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Abstract

Graphs are versatile data structures with great flexibility to represent various kinds of in-
formation due to their capability to model relationships between entities. In this work, we
explore diverse applications of graphs in machine learning, with a particular focus on span-
ning trees.

First, we introduce the “Directed Probabilistic Watershed” algorithm, a graph-based
semi-supervised learning method for classification on directed graphs. This algorithm builds
a probability distribution over directed forests to infer the label of a node. It does this by con-
sidering the probability of a directed forest connecting the node to one of the given labeled
nodes within the same subtree.

Next, building on a similar probabilistic framework, we investigate the node degree dis-
tribution in a random spanning tree. We provide analytical expressions for both the expected
value and variance of the degree of a node in a spanning tree.

Subsequently, we analyze different node metrics in graphs, focusing on distances com-
puted based on the paths connecting nodes. We frame several popular distance metrics,
namely the shortest path distance, the commute cost distance, the minimax distance and the
potential distance, as instances of the “algebraic path problem”, which is a generalization of
the shortest path problem. We introduce the “log-norm” distance, a node metric that inter-
polates between the aforementioned metrics. Furthermore, we establish certain conditions
that are sufficient and necessary for an algebraic path problem to define a metric across any
given graph.

Finally, returning to the study of spanning trees, we focus on the geometrical stability.
We introduce the “central spanning tree,”a parameterized family of spanning trees embed-
ded in Euclidean space. By conducting empirical tests, we showcase its resilience against
perturbations such as noise in node coordinates. We formulate the central spanning tree as
a minimization problem, establishing connections to other well-known spanning tree prob-
lems such as the minimum spanning tree or the Euclidean Steiner tree. Additionally, we
explore a variant of the central spanning tree, referred to as “branched central spanning
tree”, that allows for the inclusion of Steiner points. We demonstrate the efficacy of this
variant in modeling the skeleton of 3D point clouds representing plants.
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Zusammenfassung

Graphen sind vielseitige Datenstrukturen, die aufgrund ihrer Fähigkeit, Beziehungen zwis-
chen Entitäten zu modellieren, große Flexibilität bei der Darstellung verschiedener Arten
von Informationen bieten. In dieser Arbeit werden verschiedene Anwendungen von Graphen
im Bereich des maschinellen Lernens untersucht, wobei ein besonderer Schwerpunkt auf
Spannbäumen liegt.

Zuerst stellen wir den “Directed Probabilistic Watershed” Algorithmus vor, ein graphen-
basiertes, teilüberwachtes Lernverfahren für die Klassifizierung von gerichteten Graphen.
Dieser Algorithmus baut eine Wahrscheinlichkeitsverteilung über gerichtete Wälder auf, um
das Label eines Knotens abzuleiten. Er tut dies, indem er die Wahrscheinlichkeit eines
gerichteten Waldes berücksichtigt, der den Knoten mit einem der gegebenen gelabelten
Knoten innerhalb desselben Teilbaums verbindet.

Als Nächstes untersuchen wir, aufbauend auf einem ähnlichen probabilistischen Rah-
men, die Knotengradverteilung in einem zufälligen Spannbaum. Wir liefern analytische
Ausdrücke sowohl für den Erwartungswert als auch für die Varianz des Grades eines Knotens
in einem Spannbaum.

Anschließend analysieren wir verschiedene Knotenmetriken in Graphen, wobei wir uns
auf Entfernungen konzentrieren, die auf der Grundlage der Verbindungswege zwischen Kno-
ten berechnet werden. Wir betrachten mehrere populäre Distanzmetriken, nämlich die kür-
zeste Pfaddistanz, die “Commute Cost”-Distanz, die Minimax-Distanz und die Potentiality,
als Instanzen des algebraischen Pfadproblems, das eine Verallgemeinerung des Problems
des kürzesten Pfades ist. Wir führen die “Log-Norm” Distanz ein, eine umfassende Knoten-
metrik, die zwischen den oben genannten Metriken interpoliert. Darüber hinaus legen wir
bestimmte Bedingungen fest, die hinreichend und notwendig sind, damit ein Algebraisches
Pfadproblem eine Metrik über einen beliebigen gegebenen Graphen definiert.

Schließlich kehren wir zur Untersuchung von Spannbäumen zurück und konzentrieren
uns auf die geometrische Stabilität. Wir stellen den “zentralen Spannbaum” vor, eine parame-
trisierte Familie von Spannbäumen, die in den euklidischen Raum eingebettet sind. Durch
die Durchführung empirischer Tests zeigen wir seine Widerstandsfähigkeit gegenüber Störun-
gen wie Rauschen in den Knotenkoordinaten. Wir formulieren den zentralen Spannbaum als
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x Zusammenfassung

ein Minimierungsproblem und stellen Verbindungen zu anderen bekannten Spannbaumprob-
lemen wie dem minimalen Spannbaum oder dem euklidischen Steiner-Baum her. Zusätzlich
untersuchen wir eine Variante des zentralen Spannbaums, den so genannten “Verzweigten
zentralen Spannbaum”, die das Hinzufügen von Steiner-Punkten erlaubt. Wir demonstrieren
die Wirksamkeit dieser Variante bei der Modellierung des Skeletts von 3D-Punktwolken, die
Pflanzen darstellen.



Acknowledgements

Firstly, I express my gratitude to my supervisor Fred Hamprecht for offering me the
opportunity to pursue my Ph.D. within his research group. Throughout my time in the lab,
I am truly thankful for his guidance, unwavering support, and mentorship. The discussions
with him and the advice he provided were consistently inspiring and fruitful, enabling me to
advance in my research. I also appreciate his wide range of interests and the autonomy he
provided in the choice of research topics, which allowed me to delve more into the theoretical
aspects that interested me the most.

I likewise extend my gratitude to my second supervisor, Christoph Schnörr, for his in-
valuable support, expertise, and insightful idea exchanges, which significantly contributed
to the advancement of my research.

Being part of the Scientific AI Lab, formerly known as the Image Analysis and Learning
group, has been a pleasure. I have had the opportunity to collaborate with brilliant colleagues
knowledgeable in various fields. Overall, I am thankful to all current and former group mem-
bers who provided a great working environment and were always ready to offer their help
and sympathy. I would like to highlight the engaging lunch conversations and event nights.
Special thanks go to Sebastian Damrich for the insightful conversations that significantly
influenced my work, to Peter Lippmann and Fabian Egersdörfer for the discussions regard-
ing the central spanning tree problem, and to Ocima Kamboj for proofreading parts of this
thesis.

I want to extend my gratitude to Barbara Werner, whose knowledge about the bureau-
cracy intricacies simplified all administrative formalities.

I am also grateful to all the friends I have made in Heidelberg, specially to Ashis, Abhi-
nav, Sreedev, Ram, Shreya and Ramia for all the dinners and time we have spent together.

Le doy las gracias a Lea por su apoyo y por fregar los platos en los momentos que tenía
mucho trabajo. Mein Dank gilt auch ihrer Familie, die mich mit Essen versorgte, damit ich
bei Kräften bleibe.

A los amigos de Quart de Poblet, quienes, aunque no tengan una idea precisa de lo
que hago en Alemania, cada vez que los he visitado, ha sido como si nunca me hubiera
ido. Especial mención a Ferran, que constantemente me ha hecho de relaciones públicas,

xi



xii Acknowledgements

permitiendo así que pudiera seguir ignorando el Whatsapp.
Per últim, vull donar-li les gràcies a la meua família, ja que sense ells no estaria ací. Al

meu germà Nofre per sempre recordar-me, a la seua manera, que hi ha espai per millorar. A
mon tio Agustí pels estudis a l’estiu, el suport tècnic i més coses que farien una llista molt
llarga. A mons tios Pascual i Pili per les paelles. A mons pares Onofre i Loles per tot.



Contents

Abstract vii

Zusammenfassung ix

Acknowledgements xi

Contents xiii

1 Introduction 1
1.1 Semi-Supervised Learning on Graphs . . . . . . . . . . . . . . . . . . . . 2
1.2 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Graph Node Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Directed Probabilistic Watershed 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Matrix Tree Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Random Walker and Power Watershed . . . . . . . . . . . . . . . . 16
2.2.4 Probabilistic Watershed Review . . . . . . . . . . . . . . . . . . . 17

2.3 Directed Probabilistic Watershed . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Gibbs Probability Distribution . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Computation of the Directed Probabilistic Watershed Probabilities . 19

2.4 Equivalence of DProbWS and the Directed Random Walker . . . . . . . . . 21
2.4.1 Teleporting Random Walker . . . . . . . . . . . . . . . . . . . . . 23

2.5 Directed Power Watershed . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



xiv Contents

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Expected Degree and Variance in Random Spanning Trees 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Polynomial-Based Computation of Expectation and Variance of Node De-

gree in Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Laplacian-Based Computation of Expectation and Variance of Node Degree

in Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Relation Between Edge Probability and Expected Node Degree in Spanning

Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Extension to Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Toy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Algebraic Path Problem for Graph Metrics 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Graph Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Algebraic Path Problem . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Semiring Distances . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Log-Norm Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Shortest Path and Minimax Distance Interpolation . . . . . . . . . 54
4.3.2 Commute Cost and Shortest Path Distance Interpolation . . . . . . 55
4.3.3 The Family of Log-Norm Distances . . . . . . . . . . . . . . . . . 56

4.4 When Does a Semiring Define a Distance? . . . . . . . . . . . . . . . . . . 59
4.4.1 Identity of Indiscernibles . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Triangle Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Central Spanning Tree 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Limit Cases of the CST/BCST Problems Beyond the Range α ∈ [0, 1] . . . 69

5.2.1 Limit Cases Where the Optimum (B)CST Transforms into a Star-Tree 69
5.2.2 Limit Cases Where the Optimum (B)CST Transforms into a Path-Tree 72

5.3 Stability of the CST Problem . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents xv

5.3.1 Toy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Correspondence Between the BCST and CST Topologies . . . . . . . . . . 78
5.5 Geometry of Optimal BCST Topologies . . . . . . . . . . . . . . . . . . . 80

5.5.1 Branching Angles at the Steiner Points . . . . . . . . . . . . . . . . 81
5.5.2 Infeasibility of Degree-4 Steiner Points in the Plane . . . . . . . . . 83

5.6 CST and BCST Optimization Algorithm . . . . . . . . . . . . . . . . . . . 87
5.6.1 Geometry Optimization . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.2 Heuristic Optimizer for the (B)CST Problem . . . . . . . . . . . . 88

5.7 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7.1 Brute Force Benchmark . . . . . . . . . . . . . . . . . . . . . . . 90
5.7.2 Steiner and MRCT Benchmark . . . . . . . . . . . . . . . . . . . . 91
5.7.3 Comparing GRASP_PR and mSTreg for the CST Problem . . . . . 92

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 BCST-Based Skeletonization with BCST 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Skeletonization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Pruning Optimization Problem: Formulating the Objective . . . . . 100
6.2.2 Pruning Algorithm Based on the Prize Collecting Steiner Tree Problem102
6.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 Experimental Details and Results . . . . . . . . . . . . . . . . . . 109

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 115

A Directed Probabilistic Watershed 119
A.1 Directed Random Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Efficient Computation of the DProbWStrw Probabilities . . . . . . . . . . . 122
A.3 Further Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3.1 Reference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.3.3 k-Nearest Neighbor Graph Construction . . . . . . . . . . . . . . . 127

B Expected Degree and Variance in Random Spanning Trees 129
B.1 Proof of Theorem 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xvi Contents

C Algebraic Path Problem for Graph Metrics 131
C.1 Min-Norm Semiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 APP of the Eisner Semiring Recovers the First Hitting Cost . . . . . . . . . 132
C.3 APP of the Log-Semiring Recovers the Potential Distance . . . . . . . . . . 132
C.4 Log-Norm Strong Bimonoid . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.5 Log-Norm Metric Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.6 Proofs of Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.6.1 Proof Lemma 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.6.2 Proof Theorem 4.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.7 Use Case of the Results in Section 4.4 . . . . . . . . . . . . . . . . . . . . 139
C.8 Log-Norm Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.9 Log-Norm Distance and the Randomized Shortest Paths . . . . . . . . . . . 145
C.10 Exp-Max and Log-Max Metric Computation . . . . . . . . . . . . . . . . . 147

D Central Spanning Tree 151
D.1 Stability Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.2 Reinterpreting CST as a Minimum Concave Cost Flow . . . . . . . . . . . 152

D.2.1 Relation to the Branched Optimal Transport Problem . . . . . . . . 155
D.3 Equivalence of the CST Problem with α = 1 and the Minimum Routing

Cost Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.4 Limit Cases of the CST/BCST Problems Beyond the Range α ∈ [0, 1] . . . 157

D.4.1 Proof Theorem 5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 157
D.4.2 Proof h1(ℓ,N, α) > 1 as N Approaches Infinity, for α > 1 . . . . . 160
D.4.3 Computation α∗(N) . . . . . . . . . . . . . . . . . . . . . . . . . 161
D.4.4 Proof Theorem 5.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.5 Exploring the Number of Derivable Topologies from CST and BCST Topolo-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
D.5.1 Number of BCST Topologies Derivable from a CST Topology . . . 166
D.5.2 Number of CST Topologies Derivable from a BCST Topology . . . 166

D.6 Branching Angles at the Steiner Points in the BCST Problem . . . . . . . . 168
D.6.1 Steiner Point b Does Not Collapse with a Terminal . . . . . . . . . 169
D.6.2 Steiner Point b Collapses with a Terminal . . . . . . . . . . . . . . 169

D.7 Infeasibility of Degree-4 Steiner Points in the Plane for α = 1 . . . . . . . . 171
D.8 Iteratively Reweighted Least Square for the Geometric Optimization of the

Steiner Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.9 Complexity mSTreg Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 175
D.10 Effect of Additional Intermediate Points in the mSTreg Heuristic . . . . . . 177



Contents xvii

D.11 Strategies to Transform a Full Tree Topology into a CST Topology . . . . . 178
D.12 Further Details on the Brute Force Experiment . . . . . . . . . . . . . . . . 179
D.13 Selection of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
D.14 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

E BCST-Based 3D Plant Skeletonization 185
E.1 Additional Skeletonization Results . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 191

List of Figures 209

List of Tables 211

List of Algorithms 213





Chapter 1

Introduction

In recent years, machine learning has experienced an unprecedented growth, transitioning
from a tool primarily utilized in lab experiments to becoming a fundamental component
of myriad pipelines spanning across academic and industrial domains. While the origins
of machine learning date back to the 1950s, its recent success can not be fully understood
without the advancements in computational power and data storage technology. These ad-
vancements foster the acquisition and processing of data, leading to more efficient machine
learning algorithms.

Data comes in various modalities and formats, including images, text, tables, and more.
However, machine learning algorithms do not directly perceive images or read text directly;
instead, they rely on representations of the data that are compatible with their processing
mechanisms. One of these data representations are graphs.

Formally, a graph is defined as a pair of sets (V,E), where V is a set of vertices (also
known as nodes) and E ⊆ V × V is a set of edges. Each edge of E represents a connection
between two vertices of V . By linking vertices through edges, graphs are capable of captur-
ing pairwise relations between different entities or objects. The inception of graph theory
can be attributed to Euler [55], who laid its foundations while addressing the conundrum
of the seven bridges of Königsberg. The riddle centered on the existence of a route that
traversed each bridge once and only once, to which he provided a negative response.

Today, graphs are used not only to represent spatial data, but also to model various types
of information. The ability to model one-to-one connections between entities, represented
by nodes, is what makes graphs powerful and flexible in data representation. Indeed, data
often comprises individual components that are related to each other in some manner. For
instance, both sentences and images are composed of interconnected elements—words and
pixels, respectively—that collectively convey meaning. Similarly, social networks consist of
individuals linked by relationships like friendship, and molecules are assemblies of atoms
bonded together (see Figure 1.1).

1



2 1.1. Semi-Supervised Learning on Graphs

(a) Social network
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(b) Ethanol molecule

(c) Letter F image

Figure 1.1. Data Represented as Graphs: Various data types can be modeled as graphs.
(a) Social network: nodes represent people, and edges represent friendships. (b) Ethanol
molecule: nodes represent atoms, and edges represent chemical bonds. (c) Letter F image:
nodes represent pixels, and edges connect neighboring pixels.

The representation capability of graphs increases when additional attributes are incorpo-
rated. For instance, weighted graphs assign weights or costs to the edges, which can model
the intensity or penalty associated with each edge. Directed graphs show unidirectional con-
nections from one vertex to another, enabling the modeling of directed relations, such as
those found in citation networks. Node-attributed graphs associate features to each node,
enriching the representation with additional information about the entities portrayed by the
nodes. Moreover, graphs are advantageous due to their often sparse structure, which allows
for efficient processing.

Graphs’ flexibility in modeling various forms of data has made them ubiquitous in ma-
chine learning, leading to the development of algorithms across different subareas including
clustering [21, 56], classification [31, 66], dimensionality reduction [4, 14] and many more
[181]. Additionally, specialized artificial neural networks, known as graph neural networks,
have emerged as a prominent tool for processing graphs [180, 195].

Through this thesis we will touch on the use of graphs for semi-supervised learning
(Chapter 2), node metrics on graphs (Chapter 4) and data skeletonization (Chapters 5 and
6).

1.1 Semi-Supervised Learning on Graphs
Machine learning is often divided into supervised and unsupervised learning. Supervised
learning involves learning from labeled data, denoted as {(xi, yi)}ni=1. In this setup, each
data point xi in the training set is paired with a label yi that corresponds to the desired
output. This pairing assists the model in predicting accurate responses for new, unseen data.
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In contrast to supervised learning, unsupervised learning operates without access to labels
that guide the learning process. Instead, it focuses on uncovering the underlying structure
of the data and extracting meaningful information from it.

Semi-supervised learning has characteristics of both, supervised and unsupervised learn-
ing. Similar to supervised learning, semi-supervised learning utilizes data with labels. How-
ever, a distinctive feature is that only a small subset of the data is labeled. That is, the data
takes the form of {{(xi, yi)}nl

i=1, {xi}
nu
i=1}, where nl is much smaller than nu. Therefore,

semi-supervised learning leverages the labeled data with the unlabeled one to generate ap-
propriate responses.

While the availability of data has increased in recent years, labeled data remains scarce
in specialized fields such as healthcare or bioinformatics, where only experts can effectively
annotate the data. Therefore, semi-supervised learning continues to be a relevant field with
numerous applications [53, 145].

In graph semi-supervised learning, algorithms exploit the structure of the graph along
with the labeled data. They typically operate under the assumption of homophily, where
connected nodes are more likely to share similarities and consequently have the same label.
Different methods exploit homophily in various ways, including regularization techniques
[24, 66, 192], embedding or low-rank representation techniques [13, 68, 178, 185], and
Graph Neural Network (GNN) based models [93, 185]. We refer to [39, 158] for a more
complete overview.

Within graph semi-supervised learning, two main subcategories are distinguished: trans-
ductive and inductive semi-supervised learning. In a transductive setting, the objective is
to learn a function f that predicts labels exclusively for the unlabeled data {xi}nu

i=1 within
the provided graph. Consequently, the algorithm is confined to generalizing solely within
the original graph and cannot extend to data outside its scope. In contrast, inductive semi-
supervised learning, aims to learn a function f capable of predicting labels for nodes of
graphs not present in the training data. This allows the algorithm to generalize beyond the
original graph structure (see Figure 1.2).

Most classic graph-based semi-supervised learning algorithms belong to the transductive
category [192, 193]. However, there are also a few inductive ones [85]. Recent models
leveraging Graph Neural Networks (GNNs) tend to fall into the inductive category as well
[93].

In Chapter 2, we propose a transductive graph-based semi-supervised learning algorithm
for node classification in directed graphs.
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Figure 1.2. Comparison Between Transductive and Inductive Semi-Supervised Learn-
ing. In the transductive setting, only the labels of unlabeled nodes in the training dataset
are inferred, whereas in the inductive setting, the trained model M can predict the labels of
unseen nodes, allowing its application to previously unseen graphs.

1.2 Spanning Trees

Trees are a very special type of undirected graphs. To define a tree, it is essential to under-
stand what a connected graph and a cycle are. We say that a graph is connected, if there
exists a path ℘ connecting any pair of nodes s, t. In other words, there exists a sequence of
nodes ℘ = (v0, v1, . . . , vk) such that (vi, vi+1) ∈ E, where v0 = s and vk = t. A path is
simple if no node is repeated (vi ̸= vj for all i ̸= j). A cycle is a simple path with more than
one node where the starting and end nodes are equal, that is, v0 = vk.

Definition 1. A tree, denoted as T, is an undirected graph that satisfies one of the following
conditions:1

1. T is connected and acyclic (does not contain cycles).
2. T is acyclic and the addition of a single edge generates a cycle.
3. T is connected and the removal of an edge disconnects the tree.
4. Any two vertices of T are connected by a unique simple path, that is a path where

every node is visited once.
5. T is connected and has n− 1 edges.
6. T is acyclic and has n− 1 edges.

The equivalence of these definitions is proven in Theorem 9 of [173]. When a graph is
disconnected but lacks cycles, it is referred to as a forest.

Given a graphG = (VG, EG), we say that a tree T = (VT, ET) is a spanning subtree ofG
if VT = VG and ET ⊂ EG. A spanning forest is defined accordingly. One of the most well-
known spanning trees is the maximum/minimum spanning tree, which, for a weighted graph,

1We assume a finite graph, that is with a finite number of nodes. If the graph has an infinite number of
nodes then definition 5 and 6 are not equivalent to the previous ones.
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Figure 1.3. Probability Distribution over Spanning Trees of a Complete Graph with
4 Nodes. Top left: Complete weighted graph where the edge width is proportional to its
weight, indicated next to the edge. Top right: Probability distribution over trees where the
probability of a tree is proportional to the product of the weights of the edges composing the
tree. Bottom rows: List of all spanning trees. The trees with higher probabilities correspond
to Tree 1 and 10, as they contain the highest combinations of edge weights. Conversely, Tree
15 has the lowest probability because it is composed of the lowest edge weights.

maximizes/minimizes the sum of the edge weights [124]. When the aim is to minimize, the
edge weights are often referred to as edge costs.

Trees can be regarded as the most basic form of connected graphs, as they characterize
the minimal properties required for connectivity. Due to their fundamental nature, they serve
as effective tools for simplifying complex graphs while maintaining connectivity. This prop-
erty finds applications in diverse fields such as network design and communication networks
[8, 18, 188], clustering [65, 176], classification [41, 190], pathfinding algortihms [47, 164]
and skeletonization [19, 46] among others.

In many applications, such as network design, it is often desirable for the crafted graph
to be robust to perturbations, meaning that small changes in the data result in small changes
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in the graph. The robustness of an algorithm can be measured under different criteria [62,
84, 90, 110, 131, 134]. In Chapter 5, we propose a spanning tree of a graph embedded in a
Euclidean space, whose geometric structure is robust to perturbations such as noise on the
coordinates of the nodes.

Occasionally, it may be beneficial to consider all spanning trees of a graph instead of
focusing on a single one. If the graph is edge-weighted, we can assign a weight to each
spanning tree, T, given by the product of its edge weights, w(T) :=

∏
e∈ET

w(e). This
enables us to establish a probability distribution over all spanning trees, where each tree
has a probability proportional to its weight, i.e., Pr(T) ∝ w(T). It’s important to note that
if the graph is unweighted, the distribution is uniformly random since all trees are equally
probable. Figure 1.3 illustrates a distribution over the spanning trees of a weighted graph.

In 1847, Kirchhoff introduced the Matrix Tree Theorem, which stated a formula to com-
pute the total number of spanning trees of a graph G using the determinant of the Laplacian
matrix of G. The Laplacian matrix of a graph is defined as follows:

L = D − A,

where A is the adjacency matrix with Aij representing the weight value of edge (i, j), and
D is the diagonal degree matrix, with entries defined as Dii =

∑
j Aij . Thus, the Matrix

Tree Theorem enables us to compute the normalization factor of the probability distribution
of the trees. Formally, the theorem states:

Theorem 1.2.1 (Matrix Tree Theorem, [94, 168]). Given an edge-weighted undirected
graph G = (V,E,w), let T represent the set of all spanning trees of G. Then, the total
weight of these spanning trees, denoted as w(T ), can be expressed as:

w(T ) =
∑
T∈T

w(T) =
∑
T∈T

∏
e∈ET

w(e) = det(L[v]),

where v is an arbitrary but fixed node, and L[v] represents the Laplacian matrix after remov-
ing the row and column indexed by v.

In other words, the Matrix Tree Theorem states that all the cofactors of the Laplacian
matrix are equal and coincide with w(T ). Note that when G is unweighted, i.e., w(e) = 1

for all edges e, then the theorem states that det(L[v]) is equal to the total number of spanning
trees of G.

This theorem is pivotal in the thesis because its generalization to directed graphs allows
us to explore in Chapter 2 a distribution over a subset of directed spanning forests. We
utilize this distribution to infer the labeling of a graph based on the probability of being
connected to a labeled node in a forest. Additionally, in Chapter 3, we use it to compute
the expected degree and variance of a node in a random spanning tree sampled from the
probability distribution of spanning trees of a graph G.
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(a) Shortest path distance, seed 1 (b) Shortest path distance, seed 2 (c) Shortest path labeling

(d) Minimax distance, seed 1 (e) Minimax distance, seed 2 (f) Minimax labeling

Figure 1.4. Impact of graph node distance in semi-supervised classification: Figures
1.4a) and 1.4b) illustrate the shortest path distance from all nodes to two seed nodes, while
Figures 1.4d) and 1.4e) depict the minimax path distance. For a definition of these metrics,
refer to Chapter 4. In Figures 1.4e) and 1.4f), the labeling is determined by the proximity
of each seed node according to the corresponding distance metric, resulting in different
labelings based on the graph node distances considered.

1.3 Graph Node Distances

Similarity/dissimilarity measures are crucial in machine learning, enabling the comparison
of objects to discern commonalities and differences, thereby aiding in the classification and
categorization of diverse entities. These measures quantify such similarities and differences
based on specific criteria determined by the measures themselves. They find multiple uses,
including visualization and dimensionality reduction techniques [37, 119, 126, 128] , clus-
tering [112, 136], classification [58, 75] and information retrieval [9, 51], among others. In
the context of graphs, similarity/dissimilarity measures between vertices are relevant, allow-
ing the generalization of pairwise relations encoded in the graph and aiding in the prediction
of missing links, which is relevant for applications such as recommender systems [73, 161].

Different criteria exist to determine if two nodes are similar or dissimilar in a graph.
These criteria can be based on various factors such as proximity (how close they are) [121],
connectivity (how well they are connected by undirected paths) [97], substructure resem-
blance (sharing common substructures) [189], network role (similar influence or role in the
network) [123], and more. Dissimilarity measures, which also function as distances, can
be utilized for this purpose. A dissimilarity measure d is deemed a distance if it meets the
following criteria:

1) d(u, v) = 0 ⇐⇒ u = v 2) d(u, v) = d(v, u) 3) d(u, v) ≤ d(u,w) + d(w, v)
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for all triplets of nodes u, v, w in the graph. Node metrics in graphs are mostly based on
connectivity and proximity criteria [34, 36, 60, 61].

Figure 1.4 illustrates how different node distances can impact classification in a semi-
supervised setting. It compares the shortest path distance (the path with the minimum sum
of edge costs) and the minimax distance (the path that minimizes the maximum edge cost),
where classes are inferred by proximity to labeled nodes, referred to as seeds. In this specific
example, the minimax distance proves to be more appropriate. The choice of metric can be
crucial depending on the task, as it needs to adapt to the specific characteristics of the appli-
cation. In Chapter4, we study a series of node metrics solely based on the paths connecting
two nodes and unify them under a common framework.

1.4 Thesis Outline

This section provides an overview of the thesis while highlighting the contributions of the
thesis.

Chapter 2 proposes a graph-based semi-supervised learning algorithm, named Directed
Probabilistic Watershed (DProbWS), designed for node classification on edge-weighted di-
rected graphs. The method builds on the Probabilistic Watershed method [57] extending
its capabilities to directed graphs. The algorithm establishes a Gibbs probability distribu-
tion over all spanning directed forests that separate the labeled nodes in different compo-
nents. Utilizing this distribution, DProbWS infers the class for unlabeled nodes based on
the probability of connection to a labeled node within a randomly sampled directed forest.
We demonstrate that this probability can be analytically computed by solving a linear system.
Furthermore, we establish its equivalence to the absorption probability of a random walker
reaching one of the labeled nodes.

Chapter 3 also explores the application of a probability distribution, this time over the
set of spanning trees within a given graph. Within this framework, we first explain the
distinction between two types of degrees: weighted degree, which sums the weights of the
edges incident to the node, and unweighted degree, which counts the number of neighbors
of the node. Subsequently, we derive analytical formulas for both the expected degree and
variance of a fixed node within a randomly sampled spanning tree.

Chapter 4 delves into the study of various metrics defined over the nodes of a graph
from the perspective of the algebraic path problem. This problem is a generalization of the
shortest path problem, replacing the min and sum operations with arbitrary operations that
together define a semiring. We pose many popular path-based metrics as instances of the
algebraic path problem while unifying them under a novel family of distances named the
“log-norm distance”. Additionally, we investigate the inverse problem, determining under
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which circumstances an instance of the algebraic path problem defines a proper metric over
a graph, providing both sufficient and necessary conditions for such cases.

Chapter 5 introduces a family of robust spanning trees embedded in Euclidean space,
named central spanning tree (CST), whose geometrical structure is resilient against pertur-
bations such as noise on the coordinates of the nodes. Two variants of the problem are
explored: one permitting the inclusion of Steiner points (referred to as branched central
spanning tree or BCST), and another that does not. The family of trees is defined through a
parameterized NP-hard minimization problem over the edge lengths, with specific instances
including the minimum spanning tree or the Euclidean Steiner tree. The minimization prob-
lem weighs the length of the edges by their tree edge-centralities, which are regulated by a
parameter α. The effect of α on the tree robustness is empirically analyzed, and a heuristic
for approximating the optimal solution is proposed. Geometrical properties of the tree and
its behavior in limit cases as α→ ±∞ are also studied.

Chapter 6 applies the BCST to the skeletonization of 3D point clouds of plants. A prun-
ing algorithm based on the Prize Collecting Steiner tree problem [87, 111] is defined to
remove spurious branches generated by the BCST. The quality of the skeleton is evaluated
qualitatively and quantitatively by comparison with other methods.

1.5 List of Publications
This thesis is based on the following publications/preprints:

• E. Fita Sanmartin, S. Damrich, and F. A. Hamprecht. “Directed Probabilistic Water-
shed”. Advances in Neural Information Processing Systems. 2021.

• E. Fita Sanmartin, S. Damrich, and F. A. Hamprecht. “The Algebraic Path Problem
for Graph Metrics.” In International Conference on Machine Learning. 2022.

• E. Fita Sanmartin, C. Schnörr, and F. A. Hamprecht. “The Central Spanning Tree
Problem.” 2023.

Complete list of publications to which the author contributed.

• J. Erik, E. Fita Sanmartin, and F. A. Hamprecht. “Extensions of Karger’s Algorithm:
Why They Fail in Theory and How They Are Useful in Practice.” In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021.

• P. Lippmann, E. Fita Sanmartin, and F. A. Hamprecht. “Theory and Approximate
Solvers for Branched Optimal Transport with Multiple Sources.” Advances in Neural
Information Processing Systems. 2022.





Chapter 2

Directed Probabilistic Watershed

The Probabilistic Watershed is a semi-supervised learning algorithm applied on undirected
graphs. Given a set of labeled nodes (seeds), it defines a Gibbs probability distribution over
all possible spanning forests disconnecting the seeds. It calculates, for every node, the prob-
ability of sampling a forest connecting a certain seed with the considered node. We propose
the ”Directed Probabilistic Watershed”, an extension of the Probabilistic Watershed algo-
rithm to directed graphs. Building on the Probabilistic Watershed, we apply the Matrix Tree
Theorem for directed graphs and define a Gibbs probability distribution over all incoming
directed forests rooted at the seeds. Similar to the undirected case, this turns out to be equiv-
alent to the Directed Random Walker. Furthermore, we show that in the limit case in which
the Gibbs distribution has infinitely low temperature, the labeling of the Directed Probabilis-
tic Watershed is equal to the one induced by the incoming directed forest of minimum cost.
Finally, for illustration, we compare the empirical performance of the proposed method with
other semi-supervised classification methods for directed graphs.

2.1 Introduction

Semi-supervised learning is the subfield of machine learning that utilizes both labeled and
unlabeled data. It permits exploiting the large amount of unlabeled data available in many
use cases jointly with frequently smaller sets of labeled data. When data is encoded as
a network, graph-based semi-supervised learning aims to assign a label or class to each
of the nodes of a network based on its topology and a given set of labeled nodes / seeds.
Graph-based semi-supervised learning has been applied in multiple domains like computer
vision [41, 66, 74], NLP [7, 107, 129], social networks [5, 184] and biomedical science[101].
Most graph-based semi-supervised learning algorithms focus on undirected weighted graphs
[39, 158], though directed graphs appear naturally in many cases like in k-Nearest Neigh-
bors graphs or citation and recommendation networks among others. Instances of methods

11
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Figure 2.1. Overview DProbWS. The DProbWS computes the expected seed assignment
of every node for a Gibbs distribution over all exponentially many spanning in-forests in
closed-form. It thus avoids the winner-takes-all behaviour of the minimum cost spanning
in-forest (mSF). Top right: Two-seeded directed graph with edge costs represented by the
widths of the arrows. Bottom left: The mSF and other, higher cost in-forests. The mSF
assigns the query node q to s1. Other in-forests of low cost might however induce different
labelings. Top left: We therefore consider a Gibbs distribution over all spanning in-forests
with respect to their cost (see equation (2.6)). Each green bar corresponds to the cost of one
of the 60 possible spanning in-forests. Bottom right: DProbWS probabilities for assigning
a node to s2. The dashed lines indicate the cut of the assignment. Query q is now assigned
to s2. Considering a distribution over all spanning in-forests gives an uncertainty measure
and can yield a different assignment from the mSF’s. In contrast to the 60 forests in this toy
graph, for real-life graphs the number of in-forests increases exponentially with the number
of edges and nodes.

proposed for directed graphs are [45, 54, 169, 193, 194].
Recently, [57] proposed the transductive graph-based semi-supervised learning algo-

rithm Probabilistic Watershed (ProbWS). It envisages a Gibbs distribution over the labeled
nodes separating forests (forests whose trees contain a unique labeled node) that span a
weighted undirected graph. The probability of each forest is proportional to its weight. By
means of the Matrix Tree Theorem [94, 168], the ProbWS computes the probability of sam-
pling a seed separating forest such that a query node is connected to a single labeled node /
seed. This approach turns out to be equivalent computationally and by result to the Random
Walker / Harmonic energy minimization [15, 66, 192, 196].

We propose the “Directed Probabilistic Watershed” (DProbWS), an extension of ProbWS
that can be applied to directed graphs through the extension of the Matrix Tree Theorem
to directed graphs [102]. Instead of considering seed separating spanning forests, we deal
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with incoming directed forests rooted at the seed nodes (see Figure 2.1). We analyze the
DProbWS from a theoretical point of view and generalize the results presented in [57] to
directed graphs. Building on the arguments used in the original ProbWS paper, our contri-
butions include:

1. Analytically computing the probability that a graph node is assigned to a particular seed
in an ensemble of Gibbs distributed incoming directed spanning forests rooted at the
seeds (Section 2.3).

2. Demonstrating the equivalence of the Directed Probabilistic Watershed and the directed
version of the Random Walker presented in [66] (Section 2.4).

3. Proposing a natural extension of the Power Watershed [41] to directed graphs (Section
2.5).

4. Conducting an illustrative experiment to showcase the empirical performance of the Di-
rected Probabilistic Watershed and compare it with other semi-supervised transductive
methods proposed in [45, 54, 194] (Section 2.6).

2.1.1 Related Work

Semi-supervised learning is an important subfield of machine learning due to is ability to
exploit both labeled and unlabeled data [53]. If data is represented as a graph, graph based
semi-supervised learning exploits, in addition to the labeled samples, the topology of the
graph to infer the class of the unlabeled nodes. Undirected graphs have received more at-
tention in this field than the directed ones [39, 158]. Nonetheless, there have been methods
proposed for directed graphs. In [193, 194] the labels are inferred by minimizing a regu-
larized function that forces highly connected subgraphs to have the same label. The paper
[169] builds a symmetric pairwise similarity via co-linkage analysis from the directed graph
in order to apply algorithms for undirected graphs. The work presented in [54] proposes a
method based on game theory, where the game’s Nash equilibrium defines the labeling of
the data. Related to our work by the use of absorbing random walks is the one proposed in
[45]. Their algorithm assigns the label of the seed that maximizes the accumulated expected
number of visits from the unlabeled query node before being absorbed by an artificially
added metanode. We, instead, prove that the DProbWS turns out to assign the label of the
seed that maximizes the probability of absorption of a random walker.

Our method extends the Probabilistic Watershed (ProbWS) [57], which, in turn, is based
on the Watershed algorithm [42]. The ProbWS paper established a link between the Water-
shed [42] and the Random Walker [15, 66, 192, 196]. Another such connection was made by
the Power Watershed paper [41]. We extend these relations to the directed graph framework.

We smooth the combinatorial minimum spanning in-forest via entropic regularization.



14 2.2. Background

More specifically, we consider a Gibbs distribution over all spanning in-forests, as was pro-
posed in the original ProbWS paper [57]. Entropic regularization has been applied in other
situations like the randomized shortest path framework [61, 95] or optimal transport [43]. If
applied in conjunction with deep networks, it allows end-to-end training [130].

The Matrix Tree Theorem (MTT) is key to the theory developed in our work. The di-
rected version of the MTT [102] allows us to compute in closed form the weight of a set of
incoming forests. The MTT has been also applied in NLP [98], biology [166] and network
analysis [165, 167]. A generalization of the MTT, the Matrix Forest Theorem (MFT), was
used by [34] to define a distance between the nodes of a graph. Similar to our approach,
[153] defines a Gibbs distribution over the forests using the MFT.

2.2 Background

2.2.1 Notation and Terminology

In this section, we introduce the main definitions and notation used in the paper. Most of
them have been borrowed from [57, 102]. Let G = (V,E,w, c) be a directed graph where
V denotes the set of nodes, E the set of edges and w and c are functions that assign a weight
w(e) ∈ R≥0 and a cost c(e) ∈ R to each edge e ∈ E. The edge e = (i, j) indicates that there
is a directed edge from i to j. If (i, j) /∈ E, we set c

(
(i, j)

)
=∞ and w

(
(i, j)

)
= 0. The set

S = {s1, s2} ⊂ V will denote the set of seed / labeled nodes and U = V \S the unlabeled
ones. In order to ease the exposition we only consider the 2-seed scenario, although the
method can be generalized to the n-seed scenario. We will use the terms seed and labeled
node interchangeably.

Definition 2. Let T = (VT, ET) be a graph. We say that T is an incoming directed spanning
tree rooted at r ∈ VT (in-tree for short) if:

1. every vertex u ̸= r has one and only one outgoing edge;
2. the root node r does not have any outgoing edges;
3. T does not have directed cycles, i.e., there does not exist a directed path in T such that

the initial and final vertex are the same.
Note that condition 3), in conjunction with the other conditions, implies that no cycles (di-
rected or undirected) will be formed. The literature refer to in-trees also as arborescences.

Equivalently, one can define an in-tree as a graph in which, for any vertex u ∈ VT there
is exactly one directed path from u to the root r, and the root does not have any out-going
edges.1 Note that an in-tree becomes a tree in the classical sense if the directions of the edges

1One can define analogously an outgoing tree (out-tree) rooted at r as a tree where there is exactly one
directed path from the root r to any other node, and the root does not have any incoming edges.
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are ignored. We say that an in-tree is spanning on G = (V,E) if T is a subgraph of G and
VT = V . The set of spanning in-trees of G rooted at r will be denoted by T −→r .

Analogously, the set F−→v−→u represents the set of 2-in-trees spanning forests rooted at u and
v, i.e., the spanning graphs of G consisting of two disjoint in-trees, such that u and v are
the respective roots of the in-trees. Furthermore, if we consider a third node q, we define
F−→v−→u ,q ⊆ F

−→v−→u , as the set of all 2-in-trees spanning forests where q is connected to u by a
directed path. In order to shorten the notation we will refer to 2-in-trees spanning forests
simply as 2-in-forests or in-forests.

We define the weight of an arbitrary graph (e.g. in-forests)) as the product of the weights
of all its edges, w(G) =

∏
e∈E w(e). The weight of a set of graphs, w({Gi}ni=0) is the sum

of the weights of the graphs Gi. In a similar manner, we define the cost of a graph as the
sum of the costs of all its edges, c(G) =

∑
e∈E c(e). As in the Probabilistic Watershed [57],

we consider w(e) = exp(−µc(e)), µ ≥ 0, which will be a consequence of the definition of a
Gibbs distribution over the 2-in-forests in F−→v−→u . Thus, a low edge-cost corresponds to a large
edge-weight, and a minimum edge-cost spanning in-forest (mSF) is equivalent to a maximum
edge-weight spanning in-forest (MSF). Depending on the context, the abbreviations mSF
and MSF will be also used for the undirected versions of the minimum/maximum spanning
forests. Via the Directed Matrix Tree Theorem [102], we aim to compute the weight of
the set of the 2-in-forests rooted at the seeds. The theorem makes use of the out-Laplacian
matrix which we define next.

Definition 3. Given a weighted directed graph G = (V,E,w) we define the out-Laplacian
of G as

L := D − A⊤, (2.1)

where A ∈ R|V |×|V | is the vertex-adjacency matrix of G represented entry-wise as Aij =

w
(
(i, j)

)
and D denotes the diagonal matrix defined as Dii =

∑
j∈V Aij , i.e., Dii is the

out-degree of vertex i.2 For brevity, we will refer to the out-Laplacian just as Laplacian. For
any v ∈ V , L[v] will stand for the Laplacian after removing the row and column indexed by
v.

2.2.2 Matrix Tree Theorem

Theorem 2.2.1 (MTTdir, [102]). For any edge-weighted directed graphGwith an arbitrary
fixed node r ∈ V the weight of the set of incoming directed spanning trees rooted at r,

2Analagously, the in-Laplacian is defined as Lin = Din − A, where Din is the diagonal matrix with the
in-degrees of the nodes.
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w(T −→r ), is equal to3

w(T
−→r ) :=

∑
T∈T −→r

w(T) =
∑

T∈T −→r

∏
e∈ET

w(e) = det(L[r]).

Note that Theorem 2.2.1 generalizes the original Matrix Tree Theorem [94, 168] if we
consider an undirected graph as a directed graph with both directions present for each edge.
In this case, any spanning tree in the undirected graph can be interpreted as an in-tree rooted
at an arbitrary root r once the direction of the edges has been set appropriately. Hence, for
an undirected graph the choice of the root r is irrelevant and we retrieve the original MTT.

We propose to follow the approach taken in [57], but with the generalization of the Matrix
Tree Theorem to directed graphs and thus obtain a directed version of the ProbWS.

2.2.3 Random Walker and Power Watershed

In this section, we summarize the Random Walker [66] and Power Watershed [41], two
semi-supervised graph-based algorithms which are directly connected to the Probabilistic
Watershed. Both algorithms consider an undirected graph, G, with a set of seeds S =

{s1, s2}, i.e., labeled nodes.
The Random Walker paper [66] addresses the following problem: What is the probability

that a random walker starting at node q reaches seed s1 before reaching seed s2? The
solution to this question can be obtained by solving the combinatorial Dirichlet problem,
which consists of finding the minimizer of

1

2
x⊤Lx =

1

2

∑
e={u,v}∈E

w(e)(xu − xv)2, s.t. xs1 = 1, xs2 = 0, (2.2)

where L denotes the undirected Laplacian of G. The minimizer of equation (2.2) is the
solution of the following linear system

LUx
si
U = −B⊤

si
, (2.3)

where xsiU represents the probability that the unlabeled nodes in U are absorbed by si, LU is
the square submatrix of L indexed by the elements in U and B⊤

si
is the row si of L without

the seeds.
The Power Watershed generalizes the framework of the Random Walker and minimizes

the following objective function∑
e={u,v}∈E

wα(e)(xu − xv)β, s.t. xs1 = 1, xs2 = 0, (2.4)

3The weight of the out-trees can be calculated using the in-Laplacian instead of the out-Laplacian.
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for α, β ≥ 0. For instance, α = 1 and β = 2 define the Random Walker’s objective function.
The Power Watershed analyzes the case α→∞ and β = 2, which boils down to computing
a mSF (minimum cost Spanning Forest) and applying the Random Walker in the plateaus
(connected subgraphs with constant edge weight), resolving the ambiguity of which mSF is
sampled when there is more than one.

The generalization of these algorithms to directed graphs is not straightforward if one
takes the objective function approach. Solving (2.2) directly is equivalent to solve the prob-
lem with an undirected graph whose edge-weights are equal to the sum of the edge-weights
in both directions of the original directed graph. The method proposed in [156] generalizes
the combinatorial Dirichlet problem (2.2) by interpreting the graph as an electrical network
with diodes. This approach is not equivalent to the random walk on a directed graph any-
more.

The Random Walker can also be generalized to the directed case if we use the intuitive
approach instead, i.e., we consider the probability of a random walker (constrained to fol-
low the directions of the edges) being absorbed by a certain seed. In AppendixA.1, we give
a proof of how these probabilities can be computed in the directed case. We demonstrate
that the solution of the linear system (2.3) with the Laplacian transposed provides the de-
sired probabilities. In section 2.5, we show how the Power Watershed can be generalized to
directed graphs by means of the DProbWS.

2.2.4 Probabilistic Watershed Review

The Probabilistic Watershed (ProbWS) [57] is based on the Watershed algorithm. The Wa-
tershed algorithm calculates a minimum cost spanning forest, mSF, such that the seeds be-
long to different components [42]. A query node inherits the label of the seed to which it is
connected in the mSF. The ProbWS instead, considers all possible seed-separating spanning
forests. It defines a Gibbs probability distribution over the forests and analytically computes,
for every node, the probability of sampling a forest connecting a certain seed with that node
via the application of the Matrix Tree Theorem (for undirected graphs).

In [57] it was shown that the ProbWS turns out to be equivalent to the Random Walker
algorithm proposed in [66]. Additionally, it was shown that the Power Watershed potentials
[41] were given by the ProbWS probabilities when the latter is restricted to mSFs instead of
all spanning forests. This restriction manifests when the entropy of the Gibbs distribution of
forests is minimized.

In this work, we extend the ProbWS framework to directed graphs and call it Directed
Probabilistic Wasterhsed. In this case, the spanning forests considered are formed by in-
forests rooted at the seeds, i.e., directed trees with a unique path from every node to the
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seed. Inspired by [57], we define a Gibbs Probability distribution over the in-forests and we
apply the Matrix Tree Theorem for directed graphs to compute the probability of sampling
a forest connecting a certain seed with a query node in closed-form. Next, we demonstrate
the equivalence to the Directed Random Walker and finally we propose an extension of the
Power Watershed for directed graphs.

2.3 Directed Probabilistic Watershed

2.3.1 Gibbs Probability Distribution

Similarly to [57], we define a Gibbs probability distribution over 2-in-forests with given en-
tropy J , such that the 2-in-forests with a lower cost have a higher probability mass. Formally,
the 2-in-forests are sampled from the distribution which minimizes

min
P

∑
F∈F

−→s2−→s1

P (F)c(F), s.t.
∑

F∈F
−→s2−→s1

P (F) = 1 and H(P ) = J, (2.5)

whereH(P ) is the entropy of P . The lower the entropy, the more probability mass is given
to the 2-in-forests of lowest cost. The minimizing distribution is the Gibbs distribution ([see
174, 3.2]):

P (F) =
exp (−µc(F))∑

F′∈F
−→s2−→s1

exp (−µc(F′))
=

∏
e∈EF

exp(−µc(e))∑
F′∈F

−→s2−→s1

∏
e′∈EF′

exp(−µc(e′))
=

w(F)∑
f ′∈F

−→s2−→s1

w(F′)
,

(2.6)
where µ can be interpreted as the inverse temperature of the Gibbs distribution. The param-
eter µ implicitly determines the entropy. A higher µ (lower temperature) implies a lower
entropy. Equation (2.6) motivates our choice of edge weights w(e) = exp(−µc(e)).

Definition 4 (Probabilities of the Directed Probabilistic Watershed). Given two seeds
s1 and s2 and a query node q, we define the Directed Probabilistic Watershed’s probability
that q and s1 have the same label as the probability of sampling a 2-in-forest from F

−→s2−→s1 that
connects q to s1 by a directed path, i.e., they belong to the same in-tree rooted at s1:

P (q ∼ s1) :=
∑

F∈F
−→s2−→s1,q

P (F) =

∑
F∈F

−→s2−→s1,q

w(F)

∑
F′∈F

−→s2−→s1

w(F′)
=
w
(
F

−→s2−→s1,q

)
w
(
F

−→s2−→s1

) . (2.7)

The Directed Probabilistic Watershed (DProbWS) takes all spanning 2-in-forests into
account according to their cost (see Figure2.1). The resulting assignment probability of
each node provides an uncertainty measure. Assigning each node to the seed for which
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q

s1

s2

(a) F ∈ F
−→s2−→s1,q
⊂ F

−→s2−→s1

q

s1

s2

(b) T ∈ T
−→s1
Ḡ1

q

s1

s2

(c) T ∈ T
−→s1
Ḡ2

Figure 2.2. Procedure to Transform an In-Forest in F−→v−→u [s1][s2][q] to a Spanning In-
Tree in Ḡ1 and Ḡ2 as Defined in Lemma 2.3.3. 2.2a) In-forest F ∈ F

−→s2−→s1,q ⊆ F
−→s2−→s1 . 2.2b)

Transformation of F into an in-tree T ∈ T
−→s1
Ḡ1

after adding the edge (s2, s1) (thick edge). 2.2c)
Transformation of F into an in-tree T ∈ T

−→s1
Ḡ2

after adding the edge (s2, q) (thick edge).

it has the highest probability can yield a labeling different from the in-forest with highest
individual probability, the mSF.

Remark 2.3.1. Note that the probability given by the DProbWS is well defined if and only
if w

(
F

−→s2−→s1

)
̸= 0, that is if and only if there exists at least one in-forest rooted at the seeds.

As far as any node is connected by a directed path to at least one of the seeds, such an
in-forest will exist. If the seeds were not reachable from a node q, this node would have
no connection with the seeds and therefore we could not infer any label. These nodes are
termed zero-knowledge nodes. We can still use the proposed method by removing all nodes
in the zero-knowledge components [120]. In the remaining we will assume w

(
F

−→s2−→s1

)
̸= 0.

Remark 2.3.2. Note that the DProbWS probabilities have been based on the concept of
incoming forests. The same reasoning can be extended for outgoing forests just by reversing
the edge directions.

2.3.2 Computation of the Directed Probabilistic Watershed Probabili-
ties

In this section, we explain how to compute the probabilities defined by the DProbWS. While
for undirected graphs it is possible to compute w(F s2s1 ) as a difference of the weight of the
set of spanning trees of the graph G and the weight of the set of spanning trees of G after
adding an edge connecting the seeds, this is not possible for w(F s2s1,q).

4 In [57], w(F s2s1,q)
is obtained by solving a linear system involving w(F s2s1 ), w(F

q
s2
) and w(F qs1). In contrast

to the undirected case, we can bypass the auxiliary linear system due to the directions of
the edges which restrict the number of possible directed forests. This permits us to express
w(F

−→s2−→s1 ) and w(F
−→s2−→s1,q) in terms of the weight of the set of in-trees of an augmented graph as

it is shown in the following lemma.

4Fs2
s1,q , Fs2

s1 , Fq
s2 and Fq

s1 are equivalents to F
−→s2−→s1,q

, F
−→s2−→s1

, F
−→q
−→s2

and F
−→q
−→s1

but defined in an undirected graph.
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Lemma 2.3.3. Let G = (V,E,w) be a directed graph. Given s1, s2, q ∈ V , define the
graphs Ḡ1 = (V,E ∪ (s2, s1), w̄1) and Ḡ2 = (V,E ∪ (s2, q), w̄2) where w̄1(e) = w̄2(e) =

w(e) ∀e ∈ E and w̄1

(
(s2, s1)

)
= w̄2

(
(s2, q)

)
= 1. Then

a) w
(
F

−→s2−→s1

)
= w

(
T

−→s1
Ḡ1

)
− w

(
T

−→s1
G

)
b) w

(
F

−→s2−→s1,q

)
= w

(
T

−→s1
Ḡ2

)
− w

(
T

−→s1
G

)
.

Proof: We will only prove a). Note thatw
(
T

−→s1
Ḡ1

)
−w

(
T

−→s1
G

)
is the weight of all the spanning

trees of Ḡ1 rooted at s1 containing the edge (s2, s1). It is easy to see that for any F ∈ F
−→s2−→s1 ,

there exists a unique T ∈ T
−→s1
Ḡ1

containing (s2, s1) such that w(T) = w(F). Indeed, if we
add the edge (s2, s1) to F we obtain a tree T ∈ T

−→s1
Ḡ1

since for every node in V , there exists
a unique path to s1 (see Figure 2.2b). Conversely, any tree in T ∈ T

−→s1
Ḡ1

containing the edge
(s2, s1) will be transformed into a forest F ∈ F

−→s2−→s1 after the removal of the edge of (s2, s1).
Due to w̄1

(
(s2, s1)

)
= 1 the equality of weights w(F) = w(T) follows. The argument for b)

is analogous to the previous case (see Figure 2.2c).
The following result (Lemma 2.3.5) provides a closed formula forw

(
F

−→s2−→s1

)
andw

(
F

−→s2−→s1,q

)
in terms of the in-trees of G rooted at the seeds. The proof makes use of the MTTdir (The-
orem 2.2.1), Lemma 2.3.3 and the well-known Determinant Lemma [72] which we state
without proof.

Lemma 2.3.4 (Determinant Lemma [72]). Given an invertible matrix A ∈ Rm×m and
u, v ∈ Rm then we have:

det(A+ uv⊤) = det(A)(1 + v⊤A−1u)

Lemma 2.3.5. Let G = (V,E,w) be a directed graph. Let l−1,[v]
ij represent the entry ij of

the matrix
(
L[v]
)−1 for any v ∈ V . Given s1, s2 and q:

a)w
(
F

−→s2−→s1

)
= w(T

−→s1)l−1,[s1]
s2s2

= w(T
−→s2)l−1,[s2]

s1s1
, b)w

(
F

−→s2−→s1,q

)
= w(T

−→s1)(l−1,[s1]
s2s2

−l−1,[s1]
s2q

).

Proof: Let 1j denote the column j of the identity matrix I . Given a column vector v ∈ R|V |,
v[s1] denotes the vector v after removing the entry indexed by s1.
1. Let Ḡ1 = (V,E ∪ (s2, s1), w̄) be defined as in Lemma 2.3.3. We can compute

w
(
F

−→s2−→s1

)
=︸︷︷︸

Lemma 2.3.3

w
(
T

−→s1
Ḡ1

)
− w

(
T

−→s1
G

)
=︸︷︷︸

MTTdir

det
(
L
[s1]

Ḡ1

)
− det

(
L
[s1]
G

)
= det

(
L
[s1]
G + 1[s1]

s2

(
1[s1]
s2

)⊤)
− det

(
L
[s1]
G

)
=︸︷︷︸

Lemma 2.3.4

det(L[s1]
G )

(
1 +

(
1[s1]
s2

)⊤ (
L
[s1]
G

)−1

1[s1]
s2

)
− det(L[s1]

G )

= det(L[s1]
G )ℓ−1,[s1]

s2s2
=︸︷︷︸

MTTdir

w(T
−→s1
G )ℓ−1,[s1]

s2s2
.

(2.8)

To provew
(
F

−→s2−→s1

)
= w(T −→s2)l

−1,[s2]
s1s1 we just need to exchange the role of s1 and s2 in (2.8)

and follow the same steps as above.
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2. Let b = 1s2 − 1q and Ḡ2 be defined as in Lemma 2.3.3. Then

w
(
F

−→s2−→s1,q

)
=︸︷︷︸

Lemma 2.3.3

w
(
T

−→s1
Ḡ2

)
− w

(
T

−→s1
G

)
=︸︷︷︸

MTTdir

det
(
L
[s1]

Ḡ2

)
− det

(
L
[s1]
G

)
= det

(
L
[s1]
G + b[s1]

(
1[s1]
s2

)⊤)
− det

(
L
[s1]
G

)
=︸︷︷︸

Lemma 2.3.4

det(L[s1]
G )

(
1 +

(
1[s1]
s2

)⊤ (
L
[s1]
G

)−1

b[s1]
)
− det(L[s1]

G )

= det(L[s1]
G )(l−1,[s1]

s2s2
− l−1,[s1]

s2q
) =︸︷︷︸

MTTdir

w(T
−→s1)(l−1,[s1]

s2s2
− l−1,[s1]

s2q
).

(2.9)

As a consequence of Lemma 2.3.5, we can conveniently find a closed form for the prob-
abilities of the DProbWS (Definition 4):

Theorem 2.3.6. The Directed Probabilistic Watershed probabilities are equal to

Pr(q ∼ s1) =
l
−1,[s1]
s2s2 − l−1,[s1]

s2q

l
−1,[s1]
s2s2

and Pr(q ∼ s2) =
l
−1,[s1]
s2q

l
−1,[s1]
s2s2

,

or equivalently

Pr(q ∼ s2) =
l
−1,[s2]
s1s1 − l−1,[s2]

s1q

l
−1,[s2]
s1s1

and Pr(q ∼ s1) =
l
−1,[s2]
s1q

l
−1,[s2]
s1s1

.

Our discussion was constrained to the case of two seeds only to ease our explanation.
We can reduce the case of multiple seeds per label to the two seed case by merging all nodes
seeded with the same label. Similarly, the case of more than two labels can be reduced to
the two label scenario by using a “one versus all strategy”: We choose one label and merge
the seeds of other labels into one unique seed. In both cases we might add multiple edges
between node pairs. While having formulated our arguments for simple graphs, they are
also valid for multigraphs by the same arguments as in [57].

2.4 Equivalence of DProbWS and the Directed Random
Walker

Resembling the ProbWS equivalence with the Random Walker, the DProbWS also turns out
to be equivalent to the directed version of the Random Walker. Although multiple references
exist on how to compute the absorbing probabilities of a random walker in terms of the
Laplacian matrix for undirected graphs [60, 66], we could not find any suitable reference
for the directed case.5 We sketch how the absorbing probabilities can be obtained for the

5However, there exist closed formulas to compute the absorbing probabilities of Markov chains in terms of
the fundamental matrix [91].
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directed case in terms of the Laplacian matrix and refer to the supplemental material for a
complete derivation.

Theorem 2.4.1. The probability, xs1q , that a random walker on a directed graph starting at
node q first reaches s1 before reaching s2 is given by the solution of the following linear
system

L⊤
Ux

s1
U = −

[
B⊤

1

]
s1
, (2.10)

where xsiU represents the probability that the nodes in U are absorbed by si, LU is the square
submatrix of L indexed by the elements in U and

[
B⊤

1

]
s1

is the column s1 of L without the
entries indexed by the seeds.

Proof sketch: Let P denote the transition probability matrix defined by the absorbing
random walker. We note that the probability of being absorbed by s1 at q can be obtained
by computing the entry (q, s) of P n when n tends to infinity, i.e., xs1q = limn→∞ [P n]qs. By
expressing the transition matrix in terms of the Laplacian, we find a closed formula of the
matrix P n by induction. By taking the limit to infinity, we obtain the desired result. See
Appendix A.1 for further details.

Remark 2.4.2. Note that (2.10) is the transposed version of the linear system solved by the
undirected Random Walker and equivalently the ProbWS (2.3), i.e., (LU) yU = −B⊤

1 . Since
[57, 66] consider an undirected graph

(
L⊤
U

)
= LU , the transposition becomes irrelevant in

the undirected case.

The next theorem states the equivalence between the DProbWS and the Directed Random
Walker. The proof is analogous to Theorem 4.1 in [57].

Theorem 2.4.3. The probability, xs1q , that a random walker on a directed graph starting at
node q first reaches s1 before reaching s2 is equal to the Directed Probabilistic Watershed’s
probability (Definition 4)

xs1q = P (q ∼ s1).

Proof: We write the probability of the DProbWS in terms of the inverse of L[s2] (Theo-
rem 2.3.6):

Pr(q ∼ s1) = ℓ−1,[s2]
s1q

/
ℓ−1,[s2]
s1s1

. (2.11)

Therefore, we only need to know the row s1 of
(
L[s2]

)−1 to calculate for each q the probability
P (q ∼ s1), which can be computed solving the following linear system(

L[s2]
)⊤
y = 1s1

/
ℓ−1,[s2]
s1s1

⇐⇒ y =
((
L[s2]

)⊤)−1

1s1
/
ℓ−1,[s2]
s1s1

=
((
L[s2]

)⊤)−1

·,s1

/
ℓ−1,[s2]
s1s1

.

(2.12)
Here 1s1 denotes the column s1 of the identity matrix. Note that y is the vector formed by
the elements in the right hand side of (2.11). Let us assume without loss of generality that
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the row corresponding to the seed s1 is the first one. Thus, we can express equation (2.12)
block-wise :(

Ls1s1
[
B⊤

2

]
s1[

B⊤
1

]
s1

L⊤
U

)(
ys1

yU

)
=

(
Ls1s1ys1 +

[
B⊤

2

]
s1
yU[

B⊤
1

]
s1
ys1 + L⊤

UyU

)
=

(
1/ℓ

−1,[s2]
s1s1

0

)
,

(2.13)
where Ls1s1 is the entry s1s1 of the Laplacian, [B1]s1 and [B2]s1 are the row and column s1
of the Laplacian without considering the element in the diagonal and LU are the rows and
columns of the unseeded vertices. Since ys1 = Pr(q ∼ s1) = 1, we obtain the following
linear system of equations

L⊤
UyU = −

[
B⊤

1

]
s1
, (2.14)

which is the same linear system that the Directed Random Walker solves (see Theorem 2.4.1

and Appendix A.1 for more details). Therefore P (q ∼ s1) = yq = xs1q for all q.
The equivalence stated by Theorem 2.4.3 combined with Theorem 2.4.1 implies that in

order to obtain the DProbWS probabilities defined in Theorem 2.3.6, it is just necessary to
solve a linear system for each seed node (see Algorithm 1), as it is the case for the Random
Walker algorithm.

Algorithm 1: Directed Probabilistic Watershed / Directed Random Walker
Input: G = (V,E,w), seeds
Output: x // DProbWS probabilities

1 U = V \ seeds // Unlabeled nodes
2 L=outLaplacian(G)
3 LU = L[U ;U ] // submatrix of L indexed by the unlabeled nodes
4 for s ∈ seeds do
5 Bs = L[U ; s] // s column of L restricted to unlabeled nodes
6 x[U ; s]=solve(L⊤

U ,−Bs) // Solves the linear system
L⊤
U ∗ xsU = −Bs

2.4.1 Teleporting Random Walker

As pointed out in Remark 2.3.1, if a node cannot reach any seed via a directed path, the
DProbWS method is not able to infer the label. Such nodes are known as zero-knowledge
nodes. From the tree perspective view, the zero knowledge nodes do not belong to any in-tree
rooted at the seeds and therefore the DProbWS probabilities are all equal to zero.

Inspired by [194] and leveraging the equivalence of the DProbWS with the Random
Walker method, we remedy this by replacing the natural random walker by the so-called
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teleporting random walker (TRW). In the TRW setting, a random walker jumps uniformly at
random to any node with probability η, and with probability (1−η) takes a step of the natural
random walker. This ensures that any node can reach any other node. Let P and PTRW be
the transition probability matrices of the random walker and the teleporting random walker.
Formally, they are related as follows

PTRW = (1− η)P +
η

n− 1

(
11⊤ − I

)
, (2.15)

where 1 is the column vector full of ones, I is the identity matrix of appropriate size and
n is the number of nodes in the graph. Note that the Laplacian matrix L is related to the
transition probability matrix P in the following way

L⊤ = D − A = D(I −D−1A) = D(I − P ).

Thus, the linear system of equation (2.10) can be expressed in terms of the transition proba-
bility matrix P as

(I − PU)xs1U = − (DU)
−1 [B⊤

1 ]s1 (2.16)

Therefore, we can solve the linear system that determines the DProbWS probabilities in
terms ofP . Moreover, we can apply the TRW approach to the DProbWS by solving the linear
system with respect to PTRW . We refer to the variant that uses the TRW by DProbWStrw.

In practice, the TRW approach is equivalent to add to every node out-going edges to-
wards the rest of nodes. By adding these out-going edges to each node the graph becomes
a complete graph. Hence, a priori, one cannot exploit the sparsity of the Laplacian when
solving the DProbWS linear systems. However, in Appendix A.2, we present an efficient
computation of the DProbWStrw probabilities, allowing the use of sparse linear solvers at
the cost of solving an additional linear system. Specifically, we demonstrate the following:

Theorem 2.4.4. Given a weighted graph G with n nodes, where s is a seed node and U is
the set of unlabeled nodes, let xsU represent the DProbWS/absorption probabilities associ-
ated with the transition probability matrix P of G. Similarly, let x̃sU represent the DProbW-
Strw/absorption probabilities associated with the TRW transition probability matrix PTRW
with parameter η as defined in (2.15). Then, both probability vectors are related as follows:

x̃sU = xsU −
η(η + 1)

1 + η1⊤y
y

((
1 +

η

(n− 1)(1− η)

)
+ 1⊤xsU −

η(η + 1)

1 + η1⊤y
1⊤y

)
, (2.17)

where 1 is a vector filled with ones and y := (I − PU)−11.

Hence, Theorem 2.4.4 states that the DProbWStrw probabilities given by x̃sU can eas-
ily be computed via (2.17), if we compute xsU and y = (I − PU)

−11. Consequenlty, the
computation of the DProbWStrw probabilities require to solve one additional sparse linear
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system in comparison to the number of linear systems needed to compute the DProbWS
probabilities, which costs much less effort than solving a dense linear system per seed.

The proof of Theorem 2.4.4 is deferred to Appendix A.2. This proof consists of two parts.
First, we demonstrate that the absorption probabilities of TRW with self-loops are equiva-
lent to those of TRW without self-loops. This equivalence must be established because the
DProbWS Laplacian matrix remains unchanged when self-loops are added, although the
transition probability matrix does change.

The second part involves leveraging the equivalence that permits the addition of self-
loops, allowing us to express PTRW as a 1-rank perturbation of P . This is because we do
not need to subtract the identity in the second term of equation (2.15) to remove self-loops.
Utilizing the Sherman-Morrison formula (see Lemma A.2.2), which provides an efficient
way to compute the inverse of a matrix perturbed by the addition of a 1-rank matrix, we
establish a relationship between the inverse matrices of PTRW and P .

2.5 Directed Power Watershed

In the ProbWS paper [57], it was proven that the Power Watershed [41] is equivalent to
applying the ProbWS restricted to the minimum cost spanning forests. This restriction cor-
responds to the case of a Gibbs distribution of minimal entropy over the forests. In this sec-
tion, we will prove the analogous result for the DProbWS: When the entropy of the Gibbs
distribution over the directed in-forests (2.3.1) is minimal, then DProbWS is restricted to the
minimum cost spanning in-forests (mSF). This permits us to define a natural extension of
the Power Watershed to directed graphs.

In Section 2.3.1, we defined the weight of an edge e as w(e) = exp(−µc(e)), where
c(e) was the edge-cost and µ implicitly determined the entropy of the 2-in-forest distribution.
When µ→∞, the distribution will have minimal entropy. Consequently, only for minimum
cost spanning in-forests, mSFs (or analogously the maximum weight spanning in-forests,
MSFs) the limit does not yield a zero probability, so that only they will be considered in the
sampling.

Theorem 2.5.1. Given two seeds s1 and s2. Let further wmax := max
F∈F

−→s2−→s1

w(F). If the
entropy of the Gibbs distribution over the in-forests is minimized (2.6), then

xs1q =

∣∣∣{F ∈ F−→s2−→s1,q : w(F) = wmax}
∣∣∣∣∣∣{F ∈ F−→s2−→s1 : w(F) = wmax}
∣∣∣ .

Proof: The proof is analogous to the one presented in [57]. The entropy of the Gibbs dis-
tribution (2.6) is minimized when µ → ∞. For a fixed µ0 > 0, let us define µ = α · µ0,



26 2.6. Experiments

then
w(e) = exp(−µc(e)) = exp(−α · µ0c(e)) = w0(e)

α,

where w0(e) = exp(−µ0c(e)). Since µ→∞ ⇐⇒ α→∞, we have

Pα(q ∼ s1) :=

∑
F∈F

−→s2−→s1,q

∏
e∈F

w0(e)
α

∑
F∈F

−→s2−→s1

∏
e∈F

w0(e)
α

=

∑
F∈F

−→s2−→s1,q

w0(F)α

∑
F∈F

−→s2−→s1

w0(F)α
=

∑
F∈F

−→s2−→s1,q

(
w0(F)
wmax

)α
∑

F∈F
−→s2−→s1

(
w0(F)
wmax

)α α→∞−−−→
(⋆)

xs1q

(2.18)
In (⋆) we used the fact that w(F)

wmax
< 1 ⇐⇒ w(F) ̸= wmax. When α→∞, only for the MSFs

the fraction
(
w(F)
wmax

)α
does not tend to 0, but to 1. Thus, we are counting MSFs.

2.6 Experiments
While our research has stemmed from a theoretical standpoint, we conducted a practical ex-
periment to illustrate the performance of DProbWS in node classification.6 Utilizing a graph
with labeled nodes, we aimed to infer the labels of the remaining nodes. We used datasets
from UCI [50] including Digits [183] and 20Newsgroups [100], although these datasets are
not inherently graph-based. To address this, we employed a common practice of inferring
a graph from data embedded in a metric space, using k-Nearest Neighbors (kNN) graphs.
Given their asymmetric nature, kNN graphs can be treated as directed graphs. We con-
structed kNN graphs with a parameter value of k = 5.

Additionally we consider the Email-EU [105, 106, 187], Cora [120] and CiteseerX [146]
network datasets. We compare the DProbWS with the methods exposed in [45, 54, 194]
referred as ARW, GTG and LLUD respectively. For further details regarding the datasets,
comparison methods, and graph construction, please refer to Appendix A.3.

Due to the high sparsity of the Cora and CiteseerX networks, many of the nodes are zero-
knowledge nodes and therefore its label can not be inferred (see Remark 3.1). To remedy this,
we make use of the teleporting random walker (TRW) as explained in Section 2.4.1. Since
both ARW [45] and DProbWS methods are based on the random walker, we can implement
the variants ARWtrw and DprobWStrw, which make use of the TRW. We set the η value
equal to 10−6 for all datasets except for the Digits dataset, where η = 10−2.

To evaluate the methods we use the accuracy (number of correctly labeled nodes divided
by the total number of nodes). In the computation of the accuracy, we also include the zero-
knowledge nodes. Inspired by [45], we sample a certain fraction r of all nodes from each

6Code publicly available at https://github.com/hci-unihd/Directed_Probabilistic_
Watershed.git

https://github.com/hci-unihd/Directed_Probabilistic_Watershed.git
https://github.com/hci-unihd/Directed_Probabilistic_Watershed.git
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(a) Digits (b) 20Newsgroups (c) Email-EU

(d) Cora (e) CiteseerX

Figure 2.3. DProbWS Performance Comparison. Accuracy comparisons on the Digits,
20Newsgroups Email-EU, Cora and CiteseerX datasets. In all plots, the horizontal axis de-
notes the fraction of labeled notes in the graph varying from 0.1 to 0.9 with 0.1 increment.
We depict the average accuracy over 20 runs with error bars of one standard deviation. Our
methods DProbWS and DProbWStrw are on par with existing methods and sometimes out-
perform them.

class uniformly as seeds. In Figure 2.3, we show the average accuracy over 20 runs for
each of the r values between 0.1 and 0.9. We observe that our method obtains comparable
empirical results sometimes outperforming all competing methods.

2.7 Conclusion
In this chapter, we presented an extension of the Probabilistic Watershed algorithm [57]
that can be applied to directed graphs. Following the rationale exposed in the Probabilistic
Watershed article [57], we defined a Gibbs distribution over all the directed spanning in-
forests rooted at the seeds of a directed graph (Definition 4). We also demonstrated, using the
directed version of the Matrix Tree Theorem [102], that the Directed Probabilistic Watershed
is computationally and also by result equivalent to the Directed Random Walker as in the
case for the undirected version. Finally, we showed that when the entropy of the Gibbs
distribution is minimized, we obtain an extension of the Power Watershed potentials [41] to
directed graphs.





Chapter 3

Expected Degree and Variance in
Random Spanning Trees

Spanning trees serve as fundamental structures in graph theory, finding applications across
diverse domains. We delve into the expected degree and variance of nodes within spanning
trees of weighted graphs. We establish a probability distribution over all spanning trees of a
weighted graph, where each tree’s likelihood is proportional to its weight. We explore two
degree variants: weighted degree, where we aggregate the edge weights of incident edges,
and unweighted degree, where we count the number of neighbors. Our approach begins
defining polynomials from which we derive expressions for the expectation and variance of
node degree within a spanning tree. Leveraging the Matrix Tree Theorem, we establish a
relation between these polynomials and the determinant of the Laplacian matrix. This en-
ables us to derive analytical expressions for the expectation and variance of the (un)weighted
degree of a node in a spanning tree, dependent ultimately on the inverse of a Laplacian sub-
matrix. Furthermore, we also establish a relation between edge probabilities and expected
node degrees. While our primary focus is on undirected graphs, we demonstrate that the
results can be extended to the directed setting by considering in-trees instead.

3.1 Introduction

Graph theory serves as a foundational framework for understanding and analyzing various
complex systems, ranging from social networks to transportation networks and beyond. One
area of significant focus involves analyzing graph properties within random settings. Here,
randomness enters the equation through the selection of edges, vertices, or entire subgraphs
based on specific probability distributions. This stochastic approach offers valuable insights
into the behavior of graphs under probabilistic scenarios, shedding light on their inherent
structural properties and facilitating the development of efficient algorithms for diverse ap-

29
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plications.

In the realm of random graphs, much attention has been devoted to exploring a multi-
tude of properties, including connectivity [141], diameter [1], clustering coefficient [138],
and spectral characteristics [76], among others. These investigations have provided deep
insights into the emergence of specific patterns and structures in random graphs, offering
valuable theoretical foundations for understanding real-world networks and guiding practi-
cal decision-making processes.

Another area of interest lies in understanding random spanning trees and their relevance.
These trees, which are subgraphs of the original graph, play a crucial role in analyzing net-
work properties such as resilience [88] or information flow [82]. Random spanning trees are
essential in various fields, including computer science, physics, and biology, as they repre-
sent fundamental structures within networks. Overall, investigating random spanning trees
offers a deeper understanding of the intricate relationships and emergent behaviors within
complex networks.

One intriguing property of random spanning trees is the expected degree of a node. Lit-
tle has been done in the literature regarding the distribution of the degree of a node in a
spanning tree. It is known that for an unweighted complete graph the degree distribution
of a node follows a binomial distribution given by 1 + Binomial(N − 2, 1

N
). Willemain

and Bennett examined the node degree distribution in maximum (longest) spanning trees
of networks where nodes are randomly distributed in the plane or hyper-plane according to
uniform or normal distributions. These distributions were estimated through Monte Carlo
simulations. Pozrikidis proposed a method for calculating the node degree distribution on
unweighted graphs without explicitly constructing the trees. This approach involves employ-
ing derivatives of the determinant of the Laplacian. However, while their method offers a
probability distribution over all possible degrees of a node, it does not scale efficiently as the
number of a node’s neighbors increases, primarily due to reliance on the inclusion-exclusion
principle.

In this chapter, we present analytical formulas for computing both the expected node de-
gree and the variance in random spanning trees of weighted graphs. We define a probability
distribution over all spanning trees of a weighted graph, where the probability of each tree is
proportional to its weight. We consider two types of degrees: the unweighted degree, which
counts only the number of neighbors, and the weighted degree, where we sum the total edge
weights of the incident edges to a node. We provide analytical expressions for the expected
degree and variance, which rely on the inverse of the Laplacian of the weighted graph once
a node has been removed. Ultimately, our results are grounded in the Matrix Tree Theorem
[94, 168].
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Outline We begin with a brief overview of the notation and basic concepts in Section
3.2. In Section 3.3, we introduce two polynomials from which we derive expressions for the
expectation and variance. Specifically, Theorem 3.3.2 demonstrates that the (un)weighted
degree’s expectation and variance can be expressed using the first and second derivatives of
these polynomials, evaluated at −1.

Moving on to Section 3.4, we utilize the Matrix Tree Theorem (Theorem 1.2.1) to estab-
lish a connection between the derivatives of these polynomials and the determinant of the
Laplacian. This connection facilitates the derivation of analytical expressions for the expec-
tation and variance, expressed in terms of the inverse of a submatrix of the Laplacian. The
primary outcome of this section is outlined in Theorem 3.4.1, stating the explicit relations.

In Section 3.5, we present an alternative approach to computing the expectation of node
degree. This method is stated in Theorem 3.5.1 and links the probability of an edge incident
to v being present in a spanning tree with the expected degree of v. Although our results
are framed in the undirected setting, Section 3.6 illustrates how these findings extend to
directed graphs, focusing on the consideration of in-trees instead.1 We then analyze the
expected degrees of two toy examples in Section 3.7, and provide concluding remarks for
the chapter in Section 3.8.

3.2 Notation

Throughout this chapter, we consider a weighted graph G = (V,E,w), where the edge
weights are defined by the function w : E → R+. If w(e) = 0, it implies that e /∈ E. For
simplicity, we concentrate on undirected graphs. However, Section 3.6 demonstrates the
applicability of our results to directed graphs as well.

For a given node v ∈ V , let NG(v) and EG(v) represent the set of neighbors and edges
incident to v in G, respectively. This is defined as:

NG(v) := {v : (u, v) ∈ E}, EG(v) := {v} × NG(v) = {e ∈ E : v ∈ e}.

In this chapter, we distinguish between the weighted and unweighted degree of a node
v. The unweighted degree of v refers to the number of neighbors of v and is denoted by
dv(G) := |NG(v)|. Conversely, the weighted degree represents the sum of the weights of
the incident edges to v and is denoted by dw

v (G) :=
∑

e∈EG(v)w(e). It’s important to note
that for unweighted graphs, both types of degrees coincide.

The set of all spanning trees of G will be denoted by TG. Following a similar approach
to that taken in Chapter 2 with in-forests, we establish a probability distribution over the set

1See Definition 2 for a definition of in-tree.
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of spanning trees where the probability of each tree T is proportional to its weight. Mathe-
matically, this can be expressed as:

Pr(T) =
w(T)
w (TG)

∝ w(T). (3.1)

For unweighted graphs, we obtain a uniform distribution over all spanning trees of G.

For a given node v, let

TG,v(k) := {T ∈ TG : dv(G) = k}

represent the subset of spanning trees for which the unweighted degree of v is equal to k.
Similarly, we define the subset of spanning trees for which the weighted degree of v is equal
to k as

T w
G,v(k) := {T ∈ TG : dw

v (G) = k}

The expected unweighted and weighted degree of v in a random tree will be given by

E [dT(v)] :=

dv(G)∑
k=1

k · Pr (T ∈ TG,v(k)) =
dG(v)∑
k=1

k · w (TG,v(k))
w (TG)

,

and

E [dw
T (v)] :=

∑
k∈Dw

G(v)

k · Pr
(
t ∈ T w

G,v(k)
)
=

∑
k∈Dw

G(v)

k ·
w
(
T w
G,v(k)

)
w (TG)

respectively. Note that in the weighted case, k iterates over the set of feasible weighted
degrees, denoted here by Dw

G(v) := {dw
T (v)}T∈T .

We remind the definition of the Laplacian matrix, as provided in Definition 3. The Lapla-
cian matrix plays an important role in the Matrix Tree Theorem (Theorem 1.2.1), which
forms the foundation of our results. Since we consider undirected graphs, here we define the
Laplacian matrix for undirected graphs. The Laplacian matrix of a graph G is given by

L := D − A (3.2)

where A ∈ R|V |×|V | is the vertex-adjacency matrix of G, represented entry-wise as Auv =

w
(
(u, v)

)
, and D denotes the diagonal matrix defined as Duu =

∑
j∈V Auj , where Duu is

the weighted degree of vertex u.2 Recall also that for any v ∈ V , L[v] will stand for the
Laplacian after removing the row and column indexed by v.

2Note that the definition of the Laplacian for undirected coincides with the one given in Definition 3, since
for undirected graphs the adjacency matrix is symmetric, i.e. A = A⊤.
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3.3 Polynomial-Based Computation of Expectation and Vari-
ance of Node Degree in Spanning Trees

In this section, we will define two polynomials. Their first and second derivatives will
prove to be intricately connected to the expectation and variance of both the unweighted
and weighted degree of a node in a spanning tree (Theorem 3.3.2).

Definition 5. Let h(x) and h(x) be the polynomials defined as follows:

h(x) =

|V |−1∑
k=1

(−1)kw (TG,v(k))xk, (3.3)

h(x) =
∑

k∈Dw
G(v)

(−1)kw
(
T w
G,v(k)

)
xk, (3.4)

where TG,v(k) and T w
G,v(k) represent the sets of spanning trees with unweighted and weighted

degrees equal to k, respectively. It is clear that when x = −1, we have

h(−1) = h(−1) = w (TG) ,

since both polynomials sum the weights of all spanning trees of G. The following lemma
shows that for α > 0, h(−α) and h(−α) return the weight of all spanning trees of two
modified versions of G.

Lemma 3.3.1. Let Gα = (V,E,wα) and Gα = (V,E,wα) be altered versions of G defined
as follows:3

• Gα = (V,E,wα) is the graph where all edge weights of the edges incident to v have been
scaled by α, i.e., with the edge-weight function given by

wα(e) =

w(e) if e /∈ EG(v),

αw(e) otherwise
. (3.5)

• Gα = (V,E,wα) is the graph where all edge weights of the edges incident to v are scaled
by α powered to the value of the edge weight, i.e., with the edge-weight function given by

wα(e) =

w(e) if e /∈ EG(v),

αw(e)w(e) otherwise
. (3.6)

Then, for α > 0, we have that h(−α) = wα (TGα) and h(−α) = wα (TGα).
3Note that both Gα and Gα depend on the node v. Nonetheless, we omit this dependence in the notation

since v is arbitrary but fixed node throughout the section.
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Proof: We will only prove the h case since the other one is analogous. First of all, we notice
that for each T ∈ T w

G,v(k), we have

αkw(T) = αk
∏
e∈ET

w(e) = αk
∏

e∈ET(v)

w(e)
∏
e∈ET
e/∈ET(v)

w(e)
∗
=

∏
e∈ET(v)

w(e)αw(e)
∏
e∈ET
e/∈ET(v)

w(e)

=
∏

e∈ET(v)

wα(e)
∏
e∈ET
e/∈ET(v)

wα(e) = wα(T)
,

(3.7)
where in (*) we have used the fact that

∑
e∈ET(v)

w(e) = k since T ∈ T w
G,v(k). From here, it

follows easily that

w (TG,v(k)) =
∑

T∈TG,v(k)

w(T)αk =
∑

T∈TG,v(k)

wα(T) = wα (TG,v(k))

and therefore

h(−α) =
|V |−1∑
k=1

(−1)kw (TG,v(k)) (−α)k =
|V |−1∑
k=1

w (TG,v(k))αk

=

|V |−1∑
k=1

wα (TGα,v(k)) = wα (TGα)

(3.8)

The next result relates the derivatives of the polynomials h and h with the expectation
and variance of the (un)weighted degree of a node in a random spanning tree.

Theorem 3.3.2. Let G = (V,E,w) be a graph and v be an arbitrary but fixed node. Then
the expected and variance of the unweighted and weighted degrees of node v in G are given
by:

E [dT(v)] = −
h′(−1)
h(−1)

, E [dw
T (v)] = −

h′(−1)
h(−1)

(3.9)

Var [dT(v)] =
∂
(
−xh

′(−x))
h(−x)

)
∂x

∣∣∣∣∣
x=1

=
h′′(−1)
h(−1)

− h′(−1)h′(−1)
h2(−1)

− h′(−1)
h(−1)

. (3.10)

Var [dw
T (v)] =

∂
(
−xh′(−x))

h(−x)

)
∂x

∣∣∣∣∣
x=1

=
h′′(−1)
h(−1)

− h′(−1) h′(−1)
h2(−1)

− h′(−1)
h(−1)

. (3.11)

where h and h are defined as in (3.3) and (3.4).

Proof: The proof will focus on the unweighted case, since the proof for the weighted degree
follows mutatis mutandis. The derivative of h is given by:

h′(x) =
∂h(x)

∂x
=

|V |∑
k=1

(−1)kkw (TG,v(k))xk−1 (3.12)
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Therefore, combining (3.8) and (3.12), we easily derive (3.9):

−h
′(−1)
h(−1)

= −
∑|V |

k=1(−1)kkw (TG,v(k)) (−1)k−1

w (TG)
=

∑|V |
k=1 kw (TG,v(k))

w (TG)

=

|V |∑
k=1

k Pr (TG(k)) = E [dT(v)]

(3.13)

Now we will prove (3.10). Based on equation (3.12), we deduce that:

x
∂xh′(x)

∂x
= x

∂
∑|V |

k=0(−1)kkw (TG,v(k))xk

∂x

= x

|V |∑
k=1

(−1)kk2w (TG,v(k))xk−1 =

|V |∑
k=0

(−1)kk2w (TG,v(k))xk
(3.14)

On the other hand, using the chain rule, we obtain:

x
∂ [xh′(x)]

∂x
= x2h′′(x) + xh′(x) (3.15)

Following the same reasoning as in equation (3.13), we obtain

h′′(−1)− h′(−1)
h(−1)

=

∑|V |
k=0 k

2w (TG,v(k)) (−1)2k

h(−1)
=

∑|V |
k=0 k

2 wα (TG,v(k))
w (TG)

=

|V |∑
k=0

k2 Pr(t ∈ (TG(k))) = E
[
(dT(v))

2
] (3.16)

Consequently, we have

Var [dT(v)] = E
[
(dT(v))

2
]
− (E [dT(v)])

2 =
h′′(−1)
h(−1)

− h′(−1)
h(−1)

− h′(−1)h′(−1)
h2(−1)

(3.17)

Finally, notice that

∂
(
−xh

′(−x))
h(−x)

)
∂x

∣∣∣∣∣
x=1

=

[
xh′′(−x)
h(−x)

− h′(−x)
h(−x)

− xh′(−x)h′(−x)
h2(−x)

]∣∣∣∣∣
x=1

=
h′′(−1)
h(−1)

− h′(−1)
h(−1)

− h′(−1)h′(−1)
h2(−1)

=︸︷︷︸
Eq. (3.17)

Var [dT(v)]

(3.18)

3.4 Laplacian-Based Computation of Expectation and Vari-
ance of Node Degree in Spanning Trees

In this section, leveraging the Matrix Tree Theorem, we first discover that the polynomials
defined in Definition 5 can be represented using the determinants of Laplacians from two
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modified versions of the graph G. These modifications involve scaling the weights of edges
incident to a node v by a factor determined by a variable α. Notably, this variable α cor-
responds to the negated input variable x of the polynomials. Ultimately, building on the
insights of Theorem 3.3.2, we establish in Theorem 3.4.1 a connection between the deriva-
tives of these polynomials and the determinant of the Laplacian. This connection allows
us to derive analytical expressions for the expectation (un)weighted degree and its variance,
expressed in terms of the inverse of a submatrix of the Laplacian.

Given a node v in an undirected, edge-weighted, connected graph G = (V,E,w) with
n nodes, let LGv ∈ Rn×n denote the Laplacian matrix of the subgraph Gv = (V, EG(v), w),
which consists of only the edges incident to v. Formally,

[LGv ]ij =


−w((i, j)) if v ∈ (i, j) & i ̸= j

dw
G(v) if i = j = v

0 otherwise

(3.19)

Analogously, we define the Laplacian matrix αLGv of the graph that consists of the edges
incident to v whose weights have been scaled by αw(e), i.e.

[
αLGv

]
ij
=


−w((i, j))αw((i,j)) if v ∈ (i, j) & i ̸= j∑
ℓ∈NG(v)

w((v, ℓ))αw((v,ℓ)) if i = j = v

0 otherwise

.

Let LG be the Laplacian matrix of G, and define L̄ = LG − LGv . Thus, the Laplacians
of the graphs Gα and Gα defined in Lemma 3.3.1 are given by:

LGα = L̄+ αLGv , LGα = L̄+ αLGv (3.20)

Given an arbitrary node r ofG, we deduce from the Matrix Tree Theorem (Theorem 1.2.1)
and Lemma 3.3.1 that

det
(
L
[r]
Gα

)
= det

((
L̄+ αLGv

)[r])
= wα (TGα) = h(−α) (3.21)

det
(
L
[r]
Gα

)
= det

((
L̄+ αLGv

)[r])
= wα (TGα) = h(−α) (3.22)

where the exponent [r] represents that the row and column indexed by r have been removed
from the matrix. The next theorem leverages these equations to obtain expressions for the
expectation and variance of the (un)weighted degree in terms of the Laplacian matrix.

Theorem 3.4.1. Let G = (V,E,w) be an undirected, edge-weighted connected graph and
r an arbitrary node of G. For a given node v, we have that:
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(A) The expected unweighted and weighted degrees of v in a tree t ∈ TG are given by:

(a) E [dT(v)] = Tr
[
L
[r]
Gv

(
L
[r]
G

)−1
]

(b) E [dw
T (v)] = Tr

[(
L
[r]
Gv

)⊙2 (
L
[r]
G

)−1
]

(B) The variance of the unweighted and weighted degree of v in a tree t ∈ TG are given by:

(a) Var [dT(v)] = Tr
[
L
[r]
Gv

(
L
[r]
G

)−1
(
I − L[r]

Gv

(
L
[r]
G

)−1
)]

(b) Var [dw
T (v)] = Tr

[(
L
[r]
Gv

)⊙3 (
L
[r]
G

)−1

−
(
L
[r]
Gv

)⊙2 (
L
[r]
G

)−1 (
L
[r]
Gv

)⊙2 (
L
[r]
G

)−1
]

where LG is the Laplacian of G, LGv is the matrix defined in (3.19), L[r]
G and L[r]

Gv
represent

the corresponding matrices once the row and column indexed by node r have been removed,
Tr is the trace operator, and the exponent L⊙p

Gv
represents the Laplacian of the graph when

only the edges incident to v are considered and have been raised to the power of p, i.e.,

[
L⊙p
Gv

]
ij
=


−w((i, j))p if v ∈ (i, j) & i ̸= j∑
ℓ∈NG(v)

w((v, ℓ))p if i = j = v

0 otherwise

.

Proof: We will only demonstrate the case for the unweighted degree, as the reasoning for
the weighted case is analogous. First, notice the following relation:

x
∂ logh(−x)

∂x
= −xh

′(−x)
h(−x)

(3.23)

Additionally, from equation (3.9) stated in Theorem 3.3.2, we know that E [dT(v)] = −
h′(−1)
h(−1)

.
Therefore, in combination with equation (3.21), we deduce that

E [dT(v)] = α
∂ logh(−α)

∂α

∣∣∣∣∣
α=1

= α
∂ log det

(
L
[r]
Gα

)
∂α

∣∣∣∣∣
α=1

= αTr

[
∂L

[r]
Gα

∂α

(
L
[r]
Gα

)−1
]∣∣∣∣∣
α=1

.

(3.24)
Since

∂L
[r]
Gα

∂α

∣∣∣∣∣
α=1

=
∂
(
L̄+ αLGv

)[r]
∂α

∣∣∣∣∣
α=1

= L
[r]
Gv
,

it follows from (3.24)

E [dT(v)] = αTr
[
L
[r]
Gv

(
L
[r]
Gα

)−1
]∣∣∣∣∣
α=1

= Tr
[
L
[r]
Gv

(
L
[r]
G

)−1
]
. (3.25)
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Now we will prove the variance equality stated in the theorem. We know from equation
(3.13) of Theorem 3.3.2 that

Var [dT(v)] =
∂
(
−xh

′(−x))
h(−x)

)
∂x

∣∣∣∣∣
x=1

.

Thus, we need to derive (3.25) again with respect to α and evaluate it at 1:

Var [dT(v)] =

∂αTr
[
L
[r]
Gv

(
L
[r]
Gα

)−1
]

∂α

∣∣∣∣∣
α=1

= Tr
[
L
[r]
Gv

(
L
[r]
Gα

)−1

− αL[r]
Gv

(
L
[r]
Gα

)−1

L
[r]
Gv

(
L
[r]
Gα

)−1
]∣∣∣∣∣
α=1

= Tr
[
L
[r]
Gv

(
L
[r]
G

)−1
(
I − L[r]

Gv

(
L
[r]
G

)−1
)]

.

(3.26)

Note that we applied the following derivative rules for matrices (see [142]):

∂ (log (det(X))) = Tr
[
(∂X)X−1

]
, ∂ (Tr(X)) = Tr(∂X),

∂ (XY ) = ∂(X)Y +X∂(Y ), ∂
(
X−1

)
= −X−1 (∂X)X−1.

(3.27)

Remark 3.4.2 (Computation entire probability distribution of node degree). It should
be noted that while our focus has been on computing the expectation and variance of the
degree of a node in a spanning tree, equations (3.21) and (3.22) offer methods for calculat-
ing the entire probability distribution of the node degree. By evaluating the determinants
with respect to α and dividing by the total weight of the trees, the absolute values of the co-
efficients multiplying the monomials αi reveal the probability of sampling a tree where the
degree of node v is equal to i. This method appears to offer greater efficiency compared to
the approach outlined in [144], which also relies on determinant computation but addition-
ally employs the inclusion-exclusion principle on edges incident to v. Consequently, it may
not scale optimally with the number of neighbors of v. Furthermore, our method extends to
weighted graphs, whereas the method described in the aforementioned reference is limited
to unweighted ones.

Remark 3.4.3 (Weighted degree with weights independent of the edge-weights deter-
mining the tree probability distribution). The weighted degree of a node v has been de-
fined as the sum of the edge-weights, denoted as w(e), of all edges incident to v. While
these edge-weights influence the probability distribution of the tree, we can extend this con-
cept by considering alternative edge-weights that are independent of the tree’s probability
distribution. Let ω : E → R be a secondary edge-weight function, allowing us to define the
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weighted degree as dωv (G) :=
∑

e∈EG(v) ω(e). Note that unlike w(·), ω(·) is not constrained
to be non-negative. In this framework, Theorem 3.3.2 remains valid if we instead consider
the graph Gα = (V,E,wα) when applying Lemma 3.3.1, where wα is redefined as follows:

wα(e) =

w(e) if e /∈ EG(v),

αω(e)w(e) otherwise
. (3.28)

This formulation scales the edge-weights determining the tree probability distribution by
αω(e) for edges incident to v, instead of weighting by αw(e) as defined in equation (3.6).
Consequently, we can adapt Theorem 3.4.1 to derive the following expressions for the ex-
pectation and variance:

E [dωT(v)] = Tr
[(

Λ
[r]
Gv

)⊙1 (
L
[r]
G

)−1
]

Var [dωT(v)] = Tr
[(

Λ
[r]
Gv

)⊙2 (
L
[r]
G

)−1

−
(
Λ

[r]
Gv

)⊙1 (
L
[r]
G

)−1 (
Λ

[r]
Gv

)⊙1 (
L
[r]
G

)−1
]

where Λ⊙p
Gv

represents the Laplacian of the graph when only the edges incident to v are
considered, with weights given by w(e)ω(e)p, i.e.,

[
Λ⊙p
Gv

]
ij
=


−w(i, j)ω((i, j))p if v ∈ (i, j) & i ̸= j∑
ℓ∈NG(v)

w(v, ℓ)ω((v, ℓ))p if i = j = v

0 otherwise

.

The remaining symbols are defined as in Theorem 3.4.1.

Example 3.4.4 (When node v connects to all nodes with equal weights). Consider the
scenario where node v is connected to all other nodes with equal edge weights set to κ. Let
Ḡ = (V \{v}, E\EG(v)) represent the graph obtained by removing node v from G. In this
case, according to equation (3.19), the Laplacian matrix L[v]

Gv
is κ times the identity matrix.

Thus,
L
[v]
G = LḠ + L

[v]
Gv

= LḠ + κI [v].

Let {µi} and {λi} be the eigenvalues of L[v]
G and LḠ, respectively. They are related as

follows:
µi = λi + κ.

This relation can be understood by observing that

µiνi = L
[v]
G νi = (LḠ + κI) νk = LḠνi + κνi = (λk + κ)νi,

where νi is an eigenvector of L[v]
G and LḠ.
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Thus, from Theorem 3.4.1, it follows that when a node is connected to all other nodes
with equal edge weights, the expected unweighted degree of node v is related to the eigen-
values of the Laplacian of the graph without v as follows:

E [dT(v)] = Tr

L[v]
Gv︸︷︷︸

κI[v]

(
L
[v]
G

)−1

 = Tr
(
κ
(
L
[v]
G

)−1
)

=

|V |−1∑
i=1

κ

µi
=

|V |−1∑
i=1

κ

λi + κ
. (3.29)

We have utilized the fact that the trace of a matrix equals the sum of its eigenvalues, and
that the eigenvalues of the inverse of a matrix are the reciprocals of the eigenvalues of the
original matrix. Analogously, for the variance, we obtain:

Var [dT(v)] = Tr
[
κ
(
L
[v]
G

)−1

− κ2
(
L
[v]
G

)−2
]

=

|V |−1∑
i=1

κ

λi + κ
−
(

κ

λi + κ

)2

=

|V |−1∑
i=1

κλi

(λi + κ)2

(3.30)

Similarly, for the weighted degree, we obtain the following expressions

E [dw
T (v)] = κE [dT(v)] =

|V |−1∑
i=1

κ2

λi + κ
, (3.31)

Var [dw
T (v)] = κ2 Var [dT(v)] =

|V |−1∑
i=1

κ3λi

(λi + κ)2
. (3.32)

For a complete unweighted graph with N nodes, the eigenvalues of its Laplacian matrix
are λ1 = 0 and λi = N for 2 ≤ i ≤ N . As a consequence of equations (3.29) and (3.30),
we can determine the expectation and variance of a node’s degree in a random spanning tree
with N nodes:

E [dT(v)] =
N−1∑
i=1

1

λi + 1
= 1 +

N−2∑
i=1

1

N − 1 + 1
= 1 +

N − 2

N
,

Var [dT(v)] =
N−1∑
i=1

λi

(λi + 1)2
= 1 +

N−2∑
i=1

N − 1

(N − 1 + 1)2
= 1 +

(N − 2)(N − 1)

N2
.

These values match the expectation and variance of 1 + Binomial(N − 2, 1
N
), which repre-

sents the degree distribution of a fixed vertex in a uniformly random spanning tree with N
nodes [144].

3.5 Relation Between Edge Probability and Expected Node
Degree in Spanning Trees

In this section, we will establish the relationship between the expected (un)weighted degree
and the presence probability of the edges incident to node v in a spanning tree. Specifically,
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we demonstrate that the (weighted) sum of edge presence probabilities, when summed over
the edges incident to v, equals the (weighted) unweighted expected degree.

Theorem 3.5.1. Given a node v in an undirected edge-weighted connected graph G, the
expected unweighted and weighted degrees of node v in a random spanning tree T ∈ TG are
given by

(a) E [dT(v)] =
∑|V |

k=1 k · Pr (T ∈ TG,v(k)) =
∑

e∈EG(v) Pr(e ∈ T),
(b) E [dw

T (v)] =
∑

k∈dw
T (v)

k · Pr
(
T ∈ T w

G,v(k)
)
=
∑

e∈EG(v)w(e)Pr(e ∈ T).

Here, Pr(e ∈ T) represents the probability of edge e being present in a spanning tree of G.

Proof:
(a) Using Bayes’ theorem, we derive the following expressions:

∑
e∈EG(v)

Pr(e ∈ T) =
∑

e∈EG(v)

|V |∑
k=1

Pr (T ∈ TG,v(k))Pr (e ∈ T |T ∈ TG,v(k))

=

|V |∑
k=1

Pr (T ∈ TG,v(k))
∑

e∈EG(v)

Pr (e ∈ T |T ∈ TG,v(k)) .

(3.33)

Therefore we just need to show that
∑

e∈EG(v) Pr (e ∈ T |T ∈ TG,v(k)) = k.

∑
e∈EG(v)

Pr (e ∈ T |T ∈ TG,v(k)) =
∑

e∈EG(v)

∑
T∈TG,v(k)

s.t. e∈T

w (T)
w (TG,v(k))

∗
=

∑
T∈TG,v(k)

k · w (T)
w (TG,v(k))

=
k · w (TG,v(k))
w (TG,v(k))

= k

(3.34)
In (∗), we utilized the fact that any tree T ∈ TG,v(k) will have k edges from e ∈ EG(v),
thus w(T) will be counted k times.

(b) The reasoning for the weighted case is similar to the unweighted one. Analogously to
equation (3.33), in the weighted case we have that

∑
e∈EG(v)

w(e)Pr(e ∈ T) =
∑

e∈EG(v)

w(e)

|V |∑
k=1

Pr
(
T ∈ T w

G,v(k)
)

Pr
(
e ∈ T |T ∈ T w

G,v(k)
)

=

|V |∑
k=1

Pr
(
T ∈ T w

G,v(k)
) ∑
e∈EG(v)

w(e)Pr
(
e ∈ T |T ∈ T w

G,v(k)
)
.

(3.35)
By demonstrating that the summation

∑
e∈EG(v)w(e)Pr

(
e ∈ T |T ∈ T w

G,v(k)
)

equals k,
we establish the desired result.
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∑
e∈EG(v)

w(e)Pr
(
e ∈ T |T ∈ T w

G,v(k)
)
=

∑
e∈EG(v)

w(e)
∑

t∈T w
G,v(k)

s.t. e∈T

w (T)
w
(
T w
G,v(k)

)
∗
=

∑
T∈T w

G,v(k)

k · w (T)
w
(
T w
G,v(k)

) =
k · w

(
T w
G,v(k)

)
w
(
T w
G,v(k)

) = k

(3.36)
In (∗) we used the fact that any tree T ∈ T w

G,v(k) will consist of a subset of edges from
EG(v) whose total weight equals k.

The following theorem outlines how to compute the presence probability of an edge in
a random spanning tree in terms of

(
L[r]
)−1. With this relation established, deriving the

formula for the expected degree obtained in the previous section becomes straightforward.
However, from such an expression, it is not immediately clear how to derive the expression
for the variance.

Theorem 3.5.2. Given a connected edge-weighted undirected graph G = (V,E,w), let TG
stand for the set of all spanning trees of G. For an edge e = (u, v) ∈ E, the probability that
e belongs to spanning tree T ∈ TG is given by

Pr(e ∈ T) =


w(e)

(
ℓ
−1,[r]
uu + ℓ

−1,[r]
vv − 2ℓ

−1,[r]
uv

)
if r ̸= u, v

w(e)ℓ
−1,[v]
uu if r = v

w(e)ℓ
−1,[u]
vv if r = u

, (3.37)

where ℓ−1,[r]
ij denotes the entry ij of the inverse of the matrix L[r]

G (the Laplacian LG after
removing the row and the column corresponding to node r).

Proof: We postpone the detailed proof to Appendix B.1. However, here we outline its main
concept. The proof relies on the fact that the set of spanning trees TG containing edge e is
equal to the total number of spanning trees minus the ones not containing edge e. Calculating
the latter involves enumerating the total number of spanning trees of the graphG\e, obtained
by removing edge e from G. Leveraging the Matrix Tree Theorem (Theorem 1.2.1), we can
determine the number of trees for each graph by utilizing their respective Laplacian matrices.
This, combined with the observation that the difference between the Laplacians of these two
graphs yields a one-rank matrix, allows us to apply the Determinant Lemma (Lemma 2.3.4)
to compute the probability.

Remark 3.5.3. It is noteworthy to mention that the probability that an edge is present in
a random spanning tree is closely related with the effective resistance, since Pr(e ∈ T) =

w(e)re, where re is the effective resistance between the extreme nodes of edge e (See Section
2.5.2 [60] and [116]).
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3.6 Extension to Directed Graphs
We can extend the results obtained in the previous sections to the directed case. In this
section, we will briefly expose how the theorems generalize when a directed graph is con-
sidered.

The cornerstone of our derivations in the previous sections is the Matrix Tree Theorem
for undirected graphs. In Theorem 2.2.1, we introduced the directed version of the Matrix
Tree Theorem, which asserts that

w(T
−→r ) = det(L[r]).

where T −→r represents the set of in-trees rooted at r (see Definition 2). Thus, it follows, with
appropriate adjustments, from the previous theorems that the same formulas can be applied
to compute the expected (un)weighted degree of any node v and its variance in a random
spanning in-tree rooted at r. This holds true when considering the analogous probability
distribution defined over the spanning trees, as stated in (3.1), but in this case applied to all
in-trees rooted at r.

3.7 Toy Examples
Figures 3.1 and 3.2 depict the expected weighted degree and its standard deviation (square
root of variance) of an unweighted grid graph and a weighted kNN graph, respectively.4 In
addition, we also show relative expected degree and standard deviation, where we divide the
respective values by the actual degree of the node in the graph. This allows for an assessment
of the average proportion of edges incident to a node present in a spanning tree out of all
incident edges to the node.

In the case of the grid graph, as shown in Figure 3.1, the high regularity allows us to
distinguish between two types of nodes based on their position within the grid: those located
on the border and those not on the border. Notably, nodes with high expected degree exhibit
lower relative expected degree, and vice versa. This phenomenon arises from the fact that
non-border nodes possess a higher number of neighbors, thus they can be reached by any
of these neighbors; however, on average, a lower proportion of these incident edges are
utilized. In contrast, border nodes have fewer connections, making it more challenging to
connect them to the rest of nodes. Consequently, the few connections they have tend to show
up more frequently in the tree, leading to a higher proportion of incident edges being used.

Similarly, in the case of the kNN graph weighted degree exploration (Figure 3.2), we
observe a comparable pattern. Many nodes with low expected degree exhibit high relative

4In the case of the grid graph, since the graph is unweighted, both the unweighted and weighted degrees
coincide.
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(a) Degree expectation (b) Degree standard deviation

(c) Relative degree expectation (d) Relative degree standard deviation

Figure 3.1. Expectation and Standard Deviation of Unweighted Degree in a Spanning
Tree of a Grid Graph. 3.1a-3.1b) Expectation and standard deviation (square root of vari-
ance) of the unweighted degree. Due to the regularity of the graph, most nodes exhibit
similar values, with expectations and standard deviations decreasing only at the borders.
3.1c-3.1d) Expectation and standard deviation of the unweighted degree divided by the ac-
tual unweighted degree of the node in the graph. Nodes located at the borders utilize on
average a higher proportion of incident edges.

expected degree. However, not all nodes with high expected degree have low relative ex-
pected degree. This is exemplified by the node connecting the right and central ”cluster” of
the graph. This indicates that despite of its high weighted degree, it uses a high proportion
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(a) Degree expectation (b) Degree standard deviation

(c) Relative degree expectation (d) Relative degree standard deviation

Figure 3.2. Expectation and Standard Deviation of Weighted Degree in a Spanning
Tree of a Weighted Graph: kNN weighted-graph of 20 points sampled uniformly from a
rectangle. The edge-weights are represented by the widths of the edges. 3.2a-3.2b) Expec-
tation and standard deviation (square root of variance) of the weighted degree. 3.2c-3.2d)
Expectation and standard deviation of the weighted degree divided by the actual weighted
degree of the node in the graph. We can intuit that points with high weighted expected
degree and high relative weighted degree are more crucial for connectivity, as they are con-
nected to more nodes and their edges are utilized more often. This is exemplified by the
node connecting the central and right “clusters” of the graph.

of its incident edges. Moreover, we also observe that the standard deviation at this point is
low compared to other nodes. High expected degree in conjunction with relative expected
degree may indicate that the node is crucial for the connectivity of the graph. Such measures
may find utility in various applications, such as telecommunications or transportation. How-
ever, a thorough exploration of these applications is not within the scope of this research and
is left for future work.

3.8 Conclusion

In this chapter, we have provided analytical expressions to compute the expected degree of
a node in a random spanning tree of a weighted graph, as well as its variance. We have
considered two types of degree: the unweighted, which counts the number of neighbors;
and the weighted one, which returns the sum of the weights of the adjacent edges.

The expectation and variance are expressed in terms of the inverse of the Laplacian, once
a row and a column have been removed. In addition, we have also indicated that the same
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expressions extend to the directed case, where instead spanning in-trees are considered.
We believe that the provided expressions are of theoretical interest, and could have prac-

tical relevance in the future, though no specific application has been identified yet. Under-
standing the expected degree of a node may serve as a key parameter influencing various
network dynamics and processes, such as information diffusion, routing efficiency, and re-
silience to failures. For example, in telecommunications and computer networks, under-
standing the expected degree and variance can inform the design of efficient routing proto-
cols and network optimization strategies. Further study is postponed for future work.



Chapter 4

Algebraic Path Problem for Graph
Metrics

Finding paths with optimal properties is a foundational problem in computer science. The
notions of shortest paths (minimal sum of edge costs), minimax paths (minimal maximum
edge weight), reliability of a path and many others all arise as special cases of the “algebraic
path problem” (APP). Indeed, the APP formalizes the relation between different semirings
such as min-plus, min-max and the distances they induce. We here clarify, for the first
time, the relation between the potential distance and the log-semiring. We also define a
new unifying family of algebraic structures that include all above-mentioned path problems
as well as the commute cost and others as special or limiting cases. The family comprises
not only semirings but also strong bimonoids (that is, semirings without distributivity). We
call this new and very general distance the “log-norm distance”. Finally, we derive some
sufficient conditions which ensure that the APP associated with a semiring defines a metric
over an arbitrary graph.

4.1 Introduction

Graphs are a versatile abstraction permitting the modeling and analysis of an extremely broad
range of problems from vision, NLP and learning with structured data. Measuring the simi-
larity between the nodes in a graph is, in turn, a task of fundamental importance that often
decides on success or failure of an application. Consequently, the study and development of
graph node metrics with different properties is a problem of high interest.

The shortest path distance is arguably the most popular graph node metric. Given two
nodes in a graph with edge costs, the shortest path problem aims to find the path with mini-
mum cost, i.e., the path for which the sum over the cost of its constituent edges is minimized.
This problem is determined by the min and + operations: the + to indicate that edge costs

47
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are summed along any path; and the min to state that the overall cost is given by the smallest
cost of any single path. Together, these form the “min-plus” semiring. A semiring is an
algebraic structure with two operations that relaxes the concept of a ring by dropping the
requirement for inverses under the “addition” operation. The algebraic path problem (APP)
generalizes the notion of shortest path by replacing the min-plus semiring by an alternative
semiring. Different semirings result in dramatically different preferences of paths, see the
toy example in Table 4.1. This generalization encompasses a great variety of problems and
applications in diverse research areas like NLP [40, 152] or routing protocols [67]. For more
applications see [11, 64].

Other common graph metrics that raise from the APP framework are the commute cost
distance (CCD) [32, 52, 97], which calculates the average first passage cost between two
nodes in both directions; and the minimax or bottleneck shortest path distance [31, 122],
which computes the path with minimal maximum edge cost among its edges.

In some situations, these metrics may fail to take the global structure of the graph into
consideration. On the one hand, the minimax and shortest path distances are determined by
a single path. Thus, they may ignore the topology of the surrounding graph since the degree
of connectivity between the nodes is not reflected by the metrics. On the other hand, though
CCD weighs all paths, it is known that for large graphs, it only takes the degree of the source
and target nodes into account [115, 137].

We aim to combine the advantages and compensate for the deficiencies of these metrics.
To do so, we propose a novel parametrized family of distances, dubbed log-norm distances,
that interpolate between the shortest path, CCD and the minimax distances up to a constant
factor. We base our interpolation on the algebraic path problem. First, we present a family of
semirings whose associated APP yields a metric which interpolates between the shortest and
minimax distance. Moreover, we study the potential distance [61, 95], which interpolates
between the CCD and the shortest path distance. We redefine this distance via the well-
known log-semiring and its associated APP. As far as we know, we are the first to formalize
the interpolations of these metrics from the APP point of view. Finally, we introduce a
greater parametrized set of algebraic structures. Though not all the members of this family
of algebraic structures define a semiring, but strong bimonoids [49], their associated APP
define the log-norm family of metrics. These distances are parametrized by a parameter r,
which controls the relevance of higher cost edges in the paths; and a parameter µ, which
regulates how much individual paths contribute to the distance, favoring paths with lower
cost. Table 4.1 summarizes these relations and highlights, on a toy example, how drastically
different distances vary. Clearly, these properties greatly impact the machine learning on
graphs.

Intrigued by the fact that so many metrics can be retrieved from the APP framework, we
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r

µ
0+ (0,∞) ∞

1

Eisner semiring

Commute cost distance
E

℘∼Ph
st

[c(℘)] + E
℘∼Ph

ts

[c(℘)]

[97]

Log-semiring

Potential distance

− 1
µ

(
log

(
E

℘∼Ph
st

[
e−µc(℘)

])
+ log

(
E

℘∼Ph
ts

[
e−µc(℘)

]))
[61, 95]

Min-plus semiring

Shortest path distance
min
℘∈Pst

c(℘)

(1,∞)

Exp-norm bimonoid

Exp-norm distance
E

℘∼Ph
st

[||c(℘)||r] + E
℘∼Ph

ts

[||c(℘)||r]

Log-norm bimonoid

Log-norm distance

− 1
µ

(
log

(
E

℘∼Ph
st

[
e−µ||c(℘)||r

])
+ log

(
E

℘∼Ph
ts

[
e−µ||c(℘)||r

]))
Min-norm semiring

Min-norm distance
min
℘∈Pst

||c(℘)||r

[127]

∞

Exp-max bimonoid

Exp-max distance

E
℘∼Ph

st

[
max
e∈℘

c(e)

]
+ E
℘∼Ph

ts

[
max
e∈℘

c(e)

]
Log-max bimonoid

Log-max distance

− 1
µ

(
log

(
E

℘∼Ph
st

[
e−µmaxe∈℘ c(e)

])
+ log

(
E

℘∼Ph
ts

[
e−µmaxe∈℘ c(e)

]))
Minimax semiring

Minimax distance
min
℘∈Pst

max
e∈℘

c(e)

[122]

Table 4.1. Family of Log-Norm Distances. Family of log-norm distances and limit cases
(bold) with their associated algebraic structure (red). The family of log-norm distances
interpolates between the commute cost, shortest path and minimax distances. The algebraic
structures associated to the cells in cyan (r > 1 and 0+ < µ < ∞) do not form a semiring,
but a strong bimonoid. The distances derived from these bimonoids are presented here for
the first time. The graphs below represent the contribution of individual edges/paths to the
s,t-distance in a toy problem. The cost of an edge is given by its length and wider edges
have higher relevance. The r parameter regulates the impact of the edge costs in the paths,
with higher r favoring paths with shorter edges. The parameter µ regulates the distribution
of the contribution of the paths; higher µ favors the concentration of the distribution into a
smaller number of lowest cost paths. Different distances differ radically in what part of a
graph they emphasize

finally study under which circumstances the APP associated with a semiring defines a metric.
In concrete, we focus on the setting where only hitting paths (paths whose last node appears
only once) are considered. We find that one of the key factors lies in the function that maps
elements of the semiring to the non-negative real numbers. Under natural conditions, we
find that it is necessary, but not sufficient, that this function is subadditive with respect to
the product operation of the semiring. We also provide sufficient conditions based on the
monotonicity behavior of the function.

In summary we: 1) review the APP and how some of the most common graph metrics can
be recovered by defining appropriate semirings, demonstrating this relation for the first time
for some of them (Section 4.2); 2) introduce a novel unifying family of graph metrics, dubbed



50 4.2. Preliminaries

log-norm distances, which interpolate between the CCD, minimax and shortest path metrics
up to a constant factor (Section 4.3); 3) study under which conditions the APP associated
with a semiring defines a graph metric (Section 4.4).

4.1.1 Related Work

There has been much work on interpolations between the shortest path distance and the
CCD. In [186], these distances are interpolated by a family of dissimilarities inspired by
the randomized shortest paths framework (RSP) [148]. These dissimilarities do not fulfill
the triangle inequality, ergo they are not metrics. Also, based on the RSP, [61] and [95]
define the same interpolating family of distances, which they call potential and free energy
distances, respectively. We study this distance as an instance of the APP framework. The
logarithmic forest distances [35] are a family of distances, based on the matrix forest theorem,
which also interpolate between the SP and the CCD. The walk distances [36] are a broader
set of distances which include the logarithmic forest, the CCD and the SP distances. The
set of p-resistance distances [6] generalize the definition of the effective resistance distance
[97], which is proportional to the CCD [32]. For p = 1, the SP distance is retrieved.

Closely related to our work, [92] define a family of similarity measures whose behavior
resembles the one observed for the log-norm distances. Our metric adapts their similarities
and transforms them into a proper distance while building a connection between the CCD,
shortest path and minimax distances. As far as we know, the family of distances proposed
in [71] is the only one that interpolates between the three aforementioned distances (CCD,
minimax and shortest path distances) besides our proposal. Similar to the p-resistance ap-
proach, Gurvich generalizes the effective resistance concept by introducing two parameters.
One difference between this proposal and ours lies in the fourth limit case that emerges from
the approaches taken. While our limit computes the expected maximum edge cost of a path,
its limit retrieves the inverse value of maximum flow between two nodes.

4.2 Preliminaries

4.2.1 Semirings

To fix notation and give necessary background, in this section we review the semiring alge-
braic structure, which constitutes the primary tool to understand the algebraic path problem.
For a more extensive analysis of semirings, we refer the interested reader to [64].

Definition 6. A semiring is an algebraic structure (S,⊕,⊗, 0̄, 1̄) formed by a set S and two
binary closed operations, ⊕ and ⊗, with the following properties ∀a, b, c ∈ S:
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Semiring S ⊕ ⊗ 0̄ 1̄ class

Min-plus R+ min + ∞ 0 selective
Minimax R+ min max ∞ 0 selective

Power set P(A) ∪ ∩ ∅ A idempotent

Table 4.2. Semiring Examples. P(A) refers to the power set of a set A.

• ⊕ commutativity: a⊕ b = b⊕ a
• ⊕ associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c)
• 0̄ neutral element of ⊕: a⊕ 0̄ = 0̄⊕ a = a

• ⊗ associativity: (a⊗ b)⊗ c = a⊗ (b⊗ c)
• 1̄ neutral element of ⊗: a⊗ 1̄ = 1̄⊗ a = a

• distributivity of ⊗ relative to ⊕ :

(a⊕ b)⊗ c = a⊗ c⊕ b⊗ c, c⊗ (a⊕ b) = c⊗ a⊕ c⊗ b

• 0̄ absorbing for ⊗: a⊗ 0̄ = 0̄⊗ a = 0̄

Individually, ⊕ and ⊗ define a monoid over S. A semiring is idempotent if for all a ∈
S, a ⊕ a = a. Furthermore, a semiring is called selective if a ⊕ b ∈ {a, b}. If we drop
the distributivity property from the list of requirements of a semiring, then the algebraic
structure is called strong bimonoid [49]. Table 4.2 summarizes some common semirings.

A semiring has a canonical preorder relation1, ≼, given by

a ≼ b ⇐⇒ ∃c ∈ S : a⊕ c = b. (4.1)

As for the usual addition and product operations, we can extend the ⊕ and ⊗ to the matrix
domain. Let A,B be two matrices in Sn×m, then the following operations define a semiring
over the matrices on S:

[A⊕B]ij = Aij ⊕Bij, [A⊗B]ij =
⊕
k

Aik ⊗Bkj.

4.2.2 Graph Notation

Let G = (V,E) be a directed graph where V and E represent the sets of vertices and edges
respectively. A path ℘ = (v0, . . . , vk) from s to t is defined as a sequence of adjacent nodes,
i.e. (vi, vi+1) ∈ E with v0 = s and vk = t. Note that a node can appear multiple times in
a path. A hitting path is a path whose last node, t, appears only once. The set of all paths

1Reflexive (a ≼ a) and transitive (a ≼ b and b ≼ c → a ≼ c) properties are satisfied, but antisymmetry
(a ≼ b and b ≼ a→ a = b) may not hold.
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from s to t will be represented by Pst. The subset of paths with exactly k edges is denoted
by Pst[k]. Analogously, we define the variant Phst for the set of hitting paths.

Let (S,⊕,⊗, 0̄, 1̄) be a semiring. We say that a graph G is S-valued or S-graph if there
is a cost function c : V × V → S that assigns a cost c(e) ∈ S to each edge. We set c(e) = 0̄

if and only if e /∈ E. Additionally, the cost of a path is defined as the product of the cost of
its edges, c(π) =

⊗
e∈π c(e). For S-valued graphs, the entry Aij of the adjacency matrix is

equal to the cost of the edge (i, j).

4.2.3 Algebraic Path Problem

Given a graph with c(e) ∈ R+, the shortest path problem (SPP) computes

min
℘∈Pst

∑
e∈℘

c(e). (4.2)

As previously mentioned, the min and + operations characterize the min-plus semiring [143,
155]. The algebraic path problem (APP) extends the SPP through the use of general binary
operations ⊕ and ⊗ that jointly form a semiring. On the one hand, the ⊗ operation (+ in
the SPP) acts over the cost of the edges. It can be interpreted as an edge concatenation
operator which constructs the path by “multiplying” the cost of the edges. On the other
hand, the ⊕ operation (min in the SPP) acts over paths and behaves like a path aggregation
operator which condenses the cost of different paths. When the semiring is selective (e.g.
min-plus semiring), ⊕ can also be interpreted as a choice operator where a single path is
being selected. Formally, the APP generalizes (4.2) by calculating

APP(s, t) :=
⊕
℘∈Pst

⊗
e∈℘

c(e) =
⊕
℘∈Pst

c(℘). (4.3)

LetA be the adjacency matrix of the graphG. It can be verified that [Ak]st =
⊕

℘∈Pst[k]
c(℘).

Since
∪
k Pst[k] = Pst and Pst[k]

∩
Pst[k′] = ∅ if k ̸= k′, we obtain

lim
k→∞

[
I ⊕ A⊕ · · · ⊕ Ak

]
st
=

∞⊕
k=0

⊕
℘∈Pst[k]

c(℘)

=
⊕
℘∈Pst

c(℘),

(4.4)

where I is the diagonal matrix with 1̄’s in the diagonal. The limit in equation (4.4) is called
the closure of A and it is denoted by A∗. Note that A∗, and consequently APP(s, t), may not
always exist. An interesting property ofA∗ is that it is the minimal solution ofX = A⊗X⊕I
(see Proposition 6.2.2, Ch. 3 [64]). In the semirings considered in this paper, these limits
will be well defined. Alternatively, the closure of an element a in a semiring may be defined
as the solution of equation x = a⊗ x⊕ 1̄ instead of as a limit [103].
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Specialized algorithms for the SPP have been generalized to the APP. The Dijkstra
algorithm [47], which solves the Single Source Shortest Path Problem, has been generalized
for some specific semirings [80, 133]. Analogously, the Floyd-Warshall algorithm [59],
which solves the All Pairs of Shortest Paths Problem, can be generalized to solve the APP
for any S-valued graph, for which A∗ exists. This algorithm generalizes the Gauss–Jordan
Method and solves X = A⊗X ⊕ I [28].

4.2.4 Semiring Distances

If the edge costs of a graph are strictly positive, the shortest path distance defines a metric
over the nodes of the graph. In this section, we will review other common graph metrics
(minimax and CCD) and present how these can be expressed in terms of the APP.

Minimax Distance

An alternative popular distance in the literature is the minimax distance [31, 92, 122]. As its
name indicates, this metric can be retrieved from the APP framework with the underlying
minimax semiring (see Table 4.2)⊕

℘∈Pst

⊗
e∈℘

c(e) = min
℘∈Pst

max
e∈℘

c(e). (4.5)

This semiring calculates the so-called minimax path, i.e., the path which minimizes the
most expensive edge of a path between two nodes. The minimax semiring can be used to
calculate a minimum spanning tree (mST) since every simple path (path where each node
appears once) between two nodes in a mST is a minimax path [122].

Commute Cost Distance

A prominent metric used for graphs is the commute cost distance (CCD) [60]. To compute
the CCD between two nodes, it is necessary that each edge (i, j) has two values, pij and cij ,
associated to it. The first represents the probability that a random walker located at node
i will transition from node i to node j through edge (i, j). Usually, pij is set proportional
to some weight wij that measures the affinity between the nodes i and j. The value cij is a
positive value which indicates some kind of cost associated to the traversal of the edge (i, j).
The first hitting cost dissimilarity between two nodes s and t, H(s, t), is the expected cost
that it takes a random walker starting at s to reach t for the first time. The CCD symmetrizes
this dissimilarity. Formally,

CCD(s, t) = E
℘∼Ph

st

[c(℘)]︸ ︷︷ ︸
H(s,t)

+ E
℘∼Ph

ts

[c(℘)]︸ ︷︷ ︸
H(t,s)

.
(4.6)
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The term H(s, t) can be expressed in the framework of the APP if one uses the so-called
expectation semirings [11]. In concrete, the Eisner semiring [52], defined over the ground
set R+ × R+ with operations:

(a, b)⊕ (c, d) = (a+ c, b+ d), (a, b)⊗ (c, d) = (ac, cb+ ad),

recovers H(s, t). If we set the edge costs of the graph as (pe, pece), it can be verified that
(see Appendix C.2)

H(s, t) =

⊕
℘∈Ph

st

⊗
e∈℘

(pe, pece)


2

, (4.7)

where the subindex 2 indicates the second entry. Therefore, CCD can be expressed in terms
of APP. Note that (4.7) considers only hitting paths, in contrast to the general APP. The set
Phst over an arbitrary graphG is equal to the setPst over the graphGh[t], where the out-going
edges of node t have been removed. Hence, t becomes an absorbing node and any path to
t is therefore a hitting path. Consequently, CCD requires two APP on the graphs Gh[t] and
Gh[s] to compute H(s, t) and H(t, s) respectively. The shortest path problem can also be
constrained to hitting paths, since, as far as the costs are positive, each node appears only
once in the optimal path.

Remark 4.2.1. It is known [95, appendix] that given some fixed random walker probabilities,
pe, CCD is proportional to the commute time distance (CTD), i.e. the expected length of a
path (expected number of edges, that is ce = 1 ∀e ∈ E). The ce values only determine the
proportionality constant between CCD and CTD.

4.3 Log-Norm Distances
In this section, we propose the novel family of log-norm distances, which interpolate between
the above mentioned distances up to a constant factor. To do so, we introduce an interpolating
family of distances between the minimax and shortest path. Moreover, we study the potential
distance [61], which interpolates between the CCD and the shortest path distance. We prove
that both metrics are instances of the APP framework once the appropriate semiring has been
defined. Finally, we combine these semirings to define a greater family of strong bimonoids
that will define the log-norm family of distances (Table 4.1).

4.3.1 Shortest Path and Minimax Distance Interpolation

The min-plus and min-max semiring can be continuously interpolated by the semiring S =

(R+,min,⊗r,∞, 0) where a⊗r b = r
√
ar + br. We are not aware that this algebraic structure

has been acknowledged in the literature as a semiring, though it has been used in earlier
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works [92]. Therefore, we dub it min-norm semiring. In Appendix C.1, we demonstrate that
it is indeed a semiring. The APP derived from the min-norm semiring is defined as⊕

℘∈Pst

⊗
e∈℘

c(e) = min
℘∈Pst

r

√∑
e∈℘

(c(e))r. (4.8)

Clearly, when r = 1, ⊗1 is equal to the regular sum, and consequently we recover the min-
plus semiring. On the other extreme, when r → ∞, ⊗∞ is reduced to the max operation,
hence the minimax semiring is retrieved. In appendix C.7.1, we show that (4.8) defines a
metric over the nodes of a graph, which in turn also interpolates between the shortest path
and minimax distances. This distance is also known in the literature as the power weighted
shortest path metric [127].

The r parameter, which characterizes ⊗r, regulates the impact of the edge costs in the
paths. On the one hand, for high r, the min-norm path tends to have edges with low cost,
though it may contain a higher number of edges (more similar to the minimax distance). On
the other hand, for lower r, the min-norm path is more dominated by the total additive cost
of the edges, which must be low overall (closer to the shortest path distance) but may contain
edges whose cost are relatively high. Last column of Figure 4.1 illustrates this pattern, which
was already pointed out in [92]. The shortest path (r = 1) contains only three, but one long
edge in contrast to the minimax path (r = ∞) which contains many short edges. The min-
norm path (1 < r <∞) interpolates between both path patterns.

4.3.2 Commute Cost and Shortest Path Distance Interpolation

As mentioned in the introduction, CCD has some inconveniences if the graph is large [115].
Many node distances have been proposed that interpolate between the shortest path and the
CCD distances in order to exploit the benefits of both metrics. Among them, we call attention
to the potential distance (PD) [61, 95]. This distance is based on the randomized shortest
paths (RSP) framework [148]. The PD can be interpreted as the logarithm of the expected
reward exp(−µc(℘)) of the paths. Formally,

PD(s, t) =− 1

µ
log
(
E℘∼Ph

st
[exp (−µc(℘))]

)
− 1

µ
log
(
E℘∼Ph

ts
[exp (−µc(℘))]

)
, (4.9)

where the parameter µ regulates implicitly the entropy of the distribution defined by the RSP
framework. Kivimäki et al. showed that when µ→ 0, PD tends to CCD, and when µ→∞,
it tends to the shortest path distance up to a constant factor (see AppendixC.5).

This distance also fits in the APP framework if one uses the log-semiring [109, 114]
defined by

a⊕µ b = −
1

µ
log
(

exp(−µa) + exp(−µb)
)
, a⊗ b = a+ b.
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Though the distance and the semiring were already known, we show the relation between
them for the first time. Setting the edge costs of the graph equal to− log

(
pe exp(−µce)

)
/µ,

it can be verified that (see Appendix C.3)

PD(s, t) =
⊕

µ

℘∈Ph
st

⊗
µ

e∈℘

− 1

µ
log
(
pe exp(−µce)

)
+
⊕

µ

℘∈Ph
ts

⊗
e∈℘

− 1

µ
log
(
pe exp(−µce)

)
(4.10)

Remark 4.3.1. In [61] it was noted that the PD could also be computed by applying a gener-
alization of the Bellman-Ford formula [16]. This is a direct consequence of the APP frame-
work, since the PD can be retrieved by the log-semiring.

Remark 4.3.2. It is worth to mention that although the PD interpolates between the shortest
path and CCD distances, the log-semiring does not interpolate between the min-plus and the
Eisner semiring. When µ→∞, ⊕∞ becomes the min operator and

lim
µ→∞

− log
(
pe exp(−µce)

)
/µ = ce.

Thus, the min-plus semiring arises. Nonetheless, when µ → 0+, ⊕0+ and the costs them-
selves are not well defined.

In contrast to the min-norm semirings, the log-semiring is not selective, i.e. it does not
make a choice over the paths, but aggregates their costs. The operation ⊕µ weighs all the
paths by their probability and cost. When µ approaches 0+, the metric considers all paths
primarily based on their probability. In such cases, a greater number of high-probability
paths between two nodes result in a shorter distance, with the costs having a negligible effect
as per Remark 4.2.1. This intuitively implies that if there are more connections between s
and t, the random walker is more likely to be absorbed earlier. Conversely, as µ increases,
lower-cost paths are favored due to the RSP framework. Consequently, paths with lower
costs become more relevant. In the extreme case of µ → ∞, only the shortest paths are
considered. See first row of Figure 4.1.

4.3.3 The Family of Log-Norm Distances

In the previous sections we have shown how popular node metrics can be posed as particular
instances of the APP. In concrete, we presented a semiring that interpolates between the
shortest path and minimax distances via the parameter r, which conditions the⊗r operation.
Additionally, we have discussed the log-semiring, whose APP interpolates between the CCD
and the shortest path distances via a parameter µ that determines the⊕µ operation. A natural
question arises: is there any semiring that defines a distance interpolating between the CCD
and the minimax distance? In this section we aim to answer this question by proposing a
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Figure 4.1. Schematic Path Relevance in the Log-Norm Distance for Different Values of
µ and r in a Graph. We computed the 1000 shortest paths according to the costs ||c(℘)||r for
different r and µ values. The edge width is proportional to

∑
℘ : e∈℘ Pr(℘) exp(−µ||c(℘)||r).

It depicts how much each edge contributes to the value of the APP: the wider the edge, the
more significant. The random walker probabilities are uniform at each node. The parameter
µ regulates how the importance of the paths is distributed conditioned by their cost, while r
regulates the cost of the paths.

family of strong bimonoids, whose associated APP interpolates between those distances.
The key operators that allow to interpolate between the distances are ⊕µ and ⊗r. To relate
all above mentioned distances, we propose to define an algebraic structure that combines the
Eisner, log- and min-norm semirings. We define the following operations over R+ × R+

(a, b)⊕µ (c, d) =
(
1,− 1

µ
log
(
ae−µb + ce−µd

))
,

(a, b)⊗r (c, d) =
(
ac,

r
√
br + dr

)
.

(4.11)

Unfortunately, the distributive property of⊕µ with respect to⊗r does not hold for arbitrary r
andµ values. Consequently, these operations do not define a semiring, but a strong bimonoid.
Nonetheless, its APP, with edge costs equal to (pe, ce) as defined in Section 4.2.4, still defines
a distance, which we name the log-norm distance (LN):

LN(s, t) =

⊕
µ

℘∈Ph
st

⊗
r

e∈℘

(pe, ce) +
⊕

µ

℘∈Ph
ts

⊗
e∈℘

(pe, ce)


2

=− 1

µ
log
(
E℘∼Ph

st
[exp (−µ||c(℘)||r)]

)
− 1

µ
log
(
E℘∼Ph

ts
[exp (−µ||c(℘)||r)]

)
,

where ||c(℘)||r = r

√∑
e∈℘(ce)

r. Table 4.1 summarizes all the graph metrics that the log-
norm family includes along with the algebraic structure, whose APP defines the metric. Note
that the algebraic structures do not interpolate between them for the same reason that was
explained in remark 4.3.2.
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The log-norm distances are closely related with the similarities presented in [92], defined
as
∑

℘∈Ph
ts

exp (−µ||c(℘)||r). These similarities are not defined when µ → 0+. In our
setting, we transform these similarities into a metric by computing the expected similarity
between two nodes followed by the − log(·)/µ function. This way, we are able to study the
limit µ→ 0+, which retrieves the CCD when r = 1.

The log-norm family can also be related with the Helmholtz free energy, following the
same reasoning that related the PD with the free energy in [95]. We prove in Appendix C.9,
that the log-norm distance between two nodes s and t is equal to Φr(Prst)+Φr(Prts), where
Φr(Prst) =

∑
℘∈Ph

st

Prst(℘)||c(℘)||r +
1

µ
KL
(

Prst, Prref )
is the free energy of a thermodynamical system and Prst is a probability distribution over
the hitting paths between s and t that minimizes the free energy at a certain temperature 1/µ.
KL denotes the KL-divergence, and Prref denotes a reference probability distribution over
the hitting paths given by the random walker.

In Figure 4.1, we schematically plot the path relevance determined by the log-norm met-
ric for different r and µ values. We computed the 1000 shortest paths according to the costs
||c(℘)||r for varying r values. The width of each edge, visually representing the contribution
of each edge to the value of the APP, is proportional to

∑
℘ : e∈℘

Pr(℘) exp(−µ||c(℘)||r). Wider

edges indicate greater significance. The random walker probabilities are set uniform at each
node. We observe that for lower µ, the influence among the edges of different paths is more
evenly distributed. As a consequence of Remark 4.2.1, for the CCD (r = 1, µ → 0+), the
cost of a path does not determine its influence. Consequently, the more influential paths
are the ones with higher probability. In our example, the high probability paths coincide
with the shorter length paths (low number of edges) because we assume a uniform transition
probability at each node. For r and µ values close to 1 and 0 respectively, we expect similar
behaviour. Indeed, this pattern is evident in the top-left corner graph. However, as the value
of r increases, the influence shifts to the paths located in the lower part of the graph, which
have a lower cost with respect to || · ||r. This shift suggests that the cost factor becomes more
dominant. Nonetheless, the distribution of mass remains spread across all edges of all paths,
and the probabilities of the paths continue to hold significance.

Contrarily, for higher µ, the contribution of the paths shifts from paths with higher prob-
ability to paths with lower cost ||c(℘)||r. In the limit as µ tends to infinity, only the path with
the minimum cost is considered. This convergence is more pronounced for lower values of r,
as Pr(℘) exp(−µ||c(℘)||r) ≤ Pr(℘) exp(−µ||c(℘)||r′) for r′ ≤ r. Thus, for higher r values
the relevance of the factor Pr(℘) in Pr(℘) exp(−µ||c(℘)||r) decreases at a slower rate, with
respect to the increase of µ, than it does for lower r values. For higher r, paths which contain
low cost edges are favored. In summary, both r and µ exhibit similar effects as observed for
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the min-norm and potential distances but can be combined within our framework. It’s worth
noting that Figure 4.1 provides an approximation, considering only a finite number of paths.
This approximation is more reliable for higher µ values, where the influence of high-cost
paths is negligible.

In Appendix C.8, we show that LN defines a distance. Though PD and LN are similar in
form, the same strategy that was followed in [61] to prove that PD is a distance does not apply
for LN due to the absence of distributivity. Instead, we expose an step by step derivation to
show the triangle inequality. The proof builds on the factorization of the set of paths from s

to t into those that cross a third node q and those which do not. Furthermore, the absence of
distributivity makes any attempt to compute the LN distance in finite time impractical, since
one can not factor out common terms for different paths. General algorithms proposed for
the APP can not be applied here either. Though there have been papers that have tackled the
non-distributivity question, they are not applicable here. For instance, in [44] only selective
semirings are considered. Alternatively, the proposed approach in [104] does not simplify
the computation of our algebraic structure. Nonetheless, in Appendix C.10 we sketch an
algorithm to compute the Exp-max and Log-max distances (last row Table 4.1). The analysis
and implementation of this algorithm is out of the scope of the current thesis and, therefore,
is left for future work.

4.4 When Does a Semiring Define a Distance?

In the previous sections, we have expressed some of the most common graph metrics in
terms of the APP. Now, we wonder which properties must a semiring satisfy such that its
associated APP defines a metric. Since all the metrics we have analyzed could be expressed
in terms of the APP framework which considers only hitting paths, we will focus on the
hitting case, denoted here by APPh. We hope that our results will allow researchers to more
easily define semirings that yield new, potentially useful graph distances and reveal some of
the underlying structure of semiring based graph distances.

A metric maps a pair of points to a non-negative real number. Since a semiring can be
defined over an arbitrary set, we need a function g : S 7→ R+∪{∞} that maps an element of
the semiring to the non-negative real numbers. We assume g(1̄) = 0 and g(0̄) = ∞, since
APPh(s, s) = 1̄ and 0̄ represents the cost of the non-existing edges/paths. Let G = (V,E)

be a S-graph. We assume that the graph is strongly connected, such that there exists a path
connecting any two arbitrary nodes and that APPh(·, ·) is defined for each pair of nodes.
Given s, t ∈ V we define the following dissimilarity function

d(s, t) = g
(
APPh(s, t)

)
+ g

(
APPh(t, s)

)
. (4.12)
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We aim to find out which properties g and the semiring S must satisfy such that (4.12)
determines a metric function. Our proofs will focus only on the left summand of (4.12),
since for the right term the same properties will follow:

dL(s, t) := g
(
APPh(s, t)

)
= g

⊕
℘∈Ph

st

⊗
e∈℘

c(e)

 . (4.13)

Through the whole section we assume that distributivity commutativity and associativity of
the semiring operations also hold for infinite sums and products.

4.4.1 Identity of Indiscernibles

The non-negativity of d follows trivially from the definition. We have d(s, s) = 0, since
APPh(s, s) = 1̄ and g(1̄) = 0. The opposite direction of the identity of indiscernibles
property is more delicate. The next lemma states some conditions that ensure s = t if
d(s, t) = 0. Concretely, it requires 1̄ to be the unique element mapped to 0 and that all paths
have cost greater than 1̄.

Lemma 4.4.1. Let d be defined as in (4.12). If
1. a ≼ 1̄ ⇐⇒ a = 1̄ or a = 0̄, where ≼ is the canonical preorder relation defined in (4.1),
2. g(a) = 0 if and only if a = 1̄,
3. none of the edge costs is invertible with respect to ⊗,
then d(s, t) = 0 if and only if s = t.

Proof: According to assumption 2, we just need to prove that APPh(s, t) ̸= 1̄ for arbitrary
distinct vertices s and t. First we recall the definition of the canonical order of a semiring
which was stated in equation (4.1):

a ≼ b ⇐⇒ ∃c ∈ S such that a⊕ c = b.

As a consequence of the definition of ≼ and the first assumption, there do not exist any a
and b distinct of 1̄ such that a⊕ b = 1̄. Therefore,

APPh(s, t) =
⊕
℘∈Ph

st

⊗
e∈℘

c(e) = 1̄⇒ ∃℘ ∈ Phst such that
⊗
e∈℘

c(e) = 1̄.

Thanks to assumption 3,
⊗

e∈℘ c(e) ̸= 1̄, otherwise the costs c(e) would have inverse ele-
ments.

4.4.2 Triangle Inequality

To prove when the triangle inequality holds, we will show first that a necessary condition,
but not sufficient, is the subadditivity of g with respect to ⊗. Subsequently, we will show
sufficient conditions for it to hold. We will assume that the edge costs, and also APPh(·, ·),
can take arbitrary values in the semiring S.
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Figure 4.2. Necessity of the Subadditivity of g for the Triangle Inequality to Hold.
Graph where all paths connecting s and t pass through q. The terms a, b ∈ S indicate
the cost of the corresponding edges. The triangle inequality can only be satisfied if g is
subadditive such that dL(s, t) = g

(
APPh(s, q)⊗ APPh(q, t)

)
= g (a⊗ b) ≤ g (a)+g (b) =

g
(
APPh(s, q)

)
+ g

(
APPh(q, t)

)
= d(s, q) + d(q, t).

Necessity of the subadditivity of g

Our arguments are grounded in the observation that the paths between s and t can be cate-
gorized into those that traverse a node q and those that do not. This partitioning leads to the
following result, the proof of which is provided in Appendix C.6.1.

Lemma 4.4.2. Given a graph G and arbitrary nodes s, t and q then

APPh(s, t) = αh ⊕ βh ⊗ APPh(q, t), APPh(s, q) = βh ⊕ αh ⊗ APPh(t, q), (4.14)

where

αh :=
⊕
℘∈Ph

st
q/∈℘

⊗
e∈℘

c(e), βh :=
⊕
℘1∈Ph

sq

t/∈℘

⊗
e∈℘

c(e).

The first equality of (4.14) decomposes the cost of the paths from s to t in two terms:
one that depends on the paths that pass through a third node q and a second term where the
paths do not pass through q. Indeed, the term αh aggregates all hitting paths which do not
cross node q, while the term βh ⊗APPh(q, t) considers all hitting paths that pass through q.
The second equality, performs the same decomposition as the first equality but considering
the paths from s to q.

Let us prove now that g must be subadditive, if the triangle inequality holds for the
function dL, (4.13). It follows from equation (4.14) that

g
(
αh ⊕ βh ⊗ APPh(q, t)

)
= g
(
APPh(s, t)

)
= dhL(s, t)

≤ dhL(s, q) + dhL(q, t) = g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

(4.15)
For a graph where all paths from s to t cross node q (e.g. Figure 4.2) we have αh = 0 and
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therefore βh = APPh(s, q). Hence

g
(
APPh(s, t)

)
= g
(
APPh(s, q)⊗ APPh(q, t)

)
= dL(s, t)

≤ dL(s, q) + dL(q, t) = g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

(4.16)

Note that in the graph of Figure 4.2 the cost of the edge from s to q, a, is equal to APPh(s, q).
Analogously, APPh(q, t) = b. Thus, for arbitrary values a, b ∈ S the subadditivity of g in S
follows:

g (a⊗ b) ≤ g (a) + g (b) .

We have proven that exists a graph where g must be subadditive to ensure that dL satisfies
the triangle inequality on the graph in Figure 4.2. Thus, the next theorem holds.

Theorem 4.4.3. If the function dL, satisfies the triangle inequality over an arbitrary graph
and APPh(·, ·) can take any value in the semiring S, then g is ⊗-subadditive, i.e.,

g(a⊗ b) ≤ g(a) + g(b), ∀a, b ∈ S. (4.17)

Remark 4.4.4. Note that APPh(s, q) and APPh(q, t) may not take any possible value in
the semiring. For instance, in the Eisner semiring, which characterizes the commute cost
distance, the possible values of these variables lie in the set {1}×R+. In the Eisner semiring,
the first entry of APP(s, t) is always equal to

∑
℘∈Ph

st
Pr(℘) = 1, since it is the sum of the

probabilities of the hitting paths from s to t.2 In this concrecte case, the subadditivity should
be constrained to this set.

Sufficient conditions

Now we will present some conditions that are sufficient to ensure that (4.12) satisfies the
triangle inequality over an arbitrary graph. In particular, we analyze the triangle inequality
when g is monotone with respect to ≼.

Theorem 4.4.5. Let G = (V,E) be an S-graph. If
1. g is ⊗-subadditive, i.e., g(a⊗ b) ≤ g(a) + g(b) ∀a, b ∈ S,
2. g is decreasing, i.e., a ≼ b→ g(b) ≤ g(a) ∀a, b ∈ S,
3. a⊗ APPh(t, q)⊗ APPh(q, t) ≼ a, ∀a ∈ S, q, t ∈ V .

then d satisfies the triangle inequality over the nodes of G.

The third assumption states that, if c(℘) = a ∈ S is the cost of a path, ℘, and this path
is concatenated (⊗ operation) with all cycles starting at a node t and traversing an arbitrary
node q, then the aggregation of all these new costs is not greater (according to (4.1)) than
the original cost of the path c(℘). Consequently, since g is decreasing, the concatenation

2Appendix A of [61] proves that the sum of the path likelihoods is equal to 1 for hitting paths.
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(and aggregation) of the cycles does not increase the g-value of the path. The proof of
Theorem 4.4.5 focuses on demonstrating that

APPh(s, q)⊗ APPh(q, t) ≼ αh ⊕ βh ⊗ APPh(q, t).

If βh was equal to APPh(s, q), requiring g to be decreasing and subadditive would suffice to
prove the triangle inequality. Since βh ≼ APPh(s, q), assumption 3 is needed to ensure the
triangle inequatlity.
Proof: We need to prove that the triangle inequality (4.15) holds. Let s, q and t be arbitrary
nodes of G. Due to the subadditivity of g, we have

g
(
APPh(s, q)⊗ APPh(q, t)

)
≤ g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

Therefore, as a consequence of the first equality of equation (4.14), it will be enough to show

dL(s, t) = g
(
APPh(s, t)

)
= g
(
αh ⊕ βh ⊗ APPh(q, t)

)
≤ g
(
APPh(s, q)⊗ APPh(q, t)

)
= dL(s, q) + dL(q, t),

which will follow from

APPh(s, q)⊗ APPh(q, t) ≼ αh ⊕ βh ⊗ APPh(q, t), (4.18)

since g is decreasing. From the second equality of equation (4.14), it suffices to prove the
following inequality

APPh(s, q)⊗ APPh(q, t) =
(
αh ⊗ APPh(t, q)⊕ βh

)
⊗ APPh(q, t)

= αh ⊗ APPh(t, q)⊗ APPh(q, t)⊕ βh ⊗ APPh(q, t)

≼ αh ⊕ βh ⊗ APPh(q, t),

(4.19)

which holds if
αh ⊗ APPh(t, q)⊗ APPh(q, t) ≼ αh. (4.20)

Indeed, (4.20) holds thanks to our third assumption.
One can derive as special cases of Theorem 4.4.5 that the min-norm distances (including

the shortest path and minimax distances) and the PD define metrics over arbitrary graphs (see
Corollary C.7.1 and Corollary C.7.2). However, this theorem does not apply to CCD. The
next theorem mirrors Theorem 4.4.5, but considers g to be increasing instead of decreasing.
We defer the proof to the Appendix C.6.1 due to its similarity with Theorem 4.4.5. As a
corollary, we can prove the fact that the CCD defines a metric (see Corollary C.7.3).

Theorem 4.4.6. Let G = (V,E) be an S-graph. If
1. g is ⊗-subadditive, i.e., g(a⊗ b) ≤ g(a) + g(b) ∀a, b ∈ S,
2. g is increasing in S\{0̄}, i.e., a ≼ b→ g(a) ≤ g(b) ∀a, b ∈ S\0̄,
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3. a ≼ a⊗ APPh(t, q)⊗ APPh(q, t), ∀a ∈ S, q, t ∈ V .
then d satisfies the triangle inequality over the nodes of G.

In Appendix C.7 we provide, in addition to simplified proofs of the validity of existing
metrics, a case example of a new metric, which can be easily verified to be a metric thanks
to our theorems. Note that, none of the results stated in this section apply to the log-norm
distance, since it is not defined by a semiring but a strong bimonoid. Distributivity is an
essential part of the proofs.

4.5 Conclusion
In this chapter, we have revisited some of the most common graph metrics (shortest path,
CCD and minimax distances) and have presented them in terms of the algebraic path problem.
We reviewed semirings whose associated algebraic path problems retrieve these metrics. We
also discussed the potential distance (which interpolates between the CCD and the shortest
path distance) and the min-norm distance (which interpolates between the shortest path and
minimax distances) from a new perspective. We showed that these metrics can be expressed
as instances of the APP framework.

Moreover, we have proposed a novel unifying family of metrics which includes and re-
lates all the aforementioned distances. This family of metrics is parameterized by a pa-
rameter r that regulates the impact of edges with high cost, and another parameter µ which
regulates the influence of the paths based on their || · ||r-cost. Moreover, inspired by [95], we
have proven that the log-norm distance between two nodes coincides with the symmetrized
minimum Helmholz free energy between the nodes. Unfortunately, this distance cannot
be obtained as the APP of a semiring but of a strong bimonoid, and its exact computation
remains infeasible. An efficient approximate computation is left for future work.

Finally, we have provided sufficient conditions which ensure that the APP constrained
to hitting paths associated with a semiring, S, defines a metric over the nodes of a graph.
In addition, we showed that the function g that maps elements from S to R+ must be ⊗-
subadditive if g(APPh(·, ·)) is to satisfy the triangle inequality. We hope that these results
can help in the design of new metrics, and as such help enrich the toolbox available to graph-
centric machine learning.



Chapter 5

Central Spanning Tree

Spanning trees are an important primitive in many data analysis tasks, when a data set needs
to be summarized in terms of its “skeleton”, or when a tree-shaped graph over all observa-
tions is required for downstream processing. Popular definitions of spanning trees include
the minimum spanning tree and the optimum distance spanning tree, a.k.a. the minimum
routing cost tree. When searching for the shortest spanning tree but admitting additional
branching points, even shorter spanning trees can be realized: Steiner trees. Unfortunately,
both minimum spanning and Steiner trees are not robust with respect to noise in the obser-
vations; that is, small perturbations of the original data set often lead to drastic changes in
the associated spanning trees. In response, we make two contributions when the data lies
in a Euclidean space: on the theoretical side, we introduce a new optimization problem, the
“(branched) central spanning tree”, which subsumes all previously mentioned definitions as
special cases. On the practical side, we show empirically that the (branched) central span-
ning tree is more robust to noise in the data, and as such is better suited to summarize a data
set in terms of its skeleton. We also propose a heuristic to address the NP-hard optimization
problem, and illustrate its use on single cell RNA expression data from biology.

5.1 Introduction

Many data analysis tasks call for the summary of a data set in terms of a spanning tree,
or use tree representations for downstream processing. Examples include the inference of
trajectories in developmental biology [38, 147], generative modeling in chemistry [2], net-
work design [177] or skeletonization in image analysis [10, 170]. The problem is akin to,
but more complicated than, the estimation of principal curves because good recent methods
such as [117] cannot account for branched topologies. For a spanning tree representation
to be meaningful, it is of paramount importance that the tree structure be robust to minor
perturbations of the data, e.g. by measurement noise. In this work, we address the geometric

65
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Figure 5.1. Euclidean Central Spanning Tree Family of Problems with and without
Steiner Points. The central spanning tree weighs the costs of the edges, given by node dis-
tances, with the centrality of the edges, mij(1 − mij). The influence of the centrality is
regulated by the parameter α ∈ [0, 1]. For lower α values the centrality becomes insignif-
icant, and the tree tends to contain short edges. For higher α values, the tree encourages
central edges of low cost, at the expense of peripheral edges of higher cost. We study central
spanning trees with and without additional Steiner points (shown in red). The widths of
all edges are proportional to their centrality. The central spanning tree problems includes
well-known and novel spanning tree problems, the latter highlighted in yellow.

stability of spanning trees over points lying in an Euclidean space.

The minimum spanning tree (mST) is surely the most popular spanning tree, owing to
its conceptual simplicity and ease of computation. For a graph G = (V,E) with edge costs,
the mST is a tree that spans G while minimizing the total sum of edge costs. It prioritizes
shorter edges that connect closely located nodes enhancing data faithfulness. Unfortunately,
its greedy nature makes the mST susceptible to small data perturbations that may lead to
drastic changes in its structure, see Figure 5.4. An alternative, the minimum routing cost
tree (MRCT), minimizes the sum of pairwise shortest path distances [125]. Unlike the
mST, solving the MRCT is NP-hard [179]. Despite this, the MRCT exhibits a more stable
geometric structure compared to the mST, as it tends to be more ”star-shaped” (see Figure
5.4). Nevertheless, this star-shaped tendency inclines towards connecting nodes that are
spatially distant, introducing a risk of information loss and compromised data fidelity. This
effect becomes particularly pronounced in high-dimensional spaces, potentially rendering
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the MRCT approach unusable (see Figures 5.5i-5.5l)). Achieving a balance between data
fidelity and geometric robustness is crucial for an effective spanning tree.

Central spanning trees (CST) In this paper, we propose a novel parameterized family of
spanning trees that interpolate and generalize all the aforementioned ones. Unless otherwise
stated, we will assume a complete Euclidean graph, where the nodes are embedded in the
Euclidean space with coordinates XV = {x1, . . . , x|V |} ⊂ Rn and the edge costs are given
by the distances between the vertices, cij = ||xi − xj||. We define the CST as the spanning
tree of G that minimizes the objective

CST := arg min
T

∑
e∈ET

(
me(1−me)

)α
ce = arg min

T

∑
(i,j)∈ET

(
mij(1−mij)

)α||xi−xj||, (5.1)

where me and (1 −me) are the normalized cardinalities of the components resulting from
the removal of the edge e from T. Thus, me(1−me) is the product of the number of nodes
on both sides of the edge divided by |V |2. Because this value is proportional to the “edge
betweeness centrality”1 of e in T [23], we call the problem the Central Spanning Tree (CST)
problem. The exponent α is the interpolating parameter that modulates the effect of the edge
centrality. For α close to 0, the centrality becomes insignificant, so the tree tends to contain
lower cost edges overall. For α = 0 we retrieve the mST. On the other hand, as α increases,
the centrality becomes more relevant, leading the tree to favor topologies with low centrality
edges, thus promoting a higher branching effect. For α = 1, the resulting expression is
proportional to the MRCT. Here, each edge cost is multiplied by the number of shortest
paths it belongs to, leading the total sum to represent the sum of shortest path distances (see
Appendix D.3).

As will be seen in Section 5.3, the α parameter has an effect on the geometric stability
of the spanning tree, with higher α resulting in greater robustness. The robustness of span-
ning trees has been explored in various contexts For instance, researchers have investigated
the robustness the mST cost robustness under edge weight uncertainty [90, 154] or studying
robustness against node or edge failure in networks [110].Additionally, studies have delved
into the stability regions of mST, under which any change in vertex location does not alter
the mST [134, 139]. The central tree problem [20], related by name to ours, focuses on com-
puting a tree that minimizes the maximal distance to a set of given trees. To our knowledge,
we are the first to propose a spanning tree whose geometric structure is stable and resilient
to data perturbations such as noise.

Finally, we remark the connection between the the CST problem and the Minimum Con-
cave Cost Network Flow (MCCNF) problem [69, 188]. The MCCNF problem aims to mini-
mize the cost of distributing a certain commodity from source to sink nodes. Such a problem

1The edge betweenness centrality measures an edge’s frequency in shortest paths between nodes, with more
traversed edges being deemed more central. In trees, it’s the product of nodes on opposite sides of the edge.
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models the cost of an edge as a concave function of the transportation flow. The CST can be
reinterpreted as MCCNF where a commodity with mass equal to |V | − 1/|V |, concentrated
into a single source node, must be transported to the rest of nodes. In our case, the term me

in (5.1) can be interpreted as the flow of such problem. Since the function (me(1−me)
)α
ce

is concave with respect to me for α ∈]0, 1], we deduce that the CST is an instance of the
MCCNF. A more detailed discussion of the interpretation of the CST as a MCCNF problem
is offered in Appendix D.2.

Considering the CST from the perspective of an MCCNF problem, it becomes clear that
it falls into the NP-hard category. Indeed, the authors of [70] showed that single-source
MCCNF problems with strictly concave functions are NP-hard. Consequently, we conclude
that the CST problem is NP-hard for α ∈]0, 1] due to the strictly concave nature of the edge
cost function (me(1−me))

α ce.2

Branched central spanning trees (BCST) Inspired by [108], we also study the variant
of the CST problem which allows for the introduction of additional nodes, known in the
literature as branching points or Steiner points (SPs). Formally, we distinguish between two
types of nodes. On the one hand, we have the terminal nodes with fixed coordinates given
by XV . On the other hand, we allow for an extra set of points, B, whose coordinates XB

must be jointly optimized with the topology T. In this case, T is a spanning tree defined over
the nodes V ∪B. Accordingly, the objective of the CST problem becomes

min
T,XB

∑
(i,j)∈ET

(
mij(1−mij)

)α||xi − xj||. (5.2)

In this generalization, which we refer to as the branched CST (BCST), the well-known
Steiner tree problem [81, 171] arises when α = 0. Figure 5.1 summarizes (B)CST and
its limiting cases, only some of which have been studied in the literature so far.

Contributions. 1) We present the novel (B)CST problem and provide empirical evi-
dence for its greater stability on toy and real-world data; 2) We propose an iterative heuristic
to estimate the optimum of the BCST problem. By exploiting the connection between the
branched and unbranched versions of the CST problem, we are able to use the heuristic
defined for the BCST to also approximate the Euclidean CST without Steiner points. We
benchmark this heuristic and show its competitiveness. 3) On the theoretical side, we prove
that for large α or large |V | and α > 1, (B)CST converges to a star-tree (hinting modeling
limitations when α > 1), and for α → −∞, it tends towards a path graph. Additionally,
we show analytically that if the terminal points lie on a plane, then for α ∈ [0, 0.5] ∪ {1}
the Steiner points of the optimal solution can have up to degree 3, and we provide empirical
evidence that this holds also for α ∈ ]0.5, 1[.

2The same argument applies to the NP-hardness of the branched version of the CST problem, which is
explained next.
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Outline In Section 5.2, we explore the limiting cases of the (B)CST optimum as α ap-
proaches ±∞, along with the scenario where the number of terminals tends to infinity for
α > 1. Section 5.3 demonstrates empirically the stability of the (B)CST as α increases. In
Section 5.4, we establish a relationship between feasible CST and BCST topologies. Section
5.5 analyzes the geometry of optimal BCST topologies, providing analytical expressions for
the branching angles at the Steiner points. Moreover, it discusses the feasibility of 4-degree
SPs when the BCST is restricted to the Euclidean plane. Section 5.6 presents a heuristic to
approximate the (B)CST optimal solution, while Section 5.7 benchmarks this heuristic on
small toy datasets. The conclusions of the chapter are given in section 5.8.

5.2 Limit Cases of the CST/BCST Problems Beyond the
Range α ∈ [0, 1]

The CST problem, as defined in (5.1), as well as its branched version are parameterized by
α. Throughout the manuscript our attention will be on the α-range of [0, 1], nonetheless it
is worth studying the problem beyond this range. We will show that when α→∞ or α > 1

and |V | → ∞, the (B)CST tends to a star graph centered on the medoid of the graph, i.e.
the node that minimizes the distance to the rest of nodes. Consequently, the case with α > 1

becomes inadequate for modeling data structure, as the tree becomes increasingly trivial with
a growing number of terminals. Conversely, as α → −∞, the CST tends towards the path
graph that minimizes the CST objective. These scenarios prove inadequate for modeling
data structure, thus we restrict our focus exclusively to the α-range of [0, 1].

5.2.1 Limit Cases Where the Optimum (B)CST Transforms into a Star-
Tree

In this section, we delve into scenarios at the limits where the optimal solutions for both the
CST and BCST problems converge to a star-tree configuration. Specifically, we demonstrate
that this outcome occurs as α approaches infinity and as the number of terminals, denoted by
N , tends to infinity when α > 1. The later limit case is of special relevance, as it indicates
that when the parameter α exceeds 1, both CST and BCST exhibit inadequacy in extracting
meaningful structural information from the data. In this situation, an increasing number of
data points lead to the formation of a star-tree, which, lacks the capacity to convey pertinent
information about the underlying dataset.

Before studying the limit cases, we will analyze the optimum star-tree that minimizes
the CST and BCST costs. Note that in a star-tree, all edges are adjacent to a leaf node and,
therefore all have the same normalized centrality value, which is equal to (N−1)/N2, where
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N is the number of terminals. In this scenario, the centrality of the edges in the cost function
from Equation (5.1) can be factored out, simplifying the problem to the identification of the
star graph with the minimum cost. Indeed, if u denotes the center node of a star graph, then
its CST objective is equal to ∑

v ̸=u

N − 1

N2
cuv =

N − 1

N2

∑
v ̸=u

cuv.

Consequently, the optimal solution for the CST problem manifests as a star graph centered
at the node that minimizes the total distance to all other nodes, effectively the medoid. In
the context of the BCST problem, where Steiner Points can be introduced, the star graph is
centered at the geometric median. This is because the Steiner Points strategically position
themselves to minimize the distance to all nodes. The next result formalizes this statement.

Lemma 5.2.1. The tree-star that minimizes the CST cost is the star-shaped tree centered at
the medoid of the terminals, that is, centered at the terminal which minimizes the sum of
distances to all nodes. For the BCST case, the tree is centered at the geometric median of
all terminals.

As a consequence of this result, we infer that the limit cases wherein both CST and BCST
converge to a star-tree will yield stable trees. This stability arises from the consistent output
of star-trees, with their centers being the medoid and geometric median—both robust points
resilient to noise.

In order to study limit cases where the star-tree emerges as the optimal solution, we
establish first a sufficient condition for the CST optimal solution to take the form of a star
tree. This condition was first identified by Hu [78] in the context of the Minimum Routing
Cost Tree (MRCT), corresponding to the CST with α = 1. Hu showed that if a “stronger”
variant of the regular triangle inequality holds, then the optimum solution of the MRCT is
a star tree. The following theorem extends and generalizes this result for arbitrary values of
α.

Theorem 5.2.2. Let N be the number of terminals and cij be the edge-costs of any pair of
points (Steiner or terminals) i, j. If there exists

t ≤ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (5.3)

for all triplets of nodes u, k, v, then there exists an optimum (B)CST evaluated at α which
is a star tree.
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We defer the complete proof to Appendix D.4.1, though we sketch briefly the key idea.
The proof demonstrates that we can always iteratively increase the degree of certain node, by
connecting all neighbors of one of its neighbors to it. If the “stronger” variant of the triangle
inequality holds, then this process does not increase the cost. Eventually, a node will reach
maximum degree, indicating the formation of a star-tree structure.

Remark 5.2.3. Note that Theorem 5.2.2 states only a sufficient condition, which means that
the optimum can be a star tree even if the strong triangle inequality does not hold. Addition-
ally, it is worth to highlight that Theorem 5.2.2 also holds true for the CST problem even
when the nodes lack embedding in any specific space, allowing for edge costs with arbitrary
values.

Let us define

h1(ℓ,N, α) :=

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
=

(
1 + (ℓ−1)(N−ℓ−1)

N−1

)α
− 1

ℓ− 1
. (5.4)

which characterizes the upper limit of the threshold t in Theorem 5.2.2. Equation (5.3)
represents a weighted version of the triangle inequality. Specifically, when t = 1, equation
(5.3) recovers the standard triangle inequality. Moreover, if h1(ℓ,N, α) ≥ 1, there exists
a value t such that h1(ℓ,N, α) ≥ t ≥ 1. This implies that the relation is weaker than the
triangle inequality. Therefore, if the triangle inequality holds, equation (5.3) will also hold.
As a first consequence, is evident that

lim
α→∞

h1(l, N, α) =∞, ∀N ≥ 3, ℓ ∈ [2, N/2].

This indicates that as α tends to infinity, the optimal tree tends to become a star-tree. The
intuition behind this is clear: as α increases, the CST/BCST aims to minimize the centrality
of the edges, since the edge costs become relatively insignificant in comparison. Among all
edges in a tree, those adjacent to a leaf have the least centrality. Thus, any star graph is a
tree that minimizes simultaneously the edge centrality of all its edges

One can also show that h1 is greater than 1 when α > 1 and N approaches infinity:

lim
N→∞

h1(l, N, α) ≥ 1, ∀α > 1, ℓ ∈ [2, N/2],

though we leave the technical proof for the Appendix D.4.2. Consequently, we obtain the
following corollary

Corollary 5.2.4. As the parameterα approaches infinity, orN approaches infinity andα > 1

the CST/BCST optimal solution is a star-shaped tree.

Corollary 5.2.4 states that the optimum tree is a star-tree when α > 1 and N → ∞.
What’s intriguing is that this limit is reached at relatively low values of α ≈ 1 for moderate
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values of N . In Appendix D.4.3, we show that for N nodes, the threshold α∗(N) at which
h1(ℓ,N, α) ≥ 1 for all ℓ ∈ [2, N/2] and α ≥ α∗(N) is given by

α∗(N) = max

 log(2)
log
(
1 + N−3

N−1

) , log(N/2)

log
(
1 + (N/2−1)2

N−1

)
 (5.5)

The function α∗(N) serves as a threshold, ensuring that the optimal solution adopts a star-
tree configuration. To illustrate this threshold, Figure 5.2 depicts the functionα∗(N). Indeed,
we see that whenN = 1000, α = 1.15 is enough to guarantee that the optimum is a star tree.
A toy example is presented in Figures 5.3, with N = 1000, showcasing an instance where
the optimum is indeed a star tree.

1,000 2,000 3,000 4,000 5,000
1

1.05

1.1

1.15

1.2

N

α
∗ (
N
)

Figure 5.2. Threshold Functionα∗(N) Guaranteeing Optimal (B)CST Star-Tree. The
threshold function α∗(N), tied to the number of terminals N , defines the minimum α value
ensuring the optimal solution for CST/BCST is a star-tree. For all α > α∗(N), the optimum
solution is a star-tree. The plot depicts the transition at which the optimum is ensured to be
a star-tree is around α ≈ 1. As N increases, α∗(N) approaches 1, implying that in the limit
as N tends to infinity, CST/BCST with α > 1 converges to a star-tree.

5.2.2 Limit Cases Where the Optimum (B)CST Transforms into a Path-
Tree

Negative values of α favour high central edges, as (me(1 − me)))
α will be lower. Conse-

quently, for sufficiently negative values of α, the CST/BCST problem will prioritize mini-
mizing the number of leaves since the centrality of its adjacent edges attain the minimum
centrality. The tree that minimizes the number of leaves is a path. Therefore, whenα→ −∞
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(a) BCST, α = 1.00 (b) CST, α = 1.00

(c) BCST, α = 1.05 (d) CST, α = 1.05

(e) BCST, α = 1.10 (f) CST, α = 1.10

(g) BCST, α = 1.15 (h) CST, α = 1.15

Figure 5.3. (B)CST Star-Tree Optimality with Respect toα ≳ 1 in Samples Uniformly
Drawn from a Rectangle. As α increases, both CST and BCST exhibit a transition towards
a star graph. This effect may manifest relatively early. As anticipated in Figure 5.2, for a
sample set with 1000, points, the value α = 1.15 transforms both CST and BCST into a star
graph.

the optimum tree will be the Hamiltonian path that minimizes the CST/BCST objective func-
tion. A Hamiltonian path is a path that visits each node exactly once.

Echoing Theorem 5.2.2 we show that if a variant of the triangle inequality holds, then
the optimum (B)CST will be a tree.

Theorem 5.2.5. LetN be the number of nodes and cij be the edge-costs of any pair of points
(Steiner or terminals) i, j. If there exists

t ≤ min
1≤s≤N−3

1≤ℓ≤min(s,(N−s)/2−1)

(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α

such that

ckv + tcuv ≥ cku

for all triangles in the graph, then there exists an optimum (B)CST evaluated at α which is
a Hamiltonian path.



74 5.2. Limit Cases of the CST/BCST Problems Beyond the Range α ∈ [0, 1]

In contrast to the proof presented in Theorem 5.2.2, we demonstrate that we can system-
atically decrease the degree of nodes by iteratively connecting the neighbors of a specific
node to one of its neighbors. This iterative reduction does not inflate the cost, provided the
triangle inequality variant holds. Ultimately, all nodes will have at most degree 2, meaning
that a path has been formed. We defer the complete proof to Appendix D.4.4.

Let

h2(ℓ, s,N, α) =
(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α
.

As a consequence of Theorem 5.2.5, if h2(ℓ, s) ≥ 1 for 1 ≤ s ≤ N − 3 and 1 ≤ ℓ ≤
min(s, (N − s)/2 − 1), then the satisfaction of the triangle inequality is a sufficient condi-
tion to ensure that the optimal (B)CST topology is a path. We can easily check that as α
approaches minus infinity the following limit holds

lim
α→−∞

h2(ℓ, s,N, α) = lim
α→−∞

 ℓ(N − ℓ)
s(N − s)︸ ︷︷ ︸

≤1


α

−

((ℓ+ s)(N − ℓ− s))
(s(N − s))︸ ︷︷ ︸

>1


α

=

1, if ℓ = s

∞, if ℓ > s
,

(5.6)

where we have used the inequalities 1 ≤ s ≤ N − 3 and 1 ≤ ℓ ≤ min(s, (N − s)/2 − 1).
Consequently, as α approaches−∞, the optimum tree will tend to a path tree. Note however,
that if l = s, then h2(ℓ, ℓ, N, α) < 1. In this case, according to Theorem 5.2.5, the optimum
tree can only be a path for α negative enough, if the triangle inequality holds strictly for all
triplets of nodes. Nonetheless, in Corollary D.4.6, we show that when the points lie on a
geodesic space, then the requirement of the strict triangle inequality is not necessary for the
optimum to become a path as α approaches −∞.

In the previous section, we demonstrated that for a given α > 1 we can find N large
enough, such that for any configuration of terminals the optimal solution of the CST/BCST
problem would be a star-tree. However, in this case, we cannot ensure that if α < 0, there
existsN large enough, where the optimum is a path. Indeed, given a fixed α ∈ R and setting
ℓ = N/4 − 1 and s = N/2, we have that the limit of h2 ( N/4 − 1, N/2, N, α) as N
increases is given by

lim
N→∞

h2(
N

4
− 1,

N

2
, N, α) = lim

N→∞

(
(N
4
− 1)(3N

4
+ 1)

)α − ((N
4
+ 1)(3N

4
− 1)

)α(
N
2

)2α = 0 < 1.

Consequently, Theorem 5.2.5 will not guarantee that the optimum is a path, unless all edge-
costs are equal.
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5.3 Stability of the CST Problem

5.3.1 Toy Data

(a) Sensitivity vs. Tree cost

(b) mST (CST, α = 0) (c) Steiner tree (BCST, α = 0)

(d) CST, α = 0.80 (e) BCST, α = 0.80

Figure 5.4. (B)CST Robustness Analysis. (B)CST for α > 0 are more robust to noise and
adhere to large scale structure in the data better than the mST and Steiner tree. Left) When
increasing α, the sensitivity to random density fluctuations in the data decreases (good). At
the same time, the total length of the tree increases (bad). This tradeoff can be adjusted with
a single hyperparameter α. More details in Section 5.3.1. Right) CST and BCST of two
samples, red and blue, drawn from the same distribution. The tree backbone reflects the
global structure more accurately for α > 0 than for α = 0. Edge widths are proportional to
their centrality. All trees except for the mST were computed using the heuristic proposed in
Section 5.6.2. See Appendix D.1 for more examples.

We explore the robustness of the (B)CST problem against data perturbations by com-
paring the (B)CST topologies as small noise is introduced. In a toy example, three sets
of 1000 points, uniformly sampled from a rectangle, are perturbed with Gaussian noise,
yielding five perturbed sets per original set. We then compute the CST and BCST for
α ∈ {0, 0.1, . . . , 0.9, 1}, deeming a tree robust if minor data perturbations lead to minor
structural changes in the tree. Formally, we consider a method δ-robust, if, for any sets of
points P1 and P2 and their respective trees T1 and T2,

dT(T1,T2) ≤ δdP (P1, P2),

where dT and dP measure tree and set distances, respectively. The set distance dP quantifies
the perturbations we aim to withstand, where lower dP values correspond to sets that are
similar based on specific criteria. In our example, we define dP as the average distance be-
tween points and their perturbed counterparts. Since we apply the same noise to each point,
the average distance between points approximates the Gaussian noise’s standard deviation,
making it nearly constant. To quantify structural tree changes, we set dT equal to the Frobe-
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nius norm of the shortest path distance matrices between the original and perturbed (B)CST
trees.

Figure 5.4a shows the average Frobenius norm between the original and corresponding
perturbed samples across various α values. It is evident that as α increases, there is a notice-
able decrease in the Frobenius norm. Since our dP is fairly constant, showcasing that the
Frobenius norm decreases implies a reduction in δ as α rises, i.e. the trees become more
robust. However, we also plot the average cost of the trees (sum of the individual edge
costs), which increases with α. Thus, the improvement in robustness comes at the expense
of adding longer edges. This pattern is expected because, as α increases, the (B)CST tends
to a medoid-centered star graph (see Section 5.2.1). This graph will have long edges but
will also exhibit robustness to noise due to the medoid’s inherent stability. According to
our definition of δ-robustness, the α → ∞ (B)CST limiting case, which always outputs a
star-graph, will be deemed robust despite its undesirability for describing the data structure.

We associate the data structure with the graph node interconnectivity, wherein shorter
edges preserve it better. Thus, α serves as a parameter trading off stability vs. data fidelity.
Indeed, the mST and Steiner tree (α = 0) on the right side of Figure 5.4 are highly sensitive
to minor data changes due to their greedy nature, prioritizing shorter edges. Conversely, the
(B)CST solutions at α = 0.8 are more stable, faithfully representing the data’s overall layout,
albeit with longer edges.

5.3.2 Real-World Data

Being able to effectively summarize data structure without being overly affected by random
variations is crucial in various contexts. Here, we offer a brief demonstration of how the
(B)CST can be applied in single-cell trajectory inference. In the upcoming chapter, Chapter
6, we will delve into its application in 3D-Plant skeletonization.

Single-cell transcriptomics analyzes the gene expression levels of individual cells in a
particular population by counting the RNA transcripts of genes at a given time. The high
dimensional single cell RNA-sequencing data can be used to model the gene expression
dynamics of a cell population as well as the cell differentiation process. The reconstruction
of these trajectories can help discover which genes are critical to understand the underlying
biological process. It is often assumed that these trajectories can be represented as trees
[147, 159], and therefore the (B)CST can be applied to model such trajectories. We will
apply the

We show results on the data from [140], here denoted as Paul dataset. The Paul dataset
consists of gene expressions measurements of cells of mouse bone marrow [140]. The orig-
inal dataset is formed by 2730 cells each with 3451 gene measurements. The data is pre-
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(a) Original
mST (α = 0.0)

(b) Subsample
mST (α = 0.0)

(c) Original
Steiner (α = 0.0)

(d) Subsample
Steiner (α = 0.0)

(e) Original
CST (α = 0.5)

(f) Subsample
CST (α = 0.5)

(g) Original
BCST (α = 0.5)

(h) Subsample
BCST (α = 0.5)

(i) Original
MRCT (α = 1.0)

(j) Subsample
MRCT (α = 1.0)

(k) Original
(B)MRCT (α = 1.0)

(l) Subsample
(B)MRCT (α = 1.0)

Figure 5.5. mST, (B)CST and BMRCT of the Paul Dataset. We applied the algorithms
to both the original data (top) and a perturbed version with half of the points randomly
removed (bottom). PAGA was used for 2D visualization, while the trees were computed in
a 50-dimensional PCA projection. Colors represent different cell populations. The width of
the edges is proportional to their centralities. 5.5a-5.5d) In the original data, the mST and
Steiner tree do not faithfully model the trajectory bifurcation highlighted by the rectangle.
Moreover, the trajectory changes drastically at this point once a subset of the samples is
removed. 5.5e-5.5h) The CST and BCST at α = 0.5 are able to detect the bifurcation, and
preserve the main backbone of the tree after the data has been perturbed. 5.5i-5.5l) The
MRCT and its branched version are robust to perturbations due to its star shape structure,
but this shape is also responsible for its incapability to model the data properly
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processed using the recipe described in [191], which reduces the dimensionality to 1000
by selecting the most relevant genes. We further reduce the dimensionality of the data, by
applying PCA with 50 principal components. Finally, we apply the corresponding spanning
tree algorithm.

For visualization purposes, we used the PAGA algorithm [175], one of the best algo-
rithms for single cell trajectory inference [147]. PAGA was designed to faithfully represent
the trajectories. Thus, if a spanning tree aligns well with the embedding, this is an indication
that the tree approximates the trajectory well.

To study robustness we perturb the data by removing half of the samples and then com-
pare how the backbone of different spanning trees is affected by this perturbation. Figure
5.5 shows the mST (α = 0) and CST, BCST (at α = 0.5) and (B)MRCT (α = 1) of the
original sample and a perturbed sample with 50% of the cells randomly sampled. The mST
misses the highlighted bifurcation and it is more sensitive to the noise. The CST and BCST
are robust to the perturbation and align well with the PAGA embedding, though the CST
may not reconstruct well the finer details. The addition of SPs enables the BCST to follow
the trajectory more closely.

The MRCT results in a star tree, and its branched version nearly resembles a star tree as
well. In high-dimensional data, such as the Paul dataset with 50 dimensions, the star-shaped
tendency becomes more prominent. For α = 1, most of the intricate structure of the data is
lost. Therefore, for higher dimensions lower α values become more relevant.

5.4 Correspondence Between the BCST and CST Topolo-
gies

Both the CST and the BCST problems have to be optimized over the set of feasible spanning
tree topologies. This optimization is combinatorial in nature and turns out to be NP-hard in
both cases. For the CST case, Cayley’s formula tells us that the number of feasible topologies
is equal to NN−2 [29], which grows super-exponentially with the number of nodes N . For
the BCST case, w.l.o.g., we can represent any feasible topology as a full tree topology, i.e. as
a tree with N − 2 Steiner points, each of degree 3, and with leaves corresponding to the N
terminals. This representation is justified by the fact that any other feasible topology with
SPs of degree higher than 3 can be represented by a full tree topology by collapsing two or
more SPs, that is, when two or more SPs have the same coordinates. Figure 5.6 illustrates
how a single full tree topology can realize different feasible topologies of the BCST problem.
For N terminals, the number of possible full topologies is equal to (2N − 5)!! = (2N −
5) · (2N − 7) · · · · 3 · 1 [151], which also scales super-exponentially, but at a lower rate than
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Figure 5.6. Realizable BCST Solutions Topologies from a Full Tree Topology with 4
Terminals. Terminal nodes and SPs are represented in blue and red, respectively. Different
topologies emerge from a single full tree topology depending on how the SPs collapse with
other nodes.
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(a) Steps TCST ↔ TBCST
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(b) Topologies derived from TBCST
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(c) Topologies derived from TCST

Figure 5.7. CST and BCST Topology Correspondence. 5.7a) Mapping from a BCST
topology, TBCST, to a CST one, TCST and vice versa. Terminal nodes and SPs are represented
in blue and red, respectively. From top to bottom it is shown how the SPs couple to different
terminals. From bottom to top, the SPs are spawned by different pairs of adjacent neighbors.
First by the pair 3 and 4 and later by 2 and 6. 5.7b) TCST feasible topologies derived from a
single TBCST. 5.7c) TBCST feasible topologies derived from a single TCST.

the number of topologies of the CST. Consequently, an exhaustive search through all trees
is not feasible.

The heuristic presented in Section 5.6 exploits the correspondence between the feasible
topologies of the BCST and the CST problems. Given a full tree topology TBCST, we say that
a topology TCST of the CST problem can be derived from TBCST if: 1) we can collapse the SPs
of TBCST with the terminals such that the resulting topology is TCST, and 2) for any SP s that
is collapsed with terminal t, then all SPs along the path connecting s to t must also collapse
with t. In other words, a SP cannot overtake any other SP in the collapse process. Figure
5.7a (from top to bottom) shows the steps to transform a topology TBCST into a topology TCST

by iteratively collapsing the SPs. Analogously, we can derive a topology TBCST from TCST by
spawning SPs from the terminals in TCST, i.e., introducing SPs connected to the terminals.
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Since in a full tree topology SPs have degree 3 and terminals have degree 1, we add one SP
per each pair of nodes adjacent to a common terminal node, so that the SP is connected to
the triple of nodes.

The correspondence mapping between TCST and TBCST, as shown in Figures 5.7b and
5.7c, is not unique. Multiple TCST can be derived from a single TBCST and vice versa. At
most, any TBCST can generateO(3N−2) TCST topologies because each SP locally has 3 nodes
to merge with. In concrete, the number of TCST topologies derivable from a singular full
tree topology is given by the determinant of a submatrix of the Laplacian matrix, denoted as
LSPs,SPs. This submatrix is obtained by selecting the rows and columns indexed by the SPs.
Hence, the number of derivable topologies is precisely detLSPs,SPs. This assertion is proven
in Theorem D.5.2 (refer to AppendixD.5.2 for details). The proof leverages the bijective
relationship between the derivable CST topologies and the terminal separating spanning
forests of a full tree topology. By combining this bijectivity with the fact that the minors
of the Laplacian matrix provide the count of forests separating the non-indexed rows and
columns, the desired result is established.

Similarly, the number of TBCST topologies derived from TCST is given by∏
v : dv≥2

(2dv − 3)!!, (5.7)

where dv is the degree of terminal v in the TCST topology. Higher-degree terminals can
generate more topologies as they can spawn more pairs of nodes. For more details on the
cardinalities of derivable topologies, see Appendix D.5.

Despite the mapping ambiguity between the topologies, we can reduce the number of
trees to explore in the CST/BCST given a BCST/CST topology. Although the optimum of
one problem is not guaranteed to be derived from the optimum of the other (see Figure 5.8),
we show empirically that the heuristic proposed in Section 5.6 can exploit the positions of
the SPs together with the correspondence between the sets of topologies of both problems
to produce competitive results.

5.5 Geometry of Optimal BCST Topologies

In this section, we will analyze the geometry of the optimal topologies of a BCST problem.
Concretely, we will determine an analytical formula of the angles that form the edges at a SP.
Using this relation, we will prove that when the terminal points lie in a plane, then SPs with
degree higher than 3 are not realized in optimal solutions for α ∈ [0, 0.5] ∪ {1} unless they
collapse with a terminal. For α ∈ ]0.5, 1[ we provide empirical evidence that the statement
also holds in that case.



5.5. Geometry of Optimal BCST Topologies 81

(a) Optimal CST solution (b) Optimal BCST solution

Figure 5.8. Optimal CST and BCST Topologies May Not Be Derived from Each Other
Given the Same Terminal Configuration. Left: Optimal CST solution. Right: Optimal
BCST solution. The CST topology cannot include nodes 4 and 1 as direct neighbors if
derived from BCST, as it would result in nodes adjacent to a common neighbor. Similarly,
the optimal BCST topology cannot be derived from the CST topology, as nodes 1 and 4
would not be connected to a common SP.

5.5.1 Branching Angles at the Steiner Points

In this section, we formulate the branching angles in terms of the centralities of the edges for
a given topology of the BCST problem. The derivation of the angles is based on previous
works [18, 108], which apply analogous arguments for the Branched Optimal Transport
(BOT) problem. The main difference lies in the weighting factors that multiply the distances
in the objective function (5.2), which in our case are the edge betweeness centralities, and in
BOT are flows matching supply to demand. Appendix D.2.1 elaborates on the similarities
and differences between the BOT and BCST problems.

First and foremost, we emphasize the locality characteristic of the geometric optimiza-
tion of SPs of the BCST problem. Because of the convexity of the BCST objective (5.2), it
can be shown that the geometric optimization of the SPs coordinates can be solved locally,
meaning that the optimal position of a SP is determined by its neighbors and weighting fac-
tors. Lemma 5.5.1 formalizes this statement. For a proof, we refer to Lemma 2.1 of [108],
where the same statement was shown for the BOT problem. Since the proof is independent
of the weighting factors of the distances, the result applies to the BCST problem as well.

Lemma 5.5.1. Given a topology, its SPs are in optimal position w.r.t. the BCST problem
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if and only if any individual SP interconnects its neighbors at minimal cost. Moreover, the
optimal topology of the BCST is optimal if and only if for any subset of connected nodes
the corresponding subtopology solves the respective subproblem.

Proof: See Lemma 2.1 of [108].

1

a0

a1 a2

b

ζ0

ζ1 ζ2

θ1 θ2

Figure 5.9. Branching Angles at Steiner Point. The symbols ζi represent the normalized
centralities of the edges, that is ζi := mbai(1−mbai).

Recall that any feasible topology of the BCST problem can be represented as a full
tree topology where each SP has degree 3. Thus, as a consequence of Lemma 5.5.1, it is
enough to study the geometric optimization of 3 nodes connected by a single SP. Consider the
problem configuration depicted in Figure 5.9, where node b represents the branching point
whose coordinates need to be optimized, nodes {ai}i are the terminals with fixed positions
and {ζi := mbai(1 − mbai)}i are the normalized centralities of the edges {(b, ai)}i. The
objective to be minimized is

C(b) = ζ0||b− a0||+ ζ1||b− a1||+ ζ2||b− a2|| (5.8)

Bernot et al. showed that when the b does not collapse with any terminal, then the angles θ1
and θ2 are given by

cos(θ1) =
ζ2α0 + ζ2α1 − ζ2α2

2ζα0 · ζα1

cos(θ2) =
ζ2α0 + ζ2α2 − ζ2α1

2ζα0 · ζα2

cos(θ1 + θ2) =
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

(5.9)

Alternatively, we can analyze when node b collapses with one of the terminals. Assuming
without loss of generality that b collapses with a0, let γ := ∠a1a0a2. According to Lippmann
et al., b collapses with a0 if

γ ≥ arccos
(
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

)
= θ1 + θ2. (5.10)

Hence, b collapses to a0 if ∠a1a0a2 exceeds the optimal angle specified by (5.9). This sce-
nario results in the so-called V -branching.
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For a comprehensive derivation of the angles, please refer to Appendix D.6, where we
present the arguments from the works of Bernot et al. [18] and Lippmann et al. [108].

5.5.2 Infeasibility of Degree-4 Steiner Points in the Plane

In this section, we will prove the infeasibility of degree 4 SPs in the optimal solution of the
BCST. Specifically, we will focus on the scenario where the terminal nodes lie in the plane
and the value of α falls within the range α ∈ [0, 0.5] ∪ {1}. Moreover, we will provide
compelling evidence to support the validity of the statement for the case where α ∈ ]0.5, 1[.
We will divide the proof into two parts: one for α ∈ [0, 0.5], presented here, and the other
for α = 1, which is detailed in AppendixD.7.
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Figure 5.10. Optimal Angles in Degree-4SP Requireψ ≤ γi. Figures 5.10a) and 5.10b)
depict two topologies, where the optimal angles given by equation (5.10) are represented by
ψi. Figure 5.10c illustrates the collapsed solution with the corresponding angles γi. An
essential requirement for the optimality of Figure 5.10c is that ψi ≤ γi.

Theorem 5.5.2. Let α ∈ [0, 0.5]. Given a set of terminals which lie in the plane, then the
SPs of the optimal solution of the BCST problem will not contain SPs of degree 4 unless
these collapse with a terminal.

Proof: The optimality of a solution in the BCST problem relies on the locality character-
istic, as stated in Lemma 5.5.1. Specifically, each subtopology within a connected subset
must solve its respective problem for the overall solution to be optimal. Consequently, the
realization of a degree 4 SP, as depicted in Figure 5.10, requires the collapse of b2 with b1.
Moreover, this collapse must occur in any topology. As we have discussed in Section 5.5.1,
both nodes b1 and b2 will collapse if a V -branching occurs, that is if the angle realized be-
tween the collapsed node and the two other nodes connected to it exceeds the optimal angle
given by (5.10). Therefore, from Figure 5.10 it follows that γi ≥ ψ. We will demonstrate

that the sum of
4∑
i=1

γi is greater than 2π, rendering a SP of degree 4 infeasible. To do this

we will prove that ψi > π/2 for all i.
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W.l.o.g. let us consider i = 1 and denote ψ1 as ψ. If cos(ψ) < 0, the angle ψ ∈ [0, π]

will be greater than π/2. Based on (5.10), we can derive the following:

cos(ψ) =
F (ma3b1 +ma1b1)

2α − F (ma3b1)
2α − F (ma1b1)

2α

2F (ma3b1)
α F (ma1b1)

α (5.11)

The function F (x)2α = (x(1− x))2α is strictly subadditive in R+ for α ∈ [0, 0.5],3 that is
F (x + y)2α < F (x)2α + F (y)2α if x, y > 0. Thus, the numerator of (5.11) is negative and
therefore cos(ψ) < 0. Consequently, ψ > π/2. This argument applies to all ψi, hence their
sum will be greater than 2π. Consequently, a SP with degree 4 cannot be part of an optimal
solution.

In [108], Lippmann et al. applied the same argument to establish the infeasibility of 4-
degree SPs in the context of the BOT problem for α ∈ [0, 0.5]. Our proof shows explicitly
that this argument generalizes to other minimization problems of the same nature, where
the edge-lengths are multiplied by weighting factors F (mij), with F (·) being a positive
function dependent on mij and exhibiting subadditivity when squared. For higher α > 0.5

the argument used in the previous theorem does not apply. Indeed, we can find values for the
edge centralities for which the lower bounds of γi, given by (5.10), are all lower than π/2.4

Now, we will take a more general approach that can rule out degree-4 branching for higher
α values. In concrete, we will show the infeasibility for α = 1.
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(a)
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b1 b2
← · →θ1 θ2

(b)

Figure 5.11. Splitting Collapsed SP while Preserving Optimal Angles. 5.11a) illustrates
the collapsed solution of a 4-terminal configuration. (5.11b) demonstrates that it is possible
to move jointly the terminal points {a1, a3} in a specific but opposite direction to the one
of the terminals {a2, a4}, resulting in the splitting of the collapsed SP b into two distinct
SPs, b1 and b2. Remarkably, this split can be executed while preserving the angles θ1 and θ2.
Importantly, these angles must correspond to the optimal angles given by (5.9).

The optimal position of the SPs is continuously dependent on the terminal positions and
solely relies on the branching angles, as shown in Section 5.5.1. Consequently, assuming that

3In fact, all concave functions, f , with f(0) ≥ 0 are subadditive on the positive domain. It is easy to see
that (x(1− x))2α is concave for α ∈ [0, 0.5].

4For instance for α = 1, ma3b1 = ma1b1 = 0.2 and ma2b2 = ma4b2 = 0.3 all ψi angles are acute. Hence
their sum is also lower than 2π.
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there exists a configuration such that the SPs collapse, it is possible to find terminal positions
that lead to an unstable collapse of the SPs. Here, instability refers to a configuration where
an infinitesimal translation of the terminals results in the splitting of the SPs. This scenario
is depicted in Figure 5.11. In such cases, the angles realized by the terminals and the SPs
will reach the upper bounds specified by (5.10). Therefore, the angles depicted in Figure
5.11a fulfill the condition

γ = π − θ1 − θ2, (5.12)

where the angles satisfy

cos(γ) =
F (ma1b +ma2b)

2α − F (ma1b)
2α − F (ma2b)

2α

2F (ma1b)
α F (ma2b)

α , (5.13)

cos(θ1) =
F (ma3b +ma1b)

2α + F (ma1b)
2α − F (ma3b)

2α

2F (ma3b +ma1b)
α F (ma1b)

α , (5.14)

cos(θ2) =
F (ma2b +ma4b)

2α + F (ma2b)
2α − F (ma4b)

2α

2F (ma2b +ma4b)
α F (ma2b)

α , (5.15)

with F (x) = x(1 − x). By processing further equation 5.12, we arrive at the following
expression (see AppendixD.7 for further details)

(cos(γ) + cos(θ1) cos(θ2))2 −
(
1− cos(θ1)2

) (
1− cos(θ2)2

)
= 0. (5.16)

Solving (5.16) analitically for all α is difficult. Nonetheless, in AppendixD.7 we show ana-
litically that for α = 1 (5.12) can not hold given the constraints on the terms mai,b, namely∑4

i=1mai,b = 1 and 0 < mai,b < 1 for all i.

Theorem 5.5.3. Let α = 1. Given a set of terminals which lie in the plane, then the SPs
of the optimal solution of the BCST problem will not contain SPs of degree 4 unless these
collapse with a terminal.

Proof: See Appendix D.7
Though we have not been able to prove analytically the infeasibility of degree-4 SPs for

α ∈]0.5, 1[, we strongly believe that the statement still holds. Figure 5.12 shows the surface
plots of the numerator of the equality 5.16 (once expanded) w.r.t. m1 and m2 for different
fixed values of α andm3. Upon analysis, it appears that the numerator exhibits an increasing
trend with respect to α within the interval [0.5, 1]. This observation leads us to hypothesize
that if the equality holds for α = 0.5 and α = 1, it is likely to hold for intermediate values
as well. However, due to the complexity of the formula, it is challenging to verify this
hypothesis analytically.

In section 5.2.1, we have demonstrated that as α > 1 and N → ∞, the BCST tends
to converge to a star graph centered at the geometric median. Consequently, for α > 1, a
degree-4 SP becomes feasible.
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Figure 5.12. SPs of Degree 4 in the Plane are Likely not Feasible for α ∈]0.5, 1[. Surface plots are
depicted, illustrating the left side of equation (5.16), as a function ofm1 andm2, with different fixed values of
α and m3. From left to right: m3 is fixed and α ranges over {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. From top to bottom:
α is fixed andm3 ranges over {0.1, 0.2, . . . , 0.8, 0.9}. Form3 fixed,m1 andm2 range over the domain defined
by {(x, y) : 0 < x+y+m3 < 1}. In all plots, the function values are negative and tend towards 0 asm1,m2,
or m3 approaches 0. We can observe that for fixed m1, m2 and m3, the function seems to be increasing with
respect to α (from right to left). Since we have previously demonstrated that the left side of equation (5.16)
does not equal zero in the desired domain for α = 0.5 and α = 1, the plots suggest that this is also the case
for α ∈]0.5, 1[.
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Remark 5.5.4. In [108], it was shown for the BOT problem that if degree-4 SPs are not
feasible then higher degree SPs are not possible either. The same reasoning applies for the
BCST, since the proof does not depend on the weighting factors. Thus for α ∈ [0, 0.5] ∪
{1}, only degree-3 SPs are feasible unless they do collapse with a terminal node. Due to
the compelling evidence shown, we also believe this is the also the case for α ∈]0.5, 1[.
Lippmann et al. [108] also showed that some of the results of the BOT problem obtained
on the plane can be extended to other 2-dimensional manifolds. Again, this is also the case
for the BCST problem. Among these properties, we emphasize the optimal angles formulae
exposed in section 5.5.1 and the infeasibility of degree-4 SPs for appropriate α values. We
refer to Appendix F of [108] for more details.

5.6 CST and BCST Optimization Algorithm
This section details the proposed heuristic for optimizing the BCST and CST problems. We
will first focus on the BCST. The heuristic iterates over two steps: First, given a fixed
topology, the algorithm finds the geometric positions of the Steiner points (SPs) that exactly
minimize the cost conditioned on the topology. Given the optimal coordinates of the SPs,
we then update the topology of the tree by computing an mST over the terminals and SPs.
This procedure is iterated until convergence or until some stopping criterion is met.

5.6.1 Geometry Optimization

The BCST problem can be divided into two subproblems: combinatorial optimization of the
tree topology and geometric optimization of the coordinates of the SPs, XB. When condi-
tioning on a topology T , the BCST objective (5.2) is a convex problem w.r.t. XB. Despite
its convexity, the objective is not everywhere differentiable. We build on the iteratively
reweighted least squares (IRLS) approach from Smith [157] and Lippmann et al. [108] to
efficiently find the positions of the SPs.

Starting from arbitrary SPs coordinates, denoted as X(0) = {x(0)i }2N−2
i=1 , the algorithm

iteratively solves the following linear system of equations.

x
(k+1)
i =

∑
j:(i,j)∈E

ζαij
x
(k+1)
j

||x(k)i − x
(k)
j ||∑

j:(i,j)∈E

ζαij

||x(k)i − x
(k)
j ||

, ∀N + 1 ≤ i ≤ 2N − 2. (5.17)

where ζij = mij(1 − mij). We assume, without loss of generality, that the coordinates
corresponding to the SPs are indexed from N + 1 to 2N − 2, where N is the number of
terminals. The coordinates for the terminals, which remain fixed throughout all iterations,
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Figure 5.13. mSTreg Heuristic. The mSTreg heuristic iteratively transforms an mST to an
approximate BCST. Given a set of points, the heuristic first computes the mST over all points
and transforms it into a full tree topology by adding Steiner points (SPs). Next, the optimal
positions of the SPs are computed using iteratively reweighted least squares. Given the
updated SPs coordinates, the heuristic recomputes the mST over the union of the terminals
nodes and the previous SPs. This mST produces a new topology, which is again transformed
into a full tree topology by adding SPs whose coordinates are optimized. This process is
repeated until some stopping criterion is satisfied.

are represented by the other indices. Thanks to the tree structure of the graph, the linear
systems can be efficiently solved in linear time.

In Appendix D.8, we show that the algorithm is agnostic to the weighting factors that
multiply the distances, and can therefore be applied to compute any weighted geometric
mean.

5.6.2 Heuristic Optimizer for the (B)CST Problem

We now present a heuristic which alternates between the SP geometric coordinate optimiza-
tion (convex) and a topology update (combinatorial). The heuristic’s main characteristic is
how it exploits the location of the branching points given an initial topology guess. The
heuristic’s underlying assumption is that the optimum position of the branching points may
suggest a more desirable topology.

Unless otherwise stated, the heuristic we propose starts from the mST over all terminal
nodes. At this point, the mST does not contain any SPs and is therefore not a full tree
topology. Thus, we need to transform the mST into a full tree topology. As mentioned in
Section 5.4, and highlighted in Figure 5.7, this process is not unambiguous. In particular,
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for each terminal node v with degree dv ≥ 2, we have to add dv − 1 SPs. Consequently,
there are (2dv − 3)!! ways to connect these SPs to the neighbors of v. Among all possible
subtopologies connecting the SPs with v and its neighbors, we choose the one given by the
dendrogram defined by the hierarchical single linkage clustering algorithm applied to v and
its neighbors. In practice, this choice tends to work relatively well since nearby terminals
are also closer in the subtopology.

Once we have a full tree topology, we can apply the geometry optimization step to obtain
the optimal coordinates of the SPs. We assume that the optimal positions of the SPs indicate
which connections between nodes might be more desirable, since they may be biased to move
closer to other nodes than the ones to which they are connected. Therefore, we propose to
recompute an mST over the terminals together with the SPs. This new mST defines a new
topology that needs to be transformed into a full tree topology for the geometry optimization.
Once we have a valid full tree topology, we recompute the optimal positions of the SPs. This
process is repeated iteratively until convergence or until some stopping criterion is met. We
refer to this algorithm as the mST regularization (mSTreg) heuristic. The algorithm’s steps
are illustrated in Figure 5.13, and its pseudocode is provided in Algorithm 2. The algorithm’s
complexity is O(dn log(n)2). A detailed complexity analysis is available in AppendixD.9.
We remark that the mSTreg heuristic is independent of the weighting factors that multiply
the distances, thus it can also be used to approximate other problems as well, for instance a
generalized version of the optimum communication tree with SPs.

Optionally, before the mST step is computed over the terminals and previous SPs, we can
add intermediate points along the edges of the output generated by the geometry optimization
step. These additional points will allow the mST to more reliably follow the edges of the
geometry-optimized tree from previous step. Moreover, in case the initial topology was
poor, these extra points may help to detect and correct edge crossings, which are known to
be suboptimal. An illustration of the effect of these extra points can be found in Appendix
D.10.

The heuristic designed for the BCST problem can also be applied to the CST problem
by transforming BCST topologies at each iteration into CST topologies. While this transfor-
mation isn’t unique, we found that iteratively collapsing one SP at a time with the neighbor
that leads the smallest increase in cost produces compelling results. Additionally, when col-
lapsing SPs together, centering the new node at the weighted geometric median of its new
neighbors improves results slightly. Further details can be found in Appendix D.11.
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Algorithm 2: mSTreg Heuristic
Input: X , num_iterations, sampling_frequency, optimize_CST
Output: Tree

1 mSTinit =minimum_spanning_tree(X) // Define initial topology as
mST

2 TBCST =transform2fulltopo(mSTinit) // transform topology to full
tree topology

3 SP =compute_SP(Tinit) // compute optimal SP coordinates
4 bestcost_BCST =∞ if optimize_CST then
5 bestcost_CST =∞

6 while it <num_iterations do
7 if sampling_frequency>2 then

/* sample extra points from edges */
8 Y =sample_from_edge(TBCST,X ∪ SP ,sampling_frequency)
9 SP = SP ∪ Y

10 mSTX∪SP =minimum_spanning_tree(X ∪ SP )

11 TBCST =transform2fulltopo(mSTX∪SP ) // transform mSTX∪SP to
full tree topology

12 SP =compute_SP(Treg) // compute optimal SP coordinates

13 if cost(TBCST) <bestcost_BCST then
14 bestcost_BCST =cost(TBCST)

15 TBCSTbest = TBCST

16 if optimize_CST then
17 TCST =remove_SP(TBCST) // Derive CST topology from BCST

topology

18 if cost(TCST) <bestcost_CST then
19 bestcost_CST =cost(TCST)

20 TCSTbest = TCST
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(a) BCST relative error (b) BCST rank of heuristic (c) CST relative error (d) CST rank of heuristic

Figure 5.14. Bruteforce mSTreg Benchmark. Relative cost errors between the mSTreg
heuristic and optimal solutions; and sorted position of the heuristic tree for different number
of terminals, N . For each N , we uniformly sampled 200 different terminal configuration
and solved them for different α values. Most runs ended up close to the global optimum,
though the heuristic is slightly better for the BCST problem.

5.7 Benchmark

5.7.1 Brute Force Benchmark

To assess the quality of the mSTreg heuristic, we compare the cost of the trees computed
by the mSTreg algorithm with the globally optimal solutions of configurations with up to
nine terminals, obtained by brute force. We generate 200 instances with N ∈ {5, 6, 7, 8, 9}
terminals sampled from a unit square. Both CST and BCST problems are solved for each
α ∈ {0, 0.1, . . . , 0.9, 1}. In Figure 5.14, the relative error, calculated as 100(ch − co)/co

where ch and co are heuristic and optimal costs, is shown for differentN . We also show how
the heuristic solution ranks, once the costs of all topologies are sorted. The heuristic attains
the optimum in the majority of cases, with slightly better performance in the BCST problem
than in the CST one. Appendix D.12 provides α-based results.

5.7.2 Steiner and MRCT Benchmark

In addition, we evaluate mSTreg on bigger datasets from the OR library5 [12] for the Steiner
tree (α=0) and the MRCT (α=1) problems. This dataset includes exact solutions of Steiner
problem instances of up to 100 nodes randomly distributed in a unit square. The used in-
stances are labeled as en.k, where n denotes the number of terminals, and k represents the
instance number. Figure 5.15a compares the cost of our heuristic with the optimal cost.
We also provide for reference the costs of the mST and the topology obtained by trans-
forming the mST into a full tree topology with its SP coordinates optimized (referred to

5http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html
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(a) Steiner (b) MRCT

Figure 5.15. Steiner and MRCT OR Library Dataset Benchmark. Relative cost error
with respect to a reference cost for the Steiner and MRCT problems for different instances
and different methods (lower is better). Left: For the Steiner problem, the reference cost
is the optimal cost. mSTreg finds good solutions and improves over mST_fulltopo. Right:
For MRCT the reference cost is given by the GRASP_PR algorithm. The heuristic beats all
other methods, but is still sightly worse than GRASP_PR algorithm.

as mST_fulltopo). Though our heuristic does not reach the optimal cost, it produces good
topologies. The average relative error is lower than 1%.

For the MRCT, we compare our heuristic with the Campos [25] and GRASP_PR [150]
algorithms. Campos modifies Prim’s algorithm with heuristic rules, while GRASP_PR con-
ducts local search by exchanging one edge at a time. We test the algorithms on the OR
library datasets for problem instances with 50, 100 and 250 terminals. Figure 5.15b shows
the relative errors. In this case, we do not have access to the optimal cost, therefore we
use GRASP_PR costs cited from Sattari and Didehvar [150] as reference. Campos cost are
obtained from our own implementation. For reference, we also show the 2-approximation
[177] given by the star graph centered at the data centroid. While mSTreg proves com-
petitive (surpassing Campos but falling short of GRASP_PR by a modest average relative
error of 1.16%), it is worth noting that GRASP_PR relies on a time-consuming local search.
Leveraging the competitive solution provided by mSTreg as an initial step can enhance the
performance and convergence of local search based algorithms, such as GRASP_PR.

5.7.3 Comparing GRASP_PR and mSTreg for the CST Problem

In the previous section,the GRASP_PR algorithm by [150] outperformed the mSTreg heuris-
tic when solving the MRCT problem. However, it’s important to note that each iteration of
the GRASP_PR scales quadratically complexity with the number of nodes for complete
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graphs due to its local search that swaps edges. In contrast, the complexity per iteration of
the mSTreg algorithm is O(dn log(n)2) (refer to AppendixD.9), making it more efficient.

Additionally, GRASP_PR requires an initial random guess to initiate the local search.
The quality of this guess impacts the number of iterations needed for the local search to
converge. We will show that initializing the local search with a solution generated by the
mSTreg allows for initializations that enhance the performance of GRASP_PR. To ensure
variability in the mSTreg output, we initialize it with random topologies instead of the mST.
Despite this modification, as the mST initialization yielded favorable results, we opt to sam-
ple trees similar to it. To achieve this, we construct a tree by randomly sampling edges,
prioritizing shorter ones. In concrete, we sample edge (i, j) with probability proportional
to exp(−µ||xi − xj||) for some inverse temperature µ. This sampling approach is akin to
the one used in Karger’s algorithm for approximating the minimum cut [86, 89] and differs
from the GRASP_PR construction phase in that it doesn’t require that one end of the edges
belongs to the current tree.

While the previous section relied on the MRCT costs reported in [150] for the GRASP_PR
algorithm, we now validate our claims using our implementation of GRASP_PR. Given that
the GRASP_PR is a versatile algorithm, we used it to compute the CST with alternative α
values besides 1. Acknowledging that for lowerα values, the optimum trees will be more sim-
ilar to the mST, we adapted the construction phase of GRASP_PR. Specifically, for α < 0.7,
it generates the random tree based on the Karger’s sampling method mentioned above. For
α ≥ 0.7, it uses the construction proposed by [150]. Due to the relatively slow performance
of our Python implementation of GRASP_PR, we imposed a 5-minute time threshold. If
exceeded, the algorithm returns the best solution at the end of the path relinking phase.

To assess performance, we conducted tests using GRASP_PR, GRASP_PR initialized
with mSTreg (GRASP_PR_mSTreg), and the mSTreg algorithms on OR library datasets for
problems with 50 and 100 terminals. Analogously to the plots shown in the main paper,
Figure5.16 displays the relative errors using GRASP_PR_mSTreg cost as a reference for
different α values in the set {0.2, 0.4, 0.6, 0.8, 1}. Notably, the combination of the mSTreg
heuristic with GRASP_PR consistently achieved the lowest cost, as all relative costs are
above 0, proving that the mSTreg can enhance GRASP_PR performance.

Across 30 runs (combining 5 α values, 2 problem sizes, and 3 instances), GRASP_PR
outperformed mSTreg in only 12 instances. Moreover, achieving a lower cost took minutes
for GRASP_PR, while mSTreg run in the order of seconds. Consequently, mSTreg emerges
as a favorable alternative, delivering a descent solution quickly.
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(a) α = 0.2 (b) α = 0.4 (c) α = 0.6

(d) α = 0.8 (e) α = 1.0

Figure 5.16. Comparing mSTreg and GRASP_PR. Relative cost error concerning
the CST problem at different α values in the set 0.2, 0.4, 0.6, 0.8, 1 for various in-
stances of the OR library dataset (lower is better). The comparison involves mSTreg,
GRASP_PR, and the combination of GRASP_PR initialized with the mSTreg solution (re-
ferred to as GRASP_PR_mSTreg). The relative error is computed using the cost from
GRASP_PR_mSTreg as a reference. The combination of the mSTreg heuristic with
GRASP_PR consistently achieved the lowest cost, with all relative costs above 0, demonstrat-
ing the enhancement of GRASP_PR performance by mSTreg. To manage time constraints,
a threshold of 5 minutes was imposed for methods utilizing GRASP_PR.
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5.8 Conclusion
This chapter introduced the novel problem of the (branched) central spanning tree, which
encompasses the minimum spanning, the Steiner and minimum routing cost trees as limit-
ing cases. The CST weighs the edge-costs with the edge-centralities, whose influence are
regulated by the parameter α. We have focused on the Euclidean version of the problem,
where the nodes are embedded in an Euclidean space. Moreover, we presented a variant
of the problem allowing the addition of extra nodes, referred to as Steiner points (SPs). In
addition, we provided empirical evidence for the robustness of the (B)CST tree structure to
perturbations in the data, which increases with α. In this regard, α serves as a parameter
that trades-off between data-fidelity and stability. We also provided examples of potential
applications such as single cell trajectory inference.

On the theoretical side, we showed that as α → ∞ or |V | → ∞ with α > 1, (B)CST
converges to a star-tree, indicating inadequacy in extracting structural information when α >
1. Conversely, asα→ −∞, the (B)CST tends towards a path graph. Additionally, we proved
the infeasibility of 4-degree SP when the terminals lie on a plane andα ∈ [0, 0.5]∪{1} thanks
to the closed formulae of the branching angles. We also provided evidence that suggests a
similar case for α ∈ ]0.5, 1[.

Based on an efficient algorithm to compute the optimal locations of the SPs, we have
proposed the mSTreg heuristic, which exploits the optimal position of the SPs and the cor-
respondence between the CST and BCST topologies to find approximate solutions for ei-
ther. We benchmarked this algorithm and showed its competitiveness on small toy data sets.
Since the proposed heuristic is agnostic to the weighting factors that multiply the distances,
we leave as future work to test whether it is equally competitive for other problems, like the
general optimum communication tree. Another open question is whether the algorithm can
be adapted to perform well on non-complete or non-Euclidean graphs.





Chapter 6

BCST-Based Skeletonization with BCST

Plant skeletonization is a fundamental technique for understanding growth patterns, branch-
ing hierarchies, and responses to environmental factors in plants. It simplifies intricate plant
structures into skeletal representations, often depicted by spanning trees. In this chapter, we
illustrate how the Branched Central Spanning Tree (BCST) can accurately model a tree’s
skeleton using a 3D point cloud of its surface. The BCST spans over all nodes in the point
cloud, generating numerous expendable branches that do not significantly contribute to the
skeleton structure. To address this, we propose a pruning algorithm based on the Prize Col-
lecting Steiner tree problem, efficiently removing such branches in linear time. Through
comparative analysis against existing methods, we demonstrate the competitiveness of the
BCST approach.

6.1 Introduction

One-dimensional representations are commonly used to simplify 3D objects, capturing their
fundamental shape and geometry. These one-dimensional structures, known as skeletons,
have diverse applications in fields such as computer animation [135], shape analysis [113],
and object matching [162], among others [149, 163]. Due to their versatility, various ap-
proaches have been developed to extract skeletons from 3D objects, including meshes or
point clouds.

Within the field of botany, the significance of 3D plant skeletonization has been growing
with the advancement in technologies like light detection and ranging (LiDAR). Such tech-
nologies enable the efficient capture and generation of large point clouds representing plants.
The skeletons extracted can later be used in plant phenotyping, plant morphology or plant
virtual modeling among other applications. These application aid researchers to understand
and study the traits and growth patterns of plants.

The skeletonization of plants presents persistent challenges, primarily attributed to fac-
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tors like noise and occlusions during the scanning process. The intricate structure of trees,
characterized by multiple thin branches, further complicates the extraction of an accurate
skeleton that faithfully models all branches. Common approaches to skeleton extraction are
geometric-based. The typical pipeline of such approaches involves constructing a neighbor
graph that spans over the points, such as the k-nearest neighbor graph. From this, a geodesic
graph is built, connecting near points starting at a root node. Based on the geodesic graph,
node clustering occurs, defining the final skeleton tree by connecting representatives of these
clusters [46, 182]. In the presence of occlusions, the neighbor graph may be suboptimal,
leading to potential errors in the final skeleton.

Alternative methods include thinning processes that erode or contract points on the sur-
face until a thin structure is obtained [132]. Some methods leverage eigenvectors to de-
fine the dominant directions of the trunk and branches [3], while others utilize voxelization.
Yet, these methods face limitations, leading researchers to develop refinement procedures
to enhance the quality of tree structures [33, 197]. Other approaches enhance the skele-
ton by incorporating additional attributes, such as semantic segmentation of the point cloud
[118, 132]. For a more comprehensive overview of the field, we recommend consulting the
survey [27] and references therein.

While some of the current approaches rely on intricate pipelines with multiple param-
eters that can be challenging to use, we propose a skeletonization method based on the
Branched Central Spanning Tree (BCST). As discussed in Chapter 5, the BCST proves
to be an appropriate tree to model the skeleton of objects due to its geometric robustness
against perturbations such as noise and its ability to condense the main structure of the point
cloud. As the parameter α of the BCST increases, the tree tends to a star-tree, resulting in a
more stable and robust structure. By adjusting the parameter α we can regulate the level of
stability and the connection of spatially close nodes, effectively capturing the original struc-
ture of the tree. Consequently, the BCST strikes a good balance between stability and data
fidelity that is ideal for describing the skeleton of a 3D object. Furthermore, the inclusion
of Steiner points provides greater flexibility, allowing them to be positioned in the volume’s
center and ensuring that the BCST skeleton traverses this central region —a feature often
desirable in object skeletonization.

While the BCST spans over all nodes in the point cloud, allowing for the description
of all branches, including the thinner and more challenging ones, it also generates many
spurious and expendable branches that do not contribute to the portrayal of the skeleton
structure (see Figures 6.1b and 6.3). Consequently, it becomes necessary to prune such
branches. We propose a pruning algorithm capable of removing these branches. To do so,
we assign two values to each edge. Firstly, we define a quantity referred to as explainability
profit, which measures the number of potential nodes that can be explained by the edge.
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(a) mSTreg initialization tree (b) BCST, α = 0.5 (c) BCST after pruning

Figure 6.1. BCST-Based Skeletonization Steps. 6.1a) The tree, which includes all shortest
paths from the root node to the rest of the terminals, is used as the initialization of the
mSTreg heuristic (see Section 5.6.2). 6.1b) The BCST spans over all nodes in the point cloud,
allowing for the description of all branches, but also generating many spurious branches that
need to be pruned. 6.1c) The BCST is pruned using the prize-collecting Steiner tree-based
approach described in Section 6.2.

Intuitively, the longer is the branch to which the edge belongs, the higher its explainability
profit. Since long branches tend to be actual branches of the skeleton, the pruned tree should
have branches with high explainability. Secondly, we define an additional quantity known
as bending energy, which is larger for edges with significant curvature. Spurious branches
tend to be more curved as they branch at sharper angles.

The pruning process involves optimizing the overall explainability profit while mini-
mizing the bending energy. This optimization problem is formulated as a Prize Collecting
Steiner tree problem, aiming to encourage the presence of longer branches while penalizing
short, highly curved branches. Notably, this problem can be efficiently solved in linear time.

We compare the performance of the BCST skeletonzation method against different skele-
tonization methods from the literature. Our results demonstrate its superior performance
under diverse experimental settings, simulating the presence of noise, occlusions, and vary-
ing density levels. Overall the BCST is able to model most of the branches, including the
thinner ones, particularly in low-density scenarios where other methods struggle.

In summary, our contributions consist of: 1) the application of the BCST for 3D plant
skeletonization; 2) the introduction of an efficient pruning algorithm, leveraging the Prize
Collecting Steiner approach, to eliminate expendable branches generated by the BCST (Sec-
tion 6.2); and 3) a comprehensive comparison showcasing the competitiveness of our method,
especially in low-density scenarios (Section 6.3).
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6.2 Skeletonization Method
This section describes the application of the BCST method for extracting the skeleton of
a 3D object, particularly focusing on a 3D point cloud representing a plant. Let X =

{x1, . . . , xn} ⊂ R3 denote the set of sampled points on the object’s surface, from which
the skeleton is to be extracted. Given that the BCST generates a spanning tree encompass-
ing all points in X , it requires pruning. Section 6.2.1 defines the optimization problem that
characterizes the pruned tree. In Section 6.2.2, we will reformulate this problem as a Prize
Collecting Steiner Tree problem, which aims to find the most cost-effective subgraph that
connects a specified set of terminal nodes in a graph while maximizing the sum of collected
prizes associated with the nodes. Section 6.2.3 will delve into implementation specifics,
including parameter selection.

6.2.1 Pruning Optimization Problem: Formulating the Objective

The BCST defines a spanning tree by connecting all terminals through the addition of Steiner
points. In consequence, the BCST encompasses the original point cloud along with the
added Steiner points, resulting in numerous extraneous branches, each extending to individ-
ual data points within the point cloud. We propose a method to prune such branches by
assigning a signed weight to each edge based on its curvature (bending energy) and the pro-
portion of data that can be explained by the edge (explainability profit). The final pruned
tree is defined as the subtree which maximizes the sum of the edge weights.

In a more intuitive sense, we identify branches as spurious if they are short and connect
to terminal nodes. These branches often split at sharp angles, resulting in a high bending
energy. The bending energy of a smooth curve indicates the curve’s flexibility or stiffness,
formally defined as the integral over the curve of its squared curvature. Specifically, the
bending energy is expressed in terms of binormal curvature. In our context, we calculate the
discretized bending energy [17, 160]. Let ℘ = {v1, v2 . . . , vℓ} be a path of nodes embedded
in R3 that collectively model a curve. The discrete binormal curvature at node vi ∈ ℘ is
defined as:

κvi := 2
(xvi − xvi−1)× (xvi+1 − xvi)

||xvi − xvi−1|| · ||xvi+1 − xvi||+ ⟨xvi − xvi−1, xvi+1 − xvi⟩
(6.1)

Here, xi ∈ R3 indicates the position of node vi. Operations× and ⟨·, ·⟩ represent the exterior
and interior product, respectively. The work by Stuhmer et al. [160] uses the discretized
binormal curvature in order to compute the contribution of each node to the total bending
energy of the curve. In contrast, our goal is to assign the contribution to each edge in the
BCST. First, we note that binormal curvature at a given point is influenced not only by the
node’s position but also by the positions of the nodes preceding and succeeding it along
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the path. To establish this directionality, we designate a predecessor for each node in the
BCST by transforming the tree into a directed one through the selection of a root node. The
edge’s direction is determined by the direction of the paths connecting the root node to the
remaining nodes. We denote the predecessor of a node u as pred(u). For an edge e, we refer
to the head of e, h(e), as the outgoing node and the tail of e, t(e), as the ingoing node. The
bending energy of an edge is defined as:

Eb(e;T) := 2
||κh(e)||2

||xpred(h(e)) − xh(e)||+ ||xt(e) − xh(e)||
(6.2)

In words, (6.2) calculates the bending energy at edge e = (h(e), t(e)) by dividing the squared
norm of the binormial curvature at the head of e by the average length of e and its predecessor
edge given by pred(e) = (pred(h(e)), h(e)). Notably, the bending energy increases with the
curvature. When the edge and its predecessor are well-aligned, indicating they point in a
similar direction, the curvature is lower, resulting in lower bending energy. Consequently,
edges belonging to a straight branch of a tree are likely to have low bending energy.

While spurious branches bifurcate at tight angles, the actual branches we aim to preserve
may also bifurcate sharply; however, the latter branches tend to be longer. To retain edges
that might have high bending energy but indicate the start of a long branch, we introduce
a second value for each edge e, referred to as explainability profit and denoted by Ep(e).
This quantity measures indirectly the potential length of the branch associated to an edge
and, consequently, the amount of data that can be explained by the edge. Formally, for an
edge e, the explainability profit Ep(e) is equal to the normalized shortest path distance of
the furthest reachable leaf node, where the reachability is determined by the directions of
the edges. We normalize the shortest path distance by dividing by the diameter of the tree.
Formally, the explainability profit at e is defined as

Ep(e;T) = max
ℓ∈R(h(e))

dT(h(e), ℓ)

max(u,v) dT(u, v)
, (6.3)

whereR(u) denotes the set of reachable leaves from u and dT(·, ·) is the shortest path distance
within the tree T. Intuitively, the farther the leaf with respect to the head of e, the more costly
is the exclusion of e from the pruned tree, as that leaf will only be part of the pruned tree if
and only if e is included.

We want to penalize edges which have high bending energy, associated with a high cur-
vature, while we want to incentivize the presence of edges with high explainability profit.
Given λ > 0, we assign a weight w(e) = Ep(e;T)− λEb(e;T) to each edge e ∈ T that bal-
ances the penalty and reward given by these values. In consequence, given T and λ > 0, the
pruned tree Tp ⊂ T is defined as the subtree of T, containing the root node, that maximizes
the following profit function:

Profit(Tp) =
∑
e∈Tp

w(e) =
∑
e∈Tp

Ep(e;T)− λEb(e;T). (6.4)
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The objective of this function is to favor the inclusion of edges with high explainability profit
and low bending energy in the pruned tree.

6.2.2 Pruning Algorithm Based on the Prize Collecting Steiner Tree
Problem

We can reformulate the optimization problem given by (6.4) as a Prize Collecting Steiner
tree (PCST) problem [87, 111]. The classic Steiner Tree problem over a graphG = (VG, EG)

with positive edge-costs c(e) aims to find the tree with minimum cost that connects a subset
of nodes U ⊂ VG. Contrary to the Euclidean Steiner Tree, the former does not allow the
inclusion of Steiner points, but can only connect nodes through the edges of G. Formally, it
optimizes the following problem

min
T⊂G
U⊂VT

∑
e∈ET

c(e).

Note that when U = VG, the Steiner Tree over G is equivalent to the minimum spanning
tree, while when |U | = 2 it reduces to finding the shortest path between the two terminals.

In contrast to the classic Steiner tree problem in graphs, the prize collecting variant
considers, in addition to the edge-costs, also weight profits, p(v) > 0, associated to the
nodes of G. In opposition to the edge-costs, which are minimized, the profit weights are
maximized. Accordingly, the PCST objective function is

max
T⊂G

∑
v∈VT

p(v)−
∑
e∈ET

c(e). (6.5)

Note that PCST does not require indicating the terminals that must be connected as these
are implicitly indicated by the profit weights.

Our objective, as defined in equation (6.4), maximizes a sum over positive and negative
edge-weights. Consider the connected components which are strictly connected by edges
with positive weight. Clearly, if any node within a positive connected component is included
in the optimal subtree, then the entire component will also be part of the optimal tree. This
is because the remaining nodes can be connected through positive edges, increasing the
overall profit. Thus, without loss of generality, we can merge all nodes belonging to the
same positive connected component, C+, into a single node. Furthermore, we assign a
profit to this merged node, defined as the sum of weights of the positive edges within the
component, expressed as

p(C+) =
∑

u,v∈C+ (u,v)∈T

w(u, v).

This profit reflects the benefit gained when C+ is included in the subtree.
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This merging operation generates a new graph, where each node has a profit and all edges
are negatively weighted. Thus, we obtain the objective of the PCST problem

max
Tp⊂T

Profit(Tp) = max
Tp⊂T

∑
e∈Tp

w(e) = max
Tp⊂T

∑
C+∈C+

∑
u,v∈C+

(u,v)∈Tp

w(u, v) +
∑
e∈Tp
we<0

w(e)

= max
Tp⊂T

∑
C+∈C+

p(C+)−
∑
e∈Tp
we<0

|w(e)|
(6.6)

where C is the set of the positive connected components of T. Figure 6.2 illustrates how the
original tree with positive and negative edge weights can be transformed to a PCST setting.

In general, solving the PCST problem is NP-hard. However, in scenarios where the
underlying graph is a tree, such as in our case, an efficient solution exists. This solution can
be achieved in linear time using dynamic programming, as outlined by Klau et al. in [96].

Let r be the root of the tree T. For each node v ̸= r ∈ T, we define pred(v) as the node
that precedes v in the path from r to v and C(v) = {u : pred(v) = u} as the set of children
of v. We recursively define a value ℓ(v) for each node v in T

ℓ(v) := p(v) +
∑
u∈C(v)

max(0, ℓ(u)− |w(u, v)|) (6.7)

The value ℓ(v) is the profit of the subtree TV (v) ⊂ T induced by the nodes in V (v), where

V (v) := {v}
∪

u∈C(v)

{V (u) : ℓ(u) > |w(u, v)|}. (6.8)

It can be shown by induction that TV (v) is the tree that maximizes the profit constrained
to the subtrees of the tree induced by the descendants of v, that is the subtree with root v
consisting of all vertices and edges reachable from v without passing the vertex pred(v).
The edge (u, v), with pred(u) = v, will be included in the optimal subtree if w(u, v) > ℓ(v).
Otherwise it does not pay off to include the edge, as it incurs a higher cost than the profit
obtained through the connection to u. Hence, given the root node r, the tree that maximizes
(6.6) is attained at TV (r) with Profit(TV (r)) = ℓ(r).

Figure 6.2 provides a visual representation of the transformation of our problem into the
PCST problem. It also outlines the sequential steps to calculate the values ℓ(·) for each node
in order to determine the optimal subtree. Pseudocode 3 offers a comprehensive description
of the pruning algorithm.

Figure 6.3 illustrates the impact on the pruning process across various values of the
parameter λ. This parameter regulates the balance between the bending energy and the
explainability profit of the edges, as defined in (6.4). When λ is set to 0, no pruning is
performed, as none of the edges has a penalization weight. In this case, we retrieve the
original BCST that spans all input points. As λ increases, more edges are pruned. Notably,
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Figure 6.2. BCST Skeletonization Pruning Algorithm. 6.2a) Tree, T, with red edges
signifying positive weights (uniformly set to 1) and blue edges negative weights. The green
node represents the root node. 6.2b) Tree once the positive edges of T have been contracted.
Maximizing (6.4) over T is equivalent to solving the Prize Collecting Steiner Tree (PCST)
(6.5) problem over Tm (6.5). Node profits in Tm, indicated inside each node, equal the sum of
the weights of the corresponding contracted positive edges. 6.2c-6.2e) illustrate the recursive
iterations to compute values ℓ(·) at each node, as defined in (6.7). The value inside each node
represents the ℓ value at that iteration. Edges appear as visited, with dashed lines indicating
edges more costly than the ℓ profit value of the connected node, suggesting their exclusion
from the optimal subtree. 6.2e) showcases the optimal subtree formed by non-dashed edges
with profit equal to 4 as indicated by the ℓ value of the root.
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for λ = 0.01, most spurious branches have been pruned, and at λ = 0.05, none of them
remains. At higher values, real branches are also pruned. In the experiments section, we
consistently set λ = 0.05 for all our experiments, unless otherwise stated, as it has yielded
satisfactory results.

(a) λ = 0.00 (b) λ = 0.01 (c) λ = 0.05

(d) λ = 0.10 (e) λ = 0.50

Figure 6.3. Effect of the λWeighting Factor on Balancing the Explainability Profit and
the Bending Energy in Equation (6.4). When λ = 0, no pruning occurs, resulting in the
original BCST spanning all data points. As λ increases, spurious branches connecting to
the data points are pruned.

6.2.3 Implementation Details

To compute the BCST and subsequently apply the pruning algorithm described in 3, it is
essential to determine specific parameters and settings. These include the α parameter gov-
erning the BCST tree, the initial topology for the mSTreg heuristic used to approximate the
BCST, the weighting factor λ for the profit function (6.6), and the root node determining the
bending energy (6.2) and consequently the pruned tree. This section describes how to set
these parameters.

In the context of a 3D point cloud representing a plant or a tree, a common choice for the
root node is the one located at the bottom of the trunk—specifically, the node with the lowest
z-axis value. While similar approaches have been used in other skeletonization methods,
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Algorithm 3: Skeletonizaiton Pruning Algorithm
Data: Tree graph T, λ, root
Result: Pruned tree

/* Compute edge weights */
1 foreach edge e in T do
2 w(e) = Ep(e)− λEb(e) ;
3 end

/* Merge positive components and assign profit p */
4 Tmerged = T;
5 foreach C+ ∈ C+ do
6 C+ = ∅, p(C+) = 0;
7 foreach (u, v) ∈ E(TC+) do
8 p(C+) = p(C+) + w(u, v);
9 Tmerged=Contract_edge(u, v,Tmerged), C+ = C+ ∪ {u, v}

10 end
11 if root ∈ C+ then C+

r = C+;
12 end

/* Initialize variables */
13 Q = [ ];
14 foreach C+ ∈ T _merged do
15 ℓ[C+] = p[C+], V [C+] = {C+}, d[C+] = degTmerged

(C+);
16 if degTmerged

(C+) == 1 then Q.add(C+);
17 end
18 pred = DFS(C+

r ,Tmerged);

/* Compute maximum subtree */
19 while Q not empty do
20 C+

1 = Q.pop(), C+
2 = pred[C+

1 ];
21 ℓ[C+

2 ] = ℓ[C+
2 ] + max(0, ℓ[C+

1 ] + w(C+
1 , C

+
2 ));

22 if ℓ[C+
1 ] + w(C+

1 , C
+
2 ) ≥ 0 then V [C+

2 ] = V [C+
2 ] ∪ V [C+

1 ];
23 d[C+

2 ] = d[C+
2 ]− 1;

24 if d[C+
2 ] == 1 and C+

2 ̸= C+
r then Q.add(C+

2 );
25 end

26 return TV (C+
r );
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such as [46], our method takes a slightly different approach. Instead of directly selecting
the lowest z-axis point as the root, we introduce an artificial root node to the point cloud.
This artificial root is defined as the average of all points with z-axis values below the 2nd
percentile of the z-coordinate values. Using this average biases the root node to be closer to
the center of the trunk, in contrast to being on the surface of the trunk, as would be the case
if one of the original points had been selected as the root. After determining this average
point, its z-coordinate is then set to that of the bottommost point.

In our setting, the root node serves two purposes. Firstly, it determines the edge direc-
tions for computing the bending energy. Secondly, it is used to define the initial topology
for the mSTreg heuristic, which approximates the BCST. While mSTreg typically uses the
minimum spanning tree as its default topology, we deviate by computing a geodesic graph
starting at the root node. To construct this geodesic graph, we build a connected k-nearest
neighbor (kNN) graph spanning all input nodes and the artificial root node. To ensure con-
nectivity, we initialize k to log(N), where N is the total number of input points. If the
kNN graph is not initially connected, we double the value of k until connectivity is achieved.
Once the connected kNN graph is established, the initial topology of the mSTreg heuristic
is set as the shortest path tree rooted at the artificial root. This tree comprises all the shortest
paths in the kNN graph from the root node to the remaining nodes. Figure 6.1 illustrates the
initialization tree alongside the BCST tree and the pruned BCST.

Additionally, we observed that BCST-modeled skeleton is improved by increasing the
point density near the root through virtual point replication. Instead of adding a single root,
we add five times as many virtual points at the root location as there are original points. In
practice, this involves weighting the incident edges to the root as if there were replicated
collapsed terminal points at the root location.

We consistently set the exponent α regulating the impact of betweenness centrality in
BCST to α = 0.5, as it has proven effective. Similarly, unless otherwise stated, we set the
weighting factor λ of the profit function (6.6) to 0.05, which has worked well in practice as
illustrated in Figure 6.3. However, this parameter may require fine-tuning in other scenarios.
For example, in the presence of data noise, a higher value may be necessary to remove
spurious branches, as observed in Figures 6.6 and E.5.

6.3 Experiments

To assess the effectiveness of our proposal, we conducted tests using synthetic data from
the smart tree dataset [48].1 This dataset comprises point clouds simulating the surfaces
of six tree types (eucalyptus, ginkgo, walnut, apple, pine and cherry trees) along with their

1https://github.com/uc-vision/synthetic-trees

https://github.com/uc-vision/synthetic-trees
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corresponding ground truth skeletons. We evaluate our method from the validation dataset,
featuring 10 samples per each tree type (totaling 60 point clouds). In the following sec-
tions we describe the metrics employed to quantitatively assess the quality of our method,
alongside detailing the experiments conducted and their corresponding outcomes.

6.3.1 Metrics

To quantitatively measure the quality of the inferred skeleton, T, we compare it with the
ground truth skeleton, Tgt, using the following metrics:
• Hausdorff distance (HD): This metric identifies the skeletons as sets of points. It quanti-

fies dissimilarity by finding the farthest point in one set to its nearest neighbor in the other
set. Formally,

dHD(T,Tgt) = max
(

max
x∈T

min
y∈Tgt

||x− y||, max
x∈Tgt

min
y∈T
||x− y||

)
.

The Hausdorff distance value is determined by the single pair of points with the maximal
error, emphasizing the maximum separation between two sets.

• Chamfer distance (CHD): Similarly to the Haussdorf distance, it also identifies the skele-
tons as point clouds. It measures the dissimilarity by computing the average Euclidean dis-
tances between the points in one set to their nearest neighbors in the other set. Formally,

dCHD(T,Tgt) =
1

2

 1

|T |
∑
x∈T

min
y∈Tgt

||x− y||+ 1

|Tgt |
∑
x∈Tgt

min
y∈T
||x− y||

 .

In contrast to the Haussdorf distance, which focuses on the maximum separation between
the sets, the Chamfer distance considers the average separation.

• Shortest path matching (SPmatch): Contrary to the previous metrics, the shortest path
matching metric interprets the skeletons as graphs, taking into account the connections
between the nodes. Specifically, it quantifies the difference of the shortest path distances
between pairs of points in one tree, say x and y in T, and their corresponding nearest
neighbors in the other tree, represented bymT→Tgt(x) andmT→Tgt(y). HeremT→Tgt(x) :=

arg miny∈Tgt ||x − y||, and similarly, we define mTgt→T. The shortest path matching is
formally defined as

dSP (T,Tgt) =
1

2|T |
∑
x,y∈T

∣∣DT(x, y)−DTgt(mT→Tgt(x),mT→Tgt(y))
∣∣

+
1

2|Tgt |
∑

x,y∈Tgt

∣∣DT
(
mTgt→T(x),mTgt→T(y)

)
−DTgt(x, y)

∣∣ , (6.9)

whereDT(·, ·) andDTgt(·, ·) correspond to the shortest path distances in T and Tgt respec-
tively.
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6.3.2 Experimental Details and Results

We compare the BCST method against the Pypetree [46], L1-skeleton (L1skel) [79] and
the Laplacian based contraction (LBC) [26] skeletonization methods. We have analyzed
the performance of the various methods under different settings, namely point clouds with
different density levels, noisy point clouds and point clouds with missing data. For each of
the 60 point clouds of the validation subset of the smart tree dataset we compute the skeleton
using each of the aforementioned methods and report the average metric scores.

N BCST_pruned L1skel LBC Pypetree

HD

2500 1.21±1.34 2.31±2.31 3.46±3.54 2.21±2.53
5000 1.05±1.15 1.81±1.81 2.68±2.73 1.69±1.84
10000 0.94±1.02 1.60±1.63 2.13±2.21 1.34±1.35
20000 0.87±0.96 1.43±1.48 1.67±2.75 1.18±1.23

CHD

2500 0.18±0.15 0.55±0.57 1.16±1.28 0.46±0.44
5000 0.15±0.12 0.41±0.42 0.74±0.88 0.34±0.34
10000 0.13±0.10 0.33±0.33 0.46±0.56 0.27±0.26
20000 0.11±0.09 0.26±0.26 0.31±0.34 0.22±0.22

SPmatch

2500 0.78± 0.61 1.49±1.34 1.92±1.74 1.17±1.31
5000 0.73± 0.56 1.44±1.41 1.38±1.28 1.06±1.20
10000 0.67± 0.52 1.70±2.03 1.00±0.86 0.90±0.87
20000 0.65± 0.54 1.34±1.72 0.87±0.86 0.79±0.61

Table 6.1. Comparison of Skeletonization Methods Accross Varying Density Levels.
Average performance of different skeletonization methods across varying sample sizes (N ),
measured by HD, CHD, and SPmatch metrics, where lower values indicate superior per-
formance. BCST_pruned consistently outperforms other algorithms across all metrics and
sample sizes.

Point clouds with different density levels: For each point cloud we compute the skeletons
at different levels of densities by considering uniformly sampled points of the original point
clouds with n ∈ {2500, 5000, 10000, 20000} points. Table 6.1 shows the average HD, CHD
and SPmatch metric values over the 60 point clouds. Our method consistently outperforms
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(a) Ground truth

(b) L1skel, n = 2500 (c) LBC, n = 2500 (d) Pypetree, n = 2500 (e) BCST n = 2500

(f) L1skel, n = 20000 (g) LBC, n = 20000 (h) Pypetree, n = 20000 (i) BCST n = 20000

Figure 6.4. Performance Comparison Skeletons at Different Density Levels (Apple
Tree). Comparative analysis of skeletonization methods applied to different density lev-
els of an apple tree instance. Each column corresponds to a distinct technique, while each
row represents varying density levels. Notably, BCST outperforms other methods by accu-
rately modeling a majority of branches, particularly evident at lower densities (6.4e) where
the other methods miss most of the branches (6.4b-6.4d).

other algorithms, demonstrating superior performance across different metrics and varying
levels of density.

Figure 6.4 illustrates qualitative results of the skeletons at different density levels for an
apple tree. At lower density levels LBC, L1-skeleton and Pypetree miss many more branches
than our proposal, which shows that the BCST method is more robust to the number of
samples. As the number of samples increases the skeletons are qualitatively comparable.
Our proposed pruning algorithm effectively removes most of the spurious branches while
preserving the actual branches. However, a few expendable branches can be found in the
tree trunk, a pattern consistent across different experimental settings. Further fine-tuning of
the λ parameter, which was fixed for all instances, may address this issue. Appendix E.1
provides further qualitative results.



6.3. Experiments 111

(a) Missing vs original (b) Ground truth

(c) L1skel (d) LBC (e) Pypetree (f) BCST

Figure 6.5. Performance Comparison Skeletons with Missing Data (Apple Tree). Com-
parative analysis of skeletonization methods applied to an apple tree instance with 20%
missing data. The green points in 6.5a) represent the input data points, while the blue points
correspond to the 20% of data points intentionally removed from the original sample with
n = 20000. BCST demonstrates superior performance compared to other methods, accu-
rately modeling the majority of branches even in the presence of 20% missing data.

BCST_pruned L1skel LBC pypetree

HD 1.01 ± 0.98 1.46 ± 1.48 1.73 ± 1.80 3.12 ± 3.70
SPmatch 0.83 ± 0.67 1.48 ± 1.74 1.20 ± 1.21 1.59 ± 1.65

CHD 0.14 ± 0.10 0.29 ± 0.29 0.33 ± 0.38 0.65 ± 0.84

Table 6.2. Comparison of Skeletonization Methods with Missing Data. Average perfor-
mance of different skeletonization methods under 20% data absence, measured by HD, CHD,
and SPmatch metrics, where lower values indicate superior performance. BCST_pruned con-
sistently outperforms other algorithms, demonstrating superior performance in the presence
of data occlusions.

Point clouds with missing data: For each point cloud we remove approximately 20%
of the points by sampling uniformly at random points from the point cloud and building
occlusion balls with variable radius centered at the sampled points. The points lying within
the balls are removed. The radius of the ball at each sampled point, v, is set to be the q-
th percentile of the sorted distances from v to the rest of points points. The percentile is
determined by sampling a value from an exponential distribution with mean equal to 0.001,
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(a) Noisy vs original (b) Ground truth

(c) L1skel (d) LBC (e) Pypetree

(f) BCST pruned λ = 0.05
(g) BCST pruned

λ = 0.50

Figure 6.6. Performance Comparison Skeletons with Noisy Data (Apple Tree). Com-
parative analysis of skeletonization methods on an apple tree instance affected by Gaussian
noise. The green points in 6.6a) represent the input data points post-application of Gaussian
noise, while the blue points depict the original data points without any noise. The default
weighting factor (λ = 0.05) used for pruning keeps several spurious branches. This issue
can be addressed by increasing λ, as demonstrated in 6.6g).

i.e. q ∼ Exp(0.001). In addition, we constrain q to be in the set [0.0001, 0.005] in order to
bound implicitly the radius of the ball. For this experiment we consider a fixed density level
with 20000 number of points. After the removal of the 20% of points, the point cloud has
around 16000 samples.

Table 6.2 provides the average and standard deviation for each of the metrics over all
point clouds with missing data. Analogously, to the two previous experiment settings BCST
outperforms the rest of methods while having a lower decrement in performance in compar-
ison to the performance on the unperturbed sample.

Figure 6.5 presents qualitative results for an apple tree. The BCST modeling of the skele-
ton demonstrates greater robustness to occlusions, resulting in more accurate representation
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of the branches. This distinction becomes particularly evident when examining thinner and
shorter branches, which are better preserved in the BCST case. Figure E.4 in Appendix E.1
shows the skeleton of a pine tree under the same experimental setting.

Noisy point clouds: For each point cloud, we have added Gaussian noise to each point.
The variance of the Gaussian is set as the average distance to the 15th neighbor of each node.
As we did for the point clouds with missing data, we consider a fixed density level with
20000 number of points. Table 6.3 provides the average and standard deviation for each of
the metrics over all point clouds with noisy data. The pruned BCST skeleton obtains better
score values than the rest of methods. Moreover, the decrement in performance of the BCST
method with respect to the unperturbed sample is lower than the one observed for the other
methods.

BCST_pruned L1skel LBC Pypetree

HD 0.81 ± 0.92 1.51 ± 1.64 2.32 ± 2.55 1.48 ± 1.59
SPmatch 0.75 ± 0.59 2.08 ± 3.10 1.30 ± 1.18 1.53 ± 1.51

CHD 0.17 ± 0.15 0.35 ± 0.49 0.64 ± 0.79 0.43 ± 0.50

Table 6.3. Comparison of Skeletonization Methods in Noisy Data. Average perfor-
mance of different skeletonization methods under the presence of Gaussian noise, mea-
sured by HD, CHD, and SPmatch metrics, where lower values indicate superior performance.
BCST_pruned consistently outperforms other algorithms, showcasing superior performance
in noisy data scenarios.

Figure 6.6 shows qualitative results for the different skeletonization methods. LBC, L1-
skeleton, and Pypetree either miss or incorrectly identify the directions of branches, unlike
the BCST-based approach. However, with the default value of λ set to 0.05, numerous
spurious branches remain. Increasing λ to 0.5mitigates this issue, as demonstrated in Figure
6.6g. This suggests that adjusting the λ parameter may be necessary in noisy settings. Figure
E.5 in Appendix E.1 illustrates the same pattern for a pine tree.

6.4 Conclusion

We have demonstrated the effectiveness of the BCST as a competitive alternative for 3D point
cloud object skeletonization. The BCST defines a tree with a resilient geometric structure
to perturbations making it well-suited for describing the skeleton of 3D objects. However,
the BCST spans over all input point, causing the presence of spurious branches that need
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removal. To address this, we have developed a pruning algorithm that encourages the inclu-
sion of long branches by maximizing the proposed explainability profit, while discourages
the presence of shorter branches with high curvature by minimizing its bending energy. We
posed this trade-off optimization problem as an instance of the Price Collecting Steiner tree
problem. The fact that the underlying graph is a tree enables the computation of the optimum
solution in linear time.

We have evaluated our method on 60 simulated point clouds of different sorts of trees
in different experimental settings often encountered in real-life scenarios. Our experiments
included point clouds with varying levels of densities, those affected by noise, and those with
missing data. Through qualitative and quantitative comparisons, we established the pruned
BCST’s superior performance across all experiments.

The main advantage of our method lies in its ability to model tree branches effectively,
even with a limited number of points. In contrast to competing approaches, which often miss
branches in low density levels, the BCST includes the majority of them. This characteristic
is of special relevance as it can potentially reduce the costs of the 3D point cloud capture by
reducing the number of sampled points. Moreover, our method proves superior performance
in handling missing data and noisy samples. Nonetheless, for noisy data, the parameter λ,
which regulates the trade-off between the explainability profit and the bending energy, may
require further adjustment.

In summary, our BCST method stands out as a competitive and versatile skeletonization
approach. It excels in capturing intricate details of point clouds even at low density levels,
showcasing robustness against perturbations like noise and missing data.



Chapter 7

Conclusion

In this thesis we have explored various topics related to graphs:

Firstly, Chapter 2 introduced the Directed Probabilistic Watershed, a semi-supervised
learning algorithm that extends the capabilities of the Probabilistic Watershed algorithm
[57] to directed or asymmetric weighted graphs. We have demonstrated that the method,
based on weighted counting of in-forests, can be solved analytically and is equivalent to the
random walker approach that computes absorbing probabilities.

Next, Chapter 3 provided analytical expressions for the expected degree and variance
of a node in a spanning tree of a weighted graph. Through polynomial manipulation and
leveraging the Matrix Tree Theorem we related these statistical properties with the inverse of
the Laplacian deriving in the process concise expressions. While our research has primarily
delved into theoretical aspects, the exploration of practical applications remains an area for
future investigation.

Inspired by the algebraic path problem framework, Chapter 4 introduced the log-norm
family of graph node distances. This family of node metrics includes well-known distance
metrics such as shortest path distance, potential distance, commute cost distance and mini-
max distance as special cases. While the log-norm distance effectively interpolates between
these distances, efficient computation remains a challenge, leaving it as future work to de-
velop approximation algorithms. In addition, we have derived both sufficient and necessary
conditions for verifying whether an algebraic path problem defines a metric on arbitrary
graphs. This contribution may assist practitioners in crafting new metrics.

Chapter 5 proposed the central spanning tree (CST) problem, a parameterized family
of spanning trees embedded in a metric space designed to be robust to perturbations. We
have explored two variants on the Euclidean space: one permitting the inclusion of Steiner
points (referred to as branched central spanning tree or BCST), and another that does not.
The (B)CST is defined through a parameterized NP-hard minimization problem over edge
lengths, encompassing instances such as the minimum spanning tree or the Steiner tree. In
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this problem, the edge lengths are scaled by the tree edge-centralities, which are regulated by
a parameter α. We have investigated the impact of α on the tree’s structure, demonstrating
that higher values of α result in more star-shaped trees, indicating increased robustness at
the expense of data fidelity. Moreover, we discussed the α → ±∞ limit cases, proving
that for α > 1, the (B)CST becomes unsuitable to describe the data as the tree becomes a
star-graph with an increasing number of terminals. We also analyzed the trees’ geometry,
demonstrating analytically that for α values in the range [0, 0.5]∪ 1, 4-degree Steiner points
are infeasible when the BCST is restricted to a plane embedding. Furthermore, we provided
evidence that this holds true forα ∈]0.5, 1[. In addition, we have proposed a heuristic, named
mSTreg, to approximate the (B)CST optimal solution. We have shown its competitiveness
on small benchmark datasets.

Finally, Chapter 6, applied the BCST problem to 3D plant skeletonization. We used
the mSTreg heuristic to extract the skeleton of 3D point clouds representing plants and de-
veloped a pruning algorithm based on the Prize Collecting Steiner tree problem to remove
spurious branches of the BCST approximation. We have demonstrated quantitatively and
qualitatively the competitiveness of the BCST based approach in comparison to other meth-
ods. Future work may explore its application in alternative domains where a skeleton is
necessary in some capacity.

Overall, this thesis has made both practical and theoretical contributions. On the one
hand, our exploration of properties related to random spanning trees and forests offers valu-
able insights that can aid the development of algorithms for graph structure analysis. While
the expected degree and variance expressions derived in Chapter 3 await specific applica-
tions, the Directed Probabilistic Watershed algorithm proposed in Chapter 2 showcases the
practical utility of our findings.

On the other hand, we have proposed unifying frameworks, such as the log-norm fam-
ily of distances and the central spanning tree problem, that effectively encompass various
entities in their respective areas. Despite their potential, there remain significant challenges
to address. The log-norm family of distances, while suggesting a means to combine the
strengths of several popular metrics, remains primarily in the theoretical realm due to the
absence of an algorithm to compute these distances. Thus, future research should focus on
the development of an efficient algorithm that can compute or approximate the log-norm
distance, enabling its application in real-world scenarios.

Similarly, the central spanning tree provides a framework for interpolating between dif-
ferent types of spanning trees, emphasizing the balance between data fidelity and stability.
Nonetheless, the stability has only been demonstrated empirically, and though Section 5.3
proposes an approach to formalize and measure the tree stability based on Lipschitz continu-
ity, it is still an open problem how to compute or bound analytically the Lipschitz constant.
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On the practical side, we have proposed an heuristic to approximate the optimum of the
minimization problem defining the CST problem. However, its lack of guarantees in ap-
proximating the optimum and limited testing on small benchmarks underscore the need for
further development and validation, especially in higher dimensions. Building upon our
heuristic, future work may yield improved methods with rigorous guarantees. Despite these
challenges, it is worth highlighting the potential practical impact demonstrated by the exper-
iments on single-cell inference trajectory, involving high-dimensional data, and 3D plant
skeletonization. Thus, we anticipate that the CST problem will become relevant in fields
where data can be effectively summarized or modeled using a spanning tree approach.

In conclusion, graphs serve as versatile structures for modeling relationships across a
wide array of domains. As such, the advancement of methods and tools for analyzing such
structures holds significant importance. We expect that the findings presented in this thesis
will contribute to the ongoing development and understanding of these methods, fostering
our ability to extract meaningful insights from graph data.





Appendix A

Directed Probabilistic Watershed

A.1 Directed Random Walker
The Random Walker proposed by Grady [66] answers the following question for undirected
graphs: What is the probability that a random walker starting at node q reaches seed s1
before reaching s2? If we considered the seeds as a set of absorbing nodes, then the proba-
bilities that the Random Walker computes are the absorbing probabilities of the seeds. The
Random Walker can easily be extended to the directed setting if we compute these proba-
bilities for a directed graph. In this section, we derive the absorption probabilities of a set
of seeds for a directed graph. We expect this result to be well known but we reproduce it
here for the convenience of the reader since we could not find any suitable reference that
expressed these probabilities in terms of the Laplacian matrix. G = (V,E,w) will stand
for a directed graph and S ⊂ V will be the set of seed/labeled nodes and U = V \S the
unlabeled nodes.

Let L denote the Laplacian matrix of G as defined in Definition 3. We index the Lapla-
cian matrix block-wise in terms of the unlabeled and labeled nodes in the following form

L =

(
LS B1

B2 LU

)
. (A.1)

Remark A.1.1. Invertibility of LU: Assume that for any u ∈ U , there exists some s ∈
S = V \U such that there is a directed path from u to s. Let Ĝ denote the graph formed
after merging all the vertices of S into one node s∗. By assumption, any node u ∈ U can
reach at least one seed in S, therefore s∗ will be reachable from any node. Consequently,
there exists at least one incoming tree in Ĝ rooted at s∗. Due to the Directed Matrix Tree
Theorem, det(L[s∗]

Ĝ
) = det(LU) ̸= 0, which implies that LU is non-singular.

In the light of the previous remark we assume that any node u ∈ U can reach at least
one of the seeds s ∈ S via a directed path. Otherwise, if a node could not reach any seed,
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then it will not have a well defined directed random walker probability.
For the moment, let us assume that none of the seeds is absorbing, i.e., every seed has at

least one out-going edge. Let

P := D−1A = I −D−1L⊤ (A.2)

be the transition probability matrix where D and A are defined as in the main text. Note
thatD is invertible since we assume that the seeds are not absorbing and any node can reach
one of the seeds, which implies that the out-degree of any node is greater than zero. The
entry Pij denotes the probability of transitioning from node i to node j in one hop. Note
that

∑
j∈V Pij = 1 for all i.

We can express, in conjunction with equation (A.2), the transpose of the transition prob-
ability matrix as

P⊤ =

(
IS − LSD−1

S −B1D
−1
U

−B2D
−1
S IU − LUD−1

U

)
.

Now consider the set of seeds S as absorbing nodes, i.e., once a random walker reaches
one of the seeds the random walker will vanish. Hence, the transition probability matrix will
have the following form

P̄⊤ =

(
IS −B1D

−1
U

0 IU − LUD−1
U

)
Theorem A.1.3 provides a closed formula for limn→∞(P̄ n)⊤ which will give us the ab-

sorbing probabilities of the seeds. In order to prove it, we need to state a series of definitions
and results that we state without proof [see 77, Chapter 5.6].

Definition 7. Given an arbitrary matrix A ∈ Rm×m, we define the 1-norm matrix of A as

||A||1 = max
j

m∑
i

|Aij|.

Lemma A.1.2. [see 77, Corollary 5.6.16] Given an arbitrary matrixA ∈ Rm×m, if ||A||1 < 1

then (A− I) is invertible and

(I − A)−1 =
∞∑
i=0

Ai. (A.3)

Now we can prove the following result.

Theorem A.1.3. Let P̄ be defined as before then

lim
n→∞

(
P̄⊤)n =

(
IS −B1L

−1
U

0 0

)
.
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Proof: Let us first prove by induction that

(
P̄⊤)n =

 IS −B1D
−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n
 .

It naturally holds for n = 1. By induction

(
P̄⊤)n+1

=
(
P̄⊤)n P̄⊤ =

 IS −B1D
−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n
( IS −B1D

−1
U

0 IU − LUD−1
U

)

=

 IS −B1D
−1
U −B1D

−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i+1

0
(
IU − LUD−1

U

)n+1



=

 IS −B1D
−1
U

n∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n+1


Now we will prove the case when n→∞. Let as assume that the limit exist. We express

it blockwise as

lim
n→∞

(
P̄⊤)n =

(
IS P̄⊤

1

0 P̄⊤
2

)
.

Since every node u ∈ U can reach a seed node, s, in a finite number of hops, there exists
a number of steps, k′ > 0, such that for all k ≥ k′, the probability, Psu(k), of being in seed
s at step k, is greater than 0. Hence, Mk :=

(
IU − LUD−1

U

)k is a substochastic matrix and
we have∣∣∣∣∣∣(IU − LUD−1

U

)k∣∣∣∣∣∣
1
= max

j

∑
i

[(
IU − LUD−1

U

)k]
ij

=︸︷︷︸
j∗

maximizer

1−
∑
s∈S

Psj∗(k)︸ ︷︷ ︸
>0

< 1.

Therfore,

lim
n→∞

||Mn
k ||1 = lim

n→∞

∣∣∣∣∣∣(IU − LUD−1
U

)n·k∣∣∣∣∣∣
1
= lim

n→∞

∣∣∣∣(IU − LUD−1
U

)n∣∣∣∣
1

≤ lim
n→∞

(∣∣∣∣IU − LUD−1
U

∣∣∣∣
1

)n
= 0⇒ P̄⊤

2 = lim
n→∞

(
IU − LUD−1

U

)n
= 0.

Furtheremore, as a consequence of Lemma A.1.2

∞∑
i=0

(
IU − LUD−1

U

)i
=
(
IU − IU + LUD

−1
U

)−1
=
(
LUD

−1
U

)−1
= DUL

−1
U .
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Finally,

P̄⊤
1 = lim

n→∞
−B1D

−1
U

n∑
i=0

(
IU − LUD−1

U

)i
= −B1D

−1
U

∞∑
i=0

(
IU − LUD−1

U

)i
= −B1D

−1
U DUL

−1
U = −B1L

−1
U

The entry
[
P̄⊤
1

]
su

, where s ∈ S and u ∈ U , is the probability that a random walker
starting at node u will be absorbed by s. That is because

[
P̄⊤
1

]
su

=
∑∞

i=1 Psu(k) where
Psu(k) is the probability of being at node s at kth step if you started at u.

Remark A.1.4. Note that P̄⊤
1 = −B1L

−1
U is the transposed version of the linear system

solved by the undirected Random Walker and equivalently the ProbWS [57, 66], i.e., P̄1 =

−
(
L⊤
U

)−1
B⊤

1 . Since [57, 66] consider an undirected graph, which can be interpreted as a
directed graph where each undirected edge has been replaced by a pair of directed edges
in opposite directions with the same weight, the equality

(
L⊤
U

)−1
= L−1

U holds and the
transposition becomes irrelevant.

A.2 Efficient Computation of the DProbWStrw Probabili-
ties

In this section, we will prove Theorem 2.4.4. Firstly, we demonstrate that in the DProbWStrw
variant, using a TRW with self-loops is equivalent to using the TRW without self-loops.
This equivalence enables us to leverage the Sherman-Morrison formula (Lemma A.2.2) to
establish the equality in Theorem 2.4.4, allowing us to efficiently exploit the sparsity of the
graph when solving the linear systems determining the DProbWStrw probabilities.

In Theorem 2.4.3 we have proven the equivalence between the random walker and the
in-forest approaches. Leveraging this equivalence, we can readily demonstrate that self-
loops do not affect the DProbWS probabilities. Since any in-forest does not contain cycles,
and therefore self-loops, adding self-loops to the graph does not alter the set of in-forests.
Consequently, the total weight of the set of in-forests remains unchanged when self-loops
are added to the graph. Therefore, the DProbWS probability remains unaffected (refer to
Definition 4). In light of Theorem 2.4.3, this implies that the random walker absorption
probabilities of the seeds are also independent of the presence of self-loops. Intuitively, we
can argue that in the long run the number of steps the random walker remains immobile at a
node (number of steps that the random walker traverses a self-loop) is irrelevant to the seed
absorption probability.

Formally, the graph with self-loops and without self-loops define the same Laplacian
matrix. Let A be the adjacency matrix of the graph without self-loops. If we add self-loops
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to the graph, the adjacency matrix of the graph with self-loops becomes Â = A+ d, where
d is a diagonal matrix indicating the weights of the self-loops edges. Therefore,

L = D − A⊤ = D + d︸ ︷︷ ︸
D̂

− (A⊤ + d)︸ ︷︷ ︸
Â⊤

= D̂ − Â⊤ = L̂,

which means the Laplacian of the graph without self-loops,L, is equal to the Laplacian of the
graph with self-loops, L̂. As a consequence of Theorem 2.3.6, the DProbWS probabilities
are also equal for both graphs.

Note that, although the Laplacians are unaffected by adding self-loops, the random
walker transition probabilities at each node will differ when self-loops are added. However, a
random walker defined on a graph with self-loops will determine the same absorption proba-
bilities as a random walker on the same graph without the self-loops. This equivalence holds
because the transition probabilities of the graph with self-loops, at each node, conditioned
to not traverse the self-loop of the node are equal to the transition probabilities in the graph
without the self-loops.

The following lemma proposes a variant of the TRW with self-loops which defines the
same DProbWS probabilities as the TRW without self-loops defined in equation (2.15).

Lemma A.2.1. The TRW without self-loops proposed in (2.15) determines the same DProbWS
probabilities as the TRW with self-loops defined by the following transition probability ma-
trix

P̂TRW = (1− η̂)P + η̂
1

n
11⊤, (A.4)

where η̂ = nη
η+n−1

.

Proof: As argued in the previous paragraphs, we just need to show that the transition prob-
abilities of the TRW with self-loops at each node conditioned to not traverse the self-loop
are equal to the transition probabilities in the graph without the self-loops. The probability
of traversing a self-loop in the TRW with self-loops is equal to

P̂TRW (self-loop) =
η̂

n
.

Consequently, the transition probability of the TRW with self-loops from node i to node j
conditioned to not traverse the self-loop is given by

P̂TRW (j|i,¬self-loop) =


P̂TRW (j|i)

1−P̂TRW (self-loop) =
P̂TRW (j|i)

1− η̂
n

if i ̸= j

0 if i = j
.

Hence, the transition probability of the TRW with self-loops conditioned to not traverse
any self-loop will be equal to

P̂TRW,¬self-loop =
(1− η̂)
1− η̂

n

P +
η̂

1− η̂
n

1

n

(
11⊤ − I

)
.
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Substituting η̂ by nη
η+n−1

we obtain

P̂TRW,¬self-loop = (1− η)P +
η

n− 1

(
11⊤ − I

)
= PTRW ,

i.e., we retrieve the transition probability matrix of the TRW without self-loops (2.15).

As we showed in equation (2.16), the linear system that determines the DProbWS prob-
ability can be reformulated in terms of the transition probability matrix as:

(I − PU)xsU = −
[
B̂⊤

1

]
s
, (A.5)

where I is the identity matrix with the appropriate size and B̂⊤
1 = D−1

U B⊤
1 , with D the

diagonal matrix whose entries are the out-degree of each node.1

If we use the TRW with self-loops, as specified by equation (A.4), equation (A.5) be-
comes (

(1− η̂)
(
I − P⊤

U

)
+
η̂

n
11⊤

)
x̃sU = −(1− η̂)

[
B̂⊤

1

]
s
− η̂

n
1. (A.6)

or alternatively((
I − P⊤

U

)
+

η̂

n(1− η̂)
11⊤

)
x̃sU = −

[
B̂⊤

1

]
s
− η̂

n(1− η̂)
1. (A.7)

Note that we use xsU and x̃sU to refer to the DProbWS and DProbWStrw probabilities respec-
tively.

The difference between the matrices of the linear systems in equations (A.5) and (A.7)
is equal to a 1-rank matrix

(I − PU) = (I − PU) = (I − PU)−
(
(I − PU) +

η̂

n(1− η̂)
11⊤

)
= − η̂

n(1− η̂)
11⊤.

Therefore, we can use the Sherman-Morrison formula [72].

Lemma A.2.2 (Sherman-Morrison formula [72]). Given an invertible matrix A ∈ Rm×m

and u, v ∈ Rm we have

(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

if and only if v⊤A−1u ̸= 1.

1We assume that the out-degree is distinct of zero for all nodes in the set of unlabeled nodes U .
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Let N = I − PU , then applying Lemma A.2.2 to (A.7) we obtain

x̃sU =

(
(I − PU) +

η̂

n(1− η̂)
11⊤

)−1(
−
[
B̂⊤

1

]
s
− η̂

n(1− η̂)
1

)
=

(
N +

η̂

n(1− η̂)
11⊤

)−1(
−
[
B̂⊤

1

]
s
− η̂

n(1− η̂)
1

)
=︸︷︷︸

Lemma A.2.2

(
N−1 − η̂

n(1− η̂)
N−111⊤N−1

1 + η̂
n(1−η̂)1

⊤N−11

)(
−
[
B̂⊤

1

]
s
− η̂

n(1− η̂)
1

)
= −N−1

[
B̂⊤

1

]
s
− η̂

n(1− η̂)
N−11

+
η̂

n(1− η̂)

N−111⊤N−1
[
B̂⊤

1

]
s

1 + η̂
n(1−η̂)1

⊤N−11
+

(
η̂

n(1− η̂)

)2
N−111⊤N−11

1 + η̂
n(1−η̂)1

⊤N−11

(A.8)

As stated in (2.16), we have that

−N−1
[
B̂⊤

1

]
s
= − (I − PU)−1D−1

U

[
B⊤

1

]
s
= xsU .

Defining y := N−11, equation (A.8) becomes

x̃sU = xsU −
η̂

n(1− η̂)
y − η̂

n(1− η̂)
y1⊤xsU

1 + η̂
n(1−η̂)1

⊤y
+

η̂

n(1− η̂)
y1⊤y

1 + η̂
n(1−η̂)1

⊤y

= xsU −
η̂

n(1−η̂)

1 + η̂
n(1−η̂)1

⊤y
y

((
1 +

η̂

n(1− η̂)
1⊤y

)
+ 1⊤xsU −

η̂
n(1−η̂)

1 + η̂
n(1−η̂)1

⊤y
1⊤y

)
Applying now the equality η̂ = nη

η+n−1
stated in Lemma A.2.1 we finally obtain

x̃sU = xsU −
η(η + 1)

1 + η1⊤y
y

((
1 +

η

(n− 1)(1− η)

)
+ 1⊤xsU −

η(η + 1)

1 + η1⊤y
1⊤y

)
, (A.9)

which proves Theorem 2.4.4. Hence, we have shown that DProbWStrw probabilities given
by x̃sU can easily be computed via (A.9), if we compute xsU and y. Moreover, the computation
of the DProbWStrw probabilities require to solve one additional sparse linear system in
comparison to the ones needed to compute the DProbWS probabilities, which costs much
less effort than solving a dense linear system per seed.

A.3 Further Experiment Details

A.3.1 Reference Methods

ARW method The method proposed in [45] is closely related to ours, due to the use of
Absorbing Random Walks (ARW). Conceptually, this method adds an absorbing meta node
to the original graph, which is connected to every node through and edge with certain weight
w̄.2 The algorithm computes the random walker expected accumulated number of visits to

2The weight w̄ is implicitly determined by a parameter α in the algorithm, which we set equal to 0.1 for all
our experiments. See [45] for more details.
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the seeds starting at a query node before being absorbed by the meta node. The expected
accumulated number of visits provides a notion of affinity between the nodes. The algorithm
assigns the label of the seed that maximizes the expected accumulated number of visits from
the unlabeled query node.

LLUD method The method proposed in [194] also uses the random walker. The LLUD
method considers an optimization problem over the space of classification functionsH(V ),
which assigns a real value f(v) to each vertex v ∈ V . The optimization problem is the
following

arg min
f∈H(V )

{Ω(f) + γ||f − y||} (A.10)

where y denotes the function inH(V ) defined by y(v) = 1 or−1 if vertex v has been labeled
as positive or negative respectively, and 0 if it is unlabeled. The functional Ω is defined as

Ω(f) :=
1

2

∑
(u,v)∈E

π(u)Puv

(
f(u)√
π(u)

− f(v)√
π(v)

)
, (A.11)

where π is the stationary distribution of the random walker, which is assumed to be
unique independently of the starting point.3 The functional Ω forces the classification func-
tion to be smooth, while the second term in (A.10) forces the function to preserve the label
of the seeds. The balance between this two terms is regulated by the parameter γ.4

GTG method The method in [54] interprets the classification of the nodes as a transductive
game where each player (node) can choose a strategy among a set of strategies (labels).
The proposed transduction game always has a Nash equilibrium which will define the final
labeling. Partial payoffs between two nodes are defined based on the weight of the edge
connecting these nodes. The total payoff of a node is the sum of its partial payoffs. The
Nash equilibrium is computed iteratively till convergence.

A.3.2 Datasets

Digits The Digits dataset5 [50, 183] consists of 8 × 8 pixel images of digits. The dataset
contains a total of 1797 images divided in 10 classes corresponding to the different digits.
We use this dataset to construct a kNN graph. The kNN graph is formed by 1797 nodes and
8985 edges.

3In practice, the uniqueness is ensured thanks to the use of the teleporting random walk.
4In the algorithm, the parameter γ is implicitly determined by another parameter µ, which we set equal to

0.9 for all our experiments. See [194] for more details.
5https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.

html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
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20Newsgroups The 20Newsgroups dataset6 [50, 100] is a collection of 11314 newsgroup
documents, partitioned across 20 different newsgroups. We only use the train data. We
define a kNN graph out of it. The kNN graph contains 11314 nodes and 56570 edges.

Email-EU The Email-EU dataset7 [105, 106, 187] is a directed unweighted graph that
was generated using email data from a large European research institution. An edge (u, v)

is present in the graph if person u sent an email to person v. There is a total of 1005 nodes
and 25571 edges. It has a total of 42 classes representing the departments at the research
institute.

Cora The Cora dataset8 [120] is a directed graph where each node represents a scientific
publication. An edge (u, v) is present in the graph if paper u cites v. There is a total of 2708
nodes and 5429 edges. It has a total of 7 classes representing the topics of the publications.

CiteseerX The CiteseerX dataset9 [146] is a directed graph where each node represents a
scientific publication. An edge (u, v) is present in the graph if paper u cites v. There is a
total of 3264 nodes and 4536 edges. It has a total of 6 classes representing the topics of the
publications.

A.3.3 k-Nearest Neighbor Graph Construction

The Digits and 20Newsgroups datasets are not graph datasets. To process them with the
DProbWS, we construct k-Nearest Neighbor (kNN) graphs out of them. Directed edges of
the kNN graphs are obtained as follows: an edge from node u to node v is present if and
only if v is among the k nearest neighbors of u. In our experiments we set k = 5 as in [45].

To generate the kNN graph first we need to embed the data points into a metric space.
In the case of the Digits dataset, since they are images, we just flatten the 8x8 images into
a vector of 64 dimensions. The 20Newsgroups is a text dataset. Via the TfidfVectorizer
class implemented in scikit-learn in Python10, we embed the datapoints into R130107.
TfidfVectorizer maps a collection of raw documents to a matrix of TF-IDF features,
where TF-IDF stands for “Term Frequency - Inverse Document Frequency”. TF-IDF is a

6https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_
20newsgroups.html

7http://snap.stanford.edu/data/email-Eu-core.html
8https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/

projects/lbc/
9https://networkrepository.com/citeseer.php

10https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
http://snap.stanford.edu/data/email-Eu-core.html
https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/projects/lbc/
https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/projects/lbc/
https://networkrepository.com/citeseer.php
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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statistic that aims to better define how important a word is for a document, while also taking
into account the relation to other documents from the same corpus [22].

Once the data points have been embedded, the weight of the assigned edge (u, v) is given
by wuv = exp(−||f(u) − f(v)||), where f(u) is the image of the node u in the embedding
space. Note that the structure of the graph and the weights depend on the distances between
the nodes in the embedding space. If the representation of the data in the embedding space
is poor, so will be the labeling.



Appendix B

Expected Degree and Variance in
Random Spanning Trees

B.1 Proof of Theorem 3.5.2

Here we prove Theorem 3.5.2, a well-known result for which we were unable to locate a
suitable reference.

Theorem B.1.1 (Restatement of Theorem 3.5.2). Given a connected edge-weighted undi-
rected graph G = (V,E,w), let TG stand for the set of all spanning trees of G. For an edge
e = (u, v) ∈ E, the probability that e belongs to spanning tree T ∈ TG is given by

Pr(e ∈ T) =


w(e)

(
ℓ
−1,[r]
uu + ℓ

−1,[r]
vv − 2ℓ

−1,[r]
uv

)
if r ̸= u, v

w(e)ℓ
−1,[v]
uu if r = v

w(e)ℓ
−1,[u]
vv if r = u

, (B.1)

where ℓ−1,[r]
ij denotes the entry ij of the inverse of the matrix L[r]

G (the Laplacian LG after
removing the row and the column corresponding to node r).

Proof: Consider the graph G\e = (VG, EG\{e}) formed from G once edge e has been
removed. Note that the Laplacians of G and G\e are related as follows:

LG\e = LG − w(e)be (be)⊤ ,

where be = 1u − 1v, with 1i representing the ith column of the identity matrix.
The set of spanning trees, denoted TG, can be divided into two subsets: trees that exclude

edge e (equivalent to TG\e sinceG\e lacks e) and those that include it. By applying the Matrix
Tree Theorem (Theorem 1.2.1) and the Determinant Lemma (Lemma 2.3.4), we can derive
the probability that a tree will contain edge e. We differentiate three different scenarios based
on the removal of node r from the Laplacian when employing the Matrix Tree Theorem.
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• Case r ̸= u, v:

Pr(e ∈ T) =
w(TG)− w(TG\e)

w(TG)
=︸︷︷︸

Theorem 1.2.1

det(L[r]
G )− det

( L
[r]
G\e︷ ︸︸ ︷

L
[r]
G − w(e)b

[r]
e

(
b[r]e
)⊤)

det(L[r]
G )

=︸︷︷︸
Lemma 2.3.4

det(L[r]
G )− det(L[r]

G )

(
1− w(e)

(
b
[r]
e

)⊤ (
L
[r]
G

)−1

b
[r]
e

)
det(L[r]

G )

= w(e)
(
ℓ−1,[r]
uu + ℓ−1,[r]

vv − 2ℓ−1,[r]
uv

)
Note that we can use Lemma 2.3.4 since L[r]

G is invertible. Indeed, since G is connected it
contains at least one spanning tree. Thus det(L[r]

G ) = w(TG) ̸= 0 as a consequence of the
Matrix Tree Theorem.

• Case r = u:

Pr(e ∈ T) =
w(TG)− w(TG\e)

w(TG)
=︸︷︷︸

Theorem 1.2.1

det(L[u]
G )− det

( L
[u]
G\e︷ ︸︸ ︷

L
[u]
G − w(e)1[u]

v

(
1[u]
v

)⊤)
det(L[u]

G )

=︸︷︷︸
Lemma 2.3.4

det(L[u]
G )− det(L[u]

G )

(
1− w(e)

(
1[u]
v

)⊤ (
L
[u]
G

)−1

1[u]
v

)
det(L[u]

G )

= w(e)
(
ℓ−1,[v]
uu

)
• Case r = v is analogous to case r = u.



Appendix C

Algebraic Path Problem for Graph
Metrics

C.1 Min-Norm Semiring

Lemma C.1.1. Given r > 0, the min-norm semiring (S,⊕,⊗r,∞, 0), whereS = R+∪{∞}
and

x⊕ y = min(x, y), x⊗r y = r
√
xr + yr. (C.1)

is a commutative selective semiring with 0̄ =∞ and 1̄ = 0 as its neutral elements.

Proof: We will only show the the associativity of ⊗r and the distributivity of ⊗r over ⊕.
• Associativity ⊗r

(x⊗r y)⊗r z = r
√
xr + yr ⊗r z = r

√(
r
√
xr + yr

)r
+ zr = r

√
xr + yr + zr

= r

√
xr +

(
r
√
yr + zr

)r
= x⊗r r

√
yr + zr = x⊗r (y ⊗r z)

(C.2)

• Distributivity:

(x⊕ y)⊗r z = r

√(
min(x, y)

)r
+ zr = r

√
min(xr, yr) + zr = r

√
min(xr + zr, yr + zr)

= min
(

r
√
xr + zr, r

√
yr + zr

)
= x⊗r z ⊕ y ⊗r z

(C.3)
The left-distributivity is a consequence of the commutativity of ⊗.

Lemma C.1.2. Let x, y ≥ 0. Then

lim
r→∞

(xr + yr)1/r = max(x, y).
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Proof: If x = 0 or y = 0, then the limit is trivial. Without loss of generality, we will assume
x ≥ y > 0. First note that

r
√
xr + yr = (xr + yr)1/r = exp

(
1

r
log (xr + yr)

)
.

Then

lim
r→∞

(xr + yr)1/r = lim
r→∞

exp
(
1

r
log (xr + yr)

)
= exp

(
lim
r→∞

1

r
log (xr + yr)

)
.

Applying L’Hôpital’s rule we obtain

lim
r→∞

1

r
log (xr + yr) = lim

r→∞

xr log(x) + yr log(y)
xr + yr

= lim
r→∞

log(x) +
(
y
x

)r log(y)
1 +

(
y
x

)r =︸︷︷︸
y
x
≤1

log(x).

(C.4)

Therefore exp
(

lim
r→∞

1

r
log (xr + yr)

)
= exp (log (x)) = x = max(x, y).

As a consequence of Lemma C.1.2, (S,⊕,⊗r,∞, 0) interpolates between the min-plus
and minimax semiring. Therefore, the min-norm distance also interpolates between the
shortest path and minimax distance.

C.2 APP of the Eisner Semiring Recovers the First Hitting
Cost

We show that the second entry of the APP associated with the Eisner semiring restricted to
hitting paths is equal to the first hitting costH(s, t):

⊕
℘∈Ph

st

⊗
e∈℘

(pe, pece) =
⊕
℘∈Ph

st

(∏
e∈℘

pe,

(∏
e∈℘

pe

)(∑
e∈℘

ce

))

=
⊕
℘∈Ph

st

(
Pr(℘),Pr(℘)c(℘)

)
=
( ∑
℘∈Ph

st

Pr(℘),
∑
℘∈Ph

ts

Pr(℘)c(℘)
)

=

(
E

℘∼Ph
st

[1] , E
℘∼Ph

st

[c(℘)]

)
=

(
1, E

℘∼Ph
st

[c(℘)]

)
= (1,H(s, t))

(C.5)

C.3 APP of the Log-Semiring Recovers the Potential Dis-
tance

We show that the APP associated with the log-semiring, when restricted to hitting paths,
recovers the first summand of the potential distance [61, 95], provided that the edge costs
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are defined as pe exp(−µce).

⊕
℘∈Ph

st

⊗
e∈℘

− 1

µ
log
(
pe exp(−µce)

)
=
⊕
℘∈Ph

st

∑
e∈℘

1

µ
log

(
pe exp(−µce)

)

=
⊕
℘∈Ph

st

− 1

µ
log

(∏
e∈℘

pe exp(−µ
∑
e∈℘

ce)

)

=
⊕
℘∈Ph

st

− 1

µ
log

(
Pr(℘) exp(−µc(℘))

)

= − 1

µ
log

( ∑
℘∈Ph

st

Pr(℘) exp(−µc(℘))

)

= − 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µc(℘)

)])

(C.6)

C.4 Log-Norm Strong Bimonoid

In this section, we prove that the operations defined in equation (4.11), and restated here in
(C.7), form a strong bimonoid over R+ × R+ ∪ {0̄}, where 0̄ represents the neutral element
of the operation ⊕µ. Since there is not a natural neutral element in R+ × R+ for ⊕µ, we
explicitly need to define an ad hoc neutral element.

Lemma C.4.1. Let r > 1, µ > 0. The log-norm algebraic structure(
R+ × R+ ∪ {0̄},⊕µ,⊗r, 0̄, 1̄

)
,

where 1̄ = (1, 0) and

(a, b)⊕µ (c, d) =
(
1,− 1

µ
log
(
ae−µb + ce−µd

))
(a, b)⊕µ 0̄ = 0̄⊕µ (a, b) = (a, b)

(a, b)⊗r (c, d) =
(
ac,

r
√
cr + dr

)
(a, b)⊗r 0̄ = 0̄⊗r (a, b) = 0̄,

(C.7)

defines a strong bimonoid.

Proof: Note that in (C.7) we define 0̄ to be absorbing. Thus, we just have left to show
that ⊕µ and ⊗r define monoids over R+ × R+. The associativity and commutativity of ⊗r
follow from the associativity and commutativity of the usual product operation in R+ and
the product operation of the min-norm semiring (Appendix C.2, equation (C.2)). It is also
trivial to show that the neutral element of ⊗r is 1̄ = (1, 0). Next we show the associativity
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of ⊕µ.

((a1, a2)⊕µ (b1, b2))⊕µ (c1, c2) =
(
1,− 1

µ
log
(
a1e

−µa2 + b1e
−µb2

))
⊕µ (c1, c2)

=

(
1,− 1

µ
log
(
a1e

−µa2 + b1e
−µb2 + c1e

−µc2
))

= (a1, a2)⊕µ
(
1,− 1

µ
log
(
b1e

−µb2 + c1e
−µc2

))
= (a1, a2)⊕µ ((b1, b2)⊕µ (c1, c2)) .

(C.8)

The commutativity of ⊕µ follows from the commutativity of the common sum.

Lemma C.4.2. Let r > 1, µ > 0. The associated APP of the log-norm strong bimonoid
defines the log-norm distance when the costs are set equal to (pe, ce), i.e.

LN(s, t) =

⊕
µ

℘∈Ph
st

⊗
r

e∈℘

(pe, ce) +
⊕

µ

℘∈Ph
ts

⊗
e∈℘

(pe, pece)


2

= − 1

µ
log
(
E℘∼Ph

st
[exp (−µ||c(℘)||r)]

)
− 1

µ
log
(
E℘∼Ph

ts
[exp (−µ||c(℘)||r)]

)
.

(C.9)

Proof:

⊕
℘∈Ph

st

⊗
e∈℘

(pe, pece) =
⊕
℘∈Ph

st

∏
e∈℘

pe, r

√∑
e∈℘

cre


=
⊕
℘∈Ph

st

(
Pr(℘), ||c(℘)||r

)

=

(
1,− 1

µ
log
( ∑
℘∈Ph

ts

Pr(℘) exp (−µ||c(℘)||r)
))

=

(
1,− 1

µ
log
(
E℘∼Ph

ts
[exp (−µ||c(℘)||r)]

))
(C.10)

Corollary C.4.3. Let µ > 0.
• The log-max algebraic structure

(
R+ × R+ ∪ {0̄},⊕µ,⊗∞, 0̄, 1̄ = (1, 0)

)
, where

(a, b)⊕µ (c, d) =
(
1,− 1

µ
log
(
ae−µb + ce−µd

))
(a, b)⊕µ 0̄ = 0̄⊕µ (a, b) = (a, b)

(a, b)⊗∞ (c, d) = (ac,max(c, d))

(a, b)⊗∞ 0̄ = 0̄⊗r (a, b) = 0̄,

(C.11)

defines a strong bimonoid.
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• The associated APP of the Log-max strong bimonoid defines the log-norm distance when
the costs are equal to (pe, ce), i.e.

LM(s, t) =

⊕
µ

℘∈Ph
st

⊗
∞

e∈℘

(pe, ce) +
⊕

µ

℘∈Ph
ts

⊗
∞

e∈℘

(pe, pece)


2

= − 1

µ

(
log

(
E

℘∼Ph
st

[
e−µmaxe∈℘ c(e)

])
+ log

(
E

℘∼Ph
ts

[
e−µmaxe∈℘ c(e)

]))
.

(C.12)

Proof: Consequence of the fact that lim
r→∞
⊗r = (×,max), LemmaC.4.1, and Lemma C.4.2

(see Lemma C.1.2).
Analogously, we define the strong bimonoids that would define the exp-norm and exp-

max distances presented in Table 4.1.

Lemma C.4.4.
1. Let r > 0. The exp-norm algebraic structure

(
R+ × R,⊕,⊗r, (0, 0), (1, 0)

)
defines an

strong bimonoid, where

(a, b)⊕µ (c, d) = (a+ c, b+ d)

(a, b)⊗r (c, d) =

(
ac, ac r

√(
b

a

)r
+

(
d

c

)r)
.

(C.13)

2. The exp-max algebraic structure
(
R+ × R,⊕,⊗∞, (0, 0), (1, 0)

)
defines an strong bi-

monoid, where
(a, b)⊕µ (c, d) = (a+ c, b+ d)

(a, b)⊗r (c, d) =
(
ac, acmax

(
b

a
,
d

c

))
.

(C.14)

Moreover the associated APP of the exp-norm and exp-max strong bimonoids define the
exp-norm and exp-max distances respectively when the costs are equal to (pe, pece), i.e.

⊕
µ

℘∈Ph
st

⊗
r

e∈℘

(pe, pece) +
⊕

µ

℘∈Ph
ts

⊗
r

e∈℘

(pe, pece)


2

= E
℘∼Ph

st

[||c(℘)||r] + E
℘∼Ph

ts

[||c(℘)||r] ,

(C.15)

and⊕
µ

℘∈Ph
st

⊗
∞

e∈℘

(pe, pece) +
⊕

µ

℘∈Ph
ts

⊗
∞

e∈℘

(pe, pece)


2

= E
℘∼Ph

st

[
max
e∈℘

c(e)

]
+ E

℘∼Ph
ts

[
max
e∈℘

c(e)

]
.

(C.16)
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Proof: We will only proof the exp-norm case, since the exp-max case is analogous. To prove
that the exp-norm is an strong bimonoid we will just show that the ⊗r is associative. The
rest of properties are trivial.

((a1, a2)⊗r (b1, b2))⊗r (c1, c2) =

(
a1b1, a1b1

r

√(
a2
a1

)r
+

(
b2
b1

)r)
⊗r (c1, c2)

=

a1b1c1, a1b1c1 r

√√√√√√√
a1b1

r

√(
a2
a1

)r
+
(
b2
b1

)r
a1b1


r

+

(
c2
c1

)r


=

(
a1b1c1, a1b1c1

r

√(
a2
a1

)r
+

(
b2
b1

)r
+

(
c2
c1

)r)

= (a1, a2)⊗r

(
b1c1, b1c1

r

√(
b2
b1

)r
+

(
c2
c1

)r)
= (a1, a2)⊗r ((b1, b2)⊗r (c1, c2)) .

(C.17)

The APP of the exp-norm strong bimonoid follows from

⊕
µ

℘∈Ph
st

⊗
r

e∈℘
(pe, pece) =

⊕
µ

℘∈Ph
st

∏
e∈℘

pe,

(∏
e∈℘

pe

)
r

√∑
e∈℘

cre


=
⊕

µ

℘∈Ph
st

(
Pr(℘),Pr(℘)||c(℘)||r

)
=
( ∑
℘∈Ph

st

Pr(℘),
∑
℘∈Ph

ts

Pr(℘)||c(℘)||r
)

=

(
E

℘∼Ph
st

[1] , E
℘∼Ph

st

[||c(℘)||r]

)
=

(
1, E
℘∼Ph

st

[||c(℘)||r]

)
.

(C.18)

C.5 Log-Norm Metric Limits
In this section, we prove the limits of the log-norm distance shown in Table 4.1. First, in
Lemma C.5.1 we prove the limits when µ→ 0+ and µ→∞ for a finite r.

Lemma C.5.1.

1.

lim
µ→0+

− 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µ||c(℘)||r

)])
− 1

µ
log

(
E

℘∼Ph
ts

[
exp

(
− µ||c(℘)||r

)])
= E

℘∼Ph
st

[||c(℘)||r] + E
℘∼Ph

ts

[||c(℘)||r]

(C.19)
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2.

lim
µ→∞

− 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µ||c(℘)||r

)])
− 1

µ
log

(
E

℘∼Ph
ts

[
exp

(
− µ||c(℘)||r

)])
= 2 min

℘∈Ph
st

||c(℘)||r
(C.20)

Proof: By showing the limit of the first summands we can derive the limit of the second in
an analogous way.
1.

lim
µ→0+

− 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µ||c(℘)||r

)])
=

lim
µ→0+

− 1

µ
log

∑
℘∈Ph

st

(Pr(℘) exp (−µ||c(℘)||r))

 =︸︷︷︸
L’Hôpital’s rule

lim
µ→0+

∑
℘∈Ph

st
(Pr(℘)||c(℘)||r exp (−µ||c(℘)||r))∑

℘∈Ph
st
(Pr(℘) exp (−µ||c(℘)||r))

=
∑
℘∈Ph

st

Pr(℘)||c(℘)||r = E
℘∼Ph

st

[||c(℘)||r]

(C.21)
2.

lim
µ→∞

= − 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µ||c(℘)||r

)])
=

lim
µ→∞

− 1

µ
log

∑
℘∈Ph

st

(
Pr(℘) exp

(
−µ
∑
e∈℘

ce

)) =︸︷︷︸
L’Hôpital’s rule

lim
µ→∞

∑
℘∈Ph

st
(Pr(℘)||c(℘)||r exp (−µ||c(℘)||r))∑

℘∈Ph
st
(Pr(℘) exp (−µ||c(℘)||r))

= min
℘∈Ph

st

||c(℘)||r

(C.22)

Since lim
r→∞

x ⊗r y = lim
r→∞

r
√
xr + yr = max(x, y) as a consequence of Lemma C.1.2,

we obtain all the limits exposed in Table 4.1. Note that for r = 1 we retrieve the potential
distance [61, 95] and their limits.

C.6 Proofs of Section 4.4

C.6.1 Proof Lemma 4.4.2

Lemma C.6.1 (Lemma 4.4.2). Given a graph G and arbitrary nodes s, t and q then
1.

APPh(s, t) = αh ⊕ βh ⊗ APPh(q, t). (C.23)
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2.
APPh(s, q) = βh ⊕ αh ⊗ APPh(t, q), (C.24)

where
αh :=

⊕
℘∈Ph

st
q/∈℘

⊗
e∈℘

c(e), βh :=
⊕
℘1∈Ph

sq

t/∈℘

⊗
e∈℘

c(e).

Proof:

1.

APPh(s, t) =
⊕
℘∈Ph

st

⊗
e∈℘

c(e)

=
⊕
℘∈Ph

st
q/∈℘

⊗
e∈℘

c(e)⊕
⊕
℘∈Ph

st
q∈℘

⊗
e∈℘

c(e)

=
⊕
℘∈Ph

st
q/∈℘

⊗
e∈℘

c(e)⊕
⊕
℘1∈Ph

sq

t/∈℘1

℘2∈Ph
qt

(⊗
e∈℘1

c(e)

)
⊗

(⊗
e∈℘2

c(e)

)

=
⊕
℘∈Ph

st
q/∈℘

⊗
e∈℘

c(e)

︸ ︷︷ ︸
αh

⊕

 ⊕
℘1∈Ph

sq

t/∈℘1

⊗
e∈℘1

c(e)


︸ ︷︷ ︸

βh

⊗

 ⊕
℘2∈Ph

qt

⊗
e∈℘2

c(e)


︸ ︷︷ ︸

APPh(q,t)

= αh ⊕ βh ⊗ APPh(q, t).

(C.25)

2. The second equality is proven analogously to the previous one once the following permu-
tation is done:

s→ s, q → t, t→ q

C.6.2 Proof Theorem 4.4.6

Theorem C.6.2 (Theorem 4.4.6). Let G = (V,E) be an S-graph. If
1. g is ⊗-subadditive, i.e. g(a⊗ b) ≤ g(a) + g(b), ∀a, b ∈ S,
2. g is increasing in S\{0̄} with respect to the order defined in (4.1), i.e., a ≼ b →

g(a) ≤ g(b) ∀a, b ∈ S\{0̄},
3. a ≼ a ⊗ APPh(t, q) ⊗ APPh(q, t) ∀a ∈ S, q, t ∈ V , i.e., aggregating the cost of the

cycles starting at an arbitrary node q and traversing a node t, does not decrease the
cost.1

1And also the distance, since g is increasing.
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then d, as defined in (4.12), satisfies the triangle inequality over the nodes of G.

Remark C.6.3. We need to consider that g is increasing in S\{0̄} because 0̄ ≼ s, ∀s ∈ S
since s⊕ 0̄ = s. However, by assumption g(0̄) =∞, thus g(0̄) ≥ g(s). If we did not exclude
0̄, g would map all elements of S to∞.

Proof: We need to prove that the triangle inequality (4.15) holds. Let s, q and t be arbitrary
nodes of G. Due to the subadditivity of g, we have

g
(
APPh(s, q)⊗ APPh(q, t)

)
≤ g
(
APPh(s, q)

)
+ g
(
APPh(q, t)

)
.

Therefore, as a consequence of (C.23), it will be enough to show

dL(s, t) = g
(
APPh(s, t)

)
= g
(
αh ⊕ βh ⊗ APPh(q, t)

)
≤ g
(
APPh(s, q)⊗ APPh(q, t)

)
= dL(s, q) + dL(q, t),

which will follow from

αh ⊕ βh ⊗ APPh(q, t) ≼ APPh(s, q)⊗ APPh(q, t). (C.26)

since g is increasing. As a consequence of equation (C.24), it suffices to show the following
inequality

αh ⊕ βh ⊗ APPh(q, t) ≼ APPh(s, q)⊗ APPh(q, t)

=
(
αh ⊗ APPh(t, q)⊕ βh

)
⊗ APPh(q, t)

= αh ⊗ APPh(t, q)⊗ APPh(q, t)⊕ βh ⊗ APPh(q, t),

(C.27)

which holds if
αh ≼ αh ⊗ APPh(t, q)⊗ APPh(q, t). (C.28)

Indeed, (C.28) holds thanks to our third assumption.

C.7 Use Case of the Results in Section 4.4
Corollaries from Theorem 4.4.5 and Theorem 4.4.6

As a consequence of Theorem 4.4.5 we can show that the Min-norm distances and the poten-
tial distance define proper metrics (Corollary C.7.1 and (Corollary C.7.2)). Analogously,
from Theorem 4.4.6 we can show that the commute Cost Distance defines a metric (Corol-
lary C.7.3).

Corollary C.7.1. Min-norm distances, including the shortest path and minimax distances,
are graph node metrics.
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Proof: We will apply Theorem 4.4.5. Since g is equal to the identity function, the subaddi-
tivity follows from the subadditivity of r-th roots:

a⊗r b = r
√
ar + br ≤ a+ b, ∀r ≥ 1, ¡. (C.29)

Trivially, the subadditivity also holds for the max operation.
Furthermore, the identity function g is a decreasing function since

a ≼ b ⇐⇒ ∃c ∈ S s.t. min(a, c) = a⊕ c = b ⇐⇒ b ≤ a. (C.30)

Finally, the third assumption is a consequence of the increasing nature of the⊗r and max
operations: for a, b ∈ R+ we have

a⊗r b = r
√
ar + br ≥ a⇒ a⊗r b ≼ a; max(a, b) ≥ a⇒ a⊗∞ b ≼ a

Therefore, a⊗ APPh(q, t)⊗ APPh(t, q) ≼ a.

Corollary C.7.2. The potential distance [61, 95] defines a metric.

Proof: We will apply Theorem 4.4.5. The potential distance can be retrieved by the APP
associated with the log-semiring. In this case⊗ coincides with+. Therefore, g is the identity
⊗-homomorphism and the subadditivity follows trivially.

The function g is a decreasing function since

a ≼ b ⇐⇒ ∃c ∈ S s.t. a⊕µ c = −
1

µ
log
(
e−µa + e−µc

)
= b

⇐⇒ ∃c s.t. c = − 1

µ
log
(
e−µb − e−µa

)
⇐⇒ b ≤ a

(C.31)

The third assumption of Theorem 4.4.5 follows from the fact that the cost of a path is strictly
positive and that a⊗ b = a+ b ≼ a since a ≤ a+ b for b ≥ 0.

Corollary C.7.3. The Commute Cost Distance defines a metric.

Proof: Note that the values of the semiring that we consider lie in {1} × R+, since the first
entry of APP(s, t)h is equal to

∑
℘∈Pst

Pr(℘) = 1 (see Remark 4.4.4). Thus we just need to
show the properties of Theorem 4.4.6 for this subset of elements.

In this case, g is the projection of the second entry of R+×R+. Hence, the subadditivity
follows from

g
(
(1, c1)⊗ (1, c2)

)
= g
(
(1, c1 + c2)

)
= c1 + c2 = g

(
(1, c1)

)
+ g
(
(1, c2)

)
. (C.32)
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The function g is an increasing function since

(p1, c1) ≼ (p2, c2) ⇐⇒

∃(p3, c3) ∈ S s.t. (p1, c1)⊕µ (p3, c3) = (p1 + p3, c1 + c3) = (p2, c2)

⇐⇒ ∃p3, c3 > 0 s.t. p1 + p3 = p2 & c1 + c3 = c2

⇒ c1 ≤ c2.

(C.33)

The third assumption of Theorem 4.4.6 follows from

(p1, c1) ≼ (p1, c1)⊗APPh(t, q)︸ ︷︷ ︸
=(1,c2)

⊗APPh(q, t)︸ ︷︷ ︸
=(1,c3)

= (p1, c1)⊗(1, c2)⊗(1, c3) = (p1, c1+p1(c2+c3)),

since c1 ≤ c1 + p1(c2 + c3) because p1, c2, c3 ≥ 0.

Novel metric

In order to illustrate the application of the results exposed in Section 4.4, we will define a
graph distance that can be easily verified to be a metric thanks to Theorem 4.4.5.

Let pij ∈ [0, 1) be the transition probabilities of a vanishing random walker, i.e. a
random walker for which there exist at least one node k where

∑
j pkj < 1. That is, there is

a non-zero probability that the random walker ”vanishes”. Alternatively, one could interpret
that there exists an absorbing node, i∗, to which every node, i, can transition with probability
pii∗ = 1−

∑
j ̸=i∗ pij . In such case, there exists at least one node k such that pki∗ > 0.

Let

d(s, t) :=



dL(s,t)︷ ︸︸ ︷
−1

r
log

∑
℘∈Ph

st

∏
(i,j)∈E

prij


dR(s,t)︷ ︸︸ ︷

−1

r
log

∑
℘∈Ph

ts

∏
(i,j)∈E

prij

 if s ̸= t

0 otherwise

(C.34)

We claim that (C.34) defines a metric. To prove it we will apply Theorem 4.4.5.
First, consider the semiring S = {R+,⊕r, ·, 0, 1} with x ⊕r y = r

√
xr + yr, r ≥ 1 and

g(x) = − log(x). Note that if s ̸= t, then⊕
℘∈Ph

st

⊗
e∈℘

pe =
∏
℘∈Ph

st

r

√∑
e∈℘

pre = r

√ ∏
℘∈Ph

st

∑
e∈℘

pre. (C.35)

If we apply the function g(x) = − log(x) to (C.35), we retrieve (C.34):

g

⊕
℘∈Ph

st

⊗
e∈℘

pe

 = − log


r

√ ∏
℘∈Ph

st

∑
e∈℘

pre

 = −1

r
log

∑
℘∈Ph

st

∏
(i,j)∈E

prij

 = dL(s, t).

(C.36)
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From the definition of (C.34), it is clear that d(s, t) satisfies the symmetry and indis-
cernible properties. It is only left to prove the triangle inequality to show that (C.34) is
indeed a metric. This property follows easily from Theorem 4.4.5, since:

• g(x) = − log(x) is ⊗-subadditive:

g(a⊗ b) = − log(a⊗ b) = log
(

r
√
ar + br

)
= −1

r
log(ar + br)

= −1

r
log(ar)− 1

r
log(br) = − log(a)− log(b)) = g(a) + g(b)

• g(x) = − log(x) is decreasing: Note that a ≼ b ⇐⇒ ∃c ∈ R+ such that ar + cr = br.
Consequently,

a ≼ b ⇐⇒ a ≤ b. (C.37)

Thus, if a ≼ b, then

g(b) = − log(b) = − log
(

r
√
ar + cr

)
= −1

r
log(ar+cr) ≤ −1

r
log(ar) = − log(a) = g(a).

• A similar argument as was used in [61] (see Remark 4.4.4) can be used to show that
APPh(t, q) =

⊕
℘∈Ph

st

⊗
e∈℘ pe ≤ 1. Hence, a ⊗ APPh(t, q) ⊗ APPh(q, t) ≼ a, ∀a ∈

S, q, t ∈ V follows from this fact together with (C.37).

We have just proven the following corollary.

Corollary C.7.4. Given the transition probabilities of a vanishing random walker, pij ∈
[0, 1) , over an arbitrary graph G, the function d(s, t) defines a metric.

d(s, t) :=


−1
r

log

∑
℘∈Ph

st

∏
(i,j)∈E

prij

− 1
r

log

∑
℘∈Ph

ts

∏
(i,j)∈E

prij

 if s ̸= t

0 otherwise

. (C.38)

We provide a bit of intuition about this metric: when r = 1, the expression in the brackets
of the logarithm is equal to the absorbing probability of t from s before the random walker
vanishes.

lim
r→1

∑
℘∈Ph

st

∏
(i,j)∈E

prij =
∑
℘∈Ph

st

∏
(i,j)∈E

pij =
∑
℘∈Ph

st

Pr(℘)

Thus, when r → 1, nodes are closer if they have higher absorbing probability before the
RW vanishes. On the other extreme, when r →∞, then the distance focuses on the path of
maximum probability between two nodes. If we consider pij = exp(−cij),2 the limit case

2In this case we are assuming that cij are high enough for all i, j such that
∑

k exp(−cik) < 1.
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r →∞ would be equivalent to twice the shortest path cost with edge costs equal to cij:

lim
r→∞

dL(s, t) = lim
r→∞
−1

r
log

∑
℘∈Ph

st

∏
(i,j)∈E

exp(−r · cij)


= lim

r→∞
− log


r

√∑
℘∈Ph

st

exp (−r · c(℘))

 = − log
(

max
℘∈Ph

st

exp (−c(℘))
)

= min
℘∈Pst

c(℘).

C.8 Log-Norm Distance

In this section we will prove that the log-norm distance defines a metric over the nodes of
a graph with positive edge-costs. Since the log-norm operations ⊗r and ⊕µ do not define
a semiring, we can not use the results developed in Section 4.4. Therefore, we present an
additional proof for the log-norm distance.

Lemma C.8.1. Given r ≥ 1, µ > 0 and c : E 7→ R+ then

LN(s, t) = − 1

µ

 log

(
E

℘∼Ph
st

[
exp

(
−µc(||℘||r)

)])
+log

(
E

℘∼Ph
ts

[
exp

(
−µc(||℘||r)

)])
(C.39)

defines a distance over the vertices of the graph.

Proof: The symmetry, non-negativity and the equality LN(s, s) = 0 are trivial conse-
quences of the definition. Moreover, if we assign to each e ∈ E a cost c(e) > 0, then
c(||℘||r) > 0 for any path ℘. Consequently, LN(s, t) > 0 for s ̸= t.

From now on, we focus on the triangle inequality. We will show the triangle inequality
for the terms with the paths in Phst since the case for Phts is analogous. Hence, we claim

− 1

µ
log

(
E

℘∼Ph
st

[
exp

(
− µ||c(℘)||r

)])

≤ − 1

µ
log

(
E

℘∼Ph
sq

[
exp

(
− µ||c(℘)||r

)])
− 1

µ
log

(
E

℘∼Ph
qt

[
exp

(
− µ||c(℘)||r

)])
(C.40)

Equation (C.40) is equivalent to

E
℘∼Ph

st

[
exp

(
− µ||c(℘)||r

)]
≥ E

℘∼Ph
sq

[
exp

(
− µ||c(℘)||r

)]
E

℘∼Ph
qt

[
exp

(
− µ||c(℘)||r

)]
(C.41)
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after applying − 1
µ

log(·) to both sides of (C.41). Next, in order to isolate the terms on the
right-hand side of (C.41), we separate the set of hitting paths from s to t into those that cross
the third node q and those that do not.

E
℘∼Ph

st

[
exp

(
− µ||c(℘)||r

)]
=
∑
℘∈Ph

st

Pr(℘) exp
(
− µ||c(℘)||r

)
∗
≥

∑
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t/∈℘1

∑
℘2∈Ph
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− µ||c(℘1)||r

)
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− µ||c(℘2)||r

)

+
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st
q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

=

 ∑
℘1∈Ph

sq

t/∈℘1

Pr(℘1) exp
(
− µ||c(℘1)||r

)
 ∑
℘2∈Ph

qt

Pr(℘2) exp
(
− µ||c(℘2)||r

)
+
∑
℘∈Ph

st
q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

=

 ∑
℘1∈Ph

sq

Pr(℘1) exp
(
− µ||c(℘1)||r

)
−

∑
℘1∈Ph

sq
t∈℘1

Pr(℘1) exp
(
− µ||c(℘1)||r

)
×

 ∑
℘2∈Ph

qt

Pr(℘2) exp
(
− µ||c(℘2)||r

)+
∑
℘∈Ph

sq

q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

=

 ∑
℘1∈Ph

sq

Pr(℘1) exp
(
− µ||c(℘1)||r

)
 ∑
℘2∈Ph

qt

Pr(℘2) exp
(
− µ||c(℘2)||r

)

−

 ∑
℘1∈Ph

sq
t∈℘1

Pr(℘1) exp
(
− µ||c(℘1)||r

)
 ∑
℘2∈Ph

qt

Pr(℘2) exp
(
− µ||c(℘2)||r

)
+
∑
℘∈Ph

st
q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

= E
℘∼Ph

sq

[
exp

(
− µ||c(℘)||r

)]
E

℘∼Ph
qt

[
exp

(
− µ||c(℘)||r

)]

−

 ∑
℘1∈Ph

sq
t∈℘1

Pr(℘1) exp
(
− µ||c(℘1)||r

)
 ∑
℘2∈Ph

qt

Pr(℘2) exp
(
− µ||c(℘2)||r

)
+
∑
℘∈Ph

st
q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

(C.42)
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In ∗ we have used the fact that

r

√∑
i∈I1

xri +
∑
i∈I2

yri ≤ r

√∑
i∈I1

xri + r

√∑
i∈I2

yri .

and that exp(−x) is a decreasing function. Note that for r = 1 equality holds.
In order to show (C.41) from (C.42) we need to prove

∑
℘∈Ph

st
q/∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)

≥

∑
℘∈Ph

sq
t∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)
∑
℘∈Ph

qt

Pr(℘) exp
(
− µ||c(℘)||r

) (C.43)

Let ℘1 ⊙ ℘2 denote the concatenation of paths. Since c(e) > 0 we deduce

c(℘1 ⊙ ℘2) = r

√ ∑
e∈℘1⊙℘2

(
c(e)

)r ≥ r

√∑
e∈℘1

(
c(e)

)r
= c(℘1).

Thus,

∑
℘∈Ph

sq
t∈℘

Pr(℘) exp
(
− µ||c(℘)||r

)
=

 ∑
℘1∈Ph

st
q/∈℘1

∑
℘2∈Ph

tq

Pr(℘1)Pr(℘2) exp
(
− µc(℘1 ⊙ ℘2)

)

≤

 ∑
℘1∈Ph

st
q/∈℘1

∑
℘2∈Ph

tq

Pr(℘1)Pr(℘2) exp
(
− µc(℘1)

) =
∑
℘1∈Ph

st
q/∈℘1

Pr(℘1) exp
(
− µc(℘1)

)
(C.44)

Since ||c(℘)||r > 0 for any ℘ ∈ Phij for any vertices i ̸= j. Therefore,∑
℘∈Ph

st

Pr(℘) exp
(
− µ||c(℘)||r

)
<
∑
℘∈Ph

st

Pr(℘) = 1. (C.45)

Then equation (C.43) follows from (C.44) and (C.45).
Note that, as a consequence of the previous theorem, the triangle inequality of the exp-

max, log-max and exp-norm limits exposed in Table 4.1 is also satisfied. Indeed, by taking
the corresponding limits in both sides of the log-norm triangle inequality, the inequality will
still hold.

C.9 Log-Norm Distance and the Randomized Shortest Paths
In this section we will relate the log-norm distance with the Helmholtz free energy, following
the same reasoning that related the potential distance with the free energy in [95]. Let s and
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t be two arbitrary but fixed nodes in the graph G. As defined in [95], the free energy of a
thermodynamical system modelled by the probability distribution Prst and with temperature
T = 1/µ is given by

Φ(Prst) =
∑
℘∈Ph

st

Prst(℘)c(℘) +
1

µ
KL
(

Prst, Prref ), (C.46)

where Prref(℘) =
∏

e∈℘ pe is the probability that a path ℘ ∈ Phst is generated by a random
walker and KL is the Kullback-Leibler divergence. In our setting, the cost of a path will be
given by ||c(℘)||r. Therefore, we use the following expression for the free energy

Φr(Prst) =
∑
℘∈Ph

st

Prst(℘)||c(℘)||r +
1

µ
KL
(

Prst, Prref ). (C.47)

We will show that the symmetrized minimum free energy between two nodes s and t (free
energy distance in [95]) coincides with the log-norm distance, i.e.

LN(s, t) = Φr(Prst) + Φr(Prts).

First, we define the probability distribution over the hitting paths from s to t as the one that
minimizes the free energy

Pr∗st(·) := arg min
Pr(·)

∑
℘∈Ph

st

Pr(℘)||c(℘)||r +
1

µ
KL
(

Prst, Prref ). (C.48)

It can be easily checked that the minimizer is given by the following Gibbs probability dis-
tribution [95]

Pr∗st(℘) =
Prref(℘) exp (−µ||c(℘)||r)∑

℘̂∈Ph
st

Prref(℘̂) exp (−µ||c(℘̂)||r)
. (C.49)
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If we now compute the KL-divergence between Pr∗st and Prref we obtain

KL
(

Pr∗st, Prref ) = ∑
℘∈Ph

st

Pr∗st(℘) log
(

Pr∗st(℘)
Prref(℘)

)

=
∑
℘∈Ph

st

Pr∗st(℘) log

 Prref(℘) exp (−µ||c(℘)||r)∑
℘̂∈Ph

st

Prref(℘̂) exp (−µ||c(℘̂)||r)


−
∑
℘∈Ph

st

Pr∗st(℘) log
(

Prref(℘)
)

=
∑
℘∈Ph

st

Pr∗st(℘) log
(

Prref(℘)
)
− µ

∑
℘∈Ph

st

Pr∗st(℘)||c(℘)||r

− log

∑
℘̂∈Ph

st

Prref(℘) exp (−µ||c(℘)||r)

− ∑
℘∈Ph

st

Pr∗st(℘) log
(

Prref(℘)
)

= −µ
∑
℘∈Ph

st

Pr∗st(℘)||c(℘)||r − log

∑
℘∈Ph

st

Prref(℘) exp (−µ||c(℘)||r)


(C.50)

Combining this result with (C.47) it follows that

Φr(Pr∗st) = −
1

µ
log

∑
℘∈Ph

st

Prref(℘) exp (−µ||c(℘)||r)

 .

Finally, symmetrizing this expression we obtain the log-norm distance.

C.10 Exp-Max and Log-Max Metric Computation

Currently, there does not exist any efficient algorithm to compute the log-norm distance, LN,
in its general form. Nonetheless, we briefly sketch here a possible algorithm to compute the
novel exp-max distance (EM) that arises as a limit case of LN (see Table 4.1).

EM(s, t) = E
℘∼Ph

st

[
max
e∈℘

c(e)

]
︸ ︷︷ ︸

EML(s,t)

+ E
℘∼Ph

ts

[
max
e∈℘

c(e)

]
︸ ︷︷ ︸

EMR(s,t)

(C.51)

Let G = (V,E) be a graph, ℓ(E) be the set of edge costs instantiated by the graph G, and
Phst(c) be the set of paths with maximum cost equal to c:

ℓ(E) := {c(e) : e ∈ E} (C.52)

Phst(c) := {℘ ∈ Phst : c = max
e∈℘

c(e)} (C.53)
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We can decompose the left summand of EM as

EML(s, t) = E
℘∼Ph

st

[
max
e∈℘

c(e)

]
=
∑
℘∈Ph

st

Pr(℘)max
e∈℘

c(e)

=
∑
c∈ℓ(E)

∑
℘∈Ph

st(c)

Pr(℘)max
e∈℘

c(e) =
∑
c∈ℓ(E)

cPr
(
℘ ∈ Phst(c)

)
.

Let P□c := Pr(℘ ∈ ∪c′□cPhst(c′)) with □ ∈ {<,≤}. Thus,

Pr
(
℘ ∈ Phst(c)

)
= P≤c − P<c (C.54)

can be computed in closed form, since P<c (P≤c) is the probability of reaching t from s

without traversing an edge with lower (or equal) cost than c. This is equal to the absorption
probability of t, which can be computed analytically by solving a linear system (see The-
orem 2.4.1), once extra absorbing nodes have been set on the edges with higher (or equal)
cost than c (see Figure C.1). The computational cost of this algorithm scales with |ℓ(c)|. To
reduce the computational cost, we suggest to bin the edge costs coarsely.

Analogously, one can decompose the left summand of the log-max distance (LM) (see
Table 4.1) and approximate it in a similar form:

LML(s, t) = −
1

µ
log

(
E

℘∼Ph
st

[
e−µmaxe∈℘ c(e)

])
= − 1

µ
log

 ∑
c∈ℓ(E)

e−µc Pr
(
℘ ∈ Phst(c)

) .

(C.55)
We have shown that one can compute these particular limit instances of the log-norm dis-
tance.
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(c) Graph to compute P<4 = P≤3

Figure C.1. Computation Ranked Absorption Probability. C.1a) Graph with edge costs
and two marked nodes s and t. C.1b) Graph with two absorbing nodes (black nodes). Each
path connecting s and t that has a cost ||c(℘)||∞ = maxe∈℘ ce higher than 4 must contain
the edge with cost equal to 5. By adding artificial absorbing nodes to this edge, any random
walker that crosses this edge will be absorbed. We add two absorbing nodes per edge to
account for the directions of the edges, which could have different costs. Absorption proba-
bility at node t by a random walker starting at node s in this graph is equal to the probability
of sampling a path with cost lower or equal than 4, i.e., P≤4. C.1c) Analogously we can
compute P<4 if we add absorbing nodes in all edges with cost higher or equal than 4. Note
that since there are no edges with cost in between 3 and 4, we have that P<4 = P≤3.





Appendix D

Central Spanning Tree

D.1 Stability Examples
In this section, we show how stable the BCST and CST for different α values are. We sample
1000 points uniformly from uniform distributions over different supports and perturb them
by adding zero centered Gaussian noise. We generate two perturbations and show how the
tree structure evolves across different values. See Figures D.1 D.2 and D.3. As we increase
the value of α, the trees exhibit a more pronounced ”star-shaped” pattern and enhanced
stability. The parameter α provides a trade-off mechanism between preserving the structure
of the data and ensuring the stability of the resulting tree.

151
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(a) mST (CST, α = 0.0) (b) Steiner tree (BCST, α = 0))

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4

(g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8

(k) CST, α = 1.0 (l) BCST, α = 1.0

Figure D.1. (B)CST Examples from Rectangle Uniform Distribution. CST and BCST
are computed for two perturbed instances generated by adding zero-centered Gaussian noise
to points derived from a common sample uniformly taken within a rectangle. (B)CST for
higher α values are more robust to noise and adhere to large scale structure in the data better.
The width of each edge is proportional to its centrality. All trees except for the mST were
computed using the heuristic proposed in Section 5.6.2.

D.2 Reinterpreting CST as a Minimum Concave Cost Flow

In this section, we will pose the central spanning tree (CST) problem as a minimum concave
cost network flow (MCCNF) problem. The MCCNF problem minimizes the transportation
cost of a commodity from sources to sinks. Here, the edge costs are modeled by concave
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(a) mST
(CST, α = 0.0)

(b) Steiner tree
(BCST, α = 0)

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4 (g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8 (k) CST, α = 1.0 (l) BCST, α = 1.0

Figure D.2. (B)CST Examples from Triangle Uniform Distribution. CST and BCST are
computed for two perturbed instances generated by adding zero-centered Gaussian noise
to points derived from a common sample uniformly taken within a triangle. (B)CST for
higher α values are more robust to noise and adhere to large scale structure in the data better.
The width of each edge is proportional to its centrality. All trees except for the mST were
computed using the heuristic proposed in Section 5.6.2.

functions that depend on the edge flow. Formally, given a demand vector µ ∈ RN with∑N
i=1 µi = 0 and a network G = (V,E) with N nodes, we define the MCCNF problem as

min
f

∑
ij∈E

Cij(fij), subject to

∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji = µi, ∀i ∈ V

fij ≥ 0

. (D.1)

In the equation, fij represents the flow associated with edge (i, j) and Cij is a concave
function dependent on fij which determines the cost of the edge (i, j). Note that the network
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(a) mST
(CST, α = 0.0)

(b) Steiner tree
(BCST, α = 0.0)

(c) CST, α = 0.2 (d) BCST, α = 0.2

(e) CST, α = 0.4 (f) BCST, α = 0.4 (g) CST, α = 0.6 (h) BCST, α = 0.6

(i) CST, α = 0.8 (j) BCST, α = 0.8 (k) CST, α = 1.0 (l) BCST, α = 1.0

Figure D.3. (B)CST Examples from Non-Convex Uniform Distribution.CST and BCST
are computed for two perturbed instances generated by adding zero-centered Gaussian noise
to points derived from a common sample uniformly taken within a non convex shape.
(B)CST for higher α values are more robust to noise and adhere to large scale structure
in the data better. The width of each edge is proportional to its centrality. All trees except
for the mST were computed using the heuristic proposed in Section 5.6.2.

defined by the flow, i.e. by the edges with fij > 0, does not necessarily have to be a tree.
We will refer to nodes with negative demands as sources and nodes with positive demands
as sinks.

To be able to represent the CST problem as an MCCNF, we need to identify the terms
me as flows. Since the function (me(1−me))

α ce is concave for α ∈ [0, 1], it will follow
that the CST is an instance of the MCCNF problem.

Next, we will show how theme can be interpreted as the flow along an edge of a particular
single source flow problem. Consider a graph withN nodes, where there is one source node
s with a mass (N − 1)/N that needs to be transported to the rest of the nodes. Each sink
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node has a demand of 1/N mass. Thus, (D.1) becomes

min
x

∑
ij∈E

cij
(
fij(1− fij)

)α
, subject to

∑
(j,s)∈E

fjs −
∑

(s,j)∈E

fsj =
N − 1

N
,

∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji =
1

N
, ∀i ̸= s

fij ≥ 0

(D.2)

For single source flow problems, it is well-known that the optimal solutions can only form
trees [188]. We will show that for this particular problem, fij is equal to mij for any tree.
Recall that for a given tree T, the value me associated with an edge e was defined as the
number of nodes that lie on one of the sides of e divided by the total number of nodes. Al-
though for our purposes the chosen side of the edge is arbitrary, since the objective function
is symmetrized thanks to being multiplied by (1 −me), that is not the case when we want
to interpret it as a flow. However, which side to choose will be canonically determined by
the flow direction.

Let T be a feasible solution of (D.2), i.e. a tree. The flow fij at edge (i, j) of T indicates
the outgoing mass that is transported through the edge. This mass is equal to the sum of the
demands of the nodes that lie in the side of the edge (i, j) indicated by the flow. Given that
each node has a demand of 1/N , then the flow fij is equal to 1/N multiplied by the number
of nodes in the side in question, that is fij = mij .

D.2.1 Relation to the Branched Optimal Transport Problem

The branched or irrigation optimal transport (BOT) problem is also a particular MCCNF
instance. In the BOT problem, the nodes are embedded in a Euclidean space and also allows
for the inclusion of additional Steiner points. It is an extension of the optimal transport prob-
lem, distinguished by its diminishing costs which lead to a branching effect by promoting
the joint transportation of mass.

Formally, the BOT problem minimizes

min
xB ,mE

∑
(i,j)∈E

mα
ij ∥xi − xj∥2 , subject to

∑
(i,j)∈E

mij −
∑

(j,i)∈E

mji = µi, ∀i ∈ V ∪B

mij ≥ 0

, (D.3)

where mij is the flow transported along an edge (i, j) and B and xB are the set of SPs and
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Problem

their coordinates, respectively. As before, the vector µ represents the demands of the nodes.
The demands of the SPs are set to zero.

In the scenario where there is a single source and all nodes share the same demand, the
BCST and BOT problems differ only in the factors that multiply the distances. In the BOT
problem, these factors correspond to mα

ij , representing the mass transported along an edge
raised to the power of α. In the BCST problem, the factors are given by

(
mij(1 −mij)

)α,
representing the centralities of the edges raised to the power of α. It is worth mentioning,
that both problems converge to the Steiner tree problem when α = 0.

The primary distinction between the two problems lies in the selection of a source node.
In the BOT problem, the selection of the source node determines the optimal topology of the
network. However, that is not the case for the BCST problem. Indeed, for the BCST problem,
the specific source node chosen is irrelevant due to the symmetrization effect caused by the
termme(1−me). In other words, the location of the source determines the edge orientation,
which then defines the value of me. Nonetheless, this effect is nullified when multiplied by
(1 − me). This independence of the source node choice makes the BCST a more natural
extension of the Steiner tree problem, since it does not require the choice of sources and
sinks, unlike the BOT problem.

D.3 Equivalence of the CST Problem with α = 1 and the
Minimum Routing Cost Tree Problem

As mentioned in the main text, the term mij(1 − mij) is proportional to the betweenness
centrality of the edge (i, j). This centrality quantifies the number of shortest paths that
traverse the given edge. Thus, the multiplication of the length of each edge by its frequency
in a shortest path is a rearrangement of the sum over all shortest path costs, i.e. the MRCT
cost. Formally,

∑
i,j∈V×V

dT(i, j) =
∑

i,j∈V×V

∑
(u,v)∈℘ij

||xu − xv||

=
∑

(u,v)∈T

∣∣{℘ij : (u, v) ∈ ℘ij, i, j ∈ V × V }
∣∣︸ ︷︷ ︸

(u,v) betweeness centrality

||xu − xv||

∝
∑

(u,v)∈T

muv(1−muv)||xu − xv||,

(D.4)

where dT(i, j) is the shortest path distance in tree T between i and j realized by the path ℘ij .



D.4. Limit Cases of the CST/BCST Problems Beyond the Range α ∈ [0, 1] 157

D.4 Limit Cases of the CST/BCST Problems Beyond the
Range α ∈ [0, 1]

In this section, we investigate the topologies of the limit cases of the CST as α approaches
±∞. We will use the following notation.

• N will represent the number of terminals.
• For a given tree T containing edge (x, y), mT

xy indicates the proportion of nodes (nor-
malized by N ) that are reachable from x, once edge (x, y) is removed from T. That
is, the normalized number of nodes that lie in the side of x.

• For a given tree T, the term Nx denotes the set of neighbors of x in T

D.4.1 Proof Theorem 5.2.2

Theorem 5.2.2 states that when a “stronger” variant of the triangle inequality holds, then the
optimum solution of the BCST problem is a star tree. We divide the proof into two lemmas,
Lemma D.4.1 that proves it for the CST problem; and Lemma D.4.2 for the BCST case.

Lemma D.4.1. Given a complete graph G with N nodes, let cij be the edge-costs of any
pair of nodes i, j in the graph. If there exists

t ≤ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (D.5)

for all triangles in the graph, then there exists an optimum CST evaluated at α which is a
star tree.

Proof: We will show that given a tree T, we can always increase the degree of a particular
node without increasing the CST-cost. Without loss of generality, we can assume n ≥ 4,
otherwise, any possible tree is a star-tree and the result holds trivially.

Let us assume that T is not a star-tree. Thus, there exist at least two nodes, u and v, with
degrees higher than 1, such that they are adjacent to each other. Moreover, we can assume
that one of them, say v, is an extreme inner node, meaning that all its neighbors (except u)
have degree 1. Without loss of generality, we can assume that ℓ := |Nv| ≤ N/2, where Nv
is the set of neighbors of v in T. Otherwise, we could have chosen a different extreme inner
node. Note that the centrality of the edge (u, v) is muv(1−muv) =

ℓ(N−ℓ)
N2 .

We will show that the topology T′ which connects all k ∈ Nv\{u} to u instead of v has
a lower CST cost. The only edge centralities affected by this change are those associated
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with the edges (u, v), (u, k), and (k, v) for all k ∈ Nv\{u}. To compare the costs of the
topologies, it suffices to focus on these specific edges.

First, let’s determine the values of the centralities for the edges in both trees:
• Normalized centrality of edge (u, v) in T:

mT
uv(1−mT

uv) =
ℓ(N − ℓ)
N2

• Normalized centrality of edge (u, v) in T′:

mT′

uv(1−mT′

uv) =
N − 1

N2

Note that v has become a leaf of T′.
• Normalized centrality of edge (k, v) in T and centrality of edge (k, u) in T′ for all
k ∈ Nv\{u}:

mT
kv(1−mT

kv) =
N − 1

N2
= mT′

ku(1−mT′

ku)

These nodes are leaves in both trees.
The difference between the costs of the topologies is

CST(T)− CST(T′) =cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

ckv

(
N − 1

N2

)α

− cuv
(
N − 1

N2

)α

−
∑
k∈Nv
k ̸=u

cku

(
N − 1

N2

)α

=cuv

((
ℓ(N − ℓ)
N2

)α

−
(
N − 1

N2

)α)
+
∑
k∈Nv
k ̸=u

(ckv − cku)
(
N − 1

N2

)α

=
∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N2

)α
−
(
N−1
N2

)α)
ℓ− 1

+ (ckv − cku)
(
N − 1

N2

)α


=

(
N − 1

N2

)α ∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
+ (ckv − cku)



(D.6)

Thus the decrease in cost will positive if each term in the summand of the last equality of
(D.6) is positive, namely

ckv +

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
cuv ≥ cku, (D.7)

which holds by assumption. Therefore, T′ will have a lower cost. Repeating this process, we
can always decrease the cost till we form a star tree.

The next result extends Lemma D.4.1 to be applicable the BCST problem. In con-
trast to the CST case, the BCST involves Steiner points, which must be treated differently.
Lemma D.4.2 shows that if the “strong” triangle inequality holds, we can collapse sequen-
tially all Steiner points while decreasing the BCST cost of a tree T.
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Lemma D.4.2. Consider a solution T of the BCST problem with N terminals. Let cij be
the edge-costs of any pair of nodes i, j in the graph (Steiner or terminals). If there exists

t ≤ min
ℓ∈[2,N/2]

(
(ℓ)(N−ℓ)
N−1

)α
− 1

ℓ− 1

such that
ckv + tcuv ≥ cku (D.8)

for all triangles, then there exists an star tree with lower cost.

Proof: Analogously to Lemma D.4.1 we will show that given a tree T , we can always
increase the degree of a particular node without increasing the BCST-cost.

Let us assume that T is not a star-tree. Thus, there exist at least two nodes, u and v, with
degree higher than 1 which are adjacent to each other. Moreover, we can assume that one of
them, say v, is an extreme inner node, meaning that all its neighbors (except u) have degree
1. Without loss of generality, we can assume that muv := ℓ

N2 ≤ 1
2N

. Otherwise, we could
have chosen a different extreme inner node.

If v is a terminal node, we can apply the same reasoning as in Lemma D.4.1 to increase
the degree of u. Let us assume then that v is a Steiner point. In this case, we will construct
a new topology T′ by collapsing v with u. This implies that the edge (u, v) will disappear
and that all k ∈ Nv\{u} will be connected to u. In this case the normalized centralities of
the edges are not changed.
• Normalized centrality of edge (u, v) in T:

mT
uv(1−mT

uv) =
ℓ(N − ℓ)
N2

• Edge (u, v) is not anymore in T′:
• Normalized centrality of edge (k, v) in T and centrality of edge (k, u) in T′ for all k ∈ Nv\{u}:

mT
kv(1−mT

kv) =
N − 1

N2
= mT′

ku(1−mT′

ku)

These nodes are leaves in both trees.
The difference between the costs of the topologies is

CST(T)− CST(T′) =cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

ckv

(
N − 1

N2

)α

−
∑
k∈Nv
k ̸=u

cku

(
N − 1

N2

)α

=cuv

(
ℓ(N − ℓ)
N2

)α

+
∑
k∈Nv
k ̸=u

(ckv − cku)
(
N − 1

N2

)α

=
∑
k∈Nv
k ̸=u

cuv(
(

ℓ(N−ℓ)
N2

)α
ℓ− 1

+ (ckv − cku)
(
N − 1

N2

)α


=

(
N − 1

N2

)α ∑
k∈Nv
k ̸=u

cuv
((

ℓ(N−ℓ)
N−1

)α)
ℓ− 1

+ (ckv − cku)



(D.9)
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Thus the decrease in cost will positive if each term in the summand of the last equality of
(D.9) is positive, namely

ckv +

(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

cuv ≥ cku, (D.10)

which holds by assumption, since(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

≥ min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
ℓ− 1

> min
ℓ∈[2,N/2]

(
ℓ(N−ℓ)
N−1

)α
− 1

ℓ− 1
.

Therefore, T′ will have a lower cost. Repeating this process, we can always decrease the
cost till we form a star tree.

Remark D.4.3. Note that LemmaD.4.1 and LemmaD.4.2 state only a sufficient condition,
which means that the optimum can be a star tree even if the strong triangle inequality does
not hold. Additionally, it is worth to highlight that LemmaD.4.1 also holds true for the CST
problem even when the nodes lack embedding in any specific space, allowing for edge costs
with arbitrary values.

D.4.2 Proof h1(ℓ,N, α) > 1 asN Approaches Infinity, for α > 1

Recall that h1 is defined as

h1(ℓ,N, α) :=

((
ℓ(N−ℓ)
N−1

)α
− 1
)

ℓ− 1
=

(
1 + (ℓ−1)(N−ℓ−1)

N−1

)α
− 1

ℓ− 1
.

We will show that for high enoughN , minℓ∈[2,N/2] h1(ℓ,N, α) > 1. By leveraging the Math-
ematica software [83], we can establish that the function h1(ℓ,N, α) exhibits concavity con-
cerning ℓ within the interval [2, N/2] under the conditions α > 1 andN > 3. Consequently,
for fixed values of α > 1 andN , the minimum of h is achieved either at ℓ = 2 or at ℓ = N/2.
Next we show that as N tends to infinity, both evaluations tend towards a value greater than
1.
• When ℓ = 2 we have

h1(2, N, α) =

(
1 +

N − 3

N − 1

)α
− 1

N→∞−−−→ 2α − 1 > 1 (D.11)

• When ℓ = N/2 we have

h1(N/2, N, α) =

(
1 + (N/2−1)2

N−1

)α
− 1

N/2− 1

N→∞−−−→∞ (D.12)

Therefore, h1(ℓ,N, α) > 1 as N approaches infinity and α > 1.
Combining this inequality with Theorem 5.2.2, we conclude that the optimum (B)CST

will be a tree as N approaches infinity and α > 1.
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D.4.3 Computation α∗(N)

Given N , recall that α∗(N) is the minimum α at which h1(ℓ,N, α) > 1 for all ℓ ∈ [2, N/2].
Since h1 is concave with respect to ℓ when α > 1, our focus narrows down to investigating
the cases ℓ = 2 and ℓ = N/2 –the values where the minima can be attained.
• When ℓ = 2 we have

h1(2, N, α) =

(
1 +

N − 3

N − 1

)α
− 1 > 1 ⇐⇒

(
1 +

N − 3

N − 1

)α
> 2

⇐⇒ α log
(
1 +

N − 3

N − 1

)
> log(2)

⇐⇒ α >
log(2)

log
(
1 + N−3

N−1

)
(D.13)

• When ℓ = N/2 we have

h1(N/2, N, α) =

(
1 + (N/2−1)2

N−1

)α
− 1

N/2− 1
> 1 ⇐⇒

(
1 +

(N/2− 1)2

N − 1

)α

> N/2

⇐⇒ α log

(
1 +

(N/2− 1)2

N − 1

)
> log(N/2)

⇐⇒ α >
log(N/2)

log
(
1 + (N/2−1)2

N−1

)
(D.14)

Therefore,

α∗(N) := max

 log(2)
log
(
1 + N−3

N−1

) , log(N/2)

log
(
1 + (N/2−1)2

N−1

)
 (D.15)

D.4.4 Proof Theorem 5.2.5

In this section we prove Theorem 5.2.5 which states that if a variant of the triangle inequal-
ity holds, then the optimum (B)CST tree will be a path as α approaches infinity. First,
Lemma D.4.4 will show that if the triangle inequality holds strictly, then for α negative
enough the optimum CST will be a path. CorollaryD.4.6 demonstrates that when the nodes
are embedded in a geodesic space, the triangle inequality does not need to hold strictly for
LemmaD.4.4 to be true. Theorem 5.2.5 will also be derived as corollary (CorollaryD.4.7).

Lemma D.4.4. Let G be a complete graph with edge-costs satisfying the condition of the
strict triangle inequality for every triplet of nodes (u, v, k), defined as

cuv + ckv < cku

As the parameter α approaches negative infinity (α→ −∞), there exists a Hamiltonian path
T⋆ in G with a lower CST cost than any other tree T that is not a path.
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Proof: We will show that for any node v with degree higher than 2, we can always decrease
its degree such that the CST cost of T decreases. By iteratively applying this process, we
ensure that the degrees of all nodes will eventually be reduced to at most 2, culminating in
the formation of a path.

Let v be a node with degree higher than 3. Let (k, v) and (u, v) be the two edges adjacent
to v and assume w.l.o.g that mT

uv = mini∈Nv miv. Since mT
kv ≥ mT

uv, we have(
mT
kv

(
1−mT

kv

))
≥
(
mT
uv

(
1−mT

uv

))
.

We will now demonstrate that the modified topology T′, where node k is connected to node
u instead of node v, results in a lower CST cost. The only edge centralities affected by this
change are those associated with edges (u, v), (u, k), and (k, v). To compare the costs of the
topologies, it suffices to focus on these specific edges.

First, we determine the values of the centralities for these edges in both trees.
• Normalized centrality of edge (u, v) in tree T:

mT
uv(1−mT

uv)

• Normalized centrality of edge (u, v) in tree T′:

mT′

uv(1−mT′

uv) =
(
mT
uv +mT

kv

) (
1−mT

uv −mT
kv

)
The equality is due to the fact that once k is a neighbor of u, all nodes that were in the
same side as k will be now in the same side as u.

• Normalized centrality edge k, v in T and normalized centrality edge k, u in T′:

mT
kv(1−mT

kv) = mT′

ku(1−mT′

ku)

Both u and v lie in the same side of the edges, hence the equality of their normalized
centralities.

Note that mT′
uv(1−mT′

uv) > mT
uv(1−mT

uv). Otherwise, it would imply that

mT′

uv(1−mT′

uv) < mT
uv(1−mT

uv) ⇐⇒(
mT
uv +mT

kv

) (
1−mT

uv −mT
kv

)
< mT

uv(1−mT
uv) ⇐⇒

min
(
mT
uv +mT

kv, 1−mT
uv −mT

kv

)
< min

(
mT
uv, 1−mT

uv

)
= mT

uv

Trivially, mT
uv +mT

kv < mT
uv leads to a contradiction since mT

kv > 0. Thus, the only possi-
bility is

1−mT
uv −mT

kv < mT
uv ⇐⇒ 1−mT

kv < 2mT
uv

⇐⇒ 1−mT
kv = mT

uv +
∑
i∈Nv
i ̸=k,i ̸=u

mT
iv < 2mT

uv

⇐⇒
∑
i∈Nv
i ̸=k,i ̸=u

mT
iv < mT

uv
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which is also a contradition since by assumption mT
uv = mini∈Nv m

T
iv. Now we are able to

show that the cost of T′ is lower than the one of T

CST(T)− CST(T′) = cuv
(
mT

uv

(
1−mT

uv

))α
+ ckv

(
mT

kv

(
1−mT

kv

))α
− cuv

((
mT

uv +mT
kv

) (
1−mT

uv −mT
kv

))α − cku
(
mT

kv

(
1−mT

kv

))α
=cuv

((
mT

uv

(
1−mT

uv

))α −
((
mT

uv +mT
kv

) (
1−mT

uv −mT
kv

))α)
+ (ckv − cku)

(
mT

kv

(
1−mT

kv

))α

=
(
mT

uv

(
1−mT

uv

))α
cuv − cuv


(
mT

uv +mT
kv

) (
1−mT

uv −mT
kv

)(
mT

uv

(
1−mT

uv

))︸ ︷︷ ︸
>1


α

+ (ckv − cku)

mT
kv

(
1−mT

kv

)
mT

uv

(
1−mT

uv

)︸ ︷︷ ︸
≥1


α .

We can differentiate two cases. If mT
kv

(
1−mT

kv

)
= mT

uv

(
1−mT

uv

)
then

CST(T)− CST(T′)(
mT
uv

(
1−mT

uv

))α α→−∞−−−−→ (cuv + ckv − cku) > 0, (D.16)

where we have used the strict triangle inequality. Otherwise, the limit tends to

CST(T)− CST(T′)(
mT
uv

(
1−mT

uv

))α α→−∞−−−−→ cuv > 0.

Hence, for sufficiently negative values of α, the difference CST(T) − CST(T′) will be
positive. By repeating this process, we can continue reducing the degree of nodes with
degree higher than 2 until all nodes have degree at most 2. This process will eventually lead
to the formation of a Hamiltonian path with a lower cost than the original tree T.

Remark D.4.5. Due to equation (D.16), Lemma D.4.4 required the triangle inequality to
hold strictly. However, the strict triangle inequality is not an indispensable for the validity of
Lemma D.4.4. Corollary D.4.6 demonstrates that, when the nodes of the graph are embed-
ded in a geodesic metric space (e.g. Euclidean space), the strict triangle inequality becomes
unnecessary. This result extends also to the BCST problem.

Nevertheless, the scenario portrayed in Figure D.4 serves as an example where the strict
triangle inequality is not satisfied, leading to a non-optimal Hamiltonian path. This illus-
trates that while the strict triangle inequality may be dispensable under certain conditions,
there are instances of arbitrary graphs, as demonstrated in the figure, where it cannot be
abandoned.

Corollary D.4.6. Consider the BCST and CST problem where the nodes are embedded in a
geodesic metric space. As α tends to negative infinity (α→ −∞) there exists a Hamiltonian
path T⋆ with a lower CST/BCST cost than any other tree T that is not a path.

Proof: The reasoning aligns with the exposition in LemmaD.4.4, proving that for any node
v with degree exceeding 2, we can always decrease its degree such that the CST/BCST cost
of T decreases. Through the iterative application of this process, the degrees of all nodes



164 D.4. Limit Cases of the CST/BCST Problems Beyond the Range α ∈ [0, 1]

1 2

3

4

1

1

1

2

2

2
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(b) Hamiltonian path
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(c) Optimal CST solution

Figure D.4. Necessity of the Triangle Inequality for Path Graph to be (B)CST Optimum
as α → −∞. D.4a) Graph with edge costs depicted, where the triangle inequality is not
strictly satisfied. D.4b) Optimal hamiltonian path with CST cost equal to 3α·3+4α

16α
. D.4c)

Optimal CST with cost equal to 3·3α
16α

. Thus, if the triangle inequality does not strictily hold,
the Hamiltonian path will not necessarily be optimal even for sufficiently negative α values

are systematically decreased, ultimately converging to a state where each node has at most
a degree of 2, thereby resulting in the formation of a path.

Consider a node v with a degree higher than 2. To apply the logic presented in Theo-
rem D.4.4, it is essential to ensure the ability to select two neighbors such that the triangle
inequality holds strictly. Let u, k, and ℓ represent three distinct neighbors of v, and assume
that the triangle inequality is an equality between each pair of neighbors and the node v. In
other words, we have

cuv + cvk = cuk, (D.17)

cuv + cvℓ = cuℓ, (D.18)

cℓv + ckv = cℓk. (D.19)

Starting with (D.17), we conclude that v lies on the geodesic path between u and k. Similarly,
from (D.18) and (D.19), we deduce that v is positioned between u and ℓ and also between ℓ
and k. Consequently, ℓ is established to be between u and k, as it is situated between u and
v and also between k and v.

As a result, we can infer that cℓk + cℓu = cuk. Summing (D.17) and (D.18) and utilizing
the derived equality cℓk + cℓu = cuk (owing to the position of ℓ between u and k), we obtain:

cuv + cvk + cuv + cvℓ = cuℓ + cuk → 2cuv + cℓk = cℓk → cuv = 0

The deduction that cuv = 0 implies that nodes u and v occupy the same position and
can effectively be considered as a single node. Consequently, we can systematically remove
neighbors of v by repeating this process until v attains a degree of 2.

Alternatively, if the triangle inequality must hold strictly for a pair of nodes u, k, and
node v, we can, w.l.o.g., assume that node u is chosen such thatmuv = mini∈Nv miv. In this
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scenario, applying the same reasoning as the one presented in LemmaD.4.4, we demonstrate
that the modified topology T′ –where node k is connected to node u instead of node v– results
in a lower BCST/CST cost.

LemmaD.4.4 resembles LemmaD.4.1 in the sense that both lemmas require the satisfac-
tion of a weighted triangle inequality. The following corollary reformulates Lemma D.4.4,
mirroring the structure found in Lemma D.4.1, and accentuates the correlation between the
weighted triangle inequality and the number of terminals denoted by N .

Corollary D.4.7 (Theorem 5.2.5). Given a complete graph G with N nodes, let cij be the
edge-costs of any pair of nodes (i, j). If there exists

t ≤ min
1≤s≤N−3

1≤ℓ≤min(s,(N−s)/2−1)

(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α

such that
ckv + tcuv ≥ cku

for all triangles in the graph, then there exists an optimum CST evaluated at α which is a
Hamiltonian path.

Proof: Lemma D.4.4 holds if(
cuv − cuv

(
(mT

uv+m
T
kv)(1−mT

uv−mT
kv)(

mT
uv

(
1−mT

uv

)) )α

+ (ckv − cku)
(
mT

kv

(
1−mT

kv

)
mT

uv

(
1−mT

uv

))α) > 0

⇐⇒ cuv

(
mT

uv

(
1−mT

uv

))α

−((mT
uv+m

T
kv)(1−mT

uv−mT
kv))

α

(mT
kv(1−mT

kv))
α

+ ckv > cku (D.20)

where it is assumed that muv mini∈Nv miv. Thus, let muv =
ℓ
N

and mkv =
s
N

. Substituting
these values into (D.20), we derive the following inequality

ckv +
(ℓ(N − ℓ))α − ((ℓ+ s)(N − ℓ− s))α

(s(N − s))α
cuv ≥ cku.

Note that ℓ ≤ min(s, (N − s)/2− 1) sincemuv mini∈Nv miv. Thus, muv =
ℓ
N
≤ mkv =

s
N

. On the other hand, since in the proof of Lemma D.4.4, v has at least three neighbors (u,
k and say p), the N − s nodes not lying in the side corresponding to k of edge (k, v) must
be distributed in the side of v. At exception of node v, one part of the remaining N − s− 1

nodes will be in the side corresponding to u of edge (u, v) and the other part in the side
corresponding to p of edge (p, v). Since muv must be minimum, the side corresponding to
u of edge (u, v) can at most be equal to N−s−1

2N
.

Notice also that 1 ≤ s ≤ N − 3, since v has degree at least three and therefore there are
at least three nodes (v, u, p) lying in the same side of v with respect to edge (k, v). Thus,
mT
vk = (1−mT

kv) = 1− s
N
≥ 3

N
, or equivalently s ≤ N − 3.
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D.5 Exploring the Number of Derivable Topologies from
CST and BCST Topologies

D.5.1 Number of BCST Topologies Derivable from a CST Topology

In this section, we explicitly determine the number of topologies of the BCST problem that
can be derived from a single CST topology.

To derive a full tree topology TBCST from a CST topology TCST with N terminals, we
need to add N − 2 SP. In particular, for each terminal node, v, with degree dv ≥ 2, we need
to spawn dv − 1 SP. Since for k terminal nodes, there exist a total (2k − 5)!! of full tree
topologies [151], there are (2(dv + 1)− 5)!! = (2dv − 3)!! ways to connect the added SP to
the neighbors of v and v itself. Thus the total number of full tree topologies is equal to the
number of possible combinations of subtopologies engendered per terminal neighborhood
for terminals with degree higher than 2. Formally, this number is equal∏

v : dv≥2

(2dv − 3)!!. (D.21)

Note that, on the one hand, if all nodes have degree lower or equal than 2, i.e. the tree is
a path, then a single full tree topology can be derived. On the other hand, if the original
TCST is a star graph, then there is a single graph with degree higher than 2, which is equal
to N − 1. Thus, the total number of topologies derived from it is equal to (2N − 5)!!. This
is the total number of possible full tree topologies, hence a star graph can generate any full
tree topology. In general, the higher the degree of the nodes in TCST, the higher the number
of derivable full tree topologies.

D.5.2 Number of CST Topologies Derivable from a BCST Topology

In this case, we need to collapse each SP to a terminal. The collapse process can be carried
out sequentially, where each SP is collapsed to one of its neighboring nodes, until no SP
remain. Naively, we might assume that there are 3N−2 possible topologies, given that each
SP has 3 neighbors available for collapse and there are N − 2 SPs. However, this is not the
case because some combinations may result in non-valid topologies. For instance, if all SPs
collapse with neighbors that are also SP, none of the SP will be collapsed with a terminal
node.

Before providing the formula for the number of CST topologies that can be derived
from a full tree topology, let’s introduce the All Minors Matrix Tree Theorem [30], which
is necessary to derive the formula. The All Minors Matrix Tree Theorem generalizes the
Matrix Tree Theorem Theorem 1.2.1. We state a simplified version of the theorem without
providing a proof.
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Theorem D.5.1. Given a graph G = (V,E) and a subset U of nodes in G, let W = V \U .
We define LW,W as the submatrix of the Laplacian matrix of G, which includes the rows
and columns indexed by the nodes in W . In this context, the determinant of LW,W , denoted
as det(LW,W ), provides a count of the number of spanning forests of G that consist of |U |
disjoint trees, with the nodes in U being disconnected across these trees.

Proof: See Chaiken [30].

Now we are ready to present the main result of this subsection. Consider a full tree
topology TBCST. The number of topologies for the CST problem that can be derived from
TBCST is given by

detLSPs,SPs, (D.22)

where LSPs,SPs represents the submatrix of the Laplacian matrix L of TBCST. This sub-
matrix is formed by selecting the rows and columns associated with the SP. By virtue of
Theorem D.5.1, equation (D.22) counts the number of spanning forests of the TBCST which
disconnect the terminal nodes. To demonstrate that this count of forests coincides with the
number of topologies that can be derived from the full tree topology TBCST, we will establish
a bijection.

Indeed, if we have a forest that disconnects all the terminals, each SP within the forest
must belong to a component with a single terminal. In this scenario, we can unambiguously
collapse each SP to its corresponding terminal. Once we have collapsed the SP, we still need
to reconnect the terminals between them to form a valid CST topology. Now, notice that in
the original full tree topology TBCST, each terminal is uniquely adjacent to a SP. We can
connect the terminals between them based on the collapse process of the SP. Specifically, a
terminal vt is connected to another terminal ut if the neighboring SP of vt in the original
TBCST has been collapsed to ut. Similarly, we can reverse these steps to map a CST topology
back to a unique forest that disconnects the terminals. Figure D.5 illustrates the individual
steps of this bijection using two examples. We have proven the following theorem

Theorem D.5.2. Let TBCST be a full tree topology withN terminals. Consider the Laplacian
matrix L of TBCST. The number of CST topologies that can be derived from TBCST is equal to
the determinant of LSPs,SPs, which is the submatrix of the Laplacian obtained by selecting
the rows and columns indexed by the SPs. Hence, the number of CST topologies derived
from TBCST can be calculated as detLSPs,SPs.
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(c) Example 2, Bijection Steps

Figure D.5. Bijection Between Derivable CST Topologies from a Full Tree Topology
and Their Terminal-Separating Forests. Figures D.5b) and D.5c) illustrate two examples
of the relationship between a spanning forest and a derived CST topology of a full tree
topology depicted in Figure D.5a.

D.6 Branching Angles at the Steiner Points in the BCST
Problem

In this section, we formulate the branching angles in terms of the centralities of the edges for
a given topology of the BCST problem. As stated in Section 5.5.1, it is sufficient to study the
geometric optimization of 3 nodes connected by a single SP, with minimization objective
given by

C(b) = ζ0||b− a0||+ ζ1||b− a1||+ ζ2||b− a2||. (D.23)

Recall that node b represents the Steiner point whose coordinates need to be optimized, nodes
{ai} are the terminals with fixed positions and ζi := mbai(1 −mbai) are the centralities of
the edges (b, ai) (see Figure D.6).

We will reproduce the arguments exposed for the BOT problem in Bernot et al. [18] and
Lippmann et al. [108] to determine the angles θ1 and θ2. We will differentiate two cases:
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1

a0

a1 a2

b

ζ0

ζ1 ζ2

θ1 θ2

Figure D.6. Branching Angles at Steiner Point. The symbols ζi represent the normalized
centralities of the edges, that is ζi := mbai(1−mbai).

when the SP does not coincide with any other terminal node; and when b collapses with one
of the terminals.

D.6.1 Steiner Point b Does Not Collapse with a Terminal

In this case, the function is differentiable with respect to b, and therefore we just need to see
where the gradient of equation (D.23) is equal to zero. The formula for the gradient is as
follows

∇bC(b) = ζα0 n0 + ζα1 n1 + ζα2 n2, (D.24)

where ni = b−ai
||b−ai|| . By applying the dot product to∇bC(b) with each ni and setting it equal

to zero, we derive the following equalities:

⟨∇bC(b), n0⟩ = 0 → ζα0 + ζα1 ⟨n1, n0⟩︸ ︷︷ ︸
− cos(θ1)

+ζα2 ⟨n2, n0⟩︸ ︷︷ ︸
− cos(θ2)

= 0

⟨∇bC(b), n1⟩ = 0 → ζα0 ⟨n0, n1⟩︸ ︷︷ ︸
− cos(θ1)

+ζα1 + ζα2 ⟨n2, n1⟩ = 0

⟨∇bC(b), n2⟩ = 0 → ζα0 ⟨n0, n2⟩︸ ︷︷ ︸
− cos(θ2)

+ζα1 ⟨n1, n2⟩+ ζα2 = 0

Solving the linear system we obtain that the angles satisfy

cos(θ1) =
ζ2α0 + ζ2α1 − ζ2α2

2ζα0 · ζα1
,

cos(θ2) =
ζ2α0 + ζ2α2 − ζ2α1

2ζα0 · ζα2
,

cos(θ1 + θ2) =
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2
.

(D.25)

D.6.2 Steiner Point b Collapses with a Terminal

In this case, in order to determine the optimality angles, we will use the subdifferential
argument applied in Lippmann et al. [108]. W.l.o.g. we will assume that b collapses with
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terminal a0.
The subdifferential of a convex function h : Rn → R at x is defined as the following set

of vectors
∂g(x) := {v : h(z) ≥ h(x) + ⟨v, z − x⟩, ∀z ∈ Rn}.

In other words, ∂g(x) comprises all vectors v such that the line passing through h(x) in
the direction of v lies below the function h at all points. Each of these vectors is called a
subgradient of h at x. When a function is differentiable at x, the subdifferential only contains
the gradient of the function at x.

Fermat rule states that a convex function attains its minimum at x if and only if 0 ∈ ∂g(x).
Furthermore, the subdifferential of two convex functions is equal to the union of the pairwise
sums of their subgradients. In other words, for g(x) = g1(x) + g2(x) then

∂g(x) = {v1 + v2 : v1 ∈ ∂g1(x), v2 ∈ ∂g2(x)}. (D.26)

We can apply Fermat’s rule to determine when the minimum is attained at b = a0. For
the function g(x) = w · ||x− a||, the subdifferential is given by

∂g(x) =

{v : ||v|| ≤ w}, if x = a{
w x−a

||x−a||

}
, otherwise

.

Thus, applying equation (D.26), the subdifferential of C(b) at b = a0 is given by

∂C(a0) =

{
v + ζα1

b− a1
||b− a1||

+ ζα2
b− a2
||b− a2||

: ||v|| ≤ ζα0

}
.

In order for b to be optimal at a0, zero has to belong to ∂C(a0), which is true if and only if∣∣∣∣∣∣∣∣ζα1 b− a1
||b− a1||

+ ζα2
b− a2
||b− a2||

∣∣∣∣∣∣∣∣ ≤ ζα0

⇐⇒
∣∣∣∣∣∣∣∣ b− a1||b− a1||

+
b− a2
||b− a2||

∣∣∣∣∣∣∣∣2 = ζ2α1 + ζ2α2 + 2ζα1 ζ
α
2 cos(γ) ≤ ζ2α0

(D.27)

where γ is the angle of the terminal triangle at a0, that is γ := ∠a1a0a2. Isolating γ, we get

γ ≥ arccos
(
ζ2α0 − ζ2α1 − ζ2α2

2ζα1 · ζα2

)
= θ1 + θ2. (D.28)

Thus b will collapse to a0 if the angle ∠a1a0a2 is greater than the optimal angle given by
(D.25). In such cases, the resulting branching is referred to as a V -branching.

Remark D.6.1. It is worth noting that the reasoning presented in this section remains inde-
pendent of the weighting factors, which, in our case, were set equal to the normalized edge
centralities powered to α. As a result, this finding holds true for any weights and can be
used to determine an arbitrary weighted geometric median of three points. Furthermore, we
emphasize that the position of the SP, b, depends exclusively on the angles and weighting
factors and not on the distances between the terminal nodes.
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D.7 Infeasibility of Degree-4 Steiner Points in the Plane for
α = 1

a3

a1 a2

a4

b

γ

θ1 θ2

(a)

a3

a1 a2

a4

b1 b2
← · →θ1 θ2

(b)

Figure D.7. Splitting Collapsed SP While Preserving Optimal Angles. D.7a) illustrates
the collapsed solution of a 4-terminal configuration. D.7b) demonstrates that it is possible
to move jointly the terminal points {a1, a3} in a specific but opposite direction to the one
of the terminals {a2, a4}, resulting in the splitting of the collapsed SP b into two distinct
SPs, b1 and b2. Remarkably, this split can be executed while preserving the angles θ1 and θ2.
Importantly, these angles must correspond to the optimal angles given by (D.25).

As stated in Section 5.5.2, the optimal position of the SPs is continuously dependent on
the terminal positions and solely relies on the branching angles, as shown in Section 5.5.1.
Consequently, assuming that there exists a configuration such that the SPs collapse, it is pos-
sible to find terminal positions that lead to an unstable collapse of the SPs. Here, instability
refers to a configuration where an infinitesimal translation of the terminals results in the split-
ting of the SPs. This scenario is depicted in Figure D.7. In such cases, the angles realized
by the terminals and the SPs will reach the upper bounds specified by (D.28). Therefore, the
angles depicted in Figure D.7a fulfill the condition

γ = π − θ1 − θ2, (D.29)

where the angles satisfy

cos(γ) =
F (ma1b +ma2b)

2α − F (ma1b)
2α − F (ma2b)

2α

2F (ma1b)
α F (ma2b)

α (D.30)

cos(θ1) =
F (ma3b +ma1b)

2α + F (ma1b)
2α − F (ma3b)

2α

2F (ma3b +ma1b)
α F (ma1b)

α (D.31)

cos(θ2) =
F (ma2b +ma4b)

2α + F (ma2b)
2α − F (ma4b)

2α

2F (ma2b +ma4b)
α F (ma2b)

α (D.32)
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We can manipulate (D.29) in the following way

γ = π − θ1 − θ2 ⇐⇒ cos(γ − π) = cos(−θ1 − θ2)

⇐⇒ − cos(γ) = cos(θ1 + θ2) (D.33)

⇐⇒︸ ︷︷ ︸
∗

− cos(γ) = cos(θ1) cos(θ2)−
√

(1− cos(θ1)2) (1− cos(θ2)2)

where in (*) we have used the fact that

cos(x+y) = cos(x) cos(y)−sin(x) sin(y) = cos(x) cos(y)−
√

(1− cos(x)2)(1− cos(y)2).

If we square both sides of D.33 and equate to 0 we obtain.

(cos(γ) + cos(θ1) cos(θ2))2 −
(
1− cos(θ1)2

) (
1− cos(θ2)2

)
= 0. (D.34)

Equation (D.34) depends on the variables ma1b, ma2b, ma3b, and α1. Equation (D.34) is
generally too complex to be solved analytically. However, with the help of the Mathematica
software [83], we have determined that for α = 1, the equality does not hold within the
constraints of the problem, namely

4∑
i=1

mai,b = 1 and 0 < mai,b < 1, ∀i.

To simplify the notation, let’s denote maib as mi. For α = 1, when we expand equation
(D.34), we find that the numerator of the formula becomes a fourth-degree polynomial with
respect to m1. The four roots, {m(j)

1 } of the polynomial are

m
(1)
1 =

1

2

(
1−m2 −m3 −

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 −

√
m2

2 −m2m3 +m2
3

))

m
(2)
1 =

1

2

(
1−m2 −m3 +

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 − 2

√
m2

2 −m2m3 +m2
3

))

m
(3)
1 =

1

2

(
1−m2 −m3 −

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

))

m
(4)
1 =

1

2

(
1−m2 −m3 +

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

))
, (D.35)

where we have highlighted the difference between the roots. We will show that

1 < m
(4)
1 +m2 +m3 < m

(2)
1 +m2 +m3 and m

(1)
1 < m

(3)
1 < 0,

which implies that the problem constraints are not satisfied, and therefore SPs of degree 4
are not possible.

1Since
∑4

i=1maib = 1, ma4b can be expressed as 1−ma1b −ma3b −ma4b.
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Claim 1: 1 < m
(4)
1 +m2 +m3 ≤ m

(2)
1 +m2 +m3. From (D.35) it is clear that

m
(4)
1 ≤ m

(2)
1 . Thus, it is enough to prove the inequality for m(4)

1 :

m
(4)
1 + m2 + m3 =

1

2
(1 + m2 + m3) +

1

2

√
(−1 + m2 + m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 −

√
m2

2 − m2m3 + m2
3

)

=
1

2
(1 + m2 + m3) +

1

2

√√√√√1 +
2

3
(m2 + m3) + (m2 − m3)2 −

8

3

√√√√m
2
2 − m2m3 + m

2
3︸ ︷︷ ︸

<(m2+m3)2

>
1

2
(1 + m2 + m3) +

1

2

√
1 +

2

3
(m2 + m3) + (m2 − m3)2 −

8

3
(m2 + m3)

=
1

2
(1 + m2 + m3) +

1

2

√
1 + (m2 − m3)2 −

1

2
(m2 + m3)

>
1

2

1 + m2 + m3 +

√
1 −

1

2
(m2 + m3)︸ ︷︷ ︸

>2

 > 1

For the last inequality, we have used the fact 0 < m2 +m3 < 1, that the function g(x) =
1 + x+

√
1− x/2 is increasing in [0, 1] and that g(0) = 2.

Claim 2: m(1)
1 ≤ m

(3)
1 < 0. From (D.35) it is clear thatm(1)

1 ≤ m
(3)
1 . Thus, it is enough

to prove the inequality for m(3)
1 .

m
(3)
1 < 0

⇐⇒
1

2

(
1−m2 −m3 −

√
(−1 +m2 +m3)2 −

4

3

(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

))
< 0

⇐⇒
(
−2m2 − 2m3 + 3m2m3 + 2

√
m2

2 −m2m3 +m2
3

)
< 0 (D.36)

Thus, we need to focus on inequality D.36. We will differentiate various cases:
• If 2/3 > m3 ≥ m2:(

−2m2 − 2m3 + 3m2m3 + 2
√
m2

2 −m2m3 +m2
3

)

= m2 (2− 3m3)︸ ︷︷ ︸
>0 ⇐⇒ 2/3>m3

+2

m3 −
√
m2

2 −m2m3 +m2
3︸ ︷︷ ︸

≥0 ⇐⇒ m3≥m2

 > 0

For the second term, we have used the fact that

m3 ≥
√
m2

2 −m2m3 +m2
3 ⇐⇒ m2

3 ≥ m2
2 −m2m3 +m2

3 ⇐⇒ m2m3 ≥ m2
2

⇐⇒ m3 ≥ m2

• If 2/3 ≥ m3 ≥ m2: Anologous to previous case due to the symmetry of m2 and m3 in
(D.36)

• If max(m2,m3) ≥ 2/3: W.l.o.g we can assume m2 ≥ 2/3 and m3 < 1/3 due to the
symmetry between m2 and m3. For this case, we will find the roots with respect to m2 of
inequality (D.36) and see that the constraints on m2 do not hold. Indeed,

−2m2 − 2m3 + 3m2m3 + 2
√
m2

2 −m2m3 +m2
3 = 0⇒

(−2m2 − 2m3 + 3m2m3)
2 = 4(m2

2 −m2m3 +m2
3)
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The roots {m(j)
2 } of the polynomial are

m
(1)
2 =

2m3

−5 + 6m3 +
√
3
√

7− 12m3 + 6m2
3

& m3 ̸=
2−
√
2

3
,

m
(2)
2 =

2m3

−5 + 6m3 −
√
3
√

7− 12m3 + 6m2
3

& m3 ̸=
2−
√
2

3

m
(3)
2 =

2(−3 + 2
√
2)

3(−2 + 3
√
2)

& m3 =
2−
√
2

3
.

, (D.37)

The denominator of the root m(1)
2 has negative sign for 0 < m3 < 1, which leads to

m
(2)
1 < 0, contradicting the initial constraints. Trivially, m(3)

2 is also negative.
The denominator of the root m(2)

2 is negative for 0 < m3 <
2−

√
2

3
, resulting in m(2)

2 < 0.
When 2−

√
2

3
< m3 < 1/3, the denominator becomes positive but remains lower than 2m3,

thus m(2)
2 > 1, which is also a contradiction.

We have ruled out all possible cases, thus we have proven the next theorem.

Theorem D.7.1. Let α = 1. Given a set of terminals which lie in the plane, then the SPs
of the optimal solution of the BCST problem will not contain SPs of degree 4 unless these
collapse with a terminal.

D.8 Iteratively Reweighted Least Square for the Geometric
Optimization of the Steiner Points

In this section we review briefly the iteratively reweighted least square (IRLS) algorithm
proposed in [157]. This algorithm was initially developed for the geometric optimization
of Steiner points (SPs) and later adapted in [108] for the branched optimal transport (BOT)
problem. We will show that the same algorithm can be adapted for the BCST problem, since
the algorithm is agnostic to the weighting factors multiplying the distances involved in the
BOT and BCST objectives, as defined in equations (D.3) and (5.2), respectively.

Consider the following minimization problem for a fixed tree topology

min
XB

C(X) = min
XB

∑
(i,j)∈E

wij ∥xi − xj∥ (D.38)

where wij are arbitrary weights, E is the set of edges of the tree, XB = {xN+1, . . . , x2N−2}
are the coordinates of the SPs, which need to be optimized, andX = {x1, . . . , x2N−2} is the
set of all coordinates (terminals and SPs). Starting from arbitrary SPs coordinates, denoted
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as X(0), the algorithm iteratively solves the following linear system of equations.

x
(k+1)
i =

∑
j:(i,j)∈E

wij
x
(k+1)
j

||x(k)i − x
(k)
j ||∑

j:(i,j)∈E

wij

||x(k)i − x
(k)
j ||

, ∀N + 1 ≤ i ≤ 2N − 2. (D.39)

Note that only the coordinates corresponding to the SPs are updated. The coordinates of the
terminals are kept fixed and set equal to their original coordinates.

We will show that in each iteration the cost of the objective function decreases, i.e.
C(X(k+1)) < C(X(k)). As shown in [157], this implies that the limk→∞X(k) = arg minC(X).

The algorithm can be considered an IRLS approach because it reinterprets the cost func-
tion as a quadratic function. Indeed, C(X) can be rewritten as

C(X) =
∑

(i,j)∈E

wij ∥xi − xj∥ =
∑

(i,j)∈E

wij
∥xi − xj∥︸ ︷︷ ︸
Wij(X)

∥xi − xj∥2 =
∑

(i,j)∈E

Wij(X) ∥xi − xj∥2

In concrete, the solution of the linear system (D.39) minimizes the following quadratic
function

Q(k)(X) =
∑

(i,j)∈E

Wij(X
(k)) ∥xi − xj∥2 .

That is Q(k)(X) ≥ Q(k)(X(k+1)) ∀X . Moreover, note that C(X(k)) = Q(k)(X(k)). Now we
can show that the cost C decreases at each iteration:

C(X(k)) =Q(k)(X(k)) ≥ Q(k)(X(k+1))

=
∑

(i,j)∈E

wij

(∣∣∣x(k)i − x
(k)
j

∣∣∣+ ∣∣∣x(k+1)
i − x(k+1)

j

∣∣∣− ∣∣∣x(k)i − x
(k)
j

∣∣∣)2∣∣∣x(k)i − x
(k)
j

∣∣∣
=C(X(k)) + 2

(
C(X(k+1)− C(X(k))

)
+
∑

(i,j)∈E

wij

(∣∣∣x(k+1)
i − x(k+1)

j

∣∣∣− ∣∣∣x(k)i − x
(k)
j

∣∣∣)2∣∣∣x(k)i − x
(k)
j

∣∣∣
⇐⇒

C(X(k+1) ≤C(X(k))−
∑

(i,j)∈E

wij
2

(∣∣∣x(k+1)
i − x(k+1)

j

∣∣∣− ∣∣∣x(k)i − x
(k)
j

∣∣∣)2∣∣∣x(k)i − x
(k)
j

∣∣∣︸ ︷︷ ︸
≥0

≤C(X(k))

(D.40)

D.9 Complexity mSTreg Heuristic
We will delve into the complexity of the two steps of our heuristic.
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Figure D.8. BCST time complexity. Computation time of 20 iterations of the mSTreg
heuristic averaged over 5 distinct instances with different numbers of terminals n, data di-
mensionality d, and α values.

• Complexity geometric optimization: We approximate the optimal SPs coordinates using
the IRLS approach presented in Section D.8. Each iteration of the IRLS requires O(nd)
operations, where n is the number of terminals and d is the data dimensionality. Within
each iteration, d linear systems are solved. These can be solved in linear time and in
parallel. The number of iterations needed for the IRLS to converge is not known a pri-
ori, however, Lippmann et al. [108] suggest that this number could scale on average like
O(log(n)). Consequently, each geometric optimization step takes O(log(n)nd).

• Topology optimization step: In the topology optimization step, we compute the min-
imum spanning tree (mST) over the terminals and SPs. Given a graph G = (V,E),
Kruskal’s algorithm takes O(|E| log |V |) operations to compute the mST. In a complete
graph, this becomesO(n2 log(n)). However, in some situations, we may expedite the mST
computation by computing the mST over a k-nearest neighbor (kNN) graph. Approximat-
ing a kNN graph with k-d trees can have a complexity of O(dn log(n)2). In this case, the
number of edges in the graph would be |E| ≈ kn. Hence, the overall mST complexity
would be O(dn log(n)2 + kn log(n)) ≈ O(dn log(n)2).

Therefore, the heuristic’s per-iteration complexity is approximatelyO(dn log(n)+n2 log(n))
or O(dn log(n)2) if the mST is computed over a kNN graph. Throughout our experiments,
a limit of 20 iterations was set, though practical convergence often demands fewer. In addi-
tion, we gauged the computational time of the heuristic by averaging its performance over 20
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Figure D.9. mSTreg Heuristic with Additional Sampled Points. Effect of adding extra
points per edge (visualized in violet) in the mST computation step of the mSTreg heuristic.
Top left: BCST solution obtained once the mST has been mapped to a full tree topology and
its Steiner point coordinates have been optimized. Top row: Next steps of the mSTreg heuris-
tic without adding any extra point. Bottom row: Next steps of the mSTreg heuristic once
an extra point has been added at the middle of each edge (shown in violet). The addition of
extra points may allow the mST to more reliably follow the edges of the geometry-optimized
tree from previous step. We zoom in to highlight an improvement in the topology resulting
from the addition of these extra points. In this particular case, the cost obtained with the
inclusion of the extra nodes is lower than the cost without them.

iterations across 5 distinct instances, varying n, d, and α. Data was generated by sampling n
points from a d-dimensional unit cube. The performance times are presented in Figure D.8.
The heuristic was executed on an Intel Xeon Gold 6254 CPU @ 3.10GHz.

D.10 Effect of Additional Intermediate Points in the mSTreg
Heuristic

In Section 5.6.2 we have described the mSTreg heuristic as a solution approach for the BCST
problem. The algorithm can be summarized in two steps: 1) Optimization of the SPs coordi-
nates given a fixed topology; 2) topology update by computing the mST over the terminals
and SPs. The motivation for the topology update is that the optimal positions of the SPs may
suggest a more desirable topology, since they may be biased to move closer to other nodes
than the ones to which they are connected. Thus, we hope that the new topology, defined by
the mST over the SPs and the terminals, interconnects such nodes.

However, there are instances where the SPs may not be sufficiently close to each other,
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causing the mST to fail in recovering the desired connections. the addition of intermediate
nodes along the edges may address this problem, allowing the mST to more reliably follow
the edges of the geometry-optimized tree from the previous step. An illustrative example
highlighting the benefits of this approach can be seen in Figure D.9. In general, we have
seen that adding between 1 and 3 nodes per edge can often yield improvements. However,
the impact on the main backbone is minimal. In Algorithm 2, the number of intermediate
points that are added along an edge is regulated by the sampling\_frequency variable.

D.11 Strategies to Transform a Full Tree Topology into a
CST Topology

When using the mSTreg heuristic described in Section 5.6.2 for solving the CST problem
without branching points, we need to map from a full tree topology to a CST topology. As
shown in Section D.5.2, this process is ambiguous and there may be an exponential number
of derivable topologies with respect to the number of terminals. Hence to brute force the
one which minimizes the CST cost is out of reach.

In this section, we describe some heuristic rules to transform a full tree topology into a
CST topology. In order to transform a full tree topology into a CST topology, we collapse
iteratively one SP at a time with one of its neighbors until there are no more SPs to collapse.
The first factor to take into account is in which order the SPs are collapsed. We consider
two strategies: 1) collapse the SP that is closest to a terminal (“Ordclosestterminal”) or 2)
collapse the SP with the closest neighbor, i.e. the one that minimizes the distance to one of
each neighbors independently of if it is a terminal or a SP (“Ordclosest”). In practice we did
not see any big difference, though “Ordclosest” tends to be slightly better.

The second factor to take into account is to which neighbor should an SP collapse. We
again compare two different heuristics: 1) collapsing the SP to the neighbor that minimally
increases the CST cost (“greedy”); 2) collapsing the SP to the closest neighbor in terms of
distance. We found empirically that the greedy approach yields significantly superior results.

Lastly, we conducted tests on updating the position of the collapsed SP. When a SP, de-
noted as b1, is collapsed with a neighbor b2, then the other neighbors of b1 become neighbors
of b2. We observed that updating the position of b2 to the weighted geometric median of its
neighbors (including those inherited from b1) yielded improved results compared to not up-
dating the coordinates of b2. The coordinates of b2 were only updated when b2 was an SP. If
b2 happened to be a terminal, its position was kept fixed. To denote if a strategy updated the
position or not we will use the expression “update” and “no_update” respectively.

To evaluate the effectiveness of the strategies, we conducted a series of experiments by
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sampling 200 problem instances for eachN in the set {5, 6, 7, 8, 9}, whereN represents the
number of terminals. For each instance, we applied the mSTreg heuristic with different α
values and utilized the aforementioned strategies to transform a full tree topology into a CST
topology. Figure D.10 shows the mean ranking positions obtained by the different strategies,
once all feasible solutions have been sorted. The results confirm the observations that we
already pointed out. For all of our experiments we used the combination that produced the
best results i.e. “update”+“greedy”+“Ordclosest”.

D.12 Further Details on the Brute Force Experiment

In this section, we analyze the behavior of the mSTreg heuristic with respect to α. To inves-
tigate this, we utilize the experiment described in Section 5.7, which compared the cost of
the output tree generated by our heuristic with the optimal solution for different numbers of
terminal nodes, denoted as N, while specifically examining the influence of α.

For each N ∈ {5, 6, 7, 8, 9}, we sample 200 problem instances. We computed the opti-
mal CST and BCST topologies of all problems via brute-force and with the mSTreg heuris-
tic2 for all α ∈ {0, 0.1, . . . , 0.9, 1}. Figures D.11 and D.12 show the relative error and how
the heuristic solution ranks, when the costs of all topologies are sorted. When solving the
BCST, though there is not a clear trend, we can observe that for higherN the heuristic tends
to perform worse for higher α values, since on average the heuristic’s solution ranking is
higher. When solving the CST problem this pattern can be more clearly seen.

D.13 Selection of α

In this section, we present our practical insights into determining the optimal value for α. It
is crucial to emphasize that the choice of α is task-dependent and influenced by the desired
level of structure preservation. Nevertheless, we share the observations derived from our
empirical experiences.

For simpler examples, as the ones illustrated in Section D.1, we have consistently found
thatα values within the range of [0.7, 1] yield high stability while preserving the primary data
structure. In general, an increase in α correlates with a heightened inclination toward a star-
shaped tree, in line with the limit case discussed in Appendix 5.2.1. This tendency becomes
more pronounced in higher dimensions, where even relatively small α values (α ≲ 1) lead to
an almost star-shaped tree, compromising data structure preservation. This arises from the

2As described in D.11, we can use different strategies to transform a full tree topology into a CST topology,
when solving the CST problem with the mSTreg heuristic. We used the one that updates the position of SPs
and collapses to the closest neighbor.
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(a) N=5 (b) N=6 (c) N=7

(d) N=8 (e) N=9

Figure D.10. Performance SPs Collapse Strategies. Comparison of different collapse
strategies to transform a full tree topology into a CST topology. See Section D.11 for a short
description of the strategies. We plot the average sorted position of the heuristic for different
number of terminals,N and for differentα values. We observe that the strategy combinations
including the “greedy” collapse approach have significantly better results. The combinations
which update the position of the collapsed SP (“update”) perform slightly better than the
ones that do not (“no_update”). Analogously, the strategies that order the SPs based on the
closeness to the neighbors (“Ordclosest”) is slightly better than “Ordclosestterminal”.
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(a) N=5 (b) N=6 (c) N=7 (d) N=8 (e) N=9

BCST relative error for different number of terminals N

(f) N=5 (g) N=6 (h) N=7 (i) N=8 (j) N=9

BCST rank of heuristic for different number of terminals N

Figure D.11. BCST Bruteforce Benchmark with Respect to α. Relative cost errors be-
tween the mSTreg heuristic and BCST optimal solutions; and sorted position of the heuristic
tree for different number of terminals, N . For each N we uniformly sampled 200 different
terminal configurations and we solved them for all α ∈ {0.0, 0.1, . . . , 1.0}. Most runs ended
up close to the global optimum. There is no clear pattern with respect to the performance of
the heuristic with respect to the value of α, though for higher number of terminals, it seems
that the rank of our solution gets to be worse on average.



182 D.13. Selection of α

(a) N=5 (b) N=6 (c) N=7 (d) N=8 (e) N=9

CST relative error for different number of terminals N

(f) N=5 (g) N=6 (h) N=7 (i) N=8 (j) N=9

CST rank of heuristic for different number of terminals N

Figure D.12. CST Bruteforce Benchmark with Respect toα.Relative cost errors between
the mSTreg heuristic and optimal CST solutions; and sorted position of the heuristic tree for
different number of terminals, N . For each N we uniformly sampled 200 different terminal
configurations and we solved them for all α ∈ {0.0, 0.1, . . . , 1.0}. Most runs ended up close
to the global optimum. There is no clear pattern with respect to the performance of the
heuristic with respect to the value of α, though for higher number of terminals, it seems that
the rank of our solution gets to be worse on average.
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curse of dimensionality, where the majority of point pairs in a high-dimensional Euclidean
space become nearly equidistant. Consequently, the strong triangle inequality, derived in
Theorem 5.2.2, will hold for most triplets of points due to the approximate equality of cku ≈
ckv in equation (5.3). Figures 5.5i-5.5l) exemplify this effect on the Paul dataset.

We refrained from further exploring the case of α > 1 due to both practical and theoret-
ical observations pointing towards an excessively star-shaped tree. Indeed, as demonstrated
in 5.2.1, when the number of terminals, N , is sufficiently large and α > 1, the optimal so-
lution results in a star-graph. The transition to a star-tree occurs quite early in this scenario.
For instance, with moderate values of N and α ≳ 1 (e.g., N = 1000, α = 1.13), an optimal
star-tree emerges. Refer to Figure 5.2 to observe how the value of α at which the optimal
solution becomes a star-tree approaches 1 as N increases.

In summary, our empirical experience suggests that intermediate α values (around 0.5)
effectively preserve the data structure while maintaining relative stability. This choice holds
true for the applications highlighted in the thesis. We hope that by sharing our experiences,
practitioners can better select an appropriate α for their respective applications.

D.14 Implementation Details
In this section, we explain some implementation details of the mSTreg heuristic and also the
parameters used for the different experiments.

In each iteration of the mSTreg algorithm, it is necessary to compute the mST. Since we
are working with a complete graph, the computational complexity of the mST computation
is O(N2). To reduce this cost, we compute the mST over a k-nearest neighbor (kNN) graph,
where we set the value of k to log(N). While the resulting mST over the kNN graph may
not always match the optimal mST, in practice, they often yield similar results. It is worth
noting that the introduction of additional nodes, as described in Section D.10, may provide
more significant benefits when using the mST computed over a kNN graph.

In Section D.11 we have described different approaches to transform a full tree topology
into a CST tree topology. The strategy used to collapse the SP nodes upon transforming a
full tree topology into a CST tree was the one that updates the collapsed SP to the weighted
geometric median, collapses greedily the SPs and determines the SP to be collapsed as the
one with minimum distance to one of its neighbors (“update+greedy+Ordclosest”).

In all experiments, we set the sampling_frequency variable of Algorithm 2 equal to
3, and we set the maximum number of iterations of the mSTreg heuristic equal to 20.





Appendix E

BCST-Based 3D Plant Skeletonization

E.1 Additional Skeletonization Results
This section shows additional qualitative results of the experiments realized in Section 6.3.
In Figure E.1, we showcase the skeleton obtained for the apple tree presented in the main part
of the thesis across further density levels, specifically with 5000 and 10000 sample points,
in addition to those that had already been presented. Additionally, E.2 and E.3 display the
skeletons at various density levels for a different tree, namely a pine tree. Similarly, Figures
E.4 and E.5 show the results obtained in the missing and noisy experiment settings described
in Section 6.3 for the same pine tree.
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(a) Ground truth

(b) L1skel, n = 2500 (c) LBC, n = 2500 (d) Pypetree, n = 2500 (e) BCST n = 2500

(f) L1skel, n = 5000 (g) LBC, n = 5000 (h) Pypetree, n = 5000 (i) BCST n = 5000

(j) L1skel, n = 10000 (k) LBC, n = 10000 (l) Pypetree, n = 10000 (m) BCST n = 10000

(n) L1skel, n = 20000 (o) LBC, n = 20000 (p) Pypetree, n = 20000 (q) BCST n = 20000

Figure E.1. Performance Comparison Skeletons at Different Density Levels (Apple
Tree). Comparative analysis of skeletonization methods applied to different density levels
of an apple tree instance. Each column corresponds to a distinct technique, while each row
represents varying density levels. Notably, BCST outperforms other methods by accurately
modeling a majority of branches, particularly evident at lower densities (E.1e) where the
other methods miss most of the branches (E.1b-E.1d).
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(a) Ground truth

(b) L1skel, n = 2500 (c) LBC, n = 2500 (d) Pypetree, n = 2500 (e) BCST n = 2500

(f) L1skel, n = 5000 (g) LBC, n = 5000 (h) Pypetree, n = 5000 (i) BCST n = 5000

Figure E.2. See caption Figure E.3
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(a) L1skel, n = 10000 (b) LBC, n = 10000 (c) Pypetree, n = 10000 (d) BCST n = 10000

(e) L1skel, n = 20000 (f) LBC, n = 20000 (g) Pypetree, n = 20000 (h) BCST n = 20000

Figure E.3. Performance Comparison Skeletons at Different Density Levels (Pine Tree).
Comparative analysis of skeletonization methods applied to different density levels of pine
tree instance. Each column corresponds to a distinct technique, while each row represents
varying density levels. Notably, BCST outperforms other methods by accurately modeling
a majority of branches, particularly evident at lower densities E.2f) where the other methods
miss most of the branches (E.2c-E.2e).
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(a) Missing vs original (b) Ground truth

(c) L1skel (d) LBC (e) Pypetree (f) BCST

Figure E.4. Performance Comparison Skeletons with Missing Data (Pine Tree). Com-
parative analysis of skeletonization methods applied to an apple tree instance with 20%
missing data. The green points in E.4a represent the input data points, while the blue points
correspond to the 20% of data points intentionally removed from the original sample with
n = 20000. BCST demonstrates superior performance compared to other methods, accu-
rately modeling the majority of branches even in the presence of 20% missing data.
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(a) Noisy and original
samples

(b) Ground truth

(c) L1skel (d) LBC (e) Pypetree

(f) BCST pruned λ = 0.05
(g) BCST pruned

λ = 0.50

Figure E.5. Performance Comparison Skeletons with Noisy Data (Pine Tree). Compar-
ative analysis of skeletonization methods of skeletonization methods on a pine tree instance
affected by Gaussian noise. The green points in E.5a) represent the input data points post-
application of Gaussian noise, while the blue points depict the original data points without
any noise. Remarkably, BCST stands out by accurately preserving all branches, a feature
not shared by other methods. However, the default weighting factor (λ = 0.05) used for
pruning keeps several spurious branches. This issue can be addressed by increasing λ, as
demonstrated in E.5g).
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