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1 Introduction

I have yet to see any problem, however complicated, which, when looked at it the
right way, did not become still more complicated.
— Poul Anderson

Picture yourself immersed in the compilation of a review article on a research topic close to your
heart. You are faced with the cumbersome task of screening over a thousand articles that might
end up in your review. Beginning with the process of going through them one by one, you are
deciding whether a specific study matches the topic you are writing about or not.

In the field of cognitive science, researchers are interested in gaining a deeper understanding of
cognitive processes like the one outlined above. On their mission to make sense of behavior and
the underlying cognitive processes, mathematical models have become an important tool. One
of the primary aims of these models is to describe how underlying cognitive constructs connect to
model parameters and to specify how these generate behavior.

In the decision-making process initially described, the behavior consists of two key measur-
able variables: was your categorization “correct” and how long did you take to reach a decision?
Among the cognitive factors that influence these behavioral variables are, for instance, processing
speed, reading time, decision caution, and potential biases. In a cognitive process model for such
a decision process, one maps the aforementioned cognitive constructs to model parameters and
describes how these generate the two behavioral variables.

There are hundreds if not thousands of studies that have focused on developing and applying
such cognitive process models. However, what most of them have in common is that they neglect
the dynamic nature of the cognitive factors affecting the behavior. Let us again consider the ini-
tially described scenario. Based on the repeated decisions on the inclusion of an article, we would
like to infer your cognitive factors with a cognitive process model. Traditionally, cognitive scien-
tists would simply fit such a model to all your decisions and obtain a single estimate for each of
these factors, for example for your information processing speed and your reading time.

However, in our scenario, we can think of many factors that would lead to changes in the cog-
nitive constructs during your task of repeatedly screening articles. Initially, you meticulously ex-
amine each study, resulting in many correct categorizations of the articles. As time progresses, the
repetitive nature of the task tempts you to skim some articles, leading to decreased decision cau-

3



1 Introduction

tion. Fatigue sets in, making the reading process more taxing and slowing down your progress.
Maybe you even get a sudden insight into how to screen the articles more efficiently, leading to a
heightened information processing speed.

As evident from the described scenario, the underlying cognitive constructs do not remain con-
stant over time. Assuming stability of these constructs throughout all categorization decisions
fails to reflect the reality of cognitive processes. Instead, it is crucial to recognize and account for
the dynamic nature of these constructs. In our simplified example, imaging a scenario where we
acknowledge and address these dynamics reveals valuable insights. For instance, we may discover
that typically, just thirty minutes into article screening, there is a noticeable decline in information
processing. Such insight could prove immensely beneficial in enhancing both the efficiency and
quality of the article screening process.

The present dissertation focuses on the dynamics inherent in cognitive processes. The central
argument of this thesis is that dynamics in cognitive process model parameters do matter. After
exploring the dynamics in a specific cognitive process to underscore this importance, the disserta-
tion is dedicated to overcoming significant limitations of stationary cognitive models.

I propose a novel, innovative approach called neural superstatistics, which not only addresses dy-
namics within cognitive parameters but also does it highly efficiently. By providing reproducible
open-source code and by discussing important practical aspects, I provide other researchers with
a tool to account for dynamics across a broad spectrum of cognitive processes. Through various
applications to in silico and in vivo experiments, I demonstrate its feasibility and the inherently
dynamic nature of cognitive constructs.

This dissertation marks a step in advancing cognitive process models to a new level. Its con-
tributions are invaluable in deepening our comprehension of cognitive processes and in building
more realistic models of cognitive processes.

1.1 Contributions

The present dissertation is structured as follows:

• Chapter 2 introduces cognitive process models, with a special focus on the diffusion deci-
sion model.

• Chapter 3 discusses the occurrence of dynamics in cognition. It then provides an overview
to common approaches to include dynamics in cognitive process models.

• Chapter 4 delves deeper into a specific cognitive process, namely duration discrimination.
Here, I will demonstrate that accounting for dynamics can be important.
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1.2 List of Scientific Articles of the Cumulative Dissertation

• Chapter 5 dives deeper into a novel approach to account for dynamics in cognitive pro-
cess models, called neural superstatistics, which solves limitations of the previously reviewed
methods.

• Chapter 6 discusses the main contributions of this thesis in a larger context and provides
practical recommendations and an outlook for future research endeavors.

1.2 List of Scientific Articles of the Cumulative
Dissertation

This dissertation is based on three scientific articles. Two of them have been published in peer-
reviewed journals and one is currently under review. Copies of the articles can be found in the
Appendix.

• Schumacher, L., & Voss, A. (2023). Duration discrimination: A diffusion decision mod-
eling approach. Attention, Perception, & Psychophysics, 85(2), 560–577. https://doi.org/
10.3758/s13414-022-02604-1

• Schumacher, L., Bürkner, P.-C., Voss, A., Köthe, U., & Radev, S. T. (2023). Neural su-
perstatistics for Bayesian estimation of dynamic cognitive models. Scientific Reports, 13(1),
Article 13778. https://doi.org/10.1038/s41598-023-40278-3

• Schumacher, L., Schnuerch, M., Voss, A., & Radev, S. T. (2023). Validation and com-
parison of non-stationary cognitive models: A diffusion model application. arxiv. https:
//doi.org/10.48550/arXiv.2401.08626 (submitted at PLoS Computational Biology)
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2 Cognitive ProcessModels

Essentially, all models are wrong, but some are useful.
— G. E. P. Box

Research in psychology and cognitive science revolves around deriving meaning from empirical
data and providing an explanation for systematic patterns within these data (Hempel & Oppen-
heim, 1948). This endeavor typically starts with the development of a verbal theory about how
psychological phenomena influence behavior within a specific environment, such as an experi-
ment. From these theories, we derive hypotheses which can be empirically tested. To this end,
components of the verbal theories are operationalized, measured, and then linked to each other
by means of a statistical model. In other words, generic statistical models, such as generalized linear
models (GLM), are used to describe the relationships between observed variables.

While these models provide a quantitative framework for understanding complex interactions,
their interpretation suffers from the ambiguity of the underlying verbal theories. Many of these
theories exhibit weak logical connections to the hypotheses they are empirically evaluated against
(Oberauer & Lewandowsky, 2019). Furthermore, statistical models rest on distributional and
causal assumptions that may not align with the substantive theories under investigation, creating
a phenomenon known as the theory-description gap (Haines et al., 2023). When such assump-
tions diverge, theories become disconnected from the statistical tests intended to validate or refute
them, hindering scientific progress (Szollosi & Donkin, 2019; Yarkoni, 2022).

Many cognitive scientists argue that for a deeper understanding of how the mind works, con-
siderations of data and verbal theorizing alone are insufficient. They propose relying on cognitive
process models1, akin to physicists studying gravity (Farrell & Lewandowsky, 2018; Kriegeskorte
& Douglas, 2018). Unlike traditional statistical models, these models mathematically formalize
underlying latent cognitive components and specify how these components generate behavior.
This involves translating verbal theories into formal mathematical models (van Rooij & Blokpoel,
2020).

By decomposing cognition into several functional components and specifying how behavior
is generated, these models eliminate the aforementioned ambiguity of interpretation inherent in
verbal theories. This approach goes beyond estimates of “effects” or relationships. The primary

1also known as computational cognitive models, process-based models, or cognitive models
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2 Cognitive Process Models

aim of cognitive models is to explain and understand how a particular cognitive process, such as
attention, memory, or belief updating unfolds (Farrell & Lewandowsky, 2018).

A principal advantage of computational models is that we are forced to specify all parts of our
theory. If we had a full understanding of a cognitive process, then we should be able to engineer it –
or in the words of Richard Feynman “What I cannot create, I do not understand”. Computational
models thus check whether our intuitions about the behavior of a theorized system match what
actually arises from its realization.

Unpacking the latent cognitive process that shapes behavior has a long history in cognitive sci-
ence. Over time, various classes of computational cognitive models have emerged, each offering
unique insights into the intricacies of human cognition. For instance, cognitive architectures such
as ACT-R (Anderson et al., 2004) or CLARION (Sun, 2016) provide formalized frameworks that
encapsulate general principles of human information processing. Other classes of models concen-
trate on specific cognitive processes, such as decision-making (Batchelder & Riefer, 1999; Ratcliff
et al., 2016), learning (Eckstein et al., 2021), or memory processes (Burgess & Hitch, 2005), to
name just a few. Even other classes put emphasis on the relation between cognition and neurolog-
ical processes (Palmeri et al., 2017)

In conclusion, cognitive process modeling is an invaluable tool for advancing our understand-
ing across various domains, including cognitive science, psychology, and neuroscience. Its depar-
ture from traditional statistical modeling approaches can enrich our theoretical understanding
of cognition. As cognitive models continue to evolve, researchers unlock new avenues for explo-
ration. In the following, I will describe the idea of a cognitive model in general before I narrow
the focus to a specific cognitive model relevant to my work.

2.1 Simulating theMind

Formally, a cognitive process model can be expressed as a function g that generates data x based
on a set of parameters θ:

xn = g(θ, ξn) with ξn ∼ p(ξ), (2.1)

where the subscriptn denotes the ability of the generative function to produce a sequence of data
points {xn}Nn=1, for instance, multiple trials in a psychological experiment. Unlike machines
that can repeat the same actions mechanically, humans exhibit considerable variability in their
behavior. To accommodate such variability cognitive process models are typically formulated as
stochastic generators. In Equation 2.1, this stochasticity is introduced through an independent
source of noise ξn, sampled from an appropriate noise distribution p(ξ). Consequently, even
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2.2 Inferring the Mind

with the same parameter set, such a generative model yields diverse data, making it inherently
non-deterministic (Radev et al., 2020).

The described generative process is memoryless, implying that data is generated without reliance
on the history of previously simulated data points. Consequently, these simulators produce inde-
pendent and identically distributed (IID) data. This assumption is fundamental to many cognitive
process models (Batchelder & Riefer, 1999; Ratcliff & Murdock, 1976; Swets & Green, 1978) but
may not always hold. In the next chapter of this dissertation, I will argue that this assumption
should be questioned, discussing various approaches to challenge it.

These models can function as powerful exploratory tools. We do not necessarily need human
data to learn from our models. Instead, they play a crucial role as checks on our reasoning, helping
us assess whether their behavior aligns with our expectations. It is noteworthy that models often
exhibit unexpected or counterintuitive behaviors, underscoring their value in uncovering novel
insights.

By expressing a cognitive process mathematically as a stochastic simulator, we empower our-
selves to translate hypotheses about the mind into actionable experiments in silico. Through sim-
ulations, we can systematically observe the outcomes of our considerations. We can also make
quantitative predictions about individual behavior based on latent cognitive constructs and un-
derlying model assumptions (McClelland, 2009). This enables us to scrutinize the implications
of our ideas, leading to the derivation of testable hypotheses.

Any model that explains data is itself unobservable. Instead, a model serves as an abstract tool
that exists primarily in the minds of researchers and aims to describe, predict, and explain data.
It is essential to recognize that models are always simplifications of reality. We are rarely able to
account for all aspects that go into a specific process. These models often necessitate sacrificing
certain details to maintain feasibility (Farrell & Lewandowsky, 2018; McClelland, 2009).

2.2 Inferring theMind

The forward equation (cf. Equation 2.1) proves versatile in various applications. Nevertheless, our
primary interest often lies in inverse inference – determining the most plausible hidden parameters
responsible for generating a given set of observations. This challenge is commonly referred to as
the inverse inference problem (Poldrack, 2006).

It is crucial to recognize the asymmetry between forward and inverse inference regarding their
computational and epistemic complexities. In essence, forward inference proves relatively straight-
forward, requiring only the ability to articulate the model as a simulator program and execute it
with a specific parameter set. On the contrary, the task of estimating plausible parameters from a
given data set involves a substantial degree of uncertainty.
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2 Cognitive Process Models

As mentioned earlier, cognitive process models are typically non-deterministic and lack infor-
mation preservation. This leads to a scenario where simulating data with a generative model results
in the loss of information regarding the data-generating parameters, which is not directly embed-
ded in the data. Moreover, the information contained in observed data may prove insufficient
to fully and unambiguously reconstruct the data-generating process. Frequently, multiple model
and parameter configurations present themselves as plausible explanations for the observed data.
Consequently, intrinsic uncertainty surrounds the accurate determination of the true value of θ
when relying on a finite set of observations {xn}Nn=1.

To tackle this challenge, a range of methods is available. Common approaches for deriving
plausible parameters from observed data include maximum likelihood estimation in a frequentist
context (Myung, 2003) or Markov chain Monte Carlo (MCMC; van Ravenzwaaij et al., 2018),
and simulation-based inference in a Bayesian setting (Cranmer et al., 2020). In this discussion,
the focus is on the Bayesian inference perspective, as this is the approach that was used in all three
manuscripts included in the present dissertation.

In Bayesian modeling, emphasis is placed on the likelihood of the data, denoted as p(x | θ).
The likelihood quantifies the probability of observing data x given a specific set of parameters
θ. To estimate parameters based on observed data (i.e., inverse inference), it is necessary to invert
the likelihood. This inversion requires a prior distribution p(θ), representing initial beliefs about
plausible parameter values. Bayes’ rule, expressed as

p(θ |x) = p(x | θ)p(θ)
p(x)

, (2.2)

is then utilized to update these beliefs in light of the observed data. The result is a distribution
of plausible parameter values given the observed data, known as the posterior distribution p(θ |x).
In Equation 2.2, p(x) denotes the marginal likelihood, representing the probability of the data
under all possible parameter settings. It is worth noting that calculating the marginal likelihood for
parameter estimation is unnecessary, as it simply ensures the area under the posterior distribution
equals one.

Before estimating a cognitive model it is essential to assess its feasibility and validity. In a Bayesian
framework, adhering to a principled Bayesian workflow, as outlined by Schad et al. (2021), be-
comes crucial. This involves three key steps: (i) conducting prior push forward checks to scrutinize
the model’s assumptions, (ii) assessing computational faithfulness, for instance through simulation-
based calibration (SBC; Säilynoja et al., 2021; Talts et al., 2018), and (iii) evaluating inferential
calibration.
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2.2 Inferring the Mind

Alternative A

Alternative B

Non-decision 
time (𝜏) 

Starting point (𝛽)
Drift rate (𝑣)

+ Decision time = Response time 

Threshold
separation (𝑎)

Figure 2.1: A graphical illustration of the diffusion decision model’s evidence accumulation process with its
four core parameters: The drift rate, which denotes the average rate of evidence accumulation;
the threshold separation that sets the distance between the two choice alternatives A and B; the
relative starting point of the accumulation process; and the non-decision time that accounts for
the time of all decision unrelated processes.

The assessment of inferential calibration (also called parameter recovery) is particularly vital
when seeking insights into latent cognitive constructs from estimates of cognitive process model
parameters. Typically, this involves a parameter recovery study where synthetic data is simulated,
and the generative model is fitted to this data to determine whether the true data-generating pa-
rameters can be accurately recovered. The successful recovery of data-generating parameters sug-
gests model identifiability.

Following successful validation on simulated data, the next step involves fitting the model to
human data, inferring plausible parameters, and evaluating the model’s credibility through an ex-
amination of its absolute fit to the specific dataset. This assessment is conducted by re-simulating
the data using the inferred parameters and comparing the simulated outcomes with the actual
data – a process known as posterior re-simulation or posterior retrodiction checks. It is only when
the model can accurately capture the essential patterns in the empirical data that we should pro-
ceed with interpreting and reasoning about the estimated parameters.

After outlining the general principles of cognitive modeling, I delve into a specific cognitive
process model that forms the foundation of all three manuscripts in this dissertation – the diffu-
sion decision model (DDM).
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2 Cognitive Process Models

2.3 Diffusion DecisionModel

Initially developed by Ratcliff (1978), the Diffusion Decision Model (DDM) is arguably one of
the most influential cognitive process models. It describes an individual’s decision-making process
between two alternatives. Its core assumption is that people accumulate evidence over time until
a certain threshold is reached. This evidence accumulation process is mathematically formalized
by the following stochastic ordinary differential equation:

dxn = vdts + z
√

dts with z ∼ N (0, 1). (2.3)

Accordingly, the evidence xn on a trial n evolves as a random walk with some drift rate v and
standard normally distributed noise z, while ts represents time on a continuous time scale. The
average rate of evidence accumulation is described with the drift rate v. Note, that the scale of
the diffusion noise (z) here is set to 1.2 Typically, this scaling parameter is fixed for identifiability
reasons. The evidence accumulation process terminates as soon as one of two thresholds, 0 or a,
is reached, and the decision corresponding to the reached boundaryDn is made:

Dn =




1, if xn ≥ a

0, if xn ≤ 0
. (2.4)

Each boundary corresponds to one of the two choice alternatives, and their separation represents
the amount of evidence required before the respective choice is made. A small(er) boundary sep-
aration means that less information is accumulated until a decision is made. Moreover, the DDM
encompasses a constant τ that accounts for the duration of all decision-unrelated processes. To-
gether with the time of evidence accumulation until one threshold is reached (i.e., decision time),
this results in the response time of one specific decision:

x = inf{ts ≥ 0 |x(ts) ≥ a or x(ts) ≤ 0}+ τ (2.5)

Additionally, the relative starting point of the evidence accumulation process β can be estimated.
The DDM, thus, has four core parameters θ = {v, a, τ, β} (see Figure 2.1 for a graphical illus-

tration). Each of these parameters is assumed to map on a specific cognitive construct involved in
the decision-making process: the drift rate v is a proxy for mental processing speed; the threshold
a is a metric for decision caution; the non-decision time τ accounts for the time spent on stimu-

2An alternative convention is setting this scaling parameter to 0.1.
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2.3 Diffusion Decision Model

lus encoding and motor action; and the relative starting point β measures a potential a priori bias
toward a choice alternative.

Assuming such a process, one can account not only for the binary choice data but also for
response times. Jointly modeling these two observable variables has proven to be advantageous
because of one important phenomenon: Individuals engaged in speeded decision-making tasks can
to some extent trade-off speed with accuracy. This so-called speed-accuracy trade-off (Heitz, 2014;
Luce, 1986) suggests that individuals face a dilemma: they can either expedite decision-making,
sacrificing accuracy or prioritize precision, necessitating more time for evidence accumulation.
The DDM has no problem accounting for this phenomenon by varying the threshold parameter.

The DDM has inspired research in many fields (for a comprehensive review see, Ratcliff et al.,
2016; Voss et al., 2013). Although it was initially developed to elucidate behavior in perceptual
and memory-based decision-making, its application extended to a wide range of decision-making
processes, including social decisions (Klauer et al., 2007) and value-based decisions (Tajima et al.,
2016). Notably, a multitude of studies have unveiled connections between evidence accumula-
tion and neural signals, such as neural firing rates, electroencephalography (EEG), and functional
magnetic resonance imaging (fMRI) signals (Bode et al., 2012; Boehm et al., 2014; Churchland &
Ditterich, 2012; Gold & Shadlen, 2007; Nunez et al., 2017). For example, O’Connell et al. (2012)
showed in an EEG study that the drift rate parameter is highly correlated with ERP components.
These investigations provided compelling evidence that the DDM serves as a robust algorithmic
approximation of the decision-making processes actively executed by our brains.

Beyond its neural plausibility, a key factor contributing to the widespread adoption of the
DDM is that the mapping of its parameters to the assumed latent cognitive constructs has been
rigorously validated in numerous experimental studies (Arnold et al., 2015; Lerche & Voss, 2019;
Voss et al., 2004). For instance, when participants prioritize accuracy over speed, resulting in more
careful task execution, this is reflected in a larger separation of thresholds, indicating heightened
response caution (Mormann et al., 2010). Similarly, when trials are manipulated to favor one
response over another, the starting point shifts accordingly (Mulder et al., 2012). Variations in
stimulus discriminability, making the task more challenging or easier, are reflected in changes to
the drift rate (Ratcliff & McKoon, 2008). Moreover, mandating the use of a single finger for all
responses (Lerche & Voss, 2019) or requiring multiple keypresses for each response (Voss et al.,
2004) increased the value of the non-decision time parameter. Collectively, these studies strongly
indicate that the DDM parameters indeed capture the cognitive constructs involved in the pro-
posed evidence accumulation process.

More generally, the DDM belongs to a broader class of models called evidence accumulation
models (EAM; Evans & Wagenmakers, 2020).3 EAMs can be divided into two categories: (i)

3Sometimes also called sequential sampling models.
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2 Cognitive Process Models

accumulator-based models, where evidence for each choice alternative is accumulated in a sepa-
rate accumulator. The process is terminated when one of the accumulators first reaches a pre-
determined threshold. This approach allows modelers to investigate tasks with more than two
choice alternatives. Notable examples include the linear ballistic accumulator (Brown & Heath-
cote, 2008), the racing diffusion model (Tillman et al., 2020), and the leaky competing accumu-
lator (Usher & McClelland, 2001). (ii) diffusion or random walk models that track the relative
evidence between two choices, with the DDM being its most prominent model. Here, evidence
for a specific alternative is always also evidence against the other alternative. Despite this distinc-
tion, both types of models generally incorporate common cognitive constructs, such as decision
caution, non-decision time, and a priori bias.

In summary, both the DDM and other models within the EAM class have significantly ad-
vanced our comprehension of various facets of decision-making and cognition more broadly.
Moving forward, I will delve into the intricacies of the dynamics within cognitive constructs that
these models seek to formalize.

14



3 Accounts for Dynamics in Cognition

Everything flows, nothing stands still.
— Heraclitus, 501 BC

Cognitive and behavioral components, such as those formalized by the DDM, exhibit changes
over time, regardless of the time scale we look at. For instance, there is a large body of literature
that investigated how cognitive aspects such as mental processing speed or decision caution change
over the life span (Theisen et al., 2021; von Krause et al., 2022; von Krause et al., 2021). Such
studies either investigate a population of individuals cross-sectionally or longitudinally and ob-
serve how aspects of cognition change with age. For example, von Krause et al. (2022) showed in a
cross-sectional study with a sample of over one million individuals that the main cause for slowing
down in tasks with increasing age is an increase in decision caution and slower decision-unrelated
processes. These results challenged a widespread belief that a decreasing mental processing speed
is the cause for this slowing.

Dynamic changes also appear on a much shorter time scale, for example during a session of a
psychological experiment or even on a trial-by-trial basis. Imagine you are rapidly solving a speeded
decision-making task. All of a sudden you realize that you made a mistake. Will you continue to
perform your task rapidly on subsequent trials or will you make some adjustments? It has been
found that people tend to slow down in their task-solving speed after they make an error – an effect
called post-error slowing (Laming, 1979; Rabbitt & Rodgers, 1977). A study based on a total of
over one million trials from39participants performing a decision task revealed that this slowdown
can be attributed to an increase in the response caution (Dutilh et al., 2012). In addition, other
studies found a decrease in mental processing speed and a change in non-decision time following
a mistake (Damaso et al., 2022; Dutilh et al., 2013; Purcell & Kiani, 2016; Schiffler et al., 2017).

Effects such as post-error slowing occur rather abruptly and as a consequence of what happened
in a previous trial. However, during an experimental session, cognitive constructs also change
more slowly and gradually. Typical examples of such time-on-task effects are increases in perfor-
mance due to practice or decrease thereof as a result of declining motivation, attention, or fatigue
(Gunawan et al., 2022).
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3 Accounts for Dynamics in Cognition
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Figure 3.1: A conceptual depiction of the four common strategies for modeling temporal variations in the
parameters (θ) of a cognitive process model (G). A Stationary variability, also referred to as
inter-trial variability, posits that parameter values fluctuate around a stable mean. B Trial bin-
ning involves categorizing data into distinct bins and fitting a cognitive process model (G) to
each bin individually. C Regression approach employs time (and sometimes additional contex-
tual variables) as predictors for the parameters (θ). D Frontend-backend models employ a mech-
anistic model (the frontend) to elucidate the dynamics of the parameters of the cognitive process
model (the backend).

In summary, we constantly adapt our cognition and behavior to external and also internal de-
mands and circumstances. As a consequence, cognitive process models should account for such
changes to accurately describe behavior.

Frequently, when applying cognitive process models, researchers tend to overlook dynamic as-
pects, resulting in models reliant on static parameters. These models assume stability in cognitive
components over time, a presumption that, more often than not, proves to be inaccurate. Ne-
glecting the temporal aspect of cognitive parameters can lead to numerous adverse consequences,
including inflated uncertainty estimates and potentially misguided conclusions drawn from static
parameters.

In essence, I argue that a comprehensive understanding of cognitive processes necessitates a
more nuanced examination of their temporal dynamics. By adopting a perspective that accounts
for the evolution of cognitive components, researchers can refine their models, ultimately con-
tributing to a more robust and accurate depiction of the intricate interplay within cognitive func-
tioning.

In the subsequent discourse, I will explore common approaches for integrating time-varying
parameters into cognitive process models. I broadly classify these approaches into four categories:
stationary variability, trial binning, regression approach, and frontend-backend models. Refer to
Figure 3.1 for an abstract illustration of these four approaches. In the following section, I will
elaborate on each of these approaches.
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3.1 Stationary variability

3.1 Stationary variability

The Stationary variability approach involves considering random fluctuations of one or more cog-
nitive model parameters around a stable mean, known as stationary or inter-trial variability (see
Figure 3.1A):

θt ∼ p(θ | η), (3.1)

where the parameters θt on a given trial are sampled from some probability distribution with a
constant mean θ and some additional distributional parameters η. The rationale behind this is
that certain cognitive constructs do not remain static over time; instead, they demonstrate vari-
ability while still maintaining a stable overall state. A well-known instance of this approach is the
“full” diffusion decision model, which permits inter-trial variability in its fundamental parame-
ters (i.e., drift rate, non-decision time, and starting point)(Ratcliff & Rouder, 1998; Ratcliff &
Tuerlinckx, 2002). Stationary variability in the threshold parameter has to be omitted in order to
prevent tractability issues.

Accounting for these inter-trial variabilities in the DDM has proven advantageous for two rea-
sons: Firstly, it allows the production of different response time distributions for correct and error
responses. Secondly, it makes it easier to obtain a good estimate of the non-decision time. This pa-
rameter is by definition bounded to the fastest response time in the data. When a data set contains
fast responses and we assume a static non-decision time parameter then the parameter is forced to
have a relatively low value although it may be higher in some trials. Employing stationary variabil-
ity in this parameter solves this problem.

The inclusion of stationary inter-trial variability primarily enhances the model fit within the
observed data, yet it falls short in detecting systematic changes or abrupt shifts in the model pa-
rameters since it only allows for variability around a stable mean. Systematic changes would expect
the mean to increase or decrease and abrupt shifts might lead to values outside the variability of the
stable mean. Furthermore, such an approach still treats behavioral data as IID and does not take
information from previous trials into account. These limitations render this method inadequate
for exploring systematic fluctuations in cognitive constructs.

3.2 Trial Binning

An alternative method that is capable of identifying systematic changes in components of a cog-
nitive model involves fitting a stationary model to trial bins (see Figure 3.1B):
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θt =





θ1, if t ≤ T1

θ2, if T1 < t ≤ T2
...

θm, if Tm−1 < t ≤ Tm

. (3.2)

First, the data are divided into m bins, each containing a number of trials, denoted as T . Subse-
quently, a stationary model is fitted to each bin independently, resulting in bin-specific parameter
sets θ1, . . . , θm. This method assumes that cognitive constructs remain constant within a trial
bin and change at a predefined time point, returning to stability thereafter. For example, Evans
and Brown (2017) employed this technique to demonstrate that individuals approach statistically
defined optimality concerning their speed-accuracy trade-off. This was reflected in a threshold
parameter that decreased from bin to bin.

Nevertheless, choosing the number of trial bins m is often more of a pragmatic decision than
one driven by theory. This leads us to a fundamental issue with the approach. If one opts for many
bins with a small number of trials, the result is a relatively fine-grained parameter dynamic but also
highly uncertain parameter estimates due to insufficient data within a specific bin. Thus, there is a
trade-off between dynamics resolution and estimate certainty. Another drawback of trial binning
is that estimates within a specific bin are not informed by data from neighboring bins. However,
the attractiveness of time-varying models lies in their unique ability to utilize both past and future
data to constrain estimated parameter trajectories. Also, within each bin, the model treats data as
IID and is unable to detect potential changes in the model components.

3.3 Regression Approach

The third category involves a generalized linear model (GLM) with time and possibly other con-
textual variables as predictors for cognitive process model parameters (see Figure 3.1C):

θt ∼ p(L(
y∑

j=0

βjt
j), η), (3.3)

where the parameter θt at some time point t is estimated from a linear combination of polyno-
mial terms L(∑y

j=0 βjt
j) with at least time t as a predictor. p(·, η) indicates the form of the

probability distribution, which depends on some parameters denoted by η. Please note that the
specific details of the distribution and the choice of the error term (if any) are not provided in
Equation 3.3. This depends on the assumptions made about the errors in the GLM. A common
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3.4 Frontend-Backend Model

choice, for instance, is the normal distribution for linear regression with normally distributed er-
rors.

Cochrane et al. (2023) utilized this approach to investigate learning-related changes in the
DDM’s drift rate parameter during a perceptual decision-making task. A comparison between
models with different polynomial terms provided evidence for an exponential increase in drift
rates due to perceptual learning.

The GLM approach presents a more attractive alternative to trial binning, offering the capabil-
ity to identify both linear and non-linear changes in model parameters without sacrificing resolu-
tion. However, it is crucial to acknowledge that the underlying regression function comes with
strong assumptions about the nature of the relationship between model parameters and time. De-
spite the common practice of fitting and comparing several plausible specifications, such as linear
versus exponential models, anticipating and determining all possible specifications in advance can
be challenging. Consequently, the overall flexibility of the GLM model for process characteriza-
tion remains notably constrained (Gunawan et al., 2022).

3.4 Frontend-BackendModel

In contrast, the frontend-backend approach seeks to capture alterations in model parameters while
providing an explanation for the dynamic nature of the parameters. In this framework, the back-
end model corresponds to the cognitive model that formalizes the generation process of behavioral
data, such as a DDM. The frontend model comprises a mechanistic model that elucidates how
the parameters of the backend model evolve over time, varying across contexts and in response to
additional factors (see Figure 3.1D):

θt = f(θ, t, c, η), (3.4)

where the cognitive model parameter θt at a specific time step t is determined by a function f
incorporating time t, context c (e.g., experimental conditions), previous parameter values θ1:t−1,
and additional parameters η as potential predictive variables. Equation 3.4 is intentionally for-
mulated in a general manner because different frontend-backend models vary immensely. For
instance, one might instantiate a working memory capacity model that describes changes in the
DDM’s drift rate parameter, while another describes how mind-wandering leads to inattention
and how it changes people’s decision caution over time. Also, some use time t as an explicit fac-
tor, while others implicitly consider time through functions relying on previous parameter values
θ1:t−1.

An illustrative example in recent research involves leveraging reinforcement learning models as
frontend models to elucidate changes in DDM parameters resulting from reward-based learning
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(Fontanesi et al., 2019; McDougle & Collins, 2021; Miletić et al., 2021). In this case, the frontend
model describes how the drift rate parameter of the DDM changes based on an updating function.
This function employs static parameters, such as the learning rate, which maps to the individuals’
tendency to take feedback into account.

Such an approach goes beyond a regression approach, which provides a mere description of pa-
rameter changes using trend functions. The frontend-backend approach provides a mechanistic
explanation of their temporal variations through a set of static parameters and deterministic func-
tions. Typically, these static frontend parameters are linked to cognitive constructs in a manner
similar to how cognitive process models map to cognitive constructs. While the frontend-backend
approach holds promise, it is not always straightforward to work with. Mechanistic explanations
for cognitive component changes may be unknown or challenging to link to the backend model.

In summary, all four approaches represent a crucial step in addressing the inadequacy of treat-
ing cognitive parameters as static. However, each has its drawbacks and challenges. Before provid-
ing a novel approach that overcomes some of these challenges, in the next chapter, I will present a
specific example of a cognitive process in which accounting for dynamic changes might be neces-
sary. In this work, I employed, among other methods, a frontend-backend model to account for
the dynamics in this process.
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4 Dynamics in Duration Discrimination
(Manuscript I)

It has to start somewhere, it has to start sometime,
what better place than here? What better time than now?
— Rage Against the Machine, “Guerrilla Radio”

One aspect of human time perception involves the ability to discriminate the duration of two
sequentially presented stimuli. When investigating this process, a common methodology entails
presenting two stimuli: a constant standard stimulus and a variable comparison stimulus. Partici-
pants are then tasked to determine which of the two stimuli was presented for a longer duration.
A fundamental psychophysical model, known as the difference model (Thurstone, 1927a, 1927b),
conceptualizes the decision-making process as follows: individuals, when faced with the choice of
discerning the duration difference between two stimuli,S1 andS2, internally compute the differ-
ence asD = S1 − S2.

In an experimental context, task difficulty is typically manipulated by varying the magnitude
of this difference between stimuli. The more similar the two stimuli, the more difficult the task
becomes. Participant’s performance in such a task can be described by a (sigmoidal) psychomet-
ric function, wherein choice accuracy is a function of varying stimulus intensity, in this case the
varying stimulus duration (see Figure 4.1 for examples). When analyzing the performance in this
manner, two key features of the function are often of special interest. First, the horizontal shift
of the sigmoid function, representing the point of subjective equality of the standard and com-
parison stimulus (Fechner, 1860). Second, the slope of the function, often referred to as the just
noticeable difference describes the proficiency with which an individual can differentiate between
the two stimuli(Ulrich & Vorberg, 2009).

Remarkably, studies indicate that these features, and consequently, individuals’ performance
in this task, are not only influenced by the duration difference between the two stimuli but also
by task-unrelated factors – referred to here as context effects. The Type A effect, commonly known
as the time-order error (TOE), describes how the sequence in which stimuli are presented influ-
ences the point of subjective equality (Jamieson & Petrusic, 1975). In essence, participants tend
to either overestimate or underestimate one stimulus compared to the other, contingent on the
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Figure 4.1: Hypothetical psychometric functions map response probabilities to varying durations of the
comparison stimulus. The vertical dashed line marks the constant duration of the standard
stimulus (adopted from Schumacher and Voss (2023)). The point where the psychometric
functions intersect the horizontal dashed line is referred to as the point of subjective equality.
Left panel The solid blue line is shifted to the right, indicating a Type A error, as the dura-
tion of the comparison is larger than the standards’ duration at the point of subjective equality.
Right panel When the comparison stimulus precedes the standard stimulus (position of com-
parison= 1) the slope of the psychometric function decreases, a phenomenon known as a Type
B error.

order in which they are presented (Hellström, 1985). For example, individuals tend to overesti-
mate the magnitude of the standard stimulus when it precedes the comparison stimulus but do
not show such a bias when the standard stimulus is presented after the comparison (see left panel
in Figure 4.1).

Moreover, it has been found that the stimulus presentation order also has an impact on the
just noticeable difference. Dyjas et al. (2012) demonstrated that participants exhibit enhanced
discrimination performance when discerning the duration between a constant standard stimulus
and a varying comparison stimulus if the standard stimulus precedes the comparison, rather than
follows it. This phenomenon is commonly termed as a negative Type B effect (Ulrich & Vorberg,
2009) and has been observed not only in duration discrimination but also in other domains such
as weight (Ross & Gregory, 1964) and contrast discrimination (Nachmias, 2006). The Type B
effect is characterized by a reduced slope of the sigmoid function for trials where the compari-
son stimulus precedes the standard compared to trials with the reversed order (see right panel in
Figure 4.1). In contrast, the Type A effect involves a mere lateral shift of the sigmoid function,
mapping response probabilities to the difference in stimulus duration.
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Both Type A and Type B effects are considered global context effects, stemming from the his-
tory of previously encountered stimuli. The prevailing explanation for these context effects is
that decisions regarding the magnitude of a stimulus feature (e.g., duration) are not solely based
on the current stimulus but are also influenced by previously encountered stimuli. Consequently,
information stored in the memory system shapes the perception and decisions concerning subse-
quently presented stimuli. This is where dynamics in cognition come into play.

Lapid et al. (2008) proposed that participants maintain an internal reference of a prototype
stimulus in their memory, continually updating it over time. Dyjas et al. (2012) introduced the
internal reference model (IRM), a mechanistic model explaining how this internal reference (I)
is established and updated across trials. According to the IRM, the internal reference on a given
trial (In) is computed as a weighted sum of the internal reference from the previous trial (In−1)
and the internal representation (S1,n) of the first stimulus in the current trial. This implies that
the internal reference is dynamically updated on a trial-by-trial basis, following a geometrically
moving average. The updating of the internal reference is thus expressed as follows:

In = gIn−1 + (1− g)S1,n, (4.1)

where the parameter g (0 ≤ g ≥ 1) signifies the weight assigned to the internal reference. In
making decisions, participants compare this internal reference (In) with the internal representa-
tion of the second stimulus (S2,n), resulting in a difference (Dn = In − S2,n). If this difference
(Dn) is greater (smaller) than 0, participants decide that the first stimulus was longer (shorter).
Multiple studies demonstrated that the IRM is capable of accounting for the Type A and Type B
effects (Bausenhart et al., 2014, 2015; Dyjas et al., 2012, 2014; Ellinghaus et al., 2018).

When a variable comparison stimulus is presented before a constant standard stimulus, the
stability of the internal reference across trials is compromised as the variable stimulus becomes
integrated. This fluctuation in the representation of the internal reference contributes to a decline
in discrimination performance. Consequently, the magnitude of the Type A and Type B effect is
expected to rise with higher values of g since the perception is more profoundly influenced by the
dynamically changing internal reference (Dyjas et al., 2014).

Hellström (1979) proposed an alternative account, called sensation weighting model (SWM).
This model does not assume an updating mechanism of an internal reference but assumes that
the two presented stimuli are simply weighted differently:

Dn = w1S1,n − w2S2,n, (4.2)
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whereDn is the subjective difference between the two stimuli S1,n and S2,n each weighted by
w1 andw2 (0 ≤ w ≥ 1). In this model, context effects are attributed to varying weights assigned
to stimuli. Hellström (1985) demonstrated that assigning a larger weight to the second stimulus
leads to a Type B effect. Hellström et al. (2020) argued that the SWM but not the IRM adequately
explains the full spectrum of observed Type B and Type A effects. The IRM encounters difficulties
when the standard stimulus is no longer fixed, especially in roving standard tasks, and struggles
to account for positive Type B effects observed at times (de Jong et al., 2021; Hellström et al.,
2020). Dyjas et al. (2014) proposed a promising hybrid approach, suggesting that combining the
generality of the SWM with the trial-by-trial updating mechanism of the IRM could be fruitful.

Both models discussed rely on the concept of stimulus comparison, employing a linear model
with distinct weights for the two stimuli or integration of past stimulus experiences. These mod-
els represent significant advancements over the standard difference model in explaining diverse
context effects. However, they offer limited insights into the decision process itself.

Manuscript I1, thus, focused on enhancing the understanding of duration discrimination pro-
cesses by integrating the principles of the IRM and SWM into a DDM, allowing for a comprehen-
sive analysis of the decision-making process. This integration enabled a comprehensive analysis of
the decision-making process, offering insights into crucial cognitive aspects such as potential a
priori biases. Moreover, considering both choice and response time data can mitigate inferential
biases and serve as a valuable constraint for parameter estimation, ultimately enhancing parameter
recoverability (Ballard & McClure, 2019; Shahar et al., 2019).

The study pursued several objectives. Firstly, as previously discussed, we aimed to integrate
the principles of the IRM and SWM into a DDM to incorporate response times and gain deeper
insights into duration discrimination. Secondly, the study sought to conduct a rigorous model
comparison among competing models combining different combinations of the IRM, SWM, and
DDM. Thirdly, it tested a specific hypothesis regarding whether the DDM’s starting point param-
eter is influenced by the first stimulus presented.

The underlying rationale of these models lies in the notion that the difference between the
durations of two stimuli, computed based on the IRM or SWM, impacts the drift rate of the
DDM. For instance, in the case of combining the IRM and the DDM model, the drift rate vn on
a given trial n is calculated as follows:

vn = v0 + v1(In − S2,n), (4.3)

1Schumacher, L., & Voss, A. (2023). Duration discrimination: A diffusion decision modeling approach. Attention,
Perception, & Psychophysics, 85(2), 560–577. https://doi.org/10.3758/s13414-022-02604-1
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where v0 represents a baseline drift rate, and v1 scales the difference between the internal ref-
erence In (computed according to Equation 4.1) and the second stimulus S2,n. When this differ-
ence is large, the task of discriminating between the two stimuli durations becomes relatively easy,
resulting in a higher drift rate.

This model constitutes a frontend-backend model, with the IRM as the frontend and the
DDM as the backend model. It produces non-IID data since the internal reference (In) on a given
trial n is computed using the updating mechanism (cf. Equation 4.1), which depends on previ-
ously encountered stimuli. The factor time is, thus, implicitly included. However, our primary
interest lies not in the explicit dynamics of the drift rate parameter itself but rather in accounting
for them to explain crucial patterns in the data, such as Type A and B errors.

Conversely, the model integrating the principles of the SWM into a DDM computes the drift
rate according to:

vn = v0 + w1S1,n + w2S2,n, (4.4)

where w1 and w2 denote weights for the first (S1,n) and the second stimulus (S2,n). In this
model, the drift rate (vn) on a given trial n solely depends on the presented stimuli. It does not
incorporate information from past stimulus encounters or explicitly utilize the factor of time.
Consequently, it produces IID data and does not fit into any of the dynamic modeling approaches
described in Chapter 3.

Additionally, we tested a combination of the IRM and the SWM, expressed as:

vn = v0 + w1In + w2S2,n, (4.5)

where both the internal reference In and the second stimulus S2,n are weighted. This model
incorporates the concepts of the IRM by including the internal reference updating mechanism
and the rationale of the SWM by differently weighting both stimulus representations.

Besides a rigorous comparison between these competing models, we investigated whether the
magnitude of the first stimulus S1,n or, in the case of the IRM, the internal reference In, affects
the relative starting point of the DDM. This assumption stems from the idea that individuals ini-
tially encode the duration of the first stimulus, which then influences the evidence accumulation
process while attending to the presentation of the second stimulus.

We re-analyzed the data from two experiments, which were previously published by Dyjas et
al. (2012). In these experiments, participants had to discriminate the duration of two auditory
stimuli (Experiment 1) or two visual stimuli (Experiment 2). In both instances, one stimulus was
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a variable comparison and the other a constant standard. The stimulus order was manipulated,
which led to a clear Type A and Type B effect for all participants. On the basis of these data, we
compared different DDMs that either used the traditional difference model, the IRM, the SWM,
or a combination of the two latter, for the drift rate and also whether the starting point parameter
depends on the first stimulus or the internal reference.

Results concerning the relative goodness-of-fit computed with approximate leave-one-out cross-
validation (Vehtari et al., 2017) indicated that a model that incorporated the SWM model for the
drift rate and let the starting point vary as a function of the first stimulus provided overall the
best out-of-sample prediction across the two experiments. However, other models with the IRM
mechanism as well as the model including a combination of the IRM and SWM performed only
slightly worse. Also, it appeared that the influence of the first stimulus on the starting point of
the evidence accumulation process was very small. We further evaluated the model with the best
relative goodness-of-fit in terms of absolute fit to the data of the two experiments by means of
posterior re-simulation. The results showed that the model is not only capable of closely fitting
the choice data with its Type A and B effect patterns but also explains the full response time dis-
tribution.

In summary, this work introduced an innovative way to model how people make decisions
about the discrimination of time intervals. By combining existing models of how we perceive and
compare stimuli (IRM, SWM) into a DDM, we found that our approach accurately predicts how
well people can judge the difference between two subsequently presented stimuli. Importantly,
our model expanded existing models by considering not only choice but also response time data.
Additionally, we demonstrated that the model was able to predict two well-known effects in this
area of study: the Type B effect and the Type A effect. However, our analyses did not provide
strong evidence in favor of the IRM or the SWM because strong model mimicry was observed.
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5 Superstatistics

Everything should be made as simple as possible, but not simpler.
— Albert Einstein

In Chapter 3, I discussed prevalent strategies for addressing dynamics in cognitive model param-
eters, followed by a specific application of one of these methods. In the current chapter, I delve
into superstatistics – a method to directly estimate non-stationary dynamics in cognitive process
models from observed data.

Beck and Cohen (2003) introduced the term “superstatistics” to denote a combination of mul-
tiple stochastic processes operating on distinct temporal scales, providing a framework to eluci-
date heterogeneous temporal dynamics. Instead of assuming static model parameters, superstatis-
tics introduces a hierarchical structure comprising at least two models. First, a low-level (i.e., ob-
servation or microscopic) model that formalizes the local behavior of a (cognitive) system. Second,
a high-level (i.e., transition or macroscopic) model that characterizes the parameter dynamics of
the low-level model (see Figure 5.1 for a conceptual illustration).1 This framework enables the
estimation of non-stationary low-level parameter dynamics directly from observed data. In other
words, such models remain largely agnostic about the dynamics of the model components, im-
pose limited constraints, and operate in a data-driven manner.

The superstatistics approach overcomes various limitations associated with the previously pre-
sented methodologies. In contrast to stationary models, superstatistical models can generate non-
stationary variations in the parameters of the low-level model, enabling gradual changes as well
as abrupt transitions between different states. Another key feature is that parameter estimates
are influenced by past data points, diverging from the assumption of IID data. Unlike the trial-
binning approach, models within the superstatistics framework harness the entirety of available
data, alleviating concerns about having insufficient data points for accurate parameter estimation.
Differing from the regression approach, superstatistics places minimal constraints on potential
parameter trajectories, resulting in a significantly less restrictive modeling framework.

At first glance, the superstatistics framework may seem similar to the frontend-backend model
approach discussed earlier. However, in the case of superstatistics, the transition model is a stochas-

1There is no intrinsic time scale assigned to low- and high-level processes; their interpretation is contingent on the
scale relevant to the specific research question, rendering these terms relative in meaning.
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Figure 5.1: A graphical illustration of a superstatistical model. A low-level observation model (likelihood)
produces time series {xt}Tt=1 with time-varying parameters {θt}Tt=1. These parameters follow
a high-level transition model using static parameters η and sensible starting values θ0. Prior
distributions are employed both on the high-level parameters η and the starting values of the
low-level parameters θ0.

tic process rather than a set of deterministic functions like the frontend model. Due to the utiliza-
tion of a stochastic process for the dynamics of the parameters, every parameter at any given time
step in the time series is treated as a free parameter. Also, the transition function of superstatistical
models does not encompass mechanistic explanations for the parameter dynamics, opting instead
for enhanced flexibility in their estimation. While mechanistic explanations hold pivotal roles in
cognitive science, instances arise where such explanations are either absent or are only applicable
to specific parameters. Consequently, I view these two approaches as complementary. The su-
perstatistical framework adopts a bottom-up, exploratory stance, serving as a tool for hypothesis
generation. In subsequent stages, one could potentially devise plausible frontend models, drawing
insights from parameter trajectories inferred using a superstatistical model. Furthermore, super-
statistical models can function as benchmarks for scrutinizing and validating competing frontend-
backend models, achieved through a comparative analysis of resulting parameter dynamics derived
from both methodologies.

Superstatistics as a modeling framework to estimate non-stationary parameter trajectories di-
rectly from data has found applications in many fields of research. Among them are the exami-
nation of train delays (Briggs & Beck, 2007), cancer survivals (Leon Chen & Beck, 2008), wind
velocity fluctuations (Rizzo et al., 2004; Santhanam & Kantz, 2008; Stoevesandt & Peinke, 2010),
earth surface temperature (Yalcin & Beck, 2013), sea-level fluctuations (Rabassa & Beck, 2015),
air pollution (Williams et al., 2020), and economics (Denys et al., 2016; Van der Straeten & Beck,
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2009), to name just a few. These applications underscore the versatility of the superstatistics con-
cept in addressing complex phenomena across diverse domains.

Surprisingly, despite its appeal, it has found very little application in cognitive science (but see
Metzner et al., 2021). Computational complexities might be one of the reasons for this absence.
In fact, estimating and comparing superstatistical models presents significant challenges, particu-
larly within a Bayesian framework. Several factors contribute to these challenges. First, both the
high-level and low-level models are stochastic, introducing substantial uncertainty regarding the
values of all model parameters when confronted with a finite number of observations. Second, the
low-level models may be intricate and nonlinear, making it challenging to establish a closed-form
analytic expression connecting model parameters to data (i.e., rendering the likelihood function
intractable), or the evaluation of the likelihood might be computationally demanding. Lastly,
even for stationary low-level models, the computational burden can become daunting when ap-
plied to multiple datasets. This is because standard Bayesian methods are not amortized, necessi-
tating sequential re-running from scratch for each dataset.

In this dissertation, I argue that cognitive science can benefit from adopting a superstatistics
modeling framework. As discussed in Chapter 3, cognition exhibits numerous dynamic aspects.
To capture these nuances in mathematical models and thus obtain a more realistic representation
of cognitive processes, it is imperative to incorporate these dynamics. However, existing methods
for achieving this have notable limitations. Manuscript II2 therefore explores the superstatistics
framework in the context of cognitive process models, more specifically the DDM. In this work,
we developed a novel Bayesian estimation method for such models using custom neural networks.
Additionally, we provide authors with open-source code, which can be adjusted for individual
needs (https://github.com/bayesflow-org/Neural-Superstatistics).

5.1 Neural Superstatistics (Manuscript II)

Following Mark et al. (2018), we characterize dynamic models by a low-level observation model
with time-varying parameters {θt}Tt=1 of lengthT , which dynamically evolve according to a high-
level transition model with static parameters η. The low-level model is specified by a likelihood
function L, while the high-level model encompasses a transition function T . In our study, the
focus was on addressing general superstatistical models, where the likelihood function L of the
low-level model may not be analytically tractable. These models are implemented as randomized
stateful simulators, generating observable trajectories {xt}Tt=1 through the following general re-
current system:

2Schumacher, L., Bürkner, P.-C., Voss, A., Köthe, U., & Radev, S. T. (2023). Neural superstatistics for Bayesian
estimation of dynamic cognitive models. Scientific Reports, 13(1), Article 13778. https://doi.org/10.1038/s41598-
023-40278-3
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θt = T (θ0:t−1, η, ξt) with ξt ∼ p(ξ | η) (5.1)

xt = G(x1:t−1, θt, zt) with zt ∼ p(z | θt). (5.2)

In these equations, T represents a high-level transition function with static parameters η. G
denotes a transformation that encapsulates the functional assumptions of the low-level model.
Moreover, the random noises, ξt ∼ p(ξ) and zt ∼ p(z), introduce variability. The initial pa-
rameter values and the static high-level parameters follow prior distributions, θ0 ∼ p(θ) and
η ∼ p(η), respectively. The former encapsulates available information regarding plausible low-
level parameter values and the latter represents initial beliefs about the behavior of the parameter
trajectories. This framework allows for a comprehensive exploration of dynamic models, espe-
cially in situations where closed-form expressions for the low-level model likelihood may not be
readily available.

Moreover, it is a highly flexible framework. In terms of the transition function T , we have
many options to choose from. For instance, we can assume that the low-level parameters follow a
Gaussian random walk:

T (θt−1, η, ξt) = θt−1 + η ξt with ξt ∼ N (0, 1). (5.3)

Another possibility could be a Gaussian process (GP) transition model where the parameters de-
pend not only on the previous state of the process but rather on the entire history of the process:

θ1:T ∼ GP(µθ,Kθ), (5.4)

where µθ and Kθ correspond to a mean and covariance function defined by a vector of time
step indices. In this case, the transition model parameter η denotes the parameters of a Gaussian
kernel.

5.1.1 Amortized Bayesian Inference

When fitting superstatistical models to data, the goal in a Bayesian analysis setting is to obtain full
posterior distributions for both the entire low-level parameter trajectory {θt}Tt=1 and the static
high-level parameters η. To this end, we devised an amortized Bayesian inference method (Radev
et al., 2020) based on recurrent probabilistic neural networks, specifically tailored for supersta-
tistical models, hence termed as neural superstatistics. This method comprises two phases: (i) a
relatively computationally intensive training phase of custom neural networks, and (ii) an almost

30



5.1 Neural Superstatistics (Manuscript II)

ℳ

𝒯

𝒢

𝜃!:#

𝜂

𝜃$ Joint
posterior𝑥!:#

Summary
network

Inference
network

𝑥&!:#

Figure 5.2: A conceptual illustration of the amortized Bayesian inference workflow for parameter estima-
tion (adopted from Schumacher, Schnuerch, et al. (2023)). A recurrent summary network
consumes time series x1:T generated with a superstatistical model M and learns maximally in-
formative summary statistics x̃1:T . An inference network (i.e., normalizing flow) is trained to
approximate the joint posterior distribution of time-variant low-level parameters θ1:T as well
as static high-level parameters η given the learned summary statistics.

instantaneous inference phase, where the full joint posterior p(θ1:T , η |x1:T ) is recovered from
observed time series {xt}Tt=1.

The training of the neural networks relies on simulated data sets generated by a generative
model (refer to Figure 5.2 for an illustration of this workflow). The simulated data is input to
a summary network, which learns maximally informative summary statistics. The output of the
summary network, along with the data-generating parameters (e.g., θ1:T and η), are then passed
into an inference network. This invertible neural network learns the relationship between data and
parameters and, after sufficient training, becomes a Bayesian inference expert, capable of inferring
the joint posterior distribution solely from the observed data.

Traditional Bayesian estimation methods, like Markov chain Monte Carlo (MCMC), neces-
sitate repetitive computational costs when applied to new data sets. Additionally, they require
the availability of a closed-form likelihood function for the low-level model. In contrast, with
amortized inference, once the neural network is trained, it can be effortlessly applied to numerous
datasets, resulting in the amortization of the computational burden. One notable advantage of
amortization is its facilitation of model validation checks, which often require fitting the model
to a large number of data sets. Furthermore, this method eliminates the necessity for closed-form
likelihoods, thereby expanding its applicability to complex cognitive process models lacking an
analytical solution (see for example, Usher & McClelland, 2001; Voss et al., 2019; Wieschen et al.,
2020)
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5.1.2 Benchmark Studies

To assess the efficacy of our novel estimation method, we conducted benchmark studies compar-
ing it with two existing algorithms, namely bayesloop (Mark et al., 2018) and Stan (Carpenter et
al., 2017). While bayesloop relies on grid approximation for low-dimensional problems, Stan em-
ploys Hamiltonian Monte Carlo (HMC) sampling (Neal, 2011), which is commonly considered
the gold standard for Bayesian inference. Both methods operate in a non-amortized manner and
are restricted to estimating superstatistical models exclusively with closed-form likelihoods.

Given that bayesloop is currently limited to fitting simple low-level models, we utilized a basic
Poisson process to model data containing counts of coal mining accidents in the United Kingdom
from 1852 to 1962. This low-level model involves a single parameter λ, representing the accident
rate per year, with a Gaussian random walk (cf. Equation 5.3) serving as the high-level transitions
model. Both bayesloop and our novel neural estimation method produced nearly identical latent
trajectories for the low-level model parameter λ, demonstrating the capability of our method to
estimate plausible parameter trajectories for simple low-level models.

In our second benchmark with Stan, we fitted a non-stationary diffusion decision model (NS-
DDM) to data simulated with a static DDM that used constant parameters. The NSDDM, featur-
ing a Gaussian random walk transition model, allowed the drift rate, threshold, and non-decision
time to vary freely over time. Both our neural estimation and the Stan method performed equally
well in recovering the true parameters of the static DDM. These results showed that the NSDDM
is capable of approaching a stable parameter value and does not result in pseudo-dynamics.

In summary, our neural estimation method demonstrated performance comparable to estab-
lished methods for Bayesian inference, with a notable advantage: due to amortization, the neural
estimation significantly outperformed Stan in terms of computation time.

5.1.3 Simulation Study

Subsequently, we evaluated the recoverability of NSDDM parameters under induced misspecifi-
cations, using models different from those utilized during network training. This thorough inves-
tigation involved simulating data sets, each comprising T = 400 time points, across four scenar-
ios: (i) a static DDM with constant parameters; (ii) a DDM with stationary variability, where the
three DDM parameters fluctuate randomly around a constant value; (iii) a NSDDM with a Gaus-
sian random walk transition model; and (iv) a DDM with constant parameters exhibiting abrupt
and uniform jumps at three predefined time points, constituting a regime-switching model.

Importantly, the neural approximator was exclusively trained using simulations from (iii). How-
ever, during amortized inference, we applied the network to 200 data sets from each of the four
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scenarios. This approach enabled us to explore the network’s response in an open-world setting
where the true data generator might deviate from the reference model used in the training phase.

The results indicated excellent parameter recoverability in the first three cases, with estimated
parameter trajectories quickly approaching the true data-generating parameters. In the third sce-
nario, the neural estimation closely followed the true non-stationary trajectory. In the fourth,
severely misspecified case, parameter recovery remained fairly good, although the inferred param-
eter trajectory struggled to shift abruptly to the new true parameter value when a regime switch
occurred. This aligns with expectations, considering the transition model of the NSDDM (i.e.,
Gaussian random walk) did not allow for such jumps. Overall, the ability to recover true data-
generating parameters under various misspecifications underscores the feasibility of NSDDMs
and highlights the strength of our novel neural estimation approach, setting the stage for fitting
NSDDMs to actual human data.

Furthermore, we also tested the computational faithfulness of our model and estimation method
with means of simulation-based calibration (SBC; Säilynoja et al., 2021; Talts et al., 2018). The
analyses indicate that our neural Bayesian method demonstrates satisfactory calibration, albeit
with slightly miscalibrated posteriors for the non-decision time parameter.

5.1.4 HumanData Application

Following the successful evaluation of the NSDDM and our novel neural estimation method in
silico, we applied variants of the NSDDM to data sets collected from two separate speeded two-
alternative choice tasks. The first application served as an initial exploration using data from a
well-known task in experimental psychology, which was previously examined by Evans and Brown
(2017). In their study, they explored dynamic changes in the threshold parameter over a maximum
of 1 320 trials in different between-subject conditions, utilizing the previously discussed trial bin-
ning approach.

It allowed us to compare the inferred parameter trajectories from our neural superstatistics
method with those obtained in the original study using their trial binning approach. Upon com-
paring our estimates with those obtained by Evans and Brown (2017), it was apparent that both
approaches yield comparable qualitative and quantitative patterns. This consistency not only
aligned with our promising results in simulated scenarios but also emphasized the convergent va-
lidity of our superstatistics approach in real-world data applications.

In the second application, we analyzed relatively long time series (T = 3200 trials per indi-
vidual) stemming from a lexical decision-making task. We aimed to demonstrate the effectiveness
of our method in estimating a more complex NSDDM featuring a Gaussian process (cf. Equa-
tion 5.4) transition model and multiple drift rate parameters for various task difficulty conditions.
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Figure 5.3: Low-level DDM parameter trajectories inferred from one individual’s data (adopted from Schu-
macher, Bürkner, et al. (2023)). Across-trial posterior means and standard deviations for all six
parameters, namely four drift rates v1 − v4 (one per difficulty condition), the threshold a, and
the non-decision time τ are shown in red. The point estimates of the stationary DDM parame-
ters estimated with fast-dm along with the inter-trial variabilities (not available for the threshold
parameter) are depicted in blue.

Additionally, a DDM with stationary variability was fit with the fast-dm software (Voss & Voss,
2007) to the same data for comparison.

Data re-simulation with the inferred parameters showed an excellent fit to the marginal empiric
response time (RT) distribution for both the NSDDM and the stationary DDM. Analysis of the
entire RT time series revealed that for many individuals RTs decreased over time. Also, the overall
variability of the RTs was less pronounced in the later stages of the experiment. Only the NSDDM
was capable of accurately reproducing these two patterns, as the stationary DDM only produces
IID data. Being able to account for the time series posits a noteworthy advantage of the NSDDM
over its stationary counterpart.

However, the most significant advantage of the neural superstatistic approach is that the full
parameter (non-stationary) trajectory can now be inspected (see Figure 5.3). In fact, all parame-
ter trajectories displayed significant fluctuations and pronounced oscillations throughout the ex-
periment. Notably, due to the assumption of homogeneous variation, the inter-trial variabilities
inferred with fast-dm tend to overestimate the uncertainty in parameter estimates. The dynamic
drift rates exhibited fluctuations generally within the uncertainty corridors delineated by the ho-
mogeneous inter-trial variabilities but displayed considerably narrower error bars. Consequently,
the local parameters appeared much less uncertain than the homogeneous variability parameters
suggested. Conversely, the dynamic non-decision time demonstrated more extensive fluctuations
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compared to the corresponding flat inter-trial variability. Also, while fast-dm estimated a single
threshold value, which remained constant over time, the dynamic threshold parameter indicated a
substantial decrease in decision caution throughout the experiment for most individuals. In sum-
mary, there was a remarkable incongruity between heterogeneous and homogeneous dynamics
observed in nearly all individuals.

5.1.5 Intermezzo

Manuscript II explored superstatistics as a novel modeling framework to capture non-stationary
dynamics within cognitive processes and explored the applicability of a neural Bayesian method
for estimating superstatistical models. Through extensive simulations and two benchmark stud-
ies, we established the computational fidelity and adequacy of our method. Subsequently, we
applied our approach to a NSDDM, estimating temporal trajectories for key parameters, namely
the drift rate, threshold, and non-decision time, using data from two experiments. Our findings
demonstrated that such a non-stationary model (i) can be accurately fitted to lengthy empirical
time series and (ii) unveils nuanced patterns obscured by traditional stationary models.

Notably, we demonstrated how to enhance stationary cognitive models through the integration
of a superstatistics framework. However, a critical question lingered: Do the parameter trajecto-
ries inferred with a superstatistical cognitive process model genuinely capture shifts in the latent
constructs they intend to represent, or are they merely modeling artifacts? To explore this ques-
tion, Manuscript III3 was initiated, focusing on an experimental validation study.

5.2 Validation and Comparison of Dynamic Cognitive
Models (Manuscript III)

In this work, our focus once again centered on the DDM as a low-level observation model. One
of the reasons for this choice is that the stationary DDM has been rigorously validated before
(Arnold et al., 2015; Lerche & Voss, 2019; Voss et al., 2004). These studies demonstrated that
the components underlying the DDM (as detailed in Chapter 2) indeed correspond to the in-
tended cognitive constructs. Consequently, it becomes straightforward to experimentally manip-
ulate specific model parameters. For instance, the drift rate, reflecting mental processing speed, is
influenced by task difficulty, with high difficulty generally resulting in lower drift rate values, and
vice versa. Similarly, the threshold parameter, indicative of decision caution, can be manipulated,
for instance, by providing verbal instructions that emphasize speed over accuracy.

3Schumacher, L., Schnuerch, M., Voss, A., & Radev, S. T. (2023). Validation and comparison of non-stationary
cognitive models: A diffusion model application. arxiv. https://doi.org/10.48550/arXiv.2401.08626
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Figure 5.4: An exemplification of the four high-level (transition) models, central to our investigation, which
govern the temporal dynamics of a hypothetical low-level model parameter (adopted from
Schumacher, Schnuerch, et al. (2023)).

In our validation study of the NSDDM, we implemented a color discrimination task (previ-
ously employed in the validation study by Voss et al. (2004)). In this task, we incorporated the
two aforementioned manipulations in a specific temporal pattern across 768 trials. The task dif-
ficulty changed on every 8th or 16th trial, transitioning between four difficulty levels. Addition-
ally, verbal instructions emphasizing either speed or accuracy changed less frequently after ev-
ery 48th trial, resulting in distinct temporal patterns for the two manipulations. Task difficulty
changed frequently and gradually, while task instructions underwent abrupt switches (termed
regime switching).

The primary objective of our experiment was to examine whether the parameter trajectories in-
ferred with the NSDDM align with the changing patterns of the experimental conditions. Specif-
ically, we anticipate the drift rate parameter to mirror the gradual changes in task difficulty. Simul-
taneously, we expect the threshold parameter to exhibit sudden shifts when the priority switches
between speed and accuracy. It’s crucial to note that in this application, the NSDDM lacked in-
formation about the experimental conditions, relying solely on the behavioral data for parameter
trajectory inference.

We also explored what kind of transition model is most suitable for the expected dynamics.
As I discussed in Chapter 3, there are various transition functions to choose from. Given the
described manipulation sequences, we tested transition functions capable of capturing gradual
changes, abrupt shifts, or both. To this end, a total of four NSDDMs distinguished only by their
transition function were compared (see Figure 5.4 for exemplar trajectories): (i) a Gaussian ran-
dom walk; (ii) a mixture between a Gaussian random walk and uniformly distributed jumps; (iii)
a Lévy flight; and (iv) a regime switching function, where parameters either remain the same as in
the previous time step or shift uniformly. These models differ in their complexity (i.e., number
of high-level parameters) and their ability to accommodate various types of temporal dynamics.
The Gaussian random walk primarily captures relatively small gradual changes, while (ii) and (iii)
have the capacity to model both gradual changes and sudden shifts. In contrast, (iv) exclusively
allows for sudden shifts without accounting for small gradual changes.
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To conduct Bayesian model comparison between these competing models, we introduced a
novel amortized method based on neural methods from Elsemüller et al. (2023) and Radev et
al. (2021). The procedure involved training an ensemble of ten neural approximators based on
simulations from all four NSDDMs. Similar to the method we used for parameter estimation,
these approximators comprise a summary network and an inference network. The former once
again performs data compression by learning maximally informative summary statistics for the
simulated time series x1:T . The inference network approximates the posterior model probability
(PMP) for the candidate models, p(M|x1:T ), given the outputs of the summary network.

Before we applied our Bayesian model comparison method to the empirical data, we rigorously
validated the method in silico. To this end, we performed simulation-based calibration as well
as a model recovery study based on 10 000 simulated data sets per model. The results indicated
that our method is well-calibrated, suggesting that the inferred PMPs are trustworthy. The model
recovery analysis showed that some of the models were frequently confused with another model.
For example, the Lévy flight DDM was confused with the random walk DDM 30% of the time.
Also, the mixture random walk DDM got confused with the regime switching DDM about 40%
of the time. This result showed that some of the models produce fairly similar data and are thus
not always easy to distinguish.

Our model comparison procedure indicated the Lévy flight DDM as the most plausible model,
with an average PMP of approximately 60% across all individuals. It stood out as the most plausi-
ble model for 9 out of the 14 participants. In contrast, the mixture random walk model garnered
an average PMP of less than 30% and was identified as the most plausible model for 5 partici-
pants. The random walk DDM and regime-switching DDM consistently demonstrated lower
plausibility compared to the other models and did not emerge as superior for any of the partici-
pants. From this, we concluded that transition models allowing for small gradual changes as well
as abrupt shifts are more appropriate for this data set compared to transition functions that only
allow for either of the two dynamic types. This makes sense as the experimental manipulation
sequences resemble both of these dynamic types.

To check whether the experimental manipulations had the expected effects on the behavior of
the participants, response times, as well as choice accuracy, were aggregated over the two exper-
imental conditions (difficulty; instruction) and individuals. In both, the accuracy and the speed
condition RTs increased as a function of task difficulty. The effect of difficulty on response times
was more pronounced in the accuracy condition compared to the speed condition and response
times were generally faster in the speed condition. Furthermore, the choice accuracy decreased
with increasing task difficulty. Individuals responded slightly less accurately in the speed condi-
tion.
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All four NSDDMs were fitted to the empiric data to evaluate their absolute fit to these criti-
cal data patterns. Posterior re-simulation results indicated that all models successfully captured
essential patterns in the data. Only the choice accuracy in the most difficult condition was con-
sistently overestimated. This misfit is likely due to the model’s inability to appropriately decrease
the value of the drift rate parameter when a switch to this difficulty level occurred. However, this
minor misfit could likely be rectified by incorporating experimental context information into the
model. Despite this, the results underscored the NSDDMs’ remarkable capability to fit empirical
data solely based on behavioral information, without any information concerning the experimen-
tal context.

At the core of the validation study were the inferred parameters, prompting the pivotal ques-
tion: Do these parameter dynamics mirror the sequence of the experimental manipulations? To
address this, both time-averaged and time-varying estimates were examined. The former provides
a global overview of average parameter differences between experimental conditions, while the
latter offers a more detailed analysis of parameter evolution throughout the experiment.

Time-averaged analyses revealed that both drift rates and thresholds exhibited the expected pat-
terns. On average, the drift rate decreased with increasing task difficulty, regardless of the instruc-
tional condition. For the threshold parameter, assumed to be influenced by the manipulation
of verbal instructions, increased values were observed in the accuracy condition compared to the
speed condition.

In the analysis of time-varying estimates, parameter trajectories from the model with the highest
PMP for each participant were inspected (see Figure 5.5 for an example). The dynamic of the drift
rate aligned with the global trend of the task difficulty sequence for all participants. Examining
the trajectory of the threshold parameter, the hypothesized pattern of a decrease during a shift
from an accuracy to a speed instruction, and vice versa, was evident in the estimated trajectories.

In summary, both at an aggregate level and on a time series level, the drift rate and threshold pa-
rameters demonstrated alignment with the expected patterns from experimental manipulations.
Posterior re-simulations with NSDDMs showcased excellent absolute model fit to behavioral data,
even without explicit information about the experimental context. Consequently, the validation
study supports the notion that NSDDMs can effectively detect genuine changes in cognitive con-
structs.
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Figure 5.5: Parameter trajectories of an exemplar individual corresponding to the respective best-fitting
non-stationary diffusion decision model (adopted from Schumacher, Schnuerch, et al. (2023)).
In this instance, they resulted from a Lévy flight DDM. The low-level DDM parameters (i.e.,
drift rate, threshold, and non-decision time) are displayed on separate rows. The solid lines
depict the posterior medians, whereas the shaded regions correspond to the median absolute
deviation. Trials, where speed was emphasized, are shaded in yellow color, while white regions
indicate trials with an emphasis on accuracy. In the top panel, the sequence of the task difficulty
levels is depicted in black.
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Randomness is indistinguishable from complicated, undetected, and undetectable or-
der; but order itself is indistinguishable from artful randomness.
— Nassim Nicholas Taleb

This dissertation commenced with a brief introduction to cognitive process models and why
such models are indispensable tools for scientific reasoning in the domains of cognitive science. I
discussed the tendency of these models to overlook the dynamic nature inherent in human cogni-
tion. Subsequently, various strategies were explored to address this limitation, including station-
ary variability, trial binning, regression approach, and frontend-backend modeling.

The subsequent sections of the dissertation were dedicated to three manuscripts, divided into
two overarching themes. In the first part, I delved into the dynamics of a specific cognitive process,
namely duration discrimination. The exploration involved showcasing the utility of mechanistic
models, specifically the internal reference model and the sensation weighting model, as a frontend
to inform parameters of a backend model – in this case, the DDM.

The second theme showcased two manuscripts presenting a novel approach to incorporate dy-
namics into the latent components of cognitive process models, termed neural superstatistics.
Manuscript II introduced the superstatistics framework, designed for estimating non-stationary
variability of cognitive process model parameters directly from behavioral data. Addressing com-
putational challenges, the study developed neural methods for Bayesian inference of such models,
rigorously validated through benchmarks and simulation studies. Furthermore, the applicability
of this approach was demonstrated using two data sets containing human behavioral data from
well-known decision-making tasks.

Building upon this foundation, Manuscript III extended the investigation, empirically validat-
ing the dynamics of latent cognitive constructs estimated with superstatistical models. Addition-
ally, a comparative analysis of competing model implementations was conducted. Collectively,
these manuscripts significantly contribute to advancing the field of cognitive science by provid-
ing tools to incorporate dynamic aspects into cognitive process models.

The commonality across the three manuscripts is their shared focus on the development of
novel models to account for dynamic changes in cognitive processes throughout the duration of
an experimental task. Manuscript I involved a frontend-backend approach, incorporating a spe-
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cific theory to delineate changes in a cognitive construct. In contrast, Manuscript II and Manuscript
III employed a superstatistics approach, which does not provide mechanistic explanations for
changes and instead imposes minimal assumptions to allow the actual data to dictate the most
plausible trajectories of individual components. For the scientific practitioner seeking a compre-
hensive understanding of dynamic cognitive processes, a pivotal question emerges: is one of the
approaches superior to the other?

Approaches tomodel dynamics Before delving deeper into weighing frontend-backend
models against the superstatistics approach, I would like to discuss the status of the other methods
outlined in Chapter 3, namely stationary variability, trial binning, and regression approach. I
argue that estimating non-stationary models within a superstatistics framework should always be
preferred over these three approaches.

Stationary variability is commonly employed to enhance the in-sample fit to the data by in-
creasing model flexibility. However, in this approach, parameters only fluctuate around a stable
mean, and the history of prior task trials is ignored. Superstatistics addresses both of these limita-
tions. In the simulation study of Manuscript II, data were simulated using a DDM incorporating
stationary variability. Subsequently, a NSDDM was fitted to these data, revealing robust param-
eter recovery performance. This demonstrated that the NSDDM accurately approximates the
stable mean of the data-generating stationary DDM. Thus, when the “true” data-generating pro-
cess aligns with a model exhibiting stationary variability, a non-stationary model still can replicate
this pattern. However, if not, the non-stationary model can discern the deviation. Consequently,
there is little reason to opt for a stationary variable model when the non-stationary counterpart
can also produce such patterns while offering additional flexibility.

The other two approaches, trial binning, and the regression approach, primarily address ques-
tions regarding the evolution of a cognitive process model parameter over time. Trial binning grap-
ples with an undesirable trade-off between estimating certainty and dynamic resolution, while the
regression approach often relies on strong assumptions regarding the shape of plausible parame-
ter trajectories. In contrast, a superstatistical model leverages information from the entire data set
and imposes minimal assumptions on parameter dynamics, thereby overcoming the limitations of
both aforementioned approaches. Therefore, given the challenges faced by these three approaches
and the solutions offered by superstatistics, it seems clear that superstatistics should be considered
the default choice among them.

Next, I focus on the comparison between frontend-backend models and the superstatistics ap-
proach. There, a general superiority of one of the two models cannot be assumed. Instead, the
choice between the two approaches depends on the research focus. If the explicit interest lies in
understanding changes in established cognitive model components or capturing specific patterns
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in the data by accounting for such changes, then the development of a plausible frontend-backend
model might be the ultimate goal. Superstatistical models can still be a valuable tool in this kind
of research. On the other hand, if the primary goal is not particularly centered around dynamic
changes in the components and one simply wants to test whether one or more parameters differ
between experimental conditions or groups, a frontend-backend model might serve no purpose.
However, estimating non-stationary versions of the model through a superstatistics framework
remains a useful and advantageous endeavor.

Frontend-backend model vs. Superstatistics Let us first discuss the former case. If
one already has an explanation or a hypothesis regarding the dynamics of cognitive model param-
eters that can be translated into a cognitive mechanistic model (i.e., a frontend), it is advisable to
do so. Often that is exactly what the goal of a study is – to test possible explanations for specific
changes. Note, that such frontend-backend models go beyond the previously discussed regres-
sion approach. In the former, the parameters of the frontend model can once again be mapped
to latent cognitive constructs, making it an explanatory tool. In contrast, the regression approach
treats additional parameters merely as weights, such as the slope of a line, making it a descriptive
tool. For example, in the internal reference model, which served as a frontend for the DDM in
Manuscript I, the rationale was that a prototype stimulus is internally generated over time based
on an updating mechanism that integrates prior encounters with the stimulus. In this model,
the factor of time was implicitly embedded – the drift rate parameter depended on the history of
previously encountered stimuli. Additionally, the free parameter of the frontend model mapped
to a cognitive construct, measuring how much a person relies on the prototype instead of the
currently encountered stimulus.

In the case where we already have a frontend-backend model in mind, a superstatistical model
can serve as a comparison and benchmarking tool. Different from the frontend-backend approach
it allows the parameters to vary relatively freely. The parameter dynamics resulting from fitting
a frontend-backend model to some data can then be compared to trajectories estimated with a
superstatistical model. Such a comparison can potentially reveal shortcomings in the frontend-
backend model and suggest potential avenues for refinements. Furthermore, in cases where a plau-
sible frontend-backend model is not known yet, superstatistical models can be used for an initial
exploration and act as a hypothesis-generating tool.

Up to this point, I have discussed the synergistic application of these two modeling frameworks
and how they can be used as separate methods to address the same problem by capitalizing on their
respective strengths. However, an intriguing avenue emerges when we consider the integration
of these approaches into a unified model. Two possibilities come to mind: firstly, incorporating
dynamics into components of the frontend model; and secondly, accommodating non-stationary
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fluctuations in components of the backend model that are not yet accounted for by the frontend
model. To illustrate these possibilities, I will delve into a specific frontend-backend model, namely
the reinforcement learning diffusion decision model (Fontanesi et al., 2019; Miletić et al., 2020;
Millner et al., 2018; Pedersen & Frank, 2020; Sewell et al., 2019).

Typically applied to data from value-based decision-making tasks, the reinforcement learning
DDM explains behavioral changes resulting from error-driven learning. The reinforcement learn-
ing (RL) model posits that individuals maintain representations of the choice alternatives’ values,
known as expected values, which guide their decisions. Following a choice, the expected values are
updated based on the difference between their predictions and the actual outcome – the reward
prediction error (Sutton & Barto, 2018).

The DDM provides a comprehensive account of the decision process, elucidating how choices
and response times arise from latent process components (processing speed, response caution,
bias, non-decision time). Integrating these two models, with RL as the frontend and DDM as the
backend, not only allows for the simultaneous explanation of choices and response times but also
accommodates changes therein. In the reinforcement learning DDM, the drift rate parameter is
typically assumed to be the difference between the expected values of the two choice alternatives.
Additionally, the expected values of the chosen alternative are updated based on the reward predic-
tion error, leading to dynamic changes in the drift rate parameter due to this learning mechanism.

Now, where does the superstatistical framework fit into this? As mentioned earlier, one pos-
sibility is to consider dynamics in the parameters of the frontend model. For the reinforcement
learning DDM, this could involve parameters such as the learning rate, governing the weight as-
signed to the reward prediction error when updating expected values, or the temperature param-
eter, dictating sensitivity to differences between expected values. By introducing transition func-
tions to these parameters, these cognitive components would no longer remain static over time,
enabling researchers to estimate the dynamics of these frontend model parameters.

Indeed, there are compelling reasons to believe that these parameters undergo changes during
the course of an experiment. For instance, individuals often begin with a relatively high learning
rate, which tends to decrease as the expected values of alternatives become well-known (Jepma et
al., 2020). Similarly, the temperature parameter, employed to balance the exploration of unknown
alternatives and exploitation of known good ones, is also likely to vary over time (Feng et al., 2021).

Usually, frontend models do not provide mechanistic explanations for all the backend parame-
ters. Thus, a second possibility to unify frontend-backend models with a superstatistics approach
is to allow for non-stationary fluctuations of the backend parameter for which the frontend model
does not account. In the context of the reinforcement learning DDM, the frontend model usually
exclusively explains changes in one of the parameters of the backend model, namely the drift rate.
However, as we have observed in Manuscript II and III, other parameters such as the threshold, do

44



not remain constant over time either. Although the experimental paradigms investigated in these
two manuscripts were not value-based decision-making tasks, it is plausible that changes in other
DDM parameters occur in such paradigms as well. For instance, the threshold parameter might
decrease due to motivational factors. In summary, frontend-backend models and superstatistical
models can not only be used synergistically as separate tools but can also be unified into one model
that opens up interesting future modeling opportunities.

Superstatistics in the contextof experimental conditions Now let us go back
to the question of applying superstatistics in the context of discerning between experimental con-
ditions. A significant proportion of studies involving cognitive process models are not focused on
the dynamic aspects of their components but rather on understanding how experimental manip-
ulations impact specific model parameters. In such cases, there is no necessity for a mechanistic
explanation of cognitive model component dynamics through a frontend-backend model. How-
ever, such studies could still benefit from estimating non-stationary instead of stationary versions
of their cognitive process model. This assertion is grounded in two arguments.

Firstly, assuming stationary parameters when, in reality, the parameters display systematic shifts
leads to inflated uncertainty estimates. For instance, consider data generated with a model param-
eter exhibiting a U-shaped trajectory. Fitting a stationary model to such data would cause the
uncertainty of the stationary parameter to align with the marginal parameter distribution, sig-
nificantly overestimating it. In fact, this phenomenon was observed in one of the human data
applications presented in Manuscript II.

Second, disregarding potential dynamics can lead to wrong conclusions about parameter val-
ues. For instance, consider a scenario where, over the course of an experiment, the “true” param-
eter value remains constant in the first half and abruptly shifts to a larger value in the second half.
A stationary model would estimate a parameter value that lies in between the values of these two
regimes. However, the “true” value did not once have this particular value across the duration of
the experiment. The estimate of the stationary model, in this case, would be misleading. Such a
situation is particularly detrimental when one is interested in absolute parameter values. This is
often the case in comparative studies where the goal is to investigate whether a parameter value
differs between experimental conditions or groups of people.

Given the imperative for researchers to mitigate inflated uncertainty in parameter estimates
and exercise caution in drawing potentially erroneous conclusions from stationary parameter es-
timates, fitting a non-stationary cognitive model should become the default approach. However,
the following question arises: How should superstatistical models be effectively employed in stud-
ies exploring the effects of experimental manipulations on specific parameter values?
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Consider a simple two-alternative decision-making task where task difficulty is manipulated,
and trials with different difficulty levels are randomly interleaved. When employing a NSDDM to
interpret the data, we anticipate the drift rate parameter to be influenced by varying task difficulty.
In such cases, assuming a single drift rate with a transition function, as employed in Manuscript
III, becomes unfeasible. Accurately estimating the drift rate in various difficulty conditions be-
comes challenging when the parameter substantially changes from trial to trial as a result of ran-
domly altering difficulty conditions.

Thus, we have to somehow incorporate the information of the experimental context into the
model. Here we have two options. One approach is to simply assume separate drift rate parameters
for each difficulty condition and update them after each trial with a transition function. In fact,
this is the approach we used in Manuscript II. This has the disadvantage that it does not provide
a direct estimate of the difference in parameter values between conditions. As a solution, after
obtaining the parameter trajectories for the different conditions, one can in a second step analyze
the difference in the posterior distributions between the conditions.

Alternatively, the context can be directly incorporated into the transition function by introduc-
ing additional weight parameters for dummy-coded condition indicator variables, functioning as
on-off switches for the particular condition on a given trial. This approach has the advantage
that estimates of the static weight parameters serve as a direct estimate of the general differences
between conditions.

Another question that frequently arises in the context of superstatistical cognitive models is
the following: How can one investigate whether the trajectories of cognitive process model pa-
rameters are changing “significantly”? A straightforward approach involves treating the posterior
distributions of the entire parameter trajectory as time series data. By fitting a generalized linear
model to these time series, one can test specific hypotheses about parameter changes. In this case,
the full posterior distribution should be used to propagate the uncertainty of the parameter esti-
mates. A multi-level approach with random intercepts for the different posterior samples of the
joint posterior distribution can also be employed to account for the hierarchical structure of the
data.

Alternatively, one can incorporate a testable hypothesis directly into the high-level transition
function. For instance, to explore whether the parameters exhibit an overall increase or decrease,
a transition model like the Gaussian random walk with an additional “drift” parameter could be
utilized. Estimating such a parameter enables inference about a generally positive or negative trend
of the trajectory. This approach avoids a “two-step approach”, where the parameter trajectory is
first inferred, followed by a separate analysis treating parameters as time series data.
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6.1 Outlook

In the subsequent discussion, I will explore several aspects that pave the way for future research.
Thus far, this dissertation has predominantly focused on the advancement of a novel method for
capturing dynamics in model components, particularly in the context of superstatistical models.
I demonstrated the applicability of this framework within the realm of cognitive process models,
specifically the DDM. Additionally, I substantiated the validity of the inferred dynamics through
superstatistical models and provided practical recommendations for their application. While this
work significantly contributes to model and method development, it is essential to recognize that
the development of models and methods should not be an end in itself. On the contrary, the
significance of neural superstatistics will only become clear when they are applied to gain insight
into substantive psychological research questions.

Substantive Applications Numerous promising applications for superstatistical cogni-
tive models exist. To exemplify this, I hone in on a specific phenomenon frequently observed in
recognition memory tasks, where the utilization of a non-stationary DDM provides substantial
novel insights.

Recognition memory, denoting the ability to recall previously encountered stimuli (Annis et
al., 2013), is often assessed through tasks divided into two distinct phases: a study phase and a
test phase. During the study phase, participants familiarize themselves with a set of items. Sub-
sequently, in the test phase, a mixture of new and old items is presented, requiring individuals to
discern whether an item was previously encountered or not.

In recognition memory tasks, a common observation is a decline in memory performance dur-
ing the test phase (Criss et al., 2011; Malmberg et al., 2012; Ratcliff, 1978). Interestingly, the order
of items during the testing phase emerges as a more critical predictor of the probability of correct
recall than the presentation position during the study phase (Dalezman, 1976). This effect was
termed output interference, referring to the assumption that the decline in recall performance is
attributed to memory interference from output items.

An alternative explanation for the decline in performance across the test phase could be mo-
tivational factors. As the time on a task progresses, individuals’ motivation may falter and, as a
consequence, they may disengage and respond more recklessly (Underwood, 1978). To test these
competing explanations, the DDM can be employed to disentangle processing and motivational
factors. If the decline in task performance is indeed a result of interference between test items, one
can hypothesize a corresponding decline in the drift rate parameter, reflective of mental process-
ing speed. Conversely, if motivational factors are the more important driving force for the decline
in performance, a decrease in response caution could be expected, which would be indicated in a
decrease in the DDM’s threshold parameter.
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Figure 6.1: Inferred trajectories of the four mixture DDM parameters, the drift rate, threshold, non-
decision time, and guessing probability. The solid red lines indicate posterior means averaged
across all participants and the shaded region is the corresponding standard deviation.

A previous study, employing a frontend-backend modeling approach, provided evidence that
the drift rate parameter indeed decreased over time (Osth et al., 2018). While changes in the thresh-
old parameter greatly varied between individuals, the overall change across the sample suggested
no systematic increase or decrease. This implies that the decline in performance was primarily
attributed to processing factors rather than motivational influences.

However, alternative perspectives on capturing a decline in motivation exist. It is plausible that
individuals do not necessarily reduce their response caution but might resort to more guessing
in the later stages of the experiment. To investigate this, a modified DDM that incorporates a
mixture between two states – an evidence accumulation process and a guessing process – can be
employed (Ratcliff & Kang, 2021; Ratcliff & Tuerlinckx, 2002). This approach allows testing
whether individuals increase their probability of performing the task in the guessing state, poten-
tially indicating a decline in motivation.

As a preliminary exploration of this idea, I fitted a non-stationary mixture DDM to unpub-
lished data from 32 participants who completed 80 trials of a recognition memory task. Figure 6.1
depicts the inferred parameter trajectories averaged across all individuals. The results show that
the participants showed a tendency to decrease their drift rate, suggesting a decrease in processing
speed. The threshold, as well as the non-decision time, remained on average constant over time.
This replicates the findings from Osth et al. (2018), implying that performance decreased due to
memory interference rather than a decrease in response caution.

Interestingly, the guessing probability parameter on average increased in the second half of the
experiment, suggesting that individuals were more likely to randomly respond in the later stages
of the task. These findings may challenge previous assertions that the decline in performance is
not a result of motivational factors Osth et al. (2018).

It is crucial to approach these results with caution, recognizing the need for a more rigorous
study to obtain further evidence. Re-analyzing various data sets with the non-stationary mixture
DDM, alongside the previously employed frontend-backend model, and comparing fits to the
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data would contribute to a more comprehensive understanding. Additionally, the implementa-
tion of a superstatistical frontend-backend model, as previously discussed, offers another avenue
for exploration.

Even another possibility to model motivational factors could be explored by utilizing a Lévy-
flight model (Rasanan et al., 2023; Wieschen et al., 2020), which modifies the DDM to account
for sudden jumps in the evidence accumulation process. This model encompasses an additional
parameter that governs the occurrence of such jumps. In this case, the rationale would be that
decreasing motivation leads to more frequent premature conclusions, reflected in sudden jumps,
during evidence accumulation.

All three manuscripts discussed in this dissertation, along with the previously explored poten-
tial application of the superstatistical framework, have centered around the DDM. However, the
superstaistics framework we developed is highly versatile. While the DDM aligns seamlessly with
this framework, the application is not limited to this specific model. Any cognitive process model,
as well as other observation models, can serve as the low-level model in superstatistics. Numerous
models stand to benefit from this framework. I will illustrate this point by discussing two poten-
tial candidates.

Previously, I briefly touched on reinforcement learning (RL) models in the context of frontend-
backend models. In that example, the RL model served as a frontend model informing changes in
DDM parameters. However, RL models are frequently used as traditional cognitive process ob-
servation models in various studies, particularly in the field of computational psychiatry (Geana
et al., 2022; Liebenow et al., 2022; Maia & Frank, 2011). They play a crucial role in understand-
ing differences in error-driven learning between healthy individuals and patients diagnosed with
conditions like schizophrenia or addiction disorders (Deserno et al., 2013; Groman et al., 2022;
Lim & Ersche, 2023; Montagnese et al., 2020). As previously mentioned, the core parameters of
RL models are likely exhibiting non-stationary dynamics over time. Despite this, many studies
assume stationarity in these parameters, which can have drastic consequences, particularly when
comparing parameter values between different populations. Therefore, integrating RL models
into a superstatistics framework presents promising opportunities for advancing fields that heav-
ily depend on these models.

A second potential candidate in which the application of superstatistics enhances predictions
is not a specific model but rather a general framework, namely joint models (de Hollander et al.,
2016; Turner et al., 2017). Models within this framework jointly describe behavioral data and
neurophysiological, such as EEG (Nunez et al., 2017, 2022; Schubert et al., 2019) or eye move-
ment (Martinovici et al., 2023). The underlying assumption is that both behavioral and brain
measures reflect properties of the same latent cognitive process. The joint analysis of these two
data sources enables the testing of theories regarding the relationship between the two modalities.
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Moreover, when employing complex cognitive models, behavioral data alone might provide in-
sufficient constraints for parameters (Schubert et al., 2019). In such cases, leveraging information
from another modality provides additional constraints to the models since the parameters then
need to be able to explain both sources.

Various strategies exist within the joint modeling framework to establish links between brain
and behavioral relationships (Palestro et al., 2018; Turner et al., 2017). A common approach is
to use a traditional cognitive process model, such as the DDM, to describe behavioral data and
utilize brain data to constrain cognitive model parameters. Alternatively, cognitive parameters
can be employed to simultaneously predict both brain data and behavioral outcomes (Ghaderi-
Kangavari et al., 2023).

However, a commonality among these approaches is that they usually estimate stationary cog-
nitive model parameters. Brain data, on the other hand, often exhibit temporal dependencies and
are not independent and identically distributed. Introducing superstatistics to account for non-
stationary dynamics in the cognitive parameters of a joint model has the potential to enhance
predictions of brain data and provide a more realistic estimate of the relationship between brain
data and cognitive constructs.

Methodological refinement Having discussed potential avenues for the application of
superstatistics, I would like to conclude the outlook with a focus on two ideas to further improve
the superstatistics framework methodologically. Realizing these improvements will make the ap-
plication of superstatistics even more meaningful.

Typically, in psychological studies, researchers are interested in the behavior of a population of
individuals. In the realm of cognitive modeling, this often means obtaining some global estimates
of model parameters and potentially comparing them with those from another group of individ-
uals. While various methods exist to infer parameters from a population, hierarchical modeling1

is currently considered state-of-the-art (Kupitz, 2020; Lee, 2011).
Hierarchical models simultaneously fit data from all individuals, estimating individual-level

and group-level parameters concurrently. These models assume that individual-level parameters
stem from a group-level distribution, typically modeled as a Gaussian distribution. The key ad-
vantage of this approach lies in pooling data across individuals to explicitly estimate the mean and
variance of the population. The group-level estimates, in turn, constrain the parameter estimation
of each individual, mitigating the risk of extreme values – a property known as shrinkage (Mcel-
reath, 2020). Studies, both in vivo and in silico, have demonstrated that this approach leads to
more accurate uncertainty quantification and less biased inference (Boehm et al., 2018; Vandek-
erckhove, 2014). Moreover, by fitting data from all participants simultaneously, fewer data points

1also known as multi-level modeling, mixed modeling, or partial pooling
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per person are required to obtain reasonably certain parameter estimates (Lee & Wagenmakers,
2013).

In contrast, our approach in applying superstatistics so far involved fitting the model to each
individual separately and subsequently aggregating the inferred parameter trajectories across in-
dividuals. A drawback of this approach, compared to the hierarchical method, is the potential
for extreme individual parameter values due to the absence of shrinkage. Consequently, the pop-
ulation variance tends to be inflated, which is undesirable when comparing different groups of
individuals (Zhang et al., 2020).

Hence, it might be worthwhile to explore hierarchical superstatistical cognitive process models
in cases where researchers are interested in parameter trajectories across a population. Addition-
ally, such a method could prove beneficial when the time series to be modeled contains relatively
few time steps since it then enhances the certainty of parameter estimates. However, the benefits
of hierarchical modeling (i.e., shrinkage) need to be weighed against the additional computational
burden introduced, considering that non-hierarchical fitting of superstatistical cognitive process
models is already challenging and computationally intensive. While it should be theoretically pos-
sible to fit such hierarchical superstatistics, further research is necessary to test its feasibility, both
statistically and computationally.

Another aspect of our superstatistics estimation method that requires further attention is the
factorization of the joint posterior distribution when estimating time-varying parameters. The
most common factorizations are the filtering and smoothing distributions (Mark et al., 2018; Särkkä,
2013). The filtering distribution employs online analysis, where the estimation of low-level pa-
rameters at a specific time point is conditioned only on past data. Conversely, the smoothing
distribution informs the low-level parameters at a given time step based on both past and future
data points.

We remain uncertain about which of these two factorizations, or perhaps another one, works
best for superstatistics with cognitive process models. In Manuscript II, we targeted the filter-
ing distribution, while in Manuscript III, we switched to the smoothing distribution, a decision
based more on intuition than evidence. To gain a better understanding, I conducted a preliminary
simulation study.

I trained two neural approximators – one targeting the filtering distribution and the other the
smoothing distribution – to estimate a NSDDM. Both models were then fitted to 500 data sets,
each consisting of 800 time steps. Subsequently, I compared the two approaches across all time
steps for the three low-level parameters: drift rate, threshold, and non-decision time.

Figure 6.2A illustrates theR2–Scores between estimated and true data-generating parameters.
While both methods demonstrate excellent recovery of the non-decision time, the smoothing dis-
tribution outperforms the filtering distribution in recovering the drift rate and threshold parame-
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A B C

Figure 6.2: Comparison of smoothing (red) and filtering (yellow) posterior distributions across 800 time
steps for three model parameters separately based on 500 simulations. A Parameter recovery
performance asR2–Scores between estimated and true data-generating parameters. B Median
and 95% credibility interval of the posterior standard deviation. C Exemplar data-generating
parameter trajectory in black along colored recoveries.

ters. Similarly, the smoothing posterior distribution consistently exhibits a smaller posterior stan-
dard deviation, indicative of a less uncertain estimate, compared to the filtering distribution (see
Figure 6.2B). For illustrative purposes, an exemplar data-generating parameter trajectory along
with its recovery is depicted in Figure 6.2C. Both methods can recover the overall trajectory of all
three parameters, but the filtering posterior distribution shows slightly more deviations from the
ground truth.

From this initial investigation, it appears that the smoothing distribution is both more accurate
and more certain in estimating non-stationary parameters. Nevertheless, these results should be
interpreted with caution, and a more thorough study is needed to draw a conclusion. In conclu-
sion, it becomes evident that the methodologies developed in this dissertation hold promise for
numerous future applications. At the same time, realizing the full potential of superstatistics in
cognitive science necessitates additional studies that delve deeper into its methodological nuances.

6.2 Concluding Remarks

Making sense of human cognition and behavior is undeniably hard. For decades, cognitive sci-
ence has tirelessly developed cognitive process models to bridge the gap between theoretical con-
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structs and observable behavior. These models have continuously evolved in complexity, striving
for greater realism.

The aim of this dissertation was to propel cognitive process models one step closer to reality,
specifically by considering the dynamic nature of the human mind. By acknowledging and inte-
grating dynamics into cognitive process models, we hope not only to circumvent erroneous con-
clusions stemming from static assumptions but also to gain deeper insights into the complexities
of the human mind. I hope to have persuaded the audience that superstatistics is an incredibly
versatile modeling framework with immense potential to achieve this goal.

While the concept of superstatistical models is not entirely novel, this dissertation sought to
bring this method closer to the realm of cognitive science, paving the way for innovative appli-
cations and discoveries. Moreover, this dissertation addressed the inherent challenges associated
with estimating parameters in dynamic cognitive models, providing practical solutions to enhance
their applicability and utility.

The main focus of the present dissertation revolved around developing and validating a dy-
namic modeling framework. As always when something new is developed: if the aspiration is it to
be useful, much detail and effort must be invested in the development phase. That is exactly what
the work in this dissertation aimed at. The works presented here adhered to a state-of-the-art prin-
cipled workflow within the Bayesian framework. By adhering to these standards, this dissertation
aimed not only to contribute to the advancement of cognitive science but also to inspire confi-
dence in the broader scientific community regarding the validity and utility of dynamic modeling
approaches.

Looking ahead, the next phase of this research involves translating these advancements into
practical applications. While the methods developed in this work hold vast promise, their usability
and accessibility may present initial challenges. Therefore, efforts must be directed toward making
these tools more user-friendly and readily available to researchers and practitioners in psychology,
cognitive science, and related fields.

In conclusion, the methods developed in this dissertation have the potential for a wide range of
applications in psychology, cognitive science, and beyond. Superstatistics, along with frontend-
backend models, will play a pivotal role in these research fields, not only for explanatory and de-
scriptive purposes but also for the prediction of future human behavior.
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Abstract
The human ability to discriminate the duration of two subsequently presented stimuli is often studied with tasks that involve
a comparison between a standard stimulus (with fixed duration) and comparison stimuli (with varying durations). The
performance in such tasks is influenced by the presentation order of these successively presented stimuli. The so-called Type
A effect refers to the impact of presentation order on the point of subjective equality. The Type B effect describes effects
of presentation order on the just-noticeable-difference. Cognitive models that account for these context effects assume that
participants’ duration estimation is influenced by the history of previously encountered stimuli. For example, the internal
reference model assumes that the magnitude of a “typical” stimulus is represented by an internal reference. This internal
reference evolves throughout an experiment and is updated on every trial. Different recent models have in common that they
describe how the internal reference is computed but are agnostic to the decision process itself. In this study, we develop
a new model that incorporates the mechanisms of perceptual discrimination models into a diffusion model. The diffusion
model focuses on the dynamics of the decision process itself and accounts for choice and response times based on a set
of latent cognitive variables. We show that our model accurately predicts the accuracy and response time distribution in a
classical duration discrimination task. Further, model parameters were sensitive to the Type A and B effect. The proposed
model opens up new opportunities for studying human discrimination performance (e.g., individual differences).

Keywords Diffusion decision model · Duration discrimination · Context effects

Introduction

Comparative decisions are fundamental in humans’ every-
day lives and have been extensively studied since the advent
of psychophysics (Fechner, 1860; Hegelmaier, 1853). In a
typical experiment, participants have to select one of two
stimuli based on the magnitude of a specific stimulus fea-
ture. For instance, deciding which of two subsequently
presented tones had a longer duration (see, e.g., Fig. 1A).
A class of psychophysical models, called difference models
(Thurstone, 1927a, b), assumes that participants compare
their internal representation of the two presented stimuli and
base their decision on the difference in magnitude between
these internal representations, D = X1 − X2.

Usually, this difference in stimulus magnitude (e.g.,
duration of tones) is experimentally manipulated by varying

� Lukas Schumacher
lukas.schumacher@psychologie.uni-heidelberg.de

1 Institut of Psychology, Department of Quantitative Research
Methods, Heidelberg University, Hauptstrasse 47-51,
69117 Heidelberg Germany

the intensity of one stimuli between trials. What is
expected is that the difficulty of the decision depends
on the difference between the two stimulus intensities.
Deciding between stimuli with a relative large difference
in intensity is easier than compared to stimuli that are
very similar. Participants’ performance in such tasks can
be described with a (sigmoidal) psychometric function
that maps varying stimulus intensities to the proportion
of a certain response. The steepness of the slope of this
psychometric function indicates the individual’s sensitivity
to differences in stimulus magnitude (see, e.g., Fig. 1B).

Many studies have shown that discrimination perfor-
mance (often indexed by the difference limen; DL1) in such
tasks is not only influenced by the stimulus intensities but
also by task-irrelevant features of the experimental context
(for a recent review see, Bausenhart et al., 2016) – effects
that classical difference models cannot explain. Therefore,

1The DL, also called just noticeable difference (JND), is usually
defined as the difference between the 75% and 25% percentile of
a psychometric function divided by 2, DL = x75−x25

2 , where x

denotes the magnitude of a variable stimulus. This is a measure of the
slope of the psychometric function where smaller values reflect better
discrimination performance.
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Fig. 1 A. Timeline of the experimental duration discrimination task
used in Dyjas, Bausenhart, and Ulrich (2012). On each trial, a standard
stimulus with a constant duration of 500 ms and a varying compar-
ison stimulus with durations ranging from 400 ms and 600 ms were
subsequently presented. The presentation order of the stimuli pseudo-
randomly vary across trials. After the second stimulus was presented,
the participants had to decide which of the stimuli had a longer dura-
tion. The response time was measured after the second stimulus was
presented until a response key was pressed. B. Graph showing two the-
oretical psychometric functions that map the response probability to

different durations of the comparison stimulus. The point where these
curves cross the horizontal dashed grey line indicates the point of sub-
jective equality. When the duration of the comparison is not equal the
duration of the standard at this point then we observe a Type A error,
which is the case with the blue solid curve. C. Graph showing response
probabilities as a function of the duration of the comparison for the two
presentation orders separately. The two psychometric functions differ
in their slope and thus indicate that the discrimination performance
depends on the presentation order (Type B error)

more complex models have been proposed with the aim of
accounting for such context effects. However, while these
models often accurately describe the discrimination perfor-
mance they are agnostic about the decision process itself. In
the present study, we present a new approach that aims to
incorporate variants of the state of the art model of percep-
tual discrimination into a decision process model. Although
studies have investigated perceptual discrimination and the
influence of contextual effects in a wide variety of stimulus
features, the focus of the present study lies on the discrim-
ination of short stimulus durations (below 1 s). In what
follows, we briefly explain typical context effects in dis-
crimination tasks and how these are accounted for, and then
describe our modeling approach.

As noted above, decisions based on subjective stimulus
intensity estimates can be biased by various contextual
factors (so-called carryover effects). These effects can be
broadly divided into perceptual and decisional context
effects. Whereas the former refers to biases that occur
based on the perception of previously encountered stimuli,

the latter describes contextual effects as a result of prior
decisions. Every context effect can either be assimilative
(i.e., the perception or decision is pulled towards previous
ones) or contrastive (i.e., the perception or decision diverges
from previous trials; Wiener et al., 2014). Further, these
effects can broadly be classified into global or local effects.
Global context effects describe the impact of the total set of
past stimuli or decisions on a given trial. Conversely, local
effects refer to the influence of immediately preceding trials
(de Jong, Akyürek, & van Rijn, 2021). A typical example
of a perceptual context effect is the central-tendency effect,
also known as Vierordt’s law (Vierordt, 1868; Lejeune
& Wearden, 2009). According to this law, humans tend
to overestimate relative short durations and underestimate
relative long durations (e.g., see Karin M. Bausenhart,
Dyjas, & Ulrich, 2014; Grondin, 2005; Gu & Meck, 2011;
Taatgen & van Rijn, 2011). Humans, thus, show a regression
to the mean where the single stimulus is biased towards a
representation of an average of previous stimuli (this reflects
an assimilative global effect).
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The so-called Type A effect, also known as the time-
order error (TOE), refers to the impact of stimulus
order on the point of subjective equality (PSE; Fechner,
1860). This means that participants usually over- or
underestimate one stimulus relative to the other depending
on the presentation order (for a comprehensive review of
this research see, Hellström, 1985). Figure 1B shows a
graph with two psychometric functions. The blue dashed
sigmoid curve shows equal choice probability of the two
responses (comparison > standard; comparison < standard)
when the comparison and standard stimulus had the same
duration. This means that there was no systematic over-
or underestimation of either stimuli. The solid blue line
has the same slope but is horizontally shifted to the right.
This shows us that the duration of the standard stimulus
frequently overestimated, which means there is a Type A
effect.

In the classical difference model the Type A effect
is accounted for by assuming a response bias parameter
as an additive constant (Yeshurun, Carrasco, & Maloney,
2008; Alcalá-Quintana & Garcáa-Pérez, 2011). However,
subsequent studies have invalidated this assumption at least
to some extent (Hellström, 1977; Jamieson & Petrusic,
1976). These studies suggest that the cause of the TOE
lies in perceptual – that is, pre-decisional – processes,
which again cannot be explained by the difference model.
However, possible decisional biases cannot be ruled out
entirely. To date, the interplay of perceptual decisional
processes in the origin of the TOE are not fully understood.

Dyjas et al. (2012) showed that when participants have
to discriminate the duration between a constant standard
stimulus s and a varying comparison c their discrimination
performance is better when the standard stimulus precedes,
rather than follows, the comparison stimulus. This effect
is often referred to as a negative Type B effect2 (Ulrich
& Vorberg, 2009) and has also been shown in other
domains such as weight (Ross & Gregory, 1964) or contrast
discrimination (Nachmias, 2006). The Type B effect reflects
a decreased slope of the sigmoid function for trials with
the stimulus order [cs] compared to trials with reversed
order (see, Fig. 1C). The Type A effect, however, reflects
merely a lateral shift of the sigmoid function mapping
response probabilities to the difference in stimulus duration.
The Type B effect – albeit being observed across different
modalities (e.g., visual, auditory) and stimulus attributes
(e.g., duration, frequency, intensity, and numerosity) –
received much less attention in research (Ellinghaus, Gick,
Ulrich, & Bausenhart, 2018). Although most studies found
a negative Type B effect (i.e., better discrimination when
the comparison stimulus is presented after the standard),

2Rammsayer and Wittkowski (1990) called this effect the position
effect and defined it the opposite way.

some studies found a reversed effect (Hellström, Patching,
& Rammsayer, 2020), especially, when stimulus duration
and the inter-stimulus-interval (ISI) are very short (≤ 300
ms).

Both Type A and Type B effects are assumed to be
global context effects, in the sense that their cause lies
in the history of many previously encountered stimuli.
Raviv, Ahissar, and Loewenstein (2012) demonstrated
with an absolute stimulus duration identification task that
immediately preceding trials are positively correlated. To
investigate whether this effect is due to the perception of the
previous stimulus or due to the previous decision, Wiener,
Thompson, and Coslett (2014) conducted a study in which
they counterbalanced the order of the different stimuli. They
observed that decisions biased perception in the following
trial, such that the interval was judged similarly. Further,
they also found a contrast effect of stimulus perception on
the subsequent perception. Further, an order effect on PSE
(Type A effect) has also been observed (Dyjas, Bausenhart,
& Ulrich, 2012; de Jong et al., 2021). Altogether, several
global and local effects influence perception and decisions
in discrimination tasks which cannot be explained by merely
considering differences in stimulus magnitudes.

The predominant explanation for all these context
effects is that decisions concerning the magnitude of
a stimulus feature (e.g., duration) are derived not only
based on the currently presented stimulus but also on
the distribution of previously encountered stimuli. Thus,
it is apparent that information stored in the memory
system influences perception of and decisions about later
presented stimuli. More recent modeling approaches aiming
to improve the theoretical accounts for context effects
on duration discrimination performance all share the
theoretical rationale that responses to interval timing are
based on a triad of cognitive processes: (1) A perceptive
clock system that systematically changes over time. (2)
A temporal reference memory system that stores past
encounters with the stimulus. And, (3) a decision process
that determines how the current output of the perceptive
system relates to the values stored in the memory system
and how to take any action based on this comparison (for a
recent review see, van Rijn, 2016). Many different models
have been proposed, which try to explain how the brain
keeps track of time and implements such a clock system for
time perception (for a review see, Balcı & Simen, 2016).

Internal referencemodel

The reference memory system in particular is assumed to
play an important role in the occurrence of context effects.
Lapid, Ulrich, and Rammsayer (2008), for example, assume
that participants store an internal reference of a prototype
stimulus in the memory and update this reference over
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time (e.g., Durlach & Braida, 1969). Dyjas et al. (2012)
proposed a quantitative model, the internal reference model
(IRM), that describes how such an internal reference (I ) is
established and updated over time. According to this model,
the internal reference In on a given trial n is computed as
a weighted sum of the internal reference of the previous
trial In−1 and the internal representation X1,n of the first
stimulus of the actual trial. This means that the internal
reference is updated on a trial-by-trial basis, such that the
internal reference In on trial n follows a geometrically
moving average (Roberts, 1959):

In = g · In−1 + (1 − g) · X1,n, (1)

with a weight g, 0 ≤ g ≤ 1. This parameter indicates how
much weight is given to the internal reference. To make
a decision, participants compare this internal reference In

with the internal representation of the second stimulus X2,n,
Dn = In − X2,n. When this difference Dn is greater
(smaller) than 0 then they decide that the first stimulus
was longer (shorter). This model simplifies to the standard
difference model if the weight g is set to 0.

Different studies showed that the IRM succeeds in
predicting various context effects such as Vierort’s law
(Bausenhart, Dyjas, & Ulrich, 2014), (Bausenhart et al.,
2014), Type A and B effect, as well as n-1 effects (Dyjas
et al., 2012; Dyjas & Ulrich, 2014; Bausenhart, Dyjas,
& Ulrich, 2015; Ellinghaus, Ulrich, & Bausenhart, 2018),
comparison stimulus precedes a constant standard stimulus,
the internal reference is no longer stable across trial because
the variable stimulus gets integrated. This variation of the
internal reference representation then causes a decreased
discrimination performance. Thus, the size of the Type
B effect, for example, should increase with increasing g

because the percept is then influenced more strongly by the
varying internal reference (Dyjas & Ulrich, 2014). A recent
study by Ellinghaus et al. (2018) showed that this weight
decreases when the interval between two stimuli increases.
The idea behind this finding is that the internal represen-
tation decays over time. Dyjas et al. (2012) showed in two
experiments that this model successfully accounts for the
behavioral patterns (e.g., Type B effect) in a duration dis-
crimination task where the stimulus order of a constant stan-
dard and a variable comparison stimulus was manipulated.

Sensation weightingmodel

The sensation weighting model (SWM) proposed by
Hellström (Hellström, 1979; 1985) is a more general
account. This model does not incorporate a trial-by-trial
updating of an internal reference and it is formalized as
follows:

D = [w1X1 +(1−w1)R1]−[w2X2 +(1−w2)R2]+b, (2)

where D is the subjective difference between sensation
magnitudes of two stimuli X1 and X2 each weighted by
w1 and w2. The parameter b reflects a bias. R1 and R2

are reference levels (similar to the internal reference) that
indicate the average subjective level of stimulation of the
stimuli. The crucial difference of the SWM (compared to
the IRM) is that not only the first but also the second
stimulus has a corresponding internal reference. This model
simplifies to the same discrimination process as the IRM
with s2 = 1 and b = 0. Within this model context
effects are explained by different weights for the stimuli. As
shown by Hellström (1979) a larger weight for the second
stimulus results in a Type B effect. Hellström, Patching, and
Rammsayer (2020) argue that the SWM but not the IRM
accounts for the full range of observed Type B and Type
A effects. As soon as the standard stimulus is not fixed
anymore (roving standard tasks), the IRM has problems
accounting for the effects. Also, the sometimes observed
positive Type B effects are difficult to explain with the
IRM model (Hellström et al., 2020; de Jong et al., 2021).
However, as Dyjas and Ulrich (2014) stated, it could be a
promising approach to combine the generality of the SWM
and the trial-by-trial updating mechanism of the IRM.

Both models discussed here ground on the notion of
stimulus comparison, described by a linear model with
different weights for the two stimuli and/or an integration
of past stimulus experiences. Altogether, these models pose
important progress compared to the standard difference
model in accounting for various context effects. However,
they focus on the memory system of the cognitive triad
and are rather agnostic about the subsequent decision-
making processes. The present study aims to provide a
more detailed description of the processes involved in
duration discrimination by incorporating the concepts of
the IRM and the SWM into a diffusion decision model
(DDM). In such a framework, choice and response time
data are jointly analyzed. This allows for a more fine-
grained analysis of the ongoing cognitive processes. It
is well known that accuracy trades off with speed (e.g.,
Heitz, 2014). Accounting for response times can prevent
potential inferential biases. Furthermore, using an additional
source of information (response times) can act as a
useful constraint for parameter estimation and can increase
parameter recoverability (Shahar et al., 2019; Ballard &
McClure, 2019).

Diffusion decisionmodel

The DDM, originally developed by Roger Ratcliff (Ratcliff,
1978; for recent reviews see, Ratcliff, Smith, Brown, &
McKoon, 2016; Voss, Nagler, & Lerche, 2013), belongs
to the broader class of evidence accumulation models,
sometimes also referred to as sequential sampling models.
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Its core assumption is that noisy evidence is accumulated
over time until a decision boundary (one for each decision
alternative) is reached. This terminates the evidence
sampling process, and the decision corresponding to the
crossed boundary is made.

The standard DDM consists of four parameters, which
all correspond to a specific cognitive aspect of the decision
process: The drift rate v refers to the average rate of
evidence accumulation. The boundary separation α is the
distance between the boundaries and indicates how much
evidence one considers necessary to reach a decision.
Hence, this parameter is interpreted as a measure for
response caution. The starting point z determines where the
evidence integration process starts relative to the distance to
the decision boundaries. If the starting point is equidistant
from both decision boundaries, both decision alternatives
have the same probability before the evidence accumulation
process starts. When the starting point is shifted toward
one of the boundaries, participants show an a priori bias
toward one of the alternatives. Finally, the non-decision
time τ , which is associated with the process of stimulus
encoding and the execution of some action after one of
the boundaries has been reached. The DDM is one of the
most influential cognitive process models and is used in a
wide variety of research domains involving two-alternative
forced choice tasks (for a review see Wagenmakers, 2009).
One of its advantages lies in the joint analysis of choices
and the full response time distributions for correct and error
responses. This allows the model, for example, to account
for the prominent speed-accuracy trade-off (Luce, 1986;
Heitz, 2014). Combining variants of the psychophysical
memory models described above and the DDM into one
framework could be beneficial for the field of stimulus
discrimination and for the field of decision-making. On the
one hand, it may be a fruitful extension for the models
of perceptual discrimination, which are agnostic about the
decision process itself and – on the other hand – it advances
decision process models that usually ignore sequential
and contextual effects in experiments. To account for the
context effects (e.g., Type B effects) some of the DDM
parameters must vary systematically from trial to trial. The
DDM has already been extended by trial-by-trial variability
parameters for the drift rate, starting point and also the non-
decision time, which is often referred to the “full” Ratcliff
diffusion model (Ratcliff & Tuerlinckx, 2002). It has been
argued that these variabilities improve the quality of data fit,
especially for fast responses (Lerche & Voss, 2016; Boehm
et al., 2018). However, these trial-by-trial variabilities are
usually assumed to be random. For the present model, our
goal is to inform trial-by-trial variability, especially of the
drift rate and the starting point, based on the proposed
mechanics of the discrimination models described above.

To our knowledge, the study from Patching, Englund, and
Hellström (2012) is the only attempt in this direction. In
their study, the authors modeled data from a paired visual
stimuli size and brightness discrimination experiment with
a DDM that regressed the drift rate on differently weighted
magnitudes of the stimuli:

vn = w1X1,n − w2X2,n + b, (3)

where X1,n and X2,n are the stimulus magnitudes on a given
trial n with their respective weights w1 and w2, and b is
a constant. This corresponds to the mechanisms proposed
by the SWM. Besides, they included also a random trial-
by-trial variance for the drift rates, starting points and
non-decision times. Their model succeeded in predicting
the Type A effect. In the present study, we build on this
study and apply different models with a similar rationale to
empirical data from a duration discrimination experiment.
First, we use these models to predict not only possible Type
A effects but also the Type B effects. Second, we integrate
different variants of the IRM and the SWM into a DDM
framework and compare their fits to the data.

In discrimination task experiments, such as described
earlier, response times (RT) are usually measured from the
offset of the second stimulus. This means that the evidence
accumulation process of the DDM technically starts when
the presentation of the second stimulus ends. Balcı and
Simen (2014) proposed a two-stage sequential diffusion
model with a similar idea in mind. The first stage is a
diffusion process that delivers a noisy estimate of a time
interval, which arises from a balance between excitation and
inhibition and is referred to as a time-adaptive, opponent
Poisson drift diffusion model (TOPDDM). The starting
point as well as the drift rate of the second diffusion process,
which corresponds to the actual decision process required
in the experiment, is then influenced by the first stage’s first
passage time. Within the TOPDDM framework, different
intervals are timed by adjusting the accumulation rate; a
higher drift rate is used to time shorter intervals. It is
worth mentioning that this sequential DDM was applied
to experimental data from a bisection task. On each trial
in this task, a single stimulus had to be classified in one
of two categories. Therefore, the TOPDDM formalizes the
perception and decision involving a single stimulus and
cannot account for comparative decisions of two stimuli.
Also, the model does not incorporate any memory system
mechanism that could account for context effects. Still, the
study showed that the perception of stimulus can influence
the starting point of the subsequent evidence accumulation
process.

We assume that information from the first stimulus
additionally affects the starting point of the evidence
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accumulation. To evaluate whether our model assumptions
are plausible, we fitted different models to the data from
Dyjas et al. (2012). The relative fit to the data for all models
was assessed with an approximate leave-one-out cross-
validation procedure (Vehtari, Gelman, and Gabry, 2017). In
addition to the relative goodness-of-fit it is important to also
assess the absolute fit to the data (i.e., the degree to which
they can capture quantitative and qualitative patterns in the
empirical data), because even the relative best-fitting model
could be a bad model for describing the data generating
process (Palminteri, Wyart, & Koechlin, 2017). Therefore,
we performed posterior predictive checks with the relative
best-fitting model for response and response time data.

Methods

This study is based on a re-analysis of the data form Dyjas
et al. (2012). More details about the methods can be found
in the original article.

Participants

26 volunteers with normal hearing and sight participated
in 3 sessions on different days in the first experiment.
Data from 5 participants were eliminated from all analyses
due to non-cooperative participation (see the contaminants
handling subsection for more information about our
elimination procedure). This resulted in a final sample
N = 21 participants (15 female; 6 male) with an average
age of 24.85 years (SD = 7.3, range = 18-41). For the
second experiment, a novel sample consisting of 24 female
participants was recruited. We excluded 3 individuals due
to non-cooperative participation which resulted in a final
sample of 21 participants with an average age of 20.19 years
(SD = 2.6, range = 18-28).

Experimental task

In Experiment 1, participants had to decide which of two
subsequently presented auditory stimuli (white noise) had a
longer duration. On each trial, a stimulus (s) had a standard
duration of 500 ms, while for the comparison stimulus c

durations ranging from 400 to 600 ms were used. The inter-
stimulus interval was always 1000 ms. Participants had to
decide whether the first or the second stimulus had a longer
duration. Response times were recorded starting from the
offset of the second stimulus until a response has been
made. After an inter-trial interval of 1600 ms, the next trial
began. The experiment consisted of three conditions that
differed in the order of the two stimuli and were tested in
separate sessions. In the [sc] blocked condition the standard
stimulus s always preceded the comparison stimulus c.

In the [cs] blocked condition, this order was reversed. In
the random condition, both stimulus orders were presented
randomly intermixed.

In Experiment 2, the task was the same except that visual
(discs) instead of auditory stimuli were used and the range
of durations of the comparison stimulus was increased to
300-700 ms. In the original study (Dyjas et al., 2012), no
substantial differences have been found between the fixed
and random conditions. For brevity, we focus our data
analysis on the random condition of both experiments.

Contaminants handling

Generally, it is important to have an appropriate strategy for
handling data points that are not a product of the process
in consideration but from another process that is not in the
focus of the research question (contaminants; Zeigenfuse &
Lee, 2010). Fast guesses are one type of such contaminants,
which are very fast responses (e.g., ≤ 300 ms) with chance
level performance. In the case of diffusion modeling, it is
particularly important to appropriately deal with this type
of contaminants because otherwise, it can lead to biased
parameter estimation and incorrect standard errors (Ratcliff,
1993; Ratcliff & Tuerlinckx, 2002; Ulrich & Miller, 1994).
Furthermore, an analysis of contaminants helps to detect
non-cooperative participants who can then be excluded from
further data analysis.

Therefore, we applied a method called exponentially
weighted moving average (EWMA; Chandra, 2007; Van-
dekerckhove & Tuerlinckx 2001) to identify fast guesses
for each individual separately. If the proportion of fast
guesses exceeded 10% of all responses then this partici-
pant was excluded from further analyses. Some participants
showed only a few very fast responses. In this case, it is not
appropriate to calculate average accuracy because perfor-
mance could exceed chance level randomly. Therefore, we
additionally removed all responses faster than 100 ms.

Cognitive process models

With this study, we want to evaluate whether the DDM
is an appropriate model for explaining decision processes
involved in duration discrimination. Our core assumption is
that – when two stimuli are presented sequentially – then the
first stimulus influences the starting point of the evidence
accumulation process, while the drift rate depends on the
magnitude of both stimuli. We further enrich the diffusion
model with a memory model that determines the influence
of previously seen stimuli, as proposed by different variant
of the IRM, SWM or a combination of both. We estimated
several different models to test whether these assumptions
are justified given our data (see Table 1 for an overview of
all tested models).
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Table 1 The different specifications of DDMs with the number of free individual-level parameters, their goodness of relative fit to the data
quantified by the expected log-predictive density (elpd), and the corresponding uncertainty of these values quantified by the standard error (SE)

Model Specification N pars Exp 1 Exp 2

elpd SE elpd SE

1 vn = v0 + v1(X1,n − X2,n) 5 −6925 148 −4767 121

2 vn = v0 + v1(I1,n − X2,n) 6 −6709 148 −4636 121

3 vn = v0 + v1X1,n + v2X2,n 6 −6706 148 −4630 121

4 vn = v0 + v1I1,n + v2X2,n 7 −6681 148 −4609 121

5 vn = v0 + v1(I1,n − X2,n)

zn = z0 + z1I1,n 7 −6677 148 −4597 120

6 vn = v0 + v1X1,n + v2X2,n

zn = z0 + z1X1,n 7 −6637 147 −4591 120

7 vn = v0 + v1I1,n + v2X2,n

zn = z0 + z1I1,n 8 −6611 147 −4609 121

vn and zn refer to the drift rate and starting point, respectively, on a given trial n. X1,n and X2,n denote the internal representation of the first and
second stimulus on trial n. I1,n is the internal references computed by the mechanism suggested by the IRM (Equation 1)

Model 1 is a baseline model, which incorporates
the simple difference model. Here, the drift rate is the
only parameter that is allowed to vary between trials.
This is modeled as a linear function of the difference
between stimulus durations on the present trial. This model
comprises a total of 5 free individual-level parameters: The
intercept and slope of the drift rate, the starting point, the
boundary separation, and the non-decision time.

Models 2-4 differ from the Model 1 in the linear function
describing the drift rate. Model 2 implements the concept
of the IRM by replacing the internal representation of the
first stimulus X1 with the internal reference I1, which
is calculated for every trial following Equation 1. This
introduces one additional parameter g that weights past
internal references and the currently present first stimulus.
In Model 3, the drift rate is calculated according to the
SWM. Here, the drift rate v on a given trial n is modeled
as a linear function of an intercept v0 and different weights
(β1, β2) for the first and the second stimulus. Model 4
implements a combination of the IRM and SWM concepts,
as suggested by Dyjas and Ulrich (2014). This model uses
not only an internal reference for the first stimulus but also
allows for different weighting of both presented stimuli.

To examine whether the processing of the first stimulus
influences the starting point of the evidence accumulation
process we refitted the Models 2 to 4 with an additional
linear function for the starting point z (Models 5-7). For
simplicity reasons, we did not include the random trial-by-
trial variability parameters like Patching et al. (2012) did.
We fitted all 7 models to the data of the random condition
of Experiment 1 and 2.

Model fitting and evaluation

All models were implemented in a Bayesian hierarchical
framework (Vandekerckhove, Tuerlinckx, and Lee, 2011).
For each parameter, a Gaussian hyper-distribution was esti-
mated from which individual parameters for each partic-
ipant were sampled. This procedure allows to investigate
inter-individual differences in the stimulus comparison pro-
cess and also serves to account for a source of variability in
the average parameter estimates (Lee, 2011). See Appendix
A for a description of all (hyper-) priors used in our
models.

All models were implemented in Stan (Carpenter et al.,
2017; Stan Development Team, 2020b) and estimated with
the R interface package RStan (Stan Development Team,
2020a). Samples were drawn using a Hamiltonian Monte
Carlo sampler (HMC; Betancourt, 2018) with 4 chains
and 2000 iterations of which 50% were used as warm-up
samples and later discarded. To ensure model convergence
we inspected the R̂ statistic (Gelman & Rubin, 1992) and
assured that R̂ < 1.01 for all parameter estimates. We
compared the relative fit of all models using approximate
leave-one-out cross-validation (Loo R package; Vehtari et
al., 2020; Vehtari et al., 2017). The best-fitting model,
indicated by the highest expected log-predictive density
(elpd), was then rigorously evaluated in terms of absolute
fit by the means of posterior predictive checks. We sampled
500 parameters set from the posterior distribution. We
then simulated new datasets with these parameters and
calculated summary statistics for the responses (mean and
95% highest density interval; HDI) as well as response
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times (median and 95% HDI) and compared those with
summary statistics of the empirical data. All code and
data are freely available on GitHub (https://github.com/
LuSchumacher/timing discrimination).

Individual context effects

In order to evaluate the degree of Type B and Type
A, effect we fitted a Bayesian logistic regression to the
data for each participant separately. This model predicted
the proportion of a c > s response with the predictors
duration of c, stimulus order, and their interaction. We then
calculated the difference limen for both stimulus orders
separately by the difference between the 75% and 25%
percentile of the resulting psychometric function divided by
2. The individual Type B effect was then determined by the
difference between those two DL’s. The individual Type A
effect was calculated from the difference between the PSE

of both stimulus orders, which corresponded to the 50%
percentile of the psychometric function.

Results

Relativemodel fit

The differences in relative goodness-of-fit for all models
are depicted in Fig. 2 for both experiments separately. All

models’ elpd values were compared relative to the best-
fitting model. Hence, the model with the most accurate
out-of-sample prediction has an elpd difference of 0. We
clearly see that Model 1, which is an implementation of
the simple difference model, performs worse compared to
all other models in both datasets. The elpd values for the
Models 2 and 3 are superior compared to Model 1 and fairly
similar to each other (see Table 1). This suggests that the
different implementations of the IRM and SWM predict
data equally well. Model 4 which used different weighting
of the stimuli as well as the internal reference mechanism
showed a slightly better fit in both experiments compared
Model 2 and 3.

Models 5 to 7 included an additional linear function for
the starting point of the evidence accumulation process.
These models tend to show a slightly better goodness-
of-fit. However, we did not observe a clear increase in
prediction accuracy when compared to model variants that
did not include this additional predictor (Models 2–4).
Again, the results differ between Experiments 1 and 2. In
Experiment 1, Model 7, which is a combination of the IRM
and SWM, showed the best goodness-of-fit. It appeared to
predict the data more accurately compared to the model that
was identical but without the linear function of the starting
point (Model 4). This was not the case in Experiment 2.
Neither was Model 7 the best-fitting model nor did it differ
from Model 4 in a meaningful way. Our data suggest a large
degree of model mimicry and it appears that the impact of

Fig. 2 Differences in the expected log-predictive density (elpd) for each model fitted to the data of Experiments 1 and 2. The difference for each
model is computed relative to the best-fitting model, and thus, the elpd difference of the best-fitting model equals 0. The thick bars indicate ±1
standard error and the thin bar ±5 SE’s of the elpd difference estimate
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the first stimulus (or the internal reference) on the starting
point is rather small.

Absolutemodel fit

Across both Experiments, Model 6 provided a good relative
fit to the data. It predicted data best in Experiment 2 and
was only slightly worse than the best-fitting model (Model
7) in Experiment 1 while using one less parameter. Thus, we
evaluated this model in more detail in terms of absolute fit to
data by performing posterior predictive checks. Figure 3AB

depict the probability of deciding that the comparison
stimulus c was longer than the standard stimulus s for all
durations of c and both stimulus orders separately. The solid
lines and points indicate the empirical data averaged across
all participants. The shaded areas indicate the 95% HDI of
the mode from 500 simulated datasets and thus, describe
the model’s prediction of the average performance and its
uncertainty. As expected, the probability of choosing c > s

increases with increasing duration of c in both experiments.
The slope of the line is steeper when the comparison
followed rather than preceded the standard stimulus. This

Fig. 3 Posterior predictions and empirical data of the average perfor-
mance in Experiment 1 and 2. A, B. The average probability of a c > s

response as a function of the duration of the comparison stimulus for
both stimulus orders separately. The posterior prediction is shown with
shaded areas (95% HDI) and the empirical data with solid lines and
points. C, D. The densities of the predicted and the empirical raw

response time distribution of all participants for both stimulus orders
separately. E, F. Different quantiles of the predicted (shaded area) and
empiric (solid lines and points) average response time as a function
of the duration of the comparison stimulus for both stimulus orders
separately
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indicates a negative Type B effect. Both patterns were
successfully predicted by the model. However, the model
slightly overestimates the average probability of c > s

responses for short durations of c in both experiments.
This is probably due to shrinkage, which is a result of our
hierarchical modeling approach. When the same model was
fitted with complete pooling these divergences disappeared.
Appendix B shows the posterior predictive checks based
on the individual-level parameters for each participant
separately. In these analyses, accurate predictions for all
subjects were observed.

The empirical and predicted raw RT distributions are
shown in Fig. 3CD for both stimulus orders and experiments
separately. Comparing the empirical and the predicted
densities reveal acceptable overlap in both conditions and
experiments. However, the model was not able to capture
the empirical data with very high precision. The mode
of the predicted distribution was lower compared to the
empirical distribution. Also, the model predicted heavier
tails than have been observed in the data. All misfits
were slightly more pronounced in Experiment 2 compared
to Experiment 1 (see the Discussion section for possible
explanations).

Figure 3EF shows a more fine grained picture of the
RTs by depicting different quantiles (10%; 30%; 50%;
70%; 90%) of the observed and posterior predictive RT
distributions for both stimulus orders and durations of
stimulus c separately. In Experiment 1, RTs tend to increase
with increasing task difficulty. This pattern seems to be
more extreme in the tails of the RT distribution when
stimulus c followed rather than preceded the standard
stimulus. Both patterns were successfully predicted by our
model. However, the uncertainty (95% HDI) increased in
the tails of the RT distribution. This is due to the lower
number of trials with such high RTs and also due to the
greater variance.

The prediction of the RTs of Experiment 2 was not
as good as for Experiment 1. Empirical RTs tend to be
faster with short-duration c stimuli compared to longer
durations if the comparison stimulus was presented first.
The opposite pattern was found for the reversed order. A
similar pattern was also observed in Experiment 1 although
less pronounced. This is not a pattern we commonly would
expect. Usually, RTs tend to increase with difficulty. Here,
the most difficult decisions have to be made when the
standard and comparison stimulus are the same or very
similar. However, depending on the order of the stimuli
either trials with short or long durations showed the slowest
RTs. This is a pattern, which our model could not predict.

Parameter specific analyses

Table 2 shows the mode and 95% HDI of the group-level
mean parameter posterior distributions for both experiments
separately. The posteriors of the boundary separation are
similar between both experiments and show plausible
values. The estimates for the non-decision time are again
similar and lower than typically observed in cognitive
experiments. This could be a result of the experimental
paradigm. We discuss this issue in more detail in the
discussion section. Remember, the starting point of this
model was modeled as a linear function of the duration of
the first stimulus. z1 corresponds to the beta-weight for the
predictor first stimulus and its posterior is very small in
both experiments. This means that in trials where the first
stimulus showed the most extreme duration (-100 ms or 100
ms when centered on the standard stimulus) the influence of
the first stimulus on the starting point would still be small
(e.g., 0.0007 · 100 = 0.07 units of change in the starting
point). Although this effect is very small, it is not zero.

As pointed out by Dyjas and Ulrich (2014) and Hellström
et al. (2020), the Type A and Type B effect are explained

Table 2 The mode and lower/upper boundaries of the 95% HDI of all group-level mean posterior distributions for both experiments separately

Parameter Experiment 1 Experiment 2

mode lower upper mode lower upper

a 1.4736 1.3577 1.5986 1.3921 1.3320 1.4597

ndt 0.1456 0.0986 0.1760 0.1226 0.0889 0.1468

z0 0.4411 0.4250 0.4559 0.4192 0.3967 0.4402

z1 0.0007 0.0005 0.0009 0.0002 0.0001 0.0003

v0 0.0437 −0.0769 0.1671 0.2327 0.0959 0.3480

v1 0.0096 0.0073 0.0120 0.0060 0.0047 0.0075

v2 −0.0198 −0.0225 −0.0170 −0.0087 −0.0095 −0.0078
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within the SWM as a result of the different weighting of
both stimuli. Figure 4 shows the correlation between the
individual proportional difference between the weighting
parameters ( v1−v2

v1+v2
) and the empirical Type A and Type

B effect in Experiment 1 (left panel) and Experiment 2
(right panel). All participants except one showed either
a tendency or a clear negative Type B effect which was
already reported in the original study (Dyjas et al., 2012).
We observe a large correlation of r = 0.82, which suggests
that individual estimates of the weighting parameters are
meaningful predictors for the size of individual Type B
effects. Although a smaller association between the weights
and the empirical Type A effect was found, a similar
conclusion can be drawn.

Discussion

Human performance in duration discrimination is influ-
enced by several context effects. For instance, the order
of two successively presented stimuli not only affects the

point of subjective equality (Type A effect) but also the dis-
crimination sensitivity (Type B effect). Current models that
account for such effects propose that an internal represen-
tation of the stimulus history interferes with the perception
of the current stimulus. Although they describe how a deci-
sion variable evolves, they are agnostic to the dynamics of
the decision process itself.

In this work, we presented a novel modeling approach for
perceptual decision-making in duration discrimination. We
demonstrate that integration of current models of stimulus
discrimination (IRM, SWM) into a Bayesian hierarchical
diffusion decision model offers good prediction of the
average as well as individual discrimination performance
by taking not only responses but also the entire response
time distribution into account. Moreover, we demonstrated
that the estimates of the model parameters are meaningful
predictors for two intensively studied context effects, the
Type B effect and the Type A effect.

In the field of perceptual stimulus comparison two
different models have been proposed: the internal reference
model, and the sensation weighting model. To this date,

Fig. 4 Correlation between the proportional difference in weights and the empirically observed Type A (A) and Type B effect (B) of Experiment 2
(left panel) and Experiment 2 (right panel). Each point corresponds to a single participant’s context effect and their individual-level proportional
difference in weights
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it remains unclear, which of those models best describes
human discrimination processes. Little effort has been
made, to rigorously compare the prediction of these models.
The present study is a step towards this direction. However,
we observed large model mimicry and were not able to
discriminate between the different models based on the
empirical data. This is not too surprising because the
authors of the original study pointed out that it makes little
difference whether the IRM or SWM is applied (Dyjas
et al., 2012). We think, it would be a promising avenue for
future investigation to compare the different models with
our framework based on more complex task such as, for
example, the roving standard task or task with very brief
stimulus presentations. Furthermore, these models could
also be tested against various local context effects (Wiener,
Thompson, & Coslett, 2014; de Jong et al., 2021). Our
approach could prove particularly useful since effects on
response times are often found in such experiments (Wiener
et al., 2014).

Our hierarchical modeling approach showed accurate
prediction of the performance of most individual partic-
ipants. Individual weight parameters w1 and w2 for the
SWM were estimated. We showed that these parameters
highly correlated with the individual extent of the Type A
and Type B effect. It has already been pointed out that indi-
viduals can significantly differ in context effects (Dyjas,
Bausenhart, & Ulrich, 2014). The ability to estimate indi-
vidual parameters that correspond to these effects combined
with individual latent variables provided by the DDM could
be fruitful for future studies on individual differences in
stimulus discrimination.

Future work also should address the whole range of
sequential effects. Differentiation between global and local
context effects and also the difference between perceptual
and decisional carryover effects which could all be either
assimilative or contrastive. Wiener et al. (2014) found that
the perception of time is susceptible to similar adaptive
and decisional effects as other categorical stimuli, where
the responses for any given interval are simultaneously
assimilated by the prior response and contrasted away
from the prior interval. Urai, de Gee, Tsetsos, and Donner
(2019), for example, showed that previous choices biased
the average rate of evidence accumulation and not, as
previously thought, the starting point of the accumulation
process. It would be interesting to see whether this is also
the case in duration discrimination tasks.

The models proposed in this study mathematically
formalize two aspects of the cognitive triad involved in
interval timing discrimination; an updating process of a
memory system such as the internal reference in the IRM
and a decision process formalized by the diffusion decision
model as an evidence accumulation process. However, the
model does not include a perception mechanism such as

a clock system implemented. Several promising models
such as the TOPDDM (Balcı & Simen, 2014) or the pace-
maker accumulator model exist (Church, 1984; Gibbon,
Church, & Meck, 1984; Hartcher-O’Brien, Brighouse, &
Levitan, 2016). Implementing such a mechanism into the
modeling framework proposed here could lead to an even
more complete formalization of all the processes involved
in interval timing discrimination and could provide a
promising framework for future studies. Moreover, recent
advances in joint modeling enable us to incorporate neural
data into diffusion models (Ghaderi-Kangavari, Rad, &
Nunez, 2022; Turner, Forstmann, & Steyvers, 2019), which
could be a fruitful approach to studying brain-behavior
relationships during duration discrimination.

Further, Toso, Fassihi, Paz, Pulecchi, and Diamond
(2021) showed that non-temporal stimulus features (e.g.,
loudness of a tone) can influence the perceived stimulus
duration. In their duration comparison task, participants’
responses were biased depending on the intensity of
the stimulus which resulted in a horizontally shifted
psychometric curve. They argue that this bias is a perceptual
rather than a decisional phenomenon because it occurred
whether the non-relevant feature was manipulated in the
first or the second stimulus. In their opinion, the first
stimulus is dissociated from any decisional process. The
models proposed in the present study could precisely
test this assumption as the starting point of the evidence
accumulation process directly represents a decisional bias.

In perceptual decision-making tasks, RTs heavily depend
on the difficulty of a given trial, expecting longer
decision times for relatively difficult trials. In this study’s
experiments, the difficulty of a trial was relatively high
when the duration of the comparison and the standard
stimulus was very similar. The task difficulty decreases with
larger duration differences because it gets more obvious
which of the two stimuli’ duration was longer. Thereby
trials with relatively short durations of c and relatively long
durations should be equally difficult. As the difficulty of a
trial decreases, also the RTs should decrease and not differ
between trials with short and long c durations.

Surprisingly, that is exactly what was observed in the
empirical data. In both stimulus order conditions, RTs for
relatively long durations of c differed from RTs when
relative short durations were presented. When the c stimulus
preceded the s stimulus participants responded slower
when relative long durations were presented compared to
relatively short durations. The opposite pattern was found
when the c stimulus followed the s stimulus. In this case,
participants tend to show slower RTs in trials when relative
short durations of c were presented. Therefore, RTs were
generally slower when the first stimulus was clearly longer
than the second stimulus compared to trials when the first
stimulus had a shorter duration than the second one.
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This particular pattern in empirical RT data was
most pronounced in Experiment 2 but also present in
Experiment 1. Our model was not able to capture such RT
differences. This is not surprising as the model assumes
that the drift rate depends on the weighted difference
between the duration of the stimuli presented in a trial.
If this difference is low, the model produces more slow
and erroneous responses. Conversely, when the weighted
difference is relatively large, the model predicts more
accurate and faster responses, independent of whether the
duration of c was short or long.

It is an important open question if this pattern in the RTs can
be explained as a phenomenon of the perceptual decision-
making process in duration discrimination or whether it
is a result of the experimental task used to measure the
discrimination performance. In this study’s experiments, the
RTs were measured from the offset of the second stimulus
until a response button was pressed. A possible explanation
for this asymmetry in RTs could be that in trials where
the duration of the first stimulus is shorter, participants
can already know their choice around the time when the
duration of the second stimulus exceeds the duration of
the first stimulus. This would lead then to relatively fast
responses as participants are already waiting for pressing
the response button before they are allowed. Conversely, in
trials where the first stimulus was longer than the second
one, participants could be surprised by the abrupt ending
of the second stimulus. This could then lead to delayed
start-ups and thus explain the longer RTs in those trials.

Further, it is worth mentioning that some posteriors
of the individual-level non-decision time parameters were
odd. The mode of these distributions sometimes took on
unrealistic small values of below 100 ms (range: 0.019 to
0.302). It is rather implausible that it took a participant
only 19 ms to execute the motor action that was needed to
give a response. This also contributes to the assumption that
participants with such low non-decision time parameters at
least sometimes already decided and prepared their response
before the presentation of the second stimulus has finished.

Although we took good care of potential fast guesses
by applying the EWMA method to each participants’
responses, a substantial proportion of all responses were
very fast. These fast responses, however, were clearly
above chance performance. Although we observed such fast
above chance performance responses, these did not occur
exclusively in the [cs] order but also in the [sc] order.
As we have not programmed nor experienced the stimuli
in the experiment it is hard to come up with a satisfying
explanation for these odd findings and simply disclose that
the estimates of the non-decision time in our study have to
be interpreted with caution.

We suggest that future studies take a deeper look into
these surprising behavioral patterns. One way could be to
start the RT measurement from the onset of the second
stimulus. This possibly leads to even shorter RTs in trials
where the first stimulus is clearly shorter than the second
because participants would no longer have to wait to press
the response button until the second stimulus presentation is
finished.

In summary, the model proposed in this work provides
a novel approach to predict human performance in duration
discrimination. It not only incorporates perceptual mech-
anism like stimulus weighting or internal representation
updating but also decisional processes such as processing
speed or decision caution. We think the proposed model lay
a good starting point to further investigate perceptual and
decisional context effects.

Open Practices Statement

All data and code used in this study are freely avail-
able on GitHub (https://github.com/LuSchumacher/timing
discrimination). None of the experiments was preregistered.

Appendix A: Prior distributions

A list of the prior distributions used for all models. N
refers to a Gaussian normal distribution with a mean μ

and standard deviation σ parameter. � denotes a gamma
distribution with a shape κ and scale θ parameter. The
beta distribution is written as Be an uses two shape
parameters α and β. All individual-level parameters were
sampled from a group-level Gaussian normal distribution
N (μ, σ ), with a mean μ (listed below) and a standard
deviation σ ∼ �(1, 5). The group-level distributions for the
boundary separation α and non-decision time τ parameter
were truncated with a lower bound at 0. The group-level
distribution for the g parameter, which governs the trial-
by-trial updating mechanism of the internal reference was
truncated with a lower bound at 0 and an upper bound at 1.

μv0 ∼ N (0, 5)

μv1 , μv2 ∼ N (0, 1)

μz0 ∼ Be(5, 5)

μz1 ∼ N (0, 1)

μg ∼ Be(1, 1)

μτ ∼ �(3, 15)

μα ∼ �(2, 2)

572



Attention, Perception, & Psychophysics (2023) 85:560–577

Appendix B: Individual-level posterior
predictive checks

Fig. 5 Posterior predictions (shaded area) and empirical data of Exper-
iment 1 (solid line and points) of the mean probability of a c > s

response for both positions of c and each participant separately. The

shaded area represents the 95% HDI over the mean of 500 simulated
datasets based on individual-level parameter sets randomly sampled
from the posterior distribution
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Fig. 6 Posterior predictions (shaded area) and empirical data of Exper-
iment 2 (solid line and points) of the mean probability of a c > s

response for both positions of c and each participant separately. The

shaded area represents the 95% HDI over the mean of 500 simulated
datasets based on individual-level parameter sets randomly sampled
from the posterior distribution
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Neural superstatistics for Bayesian 
estimation of dynamic cognitive 
models
Lukas Schumacher 1*, Paul‑Christian Bürkner 2, Andreas Voss 1, Ullrich Köthe 3 & 
Stefan T. Radev 4

Mathematical models of cognition are often memoryless and ignore potential fluctuations of their 
parameters. However, human cognition is inherently dynamic. Thus, we propose to augment 
mechanistic cognitive models with a temporal dimension and estimate the resulting dynamics from a 
superstatistics perspective. Such a model entails a hierarchy between a low‑level observation model 
and a high‑level transition model. The observation model describes the local behavior of a system, 
and the transition model specifies how the parameters of the observation model evolve over time. 
To overcome the estimation challenges resulting from the complexity of superstatistical models, we 
develop and validate a simulation‑based deep learning method for Bayesian inference, which can 
recover both time‑varying and time‑invariant parameters. We first benchmark our method against two 
existing frameworks capable of estimating time‑varying parameters. We then apply our method to fit 
a dynamic version of the diffusion decision model to long time series of human response times data. 
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics 
of the model. Furthermore, we show that the erroneous assumption of static or homogeneous 
parameters will hide important temporal information.

Mathematical models are important tools for conceptualizing human cognition and predicting observable behav-
ior. Such models aim to provide a mathematical formalization of cognitive processes by mapping latent cognitive 
constructs to model parameters and specifying how these generate manifest  data1. The surge of cognitive model 
applications has made it possible to test precise mechanistic hypotheses and to predict performance in various 
domains, such as decision-making2,3,  learning4,5, or  memory6,7.

The majority of cognitive models treat human data as independent and identically distributed (IID) observa-
tions. The IID assumption implies that these models largely ignore the temporal changes of latent cognitive con-
structs. However, such constructs are inherently dynamic, regardless of a particular time  scale8–11. For instance, 
there is little dispute that constructs, such as working memory  capacity12 or mental  speed13, change over the 
human life span. These constructs also vary on much shorter time scales, for example, within experimental 
 sessions14,15.

In psychological experiments, cognitive affordances are influenced not only by external task demands but also 
by internal mental processes and brain states that change over time. There are many possible explanations for the 
resulting systematic and unsystematic fluctuations, for instance,  fatigue16,17,  practice18,19, mind-wandering20,21, 
or motivational  factors22,23. In this article, we argue that cognitive mechanisms should be treated as complex 
dynamic systems and that cognitive models should account for the dynamics of their components to fully under-
stand and capture the rich structure of empirical human data.

Ignoring temporal fluctuations and changes in cognitive parameters can have drastic consequences for the 
descriptive, explanatory, and predictive merits of cognitive models. Consider a simple inverted U-shape hypothet-
ical trajectory of a single parameter, as depicted in Fig. 1. Typical cognitive models assuming IID  observations2,6 
would estimate a flat trajectory (depicted in blue) whose uncertainty would match the width of the marginal 
parameter distribution (depicted in gray). Differently, dynamic models would account for temporal change and 
achieve a much greater information gain (depicted in red). Indeed, this is not just a hypothetical scenario, and 
we subsequently demonstrate its consequences in a real data application (cf. Fig. 8).
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One way to mathematically formalize dynamic systems is by treating them as stochastic generative processes 
that produce data with temporal dependencies (i.e., time series data). As most complex systems are inherently 
non-linear, these time series often do not exhibit simple fluctuations around a stable mean with a fixed variance, 
but resemble a heterogeneous random  walk24. Beck and  Cohen25 coined the term superstatistics, which refers to 
a superposition of multiple stochastic processes on different temporal scales that can describe heterogeneous 
temporal  dynamics26. Thus, instead of assuming static model parameters, a superstatistics modeling approach 
introduces a hierarchy of at least two models: A low-level (i.e., observation or microscopic) model that formalizes 
the local behavior of a system and a high-level (i.e., transition or macroscopic) model that describes the parameter 
dynamics of the low-level model. Note that there is no absolute time scale for low- and high-level processes. The 
meaning of these terms is relative and always depends on the scale relevant to the research question.

A viable approach for modeling parameter transitions is offered by hidden Markov models (HMMs). For 
 instance27, accounted for different response states during a decision-making task by combining a HMM with an 
evidence accumulation model of decision-making. This model combination allows for discontinuous changes on 
longer time scales and continuous changes on shorter time scales.  Similarly28, extended a hierarchical version of 
the same decision-making model with a HMM and applied it to three existing long time series of response time 
and choice data. Both studies demonstrate that the HMM approach can reveal plausible fluctuations of decision 
model parameters in cognitive tasks.

However, the superstatistics framework is far more general and flexible in representing macroscopic fluc-
tuations. First, it does not require modelers to pre-define a small set of possible modes (i.e., distinct system 
behaviors). Further, models within the superstatistics framework can be agnostic about the concrete dynamics 
of the model parameters—the most plausible dynamic can be directly estimated in a data-driven fashion. For 
example, using a superstatistics  framework29, demonstrated that the transition between different sleep stages is 
less abrupt than previously suggested.

The superstatistics framework has been utilized in  physics30–32, the life-sciences33 and  economics34,35, but it has 
not yet been disseminated in the cognitive sciences. Under the assumption that cognitive processes are dynamic 
and complex, it seems natural to equip existing cognitive models with superstatistical aspects. However, to our 
knowledge, no previous study  besides29 has employed superstatistical methods for studying the dynamic aspects 
of cognitive parameters. Existing dynamic models of cognition fit stationary time series models (e.g., autoregres-
sive models) to the observed  behavior9 but do not incorporate a low-level mechanistic model that formalizes the 
underlying cognitive process(es). Thus, these time series models describe how behavior changes over time but 
do not explain how behavior occurs at a specific point in time. On the other hand, popular mechanistic models 
tailored to describe local behavior, such as diffusion decision models  (DDM2,36,37), either ignore the dynamic 
aspects of their parameters entirely or represent parameters as deterministic functions of  time38–42.

In this work, we argue that the superstatistics framework can reveal a more nuanced picture of cognitive 
dynamics and behavioral fluctuations. This is possible because we formalize the dynamic aspect of the low-level 
parameters as a higher-order stochastic process. Consequently, we estimate the low-level parameters at each time 
step directly from the data. Thus, their temporal evolution is only constrained by the modeler’s choice of prior 
distributions and by the high-level transition model. Nevertheless, superstatistical models can be rigorously vali-
dated in the same way as their static counterparts, using standard model criticism methods, such as simulation-
based calibration (SBC) to assess computational faithfulness, parameter recovery for inferential calibration, 
posterior re-simulation checks for assessing model adequacy, as well as cross-validation for assessing predictive 
 performance43,44. Superstatistical models allow us to address questions about how cognitive systems undergo 
distinct transitions in various  settings27. Further, one can examine which model parameters explain behavioral 
fluctuations without predefined equations that fix the hypothesized temporal evolution of specific parameters.

Superstatistical models can be quite challenging to estimate and compare for a number of reasons, especially 
in a Bayesian framework for principled uncertainty  quantification24. First, both the high-level and low-level 
models are stochastic, so there is considerable uncertainty about the values of all model parameters (i.e., static 
and dynamic) given a finite number of observations. Second, the low-level models might be complex and non-
linear so that there is not always a closed-form analytic expression relating model parameters to data (i.e., the 

Figure 1.  Conceptual illustration of a hypothetical parameter θ varying over time (solid black line). The solid 
blue line and shaded blue region depict the posterior mean and the 95% CI of a static model, respectively. The 
solid red line and shaded red region depict the posterior mean and 95% CI of a dynamic model, respectively. 
Treating the parameter as static (i.e., stationary) by marginalizing out the effects of time leads to inflated 
uncertainty estimates (matching the width of the marginal distribution, depicted in gray) and obscures the 
underlying change.
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likelihood function is intractable), or the likelihood might be computationally very expensive to evaluate. Finally, 
even for stationary low-level models, the computational cost might become insurmountable when these models 
are applied to multiple data sets, since standard Bayesian methods are not amortized and thus need to be re-run 
sequentially (unless massively parallelized) and from scratch for each data  set45,46.

Indeed, estimation challenges may be the main reason for the underrepresentation of superstatistical models 
in psychology and the cognitive sciences. However, we argue that recent advances in (amortized) simulation-
based inference  (SBI45,47,48) render estimation challenges secondary and allow researchers to create and test 
high-fidelity models of cognition without worrying about analytic tractability. SBI encompasses methods that 
use synthetic data to approximate intractable posterior distributions of unknown parameters. Moreover, amor-
tized SBI with neural networks represents a particularly efficient way to perform posterior estimation on mul-
tiple data sets by investing the primary computational effort in a relatively expensive training  phase47,48. Once 
simulation-based training has converged, the trained networks can be applied to any number of observations or 
set of observations consistent with the model’s structure.

The main purpose of this article is two-fold. First, we demonstrate and validate the use of superstatistics in 
cognitive modeling via an out-of-the-box extension of a popular mechanistic cognitive model, namely, the DDM. 
Second, we develop and validate a novel Bayesian estimation method grounded in the BayesFlow framework 
for amortized neural  SBI45. To this end, we first perform benchmark comparisons with existing frameworks on 
simulated data. We then specify a non-stationary DDM and fit it to long time series of response times obtained 
from human participants. Moreover, with this application, we empirically demonstrate how stationary mod-
els assuming IID observations can hide a number of interesting dynamic patterns and fluctuations present in 
behavioral data.

Results
Benchmark studies. To ensure the trustworthiness of our method, we first benchmark its performance 
against two existing Bayesian frameworks which use different estimation algorithms: bayesloop24 and 
Stan49. The former employs grid approximation for low-dimensional problems, whereas the latter relies on 
Hamiltonian Monte Carlo  (HMC50) sampling. Both frameworks operate in a non-amortized way and can only 
estimate superstatistical models with closed-form likelihoods.

Coal mining accidents. Currently, bayesloop cannot fit low-level models as complex as the DDM, nor high-
level models such as the Gaussian process. Therefore, we compare the estimation performance of our method 
on a simpler example based on the coal mining accident data (freely available  from24). These data comprise 
counts of coal mining accidents in the United Kingdom between 1852 and 1962. The low-level model is a simple 
Poisson distribution with a parameter � that corresponds to the accident rate. One can assume that the accident 
rate in coal mines was not constant during this more than a century-long period. Therefore, the accident rate 
� is allowed to fluctuate over time according to the Gaussian random walk transition model (cf. Eq. 3). Both 
estimation methods use the same informative prior distribution for the low-level parameter �0 ∼ Exp(0.5) and 
high-level parameter σ ∼ Beta(1, 25).

Using the bayesloop software, we approximated a grid with 4000 equally spaced points ranging from 0 
to 15 for � and from 0 to 1 for σ , respectively. This calculation lasted approximately 38 minutes on a standard 
desktop computer. Training the neural network for 20 epochs took approx. 18 minutes, and obtaining 4000 pos-
terior samples took less than a second. Thus, in this case, the training effort amortizes even after a single data set.

Figure 2 shows the annual count of coal mining accidents overlaid with the estimated dynamic accident rate 
� (posterior mean and ±1 standard deviation). Both methods estimate an almost identical latent trajectory for 
the low-level model parameter � . Between the years 1880 and 1900, we observe a decrease in coal mining acci-
dents followed by two temporary increases around the years 1905 and 1930. The estimated parameter dynamic 

Figure 2.  Coal mining disasters in the United Kingdoms between 1852 and 1962. The annual reported 
accident counts are depicted using gray bars. The mean posterior of the rate parameter � of a Poisson process 
with Gaussian fluctuation is shown with solid lines for both estimation methods separately. The shaded area 
represents ±1 posterior standard deviation.
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closely follows these data patterns. Thus, we conclude that our neural method can estimate a plausible parameter 
dynamic for a simple low-level model and performs equally well compared to bayesloop.

Static diffusion decision model. As a second benchmark, we compare our neural method to Stan in terms of 
Bayesian updating, assuming a “true” DDM with time-invariant parameters. This benchmark serves two goals. 
Firstly, it aims to compare the estimation performance of our method with that of Stan, which is regarded as the 
gold standard for sampling-based Bayesian inference. Secondly, it aims to assure that our method can correctly 
identify stationary parameters when fitting a dynamic model on data generated from a stationary process (i.e., it 
does not estimate “pseudo-dynamics”).

To this end, we simulated 100 data sets with 100 observations, each using a static DDM with 3 free parameters 
(see “A non-stationary diffusion decision model” section) without parameter fluctuation over time. Then, we 
fit a non-stationary DDM with a Gaussian random walk transition model (cf. Eq. 3) to all 100 data sets using 
both estimation methods. Again, we use the same prior distributions (see Appendix) to ensure comparability. 
We compared the two methods based on the following two performance metrics: (i) the median absolute error 
(MAE) between the estimated posterior means and the data generating stationary parameters averaged across 
all 100 simulations, and (ii) the average posterior standard deviation over time. These two metrics are common 
indicators for inferential model calibration, which aims to analyze the global behavior of the posterior distribu-
tion given possible observations from the prior predictive  distribution51. The former metric informs us how 
well the posterior recovers the true model configurations (analogous to posterior z-scores). The latter metric 
indicates how much the posterior is informed by the data beyond the prior knowledge that was encoded in the 
prior distribution (analogous to posterior contraction)51.

The upper panel of Fig. 3 depicts the absolute difference between the true data generating parameters and the 
dynamically estimated posterior means over time, averaged over all 100 simulations for both methods separately. 
On average, the posterior means show a relatively large deviation from the true data generating parameters 
on early trials of the data. This difference then quickly decreases and flattens after approximately 25 trials. The 
performance of both methods concerning this metric is almost indistinguishable.

The lower panel of Fig. 3 displays the median posterior contraction measured as posterior standard devia-
tion over time for all 3 parameters separately. We observe considerable posterior contraction within the first 25 
time points. Again, the performance of both methods is nearly identical. However, there is a large difference in 
estimation time between the two methods. As we are interested in the filtering posterior distributions, the Stan 
model has to be refit with every additional observation of a time series. Hence, we fit the Stan model to each 
simulated x1:t , t = 1, . . . ,T , which amounted to T = 100 re-fits per simulated data set. Fitting the model to all 
100 synthetic data sets resulted in 100× 100 model fits. This procedure took over 1 week of non-stop computing 
on a standard desktop computer—whereas training the neural network lasted approximately 8 h with almost 
instantaneous fit to the 100 data sets thereafter. This is a non-negligible difference that will grow with longer time 
series, more data sets, or increased complexity until reaching a point where models can no longer be estimated 
with Stan due to limited processing resources or time constraints (see next section).

In summary, our method closely approximates the results obtained from bayesloop and Stan on the 
considered benchmark examples. Note, however, that our method is primarily designed for models where the 
above frameworks cannot be applied—higher dimensional models, possibly lacking a closed-form likelihood (i.e., 
available only as stochastic simulators), or many data sets consisting of long time series. The next application we 
present could be tackled with our neural approximators, but not with the above two frameworks.

Figure 3.  Comparison between the neural and Stan estimation method. First row: Median absolute error 
(MAE) between the ground truth data-generating parameters and the estimated posterior means across the 100 
simulations over time. Second row: Posterior standard deviation aggregated across the 100 simulated data sets 
over time (solid lines). The shaded area depicts the median absolute deviation (MAD).
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Simulation study. Next, we probe the parameter recoverability of a non-stationary DDM under different 
induced misspecifications (i.e., models that differ from the one used for training the network). To this end, we 
performed an extensive study for which we simulated data sets consisting of T = 400 time points in four dif-
ferent scenarios: (i) A static DDM with constant parameters; (ii) a DDM with stationary variability (commonly 
referred to as “inter-trial variability”) where the 3 DDM parameter fluctuate randomly around a constant value; 
(iii) a non-stationary DDM with a Gaussian random walk transition model; (iv) and a DDM with constant 
parameters that jump abruptly and uniformly at three predefined time points (i.e., a regime switching model). 
Crucially, we trained the neural approximator only with simulations from the non-stationary model. However, 
during amortized inference, we applied the network to 200 data sets from each of the four scenarios. Thus, we 
could investigate the network’s response in the open world setting where the true data generator may differ from 
the reference model used during the training phase.

Figure 4 shows an exemplar fit of the non-stationary DDM with a random walk transition model to data 
sets from each of the four simulation scenarios. In the top row, we see that the estimated parameter trajectories 
converge to the constant ground-truth parameters. A similar pattern emerges when the ground-truth parameters 
randomly fluctuate around a constant value (second row), yet we observe less uncertainty reduction. The third 
row depicts the posterior estimates based on a data set simulated from the reference non-stationary DDM (i.e., 
the well-specified case). Besides some local deviations from the ground-truth parameter trajectory, the model 
is able recover the overall trend of the dynamics. In the fourth row, we can inspect the posterior estimates from 
a data set simulated from the regime switching DDM which allows the parameters to “jump” uniformly at three 
time points to any value within the parameter bounds. Despite the severe misspecification, the random walk 
DDM is able to recover the discontinuous trajectories surprisingly well; still, the gradual change implied by the 
random walk transition does not allow for a rapid adaptation and exhibits a notable lag after each switch.

Figure 5 depicts the true data generating and the estimated posterior means at time point T = 99 (right before 
the first jump of the regime switching transition model). We observe excellent recovery performance for all 3 
parameters in all 4 simulation scenarios at the selected time point. The recovery performance at other time points 
as well as further details and analyses (i.e., MAE over time) can be found in the Appendix.

Figure 4.  Example time-varying parameters estimated by our neural method in each scenario of the simulation 
study. Each row depicts the posterior estimates obtained from a single simulated person. The third row 
corresponds to the dynamic model used for training the network (i.e., well-specified case). The first, second, and 
fourth rows correspond to model variants not seen during training (i.e., misspecified cases).
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Human data applications. Following our benchmarking and simulation studies, we applied non-station-
ary versions of the DDM to two separate data sets collected from response time (RT) experiments: (i) A standard 
random-dot motion task (a maximum of T = 1320 trials per participant), and (ii) very long time series (a maxi-
mum of T = 3200 trials per participant) from a lexical decision task. The first application serves as a starting 
point with data stemming from a popular task in experimental psychology. The second application showcases 
the utility of our method to estimate a complex non-stationary DDM with a Gaussian process (GP) transition 
model and multiple drift rate parameters for different difficulty conditions. Before fitting a model to empirical 
data, it is imperative to assess the faithfulness of the approximation  method43,52. To this end, we perform simu-
lation-based calibration  (SBC53,54). These analyses suggest that our neural Bayesian method exhibits reasonable 
calibration, with slightly miscalibrated posteriors for the non-decision time parameter (see Appendix for more 
details on calibration).

Random‑dot motion task. First, we fit a non-stationary DDM with a Gaussian random walk transition model 
to a data set retrieved from the experimental study  of55. We chose this data set because the purpose of the 
original study was to investigate the decline of the threshold parameter over time. The experiment had a 3 (Low, 
Medium, and High feedback) by 2 (Time and Trial condition) factorial between-subject design. Differently from 
our approach,55 subdivided the time series into trial bins and fitted a stationary hierarchical Bayesian DDM to 
each bin separately. Therefore, we can compare the parameter trajectories recovered by our neural superstatistics 
method with the estimates obtained by the original authors using Markov chain Monte Carlo (MCMC).

Figure 5.  Ground truth-data generating parameters plotted against posterior means for all 3 parameters and 
simulation scenarios separately at time point T = 99 (just before the change of regime of the regime switching 
DDM).
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Figure 6 depicts the trajectory of the threshold parameter aggregated across all individuals in a separate 
panel for each experimental condition. Note, that in the Time condition participants had a fixed amount of 
time they could spend on the task resulting in different time intervals. When we compare our estimates to those 
obtained  by55, it becomes evident that both approaches yield similar qualitative and quantitative patterns. This 
result complements our promising results “in silico” and points to the convergent validity of our superstatistics 
approach in applications with real data.

Lexical decision task. We fit the non-stationary DDM with a GP transition model (cf. Eq. 5) to human behav-
ioral data originating from a lexical decision-making task. The data consist of long RT and choice time series 
from four experimental conditions. For this application, we use four separate drift rates—one for each experi-
mental condition. The length of these time series made it impossible to estimate the model with Stan (due to 
memory limitations and infeasible compute time). Thus, to increase the trustworthiness of the results obtained 
with our neural method, we resort to the established fast-dm  software36 as a benchmark, which is capable of 
estimating homogeneous (block) trial-by-trial fluctuations (i.e., inter-trial variabilities). We then compare the 
goodness of absolute fit in terms of re-simulation accuracy between both estimation methods and investigate 
the multi-horizon predictive performance of our method. Further, we analyze the main advantage of the non-
stationary DDM, that is, the inferred trial-by-trial parameter dynamics, and compare those to the static fast-
dm parameter estimates. Note that fast-dm is not a Bayesian method and is thus not included in our previous 
benchmark studies.

The left panel of Fig. 7 depicts the empirical RT time series data of an individual participant in black (Figures 
for the remaining participants are available in the Appendix). To evaluate whether the non-stationary DDM is 
capable of capturing the empirical data, we perform posterior re-simulations on the first 3 blocks of the experi-
ment (trials 1–2500). To this end, we draw 100 samples from the posterior distributions over θ0:2499 to simulate 
100 posterior re-simulated data sets. The resulting RT time series are then summarized with the median and the 
95% credibility interval (CI) across simulations and depicted in red color. We smooth the trial-by-trial empiri-
cal data and model outputs via a simple moving average (SMA) with a period of 5 to ease visual inspection of 
potential trends. Note, that the re-simulation from the fast-dm model is only shown in the marginal RT 
distribution on the right panel to avoid visual clutter.

The overall time series show that the individual’s RTs decrease over time. Furthermore, the variability of 
the RTs, which is most pronounced in the first session, decreases considerably over time. The non-stationary 
DDM not only captures both of these overall trends, but also represents the shorter time oscillations within the 
empirical RT time series. The data also exhibits various sudden “jumps” in RTs, probably due to fluctuations in 
non-decisional processes, such as inattention. Unsurprisingly, these jumps are not fully accounted for by our 
non-stationary DDM since the high-level model (GP with squared exponential kernel) does not allow for sudden 
large changes in the low-level parameters.

Figure 6.  Estimated trajectories of the DDM threshold parameter aggregated across all individuals for each 
between-subject experimental condition. The first column corresponds to the Time and the second to the Trial 
condition. The rows correspond to the three feedback conditions, Low, Medium, and High, respectively. The 
red solid lines depict the median of the individual posterior means and the red shaded area the 95% credibility 
interval of these posterior means.
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We purposefully leave out the remaining 700 trials from the posterior re-simulation analysis to also test the 
predictive capabilities of the non-stationary DDM against held-out empirical  data56,57. To this end, we generate 
100 new parameter dynamics according to Eq. (5) with randomly drawn posterior samples of θ2499 as initial 
parameter values and posterior samples of the high-level Gaussian process parameters η . Then, we simulate 100 
novel RT time series for the remaining 700 trials using the simulated parameter trajectories. The resulting RT 
time series are summarized in the same manner as before (median, 95% CI) and again smoothed with an SMA. 
The corresponding multi-horizon posterior predictions are depicted in Fig. 7 with an orange color. The dynamic 
model yields accurate predictions on the held-out data and thus does not overfit the training data. Moreover, the 
held-out time series remain in the 95% CI of the multi-horizon prediction, which is the case for all individual 
data sets (see Appendix).

The right panel of Fig. 7 depicts the empirical RT distributions (black) along with the data generated by the 
non-stationary DDM (red) and the static DDM (blue). Note that the three empirical RT distributions show a 
substantial overlap. Since the fast-dm re-simulations serve as a benchmark for the non-stationary DDM, it is 
essential to quantify if there are pronounced deviations between the re-simulated and the empirical RT distribu-
tions. To this end, we estimate the pairwise maximum mean discrepancy (MMD) between the three distributions 
for each individual separately and then average the resulting values across participants. MMD is a kernel-based 
statistical metric of equality between  distributions58.

Accordingly, our analysis reveals no pronounced differences between the three distributions. The aver-
age MMD between the empirical RT distributions and the ones predicted by the non-stationary DDM 
( MMD = 0.026, SD = 0.008 ) is lower than between the empirical and the ones predicted by the fast-dm 
model ( MMD = 0.042, SD = 0.027 ). The SDs of the average MMD values indicate that data generated with the 
non-stationary DDM are not only slightly more accurate on average but also more consistent compared to data 
generated from the standard DDM. For the sake of completeness, we also compare both re-simulated RT distribu-
tions ( MMD = 0.035, SD = 0.019 ). This comparison reveals that the re-simulated RT distributions of the static 
DDM are more similar to the one obtained by the non-stationary DDM than to the empirical RT distribution. 
Altogether, both models can reproduce the empirical RT distributions with high fidelity, but the non-stationary 
DDM fits the data slightly better than the static DDM estimated with fast-dm.

In summary, our non-stationary DDM can closely re-simulate and predict the temporal trajectory of empirical 
RT time series as well as corresponding raw RT distributions from all individuals (see Appendix). Even though 
the standard DDM also accounts for the marginal RT distribution, it cannot generate the observed heterogene-
ous RT time series data (cf. Fig. 7).

However, the most decisive advantage of our non-stationary DDM over its stationary counterpart is that it 
can recover parameter dynamics directly from the empirical data. As the static parameters of fast-dm can 
only vary homogeneously around their mean, we cannot detect any systematic changes in the parameters over 
time. However, the dynamic parameters estimated with our neural method strongly suggest such systematic 

Figure 7.  Model fit to human data. Left panel The empirical RT time series of a single individual in black. 
From trial 1 to 2500, the median posterior re-simulation (aka retrodictive check) using the non-stationary DDM 
is shown in red. The models’ multi-horizon prediction is depicted for the remaining trials in orange. The shaded 
areas for the posterior re-simulation and multi-horizon prediction correspond to 95% credibility intervals. All 
the time series were smoothed via a simple moving average (SMA) with a period of 5. The dotted vertical lines 
indicate the end of an experimental block, and the solid vertical lines the end of an experimental session. Right 
panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT distributions from the 
non-stationary DDM and reference re-simulations from the static DDM using fast-dm are shown as kernel 
density estimates (KDEs) in red and blue, respectively.
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changes. Figure 8 depicts the dynamics of the estimated trial-by-trial posterior means and ±1 standard deviation 
for all DDM parameters of the same participant as above in red (see Appendix for the parameter dynamics of 
the remaining participants as well as the average parameter dynamic). The corresponding point estimates (solid 
line) and inter-trial variabilities (shaded area) obtained with fast-dm are shown in blue.

All parameters of the non-stationary DDM seem to exhibit considerable fluctuations and notable oscillations 
throughout the experiment. Due to the assumption of homogeneous variation, the inter-trial variabilities inferred 
with fast-dm vastly overestimate the uncertainty in parameter estimates (cf. Fig. 8). The dynamic drift rates 
fluctuate roughly within the uncertainty corridors spanned by the homogeneous inter-trial variabilities, but 
exhibit much tighter error bars. As a consequence, local drift rates are much less uncertain than the homogeneous 
variability parameters indicate. On the other hand, the dynamic non-decision time τ fluctuates more than the 
corresponding flat inter-trial variability. Note that fast-dm does not support estimating inter-trial variability 
of the threshold a, so we only report the estimates of our neural method, suggesting a substantial decrease of 
the threshold parameter throughout the experiment. Notably, we observe a considerable mismatch between 
heterogeneous and homogeneous dynamics in almost all individuals (see Appendix).

Discussion
In this work, we explored the merits of superstatistics for representing non-stationary dynamics in cognitive 
processes, along with the utility of a neural Bayesian method for estimating superstatistical models. We verified 
the computational faithfulness and adequacy of our method using simulations and two benchmark studies. We 
then applied our method to a dynamic, non-stationary diffusion decision model and estimated the temporal 
trajectories of its key parameters, namely, drift rates, decision threshold, and non-decision time from the data 
of two experiments. We showed that such a non-stationary model (i) can indeed be fit to long time series of 
human data with high fidelity and (ii) that the inferred heterogeneous dynamics reveal patterns that would have 
remained hidden by traditional stationary  models2,6. To our knowledge, this is the first attempt to augment a 
stationary cognitive model by employing a superstatistics framework.

Previous research has suggested that response times often exhibit heterogeneous  dynamics9,10. It has also 
been shown that even the history of past choices can influence specific parameters of the  DDM40. Hence, it 
seems plausible that the cognitive processes represented by the DDM parameters vary over time even within an 
experimental session due to internal psychological factors. This is exactly what was implied by the individual 
parameter dynamics inferred from the lexical decision task data set. However, as the data originates from an 
experiment that was not designed explicitly to test dynamic modeling, we need to be wary of any ad hoc inter-
pretations concerning the estimated parameter dynamics.

Nevertheless, some of the recovered patterns may suggest interpretable underlying changes. For instance, 
the threshold parameter seemed to decrease within an experimental session for many individuals. This indicates 
that participants generally responded less cautiously toward the end of an experimental session. A plausible 
explanation for this change in response caution might be that participants became increasingly bored during a 
session and started to decrease their ambitions. Note that current DDM modeling approaches rarely account for 

Figure 8.  Estimated parameter dynamics. The trial-wise posterior mean and ±1 standard deviation for all six 
parameters, namely the four drift rates v1–v4 (one for each experimental condition), the threshold a, and the 
non-decision time τ of an individual participant. The point estimates of the stationary DDM parameters and the 
corresponding inter-trial variabilities (except for the threshold a) are shown in solid blue lines and blue shaded 
areas, respectively.
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such variation in the threshold parameter. Further, the drift rates generally tended to increase over time, sug-
gesting that participants’ increased their information processing speed over time. A change in the average rate of 
information uptake typically results in shorter RTs, which is precisely what we observed in most individual data 
sets (cf. Appendix). These increases in drift rates over time could imply the occurrence of learning effects. An 
important next step will be to tailor experiments with systematic manipulations from which we expect specific 
changes in some cognitive process and test whether the estimated parameter dynamics exhibit these changes.

Notwithstanding, our neural method has certain limitations. As can be seen in Fig. 3, the values for most 
parameters change strongly at the beginning of the time series. One could be tempted to (falsely) claim that the 
psychological constructs mapped to these parameters drastically change at the beginning of the first session of 
the experiment. However, these early parameter trajectories should be interpreted with great caution as they can 
be quite dependent on the initial prior. As a result, we cannot easily differentiate between initially large Bayesian 
updates to move away from the prior or actual changes in the underlying process. As is the case for any dynamic 
process, our modeling approach may also not be sensible for data sets with few observations. In the context of 
psychological experiments, a possible remedy could be to use burn-in trials at the beginning of an experiment 
that only serves the purpose of having some data points to inform the plausible parameter values. At the same 
time, these could serve as practice trials during which participants get accustomed to the task.

Furthermore, the simulation study has demonstrated that the non-stationary DDM exhibits a good perfor-
mance in recovering parameters across various scenarios. However, it is essential to acknowledge that there still 
exists an error between the true and estimated parameters. Especially for the drift rate parameter errors around 
0.25 have been observed frequently. Consequently, interpreting small local changes in parameter values requires 
caution. Despite this limitation, we firmly believe that the proposed method excels particularly in scenarios 
where moderately large changes in parameters are expected to occur over the course of a couple of time steps.

Another limitation concerns the implementation of the low-level mechanistic model, that is, the DDM itself. 
We assumed four different drift rates—one for each stimulus type—which is the standard procedure used in 
the application of stationary  DDMs2. This parameter is usually regarded as a proxy for average information 
uptake speed. However, in theory, there should only be one drift rate per  participant3 that changes over time, 
for instance, due to experimental manipulation. Thus, a non-stationary DDM could also incorporate only one 
drift rate parameter. In our experiment, the manipulation (i.e., four conditions) was randomized throughout 
the experiment. This implies that besides fluctuation stemming from other sources, the drift rate would “jump” 
from trial to trial based on this change in task difficulty. To account for these jumps, we would need a different 
high-level transition model whose changes can be bigger than what a smooth Gaussian process or Gaussian 
random walk allows. In order to keep the content of this article manageable, we decided against proposing a 
novel transition model.

Finally, there are numerous degrees of freedom when implementing a computational model – not only with 
respect to the low-level observation model, but also regarding the high-level transition model. Exploring dif-
ferent model specifications and then deciding which is the most sensible for the type of task and data at hand 
requires Bayesian model comparison. Concerning dynamic cognitive models, it would be of particular interest 
to test which high-level transition model specification is most plausible for a given  setting24. Since Bayesian 
model comparison is a topic in its own right, future studies should investigate the utility of simulation-based 
 methods59,60 for comparing competing superstatistical models.

We acknowledge that our study may not provide a definitive argument for when and why a non-stationary 
DDM is superior to a static DDM. The primary objective of this article is to showcase the implementation of 
non-stationary parameters within a superstatistics framework. However, we believe that the superstatistics frame-
work, coupled with powerful neural approximators, gives rise to many new modeling opportunities and makes 
it possible to augment virtually any computational model with time-varying parameters. We think that there are 
many interesting research questions out there that could be investigated with the approach we propose in this 
work. Future studies can use our method to estimate even more challenging cognitive models than the DDM 
explored in this work and further extend its scope beyond cognitive science and psychology.

Methods
Experimental tasks. Random‑dot motion task. The data set used in this study was adopted  from55. It in-
cludes data from 58 individuals, after excluding participants with a response accuracy below 70% . Each individu-
al was randomly assigned to one of six groups, which were formed by two factors: the time versus trial condition 
and three levels of feedback details. During the experiment, participants solved a total of 24 blocks of the task. In 
the trial condition, each block comprised 40 trials, whereas in the time condition, each block lasted for 1 minute. 
In each trial, participants were presented with a random dot kinematogram and were required to determine if 
some of the dots coherently moved to the top-left or top-right direction. For more in-depth information about 
the experimental setup and methodology, refer to the comprehensive details provided  in55.

Lexical decision task. A total of 11 students from Heidelberg University participated in the experiment. Their 
average age was 23.81 ( SD = 3.30 ) and 10 of the participants were female. All individuals gave written informed 
consent to the study, which was approved by the local ethics committee. The study was conducted according to 
the ethical declarations of Helsinki.

The participants performed a lexical decision-making task. On each trial, they had to assess if a presented 
letter string was a German word. As stimuli, we used high and low-frequency words, pseudo words that were 
generated by replacing vowels of existing words, and random letter strings. These four experimental conditions 
were pseudo-randomly presented throughout 3200 trials. All participants solved their task on 4 separate days 
(sessions) consisting of 800 trials each. The sessions were further split into 8 blocks of 100 trials with short breaks 
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between them. On each trial, participants’ choice (German word; non-German word) and response time was 
recorded.

Model family. Following24, we consider dynamic models that entail a low-level model with time-dependent 
parameters θt , which vary according to a high-level model with static parameters η . The low-level model is 
defined by a likelihood function L , and the high-level model consists of a transition function T .

In this work, we aim to tackle general superstatistical models for which the low-level model likelihood L may 
not be available in closed-form. Such models are implemented as randomized stateful simulators that generate 
observable trajectories {xt}Tt=1 via the following (very general) recurrent system:

In the above equation, T  is an arbitrary high-level transition function parameterized by η , G stands for an arbi-
trary (non-linear) transformation which encodes the functional assumptions of the low-level model. ξt ∼ p(ξ) 
and zt ∼ p(z) are sources of random noise. The initial parameter configuration θ0 follows a prior distribution 
θ0 ∼ p(θ) which encodes available information about plausible parameter values.

One example of a transition model T  is a convolution with a Gaussian distribution, which implies a gradual 
change in the low-level model’s parameters resembling a random walk:

 Another similar example would be a convolution with a fat-tailed distribution, allowing for abrupt changes in 
the parameter space. Furthermore, since our simulation-based setting is not limited to transition models with a 
Markov property, we can also test more complex transitions, such as a vector autoregression  (VAR61):

where p is the order of the VAR model (i.e., its look-back period), ξt ∼ N (0, σ) , and η = {c,A1, . . . ,Ap, σ } are 
the high-level parameters of the model.

We can even test transition models which depend on the entire history of the process, such as a Gaussian 
process  (GP62)

with mean function µθ and covariance function Kθ defined through the vector of time indices. The high-level 
parameters η in this case would be the free kernel parameters, such as the amplitude σ or the length-scale l of a 
Gaussian kernel

A typical task in Bayesian analysis of dynamic systems is to recover both the entire trajectory of dynamic param-
eters {θt}Tt=1 as well as the vector of static parameters η . Since for many discrete dynamic systems, the current data 
point xt depends on the current parameter configuration θt as well as on the observable history of the system 
x1:t−1 , we can write the (implicit) point-wise likelihood as

The point-wise likelihood describes the probability of each data point, given the parameter values of the same 
time step and all past data  points24. Notably, we do not require this likelihood to be available in closed-form; we 
only need the ability to generate random draws through the forward-time generative process specified by Eq. (1).

Assuming the above factorization of the likelihood is possible, we aim to estimate the joint filtering posterior 
distribution of θt and η up to each discrete time-step t

This posterior encodes the reduction in uncertainty regarding the dynamic states evolving over time and the 
static parameter values being increasingly constrained by the data. From this joint distribution, we can derive 
the corresponding marginal posteriors as follows:

These distributions describe the average parameter dynamics over all possible high-level parameters and the best 
estimate for the high-level parameters up to discrete time-step t, respectively. Thus, learning both distributions 
amounts to standard Bayesian updating with an additional uncertainty factor due to the high-level transition 
model T  . Thus, posterior contraction over time will strongly depend on the form of the transition model and 

(1)θt = T (θ0:t−1, η, ξt) with ξt ∼ p(ξ |η)

(2)xt = G(x1:t−1, θt , zt) with zt ∼ p(z|θt).

(3)T (θt−1, η, ξt) = θt−1 + η ξt with ξt ∼ N (0, 1).

(4)T (θt−p:t−1, η, ξt) = c + A1θt−1 + · · · + Apθt−p + ξt ,

(5)θ1:T ∼ GP(µθ ,Kθ )

(6)k(θt , θt′) = σ 2 exp

(

||θt − θt′ ||
2

2l2

)

.

(7)Lt = p(xt |x1:t−1, θt).

(8)p(θt , η|x1:t) ∝ Lt p(θt |x1:t−1, η) p(η|x1:t−1).

(9)p(θt |x1:t) =

∫
p(θt , η|x1:t) dη,

(10)p(η|x1:t) =

∫
p(θt , η|x1:t) dθt .
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may even increase in some cases, such as models allowing for sudden “jumps” in their parameters (i.e., regime 
switching behavior).

Neural Bayesian estimation. Various methods for estimating dynamic models have been proposed in 
the literature. Markov chain Monte Carlo (MCMC) methods offer a viable but computationally demanding 
approach based on random draws from the  posterior63. Variational inference (VI) methods approximate the true 
target posterior with simple, tractable densities and thus are a faster alternative to MCMC at the cost of a poten-
tial loss of posterior  accuracy63. A recent promising approach for low-dimensional problems is the grid-based 
method  of24, which represents parameter distribution on discrete lattices and enables efficient approximation of 
model evidence.

However, the above methods all depend on the ability to evaluate the likelihood function Lt at each time 
point explicitly. This restriction makes it impossible to efficiently test the growing number of simulator-based 
or non-analytic models of cognition to observed  data45,64. Furthermore, MCMC and standard variational meth-
ods cannot leverage experience and require the same repeated computational effort for every new data set. For 
instance, when multiple participants complete a cognitive task, the same estimation procedures need to be 
repeated for each participant from scratch. Differently, hierarchical Bayesian models can be employed to jointly 
estimate group- and participant-level parameters, but they come with high computational costs and also rely on 
a closed-form likelihood function.

In contrast, amortized inference refers to methods with a “pre-paid” computational cost - after an expensive 
optimization or training phase, the same procedure can be instantly applied to any data set whose structure is 
compatible with the  model45,46. As a useful “side effect”, amortization allows us to easily perform extensive checks 
of computational faithfulness and parameter recoverability “in silico”, since we can obtain posterior samples 
from hundreds or even thousands of simulated data sets by applying the same pre-trained network. Amortized 
Bayesian inference is typically realized by specialized neural networks, which are trained to become estimation 
experts from repeated model  simulations45,65. The architecture of these networks can easily encode the proba-
bilistic symmetry of the data, for instance, recurrent networks for temporal  data66 or permutation-invariant 
networks for IID  data67.

Crucially, dynamic models with time-varying parameters present a challenge to existing neural architectures 
since they induce a new joint posterior at each time-step p(θt , η|x1:t) . However, most previous architectures can 
only estimate a single set of parameters with no temporal  information45,47,65. Thus, we propose to use a recurrent 
probabilistic neural architecture that estimates the joint posterior over all static and dynamic parameters for all 
discrete time points in a single forward pass.

Recurrent estimation method. Our proposed architecture consists of several neural components. First, 
a recurrent neural network (RNN) with learnable parameters ψ(r) embodying long short-term memory (LSTM) 
consumes the observed data sequentially:

where the hidden state ht at each time point t represents the internal memory of the network over arbitrary tem-
poral intervals. Thus, we can treat ht as a compact representation of the observable history up to time point t. We 
employ a standard LSTM network, which consists of three gates: an input gate, an output gate, and a forget gate. 
These gates are responsible for weighing and integrating old and new information. Importantly, LSTM networks 
can naturally deal with sequences of varying length, which enables them to process streams of “online”  data66.

In order to recover the time-varying parameters θt of the low-level model as well as the static high-level 
parameters η , we use the hidden state ht as a conditioning vector for a generative neural network with trainable 
weights ψ(g) . This network can be implemented as a conditional variant of any popular generative architecture 
for inference, such as coupling  networks68, autoregressive  flows69, or standard neural networks with probabilistic 
 outputs70. The generative network is responsible for approximating the current joint posterior up to time step t 
given the outputs of the recurrent summary network: q(θt , η|x1:t ,ψ) ≡ q(θt , η|ht ,ψ) . To reduce notational clutter, 
we set ψ = (ψ(r),ψ(g)) and assume that ht is expressive enough to encode all information contained in the data 
for correctly updating the prior (i.e., ht is a maximally informative summary statistic of x1:t).

Alternatively, we can also directly target one of the two equivalent factorizations of the joint posterior, namely:

While being mathematically equal, these factorizations imply different neural architectures and corresponding 
ancestral sampling schemes. The former factorization (Eq. 12) requires a generative network for first sampling the 
high-level parameters from p(η|x1:t) and then sampling the low-level parameters from p(θt |x1:t , η) , conditional 
on the sampled high-level parameters. On the other hand, the latter factorization (Eq. 13) requires a generative 
network for first sampling the low-level parameters from p(θt |x1:t) and then sampling the high-level parameters 
from p(η|x1:t , θt) , conditional on the sampled low-level parameters.

In the current work, we consistently target the factorization in Eq. (12), but we were able to obtain comparable 
filtering results with either ancestral sampling strategy. In practice, we can either assume a multivariate Gauss-
ian posterior for q(θt |x1:t , η,ψ) and q(η|x1:t ,ψ) as a dynamic extension of the basic method  in71 or estimate 

(11)ht = LSTM
(

xt , ht−1;ψ
(r)
)

,

(12)p(θt , η|x1:t) = p(θt |x1:t , η) p(η|x1:t)

(13)= p(η|x1:t , θt) p(θt |x1:t).
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free-form posteriors as a dynamic extension of the BayesFlow  method45. We use the former approach for the toy 
Coal Mining benchmark and the latter approach for all other experiments in this work.

Simulation‑based training. Figure 9 graphically illustrates the rationale of our simulation-based infer-
ence approach. To train the networks, we treat the forward-time generative model as a simulator and employ 
Eq. (1) to generate multiple sets of simulated parameters and trajectories (η, θ1:T , x1:T ) . We then minimize the 
Monte Carlo estimate of the following criterion

where E[·] denotes an expectation over the dynamic generative model and ψ = (ψ(r),ψ(g)) denotes the collec-
tion of all trainable neural network parameters. This criterion ensures that the approximate posteriors match 
the analytic posteriors induced by the dynamic model and can be minimized either via online (i.e., generating 
dynamic simulations on the fly) or via offline training (i.e., using a set of pre-computed dynamic simulations).

A non‑stationary diffusion decision model. To illustrate the potential of our approach, we will re-
formulate in superstatistical terms a popular cognitive model for analyzing human response times (RTs) in 
binary decision tasks, namely the DDM. The standard DDM describes the microscopic dynamics of perceptual 
evidence accumulations via a simple stochastic ordinary differential equation (SDE). Accordingly, the accumu-
lated evidence xj in experimental task j follows a random walk with drift and Gaussian noise:

where ts represents time on a continuous microscopic scale (i.e., during forced-choice decision making). A core 
assumption of the DDM is that task-relevant information (i.e., perceptual evidence) accumulates at a constant rate 
(v). This process runs in a corridor with two absorbing boundaries, which represent two decision alternatives. As 

(14)L(ψ) = min
ψ

Ep(η,θ1:T ,x1:T )

[

−

T
∑

t=1

log q(θt , η|x1:t ,ψ)

]

,

(15)dxj = vdts + z
√

dts with z ∼ N (0, 1),

Figure 9.  A graphical illustration of our neural inference method. A recurrent neural approximator updates 
the posterior of the low-level model parameters θt each time step t and yields the posterior over the high-level 
model parameters η considering all available data. The low-level prior constrains the initial dynamic parameter 
values θ0 , which then get passed to the high-level transition model. Together, the two priors and the two models 
comprise a stochastic simulator that trains the neural approximator to perform amortized Bayesian updating.



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13778  | https://doi.org/10.1038/s41598-023-40278-3

www.nature.com/scientificreports/

soon as the accumulated evidence xj reaches either a pre-defined threshold (a) or 0, the model makes a categorical 
decision Dj for the alternative favored by the collected evidence:

Further, the model assumes a constant additive factor ( τ ) accounting for non-decision processes, such as encod-
ing or motor responses. Thus, the standard (static) DDM has three key parameters θ = (v, a, τ) . The starting 
point of the decision process is either estimated as an additional parameter or fixed at a/2.

The typical assumption of the standard DDM is that the parameters θ remain stationary for the duration of 
a given cognitive task. In order to relax this restrictive assumption, the standard DDM has been extended to 
incorporate so-called inter-trial-variability for the drift rate and non-decision time  parameters72,73. In this way, 
the extended DDM concedes that these cognitive parameters are not static but vary over time. However, the 
assumed variation is homogeneous and memoryless, and the generative model still yields IID data, that is, the 
transition model coincides with independent sampling and reduces to θt = T (η, ξt).

In contrast, our superstatistical model assumes a stateful Gaussian process (GP) high-level model, which 
describes the trial-by-trial dynamics of the DDM parameters according to Eqs. (5) and (6) (see the Appendix 
for more details).

Thereby, we want to demonstrate that our estimation method can tackle very flexible transition models T  , 
as long as we can simulate data from the low-level model. However, we also fit a DDM with a simpler Gauss-
ian random walk transition model to the data described in the “Human data application” section. This simpler 
model corroborates our findings by suggesting qualitatively similar parameter dynamics, but yields less sharp 
predictions on unseen data than its GP counterpart (see Appendix for more details).

Data and code availability
All models, data, and scripts for reproducing the results of this work are publicly available in the project’s reposi-
tory https:// github. com/ bayes flow- org/ Neural- Super stati stics. The neural superstatistics method is implemented 
in the BayesFlow Python library for amortized Bayesian  workflows74.
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Appendix

Implementation Details

All experiments, neural networks, and simulation models are implemented using the BayesFlow library https:
//github.com/stefanradev93/BayesFlow built on top of TensorFlow [75]. Code and further instructions
for reproducing the results from all experiments and applications in the current manuscript is available at https:
//github.com/bayesflow-org/Neural-Superstatistics.

Stan Benchmark Study

Data Simulation

To simulate the 100 data sets each consisting of T = 100 trials, we used the standard DDM implementation (cf. equa-
tion (15) in the main text). The diffusion constant was fixed to 1 and the starting point parameter to 0.5 (i.e., symmetric
starting point between the two decision boundaries). For data simulation, we randomly sampled parameter sets from
the following prior distributions:

v ⇠ �(5.0,
1

1.3
)

a ⇠ �(4.0,
1

3
)

⌧ ⇠ �(1.5,
1

5
)

where �(a, b) denotes a Gamma distributions with shape a as the first and scale b as the second argument.

Non-Stationary DDM fitting

We fitted a separate non-stationary DDM with a Gaussian random walk transition model to all 100 simulated data
sets. The same implementation and likelihood was used for Stan and our neural estimation method. However, all 3
parameters were allowed to vary according to a Gaussian random walk (cf. equation (3) in the main text). The starting
values were sampled from the same prior distributions as in simulation. The hyperparameters of the random walk
transition model were sampled from the following distribution:

sv, sa, s⌧ ⇠ B(1, 25)

where B(↵,�) denotes a Beta distribution with ↵ and � parameters. In order to avoid implausible parameter values,
the time-varying parameters vt, at, ⌧t were clipped to lower bounds [0, 0, 0] and upper bounds [6, 4, 2], respectively.

We trained the neural approximator via online learning (i.e., simulations on the fly) for 50 epochs with 1000 iterations
each and a batch size of 8. We use an Adam optimizer with an initial learning rate of 5 ⇥ 10�4 and a cosine learning
rate decay schedule. After training the network, we draw 4000 posterior samples (the same as with Stan) for each of
the 100 data sets.
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Simulation Study

In what follows, we describe the settings for the four different simulation scenarios, namely, the static DDM, the DDM
with stationary variability, the DDM with non-stationary variability, and the static DDM with random uniform jumps
at pre-defined time steps (i.e., regime switching DDM). For each scenario, we simulated 200 data sets, each consisting
of T = 400 time steps.

We trained the neural approximator via online learning (i.e., simulations on the fly) for 75 epochs with 1000 iterations
each and a batch size of 8. We use an Adam optimizer with an initial learning rate of 5 ⇥ 10�4 and a cosine learning
rate decay schedule. After training the network, we draw 4000 posterior samples (the same as with Stan) for each of
the 100 data sets.

Static DDM

To simulate the 200 data sets for the static DDM scenario, we used the same prior and likelihood as in the Stan
Benchmark Study.

Stationary Variability DDM

For the stationary variability DDM, we used the same DDM implementation as in the static DDM scenario except that
we used the following variability statements:

vt ⇠ N (v, vs)

at ⇠ N (a, as)

⌧s ⇠ U(⌧ � ⌧s
2

, ⌧ +
⌧s
2

)

where N (µ,�) denotes a Normal distribution with location µ and standard deviation � and U(lower, upper) denotes
an Uniform distribution with a lower and a upper bound.

The newly introduced variability parameters (vs, as, ⌧s) were sampled from the following prior distributions:

vs, as, ⌧s ⇠ T N [0,inf](0, 0.1)

where T N [a,b](µ,�) denotes the truncated normal distribution with location µ and standard deviation � truncated
within the interval [a, b].

To avoid implausible values the per trial parameters vt, at, ⌧t were bounded with lower bounds [0, 0, 0] and upper
bounds [6, 4, 2] respectively.

Non-Stationary DDM

We used the same non-stationary DDM implementation as described in Stan Benchmark Study.

Regime Switching DDM

The regime switching DDM is basically the same implementation as the static DDM, but the parameter jumped uni-
formly at 3 specific time steps (T = 100; T = 200; T = 300) and stayed again constant after the jump:
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✓t =

(
✓t�1, if t /2 100, 200, 300

U(lower, upper), if t 2 {100, 200, 300} (17)

where the lower and upper bounds of the Uniform distributions are [0, 0, 0] and [6, 4, 2], respectively. The starting
values of the parameters were once again sampled form the same prior distributions as in the static DDM.

Amortized inference

We fitted the same non-stationary DDM with a Gaussian transition model as described above to all four scenarios. To
train the networks we used 75 epochs with 1000 iterations each and a batch size of 16. After training the network we
fitted the model to each simulation of each scenario separately and obtained 2000 posterior samples.
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True vs. Estimated Parameters

Figure A.10: True data generating parameters plotted against posterior means for all 3 parameters and simulation
scenarios separately at time point T = 25.
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Figure A.11: True data generating parameters plotted against posterior means for all 3 parameters and simulation
scenarios separately at time point T = 50.
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Figure A.12: True data generating parameters plotted against posterior means for all 3 parameters and simulation
scenarios separately at time point T = 199.
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Figure A.13: True data generating parameters plotted against posterior means for all 3 parameters and simulation
scenarios separately at time point T = 299.
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Figure A.14: True data generating parameters plotted against posterior means for all 3 parameters and simulation
scenarios separately at time point T = 399.
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Mean Absolute Error

As an additional analysis of the overall parameter recovery performance of the non-stationary DDM, we computed
the median absolute error (MAE) between the true data generating parameter and the posterior mean for all DDM
parameters and simulation scenarios separately. In the top row of Figure A.15 we can see that the posterior estimates
of the non-stationary DDM quickly approach the true data-generating parameter when the true parameter was constant
over time. That said, there remains some error between the true and estimated parameter even after 400 time steps.
This error is the largest in the drift rate parameter (⇡ 0.15). We see similar recovery performance in the scenario, where
the parameters were allowed to randomly fluctuate around a constant value (second row in Figure A.15). However, we
observe a larger variability in the MAE. The third row depicts the MAE when data was simulated with the same model
as we fitted to the data (i.e., the well-specified case). Once again, the MAE quickly decreases in the beginning and then
flattens out. However, in this scenario, the MAE remains on a larger level than in the previous two scenarios. Also,
the variability of the MAE between data fits is larger. This is not surprising because the estimation of non-stationary
model parameters is more difficult than static or stationary variable parameters. The last row in Figure A.15 shows
how the parameter estimates of the non-stationary DDM react to sudden jumps in otherwise constant parameters. We
observe that the MAE significantly increases when a jump occurred and then decreases again.
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Figure A.15: Median absolute error (MAE) between the data generating parameters and the estimated posterior means
aggregated across the 200 simulations over time for each DDM parameter (columns) and simulation scenario (rows)
separately. The red shaded areas depict the median absolute deviation of the absolute errors.
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Human Data Application: Random-Dot Motion

We fitted a non-stationary DDM with a Gaussian random walk transition model to each individual in the data set
separately. The model implementation was the same as in the Stan Benchmark and the Simulation Study. For the
training of our neural estimation method we used 75 epoch each consisting of 1000 iteration with a batch size of 16.
After training we obtained 2000 posterior samples.

Human Data Application: Lexical Decision

Gaussian Process DDM

For the Gaussian Process transition model, we first create a T x T squared distance matrix with T = 3200. Based
on this distance matrix we calculate the radial basis function kernel (cf. equation (6) in the main text) given the two
parameters, amplitude � and length-scale l, resulting in the covariance k for the multivariate normal distribution of the
Gaussian Process:

✓1:T ⇠ MVN (µ✓, k)

where µ✓ is the mean parameter value. For these means we used the same priors we otherwise used for the starting
values of the DDM parameters (v0,i, a0, ⌧0). In the following we present a list of the priors used by the Gaussian
Process DDM simulator to generate data for the simulation study and for training the neural networks. �(a, b) refers
to a Gamma distribution parameterized with shape a and scale b. The same prior distribution was used for all i = 4 drift
rates v0,i. U(a, b) stands for a continuous uniform distribution with a lower limit a and an upper limit b. lj denotes the
length-scale parameters of the GP transition model. The same prior distribution was used for all j = 1, . . . , 6 length-
scale parameters governing the transitions of the DDM parameters. The amplitude parameter � of the Gaussian kernel
is usually highly correlates with the length-scale l. Thus, we fixed � to sensible values for all low-level parameter
transitions.

v0,i ⇠ �(2.5,
1

1.5
)

a0 ⇠ �(4.0,
1

3
)

⌧0 ⇠ �(1.5,
1

5
)

lj ⇠ U(0.1, 10)

�v1:4 = 0.15

�a = 0.1

�⌧ = 0.05
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Simulation-Based Calibration

We validate the computational faithfulness of our Bayesian inference algorithm using simulation-based calibration, a
robust method for ensuring unbiased posterior distributions. The underlying principle is that an ensemble of posterior
distributions should be indistinguishable from the prior distribution. To accomplish this, we carry out 2000 simulations
with the dynamic DDM, each generating a separate data set. For each simulated data set, we fit the model and obtain
250 posterior samples. These posterior distributions collectively form an ensemble.

When we calculate rank statistics for the ensemble relative to the prior distribution then these should be uniformly
distributed. To assess the uniformity at predefined time points, we utilize the empirical cumulative distribution function
(ECDF) for each marginal rank distribution. Comparing it with a uniform ECDF allows us to gauge how the data is
distributed. We further draw ECDF simultaneous bands using simulations from the uniform, providing an intuitive
graphical test for uniformity. For clarity, Figure A.16 presents the ECDF difference, providing a more dynamic range
for the visualization. The red line (ECDF difference) should consistently fall within the gray shaded area (confidence
band) across the entire range of fractional rank statistic values. In the majority of cases, this criterion is met for
most parameters at all selected time points. Some slight deviations are observed for the threshold and non-decision
parameters; however, these are typically small and not a major cause for concern.
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Figure A.16: ECDF difference plot 95% simultaneous confidence bands (gray) for the empirical cumulative distribu-
tion function (ECDF; red) for all 6 parameters at four selected time points (800, 1600, 2500, 3200) separately.
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Parameter Recovery Study

A simulation study was performed to probe the dynamic DDM’s capability of recovering data-generating parameter
dynamics. To this end, we simulated 1000 data sets with the dynamic DDM and fit it to these data. The following
figures show posterior predictions of 3 randomly selected simulated data sets and the comparison between the inferred
and the true data-generating low-level parameter dynamics. The parameter recovery performance across all 1000
data sets over all 3200 time points for all 6 model parameters can be inspected as a GIF in our GitHub repository
(https://github.com/bayesflow-org/Neural-Superstatistics)
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Figure A.17: Left panel The simulated RT time series is shown in black. From trial 1 to 2500, the median posterior re-
simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon prediction is
depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction correspond
to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with a period of
5. Right panel The raw simulated RT distribution is plotted as a histogram in black. The re-simulated RT distributions
from the dynamic DDM are shown as kernel density estimates (KDEs) in red.
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Figure A.18: Left panel The simulated RT time series is shown in black. From trial 1 to 2500, the median posterior re-
simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon prediction is
depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction correspond
to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with a period of
5. Right panel The raw simulated RT distribution is plotted as a histogram in black. The re-simulated RT distributions
from the dynamic DDM are shown as kernel density estimates (KDEs) in red.
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Figure A.19: Left panel The simulated RT time series is shown in black. From trial 1 to 2500, the median posterior re-
simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon prediction is
depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction correspond
to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with a period of
5. Right panel The raw simulated RT distribution is plotted as a histogram in black. The re-simulated RT distributions
from the dynamic DDM are shown as kernel density estimates (KDEs) in red.
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Figure A.20: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ in red. The true data
generating parameter dynamic in black.
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Figure A.21: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ in red. The true data
generating parameter dynamic in black.
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Figure A.22: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ in red. The true data
generating parameter dynamic in black.
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Individual Model Fits and Predictions

In the following, we show the fit and multi-horizon predictions of the dynamic DDM on the individual data of the
remaining 10 participants not shown in the main text.

Figure A.23: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.24: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.25: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.26: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.27: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.28: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.29: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.30: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.31: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.32: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Individual Parameter Dynamics

In the following, we show the inferred parameter dynamics of the remaining 10 participants not shown in the main
text.

Figure A.33: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.34: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.35: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.36: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.37: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.38: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.39: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.40: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.41: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.42: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Average Parameter Dynamics

Figure A.43 shows the parameter dynamic averaged across all participants.

Figure A.43: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of averaged across all
participant in solid red lines. The shaded red areas correspond to the ±1 standard deviation of the posterior means of all
individuals. The point estimates of the static DDM parameters averaged across all participants and the corresponding
standard deviations are shown in solid blue lines and shaded blue areas, respectively.
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Gaussian Random Walk Transition Model

We wanted to test if our neural estimation method can also estimate dynamic models with a simpler high-level tran-
sition model than a Gaussian process (GP). To this end, we fit a dynamic DDM with a Gaussian random walk as a
transition model to the empirical data set described in the Human data application section:

✓t = T (✓t�1, ⌘, zt) = ✓t�1 + ⌘ zt with zt ⇠ N (0, 1)

We use a Beta prior distribution parameterized with ↵ and � for the standard deviations ⌘j of the Gaussian random
walk transition model. The same prior distribution is used for all j = 6 low-level parameter transitions:

⌘j ⇠ Beta(1, 25)

We trained the same neural network architecture as described in the main text for 50 epochs, 1000 batches per epoch,
and a batch size of 8. The following figures show the results from simulation-based calibration (SBC), the model fit
and inferred parameter dynamics for the same exemplar participant shown in the main text. Additionally, we depict
the estimated parameter dynamics averaged across all individuals for comparison. These results are very similar to
those obtained with the GP-DDM, which uses a Gaussian process as a transition model. However, the model with
the Gaussian process transition model produces sharper predictions on unseen data. Note, that the dynamics implied
by the random walk transition model are less sharper (i.e., contain more uncertainty) than those implied by the GP
transition model.
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Figure A.44: ECDF difference plot 95% simultaneous confidence bands (gray) for the empirical cumulative distri-
bution function (ECDF; red) for all 6 parameters at four selected time points (800, 1600, 2500, 3200) separately. We
used the same settings as for the GP-DDM analysis.
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Figure A.45: Left panel The empirical RT time series of a single individual in black. From trial 1 to 2500, the median
posterior re-simulation (aka retrodictive check) using the dynamic DDM is shown in red. The models’ multi-horizon
prediction is depicted for the remaining trials in orange. The shaded areas for the posterior re-simulation and prediction
correspond to the 95% credibility interval. All the time series were smoothed via a simple moving average (SMA) with
a period of 5. The dotted vertical lines indicate the end of an experimental block, and the solid vertical lines the end of
an experimental session. Right panel The raw RT distribution is plotted as a histogram in black. The re-simulated RT
distributions from the dynamic DDM and reference re-simulations from the static DDM using Fast-dm are shown
as kernel density estimates (KDEs) in red and blue, respectively.
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Figure A.46: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of an individual
participant. The point estimates of the static DDM parameters and the corresponding inter-trial variabilities are shown
in solid blue lines and blue shaded areas, respectively.
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Figure A.47: The trial-wise posterior mean and ±1 standard deviation for all six parameters, namely the four drift
rates v1 - v4 (one for each experimental condition), the threshold a, and the non-decision time ⌧ of averaged across all
participant in solid red lines. The shaded red areas correspond to the ±1 standard deviation of the posterior means of all
individuals. The point estimates of the static DDM parameters averaged across all participants and the corresponding
standard deviations are shown in solid blue lines and shaded blue areas, respectively.
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ABSTRACT

Cognitive processes undergo various fluctuations and transient states across different temporal scales. Superstatis-
tics are emerging as a flexible framework for incorporating such non-stationary dynamics into existing cognitive
model classes. In this work, we provide the first experimental validation of superstatistics and formal comparison
of four non-stationary diffusion decision models in a specifically designed perceptual decision-making task. Task
difficulty and speed-accuracy trade-off were systematically manipulated to induce expected changes in model pa-
rameters. To validate our models, we assess whether the inferred parameter trajectories align with the patterns
and sequences of the experimental manipulations. To address computational challenges, we present novel deep
learning techniques for amortized Bayesian estimation and comparison of models with time-varying parameters.
Our findings indicate that transition models incorporating both gradual and abrupt parameter shifts provide the
best fit to the empirical data. Moreover, we find that the inferred parameter trajectories closely mirror the sequence
of experimental manipulations. Posterior re-simulations further underscore the ability of the models to faithfully
reproduce critical data patterns. Accordingly, our results suggest that the inferred non-stationary dynamics may
reflect actual changes in the targeted psychological constructs. We argue that our initial experimental validation
paves the way for the widespread application of superstatistics in cognitive modeling and beyond.

Introduction

The human brain operates in a perpetual state of activity, whether it is focused on a particular task or wandering in the
inner world of thoughts. This activity reflects the non-stationary nature of neuronal dynamics, which are characterized
by a complex interplay between transient, evoked states, and ongoing spontaneous fluctuations (Galadı́ et al., 2021;
Melanson et al., 2017). The complex cognitive processes that emerge from this neuronal activity also tend to exhibit
non-stationary dynamics (Craigmile et al., 2010; Sebastian Castro-Alvarez & Tendeiro, 2023; Van Orden et al., 2003;
Wagenmakers et al., 2004). In other words, proverbial cognitive processes, such as attention, memory, and decision-
making, are not constant over time, but instead undergo fluctuations, shifts, and alterations in their functions.

Lapses of attention are a canonical cause of such non-stationary dynamics. Even when actively engaged in a task,
our focus can drift or momentarily falter (Weissman et al., 2006). Moreover, our capacity to sustain attention and
concentrate may vary, influenced by factors such as fatigue, motivation, and external distractions (Esterman & Roth-
lein, 2019; Ratcliff & Van Dongen, 2011; Walsh et al., 2017). These fluctuations can have a significant impact on
our cognitive functioning, but they are often overlooked or simplified in traditional models of cognition. And while
these often assume cognitive processes to be stable and time-invariant, there has been a growing recognition that tradi-
tional models do not fully capture the complexity and variability of real-world cognition (Beer, 2023; Cochrane et al.,
2023; Evans & Brown, 2017; Gunawan et al., 2022; Kucharský et al., 2021; Li et al., 2023; Schumacher et al., 2023).
Common approaches to address variability in the components of cognitive models can be broadly classified into four
categories: stationary variability, trial binning, regression approach, and frontend-backend models.

The first approach assumes random fluctuations around a stable mean, referred to as stationary variability (see Fig-
ure 1A). A prominent example of this approach is the “full” diffusion decision model (DDM), which allows for inter-
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Figure 1: A conceptual illustration of the five main approaches to model temporal variation in the parameters θ of a
cognitive model G. A Stationary variability, also known as inter-trial variability, assumes that parameter values fluctu-
ate around a stable mean. B Trial binning involves organizing the data into distinct bins and fitting a cognitive model
G to each bin individually. C Regression approach employs time (and sometimes additional contextual variables) as
predictors for the parameters θ. D Frontend-backend models employ a mechanistic model, referred to as the fron-
tend, to elucidate the dynamics of the parameter of the cognitive model (i.e., the backend). E Superstatistics involve
a superposition of multiple stochastic processes operating on different temporal scales. They comprise a low-level
observation model G and a high-level transition model T that specifies how the parameters θt evolve stochastically.

trial variability of its core parameters (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). However, stationary
inter-trial variability mainly improves in-sample model fit and cannot identify systematic changes or sudden shifts in
core model parameters. Moreover, the resulting model family still treats behavioral data as independent and identically
distributed (IID) responses, making it unsuitable for investigating systematic changes in cognitive constructs.

Another approach for detecting systematic changes in cognitive model components is trial binning (Evans & Brown,
2017; Evans & Hawkins, 2019; Kahana et al., 2018). This method involves organizing data into discrete bins and then
applying a stationary model to each of these data subsets separately (see Figure 1B). One can then examine variations
in parameter estimates across these bins. The challenge in employing this approach is the selection of the number
of time steps within each bin, which introduces an unwelcome trade-off between temporal resolution and estimation
quality. For instance, if only a few time steps are chosen, the analysis can yield relatively fine-grained, but very
uncertain estimates due to the low number of data points. A further shortcoming of trial binning is that estimates
within a specific bin are not informed by data from neighboring bins. However, the appeal of dynamic modeling lies
in the distinctive capability to utilize both past and future data to constrain the estimated parameter trajectories.

The third approach involves a generalized linear model (GLM) with time (and possibly other contextual factors) as
a predictor of model parameters (Cochrane et al., 2023; Evans et al., 2018). The GLM approach is more appealing
than trial binning, as it can detect linear or non-linear changes in model parameters without loss of resolution (see
Figure 1C). However, the underlying regression function makes strong assumptions about the nature of the relationship
between model parameters and time. Thus, even though a modeler will typically fit and compare a few plausible
specifications (e.g., linear vs. exponential), it is often difficult to determine all plausible specifications a priori, and the
overall flexibility of the GLM model as a process characterization remains severely limited (Gunawan et al., 2022).

Differently, the frontend-backend approach aims to account for changes in model parameters, while providing a mech-
anistic explanation for the dynamic nature of the target system (see Figure 1D). Here, the backend model pertains to
the cognitive model which formalizes how the behavioral data is generated (e.g., a DDM). The frontend constitutes a
mechanistic model, elucidating how the parameters of the backend model adapt over time, in different contexts and
in response to additional factors (Brown et al., 2008; Fontanesi et al., 2019; Osth et al., 2018; Schumacher & Voss,
2023). This approach has several advantages, as it not only accommodates the dynamic nature of the parameters, but
also provides a mechanistic description for their temporal variation through a set of static parameters and deterministic
functions. For instance, there has been a recent trend to use reinforcement learning models as a frontend model to
inform changes in DDM parameters due to reward-based learning (Fontanesi et al., 2019; McDougle & Collins, 2021;
Miletić et al., 2021). Nevertheless, detailed frontend models are often challenging to develop, estimate, and compare.
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Recently, we proposed an alternative approach that infers non-stationary parameter trajectories directly from the data,
while imposing minimal constraints on how parameters change over time (Schumacher et al., 2023). Our approach
leverages a framework known as superstatistics (Beck & Cohen, 2003; Beck, 2004; Mark et al., 2018), which involves
a superposition of multiple stochastic processes operating on distinct time scales (see Figure 1E). At its core, this
model comprises a low-level observation model and a high-level transition model. The former describes how data at a
specific time point is generated, akin to the backend model. Like the frontend model, the transition model characterizes
how the parameters change over time. However, from a superstatistics perspective, the transition model is inherently
a stochastic process, exemplified, for instance, by a Gaussian random walk or a regime switching process.

The superstatistics approach effectively addresses the limitations of prior methodologies. Unlike stationary models,
superstatistical models can readily generate non-stationary variations in the parameters of the low-level model, facili-
tating gradual or sudden transitions between different states. Furthermore, parameter estimates are contingent on past
data points, thereby treating the data no longer as IID. In contrast to the trial-binning approach, models within the
superstatistics framework leverage the entirety of available data, mitigating concerns about insufficient data points for
parameter estimation. Different from GLM approaches, our superstatistics method imposes minimal assumptions on
potential parameter trajectories, making it significantly less restrictive.

In contrast to frontend-backend models, superstatistics do not offer mechanistic explanations for parameter dynamics
but provide greater flexibility in their estimation. Although mechanistic explanations are central to psychological re-
search, there are cases where suitable explanations are lacking or are applicable only to specific parameters. Therefore,
we consider these two approaches as complementary. The superstatistical framework takes a bottom-up, exploratory
approach, functioning as a tool for generating hypotheses. In subsequent stages, one could potentially formulate
plausible frontend models based on insights from parameter trajectories inferred with a superstatistical model. Ad-
ditionally, superstatistical models can serve as benchmarks for testing and validating competing frontend-backend
models by comparing resulting parameter trajectories from both methods.

Having laid out the potential benefits of the superstatistics framework and its applicability in the realm of cognitive
process models (Schumacher et al., 2023), a pivotal question arises: Do the inferred parameter trajectories genuinely
reflect shifts in the cognitive constructs they aim to represent, or are they merely a modeling artefact? To address this
inquiry, we embark on an experimental validation study. In this study, we manipulate the experimental context in a
manner that allows us to confidently anticipate how individuals and, consequently, their inferred cognitive constructs,
will respond. In other words, if the inferred parameter time series mirror the alterations in the experimental context,
we garner substantial evidence that these trajectories indeed reflect changes in the psychological constructs.

Throughout, we employ the well-established 4-parameter DDM (Ratcliff, 1978) as a low-level observation model.
The DDM is a mathematical model that simultaneously accounts for response time (RT) and choice data obtained
from two-alternative decision tasks. Fundamentally, it posits that, in forced-choice binary decision task, individuals
accumulate evidence for the decision alternatives until a certain threshold is met, triggering a decision. Each of the
DDM’s four core parameters corresponds to a specific psychological construct: (i) the drift rate v signifies the average
speed of information uptake; (ii) the threshold a serves as a proxy for decision caution; (iii) the relative starting point
β represents a priori decision preferences; and (iv) the additional constant τ accounts for the duration of all processes
taking place prior and following a decision, such as stimulus encoding or motor action (but see Verdonck et al., 2021).

A primary reason for our choice of the DDM as the observation model lies in its rigorous prior validation (Arnold et al.,
2015; Lerche & Voss, 2019; Voss et al., 2004). These prior studies have convincingly demonstrated that the DDM’s
parameters are valid reflections of the intended psychological constructs. Moreover, the manipulation of experimental
conditions leading to systematic alterations in specific DDM parameters is well-documented and comprehensively
understood (Ratcliff & McKoon, 2008). For example, varying the difficulty of an experimental task alters the drift
rate parameter, whereas providing verbal instructions to prioritize either speed or accuracy during task-solving leads
to observable shifts in the threshold parameter and sometimes also in the non-decision time (Lerche & Voss, 2018).

In this study, we focus on the aforementioned experimental manipulations targeting the drift rate and the threshold
parameters. We employed a color discrimination task, which was also utilized in the validation study by Voss et al.
(2004). During this task, individuals must decide whether there are more blue or more orange pixels in a patch of
pixels. The difficulty of the task can be easily manipulated by adjusting the ratio of blue and orange pixels. The farther
the ratio is from 1:1, the easier the task becomes. Additionally, we manipulated the emphasis on speed or accuracy by
verbally instructing participants to prioritize one over the other.
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Systematic changes in cognitive model parameter can appear in different ways, ranging from changing slowly and
gradually to more rapid and large shifts. In our experiment, we focus on two different types. Firstly, task difficulty
changes frequently to the next easier or harder level, imitating gradual changes. Secondly, the speed-accuracy emphasis
changes less regularly after each trial block, resembling sudden shifts. The primary aim of our experiment is to
investigate whether the parameter trajectories inferred with a non-stationary DDM (NSDDM) match these changing
patterns of the experimental conditions. Specifically, we expect the drift rate parameter to mirror the gradual changes
of the task difficulty. Additionally, the threshold parameter should show sudden shifts when the priority switches
between speed and accuracy. It is crucial to understand that in this application, the NSDDM does not have information
about the experimental context and has to infer the parameter trajectory solely on the behavioral data.

When dealing with different types of fluctuations, another crucial question arises: What kind of transition model
is most suitable for capturing the expected dynamics? To address this question, we implement different NSDDMs
that solely differ in their transition model for the drift rate and the threshold parameter. Specifically, we compare four
different transition models: (i) a Gaussian random walk; (ii) a mixture between a Gaussian random walk and uniformly
distributed regime changes; (iii) a Lévy flight; and (iv) a regime switching function, where parameters either remain
the same as in the previous time step or shift uniformly. These four transition models differ in their complexity (i.e.,
number of high-level parameters) and their ability to account for different types of temporal shifts.

Performing Bayesian model comparison and parameter estimation with superstatistical models can be computationally
challenging (Schumacher et al., 2023). Therefore, we employ simulation-based inference (SBI, Cranmer et al., 2020)
as implemented in the BayesFlow framework (Radev et al., 2023). BayesFlow enables us to carry out a principled
Bayesian workflow utilizing simulation-based calibration (SBC, Säilynoja et al., 2022; Talts et al., 2020) and other
validation methods (Gelman et al., 2020; Schad et al., 2021) that would otherwise be excessively time-consuming.
The contributions of the present study can be summarized as follows:

1. We perform an experimental validation of different non-stationary instantiations of the diffusion decision model.

2. We propose an amortized method for Bayesian model comparison of non-stationary models via deep ensembles.

3. We showcase the potential of amortized Bayesian inference for increasing the aspirations of cognitive modeling.

Materials and Methods

Participants

A total of 14 participants (9 female, 5 male) were recruited for the experiment. The participants had an average age
of 23.14 years (SD = 1.29, Range = [22, 26]). Every individual provided informed consent to participate in the
study, and the research protocol received approval from the local ethics committee. The entire study was conducted in
accordance with the ethical principles outlined in the Helsinki Declaration.

Task

The participants completed a total of 800 trials in a color discrimination task, including 32 practice trials. In each trial,
individuals were presented with a rectangular patch containing blue and orange pixels and had to determine whether
there were more blue or orange pixels. Prior to the patch presentation, a fixation cross was displayed for 300 ms. All
stimuli were presented on a gray background.

Task difficulty was manipulated by varying the proportion of blue/orange pixels in the patch. The following ratios
were utilized: 50.5:49.5; 52.25:47.75; 53.5:46.5; and 55:45. Half of the trials featured orange as the dominant color,
while the other half featured blue. The difficulty level remained constant for either 8 or 16 trials before transitioning
to the next level of difficulty.

In addition to manipulating task difficulty, participants received two types of instructions which changed every 48
trials. In the “accuracy” condition, individuals were instructed to prioritize accuracy in their responses. Conversely, in
the “speed” condition, participants were directed to emphasize speed while maintaining a reasonable level of accuracy.
Feedback was provided after each trial to make participants aware of their performance: a green cross for correct
responses, a red minus for incorrect responses, and a red clock for responses slower than 700 ms in the speed condition.
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Superstatistics Framework

To represent non-stationary changes in DDM parameters, we adopt a superstatistics framework (Beck & Cohen, 2003;
Mark et al., 2018). Within this framework, each generative model comprises (at least) a low-level observation model
G characterized by time-dependent local parameters θt ∈ RK that vary according to a high-level transition model T
with static high-level parameters η ∈ RD. These models simulate parameters and observable data xt ∈ X according
to the following general recurrent system

θt = T (θ0:t−1, η, ξt) with ξt ∼ p(ξ | η), θ0 ∼ p(θ)

xt = G(x1:t−1, θt, zt) with zt ∼ p(z | θt),
(1)

where T represents an arbitrary high-level transition function parameterized by η, and G is a (non-linear) transfor-
mation that encapsulates the functional assumptions of the low-level model. The random variates ξt and zt govern
the stochastic nature of the two model components through noise outsourcing. The initial parameter configuration θ0
adheres to a prior distribution θ0 ∼ p(θ) encoding the available information about feasible starting parameter values.

The above formulation is very abstract and general, highlighting the flexibility of the superstatistics framework. More-
over, it does not assume that the corresponding transition or likelihood densities, given by

T(θt | η, θ0:t−1) =

∫
p(θt, ξ | η, θ0:t−1) dξ (implied transition density) (2)

p(xt | θt, x1:t−1) =

∫
p(xt, z | θt, x1:t−1) dz (implied likelihood density), (3)

are tractable or available in closed-form, situating our approach in the context of simulation-based inference (SBI,
Cranmer et al., 2020). Here, we build on SBI with neural networks (Ardizzone et al., 2018; Greenberg et al., 2019;
Radev, Mertens, et al., 2020) as a principled approach to perform fully Bayesian inference by using only samples
from the generative system defined by Equation 1. Importantly, our estimation methods overcome key limitations of
previous approaches related to the curse of dimensionality (Mark et al., 2018).

Low-Level Model

In this work, we use the same standard DDM implementation as a low-level observation model G for all NSDDMs.
The low-level dynamics of the evidence accumulation process are described by the following stochastic ordinary
differential equation:

dxn = vdts + z
√

dts with z ∼ N (0, 1) (4)

Accordingly, the evidence xn on a given trial n follows a random walk with drift v and Gaussian noise z, where ts
represents time on a continuous time scale. The core assumption of the DDM is that evidence is accumulated with a
fixed rate v until one of two thresholds, a or 0, is reached, and the corresponding decision Dn is made:

Dn =

{
1, if xn ≥ a

0, if xn ≤ 0
. (5)

Furthermore, the DDM incorporates an additive constant τ , which represents the time allocated to all non-decisional
processes (i.e., stimulus encoding and motor action). Consequently, the DDM encompasses three distinct free param-
eters, namely θ = (v, a, τ). We fixed the starting point of the evidence accumulation process at a/2, since, in our case,
the two boundaries of the accumulation process correspond to correct and incorrect responses, respectively. Thus, it is
unwarranted to estimate any potential a priori bias towards either of these boundaries (Voss et al., 2013).

High-Level Models

We formulate and compare four different high-level transition models, denoted as T1, ..., T4, which govern the trial-
by-trial changes in local DDM parameters θ1:T . These transition models vary in terms of their flexibility in allowing
changes to the low-level parameters and their underlying complexity, including the number of high-level parameters
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Figure 2: An example illustration of the four high-level (transition) models considered in our study, governing the
temporal variation of a hypothetical low-level model parameter.

involved (see Figure 2 for an exemplar trajectory generated by each transition model). To ensure that the low-level
parameters remain within plausible ranges, we impose both lower and upper bounds on their trajectories. Specifically,
we set the upper bounds for the parameters v, a, and τ to 8, 6, and 4, respectively. Additionally, since negative
parameter values are not meaningful for our DDM specification, we set the lower bounds for all parameters to 0. For
all transition models, we assume independence between the trajectories of the local DDM parameters.

Random Walk The first transition model (T1) convolves the low-level model’s parameters with a Gaussian distribu-
tion, resulting in a gradual change that follows a random walk:

T1(θk,t | θk,t−1, σk) = N (θk,t | θk,t−1, σk) (6)

According to this transition model, the current value of each parameter θk,t is only influenced by its previous value
θk,t−1, generating more or less auto-correlated and gradual changes.

Mixture Random Walk The second transition model (T2) corresponds to a mixture distribution between a random
walk (cf. Equation 6) and uniformly distributed shifts:

T2(θk,t | θk,t−1, ρk, σk, ak, bk) = ρkN (θk,t | θk,t−1, σk) + (1− ρk)U(ak, bk) (7)

where ρ indicates the probability of the type of change (gradual change or shift) as a mixing coefficient for the two
states. The upper and lower bounds of the uniform distribution, denoted as a and b, are set to cover plausible parameter
ranges and are not treated as free parameters themselves.

Lévy-Flight The Lévy flight transition model (T3) is similar to the Gaussian random walk. However, instead of
assuming normally distributed noise, it assumes an alpha-stable transition for each component of θ:

T3(θk,t | θk,t−1, σk, αk) = Alpha-Stable(θk,t | θk,t−1, σk, β = 0, αk) (8)

where 0 < α ≤ 2 governs the heaviness of the noise distribution’s tails. If αk = 2 then the distribution is equivalent
to a Gaussian distribution. Notably, as the value of α decreases, the distribution’s tails get heavier, allowing for larger
shifts in the parameter values. When simulating from the Lévy flight transition model, we use a scale of σk/

√
2, such

that the corresponding Gaussian distribution for αk = 2 has a standard deviation of σk.

Regime Switching Finally, the regime switching transition model (T4) is a simpler version of the mixture random
walk. The parameter’s trajectory adheres to one of two possibilities: it either maintains its previous value or undergoes
a uniform shift:

T4(θk,t | θk,t−1, ρk, ak, bk) = ρk δ(θk,t − θk,t−1) + (1− ρk)U(ak, bk), (9)

where δ(·) is the Dirac delta distribution indicating that the parameter either does not change at all with probability ρ
or undergoes a sudden change with probability 1− ρ.

Strictly speaking, some of the above transition models can effectively be transformed into others by employing spe-
cific high-level parameter configurations. For instance, the mixture random walk with σ = 0 reduces to the regime
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Figure 3: A conceptual illustration of our amortized Bayesian inference training setup. A Parameter estimation A
recurrent summary network processes the synthetic time series x1:T and learns maximally informative temporal sum-
mary statistics x̃1:T . An inference network (i.e., normalizing flow) learns to approximate the joint posterior distribution
of time-varying low-level parameters θ1:T and static high-level parameters η given the learned summaries. B Model
comparison A transformer summary network consumes time series simulated from competing models and learns
maximally informative summary vectors x̃. An inference network (i.e., a probabilistic classifier) learns to approximate
posterior model probabilities (PMPs) given the summary vectors. Once trained, the networks can be efficiently vali-
dated using principled Bayesian methods and applied to the observed data.

switching transition function. Conversely, when ρ = 0 it reduces to a simple Gaussian random walk. Also, the Lévy
flight transition model with α = 2 turns into a random walk transition function. The mixture random walk and the
Lévy flight transition function both have two high-level parameters and can thus be regarded as more complex and
more flexible than the other two transition models, which only have a single high-level parameter. Notably, the random
walk transition model is the only one that cannot generate relatively large sudden shifts in parameter values.

Model Comparison Setup

One of the major aims of this study is to compare four NSDDMs sharing the same low-level diffusion model but
differing in their assumptions about the type of stochastic variation of the drift rate (v) and threshold (a) parameters.
All four NSDDMs employ the same Gaussian random walk model T1 for the non-decision time parameter (τ ). We
base this decision on previous research (Schumacher et al., 2023) and the rationale of our experimental manipulations,
which should not imply sudden large shifts in the τ parameter. For M1, the drift rate and threshold parameter also
follow a Gaussian random walk, resulting in three high-level parameters, η = (σv, σa, στ ). In M2, both v and a
follow a mixture between a Gaussian random walk and uniform shifts (T2), which results in a total of five high-
level parameters, η = (σv, σa, στ , ρv, ρa). In contrast, M3 introduces a trajectory for the drift rate and threshold
parameters characterized by a Lévy flight (T3), which has five free high-level parameters, η = (σv, σa, στ , αv , αa).
Lastly, for M4, the two parameters v and a either remain the same as in the previous time point or shift uniformly
(T4). This model has a total of three high-level parameters, η = (στ , ρv, ρa). A listing of the weakly informative prior
distributions assigned to the model parameters can be found in the Appendix.

Amortized Bayesian Inference

Amortized Bayesian inference (ABI) is a flexible framework for estimating, comparing, and validating complex mod-
els through simulation-based training of specialized neural networks (Radev et al., 2023). ABI consists of (i) a training
phase where the networks learn a surrogate distribution, and (ii) an inference phase where the networks infer the target
quantities (e.g., model parameters or model posterior probabilities) in real-time for any new data set supported by the
model(s). The neural networks are trained purely on simulations from the generative model and do not require an
explicit likelihood or numerical integration. Thus, ABI re-casts expensive Bayesian inference into a neural network
prediction task, such that sampling from the target posterior and model refits happen almost instantaneously.

Amortized Parameter Estimation Our deep learning approach for jointly estimating time-varying and static param-
eters follows Schumacher et al. (2023), who extend ideas from ABI with static parameters (Gonçalves et al., 2020;
Radev, Mertens, et al., 2020) to non-stationary Bayesian models. Accordingly, our goal is not only to infer the tra-
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jectories of all three model parameters {θt}Tt=1, but also to estimate the posterior distribution for the static high-level
parameters η of the transition model. Thus, we are interested in recovering the full joint posterior p(θ1:T , η |x1:T )
from the observed time series {xt}Tt=1:

p(θ1:T , η |x1:T ) ∝ p(η, θ0) p(x1 | θ1)
T∏

t=2

p(xt | θt, x1:t−1)

T∏

t=1

T(θt | η, θ0:t−1) (10)

where p(η, θ0) is the joint prior over high-level parameters and initial low-level parameter values. The joint prior
typically factorizes as p(η, θ0) = p(η)p(θ0), assuming that η and θ0 are independent in the absence of any information.
Even though our SBI method is applicable to any model of the general form in Eq. 10, our low-level (Low-Level
Model) and high-level (High-Level Models) specifications lead to a simplified formulation

p(θ1:T , η |x1:T ) ∝ p(η, θ0)

T∏

t=1

p(xt | θt)
T∏

t=1

T(θt | η, θt−1). (11)

The simplified formulation follows from the fact that our transition models share the Markov property and the DDM
likelihood depends on time only through the current parameter θt in the latent trajectory θ1:T .

Following the typical ABI offline training setting (see Figure 3A for a conceptual illustration), we generate a data
set of simulated data sets, D = {η(b), θ(b)1:T , x

(b)
1:T }Bb=1, and use the simulated data to train a specialized neural network,

Fψ(θ1:T , η; x1:T ), which approximates the full joint posterior (i.e., a normalizing flow, see Papamakarios et al., 2021).
In particular, we minimize the following loss in expectation over the full non-stationary generative model (i.e., the right
hand-side of Eq. 10)

L(ψ) = E(η,θ1:T ,x1:T )∼D [− log qψ(θ1:T , η |x1:T )] , (12)

where we approximate the expectation over p(θ0) p(η, θ1:T , x1:T ) via our training set D and regularize against overfit-
ting with standard techniques, such as dropout and weight decay. It is also possible to run the simulator(s) indefinitely
and perform online training using on-the-fly simulation (Radev, Mertens, et al., 2020). In fact, this approach should be
preferred for fast simulators, as it makes overfitting hardly possible. Thus, online learning is the approach we pursue
for estimating the parameters of our NSDDMs.

In the context of dynamic Bayesian models, we have many choices on how to factorize the joint posterior (Särkkä,
2013). The two most common choices are to approximate the filtering distribution or the smoothing distribution (Mark
et al., 2018). The filtering distribution corresponds to an online analysis, where the low-level parameters θt at time
step t are only informed by past data points. Differently, the smoothing distribution conditions the posterior of θt on
all past and future data points, and provides potentially sharper estimates. Thus, in this study, we exclusively target
the approximate smoothing distribution due to its superior parameter recoverability in an offline analysis.2 In prac-
tice, we employ unidirectional or bidirectional long-short term memory (LSTM) networks (Gers et al., 2000) with
many-to-many input-output relationships as a backbone for approximating the filtering or the smoothing distribution,
respectively. We then train four separate neural approximators, such that each network becomes an “expert” in in-
ferring the smoothing distribution of the corresponding NSDDM. The Appendix contains more details on the neural
network settings and training hyperparameters.

Amortized Model Comparison To conduct a comparative analysis of the four NSDDMs, we focus on Bayes factors
(BFs) and posterior model probabilities (PMPs), which can be classified as prior predictive methods embodying Oc-
cam’s razor (Kass & Raftery, 1995; MacKay, 2003). The efficacy of these measures has been demonstrated in a wide
range of psychological modeling studies (Heck et al., 2023). Nevertheless, an ongoing debate surrounds the preference
between the two (Tendeiro & Kiers, 2019; van Ravenzwaaij & Wagenmakers, 2022). Since BFs and posterior odds
(i.e., ratios between PMPs) are equivalent when all models are assumed to be equally likely a priori, we estimate and
analyse both quantities in our study.

Following the common Bayesian terminology (MacKay, 2003), we can refer to the four competing models through an
index set M = {M1,M2,M3,M4}. The aim of prior predictive Bayesian model comparison is to find the simplest

2Note, that Schumacher et al. (2023) focused exclusively on the filtering distribution in their benchmarking experiments.
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most plausible model within M. To this end, we can compute PMPs for each of the competing models

p(Mj |x1:T ) =
p(x1:T |Mj) p(Mj)

Ep(M) [p(x1:T |M)]
, (13)

where p(M) refers to the prior distribution over the discrete model space. The marginal likelihood p(x1:T |Mj) plays
a crucial role in Equation 13, and can be expressed by integrating out all parameters of the joint model,

p(x1:T |Mj) =

∫
p(η, θ0)

T∏

t=1

p(xt | θt,Mj)
T∏

t=1

Tj(θt | η, θt−1) dη dθ0, . . . , dθT . (14)

Importantly, since the marginal likelihood averages the likelihood over the joint prior, it automatically incorporates a
probabilistic Occam’s razor, favoring models with constrained prior predictive flexibility. When comparing a pair of
competing models, Mj and Mi, we can compute the ratio between their respective marginal likelihood,

BFji =
p(x1:T |Mj)

p(x1:T |Mi)
. (15)

This ratio is referred to as the Bayes factor (BF). Consequently, a BFji > 1 signifies a relative preference for model j
over model i based on the given data x1:T (Kass & Raftery, 1995).

Unfortunately, the marginal likelihood is notoriously hard to approximate (Gronau et al., 2017) and even doubly
intractable for mechanistic models with unknown or unnormalized likelihoods. To circumvent this intractability, we
follow the neural method of Elsemüller, Schnuerch, et al. (2023) and Radev, D’Alessandro, et al. (2020) which enables
amortized Bayesian model comparison for arbitrary computational models (see Figure 3B for a graphical illustration).
This method involves the simultaneous training of two neural networks with different roles: a summary network and
an inference network. The summary network learns maximally informative summary statistics from the raw data (e.g.,
behavioral time series). The inference network approximates the PMPs for the candidate models, qϕ(M|x1:T ) given
the outputs of the summary network. Here, we subsume all trainable network parameters under ϕ and refer to the
composition of the two networks as an evidential network.

The training data for the evidential network consists of all simulations from the candidate models together with the
corresponding model index, D(M) = {x(b)1:T ,M

(b)
j }B′

b=1, where B′ denotes the total number of simulations from all
models. Together, the two networks minimize the standard cross-entropy loss,

L(ϕ) = E(Mj ,x1:T )∼D(M)

[
−

J∑

j=1

IMj log qϕ(Mj |x1:T )
]
, (16)

and we approximate the expectation over p(η, θ1:T , x1:T ) by our training set D(M), and IMj
denotes an indicator

function (i.e., one-hot encoding) for the true model index. In principle, we could use online learning for amortized
model comparison as well, but we found offline training to yield sufficiently accurate results.

More recently, Elsemüller, Olischläger, et al. (2023) demonstrated the importance of gauging the sensitivity of amor-
tized neural approximators, especially in the context of model comparison. The authors suggest to train an ensemble
of multiple evidential networks, instead of relying on a single network. Accordingly, we can measure the (lack of)
agreement between ensemble members and obtain a hint at the robustness of the approximate PMPs. Here, we trained
an ensemble of ten evidential networks and computed the mean and standard deviation of the estimated PMPs across
all ten networks. For more details regarding the neural network architecture and training settings, we refer the reader
to the Appendix.

Code Availability Complete code for reproducing the results reported in this manuscript is available in the project’s
GitHub repository https://github.com/bayesflow-org/Non-Stationary-DDM-Validation.

Results

Model Comparison

As a first step, we assess the closed-world (i.e., in silico) performance of our model comparison method in terms
of computational faithfulness and accuracy of model recovery. To assess the former, we perform simulation-based
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Figure 4: In silico model comparison and sensitivity results. A Calibration curves of all four NSDDMs aggregated
across the neural approximator ensemble. Additionally, the expected calibration error (ÊCE) is annotated within each
subfigure. The gray histograms depict the relative frequencies of the predicted model probabilities. B Confusion
matrix between true data generating model and predicted model. The proportion values were averaged across the ten
neural approximator within the ensemble.

calibration (SBC; Säilynoja et al., 2022; Talts et al., 2020) based on 10 000 synthetic data sets per model. Figure 4A
shows the calibration curves for each NSDDM averaged across the ten evidential networks in our deep ensemble.
We observe excellent calibration with very minimal expected calibration errors (ÊCE) across all models. Thus, we
conclude that the approximate posterior probabilities are well-calibrated in the closed-world setting.

Next, we assess the accuracy of our model comparison networks in terms of their ability to correctly identify the
ground-truth data-generating model. To this end, we apply the deep ensemble to the 40 000 synthetic data sets we
have already simulated for assessing calibration. In Figure 4B, we present the resulting confusion matrix, which
illustrates the agreement between true and predicted models averaged across the ten approximators. Among the four
models, the random walk DDM is the only one that rarely gets confused with the other models. A possible explanation
is that it is the only transition model not capable of generating sudden shifts in parameter values. The remaining
models are susceptible to more frequent misclassifications. For example, the mixture random walk DDM is correctly
identified only 54% of the time, and it is often confused with the regime switching model, occurring 43% of the time.
Notably, the Lévy flight DDM is prone to mimicry with the random walk DDM (on average 30% of the time).

It is essential to emphasize that these results do not imply a deficiency in your model comparison method, but rather
underscore the fact that certain pairs of models, such as the mixture random walk and the regime switching DDM, can
generate remarkably similar data patterns. For instance, a significant portion of the prior distribution’s mass for the
α parameter of the Lévy flight transition model centers around 2. If α ≈ 2, then the Lévy alpha-stable distribution
closely resembles a Gaussian distribution, with equality in the case of α = 2. Consequently, simulating the Lévy flight
DDM would often yield data patterns that could have just as plausibly originated from the simpler random walk DDM.

Similarly, a substantial portion of the prior mass for the σ priors of the mixture random walk transition model clusters
around 0, which subsequently transforms it into a regime switching transition model, resulting in large overlap in
synthetic data sets. Interestingly, the mixture random walk and the Lévy flight DDM are seldom confused, even though
both models can produce subtle local changes and large sudden shifts. This implies that these two transition models
generate qualitatively similar but quantitatively easy to distinguish parameter trajectories. In summary, the observation
of occasional model confusion is not a limitation of our method; rather, it underscores our method’s effectiveness in
discerning when two models generate highly similar data, making them less straightforward to differentiate from each
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Figure 5: Empirical model comparison results. A Aggregate posterior model probabilities (PMP) across the ensemble
and the 14 individual participants. Points depict the mean, stars the median, and the error bars indicate the 75%
credibility interval (CI). B Heatmap of average log10 Bayes factors (BF). Both metrics agree on favoring the Lévy
flight DDM over the other models.

other. Moreover, the amortization property of our method enables us to easily conduct such simulation studies prior to
analyzing real data – estimating 40 000 posterior model probabilities would have been infeasible for any other method.

After successfully validating our model comparison method, we apply the deep ensemble to the empirical data of the
14 participants. Each approximator in the ensemble was used to infer posterior model probabilities (PMP) for each
model, considering each individual’s data separately. Subsequently, we calculated the mean (points), median (stars),
and 75% credibility interval (CI) for the PMPs for all approximators the 14 individuals (Figure 5A). The analysis
reveals that the Lévy flight DDM is the most plausible model with an average PMP of approximately 60%. It was the
most plausible model for 9 out of the 14 participants. In contrast, the mixture random walk model collects an average
PMP of less than 30%. Nevertheless, it was estimated to be the most plausible model for 5 participants. The random
walk DDM and regime switching DDM were consistently less plausible than the other models and did not emerge as
superior for any of the participants.

In addition to PMPs, we computed log10 Bayes factors (BF). Figure 5B depicts a heatmap of BFs for all one-to-
one comparisons between our four NSDDMs, averaged across the participants and the evidential networks of the
ensemble. Following Kass and Raftery (1995), an absolute value of log10(BF) > 2 indicates decisive evidence,
absolute values between 1 to 2 signify strong, and between 0.5 to 1 substantial evidence. An absolute value of
log10(BF) < 0.5 is labeled as not worth more than a bare mention. The BF patterns in Figure 5B align with the PMP
findings, implying strong evidence for the Lévy flight DDM over the random walk DDM and substantial evidence over
the other NSDDMs. Also, both the mixture random walk and the regime switching DDM have substantial evidence
over the random walk model. Interestingly, there is little evidence favoring the mixture random walk DDM over the
regime-switching model, suggesting comparable performance.

These findings offer two substantive insights. First, the ability of transition models to generate sudden shifts in param-
eters seems essential, as seen in the random walk DDM’s lower plausibility. Moreover, the regime switching DDM,
allowing for occasional shifts, but neglecting small gradual changes, performed less effectively than the more complex
models. This result underscores the importance of accommodating both gradual as well as sharp changes in model pa-
rameters for achieving optimal fit. Consequently, the more complex NSDDMs, particularly the mixture random walk
DDM and Lévy flight DDM, emerged as more plausible than their simpler counterparts, despite the implicit penalty
for prior complexity imposed by Bayesian model comparison.
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Figure 6: Aggregated results from all models fitted to the empirical data. The top row illustrates posterior re-
simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The bottom
row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion deci-
sion models (NSDDM). A Empirical and re-simulated RTs for each difficulty level and both conditions. B Empirical
and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions separately. C
Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D Posterior
estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate medians
and the error bars represent the median absolute deviations (MAD) across individuals and re-simulations.

Posterior Re-simulation

Subsequently, we fit all four variants of the NSDDM to each of the 14 data sets, evaluating the absolute goodness-
of-fit of each model. To achieve this, we conducted 500 re-simulations with randomly sampled posterior parameter
trajectories for each individual data set. In Figure 6A, we present the median and median absolute deviation (MAD)
of response times (RT) across all individuals and re-simulations. We provide these aggregates for each NSDDM,
categorized by task difficulty level and the two experimental conditions. Notably, an initial observation reveals that
the experimental manipulations were effective on average: empirical median RTs increased with task difficulty, and
individuals tended to respond faster in the speed condition compared to the accuracy condition. Remarkably, all four
variants of the NSDDM demonstrated an outstanding fit to these empirical data patterns. Solely, RTs in the accuracy
condition with the highest task difficult level consistently are underestimated by all NSDDM variants.

The empirical and re-simulated proportion of correct choices (accuracy) are aggregated and presented in the same
way as the RTs (see Figure 6B). Again, the empirical data mirror the anticipated patterns resulting from our experi-
mental manipulations. As expected, accuracy diminishes with increasing task difficulty. Individuals are generally less
accurate in the speed condition compared to the accuracy condition. Although NSDDMs successfully reproduce the
general patterns in the choice data, we observe notably worse re-simulation compared to that of the RTs data. In both
accuracy and speed conditions, re-simulated accuracies exhibit a less pronounced decline as a function of difficulty
than observed in the empirical data. Further, the difference in accuracy between the two experimental conditions is less
pronounced in the re-simulated data compared to the behavioral data. Notably, the random walk DDM underperforms
relative to the other three NSDDMs in this analysis.

It is important to highlight that, unlike conventional approaches, the models did not receive any information regarding
the specific experimental context an individual faced at any given moment. From these analyses, we conclude that all
NSDDM implementations successfully capture the general patterns in the empirical RT data. Individual participant
analyses, detailed in the Appendix, affirm the same conclusions.
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Figure 7: Model fit to response time (RT) time series. The empirical RT time series of two exemplar individuals
are shown in black. From trial 1 to 700, the posterior re-simulations (aka retrodictive checks) using the best fitting
non-stationary diffusion decision model (NSDDM) for the specific individual are shown in blue and red, respectively.
In this instance, the left column showcases results from a Lévy flight DDM, while the right column displays parameter
trajectories from a mixture random walk DDM. For the remaining trials, one-step-ahead posterior predictions from
the NSDDMs are depicted in cyan and orange, respectively. Solid lines correspond to the median and shaded bands to
90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series were smoothed via a simple
moving average (SMA) with a period of 5. The yellow shaded regions indicate trials where speed was emphasised
over accuracy, while blank white areas denote instances where the opposite emphasis was applied.

In addition to the analysis of the absolute model fit on the aggregate level, we evaluated the fit across the RT time
series. For every participant, we generated 250 posterior re-simulations for the first 700 trials with the corresponding
best fitting NSDDM. The remaining 68 data points were left out for predictive analysis. Employing a one-step-ahead
prediction approach, we iteratively forecasted the subsequent data point, followed by a re-fitting of the model in each
step.

Figure 7 illustrates the empirical and re-simulated RT time series for two exemplary participants. Results for the
remaining 12 participants can be seen in the Appendix. The colored lines depict the median and the shaded bands
represent to 90% credibility intervals (CI) across the 250 re-simulations. Both the empirical data (solid black lines)
and the re-simulated/predicted RTs were smoothed using a simple moving average (SMA) with a period of 5. Yellow
shaded regions highlight trials where speed was emphasised over accuracy, whereas blank white areas denote instances
where the opposite emphasis was applied. Overall, RTs were slower and more variable in the accuracy condition.
Notably, the NSDDM not only closely replicated the empirical time series but also effectively predicted future data
points. This suggests that the model does not overfit the data.

Parameter Estimates

At the heart of the current validation study are the inferred parameters, prompting a crucial question: Do these param-
eter dynamics align with the sequence of experimental manipulations? We address this question by examining both
the time-averaged and time-varying estimates.

Aggregate Analysis We initially examine the parameter estimates averaged across individuals for each difficulty level
and condition separately. This provides a comprehensive overview of average effects on model parameters in different
experimental contexts, at first, without delving into the temporal aspect. The bottom panel of Figure 6 illustrates the
posterior medians and MADs collapsed onto the different experimental contexts for the drift rate (Figure 6C) and
threshold parameter (Figure 6D).

Analyzing the aggregated drift rate estimates reveal an anticipated pattern. On average, the drift rate decreases as task
difficulty increases, observed in both the accuracy and speed conditions. Additionally, slightly higher overall values
are estimated in the speed condition compared to the accuracy condition. While all four NSDDMs yield fairly similar
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Participant 11
Lévy flight DDM

Participant 6
Mixture random walk DDM

Figure 8: Estimated parameter trajectories of two exemplar individuals corresponding to the respective best-fitting
non-stationary diffusion decision model (NSDDM). In this instance, the left column showcases results from a Lévy
flight DDM, while the right column displays parameter trajectories from a mixture random walk DDM. Each low-level
parameter (drift rate, threshold, and non-decision time) is displayed on a separate row. The solid lines are color-coded
(blue for the Lévy flight DDM and red for the mixture random walk DDM) to represent the posterior medians, while
the shaded regions mark the median absolute deviation (MAD). The yellow shaded regions indicate trials where speed
was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis was applied.
The sequences of task difficulty levels are depicted with black lines and overlaid with the drift rate in the top panels.

parameter values, the distinctions in average parameter values between difficulty levels are less pronounced when
estimated with the random walk DDM.

With the second experimental manipulation - namely, the instruction to emphasize speed or accuracy - we aimed to
manipulate the participants’ decision caution, which is assumed to be captured by the threshold parameter. Examining
the aggregated estimates of the threshold parameter in Figure 6D, we observe generally increased values in the accu-
racy condition compared to the speed condition. Interestingly, in the accuracy condition, the threshold parameter also
slightly increases with growing task difficulty — a pattern not observed in the speed condition. A comparison between
the estimates of the four NSDDMs reveals that the mixture random walk DDM and the Lévy flight DDM yield higher
threshold estimates in the accuracy condition compared to the other two NSDDMs. Conversely, all four NSDDMs
seem to converge in their threshold parameter estimates in the speed condition.

Parameter Trajectories For a more fine-grained analysis, particularly considering temporal aspects, we present the
complete inferred parameter trajectories of the three low-level parameters of a NSDDM for two exemplary individuals
in Figure 8. The Appendix contains the inferred parameter trajectories of the remaining 12 participants. Each partici-
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pant’s trajectory is depicted with the posterior median (solid lines) and the median absolute deviation (MAD, shaded
bands) across all 768 experimental trials, estimated with the model with the highest posterior model probability for
that specific individual. The trajectory of participant 11 corresponds to a Lévy flight DDM, whereas the trajectory of
participant 6 comes from a mixture random walk DDM. Shaded blocks along the timeline denote the experimental
condition at a given trial, with yellow indicating an emphasis on speed.

The top panel illustrates the estimated trajectories of the drift rate parameter alongside the sequences of task difficulty
levels (depicted by black line). Here, 0 corresponds to the most difficult level, while 6 represents the easiest. It is
important to note that the absolute values of the difficulty conditions hold no intrinsic meaning. As observed, the drift
rates of both participants align with the overarching trend of the difficulty condition sequence. They decrease when
the difficulty is high and increase as the task becomes easier.

Regarding the trajectory of the threshold parameter (middle panel), we anticipated that a shift from an accuracy
instruction to a speed instruction would lead to a decrease in the threshold parameter, and vice versa. This hypothesized
pattern is clearly evident when examining the estimated threshold parameter trajectories of the two participants in the
middle panel of Figure 8. For instance, the threshold parameter estimated for participant 11 oscillates around an
approximate value of 1 in the speed condition. Moreover, it consistently rises whenever a switch in the accuracy
condition takes place. Intriguingly, the parameter’s value during accuracy emphasis is not as uniform compared to the
speed condition. In some blocks, it fluctuates around 2, while in others it hovers around 1.5 or even lower. Similarly,
participant 6 displays pronounced shifts in the threshold parameter when a change in the condition occurs, with these
shifts being more pronounced in the first half of the experiment and diminishing in the second half.

Finally, the bottom panel of Figure 8 illustrates the trajectory of the non-decision time parameter. Although our
experimental manipulations did not systematically target the dynamics of this parameter, it is sometimes assumed that
the manipulation of speed and accuracy instructions may also influence it (Arnold et al., 2015; Voss et al., 2004). While
both individuals exhibit some fluctuations in τ , no systematic differences between the two conditions are apparent.

Upon reviewing the parameter trajectories of the remaining participants in the Appendix, similar patterns emerge. In
summary, both the inferred means and trajectories of the drift rate and threshold parameters align with the sequence
of experimental manipulations, as predicted by our design. Moreover, our NSDDMs were able to estimate these tra-
jectories directly from the behavioral data, getting no explicit information whatsoever about the experimental context.
Thus, our validation study suggests that NSDDMs are able to detect genuine changes in cognitive constructs.

Discussion

Psychology and cognitive science are witnessing a growing interest in incorporating dynamic aspects into mechanistic
models that seek to formalize and explain cognitive processes. In a previous study, we explored a method to estimate
plausible trajectories of cognitive process model parameters directly from behavioral data (Schumacher et al., 2023).
Nevertheless, an empirical validation of this modeling approach was lacking. Thus, the current study sought to bridge
this gap by experimentally examining the validity of the inferred diffusion decision model (DDM) parameter dynamics.

Experimental validation

The present study posed to the following core question: Can non-stationary DDMs (NSDDM) effectively detect
experimentally induced changes in cognitive constructs from behavioral data alone? If this holds true, our findings can
provide the first substantial evidence for the validity of the superstatistics framework as applied to cognitive models.
Notably, our results demonstrated that the NSDDMs indeed reliably identified the sequence of two experimental
manipulations, despite the absence of any contextual information. Moreover, posterior re-simulation revealed an
outstanding fit to the response data, both on an aggregate level as well as on the level of the raw time series. This
performance stands as compelling evidence supporting the validity of NSDDMs.

The trajectory of the drift rate parameter for all individuals closely mirrored the sequence of the task difficulty ma-
nipulation. Specifically, the drift rate parameter decreased when task difficulty increased, and conversely, increased
as task difficulty decreased. This not only confirms the anticipated impact of the manipulation, but also highlights
the NSDDMs’ ability to discern these variations directly from the behavioral data, agnostic to additional contextual
information.
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Interestingly, drift rates increased throughout the experiment, although this was not the case for trials with the highest
task difficulty. This observation suggests a practice effect among participants, where task performance generally
improved with experience, except under the most challenging condition. Practice effects are a widely recognized
phenomenon in various decision-making and memory paradigms (Forstmann et al., 2008; Healey & Kahana, 2014,
2016; Wagenmakers et al., 2008; Wynton & Anglim, 2017). In fact, practice effects have been studied with various
dynamic cognitive modeling approaches (Evans et al., 2018; Evans & Hawkins, 2019; Gunawan et al., 2022; Kahana
et al., 2018). A notable contribution to this field comes from Gunawan et al. (2022), who conducted a comprehensive
re-analysis of three datasets derived from widely cited articles. Their study compared three dynamic models: (i) a
smooth polynomial trend, (ii) a non-smooth autoregressive process, and (iii) a regime switching model instantiated by
a hidden Markov model (HMM) with two different states.

In their study, Gunawan et al. (2022) employed a low-level model similar to the DDM, namely the linear ballistic
accumulator model (LBA; Brown & Heathcote, 2008). However, their transition models, specifically the polynomial
trend and the autoregressive process, differed in that they allowed LBA parameters to change only from block-to-
block, neglecting trial-to-trial parameter fluctuations (except for the HMM). Their findings indicated that the HMM
outperformed the other two dynamic model instantiations. This superiority can possibly be attributed to the model’s
capacity to flexibly change parameters from trial-to-trial, in contrast to changes occurring only from block-to-block.
Even though the trial-by-trial specification of the HMM captures the microstructure of the decision-making process, it
is still less flexible than the models we examined in the current study. HMMs assume a pre-defined number of possible
states, whereas this is not the case with the implementation of our regime switching model. The advantage of not
fixing the number of distinct states beforehand is particularly evident when the exact latent quantity is unknown prior
to investigation. Moreover, results from our model comparison clearly favored transition models that account for both,
gradual changes as well as sudden shifts. This suggests that regime-switching models may fall short in certain fields
of application. Nevertheless, both models have their merits, and the choice between them should be guided by the
specific research question at hand and formal model comparison.

As our study focused on experimentally validating parameter trajectories estimated with NSDDMs, we deliberately
refrained from further analysing practice effects. However, we suggest that our flexible framework could be a promis-
ing alternative for investigating practice effects. Unlike pure regime switching models, it has the capacity to reveal
a mixture of practice-related changes, ranging from abrupt shifts to gradual changes. When exploring substantive
research questions, such as practice effects, with superstatistical models, it is imperative to depart from the approach
taken in the current study. That is, one should always incorporate contextual information from the experimental setting
when estimating parameter trajectories. Here the question arises, how to incorporate this information? In a previous
study, we simply assumed separate low-level parameters for each experimental condition (Schumacher et al., 2023).
This approach is particularly appropriate when conditions randomly change from trial to trial. However, future re-
search could explore alternative ways of including experimental context information with the goal to further inform
the parameters.

Concerning the second experimental manipulation, that is, the emphasis on speed or accuracy, their effect on the
threshold parameter is more diverse across individuals. While a majority of participants demonstrated shifts in the
threshold parameter in response to instructional changes, the consistency and magnitude of these changes varied
significantly among individuals. Some participants exhibited only a few adjustments in the threshold parameters,
seemingly overlooking the change in instruction on certain occasions. In contrast, others consistently heightened
their threshold parameter during accuracy-focused tasks, followed by a subsequent decrease when transitioning to
speed-oriented conditions. Meanwhile, some participants displayed rather unsystematic changes in decision caution,
suggesting that the participants of reacted differently to the speed-accuracy manipulation.

Kucharský et al. (2021) introduced a dynamic LBA incorporating a hidden Markov transition model with two states,
akin to the model proposed by Gunawan et al. (2022). Their focus centered on scrutinizing the speed-accuracy trade-
off, exploring the hypothesis that individuals dynamically switch between different operating states under varying
instruction conditions. By fitting their model to previously collected data, they provided evidence that individuals
tend to oscillate between two stable states: a deliberative, stimulus-driven mode emphasizing accuracy and sacrificing
speed, and a guessing mode characterized by random and relatively faster choices.

However, our approach for estimating parameter trajectories reveals a more intricate scenario, challenging the assumed
binary operational shift. Contrary to expectations, individuals manifest more than two discernible states. At times,
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they exhibit an extreme adaptation to a change in condition, while at other times, they display little or no reaction
to the altered condition. This complexity underscores the necessity for more flexible transition models, as employed
in our study. Failing to utilize such adaptive models could potentially obscure the complex unfolding of individuals’
cognition and behavior over time.

Model comparison

When implementing non-stationary models, a modeler encounters a myriad of options, ranging from various transition
models to decisions about which parameter follows which transition model. In this study, we limited our choices
to a small subset of the possibility space. Based on our experimental manipulations we anticipated that the DDM
parameters, particularly the threshold parameter, would not only undergo gradual changes, but also manifest more
abrupt shifts in response to changing conditions. Consequently, we tested different implementations accommodating
such shifts (mixture random walk, Lévy flight, regime switching) against a transition model that does not, namely, the
simple Gaussian random walk.

The inferred posterior model probabilities (PMPs) and Bayes factors (BFs) consistently favored the Lévy flight and
occasionally the mixture random walk transition models. However, in terms of the absolute goodness-of-fit, as assessed
through posterior re-simulations, the performance of all four NSDDMs showed remarkable similarity. This leads to
two notable conclusions. First, even the models with lower PMPs demonstrated a good fit to the data, likely owing
to the inherent flexibility of the superstatistical framework. Second, our Bayesian model comparison method could
reliably detect the most favorable model even when the absolute differences were marginal.

Limitations

Psychological research is usually interested in some group or overall estimate of parameters. Thus, it would have been
informative to compute and inspect “average” parameter trajectories. Unfortunately, our experiment was designed in
a way that the difficulty and the speed-accuracy instruction manipulation was randomized across participants. This
made it impossible to average the individual trajectories directly. Instead, we collapsed the estimates by the different
experimental conditions and provided an aggregate view across individuals. Although this is certainly a limitation of
this study, we argue that the current analysis is sufficient to address our specific research question.

Moreover, despite using many default settings from the BayesFlow software (Radev et al., 2023), the configuration
and training of neural approximators for both parameter inference and model comparison for non-stationary models
can still be a challenge. A basic understanding of deep learning principles and simulation-based inference is an
essential prerequisite. These requirements may pose obstacles to the adoption of our method, highlighting the necessity
for improved software and tutorials addressing these intricacies.

Outlook

Going forward, we see the relevance of our superstatistics framework as twofold. First, superstatistics could become a
powerful tool in the methodological toolkit of the researcher interested in temporal changes in cognitive constructs. It is
a general framework and provides large flexibility. Thus far, we only used the DDM as a low-level observation model.
However, there are many other cognitive process models that could benefit from such an framework. For instance,
reinforcement learning model parameters, such as the learning rate or the softmax temperature parameter,likely change
over time (Li et al., 2023). Second, even when the temporal evolution of cognitive parameters is not a central research
question, the adoption of non-stationary models may bring advantages over their stationary counterparts (Schumacher
et al., 2023). Our analysis of estimated trajectories vividly illustrates discernible changes in parameters. Assuming
stationarity would have led to misleading substantive conclusions.

With great flexibility comes a great plethora of choices. In this study, we compared different transition models guided
by the contrast between gradual and sudden changes. However, there are more degrees of freedom when implementing
superstatistical models, or Bayesian models in general (Gelman et al., 2020). Elsemüller, Olischläger, et al. (2023)
advocates for the crucial role of sensitivity analysis, illustrating a potent methodology to facilitate informed decisions
regarding factors such as the type and shape of prior distributions, neural network architectures, and other pivotal
elements. We believe that using such an approach in the context of superstatistics could provide better guidelines for
their implementation.
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Up to this point, we focused on the estimates of the low-level parameter trajectories. Yet, it is crucial to note that
we also obtain posterior distributions for the static high-level parameters. These estimates can also yield valuable
insights into individuals’ behavior and cognition. Depending on the chosen transition model, these estimates can offer
indications of the frequency with which individuals transition between distinct operational states or the variability
inherent in their cognitive constructs. Thus, analyzing these high-level parameters could constitute a compelling
avenue for future research.

Conclusion

In conclusion, the experimental validation of non-stationary diffusion decision models presented in this study repre-
sents a significant step forward in the field of cognitive modeling. Our results provide compelling evidence that the
estimated parameter trajectories genuinely reflect tangible changes in the targeted psychological constructs. We hope
that our validation opens the door to widespread applications of non-stationary models in future modeling endeavors,
offering a more nuanced understanding of cognitive processes across varying time scales.
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models with invertible neural networks. IEEE transactions on neural networks and learning systems, 33(4),
1452–1466.

Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023).
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Appendix

S1 Appendix. Prior distributions

In the following we list the prior distributions we used for all four NSDDM’s.

DDM Starting Values

For the starting values of the parameter trajectories we used half-normal distributions with a mean µ and a standard
deviation σ denoted as HN (µ, σ):

v0 ∼ HN (2.0, 2.0)

a0 ∼ HN (2.0, 1.5)

τ0 ∼ HN (0.3, 1.0)

Random Walk Transition Model

Half-normal distributions were used for the standard deviations of the Gaussian random walk transition model:

σv ∼ HN (0.0, 0.1)

σa ∼ HN (0.0, 0.1)

στ ∼ HN (0.0, 0.01)

We decided to use a relatively narrower prior on στ because the non-decision time parameter is not expected to
fluctuate as heavily as the other two parameters.

Mixture Random Walk Transition Model

The mixture random walk transition model used the same prior for the Gaussian random walk as described above.
Additionally, Uniform distributions denoted as U were used for the mixture proportion parameter ρ:

ρv ∼ U(0.0, 0.2)
ρa ∼ U(0.0, 0.1)

Levy Flight Transition Model

The Levy flight transition model uses an alpha stable distribution instead of a Gaussian distribution for the transition.
We used the same priors for the standard deviations as in the random walk and the mixture random walk. The alpha
stable distribution has an additional parameter α, which determines the fatness of the tails. This parameter is bound
between 1 and 2. Therefore, we used a Beta distribution denoted as B and added 1 to the sampled values:

α̃v ∼ B(1.5, 1.5)
α̃a ∼ B(2.5, 1.5)
αv = α̃v + 1

αa = α̃a + 1

Regime Switching Transition Model

The same prior distributions as for the mixture random walk were used for the mixture probabilities of the regime
switching transition model.
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S2 Appendix. Neural network architectures and training setups

In the following, we outline our implementation of the neural approximators and the training setup used for model
comparison and parameter estimation.

Model comparison

For model comparison we trained an ensemble of ten neural approximators. Each approximator consists of a summary
network and an inference network. The summary network is a many-to-one transformer architecture for time series
encoding (Wen et al., 2023). The time series transformer has 128 template and 64 summary dimensions. For inference,
we use a network that approximates posterior model probabilities (PMPs) as employed in Elsemüller, Schnuerch, et al.
(2023).

We performed offline training for each of the ten neural approximators separately. The training data consisted of
25 000 simulations per model. Training was performed with 25 epochs and a batch size of 16 starting with an initial
learning rate of 0.0005. The learning rate was adjusted with a cosine decay from its initial value to 0.

Parameter estimation

For parameter estimation we trained one neural approximator for each of the four NSDDM implementations. Each
approximator consists of a hierarchical summary network as employed in Elsemüller, Schnuerch, et al. (2023) and
two inference networks. Three bidirectional long-short term memory (LSTM) networks were used for the hierarchical
summary network. The number of hidden units were 512, 256, and 128 respectively.

For inference, we use a composition of two invertible neural networks (Radev, Mertens, et al., 2020), one for the
low-level and one for the high-level parameters. The network for the low-level parameters has 8 coupling layers with
an interleaved affine and spline internal coupling design. The network for the high-level parameters only differs from
the former in its number of coupling layers which is 6.

Since our simulators can be run fast, the training of the four neural approximators was performed online, with 75
epochs, 1 000 iterations per epoch, and a batch size of 16. Thus, each approximator was trained on N = 1200 000
simulated data sets. The initial learning rate was set to 0.0005 and was reduced with a cosine decay function to 0.
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S3 Appendix. Individual analyses

The following section shows the individual specific posterior re-simulations and parameter estimates for each difficulty
level and both conditions separately. The visualizations are constructed in the vain of Figure 6 in the main text.
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Figure 9: Aggregate results from all models fitted to the data from participant 1. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 10: Aggregate results from all models fitted to the data from participant 2. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 11: Aggregate results from all models fitted to the data from participant 3. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 12: Aggregate results from all models fitted to the data from participant 4. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 13: Aggregate results from all models fitted to the data from participant 5. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 14: Aggregate results from all models fitted to the data from participant 6. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 15: Aggregate results from all models fitted to the data from participant 7. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 16: Aggregate results from all models fitted to the data from participant 8. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 17: Aggregate results from all models fitted to the data from participant 9. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 18: Aggregate results from all models fitted to the data from participant 10. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 19: Aggregate results from all models fitted to the data from participant 11. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 20: Aggregate results from all models fitted to the data from participant 12. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 21: Aggregate results from all models fitted to the data from participant 13. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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Figure 22: Aggregate results from all models fitted to the data from participant 14. The top row illustrates posterior
re-simulations as a measure of the model’s generative performance and absolute goodness-of-fit to the data. The
bottom row depicts parameter estimates of the drift rate and the threshold parameter from the non-stationary diffusion
decision models (NSDDM). A Empirical and re-simulated response times for each difficulty level and both conditions.
B Empirical and re-simulated proportions of correct choices (accuracy) for each difficulty level and both conditions
separately. C Posterior estimates of the drift rate parameter for each difficulty level and both conditions separately. D
Posterior estimates of the threshold parameter for each difficulty level and both conditions separately. Points indicate
medians and the error bars represent the median absolute deviations (MAD) across individual data and re-simulations.
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S4 Appendix. Response time time series

In the following, we present the model fit to the whole response time time series for the remaining 12 participants.

1 96 192 288 384 480 576 672 768
Trial

1

2

3

Re
sp

on
se

 ti
m

e (
s)

Participant 1
Lévy Flight DDM

Figure 23: Model fit to response time (RT) time series. The empirical RT time series of participant 1 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.

1 96 192 288 384 480 576 672 768
Trial

0.4

0.6

0.8

1.0

Re
sp

on
se

 ti
m

e (
s)

Participant 2
Lévy Flight DDM

Figure 24: Model fit to response time (RT) time series. The empirical RT time series of participant 2 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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Figure 25: Model fit to response time (RT) time series. The empirical RT time series of participant 3 is shown in
black. From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary
diffusion decision model (NSDDM) for this specific individual are shown in red. In this instance, the results stem
from a mixture random walk DDM. For the remaining trials, one-step-ahead predictions are depicted in orange. Solid
lines correspond to the median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and
predicted RT time series were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded
regions indicate trials where speed was emphasised over accuracy, while blank white areas denote instances where the
opposite emphasis was applied.
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Figure 26: Model fit to response time (RT) time series. The empirical RT time series of participant 4 is shown in
black. From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary
diffusion decision model (NSDDM) for this specific individual are shown in red. In this instance, the results stem
from a mixture random walk DDM. For the remaining trials, one-step-ahead predictions are depicted in orange. Solid
lines correspond to the median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and
predicted RT time series were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded
regions indicate trials where speed was emphasised over accuracy, while blank white areas denote instances where the
opposite emphasis was applied.
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Figure 27: Model fit to response time (RT) time series. The empirical RT time series of participant 5 is shown in
black. From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary
diffusion decision model (NSDDM) for this specific individual are shown in red. In this instance, the results stem
from a mixture random walk DDM. For the remaining trials, one-step-ahead predictions are depicted in orange. Solid
lines correspond to the median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and
predicted RT time series were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded
regions indicate trials where speed was emphasised over accuracy, while blank white areas denote instances where the
opposite emphasis was applied.
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Figure 28: Model fit to response time (RT) time series. The empirical RT time series of participant 7 is shown in
black. From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary
diffusion decision model (NSDDM) for this specific individual are shown in red. In this instance, the results stem
from a mixture random walk DDM. For the remaining trials, one-step-ahead predictions are depicted in orange. Solid
lines correspond to the median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and
predicted RT time series were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded
regions indicate trials where speed was emphasised over accuracy, while blank white areas denote instances where the
opposite emphasis was applied.
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Figure 29: Model fit to response time (RT) time series. The empirical RT time series of participant 8 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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Figure 30: Model fit to response time (RT) time series. The empirical RT time series of participant 9 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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Figure 31: Model fit to response time (RT) time series. The empirical RT time series of participant 10 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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Figure 32: Model fit to response time (RT) time series. The empirical RT time series of participant 7 is shown in
black. From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary
diffusion decision model (NSDDM) for this specific individual are shown in red. In this instance, the results stem
from a mixture random walk DDM. For the remaining trials, one-step-ahead predictions are depicted in orange. Solid
lines correspond to the median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and
predicted RT time series were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded
regions indicate trials where speed was emphasised over accuracy, while blank white areas denote instances where the
opposite emphasis was applied.

42



VALIDATION AND COMPARISON OF NON-STATIONARY DIFFUSION DECISION MODELS

1 96 192 288 384 480 576 672 768
Trial

0.5

1.0

1.5

2.0

Re
sp

on
se

 ti
m

e (
s)

Participant 13
Lévy Flight DDM

Figure 33: Model fit to response time (RT) time series. The empirical RT time series of participant 13 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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Figure 34: Model fit to response time (RT) time series. The empirical RT time series of participant 14 is shown in black.
From trial 1 to 700, the posterior re-simulation (aka retrodictive check) using the best fitting non-stationary diffusion
decision model (NSDDM) for this specific individual are shown in blue. In this instance, the results stem from a Lévy
flight DDM. For the remaining trials, one-step-ahead predictions are depicted in cyan. Solid lines correspond to the
median and shaded bands to 90% credibility intervals (CI). The empirical, re-simulated, and predicted RT time series
were smoothed via a simple moving average (SMA) with a period of 5. The yellow shaded regions indicate trials
where speed was emphasised over accuracy, while blank white areas denote instances where the opposite emphasis
was applied.
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S5 Appendix. Parameter trajectories

In the following, we present the inferred parameter trajectories for the remaining participants. For each visualisation
the model with the highest posterior model probability for that specific individual was used.
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Figure 35: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 1 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 36: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 2 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 37: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 3 (a mixture random
walk DDM in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The
yellow shaded areas indicate trials where speed was emphasised over accuracy and blank white area indicated where
the opposite was asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 38: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 4 (a mixture random
walk DDM in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The
yellow shaded areas indicate trials where speed was emphasised over accuracy and blank white area indicated where
the opposite was asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 39: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 5 (a mixture random
walk DDM in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The
yellow shaded areas indicate trials where speed was emphasised over accuracy and blank white area indicated where
the opposite was asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 40: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 7 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 41: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 8 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 42: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 9 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 43: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 10 (a mixture random
walk DDM in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The
yellow shaded areas indicate trials where speed was emphasised over accuracy and blank white area indicated where
the opposite was asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 44: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 12 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 45: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 13 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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Figure 46: Posterior parameter trajectory inferred with the best fitting NSDDM of participant 14 (a Lévy flight DDM
in this case) for all three DDM parameters (drift rate, threshold, and non-decision time) separately. The yellow shaded
areas indicate trials where speed was emphasised over accuracy and blank white area indicated where the opposite was
asked for. In the top panel, the task difficulty levels sequence is depicted in black lines.
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