrinsic decomposition network is able to decompose real
car images into their intrinsic maps. We would like to emphasize that the model does
not have access to ground-truth intrinsic maps for real images during the training phase.
Also, these car models are not present in the synthetic training data.

Figure 4.7 compares the decompositions produced by our model to those from other
baselines. Both CycleGAN [200] andMUNIT [73] show significant artificats and incon-
sistencies when trained to decompose real images. The USI3D [117] fails to generalize
to real models since it was trained using synthetic data from ShapeNet [24]. Our model
without decomposition cycle also recovers noisy albedo and normals due to overfit only
to synthetic data. On the other hand, training without the shared discriminator leads to
severe artefacts. This is because the rendering network tries to encode intrinsics infor-
mation in the generated images in the form of high frequency artefacts such that the
decomposition network can easily recover them.

Experiments 71

Figure 4.6. Results of our intrinsic decomposition network on real images. The first
column shows the inputs to the network. Our model is able to decompose the sport car in
first row accurately even though our synthetic training dataset does not include any sport
cars at all. The car models of other inputs images are also not present in our synthetic
dataset.

Figure 4.7. Comparison with Baselines for intrinsic decomposition. Note that
USI3D [117] only produces albedo and shading and not reflections or normals.

Quantitative results

To evaluate the intrinsic maps predicted by the intrinsic image decomposition network
(H) we construct a synthetic dataset containing rendered RGB images and their corre-
sponding intrinsic maps rendered using a standard Physically Based Renderer (Blender

72 Experiments

w/o Sharedw/o Decom. Cycle
Discr. cycle GAN MUNIT Ours

Normal Err. 17.75◦ 18.80◦ 27.82◦ 29.15◦ 14.73◦

Albedo Err. 54.00 67.21 68.18 81.44 52.74
Reflection Err. 55.60 71.00 73.18 74.75 51.74

Table 4.3. Errors for the Intrinsic Decomposition Task. Our method achieves the
lowest error on all tasks.

[18]). To obtain the error between predicted and ground truth normals, we compute the
average cosine distance between them. The errors for albedo and reflection are the av-
erage ℓ1 distances between the predicted and ground truth maps. Table 4.3 presents the
errors of various methods for predicting intrinsic maps. Our full model has the least error
for all the modalities followed by our model without the shared discriminator, without
decomposition cycle and finally MUNIT and CycleGAN. This indicates that our model
is able to learn accurate image decomposition while keeping generalization. Note that
these PBR-rendered images have not been presented to our network during training.

4.4.4 Results on ShapeNet Airplanes

We train our model for the object class ”Airplanes”. We obtain the real images from
FGVC-Aircraft dataset [121] which contains 10,000 images of airplanes. We use the
3D models of airplanes from the Shapenet dataset [24] to obtain our intrinsic maps.
We follow the process mentioned in sec.4.4 to generate input training data. We use
the normals and albedo as inputs to the network. Figure 4.8 illustrates realistic images
generated using our deferred rendering network, demonstrating the ability of our method
to handle low-quality mesh and texture models.

Conclusion 73

Figure 4.8. Images generated by our network trained on airplanes from ShapeNet
[24].

4.5 Conclusion

In this chapter, we presented a joint approach for training a deferred rendering network
for generating realistic images from synthetic image intrinsics and an intrinsic image
decomposition network for decomposing real images of an object into its intrinsic prop-
erties. We trained the model using unpaired 3D models and real images. Our qualitative
and quantitative experiments revealed that using a combination of shared adversarial
losses and cycle consistency losses is able to produce images that are both realistic and
consistent with the control input.

Chapter 5

Conclusion

In this thesis we explored the possibility of learning computer vision tasks like viewpoint
estimation, object detection, image generation and decomposition using large collections
of in-the-wild object images. In this chapter we present concluding remarks and future
work based on these methods. We addressed self-supervised learning of some computer
vision tasks as follows.

Viewpoint estimationWe presented an approach for self-supervised learning of object
viewpoint estimation only using large unlabeled collection of object images. We built a
method based on the analysis-by-synthesis paradigm to jointly learn viewpoint predic-
tion and viewpoint aware image synthesis using cycle consistency losses. We further uti-
lized additional symmetry based constraints, style and viewpoint disentanglement based
constraints to improve both the synthesis and viewpoint prediction networks. Our ex-
periments show that we are able to achieve object viewpoint estimation accuracy better
than other self-supervised approaches and competitive accuracy compared to supervised
methods used for this task. This approach serves as a base line for future methods and
also demonstrated that it is indeed possible to learn object viewpoint estimation only us-
ing unlabeled in-the-wild object images. The approach presents encouraging results for
viewpoint prediction of un-occluded images. One possible future direction is to explore
viewpoint estimation of occluded in-the-wild objects. This could be achieved by design-
ing an occlusion and viewpoint aware synthesis network and concurrently a viewpoint

75

76

estimation network which can also reason about occlusions. This would significantly
progress the field of object viewpoint estimation.

Object detectionWe presented an approach to learn object detection in a self-supervised
manner only using collections of unlabeled images. To achieve this we utilized a con-
trollable image synthesis network which used the input pose parameters of an object to
generate an image with the object in the corresponding pose. The corresponding bound-
ing box labels can be computed from the input pose parameters. This image label pair
is in turn used to train the detector. We further designed several losses to adapt both
the synthesis and detection network to new target domains. Experiments show that the
method performs object detection better than existing self-supervised baselines and syn-
thetic data based methods on average. Simultaneously, the method can also be adapted
to new target data domains. It not only opens up an exciting new research paradigm
in the area, but also shows that significant detection accuracy can be achieved by us-
ing controllable image synthesis. Going ahead, a direction to explore would be to take
self-supervised object detection further to 3D object detection. A key step to achieve
this is to improve the quality of composition of multiple objects, the image quality of
the controllable synthesis network and its adherence to input pose parameters. Another
improvement to the synthesis model is to be able to generate larger scene with multiple
objects and better background. These improvements would provide high quality images
and corresponding ground truth to train 3D object detection models in a self-supervised
manner.

Image synthesis and decomposition We presented Intrinsic Autoencoders, a frame-
work to learn the forward process of geometrically controllable image synthesis and the
inverse process of image decomposition to obtain shape, albedo and reflections using un-
paired images of objects and a small collection of 3D CAD models. Several supervised
methods have been proposed for this task but obtaining a dataset where the images are
exactly aligned with 3D CAD models is extremely difficult. We adopt a self-supervised
learning paradigm where we train the image synthesis network and decomposition net-
work jointly using cycle consistency losses and introduce a novel shared image discrimi-
nator to reduce image artifacts and improve the quality of generated images. Qualitative
and quantitative analysis using human studies show that the images generated using the

77

geometric control are high quality, realistic and adhere to the inputs. Our image decom-
position results are also significantly better than existing baselines. A prominent future
direction for this approach is to model full scenes instead of objects to understand the
geometry of surroundings. This could help us easily model our surroundings and gen-
erate novel views useful for AR/VR applications. Furthermore, networks can further be
remodeled to handle deformable and articulated objects like humans, animals, etc. This
would enable pose controlled generation of humans and self-supervised understanding
of their geometry.

Bibliography

[1] “Scene understanding tasks in computer vision. image from teaching slides
of cs231n course at stanford university.” cs231, 2017. [Online]. Available:
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

[2] H. A. Alhaija, S. K. Mustikovela, A. Geiger, and C. Rother, “Geometric image
synthesis,” in Asian Conference on Computer Vision (ACCV), 2018.

[3] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, “Aug-
mented reality meets computer vision: Efficient data generation for urban driving
scenes,” International Journal of Computer Vision (IJCV), 2018.

[4] H. A. Alhaija, S. K. Mustikovela, L. M. Mescheder, A. Geiger, and C. Rother,
“Augmented reality meets deep learning,” in British Machine Vision Conference
(BMVC), 2017.

[5] H. A. Alhaija, S. K.Mustikovela, J. Thies, V. Jampani, M. Nießner, A. Geiger, and
C. Rother, “Intrinsic autoencoders for joint deferred neural rendering and intrinsic
image decomposition,” in International Conference on 3D Vision (3DV), 2020.

[6] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, “Multiscale com-
binatorial grouping,” in CVPR, 2014.

[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-
works,” in ICML, 2017.

[8] A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A. X. Chang, and M. Nießner,
“Scan2cad: Learning cad model alignment in rgb-d scans,” 2018.

79

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

80 Bibliography

[9] J. T. Barron and J. Malik, “Shape, illumination, and reflectance from shading,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8,
2015.

[10] A. Behl, O. Jafari, S. K. Mustikovela, H. A. Alhaija, C. Rother, and A. Geiger,
“Bounding boxes, segmentations and object coordinates: How important is recog-
nition for 3D scene flow estimation in autonomous driving scenarios?” in Inter-
national Conference on Computer Vision (ICCV), 2017.

[11] R. Benenson, S. Popov, and V. Ferrari, “Large-scale interactive object segmen-
tation with human annotators,” in CVPR, 2019.

[12] A. Bielski and P. Favaro, “Emergence of object segmentation in perturbed gen-
erative models,” in NeurIPS, 2019.

[13] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,” inCVPR,
2016.

[14] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying MMD
GANs,” in International Conference on Learning Representations (ICLR), 2018.

[15] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying MMD
GANs,” in ICLR, 2018.

[16] V. Blanz, T. Vetter et al., “A morphable model for the synthesis of 3d faces.” in
Siggraph, 1999.

[17] ——, “A morphable model for the synthesis of 3D faces.” in Siggraph, vol. 99,
1999.

[18] Blender Online Community, Blender - a 3D Modelling and Rendering Package.
Blender Institute, Amsterdam: Blender Foundation, 2006.

[19] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high
fidelity natural image synthesis,” in International Conference on Learning Rep-
resentations (ICLR), 2019.

Bibliography 81

[20] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2d & 3d face
alignment problem?” in CVPR, 2017.

[21] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,” arXiv.org, 2020.

[22] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsu-
pervised learning of visual features,” in ECCV, 2018.

[23] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,” CoRR,
vol. abs/2104.14294, 2021. [Online]. Available: https://arxiv.org/abs/2104.14294

[24] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q.-X. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An
Information-Rich 3D Model Repository,” arXiv, vol. 1512.03012, 2015.

[25] F.-J. Chang, A. Tuan Tran, T. Hassner, I. Masi, R. Nevatia, and G. Medioni,
“Faceposenet: Making a case for landmark-free face alignment,” in CVPR, 2017.

[26] C. Che, F. Luan, S. Zhao, K. Bala, and I. Gkioulekas, “Inverse transport net-
works,” arXiv:1809.10820, 2018.

[27] Q. Chen and V. Koltun, “Photographic Image Synthesis with Cascaded Re-
finement Networks,” in International Conference on Computer Vision (ICCV).
Venice: IEEE, Oct. 2017.

[28] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple framework
for contrastive learning of visual representations,” CoRR, vol. abs/2002.05709,
2020. [Online]. Available: https://arxiv.org/abs/2002.05709

[29] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets,” in NeurIPS, 2016.

[30] X. Chen, J. Song, and O. Hilliges, “Monocular neural image based rendering with
continuous view control,” in ICCV, 2019.

https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2002.05709

82 Bibliography

[31] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation,”
in Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[32] E. Collins, R. Achanta, and S. Susstrunk, “Deep feature factorization for concept
discovery,” in ECCV, 2018.

[33] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in CVPR, 2016.

[34] ——, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[35] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,”
in NeurIPS, 2013.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in CVPR, 2009.

[37] J. Devaranjan, A. Kar, and S. Fidler, “Meta-sim2: Learning to generate synthetic
datasets,” in ECCV, 2020.

[38] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” ICLR,
2017.

[39] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, “Learning to
generate chairs, tables and cars with convolutional networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, 2017.

[40] S. Ehrhardt, O. Groth, A. Monszpart, M. Engelcke, I. Posner, N. J. Mitra, and
A. Vedaldi, “RELATE: Physically plausible multi-object scene synthesis using
structured latent spaces,” NeurIPS, 2020.

[41] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool, “Random forests for
real time 3d face analysis,” IJCV, 2013.

Bibliography 83

[42] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3d face reconstruction
and dense alignment with position map regression network,” in ECCV, 2018.

[43] R. M. Francisco Massa and M. Aubry, “Crafting a multi-task cnn for viewpoint
estimation,” in BMVC, 2016.

[44] N. Gählert, N. Jourdan, M. Cordts, U. Franke, and J. Denzler, “Cityscapes 3d:
Dataset and benchmark for 9 dof vehicle detection,” in CVPR Workshops, 2020.

[45] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-
object tracking analysis,” in CVPR, 2016.

[46] Y. Gao, B. Liu, N. Guo, X. Ye, F. Wan, H. You, and D. Fan, “C-midn: Cou-
pled multiple instance detection network with segmentation guidance for weakly
supervised object detection,” in ICCV, 2019.

[47] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, 2013.

[48] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
KITTI vision benchmark suite,” in CVPR, 2012.

[49] ——, “Are we ready for Autonomous Driving? The KITTI Vision Benchmark
Suite,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[50] I. Gkioulekas, A. Levin, and T. Zickler, “An evaluation of computational imag-
ing techniques for heterogeneous inverse scattering,” in European Conference on
Computer Vision (ECCV), 2016.

[51] I. Gkioulekas, S. Zhao, K. Bala, T. Zickler, and A. Levin, “Inverse volume render-
ing with material dictionaries,” ACM Transactions on Graphics (TOG), vol. 32,
no. 6, 2013.

[52] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” CoRR, vol. abs/1609.03677, 2016.
[Online]. Available: http://arxiv.org/abs/1609.03677

http://arxiv.org/abs/1609.03677

84 Bibliography

[53] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth
estimation with left-right consistency,” in CVPR, 2017.

[54] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging into self-
supervised monocular depth prediction,” October 2019.

[55] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in NeurIPS, 2014.

[56] ——, “Generative adversarial nets,” in NeurIPS, 2014.

[57] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Conference on
Neural Information Processing Systems (NeurIPS), 2014.

[58] A. Grabner, P.M. Roth, and V. Lepetit, “3d pose estimation and 3dmodel retrieval
for objects in the wild,” in CVPR, 2018.

[59] J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,
C. Doersch, B. Á. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu,
R. Munos, and M. Valko, “Bootstrap your own latent: A new approach to
self-supervised learning,” CoRR, vol. abs/2006.07733, 2020. [Online]. Available:
https://arxiv.org/abs/2006.07733

[60] J. Gu, X. Yang, S. De Mello, and J. Kautz, “Dynamic facial analysis: From
bayesian filtering to recurrent neural network,” in CVPR, 2017.

[61] V. Guizilini, R. Ambrus, S. Pillai, and A. Gaidon, “Packnet-sfm: 3d packing for
self-supervised monocular depth estimation,” CoRR, vol. abs/1905.02693, 2019.
[Online]. Available: http://arxiv.org/abs/1905.02693

[62] C. Gumeli, A. Dai, and M. Niebner, “ROCA: Robust CAD model retrieval and
alignment from a single image,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, jun 2022. [Online]. Available:
https://doi.org/10.1109%2Fcvpr52688.2022.00399

https://arxiv.org/abs/2006.07733
http://arxiv.org/abs/1905.02693
https://doi.org/10.1109%2Fcvpr52688.2022.00399

Bibliography 85

[63] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsu-
pervised visual representation learning,” in 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020, pp. 9726–9735.

[64] P. Henderson and V. Ferrari, “Learning to generate and reconstruct 3d meshes
with only 2d supervision,” in BMVC, 2018.

[65] ——, “Learning single-image 3D reconstruction by generative modelling of
shape, pose and shading,” IJCV, 2019.

[66] P. Henderson, V. Tsiminaki, and C. Lampert, “Leveraging 2D data to learn tex-
tured 3D mesh generation,” in CVPR, 2020.

[67] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs
trained by a two time-scale update rule converge to a local nash equilibrium,” in
NeurIPS, 2017.

[68] ——, “GANs trained by a two time-scale update rule converge to a local
nash equilibrium,” in Conference on Neural Information Processing Systems
(NeurIPS), 2017.

[69] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in
ICANN, 2011.

[70] S. Honari, P. Molchanov, S. Tyree, P. Vincent, C. Pal, and J. Kautz, “Improving
landmark localization with semi-supervised learning,” in CVPR, 2018.

[71] S. Hong, D. Yang, J. Choi, and H. Lee, “Inferring semantic layout for hierar-
chical text-to-image synthesis,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[72] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive
instance normalization,” in CVPR, 2017.

[73] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised
image-to-image translation,” in European Conference on Computer Vision
(ECCV), 2018.

86 Bibliography

[74] L. Hui, X. Li, J. Chen, H. He, and J. Yang, “Unsupervised multi-domain image
translation with domain-specific encoders/decoders,” in 2018 24th International
Conference on Pattern Recognition (ICPR), 2018.

[75] W.-C. Hung, V. Jampani, S. Liu, P.Molchanov, M.-H. Yang, and J. Kautz, “Scops:
Self-supervised co-part segmentation,” in CVPR, 2019.

[76] E. Insafutdinov and A. Dosovitskiy, “Unsupervised learning of shape and pose
with differentiable point clouds,” in NeurIPS, 2018.

[77] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[78] ——, “Image-to-image translation with conditional adversarial networks,”
CVPR, 2017.

[79] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning of object
landmarks through conditional image generation,” in NeurIPS, 2018.

[80] ——, “Learning landmarks from unaligned data using image translation,” CoRR,
vol. abs/1907.02055, 2019. [Online]. Available: http://arxiv.org/abs/1907.02055

[81] W. Jakob, Mitsuba Renderer, 2010.

[82] V. Jampani, S. Nowozin, M. Loper, and P. V. Gehler, “The informed sampler:
A discriminative approach to bayesian inference in generative computer vision
models,” Computer Vision and Image Understanding, vol. 136, pp. 32–44, 2015.

[83] J. Janai, F. G”uney, A. Ranjan, M. J. Black, and A. Geiger, “Unsupervised learn-
ing of multi-frame optical flow with occlusions,” in European Conference on
Computer Vision (ECCV), vol. Lecture Notes in Computer Science, vol 11220.
Springer, Cham, Sep. 2018, pp. 713–731.

[84] M. Janner, J. Wu, T. Kulkarni, I. Yildirim, and J. B. Tenenbaum, “Self-supervised
intrinsic image decomposition,” inConference on Neural Information Processing
Systems (NeurIPS), 2017.

http://arxiv.org/abs/1907.02055

Bibliography 87

[85] Z. Jie, Y. Wei, X. Jin, J. Feng, and W. Liu, “Deep self-taught learning for weakly
supervised object localization,” in CVPR, 2017.

[86] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik, “Learning category-specific
mesh reconstruction from image collections,” CoRR, vol. abs/1803.07549, 2018.
[Online]. Available: http://arxiv.org/abs/1803.07549

[87] ——, “Learning category-specific mesh reconstruction from image collections,”
in ECCV, 2018.

[88] M. Kang, J. Shin, and J. Park, “Studiogan: A taxonomy and benchmark of gans
for image synthesis,” 2023.

[89] V. Kantorov, M. Oquab, M. Cho, and I. Laptev, “Contextlocnet: Context-aware
deep network models for weakly supervised localization,” in ECCV, 2016.

[90] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna,
A. Torralba, and S. Fidler, “Meta-sim: Learning to generate synthetic datasets,”
in ICCV, 2019.

[91] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for
improved quality, stability, and variation,” in ICLR, 2018.

[92] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gener-
ative adversarial networks,” in CVPR, 2019.

[93] ——, “A style-based generator architecture for generative adversarial networks,”
in CVPR, 2019.

[94] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in CVPR, 2018.

[95] ——, “Neural 3d mesh renderer,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[96] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of
regression trees,” in CVPR, 2014.

http://arxiv.org/abs/1803.07549

88 Bibliography

[97] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Inter-
national Conference on Learning Representations (ICLR), 2015.

[98] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv:1312.6114, 2013.

[99] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations for fine-
grained categorization,” in 4th International IEEE Workshop on 3D Representa-
tion and Recognition (3dRR-13), Sydney, Australia, 2013.

[100] N.Kulkarni, A. Gupta, and S. Tulsiani, “Canonical surfacemapping via geometric
cycle consistency,” in ICCV, 2019.

[101] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional
inverse graphics network,” in NeurIPS, 2015.

[102] A. Kumar, A. Alavi, and R. Chellappa, “Kepler: keypoint and pose estimation of
unconstrained faces by learning efficient h-cnn regressors,” in FG, 2017.

[103] A. Kundu, Y. Li, and J. M. Rehg, “3d-rcnn: Instance-level 3d object reconstruc-
tion via render-and-compare,” in CVPR, 2018.

[104] K. L Navaneet, P. Mandikal, V. Jampani, and V. Babu, “Differ: Moving beyond
3d reconstruction with differentiable feature rendering,” in CVPRW, 2019.

[105] C. Lassner, G. Pons-Moll, and P. V. Gehler, “A generative model for people in
clothing,” in International Conference on Computer Vision (ICCV), 2017.

[106] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to
the pnp problem,” IJCV, 2009.

[107] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte carlo
ray tracing through edge sampling,” in SIGGRAPH Asia 2018 Technical Papers,
2018.

[108] X. Li, S. Liu, S. De Mello, K. Kim, X. Wang, M.-H. Yang, and J. Kautz, “Online
adaptation for consistent mesh reconstruction in the wild,” in NeurIPS, 2020.

Bibliography 89

[109] X. Li, S. Liu, K. Kim, S. De Mello, V. Jampani, M.-H. Yang, and J. Kautz, “Self-
supervised single-view 3d reconstruction via semantic consistency,” in ECCV,
2020.

[110] X. Li, S. Liu, K. Kim, S. D. Mello, V. Jampani, M. Yang, and J. Kautz, “Self-
supervised single-view 3d reconstruction via semantic consistency,” CoRR, vol.
abs/2003.06473, 2020. [Online]. Available: https://arxiv.org/abs/2003.06473

[111] Z. Li and N. Snavely, “Learning intrinsic image decomposition from watching
the world,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[112] S. Liao, E. Gavves, and C. G. M. Snoek, “Spherical regression: Learning view-
points, surface normals and 3d rotations on n-spheres,” in CVPR, 2019.

[113] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in CVPR, 2017.

[114] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image Translation
Networks,” arXiv:1703.00848 [cs], Mar. 2017.

[115] P. Liu, M. R. Lyu, I. King, and J. Xu, “Selflow: Self-supervised learning
of optical flow,” CoRR, vol. abs/1904.09117, 2019. [Online]. Available:
http://arxiv.org/abs/1904.09117

[116] S. Liu, T. Li, W. Chen, and H. Li, “Soft rasterizer: A differentiable renderer for
image-based 3d reasoning,” in ICCV, 2019.

[117] Y. Liu, S. You, Y. Li, and F. Lu, “Unsupervised learning for intrinsic image de-
composition from a single image,” inConference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[118] M.M. Loper andM. J. Black, “OpenDR:An approximate differentiable renderer,”
in European Conference on Computer Vision (ECCV), 2014.

https://arxiv.org/abs/2003.06473
http://arxiv.org/abs/1904.09117

90 Bibliography

[119] W.-C. Ma, H. Chu, B. Zhou, R. Urtasun, and A. Torralba, “Single image intrin-
sic decomposition without a single intrinsic image,” in European Conference on
Computer Vision (ECCV), V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds., 2018.

[120] S. Mahendran, H. Ali, and R. Vidal, “3d pose regression using convolutional neu-
ral networks,” in CVPR, 2017.

[121] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi, “Fine-grained visual
classification of aircraft,” Tech. Rep., 2013.

[122] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
in ECCV, 2020.

[123] I. Misra and L. van der Maaten, “Self-supervised learning of pretext-invariant
representations,” CoRR, vol. abs/1912.01991, 2019. [Online]. Available:
http://arxiv.org/abs/1912.01991

[124] T. Miyato and M. Koyama, “cGANs with projection discriminator,”
arXiv:1802.05637, 2018.

[125] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding box estima-
tion using deep learning and geometry,” in CVPR, 2017.

[126] S. S. Mukherjee and N. M. Robertson, “Deep head pose: Gaze-direction estima-
tion in multimodal video,” ACM MM, 2015.

[127] S. K. Mustikovela, V. Jampani, S. De Mello, S. Liu, U. Iqbal, C. Rother, and
J. Kautz, “Self-supervised viewpoint learning from image collections,” in CVPR,
2020.

[128] K. L. Navaneet, A. Mathew, S. Kashyap, W.-C. Hung, V. Jampani, and R. V.
Babu, “From image collections to point clouds with self-supervised shape and
pose networks,” in CVPR, 2020.

http://arxiv.org/abs/1912.01991

Bibliography 91

[129] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, “The mapillary vistas
dataset for semantic understanding of street scenes,” in International Conference
on Computer Vision (ICCV), 2017.

[130] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang, “HoloGAN: Un-
supervised learning of 3D representations from natural images,” in International
Conference on Computer Vision (ICCV), Nov. 2019.

[131] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang, “Hologan: Un-
supervised learning of 3d representations from natural images,” in ICCV, 2019.

[132] T. Nguyen-Phuoc, C. Richardt, L. Mai, Y.-L. Yang, and N. Mitra, “Blockgan:
Learning 3d object-aware scene representations from unlabelled images,” in
NeurIPS, 2020.

[133] T. Nguyen-Phuoc, C. Richardt, L. Mai, Y.-L. Yang, and N. Mitra, “BlockGAN:
Learning 3D object-aware scene representations from unlabelled images,” in
Conference on Neural Information Processing Systems (NeurIPS), Nov. 2020.

[134] M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as compositional gen-
erative neural feature fields,” in CVPR, 2021.

[135] D. Novotny, D. Larlus, and A. Vedaldi, “Learning 3d object categories by looking
around them,” in CVPR, 2017, pp. 5218–5227.

[136] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary
classifier gans,” in International Conference onMachine Learning (ICML), 2017.

[137] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “We don’t need no
bounding-boxes: Training object class detectors using only human verification,”
in CVPR, 2016.

[138] ——, “Extreme clicking for efficient object annotation,” in CVPR, 2017.

[139] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning for unpaired
image-to-image translation,” 2020.

92 Bibliography

[140] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image synthesis with
spatially-adaptive normalization,” in CVPR, 2019.

[141] ——, “Semantic image synthesis with spatially-adaptive normalization,” in Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2019.

[142] S. Park12, S. De Mello, P. Molchanov, U. Iqbal, O. Hilliges, and J. Kautz, “Few-
shot adaptive gaze estimation,” in ICCV, 2019.

[143] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in
NeurIPSW, 2017.

[144] ——, “Automatic differentiation in PyTorch,” in NIPS-W, 2017.

[145] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-dof object
pose from semantic keypoints,” in ICRA, 2017.

[146] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State,
O. Shapira, and S. Birchfield, “Structured domain randomization: Bridging the
reality gap by context-aware synthetic data,” ICRA, 2019.

[147] S. Prokudin, P. Gehler, and S. Nowozin, “Deep directional statistics: Pose esti-
mation with uncertainty quantification,” in ECCV, 2018.

[148] A. Ranjan, V. Jampani, K. Kim, D. Sun, J. Wulff, and M. J. Black, “Adversarial
collaboration: Joint unsupervised learning of depth, camera motion, optical
flow and motion segmentation,” CoRR, vol. abs/1805.09806, 2018. [Online].
Available: http://arxiv.org/abs/1805.09806

[149] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative
adversarial text to image synthesis,” arXiv:1605.05396, 2016.

[150] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in NeurIPS, 2015.

http://arxiv.org/abs/1805.09806

Bibliography 93

[151] Z. Ren, Z. Yu, X. Yang, M.-Y. Liu, Y. J. Lee, A. G. Schwing, and J. Kautz,
“Instance-aware, context-focused, and memory-efficient weakly supervised ob-
ject detection,” in CVPR, 2020.

[152] Z. Ren, Z. Yu, X. Yang, M.-Y. Liu, A. G. Schwing, and J. Kautz, “Ufo2: A unified
framework towards omni-supervised object detection,” in ECCV, 2020.

[153] H. Rhodin, M. Salzmann, and P. Fua, “Unsupervised geometry-aware represen-
tation for 3d human pose estimation,” in ECCV, 2018.

[154] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for benchmarks,” in ICCV,
2017.

[155] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth
from Computer Games,” in European Conference on Computer Vision (ECCV),
2016.

[156] G. Riegler and V. Koltun, “Stable view synthesis,” in ECCV, 2021.

[157] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban
scenes,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[158] N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estimation without
keypoints,” in CVPRW, 2018.

[159] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, andM. Pantic, “300 faces in-the-wild
challenge: The first facial landmark localization challenge,” in ICCVW, 2013.

[160] M. Sahasrabudhe, Z. Shu, E. Bartrum, R. Alp Guler, D. Samaras, and I. Kokkinos,
“Lifting autoencoders: Unsupervised learning of a fully-disentangled 3d mor-
phable model using deep non-rigid structure from motion,” in ICCVW, 2019.

[161] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger, “Graf: Generative radiance
fields for 3d-aware image synthesis,” in NeurIPS, 2020.

94 Bibliography

[162] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” in ICCV, 2017.

[163] S. Sengupta, J. Gu, K. Kim, G. Liu, D. Jacobs, and J. Kautz, “Neural Inverse
Rendering of an Indoor Scene From a Single Image,” in International Conference
on Computer Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019.

[164] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. W. Jacobs, “SfSNet: Learning
shape, refectance and illuminance of faces in the wild,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

[165] Y. Shen, R. Ji, S. Zhang, W. Zuo, and Y. Wang, “Generative adversarial learning
towards fast weakly supervised detection,” in CVPR, 2018.

[166] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in ICLR, 2015.

[167] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer,
“Deepvoxels: Learning persistent 3d feature embeddings,” in CVPR, 2019.

[168] S. Song, S. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[169] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint estimation
in images using cnns trained with rendered 3d model views,” in CVPR, 2015.

[170] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for facial
point detection,” in CVPR, 2013.

[171] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi, “Discovery of latent
3D key-points via end-to-end geometric reasoning,” in NeurIPS, 2018.

[172] P. Tang, X. Wang, S. Bai, W. Shen, X. Bai, W. Liu, and A. Yuille, “PCL: Proposal
cluster learning for weakly supervised object detection,” TPAMI, 2018.

Bibliography 95

[173] A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, andC. Theobalt,
“Self-supervised multi-level face model learning for monocular reconstruction at
over 250 hz,” in CVPR, 2018.

[174] J. Thewlis, H. Bilen, and A. Vedaldi, “Unsupervised learning of object landmarks
by factorized spatial embeddings,” in ICCV, 2017.

[175] L. Tran and X. Liu, “Nonlinear 3d face morphable model,” in CVPR, 2018.

[176] H.-Y. Tseng, S. De Mello, J. Tremblay, S. Liu, S. Birchfield, M.-H. Yang, and
J. Kautz, “Few-shot viewpoint estimation,” in BMVC, 2019.

[177] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in CVPR, 2015.

[178] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective
search for object recognition,” IJCV, 2013. [Online]. Available: http:
//www.huppelen.nl/publications/selectiveSearchDraft.pdf

[179] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional GANs,”
in Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[180] O. Wiles and A. Zisserman, “Silnet: Single- and multi-view reconstruction by
learning from silhouettes,” in BMVC, 2017.

[181] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolutional
neural network for 6D object pose estimation in cluttered scenes,” in RSS, 2018.

[182] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mottaghi, L. Guibas, and
S. Savarese, “ObjectNet3D: A large scale database for 3D object recognition,” in
ECCV, 2016.

[183] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark for 3d
object detection in the wild,” inWACV, 2014.

http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

96 Bibliography

[184] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[185] L. Yang, P. Luo, C. Change Loy, and X. Tang, “A large-scale car dataset for fine-
grained categorization and verification,” in CVPR, 2015.

[186] T.-Y. Yang, Y.-T. Chen, Y.-Y. Lin, and Y.-Y. Chuang, “Fsa-net: Learning fine-
grained structure aggregation for head pose estimation from a single image,” in
CVPR, 2019.

[187] T.-Y. Yang, Y.-H. Huang, Y.-Y. Lin, P.-C. Hsiu, and Y.-Y. Chuang, “Ssr-net: A
compact soft stagewise regression network for age estimation.” IJCAI, 2018.

[188] Z. Yang, H. Liu, and D. Cai, “On the diversity of realistic image synthesis,”
arXiv:1712.07329, 2017.

[189] S. Yao, T. M. Hsu, J.-Y. Zhu, J. Wu, A. Torralba, B. Freeman, and J. Tenenbaum,
“3d-aware scene manipulation via inverse graphics,” in NeurIPS, 2018.

[190] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised dual learning
for image-to-image translation,” CoRR, vol. abs/1704.02510, 2017.

[191] A. Yuille and D. Kersten, “Vision as bayesian inference: analysis by synthesis?”
Trends in cognitive sciences, 2006.

[192] Z. Zeng, B. Liu, J. Fu, H. Chao, and L. Zhang, “Wsod2: Learning bottom-up
and top-down objectness distillation for weakly-supervised object detection,” in
ICCV, 2019.

[193] H. Zhang, T. Xu, H. Li, S. Zhang, X.Wang, X. Huang, and D. N.Metaxas, “Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks,” in International Conference on Computer Vision (ICCV), 2017.

[194] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing and im-
proving neural radiance fields,” arXiv.org, 2020.

Bibliography 97

[195] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using
multitask cascaded convolutional networks,” SPL, 2016.

[196] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoencoders: Unsupervised
learning by cross-channel prediction,” in CVPR, 2017.

[197] X. Zhang, J. Feng, H. Xiong, and Q. Tian, “Zigzag learning for weakly supervised
object detection.” in CVPR, 2018.

[198] Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, and H. Lee, “Unsupervised discovery of
object landmarks as structural representations,” in CVPR, 2018.

[199] X. Zhou, A. Karpur, L. Luo, and Q. Huang, “Starmap for category-agnostic key-
point and viewpoint estimation,” in ECCV, 2018.

[200] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks,” in International Conference on
Computer Vision (ICCV), 2017.

[201] J.-Y. Zhu, Z. Zhang, C. Zhang, J.Wu, A. Torralba, J. Tenenbaum, and B. Freeman,
“Visual object networks: image generation with disentangled 3d representations,”
in NeurIPS, 2018.

[202] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face alignment in full pose range: A 3d
total solution,” PAMI, 2017.

[203] L. Zitnick and P. Dollar, “Edge boxes: Locating object proposals from edges,” in
ECCV, 2014.

	Introduction
	 Supervised Learning in Computer Vision
	 Challenges in data acquisition
	Self-Supervision in Computer Vision
	Generative Adversarial Networks
	Motivation
	Contributions
	List of published research papers
	Thesis outline

	Learning Viewpoint Estimation Through Self-Supervision
	Introduction
	Related Work
	Self-Supervised Viewpoint Learning
	Generative Consistency
	Discriminator Loss
	Symmetry Constraint

	Viewpoint-Aware Synthesis Network
	Experiments
	Head Pose Estimation
	Generalization to Other Object Categories

	Conclusions

	Self-Supervised Object Detection via Generative Image Synthesis
	Introduction
	Related Work
	Self-Supervised Object Detection
	Problem Setup
	Overview of SSOD
	Pose-Aware Synthesis
	Object Detection Adaptation
	Target Data Adaptation
	Training Procedure

	Experiments
	Datasets and Evaluation
	Ablation Study
	Comparisons to State-of-the-Art
	Additional Dataset
	Discussion on Results

	Conclusion

	Learning Image Synthesis and Decomposition Through Mutual Supervision
	Introduction
	Related Work
	Method
	Cycle Consistency
	Shared Adversarial Loss
	Implementation and Training

	Experiments
	Baselines
	Deferred Neural Rendering
	Intrinsic Image Decomposition
	Results on ShapeNet Airplanes

	Conclusion

	Conclusion

