Inaugural dissertation
for

obtaining the doctoral degree

of the
Combined Faculty of Mathematics, Engineering and Natural Sciences

of the

Ruprecht - Karls - University

Heidelberg

Presented by

M.Sc. Max Frank
born in: Vienna, Austria
Oral examination: 8" May, 2023






Modeling epigenetic heterogeneity across
time and genome in single-cell

multi-omics experiments

Referees: Prof. Dr. Henrik Kaessmann
Dr. Arnaud Krebs






“Develop a habit of pushing yourself a bit out of your comfort zone every day.”

Dave MacLeod






vil

This work was carried out at the European Molecular Biology Laboratory in Heidelberg

from October 2018 to January 2024 under the supervision of Dr. Oliver Stegle.






1X

Abstract

The genomic sequence of an organism is nearly identical in all its cells and over
its lifetime. Epigenomic marks, however, such as DNA methylation and chromatin
accessibility, are subject to drastic changes across different tissues and throughout
organism development. Recent advancements, notably the development of multi-omics
single-cell technologies, allow for simultaneous interrogation of DNA methylation,
chromatin accessibility, and transcriptomes within individual cells. This offers unique
opportunities to gain insight into mechanisms by which the epigenome shapes gene
expression and influences cell fate. However, analyzing these datasets poses major
challenges: Typically, smaller numbers of cells can be assayed per experiment than
conventional single-cell RNAseq with lower coverage due to small amounts of input
material. This means that classical statistical methods are underpowered to detect
subtle changes in DNA methylation and chromatin accessibility. Furthermore, current
tests can only detect differences between discrete and pre-defined cell populations,
whereas single-cell approaches allow for studying continuous processes in organismal

lineage development.

To address this, I propose computational methods for decomposing single-cell epige-
netic heterogeneity across developmental time and genomic loci. This thesis introduces
new concepts, leveraging pseudotemporal ordering of cells to conduct statistical in-
ferences upon epigenetic changes. At the core of these developments is GPmeth, a
Gaussian process framework designed to model highly sparse single-cell methylation
and accessibility information by enforcing smooth variation across pseudotime and ge-
nomic coordinates and thus effectively sharing information between cells and genomic
positions. Importantly, this model does not rely on averaging methylation signals
across fixed genomic windows but can identify differentially methylated /accessible
regions in a data-driven way. Testing GPmeth against other models without dynamic
aggregation of methylation data revealed increased sensitivity to detect even subtle

epigenetic changes.

Application of GPmeth to scNMT-seq data from mouse embryonic stem cells undergo-
ing gastrulation revealed over 3000 enhancer elements that exhibited dynamic changes
in chromatin accessibility or DNA methylation rates during germ layer formation.
The detailed spatiotemporal model allowed for a precise definition of differentially
methylated regions, validated by transcription factor binding motif analysis. Fur-
thermore, the clustering of temporal epigenetic patterns identified lineage-specific

enhancers in an unsupervised manner.

I expect GPmeth to be a valuable tool for studying time-resolved epigenetic regulation

in several emerging multimodal single-cell datasets.
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Zusammenfassung

Die Genomsequenz eines Organismus ist in allen seinen Zellen und {iber sein gesamtes
Leben hinweg nahezu identisch. Epigenomische Marker wie DNA-Methylierung und
die Zugénglichkeit von Chromatin variiren jedoch drastisch zwischen verschiedenen
Geweben und wahrend der Entwicklung des Organismus. Jiingste Fortschritte, ins-
besondere die Entwicklung von Multi-Omics-FEinzelzelltechnologien, erméglichen die
gleichzeitige Messung von DNA-Methylierung, Chromatin-Zugénglichkeit und Genex-
pression innerhalb einzelner Zellen. Dies bietet neue Moglichkeiten, Einblicke in die
Mechanismen zu gewinnen, durch die das Epigenom die Genexpression prégt und das
die Entwicklung von Zellen beeinflusst. Die Analyse dieser Datensétze stellt jedoch
grofe Herausforderungen dar: Verglichen mit herkémmlichem FEinzelzell-RNAseq,
kann typischerweise pro Experiment eine geringere Anzahl von Zellen mit geringerer
Abdeckung untersucht werden. Dies bedeutet, dass klassische statistische Methoden
zum Testen von DNA-Methylierungs- und Chromatin-Zugénglichkeitsunterschieden
nicht ausreichen, um subtile Verdnderungen zu erkennen. Dazu kommt, dass aktuelle
Tests nur Unterschiede zwischen diskreten und vordefinierten Zellpopulationen testen,
wahrend Einzelzellanséatze die Untersuchung kontinuierlicher Prozesse der Entwicklung

der Abstammungslinie von Organismen ermdoglichen.

Deshalb fiihre ich hier rechnerische Methoden zur Zerlegung der epigenetischen
Heterogenitét einzelner Zellen tiber die Entwicklungszeit und die genomischen Loci
ein. Diese Arbeit stellt neue Konzepte vor, die die pseudotemporale Ordnung von
Zellen nutzen, um statistische Riickschliisse auf epigenetische Verdnderungen zu
ziehen. Im Mittelpunkt dieser Entwicklungen steht GPmeth, ein Gaufisches Prozess-
Framework, das darauf ausgelegt ist, aufserst spérliche Einzelzell-Methylierungs- und
Chromatin Zugénglichkeitsinformationen zu modellieren, indem eine kontinuierliche
Variation iiber Pseudozeit und Genomkoordinaten hinweg erzwungen wird, und
so, Informationen effektiv iiber Zellen und Genompositionen hinweg ausgetauscht
werden. Wichtig ist, dass dieses Modell keine festgesetzten Genomfenster vorraussetzt,
sondern differenziell methylierte/zugéngliche Regionen auf datengesteuerte Weise
identifizieren kann. Im Vergleich zu anderen Modellen ohne dynamische Aggregation
von Methylierungsdaten, hat GPmeth erhohte Sensitivitat zur Identifikation subtiler

epigenetischer Veranderungen.

Die Anwendung von GPmeth auf scNMT-seq-Daten aus embryonalen Stammzellen
von M&ausen wahrend des Gastrulationsprozesses, ergab {iber 3000 Enhancer-Elemente,
die dynamische Verédnderungen in der Zugénglichkeit von Chromatin oder den DNA-
Methylierungsraten zeigten. Das detaillierte rdumlich-zeitliche Modell ermdoglichte

eine prézise Definition unterschiedlich methylierter Regionen, validiert durch die
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Analyse von Transkriptionsfaktor-Bindungsmotiven. Dariiber hinaus identifizierte die

Clusteranalyse der Modell-Resultate bekannte Abstammungsspezifische Enhancer.

Ich erwarte, dass GPmeth ein wertvolles Werkzeug zur Untersuchung der zeitauf-
gelosten epigenetischen Regulation in mehreren neu entstehenden multimodalen

Einzelzelldatensitzen sein wird.
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1 Introduction

The advent of massively parallel sequencing technologies over the last two decades
has allowed researchers to study the genomic and transcriptomic landscape of many
organisms in increasing detail (Metzker, 2010; Reuter et al., 2015). Being able to
measure gene expression of all genes, or to call all mutations at once, has turned
biology into a data science discipline (Wang et al., 2009). The extension of genome-
wide sequencing to single-cell technologies added an additional dimension of cellular
state to these experiments. It allowed us to look at organisms and cells as dynamic
systems with complex interplay where any changes to the system can have surprising
emergent properties. One of the ultimate goals of systems biology is to understand
how all components of a system work together to produce a phenotype (Aderem,
2005).

In this context, a system of interest can be whole organisms, specialized tissues, or
individual cells. Since cells are the fundamental building blocks of all higher organisms,
understanding their inner workings is crucial to biology as a field of research. One of
the guiding frameworks that biologists use to think about cellular systems is called
the central dogma of molecular biology (Crick, 1970). It states that there is a flow
of information from DNA to RNA to protein. This follows the molecular pathway
in which genes are transcribed into messenger RNAs (mRNA) in the cell nucleus,
which are then transported to the cytoplasm and translated into amino acid chains
that fold into mature proteins. Given a full understanding of the system, it should
be possible to predict RNA expression from DNA sequence and protein abundance
from RNA expression, ultimately determining the system’s phenotypic characteristics.
While this might seem like a simple task at first glance, countless aspects of biological
systems make it more difficult to generate accurate predictions about them (Kim and
Wysocka, 2023). For example, the same DNA stretch can encode multiple proteins
due to alternative splicing and posttranslational modifications (Pan et al., 2008).
Predicting RNA expression from sequence information is complicated by the fact that
transcription, the process of transcribing DNA into messenger RNA molecules, is
regulated by a myriad of factors that act on the DNA in the nucleus (Lee and Young,
2013). In fact, it turns out that the flow of information in cells is not linear from
DNA to protein but cyclical since proteins called transcription factors (TFs) play a

critical role in controlling transcription (Reményi et al., 2004).
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Furthermore, DNA contains more information than is encoded purely in its sequence.
DNA molecules in a cell carry chemical modification that can be inherited through
cell divisions and even across generations. One of the key modifications is DNA
methylation, which modifies cytosine, one of the four bases that make up DNA.
Additionally, the spatial organization of DNA in the nucleus plays a major regulatory
role. DNA is organized into chromatin, a complex of a DNA molecule wrapped around
eight histone proteins forming nucleosomes. The density of packing nucleosomes
together directly impacts the accessibility of the DNA and, therefore, transcription
(Venkatesh and Workman, 2015). Furthermore, nucleosomes can also carry chemical
modifications, which influence transcription in both direct and indirect ways (Millan-
Zambrano et al., 2022).

Taken together, these modes of gene regulation that are not a direct result of DNA
sequence are called epigenetics. Epigenetic information is a key factor that determines
cell identity. Cells can transmit this information to daughter cells during mitosis,
allowing them to form coordinated groups of cells that make up tissues and organs. It
also plays a key role in establishing cell identities during the development of organisms,

where cells differentiate to fulfill different roles.

In this work, I will introduce a modeling approach to track DNA methylation and
chromatin accessibility that is continuously changing during organism development.
My approach makes use of recent advances in single-cell multimodal sequencing
technology (Clark et al., 2018) that enable the measurement of gene expression and
epigenetics in the same cell. I apply my modeling framework to study how DNA
methylation and chromatin accessibility change during embryonic development and

to assess their impact on gene regulation.

1.1 Epigenetics and gene regulation

Mammalian cells carry out their functions using molecular machines called proteins.
In mice, the amino acid sequences of these proteins are encoded by an estimated
25,000 genes (Blake et al., 2020). Cells can have drastically different relative protein
abundances depending on cell type, tissue of origin, and cellular environment (Gi-
ansanti et al., 2022). A protein’s abundance is a direct result of the rate of production
(translation) of the protein and the rate of degradation over time. The rate of protein
translation is influenced by the rate of expression (transcription) of its corresponding

gene. Gene expression is tightly controlled by the cell to ensure its proper function.

1.1.1 Principles of gene regulation

For a gene to be transcribed into mRNA, RNA polymerase IT has to be recruited to
the transcription start site (TSS) of that gene (Sainsbury et al., 2015). This typically
happens in conjunction with different co-factors, forming a so-called transcription

pre-initiation complex (Fig 1.1). This protein complex binds to the promoter, a



1.1 Epigenetics and gene regulation 3

short region of DNA that is located in close proximity to the T'SS. Typically, genes
have a single promoter whose sequence can influence the transcription rate of a
gene. However, gene regulation in eukaryotes typically involves additional genomic
elements that can be located further away from the TSS (Panigrahi and O’Malley,
2021.) These elements include enhancers, silencers, and insulators. Their mode of
action involves the recognition of their sequence by DNA-binding proteins called
TFs (Kim and Wysocka, 2023). Although these elements are distal in sequence space,
the 3D organization of DNA puts them in close spatial proximity to the promoter
of a regulated gene. Thus, TFs bound to an enhancer can form a physical protein
complex with proteins bound to promoter elements. Because of the dynamics of DNA

organization in the nucleus, one enhancer can regulate multiple genes, and a single

_

gene can be under the control of multiple enhancers.
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Figure 1.1 | Transcription initiation complex. Mammalian transcription is carried
out by RNA Polymerase II (Pol II). In most cases, Pol II requires the binding of TFs to
regulatory elements. These TFs can bind close to the transcription start site (TSS) of the
gene to promoters or to distal regulatory elements called enhancers. Bound TFs and different
co-factors form the pre-initiation complex that is essential for regulating transcription. Figure
generated by Max Frank.

Gene-enhancer associations are highly cell-type specific and are, therefore, likely to
have major roles in establishing cell identity. Mapping the network of gene-enhancer
links and understanding how this network is regulated is key to understanding
organism development. As mentioned above, TF binding is necessary to induce
transcription. TFs possess DNA binding domains that recognize 6-10 base pair (bp)
long DNA sequences called binding motifs (Lambert et al., 2018). About 8% of human
genes are estimated to function as TFs. This subset of genes can be considered a set
of "master regulators" for the expression profile of the rest of the genome. TF binding
is mediated not only by DNA sequence but also by the following epigenetic marks.

DNA methylation of enhancers can have both a positive and a negative impact on
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TF binding (see Section 1.1.2). The accessibility of the binding motif (i.e., whether
a nucleosome covers the motif sequence) is a prerequisite for most TFs to bind.
However, there are pioneer TFs that can bind to histone-bound DNA (see Section
1.1.3). Histone marks also play a role in TF binding, both directly and indirectly, by
establishing the 3D architecture of DNA (see Section 1.1.4). Furthermore, many TFs
do not bind DNA in isolation but require co-factors to bind cooperatively. Different

epigenetic marks will be discussed in more detail in the next Sections.

1.1.2 DNA methylation

DNA methylation involves the deposition of a methyl group to the DNA (Mattei
et al., 2022). The most commonly studied form of DNA methylation is the addition
of a methyl group to the 5th position of the pyrimidine ring of a cytosine base (C),
converting it to 5-methylcytosine (5mC). In the rest of this text, DNA methylation
will be used synonymously with 5mC. The conversion of C to 5mC is carried out
by enzymes called methyltransferases almost exclusively in the context of CpG
dinucleotides (Fig 1.2). CpGs are generally depleted in mammalian genomes, except
for local exceptions called CpG islands (Bird et al., 1985). While the majority (75%)
of CpG sites in mammalian genomes are methylated, methylation rates are typically
low in CpG islands (Moore et al., 2013).

a) NH, DNMT NH
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Figure 1.2 | Overview of mammalian 5mC DNA methylation. a) 5mC DNA methy-
lation adds a methyl group to the carbon atom in the 5th position of the pyrimidine ring.
b)Mammalian DNA methylation in different chromosomal contexts. CpG islands are regions
in the genome with a high density of CpG sites. In enhancer and promoter regions, DNA
methylation is correlated with gene expression, suggesting a regulatory role. It also plays a
role in silencing otherwise harmful stretches of DNA, such as transposable elements. Figure
generated by Max Frank.
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1.1.2.1 DNA methylation in different genomic contexts

DNA methylation has major impacts on gene expression, most famously in the
complete repression of transcription of inactivated X-chromosomes. In XX cells
of female mammals, only one X-chromosome is transcriptionally active to ensure
dosage compensation of gene products (Galupa and Heard, 2018). CpG islands on the
inactivated X-chromosome are typically highly methylated, ensuring lasting repression
of transcription. However, DNA methylation is not the only factor in X inactivation

and might only be an additional safeguard ensuring its stability.

DNA methylation is also paramount in permanently silencing parts of the genome
that would cause genomic instability if active. These areas include transposable
elements and structural elements of chromosomes, such as telomeres and centromeres.
Transposable elements comprise a large part of mammalian genomes and can change
their position in the genome and duplicate themselves if transcribed (Pourrajab and
Hekmatimoghaddam, 2021). Repressions of these elements might be the function that
initially contributed to the evolution of DNA methylation as a regulatory mechanism
(Yoder et al., 1997).

DNA methylation is also enriched in the gene bodies of highly transcribed genes.
While methylation clearly does not function as a repressor in this context, it is not
fully understood what exact function it serves (Jones, 2012). One suggested role
is the control of alternative splicing, supported by the fact that exons have higher
methylation rates than introns. It could also be involved in preventing transcription

from intragenic promoters (Dahlet et al., 2020) .

Gene promoters can be roughly categorized by the presence or absence of a CpG
island in their sequence (Saxonov et al., 2006). In CpG-poor promoters, which make
up 30-40% of most mammalian genomes, the influence of DNA methylation on
transcription is unclear. Promoters containing CpG islands are generally more highly
expressed than genes with CpG-poor promoters (Larsen et al., 1992). However, it
seems that while low methylation rates in these promoters are a requirement for
high rates of transcription, it is not sufficient since transcriptionally silent genes with
demethylated CpG island promoters are also frequently found. This hints at a more
intricate regulatory mechanism involving enhancers and multiple TFs (Weber et al.,
2007).

In enhancers, DNA methylation is likely to play a regulatory role, evidenced by the
fact that methylation rates are highly variable in active enhancer elements (Ziller et al.,
2013; Schultz et al., 2015). Enhancers are unlikely to be found in CpG island regions.
While most of the mammalian genome outside CpG islands is fully methylated, active
enhancers tend to have intermediate methylation rates between 10-50% (Stadler et al.,
2011). An open question is how enhancer methylation influences the binding of TFs.
Several TFs preferentially bind to unmethylated DNA, such as CTCF (Wang et al.,
2012b; Maurano et al., 2015), CREB1 (Kaluscha et al., 2022) and NRF1 (Domcke



6 Introduction

et al., 2015). This suggests that DNA methylation can serve as a repressive mark
for these TFs. However, a subset of TFs, called pioneer factors, bind to DNA in a
repressed epigenetic state and initiate a cascade of events that contributes to the
activation of an enhancer (Iwafuchi-Doi and Zaret, 2014). Some of these factors have
been shown to bind preferentially to methylated DNA. Examples are p53 (Kribelbauer
et al., 2017), which is often mutated in human cancers, and Oct4 (Yin et al., 2017),
which is a marker for stem cells. Recent evidence in mouse embryonic stem cells
showed that the majority of TFs are not sensitive to DNA methylation, therefore
asking the question of whether there is a more indirect effect of DNA methylation on

enhancer activity or if it is a consequence of it (Kreibich et al., 2023).

1.1.3 Chromatin accessibility

In the nucleus of eukaryotic cells, DNA is organized in a complex arrangement called
chromatin (Kouzarides, 2007). The central chromatin components are nucleosomes,
octamers of histone proteins that DNA wraps around twice. Typically, 147bp of
DNA are nucleosome-wrapped with linker regions of about 80bp (Luger et al., 1997).
These chains of DNA-wrapped nucleosomes can further condense into tightly packed
fibers of heterochromatin that are hard to access for DNA-binding proteins (Fig
1.3). Heterochromatin is typically marked by specific histone modifications such as
absence of Histone acetylation and H3K9me, as well as DNA methylation (Allshire
and Madhani, 2018). Large parts of the human genome, such as centromeres and
telomeres, are permanently in a heterochromatic state and, thus, called constitutive
heterochromatin. Other parts of the genome are subject to active regulation and only
become heterochromatin depending on cell state. Thus, they are called facultative
heterochromatin. In female mammals, the inactivated X chromosome is completely
heterochromatic, while the other X chromosome has more accessible stretches of
DNA called open chromatin or euchromatin (Galupa and Heard, 2018). On a global
scale, euchromatin makes up only 2-3% of the total genomic sequence but harbors

the majority of regulatory elements that can be bound by TFs (Klemm et al., 2019).
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Figure 1.3 | Overview of mammalian chromatin accessibility. Mammalian DNA
strands are organized as chromatin by wrapping around nucleosomes. These nucleosomes
can be tightly packed, leading to inaccessible heterochromatin (left). Euchromatin is more
loosely packed, and nucleosomes can be displaced by TFs or other binding proteins, allowing
access to the DNA sequence. Figure generated by Max Frank.

In euchromatic regions, DNA accessibility is determined by the positioning of nu-
cleosomes. Nucleosomes can dynamically detach and attach from DNA and are in
constant competition for binding with other regulatory proteins (Jiang and Pugh,
2009). There are several mechanisms of nucleosome replacement by TFs that cause
local changes in DNA accessibility (Venkatesh and Workman, 2015). The simplest
mechanism is TF binding during a short period of DNA exposure due to natural
nucleosome turnover (Workman, 2006). Other mechanisms involve the interaction of
TFs with the nucleosomes themselves, whereby different histone modifications play
a role (see below). Pioneer TFs may be able to bind nucleosome-bound DNA and
displace the nucleosome. It is important to notice that all these events happen on
very short timescales and with some degree of stochasticity (Lammers et al., 2020).
Therefore, measurements of DNA accessibility in cell populations will yield an average
of all DNA states, weighted by occupancy time and strength of the different DNA
binding proteins. Different methods to measure DNA accessibility will be discussed

in more detail below.

1.1.4 Histone modifications

Histone Modifications refer to post-translational modifications occurring on histones
within nucleosomes (Fig 1.4). These modifications can influence gene expression con-
siderably, mostly operating indirectly by regulating the binding of TFs or chromatin
remodeling proteins. The result of this regulation can both induce or inhibit gene
expression. (Millan-Zambrano et al., 2022). While early studies focused on modifica-
tions at the histone tail (Fig 1.1.4), more recent studies also investigate the function
of such modification at the globular domains of histones (Millan-Zambrano et al.,

2022). Several types of histone modifications exist, each capable of eliciting drastically
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different effects on gene regulation. Among these modifications are methylation, acety-
lation, phosphorylation, ubiquitination, and sumoylation. Notably, histone acetylation
and histone methylation are the most thoroughly studied. Nomenclature for histone
modification consists of defining the modified histone within the nucleosome, followed
by the amino acid within the histone, and finally, the modification itself. Acetylation
of the lysine at the 27th N-terminal position on histone 3, therefore, would be denoted
as H3K2T7ac.

— methylation
histone tails

— acetylation

/ — ubiquitination

histone modifications

Nt phosphorylation

‘ DNA — sumoylation

Figure 1.4 | Overview of mammalian histone modifications. Histone modifications
refer to post-translational modifications of the histone within nucleosomes. Known histone
modifications include methylation, acetylation, ubiquitination, phosphorylation, and sumoy-
lation. These modifications can occur at different amino acids of the histone tails, leading to
a complex modification pattern. Figure generated by Max Frank.

Histone methylation involves adding one or multiple methyl groups to residues,
resulting in mono-, di-, or trimethylation (mel, me2, me3) (Greer and Shi, 2012).
These modifications are added by histone methyltransferases (HMTs), while histone
demethylases remove them (Rice et al., 2003). Histone 3 lysine 4 trimethylation
(H3K4me3) is a well-studied modification enriched at active gene promoters (Talbert et
al., 2019). While it is thought to facilitate transcription by promoting the recruitment
of transcriptional machinery (Vermeulen et al., 2007), its necessity for transcription
remains debated (Henikoff, MillanHenikoff and Shilatifard, 2011; Millan-Zambrano
et al., 2022). In mammals, H3K4me3 can persist during transcriptionally quiescent
states, potentially contributing to epigenetic memory and influencing gene expression

patterns and developmental capacity in embryos (Zhang et al., 2016).

Additional modifications include H3K4mel, which is associated with enhancers, and
H3K27me3 and H3K9me3, which are linked to heterochromatin and transcriptional
repression, respectively (Millan-Zambrano et al., 2022). H3K4mel is enriched at
enhancers but not highly correlated with their activity, potentially priming enhancers

for future activities. H3K27me3 is associated with silenced heterochromatin, repression
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of enhancers and promoters, and serves as epigenetic memory. H3K9me3 is a hallmark
of constitutive heterochromatin and is, therefore, also associated with transcriptional
repression. Inactivated X chromosomes are enriched in H3K9me2, while actively
transcribed gene bodies are typically marked by H3K36me3 (Barski et al., 2007).
Histone methylation was shown to be a central regulator of embryonic development
in animals, playing important roles in maintaining pluripotency in stem cells and
differentiation of tissues (Jambhekar et al., 2019).

Histone acetylation is generally associated with transcriptional activity. It occurs
at active promoters, enhancers, and accessible chromatin regions and is added by
histone acetyltransferases and removed by histone deacetylases (Grunstein, 1997).
The most prominent histone acetylation is H3K27ac, which is often used to verify
the activity of enhancers (Wang et al., 2008). H3K27ac might directly influence TF
binding since several TFs showed altered binding patterns after a knockout of histone

deacetylases in mouse embryonic stem cells (Cusack et al., 2020).

1.1.5 Epigenetic regulation during embryonic development

While epigenetic marks are mostly stable in a given cell type over the span of a
mammalian organism, they undergo drastic changes during organism development
(Lee et al., 2014). Epigenetics is a key factor in the differentiation of omnipotent stem
cells that all carry the same genetic code into highly specialized cells that make up
the tissues and organs of an adult mammal (Rulands et al., 2018; Meissner, 2010).
Embryonic development in mammals is a highly conserved process, which makes it
amenable to study in model organisms (Solnica-Krezel and Sepich, 2012). The most

widely used model organisms are mice (Mus musculus) (Hanna et al., 2018).

Mouse and human embryonic development begins with fertilization, at which the
genetic code of a sperm and an ovarian cell fuses to form a zygote. This is followed by
blastulation, during which the zygote divides and forms a blastocyst that will implant
itself into the mother’s uterus. The embryonic part of the blastocyst contains Epiblast
cells, a disc-shaped collection of pluripotent stem cells that eventually give rise to the
embryo (Gilbert, 2000). The process of forming the three main germ layers, Mesoderm,
Endoderm, and Ectoderm, from Epiblast cells is called gastrulation. It starts with
the linear invagination of the Epiblast cells to form the primitive streak, establishing
the bilateral symmetry of the embryo. Cells invaginated to form the primitive streak
will give rise to the Mesoderm and Endoderm germ layers. The Mesoderm further
differentiates during organogenesis to give rise to the heart, kidneys, circulatory
system, bones, and muscular tissues. The Endoderm layer gives rise to the lungs,
intestines, thyroid, pancreas, and bladder. Cells that did not invaginate to form the
primitive streak form the Ectoderm, which gives rise to the nervous system as well as

the eyes and ears and the outermost layer of skin (Stern, 2004).
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Since embryonic development involves drastic changes in epigenetic regulation and
gene and protein expression, it provides an attractive system to understand gene
regulation that undergoes a natural perturbation of this magnitude. Furthermore,
several clinically relevant dysfunctions in early embryonic development have epigenetic
origins (Bergman and Cedar, 2013). Therefore, extensive research has been done,
historically mainly focusing on individual components of the system. The advance
of high-throughput sequencing technologies has made it possible to simultaneously
track thousands of genes during development (Cao et al., 2019; Pijuan-Sala et al.,
2019), as well as assess epigenetic marks on a genome-wide scale (Lee et al., 2014;
Rulands et al., 2018; Wu et al., 2016; Atlasi and Stunnenberg, 2017).

DNA methylation and accessibility, as well as histone modifications, have been studied
with bulk sequencing methods (see Section 1.2), which revealed that there are two
main waves of genome-wide demethylation and remethylation (Lee et al., 2014; Smith
et al., 2012; Wang et al., 2014) (Fig 1.5).
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Figure 1.5 | Genome-wide changes in DNA methylation during embryonic devel-
opment. The grey line represents the genome-wide methylation rate during the first days of
embryonic development (E0.5 to E6.5), measured from fertilization. After fertilization, there is
a rapid wave of demethylation up to the Blastocyst stage at E3.5, where the methylation rate
drops to around 20%. After this, the Blastocyst implants into the uterus, and methylation
levels are increased to about 80% during the Epiblast stage around E6.5. Most somatic
tissues will maintain this methylation level throughout the organism’s lifetime. Changes in
methylation after this stage are highly localized and target regulatory regions involved in
tissue differentiation. Figure generated by Max Frank.

The first methylation wave involves rapid and progressive demethylation, resulting
in only approximately 20% of CpGs in the genome remaining methylated at the
blastocyst stage, which is thought to allow cells to achieve a pluripotent state (Wang et

al., 2014). DNA methylation is only retained at transposable elements and constitutive
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heterochromatic regions. This also corresponds with high chromatin accessibility (Wu
et al., 2016) and a lack of topologically associated domains as measured by Hi-C
experiments (Ke et al., 2017; Du et al., 2017). Histone marks are still present in
this phase and are hypothesized to influence the gene expression of pluripotent stem
cells (Tee and Reinberg, 2014). An interesting set of developmental genes carry both
activating H3K4me3 and repressive H3K27me3 marks at their so-called bivalent
promoters (Bernstein et al., 2006). These promoters generally remain unmethylated
and are thought to be poised for quick transcription initiation. After implantation, a

global remethylation wave occurs, leading to a global hypermethylation state.

The blastocyst that forms after implantation consists of relatively homogeneous
cells, making it suitable for bulk sequencing to obtain accurate characterizations
(Smith et al., 2012). However, studying germ layer specification, which involves the
development of distinct cell lineages, is extremely challenging without single-cell
technologies. Despite the difficulties, some studies have manually dissected each germ
layer and performed bulk sequencing (Xiang et al., 2020; Auclair et al., 2014). These
studies have revealed that the initially homogeneous epigenetic landscape in the
Epiblast gives way to a more dynamic landscape, where regulatory elements are

activated in a lineage-specific manner.

Recently, the development of single-cell multi-modal technologies has provided new
opportunities to study cell fate commitment events during gastrulation (Kelsey et al.,
2017; Clark et al., 2018). These technologies allow the unambiguous assignment
of epigenomes to transcriptomes (gene expression profiles) at the single-cell level,

enabling a more comprehensive understanding of the processes involved.

1.2 Techniques for epigenetic profiling

Methods for epigenetic profiling have been available for bulk tissues for quite a while.
With the advent of single-cell RNA sequencing and the increased ability to study
heterogeneous populations of cells as well as dynamically changing biological processes,
the need for epigenetic measurements in individual cells became clear. The following
Sections will discuss currently available methods to profile DNA methylation and

accessibility on a single-cell level.

1.2.1 DNA methylation

Single-cell DNA methylation profiling protocols have been developed based on bulk
methods, particularly bisulfite sequencing (BS-seq). BS-seq involves treating DNA
with sodium bisulfite, which converts unmethylated cytosine residues to uracil (and
later to thymine after PCR amplification), leaving methylated cytosine intact. The
resulting C-to-T transitions can be detected by DNA sequencing (Frommer et al.,
1992). Care must be taken in the alignment of bisulfite-converted reads since there are

now mismatches with the reference genomes at all unmethylated cytosine positions. In
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principle, this technique could be extended without many adaptations to a well-based
single-cell sequencing approach. However, conventional BS-seq has limitations due
to DNA degradation caused by purification steps and bisulfite treatment, making
it challenging to use with low amounts of DNA. To overcome this issue, a modified
protocol called post-bisulfite adaptor tagging (PBAT) was developed, which includes
multiple rounds of 3’ random primer amplification. By performing bisulfite treatment
before adaptor ligation, the loss of adapter-tagged molecules is minimized, enabling
the use of single-cell BS-seq (scBS-seq) with low-input material (Smallwood et al.,
2014).

1.2.2 DNA accessibility

The main protocols for profiling DNA accessibility in bulk tissues are the assay for
transposase-accessible chromatin sequencing (ATAC-seq) (Buenrostro et al., 2013),
DNase I hypersensitive sites sequencing (DNase-seq) (Song and Crawford, 2010) and
Nucleosome Occupancy and Methylome-sequencing (NOMe-seq) (Kelly et al., 2012).
All three techniques rely on the introduction of DNA-modifying proteins to the cell.
These proteins will modify the accessible parts of DNA in a way that is ultimately
detectable via sequencing readout. Figure 1.6 overviews the experimental protocols
for NOMe-seq, ATAC-seq, and DNase-seq.

ATAC-seq relies on the Tnb transposase to cut accessible sites but with the advantage
of directly ligating sequencing adapters to the cleavage sites. This means that cleaved
fragments can be amplified via PCR and ultimately sequenced. ATAC-seq is currently
the standard protocol for quantifying DNA accessibility in bulk populations. It has
also been adapted as a droplet-based single-cell protocol, allowing it to measure

accessibility in large populations of cells at low cost (Buenrostro et al., 2015).

In the case of DNase-seq, at low concentrations, DNase I will cleave accessible DNA,
making it amenable to sequencing (Song and Crawford, 2010). This technique has
been widely used in the past and has also been adapted as a single-cell protocol (Jin
et al., 2015).

NOME-seq is a technique that measures both DNA accessibility and DNA methylation.
It relies on the GpC methyltransferase M.CviPI, which will methylate accessible
cytosines in the GpC sequence context (Kelly et al., 2012). Note that this differs
from endogenous methylation, which occurs mainly in the CpG context. Bisulfite
sequencing can then be used as a readout for both endogenous DNA methylation
and DNA accessibility. Since bisulfite sequencing has been successfully adapted to
single-cell applications, NOME-seq can also be utilized to assay single-cell methylation
and accessibility (Pott, 2017).
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Figure 1.6 | Overview of different techniques for chromatin accessibility profiling.
The three columns depict the steps involved in profiling chromatin accessibility with NOMe-
seq, DNase-seq and ATAC-seq (from left to right). CpG sites (circles) are endogenously
methylated (black) or unmethlyated (white), while all accessible GpC sites (hexagons) become
methylated (black) after M.CviPI (pink) treatment. Histones are denoted in blue; DNasel in
yellow; and Tn5 transposase in green, with its sequencing adapters in red. Figure generated
by Max Frank, adapted from Nordstrom et al., 2019.

There are several advantages and disadvantages to NOMe-seq compared to the
standard ATAC-seq protocol (Nordstrom et al., 2019). ATAC-seq is a cheaper droplet-
based protocol that is able to profile many more cells, albeit at lower sequencing
depths per cell. Being well-based, the cost of profiling more than a few thousand
cells with NOMe-seq can become prohibitive. However, NOMe-seq generates a DNA
accessibility readout at high resolution that is only limited by the density of GpC sites
in the genome (which is every 16bp on average) as opposed to cleavage fragment sizes.
Furthermore, NOME-seq provides a deterministic boolean output at any covered site
since a CpG/GpC is either methylated or not. With count-based methods, inaccessible
regions cannot be distinguished directly from regions with low coverage. Furthermore,
NOMe-seq has the advantage of DNA methylation as an additional output, making

it a valuable tool to study the interplay of those two genomic layers.

1.3 Single-cell multi-modal profiling

In the previous Chapter, I discussed NOMe-seq as an example of a protocol that can
profile two molecular layers within a single cell. Such techniques will be referred to as
multi-modal or multi-omics techniques. In this Chapter, I will discuss the advantages

of such techniques and the challenges of applying them at the single-cell level.

As discussed previously, one goal of cell biology is the ability to make predictions about

cells along the information flow of the central dogma (Crick, 1970). However, gene
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regulation is a complex and cyclical process that involves multiple layers of control,
including TFs, DNA accessibility, histone modifications, and DNA methylation, among
others. Profiling only a single layer at a time will thus not give a comprehensive
picture of the regulatory processes we need to capture to truly understand how cells

work.

Multi-modal experiments in bulk have been useful in determining coarse regulatory
differences between conditions or different tissue types in the past. These experiments
can use uni-modal techniques on different subsets of the same sample, thus making the
extension to a multi-modal technique relatively straightforward (Ritchie et al., 2015a).
The analysis of these data typically involves the discovery of marginal associations
between the different modalities (see Section 1.4) to find candidates for causal
regulatory links. However, bulk assays only provide averages over cell populations and,
therefore, fail to capture heterogeneity within these cell populations. To understand
regulatory mechanisms, it is precisely this heterogeneity that is crucial. Furthermore,
gene regulation can be best studied when cells are not in a steady state but undergoing
dynamic changes due to changes in their environment. These systems can involve a
deliberate stimulus such as drug administration or naturally occurring changes, e.g.,

during embryonic development.

The application of multi-omics techniques to single-cell data can be done in the same
manner as for bulk techniques by aliquoting samples and subjecting them to uni-
modal assays (Stuart and Satija, 2019). However, there is no direct link between cells
in these experiments, and these datasets have to be integrated post-hoc, which can
be a challenge, depending on the features measured. If two unimodal techniques have
a (sub)set of shared features, this integration is possible with different computational
methods that perform so-called horizontal integration. However, if there are no shared
features, this integration becomes a very challenging task called diagonal integration.
Figure 1.7 overviews different analysis scenarios for single-cell multi-omics experiments.
For a comprehensive review of multi-omics analysis strategies, see Argelaguet et al.,
2021.
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Figure 1.7 | Different integration strategies for multi-omics data. a) Horizontal
integration is performed when the same set of features is observed in different experiments. b)
Vertical integration is performed when different sets of features are observed in the same cell.
¢) Diagonal integration matches features and cells that do not overlap between experiments.
Figure generated by Maz Frank, adapted from Argelaguet et al., 2021.

features

A better experimental setup for elucidating the regulatory relationships between
different modalities is one that profiles two or more modalities in one cell. Note that
the term multi-modal in this context is often used to distinguish assays measuring
multiple modalities in the same cell from multi-omics experiments that integrate uni-
modal assays in-silico (Argelaguet et al., 2021). These techniques are only emerging in

recent years and face a host of technical challenges. A fundamental problem for these
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assays is the limited amount of genetic, transcriptomic, and proteomic input material
present in a cell. Low coverage in unimodal assays can usually be compensated by
increasing the number of cells assayed, which allows the merging of similar cells to
more completely covered meta-cells. In multi-modal experiments, to establish links
between two features in different modalities, both features of interest have to be
covered in the same cell. Another problem is that most assays involve the destruction

of their input material, preventing the application of subsequent assays.

Figure 1.8 gives an overview of single-cell multimodal assays that combine measure-
ments of the transcriptome with genomic-, epigenomic- and proteomic assays. The

following paragraphs will give a brief overview of a selection of these assays.
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Figure 1.8 | Overview of single-cell multimodal assays. Different technologies are
placed with respect to the molecular data they assay in addition to the transcriptome.
Techniques that assay more than two molecular layers, such as scNMT-seq are listed multiple
times. Each combination of modalities provides opportunities to study different biological
processes as described within the grey boxes. Figure generated by Max Frank, adapted from
Lee et al., 2020.



1.3 Single-cell multi-modal profiling 17

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius
et al., 2017) is a technique that can quantify transcriptomes and the concentration of
a limited number of cell-surface proteins in parallel. It does so by incubating cells
with antibodies that bind specific surface proteins and carry unique oligonucleotide
sequences. After washing away unbound antibodies, the oligonucleotides carried by
bound antibodies can be identified in a sequencing readout in conjunction with RNA
quantification. CITE-seq has been successfully applied to distinguish subpopulations
of immune cells that could not be distinguished by RNA-seq alone (Hao et al., 2021).
The technique is limited by the availability of antibodies for surface proteins of interest

and its inability to assay intracellular proteins.

Another set of multi-modal droplet-based technologies assays DNA accessibility and
nuclear RNA concentrations in parallel (Chen et al., 2019; Ma et al., 2020). This
method is also commercially available under the name 10X multiome kit. Here, nuclei
are incubated with the Tn5 transposase in bulk, as for a single-cell ATAC-seq workflow.
Transposed nuclei are then microfluidicly paired with gel beads containing two types
of oligonucleotide sequences, or oligos. One oligo will contain cell barcodes and a
sequence that can bind to the poly-A tail of mature mRNA molecules. The other
oligo contains barcodes and generic sequences that will pair with Tn5-cleaved DNA
fragments. Cells can then be pooled again, and two fractions are used for ATAC-seq
and RNA-seq. This allows the profiling of large numbers of cells at low cost, with
the drawback of reduced complexity at the single-cell level. This assay has recently
been applied to a dataset of mouse embryonic stem cells undergoing gastrulation
(Argelaguet et al., 2022).

Other techniques make use of the physical separation of the input material needed
to assay different modalities. One of the first applications that made use of this
was single-cell genome and transcriptome sequencing (scG&T-seq) (Macaulay et al.,
2015). Here, a cell’s mature messenger RNA (mRNA) is separated from its DNA
using biotinylated oligo-dT primers that bind the mRNA poly-A tail and can be
removed from the solution with magnetic beads. The RNA fraction can then be
subjected to standard single-cell RNA-seq protocols, while the DNA fraction can be
used for genetic or epigenetic assays. This protocol has various applications in the
study of gene-regulatory mechanisms. In the original study, the authors could directly
measure the impact of DNA copy number variations in a subpopulation of cells on

gene expression of genes on the same chromosome.

1.3.1 scNMT-seq

Single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) (Clark
et al., 2018) combines the ideas of the scG&T-seq (Macaulay et al., 2015) and NOMe-
seq protocols introduced in Section 1.3 (Fig 1.3.1). Cells are separated into wells and
incubated with a GpC methyltransferase as in NOMe-seq, methylating accessible GpC
sites. Then DNA is separated from mRNA as in the scG&T protocol. The mRNA
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fraction is assayed using the Smart-seq2 protocol (Picelli et al., 2014), a full-length
scRNA-seq protocol with high coverage of the transcriptome. The DNA fraction is
subjected to single-cell bisulfite sequencing, which carries information about both
DNA methylation and DNA accessibility.
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Figure 1.9 | Overview of the scNMT-seq protocol. scNMT-seq involves the lysis of
cells and the methylation of accessible GpC sites by introducing a GpC methyltransferase.
The cytoplasmic fraction of mRNA molecules is assayed with the Smart-seq2 protocol.
The nuclear portion is assayed with single-cell bisulfite sequencing using the NOMe-seq
protocol. Separately evaluating CpG and GpC methylation allows the readout of endogenous
methylation and chromatin accessibility. Figure adapted from Clark et al., 2018

In the analysis of scNOMe-seq data, special care has to be taken when interpreting
ambiguous signals from the analysis. Cytosines in the CGC sequence context could be
methylated by both endogenous and exogenous M.CvPI methyltransferases. Therefore,

these sites are commonly excluded from the analysis altogether.

scNMT-seq thus provides a lot of parallel information about the cells assayed. The
biggest limitation of this technique is the cost associated with scaling this assay up to
large numbers of cells. While other droplet-based single-cell methods can compensate
for the lack of coverage in individual cells by scaling to hundreds of thousands of
cells, the analysis of scNMT data relies on maximizing the information extracted

from every cell assayed. This work contributes to the analysis of sparse multi-modal
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single-cell data that need careful consideration when designing algorithms. In the
next Section, I will discuss general approaches to analyzing multi-modal single-cell
data.

1.4 Integrative analysis of single-cell multi-modal data

As mentioned before, the term multi-modal data in the context of single-cell ex-
periments describes multiple layers of molecular data extracted from the same cell.
Each modality will consist of a set of features corresponding to a molecular layer in
the cell, resulting in a set of two or more cell-by-feature matrices. This allows the
linkage of these molecular layers via cell identity, which is also referred to as vertical
integration (Fig 1.7). Vertical integration typically aims to elucidate cellular processes
that determine the causative links between the assayed modalities. Since each cell
provides only a snapshot of these regulatory interactions, finding causative links
directly can be challenging. Instead, in the first step, researchers are often interested
in the co-variation of features, which can help to narrow down the space of causal
links and, in conjunction with prior biological knowledge, can produce hypotheses

about cellular mechanisms (Macaulay et al., 2017; Argelaguet et al., 2021).

Vertical integration methods can be categorized as local or global approaches. Local
analyses focus on specific associations between molecular features across different
layers, aiming to detect interactions between them. In contrast, global integration
utilizes the full range of measurements to identify broader cellular states, such as cell

cycle phase and pluripotency potential, in an unsupervised manner.

1.4.1 Global analysis

The power of global analysis is already apparent in uni-modal single-cell experiments,
where it can be applied to define cell types or order cells along a continuous biological
process. This is done with dimensionality reduction techniques, the most widely used
of which is principle component analysis (PCA) (Luecken and Theis, 2019). PCA
transforms high-dimensional data (in this case, high-dimensional in feature space) onto
a lower-dimensional space while maximizing the variance explained by the orthogonal
remaining axes. This transformation is linear, making principle components highly
interpretable but limited to detecting only certain (linear) sources of variation. Other
methods with similar matrix-factorization ideas have been successfully applied to
single-cell data, including Bayesian matrix-factorization that forms the basis of Multi-
omics Factor Analysis (MOFA) (Argelaguet et al., 2019a; Argelaguet et al., 2018a),
as well as canonical correlation analysis (CCA) (Butler et al., 2018) and others. All
these techniques can be combined with clustering algorithms to find groups of similar

cells or cell types without prior biological knowledge.

Global integration of multi-modal data utilizes unsupervised dimensionality reduction

methods with the same principle as PCA to define cellular states resulting from
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interactions between multiple genomic features and across modalities (Heumos et al.,
2023). MOFA is a Bayesian matrix factorization tool designed for this task (Argelaguet
et al., 2018b; Argelaguet et al., 2019a). It finds orthogonal axes of variation called
factors that are shared between modalities as well as those that are only present in a
single modality. CCA (Butler et al., 2018) can also be used for vertical integration,
however, with the limitation that it will prioritize sources of variation shared between
all modalities. Another approach is to generate a multi-modal nearest neighbor
graph that weighs the utility of each modality in each cell. This approach is called
weighted-nearest neighbor (WNN) (Hao et al., 2021) analysis and outputs a graph
that can be used for downstream visualization and clustering. These methods have
been shown to be able to resolve cellular states that would not have been resolved
by either modality alone. For example, WNN has been applied to CITE-seq data of
peripheral mononuclear blood cells to identify lymphoid subpopulations not detected
by scRNA-seq alone (Hao et al., 2021). Furthermore, there is also great potential
to identify regulatory links with global analysis. For example, MOFA identified a
broad set of lineage-defining enhancers during mouse gastrulation that regulates the

expression of important marker genes using scNMT-seq data.

However, the potential of these global methods to discover novel biology in an
unsupervised manner is complicated by several challenges. One challenge is that
most integration methods are designed with Gaussian likelihoods, meaning there is
an assumption of normality for the cell by feature matrices. This is often a valid
assumption for count data, e.g., after log transformation, but is not appropriate
for other modalities such as methylation, which is binary at the CpG level (Du
et al., 2010). Some methods, like MOFA, allow alternative likelihoods to address
this problem, but model performance can suffer compared to Gaussian likelihoods.
Different modalities can also have vastly different amounts of technical noise associated

with them, making assessing co-variation challenging.

Another problem is the definition of features as input. There are clearly defined
features for transcriptomics and proteomics (assuming alternative splicing and post-
translational modifications are ignored). Epigenetic measurements, however, often
lack defined features since the epigenomic landscape is not exhaustively mapped.
Therefore, these methods often rely on prior biological knowledge to define features of
interest. For example, DNA methylation features are often predefined by chromatin
marks for potential enhancers such as H3K27ac (Wang et al., 2008). All methylation
measurements within the boundaries of a feature are then aggregated to produce the
input matrix. If the boundaries of the features are incorrect, this leads to the inclusion
of uninformative CpG sites or the exclusion of informative CpG sites and, therefore,
a decrease in signal-to-noise ratio. In some cases, such as ATAC-seq, features are
defined in a data-dependent manner (Yan et al., 2020). For example, one standard
way of defining features for ATAC-seq is to sum up the signal of all cells and then run

a peak-calling algorithm, identifying regions with increased accessibility. This has the
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problem of potentially missing accessible DNA only present in rare cell populations.
To overcome this, another strategy is to first separate cell populations based on the
signal of tiled genomic windows and then run peak calling separately on clusters of
cells. Data-dependent feature identification makes it harder to compare the results of

different experiments because they work with a different set of features.

In general, global analysis of multi-modal data is a powerful way to get an overview of
a biological system of interest and to find major axes of biological variation. However,
to study detailed regulatory interactions, it is often necessary to develop models that
are specifically tailored to the mechanism of regulation of interest and that test links
between individual features across modalities directly. This approach to integration

is called local integration.

1.4.2 Local analysis

Local analysis is a different paradigm for the analysis of multi-modal data. Here, inter-
actions between different features in two or more modalities are explicitly investigated
in a supervised manner. Often, one can restrict the search space of these methods
by considering biological priors such as the genomic proximity of the features. For
example, when looking for gene-enhancer interactions, tests are often restricted to
certain distances of the regulatory element to the transcription start site of the gene.
In cis-expression quantitative trait loci (cis-eQTL) mapping, the same principle is
applied to filter out genes that are too far away from a variant of interest (Nica and
Dermitzakis, 2013). This is sensible and necessary since there would be a combinatorial

explosion of tests without filters, adding to the multiple testing burden.

When pairwise interactions between elements are tested, the test can be tailored to the
data modalities. For example, for the investigation of cis-eQTLs, linear mixed models
can be used specifically designed to deal with sparse information from single-cell data
(Cuomo et al., 2020).

Local analysis is often key to getting a detailed understanding into biological mech-
anisms. They can often include prior biological knowledge. For example cell-type

identity can be validated by the expression of known marker genes.

1.4.3 Combining global and local analyses

Another powerful approach is the combination of global with local analyses. This
is routinely done in single-cell RNA-seq assays, where global analysis will aid in
the unsupervised identification of cell types via clustering, followed by differential
expression analysis between these cell types for individual genes (Luecken and Theis,
2019). This allows the discovery of novel cell types or states and potential marker genes
that define their identity. Recently, several approaches have adapted this pipeline to
remove the need for clustering in this pipeline, testing for genes that co-vary with any
of the global axes of variation (Dann et al., 2022; Ahlmann-Eltze and Huber, 2024).
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This is an exciting avenue for experiments that study temporal or spatial biological
processes because these tests can be much more powerful in detecting continuous
changes in gene expression. For example, in developmental studies, cell identities
change gradually over time, which means that a clustering algorithm would introduce
arbitrary boundaries between states. One caveat of these approaches is that care
must be taken with the dual use of information since the input data for differential
expression testing will be the same (albeit a subset) data used to infer global cell

state.

In the case of finding cis-eQTLs in single-cell data, combining global and local analysis
can involve the integration of principal components from PCA to remove global effects,
similar to stratifying a population of human subjects. Furthermore, the unsupervised
clustering results in the global analysis might be used to find eQTLs that are cell-type
specific (Cuomo et al., 2022).

The same principles can be applied to multi-modal approaches (Argelaguet et al.,
2021; Heumos et al., 2023). However, they have the advantage that one modality can
be used for inferring cell states with global analysis, followed by the local analysis of
other modalities to find individual features that co-vary with the global state. This
approach avoids the double-dipping problem of uni-modal approaches. In general,
scRNA-seq is often best suited for inferring cell state since it has a fixed set of features
and is a fairly robust assay. RNA expression also sits in the middle of the information
flow paradigm of the central dogma, making it a good anchor to which to compare
most modalities. Epigenetic single-cell assays are often technically more complicated

with less well-defined features, requiring more refined local analysis.

An example of this type of analysis would be detecting DNA methylation changes
within tumor subpopulations. With a multimodal assay, RNA expression could be
used to classify cells as tumor-surrounding healthy cells or into subgroups of tumor
cells. Then, a test could be applied that finds genomic regions that are differentially
methylated between these groups of cells (Fan et al., 2022). Since DNA methylation
has a very different noise model, testing for differential methylation requires a tailored
test (Kapourani et al., 2021). I will discuss methods for detecting epigenomic changes

in the next Chapter.

1.5 Statistical methods to detect epigenomic changes

Methods for detecting epigenomic changes between conditions vary broadly based
on the input type. As discussed above, ATAC-seq provides a signal in the form of
peaks of chromatin accessibility (Buenrostro et al., 2013). The insertion frequency
of the Tnb transposase and the resulting fragment sizes limit the resolution of this
technique. Resulting resolutions are typically on the 100bp scale, sufficient to detect
nucleosome positioning, but smaller events, such as TF binding, are harder to detect
(Bentsen et al., 2020). Furthermore, the output of ATAC-seq after peak finding is a
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sample by peak (in case of bulk assays) or a cell by peak count matrix (in case of
single-cell assays), allowing the adaptation of computational methods designed for
RNA-seq. There are several frameworks to analyze (single-cell) ATAC seq data, such
as ArchR (Granja et al., 2021), Signac (Stuart et al., 2021) and SnapATAC2 (Zhang
et al., 2024). These packages typically provide standard tests like the Wilcoxon Test
or logistic regression. Additionally, one can utilize popular purpose-built RNA-seq
differential testing packages such as DEseq2 (Love et al., 2014) or limma (Ritchie
et al., 2015b).

In the case of bisulfite sequencing-based assays, such as NOME-seq, the output data
will initially be a matrix of samples by CpG/GpC (in the case of bulk assays) or cell
by CpG/GpC (in the case of single-cell assays). In the single-cell case, this matrix
will be very sparse, with typical coverage of bisulfite sequencing in single-cells ranging
from 0.01-20% (Angermueller et al., 2016), and most entries will be either 0 or 1,
indicating methylation or no methylation. In the case of bulk, coverage is often higher
due to the increased amount of input material. Entries in the matrix will range from

0 to 1, indicating the fraction of methylated cells at this position in a given sample.

When testing for differential DNA methylation or DNA accessibility, researchers are
often not interested in the changes of single bases but are looking for segments or
regions in the genome that are changing. We will call these segments differentially
methylated regions (DMRs) or differentially accessible regions (DARs). This has
biological and technical reasons. Biologically, regulatory epigenetic processes will
typically involve a change across multiple bases in the genome. For example, reposi-
tioning one nucleosome will make 147bp accessible at once. DNA-binding proteins
that methylate or demethylate DNA will affect multiple nearby cytosines. Therefore,
the signal of close-by CpG or GpC sites will be correlated (Mayo et al., 2015). From
the technical side, testing all CpG or GpC sites in a mammalian genome comes with
an enormous multiple-testing burden, reducing the statistical power of these tests.
Therefore, methods that test for epigenetic changes with base-resolution data must

solve two problems:
e The definition of region boundaries within which epigenetic change occurs

e The statistical assessment of the significance and magnitude of change within

those regions

Most methods for detecting epigenomic changes with base resolution were designed
for bulk bisulfite-sequencing data. Recently, some specific models for single-cell
approaches have also been developed. The next Section will overview the existing

landscape of available methods.
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1.5.1 Bulk methods
1.5.1.1 Models that compute statistics on fixed genomic windows

These methods implicitly assume the methylation rate to be constant within these
windows and compute statistics on the aggregated counts of all CpG sites within
a region. This is a robust and fast way to test for differentially methylated regions
(DMR), but has the disadvantage that a correct list of candidate regions must
be known a priori. These methods include: IMA (Wang et al., 2012a), COHCAP
(Warden et al., 2013), DMAP (Stockwell et al., 2014), methylSig (Park et al., 2014)
and methylKit (Akalin et al., 2012)

1.5.1.2 Models that compute statistics on individual CpG sites

These methods often use variations of Fisher’s exact test (Fisher, 1922) or beta-
binomial regression to compute significance for loci. DMR can then be computed
by aggregating nearby significant CpG sites. This has the issue that there is no
proper FDR, control on the region level. Aggregation can broadly be characterized by

aggregation with heuristics and aggregation by smoothing of methylation rates.

Methods that use aggregation heuristics have more complicated FDR control models
than models that test fixed windows. Since the methylation data is both used to define
and test DMR’s, care must be taken not to “double dip”. A fundamental problem
with these methods is that, given the sparsity of single-cell data, it is often impossible
to calculate any meaningful statistics on individual CpG sites, which renders most
aggregation heuristics invalid. Furthermore, they are usually designed with replication
in mind, prohibiting application to most single-cell datasets. Examples of this type of
methodology are Methylpy (Schultz et al., 2015) and DSS (Feng and Wu, 2019).

Methods that compute statistics on smoothed estimates of methylation rates make
use of the fact that information can be shared between neighboring CpG sites. Thus,
they average the methylation signal with some smoothing or clustering operation
before calculating statistics. These methods include BSsmooth (Hansen et al., 2012),
Metilene (Jiihling et al., 2016), and BiSeq (Hebestreit et al., 2013).

1.5.2 Single-cell methods

Although it might seem straightforward to adapt the bulk methodologies for detecting
DMRs for single-cell data, many of these methods contain heuristics for filtering
low-coverage data on the individual CpG level that often does not allow their use in
sparse single-cell methylation data. One strategy to overcome this sparsity problem is
to impute the methylation state of CpG sites that have missing information. The two
main methods designed to impute single-cell DNA methylation at base resolution
are deepCpG (Angermueller et al., 2017) and MELISSA (Kapourani and Sanguinetti,
2019) (see Section 1.5.2.1). Another approach is the aggregation of multiple CpG
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sites in regions of interest that are defined a-priori. This approach makes it feasible
to adapt the use of bulk methods such as Fisher’s exact test or DSS (Feng and Wu,
2019). It is also used in the scMET method (see Section 1.5.2.2).

1.5.2.1 Imputation models

DeepCpG DeepCpG (Angermueller et al., 2017) is a neural network-based method
that uses DNA sequence information in conjunction with neighboring CpG site
methylation states of all cells in the dataset. It was tested on single-cell BS-seq of
mouse embryonic stem cells by subsampling the data. It was able to predict global
methylation states with high accuracy and precision (area under the receiver-operating
characteristic curve (AUC) > 0.85). This was a significant improvement compared to
other methods that did not use DNA sequence information or only used information
from the same cell. When assessing the imputation performance in different genomic
contexts, prediction power was the highest in promoter regions and exons. This is
expected since these elements are typically either fully methylated or unmethylated.
In enhancer regions, marked by H3K27ac or H3K4mel, performance dropped to
AUCs of 0.6-0.8, while still outperforming simpler methods. This is also expected

since these regions are associated with increased methylation variability.

MELISSA MEthyLation Inference for Single-cell Analysis (MELISSA) (Kapourani
and Sanguinetti, 2019) is an imputation tool for single-cell BS-seq data that leverages
the combination of a global analysis with a local analysis. It consists of a Bayesian
hierarchical model that jointly learns smooth representations of methylation rate in
genomic regions of interest and clusters cells based on the genome-wide patterns of
these representations. Thus, it shares information between neighboring CpG sites,
thanks to the smoothing of methylation rates in genomic coordinates, and between
grouped cells in global methylation space. It had improved precision and accuracy
compared to similar methods that did not share information between cells in simulated
data and was able to cluster cells correctly. When evaluated on single-cell BS-seq of
mouse embryonic stem cell data, it had a similar performance to DeepCpG without
the DNA sequence information. It performed slightly worse than DeepCpG with DNA
sequence, with considerably less computational complexity. Prediction performance

also decreased in the context of active enhancers, similar to DeepCpG.

1.5.2.2 Differential testing

To my knowledge, there is currently only one tool for differential methylation testing

explicitly designed for single-cell BS-seq data, called scMET (Kapourani et al., 2021).

scMET scMET is a Bayesian framework that tests for both differential mean and
variability of methylation between groups of cells in single-cell BS-seq data. It fixed
genomic regions of interest as an input to overcome sparsity issues within single-cell

data. For each region of interest, it fits a beta-binomial model of methylation rate
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that has an explicit overdispersion component describing biological variability. Thus,
it can also be used to detect highly variable regions in heterogeneous populations
of cells, which can be used for downstream global analyses. Interestingly, when
comparing differential mean methylation analysis between groups of cells, there was
no substantial power benefit of this model versus a Fishers-exact test or the beta-
binomial model implemented by DSS. Interestingly, both scMET and Fishers-exact
test show massively varying false positive rates depending on the number of cells per
group and the average number of CpG sites per region, indicating that neither test is
calibrated.

scMET has the limitation that it requires fixed genomic regions as an input to the
model, making it reliant on accurate annotations of regulatory elements in the genome
that are expected to change their methylation rate. Furthermore, it assumes that
within a genomic region of interest, methylation rate is constant within a cell which
might not always be the case. A model that is able to take imperfect or no prior
annotation of genomic regions as input would not have these shortcomings but is
challenging to implement since it would have to combine region finding/refinement in

parallel with differential testing.

Another limitation of all current models that test for differential methylation is that
they are designed to test for methylation changes between groups of samples or
groups of cells. However, in many dynamic biological systems, methylation changes
will happen continuously over space or time. With the emerging availability of multi-
modal single-cell assays, these continuous changes could, in theory, be tracked with
great resolution. However, the current methods are not designed to model methylation

in these cases.

1.6 Aims of this Thesis

In the previous Section, I outlined the limitations of current methods to model
epigenetic heterogeneity in single-cell experiments. These limitations are especially
pronounced if the observed biological system is undergoing continuous changes, such
as a developmental process. As introduced in Section 1.4.1, global analysis strategies
can be used to identify continuous biological processes in single-cell RNA sequencing
datasets without the need for large numbers of experiments. This allows for the study
of continuous gene expression changes across developmental processes. Single-cell
multimodal technologies further open up the possibility of studying the epigenetic
changes that go hand in hand with transcriptomic changes. Therefore, multimodal
single-cell technologies have the potential to study the gene regulatory landscape that
determines cell fate during development. However computational tools that facilitate

these investigations are not well established.

In this thesis, I want to combine the concept of global analysis that has been well-

established for single-cell RNA sequencing with a local analysis approach in the highly
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sparse epigenetic modalities of multimodal single-cell experiments. Section 1.7.1 will
explain how pseudotime inference can be used to assign every cell a position along
a developmental trajectory. To then model epigenetic changes across these develop-
mental trajectories, I aimed to develop a local model that could describe continuous,
non-linear changes in DNA methylation and chromatin accessibility of regulatory
genomic regions. This is complicated by the highly sparse readout that single-cell
epigenomic profiling technologies produce (see Section 1.3). I therefore wanted to
develop a model that makes use of the idea of sharing information between cells
and neighboring genomic loci while still providing rigorous statistics for differential
testing. In this thesis, I developed a Gaussian process (GP) model that satisfies these
criteria, called GPmeth. I introduce GPs in Section 1.8 and describe the detailed

considerations and derivation of the model in Chapter 2.

1.7 Biological motivation of the GPmeth model

1.7.1 Modeling continuous changes in single-cell RN A-seq studies

1.7.1.1 Global analysis

As discussed in Section 1.4, single-cell analysis provides the opportunity to discover
structure in populations of cells in an unsupervised manner. This often involves
dimensionality reduction, which was introduced in Sectionl.4.1. This type of global
analysis typically leads to one of two scenarios, depending on the biological system
that is studied.

1. Firstly, clearly distinct populations of cells that can be clustered into cell types
(Fig 1.10, bottom). A typical example of this is the study of blood cells in adult
humans, where different immune cell types, such as B-cells and T-cells, are
clearly distinguished by clustering. This analysis can also lead to the discovery

of previously unknown cell types.

2. Secondly, single-cell assays also have the potential to reveal a snapshot of a
developmental process (Fig 1.10, top). Even though a single experiment will
typically assay cell populations that were extracted at a single time point
during a developmental process, there is often enough natural variation in the
differentiation speed of individual cells that developmental trajectories can
be faithfully reconstructed. For single-cell RNA-seq (scRNAseq) data, many
algorithms have been developed that detect axes of continuous variation (Saelens
et al., 2019; Andrews et al., 2021). These methods are generally referred to as

pseudotime analyses.
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Figure 1.10 | Unsupervised global analysis strategies for single-cell RN A-seq
studies. Unsupervised global analysis allows the assignment of cells to clusters that represent
distinct cell states or types or onto a position along a developmental trajectory. Figure
adapted from Stegle et al., 2015 with permission of the authors.

1.7.1.2 Psedudotime analysis

The aim of pseudotime analysis is to map cells along a developmental/differentiation
trajectory. Most pseudotime analysis tools employ two main approaches. The first
method involves utilizing dimensionality reduction techniques to uncover a low-
dimensional 'manifold’ where the cells are situated, similar to the dimensionality
reduction for discovering cell types. Cells are then ordered in pseudotime based
on a neighborhood graph in this manifold. Well-known methods employing this
strategy are Monocle (Cao et al., 2019) and DPT (Haghverdi et al., 2016). The
second approach revolves around employing unsupervised clustering to group cells,
followed by connecting the clusters and projecting individual cells onto the resulting
branches. TSCAN (Ji and Ji, 2016) and Mpath (Chen et al., 2016) are examples
of methods that follow this approach. Cluster-based pseudotime methods exhibit
higher accuracy in scenarios where there is an uneven distribution of cells along the
trajectory, such as when certain cell states are more prevalent or consistently captured
compared to others, or in large-scale developmental hierarchies. On the other hand,
manifold approaches excel when there is a uniform sampling of cells throughout
the transition and when examining intricate details of individual transitions. The
main goals of scRNA-seq pseudotime analyses are to establish lineage relationships
during organismal development. This can uncover which cell types give rise to which

differentiated tissues and the transition states that cells have to go through.



1.7 Biological motivation of the GPmeth model 29

1.7.1.3 Local analysis

After global analysis, the next step is to identify genes that are differentially expressed
across the studied cell population through local analysis to reveal biologically relevant
changes. The appropriate statistical test for this depends on the scenario that was

encountered in the global analysis.

If there are clearly distinct cell populations in the data, the application of statistics
that are developed to compare bulk experiments is appropriate. These include methods
such as the Wilcoxon test (Wilcoxon, 1945), or DEseq (Love et al., 2014).

To find temporally variable genes along a differentiation trajectory, there are again
two main approaches for differential testing (Fig 1.11). The first approach is to define
cutoff values in pseudotime to group cells into discrete temporal stages. This approach
enables the application of differential testing methods to detect marker genes for
cell-type clusters mentioned above. However, if changes in gene expression are truly
continuous, grouping cells will necessarily sacrifice some statistical power for the test.
This can be seen in the upper panel of Fig 1.11: There are some cells close to the
arbitrarily introduced cutoff point that have intermediate expression values. These

cells will decrease the difference in means between the two populations.

The problem can be overcome by using a model that takes pseudotime as a continuous
covariate. The first choice of models to work with continuous covariates are linear
models, but pseudotemporal trajectories of gene expression are not guaranteed to be
linear. Thus, nonlinear models have been developed that calculate test statistics by

model comparisons (Fig 1.11).

RNA expression/
DNA methylation

developmental trajectory

Figure 1.11 | Differential testing with continuous covariates. This figure shows the
difference between discrete tests (top row) and continuous tests (bottom row) for changes in
RNA expression with a continuous covariate. Figure generated by Max Frank.

Examples of these models are GPfates (Lonnberg et al., 2017) , GPcounts (BinTayyash
et al., 2021), Monocle (Trapnell et al., 2014; Qiu et al., 2017), and tradeSeq (Van
den Berge et al., 2020). GPfates implement a GP model with a branching kernel
that can pinpoint the divergence of gene expression for trajectory branching events.

GPcounts implements a GP model with a zero-inflated negative-binomial likelihood
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that is better suited to count-based scRNA-seq data and also has a branching kernel.
Monocle fits an additive model to the count data to find genes associated with
branching events. TradeSeq fits generalized additive models to gene expression data

and provides a range of tests for different biological questions.

The same principles outlined above also apply to single-cell multi-modal data. Global
analysis of one modality can reveal developmental trajectories and order cells along
pseudotime. Then, other modalities can be queried for features that change along a
pseudotemporal axis. Compared to the previous scenario, this also has the advantage
of avoiding the use of the same information for global and local analysis. However,
detecting epigenetic changes comes with a particular set of challenges (see Section

1.5). The two main challenges are:

1. Epigenetic modalities can have fundamentally different noise models compared
to count-based readouts that one gets with scRNA-seq. The techniques that
provide base-pair resolution of DNA methylation and chromatin accessibility,

such as scNMT-seq will provide a binary signal.

2. There is no clearly defined set of features to test for. With RNA-seq, genes
can serve as a clearly defined unit of aggregation for reads. In contrast, for
epigenetics there is no gold-standard database of regulatory elements that can
be tested for.

The GP model that I will propose in this thesis aims to address these challenges.

1.7.2 Modeling continuous changes in single-cell DN A methylation
measurements

Measuring DNA methylation and chromatin accessibility at base-pair resolution in
individual cells or even on individual molecules (Krebs et al., 2017) has advantages
over coarser techniques such as sScATAC-seq. With these techniques, it is possible to
not only quantify nucleosome occupancy of DNA but also the much smaller footprint
of TFs, which allows the study of the cooperative binding of multiple TFs (S6nmezer
et al., 2021) or the effects of DNA methylation on TF binding (Kreibich et al., 2023).
However, because of the limited amount of input DNA, base-pair resolution single-cell
techniques provide highly sparse data and need tailored models to deal with this
sparsity.

Fundamentally, at a specific cell and CpG site, DNA methylation can exist in one
of four states. Either both alleles at the position are methylated, both alleles are
unmethylated, or only the paternal or maternal allele is methylated. Note that, in
theory, the cytosines on opposing strands of the same DNA molecule could also carry
different methylation signals, but this is exceedingly rare in mammalian cells, since
the dedicated DNA methyltransferase DNMT1 recognizes hemimethylated CpG sites
(Goll and Bestor, 2005; Klose and Bird, 2006). Allele-specific methylation (ASM) is a
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more common occurrence and is often studied in combination with QTLs (Abante
et al., 2020). From a genome-wide perspective, the frequency of ASM is still rather
low. For example Do et al., 2016 found that 2% of all regions that could be annotated
with haplotype information had significant differential methylation rates in multiple
human tissues. The confident detection of ASM from bisulfite sequencing data requires
sufficient read depth for both alleles and is thus often prohibitive with sparse single-
cell data. Therefore, methylation rate of CpG site ¢ in an individual cell j is often

modeled as a Bernoulli distributed variable

Yij = Bern(pij) (1.1)

where p;; is the unknown true methylation rate and y is the observation in the data.

pij can be described with a Bernoulli distribution when ignoring hemimethylation.

1.7.2.1 Genomic covariances

As mentioned previously, the cell-by-CpG site matrix produced by these techniques
will be sparse, with 0.1-10% of entries covered. This makes the direct analysis of
individual features challenging. On the one hand, this can be overcome by using the
fact that cells are not independent measurements but can be linked by proximity
on a low dimensional manifold, pseudotemporal ordering or neighborhood graph.
This is the reason that continuous models have increased statistical power to detect
changes. The other important consideration is that the signal of proximal CpG or
GpC sites on a chromosome is not independent. The footprint of a nucleosome spans
147bp, which, with an average occurrence of GpC sites every 16bp, will affect 9
GpC sites at once. TF footprints are smaller but still can affect multiple GpC sites.
The co-variance of endogenous CpG methylation will depend on multiple factors.
First, the average distance of neighboring CpG sites will vary widely throughout the
genome. Genome-wide, there is a depletion of CpG sites, with an average distance
of 100bp between neighboring CpGs (Saxonov et al., 2006), whereas in CpG islands
the average distance will only be ~10bp (Gardiner-Garden and Frommer, 1987).
The spatial correlation of methylation rate between CpG sites also varies based on
genomic context. Zhang et al., 2015 found that there is a general decay of correlation
to genome-wide background levels at a 400bp distance. It is not entirely clear what the
biological underpinnings of this observed local correlation are, but it is plausible that
when a methyltransferase binds to a CpG site, it is more likely to bind to neighboring
CpG sites afterwards.

In summary, there are two key insights that motivate the formulation of the GPmeth

model in the next section

Key insight 1 Epigenetic features measured in individual cells are not independent

measurements but vary smoothly with biological processes
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Key insight 2 Methylation rate and chromatin accessibility measured at base-pair
resolution are not independent measurements but vary smoothly across the

genome

One of the aims of this work is to provide a model that relaxes the requirement for
the a-priori knowledge of exact region annotations by allowing for smoothly variable
methylation rates within regions of interest while being able to make use of single-cell
multimodal assays to model continuous temporal changes in methylation rate (see
Chapter 2). The basis for this model are GPs (Rasmussen and Williams, 2006). The
next Section will introduce the methodology behind GPs and showcase some of their

applications.

1.8 Introduction to Gaussian Process models

In this thesis, I will propose a method to detect epigenetic changes based on single-
cell assays. The core of this method is a non-linear regression of the methyla-
tion/accessibility rate over time and across the genome. While linear regression
is standard in many statistical methods, including detecting epigenetic changes, non-
linear regression typically comes with additional challenges of potential overfitting
of the data. GPs have been used in the past to model non-linear changes in gene
expression for both bulk and single-cell data (Stegle et al., 2010; BinTayyash et al.,
2021) and have many desirable properties for this application. This Section is meant to
provide a brief technical introduction to GPs and their advantages and disadvantages
for the models discussed in this Thesis. For a thorough introduction, see Rasmussen
and Williams, 2006.

1.8.1 Introduction to Gaussian Processes

The formal definition of a Gaussian process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribution (Rasmussen and
Williams, 2006). Informally, one can think of GPs as a distribution over functions

that, when evaluated at any point, will have a joint Gaussian distribution.

GPs are fully specified by a mean function u(x) :

p(x) = E[f(x)] (1.2)

and a covariance function or kernel k(x,x’):

k(x,x') = Cov[f(x), f(x)] (1.3)

Often, it can be assumed that the mean is zero after simply subtracting the data
mean from the input. This leaves the GP fully specified by its kernel, which is where
the model can be constrained with a prior of choice. The choice of kernel represents

assumptions about the data that is modeled, as will be shown in Section 1.8.2. The
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comparison of the data fit of different covariance functions can then be used to

validate those assumptions (see Section 1.8.6).

The full GP will be denoted as:

f(X) ~ GP(M(X)7 k(X, Xl)) (1'4)

This means that any set of random variables f(x) will be jointly Gaussian with mean
and covariance specified by the mean function and kernel, respectively. Any finite

realization of this process at specified points x is a multivariate normal distribution.

1.8.1.1 Marginal likelihood

GPs allow us to compute key quantities, such as the marginal likelihood of input data,
analytically given the above-specified model. This is an important property because
it allows the optimization of the hyperparameters 6 of the model with respect to a
set of input data. It also allows the comparison of the likelihood of different models
to determine the most appropriate model structure (see Section 1.8.6). The marginal
likelihood of a GP for a set of input data [f(x1), f(X2), ..., f(Xn)] = [U1, Y2, -, Un] =¥
is the integral of the likelihood times the prior

py|X,0) = / p(y|f. %, 0)p(E|x, 0)df (1.5)

where X = [x1,X2,...,Xpn| are the locations of the input data. Note that we are
marginalizing over the possible function values f, hence the term marginal likelihood.
I listed the hyperparameters 6 explicitly here to show that they need to be given to
compute the marginal likelihood. In the case of Gaussian likelihood, this integral can

be evaluated explicitly, and the result is often given in logarithmic form as:

1 1 _ n
logp(y|X, 0) = =5 log |3 — S (v — p) Sy —p) — 5 log(27) (1.6)

where X are the locations of the inputs, 6 are the hyperparameters of the model (see
Section 1.8.2), and ¥ is the covariance matrix specified by the kernel and evaluated at
the inputs such that ; ; = k(z;, ;). The marginal likelihood consists of three terms
that can give the optimization process some desired properties. Intuitively, the first
term —% log |X| penalizes model complexity, where low covariances between the inputs
lead to a larger penalty. The second term is dependent on the data and encourages
the model fit. The third term does not depend on the data or hyperparameters and
is just a constant normalization term. GPs thus have a natural property of balancing

model complexity against fit to the data.
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1.8.1.2 Hyperparameter optimization

By optimizing the marginal likelihood with respect to 8, we can find optimal hy-
perparameters of the model. This can be done with gradient-based optimizers (see
Rasmussen and Williams, 2006, Chapter 5).

1.8.1.3 Model predictions

After optimizing the hyperparameters 6 of the GP model, we can ask it to predict
values at unseen locations. This prediction will not be a point estimate but a Gaussian
distribution, which we can use to compute confidence intervals for each output. The

predicted distribution at an unseen input location x* is given by:

p(f ()X, y,8) =N (") + k(2" X)k(X, X) " (f(X) - u(X)), w7

k(x*, z*) — k(z*, X)k(X, X) k(X 2*))
Where X are the locations of the training data. This is the posterior distribution of
the model, which can be evaluated at any location. If we look closer at the variance
term, we can see that it is equal to the prior variance at location x* minus a positive

term that shrinks the variance depending on the training data.

This will give the posterior conditioned on noise-free function values y. In the real
world, input data typically does not correspond to the function values themselves but
noisy realizations of them. If we assume that the measurement errors are independent

and identically distributed (i.i.d.) Gaussian, we can write

y=[f(x)+e (1.8)

where ¢ is a i.i.d Gaussian with variance o2 . The conditional distribution then

becomes

p(f(@)|f(X)) =N (p(z)+
k(o X)X, X) + opd] 7 (f(X) = u(X)), (1.9)
k(a®,2*) — k(z*, X)[k(X, X) + 021] k(X z*))

This is the key predictive equation for GP prediction. From this, one can sample
from the posterior, calculate the mean and variance at any location x*, and calculate

confidence intervals for the predictions.
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1.8.2 Encoding assumptions about the data using covariance func-

tions

Kernels are the positive definite functions that define the covariance between two
inputs x, x’. Using different functions for the kernel is a way to impose restrictions
on the prior GP that correspond to assumptions about the data.

1.8.2.1 Base Kernels

Some of the most commonly used kernels are listed below and depicted in Figure

1.12.

Linear Kernels. The linear kernel constrains the GP to produce linear functions.
GPs with a linear kernel are equivalent to Bayesian linear regression (Rasmussen and
Williams, 2006). The kernel function is given by:

k(z,z') = a]%(x —¢) (2" —¢) (1.10)

A model with this kernel has two so-called hyperparameters. JJ% is the kernel variance
that determines the amplitude of change of the function. In the linear case, this
corresponds to the slope. The second hyperparameter ¢ determines the intercept of

the function.

Constant Kernels. The constant or bias kernel is the simplest kernel that produces

constant outputs.

k(z,2') = 0% (1.11)
The output of this kernel does not depend on the input and will simply be
F(#) = c;e ~ N(u(x), o) (1.12)

Matérn Kernels. The Matérn family of kernels produces functions with different

degrees of local smoothness. Their covariance function is specified by:

k(z,2) = 02 il(;; (@W)VK <\/5(””_€"”/)> (1.13)

where I' is the gamma function, and K, is the modified Bessel function of the second
kind. v determines the smoothness of the function produced and is usually fixed
to one of %, %, % The higher v, the smoother the resulting function will get, and
the resulting function will be v — 1 times differentiable. The hyperparameters of
this kernel are o2, which is called the kernel variance, and ¢, which is the kernel

lengthscale. The lengthscale of a kernel is important in specifying the spatial scale
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of variation that a resulting function will have. Large lengthscale kernels produce

functions that vary slowly over time or space.

Squared-Exponential Kernels. The squared-exponential (SE) kernel is a special
case of the Matérn family of kernels where v — oco. The covariance function then

simplifies to:

n _ 2 _(x_$/>2
k(x,2') = of exp “on (1.14)

with the two hyperparameters ¢ and ¢ as before specifying the amplitude and width
of the kernel.

Periodic Kernels. Periodic kernels can be used to express prior expectations
of repeating the behavior of functions. The covariance function can be derived by
mapping inputs to a base kernel through the transformation v = (cosz,sinx). The
result for a base SE kernel (MacKay, 1998) is given by:

2 o/
k(z,2') = oFexp <—£2 sin? <7rx px )) (1.15)

again with o2 and ¢ as variance and lengthscale hyperparameters, plus a third

hyperparameter p that determines the period of the function.
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Figure 1.12 | Examples of kernels for Gaussian processes. Shown are the kernel
functions (left column), functions sampled from the GP prior (middle column) and examples
of the GP posterior (right column) where the blue line represents the predictive mean of the
model and the shaded area is the 95% confidence interval. Figure generated by Max Frank.

These base kernels allow us to put different constraints on the predictions that a

GP can make. This is useful if there is prior knowledge about the data-generating

process. For example, when modeling DNA methylation rate over time, an assumption

of smoothness is reasonable, but a linear change of methylation rate over time is

probably too restrictive. Therefore, a kernel from the Matérn family should be a good

choice.
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1.8.2.2 Combining kernels

Kernels can also be combined to express expectations about functions that mix
multiple elements of these base kernels. Two fundamental ways of combining kernels
are multiplication and addition. This can be done for kernels that operate on the

same input dimension or kernels that operate on different input dimensions.

First, I will discuss combining kernels on the same input dimension. The addition
of kernels expresses the expectation that the function we want to model is a sum of
functions. For example, global temperature could be expressed as a sum of a long-term
SE trend that reflects the impact of climate change and a periodic trend that reflects
seasonal changes. An example of such a model is depicted in Figure 1.13 (bottom

TOW).

Multiplying kernels produces functions that can be thought of as an AND combination
of the base kernels. If one of the functions is 0 the result will always be 0, which means
that one kernel can be a gating function for the other kernel or control its amplitude.
For example, the combination of a linear and a squared exponential kernel will produce
a function with increasing variance (Fig 1.13, second row). Combining linear kernels
through multiplication yields polynomial kernels (for example a quadratic kernel in

Figure 1.13, top row).
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Kernel Function Kernel Samples
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Figure 1.13 | Shown are the kernel functions (left column) and functions sampled from the
GP prior (right column). The top two rows are examples of multiplicative combination of
kernels, the bottom two rows are examples of additive combinations. Figure generated by
Max Frank.

Multidimensional Kernels GPs are not limited to a single input dimension but
can model functions that predict multiple dimensions. This can be done by combining
kernels that are defined on different dimensions either additively or by multiplication

(Fig 1.14). For example for a two-dimensional process:

k(x,x") = ki (21, 2)) + ko(xa, 75) (1.16)
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where the subscript indicates the active input dimension of the respective kernel. For

multiplicative combination:

k(x,x') = ki(z1, 7)) X ko(xa,xh) (1.17)

k(x, x")

k(x, x')

Figure 1.14 | Two one-dimensional kernels can be combined to form a two-dimensional
kernel by addition (top row) or multiplication (bottom row). Figure generated by Max Frank.

When combining kernels, the hyperparameters of the unidimensional kernels can
either be constrained to be shared across kernels or free to be trained individually. A
multiplicative kernel with individually varying hyperparameters is also sometimes
referred to as an automatic relevance determination (ARD) kernel. This kernel is
capable of assigning very long lengthscales to input dimensions that do not have any

structured variability, labeling it irrelevant.

With additive kernels, one expresses the concrete assumption that the function to be
modeled is the sum of functions of the individual kernels. This makes models less
flexible, but more capable of extrapolation in high dimensions if the assumption is
correct. Figure 1.14 shows examples of SE kernels that are combined multiplicatively
or additively. Note that the additive kernel has higher covariance further away from

the center, although both kernels have the same hyperparameters.
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Figure 1.15 | The (top row) shows the kernel function (left) and a sample of the kernel
(right) for an additive SE kernel. The (bottom row) shows the same for a multiplicative kernel.
Figure generated by Maz Frank.

1.8.3 Non-Gaussian likelihoods

So far, we have assumed that the input to a GP are noisy observations with Gaussian
i.i.d. noise of a real-valued underlying function. However, GPs can also be used
to model data that does not have a Gaussian likelihood assumption. For example,
GP regression can be made more robust to outlier observations by using a Student’
t-distributed noise model (Neal, 1997; Stegle et al., 2010). When models have a non-
Gaussian likelihood, their posterior is no longer analytically tractable. This requires
the use of approximate inference techniques to calculate the posterior process and to
train the GP. There are different inference techniques available such as the Laplace
Approximation (Rasmussen and Williams, 2006), Expectation Propagation (Minka,
2001), Markov Chain Monte Carlo (Neal, 1997), and more recently, Variational Infer-
ence (Titsias, 2009; Hensman et al., 2013). These methods compute an approximation

to the marginal likelihood of the marginal likelihood of the model.



42 Introduction

1.8.3.1 Classification

Another data type where Gaussian likelihoods are not appropriate is categorical data.
Here, inputs are part of one of C' classes. In the case of C' = 2, we have the case
of binary classification. GPs can be used to predict class probabilities for unknown
input locations. To turn GP regression into a binary classifier, the idea is to use a
GP prior on a latent function that is defined in the domain (—o0, o), and "squash"
it through a mapping function 7(x) (Fig 1.16). The result of the resulting function is
the probability of the class label being in class 1:

m(x) = ply = 1|z) (1.18)

There are two main mapping functions 7 that are used are w(x) = O(z), which is the
cumulative function of a standard Normal distribution, and 7(z) = 1/(1 4 e~ #), the

logistic function.

1.0

0.6 1

m(x)

0.4

0.2 1

0.0 1

Figure 1.16 | The left panel shows three samples drawn from a GP with a squared-
exponential kernel. The right panel shows the corresponding "squashed" functions that are
obtained by mapping 7(z) = ©(f(x)). Figure generated by Max Frank.

The inference of this model can be divided into two steps. First, the distribution of

the latent variable can be computed for arbitrary time points x,

MﬁlXJﬂw=i/Mﬁ\X$Mﬂp@LKYMf (1.19)

Then, to produce predictions, the distribution over the latent f, is mapped to the

output space of y with the probit link function

m2p( = 1| Xyox) = [(F)p (| Xoyx) d (1.20)
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For a derivation, see Rasmussen and Williams, 2006. As mentioned above, the integral
for the latent distribution is no longer analytically tractable because of the non-
Gaussian likelihood and has to be approximated. I will give a brief overview of the
Variational Inference approach to this approximation here. The idea of variational
inference is to approximate the non-Gaussian term p(f | X,y) with a variational
distribution ¢ (f) that is Gaussian and parametrized by a set of variational parameters
1. The variational parameters are optimized so that the variational distribution is

close to the original distribution in terms of the Kullback-Leibler divergence.

qy(f)
KL (g, (£) |p(£ | , X)) = / (£ In s (1.21)

If we apply bayes rule to p(f|y, X) and rearrange the equation we get:

Inp(y | X) ~ KL (a0 (8) (€ | ) = [ au(®) np(y | £,X)df ~ KL (a0 (£) o(6)
(1.22)
The right-hand side of this equation is referred to as the Evidence lower bound or
ELBO. The ELBO is guaranteed to be smaller than or equal to the likelihood since
the KL term on the left-hand side is positive or zero by definition. Thus, maximizing
the right-hand side of the equation with respect to the variational parameters ¢ will
minimize the KL divergence. In practice, the hyperparameters of the model can also

be optimized in conjunction with the variational parameters.

We can now substitute the variational approximation to the posterior at unseen

prediction points x, to make predictions:

R =+ Xyox) = [ @) (1.23)

Fortunately, the mapping of the latent function can be computed explicitly when
using a probit link since gy (fx) is a Gaussian. The integral of a product of a standard

cumulative Gaussian ® and a Gaussian evaluates to

/_O; O(2)N (x| p,0?) do = ® (\/1’_17> (1.24)

Where we can set x to the mean and o2 to the variance of the latent posterior process.
This gives the predictive rate parameter at test points. Notice that this is not the
same as just taking the link of the mean of the latent posterior since the distribution

in output space is not symmetric around its mode anymore.

1.8.4 Limitations of Gaussian Processes

While GPs offer a convenient way to express assumptions about data, there are also

some drawbacks that need to be considered when working with this class of model.
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Firstly, the computational complexity of computing the posterior of a GP is O(N?) in
time and O(N?) in memory, which prohibits the direct application of GPs to datasets
larger than 10.000 data points without specialized hardware. Fortunately, there has
been progress to speed up inference with sparse versions of GPs (Hensman et al.,
2013). These inference schemes have been implemented in a number of libraries (GPy,
2012; Matthews et al., 2017; Gardner et al., 2021).

Secondly, using non-Gaussian priors for GPs necessitates the approximation of the
posterior process. One efficient way of approximating the posterior is with Variational
Inference (VI). Instead of calculating the posterior directly, VI makes use of an
approximate Gaussian distribution that is optimized to be close to the intractable
posterior in terms of its Kullback-Leibler divergence (KL). Thus, instead of calculating
the likelihood of the model, one calculates an approximate posterior with an evidence
lower-bound (ELBO) with respect to the hyperparameters. This ELBO is the lower
bound of the log marginal likelihood of the true posterior process. There is no
guarantee that the ELBO is close to the theoretical log-likelihood that could be
reached with more expensive methods such as Monte-Carlo sampling, but in practice,

it is often accurate enough to work with these models.

1.8.5 Overfitting

As discussed in Section 1.8.1.1, GPs have an inbuilt penalty term for more complicated
model structures. This is because we integrate over the complete hypothesis space
to calculate the likelihood. More complex models will have a wider hypothesis space
than simple models. Therefore, complex models tend to have a better fit to the
data regardless of whether they capture the data-generating process. In Fig 1.17,
I illustrate the posterior function of three GPs with a squared exponential kernel
with fixed lengthscales. Visually, it is readily apparent that small lengthscales will
lead to overfitting. This is because small lengthscales increase the flexibility of the
model. When calculating the marginal likelihood, this flexibility is penalized. The
same principle applies to the variance parameter, where higher variances are penalized

to prevent overly complex models.
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Figure 1.17 | Gaussian Process data fit with different lengthscale hyperparameters.
The blue line indicates the posterior estimate of the rate parameter of a GP with Bernoulli
likelihood and a squared exponential kernel with a fixed variance of 4.18 and varying
lengtscales (left: 0.01, middle: 0.1, right: 0.3). The GP was trained with variational inference.
The blue points are the training data. . Figure generated by Max Frank.

This principle is illustrated in Figure 1.18, which shows the ELBO estimates for a grid
of hyperparameter combinations. There is an optimum in the ELBO at intermediate
variance and lengthscale, where there is an optimal tradeoff of data fit and model

complexity.
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Figure 1.18 | Marginal likelihood estimate of GP for different hyperparameter
settings. The left panel shows the contours of the ELBO estimate of the log marginal
likelihood of a GP with Bernoulli likelihood and a squared exponential kernel. There is a
maximum of the ELBO surface at variance=4.18 and lengthscale=0.34, as indicated by the
black dot. The right panel shows the posterior rate estimate (blue line) of the GP with the
highest ELBO. The blue points are the training data. Figure generated by Max Frank.

1.8.6 Hypothesis tests using Gaussian processes

The ability to encode assumptions about the data-generating processes and the
robustness to overfitting makes GPs an attractive tool to model many types of
data. In research applications, fitting these models is often a means to test different
hypotheses. In this Section, I will describe how GP models can be used fto decide
between a null hypothesis and an alternative hypothesis based on observed data

points.

There are different approaches that can be used once a GP is conditioned on a set of
input data.

1.8.6.1 Hypothesis testing based on hyperparameter estimates

One approach is to evaluate the posterior estimate of the hyperparameters of the GP.
Depending on the setup of the GP model, the hyperparameters will have interpretable

meanings for the underlying function.

For example, in the case of GP regression, the lengthscale parameter of a squared

exponential kernel is inversely proportional to the influence of the input dimension
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on the posterior process. As the lengthscale gets larger, the covariance between input
points decreases. In the case of multivariate regression, this can be used to determine
which inputs are important to determine the output values. If we extend the squared

exponential kernel from Section 1.8.2 to multiple input dimensions, we get

(x—x)"M(x-x)
2

k(x,x') = UJ% exp (— ) M = diag(£) 2 (1.25)

where £ is a vector of lengthscales of length equal to the number of input dimensions
D. The relevance of the dth input dimension is inversely proportional to 4. This is
called Automatic relevance determination (Neal, 1996) and can be used to remove

irrelevant input dimensions.

1.8.6.2 Hypothesis testing based on the marginal likelihood

Similarly, whether an output is linearly dependent on an input by looking at the
lengthscale hyperparameters of a regression model where the slope is modeled by a
GP with a squared exponential kernel (Mulder, 2023).

y=0(x)x+e (1.26)

B(x) ~942(0,k (x,x')) (1.27)

where k (x,x) is a squared exponential kernel. As the inverse of the lengthscale
parameter of the kernel approaches zero, the slope function §(x) will become constant,
and thus

y=p0x+¢ (1.28)

These two examples illustrate the interpretability of the hyperparameters of GP
models. However, this does not directly provide a statistical estimate that allows the

quantification of the confidence level of rejecting the null hypothesis.

A common test statistic in Bayesian modeling is the Bayes factor (BF). The Bayes
factor is the ratio of the marginal likelihoods of two models. The marginal likelihood
of a model is the evidence or likelihood of the model after seeing data integrated over
the priors of the parameters of the model. In the case of GP regression, two models
that correspond to the null and the alternative hypothesis can be used to compute
a BF of the hypotheses. The marginal likelihood for a GP model M (including the

hyperparameters of the model) is

p(D | M) = / p(0| M)p(D | 0, M)do (1.20)

where D is the observed data and 6 is a vector of the hyperparameters of the model.

This integral might be analytically intractable, depending on the prior over the
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hyperparameters p( | M). Therefore, in practice, the hyperparameters are often
optimized for both models, and the marginal likelihood is approximated by the

maximum a posteriori likelihood with

p(D| M) =p(D |6, M)p®| M) (1.30)

where 6 is the optimized set of hyperparameters. In practice, the prior over the
hyperparameters is often chosen to be uninformative, which means the prior term can
be excluded. Thus, the approximation of the BF for two models My, M; corresponding

to the null and the alternative hypothesis becomes

p(D | My)  p(D| 6, M)
p(D | Mo) — p(D | 6y, My) 131

This is sometimes referred to as the likelihood ratio. However, this approximation has
to be handled with care if the models vary in their number of hyperparameters. Since
the full BF integrates over all hyperparameters, models with different numbers of
parameters can be compared. However, with the maximum likelihood approximation,

this robustness is lost.

Using the likelihood ratio as a test statistic, one can make use of Wilks theorem
(Wilks, 1938), stating that if the null hypothesis is true and the number of observed
data points approaches infinity, the likelihood ratio statistic will approach a chi-
squared distribution with degrees of freedom equal to the difference in number of
parameters between the two models. This result has been used for calculating p-values
for hypothesis tests with GPs applied to genomics (Svensson et al., 2018; BinTayyash
et al., 2021). However, Wilks’ theorem only holds true if the null model and the full
model are strictly nested, meaning that the null model’s parameters lie strictly within
the parameter space of the full model. This assumption can often be violated with

GP hypothesis tests, as will be demonstrated in the next Chapter.

1.8.7 Applications in genomics

The ability to model smooth nonlinear functions without the need to explicitly know
the parametric function of the data-generating process makes GPs an attractive way
to model gene expression over time courses or in spatial contexts. In this Section, I

will give an overview of studies that use GPs to model genomic data.

1.8.7.1 Time course data

An early application of GPs to microarray time-course data was in the modeling of
TF regulation networks. Lawrence et al., 2006 studied the response of five target
genes of the p53 tumor suppressor gene. They used linear and nonlinear modes of
transcriptional regulation to calculate p53 expression levels only from observations of

its target genes. The time course data of the target genes was modeled as a GP with a
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squared exponential covariance function. They could then compare their estimations

of phH3 expression levels to experimentally measured levels.

In a similar fashion, Kirk and Stumpf (Kirk and Stumpf, 2009) fit GP models to
gene-expression data of 800 Arabidopsis thaliana genes, measured in duplicates at
11 time points. They were interested in obtaining error distributions for parameter
estimates of different models of gene regulation. Their approach involved sampling
the GP posterior to obtain a bootstrapped dataset of gene expression time courses.
They then applied the models of gene regulation to their samples to estimate the

distribution of model parameters.

Stegle et al. introduced a GP model called GPTwoSample that allowed for the
decision of whether two-time courses of a gene were different between two experimental
conditions (Stegle et al., 2010). The idea was that if the null hypothesis (no differential
expression between conditions) was true, then both sets of observations could be
explained by draws from a single distribution and, therefore, modeled with a single
GP. In the case of differential expression, the data would need to be modeled by two
independent GP models for the two conditions. The ratio of the likelihood of the two
models could then be used to rank the genes according to the likelihood of differential
expression. The GP models used a squared exponential kernel and also introduced
the idea of using a heavy-tailed non-Gaussian likelihood to be more robust to outlier
observations that are frequently observed in genomics data. Importantly, the likelihood
ratio of this model can be evaluated not only for all observations but also for subsets
of observations at a particular time point, allowing the authors to derive a mixture
of expert models that decide for each time point if a gene is differentially expressed.
This allowed the question to be asked not only if a gene is differentially expressed but
also when differential expression occurs. Note that there is an important difference
between performing independent tests for differential expression at each time point
and this model since the covariances between measurements closely together in time

are considered.

The two-sample hypothesis test was subsequently expanded to allow a continuous
measure of differential expression that was not confined to time points with experi-
mental data (Heinonen et al., 2015). This was achieved by comparing the posterior
concentration of the null model and the alternative model as an estimate of the
confidence of the models. Both of these models need to use heuristics in order to
determine the time of divergence of gene expression between conditions. Yang et
al. developed a GP model with the divergence time point as an explicit parameter,
allowing for a fully Bayesian estimate of when two-time series first diverge (Yang
et al., 2016).

Another type of hypothesis test with GPs, termed the one-sample test, was imple-
mented by Lawrence et al. (Kalaitzis and Lawrence, 2011) shortly after the two-sample

test by Stegle et al. (Stegle et al., 2010). Here, the question is whether gene expression
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of a gene varies over time given a single time-course measurement. Again, the test is
based on computing the likelihood ratio of two models. A null model that does not
allow for variation in gene expression over time and an alternative model that does.
They use a GP with a squared exponential kernel and a robust Student-t likelihood
to model the alternative hypothesis of a temporally varying gene. The null model is
constructed by setting the variance parameter of the kernel to zero and the lengthscale
parameter to infinity. They use the likelihood ratio of these model to rank genes

according to their likelihood of being temporally variable.

GPs have also been extensively used to model gene expression in single-cell datasets.
Here, time series are often not created by performing sequencing experiments at differ-
ent time points but created from a single or a few sequencing runs using pseudotime
methods. This makes temporal estimates prone to error. Furthermore, sequencing
depth is reduced for an individual cell compared to bulk sequencing methods, putting
increased importance on correct modeling of the noise with appropriate likelihood func-
tions. The recently introduced GPcounts model implements two likelihoods suitable
for single-cell measurements: the negative binomial likelihood and the zero-inflated
negative binomial likelihood. They use their model to perform both two-sample and
one-sample hypothesis tests and show on simulated data that hypothesis tests with
the appropriate model likelihood have higher power compared to the same tests with

Gaussian likelihood.

Because pseudotime inference in single-cell data can lead to the discovery of a
branching structure in developmental datasets, GP models have also been developed to
explicitly model time series that contain bifurcation events and to assign observations
to branches. Note that compared to the previously discussed bulk sequencing problems,
there are some subtle differences. In the bulk scenario, comparing two-time series of
the same gene in two conditions, the assignment of each data point to each branch is
known and fixed. Because pseudotime inference is based on noisy data, however, the
association of cells to different branches should be taken with care. For this reason,
GP models based on an overlapping mixture of Gaussians (Lazaro-Gredilla et al.,
2012) have been developed. These models construct branched trajectories and assign
each cell to the trajectories in a probabilistic manner. These models can then be used
to compute branching events either globally for all genes (Lonnberg et al., 2017) or

locally for a single gene (Boukouvalas et al., 2018a).

1.8.7.2 Spatial data

With the advent of single-cell methods that allow the profiling of gene expression in
a spatially resolved manner, there was an increased demand for methods detecting
spatially variable genes. Svensson et al. developed such a method with SpatialDE
(Svensson et al., 2018; Kats et al., 2021). Spatial DE can be considered an extension
to the one-sample test introduced in the previous Section. It trains two GP models,

allowing for spatial variability in the kernel or keeping expression constant in space.
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The likelihood ratio of these models was then used to calculate a statistical estimate
of spatial variability, using Wilks theorem to produce calibrated p-values (see Section
1.8.6.2). Furthermore, they provide an effect size estimate that measures the fraction
of spatial variance, i.e., the fraction of total variance that is explained by spatial
variation. The model also allows for the clustering of spatial patterns, which means

that groups of genes with similar expression patterns can be automatically found.






53

2 The GPmeth model for epige-

netic single-cell data

2.1 Derivation of the GPmeth model

Based on the previous Chapters, I designed model that makes use of all the available
information within single-cell epigenetics data to detect changes over the course
of continuous trajectories. The first step in this process is to use single-cell gene
expression data to assign cells to a position within pseudotemporal trajectories
(see Section 1.7.1). This constitutes the global analysis part of the framework. The
subsequent local analysis involves the identification of epigenetically regulated regions
that change over the course of the inferred trajectories. This involves considerable
challenges, as discussed in Section 1.7.2. These challenges are addressed by the
GPmeth model.

In this Section, I describe the GPmeth model and the considerations that went into

its formulation.

2.1.1 Model Description

The input data for GPmeth are single-cell base-resolution epigenetic data. Each data
point for CpG/GpC site 4, in cell j, can be described by

Yij = Bern(pij) (2.1)

Where p;; is the unknown true (Bernoulli distributed) methylation rate and y is the
observation in the data. Following the argumentation of Section 1.7.2 we assume that
there are no hemimethylated sites, which is why methylation can be described as

binary:

)= L Niethytated/Ntotal > 0.5 (2.2)

0 Nmethylated/Ntotal < 0.5
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Where Nypethylated are the number of reads indicating a positive methylation state, and
Niotal are the total number of reads at that site. Sites with Ny,ethyiated/Niotat = 0.5 are
discarded. For the majority of observations, all reads are methylated or unmethylated
(Fig 2.1).
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Figure 2.1 | Genome-wide scNMT methylation rate measurements. Histogram of
observed CpG methylation rates in individual cells. The data shown represents a subset of
one million methylation observations from the mouse gastrulation dataset. CpG sites with
0.5 methylation rate have been removed. Figure generated by Max Frank.

2.1.1.1 Modeling individual CpG/GpC sites

Each cell j can be associated with a position in pseudotime or cell grouping (Fig 2.2,
a) using the methods described in Section 1.7.1.3. As motivated by Section 1.7.1.3

we expect the value of the underlying methylation rate to vary smoothly along time.

We start out with a model describing the underlying methylation rate p of an
individual CpG/GpC site i along that temporal axis. The process of generating input
data for an individual CpG/GpC site is outlined in Figure 2.2. First there is a global
analysis producing a branch assignment as well as a pseudotime estimate ¢; for each
cell. Measurements of a CpG/GpC site can then be sorted along their pseudotemporal,
and the methylation rate can be modeled. I choose a Gaussian Process to model the

methylation rate for the reasons introduced in Chapter 1.8.5.
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Figure 2.2 | Workflow to generate input data for GPmeth for individual sites.
The top row shows how cells are assigned a pseudotemporal value and associated with a
developmental branch. The bottom row shows the subsetting of the methylation data to a
specific CpG/GpC site and the ordering of the cells according to pseudotime. Each regulatory
region that is produced like this can then be modeled with the GPmeth model. Figure
generated by Max Frank.

With the assumption of smoothly varying methylation, we can define a function f;(t)

that describes the methylation rate trajectory of each individual CpG/GpC site i.

pi = fi(t;) (2.3)

The temporal dynamics of methylation rate are described by a Gaussian process.
fz(t) ~ GP(,UZ‘, kz) (2.4)

Because GPs produce outputs in the domain (—oo, 00) but p lies in the range [0, 1],
the Gaussian process output pushed through an inverse probit link function (see

Section 1.8.3) to guarantee a valid rate output:
pi = O(gi(t)) (2.5)

9i(t) = GP(pi, ki) (2.6)

Here, g; is a nuisance function that is converted to the rate parameter with ©, which
represents the cumulative distribution function of the standard normal distribution.
This ensures that the output of the GP is bounded between 0 and 1. Note that I
dropped the index i of the CpG/GpC site in the second equation for brevity. From
now on, it is assumed that each GP model will represent a single CpG/GpC site.
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When using GPs with Gaussian likelihoods, it is common practice to scale the output
data y to zero mean and unit variance before fitting the model. This ensures that
the GP can be parametrized with a constant zero mean. In the case of binary output

data, this is not possible. I, therefore, parametrize the GP with a constant mean:

i =07 (y3) (2.7)

Where y is the empirical mean of all observations. Since p is the mean of the latent
function f, ¥ has to be mapped to the space of the latent function via the inverse of

the link function.

The GP is also parametrized by the kernel function k;. To differentiate this kernel in
later Sections and to make clear that this kernel models temporal changes I will drop
the index and refer to it as k¢jme. ktime produces the covariance matrix of the GP.
The kernel function contains the assumptions of the model. One way to encode our
expectation of smoothly varying methylation rate across the genome with a radial
basis function (RBF) kernel of the form

ktime(tj, t;) = 0® exp (—W) (2.8)
Where t; represents the pseudotime coordinate of the cell that the observation of
CpG/GpC site ¢ was made in. o and [ are hyperparameters of the model. The
lengthscale parameter [ controls the smoothness of the model, while o is the kernel
variance determining the amplitude of changes in the function. Other kernels can be
chosen, such as a Matérn kernel or a linear kernel to encode varying assumptions

about the data-generating process (see Section 1.8.2 and Fig 2.3).
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Figure 2.3 | Kernel choices for binary Gaussian Processes. Shown are samples from
latent processes f(z) (left column), their equivalents after transforming through the link
function p(z) (middle column), and examples of the GP posterior (right column) where
the blue line represents the posterior estimate of p(z) and the black dots are the training
observations. Note that linear kernels become nonlinear through the transformation but
remain monotonic functions. Therefore, the linear kernel is not able to properly model the
example observations where the methylation rate is increasing and then decreasing, leading
to a flat posterior. Figure generated by Max Frank.

As discussed in Section 1.8.3, the marginal likelihood of this model cannot be computed

analytically. Therefore I use a variational inference approach to compute the ELBO
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as an approximation. The hyperparameters of the model are optimized by standard

gradient descent using the Scipy optimizer (Virtanen et al., 2020).

While these kernels allow to flexibly model temporal variation of the methylation

rate, we can also define a kernel that only allows constant functions over time. Then

ktime(tja t]) = 02 (29)
where o is the kernel variance. In the case of a Bernoulli likelihood with a probit link

function, this variance parameter will always collapse to zero. The trained GP model

then is

9(t) = N(g,0) (2.10)

which leads to

(2.11)

)
Il
N

and the marginal likelihood is simply

p(ylp) =[] p¥9 (1 — p)0-vid) (2.12)
j=1

This models allow to perform a range of hypothesis tests on the observed data. These

include:

e Does the methylation rate of the observed CpG/GpC site change over the
course of a pseudotemporal trajectory? This can be achieved by computing the
likelihood ratio between a model with a temporally variable kernel ke and a

model with a constant temporal kernel (see Section 2.1.2).

e Does the methylation rate vary smoothly over time, or can the variance be
explained by grouping cells into cell types? This can be achieved by comparing
a model with a smoothly varying kernel ke to a model that has a constant

methylation rate p. for each identified group of cells c.

e Does the methylation rate vary linearly or non-linearly over time? This can be
achieved by computing the likelihood ratio of a model with a non-linear kernel,
such as the squared-exponential kernel or the Matérn kernel, to a model with a

linear kernel.

In all these cases, the likelihood ratio of the models encoding different beliefs about
the data-generating process is the test statistic that can be used to rank different

CpG/GpC sites according to their likelihood of violating the null hypothesis. To get
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from the likelihood ratio to a test statistic that is properly controlled at a nominal
false discovery rate (FDR), the model must, however, still be calibrated (see Section
2.2.4).

I now have devised a range of tests for individual CpG/GpC sites. In practice, however,
these tests would only be useful in very targeted applications where one is interested in
only a handful of sites. For any genome-wide differential methylation analyses, testing
individual CpG/GpC sites would run into the issue of multiple testing. Furthermore,
researchers are typically not interested in individual CpG/GpC sites but want to
test whether there is differential methylation in a regulatory region. Therefore, I will

expand this model in the next Section.

2.1.1.2 Modeling regulatory regions

The models described in the previous Section allow for smoothly varying methylation
rate over time but do not account for the co-variation of neighboring CpG/GpC sites.
As discussed in Section 1.7.2.1, CpG/GpC sites that are closely positioned along
the genome cannot be treated as independent observations but co-vary. Therefore,
it makes sense to study CpG/GpC in the context of a genomic region as opposed
to an individual site. Figure 2.4 shows the workflow of producing input data for the
extended model that will be described in this Section.
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Figure 2.4 | Workflow to generate input data for GPmeth. The top row shows how
cells are assigned a pseudotemporal value and associated with a developmental branch. The
bottom row shows the subsetting of the methylation data to a specific regulatory region
(e.g., enhancers, promoters, etc.) and the ordering of the cells according to pseudotime. Each
regulatory region produced like this can then be modeled with the GPmeth model. The
output of the GPmeth model for two trajectories is shown in the bottom right panel. Points
represent individual CpG/GpC measurements, and the contours depict the posterior mean
prediction of the model. Figure generated by Max Frank.
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Because genomic covariance results from multiple possible regulatory processes, it
is challenging to come up with an explicit model that describes the dependence of
a site on its neighbors. The simplest approach would assume constant methylation
for each cell across a limited genomic region. This would mean that the same model
as described above can be used where each CpG/GpC of a cell that falls into the
modeled region shares the same model. This assumption works well if the boundaries
of regulatory regions are precisely known before the analysis. However, since these
boundaries are often estimated, it would be desirable to derive a testing procedure that
is somewhat robust to the choice of boundaries. I, therefore, take a non-parametric
approach with a Gaussian process to model methylation rate across the genome as
well. Concretely, I express the covariance between sites with a squared-exponential

kernel of the form

P
. T — X
Kgenome (i, i) = 0 exp (W) (2.13)
Where z; represents the genomic coordinate of the observation. ¢ and [ control the

smoothness and magnitude of change of the methylation rate across the genome.

As discussed in Section 1.8.2.2 there are different ways to model the co-variation of
the methylation rate across the genome and across pseudotime. One choice would be

to express the total covariance as an additive combination of kgepome and kiime

k= kgenome + ktime (214)

This would mean that we assume that there are two independent processes that
modulate the methylation rate in the genome dimension and in the time dimension.
This assumption is likely to be too restrictive. For example, there are DNA-binding
proteins that are sequence-specific and will, therefore, operate on a specific part of the
genome. If these regulators are differentially expressed over time, they can influence
the methylation rate, which is dependent on both genomic position and time. Another

option is to multiply the genomic and temporal kernel

k= ]fgenome * ktime (215)

This is a more flexible structure that will be able to model the influence of regulatory
factors that depend on both time and genomic position. However, there are clear
cases of factors that will not be time sensitive but dependent on position. These
include nucleosomes that are not displaced during the course of time or regions that
are permanently silenced by methylation. Therefore, I use a combination of the two

kernels above

k= kgenome + ktime * k‘genome (2'16)
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This assumes methylation rate is an additive result of the influence of genomic factors
that are constant over time (modeled with kgepome) and genomic factors that vary
in their effect across time (modeled with k¢ime * k*genome ). This explicitly separates
factors that are static over time (such as the DNA sequence, which is an important
component in modeling DNA methylation (Angermueller et al., 2017), from regulatory
influences that vary over time but will also have a positional component, such as
DNMT binding. This is the kernel of the full model for the methylation rate of a
genomic region. I can now use this model to answer the question of whether there is
differential methylation over the course of a developmental process. As before, this
can be achieved by computing the likelihood ratio of the full model and a model that
corresponds to the null hypothesis of no variation over time. This model can easily
be formulated by removing the part of the kernel that takes into account temporal

information

knull = kgenome (2 17)

Figure 2.5 shows draws from GP priors with the different kernels mentioned above.
One can see that with the additive kernel, the temporal dynamics extend throughout
the whole genomic window, inconsistent with a locally binding regulatory protein.
With the multiplicative kernel, there is a dependency between the absolute value of
methylation and the rate of methylation rate change at any point in the genome.
This is also not a desirable property of the model. With the full kernel, the rate of
change and absolute methylation level are no longer coupled. I, therefore, use the

Egenome + Ktime * k' genome kernel combination for all subsequent experiments.
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Figure 2.5 | Kernel combinations for methylation rate modeling. Shown are samples
from the GP prior. Contour lines represent the methylation rate p(x). The column indicates
the kernel construction of the GP. The row indicates the type of kernel that kiime is. Egenome
is always a squared exponential kernel. All kernels have been instantiated with variance=1
and lengthscale=0.25. Figure generated by Max Frank.

With these kernels in hand, I can now formulate a range of models that correspond

to specific assumptions about the data. The models are listed in Table 2.1.
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Model name

kgenome

ktime

Assumption

Constant

ConstantLinear

ConstantRBF

ConstantMatérn

ConstantCategorical

RBFConstant

RBFLinear

RBFRBF

RBFMatérn

RBFCategorical

RBF

RBF

RBF

RBF

RBF

Lin

RBF

Matérn3/2

Categorical

Lin

RBF

Matérn3/2

Categorical

No methylation changes across re-

gion or time

Methylation rate changes monoton-
ically over time but not across the

region

Methylation rate changes smoothly

over time but not across the region

Methylation rate less

smoothly over time but not across

changes

the region

Methylation rate changes across cell

types but not across the region

Methylation changes only across

the region

Methylation rate changes monotoni-
cally over time and smoothly across

the region

Methylation rate changes smoothly
over time and smoothly across the

region

Methylation less

smoothly over time and smoothly

rate changes

across the region

Methylation rate changes across cell
types and smoothly across the re-

gion

Table 2.1 | Models for describing methylation rate in a regulatory region.

2.1.2 Differential Testing

From the models described in 2.1, a range of statistical tests can be derived

where test statistics are obtained with the comparison of models that correspond

to the null and the alternative hypotheses. In the case of testing for differential

methylation/accessibility over a time course, the null hypothesis is that methyla-

tion/accessibility does not change, which corresponds to a model without a temporal
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kernel. The alternative hypothesis can be expressed by one of the models in Table 2.1,
depending on the prior assumptions a researcher makes about the data. Figure 2.6
shows the models that can be tested against each other if the assumption is that the
methylation rate is constant across the tested genomic window. In this case, the data
can be visualized by aggregating the signal of all CpG/GpC sites within the input
window. Here, a Constant model is tested against the ConstantCategorical, Constant-
Linear, and ConstantRBF models. The ConstantCategorical model will describe each
group (category) of cells separately. The ConstantLinear model allows for linearly
increasing or decreasing methylation rate over time, and the ConstantRBF allows for
nonlinear temporal trajectories. The comparison of the marginal likelihoods of the
pairs of null and full models allows the calculation of test statistics that are used to

reject the null hypothesis. This will be described further below.

categorical linear non-linear

i .— ﬁ :“ = :___4_" ”i - | Fullmodel

category

methylation rate
methylation rate

Null model

pseudotime

pseudotime

Figure 2.6 | GPmeth model comparisons without genomic variability. The left
panel shows the input data where each point represents the average methylation rate p
(y-axis) of all CpG/GpC sites within a predefined genomic window that was observed in a
cell with associated pseudotime (x-axis). The right panel depicts three different hypothesis
tests where a null model (bottom row) is compared to the respective full model above (top
row). The null model for all hypothesis tests is a Constant model that does not allow for
varying methylation rate and will regress to the mean methylation rate of all cells. The full
models correspond to the ConstantCategorical, ConstantLinear, and ConstantRBF models.
Models are described in Table 2.1. Figure generated by Max Frank.

As discussed in Section 1.5 and 2.1.1.2, the assumption of constant methylation
rate within predefined genomic windows is often hard to justify (see Section 1.7.2,
and GPmeth can also test for differential methylation/accessibility without this
assumption. Figure 2.7 shows the same tests as discussed above while allowing for
methylation rates to be variable within the genomic region. Note that the majority
of the region is not differentially methylated /accessible. This would dilute the signal

and decrease the power of the statistical test when averaging over the input window.
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categorical

Full model

pseudotime

pseudotime

methylation rate

Null model

v

genomic region

genomic region

Figure 2.7 | GPmeth model comparisons with genomic variability. The left panel
shows the input data where each point represents the genomic location (x-axis) and methyla-
tion status of a single CpG/GpC site (red=methylated, blue=unmethylated)in a cell with
associated pseudotime (y-axis). The right panel depicts three different hypothesis tests where
a null model (bottom row) is compared to the respective full model above (top row). The null
model for all hypothesis tests is a RBFConstant model that allows for varying methylation
rate only within the genomic window but not over time. In these plots, each point represents
the average methylation rate of a single CpG/GpC site across all cells. The full models
correspond to the RBFCategorical, RBFLinear, and RBFRBF models. Models are described
in Table 2.1. Figure generated by Mazx Frank.

To obtain a statistical metric of differential methylation, we compute the likelihood
ratios between the null model and the full models. Under the assumption of the
null hypothesis, Wilks theorem Wilks, 1938 states that the negative log of these
likelihood ratios should follow a y2-distribution with degrees of freedom according to
the difference in hyperparameters between the full and the null model (see Section
1.8.6).

p(LLR | d) = x3(—LLR) (2.18)

Where L is the log-likelihood ratio of the full model with a temporal kernel and the

null model without a temporal kernel.

This has been successfully employed in the context of GP hypothesis testing by

Svensson et al. (Svensson et al., 2018).

However, these models are not truly nested since that would require the parameters of
the null model to be fixed to a value that lies strictly in the interior of the parameter
space of the full model. In my case, if I set the variance parameter of ke to zero,
I recover the null model. Setting the variance to zero means that the parameter is
fixed at the edge of the parameter space. Furthermore, due to the non-Gaussian
likelihood, it is not possible to calculate the exact marginal likelihood of the model.
Instead I calculate the ELBO estimate of the marginal likelihood. This turns the
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inference problem into a numerical optimization problem. Therefore, the validity
of the assumptions for the likelihood ratio statistic also depends on how good the

approximation to the marginal likelihood is.

I, therefore, decided to validate the calibration of the model empirically by testing
the model on synthetic data that represent the null hypothesis. This will be discussed
further in Section 2.2.4.

2.1.3 Refinement of Differential Regions

In the above Sections, I formulated a model that describes the change in methylation
rate over time for a regulatory region. In an ideal scenario, these regulatory regions
should be chosen so that exactly one differential methylation ’event’ takes up most or
all of the region. In practice, researchers often do not have good knowledge about
where in the genome differential methylation will occur. As mentioned before, a good
initial guess for these regions is known regulatory elements such as enhancers and
promoters. However, there is no guarantee that the boundary of these regions is
chosen such that only one differential methylation ’event’ happens in the chosen

window.

Thus, if we get a significant test for a tested window, the next question arising is at
which genomic coordinates the methylation rate change actually occurred. Fortunately,
this can be readily answered since the model gives predictions of the methylation
rates that can be evaluated with arbitrary precision throughout the region. A good
measure of whether there is a biologically relevant change in methylation rate at a
specific position in the genome is the effect size of the change or methylation rate
difference. For example, many bulk studies use a threshold of a methylation rate
difference of 0.3 between samples. With the model, I can ask for any point in the
tested region what the maximum and minimum predictions for methylation rate are.
The difference between those I termed Maximum Methylation Rate Change (MMRC),
which can then be thresholded to produce refined regions of differential methylation
(Fig 2.8). Note that the model is able to capture and distinguish two regions within
the window that follow opposite trends of methylation rate change. This highlights

the importance of a flexible nonlinear model.
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Figure 2.8 | Refinement of differential regions. The upper panel shows the posterior
mean predictions of methylation rate of the full model (a GP with a squared-exponential
kernel ktime) as contours. The training data (synthetically generated) are shown as points,
with blue indicating an unmethylated site and red indicating a methylated site. The lower
panel shows the maximum methylation rate change (MMRC) at each position in the genomic
region as a blue line. The horizontal dotted line represents a threshold for MMRC of 0.3.
The grey-shaded areas indicate refined regions where the MMRC is consistently above the
threshold value. In this example, there are two differential events happening in close vicinity
to each other, where one refined region is demethylated over time while the other becomes
methylated. Figure generated by Max Frank.

2.2 Validation of the GPmeth Model on Synthetic Data

To validate the ability of GPmeth to model regulatory regions and test for differential
expression, I created a synthetic dataset of regions with varying degrees of differential

methylation.

2.2.1 Data generation

The goal of generating a synthetic dataset of regulatory regions was to be able to
control the underlying methylation rate while mimicking the data generation and noise
process of a scNMT-seq experiment as closely as possible. As described in Section
1.3.1, the DNA methylation and chromatin accessibility readouts in scNMT-seq
experiments are based on bisulfite conversion of unmethylated CpG/GpC sites that
are then sequenced with high throughput sequencing. To generate realistic scNMT-seq
data, I, therefore, had to simulate sequencing reads. The coverage of the genome
by reads is limited by the low amounts of input material in a single nucleus, rather
than the sequencing depth. Based on previous scNMT-seq experiments (Angermueller
et al., 2016; Clark et al., 2018), I assumed a fixed coverage cov of 9% of the genome.
Next, I assumed that the number of reads that would cover a given genomic region

in an individual cell would follow a binomial distribution

Nreads = Bi(floor(lregion/lread)s cOV) (2.19)
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where the number of draws equals the ratio of the length of the genomic region I ¢gion
and the length of the reads l,¢.q. The length of the reads can vary depending on the
sequencing technique. Here, I used a read length of 75bp. Reads are then randomly
placed in the genomic region. Each read will provide a binary readout of all CpG/GpC
sites that are covered by it. To generate a simplified distribution of these sites, I
assumed that they are uniformly distributed across the region with a density equal
to the average genome-wide density. For CpG sites, this is roughly 0.5% outside of
CpG islands and 5% within CpG islands. For GpC sites, I assumed 5% genome-wide
density. Furthermore, the data depends on the number of cells assayed and their
distribution across developmental trajectories. For this simulation, I assumed that

300 cells were sequenced with uniform distribution along a single temporal axis.

Figure 2.9 shows the resulting positioning of CpG/GpC sites for the experimental

parameters outlined above.
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Figure 2.9 | Example simulation of CpG/GpC locations. The scatterplots show
the positions of assayed CpG/GpC sites in a simulated scNMT experiment with 300 cells
uniformly distributed across pseudotime. I assumed a read coverage of 0.1 and a site density
of 0.005 left or 0.05. Figure generated by Max Frank.

Next, I created a generative model for the methylation rate of a simulated region. For
simulating regions that correspond to the null hypothesis of no methylation change
over time, the generative function is simply sampled from a GP with a genomic

squared exponential kernel.

Prull ™~ @(GP(O, kgenome) (220)
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Figure 2.10 shows 50 draws of this model. The sampled methylation rate is then used
to generate realistic experimental data by performing Bernoulli draws at simulated

positions as described above (Fig 2.10, right panel).
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Figure 2.10 | Simulated scNMT data with no methylation change over time. The
left panel shows 50 samples of the methylation rate p from a GP with a genome kernel only.
The x-axis of each plot corresponds to the genome position and the y-axis corresponds to
pseudotime. The right panel shows the Bernoulli draws at simulated positions of CpG sites.
Figure generated by Maz Frank.

For regions that correspond to the alternative hypothesis of differential methylation,
I assumed that there is a single differential methylation event in the center of the
regulatory region. As shown in the previous Section GPmeth is also capable of
identifying multiple differential methylation events or events that are not in the
center of the region. The choice for the simulation was made to simplify the analysis.
For this, I specified a GP with a differential methylation kernel that is an additive
kernel between kgenome as described above and a change window kernel that models

methylation across time on a subset of the region:

Palt ~ (I)(GP(Ov kalt)

kalt = kgenome + kCW

kew = ki(z,2) x (1 — o(2)) * (1 — o(2')) + ko(z,2") x o(z) * o ()
1 1

e—s(z—w0) * e—s(z—x1)

Ozg,21 (m) =

The change window kernel allows the transition from a kernel k; outside of a window
[0, 21] to a kernel ko within the window. The parameter s specifies the steepness

of the transition. In this case, I chose to use a constant kernel k; with low variance
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outside of the window and a squared exponential kernel ko inside of the window.
The lengthscale parameter of ko was set to half the length of the total pseudotime,
and the variance was adjusted so that a desired level of maximum methylation rate
change (see Section 2.1.3 was produced. For details of the simulation process, see
Section 6.1.3.

Figure 2.11 shows examples of draws from the model with varying window sizes and

differential methylation rates.
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Figure 2.11 | Simulated scNMT data with methylation change over time. The
left panel shows 50 samples of the methylation rate p from a GP that produces methylation
change over time. The x-axis of each plot corresponds to the genome position and the y-axis
corresponds to pseudotime. The right panel shows the Bernoulli draws at simulated positions
of CpG sites. Figure generated by Maz Frank.

2.2.2 Model Evaluation

The generative model described above was used to create a set of synthetic regions
from the null hypothesis and the alternative hypothesis with different differential

window sizes and methylation rate changes.

First, I tested the sensitivity of the differential methylation test with the RBFRBF
model (Tab 2.1) at different settings for the simulation. To this end, I simulated
1000 regions with the generative model corresponding to the null hypothesis. Then I

simulated 100 regions for each combination of the following scenarios:

Parameter Values

CpG/GpC coverage 0.05, 0.005

Differential methylation window size 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000

Maximum methylation rate change 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 2.2 | Simulation parameter settings
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The simulated regions had a total width of 3000 bp, which means that the window
that is affected by differential methylation ranges from 3% of the window to 100%
of the region. Figure 2.12 shows the receiver operating characteristic curves for the
different parameter settings. As expected, performance consistently improves with
increasing width of the differential methylation window, as well as with increasing
MMRC parameter. This result also illustrates the drastic effect of the sparsity of the
CpG/GpC sites on the performance of the model. With a CpG/GpC frequency of
0.5% ( Fig 2.12, top row), the model is not meaningfully different from a random
classifier at MMRCs below 0.5. Above 0.5, the test becomes more powerful, but
only if stretches of the genome larger than 500bp are affected. In contrast, with a
CpG/GpC density of 5% (Fig 2.12, bottom row), the test has enough power to detect
methylation rate changes as low as 0.2 if stretches in the genome larger than 500bp
are affected or even smaller stretches if the MMRC is 0.5 or higher.
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Figure 2.12 | Performance of the RBFRBF differential methylation test on
simulated regions. Receiver operating characteristic (ROC) curve plots show the power
of the RBFRBF model to identify differentially methylated/accessible regions in different
settings. The top row shows ROC curves with a CpG/GpC density of 0.005, typical for
endogenous methylation outside of CpG islands. The bottom row shows ROC curves with a
CpG/GpC deunsity of 0.05, which is typical for GpC sites and CpGs in CpG islands. Maximum
methylation rate change increases from left to right. Note that for the lower CpG/GpC
density scenario, the model only becomes powerful with larger methylation rate changes,
while with the higher density, the model is sensitive enough to identify changes in methylation
rate as low as 0.2 given a large enough differential methylation window. Figure generated by
Max Frank.

Next, I investigated how accurately the model estimates the MMRC. The MMRC
value is an important metric to evaluate the magnitude of the methylation rate
change. This can be thought of as analogous to a fold-change estimate in differetial
gene expression testing. Figure 2.13 shows the MMRC estimation by the RBFRBF
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model for different simulation criteria. In general, the estimate of the MMRC is
conservative, which is to be expected and indicates that the model does not overfit
the data. Furthermore, the estimation becomes more accurate with larger stretches
of the genome being affected and higher MMRC.

maximum methylation rate change
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Figure 2.13 | Accuracy of the RBFRBF model to estimate the maximum methyla-
tion rate change (MMRC). Violin plots indicate the MMRC predictions of the RBFRBF
model for different simulation scenarios. The blue horizontal line indicates the ground truth
of the data-generating process. The top row shows MMRC predictions with a CpG/GpC
density of 0.005, which is typical for endogenous methylation outside of CpG islands. The
bottom row shows MMRC predictions with a CpG/GpC density of 0.05, which is typical for
GpC sites and CpGs in CpG islands. The MMRC ground truth increases from left to right.
The model provides a systematically conservative estimate of MMRC and gets more accurate
the larger the differential methylation window size, as expected. For the higher CpG/GpC
density scenario, it seems that a differential methylation window of 500 base pairs (bp) is
sufficient for a good MMRC estimation in most cases. In the lower density scenario, the
estimation only becomes more accurate at 1000 bp. Figure generated by Maz Frank.

This simulation illustrates how difficult it is to detect differential methylation events in
single-cell data. It is likely that many real-world regulatory events that are important
for cellular decision-making just barely fulfill the criteria that this test requires to
capture them. This highlights the importance of using the most powerful test possible
if working with single-cell methylation or accessibility data. Therefore I also compared

my model with alternative models and previously used methods.

First, compared the RBFRBF model to its counterpart without a genome kernel
(i.e., where I assume a constant methylation rate over the genome dimension) to see
if the addition of genome covariance results in increased power of the test. Then, I
also wanted to test what the theoretical power of an optimal performance test for
these simulated regions would be. To this end, I modeled the same regions with the
generative model that originally produced the data. I fixed the hyperparameters of
the generative models at the settings that produced the simulated region and only
trained the variational parameters of the model. The idea here was to see how far off
the RBFRBF model is from what is theoretically achievable with a perfect model and
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in what cases a lack of power simply is due to data noise. To compare these models, I
only performed simulations for the case that CpG/GpC density is 0.005, which is the
more challenging scenario. Figure 2.14 shows the ROC AUC score for the RBFRBF,
ConstantRBF, and generative models. When MMRC is 0.2, none of the models has
large power to detect differential methylation. With MMRC of 0.3 and above, the
RBFRBF model and generative model outperform the ConstantRBF model, especially
for smaller diffmet window sizes. This is reassuring since it indicates that modeling
genome covariance leads to more accurate models when the boundaries of the region
cannot be chosen accurately. Furthermore, the RBFRBF model has comparable AUC
scores to the generative models for all settings, meaning the performance is close to
the theoretically optimal performance.
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Figure 2.14 | Performance comparison of RBFRBF, ConstantRBF, and the
Generative Model. Bar plots indicate the performance of different models to identify
differentially methylated regions in terms of the area under the receiver operating characteristic
curve (ROC AUC), where 0.5 corresponds to a model that is no better than a random classifier,
and 1 corresponds to a perfect classifier. The generative model (blue) is the model used to
simulate the data and to give a theoretical upper bound on the performance since it should
be the most powerful model. The RBFRBF model (orange)is consistently performing close
to the generative model. As expected, the ConstantRBF (green) model is only powerful for
large differential methylation windows since it lacks the genomic kernel. Figure generated by
Mazx Frank.

Next, I assessed the accuracy of the MMRC estimates of the three models. Figure
2.15 shows the MMRC estimates of the models at different settings. All three models
consistently underestimate the MMRC compared to the ground truth indicated by
the dashed line. The RBFRBF model has an intermediate performance between the
ConstantRBF model and the generative model.
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Figure 2.15 | Maximum methylation rate change (MMRC) estimation accuracy
comparison of the RBFRBF, ConstantRBF, and the Generative Model. Violin
plots show the estimation of MMRC by different models for various simulation scenarios. The
blue horizontal line indicates the ground truth MMRC value that was used for the simulation.
The generative model (blue), which is the model used to simulate the data, should be the
optimal model. While it gives the least conservative estimate of the true MMRC, it still
consistently underestimates the true rate change. This illustrates the difficulty of estimating
true underlying rate parameters from sparse Bernuoulli-distributed data. The RBFRBF
model (orange) yields a more conservative estimate of the true MMRC. The ConstantRBF
(green) model underestimates the true MMRC drastically, especially in the case of small
differential methylation windows. This is expected since it will average out the methylation
rate for the whole region that is modeled. Figure generated by Max Frank.

2.2.3 Benchmarking GPmeth against other methods

I also used the simulated regions to compare the GPmeth method against other
methods that could be applied to single-cell methylation /accessibility measurements.
To my knowledge, GPmeth is the only test that models both the temporal changes
and the genomic changes of methylation rate as a continuous variable (see Section
1.5.2.2). Here, I compare the GPmeth model against Fisher’s exact test, which has
been previously used to test for differential methylation between cell types in scNMT
experiments (Argelaguet et al., 2019b) and scMET (Kapourani et al., 2021), which
was developed specifically to model single-cell methylation data. Since both of these
tests require cell types as input, I produced two artificial groups by defining an early
and a late cell type by thresholding the pseudotime coordinate of each cell at half the
total pseudotime. Since the generative model produces continuous change over time,
the GPmeth model is expected to be more powerful. Furthermore, the two tests do
not explicitly model genomic covariance but aggregate the methylation signal for each
cell. For this comparison, I chose a challenging scenario for both CpG/GpC densities.
With a CpG/GpC density of 0.05, I set the MMRC to 0.3 and the diffmet window
width to 600bp. For the CpG/GpC density of 0.005, I set the MMRC to 0.5 and
chose the same diffmet window size of 600bp. Figure 2.16 shows the ROC curves for
GPmeth models with different kernels compared to scMET and Fisher’s exact test.
Both CpG/GpC density scenarios show the most power for GPmeth models with a

kernel that models genome covariance and pseudotime covariance with a nonlinear
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function. There is little difference between the performance of the RBFRBFE model
and the RBFMatérn models, which is not surprising since they have similar properties,

and the data was generated from a model with an RBF kernel.
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Figure 2.16 | Power comparison of GPmeth, scMET, and Fisher’s exact test.
Receiver operating characteristic (ROC) curve plots show the statistical power of different
models to identify differentially methylated/accessible regions. The top row shows ROC
curves with a CpG/GpC density of 0.005, an MMRC of 0.5, and a diffmet window size of
600 base pairs. The bottom row shows ROC curves with a CpG/GpC density of 0.05, an
MMRC of 0.3, and a diffmet window size of 600 base pairs. The GP models that have both a
genome and a pseudotime kernel (RBFRBF' (blue), RBFMatérn (orange)) perform the most
powerful in both scenarios. The GP models without a genome kernel perform more similar
to the Fisher’s exact test or the scMET model. Figure generated by Max Frank.

2.2.4 Model Calibration

As discussed above, to obtain a test statistic for differential methylation /accessibility,
compare the marginal likelihood of a full model that allows for changes in methylation
rates over time against the likelihood of a null model that is constrained to a constant
temporal methylation rate. The obtained test statistic is the log of the ratio of
likelihoods of the full and the null model: the log-likelihood ratio (LLR). The purpose
of model calibration is to determine the distribution of likelihood ratios when the
null hypothesis is true. This allows to specify significance cutoffs that will have a
known proportion of false positive results, or false discovery rate (FDR). In other

words, this allows the computation of p-values from LLR estimates.

According to Wilks theorem (Wilks, 1938), the LLR of two nested models will
approach a chi-squared (x?) distribution under the null as the number of observations
approaches infinity. The degrees of freedom of the x? distribution are determined by

the difference in the number of free parameters of the two models. This was used for
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model calibration in spatialDE (Svensson et al., 2018) and GPcounts (BinTayyash
et al., 2021).

However, this is only true in the limit of infinite data points (Greven et al., 2008)
and for strictly nested models (Dominicus et al., 2006; Self and Liang, 1987). Both of
these criteria are not fulfilled here. The models are not strictly nested since the null
model fixes the pseudotime kernel variance parameter at zero, which is at the edge of
the full model parameter space. Furthermore, the models are optimized on sparse
data, which does not guarantee that parameters are estimated perfectly. Thus, in
practice, the calibration of the model with the assumption of a y? null-distribution

yields conservative p-values.

Therefore, I approximated an empirical null distribution by randomly permuting real
input data. One way of obtaining this would be to use parametric bootstrapping,
i.e., obtaining an empirical null distribution for every region tested by permuting it
randomly enough times to obtain significant results. This would increase the runtime
of the model by at least 1000x to get enough samples for significant p-values when

considering multiple testing corrections.

With the assumption that the null distributions are similar for all regions, likelihood
ratios from simulated null regions can be pooled (Listgarten et al., 2013). To generate
data from the null hypothesis (i.e. no differential methylation/accessibility over time),
I permuted the calculated pseudotime values of cells and trained the null and the full
model in the same way as for differential testing (see Section 6.1.1). I found that the

pooled log-likelihood ratios can be described well with a mixture of x? distributions:

p(LLR | 7, a,d) = nx3(~LLR) + (1 — m)ax(—LLR) (2.21)

Where LLR is the log-likelihood ratio of the models, 7 is the fraction of a x?
distribution with zero degrees of freedom to a x? distribution with d degrees of

freedom and a scale parameter a.

I used scNMT-seq data of mouse-embryonic stem cells undergoing gastrulation to
calculate empirical null distributions (see Chapter 3). Specifically, I used cells during
Mesoderm development. To obtain a large enough sample to fit the y2-mixture
distribution, I produced five random pseudotime permutations of cells for each
available enhancer and promoter region (for details on region definitions, see Section
3.2.1). I then trained all models in Table 2.1 on the permuted regions and calculated
the LLR of each full model and the respective null model. A closer inspection of
the LLR estimates revealed a clear dependency on the number of observations (Fig
2.17). This effect was stronger for permuted DNA methylation profiles than for DNA

accessibility. For a discussion of possible reasons for this, see Chapter 4.
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Figure 2.17 | Dependency of permuted LLR distribution on the number of obser-
vations. Every point represents the median negative log-likelihood ratio of the RBFRBF
model for 5 permutations of an enhancer region for methylation (left panel) and accessibility
(right panel). The x-axis is the number of observed methylation events in that enhancer
region. The black lines represent a locally weighted scatterplot smoothing (LOWESS) fit of
the data points. Figure generated by Max Frank.

Because of this dependency, I decided to separate promoter and enhancer regions
into bins according to the number of input points and fit a x?-mixture distribution
to each of those bins separately. Furthermore, there was a clear difference in the
LLR distribution between methylation and accessibility profiles, which was partially
but not completely explained by the higher density of GpC sites compared to CpG
sites and the resulting higher number of inputs. Therefore, I also fit separate null
distributions for methylation and accessibility profiles. To fit this null distribution,
the free parameters of the y2-mixture, 7, a,d, were estimated maximum likelihood
estimation with a grid-search over the parameters. To increase the robustness of the
fit, the lowest 5% and the highest 5% quantile of the LLRs were excluded. This was
done to remove outliers in the distribution where random shuffling leads to genuinely
differentially methylated regions by chance. Figure 2.18 shows an example of the fit
of the null distribution for the RBFRBF model on enhancer accessibility.
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Figure 2.18 | Example fit of null distribution for the RBFRBF model. The top
row shows the distribution of negative log-likelihood ratios (LLR) of the RBFRBF model on
enhancer accessibility as a histogram plot. The blue line corresponds to the fitted parametric
x2-distribution. The bottom row shows quantile-quantile plots of the expected LLR values
of the parametric distribution versus the observed LLR values from shuffled data. Every
column corresponds to a bin of input points (see column title). Note that the empirical and
theoretical distribution match closely for every bin, indicating successful calibration. Figure
generated by Max Frank.

With this approach I was able to successfully fit null distributions for every set of
regions.The parameters obtained by this fit were then used to estimate p-values of
non-shuffled regions in the actual gastrulation dataset which will be discussed in the

next Chapter.
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3 Application of GPmeth to sc-
NMT data of Mouse Gastrula-

tion

This Chapter will discuss the application of the GPmeth model, described in Chapter
2, to real scNMT-seq data. The data used were published in Argelaguet et al., 2019b
and consists of over 1000 sequenced mouse embryonic stem cells at the gastrulation
stage of development. During this process, multipotent stem cells differentiate into

the three main germ layers of the embryo.
Section 3.1 will give an overview of previous work on this dataset.

In Section 3.2, I describe a processing strategy to infer pseudotime coordinates and
lineage association for each cell based on RNA expression. This trajectory inference

forms the basis for the subsequent analysis of the epigenome.

In Section 3.3, I will then describe the application of the GPmeth model to find
differentially methylated and differentially accessible regions during Mesoderm for-
mation (see Section 3.3.2). I benchmark the GPmeth approach in comparison with
existing tools in Section 3.3.3, describing the incremental improvements of different
components of the model. I then use the ability of the model to refine differentially
methylated regions to perform improved TF-binding motif analysis and identify the
activation timings of Mesoderm-specific TFs in Section 3.3.4. In Section 3.3.5, I inves-
tigate the temporal changes of lineage-defining enhancers, showing that for Mesoderm
development pluripotency and Ectoderm-specific enhancers get inactivated before
Mesoderm-specific enhancers are activated. Finally, I compare DNA methylation,
chromatin accessibility and gene expression time-courses to find links between those

modalities in Section 3.3.6.

3.1 Previous work

Argelaguet et al. provided the first comprehensive dataset that profiled three omics

modalities in the same cell during the pluripotency exit of mouse embryonic stem cells.
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scNMT-seq profiles RNA expression, DNA methylation, and chromatin accessibility
in the same cell. They were able to profile 1105 cells isolated from mouse embryos at
embryonic days (E) 4.5, 5.5, 6.5, and 7.5.

As expected, they find that global methylation levels of regulatory elements such as
promoters and enhancers increased from an average of 25% at E4.5 to 80% at E5.5,
while accessibility of these regions only dropped minimally during the same time

period.

They then used multi-omics factor analysis (MOFA, Argelaguet et al., 2018a) to
perform dimensionality reduction with all available modalities to find shared modality-
specific factors that drive the gastrulation process. They found that methylation and
accessibility of enhancer elements have a stronger influence on germ layer formation
than methylation and accessibility of promoter elements. They furthermore defined
lineage-specific regulatory genomic regions by performing chromatin immunoprecip-
itation with DNA sequencing (ChIP-seq) on differentiated tissues. They defined
peaks for distal H3K27ac (enhancers) and H3K4me3 (transcription start sites) that
are accessible only in Ectoderm, Endoderm, and Mesoderm, respectively. One no-
table finding was that Ectoderm-specific enhancer elements become accessible and
demethylated as early as E4.5 while Endoderm and Mesoderm enhancers only become
demethylated and accessible after E5.5. Generally, they found that differentiated

Ectoderm cells retain most of the regulatory signatures from pluripotent stem cells.

To track the temporal trajectories of chromatin accessibility and DNA methylation,
they produced a pseudotime ordering for Endoderm and Mesoderm cells and plotted
the average trajectories of both modalities for lineage-specific enhancers and promoters.
They found that there is a genome-wide inverse correlation between methylation and

accessibility indicating that these two modalities are tightly linked.

They also performed tests to identify differentially methylated and differentially
accessible regions. For this, they aggregated the CpG/GpC methylation signal in
individual cells for genomic regions of interest and performed a Fishers-exact test
between groups of cells of different embryonic days and lineages. This approach
implicitly assumes that methylation/accessibility is constant within the aggregated
regions. Furthermore, this test requires the embryonic day covariate to faithfully
capture differences in methylation over time and the annotations of regulatory regions
to be precise in order to retain statistical power. These assumptions make it difficult
to find smaller changes in methylation/accessibility that might happen gradually over

the process of gastrulation.

The goal of applying GPmeth to this dataset was to perform a more powerful test
that could identify subtle changes in DNA methylation or chromatin accessibility
over time. Furthermore, the model output can be used to refine the annotation of
important regulatory elements by identifying the specific boundaries of the differential

methylation signal. Finally, the model can be used to compare the temporal dynamic
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across modalities, opening up possibilities to speculate on regulatory mechanisms

that take place.

3.2 Lineage reconstruction and pseudotime inference

The GPmeth model requires a pseudotime coordinate associated with each cell as an
input. Therefore the first step was to do dimensionality reduction and pseudotime
inference based on the RNA expression modality of the data. Cells were already
labeled by cell type by the authors of the original publication. While the original
data included cells from E4.5 to E7.5 sequenced at daily intervals, I excluded cells
from E4.5 in this analysis, since these cells were too distinct from the rest of the cells,

which meant that no continuous pseudotime could be established.

Because the data consisted of multiple sequencing runs performed on different embryos,
there was potential for substantial batch effects that could influence the analysis. I
assessed the extent of batch effects by performing dimensionality reduction by PCA
and UMAP and plotting cells colored by cell type and embryo of origin. If there
are no substantial batch effects, one would expect cells from a single embryo to be
homogeneously distributed across all cell types of the stage at which the embryo was
sequenced. Figure 3.1, a, top row shows that the distribution is non-homogeneous,
indicating the need for batch correction. I used the bbknn (Polanski et al., 2020)
method of the scanpy (Wolf et al., 2018) library to perform batch correction. Figure
3.1 a, bottom row shows the UMAP after batch correction. For a detailed description
of the RNA seq preprocessing see Section 6.2.2. The batch-corrected neighborhood
graph was used for dimensionality reduction based on diffusion components (Fig 3.1,
b, d). The first five diffusion components show the differentiation from pluripotent
Epiblast cells to the three germ layers. Interestingly there was also a clear separation
of cells within the Endoderm lineage, consisting of Gut and Notochord cells (Fig 3.1,
upper right panel).
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Figure 3.1 | Processing of single-cell RNA seq data and pseudotime estimation. (a)
Effects of batch correction with bbknn on distribution of embryos. Shown are UMAPs based
on the first 15 principal components that were mapped to a larger reference atlas (Pijuan-Sala
et al., 2019). The left column of UMAPs shows cells colored by the embryo of origin (colors not
annotated in the legend). The right column shows UMAPS annotated by stage and lineage
(based on annotations from the reference atals). Note that cells cluster by embryo in the
top right UMAP embedding. After batch correcting neighbor graph calculation with bbknn
embryos are more uniformly distributed within their lineages (bottom right). (b) Diffusion
maps of the first five diffusion components based on the batch corrected neighborhood
graph. Diffusion component one separates Mesendoderm cells from Epiblast and Ectoderm
cells. Diffusion component 2 separates Endoderm cells. Diffusion component 3 distinguishes
between Gut and Notochord cells. Diffusion component 4 separates Ectoderm from Epiblast
cells. Diffusion component 5 differentiates between early and late Mesoderm. (¢) Diffusion
maps with the first two diffusion components. Cells are colored by technical covariates. There
is no clear impact of the technical covariates on the positions of cells in the diffusion map.
Figure generated by Max Frank.
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Based on the first five diffusion components, I established a hierarchical branching
structure as shown in Figure 3.2, a, consisting of four lineages: Ectoderm, Mesoderm,
Gut, and Notochord. Panels b, and ¢ show a UMAP based on the diffusion components
with cell-type annotations at different levels of granularity. I then used destiny
(Haghverdi et al., 2016), to assign a pseudotime value to each cell (Fig 3.2, d). A
sanity check for the lineage assignment was performed by checking the expression

profiles of known marker genes for each of the inferred lineages (Fig 3.2, e).
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Figure 3.2 | (a) Schematic representation of the hierarchical model of cell states during mouse
gastrulation. (b) Umap based on the first five diffusion components colored by embryonic day
and lineage. (¢) Umap colored by fine-grained lineage annotations. Fine-grained cell-type
annotations were obtained by transferring cell-type labels from a significantly larger single-cell
atlas with over 100,000 cells (Pijuan-Sala et al., 2019). Briefly, matching by mutual nearest
neighbors (Haghverdi et al., 2018) was used on jointly normalized expression matrices to
transfer labels from the atlas to scNMT cells. (d) Umaps colored by inferred pseudotime.
On the left cells that do not have DNA accessibility or DNA methylation measurements
are colored in grey. On the right only cells belonging to the respective lineage indicated are
colored by pseudotime. (e) Umap colored by loglp transformed expression of an example
marker gene for the four lineages. Figure generated by Max Frank.



84 Application of GPmeth to scNMT data of Mouse Gastrulation

The pseudotime coordinates were then used as input to the GPmeth model to test

for differential methylation/accessibility in all four lineages.

3.2.1 NOMe-seq data preprocessing

Contrary to most single-cell RNA sequencing experiments, the raw data of the
methylation and accessibility modalities, produced by the single-cell NoMe-seq assay
of scNMT-seq cannot fit into the working memory of most modern computers if the
goal is to do base-level modeling. This is because there are millions of CpG/CpG sites
in the mammalian genome while there are only around 20,000 genes. Thus I store
methylation data on individual CpG/GpC sites on disk in an indexed format that
allows random access to a genomic region of interest (Li, 2011). This allows me to
efficiently load all CpG/GpC sites within a genomic window into working memory and
train the model, before loading the next window. For details of the implementation,
see Section 6.2.6. For each cell and CpG/GpC site, the stored information consists of
the number of methylated reads and the number of unmethylated reads. For reasons

discussed in Chapter 2, I transform this information into a binary signal.

I then apply filtering steps to exclude ambiguous signals both on the site level and
at the level of cells. For endogenous CpG methylation only sites in the genomic
context of WCG (W = A or T) were retained. For GpC methylation only GCH
(H = A, C, T) sites were retained. This step avoids interfering signals of the two
methyltransferases. Next, I excluded cells that had low coverage (fewer than 50.000
observed CpG sites or fewer than 500.000 GpC sites). I also excluded cells with very
low or very high methylation rates which indicates issues in the library preparation

or bisulfite conversion steps (Fig 3.3).
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Figure 3.3 | Quality control metrics for scBS-seq. The left and middle panel show the
number of observed methylation events versus the global mean methylation rate for CpG
and GpC methylation respectively. Cells that were excluded in the quality control are shown
in blue and cells that passed are shown in orange. The right UMAP depicts cells that pass
the quality control criteria of all three modalities. Note that cells failing quality control are
evenly distributed across the UMAP suggesting that there is no direct biological influence on
sequencing quality. Figure generated by Max Frank.
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3.2.2 Definition of regulatory regions

To generate the input for GPmeth, I used methylation/accessibility signals in two sets
of regulatory regions, putative promoters and putative enhancer regions. Promoters
were simply defined as a genomic window of £+ 2kb around the transcription start
site (TSS) of all protein-coding genes. As in Argelaguet et al., 2019b, enhancers
were defined as genomic windows marked by the histone mark H3K27ac detected
by chromatin immunoprecipitation with DNA sequencing (ChIP—seq) peaks. ChIP
seq was performed on isolated germ layers at E7.5 (Xiang et al., 2020), resulting in
a separate set of peaks for Ectoderm, Endoderm, and Mesoderm cells. From this
lineage-specific enhancers could be defined as peaks exclusively present in one of
the germ layers. Meanwhile, a comprehensive set of enhancer peaks was obtained by
taking the union of the peak annotations. The ChIP-seq peaks were then extended
by 500bp in either direction, resulting in an average window size of 2kb. In total, this

resulted in 18,347 promoter regions and 17,386 enhancer regions.
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Figure 3.4 | Summary statistics of DNA methylation and accessibility in En-
hancers and Promoters. The left panel shows the number of methylation events captured
by scBS-seq for each of the assayed promoters and enhancers. As expected more methylation
events are observed for DNA accessibility due to the higher frequency of GpC sites in the
genome compared to CpG sites. Promoter regions also have more observations on average
in line with their larger window size of 4kb compared to the average 2kb size of enhancers.
The right panel shows the average methylation rate of the regulatory regions across all cells.
Note that the average CpG methylation rate, corresponding to chromatin accessibility, is
often high or low with few regions showing intermediate methylation rates. In contrast, the
average GpC methylation rate is centered around 0.4. This is likely due to the fact that each
region contains multiple nucleosome-occupied and nucleosome-free regions, which leads to an
averaging of the signal. Figure generated by Max Frank.

Figure 3.4 shows the summary statistics of the number of observed CpG and GpC
sites as well as the global observed methylation rates. As expected, the DNA methy-

lation signal is sparser than the accessibility signal. Furthermore, the average DNA
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methylation rate is more divergent than DNA accessibility. This is especially true for
promoter regions that are either mostly methylated or mostly unmethylated, while

the average accessibility rate is centered around 0.4.

GPmeth was then used to model DNA methylation and chromatin accessibility of
regulatory regions for the four lineages that were identified with pseudotime analysis.

I will first describe the results of this in the case of the Mesoderm lineage.

3.3 Epigenomic regulation during Mesoderm development

The Mesoderm is the middle of the three germ layers formed during gastrulation.
Its cells give rise to several tissues, including many organs, parts of the circulatory
system, and muscles. In this Section, I will discuss the findings of applying GPmeth to
this lineage. Note that I am discussing the Mesodermal lineage first, as an illustrative
example, but the GPmeth methodology will remain the same for the other three

lineages that will be described in Section 3.4.

In total, 415 cells that were sequenced with scNMT-seq mapped to the Mesoderm
lineage (Fig 3.2, d,e). Of those, 189 cells were classified as epiblast, 48 as primitive
streak, and 178 as Mesoderm cells by mapping RNA expression profiles to a large
single-cell atlas (Pijuan-Sala et al., 2019). These cells stem from embryos at E6.5 and
E7.5, during which pluripotent epiblast cells undergo gastrulation. Note that at this
stage, the global wave of demethylation and remethylation is completed, and changes

in regulatory activity are now cell-type specific.

I applied GPmeth to all 18,347 promoter regions and 17,386 enhancer regions defined
above to test for differential DNA methylation and DNA accessibility during Mesoderm

formation.

3.3.1 Model output

For each regulatory region, GPmeth fits a model of methylation rate based on the
binarized CpG/GpC methylation observations. For details of the fitting process, see
Chapter 2. While GPmeth has multiple options for kernel parametrization, in this
case, [ used the RBFRBF kernel that allows for nonlinear change of methylation rate
across the genome and pseudotime. This model can be used to test if the methylation
rate within that region changes over pseudotime. It can also locate the exact subregion

where that change in methylation rate occurs.

Figure 3.5 shows an example output of GPmeth for the promoter and proximal
enhancer element of a well-known Mesoderm-specific transcription factor Mesp?2.
During Mesoderm formation, the promoter of Mesp2 is demethylated in a narrow
region around the transcription start site (TSS) that GPmeth identifies to be around
400bp wide. Concurrently, the accessibility of that same region increases during

Mesoderm formation before decreasing again in late-stage Mesoderm cells. 12kb
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upstream of the Mesp2 TSS, there is a putative enhancer region marked by a
H3K2T7ac ChIP-seq peak. Interestingly, this enhancer region does not change in the
center of the genomic window. Instead, the DNA methylation rate decreases, and
DNA accessibility increases at the flanks of this region. GPmeth identifies this as two

separate subregions.
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Figure 3.5 | Example output of the GPmeth model for Mesp2. The UMAP plot on the
left depicts the pseudotime estimates for each cell of the Mesoderm lineage. These pseudotime
estimates correspond to the position of each cell on the y-axis of the model output plots on
the right. The right panel consists of GPmeth predictions for DNA methylation (top row)
and accessibility (bottom row) for the gene promoter (right column) and an enhancer element
(left column). The x-axis of the plots depicts the genomic position, with 0 corresponding to
the center of the region. The scatterplot depicts the input data to the model measured by
scBS-seq, where blue indicates unmethylated sites and red indicates methylated sites. The
contours correspond to the posterior mean prediction of the methylation rate by the GPmeth
model. Underneath the scatterplot, the blue line indicates the methylation rate change over
the pseudotime of every genomic location predicted by the model. The blue-shaded regions
indicate the 95% confidence interval around that prediction. Grey-shaded areas span genomic
regions, where the 95% confidence interval of methylation rate change is above a threshold
of 0.3. Figure generated by Maz Frank.

This example shows how GPmeth can aid in generating hypotheses about gene
regulation. The identified regions of differential methylation/accessibility present
possible targets for follow-up experiments that could establish causal relationships
between the different modalities. In the next Sections, I will discuss the results of

running GPmeth on the complete set of promoters and enhancers.
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3.3.2 Detecting DNA methylation/accessibility changes during
Mesoderm development

To detect differential methylation in promoters and enhancers during Mesoderm
development, I compared the likelihoods of a full model with an RBFRBF kernel
against a null model with a ConstantRBF' kernel (see Section 2.1.2). The RBFRBF
kernel allows for methylation rate changes across the genomic region and pseudotime,
while the ConstantRBF model only allows for methylation rate changes across the
genomic region. The logarithm of the likelihood ratio (LLR) of these models is then
used as a test statistic for the hypothesis that the methylation rate is changing
over pseudotime. This statistic is then compared to a set of permuted regions, as
described in Section 2.2.4 to ensure accurate p-values for each tested region. P-values
were then corrected for multiple hypothesis testing according to the procedure of
Benjamini-Hochberg (Benjamini and Hochberg, 1995). While the p-value determines
the confidence of the model that there is a differential methylation/accessibility event
within the region, it does not directly tell the user about the effect size of that
differential event, i.e., the methylation rate change. In Section 2.1.3, I discussed how
GPmeth estimates the maximum methylation rate change (MMRC) for every position
in the tested region. The highest MMRC for every region is a good estimate of the
magnitude of differential methylation and can be used as an additional cutoff to filter
the results. This can be thought of analogously to defining a fold-change cutoff when
testing for differential gene expression. The MMRC estimate can be seen in Figure 3.5
as the blue line underneath the model output plots. Because the output of GPmeth
includes uncertainty estimates, I also obtained conservative estimates of the MMRC

by taking the lowest estimation of the 95% confidence interval (CI) for this measure.

I define differentially methylated regions as regions that satisfy the following two

criteria:
1. The LLR test results in a BH-adjusted p-value smaller than 0.1

2. The MMRC is larger than 0.3. In other words, the model is confident in detecting
a methylation rate change of more than 30%. This can be thought of, as the

equivalent of a fold-change cutoff in differential gene expression testing (Love
et al., 2014).

3.3.2.1 Differentially methylated regions

Running GPmeth on the methylation profiles of 18,347 promoter regions resulted
in 507 significantly differentially methylated regions, of which 190 regions had a
maximum methylation rate change (MMRC) of 0.3 or greater (Fig 3.6, left). In
contrast, out of 17,385 enhancer methylation profiles, GPmeth found 2,958 regions
to be significantly differentially methylated, of which 2478 had an MMRC value of
more than 0.3 (Fig 3.6, right). This indicates that promoter methylation may not be

the main driver of gene regulation during gastrulation. Enhancer methylation seems
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to play a larger role in comparison. This observation was also made by Argelaguet
et al., 2019b, with a global analysis using MOFA (Argelaguet et al., 2019a).
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Figure 3.6 | Differentially methylated promoters and enhancers during Mesoderm
development. Maximum methylation rate change (MMRC) on the x-axis vs. significance
on the y-axis (GPmeth -logl0 p-value) during Mesoderm development. The maximum
methylation rate change depicted corresponds to the maximal difference between the maximum
and minimum model predictions at every point in the genomic window. The left panel are
promoter regions, the right panel are enhancer regions. The horizontal dashed line corresponds
to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing. The vertical
dashed line represents an MMRC cutoff of 0.3. Figure generated by Max Frank.

3.3.2.2 Differentially accessible regions

GPmeth can be applied to chromatin accessibility data from scBS-seq (GpC methyla-
tion) without modifications from the way it is applied to endogenous methylation
data. However, since there are roughly ten times more GpC sites in the genome, the
density of observations is higher. The presence of nucleosomes and their interplay
with regulatory elements results in methylation rate trajectories that are fundamen-
tally different from endogenous methylation. For these reasons, I used a separate
calibration for the differential accessibility tests that is based on permutations of
GpC methylation data (see Section 2.2.4).

With this calibration, running GPmeth on the chromatin accessibility profiles of 18,347
promoter regions resulted in 875 differentially accessible regions during Mesoderm
development, of which 380 regions had an MMRC of 0.3 or greater (Fig 3.7, left). In
contrast, out of 17,385 enhancer accessibility profiles, GPmeth found 2700 regions to
be significantly differentially accessible, of which 2327 had an MMRC value of more
than 0.3 (Fig 3.7, right). As with endogenous methylation, promoters seem to be
less regulated by chromatin accessibility compared to enhancer elements during the

process of Mesoderm formation.
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Figure 3.7 | Differentially accessible promoters and enhancers during Mesoderm
development. Maximum methylation rate change (MMRC) on the x-axis vs. significance on
the y-axis (GPmeth -logl0 p-value) during Mesoderm development. Mesoderm development.
The maximum methylation rate change depicted corresponds to the maximal difference
between the maximum and minimum model predictions at every point in the genomic
window. The left panel are promoter regions, the right panel are enhancer regions. The
horizontal dashed line corresponds to a significance cutoff of 0.05 FDR after BH-adjustment
for multiple testing. The vertical dashed line represents an MMRC cutoff of 0.3. Figure
generated by Maz Frank.

3.3.3 Model benchmark and comparison to other methods

In Chapter 2, I showed with synthetic data the power benefits of the GPmeth model,
which should result in a larger fraction of statistically significant regions on real data.
In this Section, I will show that GPmeth identifies more differentially methylated and
accessible regions during Mesoderm development compared to other methods. I will

highlight the two main advantages over other models, which are:

e Using a flexible genome kernel to model methylation rate with base-pair resolu-

tion

e Using a flexible nonlinear temporal kernel to model methylation rate over time

3.3.3.1 Benefits of adding a genome kernel

In this Section, I will demonstrate the benefits of the inclusion of a genome kernel
into the GPmeth model. As discussed above, the inclusion of a genome kernel
allows GPmeth to refine broader genomic input windows into subregions where
differential methylation /accessibility occurs. Furthermore, a genome kernel should
provide increased statistical power for detecting differential methylation when the
subregion is small compared to the size of the full input window. I have shown this
on simulated data in Section 2.2.2. To demonstrate the benefits on real data, I am

comparing the full GPmeth model with a nonlinear kernel in genome and pseudotime
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space (the RBFRBF model) against a model that still has a nonlinear kernel to model
temporal changes but is constant in genome space (ConstantRBF'). This comparison
allows for the isolation of the benefits of including the genome kernel alone. Figure
3.8 shows example model fits of these four models for the promoter accessibility
trajectory of Mesp2. Since the differentially accessible subregion in the center of
the promoter is relatively small (150bp), only the full GPmeth (left panel) model
predicts an accessibility rate change larger than 0.3 for this region, since for the
other models the signal is diluted by non-changing flanking GpC sites. Therefore, the
models without genome kernels systematically underestimate the true rate of change

in accessibility.
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Figure 3.8 | Example model fit of Mesp2 promoter accessibility with and without
genome kernel. Contour plots of GPmeth predictions for chromatin accessibility rate p in
the promoter of the Mesp2 gene. The left panel depicts the output of GPmeth parametrized
with an RBFRBF kernel, and the right panel with a ConstantRBF kernel that does not
allow for variability across the genomic axis. The x-axis of the GPmeth plots depicts the
genomic position, with 0 corresponding to the transcription start site. The scatterplot depicts
the input data to the model measured by scNMT-seq, where blue indicates unmethylated
sites and red indicates methylated sites. The contours correspond to the posterior mean
prediction of the methylation rate p by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is greater than 0.3. The panel on top represents the pseudotime
trajectory of Mesoderm formation. Figure generated by Max Frank.

Next, these models were compared with their respective null models (see Chapter 2) to
calculate the LLR and obtain significance estimates for differential accessibility. Figure
3.9 shows the p-value versus MMRC scatterplots of the four models for promoter and

enhancer accessibility during Mesoderm formation.
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Figure 3.9 | Differential accessibility testing with and without genome kernels.
Maximum methylation rate change (MMRC) on the x-axis vs. significance on the y-axis
(GPmeth -logl0 p-value) of promoter (left column) and enhancer (right column) accessibility
during Mesoderm development. Rows correspond to different models. The horizontal dashed
line corresponds to a significance cutoff of 0.1 FDR after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Dark grey dots are above the
FDR threshold and red dots mark differentially accessible regions with MMRC larger than
0.3. Figure generated by Max Frank.

The RBFRBF kernel finds the highest number of significantly differential enhancers
and promoters compared to all other models. When adding a minimum MMRC of 0.3,
the other models find almost no differential regions. The exact numbers of regions
found are listed in Table 3.1.

Promoters H3K27ac Enhancers
FDR FDR+MMRC FDR FDR+MMRC
RBFRBF 875 380 2700 2327
ConstantRBF 86 1 1585 71

Table 3.1 | Number of promoter and enhancer regions found by models with and without a
genome kernel. Numbers in the Significant columns have a BH-adjusted p-value smaller than
0.1. Number in the Significant + MMRC column have a BH adjusted p-value smaller than
0.1 and a MMRC larger than 0.3

To compare the models directly, Figure 3.10 shows p-values and MMRC estimates
of the different models for enhancer accessibility. Assuming successful calibration
and equal performance of all models, one would expect points-region estimates to
be scattered around the diagonal identity line. In all comparisons, the full GPmeth

models identify more regions to be significantly differentially accessible and many
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more regions to have MMRCs over 0.3. Notably, the regions that were only identified
by the comparison models (orange points) are mostly close to significance for the full
GPmeth model. Conversely, there are regions that are highly significant for the full

GPmeth model but have very high p-values in the comparison models (blue points).
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Figure 3.10 | Comparison of models with and without genome kernels for finding
differentially accessible enhancers. The top row depicts the —log1o p-values (BH adjusted)
of the RBFRBF model (y-axis) vs. a comparison model on the z-azis. Horizontal and vertical
dashed lines indicate p-value cutoffs at 0.1 FDR. The diagonal line is the identity line and
means equal significance. Each dot represents the accessibility trajectory of an enhancer
region during Mesoderm development. Blue dots are only found to be differential by the
RBFRBF model, orange dots only by the comparison model, and green dots by both models.
The bottom row depicts the same comparison in terms of MMRC. Figure generated by Max
Frank.

If adding a genome kernel to the model increases statistical power by enabling the
model to find smaller differential subregions, one would expect that the regions only
found by the full GPmeth model to be smaller on average compared to regions that
are found by the comparison models as well. To investigate this I visualized the
difference in p-values of these models for different sizes of subregions found by the full
GPmeth model (Fig 3.11). While subregions larger than 200bp tend to have similar
p-values in the full GPmeth model and the models without a genome kernel, the
smaller regions are often not detected by the comparison models, i.e. there is a large

negative difference in p-values.
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Figure 3.11 | Smaller regions of differential accessibility less likely to be detected
without a genome kernel. Each plot depicts the difference in p-values (BH adjusted)
between the GPmeth RBFRBF model and a comparison model (in the plot titles) without a
genome kernel on the y-axis and the size of the refined subregion predicted by the RBFRBF
model on the z-azis. Figure generated by Mazx Frank.

3.3.3.2 Benefits of a nonlinear temporal model

The second point that differentiates GPmeth from standard statistical models to
test for differential methylation is the use of a nonlinear kernel to describe smooth
methylation rate changes over time. To investigate whether a nonlinear pseudotime
kernel is beneficial, I compared the RBFRBF (Fig 3.12, left) model against three
models with a different temporal kernel. The first model, RBFLinear (Fig 3.12, center
left), has a linear kernel to model temporal changes. The second and third models
have a categorical kernel that models temporal changes and an RBF kernel in the
genome dimension. The RBFFEarlyLate model averages the methylation signal of
early cells at the beginning of the pseudotime trajectory and late cells at the end
(Fig 3.12, center right). The RBFFirstLast model does the same but takes only the

first and last 10% of cells along pseudotime into account to model the beginning and
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end stages of the trajectory (Fig 3.12, right). These two models were included as
an analog to more traditional differential testing ideas that compare groups of cells.
An example fit of these four models to the Mesp2 promoter can be seen in Figure
3.12. This time RBFRBF and RBFLinear predict accessibility rate changes above
0.3, and RBFFEarlyLate just falls shy of the 0.3 threshold. One detail to note is that
the RBFRBF model predicts accessibility to first increase but then decrease slightly
again in mature Mesoderm cells. By contrast, the RBFLiner model predicts a strict
increase which is due to the fact that the linear kernel does not allow for up- and
down-shifts. Finally, the RBFFirstLast does not detect major changes in accessibility.
This is due to the fact that it only includes the earliest cells with lower accessibility

and the last cells, in which accessibility decreased again.
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Figure 3.12 | Example model fit of Mesp2 promoter accessibility with different
pseudotime kernels. Contour plots of GPmeth predictions for chromatin accessibility rate
p in the promoter of the Mesp2 gene. The left two panels depict the output of GPmeth
parametrized with an RBFRBF and an RBFLinear kernel, respectively. The scatterplot
depicts the input data to the model measured by scNMT-seq, where blue indicates unmethy-
lated sites and red indicates methylated sites. The x-axis depicts the genomic position, with
0 corresponding to the transcription start site. The contours correspond to the posterior
mean prediction of the methylation rate p by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is greater than 0.3. The panel on top represents the pseudotime
trajectory of Mesoderm formation. The RBFLinear model restricts p to change linearly
across pseudotime. The right two panels show the outputs of the ConstantEarlyLate and the
ConstantFirstLast models, respectively. These models group cells according to a pseudotime
cutoff. The pseudotime grouping of cells is depicted in the panel above the model output
plots. In the model output plots, the x-axis represents the genomic dimension, and the y-axis
represents the methylation rate p. Points are the means of measurements of individual GpC
sites across cells in a pseudotime group, and their size indicates the number of cells that the
mean is based on. Figure generated by Mazx Frank.

The nonlinear kernel allows the most flexibility in fitting methylation /accessibility

rates, but this also comes with the necessity of strict calibration to avoid producing
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false positives in differential testing due to overfitting. Therefore, simpler temporal
kernels, such as the ones in the comparison models, are not necessarily less powerful
if the actual methylation/accessibility rate changes fit their structure. In the case
of the mouse gastrulation dataset, the temporal sampling of cells was likely not
uniform, leading to an undersampling in the intermediary stages between Epiblast
and differentiated germline cells (see Section 3.2). This means that most of the signal
is concentrated in the early and late parts of the pseudotime trajectories, which makes
it hard to find regions that have methylation/accessibility rate changes that increase
and then decrease or vice versa. Therefore, a linear or categorical temporal kernel
should, in fact, be a good option for this dataset. I therefore wanted to investigate
if the nonlinear kernel is still competitive with the simpler alternatives. Figure 3.13
shows the results of differential testing of enhancer accessibility during Mesoderm

development for the four models described above.
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Figure 3.13 | Differential accessibility testing with different pseudotime kernels.
Maximum methylation rate change (MMRC) on the x-axis vs. significance on the y-axis
(GPmeth -log10 p-value) of promoter (left column) and enhancer (right column) accessibility
during Mesoderm development. Rows correspond to different models. The horizontal dashed
line corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.

In this example, the model with the linear temporal kernel finds the highest number
of differentially accessible enhancers (2783) followed by the RBFRBF model with
2327, the RBFFEarlyLate model with 1060, and the RBFFirstLast model with 306.
For promoter regions, the RBFRBF model finds 380, which is slightly more regions
than the 373, the RBFLinear model found. The RBFFarlyLate and RBFFirstLast
models both found 51 differentially accessible promoters. The detailed numbers of
regions found with and without MMRC cutoffs can be found in Table 3.2.
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Promoters H3K27ac Enhancers

FDR FDR+MMRC FDR FDR+MMRC
RBFRBF 875 380 2700 2327
RBFLinear 559 373 3422 2783
RBFFEarlyLate 112 51 2557 1060
RBFFirstLast 53 51 306 306

Table 3.2 | Number of promoter and enhancer regions found by models different pseudotime
kernels. Numbers in the Significant columns have a BH-adjusted p-value smaller than 0.1.
Number in the Significant + MMRC column have a BH adjusted p-value smaller than 0.1
and an MMRC larger than 0.3

To investigate the differences between the models, I compared their significance
and MMRC estimates on the same enhancer regions (Fig 3.14). This comparison
revealed that the RBFLinear kernel seems to have a slightly more favorable calibration
compared to the RBFRBF model. This can be seen in the top left scatterplot of Figure
3.14 where the p-values of the two models are compared. The points show a consistent
deviation from the diagonal unity line, which means that there is a consistent bias
towards lower p-values for the RBFLinear model. In fact, looking at regions that only
the RBFLinear model identified as significant (orange points), they are all close to
the unity line, meaning that they fell short of significance in the RBFRBF model by
only a small margin. Conversely, the regions only identified by the RBFRBF model
(blue points), albeit fewer, are spread further from the unity line, meaning that they
would not have been able to be identified by the RBFLinear model even with a looser
significance cutoff. The same phenomenon is true for the MMRC estimates of the
same models (Fig 3.14, bottom left). Visual investigation of the regions only found
by the RBFRBF model revealed that the accessibility dynamics in these enhancers
mostly followed an "up-down" dynamic where the accessibility rate first rises and
later decreases again (data not shown). This was in line with expectations since the

linear pseudotime kernel is not able to model these dynamics accurately.

The comparison of the RBFRBF model with the RBFEarlyLate model (Fig 3.14,
middle column) revealed good agreement between the models in terms of significance
estimation, but showed that the nonlinear pseudotime kernel has larger MMRC
estimates for some enhancers. This is expected for those regions where the averaging
of early and late cells results in a dilution of signal, i.e. where temporal dynamics
cannot be captured accurately with these categories. The comparison of the RBFRBF
model with the RBFFirstLast model (Fig 3.14, right column) showed that the
RBFFirstLast model is systematically underpowered, due to the lower number of

data points included in the model.
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Figure 3.14 | Comparison of models with different pseudotime kernels for finding
differentially accessible enhancers. The top row depicts the —logig p-values (BH adjusted)
of the RBFRBF model (y-axis) vs. a comparison model on the z-axis. Horizontal and vertical
dashed lines indicate p-value cutoffs at 0.1 FDR. The diagonal line is the identity line and
means equal significance. Each dot represents the accessibility trajectory of an enhancer
region during Mesoderm development. Blue dots are only found to be differential by the
RBFRBF model, orange dots only by the comparison model, and green dots by both models.
The bottom row depicts the same comparison in terms of MMRC. Figure generated by Max
Frank.

These comparisons showed that the GPmeth model with an RBFRBF kernel is
applicable, even in situations where the temporal changes of methylation /accessibility
are mostly captured well by more simple models, while having the advantage of
detecting more complex temporal changes, such as the ones shown in Figure 3.12.
Next I compared the GPmeth model to scMet, an existing tool to test for differential

methylation in single-cell data.

3.3.3.3 Comparison to scMet

As discussed in Section 1.5, there are currently few tools that are explicitly designed to
detect differential methylation in single-cell data, and none that are designed to model
these changes across a continuous time variable. Therefore the closest comparison is
with scMet (Kapourani et al., 2021), which models methylation/accessibility rate and
variance in single-cell epigenomic data for predefined genomic windows. In Section
2.2.2, I showed that GPmeth was more powerful than scMet on simulated data. To
compare the performance on real scNMT-seq data, I applied scMet to the same
promoter and enhancer regions that GPmeth was applied to. Because scMet tests
between predefined groups of cells, I defined an "early" and a "late" group, analogously
to the EarlyLate pseudotime kernel discussed above, by placing a cutoff in pseudotime
at 0.3. This results in the "early" group consisting mainly of E6.5 Epiblast and E6.5
Primitive Streak cells and the late group consisting of E6.5 Mesoderm and E7.5

Primitive Streak and Mesoderm cells.
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Figure 3.15 | Comparison of significance estimates of GPmeth and scMet. Scatter-
plots depict the —logip p-values (BH adjusted) of the RBFRBF model (y-azis) vs. —logig
(1-tail probability) of scMet on the z-azis. Horizontal and vertical dashed lines indicate
cutoffs at FDR < 0.1. The diagonal line is the identity line and represents equal significance.
Each dot represents the methylation (top row) or accessibility (bottom row) trajectory of
enhancer (left column) or promoter (right column) regions during Mesoderm development.
Blue dots are only found to be differential by the RBFRBF model, orange dots only by the
scMet model, and green dots by both models. Figure generated by Max Frank.

The scatterplots in Figure 3.15 show the comparison of the significance estimates
between GPmeth on the y-azis and scMet on the z-axis. In this setting, scMet finds
almost no significantly differentially methylated or accessible promoters or enhancers.
This highlights the power of the GPmeth model in this setting. Importantly, this
test gives an advantage to GPmeth in some ways. Firstly, the widths of the enhancer
and promoter regions were chosen quite large (average 2kb and 4kb respectively),
so that any methylation/accessibility changes in close proximity can be captured.
Because scMet averages over the genome dimension, this dilutes the signal if the
actual genomic window of differential methylation/accessibility is small. Thus, one
could choose smaller regions to improve the performance of scMet, but this comes at
the risk of missing signal at the edges of the windows. Secondly, the temporal cutoff
to separate "early" and "late" cells could have been sub-optimal and result in the
averaging of cells with different methylation/accessibility profiles. However, it should
be noted that any choice of cutoff will be sub-optimal if changes over pseudotime are

truly continuous in nature.
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Figure 3.16 | Comparison of MMRC estimates of GPmeth and scMet. Scatterplots
depict the MMRC estimate of the RBFRBF model (y-axis) vs. scMet on the z-azis. Horizontal
and vertical dashed lines indicate an MMRC of 0.3. The diagonal line is the identity line.
Each dot represents the methylation (top row) or accessibility (bottom row) trajectory of
enhancer (left column) or promoter (right column) regions during Mesoderm development.
Blue dots have a MMRC > 0.3 only with the RBFRBF model, orange dots only with the
scMet model, and green by both models. Figure generated by Maz Frank.

Figure 3.16 shows the MMRC estimates of GPmeth on the y-azis and scMet on
the z-azis. scMet consistenly estimates lower changes in methylation/accessibility
rates compared to GPmeth for all scenarios. This can also be expected for the same
reasons as for the significance estimates. Note that this comparison of models does
not directly show increases of statistical power or accuracy of the GPmeth model
compared to scMet, since there is no ground truth available for these data. However,
in the rest of this Chapter I will show the biological validity of the differentially
methylated and differentially accessible regions found by GPmeth.

3.3.4 Analysis of refined subregions found by GPmeth

A major benefit of GPmeth is the ability to refine the originally provided genomic
windows to get insights into where precisely the changes in methylation rate are
occurring. For this purpose, I evaluated the posterior predictions of GPmeth for every
region by taking 2000 samples from the trained models. This allows the quantification
of the mean and uncertainty of the model for any point in the genome and along
pseudotime. I define differentially methylated subregions as widows in the genome
axis where the 5% CI of all predictions has a methylation rate change over pseudotime
larger than 0.3 (Fig 3.5, grey shaded areas). Note that this threshold can be set by
the user and is arbitrary. In this case, 0.3 seems to provide a sensible threshold for

filtering out biologically relevant signals.

Figure 3.17 shows an overview of the refined subregions identified this way. Most

differentially methylated enhancers and promoters contain a single subregion (note
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the log-scale in Figure 3.17, top left). The identified subregions have an average width
of 163 bp (Fig 3.17, top right). Note that this value is sensitive to the specification
of the model parameters, especially to the setting of the genome kernel length scale.
Therefore, the subregion width should mostly be used for comparisons of different
regions that were tested with the same model specifications. When comparing the
widths of promoter and enhancer subregions, no significant differences were observed
(promoter mean width: 135bp, enhancers mean width: 165bp, p-value=0.11, t-test on
log-transformed widths). When comparing the relative positioning of the identified
subregions (Fig 3.17, bottom left), enhancer subregions are distributed around the
center of the window, whereas promoter subregions are close to uniformly distributed
across the window. This is surprising since one would expect differential methylation
that directly influences gene expression via the promoter to be close to the TSS
of the gene and, therefore, close to the 0 position. This could indicate that some
of the identified subregions are, in fact, different genomic elements that happen
to be in close proximity to the genes T'SS. This would be another indicator that
promoter methylation is not a main driver in gastrulation. Finally, we can inspect
the methylation rate change prediction of the model within the found subregions (Fig
3.17, bottom right). This is taken as an average of all predictions of the model that
fall into the subregion. Promoters have significantly lower differential methylation
rates than enhancers (mean MMRC of promoters: 0.22, mean MMRC of enhancers:

0.31, p-value=3.1e 3L, t-test on log-transformed rates).
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Figure 3.17 | Summary statistics of differentially methylated refined regions. The
top left panel shows the number of subregions that are found by GPmeth for every genomic
window with significant differential methylation. Note the log scale on the y-axis. The top
right panel shows the distribution of subregion widths, i.e., the width of the genomic interval
where the 95% CI MMRC is higher than a specified threshold (in this case 0.3). Most regions
are smaller than 300bp (average 163bp), indicating that averaging methylation signal over
larger genomic windows can dilute the signal. The bottom left panel shows the positioning of
the center of the identified subregions relative to the center of the input genomic window.
With perfect region annotations, this histogram should be a narrow Gaussian distribution
around zero. The distribution of promoter subregions shows that there is no preference for
differential methylation close to the TSS of the gene. Enhancer subregions are distributed
around the center of the window but show a substantial spread, highlighting the need for
flexible models that can tolerate inaccurate region inputs. The bottom right panel shows the
average 95% CI MMRC of each identified subregion. Note that this is a conservative estimate
of the true change in methylation rate since it includes the uncertainty of the GPmeth model.
It can serve as a convenient filtering criterion to exclude regions with small or uncertain
effect sizes. Figure generated by Max Frank.

Figure 3.18 shows an overview of the refined subregions found by GPmeth. Again,
most differentially accessible enhancers and promoters contain a single subregion
(note the log-scale in Figure 3.18, top left). The identified subregions have an average
width of 120 bp (Fig3.18, top right). This is shorter than the 163 bp average window
size that was identified for differentially methylated regions. However, this could be
due to the higher density of GpC sites. When comparing the widths of promoter and
enhancer subregions, there were slight, but not significant differences between the two
(promoter mean width: 97bp, enhancers mean width: 122bp, p-value=0.06, t-test on
log-transformed widths). The positioning of the identified enhancer subregions (Fig
3.18, bottom left) is similar to the positioning of differentially methylated subregions.
However, for promoters, there is now also an enrichment in the center of the genomic
window around the TSS of the gene. This was not the case for endogenous methylation.
This could mean that there is a small subset of genes that will be regulated by promoter
accessibility during Mesoderm formation. In fact, one of those genes is be Mesp2,
which was shown in Figure 3.5. Furthermore, if we inspect the GpC methylation rate

change prediction of the model within the found subregions (Fig 3.18, bottom right),
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promoters have roughly equal differential methylation rates than enhancers (mean
MMRC of promoters: 0.34, mean MMRC of enhancers: 0.33, p-value=0.24, t-test on

log-transformed rates).
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Figure 3.18 | Summary statistics of differentially accessible refined regions. The
top left panel shows the number of subregions that are found by GPmeth for every genomic
window with significant differential accessibility. Note the log scale on the y-axis. The top
right panel shows the distribution of subregion widths, i.e., the width of the genomic interval
where the 95% CI MMRC is higher than a specified threshold (in this case, 0.3). Most regions
are smaller than 300bp (average 120bp), indicating that averaging methylation signals over
larger genomic windows can dilute the signal. The bottom left panel shows the positioning of
the center of the identified subregions relative to the center of the input genomic window.
The bottom right panel shows the average 95% CI MMRC of each identified subregion. Figure
generated by Maz Frank.

The capability of GPmeth to refine input regions opens up interesting avenues for ex-
perimental follow-ups that need precise boundaries of where methylation /accessibility
changes happen. To verify, whether the refined regions are biologically relevant, 1

performed a transcription factor binding site analysis.

3.3.4.1 Transcription factor binding site enrichment

Transcription factors (TFs) are important drivers of gastrulation and embryonic
development(Meissner, 2010). They act by recognizing nucleotide patterns and binding
DNA, inducing the transcription or repression of nearby genes. Transcription factors
also have a complex link to DNA methylation and chromatin accessibility (Hemberger
et al., 2009). Because many transcription factors have both well-established roles
during embryo development and known preferences for nucleotide sequences (binding
motifs), I wanted to investigate if the differentially methylated/accessible regions

found by GPmeth have an enrichment of relevant TF binding motifs.

To this end, I first extracted all subregions that GPmeth identified as differentially
accessible during Mesdoerm development and clustered their pseudotemporal tra-

jectories. There were four main trajectories that clustered together, two groups of
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enhancers where chromatin accessibility increased with Mesoderm development and
two groups where chromatin accessibility decreased (Fig 3.19, a). Each of these
groups could further be subdivided into trajectories that change accessibility early
in the pseudotime (at the primitive streak to early Mesoderm transition) and those
that change later on (at the mature Mesoderm stage). I termed these four clusters
"early up", "late up", "early down", and "late down" respectively. I then performed
an enrichment analysis for TF binding motifs found in the JASPAR CORE verte-
brate database (Rauluseviciute et al., 2024) for each cluster. Each trajectory cluster
showed enrichment of distinct motifs (Fig 3.19,b,¢). Notably, enhancer subregions
where GPmeth identified a decrease in accessibility are enriched in known Ectoderm
and pluripotency TFs, such as POU5SF1, SOX2, and SPS&. This is in line with the
observation in Section 3.3.2.1 that Ectoderm-defining enhancers are decreasing in
accessibility during Mesoderm development. Conversely, subregions with increasing
chromatin accessibility are enriched in known Mesoderm-specific TF binding sites,
such as GATA4, FOXP2, EOMES, and TWIST1. Interestingly, while both down-
regulated trajectory clusters are enriched in similar TF binding sites (Fig 3.19,c,
green lines), the two upregulated clusters have distinct enrichment patterns (Fig
3.19,¢, blue and purple lines). Enhancer subregions that increase early are more
enriched for the members of the T-box family of transcription factors, which are
essential for the migration of nascent Mesoderm cells in the primitive streak (Costello
et al., 2011; Papaioannou, 2014). In particular, EOMES was shown to control the
expression of Mespl. Subregions with a late accessibility increase are mainly enriched
in GATA transcription factors. The GATA family of transcription factors is known
to be involved in the formation of the endocrine system (Viger et al., 2008), which
is one of the tissues that emerges from Mesoderm cells. This points to the intricate
temporal control of gene expression that is modulated by a network of lineage-defining

transcription factors and the epigenetic modifications of DNA regions they bind to.
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Figure 3.19 | Transcription factor enrichment of differentially accessible enhancers.
a) k-means clustering of pseudotime trajectories. Each grey line represents the average
accessibility rate p within a significant subregion identified by GPmeth. Dark red lines are the
mean trajectory of each cluster. b) Transcription factor motif enrichment per cluster(Fisher’s
exact test, -log(p value) BH-adjusted, y-axis) versus differential RNA expression (GPcounts,
-log(q-value) , z-axis) of the transcription factor. Red points are significant at FDR < 0.05
in bot enrichment and differential RNA expression. ¢) Scaled view of Transcription factor
motif enrichment per cluster. Green lines are specifically enriched in the early down and late
down clusters (FDR < 10~'7). Blue lines and purple lines are specifically enriched in the
early up and late up clusters (FDR < 1072%) respectively. Figure generated by Maz Frank.

Since these results were in line with known gastrulation biology, I wanted to investigate
if the same results could have been obtained without GPmeth’s ability to identify
refined subregions. To this end, I repeated the analysis with the same clustering of

enhancer regions but instead provided the DNA sequences of the whole input genomic
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windows to the enrichment instead of the sequences of the subregions. Figure 3.20
shows the enrichment for the whole enhancer regions by cluster. Apart from some more
spurious enrichments, with this analysis, the effect of specific enrichment depending on
the trajectory was lost. This is a good indicator that the refined subregions identified

by GPmeth are highly likely to have functionally relevant roles in gene regulation.
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Figure 3.20 | Transcription factor enrichment of differentially accessible full
enhancer regions. Scaled view of transcription factor motif enrichment per accessibility
pseudotime trajectory cluster (Fig 3.19). Lines are colored the same as in the Figure above
and represent cluster-specific enrichment found with the GPmeth 0.02855 workflow. Note
that all lines are close to parallel, indicating that the enrichment is identical to the same for
all four clusters. Figure generated by Max Frank.

Next I investigated the TF binding site enrichment in enhancers that are differentially
methylated during Mesoderm formation. Again, 4 clusters were identified following
the same temporal patterns as differentially accessible enhancers. Figure 3.21 shows
the results of the enrichment analysis. Here, the trajectories where the methylation
rate increased over time showed enrichment for Ectoderm and pluripotency enhancers.
Interestingly binding motifs of regions in the early up trajectory include MAX and
MYC, TFs present in pluripotent stem cells, whose binding is known to be impacted
by DNA methylation (Cusack et al., 2020; Domcke et al., 2015). In enhancers that get
methylated later, SOX3, SOX6, and SOX15 of the SOX family of TFs are enriched,
which are implicated in brain development (Bylund et al., 2003), which is in line
with their later repression compared to the aforementioned pluripotency TFs. In
the enhancers that get demethylated early, we again see enrichment of binding sites
for members of the T-Box TF family TBX and EOMES, and enhancers with late
demethylation show enrichment in GATA TFs, which is in line with the enrichment

results of differentially accessible regions.
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Figure 3.21 | Transcription factor enrichment of differentially methylated en-
hancers. a) k-means clustering of pseudotime trajectories. Each grey line represents the
average methylation rate p within a significant subregion identified by GPmeth. Dark red
lines are the mean trajectory of each cluster. b) Transcription factor motif enrichment
per cluster(Fisher’s exact test, -log(p-value) BH-adjusted, y-axis) versus differential RNA
expression (GPcounts, -log(q-value) , z-axis) of the transcription factor. Red points are
significant at FDR, < 0.05 in bot enrichment and differential RNA expression. ¢) Scaled view
of Transcription factor motif enrichment per cluster. Green lines are specifically enriched
in the early down and late down clusters (FDR< 107'7). Blue lines and purple lines are
specifically enriched in the early up and late up clusters (FDR<10723) respectively. Figure
generated by Maz Frank.

I also investigated again if the same enrichments can be found without using the
refined subregions identified by GPmeth and found the same result of nonspecific
enrichment (Fig 3.22).
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Figure 3.22 | Transcription factor enrichment of differentially methylated full
enhancer regions. Scaled view of transcription factor motif enrichment per methylation
pseudotime trajectory cluster (Fig 3.21). Lines are colored the same as in the above figure
and represent cluster-specific enrichment found with the GPmeth workflow. Note that all
lines are close to parallel, indicating that the enrichment is identical the same for all four
clusters. Figure generated by Max Frank.

3.3.5 Analysis of lineage-defining enhancer regions

Next, I investigated whether the GPmeth results for Mesoderm enhancers are in
agreement with biological expectations. Since the enhancer regions are based on the
combined ChIP-seq signal of differentiated Mesoderm, Endoderm, and Ectoderm
tissues, we can define lineage-specific enhancers by overlapping ChIP-seq peaks for the
individual lineages with the combined signal and filtering peaks that are exclusively
present in one of the tissues. This was done analogously to Argelaguet et al., 2019b.
Here I only considered lineage-specific enhancer regions that perfectly overlapped the
regions of the combined signal. This resulted in 2122 Ectoderm-specific enhancers,
1036 Endoderm-specific enhancers and 895 Mesoderm-specific enhancers. Note that

this list will not be exhaustive for all lineage-specific enhancers.

With these lineage-specific enhancers in hand, I first assessed how many of these regions
show significant differential methylation/accessibility during Mesoderm formation (Fig
3.23). As expected Mesoderm-specific enhancers are most likely to be differentially
methylated or accessible, with 119 (differentially methylated), 100 (differentially
accessible) and 129 (both) regions out of 895 regions tested. Conversely, there are
almost no Endoderm enhancers that show differential methylation or differential
accessibility. Interestingly, however, there are 214 differentially methylated, 247
differentially accessible and 79 differentially methylated and accessible Ectoderm

enhancers.
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Figure 3.23 | Number of differentially methylated/accessible lineage-specific
enhancers. Bar heights indicate the number of lineage-specific enhancer regions that were
identified by GPmeth to be significantly differentially accessible or methylated (FDR=0.1).
GPmeth found 335 out of 2122 (16%) Ectoderm-specific enhancers, 229 out of 895 (26%)
Mesoderm-specific enhancers and 28 out of 1036 (3%) Endoderm-specific enhancers to be
differentially accessible. Of those, 79 (Ectoderm), 129 (Mesoderm), and 3 (Endoderm) were
also differentially methylated. Figure generated by Max Frank.

While this may be surprising at first glance, a closer inspection reveals that many
Ectoderm-specific enhancers are already demethylated and highly accessible in E5.5
Epiblast cells and stay demethylated and accessible during Ectoderm formation
but get methylated and closed in cells of the other two germ layers. This was also
found in Argelaguet et al., 2019b. Using the GPmeth output, this phenomenon can
be shown by calculating the average methylation/accessibility rate across pseudo-
time and genomic for all lineage-specific enhancers. Figure 3.24 shows the averaged
methylation predictions of the model along Mesoderm development. Here, it becomes
clear that Mesoderm-specific enhancers start out highly methylated at E5.5 and
become demethylated over time, while Ectoderm-specific enhancers start out with
low methylation and methylation slightly increases over time. Endoderm-specific
enhancers mostly stay methylated throughout Mesoderm lineage formation. Note
that the bottom right panel of Figure 3.24 depicts the average of only 37 significantly
differentially methylated regions.
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Figure 3.24 | Averaged methylation rate profiles for lineage-specific enhancers. The
heatmaps represent the GPmeth posterior mean predictions, averaged across lineage-specific
enhancer regions for Ectoderm enhancers (left column), Mesoderm enhancers (center column)
and Endoderm enhancers (right column). The averages were produced by taking predictions
of the GPmeth model for each region in a regular grid across a 4kb genomic window centered
around the middle of the H3K27ac ChIP-seq peak and pseudotime and taking the averages
of the aligned grids. The top row averages all lineage-specific enhancers for the respective
lineage, while the bottom row only averages differentially methylated enhancers (FDR < 0.1).
Figure generated by Maz Frank.

Compared to endogenous methylation, chromatin accessibility follows the oppo-
site trend, Figure 3.25 shows the averaged predictions of the model, showing that
Mesoderm-specific enhancers start out mostly inaccessible at E5.5 and become increas-
ingly accessible over time while Ectoderm-specific enhancers start out at intermediate
accessibility rates and decrease over time. Endoderm-specific enhancers mostly stay

at intermediate accessibility throughout Mesoderm lineage formation.
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Figure 3.25 | Averaged accessibility rate profiles for lineage-specific enhancers.
The heatmaps represent the GPmeth posterior mean predictions, averaged for lineage-specific
enhancer regions for Ectoderm enhancers (left column), Mesoderm enhancers (center column)
and Endoderm enhancers (right column). The averages were produced by taking predictions
of the GPmeth model in a regular grid across a 4kb genomic window centered around the
middle of the H3K27ac ChIP-seq peak and pseudotime. The top row averages all lineage-
specific enhancers for the respective lineage, while the bottom row only averages differentially
methylated enhancers (FDR 0.1). Figure generated by Max Frank.

While these averages give insights into spatiotemporal changes in methylation rate,
similar plots could be produced by simply binning the scBS-seq data across time
and smaller genomic windows directly. GPmeth, however, also offers insights into the
distribution of methylation rate changes based on individual regions. To investigate
this, I extracted the averaged predictions of GPmeth for all significant regions
within the refined subregions. For each significantly differentially methylated lineage-
specific enhancer, I then visualize the subregion with a 95% CI MMRC > 0.3(Fig
3.26). Differentially methylated Mesoderm enhancers almost exclusively decrease in
methylation rate over time, while the majority of differential Ectoderm enhancers
increase in methylation rate over time. In comparison, the few significant Endoderm

enhancers show a more mixed signal.
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Figure 3.26 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions. Lines represent the GPmeth posterior methylation rate averages
of the refined subregions found within differentially methylated enhancers by the model.
Ectoderm-specific enhancers consistently increase in methylation rate over time, while
Mesoderm-specific enhancers decrease in methylation rate. Ectoderm-specific enhancers
(left) increase methylation rate from 0.34 to 0.61 on average across the pseudotime range.
Mesoderm-specific enhancers (center) decrease methylation rate from 0.78 to 0.36, and
Endoderm-specific enhancers decrease from 0.74 to 0.43 on average. Figure generated by Max
Frank.

To get a more quantitative measure of the pseudotemporal trends for each enhancer
class, I used k-means clustering to extract patterns in methylation rate from this
data. Figure 3.27 shows the extracted trends for three clusters. Note that methylation
rates were scaled for each time series to make the clustering invariant to absolute
methylation rate effects. For Ectoderm-specific enhancers, there is one cluster for the
majority of regions that increase in methylation over time, and two clusters capture
outlier patterns with decreasing methylation rate. For Mesoderm, k-means found
one cluster for outlier patterns with increasing methylation rate and two distinct
patterns for decreasing methylation rates, where one group of enhancers decreases
in methylation rate consistently over time while the other group appears to stay
highly methylated until half the pseudotime has passed and then experience rapid
demethylation. Similar groups are observed in Endoderm, which could be due to

some mislabeled regions or off-target effects.
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Figure 3.27 | Clustered pseudotemporal trajectories of lineage-specific enhancer
regions. Shown are the same pseudotemporal trajectories of methylation rate predictions
as in Figure 3.26, but every trajectory was scaled to the range of [0,1] for scale-invariant
clustering. These trajectories were then clustered with k-means based on Euclidean distance.
A fixed number of three clusters was specified to capture up to two different trends in the
trajectories and outlier trajectories. Figure generated by Max Frank.

One interesting question that can be addressed by the high spatiotemporal resolution
of GPmeth models is the temporal order in which certain epigenetic regulatory events
happen. For example, does the increase in Ectoderm enhancer methylation precede
or succeed the decrease in methylation of Mesoderm enhancers during Mesoderm
formation. For this purpose, I plotted the extracted patterns against each other
while inverting the trend for Ectoderm enhancers for better comparability (Fig 3.28).
While there is substantial overlap between the distributions of time series, there is a
clear shift where Mesoderm enhancers are demethylated after Ectoderm enhancers
are methylated. This is not unexpected since there is substantial overlap between
Ectoderm enhancers and pluripotency enhancers (Argelaguet et al., 2019b), which

should be expected to get inactivated relatively early.
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Figure 3.28 | Temporal comparison of Ectoderm and Mesoderm-specific enhancer
methylation. Lines are pseudotemporal trajectories of lineage-specific enhancers as in Figure
3.27. Green lines correspond to the two major clusters of Mesoderm enhancers that are
demethylated over time. Purple lines correspond to the inverse profiles (i.e., 1-methylation
rate) of Ectoderm enhancers that are methylated over time. Both enhancer classes show
similar temporal patterns, but Ectoderm-specific enhancer methylation tends to precede
Mesoderm-specific enhancer demethylation. Figure generated by Max Frank.

I performed the same analysis for accessibility rate trajectories of lineage-specific
enhancers, with similar results to methylation rates. Details of this analysis can be
found in the Appendix (A.1).

3.3.6 Integration of molecular modalities

One of the benefits of the GPmeth model is that it allows the investigation of
the relationships between the modalities that are measured in scNMT-seq in great
detail. In this Section, I will describe the analyses that I performed to integrate
RNA expression, DNA methylation, and chromatin accessibility over the course of
Mesoderm development. First, I will discuss the analysis of promoter regions, followed
by H3K27ac enhancers. GPmeth provided models for methylation and accessibility
in these regions. To detect differential RNA expression, I applied another Gaussian
process-based tool called GPcounts (BinTayyash et al., 2021) to the expression profiles
of 1171 cells measured by scNMT-seq along the same Mesoderm pseudotime course.
Briefly, GPcounts fits a dynamic and a static model to the pseudotime expression
profiles of each gene and performs a likelihood-ratio test to find variable genes. This
means [ could perform an analysis of the GP model outputs of RNA expression

(GPcounts) promoter methylation and promoter accessibility (GPmeth).

3.3.6.1 Integrative analysis of Promoter regions

As described in Section 3.3.2, most promoter regions are not differentially methylated

or accessible during Mesoderm development. However, there are more than 5000 genes
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that change in expression during this process (Fig 3.29). Only a very small subset of
20 promoter-gene pairs is significantly changing in all three modalities. Furthermore
only 26 promoters are changing both their methylation rate and their chromatin
accessibility. It is tempting to conclude that the three modalities are, therefore, not
linked at all in this scenario. However note that this overlap is dependent on the

significance and effect size cutoffs of tests. This will be explored in more detail below.
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Figure 3.29 | Venn Diagram of differentially regulated genes and promoters.
Number of significant promoters/genes found by GPmeth/GPcounts, respectively. The cutoff
for significance with GPmeth used here was FDR<0.1 and MMRC > 0.3. For GPcounts,
significant differential gene expression was defined g-value < 0.1. Figure generated by Maz
Frank.

Next, I compared the model estimates of the magnitudes of change for each modality.
Figure 3.30 compares the fold-change estimates of RNA expression with the MMRC
output of GPmeth for all promoters. As expected there is only a small number of
promoters that change in RNA expression congruently with promoter methylation
or accessibility. Furthermore, the promoter MMRC does not seem to be correlated
to the fold-change of the gene even for promoter-gene pairs that are significantly
differentially accessible/methylated and differentially expressed (Fig 3.30 left and
middle panel, green points). In contrast, there seems to be a moderate link between
the accessibility MMRC estimate and the methylation MMRC estimate (Fig 3.30
right panel, green points). This link will be explored further below.
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Figure 3.30 | Effect sizes of differential regulation of gene-promoter pairs. Scatter-
plots show the pairwise comparison of promoter methylation /accessibility and gene expression
change magnitudes during Mesoderm development. The left panel shows -logig RNA expres-
sion fold change (z-azis) versus the MMRC estimate of promoter methylation (y-azis). The
center panel shows the -log;g RNA expression fold change (z-azis) and MMRC estimate
of promoter accessibility on the y-axis. The right panel plots accessibility MMRC (z-azis)
versus methylation MMRC (y-axis). Yellow dots points significant changes (FDR<0.1) in
the modality displayed on the x-axis, blue points indicate significant changes of the modality
on the y-axis, and green points indicate significant changes in both. Figure generated by Mazx
Frank.

The comparison of the magnitude of change in methylation and accessibility above
does not directly give any information about the link between the modalities. There-
fore I extracted the posterior methylation rate estimates within refined promoter
subregions at 20 equally spaced points across pseudotime, similar to Section 3.3.4. I
also extracted these estimates for promoters that were not significantly differentially
methylated /accessible. Then I calculated the correlation between the accessibility and
methylation time series. Figure 3.31 shows the correlation estimates for four different
classes of promoters: differentially methylated, differentially accessible, neither differ-
entially methylated nor accessible (not differential), as well as differentially methylated
and differentially accessible (both). The majority of promoters that GPmeth detected
as both were highly inversely correlated, which would be expected if a promoter gets
activated or inactivated over time. Interestingly, of the subset of regions that were
only differentially methylated, most are still highly inversely correlated. This could
hint at the fact that these regions are still co-regulated, but there was not enough data
to detect differential accessibility. In promoters that were only differentially accessible,
most regions are not more inversely correlated than the background distribution
of non-differential regions. Overall, this hints at the fact that methylation changes
in promoters are mostly accompanied by opposite accessibility changes, whereas

accessibility changes do not necessarily result in changes in methylation rate.
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Figure 3.31 | Correlation of promoter methylation and accessibility during Meso-
derm development. Kernel density estimates of the distributions of Pearson-correlation
between promoter methylation and promoter accessibility time series extracted from GPmeth.
The color indicates if GPmeth identified the promoter as significantly methylated/accessible
at FDR<0.1 and MMRC>0.3. Figure generated by Max Frank.

To investigate if there is a small population of genes where methylation accessibility
and RNA expression are directly linked, I calculated the correlations of promoter
methylation /accessibility time series to RNA time series extracted from the GPcounts
models. Figure 3.32 shows the correlations for the four classes of promoters. The
expectation for classical gene regulation would be that promoter methylation is
repressing the expression of a gene. Therefore, we expect a negative correlation.
Promoter accessibility should induce gene expression, resulting in a positive correlation.
There does not seem to be a strong enrichment for negative correlations in differentially
methylated promoters. There is a small enrichment for positive correlations for
differentially accessible regions, meaning that for a small subset of genes, promoter
accessibility could play a role in gene regulation during Mesoderm formation, but this
regulation seems independent of methylation. If we filter for correlation coefficients of
>0.7 for methylation/RNA and <-0.7 for accessibility/RNA, we are left with only 6
promoter-gene pairs: Cldn4, Helb, Argl, Sec16b, Aplm?2, Slc40al. These genes do

not seem to play special roles in Mesoderm development.
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Figure 3.32 | Correlation of promoter methylation/accessibility and gene expres-
sion during Mesoderm formation. Scatterplot of Pearson-correlation between promoter
methylation and gene expression time series (z-azis) and Pearson-correlation of promoter
accessibility and gene expression time series (y-azis). The columns correspond to classes of
promoters that GPmeth identified as differentially methylated /accessible. Figure generated
by Max Frank.

To investigate these regions in more detail, I visualized the model outputs of all three
modalities in Figure 3.33. A common theme of these regions is that the methylation
change subregions identified by GPmeth (shaded grey regions) are only close to the
center of the regions that harbor the TSS in one case. Conversely, the accessibility
changes are close to the T'SS in four out of six cases. Another interesting observation
is that the subregions of differential methylation and differential accessibility do not
always overlap. All this could suggest that it is not the concerted regulation of the T'SS
by methylation and accessibility that produces changes in gene expression. Rather,
there might be regulatory regions such as enhancers that are in close proximity
to the genes TSS that regulate its expression. Notably, this observation was only
possible with the high genomic resolution of GPmeth and would have been missed by

techniques that average signal across genomic windows.
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Figure 3.33 | Model predictions of promoters with potential gene regulation
capabilities. The left and center columns depicts GPmeth predictions for DNA methylation
and accessibility of promoters, respectively. The x-axis of the GPmeth plots depicts the
genomic position, with 0 corresponding to the transcription start site. The scatterplot depicts
the input data to the model measured by scNMT-seq, where blue indicates unmethylated
sites and red indicates methylated sites. The contours correspond to the posterior mean
prediction of the methylation rate p by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is 0.3. The right column depicts the GPcounts model of RNA
expression of the corresponding gene. The x-axis represents pseudotime, and the y-axis are
log-scaled counts of RNA expression. Every grey point is a measurement in a cell. The grey
line is the mean posterior prediction of the GPcounts model, and the dark and light grey
shaded areas represent the 68% and 95% confidence interval, respectively. Figure generated
by Max Frank.
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However, when looking at just the connection between promoter accessibility and
gene expression, there is a larger number of positively correlated gene-promoter pairs.
Furthermore, the subregions identified by GPmeth are tightly distributed around the
TSS of the gene. This distribution gets even narrower when filtering promoter-gene
pairs where accessibility and RNA expression are highly correlated (Fig 3.34). In total,
94 gene-promoter pairs were significantly differentially expressed and accessible and
had a Pearson-correlation coefficient of >0.7. Of these, 64 gene-promoter pairs had
refined accessibility subregions within a 500bp window around the TSS. Therefore,
there is a small subset of genes where promoter accessibility likely influences gene

expression.
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Figure 3.34 | Distance of differentially accessible subregions to transcription
start sites. Kernel density estimate plots show the distribution of distances of the center of
subregions that GPmeth identified as differentially accessible. The color indicates whether the
temporal accessibility rate change has a Pearson-correlation coefficient with RNA expression
of 0.7 or greater. Figure generated by Max Frank.

3.3.6.2 Integrative analysis of Enhancer regions

As discussed in Section 3.3.2, Enhancers are the main epigenetic drivers during
gastrulation. I, therefore, wanted to investigate the relationships between enhancer
methylation, enhancer accessibility, and gene expression. This analysis is somewhat
complicated by the fact that there is no simple mapping between enhancers and genes.
In this analysis, I used the simple approach to map enhancers to genes based on
genomic distance. For this, I calculated the distance of the center of each H3K27ac
enhancer window to the TSS of each protein-coding gene and paired each enhancer
with the gene that has the smallest distance. Note that this approach produces a

one-to-many mapping where one gene can be connected to multiple enhancers.

I then compared the three different modalities for each gene-enhancer pair. For en-
hancers, 663 regions were both significantly differentially methylated and significantly
differentially accessible. This is about a third of the 2242 differentially methylated and
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1980 differentially accessible enhancers in total. The overlap between both methyla-
tion/accessibility and RNA expression was similarly low, with 751 and 675 enhancers,
respectively, and only 214 enhancers being significantly differential in all three modal-
ities. For these overlaps, one has to keep in mind that they are dependent on the
established gene-enhancer links, which likely contain false positives. Furthermore,
as in the above Section, these overlaps are sensitive to significance cutoffs and are

investigated in more detail below.

Methylation Accessibility

1042 856

214
537 461

4089

RNA

Figure 3.35 | Venn Diagram of differentially regulated genes and nearby enhancers.
Number of significant enhancers/genes found by GPmeth/GPcounts, respectively. The cutoff
for significance with GPmeth used here was FDR<0.1 and MMRC > 0.3. For GPcounts,
significant differential gene expression was defined g-value < 0.1. Figure generated by Maz
Frank.

Next I looked at the magnitude of change in each pair of modalities (Fig 3.36.
There was no visible correlation between the MMRC estimates of enhancer methyla-
tion/accessibility and RNA expression of the closest gene (Fig 3.36, left and center
panel). Conversely, enhancer methylation MMRC and accessibility MMRC seemed
to be linked (Fig 3.36, right panel). Interestingly, there are very few differentially
methylated enhancers (blue points) where the accessibility MMRC estimate is close
to zero, but there are quite some differentially accessible enhancers (yellow points)

with zero methylation change.
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Figure 3.36 | Effect sizes of differential regulation of gene-promoter pairs. Scatter-
plots show the pairwise comparison of promoter methylation /accessibility and gene expression
change magnitudes during Mesoderm development. The left panel shows -logig RNA expres-
sion fold change (z-azis) versus the MMRC estimate of promoter methylation (y-azis). The
center panel shows the -log;g RNA expression fold change (z-azis) and MMRC estimate
of promoter accessibility on the y-axis. The right panel plots accessibility MMRC (z-azis)
versus methylation MMRC (y-axis). Yellow dots points significant changes (FDR<0.1) in
the modality displayed on the x-axis, blue points indicate significant changes of the modality
on the y-axis, and green points indicate significant changes in both. Figure generated by Mazx
Frank.

To see if the link connection between MMRC changes is due to the correlation of
methylation and accessibility over the course of Mesoderm development, I extracted
the time series of refined subregions identified by GPmeth as in the previous Section.
Similar to promoter dynamics, methylation and accessibility are highly inversely corre-
lated when they are labeled significant by GPmeth (Fig 3.37, green line). Furthermore,
enhancers that are significantly differentially methylated but not significantly differen-
tially accessible show a similar inverse correlation (turquoise line), and enhancers that
are significantly differentially accessible but not significantly differentially methylated
are bimodally distributed with peaks for no correlation and inverse correlation (dark
red line). This hints at the fact that some regions that were not identified as significant
by GPmeth are still jointly regulated by DNA methylation and chromatin accessibility,

but there were simply too few data points to reach significance.
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Figure 3.37 | Correlation of enhancer methylation and accessibility during Meso-
derm development. Kernel density estimates of the distributions of Pearson correlation
between enhancer methylation and enhancer accessibility time series extracted from GPmeth.
The color indicates if GPmeth identified the enhancer as significantly methylated/accessible
at FDR<0.1 and MMRC>0.3. Figure generated by Max Frank.

This is an interesting finding since this could provide a basis for inspecting the uncer-
tainty estimates of the GPmeth model. One advantage of using a fully probabilistic
model is that its posterior predictions are not just point estimates but are probability
distributions. Therefore, we can use the posterior estimate of the model to determine
how confident the model is in its prediction of accessibility rate. With this, I wanted
to answer what proportions of enhancer subregions that were differentially methylated
were not found as differentially accessible due to a lack of model confidence versus
truly unchanging accessibility. To this end, I extracted the genomic coordinates of
all 1980 differentially methylated enhancers and obtained posterior predictions for
chromatin accessibility within those regions. I calculated the mean, 5%, and 95%
confidence interval of those predictions and the Pearson-correlation of those time
series with the methylation time series. Figure 3.38, left panel shows the mean MMRC
estimates for methylation versus accessibility. As expected, the correlation between
the modalities is more likely to be negative if both regions have large mean MMRCs.
I then categorized the accessibility MMRC estimates into three groups: regions with
a 95% MMRC CI smaller than 0.3 (i.e., regions where the model is confident that
there are no large changes in accessibility), regions where the 5% MMRC CI is larger
than 0.3 (i.e. regions where the model is confident that changes in accessibility are
large) and those that fall between those criteria (i.e., regions where the model cannot
confidently say whether the accessibility rate is below or above 0.3). This classification
gives a lower and an upper bound for the potential number of enhancers that are

co-regulated by methylation and accessibility.
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Figure 3.38 | Correlation of enhancer methylation/accessibility with uncertainty
estimates. The left and center panels show a scatterplot of MMRC estimates of enhancer
methylation (z-azis) and enhancer accessibility (y-azis). In the left panel, points are colored
by Pearson-correlation values between methylation and accessibility time series. The center
panel shows a random subset of 100 enhancer subregions with error bars representing the 5%
and 95% quantile of MMRC predictions of the model. Points are colored by whether the 95%
quantile of accessibility MMRC predictions is smaller than 0.3 ("Confidently unchanging"),
or the 5% quantile is larger than 0.3 ("Confidently changing"), or if the error bars span the
0.3 cutoff ("Not confident"). The right panel depicts the number of enhancer subregions that
fall into each confidence category. Figure generated by Maz Frank.

Concretely, there are 178 regions where GPmeth is confident about differential
accessibility, and the correlation coefficient is smaller than -0.6. This corresponds
to just 9 % of all differentially methylated enhancers and is the lower bound of co-
regulated regions. There are an additional 366 regions with a high inverse correlation
between accessibility and methylation where GPmeths 95% CI is above 0.3. Therefore,
the upper bound of co-regulated enhancers is 544, which is 27% of all differentially
methylated enhancers. Note that a classical test would have resulted in point estimates
for this proportion that would have likely fallen somewhere in the above-mentioned

range.

Next, I wanted to investigate the relationship between enhancer epigenetics and the
expression of the closest gene. I, therefore, calculated the correlations of enhancer
methylation /accessibility time series to RNA time series extracted from the GP-
counts model of linked genes. Figure 3.39 shows the correlations for enhancer regions
annotated by GPmeth. In contrast to promoters, this analysis showed a smaller
enrichment of expected correlations for enhancers that were marked as significant
by GPmeth compared to the background of non-significant enhancers. Interestingly,
enhancer accessibility and methylation seem to be both positively and negatively
correlated with gene expression to a similar extent. This probably hints at the fact
that predicting gene regulation through enhancers epigenetics requires more complex
models than linking genes to their closest enhancers. This is to be expected since it
is known that gene expression can be influenced through the combinatorial effects of

multiple enhancers.
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Figure 3.39 | Correlation of enhancer methylation/accessibility and gene expres-
sion during Mesoderm formation. Scatterplot of Pearson-correlation between enhancer
methylation and gene expression time series (2-azis) and Pearson-correlation of enhancer
accessibility and gene expression time series (y-azis). The columns correspond to classes of
promoters that GPmeth identified as differentially methylated /accessible. Figure generated
by Mazx Frank.

3.3.6.3 Temporal ordering of methylation and accessibility

One of the key questions in establishing models of gene regulation is whether observed
correlations between different regulatory events are causally related. An important
tool in establishing causality is the observation of temporal shifts between events. For
example, if an enhancer is observed to be demethylated before it becomes accessible,
it is impossible for the accessibility change to be the cause of the methylation rate
change. Since GPmeth models should predict methylation and accessibility rate
changes with high temporal resolution, I decided to investigate if there are detectable

temporal shifts between the time series of the two modalities.

To this end, I started with all enhancer subregions that GPmeth identified as differ-
entially methylated (FDR < 0.1, MMRC > 0.3). I then extracted the accessibility
predictions of GPmeth at the same subregions and filtered time series that had at
least a moderate inverse Pearson correlation of -0.6 or lower. This resulted in pairs of
predicted time series for 429 enhancer subregions. To find temporal shifts, I used a
modified measure of cross-correlation that is used to detect lag between time series in
the signal processing field (Rabiner and Gold, 1975). Briefly, the idea is to slide two
time series that should be aligned along each other’s temporal axis while calculating
the correlation between the signals at every shift position. If the correlation value
peaks at a certain shift position, then it is likely that the two time series are linearly
shifted with a lag corresponding to the shift position. Because the expectation for
methylation and accessibility rates is inversely correlated, the lag can be determined
by finding the highest inverse correlation value. Figure 3.40, (left panel) shows the
Pearson correlation values at different temporal shifts. As expected, on average, the
correlation between methylation and accessibility becomes weaker with large shifts.
Interestingly, there seems to be a small but consistent positive delay in the accessibility
time series. However, the distribution of calculated delays is quite broad (right panel),
meaning that some time series are also shifted in the other direction. The mode of

the delay distribution is at an accessibility delay of 0.1, which is 10% of the complete
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pseudotime trajectory. Since embryos in this dataset were sequenced over the course
of E6.5 to E7.5 this could roughly be translated to 5h of real time.
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Figure 3.40 | Time delay of enhancer accessibility compared to methylation during
Mesoderm formation. The left panel shows the Pearson-correlation between methylation
and accessibility time series at different temporal shifts for differentially methylated enhancers
(grey lines, n=429). Delay is given as a fraction of the total pseudo-timespan from E6.5
to E7.5. The blue line represents the average of all individual profiles with shaded regions
indicating one standard deviation from the mean. The right histogram shows at which
time delay the strongest inverse Pearson-correlation was observed for each enhancer. Figure
generated by Maz Frank.

Of course, this analysis is strongly dependent on the number of measured cells and
the frequency at which they were sequenced. Because this dataset only consists of

two sequencing time points, these results should be taken as preliminary.

3.4 Epigenomic regulation of other lineages

The majority of the results Section of this theis focussed on the Mesoderm lineage
formation during mouse gastrulation. This is because this lineage had substantially
more cells assigned by trajectory inference. Figure 3.41 shows the pseudotemporal
assignment of each cell for the four lineages. Note that there are few cells that map to
the late stages of Gut and Notochord development and the non-uniform distribution
of cells. Note also that pseudotime estimation resulted in a substantially shorter total
timespan for the Ectoderm lineage, a result of the high transcriptional similarity of

ectoderm cells to embryonic stem cells.
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Figure 3.41 | Pseudotime estimates for all four lineages. Jitterplot shows the
pseudotime assignment for each cell, in the four identified lineage trajectories. Colors indicate

cell-types as assigned by the mapping to a larger single-cell transcriptomic reference atlas
(Pijuan-Sala et al., 2019). Figure generated by Max Frank.

Despite the fewer cells in lineages other than Mesoderm, GPmeth identified differen-
tially methylated- (Fig 3.42) and accessible (Fig 3.43) enhancers and promoters. As
in the Mesoderm lineage, the Notochord and Gut lineages mainly exhibit methylation
and accessibility changes in enhancer regions, as evidenced by fewer differentially
accessible promoters. Conversely, in the Ectoderm lineage, there are almost no dif-
ferentially methylated or accessible promoters or enhancers. This is in line with the
notion that cells of this lineage are epigenetically primed earlier in development

(Munoz-Sanjuén and Brivanlou, 2002; Argelaguet et al., 2018a).
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Figure 3.42 | Differential methylation of all lineages during gastrulation. Maximum
methylation rate change (MMRC) on the x-axis vs. significance on the y-axis (GPmeth
-log10 p-value) of promoter (left column) and enhancer (right column) methylation during
Mesoderm development. Rows correspond to different lineages. The horizontal dashed line
corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.
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Figure 3.43 | Differential accessibility of all lineages during gastrulation. Maximum
methylation rate change (MMRC) on the x-axis vs. significance on the y-axis (GPmeth
-log10 p-value) of promoter (left column) and enhancer (right column) accessibility during
Mesoderm development. Rows correspond to different lineages. The horizontal dashed line
corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.

To investigate enhancer regulation for different lineages further, I used the sets of
germ-layer-specific enhancer annotations, i.e., those enhancers that are derived from
ChIP-seq peaks exclusively present in one of the differentiated germ layers (see Section
3.2.2).

First, I assessed the average methylation and accessibility profiles of these enhancers
over the course of Ectoderm development. As can be seen by averaged methylation and
accessibility profiles in Figure 3.44, Ectoderm-specific enhancers are demethylated

and highly accessible throughout Ectoderm lineage development as expected. In
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contrast, lineage-specific enhancers for Mesoderm and Endoderm tissues stay highly

methylated and inaccessible.
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Figure 3.44 | Averaged methylation rate profiles for lineage-specific enhancers
during Ectoderm development. The heatmaps represent the GPmeth posterior mean
predictions, averaged across lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model for each region in
a regular grid across a 4kb genomic window centered around the middle of the H3K27ac
ChIP-seq peak and pseudotime and taking the averages of the aligned grids. The top row
are averaged methylation profiles, the bottom row are averaged accessibility profiles. Figure
generated by Maz Frank.

Next, I investigated the enhancer dynamics of the Gut and Notochord lineage. The
detailed Figures of this analysis can be found in Section A.2 and A.3. Both lineages
showed increases in accessibility and decreases in methylation of Endoderm-specific
enhancers (Fig A.8, A.9, A.14 and A.15). Interestingly, there were also a number of
Mesoderm-specific enhancers that exhibited the same temporal dynamics. This could
indicate that some Mesoderm-specific enhancers could be active in the earlier phases

of Gut and Notochord development.

Next, I assessed the overlaps between all enhancers that were found to be differentially
methylated by GPmeth to see if most regulatory regions are specific for only one
lineage or if there are enhancers that change in methylation rate in multiple lineages.
For simplicity, I excluded the Ectoderm lineage from this analysis because of the
low number of differential regions. Figure 3.45) shows that many enhancers change
in two or even all three of the lineages. This is not unexpected since differentiation,
in general, requires the downregulation of pluripotency genes, which would be a

requirement for all three lineages.
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Figure 3.45 | Overlaps in differentially methylated enhancers between lineages.
UpSet plot of the number of differentially methylated enhancers that are shared and exclusive
to the Notochord, Mesoderm, and Gut lineage. The height of the bar indicates the number in
each group of overlapping sets indicated below. The horizontal bars indicate the total number
of significant regions (FDR <0.1, MMRC > 0.3) per lineage. Figure generated by Maz Frank.

Differentially accessible enhancers exhibit similar behavior, with many regions being

detected in multiple lineages (Fig 3.46).
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Figure 3.46 | Overlaps in differentially accessible enhancers between lineages.
UpSet plot of the number of differentially accessible enhancers that are shared and exclusive
to the Notochord, Mesoderm, and Gut lineage. The height of the bar indicates the number in
each group of overlapping sets indicated below. The horizontal bars indicate the total number
of significant regions (FDR <0.1, MMRC > 0.3) per lineage. Figure generated by Maz Frank.



135

4 Discussion

The genome, the complete set of an organism’s DNA, remains largely constant across
all cells of an organism and throughout its lifetime, serving as a blueprint for its
biological functions. In contrast, the epigenome, which encompasses modifications
such as DNA methylation and chromatin accessibility, is highly dynamic and varies
significantly across different tissues and stages of development. These epigenetic marks
are crucial for regulating gene expression, influencing cell type specification, and
guiding cell fate decisions, underscoring the epigenome’s pivotal role in organismal

development and cellular differentiation.

Advancements in epigenetic profiling methods, such as ATAC-seq (Buenrostro et al.,
2013) for chromatin accessibility and bisulfite sequencing (Frommer et al., 1992) for
DNA methylation, have significantly enhanced our ability to probe the epigenetic
landscape of cells. These technologies generate comprehensive data on how the
epigenome is organized and how it changes in different cellular contexts, providing
insights into the regulatory mechanisms that underpin gene expression and cell

identity.

However, the analysis of epigenetic data, especially from single-cell assays, poses
considerable challenges. Bulk analysis techniques offer a deep view of epigenetic
changes across populations of cells but lack the ability to capture cell-to-cell variability
and are ill suited to capture continuous changes over time. Single-cell epigenetic assays,
on the other hand, reveal this heterogeneity but come with technical limitations
of reduced coverage due to low genomic input material. This makes it difficult to
detect subtle epigenetic changes and to study continuous biological processes, such as

developmental trajectories, at reasonable costs.

Current analytical tools, including statistical tests and computational models, devel-
oped for bulk assays, are often not directly applicable or sufficiently powerful to model
single-cell epigenetic data. They typically focus on identifying differences between
discrete, predefined cell populations rather than capturing continuous changes across
developmental pathways. This highlights the need for novel analytical approaches

that can leverage the sparse and heterogeneous nature of single-cell epigenetic data.
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In this Thesis, I described a strategy and modeling framework (GPmeth) to study
DNA methylation and chromatin accessibility in continuous biological processes. This
strategy uses the power of single-cell multimodal assays to measure transcriptomic
and epigenomic modalities in the same cell. Single-cell transcriptomic analyses are
well established and are able to reconstruct temporal dynamics of developmental
processes from single experiments through pseudotime reconstruction. With each
cell mapped onto the appropriate spot in the developmental trajectory, GPmeth
can then be used to model the rate of DNA methylation or chromatin accessibility
measured in parallel. Because these measurements are typically sparse, this modeling
requires tailored methods. Two key features of GPmeth allow it to combat the sparsity
of input data. First, it uses the pseudotemporal positions of cells as a continuous
variable to share information between cells that are close in time without placing
explicit assumptions on the type of temporal dynamics (such as linearity). Second,
it models methylation rate at base-pair resolution while still sharing information
between proximal genomic measurements. This allows the detection of differentially

methylated region boundaries within a larger genomic window.

4.1 Model benchmarking and validation

I validated the GPmeth model on synthetic data that was designed to mimic scNMT-
seq measurements (Section 2.2). This revealed the theoretical benefits and limitations
of this model.

The GPmeth model parametrized with an RBFRBF kernel consistently performed
close to the data-generating model in terms of correctly identifying differentially
methylated regions (Section 2.2.2, Fig 2.14). Furthermore, it clearly outperformed
a model that averages methylation measurements within a genomic window. As
expected, the performance difference increased when the subwindow of differential
methylation was decreased. When comparing GPmeth to Fisher’s exact test (Fisher,
1922) and scMET (Kapourani et al., 2021), there was a clear increase in statistical
power that was owed to the addition of the genomic kernel and the continuous
modeling of pseudotime. In practice, this means that GPmeth can detect more subtle
changes in methylation/accessibility at the same FDR threshold. Notably, this could
mean that GPmeth can better detect differentially methylated /accessible regions
(DMRs/DMAs) that either have a smaller magnitude of methylation rate change or
contain fewer CpG/GpC sites. I also used the simulation experiments to determine
the theoretical limitations on what types of regions can be detected with GPmeth.
GPmeth statistical power depends mainly on the following variables: the number
of cells assayed, the number of CpG/GpC sites that are differentially methylated,
and the magnitude of methylation rate change or maximum methylation rate change
(MMRC). In my simulations, I kept the number of cells fixed to 300, which can be
expected for a typical scNMT-seq experiment. I then varied the size of the subwindow
with differential methylation and the MMRC to see where the detection limits lie
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(Fig 2.12 and 2.13). Since CpG site density in the genome about ten times lower
than that of GpC sites, the detection of endogenous methylation differences is more
challenging compared to changes in chromatin accessibility. Regions with an MMRC
of 0.7 or larger could be faithfully detected with affected windows of 500bp or smaller.
With affected windows larger than 1000bp, GPmeth was able to detect rate changes
as low as 0.5. For GpC methylation, MMRC changes as small as 0.2 were detected in
affected windows larger than 500bp. With MMRC changes > 0.7, even subregions
smaller than 100bp were detected. One limitation of this test is that it did not control
for where along the pseudotemporal trajectory methylation rate changes occurred.
This can influence the detection limit since it determines how many cells will be

affected by differential methylation.

The fact that GPmeth performance was close to optimal (i.e., close to the performance
of the generative model used for producing the data), yet still was not able to detect
very small MMRC, or very short subregions, highlights the difficulty of this testing
problem and the importance of the correct aggregation of neighboring genomic loci

and cells.

I then compared GPmeth parametrized with an RBFRBF kernel to scMET on the
real scNMT-seq dataset of mouse embryonic stem cells during Mesoderm formation
(Section 3.3.3.3). It is important to note here that scMET was not designed to
accommodate continuous covariates and, thus, is not inherently suited for studying
developmental processes. However, I am currently unaware of any other single-
cell methods designed to accommodate such an experimental design. Therefore,
scMET was the closest possible comparison. Another disadvantage of scMET in this
comparison was the relatively large genomic window size that I chose to use. This
choice ensured that no differential subregions were missed by the GPmeth model,
which is designed to handle larger input windows. scMET works with summary
statistics for each cell and genomic window so that large windows will affect those
summary statistics negatively. At FDR < 0.1 scMET identified 380 differentially
methylated- and 68 differentially accessible enhancer regions. GPmeth identified 1769
differentially methylated and 2647 differentially accessible enhancers at the same
FDR (Fig 3.15). While this does not prove that GPmeth has more statistical power,
in the absence of any ground truth, many of the downstream results discussed below

provide evidence that the regions identified by GPmeth are genuine.

4.2 Investigating mouse gastrulation with GPmeth

After benchmarking and validating the GPmeth model, I applied it to a scNMT-
seq dataset of mouse embryonic stem-cells undergoing gastrulation (Argelaguet et
al., 2019b). First, I established pseudotime trajectories of lineage formation using
unsupervised dimensionality reduction and pseudotime estimation techniques. This

revealed four major trajectories, in which pluripotent epiblast cells differentiate
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into Mesoderm, Ectoderm, Gut, and Notochord cells from embryonic day (E)6.5
to E7.5. Since the Mesoderm trajectory had the largest number of cells, many
analyses in this thesis were focussing on this trajectory path. After cells were assigned
pseudotime values and lineage identity, I applied GPmeth to find differentially
methylated enhancers and promoters over the course of gastrulation. An immediate
finding was the low number of differentially methylated or accessible promoters (190
and 380 promoters, respectively, with FDR<0.1 and MMRC>0.3 out of 18,347 tested
regions). Conversely, out of 17,386 enhancer regions marked by H3K27ac, 2478 were
identified as differentially methylated and 2327 as differentially accessible by GPmeth

with the same criteria.

4.2.1 Promoter epigenetics

The low number of differentially methylated and accessible promoters strengthens the
notion that enhancer elements are the main drivers of embryonic lineage specification,
which has been observed before with alternative techniques (Cusanovich et al., 2018;
Zhang et al., 2018) and with MOFA analysis of the same dataset (Argelaguet et al.,
2019b). Investigating the GPmeth model outputs of promoters in more detail revealed
that the identified subregions were clustering around the TSS for accessibility but
spread throughout the 4kb input window for methylation (Fig 3.18 and 3.17). This is
hinting to the fact that differentially methylated promoter subregions might be differ-
ent types of regulatory elements that happen to be in close proximity to the TSS of the
gene. I also used the GPmeth output to investigate the relationship between promoter
methylation, promoter accessibility, and gene expression. Correlation between all
three modalities was only observed for a minute subset of 6 genes. Closer inspection
revealed again that differentially methylated regions were not overlapping with the
differential accessibility signal close to the T'SS of the gene (Fig 3.33). Therefore, there
seems to be no concerted regulatory mechanism that changes DNA methylation and
chromatin accessibility of promoters to induce or repress gene expression. However,
chromatin accessibility itself was correlated with gene expression for a small but
meaningful set of 94 genes, mostly with differential accessibility in close proximity
to the TSS (Fig 3.34). GO-term analysis of this gene set (data not shown) revealed
expected terms such as "organism development", but also surprising enrichment
for terms related to placenta formation. Furthermore, the majority of these genes
decrease in gene expression and promoter accessibility during Mesoderm formation.
This could be an interesting avenue to further explore if promoter accessibility could
be important for the development of extraembryonic tissue arising from epiblast cells

that contribute to the embryonic part of the placenta (Panja and Paria, 2021).

4.2.2 Enhancer epigenetics

Since there was a high number of H3K27ac enhancer elements identified by GPmeth
both as differentially methylated (n=2478) as well as differentially accessible (n=2327),
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I wanted to investigate whether methylation and accessibility are dependent on one
another within these elements. This has been investigated recently in cultured mouse
embryonic stem cells using single-molecule footprinting (Kreibich et al., 2023; Krebs et
al., 2017) and produced the result that in a homogeneous population of cells only 3% of
active enhancers showed a dependency of chromatin accessibility on DNA methylation.
Enhancer methylation and accessibility dependency has also been investigated in
a dynamic system of macrophage differentiation, using bulk technologies (Barnett
et al., 2020). This study found little evidence for close temporal relationship between

chromatin accessibility changes and DNA methylation.

Here, I am assessing the dependency of chromatin accessibility on DNA methylation
in the context of a dynamically changing system that is Mesoderm formation. 663
enhancer regions were both significantly differentially methylated and significantly
differentially accessible during Mesoderm formation, which corresponds to about a
third of significant enhancers. However, as seen with promoters, this overlap is not
necessarily concrete evidence for co-regulation. Therefore, I assessed the correlation
between the temporal change profiles of methylation and accessibility rates. Interest-
ingly, this revealed that many differentially methylated regions are inversely correlated
with differential accessibility, whereas only a subset of differentially accessible regions
shows inverse temporal patterns of methylation (Fig 3.37). This could indicate that
during Mesoderm development, enhancer methylation can cause accessibility changes,
but the opposite is not necessarily true. To get a confident estimate of the proportion
of differentially methylated enhancers that show concordant (i.e., inversely correlated)
changes in accessibility, I compared GPmeth predictions at identified refined regions
that were differentially methylated. Because of the probabilistic nature of GPmeth, I
could separate differentially methylated enhancers into a group with a high degree
of certainty of co-variability (178 or 9%) and a group with lower certainty (366 or
18%). The second group consists of enhancers where the data is too sparse to make
a clear decision. While these proportions are significantly higher than described by
Kreibich et al., 2023, it is important to note that this analysis starts with a subset
of differentially methylated enhancers, which differs from the approach by Kreibich
et al., 2023 who started from a larger subset of regions with intermediate chromatin
accessibility. It is possible that the two sets of results cover different mechanisms of
co-regulation through methylation and accessibility and that the regulation mech-
anism described here is not a direct result of methylation-sensitive TF binding for
most enhancers but a mechanism on a longer time scale. Furthermore, these results
also differ from the findings by Barnett et al., 2020, where DNA methylation did not
change with increases or decreases of chromatin accessibility, at least not within a
time-span of hours. While the biological systems studied here and in Barnett et al.,
2020 are vastly different, this might be surprising. One important caveat is that the
ATAC-me technology used, only captures methylation in at least partially accessible
regions. Another important difference is that cells divide rapidly during embryonic

development, while macrophages are terminally differentiated and do not divide.
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Replication has been shown to be an important factor in DNA methylation changes
(Otani et al., 2013).

To gain more information about the possible mechanisms underlying this co-regulation,
I investigated if there is a temporal delay in methylation and accessibility changes.
Temporal delays are important in studying gene regulation because they provide
additional evidence for causality relationships between linked events. I, therefore,
investigated if there are linear delays between methylation and accessibility based
on cross-correlation (Fig 3.40). Despite the distribution of shifts being relatively
broad, there was an average delay of accessibility changes compared to methylation
changes of 10% of the pseudotime range, which corresponds roughly to 5h of real-time
assuming linear mapping. While these results need further validation, they are in line
with methylation causing accessibility changes. However, it is important to note that

this evidence is still correlative, requiring experimental follow-up.

Temporal comparison of methylation and accessibility rate trajectories also revealed
that there is a temporal ordering in the activation and deactivation of lineage-specific
enhancers during gastrulation (see Section 3.3.5). Mesoderm development involves
the activation (i.e. demethylation and accessibility increases) of Mesoderm-specific
enhancers, but also the inactivation (i.e. methylation increases and accessibility
decreases) of Ectoderm-specific enhancers. This is in line with a departure from the
default differentiation path of Epiblast cells to Ectoderm cells that is epigenetically
programmed as early as E4.5 (Argelaguet et al., 2018a). Analysis of the GPmeth
trajectories revealed that Ectoderm-specific enhancers mostly get inactivated before
Mesoderm-specific enhancers get activated, indicating that cells first depart from

their default fate, before deciding on their Mesodermal or Endodermal trajectory.

4.2.3 GPmeth results as a basis for targeted experiments

It is important to highlight that the results described above provide testable hypotheses
for follow-up experiments. For example, the ability of GPmeth to identify the precise
subregions where differential methylation occurs can aid in the identification of targets
for inducing methylation with genome editing techniques (Yamazaki et al., 2020).
This could reveal if the observed correlations between enhancer methylation and

accessibility are, in fact, causal.

Furthermore, GPmeth, using scNMT-seq data with genome-wide coverage, could be
used as a tool for identifying targets for subsequent targeted versions of the same
experiment. Performing NOMe-seq with genome-wide coverage increases sequencing
costs. Instead, subregions identified by GPmeth could be targeted by reduced rep-
resentation bisulfite sequencing techniques (Meissner et al., 2005; Guo et al., 2015)

that reduce cost and potentially allow the sequencing of more cells.
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4.2.4 Limitations of this study

In this Section, I will discuss the limitations of this study and potential avenues to
overcome them. While scNMT allows for unprecedented insight into gene regulatory
mechanisms in individual cells, this comes with a high cost associated with this
technique. Therefore, it is challenging to scale this technique to tens- or hundreds of
thousands of cells. However, as the cost of sequencing decreases over time, I anticipate
that more scNMT datasets of a similar scale to the one used here or larger will
become available. Assaying more cells would increase the statistical power to detect
differentially methylated regions. As I have shown with simulations in Section 2.2.2
the sensitivity of GPmeth is still limited when the regions of differential methylation
or accessibility are small. For example, when it comes to TF footprinting, a genomic
resolution of 100 bp would be ideal to faithfully detect binding events, which often
only contain a handful of GpC sites and often only a single CpG site. This resolution
could only be achieved by sequencing more cells or decreasing the coverage of NOMe-
seq, which is difficult due to the limitation of input material. Therefore, this study
likely missed some important epigenetic regulatory regions due to their size or small

magnitude of change.

Another limitation is the non-uniform temporal sampling of cells. Since cells were
only collected at two distinct times during the lineage-defining phase of gastrulation
(E6.5 and ET7.5), most cells were assigned pseudotime values at either end of the
spectrum. This could be overcome by simply including one or two more sequencing
runs with cells from embryos at the E7.0, E6.75, or E7.25 stages. This would be

especially interesting for assessing temporal shifts between modalities in more detail.

Furthermore, most epigenetic changes in this dataset either monotonously increased
or monotonously decreased during the assayed time course. One indication of this
is the good performance of the GPmeth model parametrized with a linear temporal
kernel. It would, therefore, be interesting to include developmental stages that go
beyond E7.5. This would capture the early formation of organ structures. For example
Pijuan-Sala et al., 2019 included cells up to E8.5, which captured the early formation
of the spinal cord, brain, heart, blood, and digestive system. Importantly, this involves
the up- and subsequent down-regulation of many genes, which is likely to go hand in
hand with non-linear epigenetic changes. Detecting these changes would necessitate a

nonparametric model like GPmeth.

In addition, the sampling of the different germ layers was uneven in this experiment,
which resulted in a lower number of cells mapping to the endoderm and ectoderm
lineage. For this reason, there was an emphasis on Mesoderm development in this
thesis, but a larger dataset would enable a more detailed model of the other germ
layers. Especially the formation of the ectoderm layer is accompanied by only subtle
changes in many regulatory elements since this trajectory is already primed in the

pluripotent stage (Argelaguet et al., 2019b).
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5 Future outlook

GPmeth addresses two fundamental technical problems that are still limitations in
several single-cell studies. The first is the proper use of continuous covariates in
experiments that study cell populations that change their characteristics smoothly
across space or time. The second problem, specific to epigenomic studies, is the
absence of a fixed set of features that can be measured and used for downstream
analysis. The fundamental features of epigenetics are individual bases, but current
limitations in experimental setup often preclude the analysis on this level of detail.
Furthermore, individual bases are not independent units but are co-varying within
regulatory regions. The definition of these regulatory regions is a hard problem, and
there is no consensus database that works for all cell types and states. Therefore, I

think GPmeth could be used to solve these problems in the following ways.

Firstly, the capability of GPmeth to identify DMRs and DMAs in a data-driven
manner could be used to identify these regions genome-wide. In this study, I have
started from a set of putative promoter and enhancer regions, but this could be
extended to genomic windows covering whole chromosomes. However, this approach
should be taken with care since this would increase the multiple testing burden. Two
possible avenues could mitigate this problem. The first would be to segment the
genome in a manner that separates CpGs or GpCs that are further than 150 bp apart
since, beyond that distance, co-variation should be minimal. Secondly, some heuristics
can be applied to exclude windows with very low coverage or low total variance in
accessibility or methylation. This would allow us to find DMRs and DMAs free of
bias that could be introduced by selecting putative regulatory regions based on prior

knowledge.

Secondly, there are extensions that could be made to the model allowing for the explicit
modeling of trajectory branching dynamics. In this study, I have determined cell-
lineage associations based on pseudotime analysis alone and then separately modeled
these trajectories. However, it has been shown in GP models for gene-expression data
that branching dynamics can be directly included in the model structure (Yang et al.,
2016; Boukouvalas et al., 2018b; BinTayyash et al., 2021). This would also allow us to

identify when differential methylation/accessibility first occurs in a probabilistic way.
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Thirdly, it is possible to include spatial coordinates of cells as an additional or
alternative covariate to pseudotime in the GPmeth model. With the emergence of
epigenomic spatial single-cell approaches (Thornton et al., 2021; Deng et al., 2022), the
relationships between chromatin accessibility and DNA methylation of neighboring
cells can be explored. GPs have been a valuable tool for investigating the gene
expression profiles that spatial single-cell RNA sequencing assays produce (Svensson
et al., 2018; Kats et al., 2021) because of their flexibility in modeling non-linear

changes. Therefore, this could be an interesting application for GPmeth.

Lastly, GPmeth was designed for NOMe-seq data which produces a base resolution
output. However, the same problem of unclear definitions of regulatory features also
applies to other techniques. In ATAC-seq, features are usually defined by detect-
ing peaks of accessibility summed over all cells. Alternatively, cells are sometimes
roughly clustered based on the accessibility profile of genome-wide fixed-width bins,
followed by peak calling on clustered groups of cells. However, when studying a
continuous developmental process, clustering could be a sub-optimal approach (Fig
1.11). Therefore, an interesting avenue would be to apply the same principles used
by GPmeth to ATAC-seq datasets. For example, in a multimodal ATAC-seq dataset
(Chen et al., 2019; Ma et al., 2020), trajectories could be established using the RNA
modality. Then, a GP model could model the distribution of reads directly across
pseudotime and the genome dimension, resulting in more precise regions of differential
accessibility. This could improve the identification of TF binding sites or the detection

of gene-enhancer pairs.

A detailed understanding of the exact genomic position of epigenetic changes, com-
bined with high temporal resolution of these changes over biological processes has the
potential to greatly enhance our understanding of how gene regulation informs cell
fate. As technologies emerge with the potential to provide this information, models

that can make full use of this data will be essential.
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6 Additional Methods

6.1 GPmeth

6.1.1 Model optimization

A gaussian process is trained by optimizing its marginal likelihood with respect to

the hyperparameters of the model. The marginal likelihood is given by

ply) = / p(y | BN (F |, K (0, 2))df, (6.1)

where p is the mean rate of the region and K (x, x) is the covariance matrix specified
by the full kernel function. This likelihood is untraceable in the case of Bernoulli
likelihood, so variational approximation is used to compute the evidence lower bound

(ELBO) as an approximation.

Models are trained in a two step fashion. First the model with only the genome kernel
is trained. Hyperparameters are initialized to sensible values as follows. Genome
kernel lengthscales are fixed at 150bp, temporal kernel lengthscales are initialized
with 0.21. The temporal kernel lengthscales are bounded between 0.2 and 100 to
avoid very small lengthscales that would be biologically implausible. Kernel variances
are initialized with 0.3. The model also has a fixed mean function that is set to
® ! (4rate), which is the probit function of the mean methylation /accesibility rate

within the modelled region.

After the null model is trained the optimized hyperparameters of the genomic kernel
are used to initialize the genomic kernels of the full models. The genomic kernel
lengthscales and variances of the full model are not trained further, while the hyper-
parameters of the product kernel are then optimized for the full model. The model
parameters of all trained models are saved in a custom Hdf5 (The HDF Group, 1997)
format to be retrievable for downstream applications. The ELBO of all models is also

recorded along with key model parameters in tsv format.
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6.1.2 Maximum methylation rate change calculation

The maximum methylation rate change (MMRC) of each modeled region is defined
as the largest change in methylation rate across pseudotime for each point in the
genome. This metric is calculated by producing posterior predictions of the GPmeth
model at a grid of evenly spaced location that span the modeled region in the genome
and pseudotime dimension. The number of points in this grid can be varied depending
on the desired resolution, with a default of 100 points across the genome dimension
and 20 points across the pseudotime dimension. Then for each genomic position, the
difference of the maximum and the minimum predicted posterior methylation rate is
calculated. If only a point estimate is desired, this can be done with the posterior
mean of the model. To calculate posterior distributions of the MMRC, the model
posterior is sampled (by default n=2,000 samples). For each sample, MMRC values

are calculated separately.

6.1.3 Generation of synthetic NOME-seq data

As discussed in Section 2.2, the process of generating synthetic data to assess model

performance consisted of three steps:

1. Generation of realistic locations of assayed CpG/GpC sites in a typical NOME-

seq experiment

2. Drawing methylation rates p from a generative model consisting of a GP with

a changewindow kernel

3. Bernoulli sampling from the simulated methylation rate at the assayed
CpG/GpC sites

This Section will describe the step of producing methylation rates with the desired
properties of differential methylation over time in more detail. The generative model

for p is

Palt ~ @(GP(Oa k;alt)

kalt = kgenome + kC’W

Few = koutsiaets ) % (1 — 0(2)) % (1= 0(&)) + kinsiae (2, 2') # 0(z) x o(a’) &2

1 1

e—s(z—xo) * e—s(z—z1)

Oxg,z1 (x) =

as described in section 2.2. This model can be constructed with two kernels, kqytside
and k;pside that control the temporal change of p outside and inside of the change
window [z, 1] respectively. In the simulation the change window was chosen to be
placed centrally in the generated region, so that it could be specified with a single

width parameter w
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xg=—w/2;1 = w/2 (6.3)

The choice of kjpside and koyuiside determine the differential methylation in the region.
In this simulation I chose the outside of the window to have no differential methylation
over time with a constant kernel with low variance and the inside of the window
to be a squared exponential kernel with a lengthscale of 0.5, which is half the total
pseudotime

koutside = 0.000001 (6.4)

k’mside(x,l'/) = 0’?» exp (—(w();)) (65)

To test the performance of the model with different magnitudes of methylation rate
change, the goal is to produce a sample that fulfills the criterion of a certain rate
change at some point within the window. This corresponds to the MMRC value
described in Section 2.1.3. Depending on the desired MMRC, I changed the variance
parameter oy of kj,giqe. Because sampling from a GP will yield a stochastic result

there is no direct relationship between MMRC and o;. Rather I chose to set

1.3 if MMRC > 0.7
o; =407 if0.2< MMRC < 0.7 (6.6)
0.1 if MMRC < 0.2

and then filtered out any samples from the model that did not fulfill the desired
MMRC up to a tolerance. In practice this worked well with a tolerance parameter of

0.05. For examples of this model see Figure 2.11.

6.1.4 Model calibration

For model calibration, 18,347 promoter regions and 17,386 H3K27ac enhancer regions
were selected. Pseudotimes and methylation values form from the mesoderm lineage
(415 cells) scNMT-seq gastrulation dataset were used. For each region, the pseudotime
values attached to each cell were randomly permuted five times resulting in a total of
91,735 shuffled promoter and 86,930 shuffled enhancer regions. After permutation
these regions are not expected to show significant methylation /accessibility changes
over time and thus the LLR values of the models can be used for calibration. All
models in Table 2.1 were trained on the permuted regions and LLR values were
calculated based on model comparisons (see Section 2.1.2). Modeled regions were
grouped, based on the number of observations within the regions, into five bins. This
grouping was done separately for promoter and enhancer regions. For each group
a x?-mixture distribution was fit (see Section 2.2.4). To fit this null distribution,

the free parameters of the y?-mixture, 7, a, d, were estimated maximum likelihood
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estimation with a grid-search over the parameters. To increase the robustness of
the fit, the lowest 5% and the highest 5% quantile of the LLRs was excluded. The
estimation of parameters was performed with a custom function adapted from the
Chi2Mixzture class of the limix package (Lippert et al., 2014). To estimate significance
of model comparisons on real regions, each region was matched with the appropriate
bin according to it’s number of input points. P-values were then calculated as the

tail function value of the null distribution at the respective LLR value.

6.1.5 Software availability

GPmeth is an open-source project available at https://github.com/mffrank /gpmeth.

6.2 Additional Methods for Mouse Gastrulation

6.2.1 Definition of enhancer and promoter regions

Bed files with H3K27ac marked regions were obtained from the orig-
inal publication (Argelaguet et al., 2018a), and can be downloaded from
ftp://ftp.ebi.ac.uk /pub/databases/scnmt_gastrulation. For GPmeth input the union
file H3K27ac_distal E7.5 union_intersect12_500.bed was used. For the analysis of
lineage-specific enhancer regions, H3K27ac_distal _E7.5 Ect_intersect12_500.bed,
H3K27ac_distal_E7.5 End_intersect12_500.bed and
H3K27ac_distal_E7.5 Mes_intersect12 500.bed, contained the regions that
were detected in each of the separate germ-layers Ectoderm, Endoderm and
Mesoderm respectively. To define lineage-specific enhancers, the regions were
overlapped with the union file and lineage specific enhancers were defined as exact

overlaps that only matched to one of the three lineage files.

6.2.2 RNA-seq preprocessing and quality control

Raw count data (see 6.2.10) was analyzed with scanpy (Wolf et al., 2018). Cells with
fewer than 4000 or more than 11000 genes expressed genes were removed. Then cells
with more than 10% reads mapping to mitochondrial genes were removed, as well
as cells with more than 3 million total reads. Then reads counts were corrected for

library size and log-transformed.

6.2.3 RNA-seq dimensionality reduction and pseudotime inference

The preprocessed RNA data was mapped to a much larger single-cell atlas, as was
done in Argelaguet et al., 2018a, using a mutual nearest-neighbor (Haghverdi et al.,
2018) approach. The resulting mapped first principle components were used for
further analysis. To exlude batch effects caused by differences between embyos a
batch-balanced nearest-neighbor algorithm (bbknn, Polanski et al., 2020) was used to

calculate a neighborhood graph of cells. This was then used as the input to calculate
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diffusion components (Haghverdi et al., 2016). Pseudotime was then calculated using
Palantir (Setty et al., 2019). Leiden-clustering of cells was performed based on the
diffusion maps, with resolution 0.6, leading to intentional overclustering. These clusters
were used to assign cells manually to the four lineages: Mesoderm, Gut, Notochord,
Ectoderm. Note that some cells are multiply assigned. For example early Epiplast

cells are part of all four lineages.

6.2.4 NOMe-seq data preprocessing

CpG sites (from A-C-G and T-C-G trinucleotides) and GpC sites (G-C-A, G-C-
C and G-C-T trinucleotides) for every cell (see 6.2.10), were obtained in tabular
Bismark (Krueger and Andrews, 2011) output format. The output for every cell was
concatenated and sorted by chromosome and position. This file was then compressed
and indexed with tabix (Li, 2011), enabling the fast retrieval positional subsets of
the data by the GPmeth model.

6.2.5 Differential gene expression with GPcounts

For each of the four lineages established in Section 6.2.3, differential gene expression
was assessed using GPcounts (BinTayyash et al., 2021). Cells belonging to each lineage
were filtered and their raw counts and previously calculated pseudotimes were used as
an input for a one sample test with negative binomial likelihood. This test computes
a test statistic based on the log-likelihood ratio between a dynamic model with an
RBF temporal kernel and a static model with a constant temporal kernel. P-values

were calculated assuming that the null-distribution of LLRs follows a x? distribution.

6.2.6 Detailed GPmeth workflow

Figure 6.1 shows the necessary steps to train GPmeth models. After preprocessing
and sorting methylation call files (Section 6.2.4), a bed formatted region file is used to
generate inputs for GPmeth. For each region, methylation or accessibility values are
extracted from the indexed file on disk. Cells are then matched with pseudotime values
(Section 6.2.3). This results in each observation of a CpG/GpC methylation event
having a genomic and peseudotemporal coordinate. This input is used to train the
GPmeth models (Section 6.1.1) and calculate LLR values. LLR values are transformed
into calibrated statistical estimates through the distributions of permuted null regions
(Section 6.1.4).
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Figure 6.1 | Overview of the computational workflow of fitting the GPmeth
model. Figure generated by Maz Frank.

6.2.7 Refinement of differentially methylated regions

Refinement of differentially methylated/accessible regions was done based on thresh-
olding the MMRC (Section 6.1.2) at each genomic position. MMRCs were calculated
at 100 equally spaced points across the genomic input window. Then, neighboring
points exceeding an MMRC of 0.3 were merged to define subregions. The boundaries

of the subregions were defined as the leftmost and rightmost position for each region.

6.2.8 Calculation of methylation rate time-series

Time-series were based on model predictions on a grid of 100 times 20 equally spaced
positions in the genome and pseudotime dimension respectively. First, points were
subset based on the genomic position of the desired subregion. Then methylation
rate was averaged across the genome dimension, resulting in an array of 20 equally

spaced predictions of methylation rate across pseudotime.

6.2.9 Comparison to scMet

scMet takes as input the total and methylated number of observed CpG/GpC sites in
each cell within a region of interest. Each cell must be associated with a group, that is
compared. These quantities were calculated from the raw methylation data, and cells
filtered for the mesoderm lineage and grouped according to a pseudotime threshold
of 0.5 (with scaled pseudotime from zero to one). Additionally scMet can take region
level statistics into account as covariates. Thus, for each region the CpG/GpC density
was calculated and used in the scMet model. Cells and regions had to be additionally
filterered for sparsity, to ensure robust training of the model. First cells with less than

3 CpG/GpC sites within a region were excluded. Then regions with fewer than 10
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remaining cells were excluded from the analysis. Lastly only regions with a minimum
total variance of 0.0001 and a total methylation rate larger than 0.05 and smaller
than 0.95 were included to remove non-variable regions. Note that without these

filters the optimization of scMet was not stable.

6.2.10 Data availability

The raw sequencing data can be obtained from GSE121708. Parsed data, includ-
ing count matrices for RNA expression and methylation call files are available at
ftp://ftp.ebi.ac.uk /pub/databases/scnmt _gastrulation. The parsed data has been
used as a basis for this thesis. For details about processing of the raw sequencing
data see Argelaguet et al., 2019b.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121708
ftp://ftp.ebi.ac.uk/pub/databases/scnmt_gastrulation
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A Appendix

A.1 Analysis of accessibility of lineage-specific enhancers

during Mesoderm development

For each significantly differentially accessible lineage-specific enhancer, I then visualize
the subregion with the highest 95% CI MMRC (Fig A.1). Differentially accessible
Mesoderm enhancers almost exclusively increase in accessibility rate over time, while
the majority of differential Ectoderm enhancers decrease their accessibility rate over
time. In comparison, the few significant Endoderm enhancers show a more mixed

signal.

Ectoderm Mesoderm Endoderm
1.0 1.0 1.0

0.5

methylation rate p
o
w

0.0 0.0 0.0

pseudotime

Figure A.1 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions. Lines represent the GPmeth posterior accessibility rate averages
of the refined subregions found within differentially accessible enhancers by the model.
Ectoderm-specific enhancers consistently decrease in accessibility rate over time, while
Mesoderm-specific enhancers increase in accessibility rate. Ectoderm-specific enhancers (left)
decrease the accessibility rate from 0.62 to 0.36 on average across the pseudotime range.
Mesoderm-specific enhancers (center) increase accessibility rate from 0.31 to 0.62, and
Endoderm-specific enhancers increase slightly from 0.34 to 0.40 on average. Figure generated
by Max Frank.

I then again used k-means clustering to extract patterns in methylation rate from

this data. Figure A.2 shows the extracted trends for three clusters. We again find
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two major groups for Ectoderm- and Mesoderm-specific enhancers that correspond

to early and late increase/decrease in accessibility.
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Figure A.2 | Clustered pseudotemporal accessibility trajectories of lineage-specific
enhancer regions. Shown are the same pseudotemporal trajectories of accessibility rate
predictions as in Figure A.1, but every trajectory was scaled to the range of [0,1] for scale-
invariant clustering. These trajectories were then clustered with k-means based on Euclidean
distance. A fixed number of three clusters was specified to capture up to two different trends
in the trajectories and outlier trajectories. Figure generated by Max Frank.

I compare the pseudotemporal trajectories of these two main groups in Figure A.3).
Ectoderm-specific enhancer accessibility decreases again seems to precede the increase
in accessibility of Mesoderm-specific enhancers, although the effect is not quite as

clear as with endogenous methylation.
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Figure A.3 | Temporal comparison of Ectoderm and Mesoderm-specific enhancer
accessibility. Lines are pseudotemporal trajectories of lineage-specific enhancers as in Figure
A.2. Green lines correspond to the two major clusters of Mesoderm enhancers that become
more accessible over time. Purple lines correspond to the inverse profiles (i.e., 1-accessibility
rate) of Ectoderm enhancers that become inaccessible over time. Both enhancer classes
show similar temporal patterns, but Ectoderm-specific enhancer accessibility changes tend to
precede Mesoderm-specific enhancer changes. Figure generated by Max Frank.

A.2 Epigenomic regulation during Gut development
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Figure A.4 | Summary statistics of differentially methylated refined regions
during Gut development. The top left panel shows the number of subregions that are
found by GPmeth for every genomic window with significant differential methylation. Note
the log-scale on the y-axis. The top right panel shows the distribution of subregion widths,
i.e. the width of the genomic interval where the 95% CI MMRC is higher than a specified
threshold (in this case 0.3). The bottom left panel shows the positioning of the center of the
identified subregions relative to the center of the input genomic window. The bottom right
panel shows the average 95% CI MMRC of each identified subregion. Figure generated by
Max Frank.
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Figure A.5 | Number of differentially methylated lineage-specific enhancers during
Gut development. Bar heights indicate the number of lineage-specific enhancer regions
that were identified by GPmeth to be significantly differentially accessible or methylated
(FDR<0.1). Figure generated by Max Frank.
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Figure A.6 | Averaged posterior methylation rate profiles for lineage-specific
enhancers during Gut development. The heatmaps represent the GPmeth posterior
mean predictions, averaged for lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model in a regular grid
across a 4kb genomic window centered around the middle of the H3K27ac ChIP-seq peak
and pseudotime. The top row averages all lineage-specific enhancer for the respective lineage,
while the bottom row only averages differentially methylated enhancers (FDR 0.1). Figure
generated by Max Frank.
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Figure A.7 | Averaged accessibility rate profiles for lineage-specific enhancers
during Gut development. The heatmaps represent the GPmeth posterior mean predictions,
averaged for lineage-specific enhancer regions for Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). The averages were
produced by taking predictions of the GPmeth model in a regular grid across a 4kb genomic
window centered around the middle of the H3K27ac ChIP-seq peak and pseudotime. The top
row averages all lineage-specific enhancer for the respective lineage, while the bottom row
only averages differentially methylated enhancers (FDR 0.1). Figure generated by Max Frank.
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Figure A.8 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions during Gut develompent. Lines represent the GPmeth
posterior methylation rate averages of the refined subregions found within differentially
methylated enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.
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Figure A.9 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions during Gut develompent. Lines represent the GPmeth
posterior accessibility rate averages of the refined subregions found within differentially
accessible enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Mazx Frank.
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Figure A.10 | Summary statistics of differentially methylated refined regions
during Notochord development. The top left panel shows the number of subregions that
are found by GPmeth for every genomic window with significant differential methylation.
Note the log-scale on the y-axis. The top right panel shows the distribution of subregion
widths, i.e. the width of the genomic interval where the 95% CI MMRC is higher than a
specified threshold (in this case 0.3). The bottom left panel shows the positioning of the
center of the identified subregions relative to the center of the input genomic window. The
bottom right panel shows the average 95% CI MMRC of each identified subregion. Figure
generated by Maz Frank.



A.3 Epigenomic regulation during Notochord development

159

1750

1500 A

1250 A

1000 -

Count

750 1

500 -

250 4

significant
B not differential

mmm differentially accessible only
mmm differentially methylated only

both

=

Ectoderm

Mesoderm
Lineage specific H3K27ac enhancers

Endoderm

Figure A.11 | Number of differentially methylated lineage-specific enhancers
during Notochord development. Bar heights indicate the number of lineage-specific
enhancer regions that were identified by GPmeth to be significantly differentially accessible
or methylated (FDR<0.1). Figure generated by Max Frank.
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Figure A.12 | Averaged posterior methylation rate profiles for lineage-specific
enhancers during Notochord development. The heatmaps represent the GPmeth
posterior mean predictions, averaged for lineage-specific enhancer regions for Ectoderm
enhancers (left column), Mesoderm enhancers (center column) and Endoderm enhancers
(right column). The averages were produced by taking predictions of the GPmeth model in
a regular grid across a 4kb genomic window centered around the middle of the H3K27ac
ChIP-seq peak and pseudotime. The top row averages all lineage-specific enhancer for the
respective lineage, while the bottom row only averages differentially methylated enhancers
(FDR 0.1). Figure generated by Max Frank.
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Figure A.13 | Averaged accessibility rate profiles for lineage-specific enhancers
during Notochord development. The heatmaps represent the GPmeth posterior mean
predictions, averaged for lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model in a regular grid
across a 4kb genomic window centered around the middle of the H3K27ac ChIP-seq peak
and pseudotime. The top row averages all lineage-specific enhancer for the respective lineage,
while the bottom row only averages differentially methylated enhancers (FDR 0.1). Figure
generated by Max Frank.
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Figure A.14 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions during Notochord develompent. Lines represent the GPmeth
posterior methylation rate averages of the refined subregions found within differentially
methylated enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.
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Figure A.15 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions during Notochord develompent. Lines represent the GPmeth
posterior accessibility rate averages of the refined subregions found within differentially
accessible enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by

Max Frank.
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I composed this thesis with Overleaf, and used a custom document structure based
on the 'Masters/Doctoral Thesis’ I{TEXtemplate (www.latextemplates.com, authors
Steve Gunn, Sunil Patel, vel@latextemplates), modified by Dr. Markus Mund, Dr.
Jervis Vermal Thevathasan, Dr. Philipp Hoess, Dr. Yu-Le Wu, & Dr. Aline Tschanz,
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