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Preface

This dissertation is cumulatively written and all publications are centered around
the theme of efficient deep learning for Gram stain classification. The scope of this
dissertation, in particular, encompasses efficient model selection and model opti-
mization for efficient processing. Chapter 3 is a survey paper that provides insights
into efficient model selection while considering the characteristics of medical image
data. In terms of model selection, it fosters transfer learning (TL) and discourages
designing yet another novel model architecture. The majority of studies have uti-
lized pre-trained models as feature extractors, implying that only the last fully con-
nected layers need to be re-trained using custom medical datasets. TL proves to be
more efficient than searching for state-of-the-art neural architectures often requiring
substantial computational resources.

Based on the lessons learned from Chapter 3, Chapter 4 and Chapter 5 apply transfer
learning to pre-trained models. Chapter 4 examined models based on convolutional
neural networks (CNN), while Chapter 5 investigated visual transformer (VT) mod-
els. Both chapters focus on model optimization techniques including pruning and
quantization to ensure efficient data processing during inference time. Chapter 4
delved into the investigation of an optimal TL configuration by unfreezing model
layers gradually. This inquiry unveiled that a higher accuracy was achieved as more
layers were fine-tuned. This result indicates that re-training layers deeper could cap-
ture the characteristics of Gram-stained images. Guided by the insights gained from
Chapter 4, all models were re-trained from scratch and model optimization was fo-
cused in Chapter 5. In this chapter, a broad spectrum of VT models were evaluated
by test accuracy, model size and time efficiency at inference time and compared to
CNN models. A comparative analysis with CNN models was also conducted.

Peer-reviewed publications are listed in this cumulative dissertation. For each publi-
cation, a complete list of type of article, authors, title, journal, journal impact factor
and published date is provided. The first author is indicated in bold and more de-
tailed personal contributions to each publication are documented in Table Preface.
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Chapter 1

Introduction

Gram stain analysis is a laboratory procedure that rapidly classifies microbial
pathogens into two classes: Gram-positive or Gram-negative. The goal of Gram
stain analysis is to reduce the time to treatment required for accurately identifying
the specific bacteria causing e.g. sepsis. In other words, the objective is to min-
imize the time from the onset of symptoms to diagnosis and targeted treatment.
While physicians typically promptly administer antibiotics to sepsis patients, the
rapid identification of the microorganism for personalized treatment remains cru-
cial for determining patient survival. Currently, the course of this procedure relies
on medical specialists, however, this need not be the case if this issue is reframed as
a computer vision problem. This is a field where numerous machine learning (ML)
and deep learning (DL) researchers and practitioners have contributed significantly
during the last decades, similar to the advancements in natural language processing.
A partial automation of the procedure can be achieved by a computer, while the
final decision can be made by physicians.

Studies related to ML and DL in the medical domain have gained prominence as
emerging research topics over the last decade, leading to numerous studies be-
ing published daily. For instance, as of June 20, 2023, the PubMed database in-
dexes 271,735 studies with the following search terms ”(machine learning) OR
(deep learning) OR (artificial intelligence)”. However, despite this influx of studies,
there are still relatively few that have transitioned into routine care implementation.
While research-to-practice gaps are not uncommon across disciplines, we are living
in a time where artificial intelligence (AI) is available for everyone. This initiative
is called “democratization of AI” contributed by numerous researchers and global
tech companies. Its aim is to enable individuals, including those new to machine
learning, to train deep learning models using their own custom datasets, without
relying on highly skilled practitioners or researchers. The democratization of AI
is characterized by publicly accessible data, open-source frameworks, pre-trained
models and free online education.

ImageNet [Den+09a], for example, is the largest publicly available dataset contain-
ing over 14 million images with manually labeled annotations. Fei-Fei Li, a pio-
neer in AI democratization and a Stanford University associate professor, played a
pivotal role in its creation. Other widely used open datasets for pre-training mod-
els are as follows: COCO (common objects in context) [Lin+14], CIFAR (Cana-
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CHAPTER 1 - INTRODUCTION

dian institute for advanced research) [KNH10], MNIST (modified national institute
of standards and technology) [LeC98], UCI machine learning repository [AN07],
Reddit dataset [HYL17], and Wikimedia Commons [VK14]. Several ML frame-
works are publicly available, and the choice of framework is often a matter of
personal preference. TensorFlow [Aba+16b], Keras [Cho+18], PyTorch [Pas+19],
and Theano [Al-+16] are popular choices, while Open Neural Network Exchange
(ONNX) [BLZ+19] is an emerging framework that facilitates model interoperability
across DL frameworks and enables deployment on various hardware and operating
systems. ONNX was initially released in September 2017 by Facebook, now Mi-
crosoft, and numerous hardware vendors and research institutes have contributed to
the interoperable DL ecosystem. For instance, a model created in TensorFlow can
be seamlessly converted and integrated into Keras or PyTorch, and a model trained
in Python can be deployed in a C++ application on embedded hardware. This in-
teroperability is achievable because the semantics of tensor-oriented computations
in current AI frameworks are consistent, allowing for conversion to a standardized
set of operators and syntax [Ahm+21]. In addition to ONNX, Liu et al. [Liu+20b]
proposed Model Management for deep neural networks (MMdnn), a graph-oriented
conversion tool, for nine DL frameworks in 2020, although it did not gain significant
attention from the community and the project became stale. OpenVINO [Gor+19],
a compiler and runtime suite, addresses general problems and fosters interopera-
ble DL ecosystems. In addition, the choice of a framework provides pre-trained
deep learning models. While each framework archive and offer pre-trained mod-
els, Model Zoo 1 offers a comprehensive overview of pre-trained models across
frameworks and tasks, complete with code examples. The ONNX Model Zoo 2

standardizes the pre-trained model format, organizing them alongside codes and re-
search papers. Both resources are user-friendly as they categorize models based on
specific problems and tasks. Lastly, a diverse range of competencies is necessary to
develop a successful deep learning product. From those new to data science to ex-
perienced researchers, individuals can acquire deficient skills through open online
courses, known as massive open online courses (MOOC). Numerous prestigious
universities, educational institutions, and online learning platforms offer a wide ar-
ray of learning materials for unrestricted participation, often free of charge or at a
small subscription fee. Major contributors to the MOOC landscape are Coursera 3,
edX 4, Udemy 5, Udacity 6, Khan Academy 7, and Google Cloud Skill Boost 8

However, despite the bold statement of “AI is available for everyone”, research in-
stitutions such as medical faculties or small technology-driven organizations still
struggle with customizing and deploying deep learning models for their custom
tasks. For instance, You et al. [You+19] reported that training ResNet50 for 90
epochs with ImageNet-1k on an NVIDIA M40 GPU took 14 days. Hence, the de-
1https://modelzoo.co, (Accessed on June 20, 2023).
2https://github.com/onnx/models, (Accessed on June 20, 2023).
3https://www.coursera.org, (Accessed on June 20, 2023).
4https://www.edx.org, (Accessed on June 20, 2023).
5https://www.udemy.org, (Accessed on June 20, 2023).
6https://www.udacity.org, (Accessed on June 20, 2023).
7https://www.khanacademy.org, (Accessed on June 20, 2023).
8https://www.cloudskillsboost.google/journeys, (Accessed on June 20, 2023).
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mocratization of AI remains a hollow statement without adequate infrastructure.
Cloud computing appears to be a convenient and appealing solution because in-
vestment in an expansive infrastructure is not required. However, this comes with
its own set of concerns. Surrendering control over infrastructure could potentially
compromise data privacy. For instance, Cambridge Analytica accessed and col-
lected personally identifiable information from 87 million Facebook users without
consent in 2013 and provided data analysis assistance to United States Senator Ted
Cruz for Trump’s presidential campaigns in 2016 [IH18]. Similarly, in 2021, data
from 700 million LinkedIn users were leaked [Gib+21]. Hence, a strategy on how
to train and deploy AI models with constrained hardware must be considered in ad-
vance. Model training time should be reasonable and accountable without requiring
expensive infrastructure or reliance on cloud computing services as well as model
performance during inference time should be reliable when models are deployed on
limited hardware resources. Otherwise, constrained infrastructure would hinder the
provision of meaningful patient services in routine care.

This thesis, therefore, advocates for the proactive consideration of the computa-
tional costs in advance and cumulatively presents the optimal utilization of efficient
deep learning through an empirical case study on Gram stain classification. Chapter
2 provides the background and nomenclature commonly used in the thesis. Chapter
3 is a literature review on transfer learning (TL) of convolutional neural networks
(CNN) for medical image classification. Despite data scarcity, the potential of TL
has been recognized for its capability to reduce computational costs and time with-
out degrading the predictive power. The content of this chapter is based on the
article [Kim+22b]. Chapter 4 demonstrates the utility of pruning and quantization
in reducing model size and inference time without compromising model quality.
Three CNN models were empirically tuned for Gram stain classification and their
performance was evaluated on two Android smartphones. The content of this chap-
ter is based on the article [Kim+22a]. Chapter 5 presents a comparative analysis
of six visual transformers (VT) models and two CNN models for Gram stain clas-
sification. The comparison was carried out using various configurations, including
different model sizes, training epochs, quantization schemes and datasets with vary-
ing amounts of data. The content of this chapter is based on the article [Kim+23].
Chapter 6 concludes the thesis and provides overarching discussions. Finally, Chap-
ter 7 foresees potential future work related to efficient deep learning in the medical
domain.
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Chapter 2

Background

To understand what deep learning (DL) is, a couple of terminologies such as Artifi-
cial intelligence (AI), and machine learning (ML) need to be clarified together. AI
and ML are terminologies associated with DL and they are interchangeably used
among people. Since they are closely related to one another, often researchers and
experienced practitioners encounter confusion. AI is the overarching umbrella term
covering a wider range of subsets such as ML, DL, robotics, natural language pro-
cessing and more. AI integrates those subsets harmonically in order to simulate
human-like general intelligence in a machine that is able to perceive, process and
respond to event inputs dynamically. Both ML and DL are subsets of AI, and they
are mathematical expressions constructed based on data without involving explicit
programming. DL is a branch of ML and DL models specifically employ numerous
neurons. This chapter introduces the basics of DL in computer vision and common
notations used in the following chapters. Three pillars of computer vision appli-
cations in the medical domain are also introduced with corresponding tasks and
representative DL architectures. Finally, the landscape of efficient deep learning
techniques is explained based on the lifecycle of a deep learning model.

2.1 Deep Learning in Computer Vision

The goal of computer vision is to enable computers to understand images or videos
by analyzing, interpreting and understanding visual data. In other words, it imi-
tates human vision to make a certain decision out of a given visual data. Before
the deep learning era, hand-crafted and manual feature extraction was the essential
step to understanding visual information. Features are high-level information about
images including edge, corner, texture, color, edge and more. With these features,
computers are able to recognize important objects or areas in a given image. How-
ever, hand-crafted methodologies were primitive and not able to compete with the
capability of the human visual system.

Owing to the recent flourishing of deep learning technologies, interest in com-
puter vision has gained momentum across domains such as medical image analysis
[Kim+22b], autonomous vehicles [Jan+20], pose estimation in robotics [Sün+18],
3D image modeling or augmented/virtual reality [Abu+18] and more. In fact, deep
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learning and CNN are not new artifacts from the 21st century. The first definition
of machine learning was introduced in 1959 by Arthur Samuel [Sam59], and the
first publication of neural networks with multi-layer perceptrons was published by
Ivakhnenko and Lapa in 1967 [ILL67]. However, training deep and sophisticated
neural networks requires a large amount of data and computational power and data
were insufficient and computer features were limited in the 50s and 60s. The early
stages of computers were not capable to store data and process them. Remarkable
use cases of deep learning were developed only recently with the emergence of a
large amount of data and big data technology.

Neuron is the core element of deep neural networks and it is inspired by the neurons
in the human brain. The mechanism of a neuron imitates the communication of
brain cells. For instance, an activated presynaptic cell carries a signal to the synapse
and fires postsynaptic cells with neurotransmitters. This sequence of how neurons
are jointly influencing one another is imitated as follows: A single neuron receives
real numbers from the neurons in the previous layer, generates a real number and
then transmits it to the neurons in the next layer. A postsynaptic cell is denoted as
a neuron, neurotransmitters are denoted as real numbers, and likewise, presynaptic
cells are neurons in the previous layer. Figure 2.1 depicts the model of a single
neuron. A linear combiner sums up all input signals multiplied by weight values,
then adds a bias. The output of the linear combiner is fed into a non-linear activation
function. Finally, the output is transmitted to the next neuron in the subsequent layer
as an input.

Figure 2.1: Representation of a single neuron. k is the index of a neuron in a
network. A popular activation function among many others is rectified linear unit
(ReLU) [Xu+15], which outputs 0 or the input value when it is positive meaning
that it suppresses all negative vectors to black color.

Numerous deep-learning architectures were proposed by researchers and practition-
ers to address tailored tasks. The choice of techniques depends on the task and data
type. Two mainstream architectures in computer vision are as follows: CNN and
VT. Figure 2.2 shows an example of a shallow CNN model consisting of input layer,
hidden layers and output layer. Usually, the hidden layer is very deep consisting of
numerous convolutional layers and pooling layers. The layers near the input capture
generic features (e.g. edge or color), whereas the layers near the output detect more
specific features (e.g. eyes in a face) in images. While general neural networks
consist of fully connected layers only, CNN contain at least one convolutional layer
which extracts the local features of a given image
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On the other hand, figure 2.3 is the figure from the original VT [Dos+20] taking
16x16 patches that are equivalent to the encoder block of the transformers model
[Vas+17]. Both CNN and VT are able to process grid-like topology data (i.e. image
data). While CNN process image data by nature, VT need a step to flatten grid-like
data into a sequence of tokens. The core element of VT is the attention mecha-
nism which is relatively new in the field of computer vision. It was initially intro-
duced as an alignment model for natural language processing [BCB14], and then
the original attention-based model was proposed by Vaswani et al. from Google in
2017 [Vas+17]. In 2020, Dosovitskiy from Google utilized the encoder block of the
transformers model for image classification problem [Dos+20]. The self-attention
mechanism for image analysis captures the global relationships of each image patch
to attend to all other patches in a given image. Compared to CNN, it requires larger
data for training and more computational resources because the relevance of every
image patch needs to be computed during model training.

Figure 2.2: An example of convolutional neural networks illustrating two convolu-
tional layers, pooling layers and fully connected layers.

2.2 Computer Vision Applications and Tasks in Health-
care

Computer vision applications refer to a set of tasks or challenges, each targeting
specific objectives through the extraction and analysis of visual data from images
or videos. These tasks are varying levels of granularity and types of visual informa-
tion, ranging from image classification [Kim+22b] to intricate image segmentation
[Min+21]. For instance, image classification provides a generalized understanding
of an entire image, while segmentation operates at the granularity of individual pix-
els, offering more detailed insights. These tasks are not isolated from one another;
for instance, within the domain of object detection [Jia+19], model architectures
encompass components of both classification and regression [Syk93]. In the medi-
cal domain, DL has been widely facilitated to address a variety of computer vision
applications from computer-aided diagnosis to medical report generation.
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Figure 2.3: Vision transformer depicted by [Dos+20] inspired by the transformer
encoder [Vas+17]

2.2.1 Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) [CHS20] is designed to offer support to care-
givers by automating medical image analysis. More precisely, CAD aims to aug-
ment medical doctors’ decision-making processes through comprehensive medi-
cal image analysis. This augmentation manifests in multiple ways: enhancing the
diagnostic capacities of healthcare professionals, expediting decision-making, and
potentially relieving them of more routine or intricate tasks, thus enabling them to
spend more time on patient care. A pivotal exemplar of CAD tasks is medical image
classification, where the objective is to assign a single label to an entire medical im-
age. This task, which constitutes a foundational element of computer vision across
diverse domains, has seen extensive exploration in the medical field. Illustrative in-
stances include classifying Gram-stain images as positive or negative, categorizing
X-ray images as normal or abnormal, segregating MRI images based on specific
clinical conditions and more. The number of neurons in the output layer should
correspond to the count of distinct labels and the softmax function [GBC16a] is the
preferred activation function in the output layer, as it can predict probabilities asso-
ciated with each class label. Alternatively, the sigmoid function (logistic function)
[Nwa+18] can be employed when the desired output needs to be normalized within
the range of 0 to 1.

In contrast to medical image classification, highlighting regions of interest concern-
ing lesions, organs, and anatomical substructures are much more complex tasks,
nonetheless, they can provide more granular information to radiologists or patholo-
gists. Object detection [Jia+19] facilitates bounding boxes to the region of interest
and assigns a class to each box, while segmentation masks image pixels directly on
the given images and provides pixel-level classification. To elucidate further, high-
lighting the location of microorganisms within an entire slide image yields more
intricate insights compared to a mere classification task. The approach for lesion
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segmentation (or detection) remains consistent, with variations only in the anatomi-
cal parts of interest. The case studies span from segmenting malignant lung nodules
to the segmentation of multi-tissue nuclei, brain tumors, retinal vessels, and pancre-
atic structures.

2.2.2 Image Enhancement and Reconstruction

DL made remarkable progress in image enhancement and image reconstruction.
These two applications share a common aim, namely, to enrich input image data
and ultimately improve the model performance of subsequent tasks. Despite this
overarching aim, they diverge in their objectives and functionalities. While image
enhancement directs its focus towards refining specific attributes of a given image
(e.g. such as contrast, sharpness, saturation, and brightness), image reconstruction
aims to restore a missing or corrupted image, which is a task that resonates with
image synthesis endeavors. Notably, the applications of image reconstruction tend
to be more intricate and complex.

An illustrative example lies in medical imaging where radiation is employed. In
such cases, a sophisticated balance between image quality and radiation hazards
must be considered. Consequently, employing image reconstruction techniques can
mitigate the exposure of patients to excessive radiation doses. Additionally, chal-
lenges like data scarcity and imbalanced datasets can be effectively tackled through
image reconstruction, particularly in the form of image synthesis. While generative
adversarial networks (GAN) [Goo+14a] are renowned for generating previously un-
seen images, they can also be tailored and trained for tasks encompassing image
enhancement or reconstruction. Similarly, architectures such as U-Net [RFB15]
and autoencoders [GBC16b] present viable strategies to address these challenges.
However, the selection of an appropriate DL architecture hinges upon the data char-
acteristics inherent to a given application context.

2.2.3 Image Registration

Medical image registration [MF93] is concerned with the alignment of multiple
medical images by determining optimal spatial coordinates between them. Over
the past decade, DL has achieved substantial strides in advancing the field of med-
ical image registration; however, it remains less popular in comparison to other
applications. This subject encompasses a multitude of applications, each offering
distinct insights. Representative examples include the alignment of multi-modal im-
ages (e.g. such as magnetic resonance imaging (MRI) and single-photon emission
computed tomography (SPECT)) belonging to a single patient. Other significant
examples are the alignment of uni-modal images derived from multiple patients or
sequences of images captured from a single patient at distinct time intervals. The
latter, in particular, holds considerable utility for longitudinal studies, enabling the
tracking of disease progression across time.

Regardless of the specific task, the fundamental objective of aligning multiple im-
ages necessitates a minimum of three data points along the x and y coordinates
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within the given images. Given the numerical nature of these data points, the inte-
gration of a linear function in the output layer is requisite for facilitating alignment.
Further contributions of DL to medical image registration are anticipated.

2.2.4 Medical Report Generation

Medical report generation aims to automate the creation of medical reports from
corresponding medical images. In other words, it is a multimodal DL application
that is capable of processing heterogeneous data and striving to establish semantic
associations among them. For the training of such models, diagnostic reports and
medical images extracted from the picture archiving and communication system
(PACS) are leveraged. Medical report generation is a repetitive, time-consuming
and error-prone task that still relies on the medical service providers. However, AI-
powered solutions have the potential to alleviate this burden on clinicians, equipping
them with the means to render swift and precise decisions. The examples encom-
passed by medical report generation span a spectrum from relatively straightforward
tasks to intricate ones. While a simple task could extend to attributing categories
(e.g. shape, margin, and density) to mammographic images, it is capable to generate
professional medical reports that are comparable to those written by trained radiol-
ogists. The reports encompass diagnoses, nuanced descriptions of impressions, and
comprehensive findings. This subject area remains relatively underexplored, yet it
holds considerable promise due to the substantial amount of medical image data
and its corresponding diagnostic reports that are archived in PACS systems.
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Chapter 3

Transfer Learning for Medical Image
Classification

DOI: 10.1186/s12880-022-00793-7

3.1 Introduction

Medical image analysis is a robust subject of research, with millions of studies hav-
ing been published in the last decades. Some recent examples include computer
aided tissue detection in whole slide image (WSI) and the diagnosis of COVID-19
pneumonia from chest images. Traditionally, sophisticated image feature extraction
or discriminant handcrafted features (e.g. histograms of oriented gradients (HOG)
features [DT05] or local binary pattern (LBP) features [HW90]) have dominated the
field of image analysis, but the recent emergence of deep learning (DL) algorithms
has inaugurated a shift towards non-handcrafted engineering, permitting automated
image analysis. In particular, convolutional neural networks (CNN) have become
the workhorse DL algorithm for image analysis. In recent data challenges for med-
ical image analysis, all of the top-ranked teams utilized CNN. For instance, the
top-ten ranked solutions, except one team, had utilized CNN in the CAMELYON17
challenge for automated detection and classification of breast cancer metastases in
whole slide images [Ban+18a]. It has also been demonstrated that the features ex-
tracted from DL surpassed that of the handcrafted methods by Shi et al. [Shi+18].

However, DL algorithms including CNN require—under preferable circum-
stances—a large amount of data for training; hence follows the data scarcity prob-
lem. Particularly, the limited size of medical cohorts and the cost of expert-
annotated data sets are some well-known challenges. Many research endeavors
have tried to overcome this problem with transfer learning (TL) or domain adapta-
tion [WDG19] techniques. These aim to achieve high performance on target tasks
by leveraging knowledge learned from source tasks. A pioneering review paper of
TL was contributed by Pan and Yang [PY10] in 2010, and they classified TL tech-
niques from a labeling aspect, while Weiss et al. [WKW16] summarized TL stud-
ies based on homogeneous and heterogeneous approaches. Most recently in 2020,
Zhuang et al. [Zhu+20] reviewed more than forty representative TL approaches
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from the perspectives of data and models. Unsupervised TL is an emerging subject
and has recently received increasing attention from researchers. Wilson and Cook
[WC20] surveyed a large number of articles on unsupervised deep domain adap-
tation. Most recently, generative adversarial networks (GAN)-based frameworks
[Goo+14b; Zhu+17; Zha+19b] gained momentum, a particularly promising ap-
proach is DANN [Gan+16]. Furthermore, multiple kernel active learning [Wan+19]
and collaborative unsupervised methods [Zha+20] have also been utilized for unsu-
pervised TL.

Some studies conducted a comprehensive review focused primarily on DL in the
medical domain. Litjens et al. [Lit+17] reviewed DL for medical image analy-
sis by summarizing over 300 articles, while Chowdhury et al. [Cho+21] reviewed
the state-of-the-art research on self-supervised learning in medicine. On the other
hand, others surveyed articles focusing on TL with a specific case study such as mi-
croorganism counting [Zha+21], cervical cytopathology [Rah+20a], neuroimaging
biomarkers of Alzheimer’s disease [Aga+21] and magnetic resonance brain imaging
in general [Val+21].

In this paper, we aimed to conduct a survey on TL with pretrained CNN models
for medical image analysis across use cases, data subjects and data modalities. Our
major contributions are as follows:

• (i) An overview of contributions to the various case studies is presented;
• (ii) Actionable recommendations on how to leverage TL for medical image

classification are provided;
• (iii) Publicly available medical datasets are compiled with URL as supple-

mentary material.

The rest of this paper is organized as follows. Section 2 covers the background
knowledge and the most common notations used in the following sections. In Sect.
3, we describe the protocol for the literature selection. In Sect. 4, the results ob-
tained are analyzed and compared. Critical discussions are presented in Sect. 5.
Finally, we end with a conclusion and the lessons learned in Sect. 6. Figure 3.1 is
the main diagram that presents the whole manuscript.

3.2 Background

3.2.1 Transfer Learning

Transfer learning (TL) stems from cognitive research, which uses the idea, that
knowledge is transferred across related tasks to improve performances on a new
task. It is well-known that humans are able to solve similar tasks by leveraging
previous knowledge. The formal definition of TL is defined by Pan and Yang with
notions of domains and tasks. “A domain consists of a feature space X and marginal
probability distribution P(X), where X = {x1, ..., xn} ∈ X . Given a specific do-
main denoted by D = {X ,P(X)}, a task is denoted by T = {Y , f(·)} where Y is a
label space and f(·) is an objective predictive function. A task is learned from the
pair {xi, yi} where xi ∈ X and yi ∈ Y . Given a source domain DS and source task
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Figure 3.1: Visual abstract summarizing the scope of our study.

TS, a target domain DT and learning task TT, transfer learning aims to improve
the learning of the target predictive function fT (·) in DT by using the knowledge in
DS and TS” [PY10].

Analogously, one can learn how to drive a motorbike TT (transferred task) based on
one’s cycling skill TS (source task) where driving two-wheel vehicles is regarded
as the same domain DS = DT. This does not mean that one will not learn how to
drive a motorbike without riding a bike, but it takes less effort to practice driving
the motorbike by adapting one’s cycling skills. Similarly, learning the parameters of
a network from scratch will require larger annotated datasets and a longer training
time to achieve an acceptable performance.

3.2.2 Convolutional Neural Networks using ImageNet

CNNs are a special type of deep learning that processes grid-like topology data such
as image data. Unlike the standard neural network consisting of fully connected
layers only, CNN consists of at least one convolutional layer. Several pretrained
CNN models are publicly accessible online with downloadable parameters. They
were pretrained with millions of natural images on the ImageNet dataset (ImageNet
large scale visual recognition challenge; ILSVRC).

In this paper, CNN models are denoted as backbone models. Table 3.1 summarizes
the five most popular models in chronological order from top to bottom. LeNet
[Lec+98] and AlexNet [KSH12] are the first generations of CNN models devel-
oped in 1998 and 2012 respectively. Both are relatively shallow compared to other
models that are developed recently. After AlexNet won the ImageNet large scale
visual recognition challenge (ILSVRC) in 2012, designing novel networks became
an emerging topic among researchers. VGG [SZ15], also referred to as OxfordNet,
is recognized as the first deep model, while GoogLeNet [Heg+19], also known as
Inception1, set the new state of the art in the ILSVRC 2014. Inception introduced
the novel block concept that employs a set of filters with different sizes, and its deep
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networks were constructed by concatenating the multiple outputs. However, in the
architecture of very deep networks, the parameters of the earlier layers are poorly
updated during training because they are too far from the output layer. This prob-
lem is known as the vanishing gradient problem which was successfully addressed
by ResNet [He+16] by introducing residual blocks with skip connections between
layers.

The number of parameters of one filter is calculated by (a * b * c) + 1, where a * b
is the filter dimension, c is the number of filters in the previous layer and added 1 is
the bias. The total number of parameters is the summation of the parameters of each
filter. In the classifier head, all models use the Softmax function except LeNet-5,
which utilizes the hyperbolic tangent function. The Softmax function fits well with
the classification problem because it can convert feature vectors to the probability
distribution for each class candidate.

Table 3.1: Overview of five backbone models are listed in chronological order.
Model
type

Model
Released

year
Parameters
(FEa only)

Parameters
(all)

Layers
(FE+FCb)

Dataset

Shallow
and linear

LeNet5 1998 1.7 K 60 K 4 (2+2) MNISTc

AlexNet 2012 3.7 M 62.3 M 8 (5+3)

ImageNetdVGG16 2014 14.7 M 134.2 M 16 (13+3)

Deep GoogLeNet 2014 5.3 M 5.3 M 22 (21+1)
ResNet50 2015 23.5 M 25.6 M 51 (50+1)

aFeature extraction
bFully connected layers
cDatabase of handwritten digits with 60 K training and 10 K test images.
dDatabase of over 14 M hand-annotated images for visual object recognition research.

3.2.3 Transfer Learning of Convolutional Neural Networks

TL with CNN is the idea that knowledge can be transferred at the parametric level.
Well-trained CNN models utilize the parameters of the convolutional layers for a
new task in the medical domain. Specifically, in TL with CNN for medical image
classification, a medical image classification (target task) can be learned by leverag-
ing the generic features learned from the natural image classification (source task)
where labels are available in both domains. For simplicity, the terminology of TL
in the remainder of the paper refers to homogeneous TL (i.e. both domains are im-
age analysis) with pretrained CNN models using ImageNet data for medical image
classification in a supervisory manner.

Roughly, there are two TL approaches to leveraging CNN models: either feature
extractor or fine-tuning. The feature extractor approach freezes the convolutional
layers, whereas the fine-tuning approach updates parameters during model fitting.
Each can be further divided into two subcategories; hence, four TL approaches are
defined and surveyed in this paper. They are intuitively visualized in Figure 3.2.
Feature extractor hybrid (Figure 3.2a) discards the FC layers and attaches a ma-
chine learning algorithm such as SVM or Random Forest classifier into the feature
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extractor, whereas the skeleton of the given networks remains the same in the other
types (Figure 3.2bd). Fine-tuning from scratch is the most time-intensive approach
because it updates the entire ensemble of parameters during the training process.

Figure 3.2: Four types of transfer learning approach. The last classifier block needs
to be replaced by a thinner layer or trained from scratch (ML: Machine learning;
FC: Fully connected layers).

3.3 Methods

Publications were retrieved from two peer-reviewed databases (PubMed database
on January 2, 2021, and Web of Science database on January 22, 2021). Papers
were selected based on the following four conditions: (1) convolutional or CNN
should appear in the title or abstract; (2) image data analysis should be considered;
(3) “transfer learning” or “pretrained” should appear in the title or abstract; finally,
(4) only experimental studies were considered. The time constraint is specified only
for the latest date, which is December 31, 2020. The exact search strings used for
these two databases are denoted in Appendix A. Duplicates were merged before
screening assessment. The first author screened the title, abstract and methods in
order to exclude studies proposing a novel CNN model. Typically, this type of study
stacked up multiple CNN models or concatenated CNN models and handcrafted fea-
tures, and then compared its efficacy with other CNN models. Non-classification
tasks, and those publications which fell outside the aforementioned date range, were
also excluded. For the eligibility assessment, full texts were examined by two re-
searchers. A third, independent researcher was involved in decision-making in the
case of discrepancy between the two researchers.

3.3.1 Methodology Analysis

Eight properties of 121 research articles were surveyed, investigated, compared
and summarized in this paper. Five are quantitative properties and three are qual-
itative properties. They are specified as follows: (1) Off-the-shelf CNN model
type (AlexNet, CaffeNet, Inception1, Inception2, Inception3, Inception4, Inception-
Resnet, LeNet, MobileNet, ResNet, VGG16, VGG19, DenseNet, Xception, many
or else); (2) Model performances (accuracy, AUC, sensitivity and specificity); (3)
Transfer learning type (feature extractor, feature extractor hybrid, fine-tuning, fine-
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tuning or many); (4) Fine-tuning ratio; (5) Data modality (endoscopy, CT/CAT scan,
mammographic, microscopy, MRI, OCT, PET, photography, sonography, SPECT,
X-ray/radiography or many); (6) Data subject (abdominopelvic cavity, alimentary
system, bones, cardiovascular system, endocrine glands, genital systems, joints,
lymphoid system, muscles, nervous system, tissue specimen, respiratory system,
sense organs, the integument, thoracic cavity, urinary system, many or else); (7)
Data quantity; and (8) The number of classes. They fall into one of three categories,
namely model, transfer learning or data.

3.4 Results

Figure 3.3 shows the PRISMA flow diagram of paper selection. We initially re-
trieved 467 papers from PubMed and Web of Science. 42 duplicates were merged
from two databases, and then 425 studies were assessed for screening. 189 studies
were excluded during the screening phase, and then full texts of 236 studies were
assessed for the next stage. 114 studies were disqualified from inclusion, resulting
in 121 studies. These selected studies were further investigated and organized with
respect to their backbone model and TL type. The data characteristics and model
performance were also analyzed to gain insights regarding how to employ TL.

Figure 3.3: Flowchart of the literature search.

Figure 3.4a shows that studies of TL for medical image classification have emerged
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since 2016 with a 4-year delay after AlexNet [KSH12] won the ImageNet Challenge
in 2012. Since then the number of publications grew rapidly for consecutive years.
Studies published in 2020 seem shrinking compared to the number of publications
in 2019, because the process of indexing a publication may take anywhere from
three to six months.

3.4.1 Backbone Model

The majority of the studies (n = 57) evaluated several backbone models em-
pirically as depicted in Figure 3.4b. For example, Rahaman and his col-
leagues [Rah+20b] contributed an intensive benchmark study by evaluating fif-
teen models, namely: VGG16, VGG19, ResNet50, ResNet101, ResNet152,
ResNet50V2, ResNet101V2, ResNet152V2, Inception3, InceptionResNet2, Mo-
bileNet1, DenseNet121, DenseNet169, DenseNet201 and XceptionNet. They con-
cluded that VGG19 presented the highest accuracy of 89.3%. This result is excep-
tional because other studies reported that deeper models (e.g. Inception and ResNet)
performed better than the shallow models (e.g. VGG and AlexNet). Five studies
[Bur+18; Che+19b; Lak17; Yan+18a; Yu+19a] compared Inception and VGG and
reported that Inception performed better, and Ovalle-Magallanes et al. [Ova+20]
also concluded that Inception3 outperformed compared to ResNet50 and VGG16.
Finally, Talo et al. [Tal+19] reported that ResNet50 achieved the best classification
accuracy compared to AlexNet, VGG16, ResNet18 and ResNet34.

Besides the benchmark studies, the most prevalent model was the Inception (n =
26) that consists of the least parameters shown in Table 3.1. AlexNet (n = 14) and
VGG (n = 10) were the next commonly used models although they are shallower
than ResNet (n = 5) and InceptionResnet (n = 2). Finally, only a few studies (n = 7)
used a specific model such as LeNet5, DenseNet, CheXNet, DarkNet, OverFeat or
CaffeNet.

3.4.2 Transfer Learning

Similar to the backbone model, the majority of models (n = 46) evaluated numer-
ous TL approaches, which are illustrated in Figure 3.4c. Many researchers aimed
to search for the optimal choice of TL approach. Typically, grid search was ap-
plied. Shin and his colleagues [Shi+16] extensively evaluated three components
by varying three CNN models (CifarNet, AlexNet and GoogLeNet) with three TL
approaches (feature extractor, fine-tuning from scratch with and without random
initialization), and the fine-tuned GoogLeNet from scratch without random initial-
ization was identified as the best performing model.

The most popular TL approach was feature extractor (n = 38) followed by fine-
tuning from scratch (n = 27), feature extractor hybrid (n = 7) and fine-tuning (n =
3). Feature extractor takes the advantage of saving computational costs by a large
degree compared to the others. Likewise, the feature extractor hybrid can profit
from the same advantage by removing the FC layers and adding less expansive
machine learning algorithms. This is particularly beneficial for CNN models with
heavy FC layers like AlexNet and VGG. Fine-tuning from scratch was the second
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Figure 3.4: Studies of transfer learning in medical image classification over time
(y-axis) with respect to (a) the number of publications, (b) applied backbone model
and (c) transfer learning type.

most popular approach despite it being the most resource-expensive type because it
updates the entire model. Fine-tuning is less expensive compared to the fine-tuning
from scratch as it partially updates the parameters of the convolutional layers. Ad-
ditional file 2: Table B in Appendix B presents an overview of four TL approaches
which were organized based on three dimensions: data modality, data subject and
TL type.

3.4.3 Data Characteristics

As the summary of data characteristics is depicted in Figure 3.5, a variety of hu-
man anatomical regions has been studied. Most of the studied regions were breast
cancer exams and skin cancer lesions. Likewise, a wide variety of imaging modali-
ties contained a unique attribute of medical image analysis. For instance, computed
tomography (CT) scans and magnetic resonance imaging (MRI) are capable of gen-
erating 3D image data, while digital microscopy can generate terabytes of whole
slide image (WSI) of tissue specimens.

Figure 3.5b shows that the majority of studies consist of binary classes, while Figure
3.5c shows that the majority of studies have fallen into the first bin which ranges
from 0 to 600. Minor publications are not depicted in Figure 3.5 for the following
reasons: the experiment was conducted with multiple subjects (human body parts);
multiple tasks; multiple databases; or the subject is non-human body images (e.g.
surgical tools).

3.4.4 Performance Visualization

Figure 3.6 shows scatter plots of model performance, TL type and two data charac-
teristics: data size and image modality. The Y coordinates adhere to two metrics,
namely area under the receiver operating characteristic curve (AUC) and accuracy.
Eleven studies used both metrics, so they are displayed on both scatter plots. The
X coordinate is the normalized data quantity, otherwise it is not fair to compare the
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Figure 3.5: The overview of data characteristics of selected publications. (a) The
correlation of anatomical body parts and imaging modalities. (b) The number of
classes (c) The histogram of the quantity of medical image datasets.

classification performance with two classes versus ten classes. The data quantities
of three modalities—CT, MRI and Microscopy—reflect the number of patients.

For the fair comparison, studies employed only a single model, TL type and image
modality are depicted (n = 41). Benchmark studies were excluded; otherwise, one
study would generate several overlapping data points and potentially lead to bias.
The excluded studies are either with multiple models (n = 57), with multiple TL
types (n = 14) or with minor models like LeNet (n = 9).

According to Spearman’s rank correlation analyses, there were no relevant associa-
tions observed between the size of the data set and performance metrics. Data size
and AUC (Figure 3.6a, c) showed no relevant correlation (rsp = 0.05, p = 0.03).
Similarly, only a weak positive trend (rsp = 0.13, p = 0.17) could be detected be-
tween the size of the dataset and accuracy (Figure 3.6b, d). There was also no as-
sociation between other variables such as modality, TL type and backbone model.
For instance, the data points of models, such as feature extractors that were fitted
into optical coherence tomography (OCT) images (purple crosses, Figure 3.6a, b)
showed that larger data quantities did not necessarily guarantee better performance.
Notably, data points in cross shapes (models as feature extractors) showed decent
results even though only a few fully connected layers were being retrained.

3.5 Discussion

In this survey of selected literature, we have summarized 121 research articles ap-
plying TL to medical image analysis and found that the most frequently used model
was Inception. Inception is a deep model, nevertheless, it consists of the least pa-
rameters (Table 3.1) owing to the 1 × 1 filter [LCY14]. This 1 × 1 filter acts as
a fully connected layer in Inception and ResNet and it lowers the computational
burden to a great degree [Sze+14]. To our surprise, AlexNet and VGG were the
next popular models. At first glance, this result seemed counterintuitive because
ResNet is a more powerful model with fewer parameters compared to AlexNet or
VGG. For instance, ResNet50 achieved a top-5 error of 6.7% on ILSVRC, which
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Figure 3.6: Scatter plots of model performance with data size, image modality,
backbone model and transfer learning type. Color keys in (a) and (b) indicate the
medical image modality, whereas color keys in (c) and (d) represent backbone mod-
els. Transfer learning types are in any of four marker shapes for all subfigures.

was 2.6% lower than VGG16 with 5.2 times fewer parameters and 9.7% lower than
AlexNet with 2.4 times fewer parameters [He+16]. However, this assumption is
valid only if the model was fine-tuned from scratch. The number of parameters sig-
nificantly drops when the model is utilized as a feature extractor as shown in Table
3.1. He et al. [He+18] performed an in-depth evaluation of the impact of various
settings for refining the training of multiple backbone models, focusing primarily on
the ResNet architecture. Another assumption was that AlexNet and VGG are easy
to understand because the network morphology is linear and made up of stacked
layers. This stands against more complex concepts such as skip connections, bot-
tlenecks, convolutional blocks introduced in Inception or ResNet.

With respect to TL approaches, the majority of studies empirically tested as many
possible combinations of CNN models with as many as possible TL approaches.
Compared to previously suggested best practices [Cho21], some studies determined
fine-tuning arbitrarily and ambiguously. For instance, [Hem+20] froze all layers ex-
cept the last 12 layers without justification, while [Val+19a; Han+18] did not clearly
describe the fine-tuning configuration. Lee et al. [Lee+20] partitioned VGG16/19
into 5 blocks, unfroze blocks sequentially and identified the model fine-tuned with
two blocks that achieved the highest performance. Similarly, fine-tuned CaffeNet
by unfreezing each layer sequentially [Zha+16]. The best results were obtained by
the model with one retrained layer for the detection task and with two retrained

19



CHAPTER 3 - TRANSFER LEARNING FOR MEDICAL IMAGE CLASSIFICATION

layers for the classification task.

Fine-tuning from scratch (n = 27) was a prevalent TL approach in the literature,
however, we recommend using this approach carefully for two reasons: firstly, it
does not improve the model performance as shown in Figure 3.6 and secondly, it
is the computationally most expensive choice because it updates large gradients
for entire layers. Therefore, we encourage one to begin with the feature extractor
approach, then incrementally fine-tune the convolutional layers. We recommend
updating all layers (fine-tuning from scratch), if the feature extractor does not reflect
the characteristics of the new medical images.

There was no consensus among studies concerning the global optimum configura-
tion for fine-tuning. [Sin+19] concluded that fine-tuning the last fully connected
layers of Inception3, ResNet50, and DenseNet121 outperformed fine-tuning from
scratch in all cases. On the other hand, Yu et al. [Yu+19b] found that retraining
from scratch of DenseNet201 achieved the highest diagnostic accuracy. We spec-
ulate that one of the causes is the variety of data subjects and imaging modalities
addressed in Sect. 4.3. Hence, investigating the medical data characteristics (e.g.
anatomical sites, imaging modalities, data size, label size and more) and TL with
CNN models would be interesting to investigate, yet it is understudied in the current
literature. Morid et al. [MBD20] stated that deep CNN models may be more effec-
tive for the following image modalities: X-ray, endoscopic and ultrasound images,
while shallow CNN models may be optimal for processing these image modalities:
OCT and photography for skin lesions and fundus. Nonetheless, more research is
needed to further confirm these hypotheses.

TL with random initialization often appeared in the literature [KCC17; Kim+20b;
Lee+17; Tan+20]. These studies used the architecture of CNN models only and ini-
tialized the training with random weights. One could argue that there is no transfer
of knowledge if the entire weights and biases are initialized, but this is still consid-
ered as TL in the literature.

It is also worth noting that only a few studies [Zha+18; Xio+19] employed native
3D-CNN. Both studies reported that 3D-CNN outperformed 2D-CNN and 2.5-CNN
models, however, Zhang et al. [Zha+18] set the number of the frames to 16 and
Xiong et al. [Xio+19] reduced the resolution up to 21*21*21 voxels due to the
limitation of computer resources. The majority of the studies constructed 2D-CNN
or 2.5D-CNN from 3D inputs. In order to reduce the processing burden, only a
sample of image slices from 3D inputs was taken. We expect that the number of
studies employing 3D models will increase in the future as high-performance DL is
an emerging research topic.

We confirmed (Figure 3.5c) that only a limited amount of data was available in most
studies for medical image analysis. Many studies took advantage of using publicly
accessible medical datasets from grand challenges (https:// grandchall enge. org/
chall enges). This is a particularly beneficial scientific practice because novel so-
lutions are shared online allowing for better reproducibility. We summarized 78
publicly available medical datasets in Additional file 3: Suppl. Table C (Appendix
C), which were organized based on the following five attributes: data modality,
anatomical part/region, task type, data name, published year and the link.
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Although most evaluated papers included only brief information about their hard-
ware setup, no details were provided about training or test time performance. As
most medical data sets are small, usually consumer-grade GPUs in custom work-
stations or seldom server-grade cards (P100 or V100) were sufficient for TL. Pre-
vious survey studies have investigated how DL can be optimized and sped up on
GPUs [MV19] or by using specifically designed hardware accelerators like field-
programmable gate arrays (FPGA) for neural network inference [Guo+18]. We
could not investigate these aspects of efficient TL because execution time was rarely
reported in the surveyed literature.

This study is limited to surveying only TL for medical image classification. How-
ever, many interesting task-oriented TL studies were published in the past few years,
with a particular focus on object detection and image segmentation [Sun+20], as re-
flected by the amount of public data sets (see also Additional file 3: Appendix C.,
Table 3). We only investigated off-the-shelf CNN models pretrained on ImageNet
and intentionally left out custom CNN architectures, although these can potentially
outperform TL-based models on certain tasks [Rah+21; Alz+21]. Also, we did not
evaluate aspects of potential model improvements leveraged by the differences of
the sourceand the target domain of the training data used for TL [Alz+20]. Simi-
larly, we did not evaluate vision transformers (ViT) [Dos+21], which are emerging
for image data analysis. For instance, Liu et al. [Liu+21b] compared 22 backbone
models and four ViT models and concluded that one of the ViT models exhibited
the highest accuracy trained on cropped cytopathology cell images. Recently, Chen
et al. [Che+21] proposed a novel architecture that is a parallel design of MobileNet
and ViT, in view of achieving not only more efficient computation but also better
model performance.

3.6 Conclusions

We aimed to provide actionable insights to the readers and ML practitioners, on
how to select backbone CNN models and tune them properly with consideration of
medical data characteristics. While we encourage readers to methodically search for
the optimal choice of model and TL setup, it is a good starting point to employ deep
CNN models (preferably ResNet or Inception) as feature extractors. We recommend
updating only the last fully connected layers of the chosen model on the medical
image dataset. In case the model performance needs to be refined, the model should
be fine-tuned by incrementally unfreezing convolutional layers from top to bottom
layers with a low learning rate. Following these basic steps can save computational
costs and time without degrading the predictive power. Finally, publicly accessible
medical image datasets were compiled in a structured table describing the modality,
anatomical region, task type and publication year as well as the URL for accession.
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Chapter 4

Rapid Convolutional Neural
Networks for Gram-Stained Image
Classification at Inference Time on
Mobile Devices

DOI: 10.3390/biomedicines10112808

4.1 Introduction

The number of mobile health (mHealth) apps is growing substantially. The number
of mHealth apps in the Google Play store reached over 54,603 in the second quar-
ter of 2022 [Cec22b], while there were 52,406 in the Apple App Store [Cec22a].
According to Roth [Rot13], mHealth apps can be classified into four categories:
information apps, which provide a recent trend in healthcare and allow users to
find medical information; diagnostic apps, which process data to support physi-
cians in diagnostic decisions; control apps, which control basic functionalities such
as the power switch of another medical device; and adapter apps, which adapt smart-
phones to perform a medical function.

The application developed and evaluated in this study is a diagnostic app, which
automates Gram-stained analysis. It is a laboratory procedure that classifies mi-
crobial pathogens as either Gram-positive or Gram-negative. It is a promising
application in a microbiology laboratory because this task still relies on humans.
Physicians and trained medical technical assistants need to navigate the whole slide
images manually. This problem can be leveraged by recent advances in deep learn-
ing (DL) methodologies, in particular, convolutional neural networks (CNN) which
have emerged as the de facto DL methodology in the field of image analysis. For
instance, a whole slide image can be distinguished into major species of microor-
ganisms or the position of microorganisms can be highlighted directly on the image.
In this manner, the system could enhance the competencies of caregivers with less
human intervention. This could lead to rapid initial medical care for patients who
suffer from infectious diseases.
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However, deploying a DL solution is a non-trivial problem and deploying to
resource-limited and battery-powered devices such as smartphones is challenging.
For instance, Smith et al. reported that it took 9 min to classify a single whole slide
image with a workstation powered by Nvidia GTX 1070 GPU [SKK18]. Moreover,
Netflix announced in 2012 that they failed to deploy the winner solution of the “1
million-dollar Netflix Challenge” due to engineering costs of the complex machine
learning solution [Ama13]. One of the major obstacles is the computational burden
because DL models consist of millions of parameters. For instance, ResNet152 and
AlexNet models consist of 60 million parameters and 132 million parameters for
the VGG16 model, meanwhile, the latest Google glass enterprise Edition 2 released
in May 2019 features only 3 GB of memory, 32 GB of storage and 800 mAh battery
capacity, allowing for only 8 h of running time. Accordingly, resource utilization
becomes a non-trivial issue because millions of arithmetic operations require longer
processing time and drain the battery more quickly. Especially, battery-powered
devices (e.g. mobile devices, internet of things and wearable devices) must be care-
fully considered when DL solutions are developed.

This challenge has led to compact and rapid DL as an emerging topic in recent
years. Han [Han17] distinguished four types of research endeavors on this sub-
ject based on what and how to speed up DL models. The target to be accelerated
is either training time or inference time; on the other hand, it can be achieved by
introducing novel hardware or tuning algorithms optimally. Graphics processing
unit (GPU) initially developed for accelerating computer graphics is now a core
element of server infrastructure for rapid deep learning processing. Google devel-
oped an application-specific integrated circuit (ASIC) known as a tensor processing
unit (TPU) [Jou+17], which is optimally designed to process deep learning solu-
tions implemented by its own framework, TensorFlow. Within the realm of efficient
algorithms, numerous approaches have been proposed; for example, Chollet et al.
[Cho17] speeded up the training time with little accuracy degradation by introduc-
ing an innovative model architecture with depth-wise separable convolutional neural
networks. Smith et al. [Smi+17] and Goyal et al. [Goy+17] shortened training time
by applying a large batch size (BS). Numerous normalization approaches [IS15;
SK16; Che+18a; Kla+17] and regularization techniques such as early stopping
[Pre98] and structure sparsity regularization by suppressing irregular memory ac-
cess successfully accelerated training time. On the other hand, model compression
methods such as pruning [ZG17] and quantization [Jac+18] are able to expedite the
inference time. Pruning removes the low-impact parameters incrementally, while
quantization scales down the bit representation from 32-bit floating-point numbers
to lower-bit representation.

The contributions of this study are as follows: identify the optimal transfer learn-
ing configuration of CNN models to Gram-stained image classification; accelerate
the inference time by model optimization methods; and deploy and evaluate the
execution speed of the optimized models on two Android devices.
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4.2 Materials and Methods

4.2.1 Efficient Convolutional Neural Networks

CNN [KSH12] is a class of deep neural networks that are designed to solve various
computer vision problems. CNN constitutes fully connected layers and convolu-
tional layers. The former is the classical layer where all neurons are interconnected
to one another in adjacent layers, while the latter is a core element of CNN which
generates generic feature maps from the previous layer. In terms of computational
complexity, the convolutional layer is less expensive because neuron weight sharing
reduces the number of connections between neighbor layers.

The pre-trained CNN models are tuned to the efficient models in three steps. The
overview is illustrated in Figure 4.1. The first step is transfer learning (TL), which
is a technique particularly widely adopted technique for medical image analysis
owing to its capability of model adaptation towards new tasks [Kim+22b]. TL is
inspired by the learning mechanism, in which the knowledge acquired before can
leverage the learning procedure to learn similar tasks. Since TL can reuse weights
of pre-trained CNN models, TL is able to reduce the computational burdens to a
large degree. Pruning zeros out non-significant connections in neural networks. It
gradually eliminates low-impact parameters based on magnitude without decreasing
model accuracy. Unlike dropout [Sri+14], it ignores some nodes randomly during
the training phase but pruning eliminates model parameters (connections). This
attribute makes models require less storage overhead and reduces the memory foot-
print. Quantization converts 32-bit floating-point numbers to lower-bit representa-
tions such as 8-bit integer numbers. An intuitive example of quantization is con-
verting floating-point numbers to integer numbers (e.g. 1.245 to 1). Unlike pruning
being applied during the training phase, quantization is a post-production method
because it is typically applied during the post-modeling phase.

Figure 4.1: A flowchart diagram depicts the process to optimize naı̈ve CNN models
to the efficient CNN models. Transfer learning adapts CNN models pre-trained
from natural images to the custom image dataset. Pruning trims out non-significant
weights while quantization drops floating-point numbers by rounding a given value
to the nearest integer number.

4.2.2 Data Set

Eight thousand five hundred Gram-stained images with two labels (positive vs. neg-
ative) were taken from sepsis patients who suffered from at least one microbial in-
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fection such as Staphylococcus, Escherichia, or Streptococcus. Images with both
labels (two types of germs appeared on a single image) were excluded from this
study (n = 446) in order to make a binary image classification. Given images were
cropped areas of interest containing stained microorganisms from a whole slide
microscopy image. The size of the images varied from 800-pixel by 600-pixel to
1920-pixel by 1080-pixel. Exemplary sample images and labels are shown in Figure
4.2.

Gram-positive images were two-fold more frequent (n = 5962) than Gram-negative
images (n = 2766). Therefore, class balancing needed to be applied. Otherwise, the
models were conditioned to predict the majority labels and abandon the minority
class. Hence, Gram-negative images were augmented to balance the class propor-
tion by rotating the given images. After the augmentation, the dataset was enriched
from 8728 to 10,994 images. For the sake of a fair evaluation, the test dataset and
validation dataset was isolated from the training set. This study split the given data
into 80% for training, 10% for validation and 10% for testing.

Figure 4.2: Sample images of Gram-stained data. Two Gram-negative images are
shown on the top, and two Gram-positive images are shown on the bottom. Some
pathogens are distinctive with a high contrast of a clean background whereas often
other pathogens are blurred and/or have bloodstains in the background and/or low
brightness level. Scale bar represents 100 µm.

4.2.3 Study Design

The machine learning task in this study is binary image classification. The imple-
mented models will predict whether the image is Gram-positive or -negative. Three
pre-trained models were utilized in order to avoid model selection bias. They are,
namely, Inception [Sze+15], ResNet [He+16], and MobileNet [How+17]. Inception
was chosen because it is the most prevalent model utilized in the medical domain ac-
cording to Morid et al. [MBD20] and Kim et al. [Kim+22b]. Furthermore, ResNet
is the most widely used backbone model for other tasks such as object detection
and segmentation [Lee+19]. Finally, MobileNet was selected because it was ex-
plicitly designed to be deployed to resource-constrained-devices [How+17]. Each
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model was calibrated to the Gram-stained analysis and then optimized and evalu-
ated. The consecutive steps performed are as follows: TL; pruning; quantization;
and evaluation.

The main objective of TL is to identify the best accuracy setup and others are to
reduce the model size and minimize the inference time without accuracy loss. Pri-
marily, pre-trained models were tuned to Gram-stained images because the given
models were trained with the ImageNet dataset [Den+09b] containing natural im-
ages only. The optimal fine-tuning ratio was determined by exploring numerous
configurations. The number of model layers was binned into 10 buckets and each
bucket was incrementally fine-tuned from the shallow strategy (feature extraction)
to the deep strategy (fine-tuning from scratch). The former strategy is also referred
to as feature extraction and it updates no convolutional layers except the fully con-
nected layers, while the latter updates all layers from scratch. This study iteratively
walked through 11 different settings from the shallow strategy (re-training 0%) to
the deep strategy (re-training 100%).

Once models were transferred to Gram-stained images, one of the model compres-
sion methods, pruning was applied. Pruning trims the low impact parameters incre-
mentally. In other words, model parameters were iteratively pruned from 10% up to
90%. Similar to the fine-tuning method, nine target sparsity values were evaluated
gradually from the dense model (pruned 10%) to the very sparse model (pruned
90%). Following this, another model compression method, quantization was ap-
plied. In this study, we scaled down the default 32-bit representation to three lower
bit-schemes, namely 16-bit floating-point numbers, 16-bit mixed numbers (floating
and integer) and 8-bit full integer numbers.

4.2.4 Metrics

Accuracy evaluates the quality of models; however, it fails to provide insight into
model behaviors when it is deployed to production. Computational costs and model
size should be considered especially when it is deployed to resource-constrained
devices. Hence, this study evaluated models not only with the classical metrics
(accuracy) but also with model size and inference time. For the sake of statistical
stability, model accuracy was tested 10 times while inference time was tested 50
times and the average values were reported in this paper.

4.2.5 Apparatus

TensorFlow and TensorFlow Lite were the chosen frameworks for deep learning
solutions in this study. Both frameworks are open-source tools developed by the
Google Brain team [Aba+16a]. TensorBoard was used as a model-debugging tool
and to graphically track all execution history. All models were processed at the data

center of the Department of Biomedical Informatics at the Center for Preventive
Medicine and Digital Health Baden-Württember, Medical Faculty Mannheim. Re-
garding the reproducible research, hardware was virtualized by Docker for a con-
trolled development environment. Each container was configured with one Intel
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Xeon Silver 4110 CPU, one NVIDIA Tesla V100 32 GB GPU and 189 GB of shared
memory. The inference time of the compressed models was evaluated on two an-

droid mobile devices: Samsung Galaxy A20E and S10. The quantized models need
to be tested on devices with ARM-based CPU and not x86-based CPU workstations
because integer arithmetic is optimized for the ARM CPU architecture. The aver-
aged inference time was measured by a C++ binary tool developed by Google via
a command-line interface called Android Debug Bridge allowing communication
with mobile devices. This study utilized only one CPU thread on mobile devices.
All other active processes were deactivated during the testing, and the network state
was switched off.

4.3 Results

4.3.1 Transfer Learning

Twelve models (three models with four different batch sizes) were evaluated. Fig-
ure 4.3 illustrates the results of the three pre-trained models. Regardless of model
and batch size, there was a noticeable trend shown in Figure 4.3 in which accuracy
dropped when only a few layers were re-trained (approximately 10 to 20% of the
total number of layers of the respective model/architecture), but it recovered when
more layers (>50%) were re-trained. The highest accuracy for Inception3 and Mo-
bileNet was achieved when the model was re-trained from scratch (100%) with 64
minibatch, while ResNet50 attained the best accuracy with the fine-tuning ratio of
80% and 32 minibatch.

All execution histories were reported in our GibHub repository and they are publicly
accessible at: (accessed on 1 November 2022). The average training time for TL
was roughly 145 min (220 min for ResNet50, 160 min for Inception 3, and 60 min
for MobileNet) when the number of epochs was 100. The exact training time was
not reported in this section because the scope of this paper was to compare the
inference time.

4.3.2 Pruning

Twenty-seven models (three models with nine different pruning ratios) were pruned
and evaluated in this phase. Each setup was trained and tested 10 times and the
averaged accuracy values are depicted in Figure 4.4. The result shows that pruning
was able to compress the model up to 15 times (Figure 4.4. Bar chart) as compared
to the baseline model (0% sparsity) without or with only a minor loss of model
accuracy (Figure 4.4, line chart). Only MobileNet (colored in green) with a high
sparsity ratio suffered from a substantial decrease in accuracy.

4.3.3 Quantization

The weights and activation of pruned models were converted from 32-bit float to
16-bit float, 16-bit integer and 8-bit integer numbers. Accuracy was not dropped
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Figure 4.3: Results of test accuracy based on the combination of 11 tuning ratios
and four batch sizes (BS). Each setup/ratio has been repeated and tested 10 times
for the sake of statistical analysis. The average is shown as a bold line, while the
minimum and maximum accuracy are shown as areas in a lighter color.

Figure 4.4: Results of models with 0% sparsity (leftmost) are the baseline where
pruning was not applied. The bar chart depicts that all pruned models except
MobileNet were successfully compressed without sacrificing the model accuracy
shown in the line chart. The accuracy deteriorated when MobileNet pruned more
than 70%.

for all models despite the model size having been significantly reduced. Figure 4.5
shows that the size of models converted to integer-type was reduced from at least
3 times and up to 4.3 times (Figure 4.5A–C) with accuracy loss at most 1.1% to
accuracy gain up to 0.9% (Figure 4.5D–F).

4.3.4 Evaluate Inference Time on Mobile Devices

The three clusters represent different pruning ratios of models from 0% to 50% to
90%, as shown in Figure 4.6 (x-axis). The leftmost cluster is the baseline model
to which pruning was not applied. On a cluster-to-cluster basis comparison, there
was no remarkable difference among clusters in terms of the inference time. The
latency of 50% and 90% sparse models on mobile devices was similar to that of the
baseline model.
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Figure 4.5: Quantization method reduced model size (A–C) with minor accuracy
loss (D–F). Models in 16-bit float type were 2 times smaller than the baseline model
and models in integer type were 4 times smaller than the baseline model.

Each cluster consists of four bars in four colors indicating different bit schema from
float 32, float 16 and integer 16 to integer 8. On a bar-to-bar basis comparison,
quantization sped up the inference time to at least 1.9 times to 2.8 times faster. The
improvement of the execution time was more distinctive on Galaxy S10 than A20E.

Figure 4.6: Inference time on Galaxy A20E and S10. The latency of integer-type
models (blue and purple) is at least 1.9 times faster and at most 2.8 times faster than
the float-type models (green and orange).
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4.4 Discussion

The performance of the fine-tuning method was not much influenced by batch size.
An empirical study by Wilson et al. [WM03] stated that a large batch size leads to
a decrease in performance; however, we did not observe a significant accuracy drop
in this study. In fact, a large batch size requires fewer iterations to converge the
respective model at the expense of using more memory, but it was only a marginal
gain (2 to 5 s faster) in training time. On the other hand, the performance was highly
sensitive to the fine-tuning ratio due to the heterogeneity of features between Gram-
stained images and natural images. In this study, the highest accuracy was attained
by re-training convolutional layers by at least 80%. Hence, in order to capture the
characteristics of Gram-stained images, we recommend re-training as many model
layers as possible.

Model size and accuracy were affected by the pruning method to a large margin as
shown in Figure 4.4. Although the model comprised many fewer parameters, prun-
ing did not decrease the model accuracy, except for the MobileNet. The ResNet50
model with 90% fewer parameters was 13 times smaller than the baseline model;
nonetheless, the accuracy increased by a small margin. However, the 90% sparse
MobileNet suffered from low accuracy as it dropped to 61.7% (Figure 4.4, Line
chart). We further investigated with the 90% pruned MobileNet whether the accu-
racy can be recovered by extending the training steps. For this, we trained the model
for 100,000 epochs which took 36 days at the workstation described in the Method-
Apparatus section. Figure 4.7 shows that the accuracy recovered from 76% to 83%;
however, it would be hard to justify such extensive training for only marginally
better accuracy.

Figure 4.7: MobileNet with 90% sparsity was trained for 100,000 epochs. Accuracy
recovered (83%), but it was not as good as the baseline model (88%). The noisy
data points were smoothed by a moving average method, which calculates a series
of averages of subsets of data points.

Similar to pruning, quantization reduced the model size up to 4.3 times without
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losing accuracy. To our surprise, both quantized and pruned models occasionally
gained accuracy by a small margin. We assume that removing unnecessary param-
eters and lowering bit representation might restrict the DL models not to overfit the
training dataset. With regard to the inference time, no significant differences were
reported among the same data type (e.g. float 32 and float 16; integer 16 and integer
8). It is because the major operations (matrix multiplication and backpropagation)
are still carried out using 32-bit in spite of the input and output being quantized into
lower bit representation. Matrix multiplications process multiple 8-bit or 16-bit
operands that require more bits to process and store. On the other hand, backprop-
agation with a lower bit could not nudge the subtle updates for weights and biases.
Both accumulator and backpropagation are the cornerstone tasks of convolution and
therefore require more computational costs.

The inference time on the smartphone Galaxy S10 was more distinctive than the
smartphone Galaxy A20E, as illustrated in Figure 4.6. The major reason is cache
memory, where data are frequently accessed by the CPU. Unlike the smartphone
Galaxy S10, which consists of three cache memories, the smartphone Galaxy A20E
does not. Therefore, Galaxy A20E is less efficient, although the size of random
access memory (RAM) of Galaxy A20E is large enough to host compressed models.

The integer quantized models had to be evaluated on ARM-based CPU devices
(e.g. Android and iPhone devices) because the static execution plan was optimized
to the integer arithmetic operator at conversion time. Therefore, when an x86-based
CPU workstation attempts to process the quantized models, it conveys irregular
computation patterns. For instance, the quantized Inception model at our server
with Tesla V100 took more than an hour to process a single image.

We intentionally did not employ a mixture of augmentation because it did not make
sense due to the characteristics of Gram-stained images. We refrained from ap-
plying scaling or any distortion techniques because magnification on a microscope
is already fixed. Cropping is not allowed because it could easily trim out the mi-
croorganisms in the images. The color intensity of the images, however, might have
been harmonized; nevertheless, we intentionally did not change color at default to
increase variability and robustness because the color is the most critical feature for
Gram-stained analysis. Finally, employing a mixture of data augments in real time
slowed the training time by a large margin.

Deep learning applications on the Internet of things (IoT) for healthcare create many
opportunities because they can collect, harmonize and process data from multiple
sources in real time. This will support caregivers to provide better treatments with
lower costs at the right time. For instance, several successful applications were
developed during the COVID19 pandemic. Drew et al. [Dre+20] recruited about
2 million users and predicted geographical hotspots in advance of official public
health reports. Alkhodari and Khandoker [AK22] developed COVID detection tools
and demonstrated the potential of telehealthcare. However, there are still several
challenges that need to be addressed. The disadvantages of IoT are security and
privacy concerns due to the lack of holistic information security approaches for the
IoT [MT19]. Cloud computing in healthcare has paved the way for rapid and low-
cost healthcare services; however, the risk of healthcare data breaches has also been
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aroused. According to reference [Seh+20], 3912 data breach cases were confirmed
in the healthcare domain from 2005 to 2019 in the United States. Hence, utilizing
deep learning compression techniques and processing data in a local device could
reduce the risk of data breach because data are not transmitted to the cloud server.

Compressed DL solutions were tested in general purpose devices only (smart-
phones) in this study. Although the smartphone is one type of device that can host
an augmented reality application by overlaying information on the display incorpo-
rating a built-in camera, deploying the solution to a body-worn device such as smart
glasses would be more intuitive because such a device is able to project information
directly through an optical head-mounted display (OHMD). Kim and Choi [KC21]
surveyed 57 academic papers on the applications of smart glasses and stated that
smart glasses are most often used in the healthcare domain (n = 21, 37%). Eval-
uating the performance of caregivers with and without augmented reality would
be an interesting prospective study. Google glass would be the choice of the de-
vice because the models developed in this study could be seamlessly deployed and
evaluated on other android devices like Google glass. Beyond Gram-stained image
classification, more complex experiments can be conducted. For instance, Zielinski
et al. [Zie+17] classified 33 different genera and species of bacteria with 660 im-
ages, and genus level image classification can be carried out with the same dataset
used in this study. It would be interesting to see how the rapid DL methodology can
improve the inference time compared to the published solutions.

4.5 Conclusions

Despite many publications proving the success of DL in medical applications, de-
ploying a DL solution to resource constraint devices is a hard problem. This pa-
per emphasized that DL models must be carefully designed with consideration of
resource-limited devices. We investigated a rapid and compact DL model and evalu-
ated the model performance on two mobile devices. The lessons learned and empir-
ical guidelines drawn out of this study are as follows: we observed that the behavior
and performance of models heavily rely on the tuning ratio but not on the batch
size. For Gram-stained image classification, re-training more convolutional layers
achieved higher accuracy. With respect to model compression, plain models were
compressed successfully with minor or no accuracy loss. Pruning was the success-
ful element for model size reduction, while inference time was mainly accelerated
by quantization.

The philosophy of the collaboration of humans and computers shall be the right
path for artificial intelligence (AI) computers that amplify human competencies,
not replace them. We anticipate that the rapid AR application of smart glasses or
mobile devices can support caregivers for better and faster clinical decisions and
can also be used for education purposes or assisting operations.
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Chapter 5

Lightweight Visual Transformers
Outperform Convolutional Neural
Networks for Gram-Stained Image
Classification: An Empirical Study

DOI: 10.3390/biomedicines11051333

5.1 Introduction

The progress of deep learning (DL) and artificial intelligence is astonishing, and
it attracts numerous researchers and practitioners from multidisciplinary domains.
Although tremendous literature regarding DL applications has been published in
the medical domain [Kim+22b], it is uncommon that DL applications are actually
deployed in the clinical routine. In addition to common issues such as strict med-
ical device regulations [Pit+20], interoperability and responsibility of DL models
[AET18], researchers and practitioners also face multiple technical challenges in
utilizing DL solutions, e.g. hardware capacities in hospitals are limited, and cloud
computing or edge networks are also uncommon because of data privacy concerns
[Ryo+13]. Therefore, medical DL applications are often deployed to resource-
limited devices, resulting in performance degradation.

Lightweight DL is an especially crucial subject when it comes to infectious dis-
eases. According to Seymour et al. [Sey+17], in-hospital mortality could be low-
ered if antibiotics were administered within an initial three-hour window of sepsis
care, which is remarkably time-sensitive. Gram-stain analysis is a rapid labora-
tory test that classifies bacterial species into two groups: either Gram-positive or
Gram-negative [Coi06]. It aims to shorten the time needed to correctly classify the
underlying bacteria in sepsis patients and ultimately aims to decrease the time to
a targeted treatment, which is the interval from symptom onset and diagnosis to
the application of the therapy of the disease. Although a physician instantly pre-
pares antibiotic therapy for a patient in the practice, precise and rapid identification
of an exact microorganism still matters for tailored treatment. This task currently

33

https://doi.org/10.3390/biomedicines11051333


CHAPTER 5 - LIGHTWEIGHT VISUAL TRANSFORMERS OUTPERFORM CONVOLUTIONAL
NEURAL NETWORKS FOR GRAM-STAINED IMAGE CLASSIFICATION: AN EMPIRICAL STUDY

relies on medical professionals [Cen+22] and it can be partially automated by DL
solutions [Kom+18]. At this time, only a few studies utilize DL for Gram-stain anal-
ysis. Liu et al. [Liu+21a] utilized six machine-learning algorithms and identified
two species of Gram-positive bacteria, B. megaterium and B. cereus, by harnessing
spectral features of Gram-stained images. Smith et al. [SKK18] proposed a classifi-
cation model by means of a convolutional neural networks (CNN) model, however,
the solution took 9 min to classify a whole-slide image comprising 4.1 million pix-
els. Recently, our research group has demonstrated that by applying pruning and
quantization model size (15×) and inference time (3-4×) of CNN can be substan-
tially reduced and accelerated on limited edge devices such as smartphones without
sacrificing accuracy [Kim+22a]. However, visual transformers (VT) models, the
state-of-the-art methodology in computer vision, have not yet been investigated.

CNN had been the de-facto DL architecture in the computer vision community
since AlexNet [KSH17] won the ImageNet Challenge in 2012. However, a marked
paradigm shift occurred in 2020 when Google Brain Team introduced vision trans-
former (ViT) [Dos+20]. In fact, ViT is not a novel model architecture, but it has
developed from the standard transformer encoder [14] from the natural language
processing (NLP) domain. The performance of transformer models attained higher
accuracy compared with the best-performing CNN model (e.g. ResNet [He+16])
on classification. The mechanism for understanding images differs considerably
between CNN and VT. CNN captures a certain type of spatial structure present in
the given dataset because they utilize spatial inductive biases that allow them to
learn the local representations [Rag+21]. Inductive bias is a set of assumptions that
can generalize a dataset and does not require large datasets compared with trans-
formerers based models. On the other hand, VT learn global representations by us-
ing self-attention mechanisms [Rag+21]. Multiple studies demonstrated that global
representations triumph over inductive bias when trained on sufficiently large scales
of datasets, as ViT surpassed ResNet with 300 M images [Dos+20].

This paper aimed to provide a guideline to researchers and practitioners on VT
model selection as well as optimal model configuration for Gram-stained image
classification. For this, six VT models were investigated using target metrics such
as accuracy, inference time and model size and were benchmarked against two well-
established CNN models. All models were compressed to 8-bit and were interoper-
able using the ONNX framework.

5.2 Background

A VT comprises three major components, as shown in Figure 5.1. (1) Linear
projection takes input images and outputs joint embeddings. It splits images into
predetermined-size patches that are flattened to linear patch embeddings added by
positional embeddings. The transformer encoder takes these joint embedding vec-
tors as input, also referred to as tokens, and returns the same length of weighted
vectors as output. A class embedding is also attached to the input embeddings for
the classification. The key element of the encoder is (2) Multi-head self-attention
layers (MSA) and it takes three vectors, namely, query, key and value, while “self
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” indicates that query, key and value are identical. Attention is a weighted sum of
value vectors and the weight is the inner product of a single query vector and a set
of key vectors. Multi-head indicates that multiple attention modules process data
in parallel. Finally, (3) Multilayer perceptron (MLP) is a fully connected neural
network that classifies input images. The corresponding mathematical notation is
found in the original paper [Vas+17].

Figure 5.1: Process of a visual transformer where data flow from the bottom to
the top. An input image is split into four patches in this figure for visibility. Each
patch is encoded into a predefined size of vectors added by positional vectors and
class vectors. The class vector is propagated to the multilayer perceptron head for a
decision

Since the introduction and great success of the ViT model [Dos+20] by Dosovit-
skiy et al., numerous VT models and their applications have been proposed in the
computer vision community. Despite VT models growing rapidly, they fall into one
of five architecture categories and each architecture distinctively differs from one
another. ViT is the (1) original VT model and its architecture is identical to the
encoder block of the transformer model inherited from Natural Language Process-
ing [Vas+17]. The authors demonstrated that ViT outperformed CNN, however,
it required quadratic time complexity with respect to input image size and large
data (300 million images) to pre-train. Therefore, many researchers have proposed
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innovative architectures to tackle the problem of the ViT model. (2) Multistage
models introduced limited size of attention such as localized attention or sparse at-
tention and processed feature vectors gradually and progressively. This mechanism
was able to lighten the computational burden and resulted in linear computational
complexity. Such an archetype model was the hierarchical vision transformer us-
ing shifted windows (Swin) [Liu+21c] introduced by Liu et al. from Microsoft
in 2021. Similarly, pyramid ViT (PVT) [Wan+21] and focal transformer models
[Yan+21] are hierarchical VT models that introduce spatial reduction attention in-
spired by CNN’s backboned pyramid structure for dense prediction tasks [Lin+17].
More recently, Hassani and Shi proposed a hierarchical VT based on neighborhood
attention that can capture a more global context [Lin+18]. (3) Knowledge distil-
lation is another solution that is capable of training VT efficiently. Tourvron et
al. from Facebook AI designed data-efficient image transformers (DeiT) that uti-
lized distillation tokens to learn from a teacher agent. On the other hand, Ren et
al. introduced a cross inductive bias distillation (CiT) [Ren+22] with an ensem-
ble of multiple lightweight teachers instead of a single heavy and highly accurate
teacher agent. Unlike conventional knowledge distillation models that are matching
teacher to student in a one-to-one spatial relationship, Lin et al. proposed a one-to-
all spatial matching knowledge distillation VT [24], which surpassed other models
by a large margin. The (4) self-supervised model was inspired by BERT [Dev+18]
and rooted in the NLP domain. It slices a given image into multiple patches re-
ferred to as “visual tokens” and randomly drops some patches. The model learns
the generic features of images in an unsupervised manner by recovering the elimi-
nated visual tokens. The generative pre-training from pixels (imageGPT) [Che+20]
is the same as GPT-2 [Rad+19] except for the activation and normalization lay-
ers. It outperformed a supervised model, ResNet. The drawback of imageGPT is
the time complexity because its architecture learns images based on pixels instead
of image patches. Bidirectional encoder representation from image transformers
(BEiT) [Bao+21] is the most cited self-supervised model proposed by Bao et al.
in Microsoft. It surpassed imageGPT by a large margin with much fewer parame-
ters while concurrently outperforming two supervised VT models (ViT and DeiT).
Finally, (5) hybrid type captures local and global representations by incorporating
one or more components from CNN that could save on the computation burden by a
large margin [Ram+19]. The idea of integrating inductive bias into global represen-
tations attracted numerous researchers. Multiple studies such as BoTNet [Sri+21],
CMT [Guo+22], CvT [Wu+21], LeViT [Gra+21] and ViTc [Xia+21] improved ac-
curacy and computational efficiency by combining convolutional layers to the VT
model. MobileViT [MR22] was designed by Apple for efficient computation on
mobile devices, however, it is more similar to CNN models than VT. Furthermore,
models such as PiT [Heo+21] and PoolFormer [Yu+22] achieved competitive results
by incorporating pooling layers without attention layers or convolutional layers.

Based on their properties and the Gram-staining classification task at hand, we in-
cluded the following VT models (BEiT, DeiT, MobileViT, PoolFormer, Swin and
ViT) for systematic analyses and evaluation (Figure 5.2).
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Figure 5.2: Overview of the study design. Eight models with minimum and maxi-
mum parameters were fine-tuned to two custom datasets with two epochs strategies
during the fine-tuning phase, while each model was quantized either by channel or
tensor during the quantization phase. In total, 128 models were evaluated, which
is the Cartesian product of eight model architectures with two parameters on two
datasets for two epochs and then two quantization schemes.

5.3 Materials and Methods

5.3.1 Data Set

Two Gram-stained image datasets were utilized in this study. One is the domes-
tic dataset from Medical Faculty Mannheim, Heidelberg University (MHU) and the
other is a publicly accessible dataset named DIBaS [Zie+17], the acronym for Dig-
ital Image of Bacterial Species. The MHU dataset consists of 8500 Gram-stained
images collected from 2015 to 2019. The resolution of the images varied from 800
pixels by 600 pixels to 1920 pixels by 1080 pixels. In the given dataset, Gram-
positive images (n = 5962) were two times more prevalent than Gram-negative im-
ages (n = 2766). On the other hand, the image size of DIBaS is identical to 1532
pixels by 2048 pixels. DIBaS contains only 660 images (20 images for 33 mi-
croorganisms) and it is also an unbalanced dataset where Gram-positive images (n
= 280) and Gram-negative images (n = 194) are available. Therefore, an oversam-
pling method [ZCL15] was applied to both of the datasets. For the MHU dataset,
the number of Gram-negative images increased from 2766 to 5032 by applying ro-
tation, while for the DIBaS dataset, we applied split and/or rotation to both classes
and augmented Grampositive images from 280 to 448 and negative images from 194
to 410. The augmented and balanced datasets were split into a training set (80%),
a validation set (10%) and a test set (10%). Statistical evaluation methods such as
cross-validation are uncommon among AI researchers because they are resource-
intensive and time-consuming. Both datasets contain images cropped from whole
slide images and contain one microorganism such as Staphylococcus, Escherichia
or Streptococcus. The size of the images was rescaled to the same resolution as the
pre-trained images (224 × 224 or 256 × 256) during the fine-tuning phase.
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5.3.2 Study Design

We examined 128 models by accuracy, inference time and model size. The overview
of the study design is shown in Figure 5.2. During the fine-tuning phase, 64 models
were re-trained based on the combination of different models, epochs and datasets.
Then, each model was compressed by two quantization strategies during the quan-
tization phase. Briefly, eight models with minimum parameters and maximum
parameters were fine-tuned to two custom Gram-stained image datasets with two
epochs strategies, and then models were quantized either by channel or tensor.

The eight models included six VT models and two CNN models. Each model rep-
resents a distinctive architecture, which is summarized in Table 5.1. We chose the
most cited model implementation among the same architectures. The two CNNs,
ConvNeXT [Liu+22] and ResNet, served as baselines to be compared with VT mod-
els. ResNet was chosen because it is known to be a versatile and well-performing
CNN architecture on various tasks [Elh+22], while ConvNeXT is a ResNet variation
with hyperparameters that are similar to the ViT model. Furthermore, ConvNeXT
outperformed the ViT model in a similar study classifying Gram-positive bacteria
in a previous study [Liu+22].

Table 5.1: Overview of the eight investigated neural network architectures in alpha-
betical order.

Model
Architecture

traits
Image
size

Patch
size

a # Attention
heads

# Params
(min)

# Params
(max)

BEiT
Self-

supervised VT
224 16 12; 16 86 M 307 M

ConvNeXT CNN 224 N/A N/A 29 M 198 M

DeiT
Knowledge

distillation VT
224 16 3; 12 5 M 86 M

MobileViT Hybrid 256 2 4 1.3 M 5.6 M

PoolFormer Hybrid 224 7,3,3,3 N/A 11.9 M 73.4 M

ResNet CNN 224 N/A N/A 11 M 60 M

Swin Multi-stage VT 224 4
3,6,12,24;
4,8,16,32

29 M 197 M

ViT Original VT 224 16 12; 16 86 M 307 M

aPatch size and attention heads are shown as a single value unless they differ from the parameters.

All models were pre-trained on the ImageNet-1k dataset, which is a collection of 1.3
million images of subjects such as dogs and cats with 1000 classes. Note that each
model can be used in various sizes (e.g. MobileViT-xxs, -xs and -s). They share
the same architecture but differ in the number of model components (e.g. attention
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heads, encoder blocks, etc.). We examined each model with minimum (small) pa-
rameters and maximum (large) parameters. Furthermore, models were re-trained
either for a single epoch or 100 epochs to examine the impact of the number of
epochs on model accuracy during the fine-tuning phase. Two quantization strate-
gies were applied to the models: (i) either the entire tensor (QT) as a whole or
(ii) each channel separately (QC) was quantized from 32-bit float to 8-bit integer
representation.

5.3.3 Metrics

The generalization capability of the models was evaluated by accuracy, which cares
about the quantity of right or wrong decisions in unseen data. Accuracy is the
most employed metric to measure the quality of a classifier, usually defined as true
positives + true negatives divided by all samples. The F1-score [SF07] is often
employed in conjunction with accuracy as a complementary metric for evaluating
classifiers. Accuracy evaluates the quantity of right or wrong outcomes, whereas
F1-score is a harmonic mean of precision and recall, which provides insight into
whether a model is skewed to a certain class or not. Results of the F1-score are
reported in Appendix A.1.

5.3.4 Apparatus

To ensure reproducibility, all our analyses were performed in a containerized envi-
ronment using a docker. The model tuning and evaluation were conducted in the
following virtual environment: One NVIDIA Tesla V100 32 GB GPU was assigned
to the docker container and one Intel Xeon Silver 4110 CPU and 189 GB of mem-
ory were shared from the host server. HuggingFace Optimum [Wol+20] v1.3.0 was
utilized for re-training, model conversion and quantization.

5.4 Results

5.4.1 Fine-Tuning Progress

The history of the fine-tuning progress of all pre-trained models is visualized in Fig-
ure 5.3. The purple lines are the history of the models with minimum parameters
referred to as “small model”, while the gray lines indicate models with maximum
parameters referred to as “large model” respectively. Subplots in Figure 5.3a show
that accuracy gradually increased over the learning cycle, especially the accuracy
slope of MobileViT, ResNet and ViT, which rapidly gained accuracy compared with
other models as the evaluation accuracies at the beginning of the epoch and the last
stage of the epoch differ by a large degree on those three models. Moreover, the
evaluation accuracy of BEiT and DeiT was depicted as relatively lower than other
models during the fine-tuning phase, while ConvNeXT was the highest during the
fine-tuning phase. With regard to the model size, the large models demonstrated
higher accuracy compared with the small models, except for BEiT and ViT. All
models encountered rapid overfitting when they were fine-tuned on the DIBaS data
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set (Figure 5.3b). In particular, ConvNext, DeiT and PoolFormer models immedi-
ately jumped to 100% validation accuracy regardless of the model size, while other
models also attained 100% accuracy at the last epoch.

Figure 5.3: Fine-tuning history for 100 epochs on MHU (a) and DIBaS (b) datasets.
Subplots are organized in correspondence with the alphabetic order of the model
name. Parameters for each model architecture are colored either purple (model
with minimum parameters) or gray (model with maximum parameters).

5.4.2 Accuracy and Quantization

The results of models re-trained for one epoch are illustrated in Figure 5.4. On the
MHU dataset, the best accuracy was achieved by PoolFormer as follows: 93.2%
for 1 epoch and 95.1% for 100 epochs. The highest accuracy on the DIBaS dataset
was achieved by BEiT for 1 epoch (95.0%), respectively by ViT for 100 epochs
(98.3%). Model accuracies were in the following range: BEiT (84.2–97.8%), Con-
vNeXT (49.4–92.8%), DeiT (80.6–92.3%), MobileViT (49.4–89.2%), PoolFormer
(50.0–95.1%), ResNet (45.8–91.7%), Swin (49.4–93.2%) and ViT (85.7–98.3%).
Overall, ViT showed the most well-rounded performance (always >85%) in these
four settings (Figure 5.4a–d). Large BEiT and DeiT models suffered from per-
formance degradation when undergoing channel-wise quantization (Figure 5.4d).
Other models were sensitive to the dataset as they achieved competitive accuracy
on the MHU dataset, but not on the DIBaS dataset. In particular, MobileViT large,
PoolFormer small, ResNet and Swin small were sensitive to both dataset and epoch
as they attained accuracy higher than 87.6% when they were re-trained for 100
epochs on the MHU dataset only

5.4.3 Time, Size and Trade-Offs

We found no difference between model performances on the two datasets (MHU
and DIBaS) in terms of inference time regardless of the model architecture and
quantization approach (Figure 5.5). However, there were large differences mainly
influenced by the model size. Frames per second (FPS) of small models consis-
tently outperformed those of large models by a considerable margin, which was
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Figure 5.4: Accuracy of eight models with two parameter setups tuned on MHU and
DIBaS datasets. Blue bars indicate the models re-trained for one epoch, whereas
orange bars are models re-trained for 100 epochs. Subplots in (a,b) are the results
on the MHU dataset, while (c,d) are the results on the DIBaS dataset. Models
are organized from BEiT to ViT in alphabetic order in the columns with minimum
parameters depicted in (a,c), while those with maximum parameters are shown in
(b,d). Abbreviations: QC, per-channel quantization; QT, per-tensor quantization.
Underlining results indicate the overall best models.

expected by design. The DeiT small model was able to process two times more im-
ages than the large model (5.9 images/s vs. 2.9 images/s). Models gained a minor
improvement in FPS if they were quantized to integer8. BEiT, ConvNeXT, DeiT,
PoolFormer and Swin accelerated 0.2–0.5 FPS, 0–0.5 FPS, 0.3–1 FPS, 0–1.2 FPS
and 0–0.3 FPS, respectively. DeiT and ResNet small models were able to process at
least five images per second (i.e., the results underlined in Figure 5.5), on the other
hand, small BEiT and ViTs could process less than three images per second.

Next, we compared the overall evaluation of model size, accuracy and inference
time visually using bubble charts (Figure 5.6). We notice that model accuracies
on the MHU dataset outperformed compared to those on the DIBaS as the nodes
consistently surpass 80% (yaxis, Figure 5.6a,b), whereas the position of the nodes
varied from 50% to 98% accuracy (y-axis, Figure 5.6c,d). On the other hand, FPS
was almost identical among similarly sized models, regardless of the datasets (x-
axis, Figure 5.6). While the dispersion of FPS of small models (Figure 5.6a,c) was
wider than that of the large models (Figure 5.6b,d). With regards to inference time,
DeiT and ResNet classified more images than other models as they were consis-
tently plotted on the upper-right quadrant of the plots
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Figure 5.5: Bar charts of model throughputs on MHU (a) and DIBaS (b) datasets.
Models are color-coded based on the number of parameters (small (purple) vs. large
(gray)) and grouped by their bit representation (float32 vs. int8). The y-axis repre-
sents the throughput (inference time) measured as the number of processed frames
per second (FPS), while int8 indicates per-tensor quantized models. Underlining
results indicate high-throughput models, which can process at least five images per
second.

5.5 Discussion

In this study, we performed a comprehensive comparison of six VT models and
compared them to two CNN models. We examined their applicability to automated
Gram-stained classification. Overall, VT models outperformed CNN models with
fewer epochs and on a smaller dataset. Especially, VT models with ViT backbone
(i.e., BEiT, Deit and ViT) were outstanding among other models. However, our
findings have shown that model performances were determined not only by the
model architecture but also by model configuration (e.g. epochs and quantization
schemas) and the custom dataset. Hence, we advocate that the model architecture
should be empirically determined by considering all of these parameters above.

With regard to the fine-tuning progress shown in Section 4.1, all models highly
overfitted the DIBaS dataset. The high validation accuracy (Figure 5.3) did not
guarantee high test accuracy (Figure 5.4) as five out of eight models (i.e., Con-
vNeXT, MobileViT, PoolFormer, ResNet and Swin) made a random guess on the
DIBaS dataset for the testing phase (Figure 5.4c,d). We found that deep learning
models suffer from the overfitting problem if the available data quantity is <1000
images. Regularization techniques (e.g. weight decay, weight normalization and
batch normalization) have been previously proven to generalize models and address
the overfitting problem. Weight decay [KH91] penalizes a large magnitude of coef-
ficients, while batch normalization [IS15] rescales the layer’s input, and similarly,
weight normalization [SK16] regulates the magnitude of learnable parameters. In
addition to regularization techniques, early stopping [Pre12] of the training process
is also a widely applied strategy to avoid overfitting. It ends training if there is no
improvement during the training-validation phase.

Both CNNs and VT classifiers achieved better results on a larger dataset (MHU)
than on a smaller dataset (DIBaS). We found that BEiT, DeiT and ViT achieved
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Figure 5.6: Results of accuracy, quantization, inference time and model size of eight
models with minimum and maximum parameters as bubble charts on MHU dataset
(a,b) and DIBaS dataset (c,d), respectively. The transparency of colors indicates the
model quantization where the semi-transparent color represents the float32 models,
while the opaque color represents integer8 models.

high accuracies, regardless of the number of epochs and model size. This might
be explained by their common backbone model: ViT [Dos+21]. We assume that
global information learned by selfattention layers surpasses the value of learning
local information by CNN. Architectures combining CNNs and VT showed com-
petitive accuracy results under certain conditions in this study. PoolFormer, which
completely lacks an attention layer, showed the best accuracy on the MHU dataset
when it was fine-tuned for 100 epochs, however, MobileViT, which consists of three
VT blocks while having six CNN blocks and two additional convolutional layers,
showed the lowest accuracy performances in average among VT models. BEiT and
DeiT suffered from a considerable accuracy drop when they were quantized per
channel (QC). These results are counterintuitive to the general belief [Wu+20] as
QC is expected to obtain higher accuracies. QC provides a better and more sophis-
ticated prediction because it consists of more parameters to train compared with
QT models. It is possible that more intensive quantization made models overfit our
custom dataset and failed to generalize. It might also explain the accuracy refine-
ment from float32 models to int8 models, although the improvement was marginal.
We assume that removing or reducing the number of model parameters conveyed a
similar impact as regularization techniques on a relatively small dataset.

Accuracy is a metric that captures the first impression of models, however, more
insights could be gained when used with other metrics such as inference time and
model size [49]. They are, in fact, non-trivial aspects of DL models in the context
of deployment to resource-limited devices such as mobile devices (smartphones)
without dedicated GPU resources. This is especially the case for patients suffering
from an infectious disease because minimizing the time to diagnosis and the time to
treatment is crucial for them [5]. This study demonstrated that the inference time in
FPS units and the throughputs were enhanced on the models with smaller parame-
ters and with the lower-bit presentation, as shown in Figure 5.5. These gains do not
seem trivial, however, the optimization solutions can be scaled out when a model
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classifies a whole slide image (10k × 6.4k) which is equivalent to 1.3k cropped im-
ages (224 × 224). An overview of all results is depicted in Figure 5.6 which might
provide a guideline for a model selection on a selected dataset. As public Gram-
stained data sets are extremely scarce (besides our local dataset (MHU), we found
only one more additional public Gram-stained image dataset (DIBaS)), we could
not perform systematic statistical comparisons. For this, most approaches require at
least five (ideally) separate data sets to be able to infer non-parametric rank-based
statistics [Dem06; Her20].

Our study has other limitations. The scope of this study was limited to the image
classification problem, although VT models have also made great progress on dif-
ferent problems such as object detection and segmentation [Kha+22]. Carion et al.
from Facebook AI proposed DETR [Car+20] for object detection which consists of
both CNN and VT models. YOLOS [Fan+21] is another successful model for ob-
ject detection inspired by DETR. SegFormer [Xie+21] is a hierarchical transformer
encoder and a lightweight perceptron decoder for image segmentation. ViTMAE
[He+21] proposed by He et al. is a scalable self-supervised learner for computer
vision. It learned the general presentation of images by masking 75% of the image
patches and reconstructing the missing pixels. This study covered only Gram-stain
image classification. Although we examined several VT models on two Gram-stain
datasets, it might not be enough to draw generalizable conclusions about the effec-
tiveness of visual transformers. In fact, numerous research endeavors have uncov-
ered successful VT applications in the medical domain. Shamshad et al. [Sha+22]
conducted a comprehensive survey paper recently that summarized studies utiliz-
ing VT in the medical domain and over 400 studies were classified based on the
problems (e.g. classification, segmentation, registration, etc.) and further catego-
rized by specific tasks (e.g. COVID-19 diagnosis, multi-organ segmentation, etc.)
Some researchers have devoted efforts to constructing a novel network architecture
or concatenating multiple machine learning models, however, the majority of stud-
ies utilize pre-trained transformers models and replace the decision layer for their
custom task without modifying the network morphology. The explosive number of
publications indicates that VT has permeated every sector of the medical domain
and this suggests great potential to develop innovative medical applications. For
instance, image-to-text converters have great potential in the medical domain. Tan-
wani et al. from Google [TBF22] proposed RepsNet which generates automated
medical reports in natural language from medical images. Regardless of the ad-
vanced architectures of novel deep learning models such as VT, simple statistical
methods or shallow ML algorithms often outperform these models or offer at least a
sufficient enough performance, especially on limited, medical domain-specific tasks
as demonstrated for anomaly detection in neuroimaging [59] and cross-lingual ra-
diological report classification [Mar+21]. Deploying lightweight DL models to an
augmented reality (AR) device [Mon+22] also has promising applications. For in-
stance, doctors could wear an AR device during surgery to obtain augmented infor-
mation on a patient, or they can be utilized for training purposes by taking some
guidance from the AR device. Lee et al. [Lee+23] proposed a transformers-based
model that classified one of the three body movements by harnessing electroen-
cephalogram (EEG) signal data and graphics simulated by a head-mounted device.
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Their model works in a virtual driving environment, and it is feasible to convert it
for the medical field in future studies.

5.6 Conclusions

We encourage using VT models for Gram-stained image classification because they
could learn the custom images with fewer epochs compared with CNN. With con-
sideration of the model accuracy, models with ViT backbone are recommended as
BEiT, DeiT and ViT were outstanding in this study. With regard to the inference
time, DeiT small is recommended as the int8 model was able to process six im-
ages per second. Finally, the most compact model was MobileViT small, however,
we do not recommend using it because of the low accuracy. We recommend the
second most compact model, DeiT small in int8, as the accuracy was not degraded
regardless of the number of parameters and quantization schemes. Overall, we rec-
ommend the DeiT model when we consider test accuracy, inference time and model
size for Gram-stained classification. We also advocate using a dataset with 1k or
more images, otherwise deep learning models encounter serious overfitting prob-
lems. Regarding quantization, per-tensor quantization showed more stable accuracy
performances compared with per-channel quantization. We hope this study pro-
vides insight to researchers so that they may save time and computational resources
in selecting a VT model and determining an optimal configuration, especially for a
time-critical application such as Gram-stained image classification.

45



Chapter 6

Discussion and Outlook

This dissertation argues that accelerating innovation with AI in the medical domain
is feasible without using cloud services or cutting-edge infrastructure. It is achieved
by a plan involving transfer learning strategies, model selection that considers in-
ference time, model size, and model compression techniques such as pruning and
quantization. The central focus lies in the optimal utilization of efficient deep learn-
ing, as exemplified by the case study of Gram stain classification.

A comprehensive overview of transfer learning techniques for classification within
the medical domain was demonstrated by numerous studies in Chapter 3. Rather
than proposing novel network architectures, applying transfer learning emerges as
a cost-effective approach that can save computational costs and time without de-
grading the predictive power. A practical starting point involves reusing pre-trained
deep models (e.g. ResNet or Inception) as feature extractors, subsequently updating
only the final fully connected layers. In order to achieve higher accuracy, one could
gradually unfreeze convolutional layers using a low learning rate to facilitate further
model adaptation. The configuration of model adaptation would vary based on the
characteristics and quantity of the custom medical dataset.

The insights of the optimal configuration for re-training convolutional neural net-
work (CNN) models and the performance of applying model compression tech-
niques were demonstrated in Chapter 4. The accuracy of the investigated models
heavily relies on the tuning ratio. Re-training a greater number of layers resulted in
enhanced accuracy for Gram stain image classification. This insight holds promise
for other medical datasets, as medical images often bear little resemblance to the
datasets used for initial model pre-training. The combination of pruning and quan-
tization demonstrated its effectiveness in reducing model size and inference time
while maintaining model quality. Pruning predominantly contributes to reducing
model size, while quantization accelerates inference time. These findings under-
score the relevance of model compression techniques for the successful deployment
of deep learning (DL) solutions on resource-limited devices.

The potential of visual transformers was presented in Chapter 5. Four visual trans-
former models were fine-tuned for the Gram stain classification task and compared
and evaluated alongside two convolutional neural network models. Numerous mod-
els were empirically evaluated across diverse conditions using two distinct datasets.
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VT models demonstrated an ability to capture features in unseen custom images
with fewer epochs compared to CNN models. Furthermore, they consistently out-
performed CNN for Gram-stain classification in most settings when dealing with
smaller datasets. A comprehensive analysis of trade-offs between model perfor-
mance metrics, including accuracy, inference time and model size was visualized
and the shallow DeiT model, quantized to int8 emerged as the optimal choice due
to its capacity to process six images per second without deteriorating accuracy. Con-
cerning general conditions for adapting pre-trained models, reliable model perfor-
mance was achieved through per-tensor quantization configuration and a dataset
with more than 1,000 images.
Numerous research endeavors are addressing the challenges posed by constrained
computing environments in the medical domain. Federated learning [Rie+20],
for instance, is also an emerging idea and especially captures the attention of re-
searchers in the medical domain. Its mechanism enables it to train models across
multiple hospitals behind their firewalls. This mechanism facilitates model train-
ing across various hospitals, each protected by its own firewall. By constructing a
large concatenated model, often referred to as a global model, utilizing distributed
hospital networks. Concerns over data privacy are resolved because federated learn-
ing leverages internal data, transmitting only model parameters to the master node
while patient data are isolated within their respective isolated data centers. Online
federated learning is understudied, where the life cycle of a global model could be
automatically adjusted based on its performance across different hospitals. This
could preserve the model quality over time by adapting to the evolving data charac-
teristics of each site.
Accelerators aware deep learning emerges as an important research subject. Jain et
al. [Jai+20] proposed an augmented compiler approach in order to address the chal-
lenges of executing quantized models across diverse hardware with varying types of
accelerators. The models tested, namely ResNet, Inception, and MobileNet, align
with those discussed in the preceding chapter 4. Moreover, The introduction of
the first open-source compilation framework for optimizing deep learning acceler-
ators, Open Neural Network Compiler [Lin+19], initiated by Microsoft, provides
an opportunity for researchers to delve into deep learning solutions at the system
level. Performance of the inference time varies based on the type of accelerator
architecture because the number of arithmetic logic units differs from accelerators
(e.g. central processing unit, neural processing unit or digital signal processing)
significantly influences the execution plan. During the doctoral study, unexpected
computation patterns were also observed when quantized models were deployed on
a workstation equipped with 32 cores of x86 CPU and Tesla V100. The process-
ing time for a single image exceeded an hour, while mobile devices with a single
ARM CPU achieved execution times of less than 6 ms. A profound understanding
of heterogeneous hardware at the system level will help researchers and developers
to accurately assess model behaviors during deployment.
Additionally, integrating and harmonizing lightweight AI models and compression
techniques is a promising avenue for future research. Mishra et al. [MG23] con-
ducted a comprehensive overview of literature on compressing deep neural net-
works for IoT applications, while this dissertation focused on the investigation of
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two lightweight models, MobileNet and MobileViT. Both models were designed to
accelerate inference times, while these models exhibit a tendency to overfit during
adaptation. Investigating the dynamic combination of models, compression meth-
ods, and medical datasets can be insightful. Utilizing lightweight models could
unlock the full potential of efficient deep learning, paving the way for a seamless
transition from research outcomes to clinical practices.

There is also a high potential to investigate efficient models tailored for three-
dimensional (3D) medical image data [Sin+20] such as computerized tomography,
magnetic resonance imaging, and diffusion tensor imaging. These medical images
are critical to modern medical practices, however, processing such data with con-
ventional computers is challenging due to the large data volume. Only a few re-
searchers studied 3D image datasets, however, an increase in contributions is an-
ticipated, and augmented reality (AR) devices become more prevalent. Healthcare
procedures through AR devices hold promise, yet these devices confront inherent
hardware limitations. This subject remains future work to investigate further.

Artificial Intelligence (AI) has already become deeply ingrained in our daily lives,
and its influence continues to expand. If adoption is inevitable, we must contem-
plate the careful integration of AI in the medical domain. However, the benefits of
innovative technologies often elude small medical research institutes and healthcare
units in developing nations. Hence, efficient DL can empower smaller institutions
to develop AI healthcare solutions without acquiring a substantial infrastructure
upgrade. This will allow computers to do simple and repetitive medical image anal-
yses, while healthcare professionals spend more time with patients.
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Summary / Zusammenfassung

Summary

Deep learning (DL) and artificial intelligence (AI) are woven into the fabric of our
daily lives, and they also hold/have shown promise in the medical domain. Despite
numerous studies published in the last decade regarding AI application in medicine,
DL models have yet to be widely implemented in daily clinical practice on a large
scale. In the face of numerous obstacles on the path to a thriving healthcare AI land-
scape, this dissertation focuses specifically on technical issues related to constrained
hardware resources. To address this problem, in this doctoral thesis, I investigated
and demonstrated optimal DL techniques based on the use case of Gram-stain anal-
ysis for microorganism identification.

Efficient DL techniques such as transfer learning, pruning and quantization can be
employed during model training and deployment strategies should be considered
in advance. Particularly, I advocate for applying transfer learning to pre-trained
models as feature extractors, as opposed to introducing novel model architectures.
For Gram-stain classification, DL models could be compressed and test-time per-
formance could be accelerated without compromising test accuracy or loss. While
pruning contributed to the reduction in model size by 15×, quantizing the bit rep-
resentation from 32-bit to 8-bit led to accelerated inference times by 3×. Taking
into the quantization configuration, the findings demonstrated that quantization
per channel outperformed tensor-wise quantization for the majority of DL models.
This outcome contradicts conventional assumptions, however, intensive quantiza-
tion may potentially hinder the generalization of DL models. Therefore, the most
optimal configuration of DL models should be empirically determined depending
on the custom task and data. In the majority of setups, vision transformers (VT)
exhibited superior model performance compared to convolutional neural networks
(CNN). Notably, among these configurations, DeiT tiny emerged as the fastest VT
model in int8 configuration, processing six images per second.

By harnessing the investigated efficient DL techniques including transfer learning,
pruning and quantization, this doctoral research might provide valuable insights for
AI researchers to accelerate the pace of innovation in the medical domain and pave
the way for the seamless integration of AI into everyday healthcare practices.
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Zusammenfassung

Deep Learning (DL) und Künstliche Intelligenz (KI) sind fester Bestandteil unseres
täglichen Lebens und sind im medizinischen Bereich vielversprechend. Dennoch
wurden die im medizinischen Bereich veröffentlichten Studien bisher noch nicht
im großen Umfang in die tägliche klinische Praxis umgesetzt. Angesichts zahlre-
icher Hindernisse auf dem Weg zu einer blühenden KI-Landschaft im Gesund-
heitswesen konzentriert sich diese Dissertation speziell auf technische Probleme im
Zusammenhang mit begrenzten Hardware-Ressourcen. Um dieses Problem anzuge-
hen, habe ich in dieser Doktorarbeit optimale Deep Learning-Techniken untersucht
und dargestellt, basierend auf dem Anwendungsfall der Gram-Färbung-Analyse zur
Identifizierung von Mikroorganismen.

Effiziente DL-Techniken wie Transferlernen, Pruning und Quantisierung können
während der Modell-Trainingsphase nutzen und frühzeitig Einsatzstrategien in Be-
tracht ziehen werden. Insbesondere befürworte Ich die Anwendung des Transfer-
lernens auf vorab trainierten Modellen in Form von Merkmalsextraktoren, anstatt
neue Modellarchitekturen einzuführen. Für die Klassifizierung von Gram-Färbun-
gen könnten DL-Modelle komprimiert und die Testzeit-Performance beschleunigt
werden, ohne die Testgenauigkeit oder den Verlust zu beeinträchtigen. Während
das Pruning zur Verringerung der Modellgröße um das 15-fache beitrug, führte die
Quantisierung der Bit-Repräsentation von 32 Bit auf 8 Bit zu beschleunigten In-
ferenzzeiten um das 3-fache. Unter Berücksichtigung der Quantisierungskonfigu-
ration ergaben die Ergebnisse, dass die Quantisierung pro Kanal die Quantisierung
pro Tensor für die Mehrheit der DL-Modelle übertraf, unabhängig davon, ob es
sich um vision transformer (VT) oder convolutional neural networks (CNN) han-
delte. Dieses Ergebnis steht im Gegensatz zur gängigen Annahme, nichtsdestotrotz
könnte die intensive Quantisierung die Verallgemeinerung von DL-Modellen für
die Gram-Färbung-Klassifizierung potenziell behindern. Daher sollte die optimale
Konfiguration von DL-Modellen abhängig von der individuellen Aufgabe und den
Daten empirisch bestimmt werden. In den meisten Einstellungen wiesen VT eine
überlegenere Modellleistung im Vergleich zu CNN auf. Besonders hervorzuheben
ist, dass unter diesen Konfigurationen DeiT tiny als das schnellste VT-Modell in der
int8-Konfiguration hervorging und sechs Bilder pro Sekunde verarbeitete.

Durch die Nutzung effizienter DL-Techniken und die Ausarbeitung einer um-
fassenden Strategie für die Modellbereitstellung werden KI-Forscherinnen und -
forscher das Tempo der Innovationen im medizinischen Bereich beschleunigen.
Diese Beschleunigung wird voraussichtlich den Weg für die nahtlose Integration
von KI in den alltäglichen Gesundheitspraktiken ebnen, wertvolle Unterstützung
für medizinische Dienstleister bieten und eine entscheidende Rolle bei der Weiter-
entwicklung der Patientenversorgung spielen.
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Appendices

A Search Terms

The search terms used for PubMed were as follows: (”Convolutional neural net-
work*”[Title/Abstract] OR ”CNN*”[Title/Abstract]) AND (”image processing,
computer-assisted”[MeSH Terms] OR ”Diagnostic Imaging”[MeSH Terms]
OR ”medical imag*”[Title/Abstract] OR ”clinical imag*”[Title/Abstract]
OR ”biomedical imag*”) AND (”transfer learning”[Title/Abstract] OR
”pre-trained”[Title/Abstract] OR ”pretrained”[Title/Abstract]) NOT (”Re-
view”[Publication Type] OR ”Letter”[Publication Type] OR ”meta-
analysis”[Publication Type] OR ”Systematic Review”[Publication Type]
OR ”Systematic Review”[Publication Type])
The search string applied in Web of Science database was as follows:
TS=(”CNN” OR ”convolutional”) AND TS=(”medical imag*” OR ”clinical
imag*” OR ”biomedical imag*”) AND TS=(”transfer learning” OR ”pre-
trained” OR ”pretrained”) NOT TS=(”novel” OR ”propose”)

B Summary Table of Referenced Studies

Table B: A summary table of studies that utilized transfer learning in the medical
domain.

Modality Subject Transfer Learning Reference

CT scan

Abdominopelvic cavity Feature extractor [Hua+20a]

Alimentary system Feature extractor [Yam+19; Pen+20]
Fine-tuning scratch [Had+20; LKJ20]

Bones Feature extractor [Par+20]
Genital systems Fine-tuning scratch [Kaj+18]
Nervous system Many [DYO19]

Respiratory system

Feature extractor [Zha+19c]
Feature extractor hybrid [Nob+18]
Fine-tuning scratch [Zha+19a; NHW17; Pha20]
Many [Xio+19; Gao+20]

Sense organs Feature extractor [Cho+19b]
Thoracic cavity Feature extractor [Nis+18]

Endoscopy Alimentary system Feature extractor [Zac+20; Zhu+19a]
Fine-tuning scratch [Cho+19a; Shi+17; Shi+19]
Many [Pat+20]

Mammographic Integumentary system Feature extractor [Shi+18]
Feature extractor hybrid [Sam+20b]
Fine-tuning scratch [Yu+19a; Moh+18]
Many [Yu+19b; Zha+18; Per+19; Sam+18;

HLG16; CZA18; Sam+20a; She+19]
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Microscopy Tissues Feature extractor [ST18; Yu+18; Hut+18; Tal19; Maz+18;
RMS19; Mar+18]

Fine-tuning [Val+19b]
Fine-tuning scratch [Kan+20; Kat+19]

MRI Bones Many [He+19]
Genital systems Feature extractor [Che+19b; Yua+19]
Integumentary system Fine-tuning scratch [Bor+20]

Many [Zhu+19b]
Nervous system Fine-tuning scratch [Yan+18a; Fuk+19; Ban+19]

Many [Tal+19; Swa+19; Yan+18b; DA19]
OCT Integumentary system Feature extractor [SDS19]

Cardiovascular system Many [Ges+18]
Sense organs Feature extractor [Ahn+18; TLE18; Zhe+20; Zag+18]

Feature extractor hybrid [Bur+17]
Fine-tuning [Hem+20]
Fine-tuning scratch [KCC17; Liu+20a]
Many [Cho+17; Góm+19; Xu+19]

Photography Integumentary system Feature extractor [Bur+18; She+18; Cir+19]
Fine-tuning [Han+18]
Fine-tuning scratch [Hua+20b]

Else Fine-tuning scratch [Sun+19]
Sonography Abdominopelvic cavity Feature extractor [CM17]

Alimentary system Feature extractor [Xue+20]
Feature extractor hybrid [Byr+18]
Fine-tuning scratch [Ban+18b]

Bones Feature extractor [Het+17]
Endocrine glands Fine-tuning scratch [Chi+17]
Genital systems Feature extractor hybrid [Sri+19]
Integumentary system Many [Byr+19]
Respiratory system Many [Che+19a]
Urinary system Feature extractor hybrid [Zhe+19]

SPECT Nervous system Feature extractor [KWT18]
Many [PSA20]

X-ray Abdominopelvic cavity Feature extractor [Che+18b]
Feature extractor hybrid [Dev+21]
Many [Sin+19]

Alimentary system Fine-tuning scratch [Kim+20a; Lee+18; LJ20]
Bones Feature extractor [Pau+19; KM18]

Many [Lee+17; Che+19c]
Cardiovascular system Many [Ova+20]
Joints Many [Abi+18]
Respiratory system Feature extractor [Rah+20b; Hei+20; AA20; Min+20]

Many [Lee+20; AM20]
Thoracic cavity Fine-tuning scratch [Lak17]

Many [Tan+20; Rom+20]
Many Many Many [Shi+16; Cla+20]

C Summary Table of Public Medical Data

Table C: A summary table of public medical datasets. Abbreviations: C, Classifica-
tion; D, Detection; R, Regression; Rg, Registration; S, Segmentation.

Modality Anatomical
Part/Region

Task
Type

Data Published
Year

URL

CT scan Abdomen S FLARE 2021 flare.grand-challenge.org
S KiTS21 2021 kits21.grand-challenge.org
S SLIVER07 2019 sliver07.grand-challenge.org
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Cardiac C orcaScore 2020 orcascore.grand-challenge.org
S CCTA 2020 asoca.grand-challenge.org

Head and neck S INSTANCE 2022 instance.grand-challenge.org
S NucMM 2020 nucmm.grand-challenge.org
S StructSeg 2019 structseg2019.grand-challenge.org
Many CADA 2020 cada.grand-challenge.org

Spine S VerSe 2020 verse2020.grand-challenge.org
Thorax C STOIC 2021 stoic2021.grand-challenge.org/stoic-db

D LUNA16 2016 luna16.grand-challenge.org
C COVID19-CT 2020 covid-ct.grand-challenge.org
R LoDoPaB-CT 2021 lodopab.grand-challenge.org
Rg EMPIRE10 2010 empire10.grand-challenge.org
S COVID-19-20 2020 covid-segmentation.grand-challenge.org
S LOLA11 2011 lola11.grand-challenge.org
Many RibFrac 2020 ribfrac.grand-challenge.org
Many LNDb 2020 lndb.grand-challenge.org

Many S Parse 2022 parse2022.grand-challenge.org
Rg CRC 2018 continuousregistration.grand-challenge.org

Endoscopy Abdomen D EndoCV 2.0 2022 endocv2022.grand-challenge.org
Pelvis D SARAS 2021 saras-mesad.grand-challenge.org

Microscopy Tissues C BCNB 2021 bcnb.grand-challenge.org
C HEROHE 2020 ecdp2020.grand-challenge.org
C PatchCamelyon 2019 patchcamelyon.grand-challenge.org
D MIDOG 2021 midog2021.grand-challenge.org
D LYON 2019 lyon19.grand-challenge.org
S WSSS4LAUD 2021 wsss4luad.grand-challenge.org
S BCSS 2021 bcsegmentation.grand-challenge.org
S SegPC 2020 segpc-2021.grand-challenge.org
S PANDA 2020 panda.grand-challenge.org
R BreastPathQ 2019 breastpathq.grand-challenge.org
R LYSTO 2019 lysto.grand-challenge.org
Many CoNIC 2022 conic-challenge.grand-challenge.org
Many TIGER 2021 tiger.grand-challenge.org
Many DigestPath 2019 digestpath2019.grand-challenge.org
Many NuCLS 2021 nucls.grand-challenge.org
Many PAIP 2021 paip2021.grand-challenge.org
Many MoNuSAC 2020 monusac-2020.grand-challenge.org
Many ACDC 2019 acdc-lunghp.grand-challenge.org
Rg ANHIR 2019 anhir.grand-challenge.org
Many ICIAR 2018 iciar2018-challenge.grand-challenge.org
Many CAMELYON 2017 camelyon17.grand-challenge.org

MRI Prostate C ProstateX 2018 prostatex.grand-challenge.org
S PROMISE12 2012 promise12.grand-challenge.org

Brain S FeTA 2021 feta.grand-challenge.org
S BrainPTM 2021 brainptm-2021.grand-challenge.org
S crossMoDa 2021 crossmoda.grand-challenge.org/CrossMoDA
S Decathlon 2018 decathlon-10.grand-challenge.org
S SKI10 2010 ski10.grand-challenge.org
Many VALDO 2021 valdo.grand-challenge.org

OCT Eyes C ROCC 2017 rocc.grand-challenge.org
Many AGE 2019 age.grand-challenge.org
Many iChallenges 2018 ichallenges.grand-challenge.org
Many RETOUCH 2017 retouch.grand-challenge.org

Photography Eyes C AIROGS 2022 airogs.grand-challenge.org
C RIADD 2021 riadd.grand-challenge.org
C REFUGE 2020 refuge.grand-challenge.org
C PALM 2019 palm.grand-challenge.org
C ODIR 2019 odir2019.grand-challenge.org
C ADAM 2018 amd.grand-challenge.org
C IDRid 2018 idrid.grand-challenge.org
S DRIVE 2019 drive.grand-challenge.org
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Sonography Breast Many ABUS 2021 tdsc-abus2023.grand-challenge.org
Brain Many CuRIOUS 2019 curious2019.grand-challenge.org
Fetal R HC18 2018 hc18.grand-challenge.org

Many A-AFMA 2020 a-afma.grand-challenge.org
Thyroid Many TN-SCUI 2020 tn-scui2020.grand-challenge.org

SPECT Many D fastPET-LD 2021 fastpet-ld.grand-challenge.org
X-ray Spine R AASCE 2019 aasce19.grand-challenge.org

Thorax C CXR-COVID19 2021 cxr-covid19.grand-challenge.org
D NOCE21 2021 node21.grand-challenge.org

MRI; CT Abdomen S CHAOS 2021 chaos.grand-challenge.org
Many S QUBIQ 2021 qubiq21.grand-challenge.org

Many Learn2Reg 2021 learn2reg.grand-challenge.org
MRI; SPECT Brain Many TADPOLE 2017 tadpole.grand-challenge.org
MRI; X-ray Knee C KNOAP 2021 knoap2020.grand-challenge.org

D F1-Score

Figure D: F1-score of eight models with two parameters (small vs. large) on the
MHU dataset (a,b) and DIBaS dataset (c,d). Abbreviations: QC, per-channel quan-
tization; QT, per-tensor quantization.
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