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Abstract

Spatial omics data shows potential to reveal novel insights into the underlying mechanisms
of cancer. Yet the high-dimensional and highly correlated feature space imposes challenges
on analysis. In this thesis, the implementation of convolutional autoencoders to extract
explainable features for biomarker discovery is examined, exemplified on tumor hypoxia.

Mass spectrometry imaging and spatial transcriptomics experiments were performed on
consecutive tissue slices of head and neck squamous cell carcinoma tumor models. To
advance accessibility of these spatial omics modalities, data was reduced by convolutional
autoencoders and the resulting latent space features were ranked for association with
tumor hypoxia through random forest feature importance measures. With the help of a
newly proposed recovery method, the contribution of original features to a latent feature
was derived, thereby retaining biological relevant information. The derived genes and
peptides were compared against the ranked genes and peptides of a random forest only
model. The feature sets of the autoencoder approaches achieved consistently higher scores
when evaluated using the structural similarity index measure. In contrast, the features of
the random forest only models contained many more noisy hypoxia associations caused
by the multicollinearity of features.

Several promising unimodal and multimodal biomarker candidates of mass spectrometry
imaging and spatial transcriptomics data for tumor hypoxia were identified. Multimodal
biomarkers were identified through correlation analysis of aligned serial tissue slices from
both spatial omics modalities in four samples. For a more elaborate integration, it was
outlined how the molecular information of multiple spatial omics modalities may be
combined without error-prone alignment of consecutive tissue slices. Instead, the spatial
omics modalities may be learned directly from the readily available microscopy images
using convolutional neural networks. Then, the learned molecular information may be
predicted from microscopy images of other spatial omics modalities. Preliminary results
demonstrated that the learning of the latent space features of autoencoders yielded more
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accurate predictions than when learning was performed on the raw and sparse spatial omics
features. However, it necessitates further investigation whether also hypoxia-associated
features can be acquired accurately from microscopy images.

Overall, the findings show that convolutional autoencoders accompanied by random forest
models retain more biological relevant information for biomarker discovery than without
prior feature extraction. Considering the increasing amount of available (spatial) omics
data, deep learning feature extraction will become evermore important. This thesis
contributes to the overall understanding of autoencoders by showcasing how specific
characteristics in spatial omics data reflect in the latent space and how they can be
addressed through hyperparameter configurations.



Zusammenfassung

Räumlich aufgelöste Omics-Daten könnten einen wichtigen Beitrag dazu leisten, bisher
unbekannte Mechanismen von Krebs zu erforschen. Allerdings ist die Analyse von
diesen hochdimensionalen und zugleich stark korrelierenden Daten schwierig. Diese
Arbeit untersucht, inwiefern Convolutional Autoencoder erklärbare Features extrahieren
können, die zur Identifikation neuer Biomarker für Tumor Hypoxie genutzt werden
können. Erklärbar bedeutet in diesem Zusammenhang, dass eine Verknüpfung mit den
ursprünglichen Features ermöglicht werden soll, um den molekularen Kontext zu erhalten.

Für diese Arbeit wurden Mass Spectrometry Imaging und Spatial Transcriptomics Exper-
imente auf konsekutiven Tumorschnitten mehrerer Kopf-Hals-Karzinom-Modelle durchge-
führt. Diese räumlich aufgelösten Omics-Daten wurden mittels Convolutional Autoencoder
kodiert und die resultierenden latenten Features wurden auf Assoziationen mit Hypoxie
überprüft. Die Relevanz der Assoziationen wurden mittels Feature Importance Metriken
von Random Forest Modellen bestimmt. Eine von mir neu entwickelte Methode erlaubt
dabei, den Beitrag aller ursprünglichen Features auf ein latentes Feature abzuschätzen.
Die dadurch identifizierten Gene und Peptide wurden mit jenen verglichen, die aus reinen
Random Forest Modellen abgeleitet werden können. Die Features, die durch den Au-
toencoder gewonnen wurden, wiesen dabei eine konsistent höhere Ähnlichkeit zueinander
auf (gemäß dem Index für strukturelle Ähnlichkeit), als die Features aus den alleinigen
Random Forest Modellen. Die Features der Random Forest only Modelle führten dabei
zugleich zu deutlich mehr falsch-positiven Assoziationen zu Hypoxie, was vermutlich auf
die Multikollinearität der Features zurückzuführen ist.

Mehrere unimodale und multimodale Biomarker-Kandidaten für Hypoxie wurden aus
Mass Spectrometry Imaging und Spatial Transcriptomics Daten abgeleitet. Die mul-
timodalen Biomarker-Kandidaten wurden mittels Korrelationsanalyse von alignierten
konsekutiven Tumorschnitten identifiziert. Im letzten Teil dieser Arbeit wurde untersucht,
ob Deep Learning Modelle für die Integration der Omics-Daten, als Alternative zu der
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fehleranfälligen Co-Registrierung von konsekutiven Schnitten, genutzt werden können.
Ziel hierbei ist, molekulare Informationen auf Basis von Mikroskopbilder zu erlernen
und auf Mikroskopbildern anderer (Omics-)Experimente anzuwenden. Im Rahmen dieser
Arbeit wurde gezeigt, dass das Erlernen von Peptidinformationen aus Mikroskopbildern
grundsätzlich möglich ist, insbesondere dann, wenn anstelle der Rohdaten, die extrahierten
Features des Autoencoders verwendet wurden. Allerdings sind weitere Untersuchungen
notwendig um herauszufinden, inwiefern sich auch Peptide, die mit Hypoxie assoziiert
sind, durch vorhandene Strukturen in Mikroskopbilder erlernen lassen.

Die Ergebnisse dieser Thesis zeigen, dass Convolutional Autoencoder in Kombination mit
Random Forest Modellen zuverlässigere biologische Informationen extrahieren können
als ohne vorausgegangene Reduktion der Daten. Berücksichtigt man, dass die Anzahl
und Menge an Omics-Daten weiter steigen wird, so ist es naheliegend, dass Methoden
zur Feature Extraktion weiter an Relevanz gewinnen werden. Diese Arbeit trägt zum
allgemeinen Verständnis von Autoencodern bei, indem gezeigt wird, wie sich bestimmte
Datencharakteristiken auf die latenten Features auswirken können, beziehungsweise, wie
Hyperparameter konfiguriert werden müssen um erklärbare Features zu extrahieren.
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1 Introduction

Spatial omics data promises to reveal novel insights into the molecular biology of tumor
heterogeneity in cancer. Yet for the discovery of biological markers, this data is rarely used
because it is difficult to analyze (high dimensionality, sparsity, multicollinearity of features,
underlying molecules may remain obscured in some technologies). Therefore, this thesis
proposes a framework to make spatial omics data more accessible using convolutional
autoencoders.

The focus of this thesis is to identify biological markers for tumor hypoxia in head and
neck squamous cell carcinoma (HNSCC) using mass spectrometry imaging (MSI) and
spatial transcriptomics (SPT) data. Tumor hypoxia is a dynamic state of reduced oxygen
levels within a tumor that is associated with bad prognosis [1]. Many different biological
markers, or so-called biomarkers, which indicate whether a tumor of a patient is hypoxic
or not, were proposed in HNSCC. However, so far, existing biomarkers showed conflicting
findings in predicting treatment outcomes when evaluated on independent patient cohorts
[2, 3]. The majority of proposed biomarkers in HNSCC is unimodal, relying either on
imaging or solely on molecular data. Spatial omics data, however, allows both to be
considered, the molecular information and its spatial context. Thus, I hypothesize that
spatial omics data allows us to establish more reliable biomarkers. The data investigated
in this thesis includes fragmented peptide information from MSI and gene expression
data from SPT derived from HNSCC tumor models. In a first approach, gene expression
and peptide information data are analyzed separately. The later chapter of this thesis
considers the combination of both spatial omics data.

The analysis of the spatial omics data is primarily carried out using convolutional autoen-
coders. This type of machine learning algorithm reduces high-dimensional data into a

1
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lower-dimensional representation. Technically, a convolutional autoencoder (CAE) consists
most commonly of two interconnected neural networks: an encoder and a decoder [4].
The use of neural networks has been steadily increasing in healthcare applications in the
last years, especially in the field of medical imaging. In this domain, neural networks are
used for disease classification or tissue segmentation, among others [5]. However, in other
medical areas like genomics, it is more relevant to understand the underlying biology
of a disease to be able to identify potential biomarkers or targets [6]. Here, machine
learning methods are still underrepresented as results are often difficult to understand
and interpret for humans. Therefore, the aim of this thesis is to utilize CAEs such that
the molecular information of hypoxic tumor regions is still accessible. It is shown that
CAEs can complement methodologically less complex random forest (RF) models in a
biomedical meaningful manner.

1.1 Contributions

The increasing feature space of (spatial) omics data makes traditional statistical tests
infeasible and therefore requires novel strategies for analysis. In this thesis, it is investi-
gated how CAEs can be utilized to reduce the high-dimensional space of spatial omics
data while at the same time allowing for explainable results. MSI data and SPT data
from consecutive tissue slices of HNSCC xenograft models are utilized. In the Chapter
Convolutional Autoencoders for Aggregating Spatial Omics Data to Derive
Hypoxia-Associated Biomarkers, the following contributions are made:

• CAEs combined with RF models are used to extract and identify features associated
with hypoxia.

• More generally, it is shown that CAEs retain low intensity features of spatial omics
data if the loss function and hyperparameters are configured accordingly.

• A recovery method is presented that identifies which original features contributed to
the latent features of the trained CAEs. This tracks back the molecular information.

• The identified features of the combined convolutional autoencoder and random
forest (CAERF) approach are compared against features from random forest only
models, highlighting that more biologically meaningful features are extracted by
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means of CAERF.

• A semi-supervised CAE approach is presented which incorporates hypoxia labels
and thereby reduces noisy associations and increases the validity of results.

• Challenges of specific characteristics in different spatial omics modalities for CAEs
are described and addressed.

• Several peptide and gene candidates as potential biomarkers for tumor hypoxia in
HNSCC tumor models are presented.

Different spatial omics data presents different challenges, which are covered in subsection
Mass Spectrometry Imaging and subsection Spatial Transcriptomics.

For Mass Spectrometry Imaging, addressed challenges include:

• the variations in mass-to-charge ratio (m/z) values from different samples in mass
spectrometry (MS). MS instruments typically output m/z values and not the
underlying peptides. It is highlighted that AEs can be used to aggregate related
m/z values without the need for heavy pre-processing.

• the heuristic mapping of m/z values of MSI to more precise masses from liquid
chromotography (LC)-MS/MS to identify peptide candidates for tumor hypoxia.
This is necessary as the mass accuracy and mass resolving power of MSI is too low
for directly inferring peptides.

For Spatial Transcriptomics, addressed challenges include:

• the ”orange crate packing” arrangement of spatial spots. It is shown how to adjust
the hyperparameters and the loss function of CAEs to train on the SPT data
accordingly.

In Chapter Combining Spatial Omics Data To Identify More Robust Biomarkers,
contributions involve:

• Serial slices of MSI and SPT data from the same xenograft sample are combined to
identify multimodal gene-peptide biomarkers.

• The impact of different spatial resolutions in different modalities for data integration
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is discussed.

• It is investigated if hypoxia-associated peptide information of MSI data can be
reliably learned from hematoxylin and eosin (H&E) images using a convolutional
neural network (CNN). As part of future work, I consider using the trained CNN to
predict MSI data on top of SPT data.

• It is investigated if dimensionality-reduced, hypoxia-associated peptide information
of MSI data can be reliably acquired from H&E images using a CNN. It is shown
that the latent space of the CAE had denoising capabilities and allowed for more
accurate predictions than without prior feature extraction.

1.2 Structure

The thesis is structured as follows: Chapter 2 covers the background of HNSCC and known
biomarkers for tumor hypoxia. It further describes the characteristics of (spatial) omics
data and feature selection / extraction methods commonly applied for the analysis of
high-dimensional data. Chapter 3 summarizes the used data and software. In Chapter 4,
the CAERF approach for the analysis of spatial omics data is presented and compared
against RF models. Chapter 5 focuses on the combination of spatial omics data. Chapter 6
concludes this thesis with an outline of limitations, potential improvements and extensions
for the proposed CAERF approach and the combination of spatial omics data.

1.3 Terminology

In omics data, features correspond to the molecular information like genes or m/z values.
The observations or samples are typically the individuals, e.g., patients or xenografts, used
to measure this molecular information, or the materials derived from them. Specifically,
the observations or samples in spatial omics are pixels or patches, i.e., small regions of
the data, derived from one or multiple individuals.



2 Background

This chapter introduces the relevant biomedical aspects of head and neck squamous cell
carcinoma (HNSCC), tumor hypoxia and the field of biomarker discovery in cancer. The
(spatial) omics modalities used in this thesis to derive novel markers are described. Then,
the need for novel biomarkers for tumor hypoxia is illustrated by discussing the limitations
of existing ones in HNSCC. The chapter concludes with a brief summary of relevant
methods for data analysis and their challenges.

2.1 Head and Neck Squamous Cell Carcinoma

HNSCC is one of the most common cancer wordwide with around 880,000 new cases and
450,000 deaths in 2020 ([7], considering cancer sites ”hypopharynx”, ”larynx’, ”lip, oral
cavity”, ”nasopharynx” and ”oropharynx”). In Germany, patients with HNSCC are usually
treated with postoperative radio(chemo)therapy or, in case of functionally inoperable
tumors, with primary radiochemotherapy (RCTx), i.e., a combinational treatment of
radiotherapy and chemotherapy [8]. Historically, HNSCC was treated with surgery or
radiotherapy, with first trials starting to evaluate the addition of chemotherapy in terms
of platinum compounds (cisplatin or carboplatin) in the 1980s [9, 10]. The efficacy of
clinical interventions is measured by comparison of so-called endpoints. One endpoint
considered as gold standard in many clinical trials is overall survival (OS) of patients,
defined as time from randomization in a clinical trial until death from any cause [11].
However, to evaluate more specific effects of treatment, usually additional endpoints
such as disease-free survival (DSF) or event-free survival (EFS) are inspected [12]. In
solid tumors, loco-regional failure (LRF), i.e., the time from randomization to the first
loco-regional relapse, is commonly used as primary or secondary endpoint [13]. The
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addition of chemotherapy to radiotherapy was found to significantly decrease LRF and
significantly increase EFS in HNSCC [14]. Since then, RCTx is the standard treatment
for inoperable HNSCC in Germany. However, treatment success has shown to rely on
many factors like sex, age or tumor specific characteristics. In HNSCC, the infection
status for the Human Papillomavirus (HPV) has been recognized as a prognostic marker
[15, 16]. HPV-positive tumors are considered to be more radiosensitive [17]. Therefore, it
is investigated whether a reduction of radiation dosage might lead to less side-effects in
patients while preserving loco-regional tumor control (LRC) rates [18]. One of the tumor
characteristics associated with bad prognosis is tumor hypoxia, a state of low oxygen levels
in solid tumors [1]. Particularly, hypoxia is also associated with resistance to radio- and
chemotherapy [19]. Therefore, hypoxia has been considered as a parameter for treatment
adjustments for many decades [20]. However, compared to the HPV status, it is more
difficult to identify to which degree a tumor is hypoxic. Different approaches to assess
tumor characteristics in general, and hypoxia specifically have been proposed, which are
discussed in the following.

2.2 Biomarker Discovery

Cancer biomarkers, i.e., biological markers, are indicators of risk for cancer occurrence, for
poor response to therapy or for bad outcome [21]. In this thesis, biomarkers are considered
in the context of tumor hypoxia, i.e., markers that indicate the risk for treatment failure,
which can be attributed to hypoxic regions within a tumor.

2.2.1 Molecular Biomarkers

Molecular cancer biomarkers measure biomolecules which are present or produced in cancer
tissue [21]. For detection of such markers, most commonly tumor tissue is utilized either
from biopsies of patients or by means of so-called xenograft models, in which small human
tumor pieces are transplanted into mice [22]. Generally, one can distinguish between
non-targeted and targeted sequencing approaches to measure biomolecules of interest.
While the former technologies are capable of measuring tens of thousands of molecules, the
latter are limited to a pre-defined set of molecules. For the topic of biomarker discovery,
targeted approaches are not discussed here. The following subsections describe the broader
context of the genomic and proteomic data used in this thesis. Other molecular biomarkers
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like DNA or miRNA biomarkers are not touched.

2.2.1.1 Transcriptomics

The transcriptome is considered as the total number of ribonucleic acid (RNA) transcripts
of a cell, measured at a specific point in time [23]. In technologies like microarray
hybridization or RNA-sequencing, the transcriptome of a bulk of cells (e.g., from an
entire tissue slice) is captured and combined. This is problematic as tumors can display
significant levels of heterogeneity, which cannot be captured with bulk approaches [24].
Single cell RNA sequencing (scRNA) overcomes these limitations by capturing transcripts
per cell. Still, the spatial arrangement of a tumor, and thus its spatial heterogeneity, is
not captured by means of scRNA. Spatial transcriptomics bridges this gap by retaining
the spatial information of tissue and was nominated method of the year in 2020 by
Nature Methods [25]. At the moment, spatial transcriptomics technologies are not yet
readily available in single cell resolution for non-targeted approaches [26], but methods
are evolving. Many spatial transcriptomics technologies have been developed, which can
be categorized by the underlying methods (e.g., fluorescence in situ hybridization or
sequencing-based methods) and the number of detectable transcripts [27].

2.2.1.2 Proteomics

Proteins, i.e., macromolecules composed of peptides, are of special interest for biomarker
discovery, as they provide more precise insights into the cellular state compared to RNA
[28]. One way to measure proteins is by means of mass spectrometry (MS). A mass
spectrometer comprises an ion source, a mass analyzer and a detector [29]: (1) The ion
source produces charged analytes (e.g., peptide ions). (2) The ions are separated by their
mass-to-charge ratio (m/z) by the mass analyzer. (3) The abundance of ions at different
m/z values, referred to as mass spectrum, is measured by the detector. The ionization
of proteins, however, is challenging, as relatively large molecules are easily destroyed
during the process. These problems were overcome with electrospray ionization (ESI)
and matrix-assisted laser desorption ionization (MALDI) [30]. In terms of the latter,
ionization is achieved by means of a specific matrix which is applied onto the tissue,
depending upon the molecule of interest, such as the 𝛼-cyano-4-hydroxycinnamic acid
(CHCA) matrix for ionizing peptides [31]. Additionally, enzymatic digestion like trypsin
is often part of sample preparation to break proteins into smaller peptides, enhancing
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ionization efficiency. The protein identification capability of MS, i.e., to link m/z values to
actual peptides, is impacted by several factors. For example, the mass analyzer will impact
mass accuracy and mass resolving power, with time of flight (TOF)-based approaches
lacking sufficient resolution for accurate peptide identification [32]. Newer technologies
like Fourier Transform Ion Cyclotron Resonance (FTICR) [33] allow for higher mass
resolving powers and mass accuracies [33, 34], but widespread application is currently
hindered by the higher costs. Other factors include enzymatic digestion, which facilitates
identification as the used enzymes have known cleavage specificity [30]. In MALDI, also
the utilized matrix will impact mass accuracy due to ion suppression effects [35]. Given
these numerous factors affecting peptide identification, TOF-based MS experiments are
often complemented by more precise mass information from tandem mass spectrometry
experiments [36], like liquid chromotography (LC)-MS/MS. In tandem mass spectrometry,
two mass analyzers are involved: The first mass analyzer separates and isolates an ion
of interest, while the second mass analyzer analyzes the resulting fragments [29]. In
LC-MS/MS, liquid chromatography is used as pre-processing step for the separation of
ions, which reduces the overall complexity of a sample by splitting it into smaller fractions
before inputting it into the mass spectrometer [37]. Traditional MS is typically performed
on one (or multiple) tissue slice(s) as bulk. Similar to spatial transcriptomics, mass
spectrometry imaging (MSI) allows to retain the spatial information of the measured
molecules. An often-used visual representation of MSI data is ion images, which illustrate
the intensities at a specific m/z value in a spatial context [38]. In the last decade, the
spatial resolution of MSI has been consistently improved from 100𝜇𝑚 down to 1.5𝜇𝑚. [39,
40]. One limiting factor for full tissue processing at single cell resolution is the data size,
which is expected to reach terabytes to petabytes in the next decade [40]. Other factors
which influence the spatial resolution are the utilized laser, the ionization technique, and
the type of molecules investigated.

2.2.2 Image-Based Biomarkers

Different imaging methods have been employed to extract features, which can serve as
biomarkers. On a macroscopic level, positron emission tomography (PET) imaging is
commonly used for the detection and monitoring of cancer progression [41]. PET allows
for molecular imaging, i.e., the measurement of biological processes [41] like glucose uptake
by means of radiotracers. On a microscopic level, hematoxylin and eosin (H&E) stains are
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frequently utilized to confirm the presence of cancer by pathologists [42]. Fluorescence
images make use of fluorescent dyes to check for certain antibodies in a tissues and are
often complementing H&E stains. Various other imaging technique are employed for
biomarker discovery which are not part of this work and hence not described.

2.3 Existing Biomarkers for Tumor Hypoxia in HN-
SCC

Many different biomarkers to estimate tumor hypoxia have been proposed. The majority
of them are unimodal, i.e., they rely on a single source to estimate hypoxia. In the
following, special focus is put on biomarkers with prognostic value for RCTx regimes,
as it is the standard treatment for inoperable HNSCC in Germany. For clinical studies,
primary endpoints LRC (or loco-regional failure [LRF]) and progression-free survival
(PFS) are favored over studies considering only OS rates, as these endpoints are more
directly connected to therapy success (see Section 2.1).

2.3.1 Molecular Biomarkers

One approach to assess hypoxia is by means of transcript levels of hypoxia-related genes,
often simply referred to as gene signatures. For HNSCC, several hypoxia gene signatures
have been proposed [43, 44], which have later been refined [45–47]. Of note, there is no
standardized way to derive and apply gene signatures [48]. This introduces different sources
of variability, which hampers comparability among studies. Among the proposed gene
signatures, the hypoxia 15 gene signature by Toustrup et al. has shown to be prognostic
for LRC [46]. In that study, tumors of patients were split into being either more or less
hypoxic, depending on the pre-treatment transcript levels of 15 genes. However, in later
studies, in which patients underwent RCTx rather than radiotherapy alone, the prognostic
value could not be confirmed [8, 49, 50]. Overall, this suggests that existing hypoxia gene
signatures cover some but not all biological relevant aspects of tumor hypoxia.

On the protein level, HIF1𝛼 was investigated as potential marker for hypoxia. This
transcription factor, i.e., a protein with gene regulation capabilities, is known to stabilize
under hypoxic conditions, leading to changes in regulations of VEGF, CA-IX, GLUT-1
and others [51]. However, later findings suggested, that HIF1𝛼 itself is not a suitable



10 Existing Biomarkers for Tumor Hypoxia in HNSCC

biomarker for hypoxia, specifically under chronic hypoxia [52]. Chronic hypoxia is caused
primarily by limitations in oxygen diffusion, while acute hypoxia is defined as temporary
disturbance in perfusion [53]. Although some of the mentioned proteins were associated
with prognosis in some HNSCC studies, a direct connection to hypoxia is difficult to draw,
primarily because many other factors regulate the expression of endogenous markers apart
from hypoxia [19, 51]. Adding to the overall complexity, tumor hypoxia, even in the case
of chronic hypoxia, can be considered as dynamic state which may change over time [54].
As a consequence, Janssen et al. suggested that multiple markers may be necessary to
characterize hypoxia [19].

2.3.2 Image-based Biomarkers

Non-invasive PET imaging approaches can assess hypoxia by various tracers, like 18F-
fluoromisonidazole (FMISO) or 18F-fluoroazomycin-arabinoside (FAZA). Several studies
found different PET parameters to be prognostic for LRC for patients with HNSCC that
received RCTx, conducted either before [55] or during treatment [56]. The variability
of FMISO and FAZA tracers is comparably low, such that a common cut-off value to
separate patients into risk groups was proposed [55]. However, so far there is no common
agreement on which parameters to asses, e.g., the precise reference volume or the time of
assessment, which hampers the comparability of results between centers. Additionally,
small hypoxic regions may be missed due to the relatively low resolution of one voxel [57].
To date, PET imaging is rarely used for hypoxia assessment in clinical practice, mainly
due to its high costs.

Hypoxia can also be estimated from pimonidazole binding levels of tumor biopsy material
and was found to be prognostic for LRC in patients with HNSCC [58]. In that work, the
fraction of hypoxia was quantified by means of fluorescence images, more precisely by
pimonidazole-stained cells. Compared to PET scans, pimonidazole enables a microscopic
approximation of hypoxia [57]. However, the necessity for intravenous injection before
biopsy makes pimonidazole labeling impractical and error-prone for clinical use.

2.3.3 Biomarkers from Our Pre-Clinical Study

As part of my PhD, I investigated gene expression and histological data from seven HNSCC
xenograft models to derive potential biomarkers for hypoxia. The same models were
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considered for this thesis and are described in Section 3. In Koi and Bitto et al., we found
that the seven tumor models exhibited similar degrees of pre-treatment hypoxia, measured
as pimonidazole hypoxic volume [59]. However, only four tumor models (named FaDu,
SAS, UT5, UT8) showed a significant decrease in hypoxia during treatment with RCTx
alone as well as with a combinational treatment of RCTx and nimorazole. Nimorazole is
a hypoxic cell radiosensitizer that is used as part of the standard treatment for inoperable
HNSCC in Denmark, but is not approved in Germany (for details see Baumann et al. [60]).
Additionally, the tumor control rate (TCR) was evaluated until day 120–190 on the same
tumor models for comparison of RCTx plus nimorazole and RCTx alone (control group).
For two out of the four tumor models (FaDu, SAS) that showed a decrease in hypoxia,
also the TCR after treatment with RCTx plus nimorazole was significantly increased.
For the other two models (UT5, UT8), a positive (though not statistically significant)
association was found. The remaining three models (named CAL33, UT45, SAT) exhibited
no decrease in hypoxia during treatment, and were also lacking any positive effect on TCR
after treatment with RCTx plus nimorazole. Evaluating potentially differences between
responding (FaDu, SAS) and non-responding (CAL33, UT45, SAT) tumor models, we
identified 12 genes which were differentially expressed. When we investigated these genes
on data from patients with HNSCC, we found that they were prognostic for LRC in RCTx.
This indicated that the regulation of these genes may also play a relevant role in humans.
We hypothesized that a higher regulation of the genes might indicate a higher degree of
RCTx resistance per se, potentially associated with hypoxia.

2.4 The Need for Dimensionality Reduction

Biomolecular data imposes several challenges on data analyses. First, biomolecular data
aims to acquire as much biological signals as possible, leading to thousands of dimensions.
Second, data acquisition is time-consuming and often expensive, typically leading to the
collection of only a small sample size. Both characteristics (high feature dimensionality,
low sample size) make standard statistical approaches infeasible or prone to statistical
errors. For example, applying t-tests to omics data often leads to thousands of statistically
significant features, even after controlling for the false discovery rate (FDR) [61]. Clearly,
using this amount of features for building a model will lead to severe overfitting, given
the limited sample size [62]. Moreover, the need for evaluating too many features is
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impractical in a clinical setup.

One common strategy to overcome the so-called curse of dimensionality is to reduce
dimensions for the sake of losing some biological signals during data pre-processing. The
following subsections highlight the relevant concepts and strategies for dimensionality
reduction in context of this thesis. In general, methods are either unsupervised, i.e., they
work solely on the underlying omics data, or supervised, i.e., they incorporate apart from
the omics data itself some kind of labels to choose relevant features. Semi-supervised
approaches combine both strategies by using unlabeled as well as labeled data.

2.4.1 Feature Selection

Feature selection methods reduce the original high-dimensional feature space to the most
informative features [63]. Often, feature selection is applied as part of a supervised
classification or regression task. However, it is important to note that for biomarker
discovery a model is not primarily built for prediction. Instead, the objective is to pinpoint
features which explain biomolecular mechanisms of a disease. In this context, it is often
not sufficient to detect single markers since they might be regulated by diverse biological
pathways, as pointed out in the last sections. Rather, one aims to find what Nilsson et al.
termed all relevant features, which is mathematically a harder problem than identifying a
minimal-optimal set of features [64]. As a consequence, many feature selection methods
are not designed for identifying all relevant features. Subsequently, some supervised
feature selection methods are described.

2.4.1.1 Filtering

Commonly applied filtering methods include univariate filtering such as t-tests or ANOVA,
though as pointed out, they were not specifically designed for omics data. Apart from
potential overfitting, these methods do not take into account feature dependencies [65].
In consequence, they will miss features that might be relevant only in conjunction with
other features [66]. More advanced multivariate filtering approaches like limma [67] or
DESeq [68], incorporate some information across genes. Still, the issue of overfitting and
retrieving too many statistical relevant features persists.
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2.4.1.2 Trees

Although often used for classification or regression tasks, tree-based approaches perform
some inherent feature selection. Decision trees are built upon nodes. The topmost node,
which is called the root note, splits the data into two nodes according to the feature
which provides the best split [69]. Each node is split again until no further splits are
possible or until a pre-defined depth is reached. Although different splitting criteria are
possible, the concept of impurity is most prevalent [69]. Impurity describes the degree of
uncertainty within a node. In classification tasks, the Gini index is commonly applied.
Here, 0 indicates a perfect split while 0.5 denotes maximum impurity. For regression tasks,
other impurity measures like mean squared error (MSE) are applied. However, single
decision trees are not capable of reflecting the inherent complexity of high-dimensional
omics data [69]. One possible extension includes random forest (RF) models, which
assemble many different trees, each casting a unit vote [70]. The final prediction is formed
through a majority or average vote in classification and regression models, respectively.
Even without pruning, i.e., the removal of branches to reduce the complexity of a tree,
Breiman et al. found that RFs do not overfit due to the Law of Large Numbers [70].
Practically, single decisions trees are rarely used nowadays, hence further concepts are
described in the context of RFs.

After the RF is build, the importance of features for classification or prediction can be
estimated. Again, impurity can be used to calculate the contribution of each feature in
each node in each tree where it was split [71]. Alternatively, feature importance can be
estimated through permutation importance (PI). Here, the values of a feature are randomly
permuted in unseen (out-of-bag) data to then determine the model’s performance. The
precise metric depends on whether the task involves classification (e.g., accuracy) or
regression (e.g., MSE). A drop in performance indicates that the feature is relevant for
prediction. Both strategies allow for an intuitive ranking of all features according to their
importance to the model. However, the linear ranking of feature importance metrics
might be misleading for features which are only jointly predictive [72]. Also, both, PI
and impurity-based importance (IBI), were found biased in the prevalence of correlating
features [73, 74]. One common effect is that not only highly correlated features but also
true replicates will receive varying feature importance scores (shown for PI, [75]). This can
be attributed to the fact that RFs were initially designed for classification and regression,
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but not primarily for interpretation. For interpretation purposes, all relevant features,
even highly correlated ones, should be found [64, 75].

The Boruta algorithm can be viewed as an extension of the RF model, aiming to identify
all relevant features [76]. Briefly, for each feature, a shadow-variable is created, whose
values are obtained through shuffling. The extended model’s performance is then evaluated
through a RF model and compared against the performance of the original model. Each
feature is then marked as unimportant, tentative or confirmed based on Z-score statistics.
This procedure is repeated for a pre-defined number of iterations or until all features
are either classified as unimportant or confirmed. Boruta yielded promising results when
evaluated on its consistency to select features from omics data of a single breast cancer
cohort, available by means of two different technologies [77]. Consistency in this study
was defined by the capability of Boruta to mark a consistent set of features as important
among all the correlated features present in the omics data. However, it remained unclear
to which degree the feature selection was complete or to which extent pairs of highly
correlated features were consistently selected.

2.4.2 Feature Extraction

Feature extraction methods generate new features from the original feature space through
transformations [78], typically in an unsupervised way. Compared to feature selection,
the retrieved features are usually considered less explainable as the link to the original
feature space is often obscured. Essentially, the data in the lower dimensional space should
preserve certain properties of the original features [79]. Examples of these properties
include the pairwise distance such that similar samples in the original space remain
similar in the lower dimensional space. Others involve the preservation of local and
global structures. Local structures focus on the properties of direct neighbor data points
such as co-expressed genes while global structures try to retain broader patterns like
gene pathways. How well these properties can be obtained depends on the degree of
dimensionality reduction applied and the method used.

Size of Lower Dimensional Space
A survey, evaluating publications in the field of bioinformatics from 1999 to 2006, found
that there is usually no systematic approach applied on how to derive the size of the lower
dimensional space [80]. The same study found that the original data is often reduced
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to less than 10% of the original size. It can be speculated that this number has been
further decreased since then as the collected feature space size is ever increasing. While it
would facilitate subsequent analyses to reduce the original space to a very small number
of features, it would hardly reflect the relationship and geometry of the original dataset.
According to the Johnson-Lindenstrauss lemma, the pairwise distance between data points
can be nearly preserved when projected into a lower space using linear transformation
[81]. However, Chari et al. elaborated that even for a modestly sized dataset of 10,000
data points and a margin of error of 20%, this would require at least 1,842 dimensions
[79]. Beyond this theoretical boundary, the size of the feature space needs to suit the
precise application.

In the following section, commonly used feature extraction methods are discussed.

2.4.2.1 PCA

The reduction of data through principal component analysis (PCA) is accomplished by
finding orthogonal linear combinations of the original dimensions and thereby maximizing
the variance [82]. This can be achieved by first computing the covariance matrix of some
centered data 𝑋. Second, eigendecomposition is performed to derive the eigenvector
matrix 𝑉 and the corresponding eigenvalues. Conceptually, this step can also be achieved
through singular value decomposition [83]. The eigenvector with the highest eigenvalue
corresponds to first principal components (PC), which is orthogonal and thus uncorrelated
to all remaining PCs. The entries of the eigenvector 𝑉 are the so-called loadings 𝑤, with
𝑤𝑖𝑗 representing the loading of the original feature 𝑗 on the 𝑖𝑡ℎ principle component. A
principle component 𝑃𝐶𝑖 is then defined as the weighted sum of the original features 𝑥𝑗

and the derived loadings 𝑤𝑖𝑗:

𝑃𝐶𝑖 = 𝑤𝑖1 ⋅ 𝑥1 + 𝑤𝑖2 ⋅ 𝑥2 + … + 𝑤𝑖𝑝 ⋅ 𝑥𝑝

where 𝑝 is the total number of original features.

The loadings 𝑤𝑖𝑗 can also be utilized to estimate the contribution of an original feature 𝑗
to 𝑃𝐶𝑖. However, usually many features will contribute to a single PC and likewise, one
feature will contribute to many PCs, hampering interpretability.
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The so-called score matrix 𝑍 represents the data in the lower dimensional space and can
be computed by

𝑍 = 𝑋𝑉

If only the first 𝑝 principle components (and not all components) are utilized, the original
data matrix 𝑋 can be approximated from the score matrix 𝑍 using

𝑋 ≈ 𝑍𝑉 𝑇
(1∶𝑝)

How well the reconstructed data approximates the original data will depend on the number
of principle components that are chosen. While PCA is applied in many fields, there is no
consensus on how many principle components to use, though a variety of methods have
been proposed [84]. Often, especially for interpreting and visualizing results, only the first
two components are considered. More critically, these two-dimensional representations
are also used to draw misleading or inaccurate conclusions about the original data. For
example, Elhaik showed for population genetic studies that the findings gained from a
PCA plot are affected by the choice of markers, samples and populations [85]. His report
concluded that results of PCA are not reproducible for other datasets than the investigated
one and are therefore of little use. In terms of retention of properties (pairwise distance,
local structure, global structure), PCA will primarily preserve global structures through
maximizing the variance in the data. Theoretically, also the distance can be preserved if
the data exhibits a high degree of linearity in the original space [82]. However, for features
of spatial omics data, which are known to exhibit more complex, non-linear relationships,
this assumption will not hold true. It is therefore not surprising that when PCA was
applied to MSI data in previous publications, it extracted relatively few informative
features compared to other methods [86, 87].

2.4.2.2 t-SNE and UMAP

T-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation
and projection (UMAP) are both non-linear dimensionality reduction methods, which
rather preserve local structures over global structures [88]. Briefly, t-SNE first determines
the similarity between data points in the original space, whereas nearby data points are
considered similar and distant points are considered dissimilar [89]. The data points are
then randomly projected onto a lower dimensional space and their position iteratively
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optimized based on their similarities in the original space. This is achieved by minimizing
the Kullback-Leibler divergences between the high-dimensional and low-dimensional
probability distributions [89]. As a consequence, errors in nearby data points are penalized
more than those in distant points, emphasizing the preservation of local structures [89].
UMAP, on the other hand, constructs a fuzzy topological representation of the high-
dimensional data, which is then optimized by minimizing the cross-entropy between
the topological representations in the high-dimensional and low-dimensional spaces [88].
The topological representations are build by considering the nearest neighbors and their
distances to each other, thereby effectively preserving non-linear structures in data. Both
methods are not deterministic, as their initialization and applied optimization procedures
incorporate some randomness. Similar to PCA, t-SNE and UMAP are often utilized to
reduce high-dimensional data to two-dimensional embeddings, particularly in the field
of scRNA, as discussed by Chari et al [79]. In that work, they showed that the two-
dimensional embeddings from UMAP and t-SNE are not suitable for preserving local
or global structures. Even worse, the interpretation of these embedding was found to
be contradictory and context-dependent. Chari et al suggested not to rely on generic
dimensionality reduction methods, but rather to focus on more targeted analyses and
targeted low-dimensional embeddings.

2.4.2.3 Neural Networks

Although neural networks are typically used for classification or regression tasks and not
for dimensionality reduction per se, their inherent architecture is designed to perform
feature extraction. A neural network (NN) essentially consists of layers, so-called hidden
layers, which in turn are interconnected by edges between nodes [90]. Nodes are the
components which apply the actual transformations (linear or non-linear ones) to the data
by incorporating weights. An example of a non-linear transformation (termed activation
function), that is commonly used in NNs is named rectified linear unit (ReLU). It is
defined as:

𝑓(𝑥) = max(0, 𝑥)

The function becomes non-linear as negative values are ”rectified” to zero. The lower
dimensional space of a NN is shaped by optimizing a task-specific loss function. The data
is typically split into batches for processing. For regression tasks, common loss functions
to measure the error between actual and predicted values include mean squared error
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(MSE), mean absolute error (MAE) or the Huber loss. The MSE and MAE for a single
batch are defined as:

MSE = 1
𝑏

𝑏
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

MAE = 1
𝑏

𝑏
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

whereas 𝑏 denotes the number of samples in a batch and 𝑦 and ̂𝑦 denote the actual and
predicted values, respectively.

The Huber loss combines the strengths of MSE, i.e., fast convergence, and MAE, i.e.,
robustness to outliers, by utilizing a parameter (referred to as 𝛿) to determine the transition
points between both errors [91]. It is defined as:

𝐻𝑢𝑏𝑒𝑟𝛿 = 1
𝑏

𝑏
∑
𝑖=1

⎧{
⎨{⎩

1
2(𝑦𝑖 − ̂𝑦𝑖)2, if |𝑦𝑖 − ̂𝑦𝑖| ≤ 𝛿

𝛿 ⋅ |𝑦𝑖 − ̂𝑦𝑖| − 1
2𝛿2, otherwise

whereas 𝑏 denotes the number of samples in a batch and 𝑦𝑖 and ̂𝑦 denote the actual and
predicted values, respectively.

While PCA computes the principle components directly, the hidden layers of a NN are
updated during an iterative training process. During every iteration (otherwise known
as an epoch), an optimization algorithm like adaptive moment estimation adjusts the
parameters of a NN, such as the weights, to minimize the loss further. After training,
features can be extracted from the encoded representations of the hidden layers in a NN.
The layers, their total number, their size and the activation functions are hyperparameters
of a NN among others [92], which are configurations that are defined before the actual
optimization process. The type of layers can range from fully-connected layers (so-called
dense layers), layers optimized for retaining spatial information (so-called convolutional
layers) to regularization layers (such as dropout layers) [93]. For processing spatial omics
data, convolutional layers are especially intriguing. Convolutional layers usually work
on patches, i.e., the input is a three-dimensional matrix, consisting of width, height and



The Need for Dimensionality Reduction 19

channels. In a spatial omics scenario, the channels represent the molecular features, e.g.,
gene expression values. A convolutional layer applies multiple filters (so-called kernels)
to all the channels of the input [94]. Each filter is limited by the kernel size, defined by
a width and a height. As the input patches are typically larger than the defined kernel
size, the kernels need to shift along the image coordinates. Therefore, the so-called stride
parameter is set, with a stride of one meaning that the kernels shift one pixel at a time
while traversing a patch [93]. Commonly used kernel sizes are 3 × 3 or 5 × 5 windows.
Typically, odd-sized kernels are utilized because of their property of possessing a center
pixel, which is used as an anchor point for the kernel while traversing. Even-sized kernels
lack a central pixel but may be valuable for identifying asymmetric structures e.g., in
biological tissue. The number of filters will determine the number of channels in the
output of the convolutional layer. For dimensionality reduction purposes, the number of
kernels will be significantly smaller than the number of molecular features. The shape
(width and height) of the output is determined by the kernel size, the stride and whether
or not padding is applied [93]. Besides considering the spatial context, convolutional
layers are also computationally more efficient than dense layers. This arises from the fact
that nodes are no longer fully connected and weights are shared in each filter, thereby
reducing the number of trainable parameters [95].

NNs with many layers are typically referred to as deep learning methods. In Chapter 5.2,
it is evaluated how these architectures might be utilized for combining spatial omics data.
Therefore, some common architecture design decisions are summarized in the following:
The lower layers (i.e., layers close to the input) in a deep NN typically capture simple
patterns (like edges), while higher layers (i.e., layers close to the output) aggregate them
to more complex features [96]. This allows for a better abstraction of features and thus
enhances the model’s ability to better generalize to unknown data. One commonly used
deep learning architecture for imaging tasks is named Densely Connected Convolutional
Networks (DenseNet) [97]. Different variants with a different total number of layers have
been published, e.g., DenseNet121 consists of 121 layers. One building block is the so-called
dense block, consisting of 𝑙 layers, whereas every layer can be a composite function of batch
normalization, non-linear ReLU function, pooling or convolution [97]. The distinct aspect
of DenseNet compared to other architectures is that every layer is connected to every other
layer in a dense block. These dense blocks are stacked and connected through transition
layers. Transition layers itself comprise against a composite function as stated above, but
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in this case the convolution is applied through 1 × 1 kernels [97]. Incorporating 1 ×1
kernels implies that each pixel is considered individually and that the spatial dimensions
remain unchanged. Commonly, 1 × 1 kernels are utilized to reduce the number of channels
[98], which is effectively what happens in transition layers in a DenseNet. Additionally,
1 × 1 kernels significantly reduce the number of trainable parameters, enabling to tackle
computational bottlenecks and in turn allow for even deeper networks [98, 99]. Overall,
DenseNet and other deep learning approaches significantly impacted various computer
vision domains. The proposed architectures are readily available in the most common
machine learning libraries (like TensorFlow, Pytorch), enabling to reuse and adjust the
models for new tasks. Particularly compelling is that many of these models were trained
on large image datasets (such as ImageNet). The weights of these pre-trained models
can then be utilized for the training of a related or even different task, referred to as
transfer-learning [96]. Along with a reduced time for training new models, the pre-trained
models typically acquired already good general purpose features like shapes or textures
[100].

One drawback of NNs is that the relationship of the original and the hidden layers is
obscured. However, the examination of weights or visualization of hidden layers might
reveal some insights into the contribution of the original features. In a highly correlated
feature space, contributions are more difficult to derive as many methods are not applicable
as they assume feature independence (like Kernel SHAP [101]).

2.4.2.4 Autoencoders

An autoencoder (AE) consists of an encoder and a decoder to compress the high-
dimensional data into a lower dimensional space. While the encoder reduces the original
feature space, the decoder is typically a mirrored version of it, allowing to reconstruct the
original data from the lower dimensional space. Conceptually, the encoder and decoder
are most commonly two stacked neural networks [4]. When utilizing NNs, transformations
are not limited to linear operations contrary to PCA. However, when only linear trans-
formations are applied, the loadings of PCA can be recovered from the weights of AEs
[102]. Thus, AEs can be considered as a generalization of PCA [103]. The last hidden
layer of the encoder is typically referred to as latent space. For dimensionality reduction,
the latent space size is lower than the input size, imposing a bottleneck which forces
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the AE to aggregate the input data. The loss function in an autoencoder optimizes the
reconstruction error between the original and reconstructed data. Commonly applied
loss functions are MSE or MAE for continuous data, or cross-entropy for binary data,
respectively.

AEs encounter the same challenges regarding explainability of the latent space as the
hidden layers in a single NN. Whether an AE is able to preserve structures and distances
will heavily depend on the underlying architecture. For example, it is obvious that a
latent space that is too small will eventually lead to discarding complex local structures.
However, given the various types of AEs which have evolved for various applications, there
is no general answer to this question. Common AE architectures include:

• Convolutional AEs. Convolutional autoencoders incorporate convolutional layers
for compressing and reconstructing the data, particularly imaging data [104].

• Regularized AEs. They integrate regularization techniques such as dropout or
sparsity constraints to prevent the model from overfitting to the training data [103].

• Graph-based AEs. Here, relationships and dependencies of an input graph are
learned through the process of message passing, allowing to acquire some local
neighborhood information [105].

• Variational AEs. These AEs learn the underlying probability distribution of the
input data, thus allowing to draw novel samples from it [103]. Due to its ability to
generate new samples, it is considered to be a generative model.

In the context of this thesis, the overall aim is to construct a latent space that specifically
preserves structures associated with tumor hypoxia.

2.5 Image Co-Registration

Spatial omics data is often complemented by microscopy images, e.g., to derive annotations
or to segment specific areas. In this thesis, H&E and fluorescence images are utilized (see
Chapter 3), which need to be aligned with the spatial omics data. Therefore, the concept
of image co-registration is briefly described in the following.

The overall goal of registration is to find a coordinate transformation which is applied
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to the so-called moving image in order to fit the so-called fixed image [106]. Commonly
applied transformations include linear transformations such as translation, rotation, scaling
and sheering, and non-linear ones such as elastic transformations. This co-registration
process is achieved by iteratively minimizing a cost function using algorithms like gradient
descent. The cost function measures the dissimilarity between the transformed moving
and the fixed image. Metrics include sum of squared differences (SSD), gradient-based
metrics or mutual information (MI). The choice of metric depends on various factors,
including the characteristics of the images and the transformations being applied. For
example, sum of squared differences (SSD) is primarily able to capture linear relationships,
while mutual information (MI) allows the detection of non-linear associations. Often, the
co-registration is carried out in a hierarchical manner, i.e., the images are registered at
different levels of details [107]. This can, but not necessarily has to, involve registering
the images at multiple resolutions. Typically, multi-resolution registration first aligns
global structures followed by finer details (known as ”coarse-to-fine” strategy). Many
more parameters exist such as the choice of an appropriate sampler for pixel selection
or the selection of interpolators for estimating pixel values outside the grid positions
[106]. Especially when aligning images from different modalities, co-registration can be
considered as a non-trivial task on its own.



3 Materials and Methods

The HNSCC xenograft models used in this project are part of a larger project on the
effect of tumor hypoxia (see Koi and Bitto et al [59]). In total, spatial omics data, i.e.,
mass spectrometry imaging (MSI) and spatial transcriptomics (SPT), of seven different
xenograft models were collected. These tumor models originated from HNSCC cell lines,
namely FaDu, SAS, UT-SCC-5 (UT5), UT-SCC-8 (UT8), CAL33, UT-SCC-45 (UT45)
and SAT, with characteristics summarized in Table 3.1. Small pieces of tumors were
transplanted to mice, which were later randomly allocated into one of three groups (one
control group, two treatment groups). The control group remained untreated. The mice of
the interventional groups received either 10 fractions (fx) of radiotherapy combined with
weakly cisplatin (RCTx) and sodium chloride as carrier or 10fx of RCTx + nimorazole
(for details see Koi and Bitto et al [59]).

Table 3.1: Cell lines used for biomarker discovery, characteristics according to CelloSaurus
[108], female1according to Takahashi et al. [109]. Table was first published in Koi and Bitto et
al. [59].

Name Sex Age Origin Anatomical site HPV status
FaDu Male 56 South Asia Hypopharynx HPV-negative
SAS Female1 69 East Asia Oral cavity (Tongue) HPV-negative
UT-SCC-5 Male 58 nd Oral cavity (Tongue) HPV-negative
UT-SCC-8 Male 42 nd Larynx HPV-negative
CAL33 Male 69 Europe Oral cavity (Tongue) HPV-negative
UT-SCC-45 Male 76 nd Oral cavity (Floor of mouth) HPV33-positive
SAT Male nd Japan Oral cavity HPV-negative

23
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3.1 Data

Upon submitting this thesis, spatial omics experiments for different control and treatment
groups had been performed and were available for analysis (Table 3.2). Experiments that
had been repeated for the same sample, e.g., to check the consistency of measurements
after technical updates of the instruments had been carried out, are not explicitly listed.
For the subsequent chapters, analysis will focus on untreated samples only. For treated
samples, it was discovered during sample collection that often no or only small hypoxic
regions remained intact.

Table 3.2: Total number of spatial omics data collected. Samples treated with 10 fractions (fx)
of primary radiochemotherapy (RCTx) with and without nimorazole were not analyzed in this
work and are therefore grayed.

Tumor samples
Data Untreated 10fx RCTx + carrier 10fx RCTx + nimorazole
Mass Spectrometry Imaging (MSI) 26 23 25
Spatial Transcriptomics (SPT) 9 5 6
MSI & SPT serials 4 0 0

Considering the results described in Section 2.3.3, the most promising tumor models for
biomarker discovery of hypoxia are CAL33 and SAT. Both tumor models are Human Papil-
lomavirus (HPV)-negative and showed no decrease in hypoxia (measured as pimonidazole
hypoxic volume) during a combinational treatment of RCTx plus nimorazole or RCTx
alone [59]. In contrast, FaDu, SAS, UT5 and UT8 showed a significant decrease in hypoxia
when treated with a combinational treatment of RCTx plus nimorazole or RCTx alone
after 10 fractions. Therefore, CAL33 and SAT exhibited presumably a more resistant
degree of hypoxia compared to the other models, provided that the effect was not predom-
inantly caused by differences in the applied radiation dose per fraction [59]. Arguably, the
difference in treatment response of the models could manifest through different genetic
imprints, which may be already detectable in untreated samples. Therefore, analyses were
carried out independently for the different response models. It is expected that a mixing
of the response groups would lead to signal attenuation of the non-responding phenotypes.
UT45, being the only HPV-positive tumor model, was excluded for subsequent analysis,
given that HPV positivity is associated with a higher radiosensitivity. For UT5 and UT8,
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no spatial omics data was collected upon submitting this thesis. Table 3.3 summarizes
the individual samples per tumor models which were considered for analysis.

Table 3.3: Tumor models and the available samples considered for this thesis.

Samples of tumor models (untreated)
Data FaDu SAS CAL33 SAT
Mass Spectrometry Imaging (MSI) 5 5 5 6
Spatial Transcriptomics (SPT) 3 0 3 3
MSI & SPT serials 1 1 1 1

Slices from excised tumor sample

H&EMSI

FI

H&E SPT

FI

Tumor slice

Time

Potential gapTumor

Figure 3.1: Slices cut from one tumor sample. Up to four slices each per tumor sample were cut
and processed: One slice was used to generate mass spectrometry imaging (MSI) data and was
stained with hematoxylin and eosin (H&E) afterwards. One slice was used to generate spatial
transcriptomics (SPT) data and was stained with H&E before the experiment. Two additional
slices were stained with pimonidazole, denoted as fluorescence image (FI) in the figure. The
thickness of lines visualizes that the thickness of the cut tumor slices differs. The gap illustrates
the potential offset caused from cutting the slices at different locations.

The slices on which the spatial omics experiments were performed, were also stained with
H&E. Additionally, for every spatial experiment a true serial slice was used for fluorescence
staining. Fig. 3.1 gives an overview about the tissue slices and data generated for one
sample. While for one sample usually both spatial omics modalities were collected, these
tumor slices cannot be considered true neighboring slices (indicated by the gap in Fig. 3.1).
This is, because the sample cutting for the spatial omics experiments were initially
carried out at different locations (SPT experiments in Heidelberg, MSI experiments in
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Dresden). Hence, effects from cutting the tumor at different angles, such as differences
in tumor morphology being visible in each slice, were likely to have happened. After
discussions with Dr. Denis Schapiro on the amount of structural differences visible in
these presumably neighboring slices, my supervisors and I agreed on carrying out some
additional experiments. That is, for four samples true serial tumor slices for MSI and
SPT data were cut at a partner site in Dresden (used in Chapter 5), referred to as MSI
and SPT serials in Tables 3.2 and 3.3.

This remaining section describes the data used for biomarker discovery.

3.1.1 (Spatial) Omics Data

The spatial peptide information for this thesis was acquired via MALDI TOF mass
spectrometry imaging (MSI), using a 𝛼-cyano-4-hydroxycinnamic acid (CHCA) matrix
and trypsin during sample preparation. Therefore, tumor sections (1–2𝜇𝑚 thickness)
were cut from formalin-fixed paraffin-embedded (FFPE) tissue blocks. Measurements
were performed on a Rapiflex Tissuetyper (Bruker) in positive reflector mode, whereas
each spot has a diameter of 50𝜇𝑚. Additionally, LC-MS/MS experiments were carried
out on a Ultimate 3000 UPLC system (Thermo Fisher Scientific) directly connected to
an Orbitrap Exploris 480 mass spectrometer. This non-spatial omics bulk experiment
was performed for peptide identification in three different untreated samples of CAL33.
The masses of the identified peptides were then utilized for matching with m/z values
from MSI experiments. The LC-MS/MS experiment, as well as the MSI data of five
untreated CAL33 samples have been deposited with the ProteomeXchange Consortium
via the PRIDE [110] partner repository with the dataset identifier PXD047820. There, as
well as in Bitto et al. [111], also all the MSI and LC-MS/MS protocols are described.

The spatial gene expression data was acquired using the Visium Spatial Gene Expression
Solution kit by 10x Genomics [112] from tissue slices cut from FFPE tissue blocks. One
expression slide can capture a total of 4992 spots, whereas each spot has a diameter
of 55𝜇𝑚, with a center to center distance of 100𝜇𝑚 between spots. Depending on the
investigated tissue, this will result in an average resolution of 1 to 10 cells per spots.
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The following steps were involved in sample preparation (text provided by María José
Besso [M.J.B.]):

”Tissue sections (5𝜇𝑚 thickness) were placed on Visium spatial slides follow-
ing the guidelines from demonstrated protocol CG000408 (10x Genomics).
Deparaffinization, H&E staining and decrosslinking were performed follow-
ing demonstrated protocol CG000409 (10x Genomics). Slide scanning was
done using the Olympus VS200 tissue scanner. Construction of Visium gene
expression FFPE libraries was conducted following the guidelines described
in demonstrated protocol CG000407 (10x Genomics). Library concentration
and quality control were performed by Qubit (Invitrogen) and Tapestation
(Agilent). Afterwards, libraries were pooled at 10 nM final concentration in
100 microliters and 2x 50 bp paired-end sequencing was performed on the
Illumina NovaSeq 6000 S1 according to the manufacturer’s protocol.”

Apart from the publicly available MSI data via the ProteomeXchange Consortium, all
raw spatial omics data is stored under the project ID OE0509 at the Omics IT and Data
Management Core Facility of the German Cancer Research Center (DKFZ).

3.1.2 Imaging Data

Tumor slices for which spatial omics data were conducted, were stained with H&E. H&E
stains were performed for MSI before and for SPT after the spatial experiment, respectively,
on the same tissue slice. H&E images are typically represented in the RGB (Red, Green
Blue) color space. However, the primary source of information in H&E stains are the cells’
nuclei associated with the blue channel, and the cells’ cytoplasm associated with the red
channel [42]. The size difference in nuclei also allows to distinguish whether the tissue
originated from the mouse as host or from human HNSCC. H&E images were obtained
using a microscope at 20× magnification. These images are used in Chapter 5 to combine
the two spatial omics modalities as well as to train the MSI data from H&E images using
a convolutional neural network (CNN).

Additionally, for every tissue slice that was used in a spatial omics experiment, an
immediate neighboring tissue slice (3 𝜇𝑚 thickness) was cut to derive hypoxia annotations.
These consecutive slices were stained with an anti-pimonidazole polyclonal antibody
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(pimonidazole) from Hypoxyprobe™ (Burlington, Massachusetts, USA) as a biochemical
marker of chronic hypoxic cells, i.e., the cytoplasm of cells, complemented by 4’,6-diamidino-
2-phenylindole (DAPI), to label the nuclei of all cells. The resulting image consists of
a blue DAPI and a green pimonidazole channel. Fluorescence images were obtained
using a microscope at 20× magnification. From every fluorescence image (FI), hypoxia
annotations were derived which were used in Chapters 4 and 5 accordingly.

All raw images are stored under the project ID OE0509 at the Omics IT and Data
Management Core Facility of DKFZ.

3.2 Software

QuPath (0.4.4) was utilized by one of my colleagues (M.J.B.) to label FIs and to train
hypoxia pixel classifiers [113]. The tool was also utilized to export downsampled versions
of H&E and FIs.

Image pre-processing was performed using the OpenCV library [114]. Fluorescence images
and the corresponding hypoxia binary images were co-registered to the spatial omics data
using the ITKElastix (0.17.1) [115, 116] framework for Python. For MSI, also the H&E
images were registered via ITKElastix.

For MSI pre-processing, R (4.1.0) and the Cardinal (2.10.0) package was utilized [117].
All other MSI analyses were carried out using Python (3.8.8). For SPT, co-registration of
H&E stains with the actual spatial data as well as barcode/UMI counting was carried
out using SpaceRanger (1.3.0) by 10x Genomics [118]. SPT data was normalized using
the sctransform procedure [119] using the Seurat package (4.3.0.1) in R (4.1.0). Further
pre-processing of SPT data was executed in Python (3.8.8) using the scanpy (1.9.6)
package [120]. The convolutional autoencoder (CAE) approaches were implemented using
Tensorflow (2.11.0). The RF models were built using sklearn (1.3.0 ) [121]. Other packages
used include pandas (2.0.3) [122], numpy (1.24.4) [123] and scipy (1.10.1) [124]. The
data structure for both, MSI and SPT data, was build upon anndata (0.9.1) [125]. For
evaluation of the performance of the Boruta algorithm, originally developed in R [76], the
corresponding python implementation boruta_py (0.3) was used [126].

Training of CAEs and CNNs (Section 5.2) were performed via tensorflow-gpu (2.11.0),
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cudatoolkit (11.2) and cudnn (8.1.0) using Python (3.8.8). Pre-processing and post-
processing of data was performed separately on the CPU. All experiments were run on
nodes within the Omics IT and Data Management Core Facility cluster of DKFZ.

The implemented code is presented throughout this thesis, with the overall workflow
provided in the Supplementary Material, Chapter 7. The work on MSI is also accessible
via GitHub [127] as part of the preprint publication which is available on Research Square
[111]. All code is also stored within GitLab (projects: automsi, autospt and hemsiCNN),
hosted by the Omics IT and Data Management Core Facility of DKFZ.
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4 Convolutional Autoencoders for
Aggregating Spatial Omics Data
to Derive Hypoxia-Associated
Biomarkers

Spatial omics data shows high potential to reveal novel biological insights to hypoxia as it
combines both molecular as well as spatial information of a tumor. Yet, this data imposes
several challenges for analysis (summarized in Fig. 4.1).
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Figure 4.1: Challenges of analyzing spatial omics data

First, the molecular signals associated with tumor hypoxia may only be pronounced
weakly compared to other tissue characteristics, e.g., some of the cells originate from
mouse as host while others originate from human. Also, some technical signals, such as
matrix compounds in case of mass spectrometry imaging (MSI), might mask signals of
interest. An aggressive data pre-processing is at risk of discarding promising features,
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however the high dimensionality, the high collinearity of features and the low sample size
make traditional statistical methods infeasible (see Section 2.4). In the presence of all
of these characteristics, dimensionality reduction methods emerge as the most suitable
choice for investigating spatial omics data. In context of this thesis, it is imperative that
a lower-dimensional space is still preserving hypoxia-associated features.

For comparison, one feature selection method, i.e., a RF model, is compared against a
combinational approach using prior convolutional autoencoders for feature extraction. RF
models are particularly intriguing, as they can handle all kinds of data, provide an intuitive
ranking for feature importance and a proper model setup with only a few hyperparameters,
which need to be configured [129]. However, commonly used feature importance metrics
are sensitive to highly correlated features [74, 75]. On the contrary, AEs, excel in
providing generalized representations of data and thus can handle multicollinearity well if
trained properly. Yet, they are typically considered as a black box, characterized by high
complexity due to millions of trainable parameters.

In the following, the general workflow is sketched in a data-agnostic way (Section 4.1). This
includes the extraction of hypoxia annotations from consecutive tissue slices and the co-
registration to spatial omics data. Then, the general idea of implementing an explainable
AE architecture is described. Specific results for MSI and spatial transcriptomics (SPT)
data are outlined in Sections 4.2 and 4.3, respectively. The chapter concludes with
potential limitations and alternative approaches discussed in Section 4.4.

4.1 General Workflow

Spatial omics data of HNSCC xenograft samples were analyzed using three approaches (Fig.
4.2), which were evaluated in terms of their ability to identify relevant features for hypoxia.

Random forest (RF) only: A simple strategy to process spatial omics data could
involve the usage of a feature selection method like RF. As decision trees lack spatial
awareness, the input data from a spatial omics modality could be either individual pixels
or summarized patches, e.g., the mean patch expression value per feature. To minimize
the change in parameter setup among the three different approaches, summarized patches
are used. These values are used as input together with the hypoxia annotations in order
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Figure 4.2: Three different approaches to analyze spatial omics data are considered.

to train a RF regression model to predict hypoxia. From the trained model, the features
associated with hypoxia are derived according to a mean decrease in impurity feature
importance metric.

Combined unsupervised convolutional autoencoder and random forest
(CAERF): Instead of directly passing the summarized patches to the RF, an unsuper-
vised convolutional autoencoder (CAE) is compressing the data to lower dimensions first.
As a consequence, the subsequent RF can operate on a decreased number of correlations
and a reduced feature space.

Combined semi-supervised CAERF: Autoencoders are most commonly utilized in
an unsupervised manner. The learned latent representations can be influenced to some
extent by the selection of patches and the loss function. Still, without dedicated labels
the AE is unaware of the actual features of interest and thus may focus on other, more
pronounced features. It may also generalize latent features in an undesirable way. As an
extension of the unsupervised CAERF, the proposed combined semi-supervised CAERF
approach therefore incorporates the hypoxia annotations while training the convolutional
autoencoder (CAE). This allows to assign a higher priority to features linked with hypoxia
annotations.
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4.1.1 Hypoxia Annotations from Consecutive Tissue Slices

Initially, the consecutive FIs were processed to retrieve binary hypoxic annotations for
every pixel (0 = no hypoxia, 1 = hypoxia). After discussions with my supervisors, we
agreed to make use of the intensity levels in the fluorescence images and therefore to
derive continuous hypoxia values between [0.0, 1.0]. This is a more accurate representation
of the actual nature of hypoxic cells, which allows to prioritize dense hypoxia clusters
over individual hypoxic cells in a patch-wise approach. However, stains are usually noisy,
i.e., regions may appear greenish and thus, hypoxic when they are actually just staining
artifacts. Ideally, every FI would have been fully annotated, i.e., every cell would be
either marked as being hypoxic or not, by an expert. While this might be feasible for one
sample, this was not the case for the few dozen images used in this work.
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Figure 4.3: Fluorescence image (FI) (left, hypoxia = shades of green, normoxic = shades of
blue) and corresponding hypoxia binary image (right, hypoxia = RGB[0,255,0], non hypoxia =
hypoxia = RGB[0,0,255]) that was derived with a pixel classifier. The left-hand image (FI) is
used to derive the hypoxic value within the range [0.0, 1.0], if a pixel is considered as hypoxic
according to the pixel classifier.

As interim solution, small areas of every FI were annotated to train a pixel classifier which
aims to discern hypoxic from non-hypoxic cells. The resulting binary image is then used
to define which areas are considered as true hypoxic. For every true hypoxic region, the
intensity values of the original FI are used to derive the final hypoxic annotation between
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[0.0, 1.0]. An example of a FI and its corresponding binary image is shown in Fig. 4.3.

In the event the pixel classifier incorrectly assigns a pixel to be hypoxic, dedicated
annotations can be used to overrule the pixel classifier. As final step, a median filter
is applied to remove isolated hypoxic pixels from the hypoxia annotations and thereby
reducing noise.

Co-Registration Of Hypoxia Annotations to Spatial Omics Data

For co-registration, spatial omics data is considered fixed while the FI and the corresponding
binary image of the pixel classifier are considered moving. In the following, capitalized,
italic names in brackets denote the corresponding parameter in the ITKElastix framework
(see Section Software).

Given that both, spatial omics data and FIs, are inherently different (e.g., in terms of their
spatial resolution, scale, contrasts, intensity), the general idea is to rely on the overall
shape of a tumor slice for registration. For the spatial omics data, a mean representation
of all channels, i.e., the molecular information, is created. The FI and binary image are
initially aligned as follows: Images are rotated to a similar position as the fixed image.
Then, the background is cropped and the images are approximately downsampled to
the size of the fixed image. Following, the fluorescence image is co-registered to the
fixed image using an affine transformation model. More precisely, a similarity transform
(SimilarityTransform) is applied, i.e., the moving image is allowed to be scaled, rotated,
translated but not sheered. Even though some deformation might have been occurred
during sample preparation of the two tumor slices, I decided to rely on an non-deforming
model for co-registration. Registration is performed on 4 different hierarchical resolu-
tions (MultiResolutionRegistration, NumberOfResolutions = 4). An adaptive stochastic
gradient descent (AdaptiveStochasticGradientDescent) is used to optimize the mattes
mutual information (MI) metric (AdvancedMattesMutualInformation), addressing the
underlying intensity variations in the images, for a maximum of 2000 iterations. The
co-registration was implemented by means of two auxiliary classes MovingImage and
ImageRep, with excerpts shown in Supplementary Material, Code Snippets 7.1 and 7.2.
The final transformations are applied to the hypoxia binary image of the pixel classifier.
According to this image, the hypoxic spots are identified, and the intensity values of
the corresponding FI used as hypoxia annotations. Hypoxia annotations in the range of
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[0.0, 1.0] for every pixel position are written to a text file and are added to the spatial
omics data during pre-processing.

4.1.2 Explainable Autoencoder Architecture

Autoencoders offer numerous parameters that can be customized, with different archi-
tectures accomplishing different aims. Using AEs for dimensionality reduction of spatial
omics data needs to consider different attributes than for typical pattern recognition tasks.
This includes:

1. For pattern recognition the shape of objects is frequently utilized. However, the
shape or border of a tumor does not contain any valuable information in a spatial
omics scenario and thus should be disregarded.

2. Genomic and proteomic data is inherently correlated. Thus it is likely that similar
features can be collapsed into one latent feature without losing essential information.

3. The lower representations of spatial omics data should express similar characteristics
as the original data. Ideally, one latent space feature summarizes multiple original
features but is otherwise indistinguishable from them in terms of their expression
pattern. In other words, a high abstraction of the original features is unwanted.

4. Neighboring pixels in a spatial omics scenario are likely to share similar molecular
patterns that should be taken into account for denoising purposes.

All these characteristics give guidance for the general architecture of the AE. Instead of
inputting individual samples, every sample is cut into patches of size 𝑥 × 𝑥 pixels. With
that the AE can emphasize local molecular information. Additionally, differences in image
sizes are circumvented this way. A sample is therefore padded to a multiple of x, e.g., an
image of size 127 × 121 pixels is padded to 129 × 129 pixels, if 𝑥 = 3. For the creation and
maintenance of patches for some given spatial omics data, auxiliary classes were created,
with implementation shown in Supplementary Material, Code Snippet 7.3.

The first two points in the enumeration indicate that a small patch size as well as small
kernel sizes might be favorable to achieve the described representations. The second
point also suggests that linear transformations alone might not be sufficient to reduce a
high-dimensional space significantly in size. Moreover, a low number of hidden layers may
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help to depict representations similar to the original feature space. A deep network, i.e.,
a high number of hidden layers, is likely to enforce a higher abstraction level. The last
point in the enumeration implies to use convolutional layers in order to incorporate the
spatial context while learning the latent features.

4.1.2.1 Proposed Autoencoder Architecture

Taken into account all of the data characteristics described in the previous section, Fig.
4.4 sketches the implemented AE architecture. In the following, italic names denote the
corresponding parameters in tensorflow (see Section Software).

MSI data

Input

(x, x, y)

Hidden

(x-a, x-a, z1)
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(x-b, x-b, z2)
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Figure 4.4: Encoder of the explainable AE architecture which uses two convolutional layers
with different kernel sizes. Here, 𝑥 denotes the input patch size, 𝑦 the original feature space.
Variables 𝑎 and 𝑏 are dependent on the kernels’ stride and the padding, 𝑧1 denotes the feature
space in the first hidden layer and z2 the final latent feature space, whereas 𝑧1 << 𝑦 and
𝑧2 << 𝑧1. This figure was first published in Bitto et al. [111] and was slightly adapted for this
thesis.

The first hidden layers consist of a convolutional layer (Conv2D) without padding
(padding=”valid”) being applied, followed by a BatchNormalization layer and a ReLU
activation function. This configuration reduces the feature space y to z1. The bottle-
neck configuration will enforce to encapsulate similar original features into the same
hidden space feature(s). The second hidden layer adds another convolutional layer without
padding (padding=”valid”), followed by a BatchNormalization layer and a ReLU activation
function. This reduces the feature space to the final latent feature space z2. Depending
on the kernel size and the stride, the original patch size is reduced (denoted by the first
layer as 𝑎 and in the second layer as 𝑏). For example, a kernel size of 1 × 1 (kernel_size
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= 1, strides = 1) will not affect 𝑥 and will effectively ignore neighboring pixels. A kernel
size of 2 × 2 (kernel_size = 2, strides = 1) will reduce 𝑥 by one and allows to incorporate
also neighboring pixels. The decoder is built symmetrically to the layers of the encoder.
While an even kernel size is generally not advisable (see Section 2.4.2.4), the proposed
architecture leaded to the most consistent latent representations. The implementation of
the CAE is illustrated in Supplementary Material, Code Snippets 7.4.

To approximate the ideal patch size x and kernel size, the visual representation of different
configurations are compared. The following base configuration is considered: x = 3, y =
18,735, a = 0, z1 = 1024, b = 1, z2 = 64.

4.1.2.2 Effect of Patch Size and Kernel Size

For visualization of the latent space, all patches of an individual sample are encoded
using a trained AE. Then the encoded patches of one sample are reassembled to an image,
whereas every latent feature can be seen as different image channel.
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Figure 4.5: Effect of increasing patch size of AE input from 𝑥 = 3 (top) to 𝑥 = 5 (bottom) on
similar latent features from two different runs with all other parameters as described.

Fig. 4.5 shows the effect of increasing x from 3 to 5 while all other parameters remain
unchanged as described before. Although the visualized latent space features exhibit a
high degree of similarity, the latent features are smoother if x is increased. Also, it seems
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to lead to the exaggeration of certain signals. While some degree of smoothness may be
desirable, it also bears the risk to lose fine-grained details like hypoxic areas.

Effect of increased kernel size
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Figure 4.6: Effect of increasing kernel size of second autoencoder (AE) hidden layer from 2 × 2
(top) to 3 × 3 (middle) and 4 × 4 (bottom) on similar latent features from different runs with
𝑥 = 5 and all other parameters as described.

Increasing the kernel size in the second hidden layer from 2 × 2 (b = 1) to 3 × 3 (b
= 2) and to 4 × 4 (b = 3) resulted in visible tiles and less details (Fig. 4.6). On the
contrary, decreasing the kernel size from 2 × 2 to 1 × 1 (b = 0) often yielded to more
grainy representations (Fig. 4.7), as no surrounding pixels are incorporated.

4.1.2.3 Effect of Latent Space Size

The final configuration for the hidden feature space size z1 and z2, depends on the actual
spatial omics data under investigation, e.g., the original feature space size 𝑦 or the number
of noisy features. Usually, the final error, i.e., the reconstruction error in AEs, will serve
as an indicator of whether one model performs better than another. However, there might
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Effect of decreased kernel size
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Figure 4.7: Effect of decreasing kernel size of second autoencoder (AE) hidden layer from 2 × 2
(top) to 1 × 1 (bottom) on similar latent features from different runs with 𝑥 = 5 and all other
parameters as described.

exist configurations with a comparable reconstruction error but differences in how well
specific features, like hypoxia-associated features, can be represented. To approach the
ideal latent space size, R2 adjusted from the final RF models to predict tumor hypoxia
is evaluated. A high score of R2 adjusted would indicate that the latent space retains
a considerable amount of features associated with hypoxia and is therefore preferred
over models with low R2 scores. The score is adjusted by the number of latent space
features, as it is trivial to recognize that the complete original feature space is expected to
contain the highest number of hypoxia-related features. A high-dimensional feature space
is undesirable as it is prone to produce entangled representations, resulting in multiple
latent features being associated with hypoxia. The precise numbers for all parameters
and for R2 are covered in Section 4.2 and 4.3.

4.1.2.4 Recovery Method

The properties of the proposed architecture, i.e., it is relatively shallow and aims to create
representations similar to the original features, can be exploited to make the training
process of the CAERF to some extent explainable. Given a trained CAERF, the following
recovery method is proposed to estimate which original feature contributed to a latent
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feature (see also Fig. 4.8):
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Figure 4.8: Recovery method to identify which original features contributed to a latent feature
of interest, exemplified using mass spectrometry imaging (MSI) data. Only one original feature
at a time is considered by zero-filling all others. The adjusted patches of one sample are encoded.
Then the encoded patches are reassembled to a image for a latent feature of interest which is
then compared against its original image. The Spearman correlation coefficient is calculated to
derive which original features contributed to a latent feature of interest. This figure was first
published in Bitto et al. [111].

For all patches of a given sample, one original feature remains unchanged while all other
features are zero-filled. The modified patches are encoded and used to construct a latent
representation, i.e., a 2D image, for a latent feature of interest. The original feature
representation is downsampled to the size of the latent space representation and subsequent
comparison is conducted by calculating the Spearman correlation coefficient. Original
features that contributed to a given latent features are expected to show a high correlation
coefficient. Likewise, feature which are not associated with a latent feature are expected
to show a low correlation coefficient. This procedure is repeated for all original features. A
cutoff value (e.g., 0.95) is applied to define the final set of original features that contributed
most to a latent feature, such that noisy associations are ideally reduced. Only associations
with a p-value < 0.05 are considered statistically significant. As every original feature is
considered independently of all other features, highly correlated features are expected to
exhibit comparable correlation coefficients for one latent feature. A complete example an
how to apply the proposed recovery method is shown in Supplementary Material, Code
Snippet 7.5. Auxiliary classes for loading the weights of a trained autoencoder model are
presented in Code Snippet 7.6.
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4.1.3 Autoencoder Training

To train the unsupervised CAERF, an adjusted MAE loss function is optimized:

𝑎𝑏𝑠_𝑑𝑖𝑓𝑓 = |𝑥 − ̂𝑥|

𝑚𝑎𝑒_𝑎𝑑𝑗 = 1
𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑏𝑎𝑡𝑐ℎ𝑒𝑠
∑
𝑘=1

1
𝑝𝑎𝑡𝑐ℎ𝑒𝑠

𝑝𝑎𝑡𝑐ℎ𝑒𝑠

∑
𝑗=1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∑
𝑖=1

𝑎𝑏𝑠_𝑑𝑖𝑓𝑓𝑘,𝑗,𝑗,𝑖

where x and ̂𝑥 denote the actual and predicted intensity values respectively. Here, the
error for all intensities in all m/z values is summed up instead of taking the mean. As
a consequence, the AE cannot solely favor highly pronounced features but also need to
consider low intensity features for achieving a minimal loss. This contributes to preserve
supposedly hypoxia-associated features.

For the semi-supervised CAERF, an additional supervised error is calculated as follows:

𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝑒𝑟𝑟𝑜𝑟 = 1
𝑝𝑖𝑥𝑒𝑙𝑠

𝑝𝑖𝑥𝑒𝑙𝑠

∑
𝑝=1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∑
𝑖=1

𝑎𝑏𝑠_𝑑𝑖𝑓𝑓_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑝,𝑖

whereas the supervised_error is only calculated for pixels with a certain degree of hypoxia
(cutoff values are defined in Section 4.2 and 4.3, respectively). This allows to weight the
error of features with pronounced signals in hypoxic areas. The AE in the semi-supervised
mode will then minimize the sum of mae_adj and supervised_error. The calculation of
adjusted mean absolute reconstruction error and the semi-supervised error is shown in
methods CustomLoss.reconstruction_error() and CustomLoss.supervised_error() in the
Supplementary Material, Code Snippet 7.7.

The AE is trained with the adaptive moment estimation (Adam) optimization algorithm
with a learning rate of 1𝑒 − 4 and a batch size of 64. A total of 25 epochs in the
unsupervised and 50 epochs in the semi-supervised mode leaded to rapid convergence.
In the semi-supervised mode, additionally an early stopping criteria of 30 consecutive
epochs is defined to prevent overfitting when no more improvement was achieved on the
validation data. An example on how to train the proposed CAE architecture can be found
in the Supplementary Material, Code Snippets 7.8 and 7.9.
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4.2 Mass Spectrometry Imaging

In this Section, it is investigated if MSI allows to detect signals associated with tumor
hypoxia, which can be linked to certain proteins or peptides. MSI is a powerful technology
to detect thousands of molecules without the need for target-specific labeling. Yet, there
are two major challenges when working with MSI data on top of the general challenges of
spatial omics data as summarized in Fig. 4.9.

Missing biological 

information
?m/z       peptide

Mass spectrometry imaging specific challenges

Inaccuracies 

between samples

Figure 4.9: Specific challenges of analyzing mass spectrometry imaging data.

First, the identification of proteins and peptides is challenging, as MS typically only
outputs m/z values [130]. As a result, the tedious task of peptide identification is often
circumvented by only reporting m/z values [36], which is of little use in the context
of biomarker discovery. The MSI data in this work is complemented by more precises
masses of LC-MS/MS to derive actual peptide candidates associated with tumor hypoxia.
Therefore m/z values are transformed to MSI masses that are then linked to the masses
of tandem MS. The more MSI m/z values can be assigned to one LC-MS/MS peptide,
the higher the probability of an actual match. This is because one individual MS mass
might not be indicative for identifying a protein, given that the true mass is obscured by
mass inaccuracies.

Second, when analyzing multiple MSI samples, there is no common set of features, i.e., m/z
values, due to the nature of mass inconsistencies. This is typically overcome be aligning
the m/z values either by a known set of m/z references or through clustering methods
[131]. Depending on the type of correction strategy used, this will introduce additional
ambiguities in the process, impeding protein identification further. Acknowledging these
challenges, I propose to stick close to the raw m/z values to allow peptide identification
through subsequent LC-MS/MS analysis.

The precise handling of these challenges are covered in Section 4.2.1. Then, Section 4.2.2
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describes how the three approaches (as outlined in the beginning of this chapter) were
used to derive m/z value candidates associated with tumor hypoxia.

Of note, the work on MSI was published in part as preprint, available via Research Square
[111].

4.2.1 Methods

The sample preparation and the protocols of MSI and LC-MS/MS were not performed by
myself and are described in the PRIDE [110] partner repository with the dataset identifier
PXD047820. Therefore, this section is confined to the pre-processing of MSI data and the
mapping of MSI m/z values to LC-MS/MS masses.

4.2.1.1 Pre-Processing of MSI data

All MSI samples were processed independent of one another and thus differ in their precise
53,400 raw m/z values. The uniform distance between all m/z values was 0.0487. For
retrieving a common set of m/z values the following steps were applied:

1. Raw m/z values among all samples are sorted to derive 53,400 mean m/z values,
depicted in Fig. 4.10 as columns in row raw m/z values.

2. Peak picking on the mean spectra is applied for each sample individually with a
signal-to-noise ratio (SNR) of 6 using the Cardinal package to derive sample specific
peaks. Exemplary peaks are depicted in Fig. 4.10 in row mapped peaks.

3. Sample-specific peaks are assigned to their respective closest mean m/z value,
determined through a binary search. As a consequence, peaks of different samples
but similar values are assigned to the same mean m/z value (e.g., 601.3146, 601.3244
in Fig. 4.10).

4. These groups of m/z values are then used to derive the final reference peaks using
the group’s mean, illustrated in Fig. 4.10 as Peak references (mean).

5. (Optional) The number of reference peaks can be reduced by only considering groups
with at least y assignments, whereas y can be defined by a parameter. It might be
desirable to restrict the total number of reference peaks, as the number is likely to



Mass Spectrometry Imaging 45

increase with the number of samples being processed.

6. Before binning each sample to the 18,735 reference peaks, their spectra is normalized
by the total ion current (TIC) using the Cardinal package.

7. Intensity values among samples are scaled by a global factor per m/z value to
compensate for signal differences between measurements as described by Veselkov
et al. [131].
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Figure 4.10: Deriving peak references from multiple samples. First, mass-to-charge ratio (m/z)
values of all samples are sorted to define a set of mean m/z values. Second, peak picking on the
mean spectra per sample is applied (not shown) and peaks mapped to the mean m/z values.
M/z values from different samples but similar masses (e.g., 601.3146, 601.3244) will map to the
same mean m/z value. These groups are utilized to derive peak references by taking their mean
m/z value. (e.g., 601.3195 from peaks 601.3146 and 601.3244). This figure was first published in
Bitto et al. [111].

Steps 2–4 were implemented independently from currently existing packages and are
provided in R Code Snippet 4.1, whereas 𝑚𝑒𝑎𝑛_𝑝𝑒𝑎𝑘𝑠 denote the sample-specific peaks
and 𝑟𝑎𝑤_𝑚𝑒𝑎𝑛 the 53,400 mean m/z values, respectively. This pre-processing procedure
will retain potential mass shifts, if m/z values of different samples are too different to be
grouped together (showcased in Fig. 4.11). This reduces the effect of creating artificial
features which deviate significantly from the original m/z values. Likewise, keeping
potential mass shifts increases the probability of matching MSI m/z values to LC-MS/MS
masses and acknowledges the fact that the exact mass is obscured. Processing these mass
shifts using the proposed AE architecture poses no additional challenges, since they can
be easily summarized.
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Code Snippet 4.1: Extract of proposed preprocessing of m/z values
1 preprocess_mzs <− function (mean_peaks , raw_mean_mz, y , to l ) {
2 mean_peak_mzs <− lapply (mean_peaks , mz)
3 al l_mean_peak_mzs <− sort ( unlist (mean_peak_mzs) )
4
5 # step 2
6 # group a l l_mean_peak_mzs to raw_mean_mz
7 idx <− matter : : bsearch ( al l_mean_peak_mzs , raw_mean_mz, to l=to l/2 , t o l . r e f = ”none” )
8
9 # step 3

10 mz_bin <− split ( al l_mean_peak_mzs , idx )
11 mz_groups <− unlist ( lapply (mz_bin , length ) )
12
13 # step 4 ( optional , e f f e c t i v e i f y > 1)
14 mz_f i n a l <− mz_bin [mz_groups >= y ]
15 # step 3 proceeding
16 mz_f i n a l_mean <− lapply (mz_f i na l , mean)
17 mz_f i n a l_mean <− unlist (mz_f i n a l_mean, use .names = FALSE)
18 return(mz_f i n a l_mean)
19 }

From the 18,735 m/z values, 56 were found to be true replicates, i.e., their intensity values
of all pixels were identical to another m/z value. Additionally, around 320 more m/z
values were considered as replicates, given that their intensity values were very similar
(pearson correlation coefficient > 0.975) to up to two direct neighboring m/z values.

4.2.1.2 Autoencoder Setup

The following configuration (see Section 4.1.2.1) was utilized: x = 3, y = 18,735, a = 0,
z1 = 1024, b = 1, z2 = 64–256.

4.2.1.3 Sample Size

MSI data of five samples of untreated tumor model CAL33 was pre-processed and split
into patches of size 3 × 3 pixels. Likewise, the co-registered hypoxia annotations from
consecutive tumor slices were cut into patches of size 3 × 3 pixels. All data was scaled to
a range between [0, 1]. To generate more data, overlapping patches with a step size of 2
were generated, from which patches containing no MSI data but only background were
removed. The CAE (unsupervised and semi-supervised) was then trained on 8,649 patches
from three samples. For validation 2,158 patches of two other samples were utilized.
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Figure 4.11: Peak picking on multiple samples. Shown is the mean intensity of all pixels in
the range of mass-to-charge ratio (m/z) values 809.30 to 809.50 per sample. Row #1 shows
the mean raw spectra per sample. Row #2 shows the peaks derived from the mean spectra of
a given sample. Row #3 illustrates the final TIC-normalized peaks for all samples. (A) For
Samples M825, M821, M815 and M816, their sample-specific peaks match best with mean m/z
value 809.387 (yellow arrow). (B) For Sample M819, its sample specific peaks match best with
mean m/z value 809.400 (pink arrow). The two peaks around 809.387 and 809.400 are likely
denoting the same mass, with inaccuracies caused due to mass shifts. Given that the true mass
is unknown, both peaks are kept for further analysis. This figure was first published in Bitto et
al. [111] with naming of the samples being adapted for this thesis for consistency.

The three samples used for training the AE, were also utilized for evaluating the perfor-
mance on the subsequent RF regression models. For the other two samples, the number
of hypoxic regions was too low and samples were therefore dismissed. Again, overlapping
patches with a step size of 1 were generated. The number of non-hypoxic patches were
downsampled to enable the RF to distinguish hypoxic and normoxic features. Therefore,
all patches with a mean hypoxia expression of at least 0.12 were chosen. Considering that
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this will include many patches with a comparable low hypoxia signal, only 50% additional
non-hypoxic patches were added. The RF regression model was then run on 6,409 patches
using 10-fold cross validation with a test size ratio of 33%.

4.2.1.4 Random Forest Setup

In the following italic names in brackets denote the corresponding parameter in the sklearn
library.

The RF regression models were built upon 1,000 trees (n_estimators = 1000) using
the MSE as splitting criteria (criterion = ”squared_error”). The number of features
randomly selected at each split was set to the square root of the total number of features
(max_features = ”sqrt”). The patches of MSI and hypoxia annotations were reduced to a
mean patch expression value before inputting the values into the RF. Features correspond
either to individual m/z values in the RF only approach or latent features in the CAERF
approaches.

After training, IBI, i.e., mean squared error, was used to rank important features of
hypoxia. The rankings of the test samples according to cross validation outcomes were
used to define the feature set associated with hypoxia. A complete example on how to
derive the feature importance metrics for all approaches is showcased in Supplementary
Material, Code Snippet 7.10, with auxiliary classes shown in Code Snippet 7.11.

4.2.1.5 Mapping of MSI M/Z Values to LC-MS/MS masses

For matching MSI m/z values to masses from LC-MS/MS, m/z values which were associated
with hypoxia were converted to masses using the formula:

𝑚𝑠𝑖_𝑚𝑎𝑠𝑠 = 𝑚𝑠𝑖_𝑚𝑧_𝑣𝑎𝑙𝑢𝑒 ∗ 1 − 1

where the constant 1 corresponds to the ion charge. This formula is built on the assumption
that the majority of ions produced in MALDI MSI are single charged [36].

The peptide information and the corresponding masses of LC-MS/MS were derived using
MaxQuant. In total 28,487 peptides and 3,160 proteins were identified based on an FDR
cutoff of 0.01 on both, peptide and protein level. Modified proteins, indicated by a ”C”,
were excluded for further analysis.
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When mapping MSI masses to LC-MS/MS masses, one has to consider that the observed
mass in MS experiments is usually not equal to the actual mass. In LC-MS/MS, for
every identified peptide an mass error of the observed and actual mass is calculated.
For example, the highest error in the tandem MS experiment was observed for protein
ATP-dependent 6-phosphofructokinase, platelet type, with an observed mass of 1818.86781
and a mass error of -4.4863 parts per million (ppm). The formula [132]

Mass Error [ppm] = (Observed mass − Actual mass)
Actual mass

× 106

can be rearranged to calculate the actual (theoretical) mass of the protein using

Actual Mass = (Observed mass × 106)
Mass Error [ppm] + 106

which is approximately 1818.87597. As the errors in the LC-MS/MS experiments are
comparable small, they were ignored for the mapping of masses. More challenging is the
approximation of mass errors for MSI data. As the MALDI MSI measurements had been
performed on a RapiFlex Tissuetyper, designed for high-resolution imaging, the full width
at half maximum (FWHM) was used as an approximation for the actual mass range. The
FWHM denotes the peak width at half of its maximum intensity, i.e., the actual mass is
expected to lie within the FWHM. For multiple samples, the FWHM was then calculated
for every peak and sample individually, The standard error was then defined by the
FWHM of all samples, and can be considered as maximum error. The lower half-maximum
point, respectively larger half-maximum point is the point left respectively right to a
peak where it reaches half of its maximum. Additionally, the distance between two m/z
values, which is 0.0487, was defined as minimal technical error. The lower technical point,
respectively upper technical point is then defined as the peak - 0.0487, respectively peak +
0.0487. Then, a LC-MS/MS mass was mapped with an MSI mass, if its mass was within
the MSI mass range, i.e.,

MSI mass min <= MS/MS mass <= MSI mass max

whereas

MSI mass min = max (
𝑛

min
𝑖=1

lower half-maximum pointssample𝑖
, lower technical point)

MSI mass max = min ( 𝑛max
𝑖=1

upper half-maximum pointssample𝑖
, upper technical point)
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Figure 4.12: Presumed mass ranges for mass spectrometry imaging (MSI) peaks for mapping
with liquid chromotography (LC)-MS/MS masses. (A) Standard error (red line), given by the
full width at half maximum (FWHM) of all samples, restricts the technical error (blue line) at
peak - 0.0487. (B) Technical error of peak is within the range of the standard error and is not
further restricted. (C) Peak without (preserved) neighboring peaks that could be linked to mass
shifts. Considering the technical error leads to a more conservative range for mapping tandem
MS masses than the standard error. This figure was first published in Bitto et al. [111].

and 𝑛 denotes the number of samples.

Fig. 4.12 illustrates some example peaks and the impact of the defined errors. MSI mass
min and MSI mass max were primarily restricted by the technical error (blue line) to
avoid an overly confident mapping of MSI masses to LC-MS/MS masses. However, in
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some cases this approach might be still too optimistic. Therefore, the MSI mass range
was further restricted by the standard error. Fig. 4.12A and 4.12B show two neighboring
peaks, sharing the same standard error given by the minimum lower half-maximum points
and the maximum upper half-maximum points (shown in red). In Fig. 4.12A, MSI mass
min is further restricted by the minimum lower half maximum points (dotted red line),
which does not become effective in the neighboring peak (Fig. 4.12B). Using this combined
error to limit the MSI range is especially conservative in mapping masses if peaks are not
backed up by mass shifts (e.g., Fig. 4.12C).

To reduce the impact of random matches, peptides were only considered as candidates if
at least two distinct MSI masses (without potential mass shifts) were assigned. Adding
another constraint, the ion images of two mass pairs were expected to correlate with one
another (Spearman correlation coefficient > 0.80).
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4.2.2 Results

In total five MSI samples of untreated HNSCC model CAL33 were analyzed. For every
MSI sample, a consecutive tumor slice was stained with pimonidazole to derive hypoxia
annotations. All five MSI samples were pre-processed and a total of 18,735 common peaks
per pixel retained. The three approaches were described in the beginning of this Chapter.
Figure 4.13 summarizes how the unsupervised CAERF approach differs from the RF only
approach.
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Figure 4.13: Workflow of convolutional autoencoder and random forest (CAERF) and random
forest (RF) only approach based on patches. (A) Combined CAERF approach: mass spectrometry
imaging (MSI) data was encoded using the trained autoencoder. RF regression models were
trained on the encoded data and the reduced hypoxia annotations from consecutive slices. (B)
RF only approach: patches of MSI data and hypoxia annotations were reduced to the mean
patch values to train a RF model. Numbers denote the length of the input vector for the RF
regression model, i.e., 8–256 latent space features or 18,735 original features. This figure was
first published in Bitto et al. [111].

As both, AE as well as tree-based methods, involve some degree of randomness, different
runs may yield to different results. Therefore, the different approaches were evaluated by
qualitative measures of individual runs and quantitative metrics of multiple runs in the
following.
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4.2.2.1 Qualitative Results of One Exemplary Run Each

Fig. 4.14 shows the hypoxia annotations of the three out of five samples for which hypoxia
annotations were available.
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Figure 4.14: Hypoxia annotations of individual mass spectrometry imaging (MSI) samples.
Yellow = high degree of hypoxia, dark blue = no hypoxia. This figure was first published in
Bitto et al. [111] with naming of the samples being adapted for this thesis for consistency.

Results of Unsupervised Convolutional Autoencoder Run

The CAERF was trained with a latent space size z2 of 64. Out of the 64 latent features,
#56 exhibited the highest RF feature importance for hypoxia. Fig. 4.15 shows a visual
representation of latent feature #56 (left) and, for comparison, also a representation for a
latent feature with a low feature importance for hypoxia is shown (right).
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Figure 4.15: Visual representations of encoded mass spectrometry imaging (MSI) samples
in latent space. Left: Latent space feature #56 associated with hypoxia according to random
forest (RF) feature importance. Right: Latent space feature #44 with low hypoxia association
according to RF feature importance. This figure was first published in Bitto et al. [111] with
naming of the samples being adapted for this thesis for consistency.

The recovery method described in Section 4.1 was applied to identify which original m/z
values contributed to latent feature #56. With a defined Spearman correlation coefficient
cutoff value greater than 0.95, 180 m/z values contributed to the hypoxia-associated latent
feature #56. Some exemplary m/z values are shown in Fig. 4.16A and 4.16B.



54 Mass Spectrometry Imaging

A Common m/z values found by both CAERF approaches and RF only
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B M/z values found by unsupervised CAERF approach
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Figure 4.16: Exemplary mass-to-charge ratio (m/z) values associated with hypoxia that (A)
were found by both convolutional autoencoder and random forest (CAERF) approaches and the
random forest (RF) only approaches or (B) were distinctively found by the unsupervised CAERF
approach. This figure was first published in Bitto et al. [111] with naming of the samples being
adapted for this thesis for consistency.

Examining the overall value of the features derived by the proposed CAERF approach,
the 180 m/z values associated with hypoxia were mapped to the masses of LC-MS/MS
experiments. In total 50 peptide candidates were identified for which at least two individual
MSI masses could be assigned to LC-MS/MS masses (Table 4.1). Several of those peptides
were associated with tumor hypoxia before. For example, enzymes of the glycolytic
pathway, like phosphoglycerate kinase 1 (PGK1), pyruvate kinase M (PKM), lactate
dehydrogenase A (LDHA) and aldolase A (ALDOA) are known to adopt to low oxygen
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supply [43, 133]. Also serine hydroxymethyltransferase (SHMT2) was found to effect cell
survival under hypoxic conditions [134]. Other candidates like Annexin A1 (ANXA1) are
more generally associated with tumor aggressiveness, but their precise role in HNSCC are
still under investigation [135]. Supported by evidence from previously published work,
the association of many of the identified peptides candidates to hypoxia seems plausible.
The connection of other candidates to tumor hypoxia demands further evaluation.

Table 4.1: 50 peptide candidates found with at least 2 masses from unsupervised convolutional
autoencoder and random forest (CAERF) run matched to liquid chromotography (LC)-MS/MS
experiment. Only one exemplary mass pair is shown, the complete data is provided in Suppl.
Table 1 in Bitto et al. [111].

Protein(s) Gene name(s) Mass 1 Mass 2

DNA-dependent protein kinase catalytic subunit PRKDC 877.466 1337.665
Keratin, type II cytoskeletal 6A;Keratin, type II cy-
toskeletal 6C;...

KRT6A;KRT6C;KRT6B 877.441 808.387

Annexin A1 ANXA1 808.400 1063.564
Cytochrome b-c1 complex subunit 1, mitochondrial UQCRC1 808.400 1042.519
Phosphoglycerate kinase 1 PGK1 808.400 1011.519
Elongation factor 1-gamma EEF1G 809.402 937.455
Keratin, type II cytoskeletal 5 KRT5 809.402 1409.733
Cullin-associated NEDD8-dissociated protein 1 CAND1 988.480 965.469
Serine hydroxymethyltransferase, mitochondrial;... SHMT2 988.480 854.495
Heat shock cognate 71 kDa protein HSPA8 988.480 1409.694
RNA-binding protein with serine-rich domain 1 RNPS1 989.471 864.406
Eukaryotic translation initiation factor 3 subunit L EIF3L 989.471 964.486
Collagen alpha-3(VI) chain COL6A3 989.471 1036.529
Desmoplakin DSP 1011.490 944.515
Heterogeneous nuclear ribonucleoprotein R;... HNRNPR;SYNCRIP 1011.490 926.481
Fatty acid-binding protein, epidermal FABP5 1042.547 926.520
Prelamin-A/C;Lamin-A/C LMNA 1042.547 1027.527
Tropomyosin alpha-4 chain TPM4 1042.547 1259.603
Trifunctional purine biosynthetic protein adenosine-3;... GART 1042.547 1036.548
Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 1026.520 1410.739
L-lactate dehydrogenase A chain LDHA 1026.520 1166.637
Programmed cell death protein 6 PDCD6 997.502 1338.656
60S ribosomal protein L18a RPL18A 1042.519 926.520
Eukaryotic translation initiation factor 3 subunit C;... EIF3C;EIF3CL 1042.519 1166.637
Keratin, type I cytoskeletal 14 KRT14 1036.529 1166.637
Fructose-bisphosphate aldolase A;Fructose-bisphosphate
aldolase

ALDOA 1043.548 939.462

60S ribosomal protein L15;Ribosomal protein L15 RPL15 1166.612 880.449
ATP-dependent RNA helicase A DHX9 990.459 1074.523
Tubulin alpha-1B chain;Tubulin alpha-4A chain;... TUBA1B;TUBA1C;TUBA1A;... 1409.733 774.394
Eukaryotic translation initiation factor 3 subunit A EIF3A 1409.733 816.437
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Table 4.1: Continued: 50 peptide candidates found with at least 2 masses from unsupervised
convolutional autoencoder and random forest (CAERF) run matched to liquid chromotography
(LC)-MS/MS experiment. Only one exemplary mass pair is shown, the complete data is provided
in Suppl. Table 1 in Bitto et al. [111].

Protein(s) Gene name(s) Mass 1 Mass 2

Elongation factor 2 EEF2 1012.508 879.436
Pyruvate kinase PKM;Pyruvate kinase PKM 883.451 1167.621
Heterogeneous nuclear ribonucleoproteins A2/B1 HNRPA2B1;HNRNPA2B1 1409.694 1337.665
Aconitate hydratase, mitochondrial ACO2 1411.719 921.446
Isoleucine–tRNA ligase, cytoplasmic IARS 1411.719 957.533
T-complex protein 1 subunit theta CCT8 998.516 1167.580
Bifunctional glutamate/proline–tRNA ligase;... EPRS 965.469 1063.564
Keratin, type I cytoskeletal 16 KRT16 1337.665 854.495
EH domain-containing protein 4 EHD4 1337.665 937.455
Keratin, type II cytoskeletal 75 KRT75 921.446 1038.511
Myeloperoxidase;Myeloperoxidase;89 kDa myeloperoxi-
dase;...

MPO 921.446 937.455

Transketolase TKT 921.446 944.515
60 kDa heat shock protein, mitochondrial HSPD1 854.495 1007.493
Annexin A4;Annexin ANXA4 856.472 1074.523
Actin, cytoplasmic 1;Actin, cytoplasmic 1, N-terminally
processed;...

ACTB;ACTG2;ACTA2;... 944.515 1197.680

26S proteasome non-ATPase regulatory subunit 3 PSMD3 1411.683 957.533
Cyclin-dependent kinase 1 CDK1;CDC2 772.417 1027.527
Transitional endoplasmic reticulum ATPase VCP 1074.523 1050.523
Heat shock protein beta-1 HSPB1 1074.523 940.463
Activated RNA polymerase II transcriptional coactivator
p15

SUB1 1197.680 1259.603

Results of Random Forest Only Run

In the RF only approach, the 18,735 original m/z values were processed. The RF feature
importance revealed that m/z value 998.472 was the most indicative for the hypoxia
annotations (in 4 out of 10 cross validation runs). For comparison with the CAERF
approach, a cutoff based on the highest ranked feature score was defined to retrieve a
comparable amount of m/z value candidates. All m/z values that reached at least a fourth
of the highest score in a given cross validation run were considered to be associated with
hypoxia. This resulted in 156 m/z values, considering all cross validation runs. Some
exemplary m/z values are shown in Fig. 4.16A and 4.17A.
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A M/z values found by RF only
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B M/z values found by semi-supervised CAERF approach
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Figure 4.17: Exemplary mass-to-charge ratio (m/z) values associated with hypoxia that (A)
were distinctively found by the random forest (RF) only approach or (B) were distinctively
found by semi-supervised convolutional autoencoder and random forest (CAERF) approach.
This figure was first published in Bitto et al. [111] with naming of the samples being adapted
for this thesis for consistency.

Results of Semi-Supervised Convolutional Autoencoder Run

To reduce the number of noisy hypoxia assocations (e.g., m/z value 1034.526 in Fig.
4.16B), the semi-supervised CAERF approach incorporates the hypoxia annotations
during training. Given one exemplary semi-supervised CAERF run, the recovery method
found 120 m/z values to be associated with hypoxia, whereas 75 of them were already
showing up in the unsupervised CAERF approach. Some exemplary m/z values which
were distinctively found by the semi-supervised CAERF approach are shown in Fig. 4.17B.
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Linking the 120 m/z values to masses from LC-MS/MS resulted in 43 peptide candidates
(Suppl. Table S1). Among them, 23 peptides were also observed in the unsupervised
CAERF approach (like PGK1 and LDHA). Some promising hypoxia-associated candidates
were not retained (PKM, ALDOA) but others appeared. For example, glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was found the be upregulated in various cancer
types and appears to be influenced by hypoxia among other mechanisms [136].

Comparison of CAERF and RF Only Approaches: Hypoxia Associated M/Z
Values

All approaches shared a total of 42 common m/z values of which 4 are shown in Fig.
4.16A. Consistent to the known limitations of RF when it comes to correlated features,
replicate m/z values did not obtain an identical feature importance score, but were usually
within the defined cutoff (e.g., m/z values 998.472 and 998.502). However, isotope m/z
values, e.g., m/z values 999.481, an isotope of m/z value 998.472, were frequently dismissed
as unimportant compared to the unsupervised CAERF approach (Fig. 4.16B, row 1).
Additionally, many more noisy features received a high score (Fig. 4.17A, compare Fig.
4.14) in the RF only approach. Also in the semi-supervised CAERF approach some
isotope m/z values were not retained.
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Figure 4.18: Qualitative analysis of exemplary runs of combined convolutional autoencoder and
random forest (CAERF) approaches and random forest (RF) only approach. Boxplots illustrate
the structural similarity index measure (SSIM) of all identified hypoxia-associated features (156
in RF only versus 180 in unsupervised CAERF approach versus 120 in semi-supervised CAERF
approach) to the highest-ranked m/z value 998.472 per sample. A higher score indicates a higher
degree of similarity to the reference feature. This figure was first published in Bitto et al. [111]
with naming of the samples being adapted for this thesis for consistency.
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For a systematic comparison, a similarity score for every m/z value associated with
hypoxia and the highest ranked RF m/z value 998.472 was calculated using the structural
similarity index measure (SSIM). If all found features are positively correlated to the
hypoxia annotations, one would expect a high overall SSIM. Fig. 4.18 shows that the found
180 features of the CAERF approach were more similar than the 156 features of the RF
only approach, considering all three samples. Given that tree-based feature importance
metrics attempt to extract discriminative features, these methods may prioritize features
that are unrelated to the top-ranked feature(s). The highest SSIM score was reached by
the semi-supervised CAERF approach, producing the most alike set of features.

4.2.2.2 Quantitative Results of Ten Runs Each

Importance of Latent Space Size

As described in Section 4.1, the optimal latent space size was approached using R2 adjusted
using 10 experiments each for every latent space configuration. To estimate the latent
space size, the following data characteristics were considered:

• Up to 4 raw m/z values represent isotopes. Isotopes are neighboring m/z values
that are off by one, which share the same chemical characteristics. They will depict
similar spatial patterns and thus should be easily summarizable (see Fig. 4.19).

• Also m/z values that reflect potential mass shifts are likely to consolidate into the
same latent space feature(s).

• Using trypsin for protein digestion will lead to additional m/z values, which are
expected to show high correlations.

Considering this information, latent feature space z2 was initially set to 256 and steadily
decreased to 8. Fig. 4.20A shows that according to R2 adjusted, the best performance was
reached at a latent space size of approximately 64. In particular, a low latent space size of
8 was not reliably retaining a sufficient amount of hypoxia features. A higher latent space
size, e.g., of 128, apparently introduced too many redundancies in terms of correlating
latent space features, and was not able to improve the metric score further. Of note, also
the larger reconstruction error of models with a latent space size of 8 demonstrated a
poorer performance compared to the other configurations. The approximate reconstruction
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Figure 4.19: Isotope mass-to-charge ratio (m/z) values (989.4617, 990.4844, 991.4584) of
the same peptide, shown are (non-normalized) ion images of one sample. This figure was first
published in Bitto et al. [111] with naming of the samples being adapted for this thesis for
consistency.

error for all remaining configurations (32, 64, 128, 256) only differed at the time point at
which the models reached convergence.

As the described characteristics are the same for the unsupervised CAERF and the
semi-supervised CAERF approach, a latent feature space configuration of 𝑧2 = 64 was
employed.

Reproducibility of Results

All three approaches, i.e., the RF only, the unsupervised CAERF and the semi-supervised
CAERF approach, were run ten times to evaluate whether the overall results led to similar
conclusions presented earlier in this section. Fig. 4.20B visualizes that similar SSIM
scores to those in one individual run were achieved. Fig. 4.20C also outlines that the
overall number of features associated with hypoxia was lowest in the semi-supservised
CAERF approach. This can be linked to higher specificity of the latent feature associated
by hypoxia, as a result of incorporating hypoxia labels during the training of the AE. One
important observation is, that in some cases the CAERF runs achieved relatively low
SSIM scores, although achieving comparable results for R2 adjusted. Inspecting those
runs showed, that the highest ranked latent feature for hypoxia was sometimes negatively
correlated to the hypoxia annotations, although also positively correlated latent space
features existed. This limitation can be attributed to the general behavior of tree-based
feature importance metrics. Although this event was rare, one potential solution could
involve not relying solely on the ranking of feature importance scores.
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Figure 4.20: Quantitative analysis of 10 runs each. (A) Latent space configurations were
compared using R2 adjusted of the fitted regression models using ten unsupervised convolutional
autoencoder and random forest (CAERF) runs per configuration. (B) Boxplots illustrate the
structural similarity index measure (SSIM) of all identified hypoxia-associated features to the
highest-ranked mass-to-charge ratio (m/z) value 998.472 per sample in ten individual runs each.
A higher score indicates a higher degree of similarity to the reference feature. (C) Boxplots show
the number of hypoxia-associated m/z values that was identified by all three approaches in the
ten runs. This figure was first published in Bitto et al. [111] with naming of the samples being
adapted for this thesis for consistency.

Possible Adjustments to Random Forest Only Approach

RFs were not specifically designed to identify all relevant features for a given classification
or regression task. Therefore, it was assessed how an extension of RF, the Boruta algorithm,
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performs on the task of identifying relevant features of hypoxia from spatial omics data.
Rather then inputting the 18,735 feature into the RF only approach, Boruta was applied
as initial feature selection method. Considering 10 independent runs, approximately 989
m/z values [95% confidence intervall (CI), 916.5–1,062.0] were marked as relevant, and
1,226 more as tentatively relevant [95% CI, 1,083.5-1,368.9]. Each run performed 10
iterations, with a higher setup increasing the number of relevant features further (e.g.,
1,644 confirmed and 774 tentatively relevant features in a run with 100 iterations). This
preselection of features is too coarse to provide meaningful insights into hypoxia and
would produce too many false positive peptide candidates when linked to LC-MS/MS
masses. The reduced Boruta feature set yielded to similar results when provided to the
RF only model as described earlier in this Section.

In summary, the proposed CAERF approach showed more powerful aggregation capabilities
by reducing the high-dimensional feature set to a relevant set of hypoxia candidates than
the RF only or the Boruta algorithm.
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4.3 Spatial Transcriptomics

Signals of tumor hypoxia might also be apparent in gene expression of spatial transcrip-
tomics platforms. Compared to MSI, the available platforms can be considered more
accessible, as they typically provide tools for directly outputting gene expression data
per spatial spot. For example, Space Ranger is a software developed by 10x Genomics as
support for their Visium Spatial Gene Expression platform [118]. Given some FASTQ files
and a microscope slide image (like H&E stains), the software will take care of the alignment
of the sequencing data to a reference genome, registering the microscopy image to the
the spatial data using fiducial markers and counting the molecular barcodes associated
with its transcripts to determine gene expression. Still, the underlying difficulties of
high-dimensional, correlated data remain. While in MSI, m/z values might be highly
correlated because they belong to the same peptide, in SPT, high correlation might arise
from co-expressed genes. Barcode technologies come in particular with one main additional
challenge for data analysis, i.e., the alignment of spots often does not follow a strict grid
arrangement. For Visium, spots are arranged in an offset pattern referred to as ”orange
crate packing”, becoming apparent when coordinates are sorted according to 𝑥 and 𝑦
coordinates. This is particular challenging for convolutional layers with a small kernel
size, as up to about half of the pixels will not contain any information.

Additionally, the aggregation of multiple samples makes it necessary to derive a common
set of features, similarly to MSI. However, for SPT data this only requires a common
intersection set of all genes.

Both issues are addressed in Section 4.3.1. Results of the unsupervised CAERF approach,
RF only approach and semi-supervised CAERF approach are presented in Section 4.2.2.

4.3.1 Methods

Sample preparation and SPT experiments were not performed by myself, with protocols
briefly being sketched in Section 3.1.1. This section describes the pre-processing of SPT
data and adjustments to the CAERF approach.
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4.3.1.1 Pre-Processing of SPT data

In the following, italic names in brackets denote the corresponding parameter in the
described software or libraries.

Samples were first independently pre-processed using Space Ranger, resulting in a data set
that contains gene expression data and the co-registered H&E stain. Next, the consecutive
FI was co-registered. The process of co-registration as outlined in Section 4.1.1, which
primarily relies on a common tissue shape, encountered obstacles from the alternating
pattern of SPT data. Therefore, I decided to not directly align the FI to the data but
instead register the FI to the H&E image. SpaceRanger provides two downsampled
versions of the H&E, of which the tissue_lowres_image with 600 pixels in its largest
dimension was chosen as fixed image. Apart from defining a different image modality as
fixed image, the overall procedure of co-registration remained unchanged. The retrieved
hypoxia annotations from the co-registered FI were then linked to the SPT data in a
two-step approach: First, the center position of every spatial spot in the downsampled
H&E image was estimated. This can be achieved by multiplying the center positions
of every spatial spot in the full resolution H&E image (see Table. 4.2), with the known
scaling factor of the downsampled H&E image (tissue_lowres_scalef ).

Table 4.2: Example exert of tissue position file (output file of Space Ranger). Rows show
the spatial barcodes. Values 𝑎𝑟𝑟𝑎𝑦_𝑟𝑜𝑤 and 𝑎𝑟𝑟𝑎𝑦_𝑐𝑜𝑙 denote the coordinates of a spot (rows:
from 0 to 77, columns: even numbers from 0 to 126 for even rows, and odd numbers from 1
to 127 for odd rows), values 𝑝𝑥𝑙_𝑟𝑜𝑤_𝑖𝑛_𝑓𝑢𝑙𝑙𝑟𝑒𝑠 and 𝑝𝑥𝑙_𝑐𝑜𝑙_𝑖𝑛_𝑓𝑢𝑙𝑙𝑟𝑒𝑠 represent the pixel
coordinates of the center of the spot in the full resolution image [137]. Shown are exemplary
values from one SPT sample.

Barcode in_tissue array_row array_col pxl_row_in_fullres pxl_col_in_fullres
ACGCCTGACACGCGCT-1 0 0 0 26183 2984
TACCGATCCAACACTT-1 0 1 1 25999 3302
ATTAAAGCGGACGAGC-1 0 0 2 25816 2983
GATAAGGGACGATTAG-1 0 1 3 25633 3302
GTGCAAATCACCAATA-1 0 0 4 25450 2983
TGTTGGCTGGCGGAAG-1 0 1 5 25266 3302
GCATCCTCTCCTATTA-1 0 0 6 25083 2983
GCGAGGGACTGCTAGA-1 0 1 7 24900 3301

Second, the pixel coordinates of the co-registered FI were mapped to the derived spot
coordinates in the downsampled H&E using nearest neighbor interpolation. Pixels
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containing only background (indicated by a pixel value of 0.0) were not mapped. However,
as the data structure of SPT is sparse, many coordinates of a grid are missing, e.g.,
𝑎𝑟𝑟𝑜𝑤_𝑟𝑜𝑤, 𝑎𝑟𝑟𝑜𝑤_𝑐𝑜𝑙 = (0,1). Instead of omitting hypoxia pixel coordinates for which
no matching H&E pixel coordinate could be found, the sparse coordinate data structure was
densified to a grid-like structure. First, the data structure was extended to encompass all
missing coordinates for 𝑎𝑟𝑟𝑜𝑤_𝑟𝑜𝑤 and 𝑎𝑟𝑟𝑜𝑤_𝑐𝑜𝑙. The corresponding pixel coordinates
for the downsampled H&E image were then interpolated via a radial basis function (see
Python Code Snippet 4.2). The gene expression data itself was NaN-filled. This allows to

Code Snippet 4.2: Extension of SPT pixel coordinates
1 import pandas as pd
2 from scipy . inte rpo late import RBFInterpolator
3
4 def interpolate_lowres_x_y ( spt_data ) :
5 x_range = range( spt_data . obs [ 'x ' ] . min( ) , spt_data . obs [ 'x ' ] .max( ) )
6 y_range = range( spt_data . obs [ 'y ' ] . min( ) , spt_data . obs [ 'y ' ] .max( ) )
7 all_combinations = pd . DataFrame ( [ ( i , j ) for i in x_range for j in y_range ] ,
8 columns=[ 'x ' , 'y ' ] )
9

10 joined = all_combinations . merge( spt_data . obs , left_on=[”x” , ”y” ] ,
11 right_on=[”x” , ”y” ] , how=” l e f t ” )
12 interpolate_fu = RBFInterpolator ( spt_data . obs [ [ ”x” , ”y” ] ] ,
13 spt_data . obs [ [ ”x_lowres” , ”y_lowres” ] ] )
14 interpo lated = pd . DataFrame( interpolate_fu ( joined [ [ ”x” , ”y” ] ] ) ,
15 columns=[”xi_lowres” , ”yi_lowres” ] )
16 all_coords = pd . concat ( [ joined , interpo lated ] , axis=1)
17 return all_coords

retain all hypoxia pixel annotations, which would otherwise be significantly reduced in
size (see Fig.4.21)

Then, the SPT data of every sample was normalized using the sctransform procedure via the
Seurat package. Filtering was applied by means of the Scanpy library. Precisely, only spots
with a minimum count of 500 and a maximum count of 35000 were retained [scanpy.pp.fil-
ter_cells(min_counts=500, max_counts=3500)]. Additionally, only genes were kept
that were present in at least 20 individual spots [scanpy.pp.filter_genes(min_cells=20)].
Following, all samples were combined by only retaining the intersection set of common
genes. The pre-processing steps are shown in Supplementary Material, Code Snippet 7.12.

Of note, for normalization, the in-built total-count normalization method of Scanpy
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Figure 4.21: Example of gene expression image (FSTL1, left) and the derived hypoxia
annotations (right). The gene expression image depicts visible spots due to its orange crate
packing. For co-registration with the hypoxia image, the sparse data structure was densified to
allow to retain all pixels from hypoxia annotations.

(normalize_total) and the sctransform procedure of Seurat were considered. Although
both methods were primarily designed for single-cell data, they are commonly applied
to spatially-resolved gene expression data like for the Visium kit used in this thesis. In
the total-count approach, each spot is divided by the total counts, aiming to account
for differences in sequencing depth. Sctransform is a more elaborate procedure in which
a generalized linear model, more specifically a negative binomial regression model, is
constructed for every gene individually [119]. It further performs variance stabilization
across genes. Overall, the choice of normalization altered some of the genes associated
with hypoxia as well as results of correlation analysis. To date, no gold standard for
SPT pre-processing has been established. However, with the expectation of non-linear
relationships between genes, the sctransform procedure seems to be the preferable choice
for pre-processing. The choice is supported by findings from Choudhardy and Satija,
which found that other commonly applied generalized linear models like Poisson error
models show evidence of overdispersion for genes [138].

4.3.1.2 Autoencoder Setup

First experiments with the CAE architecture described in Section 4.1.2.1 revealed that
the CAE was not able to learn meaningful latent representations. This could be ascribed
to the orange crate packing of the data. Given a patch size of 3 (𝑥 = 3), at least 4 pixels
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out of 9 contain no information about the data, referred to in the following as zero pixels.
Therefore, a weighting of data pixels on the reconstruction error was introduced. The
weighting of pixels was directly integrated into the loss function shown in method do_step()
of the class WeightedAETrainer in the Supplementary Material, Code Snippet 7.7.

Effect of weighting of pixels
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Figure 4.22: Effect of orange crate packing. Shown are patches encoded with the proposed
convolutional autoencoder (CAE) architecture, utilizing kernels with 𝑠𝑖𝑧𝑒 = 2×2 and 𝑠𝑡𝑟𝑖𝑑𝑒𝑠 = 1
(b = 1) in the second hidden layer with patch size 𝑥 = 3. Top: No weighting of pixels. Middle:
Data pixels are weighted 10 times higher than zero pixels. Bottom: Data pixels are weighted
100 times higher than zero pixels.

Fig. 4.22 shows how the weighting affects the latent representation when the data pixels
were weighted not at all (top), 10 times higher than the zero pixels (middle), 100 times
higher than the zero pixels (bottom). With weighting, some structure within the tissue
becomes apparent. However, the figure also highlights that the latent space still preserved
zero pixels. In order to enforce that the autoencoder learns more global structures, the
stride size of the second hidden layer was increased from 1 to 2 (b = 2). As a consequence,
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the patch size was adjusted from 3 to 4, allowing the kernels to traverse a patch entirely.
Interestingly, the adaption of the kernel size lead to a high variability in overall intensity
levels between samples. This was mitigated, when the kernel setup was flipped in the
two hidden layers. The final configuration (see Section 4.1.2.1) was set to: x = 4, y =
10913, a = 2, z1 = 1024, b = 0, z2 = 64–256. For the unsupervised CAERF, a 100 fold
weighting of data spots to zero pixels was utilized. For the semi-supervised approach, the
weighting was reduced to 10 fold to balance the overall loss of the reconstruction and
semi-supervised error.

4.3.1.3 Sample Size

SPT data of untreated tumor model SAT and CAL33 were pre-processed and split into
patches of size 4 × 4 pixels. Likewise, the corresponding hypoxia annotations were split
into patches of size 4×4 pixels. All data was scaled to a range between [0, 1]. Overlapping
patches with a step size of 1 were generated. Patches containing no SPT data but only
background were removed. The CAE (unsupervised and semi-supervised) was then trained
on 13,567 patches from three SAT samples. For validation 393 patches from one CAL33
sample were utilized.

The three samples used for training the AE, were also utilized for evaluating the perfor-
mance on the subsequent RF regression models. The RF regression model was built using
overlapping patches of stride 1. Like for MSI, the number of non-hypoxic patches was
downsampled. Given the low number of hypoxic spots, all patches with at least 0.05 mean
hypoxia expression were chosen in addition to 50% non-hypoxic patches, resulting in a
total of 2,482 patches. Performance and feature importance metrics were evaluated using
10-fold cross validation with a test size ratio of 33%.

4.3.1.4 Random Forest Setup

The same setup for the RF regression models were utilized as described in the MSI
methods part.
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4.3.2 Results

From the four SPT samples, a total of 10,913 common genes were derived. For every SPT
sample, hypoxia annotations from consecutive FIs were extracted (see Fig. 4.23). In the
following, the three approaches were evaluated by qualitative results of individual runs
and quantitative results of multiple runs.
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Figure 4.23: Hypoxia annotations of individual spatial transcriptomics (SPT) samples. Yellow
= high degree of hypoxia, dark blue = no hypoxia.

4.3.2.1 Qualitative Results of One Exemplary Run Each

Results of Unsupervised Convolutional Autoencoder Run

The CAERF was trained with a latent space size z2 of 64. Out of the 64 latent features,
#37 exhibited the highest RF feature importance for hypoxia (see. Fig. 4.24). According
to the proposed recovery method, 162 genes were associated with this feature, using a
Spearman correlation coefficient cutoff value greater than 0.975. Some exemplary genes
are shown in Fig. 4.25A and 4.25B. All genes are listed in the Supplementary Material in
Section 7.4.1.
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Figure 4.24: Visual representations of encoded spatial transcriptomics (SPT) samples in latent
space for latent space feature #37 associated with hypoxia according to random forest (RF)
feature importance.
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Figure 4.25: Exemplary genes associated with hypoxia that (A) were found by the both
convolutional autoencoder and random forest (CAERF) approaches and the random forest (RF)
only approach or (B) were distinctively found by the unsupervised CAERF approach.
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Considering the high amount of genes that was recovered with a strict cutoff value of
0.975, the specificity of the derived latent feature and recovery method were investigated.
Therefore, an arbitrary feature with a modest correlation to the hypoxia annotations from
the latent features was chosen. Latent feature #32 was positioned between the 17th and
20th place in the feature importance ranking. The recovery method assigned 89 features
to the latent feature, of which only seven were in common with the 162 features of the
highest ranked latent feature #37. Although few in number, these seven features (two of
them shown in Fig. 4.26) rather depicted noisy associations.
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Figure 4.26: Latent feature #37 (top) and exemplary genes (bottom) that were found by the
recovery method in the unsupervised convolutional autoencoder and random forest (CAERF)
approach to contribute to both, feature #37 (high hypoxia association) and feature #32 (low
hypoxia association). The genes likely denote noisy associations to hypoxia as they depict no
clear pattern.

Results of Random Forest Only Run

In the RF only approach, all 10,913 genes were used as input for the regression task. In an
exemplary RF only run, 192 genes were found to be associated with hypoxia. The cutoff
was set so that a comparable number of features as in the CAERF approach was picked.
Therefore, all features were chosen that reached at least a fourth of the highest score in
all cross validation runs. In 4 out of 10 cross validation runs, gene HILPDA achieved
the highest feature importance score. Some exemplary genes are shown in Fig. 4.25A
and 4.27A. All genes are listed in the Supplementary Material in Section 7.4.2.
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A Genes found by RF only
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B Genes found by semi-supervised CAERF approach
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Figure 4.27: Exemplary genes associated with hypoxia that (A) were distinctively found by the
random forest (RF) only approach or that (B) were distinctively found by the semi-supervised
CAERF approach.

Results of Semi-Supervised Convolutional Autoencoder Run

In the semi-supervised CAERF run, the number of features which was found to be
associated with hypoxia increased to a total of 234. Some exemplary genes are shown in
Fig. 4.25A and 4.27B. All genes are listed in the Supplementary Material in Section 7.4.3.

Comparison of CAERF and RF Only Approaches: Hypoxia Associated Genes

In total, only 12 genes were common in the unsupervised / semi-supervised CAERF and
the RF only approaches (four of them are shown in Fig. 4.25A). Interestingly, the RF
only approach ranked many features as important which were apparently just noise. For
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example, genes ATG2A and ITGAM depicted high expressions only in individual pixels
(see Fig. 4.27A) but were ranked highest in several cross-validation runs. By contrast,
the unsupervised CAERF approach picked up genes depicting some small intensity spots
but otherwise showing low variability (e.g., MINK1, in sample S004D_N165b149 see
Fig. 4.25B). Although some of those genes may be considered as noisy associations, far
fewer were affected compared to the RF only approach. While in the semi-supervised
CAERF the overall number of hypoxia-associated genes increased further, many of the
noisy associations of the unsupervised CAERF and the RF only approach were dismissed.
Also, some gene candidates that depicted some overlap with hypoxia annotations and
that showed up in the RF only but not in the unsupervised CAERF approach, were
recovered in the semi-supervised CAERF run, e.g., ADM and FAM83A. Several of the gene
candidates derived from the CAERF approaches were associated with hypoxia previously.
For instance, ADM, BNIP3L, EGLN3, SLC2A1, ERO1A (or its synonym ERO1L) and
NDRG1 were examined previously by Toustrup et al. for their hypoxia gene signature
[46].

For a comparison of all features, again a SSIM analysis was conducted. As reference, gene
BNIP3L was used, which was associated with hypoxia by all three approaches. Fig. 4.28
illustrates a wide range of feature similarity scores in the RF only approach, likely due
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Figure 4.28: Qualitative analysis of exemplary runs of convolutional autoencoder and random
forest (CAERF) approaches and random forest (RF) only approach. Boxplots show the structural
similarity index measure (SSIM) of all identified hypoxia-associated features in RF only (192
features) versus unsupervised CAERF approach (162 features) versus semi-supervised CAERF
approach (234 features) using BNIP3L as reference per sample. The gene BNIP3L itself was
removed for analysis.
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to many noisy associations. In comparison, the boxplots of the unsupervised CAERF
run are substantially narrower. However, the upper quartiles also indicate that the RF
only approach identified some promising gene-candidates that the unsupervised CAERF
approach missed. The upper quartiles of the semi-supervised CAERF approach suggest
that some further genes with a high SSIM score were detected without any additional
noisy associations.

4.3.2.2 Quantitative Results of Ten Runs Each

Importance of Latent Space Size

The optimal latent space size was again approached using R2 adjusted using 10 experiments
each for every latent space configuration (Fig. 4.29A).

R2 was found highest with a latent space configuration of 64. A latent space size of 8 missed
relevant features of hypoxia. A higher latent space size (128, 256) may deliver results
comparable to those obtained with 64 features, but will likely produce higher correlating
latent space features. As a result of the findings, a latent feature space configuration
of 𝑧2 = 64 was utilized for the unsupervised CAERF and the semi-supervised CAERF
approach.

Reproducibility of Results

Each approach was run ten times to evaluate whether the findings from qualitative runs
were reproducible. Fig. 4.29B confirms that the best overall SSIM score was achieved by
the semi-supervised CAERF approach, followed by the unsupervised CAERF approach.
The cutoff values in all approaches were selected to achieve a comparable number of
features. However, it turned out that the number of genes in the semi-supervised approach
was significantly greater than that in the other approaches (see Fig. 4.29C). Therefore,
it is likely that a stricter cutoff value would lead to even higher SSIM scores in the
semi-supervised CAERF approach.



Spatial Transcriptomics 75

A R2 adjusted scores

8 32 64 128 256
Latent space size

0.0

0.1

0.2

0.3

R²
 a

dj
us

te
d

Unsupervised ConvAE configuration

B Similarity scores

S001D S004D S003D

0.5

0.6

0.7

0.8

0.9

SS
IM

RF only
ConvAE unsupervised
ConvAE semi-supervised

C Number of features

RF only ConvAE
unsupervised

ConvAE
semi-

supervised

100

200

300

400

No
. o

f h
yp

ox
ia

 
as

so
cia

te
d 

m
/z

 v
al

ue
s

Figure 4.29: Quantitative analysis of 10 runs each. (A) Latent space configurations were
compared using R2 adjusted of the fitted regression models using ten unsupervised convolutional
autoencoder and random forest (CAERF) runs per configuration. (B) Boxplots illustrate the
structural similarity index measure (SSIM) of all identified hypoxia-associated features to the
highest-ranked gene BNIP3L per sample in ten individual runs each. (C) Boxplots show the
number of hypoxia-associated genes that was identified by all three approaches in the ten runs.
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4.4 Discussion

For both spatial omics modalities, MALDI MSI and sequencing-based SPT, it was
demonstrated, that the technologies are capable of measuring signals that overlap with
hypoxia annotations in heterogeneous tissue of HNSCC xenograft models. The workflow
of the CAERF approaches was designed to reduce the high-dimensional feature space
of spatial omics while retaining hypoxia-associated features and explainability. It was
outlined that CAEs can provide a valuable companion to feature selection methods when
processing highly correlated spatial omics data. With the help of the proposed recovery
method, original features that contributed to a hypoxia-associated latent feature could be
identified. The resulting feature set was more coherent in terms of the features’ similarity
as compared to features from RF only models. More promising, in case of MSI, the
feature set could be linked to masses from LC-MS/MS experiments to derive actual
peptide candidates associated with hypoxia. One specific aspect of the MSI data used
here was that it consists of tryptic peptide information, increasing the multicollinearity of
molecular features even further. Among the found gene and peptide candidates, many
were linked to hypoxia before, reinforcing the reliability of the proposed CAERF approach.
In the following, alternative design decisions, limitations and possible improvements are
discussed.

Methodologically, I initially considered also other machine learning approaches. For
example, instead of a combinational CAE and RF approach, also a CNN might be used
for predicting hypoxia from spatial omics data. Nevertheless, the task of identifying which
molecular features contributed to hypoxia would have remained the same for any other
model. As will be outlined in Section 5.2, autoencoders may be particular intriguing
when the latent space can be utilized for subsequent analysis. The RF regression model
might as well be exchanged by another feature selection method. I decided to use RF
models as they enable the modelling of complex relationship between features and thus
allow for a decent comparison of dimensionality-reduced and unreduced spatial omics
data. Additionally, a variety of intuitive feature importance metrics are readily available
for RF. The most commonly applied RF feature importance measures, i.e., impurity-
based importance (IBI) and permutation importance (PI), were examined. Both, IBI
and PI, were found to be biased when processing highly correlated predictor variables.
For IBI, Nicodemous et al. found that it gives higher weight to uncorrelated although



Discussion 77

non-predictive features rather than correlated ones [73]. On the contrary, PI was associated
with overestimating the importance of correlated predictors [74]. Importantly, all of these
findings were derived from classification tasks, but they likely extend to regression tasks.
This assumption is grounded in the fact that the underlying algorithms remain unchanged
with the exception of the scoring metric, e.g., using MSE instead of Gini index as impurity
measure. The existence of fully uncorrelated features is improbable in a spatial omics
setup; instead, pairs of features are expected to correlate with one another, differing only
in the strength of correlations. Therefore, I decided to apply IBI, considering also its
higher computational efficiency on large datasets. Overall, the results demonstrated that
IBI identified some relevant features for hypoxia in the uncompressed data, but among the
top-ranked features, many more noisy than true associations were found. In comparison,
the highest-ranked latent feature of the compressed data delivered more true positive
correlations to the hypoxia annotations. Also the Boruta algorithm was examined as it
was especially designed for identifying all-relevant predictors in a feature selection task
[76]. Nevertheless, for MSI, the number of relevant features remained way too high to
allow for subsequent analysis. One other frequently used method to explain the results
of machine learning methods includes Shapley values. In theory, Shapley values do not
assume feature independence and therefore might be applicable for a highly correlated
features space. However, common implementations do, e.g., Kernel SHAP [101, 139], to
cope with the computational complexity that would otherwise grow exponentially [140].
Therefore, this alternative approach was disregarded.

Autoencoders were used for dimensionality reduction of spatial omics data before. Among
the first, Thomas et al. used AEs to reduce the MSI data of mouse brain to 15 latent
features, using individual pixels as input. They visualized the latent features and showed
that some of them depicted brain regions, while others were considered noise [86]. Abdel-
moula et al. showed the effect of variational AEs on various 2D and 3D MSI datasets.
Like Thomas et al., they implemented a pixelwise approach with a restrictive latent space
of size 5, resulting in latent features approximating tissue anatomy. They also proposed
an algorithm to derive so-called informative m/z peaks, i.e., original features that were
similar to the pattern of the latent feature of interest, based on a threshold analysis on the
weight parameters of the AE. Matsuda et al. used a sparse AE architecture to compress
468 features of human skin structures to 20 latent features from TOF secondary ion mass
spectrometry imaging (TOF-SIMS) [87]. Gardner et al. showed the usage of CAE on
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TOF-SIMS data from tumor spheroid samples [141]. While they used patches instead of
pixels like in this work, the actual architecture (e.g., layers, patch size, activation function
among others) differed. Again, the latent feature size of 25 was capturing primarily
histological features. Further related work includes Li et al. which reduced MS (not MSI)
data to 256 latent features by means of a denoising AE [142]. They also combined the
AE approach with RF models (among others), albeit for the classification of Listeria.
Classification tasks on MSI data were performed on various deep learning architectures
[143], such as CNN for tumor classification [144] or recurrent neural networks for detecting
cancerous regions [145].

For SPT, AE-based approaches for dimensionality reduction have been used less com-
monly to date. On reason for this might be that SPT platforms with transcriptome-wide
capabilities have only recently became available. Probably, there may be less urgent need,
given that readily available pre-processing pipelines (like Space Ranger) and subsequent
analysis software (like Seurat or Scanpy) allow for basic exploration of the data. The most
commonly conducted analyses for SPT data involve spatial differential gene expression
analysis, deconvolution and resolution enhancement through the integration of scRNA
data [146, 147]. Among the deep learning approaches suitable for dimensionality reduction
purposes, Xu et al. suggested a two components model, consisting of a deep mask autoen-
coder and a variational graph autoencoder to learn a low-dimensional latent representation
from SPT data [148]. Although the precise number of created low-dimensional embeddings
was not mentioned, it was proposed for clustering, visualization, trajectory inference and
batch integration. Similarly, Dong et al. developed a graph attention autoencoder to
learn low-dimensional embeddings from SPT data [149]. The authors showcased that the
model’s embeddings were able to segment tissue regions in a coronal mouse brain.

In this thesis, the main focus was to retain hypoxia-related features, which exhibit less
dominant signals than tissue morphology. Therefore, it was shown how to approach an
optimal latent space size. In all mentioned AE-based works, a precise description on how
the latent space setup was established is missing. Only Abdelmoula et al. stated that
their latent space configuration was found empirically. They recommended to consider
the reconstruction error for finding the optimal latent space. However, as discussed in
the MSI part, different latent space configurations may yield comparable reconstruction
errors during unsupervised training but the latent space might not be equally well suited
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for subsequent analysis. In this work, R2 adjusted of the trained RF models was factored
in to evaluate which latent space maintained the most valuable hypoxia information when
the number of features was penalized. Also in contrasts to other publications, this work
highlighted how data from multiple samples can be processed effectively. Using multiple
samples prevents the AE to overfit on the characteristics of individual samples and thus
will produce more robust latent features. However, finding a common set of features may
imposes some additional challenges as outlined in the MSI section. These challenges
were overcome by sticking close to the raw m/z values and relying on the aggregation
capabilities of the AE.

Generally, MSI data can be considered less accessible than SPT data, given that it
comprises m/z values. Therefore, MSI is often complemented by some kind of tandem
MS data to derive peptide information, like in this work. Kassuhn et al. mapped MSI
m/z values to complementary nano-LC-MS/MS data from adjacent tissue sections by
considering peptides with the lowest mass difference to be a match [150]. Also Hoffmann
et al. correlated MSI m/z values to LC-MS/MS data from HNSCC patients, but limited
the analysis to the 10 most characteristic m/z values found in tumor tissue [151]. Studies
on the investigation of tumor hypoxia by means of MSI are rare. Djidja et al. analyzed
hypoxia in MSI data (among other data) of 4T1 models, i.e., a mouse model for studying
breast cancer [152]. They were able to identify 18 proteins by combining MSI data with
LC-MS/MS experiments. Among them, five proteins were significantly associated with
hypoxic regions from immunohistochemistry stainings as determined by a Student’s t-test.
In that work, a Student’s t-test was statistically applicable given the low number of
protein candidates. They also identified proteins from microdissected hypoxic regions,
of which several were in line with the ones found here (e.g., LDHA, PGK1, LMNA,
PKM, ANXA1, ALDOA). An indirect approach was pursued by Mascini et al. which
demonstrated that tissue of pimonidazole-injected animals allows to trace signals of the
hypoxia marker [153]. Of note, also the xenograft models in this work were injected
with pimonidazole before excision of the tumor, but with a much lower dose (0.4 mg/g
versus 0.1 mg/g [59]). Despite the fact that pimonidazole signals might obscure the true
molecular signals of hypoxia, my observations showed that our data did not contain
dedicated signals of pimonidazole.
The mapping of MSI m/z values to LC-MS/MS peptides should be considered as
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initial peptide candidate list, which requires further evaluation, e.g., via immunohis-
tochemistry. As shown in Table 4.1, one mass might be mapped to several different
peptides. This can be ascribed to the lower mass resolving power and mass accuracy
of TOF-based MS in comparison to other mass analyzers [32]. With next-generation
technologies like FTICR, this issue will likely to be overcome [34]. However, the
proposed workflow diminishes the likelihood of random matches by only considering
peptides for which at least two individual MS masses can be matched, and for
which the corresponding ion images show some degree of correlation (Spearman
correlation coefficient > 0.80). This parameter can be easily adjusted for more stringent re-
sults, depending on the number of false positives and false negatives that can be accepted.

While the CAERF approaches delivered promising unimodal peptide and gene candidates,
several limitations need to be acknowledged. One general limitation is the usage of
consecutive tissue slices to acquire the spatial omics data and the hypoxia annotations.
Even when the two slices are direct neighbors, the underlying tumor morphology may
differ. Additionally, some sheering, overlapping or disruption of tissue may occur at some
point during sample preparation. Some of theses distortions may lead to misalignment of
hypoxic cells, present in the fluorescence image but not in the corresponding tissue slice
for which the spatial omics experiments are carried out or vice versa. Other distortions
might affect proper co-registration of the two modalities. Since both, FIs and H&E
images were required for this thesis, a choice had to be made between them. Although
methods exist to combine multiple stains on one tissue slice, a combination of H&E and
immunofluorescence is difficult due to their potential interaction with each other [154].
Therefore, the processing of consecutive tissue slices is a common challenge in omics data.

Even with a single tissue slice, co-registration of spatial omics data and fluorescence
images would remain challenging, given the differences in resolution, contrasts and
structures. In the registration process, a similarity transform was employed, enabling
linear transformations like scaling, translation and rotation of the moving image. With
regard to the results presented in Section 4.2 and 4.3, the co-registration appeared to
perform adequately for its use case: Considering that the proposed workflow is utilizing
overlapping patches and summarizing them later to a single mean value, precision errors
during co-registration may not cause significant alterations to results. More elaborate
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co-registration strategies for MSI and imaging data have been proposed. Patterson et al.
suggested to capture multiple fluorescence images before and after MSI acquisition to
then utilize laser ablation marks for co-registration [155]. Race et al. used representative
images of the tissue morphology derived from the classification of a DenseNet model
to co-register them to MSI [156]. However, their deep learning model was trained on
H&E stains, where it was presumably easier to find distinguishable features that match
with signals of MSI compared to fluorescence images. Cordes et al. published the open
source application M2aia [157] that expands the medical imaging toolkit [158] to support
MSI data. Among various imaging pre-processing steps, M2aia also supports image
co-registration by integrating the elastix toolkit [106].

A related limitation is the absence of fully-annotated fluorescence images for hypoxia.
Although a substantial amount of fluorescence images were stained, the raw images are of
little use given the high variability in contrasts and artifacts. Using pixel classifiers to
circumvent the need for fully annotated images, allowed to derive hypoxia annotations
for some samples. However, also these pixel classifiers required re-training on individual
tumor models and would benefit from more annotations.

Given that the AEs here were trained on samples of individual HNSCC tumor models
(CAL33 for MSI, SAT for SPT), they might not generalize well to any HNSCC tumor
model. This may be especially true for the semi-supervised CAERF approach, in
which the AE may also memorize tumor model specific noise or outliers. However, the
right sample setup could prove challenging as many different aspects may influence
tumor hypoxia. For example, results on previously published work on the investigated
tumor models here showed differences in hypoxia during treatment [59], which suggest
some inherent distinctions between the phenotypes. Therefore, one must be careful
not to undermine the relevant signals when adding additional samples for training
the autoencoder. Of general note, it is important to consider that the training of
NN-based models is subject to variability e.g., due to stochastic optimization algorithms
or random weight initialization. As a result, the generated latent features may
differ slightly for every run. It is therefore advisable to train multiple models and
evaluate them with a proper metric, e.g., apply SSIM against a reference feature as
proposed here. It was further shown, that spatial omics data may exhibit distinct
characteristics (like the orange crate packing in SPT) that require adjustments to
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the autoencoder architecture for effective training. This implies that for the applica-
tion of new spatial omics data, fine-tuning of hyperparameters such as the patch size,
the kernel size and the loss function (e.g., allow weighting of pixels) need to be considered.

Having highlighted the current limitations, several strategies will be explored for enhancing
the CAERF approaches further. As part of future work I intend to evaluate the overall
effect on results if different degrees of deformation are allowed for co-registration of FI
and spatial omics data. However, finding the right deformation parameter setup may be
tricky and may require manual interventions for specific samples. Overall, I expect that
improvements will primarily influence the outcome of the RF regression models in all
approaches alike.

Once more annotated FI are available, the sample size on which the CAE were trained
will be steadily increased and CAERF findings concomitantly reevaluated. This also
includes examining the effect of adding a more diverse set of HNSCC tumor models
with known distinct treatment responses. Also the unsupervised and semi-supervised
approaches will be re-investigated. The semi-supervised approaches proved effective in
reducing noisy associations, indicated by the consistently higher SSIM score compared to
the other approaches. Inevitably, this came at the cost of potentially dismissing true
candidates (like isotopes in case of MSI). Nevertheless, compared to the results in MSI,
the semi-supervised approach was not able to reduce the number of feature candidates
in the SPT data, although the cutoff for the SPT data was already more restrictive
than for MSI (Spearman correlation coefficient > 0.95 in MSI and Spearman correlation
coefficient > 0.975 in SPT, respectively). Both CAERF approaches might therefore
benefit by a subsequent filtering of candidates derived from the recovery method. For
example, one may filter out genes which do not show a certain degree of variability in
patches. Alternatively, a greater disentanglement of features in the latent space may be
enforced during training. This could be achieved by an adapted loss function, for instance
by penalizing a high correlation between latent features. Also the use of variational
autoencoders, particularly the 𝛽 extension, has been proposed to learn statistically
independent latent features [159]. Yet, the degree of disentanglement could also shift to
the opposite extreme. My early investigations on MSI data suggested that the adaption
of the architecture to a variational autoencoder impacts the latent features considerably,
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such that more abstract patterns rather than recognizable molecular patterns are
preserved. Hence, an adaption of the loss function may be less invasive. Alternatively,
the latent representations may be shaped by inputting a more balanced training set to
the CAE. For example, an upsampling of patches that exhibit features of interest (like
hypoxia) through data augmentation or a downsampling of non-hypoxic patches may be
beneficial.

In summary, it was shown that CAEs are able to retain low intensity signals like tumor hy-
poxia. The results of the RF only approach indicated, that rankings of feature importance
metrics should be considered cautiously if the research question requires identifying more
than some relevant features. In these scenarios, AEs can be reliable companions of feature
selection methods. The proposed recovery method of the CAERF approaches resulted in a
promising set of peptide and gene candidates with potential link to tumor hypoxia. From
these candidates, several showed up in both, MSI and SPT data, like KRT16, LDHA,
PGK1, ANXA1, KRT6B, TGM1. The following chapter investigates strategies to combine
both spatial omics modalities with the ultimate goal to derive multimodal gene-peptide
biomarkers for hypoxia.





5 Combining Spatial Omics Data To
Identify More Robust Biomarkers

From literature reviews on biomarkers for hypoxia in HNSCC (see Section 2.3), it becomes
evident that many of the proposed unimodal biomarkers prove ineffective for progno-
sis. Technically speaking, spatial omics itself provides a multimodal view, i.e., spatial
and molecular information. However, ideally the findings of biomarker candidates are
supported by additional data and sources. For example, consecutive tissue slices might
be used to evaluate the abundance of peptide candidates using immunohistochemistry.
Alternatively, information from multiple omics layers may be collected, like DNA/mRNA
or mRNA/peptides. Of particular biological interest is the relationship of genes and
peptides. Proteins perform a critical function in organisms by translating the information
encoded in genes. While the pure presence of mRNA levels is not sufficient to predict
protein abundance, the existence of proteins implies that a corresponding mRNA was
present [160]. Knowing both, gene expression and peptide abundance, might therefore
help on the one hand to develop more precise biomarkers. On the other hand, it can add
an extra layer of validation, in case some mRNA-protein correlation is encountered.

In this chapter, it is discussed how spatial omics data can be combined. Although only
preliminary, I showcase two possible approaches for combination outlined in Sections 5.1
and 5.2. Both strategies rely on what is frequently delivered in course of the spatial
experiment itself: H&E stains, typically performed before or after the actual experiment.
The chapter concludes by discussing limitations and possible improvements, as well as
alternative approaches to combine spatial omics data in Section 5.3.

85
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5.1 Combining Serial Slices from MSI and SPT

Ideally, spatial omics data would be multimodal by design, i.e., providing insights for
multiple biological components on the same tissue slice. Although first spatial multi-omics
technologies have evolved, there are still some barriers left. For example, for combining
spatially resolved genes and proteins, one is currently limited to either certain regions of
interest (instead of whole tissue profiling)[26] or to a fixed-sized antibody panels to profile
proteins [161, 162]). Alternatively, different spatial omics modalities might be collected
from consecutive tissue slices of the same individual and combined computationally. This
reflects one of two approaches taken for combining spatial omics modalities in this thesis,
visualized in Fig. 5.1. Slice B and C represent direct neighboring tissue slices on which
MSI and SPT experiments were performed. Additionally, A (direct neighbor of B) and D
(direct neighbor of D) were cut for fluorescence staining with pimonidazole.

B

A: MSI consecutive fluorescence
B: MSI and H&E stain
C: SPT and H&E stain
D: SPT consecutive fluorescenceC

A
D

Four serial slices from a single xenograft tumor

Figure 5.1: Serial tissue slices, i.e., direct neighboring slices, of the same xenograft sample
are used for combining mass spectrometry imaging (MSI), slice B, and spatial transcriptomics
(SPT), slice C. Further consecutive slices (A and D) were stained with pimonidazole to visualize
hypoxic regions. The gaps separating the slices in the sketch are introduced for visualization
purposes. I gratefully thank Cristina Conde Lopez for the xenograft illustration.

The described approach comes with a few caveats, summarized in Fig. 5.2. The challenge
of high dimensionality remains. More critically, the number of samples is further reduced,
given the high complexity in sample preparation: Initially, sample preparation was carried
out in two different labs, as MSI experiments were performed at a partner site in Dresden
and SPT experiments were carried out at the DKFZ in Heidelberg. However, this lead to
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Challenges of combining spatial omics through serial slices

Different spatial resolution

Errors due to co-registrationHigh dimensionality

Low sample size

Figure 5.2: Challenges of combining spatial omics through serial slices.

substantial differences in tissue morphology in the allegedly neighbor slices B and C. This
was likely caused by different cutting angles, unavoidably when slicing is performed from
two persons at two different locations. In the end, the cutting was carried out by one
person in one location, leading to the reduced size of just four samples. Another limitation
concerns the necessity to combine data through co-registration of different modalities,
likely leading to inaccuracies in the process. Lastly, the used MSI and SPT platforms
involve different spatial resolutions that must be overcome, with MSI data being organized
in a grid-like structure and SPT data in a orange crate manner.

Section 5.1.1 describes the overall workflow for combining MSI and SPT data using serial
tissue slices. Following, some preliminary results are presented.

5.1.1 Methods

The slices of each sample were combined independently from other samples. Therefore pre-
processing of the underlying data was performed as described in Sections 4.2.1 and 4.3.1,
respectively.

5.1.1.1 Co-Registration of Imaging Modalities

Given the inherent difference of MSI and SPT data, like spatial resolution and spot
alignment, I decided against a direct co-registration of the data. Instead, a four-step
procedure involving the H&E images of the MSI and SPT, was carried out: First, the
MSI H&E was aligned to the SPT H&E. Second, an upsampled MSI representative of
the data was aligned to the co-registered MSI H&E. Third, the transformations of step 2
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without scaling were applied to the actual MSI data. Fourth, potential misalignment
due to rounding errors in step 3 was addressed by a grid search to identify the best
alignment. In this procedure, SPT was considered to be the fixed and MSI to be the
moving modality. A favorable aspect of this choice is that co-registration of the SPT data
and its corresponding H&E was outsourced to the Space Ranger software. Consequently,
the geometry of the SPT modality, both data and H&E, remained untouched. For MSI,
the corresponding data underwent certain translations and rotations, but the actual size
of the spots remained unchanged. Instead, a scaling factor to project the spatial spots to
a pre-defined resolution of the H&E image was calculated, approaching the data structure
found in SPT data. In the following the individual steps are described in more detail.

Co-Registration of H&E Images

First, the two H&E images were aligned with one another. Low resolution (600 pixels
in the largest dimension), grayscale representations were chosen over co-registration of
high resolution images on individual channels. First, both H&E images were converted to
grayscale and subjected to contrast limited adaptive histogram equalization (CLAHE).
Afterwards, pixel values were normalized to a range between [0, 1]. Following, the
H&E of MSI was aligned to the overall intensity distribution of the SPT H&E by
matching histogram characteristics. Then, the same strategy for co-registration was
applied as described in Section 4.1.1, i.e., before a similarity transformation was performed
(Supplementary Material, Code Snippets 7.1 and 7.2), the MSI H&E underwent an initial
alignment to the SPT H&E. Fig. 5.3 shows the two H&E images (top of figure) and two
different visualizations of the aligned H&E images (bottom of figure).

Co-Registration of Upsampled MSI Representative

Next, the mean spectra of the MSI data was upsampled to approximate the size of the
co-registered MSI H&E. Then, the upsampled representation (moving) was aligned with
the MSI H&E image (fixed) using a similarity transformation. From the scaling parameter
of the executed transformation, a scaling factor to project spots to the MSI H&E image
was calculated. This step is shown in Supplementary Material, Code Snippet 7.13, method
coregister_upsampled() of class CoRegistration.
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Figure 5.3: Results of co-registration of serial hematoxylin and eosin (H&E) images of sample
N154a073. Top left: H&E of spatial transcriptomics (SPT), fixed image, border regions showing
fiducial markers. Top right: H&E of mass spectrometry imaging (MSI), initially aligned moving
image. Bottom left: Overlay of both HE images, whereas light red and light green represent non-
overlapping areas between slices. Bottom right: Checkerboard representation shows discrepancies
in contrasts and/or tissue structure especially in the lower left part of the two slices.

Co-Registration of MSI Data

The transformations of the previous step had to be applied the actual MSI data. Typically,
transformations in registration software follow a dedicated scheme. For the ITKElastix
software, which is based on ITK and elastix, the order of transformation in a Similari-
tyTransform is scaling, rotation, translation [163, 164]. As the MSI data spots should
remain fixed in size, the scaling parameter was set to 1. Thus, the rotation and translation
parameters had to be adjusted according to the size difference of the upsampled MSI
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representative and MSI data, before applying the transformation to the data. The imple-
mentation of this step is shown in Supplementary Material, Code Snippet 7.13, method
apply() of class CoRegistration.

Grid Search for Best Alignment

The results of different transformation parameters were compared in a grid search approach.
Therefore, the x and y floating-point translation was adjusted to identify the best setup
for the final transformation according to the DICE score of binary representations of the
moving and fixed image. This was essential to account for small inaccuracies potentially
caused by accumulated rounding errors when transformation was applied to the lower
resolved MSI data. The implementation of this step is shown in Supplementary Material,
Code Snippet 7.13, method __find_best_overlay() of class CoRegistration. The final
transformation was then utilized to adjust the geometry of all m/z values in the MSI data
accordingly (apply_transform_to_other() of class CoRegistration). Fig. 5.4 shows the low
resolution MSI H&E (co-registered to the SPT HE) with the projected spatial spots from
the data.

5.1.1.2 Mapping of MSI to SPT Spots

After co-registration, the projected coordinates of the spatial MSI spots to its H&E image
were known. The same information was derived for the SPT spots from the output of
Space Ranger, as described in Section 3.1.1. Next, the spatial spots of both modalities
need to be matched on the projected coordinates. Considering the lower number of spots
in SPT, its spots were defined as target. The spots of MSI were then interpolated to the
coordinates position of the SPT spots using a radial basis function. As a result, SPT data
as well as MSI data per spots became accessible. Following, the Spearman correlation
coefficient among genes and peptide information was calculated, to determine which genes
and fragmented peptides are co-expressed. Associations with a Spearman correlation
coefficient of > 0.5 were considered relevant. Only correlations with a p-value < 0.05
were considered as statistically significant. The implementation of these steps are shown
in Supplementary Material, Code Snippet 7.13, methods interpolate_msi_spots() and
find_correlating_spots(), respectively.

A complete example on the individual steps for the combination of serial spatial omics
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Figure 5.4: Spatial spots projected to mass spectrometry imaging (MSI) low resolution (lowres)
hematoxylin and eosin (H&E).

data is demonstrated in Supplementary Material, Code Snippet 7.14, with details of the
auxiliary classes shown in Code Snippet 7.15.

5.1.2 Preliminary Results

Table 5.1 shows the results of co-registration of MSI and SPT data for four samples from
four tumor models. The shown numbers denote the total number of genes and the total
number of MSI masses that were found co-located. Of note, typically one gene (or one
mass) was correlated to multiple masses (or genes). For example, SPRR2D in N165a002
was associated to 78 (out of 93) masses, whereas its highest correlation was found with
mass 628.333. Considering that genes are co-expressed to many other genes, and peptides
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Table 5.1: Results from co-registration of serial mass spectrometry imaging (MSI) and spatial
transcriptomics (SPT) slices. Numbers denote the total number of correlating genes and peptides
with a Spearman correlation coefficient of at least 0.5 within a sample.

Total number of Highest correlation
Sample Experiment (MSI/SPT) Tumor Model Genes / MSI mass Corr coeff. Gene / MSI mass
N165a002 _M996/S008C SAT 93/12 0.58 SPRR2D / 628.333
N154a073 _M994/S008A CAL33 893/80 0.76 KRT16 / 1337.688
N156a074 _M997/S008D SAS 0/0 / /
N150d320 _M995/S008B FaDu 53/2193 0.59 SLC2A1 / 618.323

are co-abundant to other peptides, this pattern was expected to emerge. Among the genes
and peptides matched, some were found to be associated with hypoxia in the unimodal
approaches of Sections 4.2 and 4.3. For example, KRT16 showed up as protein marker in
the CAERF approaches (unsupervised and semi-supervised). Also, when combining MSI
and SPT data, KRT16 showed the highest correlation with mass 1337.688 in a CAL33
sample, which is also close to one of the MSI masses (1337.665) used for identifying the
peptide in the LC-MS/MS data. Of note, the tissue slices used here, differ from those
in the unimodal approaches, thus mass inaccuracies are expected. Fig. 5.5 visualizes
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Figure 5.5: Example of gene (left, KRT16, spatial transcriptomics (SPT)) and peptide
(right, mass 1337.688, mass spectrometry imaging (MSI)) with a strong correlation (Spearman
correlation coefficient of 0.76) in sample N154a073. Shown are the spatial spots on top of the
corresponding hematoxylin and eosin (H&E) images. Yellow = high gene expression / peptide
abundance, blue = low gene expression / peptide abundance. Areas overlapping with fiducial
markers in spatial transcriptomics (SPT) (left) are not covered with spatial spots.
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KRT16 and mass 1337.688 in the aligned SPT and MSI data. For the remaining two MSI
masses (854.496, 1259.553) associated with KRT16 in the CAERF approaches (854.495,
1259.578), comparable high correlation coefficients of 0.75 and 0.73 were derived. Other
genes which map with the findings of MSI include ANXA1, HSPA8, KRT14, TGM1,
LDHA. Additionally, the genes KRT16, ANXA1, TGM1, LDHA were also brought up
as associated with hypoxia in the unimodal SPT method. Of note, some promising gene
candidates, e.g., ALDOA, KRT6A, KRT6C, PKM were excluded in the Visium probset
for potential off-target activity, and thus cannot be evaluated.

The only sample for which no strong correlation of genes and peptides was apparent
was in SAS sample N156a074. The checkerboard representation of the two H&E images
revealed (Fig. 5.6) that the tissue structures displayed significant variations. Reducing the
Spearman correlation coefficient from 0.5 to 0.3 resulted in 5 genes and 23 significantly
correlated peptides. The only modest associations might be attributed to biological or
technical causes such as varying mRNA- protein levels or too diverse neighboring tissue
sections, respectively.
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Figure 5.6: Results of co-registration of serial hematoxylin and eosin (H&E) images of sample
N156a074. Top left: H&E of spatial transcriptomics (SPT), fixed image, border regions showing
fiducial markers. Top right: H&E of mass spectrometry imaging (MSI), initially aligned moving
image. Bottom left: Overlay of both HE images, whereas light red and light green represent
non-overlapping areas between slices. Bottom right: Checkerboard representation reveals broader
discrepancies in contrasts and/or tissue structure.
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5.2 Learning Peptide Information from H&E Stains
of MSI

Instead of using the H&E stains for combining multiple omics modalities via co-registration,
they may be used to learn characteristics of the data itself. The intention is to learn the
spatial omics data directly from H&E stains. The idea came up during the discussion
with Dr. Denis Schapiro about the inaccuracies of registering consecutive tissue slices. In
theory, the trained model would then allow to augment any other H&E stain from the
same tumor entity to predict the spatial omics data on top of it. If applicable, this strategy
would reduce the necessity for executing time-consuming spatial omics experiments once
the model is sufficiently trained. Considering that H&E stains are routinely acquired
in clinical practice for cancer diagnosis and grading [42], augmenting these images with
molecular information would also facilitate the adoption of new biomarkers substantially.
On a more specific note for the combination of spatial omics modalities, it would allow to
reduce the number of consecutive slices that require co-registration.

In this Section, it is evaluated whether it is possible to learn MSI derived peptide
information from H&E stains using a CNN. In particular, it is investigated whether
hypoxia-associated peptides can be learned from H&E images. While it would also be
conceivable to train the CNN on SPT data instead of MSI data, a lot more MSI data is
available from the tumor models under investigation. The subsequent steps of predicting
the MSI data on H&E images from SPT experiments are not covered in this thesis, but
will be incorporated as part of future work. Fig. 5.7 sketches the main challenges that

High dimensionality

Challenges of combining spatial omics through deep learning

Hypoxia-associated peptides from H&E?H&E

H&E H&E H&E may differ between modalities

Figure 5.7: Challenges of combining spatial omics through deep learning approaches.
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need to be addressed. First, high-dimensional spatial omics data is typically sparse,
making it challenging to unravel biological patterns. However, the strong correlation of
features might facilitate the learning process. Second, the H&E stains utilized during
training might look very different to the H&E stains on which prediction is performed.
Consequently, the training data needs to be augmented accordingly. Third, while it might
be possible to learn some molecular candidates from H&E stains, in course of this thesis
it is of particular interest whether hypoxia-associated peptides can be learned.

Two strategies are proposed to learn peptide information from MSI H&E images: In the
first one, a CNN is trained to predict pre-processed MSI data from H&E patches. In
the second one, a CNN is trained to learn the reduced latent space representation of
the proposed CAE architecture described in Section 4.2. In the following, Section 5.2.1
describes the data and workflow of the two methodologies. Some preliminary results are
shown in Section 5.2.2.

5.2.1 Methods

Pre-processing of MSI data was performed as described in Section 4.2.1. This section
focuses on the co-registration of the H&E image to the data and corresponding creation
of patches.

5.2.1.1 Co-Registration of H&E Images

For training a CNN, the H&E images and the MSI data were split into a pre-defined
number of patches. This strategy allows to reference both, image and data patches, by
the same index. Therefore, image and data had to be co-registered accordingly. The MSI
data, i.e., given the difference in dimensions, an upscaled representative of the MSI data,
was considered to be fixed. The H&E image was set as the corresponding moving image.

Different from the low resolution images used for the co-registration of serial tissue slices
(Section 5.1), two different H&E resolutions were utilized to prepare the images for the
deep learning approach. First, the original H&E image was exported using QuPath with a
downsampling factor of two. Therefore, the Open Microscopy Environment TIFF (OME-
TIFF) file format was employed, to store different levels, so-called image pyramids. A level
2 image pyramid (up to 1,500 pixels in its largest dimension) was used for initial alignment
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with the fixed image (auxiliary class MovingDummyChannel in Supplementary Material,
Code Snippet 7.16). As it is important to preserve the individual color channel information
for the model, the registration was performed on the channels individually, starting with
the red channel. Therefore, the red channel image was cropped while retaining the aspect
ratio to the data. Following, a mean spectra image as representative of the MSI data
was upsampled to match the size of the cropped moving image. Considering that the
channels of an H&E image contain many local structures in contrast to the data, a binary
mask of the red channel was co-registered to a binary mask of the MSI representative.
For co-registration, a similarity transformation was applied, optimizing the mattes MI
metric. Then, a level 0 image pyramid (up to 19,000 pixels in its largest dimension) of
the H&E image was loaded (auxiliary class MovingRGBImage in Supplementary Material,
Code Snippet 7.17). Next, the co-registered level 2 red channel image was upsampled to
approximately match the size of the level 0 image. The level 0 image (all channels) was
cropped relatively to the level 2 image, accounted for the size difference. Subsequently, the
registration of the level 0 to the level 2 representation by means of a similarity transform
and mattes MI metric was executed. More precisely, the level 0 red channel was used for
registration with the level 2 red channel, and the resulting transformation was applied to
the blue and green channel accordingly.

In some final steps, the co-registered level 0 image and the underlying data were cut into
patches. The number of patches depends on a sample’s data dimensions. Considering
the spatial data spots to be fixed in dimensions, the dimensions of the level 0 image
needs to be adjusted accordingly. For the dimensions of some given data, a pre-defined
data patch size and a pre-defined image patch size, the dimensions of the H&E image
can be calculated. For example, assuming the dimensions of the data to be 129 × 129
pixels, a data patch size of 3 × 3 pixels and a image patch size of 360 × 360 pixels, then,
the corresponding H&E image should be the 120 fold of the dimensions of the data, i.e.,
15480 × 15480 pixels in size to retain the aspect ratio. The image patch size should be a
multiple of the data patch size to facilitate the generation of overlapping patches. For the
given example, a shift by 1 pixel in the data would correspond to a shift by 120 pixels in
the image. The image’s dimensions should not exceed its actual size to avoid upsampling
of the image. The number of patches can be calculated thereafter with the following
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formula:
number of patches = dimension2

patch size2

In the used samples, the data patch size was set to 3×3 pixels and the image patch size to
360 × 360 pixels. In case the dimensions of the data were asymmetric, they were padded
accordingly. The level 0 H&E image was downsampled to match the computed image
dimensions, taking into account the padding of the data. For example, considering the
dimensions of MSI data to be 124 × 128 pixels, it is padded by 5 × 1 pixels to 129 × 129
pixels. As the image patch size is 120 times larger, the padding of H&E image is expected
to be 600 × 120 pixels. Thus, the H&E image is downsampled to match the computed
dimensions minus 600 × 120 pixels. As a final step, the H&E image is padded accordingly.
Given the limitation to whole numbers, some alignment errors might be introduced due
to rounding errors in the progress. Assuming that the actual image is downsampled to
14885 × 15360 pixels (instead of 14880 × 15360 pixels), preserving approximately the
aspect ratio of the data, this would lead to a padding error of −5 × 0 pixels. For the
samples presented, the maximum error accounted was 0 × −7 pixels, presumably too low
to have a significant effect on learning. The precise implementation is shown in method
derive_params() of class ImagePatchBuilder, Supplementary Material, Code Snippet 7.18.

To further mitigate the effect of padding errors or inaccuracies during co-registration,
overlapping patches were created with a step size of 1 data pixel and 120 image pixels
accordingly. A complete example for the co-registration of images and patch creation can
be found in Supplementary Material, Code Snippet 7.19.

5.2.1.2 Strategies for CNN Learning

Two different learning strategies are proposed.

In the first approach, the abundance pattern of the pre-processed 18,735 m/z values should
be acquired by a CNN. Therefore, the data patches were reduced from 3 × 3 × 18735 to
1 × 18735 by computing the mean intensity value per patch. Then, the H&E patches
were inputted together with the intensity values to a CNN.

In the second approach, the CNN should learn latent m/z values from the latent space of
a previously trained CAE. Therefore, the data patches were encoded using the proposed
unsupervised CAERF approach, based on the weights of the presented qualitative run
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(Section 4.2.2.1). In this case, the data patches were reduced from 3 × 3 × 18735 to
2 × 2 × 64. Again, the mean intensity value was computed per patch, resulting in a final
vector of 1 × 64. The encoded values were normalized to a range between [0, 1]. The H&E
patches and the reduced data patches were then fed into the CNN.

5.2.1.3 Sample Size

For demonstration purposes, four out of five CAL33 samples which were used to train
the CAERF approach were utilized. Fig. 5.8 shows exemplary the aligned H&E and

Figure 5.8: Patches of sample _M819_N154a037 (pseudo-colored). Top: Patches from
hematoxylin and eosin (H&E)of size 360 × 360 pixels. Bottom: Patches from mass spectrometry
imaging (MSI) data of size 3 × 3 pixels of exemplary mass-to-charge ratio (m/z) value. In total
972 patches out of 1681 patches are shown. Holes in H&E image likely show areas of previously
necrotic tissue or disruption from the MSI experiment.
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data patches of one sample. It also highlights the inherent difference in structures
between modalities. In H&E images, holes within tissue areas are clearly visible, which is
potentially caused by a combination of previously necrotic tissue and disruption from the
MSI experiment itself. For the experiments, the tissue was covered with a matrix, which
depicts as technical signals in the data. Consequently, the data does not show signs of
disruption, even when no actual tissue but only matrix was measured.

Patches showing only background in either the data or the H&E were removed from
further examination. The patches for training were further restricted to balance the
number of hypoxic and normoxic patches. If the m/z values (first approach) or latent
m/z values (second approach) of interest are primarily present in hypoxic patches, than
a model would hardly learn linked visual patterns in case they are underrepresented.
For three samples, hypoxia labels were available. For the fourth samples, the amount
of hypoxia was considered too low. All hypoxic patches with a minimum degree of
hypoxia (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 0.1) were considered hypoxic, resulting in 4,443 hypoxic patches.
Additionally, 6,443 normoxic patches were sampled from the patches not fulfilling the
hypoxia threshold. The same amount of hypoxic and normoxic patches were derived from
each sample, despite sample _𝑀821_𝑁154𝑎098, from which only 2,000 normoxic patches
were drawn. Hypoxic and normoxic patches were independently split with a 80/20% ratio
into training and test sets. The patches were shuffled for training.

5.2.1.4 CNN Training

In the following, italic names denote the corresponding parameters in tensorflow (see
Section Software).

For training, a DenseNet architecture with 121 layers was configured (DenseNet121). An
input shape of 360 × 360 × 3 was set to fit the defined image patch size. No pre-trained
weights of ImageNet were used as this would require a patches of size 240×240×3. Instead
of a classification task, a regression task need to be performed to predict the intensity
values of m/z values. Therefore, the model’s layers were extended by a global average
pooling layer (GlobalAveragePooling2D) a normalization layer (BatchNormalization), and
a dense layer (Dense) with either 18,735 or 64 output nodes and a sigmoid action function.
The adjustment of the DenseNet architecture is illustrated in Code Snippet 5.1. For both
approaches, optimization was achieved by a Huber loss function with delta being set to
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Code Snippet 5.1: Adjustment of DenseNet architecture for learning peptide information
1 import tensorf low as t f
2 net = t f . keras . appl i cat ions . DenseNet121(
3 include_top=False ,
4 input_shape =(360 ,360 ,3) ,
5 weights=None ,
6 input_tensor=None ,
7 pooling=None ,
8 c l a s s i f i e r _ a c t i v a t i o n=None ,
9 )

10 out = t f . keras . l ayers . GlobalAveragePooling2D () ( net . output )
11 out = t f . keras . l ayers . BatchNormalization () ( out )
12 output_layer = t f . keras . l ayers . Dense( n_features , act ivat ion=' sigmoid ' ) ( out )
13 model = t f . keras . Model( inputs=net . input , outputs=output_layer )

1.35 to account for potential outliers especially in the non-reduced MSI data. The training
patches were augmented by a factor of eight, applying randomly geometric transformations
(rotation, flipping) and color adjustments (saturation, brightness, contrasts, hue). The
test patches remained unaltered. Both approaches run with a batch size of 32 and for 150
epochs, with no essential improvements being made after epoch 135.

5.2.2 Preliminary Results

After training the CNN, correlation analyses of the actual and predicted values were
performed. Fig. 5.9 shows the Spearman correlation coefficients between learned and
actual intensity values in the test set of both approaches. With a p-value < 0.05, all
correlations were found to be statistically significant. As expected, the approach on
the entire set of m/z values showed overall lower correlations compared to the reduced
latent feature set. Next, the features with the lowest and highest Spearman correlation
coefficient were examined. For the latent feature approach, the highest correlation (0.65)
was achieved for a feature (latent id #32, Fig. 5.10, left) which mainly differentiates
mouse and tumor areas according to the corresponding H&E stain. Considering that these
differences are also clearly visible by eye, it seems plausible that a CNN can learn the
differences. The latent feature (latent id #44, Fig. 5.10, right) with the lowest correlation
(0.03) appears to depict technical signals of the matrix and some stroma tissue of the
mouse. The majority of patches showing matrix signals were dismissed during CNN
training as the corresponding H&E patches typically show no tissue. The absence of some



102 Learning Peptide Information from H&E Stains of MSI

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Spearman coefficient

0
100
200
300
400
500
600
700
800

Fr
eq

ue
nc

y

Mean: 0.42

Correlation of predicted to actual test data 
18735 features

0.1 0.2 0.3 0.4 0.5 0.6
Spearman coefficient

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Fr
eq

ue
nc

y

Mean: 0.47

Correlation of predicted to actual test data 
64 features

Figure 5.9: Correlation analysis of predicted and actual peptide information. Left: Results of
convolutional neural network (CNN) trained on 18,735 mass-to-charge ratio (m/z) values. Right:
Results of CNN trained on 64 latent features of the unsupervised convolutional autoencoder
(CAE) approach.

molecular features during training may explain the low correlation coefficients in Fig. 5.9.
M/z value 775.666 illustrates rather noisy signals (Fig. 5.11, right), with some signal at
the border of the tissue slices, and was the feature with the lowest correlation coefficient
(0.13) in the CNN approach, trained on the raw m/z values. The m/z value 701.383 with
the highest correlation coefficient (0.68) depict tumor regions (Fig. 5.11, left).

For comparison, the H&E images are shown in Fig. 5.12, where pink areas show mouse
tissue and purple areas belong to tumor cells of human HNSCC.
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Figure 5.10: Exemplary images of latent features with highest (left, #32, 0.65) and lowest
(right, #44, 0.03) Spearman correlation coefficient of predicted and actual peptide intensity
values.
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Figure 5.11: Exemplary ion images of mass-to-charge ratio (m/z) values with highest (left,
701.383, 0.68) and lowest (right, 775.666, 0.13) Spearman correlation coefficient of predicted and
actual peptide intensity values.
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Figure 5.12: Corresponding hematoxylin and eosin (H&E) images from 3 out of 4 samples
from which the convolutional neural network (CNN) learned peptide information. Pink areas
denote mouse tissue like stroma, purple areas show tumor tissue.
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However, the overall performance is only of secondary interest. Instead, the main focus is
directed towards uncovering evidence, whether it is possible to acquire patterns of features
associated with hypoxia. Therefore, m/z values which found to be associated with hypoxia
according to the results of Section 4.2.2 were investigated.

Table 5.2 shows some exemplary raw m/z values and latent feature 56, which were found
to correlate with hypoxia annotations, as well as their actual and predicted value. For the
raw m/z values, the mean difference between expression values in hypoxic and normoxic
patches is relatively small and the median absolute error relatively high. Therefore, it
remains unclear, whether the CNN can truly differentiate normoxic and hypoxic patches
for the shown features, as it underestimated expression values particularly in the hypoxic
values. In contrast, the expression values for the actual and predicted latent feature
appeared resistant to mix up. With this first attempt to learn MSI data from H&E stains,
the results yield promising that some peptide information, particular those that might be
linked to tumor hypoxia, can be connected to visual patterns.

Table 5.2: Hypoxia-associated features and their expression in hypoxic and normoxic patches
in the test set. The first five rows show raw m/z values, the last one the latent feature from the
convolutional autoencoder (CAE) approach. The shown overall correlation coefficient denote
the Spearman correlation coefficient of predicted and actual intensity values for the given m/z
value. Column 𝑦 corresponds the actual mean intensity values, 𝑦_𝑝𝑟𝑒𝑑 corresponds to the mean
predicted values, and 𝑀𝑒𝑑𝐴𝐸 denotes the median absolute error between actual and predicted
values for a specific feature.

Metrics of prediction of hypoxia-associated features
Overall Normoxic Patches Hypoxic Patches

m/z id m/z value corr. coeff. ̄𝑦_𝑝𝑟𝑒𝑑 ̄𝑦 MedAE ̄𝑦_𝑝𝑟𝑒𝑑 ̄𝑦 MedAE
1548 989.48 0.59 0.16 0.19 0.08 0.21 0.27 0.12
1583 998.47 0.55 0.19 0.20 0.11 0.22 0.26 0.10
1587 999.48 0.44 0.26 0.26 0.12 0.31 0.35 0.10
2382 1167.61 0.55 0.21 0.21 0.11 0.25 0.26 0.10
1785 1044.53 0.65 0.17 0.20 0.08 0.22 0.27 0.08
56 latent 0.62 0.43 0.45 0.08 0.61 0.57 0.08
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5.3 Discussion

Two strategies for combining spatial omics data were proposed. In the first one, co-located
genes and peptides were derived by combing the spatially resolved molecular information
from two consecutive tumor tissue slices. In the second strategy, it was investigated
whether it is possible to learn hypoxia-associated peptide information from H&E stains
of the same tissue slice to overcome inaccuracies from consecutive slices. Strengths and
weaknesses of the strategies are discussed in the following. In the later part of this section,
alternative approaches are reviewed.

In the consecutive slice approach, several genes and peptides, which were associated
with hypoxia independently from each other in the unimodal approaches, were found to
co-locate. These gene-peptide candidates show potential as biomarkers for tumor hypoxia.
From a technical viewpoint, the co-registration of neighboring slices is likely to introduce
some inaccuracies. Although different layers were co-registered, the most susceptible to
errors is the one where H&E images from different slices are aligned. Considering that
two consecutive slices span a range of at least 7𝜇𝑚, it is unlikely that the same cells
will be consistently observable across different images. Therefore, co-registration may
be guided by more global structures e.g., tissue morphology. Hence, I decided for lower
resolved images (600 pixels in the largest dimension) and utilized grayscale representations
instead of individual channels for alignment. In order to conserve finer tissue structures,
the use of high resolution images may be considered as potential future improvement.
As a first attempt, only similarity transformation was applied. However, as pointed out
in the unimodal sections, some degree of deformation might be introduced to the tissue
slices during sample preparation. These local deformations cannot be represented by
solely linear transformations. Although I experimented with some additional b-spline
transformations for the registration of the H&E images, the results did not significantly
alter. Potentially, the varying thickness (∼ 5𝜇𝑚 for SPT versus ∼ 2𝜇𝑚 for MSI) and
a certain degree of tissue disruption caused by the MSI experiments may impede the
process. The unaligned H&E images in Fig. 5.3 support the assumption that tissue slices
of MSI expose a less dense tissue structure. The figure also shows that contours of the
tumor slices do align after co-registration, apart from some overlapping tissue in the lower
left corner of the SPT H&E.
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Limitations of the consecutive slice approach might be overcome with the proposed CNN
approach. Although no multimodal biomarkers were derived in this case by now, the
preliminary results suggest that H&E stains may be utilized to learn peptide information.
When dimensionality reduction was carried out prior to learning, stronger correlations
between the predicted and actual intensity values could be achieved than without it,
indicating that the approach had some denoising effects. Surprisingly, also the approach
on the entire set of m/z values delivered moderate correlations. However, the prediction
error was presumably too high to clearly differentiate hypoxic and normoxic patches
for the investigated features. In contrast, the comparison of the predicted and actual
intensity values for latent feature #56 associated with hypoxia suggested that the CNN
was able to identify some visual distinctions between the labelled patches.

Despite the potential advantages of the CNN approach over the serial slice approach, one
particular drawback of the former is that the trained model will perform well presumably
only on H&E images from HNSCC xenograft models. Especially structures which differ
in purely human tissue, like human immune cells or vessels, are likely to be misperceived.
However, considering the large amount of H&E stains and MSI available for the well-
characterized HNSCC models, they can be still leveraged for biomarker discovery. It is
important to note, that so far the association of the m/z values to hypoxia was inferred
only indirectly from findings of Section 4.2.2. In the proposed CNN method, only the
molecular and staining information from the same tissue slice, but not the hypoxia labels
from neighboring slices were utilized during training. Hence, whether the peptides are
actually contributing to hypoxia necessitates further validation. A weak indication would
be the direct inference of hypoxia from H&E images. To achieve this, one could attempt
to train a deep learning model to predict the level of hypoxia, e.g., between 0 and 1. A
high spatial concordance of patches that were predicted to be highly hypoxic by one model
and likewise exhibited a high abundance of presumably hypoxia-associated m/z values
by my proposed model, would point towards an actual association. Still, this can only
be considered as weak indication, since labelled hypoxic regions may be confounded by
other, more easily observable tumor characteristics such as metastastic cells. Moreover,
there might be several reasons why the prediction of hypoxia from H&E images alone may
fail. First, FIs and H&E images represent two independent tissue slices, where hypoxic
cells which may be present in the FI slice, may not exist on the H&E slice and vice
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versa. Second, it might not be possible to predict hypoxia solely on visual structures.
So far, there is only limited evidence that hypoxia can be estimated from H&E images.
Sundstrom et al. tried to derive hypoxia-associated features from H&E by means of
measuring gradients near blood vessels and employing multithresholding to segment tissue
into normal, hypoxic and necrotic regions [165]. However, they acknowledged that the
nature of hypoxia involves inherent complexity and that the features proposed can only
capture a small proportion of it. Manescu et al. used a multiple instance learning CNN to
predict hypoxia from H&E stains, based on the stratification of entire samples into being
either hypoxic or normoxic [166]. The stratification was applied according to a hypoxia
gene signature. When analyzing the models performance, they detected differences in
the morphology of macrophage cells between hypoxic and normoxic samples. However,
whether this distinction is a result of hypoxia or other tumor characteristics is challenging
to discern. Overall this suggests that a validation by means of additional data may be
more sound. Nonetheless, the inability to infer hypoxia from H&E images would not
exclude the potential to learn hypoxia-associated peptide information from H&E images.
It might be, that only a combination of tissue structure and molecular information enable
to unravel characteristics of hypoxia.

For other tumor characteristics, CNNs displayed encouraging findings in the identification
of biomarkers from H&E stains [167]. For example, Kather et al. showed that microsatellite
instability can be predicted from H&E images, allowing to infer whether patients with
gastrointestinal cancer could benefit from immunotherapy [168]. Also, the combination
of H&E images and spatial omics data, particularly on SPT data, has been explored
previously. Monjo et al. evaluated if a CNN can be employed to impute realistic expression
values of SPT data on consecutive slices [169]. Therefore, the model was trained on sections
D1 and D3 for imputing expression values in section D2. Among other metrics discussed,
they achieved a mean Pearson correlation coefficient in the 23 genes of 0.369 to 0.458 in
different models. Additionally, they investigated the performance of different models on
18,542 all genes, compared to 21 or 3 selected genes. Also He et al. used a DenseNet121
to learn 250 genes from 23 patients with breast cancer from SPT data [170]. Validated
on an independent dataset, a mean Pearson correlation coefficient of 0.33 across 233
genes was achieved. In a review conducted by Schneider et al., they found that studies
combining spatial omics data and H&E images are carried out mostly on a small number
of individuals [171]. They concluded that due to the high spatial resolution, insights
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into tumor heterogeneity might be still feasible. However, they also emphasized that
more external validations are imperative. The only modest correlations in the mentioned
papers suggest that raw gene expression data in individual samples may be too unstable
for reliable learning and prediction. I hypothesize that extracted latent features from
autoencoders are likely to generalize better to unseen data.

Both proposed combinational approaches are limited to mRNA and peptides that co-locate.
Although typically some correlation of genes and peptides exists, the strength might vary
considerably (Buccitelli et al. [160]). Typically, only modest within-gene correlation can
be found, i.e., according to Buccitelli et al. ”how much a change in mRNA level of one
gene can explain changes in protein levels”. This can be partially ascribed to the fact, that
the half-lives of proteins are longer than for mRNA, making it likely to detect proteins but
miss corresponding mRNA transcripts. As further outlined by Buccitelli et al., the spatial
correlation might also be affected by proteins that are transported to another location
where they had been produced. Overall, results from the approach on consecutive slices
allowed to identify moderate correlations (Spearman correlation coefficient of at least 0.5)
in 3 out of 4 samples. Another aspect influencing both approaches is the difference in
spatial resolution of the omics modalities. While the data of MSI is structured as grid,
the data of SPT is arranged in an offset pattern, resulting in less spatial spots. Adding to
this point, the exact spot size in diameter differs (50𝜇𝑚 in MSI versus 55𝜇𝑚 in SPT).
Currently, the approach on consecutive slices is limited by the lower number of spatial
spots in the SPT data. By combining the information of the H&E stain with the SPT
data, it might be possible to predict higher resolutions [169, 172]. The same principle
was applied to MSI data previously [173]. A higher resolution would enable to consider
more spots with less interpolation, expecting to improve the proposed correlation analysis
in the process. The same considerations hold true when actual SPT and predicted MSI
values from a CNN are combined.

Several other measures for improvements are under consideration. For the approach on
serial slices, a significant upscaling in sample size is challenging. The main challenge arises
from the amount of manual work necessary to ultimately derive biomarkers, especially
for sample collection. Nevertheless, 16 more samples are currently processed to allow for
creating more stable results of individual tumor models. Even with an increased sample
size, the high amount of feature comparisons make false positive associations statistically
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likely. Instead of combining all gene and peptide information, a combination of the latent
space results from the autoencoder approaches is intended. In particular in case of the
MSI data processed here, it may be argued that aggregated peptide information could
yield stronger associations with genes than individual m/z values do. Of additional benefit,
the comparisons would be restricted to a few latent features of interest, thereby reducing
the number of false positive correlations.

For the CNN approach, it is important to train the model on more data for better
generalization. Additionally, data augmentation is currently limited to basic geometric
transformations and color adjustments. However, from observations of H&E images of
SPT, it became apparent that the thicker slices result in a more densely packed tissue
structure. Therefore, it needs to be investigated if specific data augmentation is indicated
and feasible. Also, it might be worth experimenting with a different parameter setup.
Currently, the image patch size of 360 × 360 pixels was chosen in a way that the level
0 H&E image required only minimal additional downsampling. The data patch size
of 3 × 3 pixels was selected to mitigate outliers in individual pixels and to allow for
dimensionality reduction with the trained autoencoder. It might be, that a different set
of data patch size and image patch size yields better results. Especially transfer learning
by using pre-trained weights for the CNN might improve performance further. As the
DenseNet implementations typically expect a input size of 224 × 224 pixels, either the
architecture itself or the patch size would need to be adjusted. For the CNN approach
on the entire feature set, the proposed adjustments to the architecture may be only
suboptimal, considering that the dimensions of the last layer before the introduced pooling
layer are (11, 11, 1024). A subsequent pooling layer will reduce the dimensions down
to 1024, which might be too low to predict 18,735 features. However, also additional
upsampling (e.g., by a subsequent dense layer with 4,096 nodes) did not improve results. In
general, previously published work on deep learning strategies for H&E images showed that
a different architecture itself may alter results [169]. Therefore, also the performance of
other architectures with fewer convolutional layers, like VGG16, might be worth exploring.

Some of the findings, especially the multimodal biomarkers of the approach on consecutive
slices, already allow for an independent validation. As initial step, the correlation of
the markers to the consecutive pimonidazole-stained slices A and D (Fig. 5.1) will be
evaluated. Ideally an expert, preferably unaware of the findings, would annotate the FI
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accordingly. Alternatively, the spatial pattern of peptide candidates might be compared
against further consecutive slices stained for antibodies via immunohistochemistry. The
same strategy can be applied to evaluate the visual structures that are picked up by the
CNN to learn (hypoxia-associated) peptide information. This requires the employment of
explainability techniques for the learned CNN model, like filter visualization or utilizing
integrated gradients [170]. Once prediction is applied on SPT images, true neighboring
MSI and SPT tissue slices might be beneficial for further evaluation: Given a MSI slice
B and a SPT slice C, the predicted MSI values on slice C can be rated by the actual
measured MSI values of slice B. Assuming that neighboring slices share a high degree of
visual structures and molecular information, similar expression values should be predicted.

While the integration of multi-omics data encompasses a wide spectrum of research,
so far the combination primarily focused on non-spatial omics data [174]. Certainly,
many of the proposed strategies can be adapted to incorporate spatial information. For
example, one obvious extension of the proposed CAE approaches would include the
fusion of latent space features by another autoencoder, as proposed by Xu et al. [175].
Alternatively, an early integration of data by means of a single autoencoder might be
implemented [176]. However, in both cases the integrating autoencoder would be unaware
of the fact that data from the same individuals are being processed. Instead, dedicated
pairs (e.g., from individuals) might be passed to the autoencoder to allow for contrastive
learning. In contrastive learning, the loss function is adapted to maximize the similarity
between positive pairs and minimizing the similarity of negative pairs [177]. Zhou et
al. were among the first who proposed contrastive learning for multi-omics integration
by maximizing the MI between different omics layers [178]. Given many more paired
samples can be used in a patch-wise spatial omics approach different from non-spatial
omics data, this integration approach appears promising. Other techniques include
graph-based integration, in which either relations within one domain (e.g., protein-protein
interaction) or between domains (e.g., multiple omics) are depicted [179]. A specific form
of it represent graph neural networks. In principle, it is possible to combine various
concepts for deep learning integration. For example, Rajadhyaksha et al. proposed graph
contrast learning for multi-omics integration by constructing omics data as graphs and
utilizing contrastive learning as pre-training strategy [180]. The persisting challenge,
however, remains the topic of explainability in deep learning approaches. In the unimodal
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approaches proposed in this thesis, the recovery method incorporated correlation analysis
to identify contributing original features to a latent feature of interest. However, by
adding additional models (e.g., an integrative autoencoder) or concepts (like graphs)
more elaborate strategies are likely to be required for unraveling the added complexity.

In summary, several multimodal biomarkers for hypoxia were identified which are in line
with findings from unimodal approaches. The preliminary findings suggest that CNNs
are capable of identifying relevant patterns to predict peptide information, especially
hypoxia-associated peptides. This could significantly ease the combination of spatial omics
modalities by reducing the amount of consecutive tissue slices in the long run. Errors
caused by the use of consecutive slices and subsequent inaccuracies from co-registration
may arguably be eliminated. To the best of my knowledge, no comparable strategies for
combining spatial omics modalities have been published so far, particularly in combination
with dimensionality-reduced data from CAEs.





6 Conclusion

This thesis aimed to enhance biomarker discovery for tumor hypoxia in HNSCC by
means of advancing accessibility of spatial omics data through convolutional autoencoders.
Exemplified on data of SPT and MSI, it was shown that convolutional autoencoders enable
to extract also features which exhibit only modest signals like in the case of tumor hypoxia.
The thesis highlights key aspects on how to build an autoencoder architecture for spatial
omics data that allows for explainable feature extraction: Given a latent feature of interest,
the corresponding recovery method estimates the contribution of all original features to it
via correlation analysis. The specifics of individual spatial omics modalities (like the orange
crate packing in SPT), have been addressed effectively through the adjustments of the
autoencoder’s hyperparameters (e.g. kernel size) and its loss function (weighting). It was
demonstrated that the combined convolutional autoencoder and random forest (CAERF)
approaches, identified less noisy associations to tumor hypoxia than random forest models
alone. In particular, the proposed semi-supervised convolutional autoencoders, which
incorporated hypoxia annotations during training, reduced noisy associations further as
indicated by the significantly higher structural similarity index measure scores.

Several unimodal biomarker candidates for hypoxia in MSI and SPT data were identified.
Some of these peptide or gene candidates were associated already previously with hypoxia
(like Phosphoglycerate kinase 1 PGK1, Pyruvate kinase PKM, L-lactate dehydrogenase A
chain LDHA). Other candidates have not been previously known to contribute to hypoxia
(like Keratin, type I cytoskeletal 16 KRT16, Keratin, type II cytoskeletal 6B KRT6B,
Annexin A1 ANXA1) and thus require stringent evaluation. Some of the unimodal genes
and peptides were found to co-locate and showed a strong correlation when spatial omics
modalities were combined through serial slices (such as Keratin, type I cytoskeletal 16
KRT16, Keratin, type II cytoskeletal 6B KRT6B, Annexin A1 ANXA1). These gene-
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peptide candidates show the potential of multimodal biomarkers for hypoxia. While it is
important to accurately detect hypoxia, multimodal biomarkers would also contribute
to a more nuanced understanding of the underlying processes in hypoxic tumors than
unimodal markers.

Although several unimodal and multimodal biomarker candidates were detected, several
limitations need to be considered. First, whether the found markers are consistently
verifiable in hypoxic regions need to be evaluated by additional data. As part of future
work, it is planned to investigate the biomarkers on consecutive tissue slices using im-
munohistochemistry stains. Second, so far, the convolutional autoencoders were trained
on a relatively small set of individual HNSCC tumor models. As a consequence, they
may not generalize well to unknown tumor models. Therefore, it is import to train the
models on a larger and more diverse set of samples. Third, the hypoxia annotations were
derived from consecutive tissue slices. Inevitably, this will produce some biologically and
technically inaccuracies. The former category includes inaccuracies due to the presence
of different cells in consecutive slices. Among the latter, inaccuracies may be introduced
by means of co-registration errors. While a more elaborate co-registration method may
reduce inaccuracies further, the use of consecutive slices will likely remain a source of
error. One a similar note, the fluorescence images were only partially annotated. As
a consequence, some stains might appear to represent hypoxia when they are actually
just artifacts. This issue may be resolved by increasing the number of (at least partially)
annotated images to diminish sensitivity to false positive hypoxia labels. Forth, MSI and
SPT data had to be collected on consecutive tissue slices. Therefore, a combination of
MSI and SPT data results in comparable constraints as described in point three. Another
methodological constraint includes that potential multimodal biomarkers are restricted to
co-located genes and peptides. Genes and peptides with a low spatial correlation cannot
be identified with the proposed integration strategy.

Considering the promising though preliminary results for the combination of spatial omics
data, further steps are warranted. Currently, the integration strategy based on serial
slices is prone to two errors. The first one can be attributed to the high-dimensional
feature space which will likely produce statistical errors when comparisons are carried out.
These errors might be overcome by the integration of latent features from the proposed
convolutional autoencoders, instead of fusing the entire feature sets. The second error
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is introduced due to the usage of consecutive tissue slices. To mitigate the effects of
biological and technical errors, it was investigated whether convolutional neural networks
can learn spatial omics data through H&E stains. If so, one spatial omics data may be
learned and subsequently predicted on other H&E stains, e.g., from other spatial omics
modalities. Exemplified on peptide information from MSI, this strategy yielded promising
results when comparing actual and predicted peptide intensity values, especially when
dimensionality-reduced data from autoencoders had been learned. Given the high amount
of MSI data that is available for HNSCC tumor models in our group, the application of
convolutional autoencoders for combining spatial omics data seems more promising than
the consecutive slice approach. Furthermore, this approach is easily expandable to other
spatial omics modalities. Also, a model trained on H&E stains for MSI prediction might be
used for additional applications: Taking into account that H&E stains a routinely acquired
in clinical practice, it would also facilitate the implementation of molecular biomarker
screening even if only in an unimodal setup. Once multimodal omics data is available
on the same tissue slice, the actual fusion of genetic information might be established
through more elaborate methods than the correlation analysis proposed. One alternative
could be incorporating contrastive learning. This will likely lead to an increased model
complexity, with one major challenge remaining: enabling explainable results.

In summary, this work illustrated how the high-dimensional and highly correlated feature
space of spatial omics data can be analyzed and utilized for biomarker discovery. It
demonstrated that commonly derived feature importance measures of random forest
models are not reliable in light of highly correlated features. In contrast, autoencoders
extracted features while still enabling to track back the contributions of individual
features, even though these models are often criticized as black boxes. Considering the
ever-increasing size of (spatial) omics data as a result of higher resolutions, the usage of
feature extraction methods like autoencoders will become evermore important.





7 Supplementary Material

7.1 Co-Registration and Patch Implementation

Auxiliary classes MovingImage and ImageRep are utilized for co-registration of FI or H&E
images to spatial omics data.

Code Snippet 7.1: Excerpt of auxiliary class MovingImage
1 import numpy as np
2 import pandas as pd
3
4 import itk
5 from skimage import exposure
6
7 class MovingImage(DataProcessing) :
8 def __init__( self , params: ConfigParams) :
9 sel f .params = params

10 sel f ._moving = None # ImageRep
11 sel f ._coreg = None # ImageRep
12 sel f . original = None
13
14
15 def read( self , path, with_clahe = False) :
16 i f not with_clahe:
17 sel f . original = itk .imread(path, itk .F)
18 else :
19 pixel_type = itk .RGBPixel[ itk .UC]
20 original = itk .imread(path, pixel_type)
21 arr = itk .GetArrayViewFromImage( original )
22 gray_arr = cv2. cvtColor(arr , cv2.COLOR_BGR2GRAY)
23 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
24 sel f . original = clahe .apply(gray_arr)
25
26 return sel f
27
28 def set_original( self , im) :
29 sel f . original = im
30 return sel f
31
32
33 def read_channel( self , path, channel) :
34 im = cv2.imread(path) [ . . . , channel ]
35 sel f . original = np. asarray(im) . astype(np. float32)
36
37 return sel f
38
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39 @property
40 def moving( sel f ) :
41 i f sel f ._moving is None:
42 raise Exception( 'Data is not build yet . ' )
43 return sel f ._moving
44
45 @property
46 def coreg( sel f ) :
47 i f sel f ._coreg is None:
48 raise Exception( 'Data is not build yet . ' )
49 return sel f ._coreg
50
51
52 def co_register( self , fixed , iterations = 2000, deform = False) :
53 coreg , transform_map = self .moving. co_register(fixed , iterations , deform)
54 sel f ._coreg = coreg
55 return transform_map
56
57 def match_histograms( self , img_rep) :
58 sel f ._moving = ImageRep(exposure .match_histograms( sel f .moving. rep , img_rep) , sel f .moving. default_pixel)
59 return sel f
60
61
62 def apply_transform( self , transform_map) :
63 sel f ._coreg = self .moving.apply_transform(transform_map)
64 return sel f
65
66 def setup_moving( self , default_pixel , reshape = False) :
67 img_norm = DataProcessing.normalize_min_max( sel f . original , 1)
68 sel f ._moving = ImageRep(img_norm, default_pixel) . transform( sel f .params, reshape)
69
70 sel f . original = None
71 return sel f
72
73
74 def crop( self , threshold : float = 0.001) :
75 moving, coords = self .moving. crop(threshold)
76
77 sel f ._moving = moving
78 sel f ._coords = coords
79 return sel f
80
81 def apply_crop( self , dims) :
82 sel f ._moving = self .moving.apply_crop(dims)
83 return sel f
84
85 def rotate( self , angle , reshape) :
86 sel f ._moving = self .moving. rotate(angle , reshape)
87 return sel f
88
89 # methods applied on . coreg image, maybe rename for consistency reasons
90 def downsize( self , factor) :
91 sel f ._coreg = self ._coreg. resize_by_factor(factor)
92 return sel f
93
94 def pad( self , padding) :
95 sel f ._coreg = self ._coreg.pad(padding)
96 return sel f
97
98 def resize ( self , interpolation = cv2.INTER_CUBIC) :
99 factor = self .params.img_size / np.max( sel f .moving. rep .shape)

100 sel f ._moving = self .moving. resize_by_factor(factor)
101 return sel f
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Code Snippet 7.2: Excerpt of auxiliary classes ImageRep and ImageMask
1
2 from scipy import ndimage
3 import cv2
4 import itk
5
6 class ImageRep() :
7 def __init__( self , rep , default_pixel) :
8 sel f . rep = rep
9 sel f . default_pixel = default_pixel

10 sel f ._mask = None
11
12 @property
13 def mask( sel f ) :
14 i f sel f ._mask is None:
15 sel f ._mask = self .set_mask()
16 return sel f ._mask
17
18 def set_mask_with_shape( self , shape, factor) :
19 mask = np. zeros(shape, dtype=np. float32)
20 spots = list (map(tuple, np. multiply( sel f .get_spots() , factor)))
21
22 max_coord_y = max(spots , key=lambda x: x[0]) [0]
23 max_coord_x = max(spots , key=lambda x: x[1]) [1]
24
25 i f shape[0] < max_coord_y or shape[1] < max_coord_x:
26 return ImageMask(mask)
27 return ImageMask(mask) . build(spots)
28
29 def set_mask( sel f ) :
30 mask = np. zeros( sel f . rep .shape, dtype=np. float32)
31 return ImageMask(mask) . build( sel f .get_spots())
32
33 def get_spots( sel f ) :
34 i f sel f . default_pixel == 1.0:
35 return list (map(tuple, np.argwhere( sel f . rep < .90)))
36 else :
37 return list (map(tuple, np.argwhere( sel f . rep > .10)))
38
39 def transform( self , params, reshape=True) :
40 rep = self . rep
41 i f params. rotate is not None:
42 rep = ndimage. rotate(rep , params. rotate , cval = self . default_pixel , reshape=reshape)
43 i f params. f l ip is not None:
44 rep = cv2. f l ip (rep , params. f l ip )
45
46 return ImageRep(rep , sel f . default_pixel)
47
48 def get_sample_coords( self , threshold = 0.0001) :
49 i f sel f . default_pixel == 0.:
50 tissue_coords_x = np.where(np. greater(np.mean( sel f . rep , axis=0), sel f . default_pixel + threshold)) [0]
51 tissue_coords_y = np.where(np. greater(np.mean( sel f . rep , axis=1), sel f . default_pixel + threshold)) [0]
52 elif sel f . default_pixel == 1.:
53 tissue_coords_x = np.where(np. less (np.mean( sel f . rep , axis=0), sel f . default_pixel − threshold)) [0]
54 tissue_coords_y = np.where(np. less (np.mean( sel f . rep , axis=1), sel f . default_pixel − threshold)) [0]
55
56 return ImageDimensions(min(tissue_coords_x) , max(tissue_coords_x) , min(tissue_coords_y) , max(tissue_coords_y))
57
58 def cropped_max( self , threshold = 0.0001, border = 3) :
59 coords = self .get_sample_coords(threshold)
60 return ImageRep( sel f . rep [ : coords .y_max + border , : coords .x_max + border ] , sel f . default_pixel)
61
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62 def crop( self , threshold = 0.0001) :
63 coords = self .get_sample_coords(threshold)
64
65 return ImageRep( sel f . rep [ coords .y_min: coords .y_max, coords .x_min: coords .x_max] , sel f . default_pixel) , coords
66
67 def apply_crop( self , dims) :
68 return ImageRep( sel f . rep [dims.y_min:dims.y_max, dims.x_min:dims.x_max] , sel f . default_pixel)
69
70 def apply_max_crop( self , yx) :
71 return ImageRep( sel f . rep [ :yx[0] , :yx[1 ] ] , sel f . default_pixel)
72
73 def rotate( self , angle , reshape) :
74 return ImageRep(ndimage. rotate( sel f . rep , np.math. degrees(angle) , reshape=reshape , cval=self . default_pixel) ,

sel f . default_pixel)
75
76 def resize_by_factor( self , scaling_factor) :
77 return ImageRep(cv2. resize ( sel f . rep , (0,0) , fx=scaling_factor , fy=scaling_factor) , sel f . default_pixel)
78
79 def resize_by_shape( self , shape, interpolation = cv2.INTER_AREA) :
80 return ImageRep(cv2. resize ( sel f . rep , shape, interpolation = interpolation) , sel f . default_pixel)
81
82 def pad( self , padding) :
83 padded = np.pad( sel f . rep , ((0 , padding[0]) , (0 , padding[1]) ) , mode='constant ' , constant_values=(sel f . default_pixel))
84 return ImageRep(padded, sel f . default_pixel)
85
86 def co_register( self , fixed , iterations = 2000, deform = False) :
87 parameter_object = itk .ParameterObject.New()
88 parameterMap = parameter_object.GetDefaultParameterMap( ' affine ' )
89 parameterMap[ 'DefaultPixelValue ' ] = [ str( sel f . default_pixel) ]
90 parameterMap[ 'Registration ' ] = [ 'MultiResolutionRegistration ' ] # seems to be default
91 parameterMap[ 'NumberOfResolutions ' ] = [ str(4) ] # seems to be default
92 parameterMap[ 'Transform ' ] = [ 'SimilarityTransform ' ]
93 parameterMap[ 'AutomaticParameterEstimation ' ] = [ ' false ' ]
94 parameterMap[ 'AutomaticTransformInitialization ' ] = [ 'true ' ]
95 parameterMap[ 'AutomaticScalesEstimation ' ] = [ 'true ' ]
96 parameterMap[ 'MaximumNumberOfIterations' ] = [ str( iterations ) ]
97 parameter_object.AddParameterMap(parameterMap)
98
99 i f deform: # experimental

100 bspline_parameter_map = parameter_object.GetDefaultParameterMap( 'bspline ' , 2)
101 bspline_parameter_map[ 'DefaultPixelValue ' ] = [ str( sel f . default_pixel) ]
102 bspline_parameter_map[ 'MaximumNumberOfIterations' ] = [ str( iterations/2) ]
103 bspline_parameter_map[ 'FinalBSplineInterpolationOrder ' ] = [ '2 ' ]
104 bspline_parameter_map[”FinalGridSpacingInPhysicalUnits” ] = [ '1 ' ]
105 bspline_parameter_map[”NumberOfSamplesForExactGradient”] = [ '8192 ' ]
106 parameter_object.AddParameterMap(bspline_parameter_map)
107
108 result_image , params = itk . elastix_registration_method(
109 fixed , sel f . rep ,
110 output_directory = DIRECTORY,
111 log_file_name = ”elastix_coreg” , log_to_file = True,
112 parameter_object = parameter_object, log_to_console = False)
113
114 return ImageRep(result_image , sel f . default_pixel) , params
115
116 def apply_transform( self , transform_params) :
117 result_image = itk . transformix_filter(
118 sel f . rep ,
119 transform_params,
120 log_to_console=False)
121
122 return ImageRep(result_image , sel f . default_pixel)
123
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124 class ImageMask() :
125 def __init__( self , img) :
126 sel f .img = img
127 sel f . default_pixel = 0.0
128
129 def build( self , spots) :
130 int_coords = [( int(y) , int(x)) for y, x in spots ]
131 for y, x in int_coords :
132 sel f .img[y, x] = 1.0
133 return sel f
134
135 def get( sel f ) :
136 return sel f .img
137
138 def close_spots( self , kernel_size = (3,3) , iterations = 3) :
139 kernel = np.ones(kernel_size , np. uint8)
140 sel f .img = cv2.morphologyEx( sel f .img, cv2.MORPH_CLOSE, kernel , iterations=iterations )
141 return sel f
142
143 def dilate_spots( self , kernel_size = (2,2) , iterations = 3) :
144 kernel = np.ones(kernel_size , np. uint8)
145 sel f .img = cv2.morphologyEx( sel f .img, cv2.MORPH_DILATE, kernel , iterations=iterations )
146 return sel f
147
148 def calculate_dice_score( self , mask) :
149 intersection = np.sum(mask.img[ sel f .img==1]) ∗ 2.0
150 dice = intersection / (np.sum(mask.img) + np.sum( sel f .img))
151 return dice
152
153 class ImageDimensions:
154 def __init__( self , x_min, x_max, y_min, y_max) :
155 sel f .x_min = x_min
156 sel f .x_max = x_max
157 sel f .y_min = y_min
158 sel f .y_max = y_max
159
160 def get_dims( sel f ) :
161 return ( sel f .y_max − self .y_min, sel f .x_max − self .x_min)

Classes MSIDataset and SPTDataset convert an annData [125] structure to images of
dimensions (padded image size × padded image size × number of features). These images
can afterwards further be split into patches using the class Patches, with the possibility
to create overlapping patches.

Code Snippet 7.3: Auxiliary classes for creation of patches for some given spatial omics
modality

1 import numpy as np
2 import pandas as pd
3 import anndata as ad
4
5 import tensorflow as tf
6 import matplotlib . pyplot as plt
7
8 class MSIDataset(SpatialDataset) :
9

10 def __init__( self , patch_size : int , n_features : int ,
11 im_label : dict = { 'HE' : 0, 'FI ' : 1}, obs_label : dict = {”FI” : ” f i ” , ”HE”: ”he”}, obs_xy: list =

[”xLocation” , ”yLocation”] , background: int = 0) :
12 super() .__init__(patch_size , n_features , im_label , obs_label , obs_xy, background)
13
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14 class SPTDataset(SpatialDataset) :
15 def __init__( self , patch_size : int , n_features : int ,
16 im_label : dict = { 'FI ' : 0}, obs_label : dict = {”FI” : ”hypoxia”}, obs_xy: list = [”x” , ”y”] , background: int

= 0) :
17 super() .__init__(patch_size , n_features , im_label , obs_label , obs_xy, background)
18
19 class SpatialDataset() :
20 def __init__( self , patch_size : int , n_features : int ,
21 im_label : dict , obs_label : dict , obs_xy: list , background: int = 0) :
22 sel f ._images = SpatialImages(n_features , patch_size , im_label , obs_label , obs_xy, background)
23 sel f ._patches = Patches(patch_size , n_features)
24 sel f ._yatches = Patches(patch_size , len(im_label))
25 sel f ._train = None
26 sel f . _test = None
27
28 @property
29 def train( sel f ) :
30 i f sel f ._train is None:
31 raise Exception( 'Dataset is not build yet . ' )
32 return sel f ._train
33
34 @property
35 def test( sel f ) :
36 i f sel f . _test is None:
37 raise Exception( 'Dataset is not build yet . ' )
38 return sel f . _test
39
40 def build( self , train , test , create_patches = True) :
41 train_images , train_labels = self ._images.unfold_all_images(train)
42 sel f ._train = SpatialData( sel f ._patches, train_images , sel f ._yatches, train_labels , create_patches)
43
44 i f test is not None:
45 test_images , test_labels = self ._images.unfold_all_images(test)
46 sel f . _test = SpatialData( sel f ._patches, test_images , sel f ._yatches, test_labels)
47 return sel f
48
49 def overlapping_patches( self , stride : int , on_test: bool = False) :
50 sel f ._train = self ._train .create_overlapping_patches( stride )
51 i f on_test:
52 sel f . _test = self . _test .create_overlapping_patches( stride )
53 return sel f
54
55 class SpatialImages() :
56 def __init__( self , n_features : int , padding_base: int , im_label : dict , obs_label : dict , obs_xy: list ,
57 background: int) :
58 sel f . n_features = n_features
59 sel f .padding_base = padding_base
60 sel f . im_label = im_label
61 sel f . obs_label = obs_label
62 sel f .obs_xy = obs_xy
63 sel f .background = background
64
65 def unfold_all_images( self , adata : ad.AnnData) −> pd. Series :
66 batches = adata.obs.batch.value_counts()
67 images = [ ]
68 names = [ ]
69 labels = [ ]
70 for name, value in batches . items() :
71 batch = adata[adata.obs.batch == name]
72 im_range, xy_min = self .set_image_range(batch)
73 im, l = self .unfold_image(batch, im_range, xy_min)
74 images.append(im)
75 labels .append( l )
76 names.append(name)
77
78 return pd. Series(images, index = names) , pd. Series( labels , index = names)
79
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80 def set_image_range( self , batch : ad.AnnData) :
81 sample = batch.obs[ sel f .obs_xy]
82 xy_max = sample.max()
83 xy_min = sample.min() # need to be passed , default 0
84 im_range = xy_max − xy_min + 1
85
86 padded_size = self .padding_base ∗ np. cei l (im_range.max()/sel f .padding_base) . astype(int)
87 im_range = (padded_size, padded_size) # extract to other method and pass
88
89 return im_range, xy_min
90
91 def unfold_image( self , batch: ad.AnnData, im_range: tuple, xy_min: tuple) :
92 sample = batch.obs[ sel f .obs_xy]
93 data = batch.to_df()
94 im = np. ful l ((∗im_range, sel f . n_features) , sel f .background, dtype=float)
95 l = np. ful l ((∗im_range, len( sel f . im_label)) , 0, dtype = float)
96
97 for i in range(sample.shape[0]) :
98 xy = sample. iloc [ i ] − xy_min
99

100 i f not np. all (np. isnan(data. iloc [ i ]) ) :
101 im[tuple(xy) [:: −1]] = data. iloc [ i ]
102
103 for j in sel f . im_label :
104 l [tuple(xy) [: : −1]][ sel f . im_label [ j ] ] = batch.obs[ sel f . obs_label [ j ] ] . i loc [ i ]
105 return im, l
106
107 class Patches() :
108 def __init__( self , patch_size : int , n_features : int) :
109 sel f . patch_size = patch_size
110 sel f .no_patches = {}
111 sel f . n_features = n_features
112
113 def create_all( self , images : pd. Series) :
114 images_patches = [ ]
115 for name, im in images. items() :
116 p, no_p = self . create(im, sel f .patch_size)
117 images_patches.append((name, p))
118 sel f .no_patches[name] = no_p
119
120 return pd. Series(dict(images_patches))
121
122 def create_all_with_stride( self , images : pd. Series , stride : int) :
123 images_patches = [ ]
124 for name, im in images. items() :
125 p, no_p = self . create(im, stride )
126 images_patches.append((name, p))
127
128 return pd. Series(dict(images_patches))
129
130 def create( self , image: np.ndarray, stride : int) :
131 patch_tensor = [1 , sel f .patch_size , sel f .patch_size , 1] # without n_features
132 padded_size = image.shape[0]
133 no_patches = int(padded_size ∗ padded_size / ( sel f . patch_size ∗ sel f . patch_size))
134 strides = [1 , stride , stride , 1]
135 patches = tf .image. extract_patches(images = tf .expand_dims(image, 0) ,
136 sizes = patch_tensor,
137 strides = strides ,
138 rates = [1 , 1, 1, 1] , padding='VALID' )
139
140 patches = tf . reshape(patches , (patches .shape[1]∗patches .shape[2] , sel f .patch_size , sel f .patch_size , image.shape[2]) )
141 return patches , patches .shape[0]
142
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143 def plot_full_image( self , image, name, mz_value, path_prefix = ”” , inverse = False) :
144 img = 1. − image [ . . . ,mz_value] i f inverse else image [ . . . ,mz_value]
145 plt . figure( figsize=(4, 4))
146
147 plt .imshow(img, vmin=0, vmax=1)
148 plt . t it le (name)
149 plt . colorbar()
150
151 i f path_prefix != ””: plt . savefig(path_prefix + ”_” + str(mz_value) + ”.png” , dpi = 300, facecolor = ”white”)
152 else : plt .show()
153
154 def shape_with_no_patches_and_mz( self , patch, name, patch_size , n_features) :
155 patch = np. reshape(patch, ( sel f .no_patches[name] , patch_size , patch_size , n_features))
156 n = int(np. sqrt(patch.shape[0]) )
157 return patch, n
158
159 def show_patch( self , image, patch, mz_value = 1) :
160 plt . figure( figsize=(4, 4))
161 plt .imshow(image[patch , . . . ,mz_value] , vmin=0, vmax=1)
162 plt . colorbar()
163
164 def show_patch_in_image( self , image, max_p = −1, mz_value = 1, path_prefix = ”” , plot_show = True, inverse = False) :
165 i f max_p == −1: max_p = image.shape[0] − 1
166 n = int(np. sqrt(image.shape[0]) )
167
168 for i in range(0 , max_p + 1) :
169 ax = plt . subplot(n, n, i + 1)
170 img = 1. − image[ i , . . . ,mz_value] i f inverse else image[ i , . . . ,mz_value]
171 plt .imshow(img, vmin=0, vmax=1)
172 plt . axis(”off”)
173 i f path_prefix != ””: plt . savefig(path_prefix + ”_” + str(mz_value) + ”_patched_” + str(max_p) + ”.png” , dpi = 300,

facecolor = ”white”)
174 i f plot_show: plt .show()
175
176 def show_patched_image( self , patches : np.ndarray, name : str , mz_value = 1, max_p = −1, path_prefix = ””) :
177 patch = patches [name]
178 (_, image) = self .get_image_from_patch(patch, name)
179 sel f .plot_full_image(image, name, mz_value, path_prefix)
180 sel f .show_patch_in_image(patch, mz_value, max_p, path_prefix)
181
182 def get_image_from_patch( self , patch : pd. Series , name : str) :
183 patch, n = self .shape_with_no_patches_and_mz(patch, name, patch.shape[2] , patch.shape[3])
184 rows = np. split (patch, n, axis=0) # n x (n, patch_size , patch_size , n_features)
185 rows = [np. concatenate(np.moveaxis(x, 0, 0) , axis = 1) for x in rows] # n x (patch_size , patch_size ∗ n, n_features)
186 image = np. concatenate(rows, axis = 0) # (patch_size ∗ n, patch_size ∗ n, n_features)
187 return (name, image)
188
189 def get_labeled_images_from_patches( self , blueprint : pd. Series , patches : np.ndarray) :
190 index_split = np.cumsum([p.shape[0] for p in blueprint ])
191 # caution , assuming patches are symmetric
192 value_split = np. split (patches , index_split[:−1])
193 patches = pd. Series(value_split , index = blueprint . index)
194 return patches , sel f .get_images_from_patches(patches)
195
196 def get_images_from_patches( self , patches : pd. Series) :
197 rebuild_images = [ sel f .get_image_from_patch(p, name) for name, p in patches . items() ]
198 return pd. Series(dict(rebuild_images))
199
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200 class SpatialData() :
201 def __init__( self , patches : Patches, images: list , yatches :Patches, labels : list , create_patches = True) :
202 sel f ._patches = patches
203 sel f ._yatches = yatches
204 i f create_patches :
205 sel f .x = SpatialDataRep(images, sel f ._patches. create_all(images))
206 sel f .y = SpatialDataRep(labels , sel f ._yatches. create_all( labels ))
207 else :
208 sel f .x = SpatialDataRep(images, None)
209 sel f .y = SpatialDataRep(labels , None)
210 sel f . z = None
211 sel f .dec = None
212
213 def get_non_empty_patches( sel f ) :
214 non_zero_p = self .x. identify_non_zero_patches()
215 x, y = self .x. flatten () , sel f .y. flatten ()
216 return x[non_zero_p] , y[non_zero_p]
217
218 def create_overlapping_patches( self , stride : int) :
219 i f stride != 0: # != patch_size
220 # should be smaller than patch size
221 sel f .x._patches_overlap = self ._patches. create_all_with_stride( sel f .x. images, stride )
222 sel f .y._patches_overlap = self ._patches. create_all_with_stride( sel f .y. images, stride )
223 else :
224 sel f .x._patches_overlap = self .x. patches
225 sel f .y._patches_overlap = self .y. patches
226 return sel f
227
228 def set_z_and_dec( self , args) :
229 z , dec_patches = args
230 dec_patches, dec_images = self ._patches.get_labeled_images_from_patches( sel f .x. patches , dec_patches)
231 sel f . z = z
232 sel f .dec = SpatialDataRep(dec_images, dec_patches)
233
234 class SpatialDataRep() :
235 def __init__( self , images, patches , patches_overlap = None) :
236 sel f . images: SpatialImages = images
237 sel f . patches = patches
238 sel f ._patches_overlap = patches_overlap
239
240 @property
241 def patches_overlap( sel f ) :
242 i f sel f ._patches_overlap is None:
243 raise Exception( 'Patches have not build yet . ' )
244 return sel f ._patches_overlap
245
246 def flatten ( sel f ) :
247 patches = self . patches i f sel f ._patches_overlap is None else sel f .patches_overlap
248 return np. concatenate(patches)
249
250 def identify_non_zero_patches( sel f ) :
251 patches = self . flatten ()
252 mean_value = np.mean(patches , axis = (1,2 ,3))
253 return np.where(mean_value != 0.) [0]
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7.2 Convolutional Autoencoder Implementation

As initially, I experimented with various numbers of layers, the implementation of
class ConvAE was designed such that the number of convolutional layers can be
defined in a flexible way. The autoencoder takes a list of convolutional layers in
the form of 𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 × 𝑠𝑡𝑟𝑖𝑑𝑒𝑠 for both, the encoder and decoder,
to then build a composite of convolution, ReLU and batch normalization. An
helper function was created to build a list of convolutional layers (named AdjCon-
vParams.build_power2_conv_layers_1x1_middle()), by defining the channel number
in the first and last hidden layer as power of two values and a step size. For example,
conv_filter_max = 1024, conv_filter_min = 16, conv_filter_step = 3 would set up
three convolutional layers of 1024 × kernel_size × strides, 128 × kernel_size × strides and
16 × kernel_size × strides.

Code Snippet 7.4: Convolutional autoencoder implementation
1 import tensorflow as tf
2 from tensorflow . keras import layers
3 import pandas as pd
4 import numpy as np
5 from abc import abstractmethod
6
7 class AE(object) :
8 def __init__ ( self , n_features : int) :
9 sel f . n_features = n_features

10 sel f ._encoder = None
11 sel f ._decoder = None
12
13 @property
14 def encoder( sel f ) :
15 i f sel f ._encoder is None:
16 raise Exception( 'Encoder is not build yet . ' )
17 return sel f ._encoder
18
19 @property
20 def decoder( sel f ) :
21 i f sel f ._decoder is None:
22 raise Exception( 'Decoder is not build yet . ' )
23 return sel f ._decoder
24
25 @abstractmethod
26 def build( self , plot_vae = False) :
27 pass
28
29 def predict( self , samples , verbose = 0) :
30 p_flatten = np. concatenate(samples)
31 encoded = self ._encoder. predict(p_flatten , verbose=verbose)
32 latent_z = np. squeeze(encoded)
33 decoded_data = self ._decoder. predict(encoded, verbose=verbose)
34 return latent_z , decoded_data
35
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36 class ConvAE(AE) :
37 def __init__ ( self , n_features : int , patch_size : int , enc_conv_params : list , dec_conv_params : list , activation :

str) :
38 super() .__init__(n_features)
39 sel f . patch_size = patch_size
40 sel f .enc_conv_params = enc_conv_params
41 sel f .dec_conv_params = dec_conv_params
42 sel f . activation = activation
43
44 def build( self , plot_vae = False) :
45 inputs = tf . keras .Input(shape = ( sel f .patch_size , sel f .patch_size , sel f . n_features))
46 h = inputs
47 for params in sel f .enc_conv_params:
48 h = self .build_conv2d_layers(params, h)
49 encoder = tf . keras .Model(inputs , h, name = 'encoder ' )
50 hdec = h
51 for params in sel f .dec_conv_params:
52 hdec = self .build_conv2dtranspose_layers(params, hdec)
53 decoder_outputs = layers .Conv2DTranspose( sel f . n_features ,
54 ( sel f .enc_conv_params[ 0 ] . kernel , sel f .enc_conv_params[ 0 ] . kernel) ,
55 strides=self .enc_conv_params[ 0 ] . strides , activation=self . activation , padding=”valid”)(hdec)
56 decoder = tf . keras .Model(h, decoder_outputs, name = 'decoder ' )
57 sel f ._encoder = encoder
58 sel f ._decoder = decoder
59 return sel f
60
61 def build_conv2d_layers( self , param, inputs) :
62 h = layers .Conv2D(param. fi lters , (param. kernel , param. kernel) , strides=param. strides , padding=”valid”)(inputs)
63 h = layers .BatchNormalization()(h)
64 h = layers .ReLU()(h)
65 return(h)
66
67 def build_conv2dtranspose_layers( self , param, inputs) :
68 hdec = layers .Conv2DTranspose(param. fi lters , (param. kernel , param. kernel) , strides=param. strides ,

padding=”valid”)(inputs)
69 hdec = layers .BatchNormalization()(hdec)
70 hdec = layers .ReLU()(hdec)
71 return(hdec)
72
73 # msi_extension.py
74 class AdjConvParams(ae_vae.ConvParams) :
75 @staticmethod
76 def build_power2_conv_layers_1x1_middle(conv_filter_max, conv_filter_min, conv_filter_step , kernel , stride ,

indices_for_x1) :
77 enc_filters = [ ]
78 dec_filters = [ ]
79 dim = conv_filter_max
80 i = 0
81 step = 0
82 while dim >= conv_filter_min:
83 i f step % conv_filter_step == 0:
84 i f i in indices_for_x1:
85 enc_filters .append(ae_vae.ConvParams(dim, 1, 1))
86 i f i + 1 in indices_for_x1 :
87 dec_filters . insert (0 , ae_vae.ConvParams(dim, 1, 1))
88 else :
89 dec_filters . insert (0 , ae_vae.ConvParams(dim, kernel , stride ))
90 else :
91 enc_filters .append(ae_vae.ConvParams(dim, kernel , stride ))
92 # depends i f we start with 2x1 or with 1x1
93 # start with 2x1
94 dec_filters . insert (0 , ae_vae.ConvParams(dim, 1, 1))
95
96 i = i + 1
97 step = step + 1
98 dim = int(dim / 2)
99 return enc_filters , dec_filters [ 1 : ]

100
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101 class ConvParams() :
102 def __init__( self , f i lters , kernel , strides ) :
103 sel f . f i l ters = f i l ters
104 sel f . kernel = kernel
105 sel f . strides = strides

In the proposed recovery method, 𝑑𝑎𝑡𝑎 reflects the input patches, 𝑑𝑢𝑚𝑚𝑦_𝑡𝑒𝑛𝑠𝑜𝑟 denotes
a zero- or ones-filled tensor with the shape of 𝑑𝑎𝑡𝑎, and 𝑙𝑎𝑡𝑒𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑑 represents
the latent feature of interest. It is expected that patch representations of all samples are
stored as TFRecordDataset. To define which patches belong to which sample, a list of
indices, named index_split, needs to passed.

Code Snippet 7.5: Recovery method
1 import argparse
2 import os
3 os . environ [ 'TF_CPP_MIN_LOG_LEVEL' ] = '2 '
4 import tensorflow as tf
5 tf . config . threading .set_intra_op_parallelism_threads(1)
6 tf . config . threading .set_inter_op_parallelism_threads(1)
7 gpus = tf . config . experimental . list_physical_devices( 'GPU' )
8 i f gpus:
9 for gpu in gpus:

10 tf . config . experimental .set_memory_growth(gpu, True)
11
12 import numpy as np
13 import pandas as pd
14 import scipy . stats
15 import h5py
16 import skimage. transform as st
17 import gc
18 # packages created by Verena Bitto
19 from automsi import ae_utils
20 from autospt import msi_extension, spt_datasets
21
22 def parse_args() :
23 parser = argparse .ArgumentParser()
24 parser .add_argument( '−−tfrec_path ' , type=str , help='Path to tfrecord f i l e s ' )
25 parser .add_argument( '−−ae_export ' , type=str , help='Path to experiment ' )
26 parser .add_argument( '−−experiment ' , type=str , help='Name to experiments from which autoencoder parameters can be

derived . ' )
27 parser .add_argument( '−−scaler ' , type=str , help='Scaler to normalize spatial data. ' )
28 parser .add_argument( '−−samples ' , type=ae_utils . split_at_semicolon , help='Sample names to encode with the autoencoder ,

separated by ; ' )
29 # don' t change order
30 parser .add_argument( '−−backfill ' , type=str , default=”ones” , help='Noise values to f i l l features . ' )
31 parser .add_argument( '−−latent_feature_id ' , type=int , help='Id of latent feature to recover information . ' )
32 parser .add_argument( '−−n_patches ' , type=int , help='Number of patches to process . ' )
33 parser .add_argument( '−−index_split ' , type=ae_utils . split_int_at_semicolon , help='Denotes which patches belong to a

sample. ' )
34 parser .add_argument( '−−spatial_data ' , type=str , default=”msi” , help='Define spatial omics data (msi or spt) . ' )
35 return parser .parse_args()
36
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37 def update_tensor(feature_patches , dummy_tensor, feature_id) :
38 transposed_tensor = tf . transpose(feature_patches , perm=[1, 2, 3, 0])
39
40 i f feature_id == 0:
41 updated_tensor = tf . concat ([ transposed_tensor , dummy_tensor[ . . . , feature_id+1:]] , axis=−1)
42 elif feature_id == n_features−1:
43 updated_tensor = tf . concat ([dummy_tensor[ . . . , : feature_id ] , transposed_tensor ] , axis=−1)
44 else :
45 updated_tensor = tf . concat ([dummy_tensor[ . . . , : feature_id ] , transposed_tensor , dummy_tensor[ . . . , feature_id+1:]] ,

axis=−1)
46
47 return updated_tensor
48
49 def rebuild_image(sample, feature_id) :
50 patch = np. reshape(sample [ . . . , feature_id ] , (sample.shape[0] , sample.shape[1] , sample.shape[2] , 1))
51 n = int(np. sqrt(patch.shape[0]) )
52 rows = np. split (patch, n, axis=0) # n x (n, patch_size , patch_size , n_features)
53 rows = [np. concatenate(np.moveaxis(x, 0, 0) , axis = 1) for x in rows] # n x (patch_size , patch_size ∗ n, n_features)
54 image = np. concatenate(rows, axis = 0) # (patch_size ∗ n, patch_size ∗ n, n_features)
55 return image
56
57 def rebuild_images(patches , feature_id) :
58 series = np. split (patches , args . index_split[:−1])
59 images = [rebuild_image(sample, feature_id) for sample in series ]
60 return images
61
62 def compute_correlation_coefficient(latent_im, org_im) :
63 org_im = st . resize (org_im, latent_im.shape)
64
65 # ignore background pixels for comparison
66 org_im = np.where(org_im==0.0, np.nan, org_im)
67 im_nans = np. isnan(org_im)
68
69 cor = 0.0
70 cm = scipy . stats .spearmanr(latent_im[~im_nans] . flat , org_im[~im_nans] . f lat )
71 i f cm.pvalue < 0.05:
72 cor = cm. correlation
73 return cor
74
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75 def main(args) :
76 cor = np. zeros(n_features)
77
78 for feature_id , batch in enumerate(data) :
79 # updated_tensor only contains information at position [ . . . , feature_id ]
80 updated_tensor = update_tensor(batch, dummy_tensor, feature_id)
81 # encode modified patches
82 z = exp.conv_ae.encoder . predict(updated_tensor, verbose = 2)
83 _ = gc. collect ()
84 # rebuild image from latent feature of interest
85 z_images = rebuild_images(z , args . latent_feature_id)
86 # and compare i t against i t s original
87 org_images = rebuild_images(updated_tensor, feature_id)
88
89 sample_cor = np. zeros(len(args . index_split))
90 np. seterr (divide='ignore ' , invalid='ignore ' )
91
92 samples = len(args . index_split)
93 for s in range(samples) :
94 sample_cor[ s ] = compute_correlation_coefficient(z_images[ s ] , org_images[ s ])
95
96 mean_sample_cor = 0. i f np.any(sample_cor == 0.) else np.mean(sample_cor)
97 cor [ feature_id ] = mean_sample_cor
98
99

100 file = [”cor_info_complete”] + list (vars(args) . values())[5:6+1]
101 h5f = h5py. File(os .path. join(args .ae_export, args .experiment, '_' . join(str(n) for n in file ) + ”_0_” + n_features +

”.h5”) , 'w' )
102 h5f . create_dataset(”cor” , data=cor)
103 h5f . close ()
104
105 i f __name__ == '__main__' :
106 args = parse_args()
107 #exp = ae_vae.ConvAEExperiment(args . experiment)
108 exp = msi_extension.SPTExperiment(args .experiment)
109 n_features = 10913
110 exp. build(n_features , args .ae_export, args .experiment)
111
112 BATCH_SIZE = 1
113 tfr_files_data = [ args . tfrec_path + args .samples + ”. tfrecords”]
114
115 i f args . backfill == ”zeros”:
116 dummy_tensor = tf . zeros(shape=(args .n_patches, exp.patch_size , exp.patch_size , n_features) , dtype=tf . float32)
117 else :
118 dummy_tensor = tf .ones(shape=(args .n_patches, exp.patch_size , exp.patch_size , n_features) , dtype=tf . float32)
119
120 data = ( tf .data.TFRecordDataset(tfr_files_data)
121 .map(spt_datasets .parse_tfr_x_by_feature, num_parallel_calls=1)
122 .batch(BATCH_SIZE)
123 . prefetch(buffer_size=64)
124 )
125
126 main(args)

The trained convolutional autoencoder models are stored by a unique identifier, such that
the name can be used to parse the (hyper)parameters of a model for loading the trained
weights. This is achieved through the classes ConvAEExperiment and SPTExperiment.
The latter class is used for spatial transcriptomics experiments, where also the position of
the 1𝑥1 kernels was encoded. Class Experiment is used for non-dimensionality reduced
data.
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Code Snippet 7.6: Auxiliary classes for loading trained models
1 import numpy as np
2 from sklearn import preprocessing
3 import pandas as pd
4 import anndata as ad
5 import joblib
6 # ae_vae.py
7 class Experiment() :
8 def __init__( self , experiment, scaler = None, suffix = ””) :
9 params = experiment. split (”_”)

10 sel f . file = ”_”. join(params[0:2])
11 sel f . patch_size = int(params[2])
12 sel f . scaler = scaler
13 sel f . suffix = suffix
14
15 def build( self , n_features , path, experiment_with_suffix) :
16 return sel f
17
18 def split_x_y( self , patches) :
19 sel f .x, sel f .y = patches .x_mean[ patches . poi ] , patches .y_mean[ patches . poi ]
20 return sel f
21
22 def set_data( sel f ) :
23 sel f . z = self .x
24 return sel f
25
26 def set_reduced_data( self , features) :
27 mz_idx = np.random. choice( sel f .x.shape[1] , features , replace=False)
28 sel f . z = self .x [ . . . , mz_idx]
29 return sel f
30
31 def transform( self , z) :
32 i f sel f . scaler is None:
33 return z
34 return sel f . scaler . transform(z)
35
36 def get_mean_data( self , patches) :
37 mean_data = np.mean(patches , axis = (1,2))
38 i f sel f . scaler is not None:
39 mean_data = mean_data. reshape(−1, 1)
40 sel f . scaler . partial_fit(mean_data)
41 return mean_data
42
43 class ConvAEExperiment(Experiment) :
44 def __init__( self , experiment, scaler = None, suffix = ””) :
45 super() .__init__(experiment, suffix , scaler )
46 params = experiment. split (”_”)
47 # patch_size = params[2]
48 sel f . activation = params[3]
49 sel f . kernel = int(params[5])
50 sel f . stride = int(params[6])
51 sel f .conv_filter_max = int(params[7])
52 sel f .conv_filter_min = int(params[8])
53 sel f . conv_filter_step = int(params[9])
54 sel f .conv_filter_1x1_pos = 0
55 sel f .samples_no = ”_”. join(params[11:14+1])
56 sel f .mode = params[15]
57
58 sel f .enc_conv_params, sel f .dec_conv_params = AdjConvParams.build_power2_conv_layers_1x1_middle( sel f .conv_filter_max,

sel f .conv_filter_min, sel f . conv_filter_step , sel f . kernel , sel f . stride , [ sel f .conv_filter_1x1_pos])
59
60 def build( self , n_features , path, experiment_with_suffix) :
61 conv_ae = ConvAE(n_features , sel f .patch_size , sel f .enc_conv_params, sel f .dec_conv_params,

sel f . activation) . build(False)
62 conv_ae.encoder . load_weights(path + ”weights/” + experiment_with_suffix + '_encoder_model_weights.h5' )
63 conv_ae.decoder . load_weights(path + ”weights/” + experiment_with_suffix + '_decoder_model_weights.h5' )
64 sel f .conv_ae = conv_ae
65 return sel f
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66
67 def build_z( self , patches) :
68 z = self .conv_ae.encoder . predict(patches , verbose=0)
69 _ = gc. collect ()
70 mean_z = np.mean(z , axis = (1,2))
71 return mean_z
72
73 def split_x_y( self , patches) :
74 sel f .x, sel f .y = patches .x[ patches . poi ] , patches .y_mean[ patches . poi ]
75 return sel f
76
77 def set_data( sel f ) :
78 sel f . z = self .build_z( sel f .x)
79 return sel f
80
81 def get_mean_data( self , patches) :
82 mean_z = self .build_z(patches)
83 sel f . scaler . partial_fit(mean_z)
84 return mean_z
85
86 # msi_extension.py
87 class SPTExperiment(ae_vae.ConvAEExperiment) :
88 def __init__( self , experiment, scaler = None, suffix = ””) :
89 super() .__init__(experiment, suffix , scaler )
90
91 params = experiment. split (”_”)
92 sel f . activation = params[4]
93 sel f . kernel = int(params[6])
94 sel f . stride = int(params[7])
95 sel f .conv_filter_max = int(params[8])
96 sel f .conv_filter_min = int(params[9])
97 sel f . conv_filter_step = int(params[10])
98 sel f .conv_filter_1x1_pos = int(params[11])
99 sel f .samples_no = ”_”. join(params[13:16+1])

100 sel f .mode = params[16]
101
102 sel f .enc_conv_params, sel f .dec_conv_params = AdjConvParams.build_power2_conv_layers_1x1_middle( sel f .conv_filter_max,

sel f .conv_filter_min, sel f . conv_filter_step , sel f . kernel , sel f . stride , [ sel f .conv_filter_1x1_pos])
103
104 # ae_processing .py
105 def normalize_with_obs(scale_fu , data: ad.AnnData, obs: pd. Series) :
106 data_df = data.to_df()
107 norm = pd.DataFrame(scale_fu(data_df. values) , columns=data_df.columns, index=data_df. index)
108 return ad.AnnData(norm, obs=obs)
109
110 def normalize_train_test_using_scaler(train : ad.AnnData, test : ad.AnnData, path_prefix : str , train_obs : pd.DataFrame,

test_obs : pd.DataFrame) −> (ad.AnnData, ad.AnnData) :
111 i f train_obs.empty:
112 train_obs = train .obs.copy()
113 i f test is not None and test_obs.empty:
114 test_obs = test .obs.copy()
115
116 scaler = joblib . load(path_prefix + ”_scaler .gz”)
117 train = normalize_with_obs( scaler . transform , train , train_obs)
118 i f test is not None:
119 test = normalize_with_obs( scaler . transform , test , test_obs)
120 return train , test
121
122 # msi_extension.py
123 def read_spt_from_adata(path: str) −> (ad.AnnData, pd.Index, int) :
124 adata = ad. read(path)
125 genes = adata.var_names
126 n_features = adata.n_vars
127 return adata, genes , n_features
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In the method reconstruction_error() of class CustomLoss, 𝑥 and 𝑥_𝑝𝑟𝑒𝑑 denote the
input data and predicted data, respectively, 𝑦 holds the hypoxia labels and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
defines the cutoff value for hypoxia.

Code Snippet 7.7: Training of convolutional autoencoder
1 class CustomLoss() :
2
3 @staticmethod
4 def reconstruction_base( sdiff ) :
5 return tf .reduce_mean(
6 tf .reduce_mean( sdiff , axis = (1,2)) ,
7 axis = 0) # reduce batch
8
9

10 @staticmethod
11 def post_norm(error , patch_size) :
12 patch_size = patch_size ∗ patch_size
13 error = error / tf . cast(patch_size , tf . float32)
14 return error
15
16
17 @staticmethod
18 def reconstruction_error(x, x_pred, weight) :
19 sdiff = tf .math.abs(x − x_pred)
20 sdiff = tf . multiply( sdiff , weight)
21
22 reconstruction_err = CustomLoss.post_norm(CustomLoss. reconstruction_base(
23 tf .reduce_sum( sdiff , axis=(3)) # reduce m/z values
24 ) , tf .shape(x) [1])
25
26 return reconstruction_err
27
28
29 @staticmethod
30 def supervised_error(x, x_pred, y, threshold) :
31 # retains x .shape , e . g . , (batch_size , 3, 3, 18735)
32 sdiff = tf .math.abs(x − x_pred) # retains x . shape
33
34 zero_mask = tf .math. equal( tf .reduce_mean(x, axis=3), 0.0)
35 non_zero_mask = tf . logical_not(zero_mask)
36
37 # retains y.shape , e . g . , (batch_size , 3, 3)
38 y_mask = tf .math. greater(y, threshold)
39 # only consider non−empty pixel
40 y_mask = tf . logical_and(non_zero_mask, y_mask)
41 # down on pixel level , e . g . , (matching_pixel , 18735)
42 sdiff_weighted = tf .boolean_mask( sdiff , y_mask)
43
44 is_shape_zero = tf . reduce_all( tf . equal( tf .shape(sdiff_weighted) [0] , 0))
45
46 def calculate_supervised_loss() :
47 return tf .reduce_sum(sdiff_weighted , axis=1)
48
49 def return_empty_tensor() :
50 return tf . zeros(1 , dtype=tf . float32)
51
52 # down to single error per pixel , e . g . , (error_per_pixel ,)
53 supervised_error = tf .cond(is_shape_zero, return_empty_tensor, calculate_supervised_loss)
54 supervised_error = tf .reduce_mean(supervised_error)
55
56 return supervised_error
57
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58 class WeightedAETrainer( tf . keras .Model, CustomLoss) :
59 def __init__( self , encoder , decoder , weight , ∗∗kwargs) :
60 super(WeightedAETrainer, sel f ) .__init__(∗∗kwargs)
61 sel f .encoder = encoder
62 sel f .decoder = decoder
63 sel f .weight = weight
64 sel f . reconstruction_loss_tracker = tf . keras . metrics .Mean(name=”reconstruction_loss”)
65
66 @property
67 def metrics( sel f ) :
68 return [
69 sel f . reconstruction_loss_tracker ,
70 ]
71
72 def do_step( self , data) :
73 i f isinstance(data, tuple) :
74 data = data[0]
75
76 x = data
77
78 # mask pixels which are zero
79 zero_mask = tf .math. equal(x, 0.0)
80 # inverse to get non−zero pixels
81 non_zero_mask = tf . logical_not(zero_mask)
82 # set non−zero pixels to 1, and zero−pixel to 0
83 non_zero_mask = tf . cast(non_zero_mask, tf . float32)
84 # multiply by pixel weight , add one to essential ly disable weighting in case of weight is set to 0
85 pixel_weight = tf .math.add( tf .math. multiply(non_zero_mask, sel f .weight) , 1)
86
87 z = self .encoder(x)
88 x_pred = self .decoder(z)
89
90 reconstruction_loss = self . reconstruction_error( tf . cast(x, tf . float32) , x_pred, pixel_weight)
91 return x_pred, reconstruction_loss
92
93 def train_step( self , data) :
94 with tf .GradientTape() as tape :
95 _, reconstruction_loss = self .do_step(data)
96
97 grads = tape . gradient(reconstruction_loss , sel f . trainable_weights)
98 sel f . optimizer .apply_gradients(zip(grads , sel f . trainable_weights))
99

100 sel f . reconstruction_loss_tracker .update_state(reconstruction_loss)
101
102 return {
103 ”reconstruction_loss” : sel f . reconstruction_loss_tracker . result () ,
104 }
105
106 def test_step( self , data) :
107 _, reconstruction_loss = self .do_step(data)
108
109 sel f . reconstruction_loss_tracker .update_state(reconstruction_loss)
110 return {
111 ”reconstruction_loss” : reconstruction_loss ,
112
113 }
114
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115 class SemiSupervisedAETrainer(WeightedAETrainer) :
116 def __init__( self , encoder , decoder , weight , supervised_threshold , ∗∗kwargs) :
117 super() .__init__(encoder , decoder , weight , ∗∗kwargs)
118 sel f . supervised_threshold = supervised_threshold
119 sel f . supervised_loss_tracker = tf . keras . metrics .Mean(name=”supervised_loss”)
120 sel f . total_loss_tracker = tf . keras . metrics .Mean(name=”total_loss”)
121
122 @property
123 def metrics( sel f ) :
124 return [
125 sel f . supervised_loss_tracker ,
126 sel f . total_loss_tracker ,
127 ]
128
129 def do_step( self , data) :
130 x_pred, reconstruction_loss = super() .do_step(data)
131
132 x, y = data
133
134 supervised_loss = self . supervised_error( tf . cast(x, tf . float32) , x_pred, tf . cast(y, tf . float32) ,

sel f . supervised_threshold)
135
136 total_loss = reconstruction_loss + supervised_loss
137 return reconstruction_loss , supervised_loss , total_loss
138
139 def train_step( self , data) :
140 with tf .GradientTape() as tape :
141 reconstruction_loss , supervised_loss , total_loss = self .do_step(data)
142
143 grads = tape . gradient(total_loss , sel f . trainable_weights)
144 sel f . optimizer .apply_gradients(zip(grads , sel f . trainable_weights))
145
146 sel f . reconstruction_loss_tracker .update_state(reconstruction_loss)
147 sel f . supervised_loss_tracker .update_state(supervised_loss)
148 sel f . total_loss_tracker .update_state(total_loss)
149
150 return {
151 ”reconstruction_loss” : sel f . reconstruction_loss_tracker . result () ,
152 ”supervised_loss”: sel f . supervised_loss_tracker . result () ,
153 ”loss” : sel f . total_loss_tracker . result () ,
154 }
155
156 def test_step( self , data) :
157 reconstruction_loss , supervised_loss , total_loss = self .do_step(data)
158
159 sel f . reconstruction_loss_tracker .update_state(reconstruction_loss)
160 sel f . supervised_loss_tracker .update_state(supervised_loss)
161 sel f . total_loss_tracker .update_state(total_loss)
162
163 return {
164 ”reconstruction_loss” : reconstruction_loss ,
165 ”supervised_loss”: supervised_loss ,
166 ”loss” : total_loss ,
167
168 }
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In Code Snippet 7.8, it is expected that the patches to train the convolutional autoencoder
are stored as TFRecordDataset (see Code Snippet 7.9).

Code Snippet 7.8: Example of setup and training of convolutional autoencoder
1 import os
2 import argparse
3 import sys
4
5 import tensorflow as tf
6 tf . config . threading .set_intra_op_parallelism_threads(1)
7 tf . config . threading .set_inter_op_parallelism_threads(1)
8 gpus = tf . config . experimental . list_physical_devices( 'GPU' )
9 # Enable memory growth for each GPU

10 i f gpus:
11 for gpu in gpus:
12 tf . config . experimental .set_memory_growth(gpu, True)
13
14 from tensorflow . keras . callbacks import EarlyStopping
15 import matplotlib . pyplot as plt
16
17 # packages created by Verena Bitto
18 from automsi import ae_vae, ae_utils , ae_plots
19 from autospt import msi_extension, spt_datasets
20
21 BATCH_SIZE = 32
22
23 def parse_args() :
24 parser = argparse .ArgumentParser()
25 parser .add_argument( '−−tfrec_path ' , type=str , help='Path to tfrecords f i l e s ' )
26 parser .add_argument( '−−ae_export ' , type=str , help='Path where results directory will be created ' )
27 parser .add_argument( '−−train_samples ' , type=ae_utils . split_at_semicolon , help='Sample names to train autoencoder ,

separated by ; ' )
28 parser .add_argument( '−−test_samples ' , type=ae_utils . split_at_semicolon , help='Sample names to test autoencoder ,

separated by ; ' )
29 parser .add_argument( '−−h5ad_files ' , type=str , default=”cal336o1t0_15” , help=' File name, h5ad f i l e without f i l e suffix ' )
30
31 # autoencoder params
32 parser .add_argument( '−−patch_size ' , type=int , default=3, help='Patch size of convolutional layers ' )
33 # not used when data is loaded as TFRecordDataset
34 parser .add_argument( '−−overlapping_patches ' , type=int , default=1, help='Stride for creating overlapping patches ' )
35 parser .add_argument( '−−activation ' , type=str , default=”sigmoid” , help='Last activation function ' )
36 parser .add_argument( '−−weight ' , type=int , default=0, help='Allows weighting of non−background pixels ' )
37 parser .add_argument( '−−kernel ' , type=int , default=2, help='Kernel size of convolutional layers ' )
38 parser .add_argument( '−−stride ' , type=int , default=1, help='Stride of convolutional layers ' )
39 parser .add_argument( '−−conv_filter_max ' , type=int , default=1024, help='Node size of f i rst hidden layer ' )
40 parser .add_argument( '−−conv_filter_min ' , type=int , default=64, help='Node size of last hidden layer ' )
41 parser .add_argument( '−−conv_filter_step ' , type=int , default=4, help='Step size to define number of hidden layers between

max and min, consider 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 ' )
42 parser .add_argument( '−−conv_filter_1x1_pos ' , type=int , default=0, help='Position of 1x1 kernels ' )
43 parser .add_argument( '−−epochs ' , type=int , default=25, help='Number of epochs to train autoencoder ' )
44
45 parser .add_argument( '−−suffix ' , type=str , help=' Suffix , e .g. , to enumerate autoencoder runs (_001 to _010) ' )
46 parser .add_argument( '−−mode' , type=str , default=”unsupervised” , help='Mode of autoencoder training , i . e . , unsupervised

or semi−supervised ' )
47 parser .add_argument( '−−semi_threshold ' , type=float , default=0.6, help='Cutoff value for labeled pixels , only used i f

mode = semi−supervised ' )
48 return parser .parse_args()
49
50 def plot_history(history , key: str , max_loss_scale: int , max_kl_scale: int , plot_val : bool) :
51 ae_plots . plot_history(history , key, [0 , max_loss_scale] , plot_val , path_prefix + ”/”)
52
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53 def main() :
54 enc_conv_params, dec_conv_params = msi_extension.AdjConvParams.build_power2_conv_layers_1x1_middle(args .conv_filter_max,
55 args .conv_filter_min, args . conv_filter_step , args . kernel , args . stride , [ args .conv_filter_1x1_pos])
56 conv_ae = ae_vae.ConvAE(n_features , args .patch_size , enc_conv_params, dec_conv_params, args . activation) . build()
57
58 i f args .mode == ”semi−supervised”:
59 learning_rate = 1e−4
60 ae = ae_vae.SemiSupervisedAETrainer(conv_ae.encoder , conv_ae.decoder , args .weight , args .semi_threshold)
61 ae.compile(optimizer=tf . keras . optimizers .Adam(learning_rate=learning_rate))
62
63 history = ae. f i t (train ,
64 epochs = args .epochs , batch_size = BATCH_SIZE, shuffle = True, verbose=2,
65 callbacks=(EarlyStopping(monitor=”val_loss” , patience=30, restore_best_weights=True)) ,
66 validation_data = test ,
67 )
68 plot_history(history , ”loss” , 3000, 50, True)
69 elif args .mode == ”unsupervised”:
70 learning_rate = 1e−4
71 ae = ae_vae.WeightedAETrainer(conv_ae.encoder , conv_ae.decoder , args .weight)
72 ae.compile(optimizer=tf . keras . optimizers .Adam(learning_rate=learning_rate))
73
74 history = ae. f i t (train ,
75 epochs = args .epochs , batch_size = BATCH_SIZE, shuffle = True, verbose=2,
76 callbacks=(EarlyStopping(monitor=”val_reconstruction_loss” , patience=args .epochs ,

restore_best_weights=True)) ,
77 validation_data = (test , None) ,
78 )
79
80 plot_history(history , ”reconstruction_loss” , 3000, 50, True)
81
82 i f write_weights :
83 ae .encoder .save_weights(args .ae_export + ”weights/” + prefix + '_encoder_model_weights.h5' )
84 ae.decoder .save_weights(args .ae_export + ”weights/” + prefix + '_decoder_model_weights.h5' )
85
86 i f __name__ == '__main__' :
87 args = parse_args()
88 naming = list (vars(args) . values()) [5:17] + [ args .mode] + [ args . suffix ]
89 n_features = 10913
90 prefix = '_' . join(str(n) for n in naming)
91 path_prefix = os .path. join(args .ae_export, prefix)
92 print(”Creating directory for : ” + prefix)
93 os .mkdir(path_prefix)
94
95 tfr_files_train = [ args . tfrec_path + args .train_samples + ”. tfrecords”]
96 tfr_files_test = [ args . tfrec_path + args .test_samples + ”. tfrecords”]
97
98 train = ( tf .data.TFRecordDataset(tfr_files_train)
99 .map(spt_datasets .parse_complete_tfr , num_parallel_calls=1)

100 .batch(BATCH_SIZE)
101 . prefetch(buffer_size=4)
102 )
103
104 test = ( tf .data.TFRecordDataset(tfr_files_train)
105 .map(spt_datasets .parse_complete_tfr , num_parallel_calls=1)
106 .batch(BATCH_SIZE)
107 . prefetch(buffer_size=4)
108 )
109
110 write_weights = True
111 main()



138 Convolutional Autoencoder Implementation

Code Snippet 7.9: Auxiliary classes to store and load TFRecordDatasets.
1 import numpy as np
2 import tensorflow as tf
3
4 # spt_datasets .py
5 def map_to_bytes_feature(value) :
6 return tf . train .Feature(bytes_list=tf . train . BytesList(value=[value .numpy() ]) )
7
8 def map_to_int64_feature(value) :
9 return tf . train .Feature(int64_list=tf . train . Int64List(value=[value ]) )

10
11 def map_to_float64_feature(value) :
12 return tf . train .Feature(int64_list=tf . train . FloatList(value=[value ]) )
13
14 def to_complete_tensors(x, y) :
15 data = {
16 'x ' : map_to_bytes_feature( tf . io . serialize_tensor(x)) ,
17 'y ' : map_to_bytes_feature( tf . io . serialize_tensor(y)) ,
18 'patch_size ' : map_to_int64_feature(x.shape[1]) ,
19 'n_features ' : map_to_int64_feature(x.shape[2])
20 }
21 return tf . train .Example(features=tf . train . Features(feature=data))
22
23 def to_tensors_x_by_feature(x) :
24 data = {
25 'x ' : map_to_bytes_feature( tf . io . serialize_tensor(x)) ,
26 'samples ' : map_to_int64_feature(x.shape[0]) ,
27 'patch_size ' : map_to_int64_feature(x.shape[1])
28 }
29 return tf . train .Example(features=tf . train . Features(feature=data))
30
31 # note : cardinality is unkown
32 def parse_complete_tfr( serialized ) :
33 data = {
34 'x ' : tf . io .FixedLenFeature( [ ] , tf . string) ,
35 'y ' : tf . io .FixedLenFeature( [ ] , tf . string) ,
36 'patch_size ' : tf . io .FixedLenFeature( [ ] , tf . int64) ,
37 'n_features ' : tf . io .FixedLenFeature( [ ] , tf . int64)
38 }
39 tfr = tf . io .parse_single_example( serialized , data)
40 patch_size = tfr [ 'patch_size ' ]
41 n_features = tfr [ 'n_features ' ]
42
43 x = tf . io . parse_tensor( tfr [ 'x ' ] , out_type=tf . float32)
44 x = tf . reshape(x, shape=[patch_size , patch_size , n_features ])
45
46 y = tf . io . parse_tensor( tfr [ 'y ' ] , out_type=tf . float32)
47 y = tf . reshape(y, shape=[patch_size , patch_size ])
48
49 return x, y
50
51 def parse_tfr_x_by_feature( serialized ) :
52 data = {
53 'x ' : tf . io .FixedLenFeature( [ ] , tf . string) ,
54 'samples ' : tf . io .FixedLenFeature( [ ] , tf . int64) ,
55 'patch_size ' : tf . io .FixedLenFeature( [ ] , tf . int64)
56 }
57
58 tfr = tf . io .parse_single_example( serialized , data)
59 samples = tfr [ 'samples ' ]
60 patch_size = tfr [ 'patch_size ' ]
61
62 x = tf . io . parse_tensor( tfr [ 'x ' ] , out_type=tf . float32)
63 x = tf . reshape(x, shape=[samples , patch_size , patch_size ])
64 return x
65
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66 def write_tfr(x, y, path: str) :
67 path = path + ”. tfrecords”
68 with tf . io .TFRecordWriter(path) as file_writer :
69 for patch in range(x.shape[0]) :
70 out = to_complete_tensors(x[patch , . . . ] , y[patch , . . . ] )
71 file_writer . write(out. SerializeToString())
72
73 def write_tfr_x_by_feature(x, path: str) :
74 path = path + ”. tfrecords”
75 with tf . io .TFRecordWriter(path) as file_writer :
76 for f in range(x.shape[3]) :
77 out = to_tensors_x_by_feature(x [ . . . , f ])
78 file_writer . write(out. SerializeToString())
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The example illustrates the processing of SPT data. Classes Experiment is used to train
the random forest regression model on the raw omics data. Class SPTExperiment is
utilized to encode patches by means of a previously trained convolutional autoencoder.
For MSI, the code only differs in using the corresponding MSI classes when loading the
data. Both, MSI and SPT data are typically built as sub classes of a common super class.
For example, classes SPTDataset and MSIDataset inherit the variables and methods of
class SpatialDataset (see Code Snippet 7.3).

Code Snippet 7.10: Example to perform regression on raw or dimensionality-reduced data
1 import argparse
2 import os
3 import tensorflow as tf
4 tf . config . threading .set_intra_op_parallelism_threads(1)
5 tf . config . threading .set_inter_op_parallelism_threads(1)
6 import numpy as np
7 import pandas as pd
8 import anndata as ad
9 import random

10 from sklearn . model_selection import cross_validate , ShuffleSplit
11
12 # packages implemented by Verena Bitto
13 from automsi import ae_preprocessing , ae_vae, ae_images, ae_utils , ae_rf
14 from autospt import ∗
15
16 N_TREES = 1000
17 MTRY = ”sqrt”
18
19 def parse_args() :
20 parser = argparse .ArgumentParser()
21 parser .add_argument( '−−h5ad_path' , type=str , help='Path to h5ad f i l e s ' )
22 parser .add_argument( '−−ae_export ' , type=str , help='Path to experiment ' )
23 parser .add_argument( '−−experiment ' , type=str , help='Name to experiments from which autoencoder parameters can be

derived . ' )
24 parser .add_argument( '−−scaler ' , type=str , help='Scaler to normalize MSI data. ' )
25 parser .add_argument( '−−samples ' , type=ae_utils . split_at_semicolon , help='Sample names to train the RF regressor ,

separated by ; ' )
26 parser .add_argument( '−−label ' , type=str , default=”FI” , help='Label used for training RF regressor . ' )
27 parser .add_argument( '−−overlapping_patches ' , type=int , default=1, help='Stride information for overlapping patches . ' )
28 parser .add_argument( '−−cutoff ' , type=float , help='Mean cutoff value to define a single patch as being hypoxic (or any

other label) , value between [0 , 1] . ' )
29 parser .add_argument( '−−other_fraction ' , type=float , help='Defines the fraction of non−hypoxic patches to be sampled,

value between [0 , 1] . ' )
30 parser .add_argument( '−−mode' , type=str , default=”conv_ae” , help='Whether to encode patches before training RF regressor

or not (conv_ae or original ) . ' )
31 parser .add_argument( '−−features ' , type=int , default=18735, help='Number of features to use , for original mode only . ' )
32 parser .add_argument( '−−scoring ' , type=str , default=”r2” , help='Scoring metric for RF regressor . ' )
33 parser .add_argument( '−−suffix_from ' , type=str , default=”_001” , help='Can be used to evaluate multiple experiments at

once, expected to be of kind ”_{0−9}3”. ' )
34 parser .add_argument( '−−suffix_to ' , type=str , default=”_001” , help='Can be used to evaluate multiple experiments at

once, expected to be of kind ”_{0−9}3”. ' )
35 parser .add_argument( '−−spatial_data ' , type=str , default=”msi” , help='Define spatial omics data (msi or spt) . ' )
36 return parser .parse_args()
37
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38 def extract_feature_importance( classif ier , feature_names, z , y, suffix , path_prefix , args) :
39 top = [ ]
40 fi_path = path_prefix + ”_rf_” i f args .mode == ”original” else path_prefix + ”/rf_”
41 writer = pd.ExcelWriter(fi_path + suffix + ' . xlsx ' )
42 for idx , estimator in enumerate( class i f ier [ 'estimator ' ]) :
43 feature_importances_ = estimator . feature_importances_
44
45 feature_importances = pd.DataFrame(feature_importances_,
46 index = feature_names,
47 columns=['importance ' ]) . sort_values( 'importance ' , ascending=False)
48
49 feature_importances . to_excel(writer , index=True, sheet_name=str(idx))
50 top.append(feature_importances [0:1])
51 writer . close ()
52
53 top = pd. concat(top)
54 top_index = top. index .value_counts() . nlargest(1)
55 top_importance = top[”importance” ] . iloc [np.where(top. index == top_index. index[0]) [ 0 ] ]
56
57 print(”Highest feature importance: ”)
58 print(top_index)
59 return top_index, np.mean(top_importance)
60
61 def run_regression(exp, suffix , experiment_with_suffix , args) :
62 path_prefix = os .path. join(args .ae_export, experiment_with_suffix)
63
64 random_state = random. randint(1 , 1000)
65 forest = ae_rf .RandomForestRegressionBuilder(n_estimators = N_TREES, max_features = MTRY, random_state = random_state)
66
67 shuffle = ShuffleSplit(n_splits=10, random_state=42, test_size = 0.33)
68 classi f ier = cross_validate( forest . forest , exp. z , exp.y, scoring=args . scoring , cv=shuffle , return_estimator =True)
69
70 all_trees = [ ]
71 for fold_estimator in classi f ier [ 'estimator ' ] :
72 individual_estimators = fold_estimator .estimators_
73 all_trees .extend(individual_estimators)
74
75 # Get the depth of the f i r s t tree
76 mean_depth = sum(tree .get_depth() for tree in all_trees) / len(all_trees)
77 min_depth = min(tree .get_depth() for tree in all_trees)
78 max_depth = max(tree .get_depth() for tree in all_trees)
79 print( f”The mean depth of al l trees in the Random Forest is : {mean_depth}”)
80 print( f”The min depth of al l trees in the Random Forest is : {min_depth}”)
81 print( f”The max depth of al l trees in the Random Forest is : {max_depth}”)
82 print( f”RF train score : {np.mean( classi f ier [ ' test_score ' ]) : .3 f}”)
83
84 feature_names = np. array(range(exp. z .shape[1]) )
85 top_index, top_imp = extract_feature_importance( classif ier , feature_names, exp. z , exp.y, suffix , path_prefix , args)
86
87 score = ae_rf .RandomForestSummary( suffix ,
88 exp. z .shape[0] , np.mean( classi f ier [ 'test_score ' ]) ,
89 top_index. index[0] , top_imp, int(top_index. values))
90 return score
91
92
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93 def run_experiments(exp, patch_adapter, suffix , args) :
94 experiment_with_suffix = args .experiment + ”_” + suffix
95 exp. build(n_features , args .ae_export, experiment_with_suffix) .split_x_y(patch_adapter)
96
97 i f args .mode == ”conv_ae” or n_features == args . features :
98 exp.set_data()
99 elif args .mode == ”original” :

100 exp.set_reduced_data(args . features)
101
102 score = run_regression(exp, suffix , experiment_with_suffix , args)
103 return score
104
105 def main(exp, spatial , args) :
106 scores = [ ]
107 x,y = spatial . train .get_non_empty_patches()
108 print(”Shape of patches” , x.shape, y.shape)
109
110 patch_adapter = ae_rf .PatchAdapter(x, y, spatial ._images. im_label) .reduce_to_mean(args . label)
111 patch_adapter.undersample_non_label_patches(args . cutoff , args . other_fraction)
112
113 for i in range(int(args . suffix_from [ 1 : ] ) , int(args . suffix_to [ 1 : ] ) + 1) :
114 suffix = ”_” + str( i ) . z f i l l (3)
115 score = run_experiments(exp, patch_adapter, suffix , args)
116 scores .append(score)
117
118 # write scores to csv
119
120 i f __name__ == '__main__' :
121 args = parse_args()
122 i f args .mode == ”conv_ae”:
123 exp = msi_extension.SPTExperiment(args .experiment)
124 elif args .mode == ”original” :
125 exp = ae_vae.Experiment(args .experiment)
126
127 adata, _, n_features = msi_extension.read_spt_from_adata(args .h5ad_path + exp. file + ”.h5ad”)
128 spatial = msi_extension.SPTDataset(exp.patch_size , adata.n_vars)
129
130 spt_samples = adata[adata.obs[”batch” ] . isin (args .samples) ]
131 scaler = args .ae_export + ”weights/” + args . scaler
132 spt_samples, _ = ae_preprocessing . normalize_train_test_using_scaler(spt_samples, None, scaler , spt_samples.obs, None)
133 spatial . build(spt_samples, None, create_patches = False) .overlapping_patches(args .overlapping_patches)
134
135 main(exp, spatial , args)
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Class PatchAdapter is used to balance the number of hypoxic and normoxic patches and
to reduce each patch to a mean interpretation for input to the random forest regression
model.

Code Snippet 7.11: Auxiliary classes for setting up Random Forest models
1 from sklearn .ensemble import RandomForestRegressor
2 import numpy as np
3
4 class PatchAdapter() :
5 def __init__( self , x, y, labels ) :
6 sel f .x = x
7 sel f .y = y
8 sel f . labels = labels
9 sel f .x_mean = None

10 sel f .y_mean = None
11
12 def reduce_to_mean( self , label) :
13 sel f .x_mean = np.mean( sel f .x, axis = (1,2))
14 sel f .y_mean = np.mean( sel f .y [ . . . , se l f . labels [ label ] ] , axis = (1,2))
15 return sel f
16
17 def undersample_non_label_patches( self , cutoff , other_fraction) :
18 patches_of_interest = np.where( sel f .y_mean>= cutoff) [0]
19 len_poi = len(patches_of_interest)
20 i f other_fraction > 0.:
21 other_patches = np.where( sel f .y_mean < cutoff) [0]
22 other_patches = np.random. choice(other_patches , min(int(len_poi ∗ other_fraction) , len(other_patches)) ,

replace=False)
23 else :
24 other_patches = patches_of_interest [0:1]
25 print(”Number of labelled patches for train/test : ” + str(len_poi))
26 print(”Number of other patches : ” + str(len(other_patches)))
27
28 sel f . poi = np.union1d(patches_of_interest , other_patches)
29 return sel f
30
31 class RandomForestSummary:
32 def __init__( self , config ,
33 patches , score ,
34 top_name, top_imp, top_occ) :
35 sel f . config = config
36 sel f . patches = patches
37 sel f . score = score
38 sel f .top_name = top_name
39 sel f .top_imp = top_imp
40 sel f ._top_occ = top_occ
41
42 class RandomForestRegressionBuilder:
43 def __init__( self , n_estimators : int , max_features, random_state) :
44 sel f . forest = RandomForestRegressor(n_estimators=n_estimators , max_features=max_features, random_state=random_state)
45
46 def f i t ( self , z_train , y_train, sample_weight) :
47 sel f . forest . f i t (z_train , y_train, sample_weight)
48 return sel f
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Code Snippet 7.12: Pre-processing of spatial transcriptomics data
1 class SPTContainer:
2 MIN_COUNTS = 500
3 MAX_COUNTS = 35000
4 MIN_CELLS = 20
5
6 def __init__( self , normalization : str) :
7 sel f . normalization = normalization
8
9 def preprocess_visium_using_scanpy( self , path, count_file) :

10 adata = sc .read_visium(path = path, count_file = count_file)
11 adata.var_names_make_unique()
12
13 sc .pp. calculate_qc_metrics(adata, inplace=True)
14 sc .pp. filter_cells (adata, min_counts=SPTContainer.MIN_COUNTS)
15 sc .pp. filter_cells (adata, max_counts=SPTContainer.MAX_COUNTS)
16 sc .pp. filter_genes(adata, min_cells=SPTContainer.MIN_CELLS)
17
18 i f sel f . normalization != ”sctransform”:
19 sc .pp. normalize_total(adata, inplace = True)
20 i f sel f . normalization == ”log”:
21 sc .pp. log1p(adata, copy = False)
22
23 sel f .data = SPTData(0 , adata)
24 return sel f
25
26 def build( self , norm_data, default_pixel : float) :
27 adata = self .data. feature
28
29 identifier = list (adata.uns[ ' spatial ' ] . keys()) [0]
30 factor = adata.uns[ ' spatial ' ] [ identifier ] [ ”scalefactors” ] [ 'tissue_lowres_scalef ' ]
31 i f sel f . normalization == ”sctransform”:
32 features = self .sort_with_sctransform(adata, norm_data, factor)
33 else :
34 features = self . sort(adata, factor)
35 sel f .data = SPTData(factor , features)
36 sel f .he = SPTImage() . normalize(adata, identifier , default_pixel)
37 sel f . f i = None
38
39 return sel f
40
41 def sort_coordinates( self , adata, factor) :
42
43 # data spots
44 data_tuples = [tuple(x) for x in adata.obs [ [ ”array_row” , ”array_col” ] ] .to_numpy() ]
45 # rows (axis 0) correspond to y
46 # arrow_row = x , arrow_col = y
47 # coordinates origin should be upper l e f t corner , therefore we subtract here
48 data_tuples_xy = [(x, 127 − y) for x, y in data_tuples ]
49 # we sort the tuples by x to match with the lowres_indices below
50 data_indices = sorted(range(len(data_tuples_xy)) , key=lambda i : (data_tuples_xy[ i ] [0 ] , data_tuples_xy[ i ] [ 1 ] ) )
51 data_tuples_sorted = [data_tuples_xy[ i ] for i in data_indices ]
52
53 # lowres spots
54 indices = list (map(tuple, adata.obsm[ ' spatial ' ]) )
55 lowres_tuples = np. multiply(indices , factor)
56 lowres_indices = sorted(range(len( indices)) , key=lambda i : ( indices [ i ] [0 ] , indices [ i ] [ 1 ] ) )
57 lowres_tuples_sorted = [(round(lowres_tuples [ i ] [ 0 ] , 2) , round(lowres_tuples [ i ] [ 1 ] , 2)) for i in lowres_indices ]
58
59 obs = pd. concat ([pd.DataFrame(data_tuples_sorted, columns=['x ' , 'y ' ]) ,
60 pd.DataFrame(lowres_tuples_sorted , columns=['x_lowres ' , 'y_lowres ' ])
61 ] , axis=1)
62
63 return obs, data_indices
64
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65 def sort_with_sctransform( self , adata, norm_data, factor) :
66 var_int = norm_data.columns. intersection(adata.var . index)
67 obs_int = norm_data. index . intersection(adata.obs. index)
68 norm_data = norm_data. loc [obs_int, var_int]
69
70 obs, data_indices = self . sort_coordinates(adata, factor)
71 return ad.AnnData(norm_data. iloc [ data_indices ] . reset_index(drop=True) ,
72 # spots (obs) are only reduced in scanpy
73 obs = obs,
74 # some genes might have been cut in Seurat
75 var = adata.var . loc [var_int])
76
77 def sort( self , adata, factor) :
78 obs, data_indices = self . sort_coordinates(adata, factor)
79
80 return ad.AnnData(adata.X[ data_indices ] ,
81 obs = obs,
82 var = adata.var)
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7.3 Results of Mass Spectrometry Imaging (Sec-
tion 4.2)

Table S1: 43 peptide candidates found with at least 2 masses matched from semi-supervised
convolutional autoencoder and random forest (CAERF) run to liquid chromotography (LC)-
MS/MS experiment. Only one exemplary mass pair is shown, the complete data is provided in
Suppl. Table 2. in Bitto et al. [111].

Protein(s) Gene name(s) Mass 1 Mass 2

Keratin, type II cytoskeletal 6A;Keratin, type II cy-
toskeletal 6C;...

KRT6A;KRT6C;KRT6B 808.387 877.441

Cytochrome b-c1 complex subunit 1, mitochondrial UQCRC1 808.400 1042.519
Phosphoglycerate kinase 1 PGK1 808.400 1011.519
Multifunctional protein ADE2;
Phosphoribosylaminoimidazole-succinocarboxamide
synthase;...

PAICS 1015.501 1409.733

Prelamin-A/C;Lamin-A/C LMNA 1042.547 971.497
Trifunctional purine biosynthetic protein adenosine-3;... GART 1042.547 1036.548
Heterogeneous nuclear ribonucleoprotein M HNRNPM 1425.709 822.371
Keratin, type II cytoskeletal 5 KRT5 1425.709 1424.693
60S ribosomal protein L18a RPL18A 1425.709 1042.519
60S ribosomal protein L15;Ribosomal protein L15 RPL15 1425.709 1166.612
Cullin-associated NEDD8-dissociated protein 1 CAND1 988.480 965.469
Serine hydroxymethyltransferase, mitochondrial;... SHMT2 988.480 854.495
Heat shock cognate 71 kDa protein HSPA8 988.480 1409.694
DNA-dependent protein kinase catalytic subunit PRKDC 877.466 1337.665
Eukaryotic translation initiation factor 3 subunit C;... EIF3C;EIF3CL 1042.519 1166.637
Vigilin HDLBP 1424.713 1061.512
Signal transducer and activator of transcription 1-
alpha/beta;...

STAT1 1424.713 1307.631

Phosphoglucomutase-1 PGM1 1089.554 1026.520
V-type proton ATPase subunit B, brain isoform ATP6V1B2 1089.554 1307.631
Keratin, type I cytoskeletal 14 KRT14 1424.693 1166.637
L-lactate dehydrogenase A chain LDHA 1166.637 1026.520
Annexin A7 ANXA7 1043.548 1090.536
Hexokinase-1 HK1 1409.733 1030.522
Keratin, type I cytoskeletal 16 KRT16 1337.665 854.495
60S ribosomal protein L5 RPL5 1337.665 1000.473
Heterogeneous nuclear ribonucleoproteins A2/B1 HNRPA2B1;HNRNPA2B1 1337.665 1409.694
Collagen alpha-3(VI) chain COL6A3 1036.529 989.471
Plastin-2 LCP1 997.502 1116.535
Programmed cell death protein 6 PDCD6 997.502 1338.656
Desmoplakin DSP 1011.490 944.515
Gasdermin-A GSDMA 944.493 1038.511
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Table S1: Continued: 43 peptide candidates found with at least 2 masses matched from semi-
supervised convolutional autoencoder and random forest (CAERF) run to liquid chromotography
(LC)-MS/MS experiment. Only one exemplary mass pair is shown, the complete data is provided
in Suppl. Table 2 in Bitto et al. [111].

Protein(s) Gene name(s) Mass 1 Mass 2

Basic leucine zipper and W2 domain-containing protein
1

BZW1 1061.512 807.391

Elongation factor 2 EEF2 1090.536 1038.511
Annexin A6 ANXA6 1090.536 1025.527
Protein-glutamine gamma-glutamyltransferase K TGM1 971.497 1410.739
Eukaryotic translation initiation factor 3 subunit L EIF3L 989.471 964.486
Galectin-7 LGALS7 909.463 856.443
T-complex protein 1 subunit eta CCT7 909.463 944.515
Eukaryotic translation initiation factor 4 gamma 1 EIF4G1 1026.520 1410.739
Coatomer subunit alpha;Xenin;Proxenin COPA 807.391 944.515
Plectin PLEC 1030.522 966.486
Glyceraldehyde-3-phosphate dehydrogenase GAPDH 1410.739 1064.539
Importin-5 IPO5 1036.548 1116.535

7.4 Results of Spatial Transcriptomics (Section 4.3)

Genes commonly found in all approaches were marked in bold.

7.4.1 Genes associated with hypoxia in exemplary unsupervised
CAERF run

CSTA, GJB2, JUNB, PI3, TGM1, PIEZO1, S100A9, EGLN3, C19orf33, IL36G,
ABI1, NFKBIA, DLG1, SPRR1B, TNFAIP1, CDKN1A, CXCL8, KRTDAP, ACTR3,
CSTB, ANKLE2, SLURP2, KRT6B, FAM110C, PDHA1, TTC14, NDRG1, S100A7,
HIC2, SPRR3, FOXK1, RSRC2, SLPI, TACSTD2, MAPK1IP1L, ERO1A, PSMD10,
GNA15, KDM3A, RAB2A, WNT7B, XDH, TUFT1, LCN2, TMEM154, DSG3,
PPP2R2C, TRIOBP, GIPC1, ZBTB7A, MAP4K4, C14orf119, CLDN1, RAB7A, GM2A,
PPP1R11, P2RY2, ITGB5, B4GALNT3, SPRR2D, IGFBP3, SCAMP4, METRNL,
SERINC3, UBE2Z, YAP1, LGALSL, ADD1, PNPLA2, KCNK1, GRHL1, RNF141,
BNIP3L, MXRA7, NUFIP2, ATP13A3, RAP2C, HS1BP3, PPP1R16A, BRMS1,
ARAP1, CRKL, MFSD5, PSAP, ERG28, RIN2, TMEM9B, LPAR3, SIKE1, PLEC,
ZFP36L1, POLD4, RSU1, RSAD1, LRRC42, SPTLC2, WAPL, CALML4, FOS, TGFB1,
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NAMPT, ATP6V0D1, CD46, SPINK7, MINK1, ANKRD13D, KYNU, CHMP2A,
ZBTB7B, KLF4, ACAA2, SERINC5, ZNF185, ST14, PSME3, BTG2, ASCC2, CLDN12,
BDKRB2, PLD2, MYL12B, RAB31, CD24, MAL2, ZNF839, TMEM165, LZTR1,
ZBTB4, SFT2D2, UPP1, YWHAQ, MBOAT2, GOSR1, CAP1, ODC1, KCTD11, TBX6,
NCOA1, R3HDM4, UBAC2, PIM1, TMEM41A, PKP3, ZNF12, DOCK9, MXD1,
SNX33, PLCH2, PLEKHM1, UNC50, MRFAP1L1, HEPHL1, MYO9A, CD81, POLB,
RAC1, SERTAD1, IRAK1, SLC6A11, GPBP1L1, APBA3, UEVLD

7.4.2 Genes associated with hypoxia in exemplary RF only run

FAM200B, NRIP1, EGLN3, LCN2, C1QTNF12, NFKBIA, FKRP, ENKD1, CA2,
BIRC3, SCAMP2, TP53BP2, MGAT5, WDR26, SNX33, SPOPL, ZC3H12C, GTDC1,
FUT1, ERO1A, ISL2, FCSK, WNT3A, C6orf132, LGALS3, MPND, RNF187, ZFAND6,
TTC13, TANK, TMPRSS4, GALNT3, GABARAPL2, BBS5, FBXO44, FAM83A,
TMEM141, TRIM6, FBXO32, CTNNA1, ADGRF1, CCNG2, ZBTB18, IQGAP1, RYBP,
NDRG1, NDUFA7, EXD3, ANGPTL4, ADM, MRVI1, SLURP1, CLDND1, PIEZO1,
NUMB, PCDHGA10, ACSF3, SAP25, USP6NL, GRHL1, TCF25, NABP1, ECM1,
CLDN15, PNRC1, ABLIM3, ZNRF3, BNIPL, PLPPR2, ZBTB20, NAMPT, HBP1,
CGN, CASP10, ARSJ, KIAA1217, THEM4, TRPV3, FAM114A2, LCE3E, PIK3IP1,
LCE3D, C11orf74, JUNB, KIAA2026, SLC5A1, SPRR2A, UBC, S100A9, S100A12,
UNC13D, HILPDA, GABARAPL1, LANCL1, ACOX1, RBKS, FOSL2, SH3PXD2B,
MMAA, BNIP1, EPHX3, H2AFJ, GJB2, GJB6, NFX1, ACADVL, ZBTB7B, MED19,
CLDN7, MUC1, RIN2, TET1, CARHSP1, HECA, SQSTM1, ID1, FTH1, P4HA1, SASH1,
TSC22D2, ANKRD37, CSNK1D, GDE1, TMEM179B, RB1, FBXO25, UGP2, RIMS3,
PPP1R3B, ATG2A, NAPG, SPIN1, KLHDC7B, BHLHE40, MXD1, SLC2A1, PCBP1,
DNAJC19, CHAC1, FRMD8, WSB1, PLA2G4B, RELA, LIFR, TMSB4X, OFD1, YPEL3,
RAF1, DSG3, DOCK9, TMEM40, TTYH3, ITGA2, BNIP3L, MORN4, QSOX1,
HK2, NIPSNAP3A, RAC1, TGOLN2, ITGAM, NRDC, WDR53, TMEM98, TCIRG1,
YIPF1, HLA-E, BCKDHA, INAVA, PMAIP1, DEDD2, PLP2, LRP10, SLC20A2, ELF3,
R3HDM2, MXI1, PPP1R15B, TENT2, KIFC3, NCK2, TGM1, RABGGTA, KRT16,
LTB4R, DNAJC5, JUP, NIBAN2, NCOA2, YOD1, CPEB2, PICALM
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7.4.3 Genes associated with hypoxia in exemplary semi-
supervised CAERF run

SPRR1B, TGM1, NFKBIA, FTH1, IL1RN, ISG15, EGLN3, ANXA1, IL36G,
SPRR2A, GJB2, TMPRSS11E, LCN2, OAS3, KLK10, IER5, TWF1, NDRG1,
C4orf3, S100A7, FAM83A, KRT6B, UPP1, CST3, DLG1, EPHB3, RNF149, PLSCR1,
TEN1, IER2, METRNL, ZC3H12A, HECTD1, SERPINB1, ANKRD11, CANT1, ELF3,
TPR, PGK1, JUNB, SPRR2D, CLK1, POLD4, FOSL2, SOD2, ST5, TRIP10, FAM83G,
SMAGP, MAX, PITPNC1, ACADVL, SMARCA4, PPFIA1, GRHL1, LLGL2, UBC,
PGM2, ADM, EHD4, KRT80, DDIT4, SH3BP1, CKAP4, FGF11, PPIC, CDC73,
MX2, RAB4A, SLC2A1, CHMP4B, CAPN15, COL17A1, JPT2, THRA, TICAM1,
HEPHL1, IGFBP3, DHX15, UPK3B, TRIM21, AHNAK2, DYM, DDIT3, NEU1,
MXD1, RAB5A, IRF7, CARHSP1, SERTAD1, ABLIM3, HAS3, PRRC1, SLFN5,
PHC3, KRT16, GTPBP2, STOM, MARCKSL1, UBE2G1, SGK1, SEMA3C, CNFN, DI-
APH1, RHOV, RSAD2, ZKSCAN1, ALG2, SERPINB6, KMT2B, STX5, STX3, RASA2,
GTF2B, FBXW5, NCOA3, UBR5, BCAP31, CYB5R1, CLDN7, ERO1A, EPHA2, IL32,
ENTPD4, EXOC6B, CBLC, IFNGR2, AP5B1, CDKN1A, PHRF1, USP4, TUBB6, GLTP,
PCDH1, HS3ST3A1, GRB7, EPS8L2, GALNT1, GRINA, TRIM22, UBL4A, SLPI, ANO1,
CEACAM1, PPP2R5D, PGLYRP3, DUSP7, GNA15, FAM162A, RAB24, ALKBH5,
MUC1, C18orf25, HECA, SQSTM1, TANK, GTPBP1, ANKRD13A, CISD2, IL36RN,
PERP, ERI2, ZER1, PI4K2A, FBRS, DAPK3, UNKL, SDCBP, RIDA, ZDHHC9, HK2,
ARHGAP5, TUT7, RAB1A, SOCS1, ACADM, TMEM208, CALCOCO2, TPBG, RDH13,
PCIF1, ALAD, LYSMD2, TBC1D10B, PICALM, RNF169, ITGB4, CERS2, PLPPR2,
DDR1, SAT1, LDHA, BDH1, TBC1D22A, ANXA11, TSPO, HAUS4, TUFT1, CTDSP1,
ZNF655, DOCK9, IER5L, CFB, APH1A, LMO7, MRGBP, ATP1B1, PEX13, RNF114,
UBLCP1, KCTD11, ZNF592, NCEH1, TAF1D, ERP29, CHSY1, RNF213, LAPTM4A,
BNIP3L, UBE2B, WFDC5, PSMD5, FAM50A, MARCH7, SNRNP200, IVL, PI3,
SEC24A, ARPC5, ELL2, UBE2Q2, TRMT12, PPP2R5B, PIM1
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7.5 Combining Spatial Omics Implementation

In class CoRegistration, the steps for registering the aligned MSI H&E to the MSI data
are achieved, by first registering an upsampled representation (method coregister_up-
sampled()), applying the transformation to the actual MSI data (method apply()) and
performing a grid searching for the final alignment (method __find_best_overlay()) .

Code Snippet 7.13: Co-registration of serial spatial omics slices
1 import numpy as np
2 import pandas as pd
3 from scipy import stats
4 from scipy . interpolate import RBFInterpolator
5
6 class CoRegistration :
7 def __init__( self , dice_holder) :
8 sel f ._dice_holder = dice_holder
9 sel f ._upsampled = None

10 sel f . _result = None
11
12 @property
13 def upsampled( sel f ) :
14 i f sel f ._upsampled is None:
15 raise Exception( 'Data is not build yet . ' )
16 return sel f ._upsampled
17
18 @property
19 def result ( sel f ) :
20 i f sel f . _result is None:
21 raise Exception( 'Data is not build yet . ' )
22 return sel f . _result
23
24 def coregister_upsampled( self , fixed : ImageRep, moving: ImageRep, deform = False) :
25 moving, moving_coords = moving. crop()
26
27 # sample is resized during co−registration anyhow, so exact factor is not important
28 sel f . _resize_factor = min(np. divide(fixed . rep .shape, moving. rep .shape))
29 moving_data_upsampled = moving. resize_by_factor( sel f . _resize_factor)
30
31 coreg_data_upsampled, transform_params = moving_data_upsampled. co_register(fixed . rep , deform = deform)
32 sel f ._upsampled = CoRegisteredImages(coreg_data_upsampled, 1, coreg_data_upsampled.set_mask())
33
34 scaling_factor , translate_x , translate_y = self .__extract_changing_params(transform_params.GetParameter(0 ,

”TransformParameters”))
35 sel f ._transform = CoRegistrationTransform(moving, transform_params, scaling_factor , translate_x , translate_y)
36 sel f ._moving_coords = moving_coords
37 return sel f
38
39 def apply( sel f ) :
40 # coregistration of upsampled followed the scheme > scaling rotation translation
41 # applied to the data this leads to > translate rotate
42 # therefore we need to calculate the factors separately
43 padding_correction = self .__correct_for_padding( sel f ._transform. scaling_factor)
44
45 adjusted_x = −self ._transform. translate_x / sel f . _resize_factor + padding_correction
46 adjusted_y = −self ._transform. translate_y / sel f . _resize_factor + padding_correction
47
48 sel f ._transform = self ._transform.copy(adjusted_x, adjusted_y)
49 he_factor = self . _resize_factor / sel f ._transform. scaling_factor
50 sel f . _result = self .__find_best_overlay(he_factor)
51
52 return sel f
53
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54
55 # rotation seems to lead to some mismatch with overlay , so we apply a grid search on the actual translation
56 def __find_best_overlay( self , he_factor) :
57
58 for x_search in sel f ._dice_holder.coord_search :
59 for y_search in sel f ._dice_holder.coord_search :
60 img = self ._transform.apply_transform_with_adj_translate(x_search, y_search)
61
62 spots_morphed = img.set_mask_with_shape( sel f .upsampled.img. rep .shape, he_factor) . dilate_spots()
63 dice_score = spots_morphed. calculate_dice_score( sel f .upsampled.mask)
64 sel f ._dice_holder. set_best_score(DiceScore(dice_score , x_search, y_search, spots_morphed))
65
66 result_img = self ._transform.apply_transform_with_adj_translate( sel f ._dice_holder. dice .x, sel f ._dice_holder. dice .y)
67 result_img = result_img.cropped_max()
68 return CoRegisteredImages(result_img , he_factor , sel f ._dice_holder. dice .mask)
69
70 def __extract_changing_params( self , params) :
71 scaling_factor = float(params[0])
72 translate_x = float(params[2])
73 translate_y = float(params[3])
74 return scaling_factor , translate_x , translate_y
75
76 def __correct_for_padding( self , scaling_factor) :
77 adj_size = np. multiply( sel f ._transform.img. rep .shape, sel f . _resize_factor)
78 adj_size = np. multiply(adj_size , 1 / scaling_factor)
79
80 diff_size = np. subtract( sel f ._upsampled.img. rep .shape, adj_size)
81 # l e f t and right or top and bottom
82 diff_size = diff_size / 2
83 # account for smallest nessecary padding to f i t dimensions
84 padding = np.max(np. floor (diff_size))
85 padding_correction = np. cei l (padding / sel f . _resize_factor)
86 return padding_correction
87
88 def apply_transform_to_other( self , img) :
89 coords = self ._moving_coords
90 cropped = img.apply_crop(coords)
91
92 transform = self ._transform.copy_with_img(cropped)
93 result_img = transform .apply_transform_with_adj_translate( sel f ._dice_holder. dice .x, sel f ._dice_holder. dice .y)
94 result_img = result_img.apply_max_crop( sel f . result .img. rep .shape)
95 return result_img
96
97 class DiceScore :
98 def __init__( self , score , x, y, mask) :
99 sel f . score = score

100 sel f .x = x
101 sel f .y = y
102 sel f .mask = mask
103
104 class DiceHolder :
105 def __init__( self , coord_search: list ) :
106 sel f . dice = None
107 sel f .coord_search = coord_search
108
109 def set_best_score( self , dice : DiceScore) :
110 i f sel f . dice is None:
111 sel f . dice = dice
112 elif dice . score > self . dice . score :
113 sel f . dice = dice
114
115
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116 class CoRegisteredImages:
117 def __init__( self , img, factor , mask) :
118 sel f .img = img
119 sel f . factor = factor
120 sel f .mask = mask
121
122 class CoRegistrationTransform:
123
124 def __init__( self , img, params, scaling_factor , translate_x , translate_y) :
125 sel f .img = img
126 sel f .params = params
127 sel f . scaling_factor = scaling_factor
128 sel f . translate_x = translate_x
129 sel f . translate_y = translate_y
130
131 def copy_with_img( self , img) :
132 return CoRegistrationTransform(img, sel f .params, sel f . scaling_factor , sel f . translate_x , sel f . translate_y)
133
134 def copy( self , translate_x , translate_y) :
135 return CoRegistrationTransform( sel f .img, sel f .params, sel f . scaling_factor , translate_x , translate_y)
136
137 def apply_transform_with_adj_translate( self , correct_x , correct_y) :
138 transform_params = self .params
139 params = list (transform_params.GetParameter(0 , ”TransformParameters”))
140 params[0] = str(1)
141 params[2] = str(( sel f . translate_x−correct_x)∗−1)
142 params[3] = str(( sel f . translate_y−correct_y)∗−1)
143
144 new_dims = self .img. rep .shape
145 transform_params.SetParameter(0 , ”TransformParameters” , tuple(params))
146 # adjusted to match with (smaller) image
147 transform_params.SetParameter(0 , 'CenterOfRotationPoint ' , [ str(new_dims[1]/2) , str(new_dims[0]/2) ])
148 # set globally
149 transform_params.SetParameter( 'DefaultPixelValue ' , [ str( sel f .img. default_pixel) ])
150
151 coreg_img = self .img.apply_transform(transform_params)
152 return coreg_img
153
154 def interpolate_msi_spots(msi_data, spt_data, msi_im, spt_im, mz_values) :
155 msi_spots_scaled = list (map(tuple, np. multiply(msi_data. coreg . result .img.get_spots() , msi_data. coreg . result . factor )))
156 df_msi_coreg_scaled = pd.DataFrame(msi_spots_scaled, columns=['y_lowres ' , 'x_lowres ' ])
157 df_spt_scaled = spt_data. feature .obs [ [ 'y_lowres ' , 'x_lowres ' ] ]
158
159 msi_coord = np. subtract(msi_data. coreg . result .img.get_spots() , 0)
160 msi_true = [msi_im[tuple(s) ] for s in msi_coord]
161
162 interp = RBFInterpolator(df_msi_coreg_scaled, msi_true)
163 msi_interpolated = interp(df_spt_scaled)
164
165 spt_coord = spt_data. feature .obs [ [ 'y ' , 'x ' ] ] .to_numpy()
166 spt_true = [spt_im[tuple(s) ] for s in spt_coord]
167
168 df_msi_spots = pd.DataFrame(msi_interpolated , columns = mz_values)
169 df_spt_spots = pd.DataFrame(spt_true, columns = spt_data. feature .var_names)
170 return pd. concat ([df_msi_spots, df_spt_spots] , axis=1)
171
172
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173 def find_correlating_spots(df_spots , n_peptides, n_genes, corr_coeff) :
174 df_cor_big = stats .spearmanr(df_spots)
175 cor_big_statistic = df_cor_big. correlation
176
177 upper = pd.DataFrame(cor_big_statistic , columns = df_spots .columns) .where(np. triu (np.ones(cor_big_statistic .shape) ,

k=1). astype(bool))
178 sig = pd.DataFrame(df_cor_big.pvalue) .where(np. triu (np.ones(df_cor_big.pvalue .shape) , k=1). astype(bool))
179 all_matches = [ ]
180
181 for spt_feature_idx in range(n_peptides, n_peptides + n_genes) :
182 high_corr = np.where(np. array(upper[upper.columns[spt_feature_idx ] ] . values) > corr_coeff) [0]
183 stat_significant = np.where(np. array( sig [ sig .columns[spt_feature_idx ] ] . values) < 0.05) [0]
184 combined_condition = np. intersect1d(high_corr , stat_significant)
185
186 found_mz_index = np.where(combined_condition < n_peptides) [0]
187
188 i f len(found_mz_index) > 0:
189 all_matches.append(upper[upper.columns[spt_feature_idx ] ] . iloc [high_corr [found_mz_index] ] )
190
191 i f all_matches:
192 df_high_corr = pd. concat(all_matches, axis=1, keys=[s .name for s in all_matches])
193 else :
194 df_high_corr = pd.DataFrame()
195 return df_high_corr

Code Snippet 7.14: Example of registration of serial spatial omics slices
1 import argparse
2 import glob
3 import re
4 from collections import defaultdict
5
6 import pandas as pd
7 import numpy as np
8 import cv2
9 import h5py

10
11 # packages created by Verena Bitto
12 from automsi import ∗
13 from autospt import spt_wrapper
14 from hemsiCNN import ∗
15
16 def get_params() :
17 sample_params = defaultdict ()
18 # (MSI Data) , (MSI HE) , (SPT FI)
19 # (rotate , f l ip , size )
20 sample_params[ 'N150d320' ] = [(250 , None, None) , (−10, None, 500) , None]
21 sample_params[ 'N154a073' ] = [(250 , None, None) , (−10, None, 500) , None]
22 sample_params[ 'N156a074' ] = [(30 , None, None) , (120, None, 500) , None]
23 sample_params[ 'N165a002' ] = [(250 , None, None) , (−10, None, 500) , None]
24 return sample_params
25
26 def parse_args() :
27 parser = argparse .ArgumentParser()
28 parser .add_argument( '−−sample ' , type=str , help='Sample to register . ' )
29 parser .add_argument( '−−msi_h5ad_path' , type=str , help='Path to h5ad f i l e s ' )
30 parser .add_argument( '−−he_path' , type=str , help='Path to HE f i l e s . ' )
31 parser .add_argument( '−−msi_files ' , type=str , help='Path to MSI h5ad f i l e s . ' )
32 parser .add_argument( '−−spt_path ' , type=str , help='Path to SPT f i l e s . ' )
33 parser .add_argument( '−−spt_sctransform_path ' , type=str , help='Path to sctransform−normalized SPT expression data, h5ad

f i l e . ' )
34 parser .add_argument( '−−spt_normalize ' , type=str , default=”sctransform” , help='Whether or not to use sctransform

normalization , either sctransform , total or log . ' )
35 parser .add_argument( '−−corr_coeff ' , type=float , help='Cut of for Spearman correlation coefficient . ' )
36 return parser .parse_args()
37
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38 def main() :
39 data = coreg .MSIData(coreg .ConfigParams(∗params[0]) , train) .setup_moving(default_pixel)
40 he = coreg .MovingImage(coreg .ConfigParams(∗params[1]) ) . read(msi_he_image[msi_he_index]) .setup_moving(default_pixel ,

reshape = True) . crop(.01) . resize (cv2.INTER_AREA)
41 he.match_histograms(spt .he. fixed . rep)
42 msi = coreg .MSIContainer(data, he)
43 msi.he. co_register(spt .he. fixed . rep , deform = deform)
44
45 msi.data._coreg = coreg . CoRegistration(dice_holder) .coregister_upsampled(msi.he. coreg , msi.data.moving, deform =

deform) .apply()
46
47 msi_im = msi.data.apply_transform_to_mz_values(0.0)
48 spt_im = coreg .SPTDataImage(spt .data. feature) . unfold()
49 df_spots = coreg . interpolate_msi_spots(msi.data, spt .data, msi_im, spt_im, mz_values)
50 df_high_corr = coreg . find_correlating_spots(df_spots , n_features , spt .data. feature .n_vars, args . corr_coeff)
51
52 # write df_high_corr to csv
53
54 def get_samples(path, samples) :
55 return [ s for s in path i f any(xs in s for xs in samples) ]
56
57 i f __name__ == '__main__' :
58 args = parse_args()
59 deform = False
60 default_pixel = 1.
61 samples = [”N150d320” , ”N154a073” , ”N156a074” , ”N165a002”]
62 n_number = args .sample[0]
63 m_number = args .sample[1]
64
65 msi_he_image = get_samples(glob . glob(args .he_path + ”/∗_HE. jpg”) , samples)
66 spt_hd5 = get_samples(glob . glob(args .spt_path + ”/∗”) , samples)
67 spt_norm = get_samples(glob . glob(args .spt_sctransform_path/∗.h5”) , samples)
68 file_name = ”_”. join ([n_number, ”MSI” , m_number, args .spt_normalize , str (args . corr_coeff) ])
69
70 spt_hd5_index = [ idx for idx , s in enumerate(spt_hd5) i f n_number in s ] [ 0 ]
71 msi_he_index = [ idx for idx , s in enumerate(msi_he_image) i f m_number in s ] [ 0 ]
72 norm_index = [ idx for idx , s in enumerate(spt_norm) i f n_number in s ] [ 0 ]
73
74 msi_adata = ad. read(args .msi_h5ad_path + args . msi_files + ”.h5ad”) # normalized MSI data
75 mz_values = pd.to_numeric(adata.to_df() .columns, errors='coerce ')
76 n_features = len(mz_values)
77
78 with h5py. File(spt_norm[norm_index] , ”r”) as f :
79 data = f [”norm_data” ] [ : ]
80 rows = np.ndarray. astype( f [”rows” ] [ : ] , dtype=”str”)
81 cols = np.ndarray. astype( f [”cols” ] [ : ] , dtype=”str”)
82 norm_data = pd.DataFrame(data, index = cols , columns = rows)
83
84 spt = spt_wrapper.SPTContainer(args .spt_normalize) .preprocess_visium_using_scanpy(spt_hd5[spt_hd5_index] + ”/outs/” ,

”filtered_feature_bc_matrix .h5”) . build(norm_data, default_pixel)
85
86 dice_holder = coreg .DiceHolder(np. insert (np.arange(−4, 4, 0.5) , 0, 0))
87 main()
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Code Snippet 7.15: Auxiliary classes for spatial omics data
1 import numpy as np
2 import pandas as pd
3 import anndata as ad
4
5 class MSIContainer:
6 def __init__( self , data: MSIData, he: MovingImage) :
7 sel f .data = data
8 sel f .he = he
9

10 class DataProcessing:
11 @staticmethod
12 def normalize_min_max(arr , max_value) :
13 arr = np. asarray(arr) . astype(np. float32)
14 return ((arr − arr .min()) ∗ (1/(arr .max() − arr .min()) ∗ max_value))
15
16 @staticmethod
17 def normalize_min_max_range(arr , min_value, max_value) :
18 arr = np. asarray(arr) . astype(np. float32)
19 return ((arr − arr .min()) / (arr .max() − arr .min()) ∗ (max_value − min_value) + min_value)
20
21 class MSIData(DataProcessing) :
22 def __init__( self , params, raw) :
23 sel f .params = params
24 sel f .raw = raw
25 sel f ._img = None
26 sel f ._moving = None
27 sel f ._coreg = None
28
29 @property
30 def moving( sel f ) :
31 i f sel f ._moving is None:
32 raise Exception( 'Data is not build yet . ' )
33 return sel f ._moving
34
35 @property
36 def coreg( sel f ) :
37 i f sel f ._coreg is None:
38 raise Exception( 'Data is not build yet . ' )
39 return sel f ._coreg
40
41 @property
42 def img( sel f ) :
43 i f sel f ._img is None:
44 raise Exception( 'Data is not build yet . ' )
45 return sel f ._img
46
47 def setup_moving( self , default_pixel , reshape = False) :
48 sel f ._img = self .unfold_image()
49 i f default_pixel == 0.:
50 mean_spectra = np.mean( sel f ._img, axis = 2)
51 else :
52 mean_spectra = np.mean(default_pixel − self ._img, axis = 2)
53 mean_spectra = DataProcessing.normalize_min_max(mean_spectra, 1)
54 sel f ._moving = ImageRep(mean_spectra, default_pixel) . transform( sel f .params)
55 return sel f
56
57 def unfold_image( sel f ) :
58 sample = self .raw.obs [ [ ”xLocation” , ”yLocation” ] ]
59 data = self .raw.to_df()
60 xy_max = sample.max()
61 xy_min = sample.min()
62 im_range = xy_max − xy_min + 1
63 im = np. ful l ((∗im_range[:: −1] , sel f .raw.shape[1]) , 0.0 , dtype=float)
64 for i in range(sample.shape[0]) :
65 xy = sample. iloc [ i ] − xy_min
66 im[tuple(xy) [:: −1]] = data. iloc [ i ]
67 return im



156 Combining Spatial Omics Implementation

68
69 def apply_transform_to_mz_values( self , background) :
70 n_features = self .img.shape[2]
71 msi_im = np. zeros((∗ sel f . coreg . result .img. rep .shape, n_features))
72
73 for f in range(n_features) :
74 # normalization is done when converting MSI data to anndata
75 rep = np. asarray( sel f .img[ . . . , f ]) . astype(np. float32)
76 img = ImageRep(rep , background) . transform( sel f .params)
77 msi_im[ . . . , f ] = sel f . coreg .apply_transform_to_other(img) . rep
78 return msi_im
79
80 class SPTDataImage:
81 def __init__( self , data: ad.AnnData) :
82 sel f .data = data
83
84 def unfold( sel f ) :
85 sample = self .data.obs [ [ ”y” , ”x” ] ] # order matters
86 data = self .data.to_df()
87 n_features = self .data.n_vars
88 im = np. ful l ((128, 78, n_features) , 0.0 , dtype=float)
89
90 for i in range( sel f .data.n_obs) :
91 xy = sample. iloc [ i ]
92 im[tuple(xy) ] = data. iloc [ i ]
93 return im

Code Snippet 7.16: Auxiliary class for co-registering dummy channel of H&E stain
1 class MovingDummyChannel() :
2 def __init__( self , img) :
3 sel f .img = img
4 sel f . _factor = None
5 sel f ._cropped = None
6 sel f ._coreg = None
7 sel f ._data_upsampled = None
8
9 @property

10 def factor( sel f ) :
11 i f sel f . _factor is None:
12 raise Exception( 'Factor is not set yet . ' )
13 return sel f . _factor
14
15 def set_factor( self , shape) :
16 sel f . _factor = np. divide(shape, sel f .img. rep .shape)
17 return sel f
18
19 def crop( sel f ) :
20 sel f .img.mask.open_spots()
21 sel f ._cropped = DimensionsFitter( sel f .img, sel f .img.mask. detect_tissue_borders()) . build()
22 return sel f
23
24 def co_register( self , data) :
25 sel f ._cropped = self ._cropped.correct_cropped_dimensions(data. rep .shape, sel f .img)
26 sel f ._data_upsampled = data.resize_by_shape( sel f ._cropped.img. rep .shape[:: −1])
27 sel f ._cropped.img.mask. close_spots(kernel_size = (4,4) , iterations = 6)
28 sel f ._coreg, _ = self ._cropped.img.co_register_by_mask( sel f ._data_upsampled)
29 return sel f
30
31 def resize_by_factor( sel f ) :
32 sel f ._coreg_upsampled = self ._coreg. resize_by_factor(min( sel f . factor))
33 return sel f
34
35 class DimensionsFitter :
36 def __init__( self , img, coords) :
37 sel f .img = img
38 sel f . coords = coords
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39
40 def build( sel f ) :
41 adj = self .img. rep [ sel f . coords .y, sel f . coords .x]
42 i f sel f . coords . is_missing() :
43 adj = np.pad(adj , ((0 , sel f . coords .missing_y) , (0 , sel f . coords .missing_x)) , mode='constant ' ,

constant_values=(sel f .img. default_pixel))
44
45 sel f .img = ImageRep(adj , sel f .img. default_pixel)
46 return sel f
47
48 def build_with_factor( self , level_factor) :
49 sel f . coords = self . coords . multiply(level_factor)
50 return sel f . build()
51
52 def correct_cropped_dimensions( self , data_shape, he_original) :
53 missing_y, missing_x = 0, 0
54 data_y, data_x = data_shape
55 actual_y, actual_x = self .img. rep .shape
56 aspect_ratio = np. divide(data_y, data_x)
57 print(”Aspect ratio of data” , aspect_ratio)
58
59 expected_x = np. divide(actual_y, aspect_ratio)
60 expected_y = np. multiply(actual_x, aspect_ratio)
61
62 i f expected_x > actual_x: # we cropped too many pixels at x dimensions
63 coords_adj = self . coords . crop_to_fit_ratio(actual_y, int(np.round(expected_x)))
64 coords_adj.set_missing_x(coords_adj.x. stop − he_original . rep .shape[1])
65
66 elif expected_y > actual_y: # we cropped too many pixels at y dimensions
67 coords_adj = self . coords . crop_to_fit_ratio(int(np.round(expected_y)) , actual_x)
68 coords_adj.set_missing_y(coords_adj.y. stop − he_original . rep .shape[0])
69
70 he_cropped_adj = DimensionsFitter(he_original , coords_adj) . build()
71 return he_cropped_adj
72
73 class DimensionsSlice :
74 def __init__( self , y, x) :
75 sel f .y = y
76 sel f .x = x
77 sel f .missing_y = 0
78 sel f .missing_x = 0
79
80 def set_missing_y( self , y) :
81 sel f .missing_y = y
82
83 def set_missing_x( self , x) :
84 sel f .missing_x = x
85
86 def is_missing( sel f ) :
87 return sel f .missing_x > 0 or sel f .missing_y > 0
88
89 def crop_to_fit_ratio( self , y_dim, x_dim) :
90 y_diff = int( sel f .y. stop − self .y. start − y_dim)
91 x_diff = int( sel f .x. stop − self .x. start − x_dim)
92 return DimensionsSlice(slice( sel f .y. start , sel f .y. stop + y_diff ∗ −1), slice( sel f .x. start , sel f .x. stop + x_diff ∗

−1))
93
94 def _multiply( self , dim, level_factor) :
95 dim_multiplied = np. multiply((dim. start , dim. stop) , level_factor)
96 return slice(np. floor (dim_multiplied[0]) . astype(int) , np. cei l (dim_multiplied[1]) . astype(int))
97
98 def multiply( self , level_factor) :
99 y = self ._multiply( sel f .y, level_factor [0])

100 x = self ._multiply( sel f .x, level_factor [1])
101 coords = DimensionsSlice(y, x)
102 coords .set_missing_y(np.round( sel f .missing_y ∗ level_factor [0]) . astype(int))
103 coords .set_missing_x(np.round( sel f .missing_x ∗ level_factor [1]) . astype(int))
104 return coords
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Code Snippet 7.17: Auxiliary classes for processing high-resolution HE images
1 class MovingRGBImage() :
2 def __init__( self , params: ConfigParams) :
3 sel f .params = params
4 sel f .channel_r = None # MovingImage
5 sel f .channel_g = None # MovingImage
6 sel f .channel_b = None # MovingImage
7 sel f .moving = None
8
9 def read( self , path, level ) :

10 with t i f f f . TiffFile (path) as t i f :
11 sel f . original = t i f . series [ 0 ] . levels [ level ] . asarray()
12 return sel f
13
14 def get_shape( sel f ) :
15 return sel f .channel_r.moving. rep .shape
16
17 def setup_moving( self , default_pixel , reshape = False) :
18 sel f .channel_r = MovingImage( sel f .params) . set_original( sel f . original [ . . . , 0 ] ) .setup_moving(default_pixel , reshape)
19 sel f .channel_g = MovingImage( sel f .params) . set_original( sel f . original [ . . . , 1 ] ) .setup_moving(default_pixel , reshape)
20 sel f .channel_b = MovingImage( sel f .params) . set_original( sel f . original [ . . . , 2 ] ) .setup_moving(default_pixel , reshape)
21
22 sel f . original = None
23 return sel f
24
25 def crop( self , threshold : float = 0.001) :
26 sel f .channel_r = self .channel_r. crop(threshold)
27 sel f .channel_g = self .channel_g.apply_crop( sel f .channel_r._coords)
28 sel f .channel_b = self .channel_b.apply_crop( sel f .channel_r._coords)
29 return sel f
30
31 def rotate( self , angle , reshape) :
32 sel f .channel_r = self .channel_r. rotate(angle , reshape)
33 sel f .channel_g = self .channel_g. rotate(angle , reshape)
34 sel f .channel_b = self .channel_b. rotate(angle , reshape)
35 return sel f
36
37 def crop_by_example( self , dummy) :
38 sel f .channel_r = self .channel_r.crop_by_example(dummy._cropped. coords , dummy. factor)
39 sel f .channel_g = self .channel_g.crop_by_example(dummy._cropped. coords , dummy. factor)
40 sel f .channel_b = self .channel_b.crop_by_example(dummy._cropped. coords , dummy. factor)
41 return sel f
42
43 def co_register( self , template) :
44 transform_map = self .channel_r. co_register(template . rep)
45 sel f .channel_g = self .channel_g.apply_transform(transform_map)
46 sel f .channel_b = self .channel_b.apply_transform(transform_map)
47 return sel f
48
49 def downsize( self , factor) :
50 sel f .channel_r = self .channel_r.downsize(factor)
51 sel f .channel_g = self .channel_g.downsize(factor)
52 sel f .channel_b = self .channel_b.downsize(factor)
53
54 return sel f
55
56 def pad( self , padding) :
57 sel f .channel_r = self .channel_r.pad(padding)
58 sel f .channel_g = self .channel_g.pad(padding)
59 sel f .channel_b = self .channel_b.pad(padding)
60 return sel f
61
62 def stack_channels( sel f ) :
63 channels = np. stack ([ sel f .channel_r. coreg . rep , sel f .channel_g. coreg . rep , sel f .channel_b. coreg . rep ])
64 channels = np.moveaxis(channels , 0, −1)
65 return channels
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Code Snippet 7.18: Auxiliary classes for creating patches from data and image
1 class ImagePatchBuilder:
2
3 def __init__( self , img, img_patch_size, data_patch_size) :
4 sel f . original = img
5 sel f .img_patch_size = img_patch_size
6 sel f .data_patch_size = data_patch_size
7 sel f .img = None
8 sel f . error = 0
9

10 def derive_params( self , data_shape) :
11 data_size = self .data_patch_size ∗ np. cei l (max(data_shape) / sel f .data_patch_size) . astype(int)
12 data_padding = np. subtract(data_size , data_shape)
13 no_patches = int(data_size ∗ data_size / ( sel f .data_patch_size ∗ sel f .data_patch_size))
14
15 img_size = int(np. sqrt( sel f .img_patch_size ∗ sel f .img_patch_size ∗ no_patches))
16 img_padding = np. multiply(data_padding, np. divide( sel f .img_patch_size, sel f .data_patch_size))
17 expected_padding = img_padding[np.argmax( sel f . original . rep .shape) ]
18 # assuming the actual image size is larger
19 downsample_factor = min(np. divide(img_size − expected_padding, sel f . original . rep .shape))
20
21 img_shape = np. multiply( sel f . original . rep .shape, downsample_factor)
22 img_shape = (round(img_shape[0]) , round(img_shape[1]) )
23
24 img_size = self .img_patch_size ∗ np. cei l (max(img_shape) / sel f .img_patch_size) . astype(int)
25 padding = np. subtract(img_size, img_shape)
26
27 he_data_ratio = np. divide(img_shape, data_shape)
28 data_padding_expected = np. multiply(data_padding, he_data_ratio)
29 error = np. subtract(data_padding_expected, padding)
30
31 return no_patches, downsample_factor, padding, error

For co-registration of H&E image and MSI data, the parameters (coords, padding) are
calculated on the level 2 H&E image and applied to level 0 H&E image. Code Snippet 7.19
also highlights the creation of patches for subsequent training of a CNN.

Code Snippet 7.19: Example for registration and patch creation of high-resolution H&E
images and data

1 import sys
2 import argparse
3
4 import glob
5 import re
6 from collections import defaultdict
7 import numpy as np
8 import pandas as pd
9 import cv2

10
11 import t i f f f i l e as t i f f f
12 import matplotlib . pyplot as plt
13 import matplotlib . colors as colors
14 import tensorflow as tf
15
16 # packages created by Verena Bitto
17 from automsi import ae_preprocessing , ae_images
18 from hemsiCNN import coreg , hemsi_datasets
19
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20 def parse_args() :
21 parser = argparse .ArgumentParser()
22 parser .add_argument( '−−msi_h5ad_path' , type=str , help='Path to h5ad f i l e ' )
23 parser .add_argument( '−−msi_files ' , type=str , help='Path to h5ad f i l e ' )
24 parser .add_argument( '−−msi_hires_he_import ' , type=str , help='HE stain from MSI data ' )
25 parser .add_argument( '−−analysis_export ' , type=str , help='Location were tfrecord are stored ' )
26 parser .add_argument( '−−sample ' , type=str , help='Unique identifier for sample ' )
27 parser .add_argument( '−−msi_hires_level ' , type=int , help='TIFF level (0−2) ' )
28 parser .add_argument( '−−he_stride ' , type=int , help='Stride for overlapping patches (120, 240, 360) ' )
29 parser .add_argument( '−−mode' , type=str , help='Write all patches ( all ) or sample for hypoxia (hypoxia) ' )
30 parser .add_argument( '−−fi_cutoff ' , type=float , help='Cutoff for FI annotations ' )
31 parser .add_argument( '−−other_fraction ' , type=float , default=1, help='Defines the fraction of non−hypoxic patches to be

sampled relative to the number of hypoxic patches . ' )
32 parser .add_argument( '−−suffix ' , type=str , help='Only used for saving f i l e name' )
33 return parser .parse_args()
34
35 def get_params() :
36 sample_params = defaultdict ()
37 # We need to f l i p images according to SPT data
38 sample_params[ '_M825' ] = [(180 , None, None) ] # N154b184
39 sample_params[ '_M815' ] = [(150 , None, None) ] # N154a037
40 sample_params[ '_M819' ] = [(120 , None, None) ] # N154a073
41 sample_params[ '_M821' ] = [(60 , None, None) ] # N154a098
42 return sample_params
43
44 def create_patches(patch_size , n_features , im, samples , stride ) :
45 patches_ = ae_images.Patches(patch_size , n_features)
46 patches = patches_. create_all_with_stride(pd. Series ([im] , index=samples) , stride )
47 return patches_, np. concatenate(patches)
48
49 def setup_l2_he(he) :
50 he_l2_r = coreg .MovingDummyChannel(he_l2.channel_r.moving) . crop() . co_register(data.moving)
51 he_l2_r = he_l2_r. set_factor(he.get_shape())
52 # upscale coreg image to match roughly he
53 he_l2_r = he_l2_r. resize_by_factor()
54
55 return he_l2_r
56
57
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58 def setup_l0(args , he, he_l2_r) :
59 he.crop_by_example(he_l2_r)
60 he = he. co_register(he_l2_r._coreg_upsampled)
61
62 no_patches, downsample_factor, padding, error = coreg .ImagePatchBuilder(he.channel_r._coreg, he_patch_size,

data_patch_size) .derive_params(data.moving. rep .shape)
63
64 he = he.downsize(downsample_factor) .pad(padding)
65 he_channels = he.stack_channels()
66 plot_patches(he_channels, no_patches, ”HE”)
67 he_patches_, he_patches_all = create_patches(he_patch_size, 3, he_channels, [m_number] , args . he_stride)
68
69 return he_patches_all
70
71 def main(args) :
72 he = coreg .MovingRGBImage(coreg .ConfigParams(∗params[0]) ) . read(msi_hires_he_import,

args . msi_hires_level) .setup_moving(default_pixel , reshape = True)
73
74 he_l2_r = setup_l2_he(he)
75 he_patches = setup_l0(args , he, he_l2_r)
76
77 msi_patches = msi_dataset. train .x. flatten ()
78 msi_patches = np. asarray(msi_patches, dtype=np. float32)
79
80 non_zero_p = msi_dataset. train .x. identify_non_zero_patches()
81 patch_mean = np.mean(he_patches, axis = (1,2 ,3))
82 non_zero_he = np.where(patch_mean < .95) [0]
83
84 print(”Non background patches” , len(non_zero_p))
85 print(”Non background HE patches” , len(non_zero_he))
86 non_zero_intersect = np. intersect1d(non_zero_he, non_zero_p)
87
88 # write he_patches [ non_zero_intersect ] , msi_patches[ non_zero_intersect ] to TFRecordDataset
89
90
91 i f __name__ == '__main__' :
92 args = parse_args()
93 data_patch_size = 3
94 he_patch_size = 360
95 default_pixel = 1.
96
97 msi_hires_he_import = glob . glob(args .msi_hires_he_import + ' ∗.ome. t i f ' )
98 msi_hires_he_import = [ s for s in msi_hires_he_import i f args .sample in s ] [ 0 ]
99

100 m_number = re . search(”_M[0−9]{3}” , msi_hires_he_import) .group(0)
101 tumor_model = re . search(”N[0−9]{3}” , msi_hires_he_import) .group(0)
102 params = get_params() [m_number]
103 print(”start processing . . . ” + m_number)
104
105 adata = ad. read(args .msi_h5ad_path + args . msi_files + ”.h5ad”) # normalized MSI data
106 mz_values = pd.to_numeric(adata.to_df() .columns, errors='coerce ' )
107 n_features = len(mz_values)
108
109 data = coreg .MSIData(coreg .MovingImgParams(None) , train) .setup_moving(default_pixel)
110 he_l2 = coreg .MovingRGBImage(coreg .ConfigParams(∗params[0]) ) . read(msi_hires_he_import, 2) .setup_moving(default_pixel ,

reshape = True)
111
112 data_stride = int(data_patch_size / (he_patch_size / args . he_stride))
113 msi_dataset = ae_images.MSIDataset(data_patch_size, n_features , im_label = { 'FI ' : 0}, obs_label = {”FI” :

” f i ”}) . build(train , None, create_patches = True) .overlapping_patches(data_stride)
114
115 naming = [m_number, ”level” , args . msi_hires_level , args . he_stride , args . fi_cutoff , args . other_fraction , args .mode]
116 prefix = '_' . join(str(n) for n in naming)
117
118 main(args)





Glossary

AE An autoencoder (AE) can be used as (non-linear) dimensionality reduction method
and is based on two neural networks (encoder / decoder) to compress data. xv, 3,
20, 21, 32, 33, 36, 37, 38, 39, 40, 42, 45, 47, 52, 60, 68, 77, 78, 79, 81, 83

CAE A convolutional autoencoder (CAE) is a specific type of autoencoder (CAE) which
incorporates convolutional layers to learn the spatial context. 2, 3, 4, 28, 33, 38, 42,
46, 66, 67, 68, 76, 77, 82, 83, 96, 98, 102, 104, 110, 111

CAERF CAERF in this thesis describes the abbreviation for the proposed combined
convolutional autoencoder approach which is based on dimensionality reduction of
spatial omics data using convolutional autoencoders and subsequent analysis using
a RF regression model. 2, 3, 4, 33, 40, 42, 48, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 68, 69, 70, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 92, 93, 98, 99, 113, 146, 147

CI A confidence interval (CI) is a statistical estimate of a parameter along with a specified
level of confidence. 62

CNN A convolutional neural network (CNN) is a machine learning algorithm which tries
to derive and learn patterns from images using so-called convolutional layers. 4, 27,
28, 76, 78, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 159

DAPI 4’,6-diamidino-2-phenylindole (DAPI) is commonly used to label the nuclei of
cells. 28

DICE The DICE score is a measure of spatial overlap of two binary images. 90
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DSF Disease-free survival is a clinical endpoint which is a defined time interval in which
patient does not face any signs or symptoms of cancer. Exact definition may differ
per study. Also termed relapse-free survival or recurrence-free survival (RFS) [13]. 5

EFS Event-free survival is a clinical endpoint which is a defined time interval in which a
patient is free of a dedicated event, e.g., disease progression. Defined events may
differ per study. [13]. 5, 6

ESI Electrospray ionization (ESI) is an ionization technique in mass spectrometry. 7

FAZA 18F-fluoroazomycin-arabinoside (FAZA) is a radiotracer used in PET imaging. 10

FDR The false discovery rate (FDR) is a statistical measure representing the proportion
of false positives among all declared positive results. 11, 48

FFPE Formalin-fixed paraffin-embedding (FFPE) is a common method to preserve tissue
through formalin. 26

FI A fluorescence image (FI) depicts fluorescent dyes to illuminate intracellular molecules
[181]. 25, 28, 34, 35, 64, 69, 80, 82, 106, 109, 117

FMISO 18F-fluoromisonidazole (FMISO) is a radiotracer used in PET imaging. 10

FTICR Fourier Transform Ion Cyclotron Resonance (FTICR) is a type of mass analyzer
used in mass spectrometry. Masses are measured by the cyclotron motion frequency
of ions within a magnetic field. 8, 80

FWHM In MS, full width at half maximum (FHWM) represents the peak width at
half of its maximum intensity. A smaller FWHM indicates higher resolution and
precision. 49, 50

H&E Hematoxylin and eosin (H&E) is commonly used to stain tissue slices. Hematoxylin
stains cell nuclei blue, while eosin stains the cytoplasm pink. H&E stains allow to
detect specific structures in cells as well as cancerous cells. [181]. 4, 8, 9, 21, 25, 27,
28, 63, 64, 65, 80, 81, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 115, 117, 150, 159
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HNSCC Head and neck squamous cell carcinoma (HNSCC) is a collective term for
cancers which arise in the hypopharynx, larynx, nasopharynx, oral cavity and
oropharynx. 1, 2, 3, 4, 5, 6, 9, 10, 11, 23, 27, 32, 52, 55, 76, 79, 81, 82, 85, 102, 106,
113, 114, 115

HPV Human papillomavirus (HPV) is a known risk factor for the development of HNSCC
[181]. 6, 24

IBI Impurity-based importance (IBI) gauges the importance of a feature using a defined
impurity measure, i.e., Gini index for classification or MSE for regression tasks. 13,
48, 76, 77

LC-MS/MS Liquid chromotography (LC) combines liquid chromatography with tandem
mass spectrometry to identify compounds in a tissue. 3, 8, 26, 29, 43, 44, 45, 48, 49,
50, 54, 55, 56, 58, 62, 76, 79, 92, 146, 147

LRC Loco-regional tumor control (LRC) is a clinical endpoint which is a defined time
interval in which no further tumor growth was observed for the primary tumor.
Exact definition may differ per study [13], see also LRF. 6, 9, 10, 11

LRF Loco-regional tumor failure (LRF) is a clinical endpoint, defined as the time from
randomization to the first loco-regional relapse, see also LRC. 5, 6

m/z The mass-to-charge ratio (m/z) is the mass number of an ion divided by its charge
number, used in mass spectrometry. xvii, 3, 4, 7, 8, 26, 43, 44, 45, 46, 47, 48, 49, 53,
54, 56, 57, 58, 59, 60, 61, 62, 63, 77, 79, 90, 98, 99, 100, 101, 102, 103, 104, 106, 109

MAE The mean absolute error (MAE) is a commonly used loss function to quantify the
average absolute difference e.g., between the input and the reconstructed output of
autoencoders. 18, 21, 42

MALDI Matrix-assisted laser desorption ionization (MALDI) is an ionization technique
which incorporates a matrix during mass spectrometry. 7, 8, 26, 48, 49, 76

MI Mutual information (MI) is a common metric used (among others) in image co-
registration. It quantifies the degree of shared information between two sources. 22,
35, 97, 110
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MS Mass spectrometry (MS) measures masses of charged mass analytes. 3, 7, 8, 43, 49,
78, 79, 80

MSE The mean squared error (MSE) is a commonly used loss function to quantify the
average squared difference e.g., between the input and the reconstructed output of
autoencoders. 13, 17, 18, 21, 48, 77

MSI Mass spectrometry imaging (MSI) measures masses of charged mass analytes in a
spatially resolved context. 1, 2, 3, 4, 8, 16, 23, 25, 26, 27, 28, 29, 31, 32, 41, 43, 44,
48, 49, 50, 51, 52, 53, 54, 63, 68, 76, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 109, 110, 113, 114, 115, 140,
150, 159

NN A neural network (NN) is a machine learning algorithm which tries to derive and
learn patterns from data (see CNN). 17, 18, 19, 20, 21, 81

OS Overall survival (OS) is considered as the gold standard clinical endpoint for cancer.
It is defined as time from randomization to any death [11]. In clinical trails, usually
only a dedicated period of time is considered, e.g., five years after treatment [181].
5, 9

PC A principal component (PC) in context of PCA is a linear combination of the original
features, maximizing variance. 15

PCA Principal componeent analysis (PCA) is a linear dimensionality reduction method.
15, 16, 17, 18, 20

PET Positron emission tomography (PET) is a molecular imaging technique with different
tracer allowing to visualize biological processes [41]. 8, 10

PI Permutation importance (PI) estimates a feature’s contribution to a model by shuffling
its values and calculating the resulting performance loss. 13, 76, 77

pimonidazole Anti-pimonidazole polyclonal antibody (pimonidazole) can be utilized to
recognize pimonidazole adducts as a biochemical marker of hypoxic cells. 27, 28, 52,
79
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ppm Parts per million (ppm) is a unit denoting one part in a million and is commonly
used to express errors in MS measurements. 49

RCTx Primary radiochemotherapy (RCTx) is a combinational therapy of radiotherapy
and chemotherapy. In Germany, it is to date the standard treatment for patients
with inoperable advanced HNSCC. 5, 6, 9, 10, 11, 23, 24

ReLU A rectified linear unit (ReLU) is a commonly used activation function in neural
networks. For a given input, it outputs positive values directly and zero for negative
values, thereby introducing non-linearity. 17, 19, 37, 126

RF A random forest is a commonly applied feature selection method based on the
predictions of multiple decisions trees. 2, 4, 13, 14, 28, 32, 33, 40, 47, 48, 52, 53, 54,
56, 57, 58, 59, 60, 61, 62, 63, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 82, 83

RNA Ribonucleic acid (RNA) is a nuclei acid present in every cell. One can distinugish
different types of RNA: messenger RNA (mRNA), ribosomal RNA (rRNA) and
transfer RNA (tRNA). 7

scRNA Single cell RNA sequencing (scRNA) captures the transcriptome of individual
cells (different to bulk RNA sequencing). 7, 17, 78

SNR The signal-to-noise ratio (SNR) assesses the ratio of meaningful signal of data to
background noise. 44

SPT Spatial transcriptomics measures gene expression profiles in a spatially resolved
context. 1, 2, 3, 4, 23, 25, 26, 27, 28, 29, 32, 63, 64, 65, 66, 68, 69, 70, 76, 78, 79, 81,
82, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 105, 107, 108, 109, 110, 113, 114, 140

SSD The sum of squared differences (SSD) is a common metric used (among others) in
image co-registration. It measures the total sum of squared differences (like pixel
intensity) between two sources. 22

SSIM The structural similarity index measure (SSIM) is a metric to quantify the similarity
between images, whereas 1 denotes a perfect similarity and 0 indicates complete
dissimilarity. 58, 59, 60, 61, 73, 74, 75, 81, 82
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TIC Total ion current (TIC) or total ion count normalization adjusts for variations in
MS intensities by scaling individual spectra by their respective total ion currents,
i.e., the overall signal intensities [182]. 45

t-SNE T-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimensional-
ity reduction method. 16, 17

TCR Tumor control rate (TCR) evaluates the percentage of controlled tumors, i.e.,
tumors which either shrunk in size or remained stable over a specific period of time
after treatment. 11

TOF Time of flight (TOF) is a commonly used mass analyzer in mass spectrometry.
Masses are measured by the time an object needs to travel a given distance. 8, 26,
77, 80

UMAP Uniform manifold approximation and projection (UMAP) is a non-linear dimen-
sionality reduction method. 16, 17
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