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Abstract

Heavy quarks (i.e. charm and beauty) are powerful tools to characterize the quark-gluon
plasma (QGP) produced in heavy-ion collisions. Although they are initially produced out of

kinetic equilibrium via hard partonic scattering processes, recent measurements of anisotropic
flow of charmed hadrons pose the question regarding the possible thermalization of heavy

quarks in the medium. In this work, we provide new insights into the level of thermalization of
charm and beauty quarks in the QGP. In particular, exploiting a mapping between transport
theory and fluid dynamics, we show how a fluid-dynamic description of charm diffusion in the

QCD plasma is feasible. Inspired by recent Lattice-QCD calculations, we show that fluid
dynamics seems to be applicable also for beauty quarks in the latest stages of the expanding

QGP. We present results for transverse momentum distribution and integrated yields of
charmed hadrons in central Pb–Pb collisions at

√
sNN = 5.02 TeV at the LHC obtained with a

fluid-dynamic code coupled with the conservation of a heavy-quark – antiquark current in the
QGP. Our calculations are in agreement with the available experimental measurements in the

low transverse momentum region, indicating an effective hydrodynamization of charm quarks in
the QGP.

Zusammenfassung

Schwere Quarks (d. h. Charm und Beauty) sind mächtige Werkzeuge zur Charakterisierung des
Quark-Gluon-Plasmas (QGP), das bei Kollisionen von schweren Ionen erzeugt wird. Obwohl sie
anfangs in harten partonischen Streuprozessen außerhalb des kinetischen Gleichgewichts erzeugt

werden, werfen aktuelle Messungen des anisotropen Flusses von Charm-Hadronen die Frage
nach der möglichen Thermalisierung von schweren Quarks im Medium auf. In dieser Arbeit

liefern wir neue Einblicke in das Level der Thermalisierung von Charm- und Beauty-Quarks im
QGP. Insbesondere zeigen wir anhand eines Zusammenhangs zwischen Transporttheorie und
Fluiddynamik, wie eine fluiddynamische Beschreibung der Charm-Diffusion im QCD-Plasma

realisierbar ist. Inspiriert durch aktuelle Lattice-QCD-Berechnungen zeigen wir, dass die
Fluiddynamik auch für Beauty-Quarks in den letzten Stadien des expandierenden QGP

anwendbar zu sein scheint. Wir präsentieren Ergebnisse für die Transversalimpulsverteilung
und die integrierten Erträge von Charm-Hadronen in zentralen Pb–Pb-Kollisionen bei√
sNN = 5.02 TeV am LHC, die mit einem Fluiddynamik-Code in Verbindung mit der

Annahme der Erhaltung eines Quark-Antiquark-Stroms für schwere Quarks und Antiquarks im
QGP berechnet wurden. Unsere Berechnungen stimmen mit den verfügbaren experimentellen

Messungen im Bereich kleiner Transversalimpulse überein und deuten auf eine effektive
Hydrodynamisierung von Charm-Quarks im QGP hin.
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Chapter 1

Introduction

I see your true colors shining through.

Cindy Lauper, True colors

This chapter is mostly inspired by [1, 2].

Notation

In the course of this thesis, we will often adopt natural units,

c = ℏ = kB = 1 ,

where c is the speed of light in the vacuum, ℏ is the Planck constant divided by 2π, and kB is

the Boltzmann constant.

We use Greek indexes for four-vectors’ components µ = 0, 1, 2, 3, while the Latin index for

the spatial coordinates i = 1, 2, 3. We adopt the Einstein summation convention to sum over

indexes that appear at least once in the upper and once in the lower position.

We refer at the pseudo-critical temperature of the QCD chiral phase transition as Tpc. In

the literature, however, it is sometimes referred to as Tc.

1.1 High-energy nuclear physics

High-energy nuclear physics is a field of study that explores the behavior, properties, and inter-

actions of nuclear matter under extreme conditions of temperature, density, and energy. This

branch of physics often investigates nuclear matter in the context of high-energy particle acceler-

ators, where two accelerated nuclei collide with each other creating extreme energy conditions. It
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is an interdisciplinary topic, involving elements of nuclear physics, particle physics, astrophysics,

and cosmology.

High-energy physics is ultimately devoted to studying the fundamental forces that define

the Standard Model of particle physics, namely the electromagnetic, weak, and strong interac-

tion. High-energy nuclear collisions, such as proton-proton (pp) or heavy-ion collisions, allow us

to deepen our understanding of Quantum-Chromodynamics (QCD), the quantum field theory

associated with the strong interaction. In particular, with heavy-ion collisions, one probes the

nature of QCD interactions in extended systems. When colliding heavy ions such as lead (Pb)

or gold (Au) nuclei at high energies, a new state of matter is created, that is, the quark-gluon

plasma (QGP). At the time of impact, the nucleons that compose the colliding nuclei lose their

identity of “protons” and “neutrons”. For a fraction of microseconds (∼ 10−22 s), the elementary

components of the nucleons, i.e. quarks and gluons, exist unconfined. The produced system

undergoes a rapid expansion and cools down until the quarks and gluons combine to form more

complex objects in which they are confined, the hadrons.

The main objective of high-energy nuclear physics and heavy-ion collisions is to produce and

characterize the QGP. This characterization spans from pinning down the transport properties

of the plasma – such as its shear and bulk viscosity, heat and electric conductivity, and so on – to

its Equation of State (EoS). From a broader point of view, heavy-ion collisions help in describing

the QCD phase diagram by providing information on the low-baryon chemical potential/high-

temperature region. An additional motivation behind the heavy-ion collision program is given

by its deep connection with the Big Bang. In fact, it is vastly agreed upon in the scientific

community that a QGP phase has taken place in the first few microseconds of our Universe. Its

expansion – due to gravitational forces – gave rise to the formation of the elements and large-scale

structures that we observe today. Heavy-ion collisions allow to re-create, for shorter timescales,

a hot and dense system sharing similar features, therefore providing insights into the early stages

of the Universe.

In recent years, dramatic progress has been achieved in the field, leading to a whole set of

new, still unanswered questions. Because of the success of relativistic viscous hydrodynamics in

modeling the QGP phase of a heavy-ion collision (see e.g. Ref. [3] for a recent review), a lot of

interest has been devoted to the QGP as a collectively expanding system. In particular, physicists

have been focusing on understanding what properties of the hadrons measured in the heavy-ion

collision experiments stem from such collective expansion. More fundamentally, the mere fact

of the fast emergence of the collective behavior of the QGP, given the far-out-of-equilibrium

initial condition of two colliding nuclei, has already been thoroughly investigated [4–7]. In a

similar direction, the question about the formation of a QGP phase in small systems has also

been raised (see e.g. Refs. [8, 9] for recent reviews). While the build-up of a collective expansion

is now unquestioned in ultrarelativistic collisions of heavy nuclei such as Pb or Au, it remains
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under debate whether the same happens for smaller systems, such as proton-lead (p–Pb), until

the extreme case of pp collisions. In particular, it is still ambiguous if the available experimental

data hint at the emergence of a collective phase in the collision.

Some of the most recent advancements in the field regard interdisciplinary pioneering studies.

As an example, a paradigm on how to probe the nuclear structure of the colliding nuclei by

exploiting heavy-ion collisions has been recently established. The joint effort between the low-

and high-energy nuclear physics communities allowed for a fast improvement in the knowledge

of the geometry of the colliding nuclei and how the latter impacts the subsequent QGP phase [1,

10–12]. To the set of these new approaches belongs also the mapping of the collective dynamics

developed in heavy-ion collisions onto cold atom systems made out of only a few particles [13,

14]. The striking question here is how many particles are needed to observe a fluid-like behavior,

with the goal of understanding better the interplay between microscopic and mesoscopic physics

scales. One of the driving ideas is to employ tools and knowledge from the heavy-ion field to

assess the manifestation of collective behavior in cold atom systems.

The heavy-ion physics program has been extremely successful. A large amount of high-

precision measurements has been (and is currently being) collected. At the same time, the

theoretical understanding of the dynamics of the collision has strongly improved. A solid com-

prehensive theoretical framework has been developed, allowing to quantitatively describe the

experimental data as well as pointing out significant deviations between the modeling and the

observations. Thanks to this thorough effort, we are now able to constrain fundamental proper-

ties of QCD with unprecedented precision.

1.2 Relativistic heavy-ion collisions

1.2.1 Theoretical framework: QCD

QCD is the quantum field theory describing the strong interaction. Together with the theory

of electromagnetic and weak interactions, it is a fundamental pillar of the Standard Model of

particle physics.

QCD is a non-abelian field theory that is symmetric under local SU(3) gauge transformations.

The conserved charge associated with the SU(3) symmetry is color, which can appear in 3

states (usually identified with red, green and blue). The color charge is carried by the spin-1/2

fermions of the theory, the quarks, that are distinguished according to their flavor (up, down,

strange, charm, beauty, and top). The symmetry under local gauge transformations requires

eight gauge fields, which correspond to eight massless gauge bosons, the gluons, mediating the

strong interaction and connecting quark states of different colors. Due to color conservation

at the QCD interaction vertex, gluons must carry color and anticolor charge. The non-abelian

nature of the theory allows for the gluons to self-interact with 3- or 4-gluon vertices.
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A striking feature of QCD is the running behavior of the strong coupling constant αs. In

quantum field theory, the quantity describing the interaction between two particles is an effective

constant which depends on the energy scale Q2 of the interaction. The running of the coupling

constant in QCD defines two phenomena, namely asymptotic freedom and color confinement.

The larger Q2, the weaker the interaction between quarks and gluons. In this regime, quarks

and gluons are quasi-free particles (asymptotic freedom) and one can rely on perturbative QCD

(pQCD) calculations to expand the amplitudes of the scattering matrix in a controlled fashion

in terms of powers of αs. At low Q2, on the other hand, the coupling diverges, causing the

breakdown of the perturbative approach. In this regime, confinement dictates that quarks and

gluons cannot exist in isolation and, consequently, are not directly observable. The quarks and

gluons form therefore color-neutral bound states – the hadrons – divided, in turn, into mesons

(2-quark bound state) and baryons (3-quark bound state). The study of QCD under these

conditions is tackled with Lattice QCD (LQCD), which employs a discretized spacetime lattice

in order to evaluate physically relevant quantities. LQCD has become one of the most prominent

tools in high-energy physics to determine the thermodynamic properties of QCD, such as its

EoS [15, 16]. Alternatively, functional methods, such as the functional Renormalization Group

(fRG [17, 18]), also provide a robust mathematical framework to compute QCD properties in

the non-perturbative regime.

1.2.2 The QCD phase diagram

The complete understanding of the phase structure of QCD is one of the ultimate goals in physics

(see e.g. Refs. [19, 20]). In the attempt to study the various features of the theory, one aims at

reconstructing the full QCD phase diagram, which is sketched in Fig. 1.1. A standard way of

depicting the phase diagram is as a function of temperature T and baryon chemical potential µB

or – equivalently – net baryon density.

LQCD calculations and chiral effective models have shown that the QCD phase diagram is

non-trivial and displays at least two phases, namely a high-temperature QGP phase – where

the active degrees of freedom are quarks and gluons, due to asymptotic freedom – and a low-

temperature hadronic phase in which the quarks and gluons are confined. In particular, theo-

retical calculations on the lattice in the low-baryon chemical potential region predict a smooth

crossover associated with the chiral symmetry breaking of the QCD Lagrangian. Shifting to

non-zero chemical potential, effective models suggest the presence of a first-order transition, sep-

arated from the crossover line by a second-order critical end-point. The exact value at which

this should occur is currently under debate.

To explore different regions of the phase diagram, the most direct tool is provided by heavy-

ion collisions. By performing experiments at different center-of-mass energies
√
s, a different

amount of energy and net-baryon density is deposited in the collision. This allows to explore
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Figure 1.1: Sketch of the QCD phase diagram in the temperature-baryon chemical poten-
tial plane. The colored areas identify the different phases, while the white lines indicate
the phase transitions. Straight pink and green lines with different slopes show the differ-
ent regions of the phase diagram probed by collider experiments at various center-of-mass
energies.

the QCD phase diagram along straight lines with different slopes (as shown by the pink and

light green lines in Fig. 1.1). The highest-energy experiments (LHC at CERN, RHIC at BNL

at top energies – see the Sec. 1.2.3 for more details on these facilities) allow us to explore the

region of the phase diagram near the temperature axis, that is, at µB ∼ 0. This regime is of

special interest since it corresponds to the conditions of the early Universe. Furthermore, this is

the region where the theoretical framework is more under control, also in the non-perturbative

regime.

At extremely high baryon densities and low temperatures, a color-superconductor phase is

conjectured [21]. In conventional superconductors, electrons form Cooper pairs and condense into

a state with zero electrical resistance. In the context of QCD, a similar phenomenon is expected

to occur among quarks. At extremely high densities, such as those found in the cores of neutron

stars, it is theorized that quark matter undergoes a phase transition to a color superconducting

state. In this state, quarks form Cooper pairs and condense, leading to the spontaneous breaking

of SU(3) color symmetry.

To approach higher baryon densities, experiments were carried out at SPS, in the Beam

Energy Scan (BES) at RHIC, and are planned for the near future at FAIR and NICA. The study

of this region of the phase diagram is relevant for the understanding of the nature of quark matter

inside neutron stars, which constitute the perfect benchmark for cold and almost infinite nuclear

matter. The densities inside a neutron star exceed by far anything found on Earth and a detailed
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understanding of the physics phenomena in its core is still absent. Experiments covering this

region of the phase diagram are the probes to test the validity of the present theoretical models.

In this thesis, we will focus on the QGP phase at high temperatures and zero baryon chemical

potential, such as the ones realized at the LHC.

1.2.3 Collider experiments

Heavy-ion collisions are the experimental tool employed to study the QGP. In order for this

state of matter to be created, nuclear matter has to be compressed to extremely high energies

and temperatures. Only two experimental facilities in the world can create such conditions,

namely the Large Hadron Collider (LHC) at European Center for Nuclear Research (CERN)

in Geneva, Switzerland, and the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven

National Laboratory (BNL) in Uptown, New York, USA.

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accel-

erator. It consists of a 27-kilometer ring of superconducting magnets with several accelerating

structures to boost the energy of the particles along the way. Inside the accelerator, two high-

energy particle beams travel at close to the speed of light before they are made to collide. The

beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum.

They are guided around the accelerator ring by a strong magnetic field maintained by supercon-

ducting electromagnets. The LHC is designed to accelerate protons at a maximum center-of-mass

energy
√
s = 14 TeV and lead nuclei at a maximum center-of-mass energy per nucleon pair of

√
sNN = 5.02 TeV. Collisions in the LHC generate temperatures of the order of 1012 K, more

than 105 times hotter than the center of the Sun. During runtime, for about one month per

year, the LHC provides collisions between lead ions, recreating in laboratory conditions similar

to those just after the Big Bang. The ALICE Collaboration, one of the four large collaborations

working at the LHC, is entirely dedicated to the heavy-ion collision program. Additionally, part

of the ATLAS and CMS collaboration are also devoted to the heavy-ion data taking. The LHC

is currently in the Run 3 period, providing data for pp and Pb–Pb collisions with unprecedented

precision. Oxygen-oxygen (O–O) collisions are also scheduled, with the goal of deepening our

knowledge of collectivity and QGP formation in small systems. Nuclear collisions at LHC are

foreseen until about 2040. The program for the future years (Run 5 and Run 6) is currently

under discussion.

RHIC consists of an accelerator ring with a diameter of about 1.2 kilometers. It can perform

pp collisions at center-of-mass energy up to 500 GeV, and nuclear collisions at nucleon-nucleon

center-of-mass energy up to 200 GeV. This machine is entirely devoted to studies of high-energy

nuclear physics. RHIC is a versatile machine and, since the start of operations in 2000, it

collected a large amount of data for several colliding nuclear species (Au, Zr, Ru, etc.). The

two main collaborations performing the data taking and analysis are STAR and PHENIX. One
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of the main physics goals at RHIC is pursued by the BES program, which focuses on the study

of the QCD phase diagram. The STAR experiment at BNL has recently completed the second

phase of the beam energy scan (BES-II) program. The center-of-mass energy per nucleon pair of

the Au–Au collisions from the collider mode ranges from 7.7 to 54.4 GeV, while the fixed target

collisions included in BES-II extend the energy reach down to 3.0 GeV. These studies constitute

an opportunity to probe the medium properties of QCD matter at high baryon densities. In

the future, RHIC will be reused as the infrastructure on which the Electron-Ion Collider (EIC)

will be built. A new electron source, electron accelerator and storage rings will be added inside

the existing collider tunnel so that collisions will take place at points where the stored ion and

electron beams cross.

Each collision releases a large number of particles. Each (charged) particle leaves a signal

in the detector that allows for the particle’s track to be reconstructed. All measurements are

performed in momentum space. The final reconstructed object corresponds to a given particle’s

4-momentum vector, pµ = (p0, p⃗), where p⃗ = (px, py, pz) and p0 = γm, m is the rest mass of the

particle and γ is the Lorentz factor. Often, the spatial momentum components are parametrized

as p⃗ = (pT, ϕ, y), namely transverse momentum, azimuthal angle and rapidity, defined as

pT =
√
p2x + p2y , (1.1)

ϕ = arctan

(
py
px

)
, (1.2)

y = arctanh

(
pz
p0

)
. (1.3)

When the emitted particle is not known, the pseudo-rapidity η = arctanh
(
z
t

)
is used instead. The

definitions of y and η coincide when the particle energy is much larger than its mass. In a typical

Pb–Pb collision at the LHC, about 2000 tracks per collision event are reconstructed at mid-

rapidity (y ∼ 0), of which the most abundant are pions, protons, kaons and their correspondent

charge conjugates.

1.2.4 Stages of a heavy-ion collision

Since the heavy-ion program at collider facilities has started, a “Standard Model” of heavy-ion

collisions has been developed through the years. The joint effort between theoreticians and

experimentalists allowed in fact to distinguish the main stages of a collision, from the time of

impact of the nuclei until the hadrons fly into the detectors. This scheme is depicted in Fig. 1.2.

The time scan is parametrized by the longitudinal proper time τ =
√
t2 − z2.

Before the collision: τ < 0. The starting point of a heavy-ion collision consists of two

heavy nuclei flying into each other at a speed comparable to the speed of light. We often refer to
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Figure 1.2: An illustration of different stages in a heavy-ion collision. The event display
at the final stage is from the STAR experiment at RHIC.

these nuclei as A and B, or projectile and target1. We identify the beam axis with the longitudinal

z axis and the transverse plane as the orthogonal x− y plane. The colliding nuclei are Lorentz

contracted in the z direction.

Initial state: τ = 0. At τ = 0 an amount of energy (entropy) density is deposited by the

colliding heavy nuclei. This density is often described by employing the Glauber model2 [30], a

semi-classical approach based on a geometrical description of the incoming nuclei. The interaction

between the nuclei is portrayed as an incoherent overlap of nucleon-nucleon collisions, therefore

it can be modeled with the theory of probability. The Glauber model allows to give quantitative

predictions for the interaction probability of the nucleons, the number of elementary nucleon-

nucleon collisions Ncoll, the number of nucleons which are “wounded” by the interaction (number

of participants Npart) and the ones that are not (number of spectators Nspec), the size of the

overlap region, and so on.

The key ingredients of the Glauber model are the following:

• Optical limit. The nucleons in the nucleus are considered like point-like objects3. Each nu-

cleon is considered to be independent of the others. This represents a good approximation

at high collision energies where the De Broglie wavelength of a nucleon with momentum

p from the projectile, λ ∼ ℏc/(pc), is much smaller than the typical distance between two

1Even though the collision is often symmetric, as in Pb–Pb or Au–Au collisions, it is useful to identify
one nucleus as a target and the other as a projectile when isolating the effect that a nucleon from nucleus
A has on the nucleons in nucleus B.

2Alternatives or extensions to the Glauber model have been developed through the years. Some
examples are the Color Glass Condensate (CGC) [22–25] and the IP-Glasma model [26–29], that will not
be employed in this work.

3In certain initial condition models, such as TRENTo [31], the nucleons can be considered as complex
objects with their own size and substructure. This more detailed description plays a role in the study of
observables which strongly depend on the initial nucleon fluctuations.

https://www.bnl.gov/newsroom/news.php?a=217221
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nucleons in the target, d ∼ 1 fm. Furthermore, the nucleus travels on a straight line along

the z axis and it is not deviated by the interaction. Protons and neutrons are considered

indistinguishable.

• Interaction cross section. The interaction cross section σ depends on the center-of-mass

energy of the collision
√
s and is assumed to be the same for each collision, therefore

neglecting modifications due to nucleon excitations in the collision. This is justified since

the formation time of a resonant state is much larger than the time between two subsequent

interactions. Only the inelastic component of the cross section σin is considered.

• Nucleon position. The incoming nuclei are described according to a density ρ(r), usually

provided by a Woods-Saxon curve or a more general n-point Fermi function. The param-

eters of these distributions, such as average nuclear radius or the density in the center

of the nucleus, are taken from independent electron-nucleus or neutron-nucleus scattering

experiments.

On an event-by-event basis, this distribution is used to determine the positions of the nu-

cleons inside the nucleus. While in the optical limit, the density distribution is assumed to

be smooth, in numerical approaches known as Glauber Monte Carlo local density fluctua-

tions are included. The two calculations coincide in the limit of large number of nucleons

or small inelastic cross section [30]. In general, however, they predict slightly different

collision geometries.

• Impact parameter. The distance between the centers of the two colliding nuclei is called

impact parameter b. The total energy of the system created at the time of the collision

τ = 0 fm depends on the overlap between the colliding nuclei, therefore reflects the impact

parameter. One can classify different collision events based on the impact parameter as

central (b → 0), semi-central and semi-peripheral (b ∼ RA), and peripheral (b → 2RA)

collisions. The impact parameter can not be measured directly in the experiment; however,

the number of produced particles detected at the end of collision evolution can be used as

a proxy to estimate it.

• Participants and spectators. The number of participants Npart is defined as the number

of nucleons that have at least one interaction with another nucleon during the collision.

The number of spectators Nspec is, on the contrary, the number of nucleons that do not

participate in any interaction. They are strongly dependent on the impact parameter. For

b→ 0, meaning full overlap between A and B, Npart coincides with the sum of the number

of nucleons in the colliding nuclei. A related concept is the number of collisions Ncoll,

which identifies the number of times in which a nucleon-nucleon interaction takes place.

The latter is directly proportional to the interaction cross section.
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Figure 1.3: A Glauber Monte Carlo simulation of a Au–Au event with impact parameter
b = 6 fm seen in the transverse plane (a) and along the beam axis (b). Darker circles
represent participant nucleons, and lighter circles represent spectators. Figure taken from
Ref. [30].

An example of Glauber Monte Carlo simulation is pictured in Fig. 1.3, where a Au–Au event

with impact parameter b = 6 fm is displayed in the transverse plane (a) and along the beam axis

(b). Darker circles represent participant nucleons, and lighter circles represent spectators. The

figure is taken from Ref. [30].

Pre-equilibrium phase: 0 < τ ≲ 1 fm/c. It is the time frame between the collision time

and the thermalization time τ0 ∼ 1 fm/c, that is, the beginning of the QGP phase. In many

phenomenological descriptions of heavy-ion collisions, the description of this phase is omitted and

the initial state is assumed to remain unchanged or to undergo a simple free streaming dynamics

in the first fm/c [32, 33]. In recent years, however, the question of how the transition between

an out-of-equilibrium system such as one of the colliding nuclei, and a thermalized quark-gluon

medium takes place has gained a lot of interest (see e.g. [7] for a recent review).

QGP phase: 1 ≲ τ ≲ 10 fm/c. The QGP phase consists of a thermalized system of

free quarks and gluons. Its formation is associated with a phase transition from the hadronic

phase to the deconfined phase, which can be reached only under extremely high temperatures

and energy densities – such as the ones achieved at the LHC and top RHIC energies. The

duration of the QGP phase depends on the energy of the collision as well as on its geometry

(at higher energies and in more central collisions the QGP phase is expected to last longer).

Due to pressure gradients with respect to the surrounding vacuum, the QGP undergoes a rapid

expansion often described as a fireball, with a subsequent cooling of the system. This evolution

is successfully described by relativistic viscous fluid dynamics – which will be described in detail
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in Chapter 2. In particular, fluid dynamics is able to describe some of the most characteristic

aspects of the QGP, such as radial (isotropic) and anisotropic flow. The term “flow” refers to the

collective motion of the particles composing the fluid superimposed to their thermal motion. It

manifests as an angular modulation in the distribution of the final-state particles (see the Sec.

1.3 for further details). The initial conditions for the hydrodynamic expansion are provided by

the initial state model. Examples of state-of-the-art models and code packages that describe the

evolution of the QGP are Trajectum [34], MUSIC [35] and FluiduM [36]. The key points which

determine the evolution of the QGP system can be synthesized as:

• Transport coefficients. Transport coefficients, such as viscosities and conductivities, regu-

late how the fluid variables (temperature, pressure, fluid velocity, and dissipative currents)

evolve in spacetime. Determining these coefficients is one of the main goals of the heavy-ion

collision program. They admit a first-principle description in QCD, but their analytical

calculation is only possible under certain approximations. From the theoretical point of

view, LQCD and functional approaches play a crucial role, granting a numerical treatment

of these non-perturbative quantities. Another way to extract transport coefficients of the

QGP is through phenomenological studies. A systematic comparison between theoreti-

cal calculations and experimental measurements is nowadays an established paradigm for

learning information on such quantities.

• Equation of State. The Equation of State is a thermodynamic relation between state

variables, usually expressed by the pressure or energy density as a function of temperature

and chemical potential. It contains the microscopic information on the QCD medium.

In the case of ultra-relativistic heavy-ion collision, where the colliding nuclei get scarcely

stopped, one can assume that the net baryon chemical potential is roughly zero. In this

limit, the EoS can be computed in LQCD [15, 16]. In Fig. 1.4 the results for pressure,

energy density, and entropy density are shown as a function of temperature [15]. The lines

are the predictions of the Hadron Resonance Gas (HRG) model. LQCD predicts a crossover

at the pseudo-critical temperature Tpc = 154 ± 9 MeV, marked by the yellow vertical

band. At low temperatures, where confinement sets in, the calculations coincide with the

HRG description. At high temperatures, the dominant degrees of freedom are quarks and

gluons and the HRG approximation is no longer applicable. The dashed horizontal line

shows the asymptotic limit of a non-interacting gas of quarks and gluons. As shown in the

figure, however, the non-interacting limit is never reached within the temperature range

covered by the experimental conditions. The EoS is a necessary ingredient in heavy-ion

collision simulations. It is needed to have a closed system of equations in the hydrodynamic

treatment of the QGP.

Hadronization and freeze-out τ ∼ 10 fm/c. The concept of hadronization is strictly
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Figure 1.4: Pressure, energy density, and entropy density as a function of the temperature.
The lines are the predictions of the HRG model. The vertical band marks the crossover
region, at the pseudo-critical temperature Tpc = 154±9 MeV. Figure taken from Ref. [15].
.

related to the one of the phase transition of QCD. The fluid expansion decreases the temperature

of the fluid elements until at Tpc the QGP description is no longer applicable, and the system

enters the hadron-gas phase (hadronization). In heavy-ion simulations, when a fluid cell reaches

Tpc the hydrodynamic evolution is stopped. The freeze-out temperature identifies a freeze-

out hypersurface in spacetime, from which the hadrons are emitted. An established way of

implementing hadronization is to apply the Cooper-Frye prescription [37], that assumes a sudden

decoupling of the medium at TFO ≡ Tpc. The momentum distribution of the emitted hadron h

is given by the flux of particles through the freeze-out hypersurface Σµ,

Eh
d3N

dp3
= gh

∫
dΣµp

µfh , (1.4)

which provides the number density of the particle three-momentum scaled by the particle energy

Eh. Here, gh is the number of internal degrees of freedom, and fh is the momentum distribution

of the hadron at TFO. The latter contains the information on the fluid fields on the freeze-out

hypersurface. Through the Cooper-Frye formula, one maps the information on the fluid fields

from coordinate space onto momentum space.

There exists a distinction between chemical (Tchem) and kinetic (Tkin) freeze-out tempera-

ture. Tchem indicates the temperature under which the chemical composition of the hadrons is

fixed – up to feed-down from resonance decays. In this regime, also known as partial chemical

equilibrium [38, 39], the mean free time for elastic collisions is still smaller than the characteris-

tic expansion time of the expanding system, thereby keeping the gas in a state of local kinetic

equilibrium. The chemical equilibrium is not maintained since the mean free path of the inelastic
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collisions exceeds this threshold. The hadrons can still interact and exchange momentum until

the temperature reaches Tkin, when the system falls out of kinetic equilibrium and the momen-

tum distributions are fixed.

In the heavy-ion collision modeling, some approaches consider an intermediate phase between

the QGP and the gas of free-streaming hadrons, where scattering processes that occur in the

hadron gas are computed. Codes devoted to this task are, e.g., SMASH [40] or UrQMD [41].

Final detected particles τ ≫ 10 fm/c. In this stage, the long-lived hadrons (mostly pions,

kaons and protons) reach the detector. To correctly reproduce the momentum distribution of the

hadrons measured by the experiment, one needs to take into account feed-down contributions

from resonance decays. In fact, some of the produced hadrons will strongly decay and will not

be observed in the detector. The effect of resonance decays is very significant. For instance, the

number of stable light hadrons (pions, kaons, protons) emitted thermally at freeze-out is only

half its actual value after all unstable resonances have decayed. An efficient way to compute this

is provided by the FastReso code package [42].

1.3 Heavy-flavor observables in heavy-ion collisions

Heavy quarks are produced in the earliest times of the collision via hard scattering processes,

namely with high momentum transfer, even before the QGP is formed. They are considered

optimal probes of the QGP since they witness all the stages of the heavy-ion collision. In

particular, their diffusion through the QGP becomes a tool to infer transport properties of the

plasma. In this Section, we present a (selected) class of heavy-flavor observables that can be

experimentally measured. Each of them grants indirect access to different features of the QGP.

A fundamental quantity for many of these probes is the Lorentz-invariant differential yield

of final state particles, given by

E
d3N

dp3
=

1

2π

d2N

pTdpTdy
. (1.5)

By integrating Eq. (1.5) over transverse-momentum and rapidity, one obtains the total number

of produced particles in a single collision event (multiplicity). It strongly depends on the impact

parameter. Since the impact parameter cannot be directly measured, a way to classify different

collision events is through the centrality classes. The events can be sorted according to the total

charged-particle multiplicity in percentiles. The 0 − 5% centrality class corresponds to the 5%

of events with the highest multiplicity, and so on.

From Eq. (1.5) one can construct the nuclear modification factor RAA. This observable

quantifies a change in the dynamics of heavy quarks in heavy-ion collisions with respect to

elementary pp collisions. The RAA as a function of transverse momentum is defined as

RAA =
1

⟨Ncoll⟩
dNAA(pT)/dpT
dσpp(pT)/dpT

, (1.6)
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where dNAA/dpT is the pT distribution of a hadron in the heavy-ion collision and dσpp/dpT is

the correspondent one in a pp collision. If the absence of a QGP phase, the dynamics of heavy

quarks in a heavy-ion collision would not differ from the one in pp collisions, up to a factor

accounting for the total number of binary nucleon-nucleon collisions, and the RAA would be 1.

The deviation from unity observed in the experimental measurements is evidence of the presence

of the QGP phase. In particular, this observable is sensitive to the radial flow of the plasma.

Radial flow is an isotropic boost with velocity v⊥(r) of each fluid cell in the radial direction,

whose effect is to push the momentum distribution of hadrons to a larger average pT.

Anisotropic flow, on the other hand, quantifies a correlation between the particles’ final

angular distribution and the impact parameter. It is observed in non-central collisions, where the

impact parameter determines a preferential direction for the emission of the final state hadrons.

Anisotropic flow can be studied by looking at the Fourier decomposition of the particle angular

distribution,
dN

dϕ
∝ 1 +

∞∑
n=1

vn cos[n(ϕ−ΨRP)] , (1.7)

where vn are the anisotropic flow coefficients, ϕ is the azimuthal angle and ΨRP is the reaction

plane angle, identified by the azimuthal angle of the impact parameter in the transverse plane.

Non-zero vn coefficients mostly arise from the fluid-dynamic response of the QGP to the initial

geometrical anisotropy of the collision system. Their magnitude and distribution as a function of

pT are strongly influenced by the EoS and by the viscosities. The most prominent case is the one

of the elliptic flow v2, which quantifies the response to the initial ellipticity in the overlap region

of the colliding nuclei. The measurement of heavy-flavor hadrons’ elliptic flow quantifies the

correlation between the heavy quarks and the underlying medium. In other words, it measures

how much the heavy quarks share the collective behavior of the QGP.

.

1.4 This work

This work focuses on the study of the heavy-quark in-medium dynamics. Heavy quarks are

canonically treated within kinetic theory approaches due to the energy scale set by their large

mass. The new perspective we want to offer regards the soft (i.e. low-momentum) aspects of

heavy quarks as probes of the QCD medium. While at high transverse momenta the heavy-quark

dynamics is dominated by radiative energy loss, soft elastic scattering processes are the most

relevant contribution in the low-pT regime. We will concentrate on the soft momentum region

and discuss the level of participation of charm and beauty quarks in the collective motion of the

QGP. We will do so both from a theoretical and a phenomenological point of view.
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1.4.1 Outline

In Sec. 2 an introduction to relativistic viscous fluid dynamics is presented. We will show the

main equations needed to study the QGP in the presence of additional conserved currents. We

will also define the role of transport coefficients and relaxation times in fluid dynamics. In Sec.

3 we show a theoretical overview of transport approaches to heavy-quark dynamics in heavy-

ion collisions. In particular, we will discuss the description of charm and beauty quarks as it

is usually treated in the literature, that is, with kinetic theory (e.g. Boltzmann equation). In

Sec. 4 the motivation for a fluid-dynamic treatment of charm quarks in the QGP is presented.

A preliminary assessment of the situation of beauty quarks will also be shown. In Sec. 5 the

fluid-dynamic description of a heavy-quark current is developed. The applicability of such a

description to charm and beauty quarks is discussed. In Sec. 6 the results for charmed-hadrons

momentum distributions and integrated yields obtained within the fluid-dynamic approach are

presented. In Sec. 7 we will outline final remarks and possible extensions of this work.

1.4.2 Research work

In this thesis, I will mainly discuss the results of my research work described in the following

publications,

1. F. Capellino, A. Dubla, S. Floerchinger, E. Grossi, A. Kirchner and S. Masciocchi, “Fluid

dynamics of charm quarks in the quark-gluon plasma”, Phys. Rev. D 108 (2023) no.11,

116011.

2. F. Capellino, A. Beraudo, A. Dubla, S. Floerchinger, S. Masciocchi, J. Pawlowski and

I. Selyuzhenkov, “Fluid-dynamic approach to heavy-quark diffusion in the quark-gluon

plasma”, Phys. Rev. D 106 (2022) no.3, 034021.

I presented this work in two international conferences, Hard Probes 2023, Aschaffenburg (Ger-

many) and Quark Matter 2023, Houston, Texas (USA). The content of the talks is summarized

in the following Proceedings,

• F. Capellino, A. Dubla, S. Floerchinger, E. Grossi, A. Kirchner and S. Masciocchi, “Hydro-

dynamization of charm quarks in heavy-ion collisions” [arXiv:2312.10125 [hep-ph]], Pro-

ceedings Quark Matter 2023.

• F. Capellino, A. Dubla, S. Floerchinger, E. Grossi, A. Kirchner and S. Masciocchi, “Mo-

mentum distribution of charm hadrons in a fluid-dynamic approach” [arXiv:2307.15580

[hep-ph]], Proceedings Hard Probes 2023.

In all these publications I contributed as the first author. In particular, in 1. I performed all

the analytical and numerical calculations. In 2. I co-wrote the code to perform hydrodynamic
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simulations of the quark-gluon plasma and extended it to include the heavy-quark degrees of

freedom. However, the collaboration with each of the signing authors was of fundamental im-

portance to me, in terms of exchanging ideas, solving problems, writing the manuscript, and

promoting our work in the physics community.

Other works in which I participated, but will not be treated in this thesis, are

1. A. Kirchner, F. Capellino, S. Floerchinger, E. Grossi, “Extending the fluid-dynamic de-

scription to times before the collision”, work in progress.

2. G. Giacalone et al., EMMI Rapid Reaction Task Force (2022), “Nuclear physics confronts

relativistic collisions of isobars”, soon to appear on Arxiv.

In 1. we explore the feasibility of a fluid-dynamic approach to the initial conditions of a

heavy-ion collision. I contributed to the derivation of the equations of motion for the fluid fields

in the case of a fluid undergoing a Hubble expansion in the presence of dissipative shear-stress

corrections and in the study of the causality bounds on a diffusive equation for the net baryon

number evolution.

In 2. I participated actively in the two sections of the RRTF in 2022. Together with Andreas

Kirchner, we performed TRENTo simulations for the initial conditions to Zirconium and Ruthe-

nium nuclear collisions at RHIC studying the impact of various nuclear-structure parameters,

such as quadrupole, octupole, and triaxial deformation of the nuclei as well as modification of

their nuclear skin thickness. We contributed, together with Farid Tagahavi, to a Section in the

RRTF report dedicated to such studies.



Chapter 2

Relativistic fluid dynamics

This chapter is mostly inspired by [43–46].

2.1 Theoretical formulation

Relativistic viscous fluid dynamics is an effective theory used to describe long-distance and long-

time dynamics of macroscopic systems. It has applications in high-energy nuclear physics as

well as in astrophysics and cosmology [44, 46, 47]. In the context of heavy-ion collisions, fluid

dynamics is mainly employed to study the expansion of the QGP medium. Several properties of

light hadrons emitted at freeze-out, concerning their momentum and angular distribution, can

be successfully predicted by viscous fluid dynamics. In particular, the radial and elliptic flow,

mentioned in Chapter 1, are direct consequences of the collective behavior of the medium.

The regime of validity of fluid dynamics is the one where the typical length-scale of the

system L is much larger than the mean free path λmfp of its constituents. This condition can be

formulated in terms of Knudsen number, Kn ≡ λmfp/L. If Kn ≪ 1, the microscopic degrees of

freedom can be safely integrated out and the whole behavior of the system can be expressed in

terms of a few macroscopic fields, such as pressure, temperature, etc. Notice that, if one defines

λmfp ≡ (σn)−1, where σ is the interaction cross section among the constituents and n is their

number density, the ideal-fluid limit (Kn → 0) is verified when the system is strongly coupled,

corresponding to high particle density and/or large interaction cross section. Fluid dynamics

is in fact more general than kinetic theory (presented in Chapter 3) since it does not require

the interaction to be small or the system to be diluted. An emblematic example is provided by

the AdS/CFT correspondence [48], where hydrodynamics is a valid description of the strongly

coupled system.

Fluid-dynamic equations are formulated through a set of conservation laws. They include

the conservation of the energy-momentum tensor Tµν and possibly additional currents J µ
i ,
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where each current is associated with a conserved charge Qi (baryon number, electric charge,

strangeness, etc.).

Ideal hydrodynamics. Hydrodynamic equations take the simplest form if local thermal

equilibrium is assumed. Let us consider the example of a single conserved charge Q. In this ideal

setup, the conserved quantities are described by

Tµν ≡ Tµν
eq = ϵ(T, µ)uµuν + P (T, µ)∆µν , J µ ≡ J µ

eq = n(T, µ)uµ . (2.1)

Here we decomposed Tµν and J µ along the time-like four-vector uµ, defined as the fluid four-

velocity and normalized to uµuµ = −1, and ∆µν = uµuν + gµν , the projector selecting the

symmetric component orthogonal to the fluid four-velocity, uµ∆µν = uν∆
µν = 0. The metric

tensor gµν is chosen to follow the mostly plus convention1. At this stage, ϵ, P and n are arbitrary

functions of the temperature T and chemical potential µ. If we consider the local rest frame

(LRF) of the fluid, in which uµ = (1, 0, 0, 0), the expressions in Eq. (2.1) reduce to

Tµν = diag(ϵ, P, P, P ) , J µ = (n, 0, 0, 0) . (2.2)

Relating these quantities to the known results for a fluid at rest (energy and charge conservation,

absence of pressure gradients), one can identify ϵ as the fluid energy density, P as the fluid

equilibrium pressure, and n as the charge density. The set of conservation laws,

∇µT
µν = 0 , ∇µJ µ = 0 , (2.3)

contains five equations for six unknowns (ϵ, P , the three independent components of the fluid

four-velocity ui and n). Therefore, an additional equation is required to close the system. This is

provided by the EoS, P = P (ϵ, n), encoding the entire microscopic information on the medium.

Viscous hydrodynamics from an entropy principle. We discuss here a system that

displays dissipative corrections to local thermal equilibrium. To take such effects into account,

one can consider small deviations from local equilibrium. Restricting again ourselves to the case

of a single conserved charge Q, the conserved quantities can be decomposed as

Tµν = Tµν
eq +Πµν + qµuν + qνuµ , J µ = J µ

eq + νµ , (2.4)

where Tµν
eq and J µ

eq correspond to the equilibrium quantities defined in Eq. (2.1). The viscous

corrections Πµν are expressed by

Πµν = πµν −Π∆µν . (2.5)

The shear-stress tensor πµν is the viscous correction to the anisotropic energy flow and

disfavors the movement of adjacent layers of fluid in opposite directions. It is a symmetric,

1The metric can in principle be non-Minkowskian, therefore all the derivatives are assumed to be
covariant not to lose generality.
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traceless tensor, orthogonal to the fluid four-velocity,

πµν = πνµ , πµµ = 0 , uµπ
µν = uνπ

µν = 0 . (2.6)

The bulk viscous pressure Π is the out-of-equilibrium correction to the isotropic pressure and

contrasts the radial expansion of the fluid.

Additional corrections, parametrized by qµ and νµ, account respectively for heat flow and

charge diffusion. Both four-vectors are orthogonal to the fluid velocity, therefore satisfying the

constraints

uµq
µ = 0 , uµν

µ = 0 . (2.7)

While ϵ, uµ, and µ are well defined in local thermal equilibrium, out of equilibrium they have no

first-principles microscopic definitions and thus should be viewed as merely auxiliary variables

used to parametrize the physical observables Tµν and J µ. Hence, there is some freedom in

defining these quantities, as long as all definitions agree in local thermal equilibrium. In the

following, we define the fluid four-velocity in the Landau frame [49] as the time-like eigenvector

of the energy-momentum tensor,

Tµνuµ = −ϵuν . (2.8)

In this frame, the heat flow vanishes2 and the energy density is defined as the eigenvalue of the

energy-momentum tensor associated with the eigenvector uµ through Eq. (2.8).

For fluid dynamics to be applicable, dissipative currents shall be much smaller than the

equilibrium fields. This condition is often expressed in terms of inverse Reynolds numbers,

Re−1
Π ≡ |Π|

P
, Re−1

π ≡ |πµν |
P

, Re−1
ν ≡ |νµ|

n
, (2.9)

being smaller than 1.

In the viscous case, one needs additional relations to determine the bulk viscous pressure, the

five independent components of the shear stress, and the three independent components of the

diffusion current. The original constructions of relativistic hydrodynamics by Eckart [50], and

by Landau and Lifshitz [49] followed from imposing the validity of the second thermodynamic

principle, i.e. ∇µsµ ≥ 0, where sµ = suµ is the entropy current and s is the entropy density.

This leads to an expression of the dissipative currents in terms of first-order gradients of the

fluid velocity, temperature, and chemical potential to temperature ratio α ≡ µ/T (first-order

2Another possible choice, for instance, is the Eckart frame [50], where one imposes the charge diffusion
current to vanish, νµ = 0. The Landau frame is the most natural choice in heavy-ion collisions since
usually even if the net-charge density is zero there can be charge diffusion. However, other choices can
be made as demanded by the physics problem.
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hydrodynamics). These constitutive relations read

Π = −ζ∇µu
µ , (2.10)

πµν = 2ησµν , (2.11)

νµ = κn∇⟨µ⟩α , (2.12)

where σµν ≡ ∇⟨µuν⟩3. We identify the coefficients ζ, η, and κn with the bulk viscosity, shear

viscosity, and charge-diffusion coefficient, respectively. The advantage of first-order hydrody-

namics is that all dissipative currents can be expressed in terms of gradients of quantities that

are well-defined in local thermal equilibrium. However, this description allows for superluminal

propagation, leading to the violation of the relativistic causality principle4 [52–54].

A causal formulation of relativistic fluid dynamics was proposed by Müller [55] as well as

Israel and Stewart [56] (MIS). In this description, the dissipative quantities are promoted to

dynamical variables evolving according to an equation of motion (second-order hydrodynamics),

Π̇ = − 1

τΠ
[Π + ζ∇µu

µ] , (2.13)

π̇µν = − 1

τπ
[πµν − 2ησµν ] , (2.14)

ν̇µ = − 1

τn
[νµ − κn∇⟨µ⟩α] . (2.15)

Their evolution has a characteristic timescale, given by τΠ, τπ and τn respectively, after which the

dissipative fields relax to their asymptotic Navier-Stokes values, represented by Eqs. (2.10),(2.11)

and (2.12).

In Ref. [57], a more general structure of second-order hydrodynamic equations was proposed.

It was demonstrated that MIS equations do not contain all the allowed second-order terms and,

specifically, the ones required by conformal invariance. The general expression for the second

order terms for a conformal uncharged fluid in Landau frame in a curved background was found

in Ref. [57] using conformal symmetry,

Πµν =− ησµν + ητπ

[
Dσµν +

1

3
σµν∇ · u

]
+ κ

[
R⟨µν⟩ − (2uαR

α⟨µν⟩β)uβ
]

+ λ1σ
⟨µ
λ σ

ν⟩λ + λ2σ
⟨µ
λ Ων⟩λ + λ3Ω

⟨µ
λΩ

ν⟩λ
(2.16)

whereRαµνβ is the curvature tensor andRµν is the Ricci tensor. The tensor Ωµν = 1
2∆

µ
α∆ν

β(∇αuβ−

3We define A⟨µ1...µn⟩ = ∆ν1...νn
µ1...µn

Aµ1...µn by using the symmetrized and, for n > 1, traceless projection
orthogonal to the fluid velocity as in Ref. [45].

4Recent theoretical advancements [51] have demonstrated the feasibility of a causal approach to dissi-
pative relativistic fluid dynamics at the first order. This establishes a set of stable frames, from which the
Landau frame is excluded. The presence of these stable frames implies that viscous relativistic fluids can
be described using temperature, fluid velocity, and chemical potential alone – similar to non-relativistic
fluids. This questions the necessity of frameworks like Israel-Stewart and similar constructions in devel-
oping a coherent relativistic hydrodynamic theory.
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∇βuα) was introduced, together with the second-order transport coefficients κ, λ1, λ2, and λ3.

The generic expression for the dissipative tensor in the Landau frame without the assumption of

conformal symmetry was derived in Ref. [58].

Viscous hydrodynamics from kinetic theory. From a microscopic point of view, hydro-

dynamic equations can be derived from the relativistic Boltzmann equation,

pµ∂µf(x, p) = C[f ] , (2.17)

allowing for a direct mapping between the transport coefficients (and correspondent relaxation

times) and the collision integral. The energy-momentum tensor and conserved currents can be

written in terms of moments of the on-shell single-particle distribution f(x, p),

Tµν =

∫
dPpµpνf(x, p) , J µ =

∫
dPpµf(x, p) , (2.18)

where dP = gd3p/[(2π)3p0] is the Lorentz-invariant momentum-space volume, with g accounting

for the particle’s internal degrees of freedom. The conservation laws can be retrieved by consid-

ering the 0th and 1st moments of the Boltzmann equation,

∂µ

∫
dPpµf(x, p) =

∫
dPC[f ] = 0 , (2.19)

∂µ

∫
dPpµpνf(x, p) =

∫
dPpνC[f ] = 0 , (2.20)

which vanish due to the microscopic conservation of energy, momentum, and number of particles

encoded in the collision integral.

In Ref. [45] a formulation of second-order hydrodynamic equations from a microscopic point

of view was derived employing an extension of Grad’s method of moments [59]. The method of

irreducible moments consists of first expanding the single-particle distribution function around

its equilibrium value and introducing an out-of-equilibrium component,

f(p, x) = feq(p, x) + δf(p, x) . (2.21)

The out-of-equilibrium component is projected on a complete orthogonal basis given by tensors

kµ, k⟨µkν⟩, etc.5. Integrating sequentially higher-order moments of the Boltzmann equations,

one builds second-order equations of motion for the dissipative currents. The truncation of the

infinite series of terms that contribute to the evolution of each variable can be consistently made

at fixed order in inverse Reynolds and Knudsen numbers. The approximation derived by Israel

5The advantage of expanding the distribution function on this basis is that these tensors are irreducible
under the Lorentz-transformation Λµ

ν that leaves the fluid four-velocity invariant, Λµ
νu

ν = uµ. This implies
that they constitute an orthogonal basis. Therefore, the expansion coefficients can be straightforwardly
obtained. In a non-orthogonal basis, this requires in general the inversion of an infinite-dimensional
matrix, meaning that the exact form of the expansion coefficients cannot be obtained once the expansion
is truncated.
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and Stewart – often referred to as 14-moment approximation since one finds equations for 14

independent hydrodynamic quantities – can be recovered by such a truncation, however with a

different definition of the transport coefficients and relaxation times. This set of fluid-dynamic

equations is named after its authors Denicol-Niemi-Molnar-Rischke (DNMR). DNMR equations

up to linear order in the dissipative currents and the method of irreducible moments will be used

in the core of this work to describe equations of motion and transport coefficients for heavy-quark

diffusion in the medium. More details on the method applied to the case of interest will be given

in Chapter 5.

2.2 Analytic solutions to fluid-dynamic equations

To understand some general features of hydrodynamic equations, it is useful to consider simplified

cases in which the calculations can be carried out analytically. Furthermore, in the context

of numerical simulations, analytical solutions can be used as a baseline for code validation.

We report here two famous examples of solutions for inviscid hydrodynamic equations, namely

Bjorken and Gubser flow, which have been extensively employed in the heavy-ion literature.

Bjorken flow. The Bjorken approximation [60] describes a system that is invariant under

longitudinal Lorentz boosts and azimuthally symmetric. These assumptions effectively reduce

the fluid flow to a one-dimensional expansion along the beam axis (z ) with no transverse flow in

the x and y direction,

uµ = (ut, 0, 0, uz) . (2.22)

This represents a valid description for the early expansion of the QGP at the center of the fireball

before the time becomes of the order of the radius of the colliding nuclei. A suitable system of

coordinates is given by

τ =
√
t2 − z2 , η =

1

2
log

(
t+ z

t− z

)
, (2.23)

where τ is the longitudinal proper time and η the spatial rapidity describing the forward light-

cone emanating from the collision point at z = 0. If the initial conditions on the energy density

ϵ and spatial velocity v⃗ at τ = τ0 are of the form

ϵ(τ0, η) = ϵ0 , vi(τ0, η) = (0, 0, z/t) , (2.24)

such that they do not depend on rapidity, all thermodynamic quantities at future times will

depend only on the proper time τ . By imposing the conservation of the energy-momentum

tensor in Eq. (2.3) one gets,
dϵ

dτ
=
ϵ+ p

τ
. (2.25)
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By exploiting the ideal gas EoS, ϵ = 3P ∝ T 4, one finds

ϵ(τ) = ϵ0

(τ0
τ

)4/3
, T (τ) = T0

(τ0
τ

)1/3
, (2.26)

where T0 = T (τ0). One can define the expansion rate of the fluid θ as

θ = ∇µu
µ , (2.27)

which in the case of Bjorken flow simply yields θ = τ−1.

Gubser flow. Gubser flow [61] represents a generalization of Bjorken flow allowing for an

expansion in the transverse direction. It is invariant under longitudinal Lorentz boosts along the

beam axis, and is symmetric under SO(3) transformations in a de Sitter space obtained from a

Weyl rescaling of the metric tensor,

gµν −→ ĝµν ≡ Ω−2gµν . (2.28)

The most suitable choice of coordinates is given by the union of Eq. (2.23) with

x⊥ =
√
x2 + y2 , ϕ = arctan

y

x
, (2.29)

where x⊥ parametrizes the radius of the system and ϕ the azimuthal angle. Studying the flow

in de Sitter space and mapping it back to Minkowski space leads to the following behavior for

the energy density6,

ϵ =
ϵ̂0

τ4/3
(2q)8/3

[1 + 2q2(τ2 + x2⊥) + q4(τ2 − x2⊥)
2]4/3

, (2.30)

where q has the dimensions of an inverse length and is related to the size of the system, while

ϵ̂0 is an integration constant. The choice of q and ϵ0 can be made to fix the initial temperature

and size of the system in the transverse plane at x⊥ = 0 and τ = τ0. Using the ideal EoS, the

temperature reads,

T =
T̂0

τ1/3
(2q)2/3

[1 + 2q2(τ2 + x2⊥) + q4(τ2 − x2⊥)
2]1/3

. (2.31)

6Further details on the calculations can be found in Appendix A.1.
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Chapter 3

Transport theory

This Chapter is mostly inspired from [62, 63].

3.1 Introduction to heavy-flavor transport

The diffusion of heavy quarks (charm and beauty) in the hot and dense QCD medium has long

been recognized as a promising concept and phenomenological tool to probe the features of the

QGP. The idea behind this is that the heavy-quark mass, MQ, is parametrically large compared

to the typical energy scales that characterize the QCD medium. This entails a series of theoretical

and phenomenological advantages, specifically,

1. MQ ≫ ΛQCD, where ΛQCD is the energy scale identifying the border of the perturbative-

QCD regime. This inequality implies that the initial heavy-quark production is dictated by

pQCD hard-scattering processes. The calculations regarding the initial state are therefore

under reasonable control.

2. MQ ≫ T , where T is the temperature the plasma. This means that the thermal production

of heavy quarks in the expanding QGP produced at LHC energies is negligible. The thermal

production is in fact Boltzmann-suppressed, ∼ exp(−MQ/T ). Therefore, the heavy-quark

momentum distribution is modified only through the interaction with the medium. This

modification can be analyzed – e.g. by looking at the RAA of heavy-flavor hadrons – to

gain information on the underlying QGP.

3. MQ ≫ gT , where g2 = 4παs is the strong coupling factor (g ∼ 2). This sets the typical

momentum exchange in the heavy quark-medium interaction. As long as this relation

holds, many soft-scattering processes are needed to significantly change the heavy-quark

momentum distribution. Therefore, at low transverse momenta, a Brownian description
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of heavy-quark diffusion is justified1.

Over the last decade, heavy-flavor observables, i.e., transverse-momentum spectra and elliptic

flow of hadrons containing charm or bottom quarks (or their decay products), have been measured

with increasing precision [64–75], establishing themselves as optimal probes of QCD properties.

This has triggered intense theoretical activity aimed at understanding the experimental results.

In general, the modeling of heavy-quark diffusion in most transport approaches (see e.g. Ref. [62]

for a recent review) consists of a multi-step process, involving

• Heavy-quark production. An initial condition for the heavy-quark momentum distribu-

tion must be provided. The heavy-quark production is a pQCD process requiring energies

that are available only within the hard scatterings happening at the very beginning of the

collision. The initial transverse momentum distribution can be calculated via QCD event

generators [76, 77] validated on pp data or analytical calculations at fixed perturbative

order (FONLL [78, 79])2. Alternatively, one can rely on the momentum distribution of

charm hadrons measured in pp collisions (see e.g. [70, 82]).

• Bulk evolution. A numerical code to treat heavy-quark diffusion in the medium requires

the support of a hydrodynamic code simulating the evolution of the QGP, validated on

soft-hadron observables (see e.g. [34–36]). In particular, information on the fluid four-

velocity and temperature is needed at each point in spacetime to update the heavy-quark

momentum distribution.

• Heavy-quark transport coefficients. The heavy-quark momentum and spatial diffu-

sion coefficients are quantities that can in principle be computed in QCD. Semi-analytical

calculations are able to provide such information under certain approximations, such as un-

der the assumption of weak [83] or strong coupling [84]. LQCD calculations, however, have

shown dramatic progress in the past years in the computation of heavy-quark transport

coefficients. Results for momentum and spatial diffusion coefficients for physical values

of light- and heavy-quark masses have recently been computed in a temperature range of

195 < T < 352 MeV [85]. Alternatively, transport coefficients for the heavy quark can

indirectly be inferred by systematically comparing the results of the transport equations

with the experimental observables, namely momentum and angular distributions.

1At the energies reached in high-energy nuclear collisions at RHIC and at the LHC, where the tem-
perature of the fireball produced in central collisions can reach ∼400-600 MeV, this relation is not always
satisfied for charm quarks. A model based on charm as a “heavy” particle requires, therefore, a certain
care.

2In this case, one needs additionally to take into account the modification of the parton distribution
function (PDF) of the nucleons when they are found inside a nucleus. Due to an effect known as shadow-
ing, nuclear PDFs are suppressed at low parton momentum fractions due to multiple scatterings of the
projectile with quarks and gluons inside the nucleus [80, 81]. The modification of the hard production
from nPDFs is one of the largest sources of uncertainty in the state-of-the-art transport models.
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• Heavy-quark dynamics. The heavy-quark dynamics in the QGP can be addressed with

relativistic transport approaches. They require input from the simulation of the bulk

evolution of the medium and transport coefficients. A more detailed description of such

approaches is presented in Sec. 3.2.

• Hadronization. At T ∼ Tpc, the transition from quark to hadronic degrees of freedom

takes place. The modeling of the transition from color charges to color-neutral objects is

one of the most challenging tasks in high-energy nuclear physics. Besides already not being

fully understood in pp collisions, the modification of the process in heavy-ion collisions due

to the presence of the medium is not yet under control. This represents a source of sys-

tematic uncertainty in the extraction of the transport coefficients from phenomenological

studies, since the measured observables are not the parent-heavy quarks but their hadronic

daughters.

3.2 Transport theory

As anticipated in Sec. 3.1, a key point in the study of heavy flavors in heavy-ion collisions is the

modeling of the heavy-quark in-medium dynamics. In a non-relativistic setup, the motion of the

heavy quark can be described by the standard diffusion equation,

∂tn(t, x⃗) = Ds∇2n(t, x⃗) , (3.1)

where n is the heavy-quark density, depending on spacetime, and Ds > 0 is the spatial diffusion

coefficient. Eq. (3.1) can be directly solved in Fourier space, leading to the solution

ñ(t, k⃗) = ñ(0, k⃗)e−Ds|k|2t . (3.2)

Assuming as initial condition that all heavy quarks are placed in the origin,

n(0, x⃗) = N0δ(x⃗) −→ ñ(t, k⃗) = N0 , (3.3)

it follows that

n(t, x⃗) = N0

∫
d3k

(2π)3
eik·xe−Ds|k|2t = N0

(
1

4πDst

)3/2

e−
x2

4Dst . (3.4)

The density in the non-relativistic case evolves therefore as a Gaussian spreading in time. The

broadening of the spatial distribution is quantified by the spatial diffusion coefficient via ⟨x(t)2⟩ =
2Dst. It can be easily verified that this equation is in conflict with the relativistic causality

principle. At a fixed time t, the density is not vanishing for |x| > ct, where c = 1 is the speed of

light in natural units.

A relativistic generalization of the diffusion equation is therefore necessary. However, it is
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not straightforward [63]. In particular, one can follow two main strategies,

• Relativistic diffusion equation. Also known as the telegrapher’s equation, the relativis-

tic diffusion equation takes the form

τn∂
2
t n+ ∂tn = Ds∇2n , (3.5)

where the dependence of n on spacetime coordinates was omitted. This second-order

partial differential equation (PDE) can be recast in a set of first-order PDE by using the

continuity equation,

∂tn+ ∇⃗ · j⃗ = 0 , (3.6)

τn∂t⃗j + j⃗ = Ds∇⃗n . (3.7)

This formulation does not allow for acausal propagation, and it is equivalent to the diffusion

equation presented in Chapter 2 when ∇⃗n ∼ ∇⃗α.

• Relativistic Boltzmann/Fokker-Planck equation. It is a generalization of the dif-

fusion equation which requires following not only the position of the particle but also its

momentum. From a practical point of view, these equations provide a useful tool for mod-

eling the dynamics of relativistic particles in a random environment.

The majority of the approaches in the heavy-quark literature employ the second strategy. We

will therefore elaborate more thoroughly on its main ingredients.

3.2.1 Relativistic Boltzmann equation

The relativistic Boltzmann equation describes the evolution of a thermodynamic system far from

equilibrium. It does not follow the position x⃗i and momentum p⃗i of each relativistic particle,

but considers the evolution over time of the phase-space density f(x⃗, p⃗), that is, the probability

that a generic particle occupies a volume d3x⃗ centered in x⃗ in coordinate space and a volume

d3p⃗ centered in p⃗ in momentum space.

Let fQ(t, x⃗, p⃗) be the phase space distribution for the heavy quark Q. The Boltzmann equa-

tion describing the evolution over time of fQ(t, x⃗, p⃗) reads3,

d

dt
fQ(t, x⃗, p⃗) = C[fQ] , (3.8)

where C[fQ] is the collision integral which accounts for momentum exchanges due to scattering

processes. The total derivative with respect to time acting on the phase space distribution can

3For simplicity, the Boltzmann equation is here treated in a non-covariant form. The derivation of
Eq. (3.8) from its covariant equivalent can be found e.g. in Ref. [86].
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be rewritten in the following way,

d

dt
=

∂

∂t
+ v⃗

∂

∂x⃗
+ F⃗

∂

∂p⃗
. (3.9)

The last term is relevant when the particles are subjected to external forces, such as in the pres-

ence of an external electromagnetic field. To discuss general features of transport calculations,

however, we can neglect the x⃗-dependence and the mean force fields. Under this approximation,

Eq. (3.8) becomes

∂tfQ(t, p⃗) = C[fQ] . (3.10)

In the case of interest, the collision integral must account for the elastic scattering processes

between the heavy quark Q and the light partons i of the medium through which the heavy

quarks move. It can be written as,

C[fQ] =

∫
dp⃗′dp⃗1dp⃗′1{w̄(p⃗′, p⃗′1|p⃗, p⃗1)fQ(p⃗′)fi(p⃗′1)− w̄(p⃗, p⃗1|p⃗′, p⃗′1)fQ(p⃗)fi(p⃗1)} , (3.11)

where w̄ represents the scattering rate, accounting – depending on the argument – for gain

and loss processes, respectively. p⃗1 and p⃗′1 refer to the initial and final momentum of the light

parton of the medium (or vice versa), while p⃗ and p⃗′ are the initial and final momentum of the

heavy quark (or vice versa). The equation is here written in its classical limit, i.e. quantum

corrections due to Bose enhancement for bosons or Pauli blocking for fermions are not included.

By assuming that the scattering processes are symmetric under time-reversal transformations,

the collision integral can be simplified as

C[fQ] =

∫
dp⃗′dp⃗1dp⃗′1w̄(p⃗

′, p⃗′1|p⃗, p⃗1)(fQ(p⃗′)fi(p⃗′1)− fQ(p⃗)fi(p⃗1)) . (3.12)

To find stationary solutions of Eq. (3.10), the collision integral must vanish. Hence, one has to

impose

fQ(p⃗′)fi(p⃗′1) = fQ(p⃗)fi(p⃗1) , (3.13)

For heavy quarks placed in a thermalized system of light particles, this entails

fQ(p⃗) = exp

(
−Ep

T

)
, fi(p⃗1) = exp

(
−Ep1

T

)
. (3.14)

The Boltzmann equation always makes the heavy quarks relax to a thermal distribution at the

same temperature T of the medium in which they live. This is the result we are going to use as

a baseline to derive the approximations of the Boltzmann equation in Sec. 3.2.2.

3.2.2 The Fokker-Planck equation

The Fokker-Planck equation is the approximation of the Boltzmann equation in the limit of

multiple soft scatterings between the heavy quark and the light partons. Let us consider the
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expression for the collision integral in Eq. (3.12). One can easily rewrite it by considering

k⃗ = p⃗′ − p⃗ as the momentum gained by the outgoing heavy quark. The expression for the

collision integral then becomes

C[fQ] =

∫
dk⃗ w(p⃗+ k⃗|p⃗)(fQ(p⃗+ k⃗)− fQ(p⃗)), (3.15)

where the dependence on the distribution of light partons is absorbed in w, which accounts for

the transition rate of the process:

p, q → p+ k, q − k ,

in which the heavy quark with momentum p⃗ interacts with a light quark, anti-quark or gluon

with momentum q⃗ of the medium, gaining the momentum k. In the limit of small momentum

exchange |⃗k|, one obtains

w(p⃗+ k⃗|p⃗)fQ(p⃗+ k⃗) ∼ w(p⃗|p⃗)fQ(p⃗) + ki
∂

∂pi
(wfQ) +

1

2
kikj

∂2

∂pi∂pj
(wfQ) . (3.16)

By plugging this approximation into Eq. (3.15) we obtain the expression for the Fokker-Planck

equation,
∂fQ(t, p⃗)

∂t
=

∂

∂pi
{Ai(p⃗)fQ(t, p⃗) +

∂

∂pj
[Bij(p⃗)fQ(t, p⃗)]} , (3.17)

where Ai and Bij are defined as,

Ai(p⃗) =

∫
dk⃗ kiw(p⃗+ k⃗|p⃗) , (3.18)

Bij(p⃗) =
1

2

∫
dk⃗ kikjw(p⃗+ k⃗|p⃗) . (3.19)

By exploiting their tensor structure in a isotropic medium, one can rewrite Ai and Bij as

Ai(p⃗) = A(p)pi , (3.20)

Bij(p⃗) = (δij − p̂ip̂j)B0(p) + p̂ip̂jB1(p) , (3.21)

where A(p) represents a friction coefficient and B0 and B1 play the role of momentum diffusion

coefficients. The physical meaning of these quantities will be clarified later on in this section.

However, we have shown how the problem of the calculation of a complicated collision integral is

now reduced to the evaluation of three transport coefficients, namely A, B0 and B1, which can

be derived directly from the scattering amplitude of the particles.

To find the steady solutions of the Fokker-Planck equation, one can exploit the equilibrium

solutions obtained for the Boltzmann equation in Section 3.2.1 and plug them into Eq. (5.8).

This is going to lead to the relation that must be satisfied by the transport coefficients to make

the heavy quarks relax to a thermal distribution. In order to make the right-hand side of Eq.
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(5.8) vanish we impose,

Ai(p⃗)feqQ (t, p⃗) = − ∂

∂pj
[Bij(p⃗)feqQ (t, p⃗)] . (3.22)

By plugging in the Boltzmann solution shown in Eq. (3.14) and exploiting the tensor structure

of the transport terms one gets,

A(p)pi =
B1(p)

TEp
pi − ∂

∂pj
{δijB0(p) + p̂ip̂j(B1(p)−B0(p))} , (3.23)

leading to Einstein fluctuation-dissipation relation,

A(p) =
B1(p)

TEp
−
{1
p

∂B1(p)

∂p
+
d− 1

p2
[B1(p)−B0(p)]

}
, (3.24)

where d is the number of spatial dimensions. It is useful to see how the Einstein relation enters

the game in the case of a non-relativistic particle. In this case, the momentum dependence of

the transport coefficients can be neglected and the latter can be written as

γ = A(p) , (3.25)

D = B0(p) = B1(p) . (3.26)

The Fokker-Planck equation is therefore reduced to

∂fQ(t, p⃗)

∂t
= γ

∂

∂pi
[pifQ(t, p⃗)] +Dδij

∂2

∂pipj
[fQ(t, p⃗)] . (3.27)

Starting from the initial condition,

fQ(t = 0, p⃗) = δ(p⃗− p⃗0) , (3.28)

one finds

fQ(t, p⃗) ∝ exp

(
− γ

2D

[p⃗− p⃗0 exp (−γt)]2
1− exp (−2γt)

)
. (3.29)

Asymptotically, for t→ ∞, the solution forgets about the initial condition and relaxes to,

fQ(p⃗) ∝ exp

(
−γM
D

p⃗2

2M

)
, (3.30)

which is a thermal distribution, with M being the mass of the heavy quark. If one compares

Eqs. (3.30) and (3.14), by using the non-relativistic relation between energy and momentum,

one gets

D = γMT, (3.31)

which is the non-relativistic Einstein fluctuation-dissipation relation, as anticipated. At this

point, it becomes easier to understand why we referred to the transport coefficients as friction

and diffusion coefficients. In fact, if we calculate the first moment of the equilibrium distribution
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for the Fokker-Planck equation we find,

⟨p⃗(t)⟩ = p⃗0 e
−γt , (3.32)

that is, γ leads the average momentum of the heavy quark to vanish as time passes, playing the

role of a friction term; notice that γ has the dimensions of an inverse time. If we calculate the

second moment of the distribution we find,

⟨p⃗2(t)⟩ − ⟨p⃗(t)⟩2 = 3D

γ
(1− e−2γt)

t→0∼ 6Dt . (3.33)

This represents the momentum broadening of the distribution due to the diffusion coefficient.

3.3 Remarks

Several transport approaches (see e.g. [62, 87] for recent reviews) have accomplished a qualitative

or semi-quantitative agreement with part of the existing data, but no single approach is yet able

to quantitatively describe all available heavy-flavor measurements from RHIC and the LHC,

from low to high transverse momenta. An example is displayed in Fig. 3.1, taken from Ref. [65].

Here the average nuclear modification RAA (left panel) and elliptic flow v2 (right panel) of

prompt D0, D+, and D∗+ mesons in the 0–10% centrality class are compared with predictions

of models implementing the charm-quark transport in a hydrodynamically expanding medium.

The comparison with experimental measurements helps in finding model parameters that provide

a good description of data. However, it is not sufficient to identify the underlying fundamental

physics mechanisms that take place in a real heavy-ion collision.

The complexity of the problem involves knowledge of transport coefficients not only as a func-

tion of pT, but also as a function of temperature. In addition, the accuracy of the information

extracted from heavy-flavor observables relies on realistic modeling of the QGP expansion dynam-

ics, as well as initial conditions for the heavy-quark momentum distributions and hadronization

mechanisms. The presence of modifications due to cold-nuclear-matter effects in the incoming

nuclei before the collision (shadowing), constitutes an additional source of uncertainty. The vari-

ety of transport models in the literature encodes different approaches to each of these ingredients.

This fact makes it difficult to pin down information on the underlying physics. Further input

from first-principle QCD calculations is therefore required.
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Figure 3.1: Average RAA (left) and elliptic flow v2 (right) of prompt D0, D+, and D∗+

mesons in the 0–10% centrality class compared with predictions of models implementing
the charm-quark transport in a hydrodynamically expanding medium. Fig. taken from
Ref. [65].
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Chapter 4

Hydrodynamization of heavy quarks

In this Chapter, an overview of the experimental and theoretical evidence regarding the possible

thermalization of charm quarks in the medium is given. Furthermore, we will discuss the possible

degree of thermalization of beauty quarks in the QCD medium.

4.1 Motivation

The question of heavy-quark thermalization in the medium has been challenging the scientific

community for more than two decades [83, 88–92]. The modification of the heavy-quark momen-

tum and spatial distribution is a signature of its interaction with the QGP constituents. Despite

not being able to give a definitive answer, the first charm elliptic flow measurements in Au-Au

collisions at RHIC [93] made it possible to understand that radiative scatterings could not be the

only relevant process in the heavy-quark dynamics in the QGP. In particular, the role of elastic

scatterings at low transverse momentum was highlighted in this context and required further

investigation.

Heavy quarks are produced via hard (i.e. with high momentum transfer) scattering pro-

cesses at the very beginning of the heavy-ion collision. Their initial momentum distribution is

thus expected to be far from local kinetic equilibrium [78]. The dynamics of heavy quarks at high

transverse momenta is dominated by radiative energy loss in the QGP. In the low transverse mo-

mentum region, on the other hand, heavy quarks offer a window to study equilibration processes.

Especially for charm quarks, where the separation between the mass and temperature scale is

not so obvious at LHC and RHIC top energies, the question of thermalization is particularly

interesting.

As a rough estimate, the typical time required for a heavy quark to relax to thermal equilib-

rium is given by τheavy =M/Tτlight, where τlight is the relaxation time associated with the light

degrees of freedom (light quarks and gluons), τlight ∼ η/(ϵ+ P ) ∼ 1 fm/c [7, 90]. Considering a

plasma at a temperature of 250 MeV as in Ref. [90], a charm quark of mass M ∼ 1.5 GeV would
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take ∼ 6 fm/c to reach thermal equilibrium. For beauty quarks, which have a mass of ∼ 4.8

GeV, the relaxation time would be more than three times larger than the one of charm quarks.

The lifetime of the QGP can be estimated, in the simplified case of Bjorken flow, as

τlifetime = τ0

(
T0
Tfo

)3

, (4.1)

where T0 is the initial temperature of the medium, Tfo is the freeze-out temperature and τ0 is the

thermalization time of the QGP. By setting τ0 = τlight, T0 =250 MeV and Tfo =156.5 MeV [94],

one gets τlifetime ∼ 4 fm/c. Of course, this is just a raw picture, since in a realistic case the mass

of the heavy quark should be substituted with its relativistic energy and the temperature of the

surrounding medium depends on time and position. However, from these calculations, it seemed

unlikely that charm quarks would thermalize within the lifetime of the QGP, and impossible

that this could happen for beauty quarks. For this reason, as discussed in Chapter 3, many

transport models were developed in the literature. In each of these models, the heavy quark is

treated separately from the medium evolution, with a dedicated Boltzmann/Fokker-Planck-type

simulation. The kinetic equilibration, in this case, comes in as an asymptotic solution at late

times, possibly after the freeze-out occurs.

Besides being influenced by the bulk properties of the QCD medium (shear and bulk viscosity,

hydrodynamic evolution, Equation of State), heavy quarks are mostly sensitive to the momentum

diffusion coefficients (κ for elastic interactions, q̂ for radiative energy loss) and spatial diffusion

coefficient [90],

Ds = lim
p→0

T

MA(p)
, (4.2)

whereA(p) is the drag coefficient entering the Fokker-Planck equation defined in Chapter 3, which

quantify their interaction with the surrounding thermal bath of light partons. These transport

coefficients, together with their corresponding relaxation times, are fundamental properties of the

QGP that can in principle be calculated from QCD. However, the state-of-the-art computations

are performed far from realistic conditions. For example, the lattice community has always

adopted the infinite-mass limit for the heavy quarks, and relied on the quenched approximation,

that is, effectively considering an infinite mass for sea quarks. Only recently [85, 95], first

results including physical masses for the light quarks and a mass dependence for the heavy-quark

diffusion coefficient – therefore allowing for a distinction between charm and beauty quarks –

have been produced. Furthermore, up to now there is no complete theoretical control over the

dynamics of the system in the full temperature range covered by the heavy-ion collision down to

T ∼ Tpc.

Heavy quarks in the literature are usually treated as purely hard (i.e. associated with a

high-energy scale) probes due to their large mass, even at low momentum. However, it is useful

to consider that heavy quarks display a soft aspect as well. Specifically, the dynamics of charm
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and beauty quarks at low momentum might not need the ad hoc description of an external probe

randomly moving in a thermalized medium. The approach of heavy quarks towards thermal-

ization is indeed part of their soft aspect, and it is mainly driven by Ds. Being sensitive to

the transport coefficients, low-momentum heavy quarks can be used as a tool to constrain the

transport properties of the QGP. This can be done by performing systematic comparisons with

the experimental measurements of heavy-hadron momentum distributions and flow coefficients.

The interest in this matter lies in understanding the remarkable experimental results for

harmonic flow coefficients of charmed hadrons and in particular of J/ψ [75, 96], which indicate

the participation of charm quarks in the collective motion of the surrounding QGP medium. So

far, no solid and agreed-upon answer to the thermalization question has been found within the

context of transport models, calling for exciting new developments. In addition, the temperatures

reached in Pb–Pb collisions at the LHC and Au-Au collisions at RHIC can be twice as large

as 250 MeV [97], picturing a possible scenario where a certain level of thermalization takes

place. Furthermore, recent experimental measurements and theoretical calculations point in the

direction of early thermalization of charm quark in the plasma [75, 94–96, 98].

4.2 Thermalization versus hydrodynamization

To understand whether we can talk about the thermalization of heavy quarks in the QGP, we

should first define what we mean by thermal equilibrium. In simple terms, thermal equilibrium

is the state in which a system of particles with enough time to interact with each other would

eventually relax. Let us now characterize this state more specifically, both from the macroscopic

and the microscopic point of view.

Global and local thermal equilibrium. From the point of view of the second law of

thermodynamics, global thermal equilibrium is achieved when the production rate of the entropy

current sµ is maximized and stationary, i.e. its differential satisfies d(∇µs
µ) = 0. The fulfillment

of this condition generally depends on the spacetime metric [99]. However, in Minkowski space-

time, it is easily verified by having a uniform and constant fluid velocity, temperature (or energy

density), and particle number (or chemical potential).

The condition of local thermal equilibrium postulated in fluid dynamics is that one can define

the fluid velocity uµ(x), temperature T (x), and chemical potential µ(x) as general functions of

space and time. The energy-momentum tensor and conserved current are assumed to have locally

the same form as in global equilibrium. Imposing this condition gives rise to ideal hydrodynamic

equations as presented in Section 2.

Kinetic and chemical equilibrium. Another distinction is the one between (local) ki-

netic equilibrium and (local) chemical equilibrium. These conditions require a more microscopic

definition in terms of the momentum distribution of the particles in the system. In the case of
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classical particles, kinetic equilibrium is achieved when the momentum distribution of the par-

ticles can be described by a Maxwell-Boltzmann distribution parametrized by a unique (local)

temperature T (x),

f(p, x) ∝ exp[−E(p)/T (x)] , (4.3)

where p and x are the momentum and coordinate four vectors and E is the energy of the particle

on shell. In the case of particles obeying quantum statistics, this is modified to be a Fermi-Dirac

or Bose-Einstein distribution.

Chemical equilibrium means, on the other hand, that the momentum distribution can be

parametrized by a unique (local) chemical potential µ(x),

f(p, x) ∝ exp[µ(x)/T (x)] . (4.4)

This exponential is often referred to as fugacity in Statistical Mechanics. In general, this chemical

potential is given by a sum over all the conserved charges,

µ =
∑

i∈{charges}
qiµi = qBµB + qSµS + ... , (4.5)

where µi is the chemical potential associated with the i-th conserved charge and qi accounts for

the amount of charge content. Here we highlighted, as an example, the baryon and strangeness

contributions. In the following, we will focus on a single conserved charge, namely the heavy-

quark pair number.

The case of heavy quarks. The expression for the heavy-quark pair chemical potential is

given by

µ = qQQµQQ . (4.6)

Charm quarks are initially produced out of chemical equilibrium. They are associated with

the conservation of the number of charm-anticharm pairs – and therefore with the chemical

potential given by Eq. (4.6). The constituents of the medium (light quarks, gluons) do not

carry charm charge, and their corresponding charm-pair chemical potential is zero. An estimate

of the chemical equilibration time for heavy quarks was studied in Ref. [100] and was found

to be τ chem ∼ 65 fm/c for charm quarks in a fireball with an initial temperature of 500 MeV.

Compared with a typical expansion time of a fireball of order θ−1 ≡ (∇µu
µ)−1 ∼ τ ∼ 0.5 fm/c

at the beginning of the collision, this implies that charm quarks stay out of chemical equilibrium

for the whole lifetime of the expanding system. This means, in turn, that the annihilation rate of

a heavy-quark pair Γchem
heavy ≡ 1/τ chemheavy is negligible both at RHIC and LHC energies. The heavy

quark final abundance therefore remains unchanged throughout the whole fireball evolution and

can be described by the initial hard production.

The initial hard production causes heavy quarks to be initially produced out of kinetic equi-
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librium as well. If the deviations from local kinetic equilibrium are not too large, one can expand

the distribution function of the heavy quark in terms of an equilibrium part and a first-order

deviation,

f(x, p) ∼ exp[−E(p)/T (x) + µ(x)/T (x)](1 + δf(x, p)) . (4.7)

The form of the equilibrium part follows from the grandcanonical formalism, since both the total

energy of the system and the number of heavy quarks are conserved. Again, quantum corrections

are here neglected and the equilibrium distribution function is assumed to be of the Boltzmann

kind.

Studying the approach to equilibrium coincides with studying how the δf component evolves

and (possibly) vanishes in time, e.g. using the Boltzmann equation presented in the previous

Chapter. In this Thesis, however, we will present an alternative approach to study how the

charm quarks relax to thermal equilibrium, based on fluid dynamics.

Hydrodynamization. Linear deviations from local thermal equilibrium in fluid dynamics

can be expressed in terms of first-order gradients of the fluid velocity. These gradients are

associated with dissipative quantities, namely the shear stress, bulk viscous pressure, and possible

additional dissipative currents (e.g. charge diffusion), which contribute to the entropy production

rate. In the second-order hydrodynamic formalism, the dissipative quantities are dynamical

variables that obey an equation of motion. In particular, their relaxation towards their Navier-

Stokes value happens on a time scale dictated by the correspondent relaxation time τR. This

scale, which arises directly from the underlying microscopic theory [101], can be referred to as

a hydrodynamization scale since it is the time scale in which the non-hydrodynamic modes are

expected to exponentially decay. Non-hydrodynamic (or transient) modes are the excitations

of the system whose dispersion relation ω(k) does not vanish in the short wavelength limit

(k → 0). They can be observed by looking at the equations of motion in momentum space (see

e.g. Ref [102]). They exponentially decay with τR, while the long-lived hydrodynamic modes

survive. The system becomes describable by a set of few thermodynamic variables (T , uµ, µ)

and their gradients. However, the hydrodynamic system can be out of equilibrium, until the

gradients do not vanish. In terms of distribution functions, the hydrodynamization process will

lead δf to evolve to an asymptotic value which is not necessarily zero, as it would be in local

kinetic equilibrium. The ratio of δf/feq, as a sort of generalized inverse Reynolds number, gives

an estimate of how far the system is out of equilibrium.

The validity of hydrodynamics is well established for the bulk of the QGP system, even if out-

of-equilibrium corrections coming from the shear stress and the bulk viscous pressure survive the

entire lifetime of the fireball. In this work, we will prove that the fluid-dynamic description can be

extended to heavier degrees of freedom such as charm quarks. Studying the hydrodynamization of

charm quarks provides us with a tool to determine how far they are from local kinetic equilibrium

at all stages of the expanding system. At the same time, the fluid dynamic description of the
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Figure 4.1: Recent experimental results [75, 96] show that open heavy-flavor and char-
monium states – D mesons, J/ψ– have significantly positive elliptic flow, similarly to the
one measured for light charged particles.

charm dynamics provides direct access to the spatial diffusion coefficient of the QGP, which is a

fundamental quantity in QCD.

4.3 Evidence for charm-quark thermalization

Experimental evidence. Recent experimental measurements of flow harmonics in Pb–Pb

collisions at
√
sNN = 5.02 TeV at the LHC [75, 96], carried out with unprecedented precision,

show that open heavy-flavor and charmonium states – D mesons, J/ψ– have significantly positive

elliptic flow. In Fig. 4.1, the v2 of the average of D0, D+ and D∗+ and the one of J/ψ as a function

of transverse momentum pT in the 30-50% centrality class is shown in comparison with the v2

of charged pions. Remarkably, the measured elliptic flow for D mesons does not differ too much

in magnitude from the one of light hadrons. Also, one should consider that a characteristic

mass ordering at low pT is induced by the radial flow. Radial flow leads to a depletion in the

momentum spectrum by pushing the hadrons towards larger momenta, resulting in a reduction of

v2. Due to the dependence of momentum on the particle mass, this effect is more pronounced for

heavier particles [2]. These observations raise questions about the possible heavy-quark (local)

kinetic thermalization in the QGP. In a parton-like picture, the flow of open-charm states might

be explained by the presence in the bound state of a light quark which was, before hadronization,

part of the collectively-expanding QGP. On the other hand, the flow of J/ψ represents a striking
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Figure 4.2: Left panel: fraction of charm quarks which decouple from the medium as a
function of time for different values of the diffusion coefficient. Right panel: charm quark
integrated v2 in time for different pT ranges. Figure from Ref. [98]

result: it must be attributed completely to the collective behavior of charm quarks due to their

strong interaction with the QGP constituents.

The contribution of heavy quarks to v2. In Ref. [98], the contribution of heavy quarks

to flow harmonics in Pb–Pb collisions at
√
sNN = 5.02 TeV as a function of the evolution time

of the system has been studied. Transport coefficients computed in the Hard Thermal Loop

(HTL) approximation [103] as well as results from Lattice-QCD [104] are employed. In the left

panel of Fig. 4.2, the ratio between the number of charm quarks coupled to a frozen-out cell

and the total number of charm quarks is shown as a function of proper time for different values

of the transport coefficients (red curves). The black curves show instead the increment in the

number of decoupled charm quarks with respect to the total number. Once all heavy quarks

have decoupled from the medium, that is, when the correspondent fluid cell freezes out, the red

curve reaches 1 and the black curve reaches 0. One can see that a large fraction of heavy quarks

spends a long time in the medium before decoupling. In particular, only a small fraction of

about 10% of heavy quarks spends in the medium a time shorter than 4 fm/c. The long-lived

interaction with the surrounding QGP therefore must influence the final angular distribution of

heavy quarks momenta. In the right panel of Fig. 4.2, the elliptic flow v2 of charm quarks is

computed as a function of proper time in different pT-intervals (color online). The pT-integrated

v2 of charm quarks is reported in black. From this plot, one can study how the elliptic flow

signal is influenced by the time spent by the heavy quarks in the QGP. The observed positive

elliptic flow for charm hadrons [75, 96] in different pT intervals can be explained only if charm

quarks spent a long time in the medium, around ∼ 8 fm/c. This highlights the importance

of the long-lived medium-heavy quark interplay and momentum exchange, which is behind the

observed large elliptic flow signal measured at the LHC.

Charmed hadrons produced by a thermal source: the SHMc. In the context of

the SHM, an extension was proposed in Ref. [94] to describe the integrated yields of charmed
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Figure 4.3: SHMc [94] predictions for charmed-hadrons integrated yields in comparison
with the ALICE measurements [64–67]. The yellow bands include measured resonance
states only. The green bands include estimations for not-yet measured resonance state
contributions, which would enhance the final production of charmed baryons. Figure from
Ref. [2].

hadrons. If the charm quark is fully thermalized within the QGP when the freeze-out occurs,

the abundance of charm hadrons could be described by a thermal distribution at the same tem-

perature of the system. This temperature – Tfo = 156.5± 1.5 MeV for central Pb–Pb collisions

at
√
sNN = 2.76 TeV – together with an estimate of the volume of the system, was extracted

from a fit to light hadrons integrated yields in Ref. [105]. The only additional parameter needed

to reproduce the experimental measurements for charm hadrons is the aforementioned fugacity

factor gc, which results in gc = 29.6 ± 5.2 [94]. This factor enters the charm balance equation

and scales with the charm-charge content of the hadron of interest (gc for states containing one

charm/anticharm quark, g2c for states with two charm quarks and so on). Assuming full thermal-

ization of charm quarks, the integrated yields of charm hadrons are then determined by the total

charm production cross section. The abundance of the different species depends on their ther-

mal weight (∼ e−M/Tfo) and charm content. When including resonance decay contributions, the

model manages to successfully describe the experimental data for both open- and hidden-charm

meson states as shown in Fig. 4.3. Some tension is observed in the description of Λ+
c baryons.

This deviation might be caused by the absence in the PDG of additional higher resonance states

that have not been measured yet [106–108]. The inclusion of estimates of such states, leads to a

better description of the data (see the green band in the Figure). Other explanations based on a

coalescence mechanism [109, 110] were also proposed and managed to successfully describe the

data without the need to include additional resonance states. Future experimental measurements
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will help in clarifying this discrepancy.

The fact that charm-hadron integrated yields can be described assuming that they are pro-

duced from a thermal source at the same temperature as the light hadrons suggests that charm

quarks are close to local kinetic equilibrium when the freeze-out occurs. At the same time, the

large value of the fugacity factor (gc ≫ 1) is in agreement with the fact that charm quarks are

still out of chemical equilibrium and no charm-pair annihilation process has taken place. This is

therefore a strong indication of charm-quark kinetic thermalization in the QGP at LHC energies.

Heavy-quark spatial diffusion coefficient. The heavy-quark spatial diffusion coefficient

is directly proportional to the kinetic equilibration time of heavy quarks in the QGP medium

in the zero-momentum limit. Therefore, the calculation of Ds gives an insight into the level of

thermalization of heavy quarks. In Fig. 4.4 we show results for the heavy-quark spatial diffusion

coefficient (lower axis) and correspondent kinetic equilibration time for charm quarks (upper

axis) from various calculations evaluated at the pseudo-critical temperature Tpc ∼ 155 MeV and

from data. The kinetic equilibration time is here defined as the inverse of the Fokker-Planck

drag coefficient A(p) at p = 0,

τkin =
1

A(p = 0)
=
M

T
Ds =

M

2πT 2
(2πDsT ) (4.8)

The calculation of Ds can be performed via phenomenological studies or, under some approxi-

mations, on the lattice.

In the plot, STAR [69] and ALICE [65] are shown as examples of data-driven approaches

to the estimate of Ds. In the case of STAR, it was observed that transport models with

2 ≲ 2πDsTc ≲ 12 could reproduce the results for the RAA and v2 of D0 meson. However,

this finding still suffered from a large uncertainty in determining the expected value for the ki-

netic relaxation time of charm quarks due to the shortage of experimental measurements. More

recently, the ALICE Collaboration [65] published a new result by performing simultaneous fits

of various transport models to RAA and flow coefficients of D mesons in Pb–Pb collisions at
√
sNN = 5.02 TeV. The spatial diffusion coefficient was to be 1.5 < 2πDsT < 4.5 at the pseudo-

critical temperature Tpc = 155 MeV. This results in turn in a thermalization time of 3-8 fm/c

for charm quarks. Considering that the QGP produced in most central collisions lives for ∼10

fm/c, this would give charm quarks the time to thermalize within the plasma before the freeze-

out occurs. This result is consistent with other Bayesian analysis approaches such as Ref. [111],

where Pb–Pb results at
√
sNN = 5.02 TeV and 2.76 TeV were combined with Au-Au results

at RHIC at 200 GeV. The data-driven approaches are therefore compatible within uncertainties,

and they suggest that a kinetic equilibration of charm quarks might take place. Nevertheless,

the precision of their results is still limited, forbidding to draw a definitive conclusion.

On the theoretical side, Ds can be computed by evaluating color-electric field correlators

on the lattice [83], which provide the momentum broadening of an infinitely heavy quark (for
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Figure 4.4: Results for the heavy-quark spatial diffusion coefficient (lower axis) and kinetic
relaxation time of charm quarks computed as inverse drag coefficient A−1 (upper axis)
from various calculations and experimental data [65, 69, 95, 104, 115, 116] evaluated in
the vicinity of the pseudo-critical temperature Tpc ∼ 155 MeV.

more details see Ref. [62] and references therein). The above estimates for Ds are expected to

be more reliable for objects with a larger mass, such as beauty quarks [112]. Nevertheless, as

done in Ref. [113], one can attempt to apply these results to charm quarks as well. Furthermore,

usually, these calculations are performed in the quenched approximation [114]. More recently,

however, a new calculation on the Lattice with physical values for the light-quark masses was

performed [95]. This provided a new and strong indication of charm thermalization in the QGP.

The computation of the heavy-quark spatial-diffusion coefficientDs with finite light-quark masses

produced surprising results in comparison to previous calculations [115–117]. Very low values of

Ds (0.9 < 2πDsT < 1.5 at T = 195 MeV) correspond to a kinetic equilibration time of charm

quarks of ∼1-1.5 fm/c. This means that, even if the heavy quarks are initially produced out of

kinetic equilibrium, they will partake in the collective flow of the QGP early during the fireball

evolution.

Recently, a study of the mass dependence of the heavy-quark spatial diffusion coefficient has

been performed within the LQCD community [85]. The mass dependence enters as a correction to

the momentum diffusion coefficient coming from magnetic-field correlators. The results from the

LQCD calculation of 2πDsT as a function of T/Tpc for charm, beauty and an infinitely massive

quark are reported in Fig. 4.5 together with AdS/CFT [84], pQCD calculations [83] and phe-

nomenological estimates from the ALICE collaboration [65] and transport models (QPM [112],

Bayesian [111], T-Matrix [118]). The results for 2πDsT for charm, beauty and infinitely massive

quarks do not depend strongly on the heavy-quark mass in the investigated temperature range

(195<T<300 MeV). At the same time, a clear discrepancy is observed between the LQCD results

and the results extracted by transport models. In contrast, the LQCD results resemble the ones

obtained in a strongly-coupled regime (AdS/CFT). This leaves room for exciting phenomenolog-
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Figure 4.5: Results of LQCD calculation of 2πDsT as a function of T/Tpc for charm,
beauty and an infinitely massive quark together with AdS/CFT [84], pQCD [83] calcula-
tions and phenomenological estimates from the ALICE collaboration [65] and transport
models (QPM [112], Bayesian [111], T-Matrix [118]).

ical developments since LQCD seems to predict a much faster hydrodynamization with respect

to transport models and data-driven approaches.

4.4 Perspective on beauty quarks

Beauty quarks are, in a sense, a golden probe of the QGP. In fact, not only they are sensitive to

the momentum and spatial diffusion coefficients of the QGP, but also, due to their large mass,

their theoretical setup is much more under control with respect to charm quarks. On the one

hand, they are much closer to the infinite-mass limit often adopted in theoretical calculations.

On the other hand, the quasi-particle picture is expected to be more reliable and transport

approaches are better justified [119]. Therefore, a better understanding of their dynamics is of

huge relevance to pin down the properties of the QGP they interact with.

Having a larger mass with respect to charm, beauty quarks are less likely to achieve thermal

equilibrium within the lifetime of the QGP. From a trivial mass-scale argument,

τbeautykin ∼ Mb

T
τ lightkin =

Mb

Mc
τ charmkin , (4.9)

they should take Mb

Mc
∼3 times longer than charm quarks to thermalize. A quick rescaling of

the upper x-axis in Fig. 4.4 immediately tells us that, according to most calculations, there is a

chance for beauty quarks to thermalize only in the latest stages of the fireball – if at all.

A study from the authors of the SHM presented at Quark Matter 2022 [120] has shown
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Figure 4.6: Nuclear modification factor RAA of different bottomonium states measured
by CMS [121], ATLAS [122] and ALICE [74] is shown as a function of the number of
participant nucleons. The SHM calculations describe the experimental data if ∼ 30% of
beauty quarks are assumed to thermalize. Figure taken from [120].

how the assumption that only a fraction of the number of beauty quarks thermalizes allows to

describe experimental measurements of integrated yields and RAA of bottomonium states. In

Fig. 4.6, the nuclear modification factor RAA of different bottomonium states measured by CMS,

ATLAS and ALICE [74, 121, 122] is shown as a function of the number of participant nucleons.

The SHM calculations describe the experimental data if ∼ 30% of beauty quarks are assumed

to thermalize. In analogy with the case of charm quarks, this requires the introduction of a new

parameter associated with a beauty fugacity gb, of the order of 1010. This opens the door to the

possibility of a partial thermalization of beauty quarks in the medium produced at the LHC. At

the same time, it raises the interesting question about the destiny of the non-thermalized beauty

quarks.

The most recent LQCD computations [95] estimate that beauty quarks in the zero-momentum

limit could thermalize within ∼3-4.5 fm/c. In addition, a recent study from the Catania group

within a Boltzmann approach [112] pointed out that the naive mass scaling for the relaxation time

might be violated whenDs is allowed to be mass-dependent. In fact, they obtained that τbeautykin ∼
2τ charmkin , indicating a possible earlier thermalization for beauty quarks as well. Recently, first-

principle calculations of mass-dependent Ds have been carried out on the lattice [85]. According

to this study, no strong dependence ofDs on the heavy-quark mass is detected. Therefore, further

studies are necessary to understand the observed discrepancy between the lattice calculations

and the fit of transport models to experimental measurements available in the literature.

State-of-the-art measurements of the elliptic flow of bottomonium states from the CMS col-
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Figure 4.7: pT-integrated v2 values for Υ(1S) mesons measured in three centrality classes
and for the Υ(2S) meson in the 10–90% centrality range for Pb–Pb at

√
sNN = 5.02 TeV.

Figure from Ref. [123].

laboration [123] show that the v2 signal in Pb–Pb collisions at
√
sNN = 5.02 TeV as a function

of centrality is compatible with zero, meaning that possibly beauty quarks are mostly insen-

sitive to the surrounding collective expansion (see Fig. 4.7). However, the precision of these

measurements is not yet close to the one for charm or light hadrons. Also, the presence of

not-yet-measured bottomonia states might still change the magnitude of the observed integrated

yields for the lowest-energy states. Only more precise measurements of beauty hadrons at low

transverse momenta will allow us to assess at which level beauty quarks relax to thermal equi-

librium. It is in fact in this regime that beauty quarks have a higher chance to interact with

the light partons and possibly reach kinetic equilibrium. In the near future, Run 3 at the LHC

will provide beauty measurements with unprecedented precision, especially at low pT. This will

hopefully help clarify the question of beauty (partial) thermalization and the mass dependence

of Ds.
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Chapter 5

Heavy-quark transport in a
fluid-dynamic approach

This Chapter is based on [124].

In this Chapter, we address the question of heavy-quark in-medium thermalization from the

point of view of relativistic fluid dynamics. We consider a thermalized medium of light quarks

and gluons and introduce an additional conserved current associated with the total number of

heavy quark pairs. We build a mapping between the Fokker-Planck equation and second-order

fluid dynamics to determine conductivities and relaxation times governing the spatial diffusion

of heavy quarks. By investigating the relation between the two approaches, we provide insights

concerning the level of local thermalization of charm and beauty quarks inside the expanding

QGP. Our results indicate that a fluid-dynamic description of diffusion is feasible for charm

quarks at least for the latest stages of the fireball evolution.

5.1 Introduction

In Chapter 4 experimental and theoretical evidence in favor of (partial) hydrodynamization of

charm and beauty quarks in the QGP was presented. On these grounds, we outline here a way to

treat the heavy quarks as part of the medium itself. Similarly to the most recent implementation

of the Statistical Hadronization Model [94, 125–127], we work under the assumption that heavy

quarks are close to local kinetic equilibrium in the QGP. However, we propose a fully dynamical

treatment, studying how the heavy-quark spatial distribution evolves in time. This aspect has

often been neglected in the literature but can provide deep insight into the level of thermalization

of heavy quarks in the medium.

We assume that heavy quarks have enough time to interact with the light constituents of

the thermalized plasma and to approach local kinetic equilibrium. This will be found to be a
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reasonable assumption for charm in the stages in which the expansion of the medium is not too

violent, that is, once the pressure gradients, at late times, have diminished. As was already

mentioned, while one can realistically assume that charm quarks manage to get quite close to

local kinetic equilibrium, a chemical thermalization would only happen over larger time scales,

way beyond the typical timescale of a heavy-ion collision. The absence of chemical equilibration is

a crucial ingredient in our approach and, as will be clarified in Sec. 5.2, guarantees that the heavy

quark multiplicity is set by the initial production in hard scattering processes and remains almost

unchanged during the medium evolution. The assumption of heavy-quark number conservation

is a fundamental building block for the approach we are going to develop. Heavy-quark number

conservation laws and the related continuity equations can be used to describe the diffusion

dynamics in spacetime.

A universal fluid-dynamic description can be exploited to study the dynamics of both light

and heavy degrees of freedom in the low transverse-momentum region. This is achieved without

introducing new phenomenological parameters but exclusively using fundamental quantities such

as viscosities for the light sector and the spatial diffusion coefficient plus relaxation rate for the

heavy quarks. This approach requires the introduction of new dissipative quantities to initialize,

namely the heavy-quark diffusion current, which describes the out-of-kinetic-equilibrium com-

ponent of the heavy-quark current. Nevertheless, such a theoretical description is still much

more economical than a numerical solution of the Boltzmann equation. At the same time, the

implementation of an ad hoc transport code to be interfaced with the standard fluid-dynamic

simulation of the QGP becomes unnecessary.

Eventually, heavy quarks could even affect the dynamics of the QGP itself and this could be

naturally encoded into a system of coupled hydrodynamic equations. In other words, one could

simultaneously study the dynamics of heavy quarks and their “back reaction” on the medium

they are moving through. However, as a starting point, it is reasonable to assume that the

heavy quarks do not influence significantly the energy density, pressure, velocity, or shear stress

of the medium, since they are present in the QGP in a very small amount (e.g. ∼ 15 cc pairs are

produced in central collisions at
√
sNN = 5.02 TeV at mid-rapidity at the LHC). These quantities

are mostly determined by the thermodynamics of the light quark and gluon degrees of freedom.

The heavy quarks can be added “on top” of the fluid and their fluid dynamics is described by

additional conserved currents. In the following, we pursue such an “on top” description.

5.2 Fluid-dynamic approach to heavy-quark diffusion

The present Section aims to introduce the heavy-quark conserved current that propagates causally

in the QGP and the associated transport coefficient and relaxation time. It is crucial to construct

the hydrodynamic approach such that causality is preserved even in the presence of dissipative ef-
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fects associated with the finite mean-free path of the plasma particles. We employ a second-order

hydrodynamic formalism in which the dissipative quantities (the heavy-quark diffusion current

in this case) are promoted to dynamical variables that evolve according to certain equations of

motion. These equations are governed by conductivities and relaxation times. The relaxation

times have to be large enough to prevent the non-causal behavior; at the same time, they have

to be smaller than the inverse expansion rate θ of the fireball (coinciding with the longitudinal

proper time τ for a pure longitudinal Bjorken expansion) for the hydrodynamic approach to

hold. The relaxation time (or hydrodynamization scale) tells us that we are dealing with out-of-

equilibrium transient hydrodynamics for a time scale of the order of the relaxation time itself.

In our specific case, we want to include the conservation of a heavy quark-antiquark (QQ)

current. Two relevant heavy-quark currents are

Nµ
+ ≡

Nµ
Q +Nµ

Q

2
and Nµ

− ≡ Nµ
Q −Nµ

Q
, (5.1)

associated to the conservation of the average (+) and net (–) heavy-quark number, respectively.

In ultrarelativistic heavy-ion collisions, the net heavy-quark number vanishes and their average

number coincides with the number of QQ pairs initially produced in the hard scattering processes

and conserved throughout the fireball evolution. The number of QQ pairs is expected to be

accidentally conserved during the evolution of the QGP. The mass of the heavy quarks is too

large for them to be thermally produced [128]. At the same time, their annihilation rate is too

small to lead to a measurable loss of QQ pairs during the short lifetime of the plasma [100]. Hence

their final multiplicity is fixed by the initial production in hard partonic processes described by

pQCD. On the other hand, the net heavy-quark number is expected to be exactly conserved in

QCD due to the symmetry of the strong interaction. In fact, the loss of a single quark/antiquark

is forbidden by flavor conservation. The net heavy-quark current is not conserved by electroweak

interactions instead. However, electroweak processes can be considered negligible within the

lifetime of the QGP since they require much longer timescales.

Since the numbers of heavy quarks and antiquarks are separately conserved within the fireball

lifetime, following the work in Ref. [45], we write the corresponding conserved currents including

dissipative corrections as
Nµ

(r) = n(r)u
µ + νµ(r) ,

∇µN
µ
(r) = 0 .

(5.2)

Here r=Q or Q. The currents Nµ
(r) are decomposed along uµ, the fluid four-velocity, and νµ(r),

the heavy-(anti)quark diffusion currents, constructed to be orthogonal to uµ, i.e. uµν
µ
(r) = 0.

Notice that this last condition entails that in the Local Rest Frame (LRF) of the fluid – in which

uµ = (1, 0, 0, 0) – the time component of the diffusion currents ν0(r) vanishes. In this frame the

time component of the current Nµ
(r) defines then the heavy-(anti)quark density n(r) even in the
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presence of dissipative corrections.

At local kinetic equilibrium, we consider for quarks and antiquarks a classical1 Boltzmann

distribution,

f
(r)
0k =exp

(−Ek + µr
T

)
=exp

(
−Ek+qrµ

net
Q +µaveQ /2

T

)
, (5.3)

where Ek = uµk
µ and corresponds to the heavy-quark energy k0 in the LRF of the fluid, and

µr is the heavy-quark/antiquark chemical potential. On the right-hand-side of Eq. (5.3), we

decomposed µr in

µQ = µaveQ /2 + µnetQ , µQ = µaveQ /2− µnetQ . (5.4)

The µnetQ is the chemical potential associated with the net Nµ
− conserved current and qr is a charge

factor – positive for quarks and negative for antiquarks. Additionally, one should consider that

heavy quarks are produced out of chemical equilibrium in the QGP and their number is conserved

during the subsequent evolution of the fireball. A chemical potential µaveQ , the same for quarks

and antiquarks, associated with their average number must be included to account for such

a deviation from full thermodynamic equilibrium. This decomposition is consistent with the

thermodynamic identities

n(r) =
∂P

∂µr
, n− =

∂P

∂µnetQ

, n+ =
∂P

∂µaveQ

, (5.5)

where P denotes here the heavy-quark pressure. It is often convenient to introduce the heavy-

quark fugacity γQ ≡ eµ
ave
Q /2T 2 which can be factored out from the heavy (anti)quark distributions,

f
(r)
0k =γQ exp

(
−Ek+qrµ

net
Q

T

)
. (5.6)

In the following, we simply focus on the conservation of the average heavy-quark number,

since in most cases one is not interested in distinguishing hadrons arising from a Q or Q parent

parton 3. Furthermore, for simplicity, we assume that Nµ
− = 0, i.e. µnetQ = 0, since the initial hard

processes lead to the production of the same number of quarks and antiquarks and we neglect any

local unbalance developing during the hydrodynamic evolution. We define then
∑

r n(r)/2 ≡ n+

and
∑

r ν
µ
(r)/2 ≡ νµ+. In this case, the dynamic evolution of the relevant diffusion current will

be driven by a single chemical potential µQ = µQ = µaveQ /2.

1Later in this Chapter we will analyze the contribution of quantum modifications to the heavy-quark
distribution function.

2In Sec. 5.6 we provide an estimate of γQ in the case of a fluid undergoing Bjorken flow.
3An exception could be the difference ∆v1 in the directed flow of D0 and D̄0 mesons proposed as a

tool to extract information on the primordial magnetic field in the plasma [129]
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We look for an equation of motion for the particle diffusion current in the form

τn∆
µ
ρu

σ∂σν
ρ
+ + νµ+ = κn∆

µν∇ν

(µQ
T

)
, (5.7)

This is a relaxation-type equation in which terms of higher order in the gradients are neglected.

Two transport coefficients are present in Eq. (5.7), namely the relaxation time τn and the particle-

diffusion coefficient κn. The presence of a relaxation time, as anticipated, is necessary in order

to ensure the causality of the equation. For τ ≫ τn, νµ+ relaxes to its Navier-Stokes limit,

νµ+ = κn∆
µν∇ν (µQ/T ).

5.3 Heavy-quark relaxation time and transport
coefficients

The purpose of this Section is twofold. First, we study the relation between the transport

coefficients defined in the hydrodynamic approach and the ones defined in transport theory

(Fokker-Planck equation). Secondly, we show our numerical results for the hydrodynamic trans-

port coefficients.

5.3.1 Matching Fokker-Planck with hydrodynamics

The definitions of the heavy-quark relaxation time τn and diffusion coefficient κn are deeply

related to the collision integral entering the Boltzmann equation. One can start from the Fokker-

Planck equation for the heavy (anti)quark distribution function f
(r)
k , written for the case of a

homogeneous fluid at rest,

kµ∂µf
(r)
k = k0

∂

∂ki

{
Aif

(r)
k +

∂

∂kj

[
Bijf

(r)
k

]}
, (5.8)

where the indices i, j = 1, 2, 3 run over the spatial components of the correspondent four-

momentum vector, and integrate subsequent moments of it, taking at the end the proper linear

combination to get an equation for the diffusion current νµ+. The mapping between the heavy-

quark distribution function4 and the fluid-dynamic quantities is encoded in the set of equations

4These relations quantify only the relative contribution of the heavy quark to the density, energy,
pressure and dissipative currents of the total system. To compute the same quantities for the total
system one should consider the sum over all the particle species, namely light quarks and gluons.
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from kinetic theory (see e.g. [45]),

n(r) = ⟨Ek⟩ , (5.9)

νµ(r) = ⟨k⟨µ⟩⟩ , (5.10)

ϵ(r) = ⟨E2
k⟩ , (5.11)

πµν(r) = ⟨k⟨µkν⟩⟩ , (5.12)

P(r) +Π(r) = −1

3
⟨∆µνkµkν⟩ , (5.13)

where we defined the average as

⟨...⟩ =
∫
dK(...)f

(r)
k . (5.14)

We decompose the distribution function f (r)k in an equilibrium part plus a deviation,

f
(r)
k = f

(r)
0k + δf

(r)
k , (5.15)

where in the equilibrium part we allow the chemical potential to depend on the spacetime point

x, allowing for the development of a local excess of heavy quarks. The two pressure scalars are

then separated into an equilibrium part and its deviation from equilibrium,

P(r) = −1

3
⟨∆µνkµkν⟩0 , Π(r) = −1

3
⟨∆µνkµkν⟩,,(5.16)

where we introduced the average over the equilibrium distribution function f (r)0k ,

⟨...⟩0 =
∫
dK(...)f

(r)
0k , (5.17)

and the average over the deviation from equilibrium:

⟨...⟩δ = ⟨...⟩ − ⟨...⟩0 . (5.18)

The zeroth moment of the Fokker-Planck equation simply gives the conservation or continuity

equation, which, in the fluid rest frame, reduces to

∂tn+ + ∂iν
i
+ = 0 . (5.19)

The first moment gives

∂t

∫
dKk0klf

(r)
k + ∂i

∫
dKklkif

(r)
k

=

∫
dKkl

(
k0

∂

∂ki

{
Aif

(r)
k +

∂

∂kj

[
Bijf

(r)
k

]})
. (5.20)

In the following, we employ a simplified version of the approach developed by Denicol et al.

in Ref. [45], i.e. the method of irreducible moments already mentioned in Chapter 2. We
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first present the general features of the method. Later on, we truncate the moment expansion

at rank-2 tensors, indicating that the only relevant dissipative quantities are the heavy-quark

bulk pressure, diffusion current, and shear-stress tensor, often referred to as the 14-moment

approximation.

Method of irreducible moments for heavy quarks. The moments of the out-of-

equilibrium component of the heavy-quark/antiquark distribution function are expressed by

ρ
⟨µ1..µl⟩
(r) ≡ ∆µ1..µl

ν1..νl

∫
dKk⟨ν1 ..kνl⟩δf (r)k , (5.21)

and are employed as a complete orthogonal basis onto which δf (r)k is expanded,

δf
(r)
k = f

(r)
0k

( ∞∑
l=0

a
(r)
l ρµ1..µl

(r) k⟨µ1
..kµl⟩

)
, (5.22)

where a(r)l are the coefficients of the linear expansion. The projectors ∆µ1..µl
ν1..νl to the fully sym-

metric, transverse and traceless part of a tensor are defined as in [45, 130]. Given a tensor Aν1..νl ,

by applying the projector ∆µ1..µl
ν1..νl one obtains

A⟨µ1..µl⟩ ≡ ∆µ1..µl
ν1..νl

Aν1..νl . (5.23)

In order to obtain fluid-dynamic equations of motion, it is enough to consider the moments

ρ
⟨µ1..µl⟩
(r) up to rank two5. Stopping the expansion at second order, one only needs the usual

transverse projector ∆µ
ν and the four-index projector

∆µ1µ2
ν1ν2

≡ 1

2
(∆µ1

ν1
∆µ2

ν2
+∆µ1

ν2
∆µ2

ν1
)− 1

3
∆µ1µ2∆ν1ν2

. (5.24)

Employing Eq. (5.21) to define the first three moments and exploiting the definitions in Eqs.

(5.9), (5.10), (5.11), (5.12) and (5.13), one obtains

ρ(r) = − 3

M2
Π(r) ,

ρµ(r) = νµ(r) ,

ρµν(r) = πµν(r) ,

(5.25)

with Π(r), ν
µ
(r) and πµν(r) being respectively the bulk pressure, the diffusion current and the shear-

stress tensor associated with the heavy (anti)quarks of mass M . In getting these results one has

5These moments can be, in fact, mapped onto the set of dissipative quantities employed in standard
second-order relativistic fluid dynamics, namely shear stress, bulk viscous pressure, and diffusion current.
Furthermore, their equations of motion derived within this approach can be systematically truncated at
fixed order in Knudsen and inverse Reynolds numbers such that their evolution also depends only on
up-to-rank-2 tensors.
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exploited the Landau matching conditions, which ensure that∫
dK(k ·u)δf (r)k = 0 and

∫
dK(k ·u)2δf (r)k = 0 . (5.26)

They are a way of fixing the temperature and chemical potential of the system, even when the

latter is off-equilibrium, starting from the knowledge of the particle and energy density, obtained

from the first two moments of the particle distribution.

Truncation scheme. By neglecting moments ρµ1..µl

(r) of rank higher than 2, the dissipative

correction to the heavy-quark distribution reads then

δf
(r)
k = f

(r)
0k

(
− a

(r)
0

3

M2
Π(r) + a

(r)
1 νµ(r) k⟨µ⟩ + a

(r)
2 πµσ(r) k⟨µkσ⟩

)
. (5.27)

In the expression above one can determine the coefficients a(r)l by exploiting the definition of

the bulk pressure, diffusion current, and shear stress in terms of the first three moments of δf (r)k

respectively (see Appendix B.1) obtaining

a
(r)
0 =

1

I
(r)
00

, a
(r)
1 = − 1

P(r)
, a

(r)
2 =

1

2I
(r)
42

, (5.28)

where P(r) is the heavy-quark contribution to the pressure and the thermodynamic integrals I(r)nq ,

for the case of a medium at rest, are defined according to Ref. [45] as

I(r)nq =
1

(2q + 1)!!

∫
dK(k0)n−2qk2qf

(r)
0k , (5.29)

where n and q are integers. Notice that the bulk pressure Π(r) and shear stress πµν(r) associated with

the heavy (anti)quarks are expected to be much smaller than the ones appearing in the stress-

energy tensor of the fluid dominated by gluons and light quarks. Furthermore, they will enter

the equation for the heavy-quark diffusion current only through their derivatives (see Appendix

B.2), providing corrections at least of second order in the gradients. Thus, we will neglect them

in our treatment. We can then approximate

δf
(r)
k ≈ − 1

P(r)
f
(r)
0k ν

µ
(r) k⟨µ⟩ . (5.30)

At first order in the gradients (i.e. neglecting bulk and shear corrections – see Appendix B.2 for

more details on the calculations) we find a relaxation-type equation for the diffusion current of

the form of Eq. (5.7), where the transport coefficients read

τn =
I
(r)
31

(1/3)
∫
dKk0A(k) k2f

(r)
0k

, (5.31)

κn =
P(r)T

(1/3)
∫
dKk0A(k)k2f

(r)
0

n(r) . (5.32)
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Eqs. (5.31) and (5.32) contain the information of the Fokker-Planck drag coefficient A(k), which

is in turn related to the momentum-diffusion coefficients B0(k) and B1(k) through the Einstein

fluctuation-dissipation relation. Let us study how these relations simplify when neglecting the

momentum dependence of the momentum-diffusion coefficients, assuming D ≡B0 =B1, which

is shown to be a reliable approximation up to heavy-quark momentum k ∼ 5 GeV for beauty

quarks [131]. By imposing the Einstein relation under this approximation, A(k) = D/EkT , one

obtains

τn =
TI31
DP

=
DsI31
TP0

=
(2πDsT )

96πT

(
M

T

)3 2K1(M/T )− 3K3(M/T ) +K5(M/T )

K2(M/T )
, (5.33)

κn =
T 2

D
n(r) = Dsn(r) , (5.34)

where in Eq. (5.31) we have rewritten I31 in terms of Bessel functions of the second kind Ki
6.

The index r was omitted in Eq. (5.31) since the ratio I31/P0 is equal for quarks and antiquarks.

Notice that in the non-relativistic limit we have

k0 ∼M ,

I31 ∼MP ,

(5.35)

and thus τn = A−1. This represents an important consistency check, since τn approaches, in

the M ≫ T limit, the well-known result for the relaxation time arising from the solution of the

non-relativistic Fokker-Planck equation.

We find that the relation Ds = T 2/D between the spatial (Ds) and momentum (D) diffusion

coefficients, usually found in studying the non-relativistic Brownian motion, arises naturally

and holds also in this case in which the heavy particle undergoes a relativistic dynamics, with

Ek =
√
k2 +M2. This is a non-trivial result, valid as long as the momentum dependence of D

can be neglected.

5.3.2 Heavy-quark relaxation time

In Eqs. (5.33) and (5.34), we emphasized the linear dependence of the heavy-quark relaxation

time on the spatial diffusion coefficient Ds. As an input for it, we use either LQCD calculations

or experimentally extracted values.

In Fig. 5.1 the relaxation time τn multiplied by the temperature is shown as a function of the

ratio M/T . Here and in the next plots the range of values assumed by τn is highlighted by the

colored bands. Different colored bands correspond to different Ds estimates coming from LQCD

simulations [114] and from fits to ALICE experimental data [65] (see Fig. 4.4). The heavy-

quark relaxation time increases linearly with the M/T ratio when the latter is large enough. At

6This will be useful in the numerical implementation of these equations in Chapter 6.
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a given temperature, the relaxation time is then larger for heavier quarks, as expected. This

entails that the non-hydrodynamic phase lasts longer for beauty quarks than for charm quarks.

The relaxation time τn is observed to be positive even at zero mass. This observation, although

referring to a limiting case outside the domain of validity of our approximations, agrees with the

second-order hydrodynamic description and guarantees causal propagation.

0 5 10 15

M/T

0

5

10

15

τ n
T

1.5 < 2πDsT < 4.5 (ALICE)

3.4 < 2πDsT < 5.4 (lQCD 2021)

0.9 < 2πDsT < 1.5 (lQCD 2023)

Figure 5.1: Heavy-quark relaxation time τn multiplied by temperature T as a function of
M/T . The pink and yellow bands are computed using Ds estimates coming from LQCD
simulations [85, 114]. The blue band is computed using estimates for Ds coming from fits
to ALICE experimental data [65]. Fig. updated from Ref. [124].

In Fig. 5.2 we compare – in dimensionless units rescaled by the temperature – our estimate

for the relaxation time τn with the inverse of the Fokker-Planck drag coefficient A arising from

the non-relativistic Einstein fluctuation-dissipation relation A−1 = (M/T )Ds. Notice that one

can recast the non-relativistic Einstein relation in a dimensionless form suited to highlight its

linear (M/T ) scaling,

A−1T =
1

2π

(
M

T

)
(2πDsT ) , (5.36)

manifest in Fig. 5.2. Both τn and A−1 are computed according to a spatial diffusion coefficient

given by 2πDsTc = 3.7, which falls in both the LQCD and ALICE ranges. If one assumes that

this last estimate holds also at higher temperatures7, the results plotted in Fig. 5.2 do not depend

on the specific value of T . We observe that for large values of M/T the two curves coincide,

demonstrating that our calculation for the heavy-quark relaxation time τn leads to the correct

7This assumption is motivated if one recalls, for example, the comparison between the LQCD and
ALICE estimates for the spatial diffusion coefficient presented in Chapter 4. There, it was found that the
values spanned by the linear growth of DsT with T predicted by LQCD are covered by the experimental
uncertainties of the ALICE measurement, in the range of temperatures of interest. In Sec. 5.4, however,
we will drop this assumption and consider a linear dependence of DsT with the temperature to mimic
the trend observed in LQCD calculations.
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Figure 5.2: The heavy-quark relaxation time as a function of M/T is compared to the
inverse of the Fokker-Planck drag coefficient A. Dimensionless units rescaled by the
temperature are employed. The two curves coincide in the non-relativistic limit, i.e. for
large values of M/T . Fig. from Ref. [124].

non-relativistic limit. One is therefore allowed to get, at the same time, a more realistic estimate

for the the relaxation time in a kinematic range in which the non-relativistic approximation is

not justified. This is the case, for example, for a charm quark of M = 1.5 GeV in a plasma at a

temperature of 500 MeV. At M/T ∼ 3, the difference between A−1 and τn is ∼ 20%, indicating

that under realistic experimental conditions a relativistic treatment, as the one provided by our

approach, is required.

5.4 Validity of the hydrodynamic description of heavy
quarks

In this Section, we test the validity of the fluid-dynamic description of heavy quarks in the case of

a QGP undergoing Bjorken flow. Although Bjorken flow is not able to describe the full evolution

of the plasma but rather only the first instants after the collision, it still allows us to get a

semi-realistic estimate of how fast the diffusion process happens for heavy quarks.

In order to estimate whether it is conceivable for the heavy quarks to be described by fluid

dynamics within an expanding medium before the freeze-out occurs, the relaxation time τn of

charm and beauty quarks is compared with the typical expansion time τexp of the fluid, defined

as the inverse of its expansion rate. One would be able to treat heavy-quark transport with

hydrodynamics only if τn ≪ τexp. This condition, similar to a relation between Knudsen numbers,

implies that the heavy quarks are interacting strongly enough with the other constituents of the
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medium to fall under a hydrodynamic description even within an expanding system. We assume

here the fluid expansion to be described by the Bjorken flow model [60], in which a purely

longitudinal expansion along the beam axis is considered. From Chapter 2, we recall that in the

Bjorken framework, all the thermodynamic quantities depend only on τ ≡
√
t2 − z2, that is, the

longitudinal proper time measured by a clock in the local rest frame of the fluid. In the case of

an ideal expansion, due to entropy conservation, the temperature follows the power law

T (τ) = T0

(τ0
τ

) 1

3

, (5.37)

with T0 = T (τ0) being the temperature of the system at τ0 (formation time of the QGP). The

expansion rate of the fluid in the case of this simple flow is given by θ = ∇µu
µ = 1/τ , so

the typical expansion time-scale is τexp ≡ 1/θ = τ , coinciding with the longitudinal proper

time. Before displaying our numerical results we can attempt some parametric estimates for

the heavy-quark relaxation time arising from the Einstein Fluctuation-Dissipation relation in

Eq. (5.36) under the assumption that the product DsT remains constant. One has

τEFDQ ≡ A−1 ∼ 1/T 2 ∼ 1

(T 3
0 τ0)

2/3
τ2/3 . (5.38)

Hence, for large enough time, one has

τEFDQ ∼ τ2/3 < τexp = τ . (5.39)

If this occurs before hadronization, at least for a fraction of the fireball lifetime the heavy-quark

evolution can be described by hydrodynamic equations, as the other conserved quantities.

We now consider the numerical results of our approach. In Figs. 5.3 and 5.4 the comparison

between τexp and τn as functions of the longitudinal proper time are reported, respectively for

charm and beauty quarks. This is done assuming an initial temperature of 0.45 GeV, initialization

time τ0 = 0.5 fm/c, and employing different values of the transport coefficient Ds at T ∼ Tc.

The mass dependence of Ds, explored in a recent work from the HotQCD Collaboration [85] and

shown in Fig. 4.5, is here neglected.

For charm quarks, we can see that τn goes below τexp quite fast when using transport coeffi-

cients arising from fits to experimental data or the latest LQCD results8 [95], indicating that the

conditions for a fluid-dynamic description are fulfilled for a sizeable fraction of the deconfined

fireball lifetime. Earlier LQCD estimates [114] of the transport coefficients suggest a later hydro-

dynamization time scale. In this case, a hydrodynamic description for charm quarks might still

be applicable but only for late times in the fireball evolution and in proximity of the freeze-out

surface. This calculation, however, was carried out in the quenched approximation, therefore

8Recent results for Ds distinguishing between charm and beauty quark mass have also been pro-
duced [85]. The presented calculations are not expected to be significantly changed by that and fall
within the colored bands reported in Figs. 5.3 and 5.4.
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neglecting the impact of the dynamics of sea quarks on the spatial diffusion coefficient.

Regarding beauty quarks, Ds estimates from ALICE and from earlier LQCD calculations

predict the hydrodynamization time scale to be of the order of the typical lifetime of the QGP

or larger. On the other hand, it is worth noticing that the LQCD results in the non-quenched

approximation suggest a possible hydrodynamization at late times for beauty quarks as well.

This would certainly have an impact on the elliptic flow of beauty quarks in the QGP, which so

far has been only measured with large uncertainties [123] and is compatible with zero.
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Figure 5.3: The relaxation time τn of charm quarks as a function of the longitudinal
proper time is compared to the typical expansion timescale τexp of the fluid undergoing a
Bjorken flow. Fig. updated from Ref. [124].

The exact value of τn clearly depends on the initial temperature and formation time of the

QGP, as suggested by the estimate in Eq. (5.38). These are not independent parameters but are

linked by entropy conservation to the final rapidity density of produced particles. One has

T 3
0 τ0 ∼ s0τ0 ∼

dS0
dηs

∣∣∣∣
ηs=0

∼ dN

dy

∣∣∣∣
y=0

, (5.40)

where S0 (s0) is the initial entropy (density), ηs ≡ (1/2) ln (t−z)
(t−z) the spacetime rapidity and

y ≡ (1/2) ln (E+pz)
(E−pz) the rapidity of the final detected particles. Hence, according to Eq. (5.38),

the higher the rapidity density of produced particles, the faster the relaxation of heavy quarks

toward equilibrium.

We conclude that the applicability of hydrodynamics to the study of charm quark diffusion

in the fireball produced in heavy-ion collisions is not forbidden. Regarding beauty quarks, the

answer remains uncertain, indicating, if at all, only a late hydrodynamization in the plasma.
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Figure 5.4: The relaxation time τn of beauty quarks as a function of the longitudinal
proper time is compared to the typical expansion timescale τexp of the fluid undergoing a
Bjorken flow. Fig. updated from Ref. [124].

5.5 Quantum corrections to the Fokker-Planck
equation

So far we have used the Boltzmann and Fokker-Planck equations in their classical limit, namely

neglecting quantum corrections associated with the fermionic statistics of heavy quarks (Pauli

blocking). Therefore, the distribution function at equilibrium for heavy quarks was expected to

be a classical Boltzmann exponential as in Eq. (5.3). A more accurate estimate for the transport

coefficients can be provided by implementing quantum corrections in the Boltzmann equation

and the subsequent Fokker-Planck equation. However, including them can lead to complications

concerning the determination of the distribution function of heavy quarks at thermal equilibrium.

In fact, finding a stationary solution for the Fokker-Planck equation becomes nontrivial in this

case [132]. Nevertheless, if one considers the case of a single momentum-independent diffusion

coefficient – namely B0 = B1 ≡ D – the corresponding Fokker-Planck equation reads

C[f
(r)
k ] = k0

∂

∂ki

{
A(k)kif

(r)
k f̃ (r) +Dδij

∂

∂kj
f
(r)
k ]

}
, (5.41)

where f̃ (r)k = 1− f
(r)
k accounts for Pauli blocking. This equation admits an analytical stationary

solution in terms of a Fermi-Dirac distribution,

f
(r)
0k =

[
γ−1
Q exp (

Ek − qrµ
net
Q

T
) + 1

]−1

. (5.42)

The procedure to derive an equation of motion for the diffusion current and the correspondent

relaxation time and transport coefficient is the same as outlined in Sec. 5.3.1. The quantum
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modifications arise from having terms of order (f
(r)
0k )2, which cannot be recast in terms of the

thermodynamic averages expressed by the I
(r)
nq integrals. The relaxation time and diffusion

coefficient in this case read

τquantumn ∼ I31
P

T

D

(
1 + 2

1

3P(r)

∫
dKk2(f

(r)
0k )2

)
= τn + correction ,

(5.43)

κquantumn ∼ T 2

D
n(r)

(
1 + 2

1

3P(r)

∫
dKk2(f

(r)
0k )2

)
= κn + correction .

(5.44)

Since the correction to the classical value depends on the square of the distribution function,

which is exponentially suppressed with M/T , we expect a deviation from the classical value only

for very small value of M/T .
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Figure 5.5: Relaxation time times the temperature as a function of M/T . The different
bands correspond respectively to the classical and quantum computation of the relaxation
time.

Looking at the numerical results for the above coefficients one can see that this is actually

the case. We start considering the situation of full chemical equilibrium for the heavy quarks, in

which γQ = 1 and µnetQ = 0. In Fig. 5.5 deviations from the classical behavior in the relaxation

time are visible only at very small values of M/T . Therefore, they are irrelevant for the realistic

conditions realized in the experiment. Similar considerations apply to Fig. 5.6, where only at

smallM/T values the diffusion coefficient times the temperature differs from its classical constant

behavior.
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Figure 5.6: Diffusion coefficient times the temperature as a function ofM/T . The different
bands correspond respectively to the classical and quantum computation of the diffusion
coefficient.

One may worry that for charm quarks at the very beginning of the fireball evolution, when

T ∼ 0.5 GeV, the condition M/T ≫ 1 is only marginally satisfied. However in this case what

matters is that in the early stages charm quarks – produced in the initial hard scattering processes

– are strongly underpopulated with respect to what would be their equilibrium abundance. This

occurrence, discussed in detail in Sec. 5.6, is quantified by the fugacity factor γQ ≪ 1 which

should be included in Eqs. (5.43) and (5.44). The relevance of quantum statistics depends on

the ratio between the thermal de-Broglie wavelength λth ≡ (2π/MT )1/2 of the particle and the

average interparticle distance d ∼ n−1/3. The classical limit corresponds to λth/d ≪ 1. At the

beginning of the fireball evolution, the charm quarks are highly underpopulated with respect to

their thermal distribution, and the density n is suppressed by the fugacity factor. Therefore, a

classical treatment is better justified also in the early stages at the collision. The subsequent

fireball evolution can only improve the accuracy of the approximation. Considering for simplicity

the case of a Bjorken expansion one has

λth ∼ T−1/2 ∼ τ1/6 and d ∼ n−1/3 ∼ τ1/3 ,

so that λth/d ∼ τ−1/6. When performing actual numerical simulation of heavy-quark diffusion,

quantum effects will therefore be neglected.
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5.6 Heavy-quark chemical potential in the case of
Bjorken flow

In this Section, we discuss how to fix the heavy-quark chemical potential referring to the conser-

vation of the average heavy-quark number NQQ ≡ (NQ + NQ)/2. The mid-rapidity density at

τ0 arising from the initial hard production is given by

nQQ
hard(τ0, r, y = 0) =

1

τ0

d3NQQ

rdrdϕdy

∣∣∣∣∣
y=0

, (5.45)

In the above expression, the QQ rapidity distribution in nucleus-nucleus collisions is set by the

pQCD QQ cross-section, rescaled by the total number of binary nucleon-nucleon collisions,

dNQQ

dy
= ⟨Ncoll⟩

1

σin
dσQQ

dy
, (5.46)

where σin is the inelastic proton-proton cross-section and σQQ is the hard production cross-

section, possibly containing cold-nuclear-matter effects (nPDF’s). We indicate with ⟨Ncoll⟩ the

average number of binary nucleon-nucleon collisions per event at mid-rapidity. When plugging

Eq. (5.46) into Eq. (5.45), one gets

nQQ
hard(τ0, r, y = 0) =

1

τ0
ncoll(r)

1

σin
dσQQ

dy
, (5.47)

where ncoll(r) represents the average density per event of binary nucleon-nucleon collisions at

mid-rapidity. We assume that when averaging over a large number of events happening with a

random orientation in the transverse plane (as it occurs in a real heavy-ion collision experiment),

the angular dependence is integrated out and the density ncoll depends only on the radius. In

case one considers homogeneous conditions in the transverse plane, nevertheless representative

of a central Pb-Pb collision, one can estimate

nQQ
hard(τ0, y = 0) =

1

τ0

⟨Ncoll⟩
πR2

Pb

1

σin
dσQQ

dy
, (5.48)

where RPb is the average radius of a lead nucleus.

To fix at each point the initialQQ chemical potential µQ ( the same for quarks and antiquarks,

which are produced in equal amount), this density has to be set equal to the equilibrium thermal

multiplicity

nQQ
therm(x) = (2s+ 1)Nc

(
MT (x)

2π

) 3

2

e−M/T (x)eµQ(x)/T (x) . (5.49)

T (x) is extracted from the initial local energy density of the medium through its Equation of
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State. For the sake of simplicity let us introduce the fugacity γQ ≡ eµQ/T . One has then:

nQQ
therm(x) = (2s+ 1)Nc γQ(x)

(
MT (x)

2π

) 3

2

e−M/T (x) . (5.50)

Let us perform some estimates for pp the initial density of charm-quark pairs with mass M = 1.5

GeV taking the central prediction by FONLL [79] for collisions at 5.02 TeV. One gets, at y = 0,

dσQQ/dy = 0.463 mb, with σin = 70 mb. For the 0-10% most central Pb-Pb collisions at
√
sNN =

5.02 TeV one has ncoll(r = 0) = 31.57 fm−2 and ⟨Ncoll⟩ = 1653. Assuming a thermalization time

τ0 = 0.5 fm/c one gets at the center of the fireball

nQQ
hard(τ0, r = 0, y = 0) ≈ 0.42 fm−3 . (5.51)

The average density in the transverse plane can be estimated as slightly lower. Starting form

Eq. (5.48) and setting RPb = 6.62 fm one gets

nQQ
hard(τ0, y = 0) ≈ 0.16 fm−3 . (5.52)

This has to be compared with the thermal abundance in the case of full chemical equilibrium of

the heavy quarks, i.e. γQ = 1. Assuming an initial temperature of the fireball of T0 = 0.45 GeV

one would obtain

nQQ
chem.eq.(τ0, y = 0) ≈ 0.98 fm−3 . (5.53)

Initially, the heavy quarks are then underpopulated with respect to their chemical-equilibrium

abundance. The initial heavy-quark fugacity can be estimated as

γQ(τ0) = nQQ
hard(τ0)/n

QQ
chem.eq.(τ0) ≈ 0.16 . (5.54)

We now try to estimate the evolution of the heavy-quark density and fugacity while the fireball

undergoes an ideal Bjorken expansion. In this case, particle conservation entails:

nQQ(τ)τ = nQQ
0 τ0 , (5.55)

where nQQ
0 = nQQ

hard(τ0). The Landau matching condition applied to the heavy-quark density

allows one to extract the heavy-quark fugacity γQ(τ):

(2s+ 1)Nc γQ(τ)

(
MT (τ)

2π

) 3

2

e−M/T (τ) τ

τ0
= nQQ

0 (5.56)

In the above, neglecting dissipative effects and deviations from a Stefan-Boltzmann EoS, we

estimate the temperature evolution from entropy conservation:

s(τ)τ = s0τ0 −→ T 3(τ)τ = T 3
0 τ0 (5.57)
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Let us estimate the value of the heavy-quark fugacity at chemical-freeze-out at TFO = 0.15 GeV,

occurring at τFO = (T0/TFO)
3τ0 = 27τ0 = 13.5 fm/c. One gets γQ(τFO) ≈ 24.6, not far from the

one obtained with SHM fits [127] (γc ∼ 30).

The evolution of the fugacity of charm quarks as a function of temperature, extracted from

Eq. (5.56), is displayed in Fig. 5.7. It is worth stressing that, going from high temperatures

(early collision times) to low temperatures (late collision times), and employing realistic values

for the initial conditions on γc, one observes a dramatic increase in the values of the fugacity,

from γc ∼ 0 to γc ≫ 1. Recalling the definition of fugacity as γQ = exp(µQ/T ), this implies that

the chemical potential of the charm quark spans from negative values to values of the order of

the temperature T of the QGP. This reflects the fact that although the heavy quarks are initially

underpopulated with respect to their chemical-equilibrium abundance, this is no longer the case

at the end of the fireball evolution.
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Figure 5.7: Charm quark fugacity as a function of temperature in logarithmic scale with
T0 = 0.45 GeV.
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Chapter 6

Fluid-dynamic description of charm
quarks

This chapter is mostly taken from [133].

In the previous Chapter, the question of charm thermalization was addressed by studying

the hydrodynamization time of charm quarks in the context of an expanding medium. It was

shown that the time required for charm quark to hydrodynamize, and therefore to be included

in the fluid-dynamic description of the QGP, is shorter than the typical expansion time scale of

the medium. This result serves as motivation to develop a fluid-dynamic description of charm

quarks, which is the subject of the current Chapter. We expect such a description to be relevant

for the low transverse momentum (pT) region, as it is for the light-flavor particles. At high

momentum, the path-length-dependent energy loss mechanisms, are more important in defining

the shape of the pT spectra.

The method developed in this Chapter is only applied to charm quarks. However, it can be

straightforwardly extended to study the dynamics of beauty-quark diffusion, assuming that such

a hydrodynamic description is applicable. The only changes concern, of course, the heavy-quark

mass, the number of heavy quarks – which is fixed by the initial conditions – and the list of

hadronic states and resonances to be included.

6.1 Fluid-dynamic equations

The fluid-dynamic equations to solve are mainly given by the system of equations

∇µT
µν = 0 , (6.1)

∇µN
µ = 0 , (6.2)
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which expresses the conservation of the energy-momentum tensor Tµν and of an additional

conserved current Nµ. The latter is associated with conserving the number of charm-anticharm

pairs [124]. The Landau frame is chosen such that Tµν and Nµ can be decomposed as

Tµν = (ϵ+ P )uµuν +∆µν(P +Π) + πµν , (6.3)

Nµ = nuµ + νµ , (6.4)

where ϵ, P , uµ, Π and πµν are the energy density, thermodynamic pressure, fluid four-velocity,

bulk viscous pressure, and shear-stress tensor of the fluid, respectively. The charm-quark fields

are the heavy-quark density n and the diffusion current νµ. The local temperature T and the

chemical potential to temperature ratio α are determined by the Landau matching conditions,

ϵ(T ) ≡ ϵequilibrium(T ) (6.5)

n(T, α) ≡ nequilibrium(T, α) . (6.6)

We assume that the energy density is approximately independent of the heavy-quark contri-

bution, such that any energy density dependence on α is negligible1. The thermal equilibrium

heavy-quark density is taken to be one of the hadron-resonance gas, including all measured charm

states (HRGc),

n(T, α) =
T

2π2

∑
i∈HRGc

qiM
2
i e

qiαK2(Mi/T ) , (6.7)

where Mi is the mass of each charm hadron, and qi is its charm charge. The HRGc is expected

to give the correct limit for the thermodynamics of the charm density at temperatures close

to the phase transition. This relation is assumed to also hold at high temperatures. In the

temperature regime reached by the fireball in most central collisions, the HRGc yields larger

values (of about a factor 5) than the density of the free charm quarks. Nevertheless, due to the

absence of first principle calculations for the Equation of State of charm quarks at physical QGP

temperatures, we assume this relation to hold also at high temperatures. In the future, a more

realistic Equation of State will be developed.

The equations of motion for each of the dissipative currents in a second-order hydrodynamic

formalism are solved,

τΠu
µ∂µΠ+Π+ ζ∇µu

µ = 0, (6.8)

Pµρ
νσ

[
τπ(u

λ∇λπ
σ
ρ − 2πσλωρλ + 4

3∇λu
λπσρ ) + 2η∇ρu

σ + πσρ

]
= 0, (6.9)

τn∆
α
βu

µ∇µν
β + να + κn∆

αβ∂βα = 0 , (6.10)

1This assumption could be relaxed in view of studying the back reaction that the motion of the charm
quarks has on the QGP medium. However, at the moment no calculation of the LQCD EoS including
the the dependence on the heavy-quark pair chemical potential is available in the literature.
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where one defines the projector Pµν
ρσ = 1

2 [∆
µ
ρ∆ν

σ + ∆µ
ρ∆ν

σ − 2
3∆

µ
ρ∆ν

σ] and the vorticity tensor

ωµν = (∇µuν −∇νuµ)/2. Here we introduced the transport coefficients for the bulk viscosity ζ,

shear viscosity η, and the heavy-quark diffusion coefficient κn, with the corresponding relaxation

times τΠ, τπ and τn. The values of the viscosities are taken from Ref. [134], while the expression

for the diffusion coefficient was derived in Ref. [124] and presented in Chapter 5. We remark

that κn and τn are proportional to the heavy-quark spatial diffusion coefficient Ds.

The equations are solved in Bjorken coordinates assuming boost and azimuthal rotation invari-

ance, restricting effectively to 1+1 dimensions. We organize the fluid fields for the QGP into

a Nambu spinor Φ = (T, uµ, πµν ,Π), which satisfies the hyperbolic equation of motion. We

assume that none of these fields or transport coefficients depend on the heavy-quark variables.

Eqs. (6.1), (6.8) and (6.9), can be used to determine the time derivatives of the fluid fields

explicitly. Let us now consider another Nambu spinor including also the heavy-quark fields

Ξ = (T, uµ, πµν ,Π, α, νµ). The new system of hyperbolic equations satisfied by Ξ can be numer-

ically solved by setting the fluid fields contained in Φ on shell. This is equivalent to neglecting

the back reaction of the heavy-quark field on the fluid background evolution.

6.1.1 Details on fluid-dynamic equations

The equations are solved effectively in 1+1 dimensions with Bjorken coordinates (r, τ) supple-

mented by azimuthal angle ϕ and rapidity η. The metric tensor is defined as gµν = diag(−1, 1, r2, τ2).

The independent components of the fluid fields in the azimuthally symmetric and boost-invariant

case are, for the energy-momentum tensor Tµν

T, ur, πηη , π
ϕ
ϕ,Π, (6.11)

where u2 = −1 and πµν is a symmetric, traceless tensor transverse to the four-velocity. The

independent charm fields are

α, νr, (6.12)

where the diffusion current is orthogonal to the fluid velocity u · ν = 0, and α is the conjugate

variable of the density n, i.e., α = µ/T . A generic Nambu spinor, whose components are the

background fluid fields Φbg = (T, uµ, πηη , π
ϕ
ϕ,Π), is considered. The general hyperbolic equations

for the background fluid field can be written as

Abg(r, τ,Φbg)∂τΦbg +Bbg(r, τ,Φbg)∂rΦbg = Sbg(r, τ,Φbg) , (6.13)

where Abg and Bbg are 5 × 5 matrices and Sbg is a source term vector depending non-linearly

on the fluid fields Φbg. This equation is used to derive the expressions for the time derivatives

of the fields in Φbg,

∂τΦbg = −A−1
bgBbg∂rΦbg +A−1

bg Sbg . (6.14)



78 CHAPTER 6. FLUID-DYNAMIC DESCRIPTION OF CHARM QUARKS

We can now define another Nambu spinor ΦHQ = (α, νr). The equation of motion for ΦHQ is

given by

AHQ∂τΦHQ +BHQ∂rΦHQ + CHQ∂τΦbg +DHQ∂rΦbg = SHQ , (6.15)

where the 2× 2 matrices AHQ, BHQ, CHQ, DHQ and the two-component vector SHQ are generic

non-linear functions of the fluid fields Φbg and the heavy quarks variables ΦHQ. We substitute

the equation of motion Eq. (6.14) in Eq. (6.15), leading to

AHQ∂τΦHQ +BHQ∂rΦHQ + (DHQ − CHQA
−1
bgBbg)∂rΦbg = SHQ − CHQA

−1
bg Sbg. (6.16)

In this formulation, the evolution of the background Φbg is not influenced by the dynamics of

the diffusion current and density in ΦHQ. The equations of motion read Abg 0

0 AHQ

 ∂τ

Φbg

ΦHQ

+

 Bbg 0

Bmix BHQ

 ∂r

Φbg

ΦHQ

 =

Sbg

S̃HQ

 (6.17)

where the mixing matrix is given by Bmix = DHQ−CHQA
−1
bgBbg and S̃HQ = SHQ−CHQA

−1
bg Sbg.

Using that the equations are hyperbolic, and therefore the matrix of the time derivative, Abg 0

0 AHQ

 ,

is invertible, the equations of motion can be written explicitly as

∂τ

Φbg

ΦHQ

+

 A−1
bgBbg 0

A−1
HQBmix A−1

HQBHQ

 ∂r

Φbg

ΦHQ

 =

 A−1
bg Sbg

A−1
HQS̃HQ

 . (6.18)

6.1.2 Numerical scheme

The equations of motion for relativistic fluid dynamics with the conservation of a heavy-charm

pair current are hyperbolic equations of motion due to the inclusion of the evolution equation

of the dissipative currents πµν ,Π and νµ. Schematically, the equations can be written as quasi-

linear partial differential equations (PDEs). We will restrict ourselves to discussing the equations

in one spatial dimension for simplicity. However, the extension to a higher number of dimensions

is trivial. We consider a collection of independent variables called ϕ, whose equations of motion

are

∂tϕ+A(ϕ)∂xϕ+ S(ϕ) = 0 , (6.19)

where A(ϕ) is a matrix in field space that depends non-linearly on the fields themselves, and

S(ϕ) is a vector containing the source term in the equation. Usually, the numerical solutions

of the fluid dynamic equations are discussed in a conservative form since the ideal limit of the
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equations is the divergence of a current – typically the energy-momentum and particle density

current. Let

∇µJ µ = 0

be the conservation equation, where J µ represents generically the conserved current. However,

including the dynamics of the dissipative current like diffusion and shear/bulk viscous stress

spoils this property for Israel-Stewart-Müller theory [56]. For this type of theory, the equations

are non-conservative by construction, and it is impossible to cast them in a conservative form.

In the relativistic viscous fluid dynamic literature, the equations are solved with a splitting

algorithm: First, solve using a finite volume conservative scheme, then correct the intermediate

solution using a central approximation of the dissipative equations, as in the so-called SHASTA

algorithm [135], or some variations of it like KT [136]. This type of algorithm performs well

if the dissipative currents are minor corrections to the ideal step and do not modify the ideal

evolution substantially. However, this is not always the case, especially when the system is

far from the ideal approximation, meaning the non-equilibrium effects are important. In this

work, we implement a different strategy. Instead of using the ideal-viscous splitting, we solve

the equations together as a quasi-linear system of PDEs. The naive discretization of equations

like Eq. (6.19) can be obtained by replacing the first derivative with its central approximation.

Denoting xi the central position of a cell of size ∆x, the the central derivative approximation is

∂xϕ|xi
≃ 1

2∆x
(ϕi+1 − ϕi−1) , (6.20)

where ϕi = ϕ(xi). The semi-discretized version of the equations is

∂tϕi +A(ϕi)∂xϕ|xi
+ S(ϕi) = 0. (6.21)

This naive discretization, however, is unstable since there is no dissipation mechanism in the

discretization to reduce the high-frequency mode of the discretized solution. The physical moti-

vation for this instability can be understood considering the nature of the PDE. The system of

hyperbolic equations is a collection of propagating waves that interact non-linearly and with a

non-constant velocity. The waves are usually (except in simple cases) a complicated combination

of the primary variables ϕ, defined as the left eigenvector of the matrix A(ϕ). The eigenvalue

is characteristic of the hyperbolic PDE and represents how fast the wave propagates. Each of

the waves propagates at a different speed and direction. In a one-dimensional case, there will be

right- and left-moving waves. To have a stable discretization, the numerical derivative should

respect – up to some degree of accuracy – the direction of propagation of the different waves.

If a wave is right-moving, the correct derivative discretization should involve only points in the

past of the wave – i.e. on its left – and vice versa. This mechanism is called upwinding [137].

Therefore, the central approximation of the first derivative goes against this principle since it
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does not distinguish the direction of propagation of the waves.

A natural solution is to separate right-moving and left-moving waves and discretize them

accordingly. By calling λi the eigenvalues, one can separate them into positive and negative ones

(λ+i and λ−i , respectively)2,

A+ = U


λ+1

. . .

0

U−1, A− = U


0

. . .

λ−1

U−1 . (6.22)

Each matrix has only information about the left and right propagating waves, respectively. With

this construction, it is then easy (in principle) to construct an upwinding discretization as,

∂tϕi +A+(ϕi)∂xϕ|−xi
+A−(ϕi)∂xϕ|+xi

+ S(ϕi) = 0 , (6.23)

where the derivatives are taken from the left or the right, respectively,

ϕ|−xi
=

1

∆x
(ϕi − ϕi−1), ϕ|+xi

=
1

∆x
(ϕi+1 − ϕi) . (6.24)

The proposed discretization is sometimes called the flux-splitting technique and was already

introduced in [137–139]. The drawback of this scheme is that it relies on the complete knowledge

of the spectrum of the characteristic matrix. Only in a few cases is this achievable due to the

complexity of the non-linearities of the characteristic matrix A.

The discretization reported in Eq. (6.23) can be expressed in terms of the absolute value of

the matrix A,

|A| = A+ −A− , (6.25)

such that

A+ =
1

2
(A+ |A|) , A− =

1

2
(A− |A|) . (6.26)

Therefore, Eq. (6.23) becomes

∂tϕi +
1

2
A(∂xϕ|−xi

+ ∂xϕ|+xi
) +

1

2
|A|(∂xϕ|−xi

− ∂xϕ|+xi
) + S(ϕi) = 0 . (6.27)

The derivative operators now become

1

2
(∂xϕ|−xi

+ ∂xϕ|+xi
) =

1

2∆x
(ϕi+1 − ϕi−1) = ∂xϕ|xi

, (6.28)

∂xϕ|−xi
− ∂xϕ|+xi

=
1

∆x
(ϕi+1 + ϕi−1 − 2ϕi) = ∆x∂2xϕ|xi

, (6.29)

2For hyperbolic systems of partial differential equations, it is always possible to left-diagonalize the
characteristic matrix and the corresponding eigenvalues are real.
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leading to a discretized equation of the form

∂tϕi +A∂xϕ|xi
− 1

2
|A|∆x∂2xϕ|xi

+ S(ϕi) = 0 . (6.30)

The extra contribution introduced to upwind the derivative acts like a viscous terms into the

equation, with an amplitude proportional to the lattice spacing ∆x.

A standard approximation for the absolute value of the matrix is |A| = λI where λ =

max(|λi|), which is the fastest characteristic speed in the system. Under this assumption, the

scheme can be considered a non-conservative version of the Lax-Friedrichs scheme. However, this

requires knowledge of the characteristic structure, which is possible only for exceptional cases.

An appealing alternative is to approximate |A| with a suitable expansion, as discussed in [139,

140]. Among the possible expansion choices that one can make, the simplest is a polynomial

approximation around max(|λi|) = 1,

|A| ≃ 1

2
(I +A2) +O(A4) , (6.31)

assuming that all the |λi| < 1, such that the fastest wave speeds are modified correctly. Different

and more performing possibilities are Chebyshev polynomials and rational functions. However,

in this work, we restrict ourselves to the simplest choice and will study these possibilities in the

future.

For the evolution, we use the explicit Runge-Kutta with adaptive time-step as described

in [141, 142] and with the Proportional-Integral-Derivative (PID) controller as described in [143–

145]. For the integration on the freeze-out surface we used [146–149].

6.1.3 Validation against Gubser flow

Comparing it against a known analytic (or semi-analytic) solution is useful to verify and validate

the numerical scheme. For Israel-Stewart-type theories, such a solution with azimuthal rotation

symmetry, longitudinal boost invariance, and an additional conformal symmetry has been found

by Gubser [61]. For symmetry reasons, the evolution of the diffusion current in this setup is

trivial. So we will leave it out of the discussion in the rest of this section. The set of equations

for the evolution of temperature, fluid velocity, shear stress, and number density in the presence

of a conformal symmetry reads,

uλ∇λT

T
+

∇µu
µ

3
+
πµνσµν
3sT

= 0 , (6.32)

uλ∇λu
µ +

∆µ
λ∇λT

T
+

∆µ
λ∇απ

αλ

sT
= 0 , (6.33)

τπ
sT

(∆µ
α∆

ν
βu

λ∇λπ
αβ +

4

3
∇λu

λπµν) +
πµν

sT
= − 2η

sT
σµν , (6.34)

uλ∇λn = −nθ −∇µν
µ , (6.35)
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where θ = 2 tanh ρ is the scalar expansion rate for Gubser flow. In de Sitter space, by applying

the Gubser flow profile ûµ = (1, 0, 0, 0), the equations read,

1

T̂
∂ρT̂ +

2

3
tanh ρ =

1

3
π̄ηη tanh ρ , (6.36)

c

T̂

η

ŝ

[
∂ρπ̄

η
η +

4

3
(π̄ηη)

2 tanh ρ

]
+ π̄ηη =

4

3

η

ŝT̂
tanh ρ , (6.37)

∂ρn̂+ 2 tanh ρn̂ = 0 , (6.38)

where ρ is the Gubser conformal time variable and π̄µν = πµν/(ŝT̂ ). The transformation rules

to obtain the fluid variables in Milne coordinates are given by

T (τ, r) = T̂ (ρ(τ, r))/τ , (6.39)

uµ(τ, r) = τ
∂x̂ν

∂x̂µ
ûν(ρ(τ, r)) , (6.40)

πµν(τ, r) =
1

τ2
∂x̂α

∂x̂µ
∂x̂β

∂x̂µ
π̂αβ(ρ(τ, r)) , (6.41)

n(τ, r) =
1

τ3
n̂(ρ(τ, r)) . (6.42)

The conformal Equation of State at finite α can be written as

e = 3p , s = h(α)T 3 , n ≡ g(α)αT 3 , (6.43)

where one defines the dimensionless coefficients

f = 3p0 +
Nf

6
α2 +

Nf

108π2
α4 , (6.44)

h = 4p0 +
Nf

9
α2 , (6.45)

g =
Nf

9
α+

Nf

81π2
α2 . (6.46)

Here we use p0 = (16 + 10.5Nf )π
2/90 and the number of flavors Nf = 2.5. In this setup, the

equations for the charge current are decoupled from the rest of the system. In Fig. 6.1 the

comparison between the semi-analytical solution by Gubser and the one obtained numerically is

presented. The initialization time is τ0 = 1 fm, the shear viscosity to entropy ratio is 0.2; the

shear relaxation time is τS = 5η/(sT ). The overall agreement is good for all fields in the full

radial range.

In Fig. 6.2, the percent deviation of the numerical solution for the temperature field with

respect to Gubser’s solution is shown for different numbers of discretization points at τ = 2

fm. As one can see, the finer the spatial grid is, the smaller the deviation. In particular, the

deviation around 2 fm, corresponding to the maximum of the temperature profile, is progressively

suppressed.
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Figure 6.1: Temperature (left panel) and chemical potential to temperature ratio α (right
panel) as a function of radius r at Bjorken times τ = 1.5 fm/c and τ = 2 fm/c. The
solid lines correspond to the semianalytic Gubser solution, while the dashed lines are the
numerical results with N = 200 discretization points. We have here chosen the maximal
radius to be 10 fm.
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Figure 6.2: Percent deviation of the absolute value of ∆T = Tnumerical/Tsemianalytical − 1
of the temperature at τ = 2 fm as a function of radius and the number of discretization
point N. The numerical solution converges to the semi-analytical one as the number of
points increases.
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6.2 Initial conditions for the fluid fields

The initial condition for the entropy density is computed with TRENTo [31] simulating Pb-Pb

collisions at
√
sNN = 5.02 TeV. The TRENTo parameters are set based in Refs. [150, 151]; the

TRENTo output is used as entropy density. The nucleon-nucleon cross section for Pb-Pb collisions

at
√
sNN = 5.02 TeV is taken from [152], i.e. x = 67.6 mb. The nucleons in the Pb ion are sampled

from a spherically symmetric Woods-Saxon distribution with radius R = 6.65 fm and surface

thickness a = 0.54 fm. Using this set of parameters, the transverse density TR(x, y) is generated

for 1.5 · 106 minimum-bias collisions, among which the ones belonging to the 10% most central

are selected. The normalization of the TRENTo profile is computed by fixing the multiplicity

of protons to the measured one [153]. The proton multiplicity in our calculation is obtained by

employing a Cooper-Frye+FastReso approach at the end of the fluid-dynamic evolution as in

Refs. [38, 42, 134]. In the future, when performing a Bayesian analysis to fit the experimental

measurements, the normalization will be left as a free parameter of our model as in Ref. [38]. The

initial conditions for the temperature field are then obtained through the thermodynamics EoS

described in Ref. [154]. Radial fluid velocity, shear-stress tensor components, and bulk viscous

pressure are initialized at zero.

6.3 Initial conditions for charm fields

The midrapidity density of charm quarks at the initialization time of the hydrodynamic evolution

τ0 comes from the initial hard production,

nQQ
hard(τ0, x⃗⊥, y = 0) =

1

τ0

d3NQQ

dx⃗⊥dy

∣∣∣∣∣
y=0

. (6.47)

In the above expression, the QQ rapidity distribution in nucleus-nucleus collisions is set by the

pQCD QQ cross-section
dNQQ

dy
= ⟨Ncoll⟩

1

σin
dσQQ

dy
, (6.48)

where σin is the inelastic proton-proton cross-section and σQQ is the hard production cross-

section. The average number of collisions Ncoll is computed with a Glauber model and depends

on the impact parameter of the collision, providing:

nQQ
hard(τ0, x⃗⊥, y = 0) =

1

τ0
ncoll(x⃗⊥)

1

σin
dσQQ̄

dy
, (6.49)

where ncoll is assumed to be distributed according to the fluid energy density ncoll ∝ T 4. As a

future development, one could evaluate the radial distribution of binary collisions directly from

TRENTo, not to neglect space-momentum correlations that are important for flow observables.

The integral of the density in the transverse plane provides the total number of heavy quarks
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to be conserved throughout the QGP evolution. As discussed in [124], we remark that the

current associated with the number of heavy quark-antiquark pairs is accidentally conserved.

The heavy-quark mass is too large for them to be produced thermally throughout the QGP

evolution; moreover, the annihilation rate of a QQ pair is negligible within the lifetime of the

plasma.

To fix at each point the initial value for α for the QQ pair,

n(T, α) = nQQ
hard (6.50)

Taking the central prediction by FONLL [79] for collisions at
√
sNN = 5.02 TeV, one gets, at

y = 0, dσQQ/dy = 0.463 mb, with σin = 67.6 mb [152]. At the beginning of the system evolution,

the thermal distribution at zero chemical potential overshoots the density of charm quarks in

the middle of the fireball. Therefore, α assumes negative values initially to match the hard

production. This is not expected to happen at the fireball evolution’s end, where the charm

species’ thermal abundance will be strongly suppressed. The total multiplicity of QQ pairs per

unit of rapidity is given by the integrated density profile, e.g. at τ = τ0,

NQQ = τ02π

∫
drrnQQ

hard . (6.51)

In terms of fluid variables, due to the conservation of the charm current, the conserved charge is

rewritten as,

NQQ =

∫
d3x
√

|g|N0(x⃗) = 2πτ

∫
r(nuτ + ντ )dr (6.52)

where |g| is the determinant of the metric. Besides the density, we can initialize the heavy-quark

diffusion current. The assumed symmetries would allow a non-vanishing radial component, but

we set it to zero in the absence of a more detailed initial state model.

6.4 Evolution of the fields

The initial conditions for the fields are set on a hypersurface at constant proper time τ0 = 0.4 fm.

In Fig. 6.3 (upper panel), the time evolution of the charm density times the longitudinal proper

time as a function of the radial coordinate is reported for different values of τ . This is shown

for a non-diffusive (Ds = 0) and temperature-dependent Ds case obtained by linearly fitting

results from LQCD calculations [95]. As expected, the density becomes more diluted when the

temperature decreases. In the diffusive case, the density evolution is concurrent with developing

the radial component of the diffusion current (Fig. 6.3, lower panel). Its values are always

negative, thus negatively contributing to the conserved current Nµ. This results in a higher

density n in the diffusive case, as shown in Fig. 6.3. Comparing it to the equilibrium composition

of the heavy-quark density n, one finds that the condition of |νr| ≪ n is not satisfied in the
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Figure 6.3: Charm density times the longitudinal proper time (upper panel) and diffusion
current (lower panel) as a function of radius for different times. Solid lines correspond
to an ideal hydrodynamic evolution, with Ds = 0. Dashed lines correspond to a diffusive
hydrodynamic evolution, with 2πDsT taken from LQCD [95].

entire radial region. This indicates that the out-of-equilibrium components of the heavy-quark

distribution remain large throughout the evolution of the plasma. However, the magnitude of

the diffusion current strongly depends on the spatial diffusion coefficient and its correspondent

relaxation time. LQCD computations [95] favor a fast hydrodynamization of charm quarks and,

thus, a reduction of the out-of-equilibrium correction. Around freeze-out we decompose the

single-particle distribution functions, fi = fi,eq + δfi, where the equilibrium part fi,eq is given

by the ideal gas distribution and δfi represents the out-of-equilibrium correction. In general,

the δfi correction receives a contribution from all the dissipative stresses Π, πµν and νµ, such

that δfi = δfi,bulk + δfi,shear + δfi,diffusion . In our case, the open-charm hadrons distribution

function includes both light and heavy components. To properly describe it, one should derive

its expression in a multi-species fluid setup. As for now, we neglect out-of-equilibrium corrections

to the fluid variables at the freeze-out surface. In the future, we will address the inclusion of

non-linear terms in the evolution equation for the dissipation current and the derivation of a

more consistent expression of the total distribution function.
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6.5 Integrated yields

The charmed-hadron production is assumed to occur on a freeze-out hypersurface at a constant

temperature. This chosen temperature is Tfo = 156.5 MeV [105, 108]. The freeze-out hyper-

surface in the plane of Bjorken time τ and radius r is parametrized by a parameter γ ∈ (0, 1).

According to the Cooper-Frye prescription, a sudden decoupling is assumed at the freeze-out

temperature, and the thermal momentum distribution of the particles is computed according to

dNhc

pTdϕdpTdy
=

ghc

(2π)3

∫
Σfo

dγdϕdyτ(γ)r(γ)× (6.53)

eqα
[
∂r

∂γ
mTK1

(
mT

ur

T

)
I0

(
pT
ur

T

)
− ∂τ

∂γ
K0

(
mT

ur

T

)
I1

(
pT
ur

T

)]
,

where ghc
accounts for the degeneracy of the produced charmed hadron and q accounts for the

charm content of the hadron. The total integrated yield dNhc
/dy per unit rapidity for charmed

and anti-charmed hadrons is measured by integrating Eq. (6.53). The feed-down from resonance

decays is calculated using the FastReso package [42]. The list of resonances is taken from the

PDG [155]. In Fig. 6.4, the comparison between the obtained integrated yields and experimental

measurements [64–67] is shown for the 0-10% centrality interval. The yields and the pT spectra

correspond to the sum of particle and anti-particle divided by two, as reported by experiments.

The pT integration range is from 0 to 10 GeV/c. These results are computed for Ds = 0 since

the integrated yield should not depend on the spatial diffusion coefficient. However, since out-

of-equilibrium corrections to the single-particle distribution function at freeze-out are neglected,

there can be a non-physical dependence of the yields on Ds. While the relative abundance of

each charmed-hadron species depends mainly on the mass of the hadron, the absolute value

of the integrated yields strongly depends on the EoS for the charm density as a function of T

and α. The HRGc as EoS is the most suitable choice to estimate the thermal production of

the hadrons and resonances included in the HRGc. The role played by the resonance decays

is then to reshuffle the relative abundance of the hadrons while keeping the total number of

charm quarks fixed. The agreement between the model and the measurements is quantified in

the lower panel of Fig. 6.4. We observed that the mesons are compatible with the experimental

uncertainties, computed as the sum in quadrature of the statistical and systematic uncertainties.

A deviation of 2.4σ is observed for the Λ+
c baryons. This deviation might be caused by missing

higher resonance states in the PDG [106–108]. Due to the resonances decay, the yield of the D0

increases by a factor 4.3, while the one of the Λ+
c of a factor 5. Another factor 2.3 would be

needed to reproduce the experimentally measured yield. Estimates for the yields of the Ξ+
c and

Ω0
c , whose experimental measurements are not yet available, are provided. Most likely, these

values will underestimate the actual yields due to the lack of knowledge of higher resonance

states. In other phenomenological models, the charmed-baryon enhancement is attributed to a
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Figure 6.4: Charmed-hadron integrated yields with and without feed-down contributions
from resonance decays and comparison with experimental data from the ALICE collabo-
ration.

recombination process between the heavy quark and light thermal partons [109, 110, 156, 157].

6.6 Momentum distributions

In Fig. 6.5, the pT-differential spectra for the same hadron species are reported and compared

with the experimental measurements [64–67]. A ratio plot with the data to model comparison can

be found in Appendix 6.6.1. The bands correspond to a spread of the input value of the spatial

diffusion coefficient Ds going from a non-diffusive case (Ds = 0) to a temperature-dependent

2πDsT [95]. The fluid-dynamic description seems to capture the physics of D mesons up to

pT ∼ 4–5 GeV/c. This implies that, even if the charm does not move collectively with the rest of

the fluid in the early stage of the evolution, it relaxes to the same radial flow of the QGP before

the freeze-out occurs. As observed for the integrated yield, the Λ+
c calculation underestimates the

experimental measurement. The J/ψ pT distribution describes the experimental measurements

for pT < 3 GeV/c, while it overpredicts the yield for higher pT. This discrepancy for pT >

3 GeV/c might be attributed to the dominant contribution from primordial J/ψ, which is not

accounted for in our model since it is not expected to reach thermal equilibrium [158–160],

but is mainly sensitive to path-length-dependent effects, like survival probability and energy

loss. It is also important to note that the experimental measurements consist of J/ψ directly

produced in the collisions plus the contribution from beauty hadron decays. Including the out-
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c , and J/ψ are
shown in comparison with experimental measurements from the ALICE Collaboration [64–
67]. Predictions for Ξ0
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c baryon states, which have not been measured yet, are also

shown.

of-equilibrium corrections in the model at the freeze-out surface will influence the shape of

the momentum distributions. They would modify the spectra at intermediate/high pT. When

adequately included, we do not expect such a strong dependence on Ds in the spectra but rather

only a tilt in the momentum distribution. A further remark regards the dependence of the final

momentum distribution on the initial conditions for the charm fields. In particular, a broader

initial distribution for the charm density results in a larger average pT at freeze-out. A more

thorough study of the charm initial conditions will improve the description of the transverse

momentum distribution of the charm hadrons, without of course impacting the results for the

integrated yields.

6.6.1 Details on the results of charm-hadron momentum
distributions

In Fig. 6.6 the results for the ratio between the experimental measurements of charm-hadron

momentum distributions and the results from our fluid-dynamic model are shown. The bands

correspond to a spread of the input value of the spatial diffusion coefficient Ds going from a non-
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Figure 6.6: Data-to-model ratios for D0, D+, D∗+, D+
s , Λ+

c , and J/ψ momentum distribu-
tions. Experimental measurements are taken from [64–67].

diffusive case (Ds = 0) to a temperature-dependent 2πDsT obtained by linearly fitting results

from LQCD calculations [95]. The fluid-dynamic descriptions captures the behavior to D0 and

J/ψ up to pT ∼ 2 GeV. At intermediate transverse momentum, our calculation for the D mesons

deviates of 25% from the experimental measurements for the Ds = 0 case. A larger deviation is

hereby observed for J/ψ attributed to the dominant contribution from primordial J/ψ, which is

not accounted for in our model since it is not expected to reach thermal equilibrium [158–160],

but is mainly sensitive to path-length-dependent effects, like survival probability and energy loss.

As observed for the integrated yield, the Λ+
c calculation underestimates the experimental mea-

surement. This deviation might be caused by missing higher resonance states in the PDG [106–

108]. At pT larger than 5 GeV, the fluid-dynamic model seems no longer applicable since it’s not

able to capture the behavior of the particle spectra.

A further remark regards the dependence of the final momentum distribution on the initial

conditions for the charm fields. In particular, a broader initial distribution for the charm density

results in a larger average pT at freeze-out. A more thorough study of the charm initial conditions

will improve the description of the transverse momentum distribution of the charm hadrons,

without of course impacting the results for the integrated yields.



Chapter 7

Conclusions and outlook

A volte uno si crede incompleto ed è
soltanto giovane.
– Sometimes you feel incomplete but
you are just young.

Italo Calvino, Il visconte dimezzato

7.1 Summary of achievements

In this work, we developed a new way of studying heavy-quark dynamics in the QGP based on

fluid dynamics. The steps leading to formulating such an approach can be summarized in the

following key points:

• Experimental evidence of charm-quark equilibration. The experimental measure-

ments of v2 of open- and hidden-charm hadrons at the LHC raised the question regarding

the collective behavior of charm quarks in the QGP, which we decided to tackle with fluid

dynamics (see Chapter 4).

• Preliminary assessment of hydrodynamization. A fundamental motivation to imple-

ment the fluid-dynamic approach derived from the theoretical formulation of heavy-quark

relaxation times as a function of the spatial diffusion coefficient. With the current knowl-

edge of Ds, we have been able to assess the applicability of a hydrodynamic approach for

charm quarks and, at later evolution times, also for beauty quarks in the QGP produced

at LHC energies.

• Support from first-principle QCD calculations. The LQCD results on the heavy-

quark spatial diffusion coefficient highlighted how the hydrodynamization of charm quarks

in the medium could happen on short timescales compared with the lifetime of the QGP
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produced in ultrarelativistic heavy-ion collisions. These results became available shortly

after our first inquiries into this matter and served as a boost in the motivation and

reliability of our approach.

• Fluid-dynamic code. We developed a fluid-dynamic code to solve the equation of motion

of the heavy-quark density and diffusion current coupled with the evolution of QGP fluid

fields. The 1+1 dimensional implementation allows us, at present, to compute integrated

yields and transverse momentum distribution of charm hadrons per unit rapidity.

Finally, we would like to remark on the two main concepts that drive this research work:

• Access to QCD properties. Our approach is based on the idea of kinetic equilibration of

heavy quarks within the expanding medium. It is therefore sensitive to transport properties

that correspond to first-principle quantities in QCD, computed under the assumption of

thermal equilibrium. In particular, our model will be able to provide constraints on the

spatial diffusion coefficient Ds, which quantifies the interaction of the heavy quark with

the QGP in the soft-momentum regime.

• Universality of the fluid-dynamic approach. In our approach, we extend the fluid-

dynamic description, usually limited to the light flavors that compose the QGP medium,

to heavy degrees of freedom. The idea of a universal effective description behind light

and heavy flavors is fascinating by itself and therefore worth investigating. It asks the

fundamental question of whether the behavior of such a complex system, that spans over

three orders of magnitude in mass scales (from MeV to GeV), can be described by a few

macroscopic thermodynamic quantities defined in local kinetic equilibrium.

7.2 Outlook

The approach we have developed in this work represents the first step in a new direction in the

treatment of heavy quarks in heavy-ion collisions. Heavy quarks have always been considered

pure hard probes of the QGP. Taking into account the soft aspect of their dynamics is a way of

gaining new information on the underlying field theory in many-body systems. The success that

our model has shown so far serves as a strong motivation to continue its development. Its present

“incompleteness” stems from it being a young, new approach. To make it more competitive, able

to stand out and capture the rich phenomenology of heavy-ion collisions, several improvements

will be pursued. Our transparent and flexible implementation allows for straightforward exten-

sions of the approach. In the following, some examples of such extensions, whose implementation

is in progress or planned, are presented.
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7.2.1 Out-of-equilibrium corrections

A first important direction of improvement is represented by a consistent treatment of out-of-

equilibrium corrections to the heavy-quark distribution function.

As mentioned in Chapter 6, a finite contribution from the heavy-quark diffusion current νµ

to the initial state has not been considered so far. No model at present provides a first-principle

description for such a contribution. Nevertheless, one could study how the heavy-quark current

behaves if the Navier-Stokes limit for νµ is imposed as an initial condition. As an alternative, one

could study the effect of a free-streaming phase between τ = 0 and τ = τ0 on the heavy-quark

current1. These would be two ways of effectively implementing an out-of-kinetic equilibrium

description for the heavy-quark distribution from the very beginning of the collision evolution,

making the comparison with standard transport models in the literature more direct.

Out-of-equilibrium corrections must also be consistently considered on the freeze-out hyper-

surface to compute charm-hadron momentum distributions and integrated yields. As stressed

in Chapter 6, the inclusion of diffusion leads to a non-physical increase in the integrated yields

if the correct counter-contribution from the diffusion current is neglected. There are two ways

that one could exploit to obtain them:

• Multi-fluid description. One possibility is to rewrite the fluid-dynamic description

assuming the presence of multiple species contributing to the diffusion current. Such

an approach was explored in a series of theoretical papers in the framework of kinetic

theory (see Refs. [161, 162]). This approach leads to an unambiguous description of the

phase space distribution function of hadronic species at freeze-out that are composed of

both light and heavy degrees of freedom (such as all open-charm states). It also includes

naturally out-of-equilibrium contributions from the diffusion current, shear-stress tensor,

and bulk viscous pressure. It requires, however, a redefinition of all transport coefficients

and relaxation times.

• Maximum entropy approach. Recently, a maximum-entropy approach has been pro-

posed in Ref. [163] to compute the time evolution of the single-particle distribution function

with minimal assumptions. We plan to extend this approach to include the presence of

a diffusive heavy-quark current and apply it on the freeze-out hypersurface to compute

heavy-flavour particle spectra. The idea is to define a Boltzmann entropy functional,

S[f ] =

∫
dPf(x, p)(log f(x, p)− 1) , (7.1)

and then minimizing it with respect to the distribution function f . The distribution

function is required to satisfy a set of constraints via the method of Lagrange multipliers.
1A free-streaming description leads, when applied to the energy-momentum tensor, to finite values for

the fluid 4-velocity and the dissipative fields, even if they are initially set to zero [32, 33].
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The distribution function will eventually depend on the particle’s 4-momentum and on the

set of Lagrange multipliers, which in turn depend on spacetime. Specifically, we constrain

the first moment of the distribution function to match at each point in spacetime the

heavy-quark current Nµ,

Nµ =

∫
dPpµf(x, p) . (7.2)

Since the heavy-quark current has in principle four independent components, four Lagrange

multipliers are needed. They can be encoded for convenience in a 4-vector λµ. The

minimization of the entropy functional in this case reads

dS̃[f ]

df
=
dS[f ]

df
− d

df

[
λµ

(
Nµ −

∫
dPpµf

)]
= 0 , (7.3)

where S̃[f ] indicates the constrained version of the entropy functional S[f ]. The four

Lagrange parameters are reduced to two when exploiting the symmetries of the system as

in our work, such that the fluid equations are effectively solved in 1+1 dimensions. By

solving Eq. (7.3), one finds for f ,

f ∝ exp(−λµkµ) . (7.4)

The Lagrange parameters can be determined by solving the equations encoded in Eq. (7.2).

The LHS of Eq. (7.2) is provided by the fluid-dynamic code by solving the hydrodynamic

equations of motion as outlined in Chapter 6.

7.2.2 Heavy-quark equation of state

In Chapter 6, we faced the necessity of implementing an EoS to describe the heavy-quark density

as a function of temperature and heavy-quark chemical potential. This is a fundamental ingredi-

ent in order to have a closed system of equations in fluid dynamics. Such an EoS has never been

computed by first principles in QCD. Therefore, our solution was to exploit the hadron-resonance

gas description of all known charm states even at high temperatures, where it might not be jus-

tified. The main reason why such a quantity has never been computed by the LQCD community

is that the sum of heavy quark-antiquark pairs is not a conserved current in QCD. However, such

a need motivated the theory community to compute this quantity. Even if there are no results

available yet, the interest in this calculation has been triggered both in the LQCD community

and in the area of functional approaches to QCD transport properties. We are looking forward

to seeing such results and assessing how they influence our description of charm hadrons.
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7.2.3 Flow coefficients

To finally answer the question regarding charm thermalization in the medium, it will be necessary

to go beyond charm hadron distributions and integrated yields. A key observable is represented

by anisotropic flow coefficients of open- and hidden-charm states. We are currently working on

their implementation in our code. This requires giving up the azimuthal symmetry of the system

and effectively solving 2+1-dimensional equations. In our code, the implementation profits of the

background-fluctuation splitting approach already developed for the fluid fields in the absence of

additional conserved currents outlined in Ref. [36]. In the minimal case, entropy density fluctu-

ations with respect to a radially symmetric background in the initial state (that imply, through

the use of the EoS, fluctuations in the initial temperature), will also determine fluctuations in the

heavy-quark density profile. In a more sophisticated approach, also azimuthal perturbations in

the initial heavy-quark chemical potential can be considered to mimic fluctuations in the initial

hard production.

7.2.4 Fluid dynamics for beauty quarks

In Chapter 4, we mentioned the relevance of beauty quarks as golden probes of the QGP. Their

large mass allows in fact for robust control of theoretical calculations regarding their in-medium

dynamics and their associated transport coefficients. Furthermore, in Chapter 5 we have shown

how the applicability of the hydrodynamic picture for their diffusion in the QGP is more compli-

cated than for charm quarks. However, by employing the most recent LQCD results, we observed

that a fluid-dynamic approach might be applicable in the late stages of the fireball evolution.

To give a definitive answer to the question of (partial) thermalization of beauty quarks in

the hot QCD medium, higher precision experimental measurements of beauty hadrons in the low

transverse momentum kinematic region are needed. Such measurements would provide a key set

of new and independent constraints on heavy-flavor transport and hadronization, in particular

on the diffusion coefficient Ds and its temperature dependence. The ongoing experimental effort

during Run 3 and Run 4 at the LHC is expected to deliver such measurements in the next

years. In the future, the major upgrade of the ALICE detector (ALICE3 [164]) planned for

Run 5, currently scheduled to start in 2035, would allow to perform measurements of both the

production and anisotropy of beauty mesons and baryons down to pT = 0 with unprecedented

precision.

The framework developed in this Thesis can be straightforwardly extended to address the

dynamics of beauty quarks in the plasma. The needed modifications concern

• adding the equation for the current associated with the bb number conservation to the

system of equations. To ensure causal behavior, analogously as for charm quarks, an

equation of motion for the beauty-quark diffusion current must be included. Its evolution
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is regulated by the beauty chemical potential-over-temperature ratio, the spatial diffusion

coefficient Ds, and the relaxation time – calculated for the beauty-quark mass (see Chapter

5);

• employing perturbative calculations (FONLL) for the beauty-production cross section per

unit rapidity to get initial conditions for the beauty density. Employing the FONLL result

of dσbb/dy = 0.0296 mb at midrapidity for Mb = 4.8 GeV [78], and ⟨Ncoll⟩ = 1653 for

the 0-10% most central Pb–Pb collisions at
√
sNN = 5.02 TeV [31], the total number of bb

pairs per unit rapidity is expected to be

dN bb

dy
= ⟨Ncoll⟩

1

σin
dσQQ

dy
∼ 0.7 . (7.5)

• modifying the heavy-quark HRG EoS to include all measured beauty hadrons and res-

onance states (HRGb). The accuracy of this equation is of course influenced by the

experimental knowledge of the masses and quantum numbers of such states, but most

importantly is affected by the fact that there might be contributing states that have not

yet been measured.

As presented so far, no notion of “partial” thermalization, such as the one exploited by the

SHMb, has been introduced. In a full-thermalization scenario, the formation of beauty hadrons

from the QGP would occur only at Tpc, according to the hadrons’ statistical weights. In the

case of partial thermalization, some of the initially produced bb pairs might diffuse so fast that

they would escape the QGP medium and produce a pair of open-beauty hadrons via string

fragmentation in the vacuum, without having the chance of hadronizing into a bb bound state.

One would therefore observe an effective reweighing of the hadron states produced at freeze-out.

In particular, as observed within the SHMb, the yields of bottomonia states seem to be reduced

with respect to the thermal case. As a counter effect, one would expect the yields of open-beauty

hadrons to be enhanced.

A way to effectively introduce the concept of partial thermalization in our approach could

be to introduce a non-thermal weight W < 1 in the HRGb as a phenomenological parameter,

n(T, α) =
T

2π2

∑
i∈open b

qiM
2
i e

qiαK2(Mi/T ) +W
T

2π2

∑
i∈hidden b

qiM
2
i e

qiαK2(Mi/T ) . (7.6)

The total number of beauty quarks remains the same and it is fixed by the initial hard production.

The fugacity, however, changes to accommodate for the reweighing. The parameter W can then

be fixed by comparing our model results with experimental measurements and can give a measure

of the percentage of thermalized beauty quarks in the medium. In contrast to the SHMb, our

model allows us to see how the modified fugacity evolves in spacetime throughout the collision.
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Figure 7.1: Integrated yields of predicted multi-charm states Ξ+
cc, Ξ++

cc , Ω++
cc and Ω++

ccc in
Pb–Pb collisions at

√
sNN = 5.02 TeV in the 0− 10% centrality class.

7.2.5 Multi-charm baryons

Measurements of multi-charm hadrons, such as the Ξ+
cc, Ξ++

cc , Ω++
cc and Ω++

ccc and exotic states

such as the newly-discovered T+
cc (ccud), would provide a direct window on hadron formation from

deconfined QGP. In fact, the yields of multi-charm baryons relative to the number of produced

charm quarks are predicted to be significantly enhanced in AA relative to pp collisions. The

observation and precise quantification of such enhancements would represent a decisive step

forward in the study of the properties of deconfined QCD matter.

In Fig. 7.1 we show our predictions for the integrated yields of Ξ+
cc, Ξ++

cc , Ω++
cc and Ω++

ccc

in Pb–Pb collisions at
√
sNN = 5.02 TeV in the 0 − 10% centrality class. There is a clear

ordering between the 2-charm and 3-charm states stemming from the hadron total mass; the

presence of an extra charm quark, in fact, suppresses the integrated yield of Ω++
ccc of a factor

exp(−Mc/TFO) ∼ 10−4 at a freeze-out temperature of 156.5 MeV with respect to the doubly-

charmed hadrons. This difference is however partially compensated by the fugacity exp(qiα),

which scales with the number qi of charm charge contained in the hadron i. In Fig. 7.2 we show

the predictions for the transverse-momentum distributions of Ξ+
cc, Ξ++

cc , Ω++
cc and Ω++

ccc in Pb–Pb

collisions at
√
sNN = 5.02 TeV in the 0−10% centrality class. The spread in the curves is given

by the impact of the spatial diffusion coefficient, as explained in Chapter 6. The comparison of

the measured yields to these predictions would provide a very sensitive measure of the degree of

equilibration of charm quarks in the medium. Such measurements are expected to be achieved

at the LHC, after the major upgrade of the ALICE detector [164].

7.2.6 Limits of thermalization

In this work, we have focused on studying charm hydrodynamization under experimental condi-

tions realized in central Pb–Pb collisions at
√
sNN = 5.02 TeV at the LHC. Hence, the question
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Figure 7.3: Transverse-momentum distributions of D0 (left panel) and J/ψ (right panel)
for Au–Au collisions at

√
sNN = 200 GeV in the 0 − 10% and 0 − 20% centrality

class, respectively. Our model results are shown in comparison to experimental data from
Refs. [71, 72].

of whether hydrodynamic conditions for charm quarks are realized when moving to more periph-

eral collisions, lower collision energies, or smaller colliding systems arises naturally. Furthermore,

LHC accelerator physicists and the heavy-ion community are currently discussing which ions to

collide in Run 5 and Run 6. Smaller ions, such as Xe, In, Kr, Ca, Ar, O, are being considered.

Thanks to the unique features of our framework, we will be able to provide quantitative predic-

tions of heavy-flavor observables and their dependence on collision energy and system size.
As a first step in this direction, we have recently started to explore charm thermalization in

Au–Au collisions at
√
sNN = 200 GeV. Elliptic flow measurements from the STAR collaboration

of D0 and J/ψ in Au–Au collisions at
√
sNN = 200 GeV at RHIC [69, 165] suggest that charm

quarks might reach kinetic equilibration with the medium. The main differences with respect to
LHC conditions consist of a lower temperature and energy density – due to the lower collision
energy – and a smaller amount of produced cc pairs – due to the smaller inelastic cross section
for charm quark production and a lower number of binary nucleon-nucleon collisions. With
an analog procedure to the one outlined in Chapter 6, we applied our fluid-dynamic model to
compute integrated yields and transverse momentum distributions of charm hadrons and compare
them with experimental measurements. In Fig. 7.3, we report the results for D0 and J/ψ, in the
0− 10% and 0− 20% centrality class, respectively. Our model results are shown in comparison
to experimental data from Refs. [71, 72]. The agreement with the experimental measurements
is remarkable, indicating that a fluid-dynamic description for charm quarks can be successfully
applied also at RHIC top-energies. In the future, we will investigate whether this approach still
holds at lower energies, down to collision energies per nucleon pair of the order of tens of GeV,
profiting from the experimental measurements at the Beam Energy Scan (BES). Under these
experimental conditions, a validation of the hydrodynamic approach will have to be performed
also for the light sector, including the presence of a conserved baryon current and an EoS at finite
baryon chemical potential. In this context, however, longitudinal boost invariance is expected
to be no longer an effective symmetry of the produced system2 [170]. Therefore, an extension of

2The breakdown of Bjorken longitudinal-boost symmetry has already been experimentally observed
through rapidity-dependent observables at RHIC [166] and the LHC [167–169]. This effect is expected
to be more and more relevant at lower energies such as the ones reached with the BES.
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our code to a 3D+1 setup will be pursued to explore the rapidity dependence of anisotropic flow
coefficients.



Appendix A

Analytic solutions to fluid-dynamic
equations

A.1 Gubser flow

Gubser flow [61] represents a generalization of Bjorken flow allowing for an expansion in the

transverse direction. It is invariant under longitudinal Lorentz boosts along the beam axis, and

is symmetric under SO(3) transformations in a de-Sitter space obtained from a Weyl rescaling

of the metric tensor,

gµν −→ ĝµν ≡Ω−2gµν . (A.1)

The most suitable choice of coordinates is given by

τ =
√
t2 − z2 , (A.2)

η =
1

2
log

(
t+ z

t− z

)
, (A.3)

x⊥ =
√
x2 + y2 , (A.4)

ϕ = arctan
y

x
. (A.5)

Starting from the line element in Minkowski space,

ds2 = −dτ2 + dx2⊥ + x2⊥dϕ
2 + τ2dη2 , (A.6)

and performing the following Weyl rescaling,

dŝ2 =
ds2

τ2
=

−dτ2 + dx2⊥ + x2⊥dϕ
2

τ2
+ dη2 (A.7)

one obtains the metric of dS3×R, where the one-dimensional R is given by the rapidity direction.

A change of coordinate,

sinh ρ = −1− q2τ2 + q2x2⊥
2qτ

, tan θ =
2qx⊥

1 + q2τ2 − q2x2⊥
, (A.8)
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where q is a parameter with the dimensions of an inverse length, leads to

dŝ2 = −dρ2 + cosh2 ρ (dθ2 + sin2 θdϕ2) + dη2 . (A.9)

In this new system of coordinates (ρ, θ, ϕ, η) a new symmetry becomes manifest: the symmetry

under rotations of the sphere parametrized by (θ, ϕ). This symmetry, that was a conformal

symmetry in R3,1, is an isometry in dS3 × R. In this coordinate system one writes the four-

velocity of a fluid at rest:

ûρ = −1 ûθ = ûη = ûϕ = 0 (A.10)

It corresponds to a static flow in the new space. When going back to Minkowski space and

performing the opportune Weyl rescaling,

uµ = τ
∂x̂ν

∂xµ
ûν , (A.11)

where xµ = (τ, x⊥, ϕ, η) and x̂µ = (ρ, θ, ϕ, η), one gets,

uτ = − cosh k , (A.12)

u⊥ = sinh k , (A.13)

uη = uϕ = 0 , (A.14)

where we introduced

k(τ, x⊥) ≡ atanh

[
2q2τx⊥

1 + q2τ2 + q2x2⊥

]
. (A.15)

In order to find the evolution of the energy density one starts again by working in dS3×R. In this

coordinate system the energy density ϵ̂ must depend only on the time-coordinate ρ. Moreover –

given the equation of state ϵ̂ ∝ T̂ 4 – the entropy density ŝ must be proportional to ϵ̂3/4. At a

fixed time ρ the total entropy per unit rapidity is given by ŝ(4π cosh2 ρ), obtained by integrating

over the volume of the sphere parametrized by (θ, ϕ). The total entropy in the inviscid case must

be constant, thus it must not vary with ρ,

d[ŝ(4π cosh2 ρ)]

dρ
=
d[ϵ̂3/4(4π cosh2 ρ)]

dρ
= 0 (A.16)

This leads to the solution,

ϵ̂ = ϵ̂0(cosh ρ)
−8/3 (A.17)

where ϵ̂0 is an integration constant. By employing the transformation law 1.

ϵ =
ϵ̂

τ4
(A.18)

1Lengths are scaled by τ in R3,1 with respect to dS3 ×R, so volumes are scaled by τ3 and energies
by τ−1. Energy densities are scaled then by τ−4
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one finds the expression,

ϵ =
ϵ̂0

τ4/3
(2q)8/3

[1 + 2q2(τ2 + x2⊥) + q4(τ2 − x2⊥)
2]4/3

. (A.19)

Using the equation of state, the temperature reads:

T =
T̂0

τ1/3
(2q)2/3

[1 + 2q2(τ2 + x2⊥) + q4(τ2 − x2⊥)
2]1/3

(A.20)

where one assumes

ϵ = gT 4, (A.21)

with g accounting for the relevant degrees of freedom.
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Appendix B

Details on fluid-dynamic transport
coefficients

B.1 Coefficients of the linear expansion of the
off-equilibrium deviation

In this section, we determine the coefficients of the linear expansion of the deviation from equi-

librium δf
(r)
k in terms of its moments, expressed in Eq. (5.22). Each coefficient can be computed

by integrating the corresponding moment of the deviation δf
(r)
k . The orthogonality relations

between moments given by [45],∫
dKF (k0)k⟨µ1...kµn⟩k⟨ν1...kνm⟩ =

δmn m!∆µ1...µn
ν1...νm

(2m+ 1)!!

∫
dKF (k0)(∆αβk

αkβ)m , (B.1)

are employed. The expansion coefficient for the heavy-quark bulk pressure is obtained from the

zeroth moment of the deviation as

− 3

M2
Π(r) =

∫
dKδf

(r)
k =

= − 3

M2

∫
dKa

(r)
0 f

(r)
0 Π(r)

→ a
(r)
0 =

1

I
(r)
00

.

(B.2)

The coefficient for the heavy-quark diffusion current is computed by taking the first moment of

the deviation,

ν
⟨σ⟩
(r) =

∫
dKk⟨σ⟩δf (r)k =

=

∫
dKf

(r)
0 a

(r)
1 k⟨σ⟩k⟨µ⟩ν

µ
(r) =

= −a
(r)
1

3
δσµν

µ
(r)

∫
dKf

(r)
0 k2

→ a
(r)
1 = − 1

P(r)
.

(B.3)
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The coefficient for the heavy-quark shear stress term is obtained by taking the second moment

of the deviation,

πµσ(r) =

∫
dKk⟨µkσ⟩δf (r)k =

=

∫
dKk⟨µkσ⟩k⟨αkβ⟩a

(r)
2 f

(r)
0 π

(r)
αβ

=
2

15

∫
dKa

(r)
2 f

(r)
0 k4πµσ(r)

→ a
(r)
2 =

1

2I
(r)
42

,

(B.4)

B.2 Transport coefficients

In this section, we report the explicit calculation for the heavy-quark relaxation time and

diffusion coefficient leading to the result in Eq. (5.31). The starting point is the Fokker-Planck

equation for the heavy (anti)quark distributions (charm, anti-charm, bottom, anti-bottom)

kµ∂µf
(r)
k = k0

∂

∂ki

{
Akif

(r)
k + δijD

∂

∂kj
f
(r)
k

}
, (B.5)

where we consider the case of a isotropic momentum broadening, i.e. D=B0=B1.

The zeroth moment of the Fokker-Planck equation gives the continuity equation in the LRF

of the fluid,

∂tn(r) + ∂iν
i
(r) = 0 −→ ∂tn+ + ∂iν

i
+ = 0 . (B.6)

Notice that the RHS of Eq. (B.5) provides a vanishing contribution when taking its zeroth

moment. This can be verified by doing the integration by parts.

The first moment of the Fokker-Planck equation gives

∂t

∫
dKk0k

lf
(r)
k + ∂i

∫
dKklkif

(r)
k =

∫
dKk0k

l ∂

∂ki

(
Akif

(r)
k

)
(B.7)

As we will show below, this will lead to the equation of motion for the diffusion current in the LRF

of the fluid. Notice that the term proportional to the momentum-broadening coefficient vanishes

when taking the first moment of the Fokker-Planck equation. In fact, since it is proportional

to a second-order derivative it vanishes after integration by parts. Let us now analyze all the

terms involved in Eq. (B.7) separately.

1st term. Here we compute the term containing the time derivative of the distribution

function,

∂t

∫
dKk0k

lf
(r)
k . (B.8)

Due to the symmetry properties of the distribution function at equilibrium (it depends only

on the particle energy in the LRF of the fluid), the first moment of f (r)0k vanishes. The only
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contribution comes from the off-equilibrium deviation δf
(r)
k , which we expand in terms of the

diffusion current,

∂t

∫
dKk0k

lf
(r)
0

(
− 1

P(r)
k⟨µ⟩ν

⟨µ⟩
)
. (B.9)

We then employ the orthogonality relation in Eq. (B.1)

∂t

∫
dK

k2

3
k0f

(r)
0

(
1

P(r)

)
νl , (B.10)

and, rewriting in terms of the thermodynamic integrals introduced in the text, we get

I
(r)
31

P(r)
∂tν

l
(r) −→ I31

P0
∂tν

l
+ , (B.11)

where

I
(r)
31 =

1

3
⟨k0k2⟩0,r . (B.12)

Notice that I31 ∼MP0 in the non-relativistic limit, reducing the computed term to M∂tν
l
+.

2nd term. Here we compute the term containing the spatial derivative of the distribution

function,

∂i

∫
dKklkif

(r)
k . (B.13)

We use the decomposition for the distribution function to get

∂i δ
il

∫
dK

k2

3
f
(r)
0 + ∂i

∫
dKkiklδf

(r)
k . (B.14)

Exploiting the orthogonality conditions and the definition of the pressure, we get

δil∂iP(r) +O(δil∂iΠ) +O(∂iπ
il)

= Tn(r)δ
il∂i

(µr
T

)
+ corr

(B.15)

where in the last passage we used ∂iP0 = Tn0∂i(µr/T ) and the neglected terms, involving

derivatives of the bulk pressure and of the shear stress, are at least of second order in the

gradients.

3rd term. Here we compute the RHS of the equation. Notice that the term containing the

momentum-diffusion coefficient doesn’t contribute. In fact, it is proportional to a second order
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derivative, thus its first moment vanishes. Hence, one has simply to compute∫
dKklk0

∂

∂ki

(
Akif (r)

)
=

∫
d3k

(2π)3
kl
[
∂ki

∂ki

(
Af (r)

)
+
∂Af (r)

∂ki
ki
]

IBP
=

∫
d3k

(2π)3

[
3
(
Af (r)

)
kl − ∂(kikl)

∂ki
Af (r)

]
=

∫
d3k

(2π)3

[
3
(
Af (r)

)
kl − 3

(
Af (r)

)
kl+

−klAf (r)
]
=

∫
d3k

(2π)3

[
−klAf (r)

]
(B.16)

where IBP means we performed the integration by parts. Now we exploit the decomposition of

the distribution function. Due to symmetry constraints, the equilibrium part of the distribution

doesn’t contribute since its first moment is zero. Thus we have∫
dKk0klAf

(r)
0

k⟨µ⟩νµ

P(r)
. (B.17)

By exploiting the orthogonality relation, one obtains

− 1

3P(r)

∫
dKk0k2Af

(r)
0 νl

= − 1

P(r)

1

3

∫
dKk0k2

(
D

k0T

)
f
(r)
0 νl

=
D

�
��P(r)T���������

[
1

3

∫
dKk2f

(r)
0

]
νl

= −D
T
νl(r) ,

(B.18)

where we made use of the Einstein fluctuation-dissipation relation to express A in terms of the

momentum-diffusion coefficient D.

Putting all blocks together. We now combine the three terms to obtain the equation for

the diffusion current:
T

D

I31
P0
∂tν

l
(r) + νl(r) = −T

2

D
n(r)∂

l
(µr
T

)
. (B.19)

This is a relaxation-type equation for the diffusion current νµ(r). Thus, we can identify the

corresponding relaxation time and diffusion coefficient,

τn =
TI31
DP0

, (B.20)

κ(r)n =
T 2

D
n(r) ≡ Dsn(r) . (B.21)

We find that the relation Ds = T 2/D between the spatial (Ds) and momentum (D) diffusion

coefficients, usually found in studying the non-relativistic Brownian motion, arises naturally

and holds also in this case in which the heavy particle undergoes a relativistic dynamics, with
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Ek =
√
k2 +M2. This is a non-trivial result, valid as long as the momentum dependence of D

can be neglected.
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