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Abstract

This study presents ground-based imaging of carbon dioxide (CO2) and methane (CH4) plumes
to derive emission estimates of localized sources. Employing a stationary spectral camera enables
rapid scene scanning at approximately one-minute intervals, capturing sky-scattered sunlight in
the shortwave infrared spectral range. The developed processing pipeline converts raw hyperspec-
tral data into emission estimates, utilizing an adapted matched filter retrieval for quantifying at-
mospheric enhancements in CO2 and CH4 plumes. The technique facilitates high-frequency
imaging of individual sources, thereby complementing existing greenhouse gas monitoring meth-
ods like satellite snapshot images.
Field campaigns at point sources of CO2 and CH4 show the method’s capability. Observing coal
mining emissions demonstrates the detection and quantification of CH4 plumes in single scans,
even under challenging conditions. Emission estimates obtained through mass balance methods
provide sub-hourly temporal resolution. They reveal considerable diurnal (up to 55 %) and day-
to-day (1.56 tCH4 h−1 to 4.57 tCH4 h−1) source variability, emphasizing the added value of high-
frequent emission monitoring. A proof-of-concept study at a coal-fired power plant provides the
first ground-based imaging observations of CO2 plumes. CO2 emission estimates require hourly-
averaged measurements and a specifically designed observation forward model. The retrieved
emissions show reasonable agreement with validation data under favorable conditions, following
the power plant’s temporal variability and averaging 84 % of the expected emissions with a mean
relative uncertainty of 24 %.

Kurzfassung

Diese Arbeit präsentiert bodengestützte Bildgebung von Kohlendioxid- (CO2) und Methanfah-
nen (CH4) zur Ableitung von Emissionsschätzungen von lokalisierten Quellen. Der Einsatz einer
stationären Spektralkamera ermöglicht ein schnelles Scannen der Szene in etwa einminütigen
Intervallen, wobei das vom Himmel gestreute Sonnenlicht im kurzwelligen Infrarot-Spektral-
bereich erfasst wird. Die entwickelte Verarbeitungskette wandelt hyperspektrale Rohdaten in
Emissionsschätzungen um, wobei ein angepasster Optimalfilter zur Quantifizierung atmosphär-
ischer Überhöhungen in CO2- und CH4-Fahnen verwendet wird. Die Technik ermöglicht die
hochfrequente Abbildung einzelner Quellen und ergänzt damit die bestehenden Überwachungs-
möglichkeiten für Treibhausgasemissionen wie Schnappschussaufnahmen von Satelliten.
Feldkampagnen an Punktquellen von CO2 und CH4 zeigen die Fähigkeit der Methode. Be-
obachtungen von Emissionen aus dem Kohleabbau demonstrieren die Erkennung und Quan-
tifizierung von CH4-Fahnen in Einzelaufnahmen, selbst unter herausfordernden Bedingungen.
Emissionsschätzungen aus Massenbilanz-Methoden bieten eine zeitliche Auflösung von weniger
als einer Stunde. Sie zeigen erhebliche tägliche (bis zu 55 %) und Tag-zu-Tag (1,56 tCH4 h−1 bis zu
4,57 tCH4 h−1) Quellvariabilität, was den zusätzlichen Nutzen einer hochfrequenten Emission-
süberwachung unterstreicht. Eine Machbarkeitsstudie an einem Kohlekraftwerk lieferte die ers-
ten bodengestützten abbildenden Beobachtungen von CO2-Abgasfahnen. Die CO2 Emissions-
schätzungen benötigen stündlich gemittelten Messungen und eine speziell entwickelten Vorwärts-
modellierung der Beobachtung. Die ermittelten Emissionen zeigen vernünftige Übereinstim-
mung mit Validierungsdaten unter günstigen Bedingungen und liegen im Durchschnitt bei 84 %
der erwarteten Emissionen mit einer mittleren relativen Unsicherheit von 24 %.
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1 Introduction

The Industrial Revolution initiated an ongoing period of rapid global warming. The most recent
Intergovernmental Panel on Climate Change (IPCC) report states: “It is unequivocal that hu-
man influence has warmed the atmosphere, ocean, and land. Widespread and rapid changes in the
atmosphere, ocean, cryosphere, and biosphere have occurred.” (IPCC, 2023, Summary A.1). This
anthropogenic climate change is already severely impacting the environment, ecosystems, and hu-
man societies (e.g., Collins et al., 2010; Lenton et al., 2023; Flores et al., 2024; Van Westen et al., 2024).
Therefore, the signatory countries of the United Nations Framework Convention on Climate
Change (UNFCCC) pledged to keep global warming well below 1.5 °C compared to the 1850 -
1900 reference period in the Paris Agreement (UNFCCC, 2015). Figure 1.1 summarizes the drivers
and their contributions to the observed global warming following IPCC (2023). It unambiguously
identifies well-mixed greenhouse gases (GHGs) as the main driver of the ongoing climate change
(see Figure 1.1b). Consequently, parties of the UNFCCC agreed to ambitious goals for reducing
anthropogenic GHG emissions. A stock-taking mechanism is in place to monitor the progress
of the efforts, which relies on operational emission Monitoring and Verification Support (MVS).
The goal of the MVS is to provide a reliable and transparent assessment of the progress towards the
emission reduction goals (e.g., Peters et al., 2017; Nisbet et al., 2020; Nisbet et al., 2021). Therefore, the
MVS is steadily improved and relies on a holistic approach, including atmospheric observations,
bottom-up emission maps, carbon cycle modeling, and data assimilation (Janssens-Maenhout et al.,
2020).

Anthropogenic carbon dioxide (CO2) and methane (CH4) emissions are the major cause of
contemporary global warming (Figure 1.1c). Both gases occur naturally in the Earth’s atmosphere
and are part of the Earth’s natural carbon cycle. However, anthropogenic activities emit a signif-
icant amount of CO2 and CH4. As the capacity of the natural sinks in the carbon cycle is lim-
ited, both gases accumulate in the atmosphere. Increasing CO2 and CH4 concentrations cause
a positive radiative forcing, i.e., the net change of radiative energy flux due to a change in an ex-
ternal driver. Figure 1.1c shows the contribution of different agents to the observed warming of
1.06 [0.88 to 1.21] °C in 2010 - 2019 relative to 1850 - 1900, emphasizing the contribution of CO2

and CH4.
The CO2 dry air mole fraction in the atmosphere has increased from 178 ppm to 417 ppm be-

tween 1750 and 2022 (Friedlingstein et al., 2023). Atmospheric growth rates are still rising and have
almost tripled from 0.82 ppm yr−1 in the 1960s to 2.39 ppm yr−1 in the 2010s (IPCC, 2023, Chap-
ter 5). In total, CO2 contributes about 80 % to the total radiative forcing (IPCC, 2023, Figure 5.18)
since 1850. Thus, CO2 caused about 0.75 °C of the observed global warming of 1.1 °C (Figure 1.1).
The Global Carbon Budget by Friedlingstein et al. (2023) investigates the carbon cycle and its com-
ponents in detail. Natural fluxes dominate the global carbon cycle, with gross fluxes of about
220 Gt C yr−1 between the atmosphere and the other two reservoirs, the ocean and the biosphere

1



1 Introduction

Figure 1.1: Panel (a) shows the observed global surface temperature change from 1850 to 2020. Panel (b)
shows contributions based on attribution studies using climate models and observations. Panel (c) shows
the evidence gathered based on the radiative forcing and climate sensitivity to different agents. The figure
is taken from Masson-Delmotte et al. (2021, Figure SPM.2).

(Friedlingstein et al., 2023, Figure 1). Anthropogenic fluxes are comparatively small at 10.9 Gt C yr−1

from fossil fuel combustion and land use change. However, while the natural fluxes balance to net
zero between reservoirs, about 50 % of anthropogenic CO2 accumulates in the atmosphere. Fos-
sil fuel combustion (∼9.6 Gt C yr−1) dominates the anthropogenic contribution, releasing pre-
viously stored carbon from the Earth’s crust. The energy sector is the largest contributor to an-
thropogenic CO2 emissions. Specifically, the combustion of coal has caused steadily increasing
CO2 emissions since the beginning of the Industrial Revolution, reaching ∼4 Gt C yr−1 in 2019.
Coal-fired power plants contribute ∼2.5 Gt C yr−1 to these emissions (IEA, 2018).

Figure 1.1c shows that CH4 is the second-largest contributor to the observed global warming
(Dlugokencky et al., 2011; Saunois et al., 2016; 2020; IPCC, 2023). Its dry air mole fraction has almost
tripled since pre-industrial times to a current value of more than 1900 ppb. CH4 contributes
about 23 % to the anthropogenic radiative forcing (Etminan et al., 2016; Smith et al., 2018), although
its total carbon emissions are only 4 % of the CO2 emissions. The reason for this imbalance lies
in the warming potential of CH4, which is a factor of 28 higher than that of CO2 over 100 years
and a factor of 80 over 20 years (Masson-Delmotte et al., 2021). The atmospheric lifetime of CH4

is only about nine years due to a natural sink in a reaction with the hydroxyl radical (Prather et al.,

2



Figure 1.2: The global CH4 budget (2008 - 2017). Anthropogenic emissions are shown as orange and
natural emissions as green arrows. Every flux is associated with two numbers, representing bottom-up and
top-down estimates. The figure is taken from Saunois et al. (2020, key figure).

2012). Thus, reducing CH4 emissions has received particular attention lately as a promising agent
to mitigate short-term climate change. Figure 1.2 shows the global CH4 budget from Saunois et
al. (2020), including the contributions from different sources and their uncertainties. Following
Saunois et al. (2020, Table 3), 57 [50 to 65] % of the total fluxes are anthropogenic. The agricul-
tural, livestock, and waste sectors are the most significant sources, contributing 60 % to the an-
thropogenic emissions. Additionally, fossil fuel production and use contribute 31 %, and biomass
burning contributes 8 %. While the global budget is reasonably well-constrained, partitioning the
sources remains challenging.

Approaches to quantify GHG fluxes fall into two categories: bottom-up and top-down. Bot-
tom-up approaches estimate emissions based on activity data and emission factors, e.g., emitted
CO2 per unit of energy produced. The method scales easily from facilities to national invento-
ries, provided that the activity data is available and emission factors are accurate. Thus, bottom-
up approaches are widely used to inform national GHG inventories, e.g., the European Pollutant
Release and Transfer Register (E-PRTR). However, the bottom-up framework misses unknown
sources or sinks, as their emissions are unavailable a priori. Emission factors of CO2 from combus-
tion processes are well-known and readily available (e.g., Sandau et al., 2021). Activity data, though,
is not equally available for sectors and regions. Especially in developing countries, activity data
is often incomplete or outdated. Similar issues have an even more significant effect on the CH4

budget. CH4 emissions are challenging to predict since they depend on hard-to-constrain factors
like meteorological conditions (rice cultivation), animal diet (livestock), and the state of the in-
frastructure (natural gas distribution). Hence, uncertainties of the sector’s fluxes are considerably

3



1 Introduction

higher in the CH4 budget than for CO2. Kirschke et al. (2013) report that bottom-up methods
suggest ∼30 % higher global CH4 emissions than top-down inversions, “highlighting the need
for more detailed research on emission factors” (Saunois et al., 2020, Abstract).

Top-down approaches use atmospheric observations to infer emissions. Thus, they provide
complementary information to bottom-up approaches, serving as an independent validation op-
portunity to improve the completeness and accuracy of the bottom-up estimates (Ciais et al., 2014;
Watanabe et al., 2023). Measurements using in-situ or remote sensing instruments typically provide
atmospheric concentrations of GHGs. Concentration enhancements result from the integrated
emissions contributing to the observation. Therefore, emission estimates may be inferred from
observed concentration enhancements using inversion techniques (e.g., Varon et al., 2018; Nesser et
al., 2023). Typical approaches include surrounding a target region with measurement stations or
transecting emission plumes (Verhulst et al., 2017; Luther et al., 2019; Dietrich et al., 2021; Gałkowski et
al., 2021; Kostinek et al., 2021; Luther et al., 2022). Furthermore, imaging spectroscopy in the short-
wave infrared (SWIR) spectral range has proven to be a powerful tool for this purpose. Satellites
successfully observe total columns of CO2 and CH4 on a global scale (Butz et al., 2011; Jacob et
al., 2022). Global area mappers observe CO2 and CH4 column concentrations with sub-percent
precision, providing invaluable information on large-scale fluxes (e.g., Basu et al., 2013; Feng et al.,
2016; Jiang et al., 2022). Recently, point source imager missions enabled observing single sources
on the facility to local scale from space (e.g., Guanter et al., 2021; Cusworth et al., 2022). They expand
the MVS capabilities by providing independent emission estimates for single sources worldwide,
e.g., power plants or landfills, without needing a local campaign. However, while orbiting satel-
lites provide global coverage, observing single sources is only possible with low revisiting rates
(Bhardwaj et al., 2022; Jacob et al., 2022). Watine-Guiu et al. (2023) recently illustrated the poten-
tial of geostationary satellites to observe intermittent point sources, like methane leaks, with high
temporal resolution. In light of the focus of this thesis, Section 2.2.3 provides an overview of the
state-of-the-art GHG imaging and related efforts.

Top-down and bottom-up approaches are complementary and can be combined to provide a
more comprehensive picture of the GHG fluxes (Ciais et al., 2014). Friedlingstein et al. (2023) point
out that a synthesis of both approaches successfully disentangles natural and anthropogenic fluxes
of CO2 and attributes them to sectors. While bottom-up emissions from well-known sources
may serve as validation opportunities for emerging observation techniques, established observa-
tion frameworks inform bottom-up inventories on missing sources and potential systematic un-
certainties.

This thesis investigates the potential of ground-based stationary imaging of CO2 and CH4 us-
ing a spectral camera in the SWIR spectral range. The camera is a commercially available HySpex
SWIR-384 push-broom imaging spectrometer. The spectral specifications of the camera are com-
parable to those of existing GHG imaging missions conducted by planes or satellites, which have
demonstrated the ability to detect emissions of CO2 and CH4. However, the stationary setup
trades spatial coverage for higher temporal resolution and prolonged observations of a single source.
Thus, it is a promising tool for observing source variability and intermittency, providing comple-
mentary information to space-borne observations. The major challenge to GHG detection with
the HySpex camera is the low signal of sky-scattered sunlight in the SWIR. Furthermore, relative
enhancements above the total column of CO2 are small due to the high background concentra-
tion. Therefore, point sources are ideal targets for the camera because their plumes cause signifi-
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cant atmospheric enhancement and can be easily attributed to the emitter in an image. This work
includes case studies of HySpex field deployments targeting CH4 emissions from coal mining and
CO2 emissions from a coal-fired power plant. Coal mines vent CH4 into the atmosphere through
ventilation shafts, contributing significantly to the European CH4 budget. However, past re-
search showed that the currently reported emissions require further validation (e.g., Krautwurst
et al., 2017; Fiehn et al., 2020; Kostinek et al., 2021). The observed power plant’s CO2 emissions are
well known from bottom-up techniques, providing an excellent validation opportunity for the
camera setup.

Alternative ground-based imaging techniques exist for CH4, which operate using thermal radi-
ation. Thus, they require a thermal contrast between the plume and the background and observe
the source from 10 m to 300 m. Gålfalk et al. (2016) report successfully quantifying CH4 emissions
using a ground-based imaging Fourier-transform camera. However, most alternatives are Optical
Gas Imaging (OGI) cameras designed for leak detection and incapable of emission quantifica-
tion. SWIR imaging can observe CH4 plumes on the kilometer scale, requiring daylight instead
of thermal contrast. Thus, it expands current MVS capabilities. Concerning CO2, no alterna-
tive techniques for ground-based imaging exist at the time of writing to the best of the author’s
knowledge.

The following chapters develop a framework from raw camera observations to emission esti-
mates from strong point sources of CO2 and CH4. Chapter 2 provides the essential theoretical
background for remote sensing using absorption spectroscopy in the SWIR spectral range. Fur-
thermore, it presents the basic principles of imaging spectroscopy and an overview of the state
of the art in GHG imaging. Chapter 3 focuses on the HySpex SWIR-384 camera, including the
preprocessing of the raw data and the necessary instrument calibration. It also describes the in-
strumental field setup and the viewing geometry. Chapter 4 introduces the methods to arrive at
emission estimates from the observed spectra. It includes the matched filter retrieval algorithm
and emission estimation techniques based on mass balance and Gaussian plume inversion. The
methods were adapted from established remote sensing techniques and are tailored to the spe-
cific challenges of the ground-based imaging setup. Chapter 5 presents results from two field
campaigns at active coal mines in Poland. Chapter 6 presents the first results of CO2 plume ob-
servations from a coal-fired power plant in Germany. Finally, Chapter 7 summarizes the findings
and provides an outlook on future work.
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2 Background

This chapter presents the physical background for the work and provides a brief overview of
the current state of the art in GHG imaging. Section 2.1 explains the interaction of light with
molecules in the Earth’s atmosphere. It introduces the radiative transfer equation (RTE) and its
solution in the single-scattering approximation, which is the basis for retrieving GHG concentra-
tions in this thesis. Section 2.2 introduces the working principles of imaging spectrometers and
their application to GHG imaging, including ongoing missions and past efforts.

This thesis employs a spectral camera in the SWIR spectral range to observe atmospheric CO2

and CH4 enhancements using absorption spectroscopy. Thus, the following sections focus on
the necessary information for this application. The descriptions omit completeness for the sake of
brevity and clarity. The following literature provides the foundation of the presented information
and includes further details on the topics discussed in this chapter. Petty (2006) yields an excellent
introduction to the interaction of radiation with the atmosphere. Stamnes et al. (2017) provide
additional or more in-depth descriptions of radiative transfer phenomena. Bransden and Joachain
(2003) include a thorough quantum-mechanical description of the interaction of molecules with
electromagnetic radiation. Demtröder (2013) and Demtröder (2016) provide basic information on
the interaction of light with molecules and the working principles of spectrometers.

2.1 Radiative Transfer in the Atmosphere

2.1.1 The Earth’s Atmosphere

The atmosphere plays a vital role in the Earth’s radiation budget, i.e., the balance of incoming and
outgoing radiative energy. The atmosphere’s composition determines the radiative balance since
increasing levels of GHGs capture additional energy in the atmosphere. This radiative forcing
raises the Earth’s surface temperature and causes the contemporary climate change. The following
paragraphs describe the atmosphere’s structure, composition, and radiation budget.

Structure and Composition

The atmosphere is layered according to the temperature lapse rate, i.e., the vertical temperature
gradient. The troposphere extends from the surface up to 8 km at the poles and 16 km at the
equator. The surface heats air parcels, causing an unstable layering due to buoyant rise. Thus,
the troposphere is well mixed by convection and turbulent mixing. The temperature decreases
with height up to the tropopause. At this point, radiative cooling to space and eventually absorp-
tion of solar radiation by the ozone layer reverse the trend. The stratosphere extends from the
tropopause to the stratopause at approximately 50 km. Air masses are stratified due to the stable
layering in the stratosphere and remain distinct for years to decades. Two more temperature lapse
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rate changes above the stratopause mark the mesosphere and the thermosphere. The atmospheric
pressure profile decreases exponentially with a scale height of around 8 km. Thus, the troposphere
and stratosphere dominate the Earth’s radiative balance since they contain 99 % of the molecules.
Dry air consists mainly of nitrogen (N2) (78 %), oxygen (O2) (21 %), and argon (0.9 %). The re-
maining species are called trace gases due to their low volume concentration. GHGs are trace gases
capturing thermal radiation emitted at the Earth’s surface. The primary natural GHGs are water
vapor (H2O), CO2, CH4, nitrous oxide (N2O), and ozone (O3). H2O reaches concentrations
of 0 % to 5 % in the lower atmosphere and contributes most to the greenhouse effect. However,
humanity’s direct influence1 on H2O concentrations is insignificant. Here, discussions focus on
anthropogenic emissions of CO2 and CH4 since these species contribute most to the man-made
radiative forcing.

The Radiative Energy Budget

The Earth’s radiative balance is a result of incoming solar radiation and outgoing thermal radi-
ation. Solar radiation dominates the incoming flux at the top of the atmosphere. According to
Planck’s law, the spectral energy density uλ emitted by black bodies reads

uλ(T ) =
8πhc

λ5
1

e
hc

λkBT − 1
, (2.1)

where λ is the wavelength, T is the temperature, h is the Planck constant, c is the speed of light,
and kB is the Boltzmann constant. The radiation emitted by the Sun can be approximated by the
radiation of a black body with an effective temperature of 5770 K. The solar spectrum peaks in
the visible (VIS) range around 0.5 μm, with the spectral range from 0.1 μm to 4 μm covering more
than 99 % of the radiative energy. The ozone layer in the stratosphere absorbs most radiation in the
ultraviolet (UV) range below 320 nm. However, VIS and, in parts, near infrared (NIR) radiation
reaches the Earth’s surface. The surface reflects a fraction of the light and absorbs the rest as heat.
The Earth emits thermal radiation according to Equation (2.1) with an effective emission temper-
ature of 288 K. This radiation peaks in the thermal infrared (TIR) range at 10 μm, radiating most
energy between 4 μm and 70 μm. The atmosphere has a so-called “atmospheric window” which
is transparent to thermal radiation. It ranges from 8 μm to 12 μm. The atmosphere is opaque for
TIR radiation outside this spectral range. Hence, the atmosphere absorbs the major part of the
Earth’s thermal radiation - only radiation in the “atmospheric window” allows the earth to cool
down. Figure 2.1 presents an overview of the Earth’s energy budget, as shown in Wild et al. (2017).
The incoming solar radiation is approximately 340 W m−2. The outgoing thermal radiation al-
most equals the incoming flux at the top of the atmosphere. As Figure 2.1 illustrates, GHGs in
the atmosphere partially absorb and re-emit thermal radiation. Increasing levels of GHGs cause
a net positive radiative imbalance, which is responsible for the rising temperatures of the Earth’s
surface and troposphere. In 2019, the radiative imbalance amounted to 2.72 [1.96 to 3.48] W m−2

relative to 1750 (IPCC, 2023, A.4). CO2 and CH4 are responsible for an additional radiative forc-
ing of 2.16 W m−2 and 0.54 W m−2 since 1750, respectively (IPCC, 2023, p. 69), making them the

1Warm air holds more H2O than cold air. Thus, rising H2O concentrations in the atmosphere are part of a positive
feedback loop of the anthropogenic global warming, but not a result of anthropogenic H2O emissions.
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2.1 Radiative Transfer in the Atmosphere

Figure 2.1: The Earth’s radiative energy budget taken from Wild et al. (2017). This schematic shows the key
solar and thermal radiative fluxes that determine the Earth’s energy balance. At the top of the atmosphere,
an imbalance is apparent - the Earth captures more energy than it emits. Thus, the Earth’s surface and
troposphere heat up until the outgoing thermal radiation balances the incoming solar radiation.

two dominant climate agents. As the Earth approaches a higher equilibrium temperature, the
radiative imbalance diminishes. The latest period from 2006 to 2018 exhibited global warming
corresponding to a radiative forcing of 0.79 [0.52 to 1.06] W m−2 (IPCC, 2023, A.4.2).

2.1.2 Interaction of Light andMolecules

Light is electromagnetic radiation, interacting with molecules in three fundamental processes:
absorption, emission, and scattering. The following sections describe these processes, primarily
focusing on the absorption of CO2 and CH4 in the SWIR spectral range from 1.5 μm to 2.5 μm.

Absorption and emission

The electromagnetic field is quantized into photons. Photons exhibit wave-particle-duality, and
each photon carries energy according to its wavelengthEph = hc

λ . Molecules can emit and absorb
photons, thereby exchanging energy with the surrounding field of electromagnetic radiation.
The stationary Schrödinger equation describes the energyE a molecule can assume as

Ĥ|Ψ⟩ = E|Ψ⟩ , (2.2)
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where Ĥ is the time-independent Hamiltonian operator and |Ψ⟩ is the molecule’s wave function.
The solution of |Ψ⟩ is a linear combination of eigenstates |ψk⟩ with corresponding energiesEk.
Molecules assume discrete energy levels according to their electronic, vibrational, and rotational
state. Transitions due to radiation between energy levels Ei and Ej require the absorption or
emission of a photon withEph = |Ei −Ej |. Photon energies in the SWIR spectral range excite
vibrational and rotational transitions, while electronic transitions require photon energies in the
UV/VIS range with λ < 1 μm. Thus, the following introduction is limited to vibrational and
rotational transitions.

Diatomic molecules, like carbon monoxide (CO), provide an opportunity to illustrate the mech-
anisms of vibration-rotation transitions. The Morse potential describes the interaction potential
energy V (r) between the nuclei of a diatomic molecule as

V (r) = De

(
1− e−a(r−re)

)2
, (2.3)

where De is the dissociation energy, a is the vibrational constant, re is the equilibrium bond
length, and r is the distance between the nuclei. Solving Equation (2.2) for the stationary states
of the Morse potential yields the vibrational energy levels

Eν =

(
ν +

1

2

)
ℏω0 −

[(
ν + 1

2

)
ℏω0

]2
4De

, (2.4)

where ν is the vibrational quantum number, ω0 = a
√
2De/m̃ is the vibrational angular fre-

quency with the reduced mass m̃ of the molecule, and ℏ is the reduced Planck constant. Note
that the first term is the harmonic oscillator solution with equidistant energy levels, while the sec-
ond term is the anharmonic correction. Vibrations are radial oscillations of the nuclei around
the equilibrium bond length. Additionally, the molecule can rotate around its center of mass.
Without further derivation, the rotational energy levelsEJ of a rigid diatomic molecule are given
by

EJ =
ℏ2

2m̃R2
J(J + 1) , (2.5)

where J is the rotational quantum number, and R = re is constant for the rigid molecule. The
spacing between two rotational energy levels is

∆EJ =
ℏ2

m̃r2e
(J + 1) , (2.6)

increasing linearly with J . Thus, transition energies ∆EJ are linearly spaced with ℏ2
m̃r2e

, where m̃
and re are molecule-specific. For purely rotational-vibrational transitions, it holds that∆J = ±1
since a photon carries one unit of angular momentum. However, ∆J = 0 is possible in tran-
sitions that account for conservation of angular momentum differently. Figure 2.2 illustrates
rotational-vibrational transition energies for ∆ν = +1 and ∆J = +1, 0,−1. Transitions
with ∆J = −1, 0,+1 form the P-, Q-, and R-branch, respectively. Since transition energies
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Figure 2.2: Schematic of the energy levels of a diatomic molecule, inspired from Petty (2006). Transitions
with ∆J = −1, 0,+1 are called the P-, Q-, and R-branch, respectively. All transition energies ∆E are
equidistantly spaced by ℏ2

m̃r2e
around the pure vibrational transition energy from ν = 0 to ν = 1. Molec-

ular transitions either emit or absorb photons carrying energyEph = ∆E.

correspond to photons of a certain wavelength, they give rise to a line spectrum of absorption or
emission.

Molecules consisting of three or more atoms, like CO2 and CH4, have more complex energy
level structures than diatomic molecules. Figure 2.3 shows the transmission spectra of CO2 and
CH4 at atmospheric conditions. Absorption lines appear at wavelengths corresponding to an
energy transition of the molecule, decreasing the transmission through the media. CO2 is a cen-
trosymmetric linear molecule. Thus, it has two equal, non-zero rotational moments of inertia and
three modes of vibration. The transmission spectrum in Figure 2.3a around 2000 nm emerges
from combined vibrational2 and rotational transitions. Since the vibrating CO2 molecule resem-
bles a diatomic molecule, absorption lines follow the transition scheme of Figure 2.2. The two
wing-like structures around 2060 nm are the P- and R-branch, while the Q-branch is suppressed.
CH4 is a tetrahedral molecule. Thus, it has three identical moments of inertia and four vibrational
modes. Figure 2.3b shows the CH4 absorption features around 2300 nm. This absorption band
emerges from four distinct combinations of at least two vibrational modes (Bransden and Joachain,
2003, Table 81). Thus, the vibration-rotation line spectrum is far more complex than for CO2.

The following paragraphs introduce the processes that lead to lines of varying shape and strength
in the transmission spectrum. Absorption, stimulated emission, and spontaneous emission are
the fundamental processes of photon-molecule interaction. Let ni and nj be the number of

2This transition consists of the symmetric stretching ν̃1 = 1388 cm−1, asymmetric stretching ν̃2 = 2349 cm−1, and
bending ν̃3 = 667 cm−1 vibrations. The transition occurs from simultaneous ν̃2 + 2 · ν̃1, ν̃2 + ν̃1 + 2 · ν̃3, or
ν̃2 + 4 · ν̃3 transitions (Buback et al., 1986), which add up to approximately the same transition energy.
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Figure 2.3: Transmission spectra of a) CO2 and b) CH4 in the SWIR spectral range. Transmission through
a medium decreases when the absorption lines are strong. The transmission spectrum of CO2 shows the
wings of the P- and R-branch, while the transmission spectrum of CH4 exhibits a much more complex
structure.

molecules in the energy states Ei < Ej , respectively. The Einstein coefficients Aji [s−1], Bij

[m3 W−1 s−1], and Bji [m3 W−1 s−1] describe the transition probabilities for spontaneous emis-
sion, absorption, and stimulated emission, respectively. Quantum electrodynamics provides the
necessary framework to derive these coefficients. The rate of change of ni is

dni
dt

= −niuλBij + njuλBji + njAji , (2.7)

where uλ [W m−3] is the energy density of the radiation field. Molecules in the troposphere and
the stratosphere are, in good approximation, in local thermodynamic equilibrium. Thus, the rate
of change between any two energy levels is zero (detailed balance) and the relative number of two
states is given by the Boltzmann distribution

nj
ni

=
gj
gi
e
−

Ej−Ei
kBT , (2.8)

where gi and gj are the degeneracies of the states. The aforementioned assumptions of local ther-
modynamic equilibrium lead to the following relations of the transition probabilities:

gjBji = giBij and Aji =
8πhc

λ5
Bji . (2.9)

The occupancy of energy states following the Boltzmann distribution (Equation (2.8)) has some
further implications. Typical transition energies of vibrational states are on the order of 100 meV,
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while rotational transitions are on the order of 1 meV. Typical thermal energies in the tropo- and
stratosphere are well below∼26 meV (at 300 K). Thus, molecules mostly occupy their vibrational
ground state (ν = 0) but extend to higher rotational states (J ≥ 0). Considering a vibration-
rotation transition, the total number density of molecules in the ground state is much higher than
in the excited state. Therefore, spontaneous and stimulated emission are small compared to ab-
sorption. Furthermore, the Boltzmann distributed rotational energy occupancy in the vibrational
ground state explains the wing-like structure of the P- and R-branch in Figure 2.3a. The degener-
acy of rotational energy levels is given by g = 2J + 1. Thus, the transition probability increases
close to the Q-branch with the degeneracy since more states allow for the same energy level. The
trend reverses further from the Q-branch, around J = 10 in Figure 2.3a. A decreasing popula-
tion in the transition’s ground state causes the reversal, due to the growing energy difference to
the molecules ground state at J = 0 (see Figure 2.2).

Every transition changes the radiation field’s energy by Eph = hc
λ . Thus, Equation (2.7) can

describe the change in radiative energy. Assuming thermodynamic equilibrium, the energy level
population and the transition probabilities are known. Consequently, Equation (2.7) determines
the line strengthS, that is the change in radiation along a path ds in a volume of molecule density
n. Without further derivation, S is given by

S =
h

λ
Bij

ni
n

(
1− e

−
Ej−Ei
kBT

)
. (2.10)

The medium absorbs light at wavelengths withBij ̸= 0. Thus, the absorption spectrum consists
of lines as already encountered in Figure 2.3. The derivations above were limited to discrete energy
transitions of molecules. However, absorption and emission lines are not infinitely sharp, but have
a finite line width caused by three effects. First, the natural line width results from Heisenberg
uncertainty principle in the energy-time domain. The molecule’s energy levels are not discrete
due to the finite lifetime of the excited state. Second, the Doppler effect causes a broadening of
the line spectrum due to the thermal motion of molecules in the atmosphere. Third, collisions
between molecules distort the energy levels of molecules, which is called pressure broadening. A
line shape factor f(λ − λ0), normalized to

∫∞
0 f dλ = 1, describes the absorption line shape

around its central wavelengthλ0. The absorption cross-sectionσa,λ0 of a line aroundλ0 is defined
as

σa,λ0 = Sf(λ− λ0) , (2.11)

such that
∫∞
0 σa,λ0 dλ = S. It describes the effective area of absorption of a molecule at a cer-

tain wavelength. Under atmospheric conditions, the natural line width is negligible compared
to the Doppler and pressure broadening. Thus, the line shape factor f(λ − λ0) results from a
combination of the Doppler and pressure broadening. The thermal Doppler broadening causes
a Gaussian shape, while the pressure broadening causes a Lorentzian shape. A standard approxi-
mation for the resulting line shape is the Voigt profileV (λ), which is the normalized convolution
of a Gaussian and a Lorentzian profile (for details, see, e.g., Humlíček (1982)). The line spectrum

13



2 Background

of discrete absorption lines reads S(λ) =
∑lines

i Siδ(λ− λ0,i), where δ(λ− λ0,i) is the Dirac
delta distribution. The total absorption cross-section σa(λ) follows as

σa,λ = S(λ) ∗ V (λ) (2.12)

=

∫ ∞

0

lines∑
i

Siδ(λ
′ − λ0,i)V (λ− λ′) dλ′ (2.13)

=
lines∑
i

σa,λ0,i
, (2.14)

where ∗ is the convolution operator. More sophisticated line shapes exist, e.g., the Hartmann-
Tran profile (Ngo et al., 2013; Tennyson et al., 2014), and are still subject to research. The spectral
camera used for the presented thesis cannot resolve single lines of molecular absorption. Thus,
the Voigt profile is sufficient for the work presented here. Finally, the absorption coefficient βa,λ
can be written as

βa,λ = σa,λ · n , (2.15)

which is the rate of absorption of radiation passing through a medium.
In conclusion, molecules inside a radiation field absorb and emit photons. The photon energy

matches the transition energy between two states of the molecule, giving rise to a line spectrum.
Molecules have unique line spectra. Thus, observing absorption lines in the spectrum of light
passing through the atmosphere enables the detection and quantification of molecules in the at-
mosphere.

Scattering

Scattering changes the direction of an electromagnetic wave incident on a molecule. Hence, the
loss of radiation in a certain direction is compensated by the gain of radiation in another direction.
Scattering processes are described by two quantities: the scattering cross-section and the scattering
phase function. The scattering cross-section is the probability of a scattering process at a certain
particle, while the phase function describes the angular distribution of the outgoing wave. Both
quantities depend on the size regime of the scattering process. The size parameter ζ determines
the regime and is defined as

ζ =
2πrp
λ

, (2.16)

where rp is the radius of the scattering particle andλ is the wavelength incident wave. The follow-
ing paragraphs introduce the relevant scattering processes for the work presented in this thesis.
This encompasses elastic scattering of SWIR waves by molecules and aerosols, which are small
particles suspended in the atmosphere.

Rayleigh scattering describes scattering processes for ζ < 0.2 (Petty, 2006, Figure 12.1). Since
the molecule is much smaller than the incident wave, every part of it experiences the same elec-
tric field. The electric field induces a charge separation inside the molecule, which oscillates with
the frequency of the incoming wave. The oscillating dipole emits a secondary wave at the same
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Figure 2.4: Scattering phase functions of a) Rayleigh scattering and b) Mie scattering. Radiation arrives
from the left (180°) and is scattered out of beam. Both processes are rotationally symmetric around the
direction of propagation of the incoming radiation. For Rayleigh scattering, the phase function changes
if the outgoing light is polarized perpendicular (orange), parallel (blue), or unpolarized (green) relative to
the scattering plane. For Mie scattering, the phase function changes with the size parameter ζ - a higher
size parameter (orange) shows finer structures and stronger forward scattering than a smaller size param-
eter (blue). In real applications, the scattering phase function of aerosols may be approximated by the
Henyey-Greenstein phase function (green, g = 0.9). Note that the radial axis in panel b) is logarithmic
and scattering phase functions are normalized to unity. Plots produced with Prahl (2023).

frequency as the incoming wave. Thus, Rayleigh scattering is an elastic scattering process. The
scattering cross-section σs of Rayleigh scattering is given by

σs,Rayl. ∝
α2r6p
λ4

, (2.17)

where α is the polarizability of the molecule. Equation (2.17) shows that Rayleigh scattering is
more efficient at smaller wavelength for constant particle parameters rp and α. Since Rayleigh
scattering emerges from dipole radiation, the emitted light is (partly) polarized even if the in-
coming light is unpolarized. The induced dipoles are oriented perpendicular to the incoming
wave’s propagation direction. Thus, the secondary wave is polarized perpendicular to the incom-
ing wave’s propagation direction. This results in less light scattered perpendicular to the incoming
radiation, as seen in the scattering phase function

PRayl.(θ) =
3

4
(1 + cos2 θ) , (2.18)

where θ is the scattering angle. Figure 2.4a shows the scattering phase functions of Rayleigh scat-
tering. Rayleigh scattering is the dominant scattering process in the UV/VIS spectral range with
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size parameters down to 2·10−3. For smaller size parameters, scattering is usually neglected, while
for larger size parameters, the assumption of a single oscillating dipole is no longer valid. Scatter-
ing of SWIR waves on molecules corresponds to a size parameter of ζ ≈ 3·10−4. Thus, scattering
on molecules is weak in the SWIR spectral range. However, since observations in this thesis focus
on pristine atmospheric conditions, Rayleigh scattering is still included in later computations of
radiative transfer.

Aerosol scattering is the dominant scattering process in the SWIR spectral range. Larger aero-
sols (r > 0.1 μm) fall in the size regime of 0.4 ≤ ζ ≤ 20. Mie theory describes the scatter-
ing of electromagnetic waves on spherical particles in this size regime3. It produces the absorp-
tion and scattering cross-section as functions of the size parameter and the refractive index of
the particle. For small size parameters, Mie theory reproduces Rayleigh scattering. For large size
parameters, the scattering cross-section starts oscillating with ζ , converging to a constant value
of σs,Mie = 2πr2p, twice the geometric cross-section4. Mie scattering phase functions show in-
creasingly strong forward scattering for larger size parameters ζ . Furthermore, fine-scale structures
emerge in the phase function, which gives rise to optical phenomena like rainbows and halos. Such
structures are mostly smoothed away in reality since aerosols exist as a distribution of particles with
different size parameters. Thus, the scattering phase function of aerosols may be approximated by
the Henyey-Greenstein phase function

PH-G(θ) =
1− g2

(1 + g2 − 2g cos θ)3/2
, (2.19)

where g is the asymmetry parameter. The asymmetry parameter determines the pronunciation
of the forward scattering, ranging between 0.6 and 0.85 for situations encountered in this thesis.
Figure 2.4b shows two scattering phase functions from Mie theory and the Henyey-Greenstein
phase function.

Analogous to the absorption coefficient, the scattering coefficient βs,λ follows from

βs,λ = σs,λ · n , (2.20)

where n is the number density of the scattering particles. The scattering coefficient describes the
loss of radiation in traveling direction due to scattering on a path length ds. However, scattering
from all other directions may contribute to radiation in the traveling direction according to the
scattering phase function. Thus, scattering is also a source of radiation - without scattering, the sky
would be dark. The sky-scattered sunlight provides the homogeneous background illumination
for the camera observations in this thesis.

3Although the theory can be expanded to non-spherical particles, see Van de Hulst (1981).
4The fact that the Mie theory predicts twice the geometric cross-section of the particle is called the extinction paradox.

There are several theories to explain this phenomenon, e.g., Berg et al. (2011).
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2.1.3 The Radiative Transfer Equation

The field of light can be quantified by its spectral radiance

Iλ =
d4E

dA dΩ dλ dt
, (2.21)

which is the radiant energy dE transported through an area dA from a certain solid angle dΩ in
a spectral interval dλ per time interval dt. The change of radiance in direction Ω along a path is
described by the radiative transfer equation (RTE)

dIλ
ds

= −βa,λIλ − βs,λIλ +
βa,λc

4π
uλ +

βs,λ
4π

∫
4π
Pλ(Ω

′;Ω)Iλ(Ω
′) dΩ′ , (2.22)

where s is the path length, βa,λ is the absorption coefficient, βs,λ is the scattering coefficient, uλ
is the Planck function (Equation (2.1)), and Pλ is the scattering phase function. The right-hand
side of Equation (2.22) describes, from left to right, the absorption of light, the scattering of
light from the beam, additional radiance through emission, and the scattering of light from solid
angle Ω′ into the beam traveling into solid angle Ω. The subscript λ is omitted in the following.
The RTE in this form has no analytical solution, though many software solutions exist to solve it
numerically (e.g., Berk et al., 2014; Emde et al., 2016). The following sections introduce two special
cases of the RTE, which are used in this thesis.

Beer-Lambert Law

The Beer-Lambert law describes the extinction of light over a path length. Thus, only the two first
terms of Equation (2.22) are considered. The RTE is easily solved by integration

I(s) = I(0) exp

(
−
∫ s

0
βe(s

′) ds′
)
, (2.23)

with the extinction coefficient βe = βa + βs. The argument of the exponential function is
called the optical depth τ . Assuming absorption dominates, the extinction coefficient βe ≈ βa
results from the absorption cross-sectionσa,λ and the number density of the absorbing molecules
n (Equation (2.15)), such that

τ =

∫ s

0
n(s′)σa(s

′) ds′ (2.24)

≈ σa ·
∫ s

0
n(s′) ds′ , (2.25)

where the second line is valid if the absorption cross-section is constant along the path. The at-
tenuation of the light thus depends on the number of molecules integrated along the light path,
also called the column density (in molec. cm−2). Therefore, the column density is the physically
observable quantity in absorption spectroscopy.
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Single Scattering Approximation

The spectral camera used in this thesis observes sky-scattered radiance in the SWIR spectral range.
Most complications of the RTE arise from multiple scattering since this requires, in theory, a solu-
tion of the equation to infinite scattering orders (i.e., the number of times a photon was scattered
until it reached the observer). The single-scattering approximation assumes that the light is scat-
tered just once before it arrives at the observer. Furthermore, thermal emission is neglected for
SWIR light at atmospheric temperatures. Thus, the single-scattering approximation considers
only photons from the sun that were re-directed once into the observer’s viewing direction. The
analytical solution of the RTE for a horizontally homogeneous, plane-parallel atmosphere reads

I(λ) =
S0(λ)γ0

4π(|γ| − |γ0|)
·
layer∑
k

ϖk(λ)Pk(λ; Ω,Ω0)e
− τk(λ)

|γ0|−|γ|

(
1− e

−∆τk

(
1

|γ0|
− 1

|γ|

))
,

(2.26)
where S0 is the top of the atmosphere radiance, γ0 = 1

cos(SZA) , γ = 1
cos(VZA) , ϖ is the single-

scattering albedo, and P the scattering phase function for the beam direction before (Ω0) and
after (Ω) the scattering. The solar zenith angle (SZA) and viewing zenith angle (VZA) describe
the viewing geometry, while the single-scattering albedo is the ratio of scattering to extinction
ϖ = βs

βs+βa
.

Single scattering approximates radiative transfer well for a small optical depth τ ≪ 1, since
scattering is overall unlikely, or if absorption dominates over scattering (ϖ ≪ 1). These assump-
tions are valid for the SWIR spectral range under clear sky conditions. Scattering on molecules
is negligible due to the small size parameter of molecules. Aerosol scattering is more efficient yet
still small, making single scattering a good approximation. Thermal emission, again, is negligible
since the scattered radiance from the sun is still several magnitudes larger than the radiance emitted
from the atmosphere. Since neither scattering of solar photons nor thermal emission efficiently
produces observable light in the SWIR spectral range, the sky is dark in this spectral range.

Since the camera observes targets close to the ground, the viewing elevation angle (VEA), with
VEA = 90° − VZA, is small. The assumption of plane-parallel layers is violated for shallow
VEAs, yet there are empirical corrections for this effect. For VEAs larger than 0°, i.e., still pointing
above the horizon, Kasten and Young (1989) provide a sufficient correction that reads

γ =
1

cos(VZA) + 0.0572 (96.07995− VZA)−1.6364
. (2.27)

2.2 Imaging Spectrometry

This section introduces the concept of imaging spectrometers and their application to GHG imag-
ing. An imaging spectrometer, also known as a spectral camera, is capable of resolving a spatial
scene and providing spectral information for each pixel of the image. The spectral camera used in
the context of this thesis is a push-broom imager based on a grating spectrometer. Section 2.2.1
provides the physical principles of grating spectrometers. The concept of push-broom imaging
is introduced in Section 2.2.2. Finally, the current state of the art in GHG imaging is laid out in
Section 2.2.3, including past and ongoing missions.
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2.2.1 Grating Spectrometers

A spectrometer is a tool that observes the spectral components of light, with a common type
being the grating spectrometer based on diffraction. Diffraction occurs as light passes through
an aperture or encounters an obstacle. The Huygens-Fresnel principle explains this phenomenon
by assuming that every point on a wave front acts as a source of spherical waves. The grating
spectrometer employs this principle, utilizing a periodic structure of slits as apertures. Therefore,
the grating induces an optical path difference for light passing through the grating. This difference
is angle-dependent on the observation plane, leading to constructive and destructive interference.
The interference pattern, determined by wavelength, allows differentiating spectral components
of the light. It can be shown that the far-field diffraction pattern, called Fraunhofer diffraction,
of a grating is proportional to the Fourier transform of the grating structure. A periodic grating
structure ofN slits of width b and a slit distance of d is described by the function

G(x) = Π(x/b) ∗
N∑

n=0

δ(x− nd) , (2.28)

where Π is the rectangular distribution. Using the convolution theorem and the geometrical se-
ries, the Fourier transform reads

F{G(x)} = F{Π(x/b)} · F

{
N∑

n=0

δ(x− nd)

}
(2.29)

∝ sinc

(
π
b

λ
sin(Θ)

)
· 1− exp(−i2πNd sin(Θ)/λ)

1− exp(−i2πd sin(Θ)/λ)
, (2.30)

where F is the Fourier transform operator, λ is the wavelength of the incoming light, and Θ
is the observation angle. The intensity of a monochromatic, plane wave is given as its squared
amplitude. Thus, the intensity distribution I(Θ) of the diffraction pattern reads

I(Θ) ∝ sinc

(
π
b

λ
sin(Θ)

)2

· sin(πNd sin(Θ)/λ)2

sin(πd sin(Θ)/λ)2
. (2.31)

The first term corresponds to the single slit diffraction, while the second term corresponds to the
interference of the light passing through the slits. Figure 2.5 shows the diffraction pattern of a
grating spectrometer. Maxima in intensity are found at the observation angles

sin(Θ) =
mλ

d
, (2.32)

wherem is the diffraction order. Equation (2.32) shows that wavelengths may overlap in different
orders, effectively limiting the spectral range of the spectrometer. The resolving power of the
grating spectrometer is given by

R =
λ

∆λ
= mN , (2.33)
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Figure 2.5: Fraunhofer diffraction pattern of a grating spectrometer. The single slit diffraction (blue) en-
velops the grating diffraction pattern (orange). The spectrum was calculated for a monochromatic light
source withλ = 2 μm and a grating withN = 10 slits of width b = 5 μm and a slit distance ofd = 15 μm.

where ∆λ is the spectral resolution, i.e., the smallest wavelength difference that can be detected.
The spectral resolution can be improved by increasing the number of slits or the diffraction order.
Real grating spectrometers consist of several optical and electrical components, e.g., apertures, a
collimator, a grating, and a detector. The response to a monochromatic signal of the detector is
called instrument line shape (ILS), and it turns out that for many grating spectrometers a Gaus-
sian profile is a sufficient approximation (Beirle et al., 2017; Mouroulis and Green, 2018). The op-
tical components project the incoming light onto a detector array, which samples the spectrally
resolved intensity distribution in discrete channels.

2.2.2 Push-Broom Imaging

Push-broom imaging is a common concept for imaging spectrometers. It requires no moving
parts, making it robust and reliable. Figure 2.6 shows the principle configuration of a push-broom
imaging spectrometer. The incoming light is focused onto a slit, which cuts out a narrow stripe
from the scene. The light passes a collimating mirror, which projects the stripe onto a detector
array through a dispersing element and lens optics. The slit is oriented perpendicular to the push-
broom direction, denoted asx′ in Figure 2.6. Thus, the spectrometer’s FOV covers only a narrow
angle in the push-broom direction but accepts a larger angle perpendicular to the push-broom
direction y′. Radiance from different angles along y′ are mapped to different spatial lines y of the
detector. The dispersing element splits the light into its spectral components, which are recorded
in spectral channels z of the detector element. The spectrometer’s FOV moves along the push-
broom direction between two detector readouts. Thus, push-broom spectrometer sample the
spatial dimension x′ over time t. Airborne or satellite push-broom imaging spectrometers scan
the scene by moving the instrument platform over the ground. In contrast, the ground-based
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Figure 2.6: Optical setup of a push-broom imaging spectrometer. A stripe of the scene is projected onto
a detector array through a dispersing element and a lens and mirror optics. An entrance slit cuts out the
stripe from the scene, limiting the field of view (FOV) in push-broom direction. The dispersing element
splits the light into its spectral components, which are recorded in spectral channels of the detector array.
The scene is scanned along the push-broom direction. The figure was adapted from Shaw and Burke (2003)
and Baumgartner (2022).

camera in this thesis scans a horizontal scene by rotating around a vertical axis. In both cases, a
hyperspectral image is a three-dimensional data cube consisting of two spatial dimensions and one
spectral dimension. This thesis refers to the spectral dimension coordinate as channel, the spatial
coordinate on the detector as line, and the scanning spatial coordinate as frame

5.
Interpreting the observed signal requires a characterization of the instrument. Standard proce-

dures include geometric and spectral calibration. The spectral dimension is calibrated similarly to
a conventional spectrometer, including the ILS and the wavelength calibration of the channels.
The full width at half maximum (FWHM) of the ILS is a typical measure of the instrument’s spec-
tral resolution. Similar quantities exist for the spatial dimensions, e.g., the point spread function
(PSF) describes the instrument response to a point source in both lines and frames. A geomet-
rical calibration provides the viewing angle of each line, comparable to a wavelength calibration
of the channels. However, both calibrations are not independent - the wavelength calibration of
the channel typically varies with the line (“smile”), and the geometrical calibration with the wave-
length (“keystone”). In addition to the effects induced by the optical setup, the detector affects the
recorded signal. Ideally, every detector pixel responds equally and linearly to incoming radiation.
In reality, irregularities and the quantum efficiency of the detector material cause a non-uniform
response, which can be accounted for by a flatfield correction (e.g., Kokka et al., 2019). Typically,

5In airborne applications, the push-broom direction is parallel to the flight direction. The names across-track pixels

for lines and along-track pixels for frames are typically used, but they are confusing in the context of ground-based
imaging.
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some detector pixels exhibit erratic or non-linear behavior and thus are excluded by a bad pixel
mask. Numerous potential instrument specifications (for example, the ILS varies with the inci-
dent light angle) inspire ongoing research efforts in specialized calibration facilities (Geladi et al.,
2004; Gege et al., 2009; Baumgartner et al., 2012; Baumgartner, 2022). Sections 3.1 and 3.2 present
characterization measurements for the spectral camera employed in the context of this thesis.

Every illuminated detector readout contains the radiometric response, a dark signal, and an
offset. Thermal electrons cause the dark signal in the detector, which piles up during the image
acquisition. Thus, a background correction is required, which is typically performed by taking
dark frames before or after the image acquisition. These frames are subtracted from the observed
signal. Furthermore, each observation contains an amount of noise. The relevant noise sources
in hyperspectral imaging are dark noise, read noise, and photon noise (e.g., Lenhard et al., 2015).
The quality of an observation is typically quantified by the signal-to-noise ratio (SNR), which is
the ratio of the signal to the standard deviation of the noise signal. The SNR is a function of the
integration time, spatial pixel size, and spectral resolution. Detecting a spectral signal at a certain
SNR requires a trade-off between the instrument’s specifications. For example, improving the
spatial resolution requires decreasing spectral resolution or increasing integration time to keep
the SNR constant. Depending on the mission objective, sensors are designed to fit the respective
requirements, e.g., Hill and Nassar (2019), Strandgren et al. (2020), and Wilzewski et al. (2020).

2.2.3 Imaging of Greenhouse Gases

Imaging of GHGs is a rapidly advancing field of scientific research. Most efforts revolve around
images from either satellites or airplanes using a top-down viewing perspective. These platforms
offer regional to global coverage within a day to weeks, proving to be invaluable tools for com-
prehending, among other, the global carbon cycle. Top-down viewing spectrometers observe
back-scattered sunlight from the Earth’s surface. The observations provide atmospheric trace gas
contents and, ultimately, fluxes of source and sinks. Since emission inventories typically rely on
bottom-up estimates (e.g., mass of burned coal × CO2 per coal mass), satellite observations pro-
vide an independent validation of these estimates (e.g., Miller and Michalak, 2017; Palmer et al., 2021).
The following section gives a brief overview of past and ongoing GHG observing missions. It is
in no way exhaustive, but focuses on CO2 and CH4 imaging efforts and closely related research.
Although this thesis presents stationary ground-based imaging, most concepts are similar to air-
borne and satellite applications.

Satellite and AirborneMissions

Satellite missions can broadly be divided into area flux mappers or point source imagers (Jacob et
al., 2022). Area flux mappers constrain regional and global fluxes of GHGs. Thus, they measure at-
mospheric total columns with sub-percentage precision in large ground pixels of 0.1 km to 10 km
using a spectral resolution below 1 nm. The longest ongoing mission dedicated to GHG observa-
tion is the Greenhouse gases Observing SATellite (GOSAT) mission. It provides global CO2 and
CH4 maps since 2009 (Kuze et al., 2009; Butz et al., 2011; 2013). Kort et al. (2012) used GOSAT data
to detect CO2 emissions from the LA basin, and especially the long time series provides valuable
research opportunities (e.g., Maasakkers et al., 2019; Zhang et al., 2021; Metz et al., 2023). Since 2018,
the TROPOspheric Monitoring Instrument (TROPOMI) instrument onboard the Sentinel-5
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Figure 2.7: Example observations of CH4 plumes observed with TROPOMI and Greenhouse Gas Satellite
(GHGSat) missions taken from Schuit et al. (2023). The increased spatial resolution of GHGSat allows for
the identification of individual sources (landfill in Casablanca, Morocco) and turbulent plume features.

Precursor (Sentinel-5P) satellite has been the first European area flux mapper, providing daily
global CH4 and CO maps, among other data (Veefkind et al., 2012; Borsdorff et al., 2018). The CH4

dataset can provide global maps (Hu et al., 2018) and emission estimates of hotspot regions (Pandey
et al., 2019; Varon et al., 2019; Sadavarte et al., 2021; Varon et al., 2021; Lauvaux et al., 2022; Maasakkers et
al., 2022). Using TROPOMI, Varon et al. (2023) present weekly CH4 emissions from the Permian
Basin, U.S., which is promising for potential future near-real time applications. Schuit et al. (2023)
present the first efforts of a fully automated source identification and quantification pipeline us-
ing machine learning techniques. Using annual time series of TROPOMI data, Nesser et al. (2023)
shows sensitivity to CH4 emissions from single landfills in the United States. The National Aero-
nautics and Space Administration (NASA) dedicated two satellite missions to CO2, the Orbiting
Carbon Observatory 2 (OCO-2) and Orbiting Carbon Observatory 3 (OCO-3) missions, pro-
viding global CO2 maps since 2014 and 2019, respectively (Crisp et al., 2012; Eldering et al., 2017;
Eldering et al., 2019). OCO-2 identified fluxes from localized sources (e.g., Schwandner et al., 2017),
for the first time down to individual power plants (Nassar et al., 2017). Hakkarainen et al. (2023)
use OCO-3 and TROPOMI observations to investigate strong anthropogenic sources in Africa,
a region where measurements are typically sparse (Bauwens et al., 2020; Levelt et al., 2023). The up-
coming CO2 Monitor (CO2M) (Sierk et al., 2019) mission will be a CO2 area mapper with the
capability to detect CO2 emissions from cities and power plants in single overpasses (Kuhlmann
et al., 2019; 2021).

Point source imagers are dedicated instruments for identifying and quantifying GHG emis-
sions on the local to facility scale, e.g., power plants or the oil and gas industry. Figure 2.7 shows an
example of a CH4 plume observed with GHGSat and TROPOMI taken from Schuit et al. (2023).
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The ground pixel size of point source imagers is typically 5 m to 60 m, while the spectral resolu-
tion is lower than for area flux mappers and on the order of 5 nm to 13 nm. Spectra from point
source imagers typically cover several hundreds of nanometers, providing multipurpose datasets
from GHG imaging to surface-type classification. They have recently received particular atten-
tion since they provide an effective tool for monitoring sector-specific emissions and identifying
mitigation opportunities (Frankenberg et al., 2016; Duren et al., 2019; Nisbet et al., 2020; Thorpe et al.,
2020; Ocko et al., 2021). Current in-orbit satellites are the PRecursore IperSpettrale della Missione
Applicativa (PRISMA) (Cogliati et al., 2021), Environmental Mapping and Analysis Program (En-
MAP) (Guanter et al., 2015), and GHGSat Jervis et al. (2021) missions. They proved to be able to
identify and quantify CH4 emissions from gas leakages, landfills, oil and gas infrastructure, and
coal mine activities down to several 100 kgCH4 h−1 (Varon et al., 2018; Varon et al., 2019; Guanter
et al., 2021; Varon et al., 2021; Maasakkers et al., 2022; Roger et al., 2023b). Recently, dedicated CO2

point source imagers were proposed for monitoring localized sources with emissions down to
medium-sized power plants (1 MtCO2 yr−1 to 10 MtCO2 yr−1) (Strandgren et al., 2020; Wilzewski
et al., 2020).

Airborne missions provide more profound insights into targeted regions. However, using air-
planes is typically limited to the period of one to several measurement campaigns. Nonetheless,
the high spatial resolution and shorter revisit time enable the detection of smaller sources and a
limited option to estimate source variability and intermittency. The Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) (Green et al., 1998) pioneered airborne imaging of CH4 and CO2

point sources (Roberts et al., 2010; Dennison et al., 2013; Thorpe et al., 2013). Its successor, the
AVIRIS-NG (Next Generation, Hamlin et al., 2011), has been used for a plethora of campaigns
observing emission plumes of GHGs (Thorpe et al., 2013; Frankenberg et al., 2016; Thorpe et al.,
2016; 2017; Duren et al., 2019; Thorpe et al., 2020; Cusworth et al., 2021a; b; Thorpe et al., 2021; Cus-
worth et al., 2022; Jongaramrungruang et al., 2022; Yu et al., 2022). The German Methane Airborne
MAPper (MAMAP) mission (Gerilowski et al., 2011; Krings et al., 2011) produces similar results,
e.g., for power plants in Germany (Krings et al., 2011) and coal mine ventilation shafts in Poland
(Krings et al., 2013; Krautwurst et al., 2021), but also operates worldwide (Krautwurst et al., 2017).
The MethaneAIR mission (Chulakadabba et al., 2023; Conway et al., 2024) is a precursor to the
MethaneSAT satellite, a high-precision point-source imager that is scheduled for 2024.

Ground-Based Observations

Ground-based imaging of GHGs is a relatively new field of research, particularly considering
quantitative flux estimations. For CH4, OGI techniques exist, but they are designed for qualita-
tive leak detection on the meter scale (Zeng and Morris, 2019; Zimmerle et al., 2020). Using a Fourier
transform infrared (FTIR) camera in the TIR spectral range, Gålfalk et al. (2016) observed and
quantified CH4 emissions down to 25 g h−1. Operating in the TIR requires a temperature con-
trast between the gas and the atmosphere and limits the observation distance to a few hundred
meters. The camera successfully operated at waste incineration or wastewater treatment plants
(Gålfalk et al., 2017; Gålfalk and Bastviken, 2018; Gålfalk et al., 2022).

Ground-based emission measurements are valuable validation opportunities for the aforemen-
tioned satellite and airborne missions. Observations using surface-reflected radiation are challeng-
ing due to the significant background concentration of CH4 and, especially, CO2. Furthermore,
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variations in the spectral albedo of the Earth’s surface can introduce artifacts in the retrieval algo-
rithms (e.g., Ayasse et al., 2018; Bell et al., 2023; Roger et al., 2023a). Therefore, complementary vali-
dation measurements to satellite observations are essential to ensure the quality of the data prod-
ucts. Ground-based networks like the Total Carbon Column Observing Network (TCCON)
(Wunch et al., 2011) and COllaborative Carbon Column Observing Network (COCCON) (Frey
et al., 2019) provide high-precision column measurements above land surfaces, while opportuni-
ties above the ocean are emerging (Klappenbach et al., 2015; Knapp et al., 2021; Butz et al., 2022). Since
point source imagers target fluxes from localized sources, coinciding ground-based emission esti-
mates are a promising tool for validating their emission estimates. Furthermore, controlled release
experiments allow testing methods in a single-blind evaluation (e.g., Chulakadabba et al., 2023; Sher-
win et al., 2023). Generally, stationary observations trade spatial coverage for temporal resolution.
Thus, they can give insights beyond the snapshot images from top-down observations, e.g., source
dynamics or biases due to turbulent transport (Bhardwaj et al., 2022; Brunner et al., 2023).
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The field instrumentation consists of several instruments in addition to the spectral camera, pro-
viding a comprehensive data suite for plume image interpretation. The heart of the setup is the
HySpex SWIR-384 imaging spectrometer. Section 3.1 introduces the imaging spectrometer and
the characterization measurements performed in the laboratory in addition to the manufacturer’s
specifications. Section 3.2 describes how the observation geometry of the camera is determined
in field observations, including the augmentation of the camera with an inertial navigation sys-
tem (INS). Finally, Section 3.3 introduces the light detection and ranging (LIDAR) system Win-
dranger 200, which provides information on the wind field in the observation area.

3.1 HySpex SWIR-384

The HySpex SWIR-384 camera is a commercially available hyperspectral camera by Norsk Elektro
Optikk (NEO). It is a push-broom imager operating in the SWIR spectral range from 950 nm to
2500 nm. The camera accepts light from an FOV of 279 mrad (16°) perpendicular and 0.73 mrad
parallel to the push-broom direction. A collimating mirror projects the light onto a transmission
grating, which disperses the light onto a mercury cadmium telluride (MCT) detector array. The
detector is cooled to 147 K during operation to reduce dark current. It samples the spatial dimen-
sion of the image with 384 pixels, called lines, and the spectral dimension with 288 pixels, called
channels. Each line covers an opening angle of approximately 0.73 mrad. The manufacturer pro-
vides a linear wavelength calibration of the detector with a constant spectral sampling distance
(SSD) of 5.45 nm per channel. A detector readout is in analog-to-digital converter (ADC) units
with a 16-bit resolution, representing radiance between 1 DU and 216 − 1DU.
Figure 3.1 shows the camera’s observation principle. A tripod is the support for the camera’s rota-
tion stage. The stage rotates the camera clockwise during operation, so the push-broom direction
is horizontal. Each rotation step equals the angular distance of the camera’s horizontal opening
angle. The detector readout in a rotation step is called a frame. Moving the camera’s FOV over
the target scene results in a data cube with dimensions number of frames×number of lines×
number of channels, called a scan. Every pixel in the scan contains a spectrum of the observed
scene. At the beginning and end of each scan, a shutter closes the camera to collect 200 dark
readouts of the detector. A rugged, field-deployable GETAC® laptop controls the camera and
the rotation stage. A Jackery® Explorer 1000 battery (1002 W h) with a Jackery® SolarSaga 100W
solar panel provides power to the camera and laptop for more than six hours of consecutive mea-
surements.
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Figure 3.1: The geometry of ground-based push-broom imaging. The stationary camera is mounted on a
tripod and rotates around the vertical axis. The blue rectangle indicates the field of view of a scan. The
camera’s FOV moves over the target scene via rotation. Blue shaded pixels represent the observed part of
the scan. One line is highlighted, and the inset axis shows the observed spectra. Colors from red to yellow
denote spectra in the line observed in previous frames. The wavelength axis corresponds to the “latest”
(dark red) spectrum - “earlier” spectra are shifted to the upper right. The scan’s FOV includes the source
at the bottom of the image, in this case a chimney of a coal-fired power plant.

3.1.1 Hyperspectral Images

Each scan is a hyperspectral data cube DNzjk where z is the channel, j is the line, and k is the
frame. The detector pixels accumulate photo-electrons during the integration time tint. The sig-
nal of a frame follows as

DNzj = Nph,zj ·QEz · SF ·REzj +BGzj , (3.1)

where Nph is the incoming number of photons, QE is the quantum efficiency (photo-electron
to photon ratio) of a channel,SF is a scaling factor expressing DU per photo-electron,RE is the
relative responsitivity matrix, andBG is the dark signal background (NEO, 2014). RE is a matrix
with an average value of one that represents sensor non-uniformity. The background contribution
is the sum of dark current in the detector and a baseline contribution. The baseline contribution
BS ensures positive values for the ADC. Dark current DC describes the number of observed
photo-electrons due to thermal fluctuations. Therefore,BG is given by

BGzj = DCzj(tint) +BSzj (3.2)
= SF · βzj(T ) · tint +BSzj , (3.3)

whereβ(T ) is a temperature dependent flux in electrons per second. Appendix A.1.1 presents lab-
oratory measurements forDCzj andBSzj of the detector. It shows a background contribution
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ofBG ≈ 541 DU ms−1 · tint+2702 DU in the channels of the retrieval. Each scan includes a de-
tector background beforeBGbefore

zj and afterBGafter
zj the rotation. The backgrounds are averages

of 200 dark detector readouts with the same integration time as used for frames during rotation.
The background correction interpolates linearly between BGbefore

zj and BGafter
zj to account for

drifts during the scan. Thus, the background corrected imageLNzjk reads

LNzjk = DNzjk −BGbefore
zj −

BGafter
zj −BGbefore

zj

number of frames
· k . (3.4)

Following Equation (3.1), the signal in each detector element depends on the number of incoming
photons Nph,zjk. The number of incoming photons is the integrated radiance divided by the
photon energy, i.e.,

Nph,zjk =
Lzjk · tint ·A · Ω ·∆λ · λz

h · c
, (3.5)

whereL is the radiance, tint is the integration time,A is the entrance aperture area, Ω is the solid
angle of one detector pixel, and ∆λ is the SSD. Combining Equations (3.1) and (3.5), and assum-
ing the background correction holds, the observed radianceLzjk in each detector pixel and frame
fulfills

Lzjk ∝
LNzjk

REzj ·QEz · λz
. (3.6)

Preprocessing a raw scan includes correcting the data according to Equation (3.6). This procedure
yields spectral measurements proportional to the observed radiance for further processing. The
employed retrieval algorithm does not require a radiometric calibration. Therefore, a measure-
ment proportional to radiance is sufficient.

3.1.2 Characterization

The HySpex camera comes with the manufacturer’s spectral, spatial, and radiometric calibration.
Laboratory measurements were performed to either validate or complement the manufacturer’s
calibration. The following paragraphs describe the results of these measurements. The first para-
graph investigates the camera’s noise level and its contributions. The next paragraph presents lab-
oratory measurements of the camera’s ILS following Lenhard et al. (2015). Furthermore, a localized
correction to the manufacturer’s wavelength calibration is introduced. The correction builds on
the concept of Guanter et al. (2021) and the results of Siegel (2023) using the matched filter retrieval
of Section 4.1. Finally, the manufacturer’s bad pixel mask (BPM) is extended with a conservative
approach for identifying irregularities in detector pixels.

Noise

The signal from each detector pixel contains three types of noise: photon noise, dark noise, and
read noise (e.g., Lenhard et al., 2015; Baumgartner, 2022). The detector electronics read the signal
after the integration time. The signal consists of photo-electrons observed due to dark current
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or incoming photons. The photo-electron statistics follow a Poisson distribution. The respective
noise terms are photon noise σph and dark noise σDC, given by

σph = SF ·
√
QE ·Nph ∝

√
tint (3.7)

σDC = SF ·
√
β(T ) · tint ∝

√
tint , (3.8)

assuming Nph ∝ tint (Equation (3.5)). Finally, every spectrum contains additional read noise
σr. This simplified term collects all one-time contributions to the noise from a single readout. It
encompasses detector electronics, baseline noise, and quantization noise from the ADC. The read
noise typically follows a Gaussian distribution (Baumgartner, 2022). Assuming the noise terms are
uncorrelated, the total noise of a single readout σsin follows from

σsin =
√
σ2ph + σ2dc + σ2r (3.9)

=
√
SF 2 ·QE ·Nph + SF 2 · β(T ) · tint + σ2r . (3.10)

The signal-to-noise ratio (SNR) of a single scan follows as

SNRsin =
SF ·QE ·Nph√

SF 2 ·QE ·Nph + SF 2 · β(T ) · tint + σ2r
. (3.11)

Still assuming that the Nph ∝ tint, Equation (3.11) shows that the SNR increases with
√
tint if

the signal or the dark noise are the dominant noise contributions, while the SNR increases linearly
with tint as long as the read noise dominates.

Typical exposure times for field observations are on the order of 10 ms. Since the sky-scattered
sunlight is weak in the SWIR spectral range, the camera observes 500 DU to 1000 DU between
1900 nm and 2500 nm on clear days. This equals a detector signal saturation of 0.8 % to 1.5 %
after background subtraction. Dark noise dominates in such observations since

σDC

σph
=

√
10 ms · 541 DU ms−1

1000 DU
≈ 2.3 .

The maximum saturation of the detector pixels limits the integration time. Co-adding of spec-
tra can increase the SNR beyond the limit of single measurements. The total SNR of n co-added
spectra is given by

SNRtot =
SF ·QE ·

∑n
i=1Nph,i√∑n

i=1 σ
2
sin,i

(3.12)

=
SNRsin√

n
, (3.13)

where Equation (3.13) holds for identical observations. Improving the SNR of an observation is
particularly important for CO2 imaging, as demonstrated later in Chapter 6. Figure 6.3 shows
how a plume observation of CO2 improves for increasing numbers of contributing scans. Pöhler
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Figure 3.2: Panel a) shows how the division of two spectra evolves with higher numbers of co-addition.
The blue-to-white colors represent 58 co-addition levels between 1 and 26 000 spectra. Panel b) shows the
evolution of the standard deviation of the divided spectra, representing the remaining noise. The three
lines shown are taken in the detector center and on the edges. The inset histogram shows the distribution
of fit slopes over all 384 lines, scattering around the theoretical value of −0.5.

(2011) describes a technique to quantify the SNR of co-added spectra and validate the sensor’s
behavior. An integrating sphere illuminates the camera’s entrance homogeneously. The integrat-
ing sphere’s light sources are four stabilized halogen lamps. Dividing two spectra by each other
removes systematic features from the measurements. The division spectra noise increases by a fac-
tor of

√
2 compared to a single spectrum’s (relative) noise. Co-adding an increasing number of

spectra before calculating the division spectrum decreases the spectrum noise according to Equa-
tion (3.12). Figure 3.2 shows the results from the total noise test. The camera observed 52 000
spectra (tint = 9.8 ms) in each line while pointing into an integrating sphere. Summing the spec-
tra in an alternating fashion removes systematic changes during the measurement period, e.g., due
to the light source. Alternating means adding all odd-numbered and all even-numbered spectra.
Thus, the two co-added spectra contain measurements from the start and end of the experiment
equally. Figure 3.2a shows how the division spectra noise decreases with increasing co-additions.
Figure 3.2b illustrates the dependency of the noise on the total signal for three detector lines. The
lines lie in the detector center and on the edges. An inset histogram shows the distribution of the
noise behavior of all lines, indicating that the detector behaves as expected.
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Figure 3.3: Laboratory measured ILS of the HySpex SWIR-384 camera in channel 119. The camera pointed
into an integrating sphere illuminated by a tunable diode laser. The laser wavelength was adjusted in 1.5 nm
steps so the ILS wanders across the channel. Panel a) shows the measurements at selected lines and a Gaus-
sian fit to the data points. Panel b) shows the residuals to the Gaussian fit. Each data point is a 286-frame
mean, and the error bar is the standard deviation.

Instrument Line Shape

The ILS is the response of the spectrometer’s optical components to a monochromatic signal.
It determines how the at-sensor radiance (ASR), i.e., the true signal entering the spectrometer,
arrives at the detector. Thus, the ILS is crucial for interpreting the observations. The spectrum
arriving at the detectorL(λ) is given by the convolution of the ASR I(λ) with the ILS:

L(λ) = I(λ) ∗ ILS(λ) . (3.14)

The ILS emerges from the interplay of all optical components and is typically too complex to
be reproduced by a physical model (Beirle et al., 2017). However, it can be measured using quasi-
monochromatic light sources in the laboratory.

The manufacturer uses atomic emission lines1 to characterize the HySpex camera’s resolution.
The oversampling of the ILS is the ratio of the ILS width, usually taken as its FWHM, to the SSD
of the detector. The HySpex camera has an oversampling ratio of approximately 1.3. Thus, the
spectrometer resolves the ILS only with 1 to 2 channels. The manufacturer uses the trapezoidal
method to calculate the FWHM of the ILS. This method yields a resolution close to the SSD if
the ILS peaks in the center of a channel, while it approaches twice the SSD if the ILS falls between
two channels. Therefore, the manufacturer provides only an approximate value of the spectral
resolution.

1The manufacturer characterizes four wavelengths using lamps containing Mercury (1014 nm), Krypton (1443 nm),
Argon (1694 nm), or Xenon (2026 nm).
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Lenhard et al. (2015) employ a tunable diode laser to improve on the ILS measurements provided
by NEO. The laser source illuminates an integrating sphere that completely covers the HySpex
camera’s FOV. Thus, the sphere illuminates all lines simultaneously, enabling an ILS characteri-
zation of the entire detector. The camera takes a scan without rotating, pointing into the sphere
during all frames. The procedure alternates between adjusting the laser wavelength and taking
a scan with the camera. The laser scans a wavelength interval from 1580.0 nm to 1620.5 nm in
1.5 nm steps. Thus, the ILS moves along the spectral detector dimension. Figure 3.3 shows mea-
surements of channel 119 in selected lines of the detector. The channel response increases as the
laser wavelength approaches the channel center wavelength and decreases after the laser passes by
it. A Gaussian fit describes the ILS in every line, finding the FWHM and center wavelength. Ac-
cording to the Gaussian model, the spectral resolution of the camera is 6.7 nm to 7 nm. The results
agree with the manufacturer’s approximate calibration of 1.3 · SSD = 1.3 · 5.45 nm ≈ 7 nm
using the 1694 nm Argon line.

Wavelength Calibration

The manufacturer’s wavelength calibration assumes a simplified linear mapping from channel to
wavelength. Furthermore, the manufacturer reports that the camera’s design minimizes the detec-
tor’s smile, i.e., the wavelength calibration dependency on the spatial detector axis. Observations
of the center wavelength of channel 119 from the ILS calibration confirm a peak-to-peak smile of
less than 0.5 nm. Thus, every line on the detector has, in good approximation, the same wave-
length calibration. The following paragraphs describe a local correction to the manufacturer’s
wavelength calibration in the spectral intervals of the retrieval. The employed statistical retrieval
necessitates this correction because, unlike physical retrieval algorithms, it does not include a wave-
length shift when fitting molecular absorption features to observed spectra. Section 4.1 describes
the GHG retrieval, a linearized matched filter, in detail. Errors in the wavelength calibration com-
promise the retrieval performance (Siegel, 2023). Exploiting spectral absorption features from field
observations to adjust laboratory calibration data is widely used for hyperspectral sensors (Green
et al., 2003; Gao et al., 2004; Brazile et al., 2008). Guanter et al. (2021) use a matched filter retrieval but
employ a physical retrieval algorithm to optimize the wavelength calibration of the PRISMA satel-
lite. Here, quality criteria from the matched filter itself serve to correct the camera’s wavelength
calibration.

According to the results of Siegel (2023), the cost function of the matched filter retrieval is a
suitable quality criterion for correcting the spectral calibration. The matched filter minimizes
the cost function, derived later in Equation (4.9), by fitting a target spectrum to the observed
spectrum. The target spectrum is computed prior to the retrieval and relies on the spectrome-
ter’s wavelength calibration. Spectral misalignment of the observation and the target spectrum
increases the optimal cost function. The presented method exploits this increase to improve the
wavelength calibration in the spectral interval of the retrieval. Figure 3.4 illustrates the procedure,
which finds an offset to the manufacturer’s calibration. The matched filter performs a retrieval
with multiple target spectra to determine the offset. Every target spectrum is computed using a
different wavelength shift. The target spectrum facilitating the minimal cost function provides
the wavelength calibration offset. Figure 3.4a shows an example observation of a CH4 plume on
June 19, 2022. The matched filter minimizes the cost function for each pixel. Pixels inside the
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Figure 3.4: Panel a) shows a scene observed in June 2022 in Poland. The blue to white colors are the
matched filter cost function of a methane retrieval (Equation (4.9)). The contour levels from yellow to
red indicate the plume observation of 2000 ppm · m, 5000 ppm · m, 8000 ppm · m, 12 000 ppm · m, and
20 000 ppm · m. The average cost function is derived from the highlighted pixels with an enhancement
above 8000 ppm · m. Panel b) shows mean cost functions within the plume for CH4 (blue) and CO2 (or-
ange). The minimum, marked by a black circle, shows the wavelength correction of the respective spectral
interval. The CO2 calibration uses CO2 enhancements above 250 000 ppm · m in an emission plume from
a coal-fired power plant observed on September 9, 2021.

observed plume exhibit the highest enhancements and are affected most by a flawed spectral cali-
bration. Thus, the quality criterion for the wavelength correction is the average cost function of
plume pixels. Figure 3.4b shows the quality criterion for 0.25 nm to 5.25 nm wavelength shifts
in 0.25 nm steps. The minimum is reached at 2.25 nm and 0.75 nm for the spectral intervals of
CO2 and CH4, respectively. The spectral intervals of the retrieval are 1967 nm to 2260 nm for
CO2 and 2052 nm to 2395 nm for CH4. The manufacturer’s wavelength calibration is corrected
with these offsets for the respective target signatures.

Bad PixelMask

The manufacturer provides a BPM for the camera, which, according to their test report, relies
on a detailed analysis of observations under varying light conditions. Bad detector pixels respond
irregularly to either an illuminated or dark detector, showing exceptionally little (“cold pixel”) or
high (“hot pixel”) sensitivity or significantly increased variability. Lenhard et al. (2015) perform an
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Figure 3.5: The procedure to improve the manufacturer’s BPM identifies pixel of increased variability on
the detector. Panel a) shows the behavior of an instable pixel (orange) compared to its adjacent pixels (blue).
The detector pixel evolution is plotted over 3000 consecutive frames while the camera pointed into an
integrating sphere. The inset axis zooms in on the detector area around one newly found bad pixel. The
dots mark the origins of the lines. Panel b) shows the instability for each detector pixel.

independent laboratory characterization on two HySpex cameras, identifying a subset of NEO’s
BPM as bad pixels. Therefore, Lenhard et al. (2015) confirm the manufacturer’s calibration, al-
though they acknowledge that their observations are less extensive. The BPM is important in the
context of this work to ensure a stable background statistic in the greenhouse gas retrieval, which
relies on the observed spectra being alike when coming from the same signal (details in Chapter 4).
Therefore, a custom BPM expands on NEO’s BPM to conservatively exclude pixels with erratic
behavior. The custom BPM extension targets spurious detector pixel fluctuations on the time
scales of several hundred frames.

A laboratory experiment investigates the stability of all detector elements. The camera observed
an integrating sphere without rotating during a scan. The aperture of the integrating sphere cov-
ered the camera’s FOV completely. A typical spectrum showed maximum saturation of 50 % to
70 % at 1360 nm. Lenhard et al. (2015) only use pixels with signals above 1000 DU. Here, more
than 99.6 % of the observed spectra satisfy this requirement. Thus, the BPM calculations were
performed for the whole detector. The camera observed a series of 30 000 frames for each detec-
tor pixel. Appendix A.1.2 provides details on the evaluation method, which necessitates several
corrections on the raw observations. The concept of bad pixel identification is to (a) identify a
temporal evolution that is comparable for all detector pixels and (b) find outliers based on this
evolution. The method finds the signal evolution for each detector pixel by accounting for light
source instability, integrating sphere heterogeneity, and noise. Figure 3.5a shows the evolution
in nine detector pixels after correction, highlighting an outlier. Well-behaved pixels exhibit only
small variability in the evolution, represented as the standard deviation over the frames. Typi-
cal variability is on the order of 10−4, with higher values in low signal channels above 2000 nm.
Figure 3.5a illustrates that some detector pixels show significantly enhanced temporal variabil-
ity. Figure 3.5b shows the instability of all detector pixels, which is the detector pixels variability
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relative to the mean channel variability. The instability was calculated for ten intervals of 3000
frames. Pixels are considered bad if their instability surpasses a critical threshold in over half of
these intervals. The extended BPM excludes an additional 291 pixels to the 55 pixels of NEO.

3.2 Camera Attitude andHeading

In the ground-based scanning operation of the HySpex camera, each pixel observes radiance from
a distinct VEA and viewing azimuth angle (VAA). Both angles describe the observation geom-
etry of a hyperspectral image. Later interpretation and processing of the data requires accurate
knowledge of the observation geometry. Therefore, an MTi-7 Miniature GNSS/INS Module
from XSENS® was mounted on the HySpex camera. The attitude and heading reference system
(AHRS) model performed well in previous campaigns in ship-borne applications (Dörner et al.,
2018). Laboratory performance tests of the AHRS by Sindram (2021) found a precision well below
0.05° for the instrument pitch and roll angle. All data transfers in real-time to the measurement
laptop controlling the HySpex camera.

Prior to measurements, the AHRS observes the instrument’s roll and pitch for ten minutes.
Adjusting for potential offsets after this period results in a camera leveling of (0.0 ± 0.1)°. Subse-
quently, the camera’s pitch is adjusted by tilting the camera such that the lower edge of the image
contains the GHG source, usually a chimney or shaft. The sensor does not provide reliable data
on the instrument’s VAA in stationary operation. Therefore, the observation target serves as a
landmark within the image. The forward azimuth angle of the landmark’s frame in the image fol-
lows from the Global Positioning System (GPS) positions of the camera and landmark (WGS84
reference system, Slater and Malys, 1998). The angular distance between each frame is the horizontal
opening angle of the camera of 0.73 mrad. Thus, the VAA of all frames of an image follows from
their respective position to the landmark frame. Likewise, the VEA of the line containing the tip
of the landmark follows from the landmark as

VEA = arctan

(
h

D

)
, (3.15)

where h is the landmark’s height andD the distance between camera and landmark. The vertical
pointing of each line is not perfectly equidistant, i.e., the vertical spatial resolution depends on the
line. Sindram (2021) performed a spatial calibration and found the vertical opening angle of lines
increasing from 0.65 mrad to 0.80 mrad from the upper to the lower image region. The VEA of
each line is computed using this spatial calibration. Thus, the geometric area of each pixel Aj at
the distanceD to the target source is

Aj = D tan(∆VEAj) ·D tan(∆VAA) , (3.16)

where ∆VEAj and ∆VAA are the vertical and horizontal opening angles of the pixel, respec-
tively. The HySpex SWIR-384 provides a spatial resolution of the image between 0.7 m and 3.0 m
for typical observation distances of 1.0 km to 4.0 km. The uncertainties of VEA and VAA are be-
low 1° for such distances (Sindram, 2021). If the landmark height is unknown, the AHRS pitch
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angle is a substitute. The AHRS is attached to the camera, so its pitch angle measurement equals
the center line’s VEA.

3.3 Windranger 200

The Windranger 200 is a compact and lightweight wind LIDAR produced by METEK®. It com-
plements the HySpex SWIR-384 field operations since early 2022, providing coinciding observa-
tions of wind speed and direction. The model operated successfully in previous campaigns, e.g.,
Adler et al. (2021) used it to study boundary layer turbulence. The instrument weighs approx-
imately 50 kg, has dimensions of 840 mm x 540 mm x 580 mm, and consumes approximately
60 W during operation. A Jackery® Explorer 500 battery (518 W h) with a Jackery® SolarSaga
100W solar panel provides power for 8 h to 10 h of measurements. A built-in spirit level is used
to level out the LIDAR position before the measurements. For absolute reference of wind direc-
tion, the Windranger needs to point to the North or another known azimuth reference point.
The landmark used for the camera’s VAA calibration also serves as the LIDAR reference point.
The Windranger can observe wind speed and direction in up to ten levels up to 200 m. During
HySpex co-deployment, it measures at six levels of 10 m, 20 m, 50 m, 100 m, 150 m, and 200 m.
A laptop displays live observations to the operating personnel, who re-calibrate the height levels
if the data quality decreases.

The Windranger uses the Frequency Modulated Continuous Wave (FMCW) technology (Pe-
ters, 2018). It continuously transmits light from a 1545 nm laser. The laser beam leaves the Win-
dranger at 10° relative to the zenith and rotates by 360° once per second. A lens optic focuses
the laser on a target height from which the LIDAR observes back-reflected radiance. The back-
reflected light is Doppler-shifted by a frequency fD according to

fD = −2f
v||,wind

c
, (3.17)

where f is the laser frequency, c is the speed of light, and v||,wind is the wind component along the
laser beam. The frequency shift oscillates with the angular velocity of the laser rotation, assuming
a constant wind field. The LIDAR measures the beat frequency of transmitted and received sig-
nals at 100 laser positions every rotation. The amplitude and phase of the beat frequency during
the laser rotation inform about the wind speed and direction, respectively. Fitting the wind pa-
rameter to the data points provides a measurement at the target height. The method is sensitive
to turbulent wind fluctuations within one rotation. However, it provides a complete profile ap-
proximately every 10 s, such that statistical fluctuations can be reduced by averaging over several
rotations.
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The methods necessary for measuring source flux from spectral images include retrieval and emis-
sion estimation. The retrieval refers to quantifying the amount of the target gas in each image
pixel. Current retrieval techniques fall into two categories, namely physical and statistical tech-
niques. This thesis employs a widely used statistical retrieval, the linearized matched filter. Sec-
tion 4.1 describes the matched filter and its adaption to the specific measurement setup and chal-
lenges of ground-based imagery. The image of an active point source yields a two-dimensional
projection of the three-dimensional emission plume. Emission estimation methods require cor-
rectly identifying the emission plume and subsequently calculating the underlying emission rate.
Section 4.2 describes three methods for finding CO2 and CH4 emission rates from the spectral
images in this thesis.

4.1 Matched Filter Retrieval

The matched filter is a statistical approach for signal identification and quantification in noisy
data, e.g., hyperspectral images (Manolakis et al., 2014). It estimates a spectral background variabil-
ity from the spatial distribution of absorption spectra and identifies a pre-defined spectral signa-
ture exceeding this variability. Here, the spectral signatures are absorption features of CO2 or
CH4 around 2000 nm and 2300 nm, respectively. Alternatives to the matched filter are radia-
tive transfer simulations that sequentially work through all spatial pixels. Such methods are the
Iterative Maximum A Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS),
which has been employed for the evaluation of AVIRIS and AVIRIS-NG images (Thorpe et al.,
2017; Borchardt et al., 2021), and full-physics methods applied to measurements with high spectral
resolution such as collected by the GOSAT and the OCO-2 (Butz et al., 2011; O’Dell et al., 2012;
O’Dell et al., 2018). While physics-based approaches produce a complete atmospheric state vector,
e.g., multiple gas profiles, at once, they are computationally expensive, require a priori knowl-
edge of the atmospheric state, and depend on complete forward models. In contrast, the matched
filter algorithm is computationally cheap and requires only a single absorption spectrum as an in-
put. Despite its simplicity, it has been applied successfully to many remote sensing applications.
Dennison et al. (2013) use the matched filter to identify CO2 emission plumes in AVIRIS images.
Thompson et al. (2015) show that the matched filter is fast enough for real-time detection of CH4

enhancements in AVIRIS-NG data. Guanter et al. (2021) examine images from the PRISMA satel-
lite to showcase its CH4 mapping capabilities with the matched filter. Zhang et al. (2022) and
Cusworth et al. (2021b) quantify CH4 emission fluxes in the Permian basin from airborne data us-
ing the matched filter. Recently, lognormal matched filter algorithms have been investigated to
improve the quantification of gases in optically dense plumes (Schaum, 2021; Pei et al., 2023).
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Table 4.1: Description of variables used in the matched filter retrieval. Bold symbols denote spectral vectors
(dimensionalityC) and vector arrows denote spatial vectors (dimensionalityN ).

Symbol Description Symbol Description

j image line (vertical) k image frame (horizontal)
i ∈ N number of image pixels (line·frame) C number of channel in each pixel
L observed radiance vector µ mean radiance vector
t target spectrum s unit absorption spectrum
C covariance matrix α gas enhancement
w⃗ regularization weight r⃗ brightness factor
l differential spectral vector σ noise equivalent enhancement

4.1.1 ClassicMatched Filter

The classic matched filter (CMF) is the optimal linear filter for maximizing the SNR of a signal
in a noisy dataset (Manolakis et al., 2014). Here, it identifies a pre-defined spectral signature in a
hyperspectral image. Let the image consist ofN spectraLi, i ∈ {1, . . . , N}, each withC spectral
channels1. The CMF assumes that the spectra follow a multivariate Gaussian distribution

Li ∝ N (µ,C) , (4.1)

where µ is the mean spectrum and C is the covariance matrix. These background parameters
follow from the observed spectra Li as the sample mean µ and covariance C with

µ =
1

N

N∑
i=1

Li , (4.2)

C =
1

N − 1

N∑
i=1

(Li − µ)(Li − µ)
⊺
. (4.3)

The matched filter identifies a linear target signature t in each spectrum. Assuming a gas enhance-
ment α (in ppm · m) acts on the spectrum following Beer-Lambert’s law, a measurement can be
written as

L(α) = µ exp(−αs) + ϵ (4.4)
≈ µ⊙ (1− αs) + ϵ (4.5)
= µ− αs⊙ µ+ ϵ (4.6)
≡ µ+ αt+ ϵ , (4.7)

where s is the unit absorption spectrum (UAS) of the target gas [(ppm · m)−1], 1 is a vector of
ones, ϵ is the measurement error, and ⊙ denotes the element-wise multiplication. Note that t ab-

1The vector L is the radiance vector described in Equation (3.6). The spectral dimension is written as a vector for
later convenience. The spatial index i includes all combinations of lines j and frames k.
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Figure 4.1: Example output of a classic matched filter (CMF) retrieval of CH4 for a single scan from the sky
above a coal mine ventilation shaft. The background (blue to yellow) shows the pixel brightness and the
retrieved column enhancements (blue to red) are overlaid. Around 0 m width some rectangular structures
mark the location of the ventilation shafts. From the camera’s perspective, the left shaft emits are clearly
distinguishable CH4 plume even with the unmodified CMF retrieval.

sorbed a minus for later convenience. The UAS is the relative change of the spectrum for a unit gas
enhancement of 1 ppm over 1 m. The linearization of Equation (4.4) only holds for small optical
depths αs ≪ 1. This assumption of Equation (4.4) - Equation (4.7) is only valid due to several
circumstances. The retrieval exploits strong absorption lines of CO2 and CH4 between 2000 nm
and 2500 nm wavelength. The atmosphere’s optical depth of these lines is typically much larger
than one for ground-based observers. However, the matched filter identifies additional absorp-
tion on top of the background. While the relative change due to an additional absorption from,
e.g., an emission plume, is independent of the background concentration, the absolute change is
not. An increasing atmospheric background lowers the radiance in absorption lines arriving at the
observer. Thus, additional gas leads to a smaller absolute change at higher background concentra-
tions. While Equation (4.4) is similar to Beer-Lambert’s law,L is the observed radiance vector. The
spectral width of the camera’s ILS is more than an order of magnitude larger than the absorption
lines. Figure 2.2 shows the transmission of CO2 and CH4 absorption lines for typical plume den-
sities in the context of this thesis. Single lines reach transmissions close to zero at high resolution,
but the transmission is close to one in between. The convolution with the ILS distributes the small
absolute change inside the opaque lines into adjacent, more transparent regions. Consequently,
observed optical depths are small (αs < 0.1) and depend on the atmospheric background con-
centration.
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Using Equation (4.7) as a forward model and assuming the Gaussian distribution, the likeli-
hood of an observation is

L(L1, . . . ,LN |α⃗) = 1√
(2π)C det(C)N

· exp

(
−1

2

N∑
i=1

(Li − (µ+ αit))
⊺C−1(Li − (µ+ αit))

)
,

(4.8)

where α⃗ is a vector of gas enhancements αi for each spectrum. The best estimate of α⃗ is the one
that maximizes the likelihood, which can be calculated from

ˆ⃗α =argmin
α⃗

N∑
i=1

d
⊺
iC−1di (4.9)

di =Li − αit− µ , (4.10)

and solved analytically to

αi =
(Li − µ)

⊺C−1t

t⊺C−1t
. (4.11)

Equation (4.11) is the CMF and can be applied to each spectrum individually. It is the computa-
tionally fastest form of the matched filter and best suited for signal detection. The retrieval error
covariance matrix gives the uncertainty of the matched filter retrieval and depends on t and C
(Köhler et al., 2015). It is given by

σ2 =
1

t⊺C−1t
, (4.12)

whereσ is the noise equivalent enhancement (NEE) of the matched filter. Appendix A.2.1 derives
Equation (4.11) and Equation (4.12) in more detail.

Figure 4.1 shows an example of a CMF retrieval of CH4 from a single scan of the sky above a
coal mine ventilation shaft. The plume is clearly visible, yet the image exhibits striping patterns
and considerable background variability. Furthermore, several studies suggest that the CMF un-
derestimates the gas enhancement (e.g., Foote et al., 2020; Ayasse et al., 2023). In theory, the CMF
is unbiased, i.e., the expected value of the estimated gas enhancement is equal to the true gas en-
hancement. However, non-compliance of real data with the assumptions typically leads to under-
estimating the gas enhancement. Section 4.1.2 to Section 4.1.4 describe several refinements to the
CMF.

4.1.2 IterativeMatched Filter

Foote et al. (2020) present refinements to the CMF to increase the accuracy of the gas enhancement
retrieval, which they call the Matched filter with Albedo correction and reweiGhted L1 sparsity
Code (MAG1C) algorithm. The first adaption is an albedo factor r⃗ defined as

ri =
L

⊺
iµ

µ⊺µ
, (4.13)
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accounting for each pixel’s relative brightness to the mean spectrum. Furthermore, MAG1C in-
troduces an iteration scheme excluding enhancements from the background estimation using a
sparsity constraint. The sparsity constraint exploits that enhanced pixels typically comprise less
than 1 % of the image. Thus, an L0-regularization is used to minimize the number of enhanced
pixels. An L0-regularization forces pixels with insignificant enhancement to zero, clearly distin-
guishing background and signal regions. However, an L0-regularization makes the minimizer
non-differentiable. Candès et al. (2008) show that a re-weighted L1-regularization can approximate
the minimizer. The iteratively re-weighted least squares (IRLS) algorithm (e.g., Aster and Thurber,
2013, Chapter 7.5) provides the solution to the L1-regularized problem by solving a sequence of
regular least-squares problems. The MAG1C algorithm exploits the necessary iteration scheme to
update each iteration step’s background mean and covariance. The cost function takes the form

ˆ⃗αm =argmin
α⃗

N∑
i=1

[
d
⊺
i,mC−1

m di,m + riwi,m||αi,m||1
]

(4.14)

with di,m =Li − riαi,mt(µm)− µm (4.15)

andwi,m =
1

αi,m−1 + κ
, (4.16)

wherem is the iteration step, di,m is the residual vector,wk
i is the regularization weight, and κ is

a small constant to avoid division by zero. Solving for ˆ⃗α yields

α̂i,m = max

(
(Li − µm)

⊺C−1
i,mti,m − wi,m

rit
⊺
mC−1

m tm
, 0

)
, (4.17)

which includes a physically motivated positivity constraint on gas enhancements. MAG1C up-
dates the background mean and covariance in each iteration step by correcting for the absorption
structure like

µm =
1

N

N∑
i=1

L′
i,m , (4.18)

Cm =
1

N − 1

N∑
i=1

(L′
i,m − µm)(L′

i,m − µm)
⊺
, (4.19)

with L′
i,m = Li − αi,m−1tm−1 . (4.20)

The iteration scheme requires the step number as an input. Foote et al. (2020) suggest a value
of 30, which is used throughout this thesis. Furthermore, MAG1C forces most enhancements
artificially to zero. A final CMF step fills these null enhancements to avoid systematic biases in the
emission estimates. This step uses the mean and covariance from the last iteration to ensure the
retrieval benefits from the iteration. Foote et al. (2020) show that the MAG1C algorithm reduces
root mean square error (RMSE) by up to 60.7 % in simulated data and the NEE in real data by
36.3 % to 47.1 %.
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4.1.3 DifferentialMatched Filter

A common systematic feature in spectral imaging is the striping pattern in physical and statistical
retrievals (e.g., Borsdorff et al., 2018; Guanter et al., 2021). The instrument’s detector array causes the
stripes since every line is an independent spectrometer. Thus, the stripes occur along the scanning
direction. In terms of the matched filter, this implies that each line has a different background
mean and covariance. Estimating a background distribution from the whole image (a) reduces the
sensitivity of the matched filter and (b) introduces striping in the retrieval (Figure 4.1). Images
from satellite or airborne applications contain several million spectra in each across-track line,
allowing for reduced striping by applying a matched filter to each line separately (e.g., Thompson et
al., 2015). Stationary images contain only several hundred spectra in each line, which is insufficient
for a line-wise matched filter (Ayasse et al., 2023).

The differential matched filter (DMF) was developed within this work to circumvent line-
specific detector non-uniformities. Comparable to Differential Optical Absorption Spectroscopy
(DOAS) applications, the DMF divides the observed spectra by a reference spectrum (e.g., Platt
and Wagner, 1998; Frankenberg et al., 2005; Platt, 2017). The reference spectrum Lref is a 30-frame
(k) mean of a background region, e.g., upwind from the source. It is calculated for each line j
separately as

Lref,j = ⟨Lj,k⟩backgr. . (4.21)

The DMF uses the reference spectrum to calculate a differential spectral vector ljk for each spec-
trum Ljk in the image

ljk =
Ljk

Lref,j
, (4.22)

which, in theory, scatters around 1 for background spectra and 1 − αs for enhanced spectra
(Equation (4.4)). Note that the target signature t changes from µ ⊙ s in the CMF to s in the
DMF, following the derivation of Equation (4.4)ff. Furthermore, the brightness factor r⃗ is now
defined relative to the reference spectrum

rjk =
L

⊺
jkLref,j

L⊺
ref,jLref,j

. (4.23)

Referencing each spectrum in a line with a line-specific mean background spectrum provides sev-
eral advantages. Firstly, it removes detector non-uniformities across the lines. Secondly, it corrects
for the different VEA each line in a ground-based image corresponds to. The VEA alters the ra-
diative transfer through the atmosphere, an effect also included in the reference spectrum. Thus,
the differential spectral vectors comply with the assumptions of the CMF better than the ob-
served spectra. In practice, residual striping effects are still expected and visible. Striping is a result
of detector effects. Temporally constant striping may result from an incomplete detector char-
acterization, e.g., omitting effects like smile, keystone, and wavelength calibration non-linearity
(see Section 3.1). Furthermore, the detector exhibits sporadic instabilities in single detector pix-
els, causing stripes if they appear in channels of the retrieval’s target signature. Nevertheless, the
DMF outperforms the CMF method for CH4 (Chapter 5) and enables the first CO2 retrieval
from a stationary ground-based image (Chapter 6).
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Clustering

Referencing all spectra within each line using a background spectrum assumes no significant
changes in radiative transfer with the VAA. This assumption is generally valid for a homoge-
neous sky, evident from the UAS presented later in Figure 4.5. However, clouds induce scene
heterogeneity, changing the radiative transfer depending on the horizontal and vertical viewing
direction. Clouds in the reference region of the DMF introduce a systematic change between the
reference spectrum and all pixels in the affected lines. A simple clustering approach can compen-
sate for this by grouping spectra into similar clusters (Funk et al., 2001; Thorpe et al., 2013; Hochstaffl
et al., 2023). A k-means algorithm (e.g., Theiler and Gisler, 1997) clusters the spectra, and the refer-
ence spectrum is calculated for each line and cluster separately. Thus, a line- and cluster-specific
reference spectrum exists, reducing the systematic error clouds introduced in the reference re-
gion. Figure 4.2 shows how the filter quantities (µ,C) change for the CMF and DMF in clear
and cloudy conditions. In clear sky conditions, the DMF produces a spectral mean vector around
one. The relative uncertainty2 of spectral channels decreases by a factor of 2 to 8 for the differ-
ential spectrum. The smaller uncertainty suggests that the DMF outperforms the CMF in clear
skies. Cloudy conditions pose challenges to the CMF and the clustered DMF retrieval. The DMF
spectral mean is offset against one, indicating imperfect referencing as the observed spectra within
a cluster are not identical. Consequently, the covariances increase significantly for the CMF and
DMF under cloudy conditions. Section 5.2.2 discusses the effect of clustering and the DMF in
more detail using field observations of CH4 plumes.

4.1.4 ComboMatched Filter

Roger et al. (2023b) propose the combo matched filter (CoMF) to mitigate false positives in the
retrieval. It combines two separate (but overlapping) spectral regions in a single matched filter
retrieval. The combination of both regimes increases the contrast of the background to the plume
signal. Roger et al. (2023b) suggest using the CoMF for plume detection rather than quantification
due to its heuristic nature. The CoMF technique is applied to methane retrievals in Chapter 5 for
plume masking and artifact suppression in cloudy scenes.

The CoMF employed in this thesis uses the 1600 nm and 2300 nm absorption features of CH4.
The “narrowband”- and “broadband”-windows cover intervals from 2053 nm to 2396 nm and
1524 nm to 2396 nm, respectively. Hence, the “broadband”-window covers methane’s 1600 nm
absorption features and includes additional information on the background variability. Cover-
ing additional channels makes the window less susceptible to background artifacts. The CoMF
enhancements are calculated from

αcombo =

{
αbb · f if αbb < αnb
αnb if αbb ≥ αnb

, (4.24)

2The relative uncertainty of a channel is the square root of the diagonal elements of the covariance matrix divided by
the mean spectrum.
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Figure 4.2: Estimated background mean and covariance matrix for a classic (panels a), c), e)) and differential
(panels b), d), f)) matched filter retrieval of CH4 from a single scan of the sky above a coal mine ventilation
shaft. The background mean (panels a), b)) of an observation in clear (blue) and cloudy (orange) conditions
show that the DMF referencing works as intended in clear sky conditions but produces a biased mean spec-
trum under cloudy conditions. The background covariance (panels c), d)) in clear sky conditions support
that finding since the DMF covariance is significantly less structured than the CMF covariance. The effect
does not translate to the cloudy condition covariances (panels e), f)), which are similar for both methods
(see Chapter 5). The clear sky retrieval uses a broader spectral interval, illustrating matched filer perfor-
mance in low signal regions. The CMF and DMF deal with low radiance by suppressing the absorption
features and increasing the variances, respectively.
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Figure 4.3: Workflow of the CoMF plume masking algorithm. Panel a) shows the narrowband enhance-
ment map, panel b) shows the broadband enhancement map, panel c) shows the smoothed combo en-
hancement map, and panel d) shows the plume masking approach. The black contours show the pixels
above the plume mask thresholding, and the orange dashed contour shows the final plume mask.

where αbb and αnb are the broadband and narrowband enhancements, respectively, and f is a
scaling factor. The scaling factor is defined as

f =
σbb
σnb

, (4.25)

where σbb and σnb are the NEEs of the broadband and narrowband retrieval, respectively. The
scaling factor accounts for the typically smaller variability of the broadband retrieval. Figure 4.3
illustrates the CoMF workflow for an exemplary observation of a CH4 plume during a cloudy
scene. The narrowband retrieval exhibits artifacts (panel a)) from clouds, which the broadband
retrieval suppresses (panel b)). Both retrievals identify enhanced plume pixels. The CoMF com-
bines the retrieved images into a single enhancement map. Median filtering (7 × 7 pixels) further
suppresses the background variability (panel c)). The local mean and standard deviation of the
smoothed map are calculated for each pixel (panel d)). Potential plume pixels are those in which
the local mean surpasses the local standard deviation (black contour). The plume mask is the
largest patch of connected pixels and all patches that correspond in the vertical (for details, see
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Appendix A.3.2). This approach covers patches of the plume that were separated from the main
body, likely due to a portion of the plume being diluted below the detection limit. Roger et al.
(2023b) recommend applying the final plume mask (black and orange contour) to the narrow-
band enhancement map for emission estimation. They find a systematic underestimation of the
retrieved enhancements in the broadband retrieval based on synthetic enhancements added to a
PRISMA dataset. Thus, emission estimates use the unbiased narrowband enhancement map, as
it is common in large parts of the literature (e.g., Nesme et al., 2020; Thorpe et al., 2020; Guanter
et al., 2021). The results in Chapter 5 confirm the relative bias of the retrieval windows found
by Roger et al. (2023b). The bias becomes most apparent for cloudy retrievals, which points to a
systematic effect from the covariance matrix (see Figure A.3). Another possible explanation for
this underestimation is the linear wavelength calibration of the camera. This assumption worsens
with an increasing wavelength interval. Further investigation of this underestimation is a promis-
ing approach to increase the retrieval’s precision by including the 1600 nm absorption feature of
CH4.

4.1.5 Unit Absorption Spectra

The UAS s is the only external input of the matched filter retrieval and plays a pivotal role in the
retrieval. It is defined as the relative change of an observed spectrum for a column enhancement
of 1 ppm · m, and it determines the target signature t of the matched filter.

The generation of the UAS consists of two steps. First, a radiative transfer model provides the
ASR, i.e., the radiance arriving at the instrument entrance. The model simulates the ASR for an
atmosphere with (Iλ(α)) and without (Iλ(0)) a target gas enhancement. Second, an observation
model of the spectrometer provides the theoretical observation of the ASR (L(α) and L(0)). A
simplistic observation model includes the instrument’s ILS and the detector’s spectral sampling,
but can be increased in complexity by including effects like smile, keystone, and non-linear wave-
length calibration. The UAS follows from

s = − ∂

∂α
ln

(
L(α)

L(0)

)
, (4.26)

which results from the assumption that an additional absorbing column acts on the observed
radiance according to Beer-Lamberts law (Equation (4.4)).

The radiative transfer model used in this thesis is the single-scattering solution of the RTE given
in Equation (2.26). The model calculates the Iλ(0) at a resolution of 0.001 nm in an 100 layer
atmosphere of 400 m thickness. The HITRAN database (Kochanov et al., 2016; Gordon et al., 2017)
provides absorption cross-sections of H2O, CO2, and CH4. Anderson et al. (1986) provide atmo-
spheric standard profiles. However, the background concentrations of CO2 and CH4 were scaled
to 420 ppm and 1.85 ppm, respectively. Molecular scattering employs the Rayleigh phase func-
tion, and aerosol scattering employs the Henyey-Greenstein phase function. Nearby AERONET
stations (Holben et al., 1998) provide the aerosol optical depth (AOD), namely the stations in Karl-
sruhe, Germany, for results discussed in Chapter 6 and from Raciborz, Poland, in Chapter 5. The
AOD at the target wavelength (2000 nm for CO2 and 2300 nm for CH4) follows from the AOD
at 870 nm and the Ångström exponent. The above parameters comprise all the necessary infor-
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AERONET

Atmospheric
profiles

HITRAN

Geometries
for LUT

SSC RTE
UAS LUT
s(VEA,

VAA, ∆Φ)

Observation
geometry

Pixel-specific
UAS s(line,

frame)

Figure 4.4: Flowchart of the UAS generation. The single scattering approximation of the RTE (SSC RTE)
builds on generic atmospheric profiles, HIgh-resolution TRANsmission molecular absorption database
(HITRAN) cross-sections, and specific AErosol RObotic NETwork (AERONET) data. A set of pre-
chosen viewing geometries are used to calculate the UAS look-up table (LUT). Each image contains its
observation geometry, which is used to interpolate the LUT and assign each pixel a specific UAS. Processes
are yellow, settings are orange, (interim) results are red, and internal and external data are blue and green,
respectively.

mation for calculating each model layer’s absorption and scattering cross-sections. Thus, the RTE
provides the ASR in single-scattering approximation Iλ(0).

The influence of an additional optical density τ , e.g., due to an emission plume of CO2, acts
on Iλ(0) according to Beer-Lambert’s law (Equation (2.23)). The optical density due to an en-
hancement is

τ = nCO2 · σCO2 ·∆z (4.27)
= nair · σCO2 · α · 10−4 , (4.28)

where nCO2 and nair are the number density of CO2 and air [molec. cm−3], respectively, σCO2 is
the absorption cross-section of CO2 [cm2 molec.−1], ∆z is the layer thickness [cm], α is the gas
enhancement [ppm · m], and 10−4 is a unit conversion factor. Using the optical density, the ASR
with an additional enhancement reads

Iλ(α) = Iλ(0) · exp(−nair · σCO2 · α · 10−4) . (4.29)

The observation operator is simplified to the convolution of the ASR with the ILS of the instru-
ment

Lλ(α) = Iλ(α) ∗ ILS , (4.30)

which represents the radiance after the optical setup reaching the detector. The ILS is approxi-
mated by a Gaussian with a FWHM of 7 nm as found in Section 3.1. In a final step, the observed
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Figure 4.5: Variations of the CO2 UAS with the VEA, SZA, and VAA. Increasing SZA (lower Sun) and
decreasing VEA (closer to horizon) increase the effective path length of photons through the atmosphere.
As expected, this leads to smaller UAS values (in an absolute sense). The influence of ∆Φ is in the per
mill range of the UAS, since this angle does not change the effective light path significantly. The UAS is
calculated for a representative AOD of 0.01 and an asymmetry factor of 0.6 (Pandolfi et al., 2018).
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radiance vector L(α) follows from binning Lλ(α) into the spectral channels of the instrument.
Equation (4.26) is solved using finite differences, i.e.,

s = − ln(L(α))− ln(L(0))

α
, (4.31)

whereα are typical plume gas enhancements of 1 000 000 ppm · m and 20 000 ppm · m for CO2

and CH4, respectively. The retrieval uses a CO2 UAS from 1967 nm to 2260 nm. For CH4, the
narrowband and broadband UAS window covers 2052 nm to 2395 nm and 1524 nm to 2395 nm,
respectively. The broadband UAS excludes the wavelength range from 1725 nm to 2052 nm to
avoid strong water absorption, as suggested by Roger et al. (2023a).

Foote et al. (2021) emphasize the importance of scene-specific UAS for the matched filter re-
trieval, showing for a set of top-down images that the UAS varies with parameters like the SZA or
observer altitude. Since both CO2 and CH4 have considerable background concentrations, the
effective light path through the atmosphere significantly influences the UAS. The longer the light
path, the less an additional enhancement will alter the observed radiance, and thus, the absolute
UAS will be smaller. UAS in this work are calculated using a daily AOD from AERONET for
CO2 observations (Chapter 6) and the June monthly mean for CH4 observations (Chapter 5).

Figure 4.4 shows the flowchart of the UAS generation, and Figure 4.5 shows the resulting UAS
for CO2. Figure A.4 shows the UAS for CH4 in the narrowband window. For ground-based
observations in single scattering geometry, the effective light path follows from SZA, VEA, and
the relative azimuth angle∆Φ between the Sun and the camera pointing. Thus, instead of a single
UAS for a scan, a pixel-specific UAS is calculated for each pixel in the image. This is realized by
calculating the UAS for a grid of SZA (10°, 30°, 50°, 70°), VEA (1°, 4°, 7°, 10°, 13°, 16°, 19°, 16°,
22°), and ∆Φ (0°, 45°, 90°, 135°, 180°). The preprocessing of a scan assigns the respective VEA
and VAA to each pixel (Section 3.2). The solar position (SZA, solar azimuth angle (SAA)) follows
from the time and location of the camera using Holmgren et al. (2018). The matched filter assigns
each pixel a specific UAS by interpolating the LUT of pre-computed UAS using the pixel-specific
VEA and ∆Φ and the scan-specific SZA. As expected, the UAS decreases with increasing SZA
and decreasing VEA since the effective light path through the atmosphere increases. Since ∆Φ
does not change the effective light path significantly, its influence is in the per mill range of the
UAS.

4.2 Emission Estimation

A plethora of techniques exist to estimate gas emission rates of point sources from imaging data.
They divide in four categories: (a) optical flow analysis, (b) mass balance methods, (c) plume in-
version, and (d) machine learning.

Optical flow methods are commonly used in stationary imaging applications (Klein et al., 2017;
Gålfalk et al., 2022; Kuhn et al., 2022) and rely on tracking plume features in between images. Thus,
they require a temporal resolution of more than 1 Hz, which is not available for the presented
data. The other three techniques are commonly employed for top-down observations of green-
house gases (Varon et al., 2018; Jacob et al., 2022), yet they can be easily adapted to ground-based
observations. Mass balance methods are based on the conservation of mass and, e.g., use the flux
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Figure 4.6: Example of the working principle of the mass balance methods IME and XSF. Panel a) shows a
plume in a single image, evaluated with the DMF algorithm. The observed plume is split into 10 segments
of equal length (blue dashed). Panel b) shows the IME emission estimates (green) for increasing box sizes
from the shaft (dashed orange) alongside XSF estimates for the frames between each segment (dark orange).

through a plume cross-section or simple box models to estimate the emission rate (e.g., Krings et al.,
2011; 2013; Frankenberg et al., 2016; Cusworth et al., 2021a; Fuentes Andrade et al., 2023). Plume in-
version methods use a simulated plume to fit the emission by minimizing the difference between
the observed and simulated plume (e.g., Zheng et al., 2019; Wang et al., 2020). Typically, a Gaussian
plume model is used to approximate the plume shape, even though the snapshot nature of sin-
gle overpasses may cause significant deviations from the Gaussian shape (Bovensmann et al., 2010;
Krings et al., 2011; Jongaramrungruang et al., 2019; Brunner et al., 2023). Machine learning approaches
have been introduced by Jongaramrungruang et al. (2022) and can be used to process large amounts
of data, which is a valuable asset for satellite applications (Radman et al., 2023; Schuit et al., 2023).

The following sections introduce the cross-sectional flux (XSF) and integrated mass enhance-
ment (IME) mass balance approaches and a Gaussian plume inversion scheme which was devel-
oped in this thesis. Emission estimates are the final step of the data evaluation chain since they are
comparable to any measurement technique and inventories.

4.2.1 Mass BalanceMethods

IntegratedMass Enhancement

The IME is a simple mass balance approach which was applied to ground-based images of methane
plumes from coal mining activities (Knapp et al., 2023a, see Chapter 5). It is adapted from satellite
and airborne applications, in which it was extensively used and evaluated (e.g., Frankenberg et al.,
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2016; Varon et al., 2018; Duren et al., 2019; Ayasse et al., 2022). The IME method relates the total
observed massM to its residence time τ in the plume to the emissionsE by

E =
M

τ
. (4.32)

The plume mass is defined as the total excess mass inside all plume pixels with respect to the back-
ground. Since the matched filter algorithm inherently provides column enhancements in units of
ppm · m, the mass is calculated from

M = k ·
Np∑
i=1

αi ·Ai , (4.33)

where Np is the set of plume pixels, αi is the column enhancement of pixel i, and Ai is the geo-
metric pixel area. The factor k converts column enhancements to mass using the molar mass and
volume of the target species, i.e., kCH4 ≈ 6.7 g ppm−1 m−3 at normal conditions. The pixel area
follows from the distance between camera and target and the opening angle of the pixel (Equa-
tion (3.16)). The residence time τ is calculated using the plume speed and length by

τ =
dim,c

u
=
dim
ueff

=
dim

u · sin(ϕ)
, (4.34)

wheredim is the plume length projected on the plane of observation using the angleϕbetween the
plume direction and the camera pointing by dim = dim,c · sin(ϕ). Likewise, u is the true plume
speed and ueff = u · sin(ϕ) is the speed projected onto the observation plane. Plume speed and
travel direction are assumed to be the ambient wind field at mass-weighted mean plume height,
while dim is the distance between two vertical cross-sections in the image. Thus, the emission
estimate for a plume segment of length dim is given by

E =
M

dim
· u · sin(ϕ) . (4.35)

Figure 4.6 shows an example for an emission estimate using the IME method. The plume length
is always taken from a line shortly downwind the emission shaft to the end of a plume segment of
increasing size. Thus, several emission estimates can be calculated from a single image, which are
then averaged to a final estimate similar to Duren et al. (2019) and Fuentes Andrade et al. (2023). An
empirical error of a single image emission estimate follows from the error propagation of Equa-
tion (4.35) to (

∆E

E

)2

=

(
∆ρ

ρ

)2

+

(
∆u

u

)2

+

(
cos(ϕ)

sin(ϕ)
∆ϕ

)2

, (4.36)

where ρ = M/dim is the mean line density of the plume, ∆ρ its standard deviation over the
plume segments, and ∆u and ∆ϕ are the standard deviations of the wind speed and wind direc-
tion, respectively. The contribution of ∆ρ includes, in particular, the assumption of a constant
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emission rate during the time of observation, fluctuations due to turbulence, and mass loss due
to plume dilution below the detection limit.

Chapter 5 presents time series of CH4 emissions using the IME. The IME method is compu-
tationally cheap and can be applied to single images, if these exhibit sufficiently large and clear
plumes. This makes it advantageous for retrieving emission time series encompassing several hun-
dred images per day. The IME is typically prone to uncertainties in the wind field, yet the addition
of the wind LIDAR to the field setup of this thesis mitigates that uncertainty to some extent. Note
that especially the uncertainty due to turbulent transport is not covered within one image, but re-
quires averaging several of the images to one emission estimate (Woitischek et al., 2021a; Brunner
et al., 2023). This phenomenon can be amplified by the scanning observation of the camera, es-
pecially in a scenario when the plume is moving with the field of view of the camera. Section 5.3
discusses this effect in more detail.

Cross-Sectional Flux

The XSF method estimates the flux within a plume at a certain cross-section (Varon et al., 2018).
The cross-sections normal vector is chosen to align with the plume flow direction, such that the
flux is calculated from

E =

∫ ∞

−∞
k · α(x, y) · u(x, y) dy , (4.37)

where kα is the mass enhancement in units of g m−2, u(x, y) is the wind speed normal to the
cross-section, and dy is an infinitesimal distance along the cross-section. In practice, the cross-
section is discretized intoN pixels, and the flux is calculated from

E =
N∑
i=1

k · αi · ueff · hi · w , (4.38)

where i runs over all plume pixels within an image frame, ueff is the projected plume speed, hi is
the pixel height, andw is the pixel width. The uncertainty follows from Gaussian error propaga-
tion from the wind speed, wind direction, and the standard deviation of the emission estimates
of the individual frames within a scan. Taking a frame as the cross-section assumes a horizontal
plume flow, which is given for low vertical wind speeds and plumes at ambient temperature in
good approximation. The XSF method is applied to camera observations in a fixed geometry, i.e.,
the camera did not rotate on the tripod, but the plume was passively moving through the field of
view. Thus, the XSF method enables emission estimates at the frame rate of the camera, which
is typically 3 Hz to 10 Hz. Figure 4.6 demonstrates the XSF method applied to a single image in
scanning geometry. Section 5.2.3 discusses the application of the XSF method to methane plumes
in more detail.

4.2.2 Gaussian Plume Inversion

Fitting a plume model to an observation enables the inversion of the emission source strength.
A point-by-point comparison of the observed and simulated plume requires an accurate forward
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Figure 4.7: Example for the output of the Gaussian plume model IBJpluris with a chimney of 180 m height.
The central axis (blue) contains the plume properties like the plume width (orange) at every cross-section
(every 20th shown dotted black). The examples input parameters are the ambient wind velocity (5.2 m s−1),
ambient temperature (27 °C), and relative humidity (40 %) at 200 m height. Furthermore, the initial veloc-
ity (13.4 m s−1), temperature (63.0 °C), and concentration (189 g m−3) of the exhaust gas are given. Output
parameters like the concentration of CO2 are provided along the central plume axis. Figure adapted from
Knapp et al. (2023b).

model. The comparison is especially challenging for snapshot observations of turbulent plumes
(Zheng et al., 2019; Wang et al., 2020; Brunner et al., 2023). In contrast to airborne and satellite obser-
vations, the ground-based camera setup of this thesis enables repeated observations of an emission
plume with a temporal resolution of approximately 1 min. Thus, every image contains a turbu-
lent ensemble member of the emission plume under quasi-stationary conditions. Averaging over
many of these images blurs the turbulent features of the plume, and the plume shape approaches
a Gaussian shape (e.g., Woitischek et al., 2021b). This enables the application of a Gaussian plume
model to the observed plume, which is then fitted to the observed plume to estimate the emis-
sion rate. The technique is demonstrated for CO2 observations from a coal-fired power plant in
Chapter 6.

Section 4.2.2 introduces the Gaussian plume model that simulates the plumes for the inversion.
Section 4.2.2 presents the observation forward model, used to simulate an observation from the
modelled plume. Finally, Section 4.2.2 explains the inversion scheme that fits the simulated to
the observed plume and estimates the emission rate. This procedure has been published in Knapp
et al. (2023b) and the following sections are adapted from this publication.

Gaussian PlumeModel

Since the camera observes plumes in a horizontal viewing geometry, the model needs to account
for the bent-over plume shape (Figure 4.7). The plume rise presents a fundamental difference
from top-down viewing observations. These Gaussian inversions rely on a simplified model that
only accounts for horizontal transport, which is insufficient in ground-based applications. Janicke
and Janicke (2001) published a plume rise model which calculates plume properties along the cen-
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tral plume travel axis. The model is called IBJpluris and considers the evolution of cross-sectional
plume properties along the plume axis in three spatial dimensions. It is an integral model which
solves the flow Q = Aρu of air with density ρ and velocity u through a cross-section of area A.
IBJpluris computes the plume parameters for plume segments of length ds. The flow evolution
is determined by the conservation of mass, momentum, and energy, which are given by

d
ds

(Q) = 2πρ̃F , (4.39)

d
ds

(Qu) = 2πρ̃F ũ− fB , (4.40)

d
ds

(
Q(
u2

2
+
u′2

2
+ gz + cpT )

)
= 0 , (4.41)

where F is the entrainment function, ρ̃ and ũ are the mass density and velocity of the entrained
air, fB is the buoyancy force, u′ is the turbulent velocity, g is the gravitational acceleration, z is
the height, cp is the specific heat capacity of air, and T is the temperature. Energy conservation
assumes an adiabatic plume evolution - in the case of non-zero entrainment the evolution is solved
sequentially using a separated adiabatic and entrainment step. Likewise, the conservation of a
carried scalar quantity c is given by

d
ds

(Acu) = 2πF c̃ , (4.42)

where c̃ is the concentration of the entrained air. Figure 4.7 shows the simulated plume shape for
a set of initial conditions.
The plume properties are given at discrete points, containing the plume radius R, the distance
along the plume axis s, and the mass concentration of a carried quantity c at the spatial coordinates
(x, y, z). The model input parameters encompass ambient parameters such as wind speed ua,
temperature Ta, pressure pa, and relative humidity RHa. Furthermore, source information like
the exhaust gas initial velocity ue, temperature Te, and concentration c0 are required. The total
gas enhancement in the plume depends linearly on the emission rateE. The mean concentration
c0 in the plume segment right above the chimney follows from

c0 =
E

V̇
, (4.43)

where V̇ is the air volume flux from the chimney. The concentration c0 holds for a homogeneous
plume segment of cylindrical form and radiusR. A Gaussian profile containing the same mass as
the cylindrical plume segment is given by

c(r) = c∗ exp

(
−r

2

b2

)
, (4.44)
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where c∗ is the core concentration, r the distance to the central axis, and b the plume width. Thus,
c∗ follows from the conservation of mass compared to a cylindrical plume segment with concen-
tration c from

c · πR2∆s =

∫ s1

s0

ds
∫ 2π

0
dϕ
∫ ∞

0
rdr c(r) (4.45)

= ∆s · 2π · c
∗b2

2
(4.46)

⇒ c∗ =
R2

b2
c , (4.47)

where s is the distance along the plume axis, i.e., ∆s the plume cross-section segment thickness.

The observation model requires a plume simulation on a three-dimensional grid. For a set
of input parameters, the model output is a set of plume properties of a plume traveling in y-
direction. A domain around the central plume axis serves as the model domain, which covers at
least a 4b radius around each point on the plume axis. The spatial resolution of the domain cells
is approximately 1 m, a third of the HySpex pixel width. Each domain cell is assigned its closest
plume axis point and the radius r to this point. For domain cells in the vicinity of the plume
(exp(r2/b2) > 10−6), the mass concentration c(r) follows from Equation (4.44). For domain
cells further away, the concentration is set to zero.

In order to allow the inversion of the source strength later on, two additional parameters are
introduced to Equation (4.44). The first parameter is a scaling factor kc of the concentration
c∗, which is used to scale the total mass of the plume. Since the mass of the plume is linearly
related to the emission rate E, the scaling factor kc is linearly related to the emission rate. The
second parameter is a scaling factor kb of the plume width b. It accounts for potential changes in
transport during the averaging period and incomplete knowledge on the turbulent diffusion of
the plume (Carhart and Policastro, 1991). The parameters are introduced such that kc linearly scales
the total mass of the plume, while kb linearly scales the plume width without changing the total
mass. The massMs in each slice of the plume is given by

Ms =

∫ s1

s0

ds
∫ 2π

0
dϕ
∫ ∞

0
rdr c(r, b; kc, kb) (4.48)

=

∫ s1

s0

ds
∫ 2π

0
dϕ
∫ ∞

0
rdr

kc
k2b
c∗s exp

(
− r2

(kbbs)2

)
(4.49)

= π ·∆s · b2s · kcc∗s , (4.50)

where bs and c∗s are the radial width and core concentration of the segment from s0 to s1, respec-
tively. Since each domain cell already carries its distance r and the plume width b, computing the
concentration c(r, b; kc, kb) requires only a single computation in each domain cell. The emis-
sion associated with such a plume isE = kcEap, whereEap is the a priori emission estimate used
for the initial plume simulation following Equation (4.43).
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Figure 4.8: Sketch of the projection of a plume cell at (x, y, z) onto the observation plane (x′, z′). The
gray shading shows a conceptual top-down view on a horizontal plume cross-section - the triangular shape
is chosen for simplicity and does not represent the actual plume shape. The camera viewing direction is
marked by the green line, such that the angleϕ is the angle between the viewing direction and the plume axis.
The orange line points to an arbitrary plume cell at (x, y, z), with a plume cell angle of θ = arctan(x/y).
The blue line marks the projection plane which is perpendicular to the viewing direction. Figure adapted
from Knapp et al. (2023b).

Observation ForwardModel

The simulated plume observation follows from the modelled concentrations in the three-dimen-
sional domain by projecting the cells on the plane of observation and aggregating the mass accord-
ing to the image pixels. Figure 4.8 shows a sketch which explains the projection in a horizontal
slice through the plume. The observation angle ϕ is the angle between the plume travel direction
and the viewing direction of the camera. It determines the observation plane, which is perpen-
dicular to the viewing direction. Each plume cell at (x, y, z) is at an angle θ = arctan(x/y) to
the plume travel direction. The projection angle β is the angle between the plume cell and the
observation plane and given by β = 90° − ϕ − θ. This treatment neglects any vertical compo-
nent of the projection, which is considered small for observations in this thesis since the plume is
observed in viewing elevation angles of 2° to 7°. The observation angle is defined between -180°
and +180°, where a negative angle denotes a plume moving to the left, a positive angle a plume
moving to the right, and a zero angle a plume moving straight away from camera. The projection
of the cell location (x, y, z) to the observation plane (x′, z′) follows from geometry and is given
by

x′ =
√
x2 + y2 · sin(ϕ+ arctan(x/y)) ,

z′ = z .
(4.51)

The mass of each plume cell is given by the product of the concentration and the cell volume, and
applying the projection of Equation (4.51) yields the mass distributionm(x′, z′) in the observa-
tion plane. The mass distribution is then aggregated to the image pixels as mjk by summing up
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all mass pointsm(x′, z′)which are located in the pixel jk. The conversion to a simulated column
enhancement α̃jk follows from

α̃jk =
mjk νCO2

Ajk
, (4.52)

where νCO2 ≈ 0.546 m3 kg−1 is the specific volume of CO2 at normal conditions andAjk is the
pixel area.

Plume Inversion

The emission estimate from the Gaussian plume inversion results from minimizing the χ2
r -dis-

tance between the observed and simulated plume. The observation forward model has four in-
dependent input parameters: the ambient wind speed ua, the observation angle ϕ, the emission
scaling kc, and the plume width scaling kb. Wind information is provided by the wind LIDAR,
yet the measurements are performed at kilometer distance from the source, and typical plume
heights are above the LIDAR’s top height of 200 m. Thus, the wind speed ua and the observa-
tion angle ϕ are used as free parameters. All remaining input parameters are imposed a priori and
considered constant for an observation.

Theχ2
r -minimization is performed as a brute-force scan over a sufficiently large parameter space

to find the optimum and constrain the error of the independent parameters. Albeit computation-
ally costly, this approach allows for a detailed analysis of the parameter space. For each parameter
set, the reduced χ2

r difference between the simulated and observed plume is calculated by

χ2
r =

1

N − 4

fitmask∑
jk

(
α̃jk(kb, kc, ua, ϕ)− αjk

σjk

)2

, (4.53)

where N is the number of pixels in the fit mask, α̃jk(kb, kc, ua, ϕ) is the simulated column en-
hancement for the parameter set (kb, kc, ua, ϕ), αjk is the observed column enhancement, and
σjk is the uncertainty of the observed column enhancement in pixel jk. The uncertainty σ fol-
lows from Equation (4.12) and is specific to each scene from the covariance dependency and each
pixel from the UAS.

The fit mask results from the union of the observation plume mask and all pixels with a simu-
lated column enhancement above 2σ. The plume mask is defined as the largest continuous patch
of enhancements above 2σ in the observation. Enhancements above 2σ noise level are well above
the detection limit; thus, the matched filter retrieval should detect them. The combination of
both masks ensures that the simulation stays close to the observation outside the observed plume
mask. Background pixels from the observation contribute to the χ2

r -distance, preventing unreal-
istic fit scenarios as presented in Figure 4.9b. If only the observation plume mask is used as a fit
mask, the inversion scheme can move emitted mass outside the fit mask by increasing the plume
width kb and compensate for the loss by increasing kc. The scenarios are similar in theχ2

r -metric,
yet including the background pixel from the observation identifies the unrealistic fit scenario. Us-
ing the whole image as a fit mask is not feasible since the image background typically includes
systematic features which cannot be captured by the model.

Panels a) and b) in Figure 4.10 show an example of an observed and simulated plume from a
coal-fired power plant, respectively. Measurements in the same frames as the chimney are excluded
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Figure 4.9: Two simulated plumes describing an observation from March 26, 2022, 13:31 - 17:36 UTC.
Panel a) shows the result for the optimal plume parameter set (kc = 0.9, kb = 1.6). Panel b) shows the
result for a plume with a larger plume width and emission (kc = 2.3, kb = 3.7). The black contour marks
the observation plume mask, while the blue marks all simulated pixels with an enhancement above 2σ. The
gray shaded area are non-zero simulated enhancements below 2σ, while the colored pixel are within the fit
mask. If only the observation plume mask is used as a fit mask, both simulations result in χ2

r = 1.1, even
though panel a) reproduces the observation much better. The combined plume mask accounts for the mass
outside the observation plume mask and yields χ2

r = 1.5 and χ2
r = 6.8 for panels a) and b), respectively.

since the comparatively high brightness of the chimney affects the other spectra in the frame. The
translucent area of the simulated plume is below the detection limit, while the colored area is above
the detection limit and thus contributes to the fit mask. Figure 4.10c shows the residual within
the fit mask of the best fitting scenario.

Scanning the parameter space in a brute-force manner results in a χ2
r for each parameter set.

The optimal parameter set (k̂b, k̂c, ûa, ϕ̂) corresponds t the lowest χ2
r and provides the emission

estimate. Theχ2
r -landscape is used to estimate the uncertainty of the emissions. Figure 4.11 shows

an illustrative χ2
r hypersurface of the four-dimensional parameter space along the cross-sections

for an exemplary observation. The χ2
r surfaces are smooth, indicating that χ2

r is a continuous
function of the parameters. Each hypersurface shows a unique minimum, marked by a blue dot,
around which theχ2

r increases monotonically. For purely statistical errors, an increase of one inχ2
r

corresponds to a mean deviation of one standard deviation between the simulated and observed
image due to parameter changes (Bevington et al., 1993). Since the concentration scaling factor kc
determines the emission estimate byE = kcEap, its uncertainty is the uncertainty of the emission
estimate. Fixing (k̂b, ûa, ϕ̂) to the optimal parameter set and varying kc within

χ2
r < min(χ2

r ) + 1 (4.54)

results in a minimal and maximal emission estimate complying with the χ2
r criterion. These es-

timates are used as the uncertainty range of the emission estimate. It is an approximation of the
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Figure 4.10: Panel a) shows an observed CO2 emission plume from a coal-fired power plant. Panel b) shows
the simulated plume for the optimal parameter set (kc = 1.0, kb = 1.4,ua = 3.8 m s−1,ϕ = −111°). Panel
c) shows the residual between the observed and simulated plume. Each panel shows the fit mask as a black
contour. The early stages of the plume could not be observed due to condensation. The example is the
observation from March 26, 2022, 15:56 - 17:36 UTC. Figure adapted from Knapp et al. (2023b).
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true uncertainty since it neglects systematic errors between observation and simulation, which are
challenging to account for.

The χ2
r hypersurfaces provide the optimal parameter set and the uncertainty of the emission

estimate. Furthermore, the shape and depth of the χ2
r well convey information about the obser-

vation and the fit. A deep well indicates that the observation successfully constrains a parameter.
Circular wells imply uncorrelated parameters, while a slanted well points to a correlation between
the parameters. Figure 4.11 shows all six possible combinations of χ2

r wells, each passing through
the optimal parameter set. The χ2

r surfaces indicate that the wind speed ua and plume width
parameters kb are independent. The observation angle ϕ is the least constrained parameter and
correlates with the wind speed. This behavior results from an ambiguity in the observed plume
shape for horizontally viewing observers. A plume traveling toward the observer at high speed will
appear similar to a slower plume traveling at a perpendicular angle. The estimated emissions are
unaffected by this, following a mass balance argument comparable to the IME method. The total
mass observed in the plume is fixed, and the lifetime of the plume is given by the plume length
divided by the plume speed. Both the observed plume length and speed are subject to the same
geometrical projection factor, thus canceling out in the emission estimate. There remains a cor-
relation between the plume width scaling kb and the emission scaling kc, which results from the
effect shown in Figure 4.9 and indicates that the fit mask cannot fully compensate for the cor-
relation. Observations under favorable conditions constrain the ambiguity effectively since they
provide enough information on plume width. The plume width is less constrained in observa-
tions under challenging conditions such as clouds or low emission rates. Such observations lead
to a flat, slant well in the plume width (kb) - emission scaling (kc) plane.
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Figure 4.11: Cross-sections through theχ2
r hypersurfaces (color coded) for the four-dimensional parameter

space: emission scaling factor kc, plume width factor kb, wind speed ua, and observation angle ϕ. The
contour lines mark where theχ2

r increases by 1, 2, and 3. The blue dot marks the minimalχ2
r . Note that all

cross-sections involving the observation angle are symmetric around -90°, since a plume moving away from
or towards the camera looks identical. The example is the observation from September 8, 2021, 14:24 -
15:26 UTC. Figure adapted from Knapp et al. (2023b).
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5 Methane Emissions FromCoal
Mining Operations

The ground-based HySpex camera operated at coal mine ventilation shafts in the Upper Silesian
Coal Basin (USCB), Poland. Its observations enable CH4 emission measurements from coal min-
ing. While certain sections of this chapter have been previously published in Knapp et al. (2023a),
it is noteworthy that methodological enhancements have been implemented subsequently. Sec-
tion 5.1 provides an overview of the coal mining operations in the USCB, detailing two field cam-
paigns that were conducted there. Section 5.2 describes the retrieval and emission estimation of
single scans, including the challenges that arise from clouds. It presents the best-performing tech-
niques and their limitations. Section 5.3 discusses the resulting time series of CH4 emissions and
their variability, particularly concerning the influence of turbulent transport.

5.1 Upper Silesian Coal Basin Campaigns

Globally, coal mining contributes about a third to CH4 emissions from the fossil fuel sector
(Saunois et al., 2020). Poland is currently the largest producer of hard coal in the European Union
and emits about 1800 ktCH4 per year (NIR, 2018). Coal mining in the USCB contributes about
500 ktCH4 to these emissions. Fossil fuel related emissions are not well constrained (e.g., Kirschke
et al., 2013; Saunois et al., 2020), partly due to the temporal variability. For coal mining emissions,
the wide range of CH4 content in coal seams and missing activity data cause incomplete knowl-
edge (Swolkień, 2020). Methane forms in coal beds during the carbonization of organic matter and
is released when the ambient pressure drops, e.g., during coal mining operations. In order to avoid
hazardous concentrations inside the mine (≥ 5%), CH4 is continuously vented into the atmo-
sphere through ventilation shafts. The E-PRTR lists more than 50 active shafts emitting between
0.3 ktCH4 yr−1 and 40 ktCH4 yr−1 in the USCB in 2018. The extraordinary accumulation and
strength of the point sources make the USCB a particularly interesting target for CH4 emission
quantification (Swolkień, 2020).

A major effort was conducted with the Carbon Dioxide and Methane (COMET) mission 1.0
in 2018, using a plethora of instruments to quantify CH4 emissions. Luther et al. (2019) and Luther
et al. (2022) measured total column CH4 using ground-based FTIR spectrometers, either on a mo-
bile platform or as a network. Aircraft observations using in-situ (Gałkowski et al., 2021; Kostinek
et al., 2021), column (Krautwurst et al., 2021), or imaging (Hochstaffl et al., 2023) sensors were used
to either quantify area or single shaft emissions. Fiehn et al. (2020) combined aircraft and ground-
based in-situ observations to constrain emissions from the whole area. Unmanned aerial vehicles
flew plume transects downwind of the shafts to estimate the emissions from these curtains (An-
dersen et al., 2021; Shi et al., 2022; Andersen et al., 2023). Many more studies of the USCB connect
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to the COMET campaign, e.g., using satellite observations (Tu et al., 2022) or improving the un-
derstanding of top-down emission quantification (Brunner et al., 2023). The COMET campaign
demonstrates the added value of comprehensive and independent top-down observations of coal
mining emissions and inspired further research in the USCB, including the presented results.

5.1.1 Proof of Concept Campaign 2022

The HySpex SWIR-384 camera operated in the USCB in June 2022. It was the first time ground-
based imaging spectroscopy in the SWIR spectral range was used to observe CH4 plumes from
point sources. Thus, the campaign was a proof of concept for quantifying CH4 emissions from
the spectral images. The goal was to identify the best practices and challenges that must be over-
come in future campaigns. The team comprised researchers from Heidelberg University and the
AGH University of Science and Technology in Kraków. Camera observations were conducted for
11 days between June 14 and June 27, 2022, at five different coal mine ventilation shafts around
Katowice, Poland.

The camera and the portable wind LIDAR operated between 0.6 km and 1.3 km from the
shafts. Figure 5.1 shows a typical setup of the instruments during observations at the Pniówek
V coal mine ventilation shaft. In addition to the wind LIDAR, mobile on-ground in-situ mea-
surements of CH4 gave real-time information on the plume travel direction, supporting the se-
lection of a suitable observation location for the camera. Since the method requires an unob-
structed view of the ventilation shaft, which is approximately 11 m high, obstacles like tree lines
or buildings limit the choice of observation locations. The coal mine ventilation shaft Pniówek V
(49.9753°N, 18.7354°E) was chosen as the main observation target due to its high CH4 emissions
in the past of at least 18 ktCH4 yr−1 (E-PRTR 2018) and the availability of a suitable observation
location in the west and north of the shaft. Figure 5.2 shows the observation locations on a map.
Knapp et al. (2023a) present results from four days of observations at Pniówek V under varying at-
mospheric conditions, including several levels of cloud cover and wind conditions. These results
are discussed again in this chapter using an improved evaluation technique. Other shafts than
Pniówek V were observed on a single day each. However, low emissions, observation locations
that were too close, and bad weather conditions prevented a successful retrieval of CH4 emissions
from these observations.

5.1.2 Collaborative Campaign 2023

In June 2023, a collaborative campaign in the context of the International Methane Emissions
Observatory (IMEO) program from the United Nations Environment Programme (UNEP) took
place in the USCB. The campaign aimed to cross-validate different methods for quantifying CH4

emissions from single coal mine ventilation shafts. The Pniówek V shaft served as the main obser-
vation target since it was best located and accessible for all instruments. A team from the Technis-
che Universität München operated a ground-based network of three FTIR spectrometers around
the shaft, observing the total column CH4. The AGH Kraków mounted a tunable diode laser ab-
sorption spectroscopy (TDLAS) instrument on top of Pniówek V. It measured the CH4 column
in an open path above the outlet in addition to AGH’s mobile ground-based measurements. The
HySpex camera operated for ten days between June 4 and June 17, 2023. During the campaign,
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Figure 5.1: Field setup of the instruments during observations at the Pniówek V coal mine ventilation shaft
(a). The FOV of the HySpex camera (b) is indicated by the blue rectangle, in the lower part lies the shaft.
Beside the camera the wind LIDAR (c) is visible. Figure as shown in Knapp et al. (2023a).

a persistent cloud cover posed challenging measurement conditions to the camera and the direct-
sun viewing FTIR spectrometers. This chapter presents camera observations on June 8, 11, 12,
and 13, 2023, which had ideal wind conditions. Section 5.2.2 discusses approaches to overcome
issues from scene heterogeneity using the matched filter algorithm. Section 5.2.3 presents obser-
vations of the camera operating in a fixed observation geometry, i.e., the camera was not rotating
during the scan. UNEP kindly allowed the inclusion of preliminary in-situ data in this thesis. The
TDLAS instrument operated continuously after June 13, allowing a comparison of its emission
estimates to the imaging setup. Furthermore, a continuously operated safety network of low-cost
pellistor sensors monitors the CH4 concentration in the mine shaft with a resolution of 0.1 %
(Swolkień et al., 2022). A pellistor sensor operates by oxidizing gases at a catalytic bead, inducing a
change in electric resistance for the concentration measurement. These measurements are avail-
able for all campaign days.

5.2 Methane Imaging and Emission Estimation

The following sections present the retrieval and emission estimation techniques for CH4 plume
observations. Section 5.2.1 compares the performance of several matched filter retrieval algo-
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Figure 5.2: Map of the Pniówek V coal mine ventilation shaft (orange) and the observation locations (blue).
The FOV of the camera is indicated by the blue triangle. The actual FOV depends on the settings of the
individual experiment. The observation location is chosen according to the wind direction, such that the
plume moves laterally through the FOV. Background map from OpenStreetMap (openstreetmap.org).

rithms and presents mass balance emission estimates using observations from the 2022 campaign.
Scene heterogeneity caused by clouds, as encountered in 2023, requires a more sophisticated ap-
proach to the matched filter retrieval, which is discussed in Section 5.2.2. Section 5.2.3 presents
the first results from the fixed viewing geometry.

5.2.1 Image Evaluation Technique

The image evaluation pipeline comprises the preprocessing of raw images, the retrieval of atmo-
spheric CH4 enhancements, and emission estimates based on plume observations. This section
compares the performance of several matched filter algorithms for retrieving CH4 enhancements.
Furthermore, it discusses mass balance methods in the context of ground-based imaging. Fig-
ure 5.3 shows the workflow from the raw camera scan to the emission estimate. Every scan is pre-
processed according to Section 3.1.1. The coal mine ventilation shaft serves as a landmark, which,
combined with the GPS sensor, constrains the camera’s VEA and VAA. Since every image con-
tains the shaft in the lower part, there are also near-surface structures like trees in the image. Such
structures compromise the matched filter performance and are excluded manually from further
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Figure 5.3: Flowchart of the CH4 imaging and emission estimation technique. A pressure and temperature
(pT) sensor observes the ambient conditions. A GPS sensor provides the camera position and time, and the
AHRS and a landmark provide the camera orientation. The visually defined image mask excludes pixels
that observe the tree line, for example, from the retrieval. The preprocessing applies necessary corrections to
the raw data, see Equation (3.6). The retrieval requires a UAS LUT (Figure 4.4) and thus, the solar position.
The emission estimate uses the coinciding wind LIDAR observations and observed enhancements inside
the plume mask. Processes are yellow, settings are orange, (interim) results are red, and internal and external
data are blue and green, respectively.

processing. Thus, every preprocessed image includes the necessary information for the subsequent
retrieval.

Retrieval performance comparisons for the matched filter algorithms consider two quality cri-
teria. The matched filter maximizes the SNR of the target signature with respect to the back-
ground. Thus, the SNR of the retrieval serves as one quality criterion. It follows from Equa-
tion (4.11) and Equation (4.12) in every pixel i in the image as SNRi = α̂i/σi. A higher SNR
indicates a clearer separation of the plume from the background. The plume size is the second
quality criterion as it is relevant for mass balance emission estimates since missing plume parts
cause an underestimation of the emission. The comparison of different matched filter algorithms
relies on the reliably observed plume pixels. Image pixels are considered reliable plume observa-
tions if they fulfill the following conditions. First, the CoMF plume masking algorithm of Sec-
tion 4.1.4 identifies them as plume pixels. Second, the plume satisfies additional sanity criteria
to ensure correct plume identification. The additional criteria are chosen following Knapp et al.
(2023a) and are empirical for ill-suited observation conditions or incorrect plume masks. They
assert that the plume mask contains pixels close (≤ 7 m) to the shaft outlet. Furthermore, the
plume must be located downwind from the shaft (85 % of the enhanced pixels). Lastly, a wind
direction filter criterion removes plumes that are moving at an acute angle towards or away from
the observer (| sin(ϕ)| ≥ 0.45). Such wind directions impair the IME’s ability to infer the plume
length, compromising the emission estimate. Knapp et al. (2023a) also exclude small plumes with
less than 900 pixels. The improved retrieval and plume masking algorithms make this criterion
obsolete since it only removes already excluded observations. Table A.1 provides an overview of
the filter effects.

Observation conditions were ideal on June 19, 2022, with a clear sky and prevailing winds
from the south. Thus, observations of this day are suitable for evaluating the performance of
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Figure 5.4: Comparison of the a) CMF and b) DMF retrieval for an observation on June 19, 2022. The
plume is identified in front of a cloudless, blue sky, and plume pixels are identified using a simple thresh-
olding approach. Panel c) shows the difference in SNR (CMF-DMF) for the plume pixels. The DMF
algorithm outperforms the CMF in terms of SNR and plume size.
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Figure 5.5: Comparison of CMF and DMF retrieval SNR for plume pixels from observations on June 19,
2022. The number in brackets is the total amount of confidently identified plume pixels. The DMF shows
a higher SNR within the plume pixels. Note that the lowest SNR bins are included in the plume mask due
to the CoMF plume masking algorithm, which includes a median smoothing.

the matched filter retrieval algorithms under favorable conditions. Due to wind gusts, corn plants
sporadically obstructed parts of the FOV between 11 am and 2 pm UTC, and these trivial cases are
visually identified and removed. Figure 5.4 shows exemplary CH4 plume images retrieved using
a) the CMF and b) the DMF for this day. Both retrievals employ the iterative background opti-
mization and brightness correction described in Section 4.1.2. Thus, the line-wise referencing of
the spectra in the DMF causes the performance difference. Here, the plume is identified as the
largest continuous patch of CH4 enhancement in the image following Knapp et al. (2023a). This
simplified plume mask emphasizes the differences between the CMF and DMF retrieval. While
the CMF identifies nearly the same plume pixels as the DMF, the DMF shows larger enhance-
ments and a higher SNR for all plume pixels (Figure 5.4c). This finding points to an increased
capability of the DMF to detect CH4 enhancements, which is consistent for all observations dur-
ing favorable conditions. Figure 5.5 shows the SNR distribution for all plume observations from
the CMF and DMF retrieval on June 19, 2022. The DMF identifies more plume pixels (9.0 ·105)
than the CMF (8.0 · 105) over the day, as illustrated in panels a) and b) of Figure 5.4. Further-
more, the SNR distribution shifts towards higher values for the DMF retrieval. Since the DMF
outperforms the CMF in clear sky conditions in both plume pixel identification and SNR, it is
favored for the following analysis.

The emission estimate from each image is calculated using the IME method described in Sec-
tion 4.2.1. The observed plumes are spatially well resolved with a pixel size of approximately
0.73 m×0.73 m. The resolution allows the identification of density fluctuations within the plume.
A single image provides ten emission estimates with increasing segment length, following Duren et
al. (2019). The average of the segments’ emissions is the scan’s emission estimate. The spread of the
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Figure 5.6: Effect of CoMF masking on emission estimation under clear sky conditions. The CoMF mask-
ing includes low SNR pixels in the plume’s fringes, partly compensating for the dilution of the plume be-
low a detection limit tresholding. Segment-wise emission estimates are displayed in the lower panel, which
remain more stable with increasing distance from the source for the CoMF masking (orange) while they
decrease for the MAG1C (green) thresholding.

segments’ estimates arises from turbulent transport, dilution below the detection limit, and emis-
sion variability during the scan. The uncertainty for the emission estimate follows using Gaussian
error propagation as described in Equation (4.36). It uses the distribution of the ten emission
estimates and the co-located wind LIDAR observations. The mean and standard deviation of a
ten-minute interval around each image provide the wind speed and direction and their respec-
tive uncertainties. Note that the emission uncertainty does not include systematic uncertainties
from, e.g., the UAS generation or the linearity assumption of the matched filter. The horizontal
viewing geometry enables a direct assessment of the plume height. Thus, the emission estimate
uses the wind information at the mass-weighted plume height. This technique provides a single
emission estimate with an uncertainty from each plume image, which is used for further analysis
in Section 5.3.

Figure 5.6 shows the effect of the CoMF plume masking algorithm from Roger et al. (2023b) on
a CH4 plume image from June 19, 2022. The CoMF uses a combination of spectral retrieval inter-
vals to suppress artifacts from scene heterogeneity and to improve the plume mask (Section 4.1.4).
Figure 5.6 shows how the plume mask includes low SNR pixels at the plume fringes, improving
emission estimates from mass balance methods. The MAG1C algorithm of Foote et al. (2020) ef-
fectively sets pixel enhancements below a detection limit of 2σ to zero. Thus, it provides a plume
mask using a thresholding approach, which is included in Figure 5.6 for comparison. Due to
mixing with ambient air and the resulting dilution of the plume, as the distance from the source
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Figure 5.7: Limits of the IME technique by a) clouds, b) wind direction, and c) wind speed. From a) June
17 10:58 UTC, b) June 18 14:31 UTC, and c) June 20 08:48 UTC in 2022. The plumes are identified
with a tresholding approach to highlight the effect of scene heterogeneity. The arrows in each panel show
the wind direction and speed, where an upward arrow denotes a plume moving away from the observer, a
downward arrow denotes a plume moving towards the observer, and left and right arrows denote a plume
moving left and right, respectively. Figure adapted from Knapp et al. (2023a, Supplement).
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increases, more of the emitted mass falls below the detection limit. Since the CoMF improves
the contrast of background and plume pixels, it enables the inclusion of low-enhancement pixels
in the plume mask. On average, emission estimates using a thresholding approach decrease with
distance from the shaft by 8 % to 12 %, while the CoMF masking reduces this to 0 % to 5 %. Thus,
the CoMF plume mask is used for further analysis.

Imaging observations face some limitations that may compromise successful emission estimates.
Figure 5.7 shows three examples of such limitations identified in the 2022 campaign (Knapp et al.,
2023a). Figure 5.7a shows the CMF result of a cloudy scene. In general, clouds can cause the al-
gorithm to either miss a significant fraction of the plume or identify artifacts as the plume. They
act similarly to surface heterogeneity in top-down viewing applications. The CoMF mitigates this
effect efficiently and is discussed in more detail in Section 5.2.2. Figure 5.7b shows an example of
a plume moving towards the observer. This is a trivial case of unfavorable wind conditions since
the advection-driven plume extent cannot be derived from the image. The wind direction filter
criterion excludes such observations from further processing. Figure 5.7c shows an example of a
plume at relatively low wind speed, causing unstable plumes with enhanced turbulent features.
While this behavior does not prevent the emission estimation per se, it increases the uncertainty of
the emission estimate from a single image. Wind speeds ranged between 1.6 m s−1 and 3.9 m s−1 on
June 20, significantly lower than those observed on June 19 (4.0 m s−1 to 7.6 m s−1). The relative
emission error of single scans increased from 10.7 % to 15.5 %, even though both days featured a
blue sky.

5.2.2 Clouds and Their Impact onMethane Imaging

The blue sky is, to the advantage of the matched filter retrieval, a spectrally smooth and spatially
homogeneous background in the SWIR spectral range. Background heterogeneity challenges
physics-based and statistical retrievals and is a well-known problem in top-down observations (e.g.,
Ayasse et al., 2018; Borchardt et al., 2021; Roger et al., 2023b). Surface features induce artifacts if their
spectral reflectivity is similar to the target gas absorption features. Clouds introduce comparable
background heterogeneity to ground-based observations by altering the radiative transfer through
the atmosphere. Thus, they may be treated using similar techniques. Cloudy pixels are typically
an order of magnitude brighter than the blue sky and favor multiple scattering, violating the sin-
gle scattering assumption for the UAS generation. Furthermore, the introduced spatial variability
of spectra translates to increasing covariance matrix elements. Generally, the covariance elements
inform the retrieval of the correlation between channels. Thus, they recover information about
the spectra from the target scene. The spatial covariance makes the matched filter retrieval more
robust against scene heterogeneity than physics-based retrievals, which treat every pixel indepen-
dently (e.g., Hochstaffl et al., 2023). However, the spectral reflectance of clouds is not the same as
that of molecules and aerosols. Cloud-scattered pixels show systematically different spectra than
the blue sky, violating the Gaussian assumption of the matched filter retrieval. Thus, the matched
filter’s capability to detect and quantify the target gas decreases. While the average SNR of plume
pixels on clear days ranges from 5 to 6, it drops to 2 to 3 on cloudy days (Figures 5.5 and 5.10).

Figure 5.8 shows several realizations of the matched filter algorithm dealing with scene hetero-
geneity caused by clouds on June 13, 2023. The scene is only mildly affected by clouds in the lower
parts, but it illustrates the relevant features. All algorithms use the CoMF approach to suppress
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Figure 5.8: Comparison of the a) CMF, b) DMF, and c) clustered differential matched filter (CLU) re-
trieval for an observation on June 13, 2023. The identified plumes (yellow to red) are shown in front of
the brightness factor (blue to white) of the respective retrieval. The clouds are easily identified in the CMF
retrieval as the bright spots. For the DMF and CLU retrieval, the dashed white lines mark the background
region. A cloud at 75 m height causes a major artifact in the DMF retrieval, which is partly removed by the
CLU retrieval.
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Figure 5.9: Clustering of pixels into similar spectra to improve referencing for the CLU. Panel a) shows the
pixel brightness and panel b) the clustering result.

background artifacts and improve the plume mask. Figure 5.8a shows the CMF retrieval of the
scene, revealing a tube-like plume moving upwards and to the right. A darker background cor-
responds to higher noise levels within the identified plume pixels. Furthermore, enhancements
appear in front of clouds in the lower plume parts around 150 m to 200 m downwind of the
shaft. These enhancements may be due to cloud scatter artifacts or the higher brightness for bet-
ter enhancement detection. While the DMF outperforms the CMF under favorable conditions,
Figure 5.8b shows that this is not necessarily the case for cloudy scenes. The differential approach
requires a reference spectrum from the background pixels upwind of the source. The background
region is marked in Figure 5.8, and spectra from this region are taken as representative of the whole
line of the image. The assumption fails for a heterogeneous background, as is apparent around
75 m in height. A cloud drifted into the background region, so the reference spectrum does not
fit the other spectra in the line. Consequently, the DMF cannot identify the plume in these lines.
Similar features are apparent in the earlier stages of the plume, around 25 m in height, where
clouds introduce stripes of higher enhancements. Despite these shortcomings, the DMF identi-
fies an overall larger plume and closes gaps in the CMF retrieval.

Clustering of the pixels improved the matched filter performance in the presence of heteroge-
neous data in past studies (Funk et al., 2001; Thorpe et al., 2013). These studies use a simple k-means
clustering to aggregate all pixels of the scene and apply a different matched filter to each clus-
ter. However, clusters may contain an insufficient pixel number to support a robust background
estimation for the matched filter. Therefore, the presented clustered differential matched filter
(CLU) aims to unify the spectral input vectors of the whole image and apply the matched filter to
all pixels. As described in Section 4.1.3, the CLU requires reference spectra depending on the line
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Figure 5.10: Comparison of CMF, DMF, and CLU retrieval SNR within the plume mask for all pixels
during a cloudy observation day (June 13, 2023). As expected, the overall SNR is lower than for clear
sky observations. Furthermore, the comparison of the three algorithms is inconclusive when all plume
pixels are considered. Yet, the CLU identifies many more plume pixels than the other algorithms, and
outperforms the CMF in shared plume pixels (CLU+CMF). Numbers in brackets denote the total number
of plume pixels contributing to the histogram.

and the cluster. The k-means clustering sorts pixels from 30 consecutive images into three clus-
ters. Figure 5.9 shows that the algorithm clusters the pixels according to their brightness, which
can be loosely associated with blue sky and directly and indirectly illuminated clouds. The clus-
tering uses four channels1 from the whole spectral range of the instrument to limit the required
computational resources. A reference spectrum of the same cluster and line references each spec-
trum in a line, removing systematic features from the input data. If the background region of
the line includes no matching reference spectrum, the cluster mean reference spectrum is used.
Figure 5.8c shows the result of the CLU retrieval. The image’s background shows that cluster-
ing decreases the brightness range of the background pixels, as was to be expected. The striping
in the 25 m height region vanishes, and the missing stripe in the 75 m height nearly closes. The
remaining missing values align with a cluster change of the pixels. Enhancements in cluster 1 are
detected, and the gap in the plume consists of pixels in cluster 2. While a line-specific reference
spectrum exists for cluster 1, cluster 2 falls back on the cluster mean reference spectrum. Thus, the
referencing performance suffers, and the plume cannot be identified in cluster 2. Potential paths
to improve the clustering approach are (a) choosing reference spectra from the same cluster and
line from other images or (b) applying the DMF for each cluster separately, given that the cluster
sizes support a robust background estimation.

Figure 5.10 compares the three retrieval algorithms for a cloudy observation day on June 13,
2023. In contrast to the clear sky case, the SNR histogram shows no separation between the CMF,

1The channels are chosen in the transparent parts of the spectrum at 1007, 1279, 1606, and 2204 nm.
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DMF, and CLU retrieval. In the case of scene heterogeneity, a major challenge of the matched fil-
ter retrieval is the identification of the plume pixels. The DMF is not feasible in cloudy scenes
due to the shortcomings mentioned earlier, as reflected in the low number of plume pixels iden-
tified (4.1 · 106). The CLU identifies 6.7 · 106 plume pixels, over 50 % more than the CMF
(4.3 · 106). Furthermore, the CLU outperforms the CMF in plume pixels identified by both
retrievals regarding the SNR. A visual inspection of the images shows that the CLU plumes typ-
ically (a) close holes in the CMF plume or (b) expand the plume outwards. Although the CLU
technique is not flawless, it enhances the retrieval of plume mask and SNR in comparison to the
CMF for heterogeneous backgrounds. Therefore, it is preferred for analyzing cloudy scenes.

5.2.3 Fixed Viewing Geometry

During the 2023 campaign, the camera operated in a fixed viewing geometry for several hours on
three of the four days presented here. The camera does not rotate in this observation mode, such
that each frame observes the same vertical stripe of the scene. Thus, these pseudo-scans lose the
imaging capability, but several advantages arise from this setup. If the camera points a few degrees
downwind of the shaft, the ambient wind transports the emitted plume through the camera’s
FOV. Every frame captures a cross-section of the plume, which provides a time series of the plume
evolution at a certain distance downwind of the source. The camera’s frame dimension is effec-
tively transformed into a temporal dimension, allowing for observing the plume’s evolution over
time instead of a spatial image of the bent-over plume shape. The camera’s integration time and
co-adding settings determine the sampling rate of frames, typically ranging from 3 Hz to 10 Hz.

The fixed geometry has some implications for the differential retrieval and emission estimation
technique. As the fixed viewing geometry lacks an upwind region, the DMF and CLU techniques
necessitate a background image for the reference spectrum. The camera pointed 2° upwind of the
shaft for background observations. These images were captured either before or after the fixed ge-
ometry observation. Taking ten or more background scans is recommended to improve the SNR
in the reference spectra and provide sufficient spectra in each cluster. The k-means clustering al-
gorithm sorts the spectra from the background scans and 20 consecutive plume scans into three
clusters. Every pixel in the plume scans is assigned a line- and cluster-specific reference spectra
from the background scans.
The fixed geometry is ideal for emission estimates using the XSF method, as each frame provides a
cross-sectional plume measurement. Therefore, the XSF provides emission estimates at the same
frequency as the frame rate. However, single-frame emission estimates show considerable variabil-
ity due to turbulent transport processes at this temporal scale (e.g., Woitischek et al., 2021a). Like
in the scanning geometry, each pseudo-scan provides a mean emission estimate with uncertainty.
The mean emission is the frame average, while the uncertainty follows from the wind observa-
tions at observation time and the emission standard deviation over the frames. Note that the
uncertainty is generally higher than for the scanning observations since the frames may include
no plume pixels, yielding 0 tCH4 h−1 as the frame emissions, and are not binned into segments.

Figure 5.11 displays two observations obtained with the CMF and CLU using the fixed geome-
try on June 8, 2023. Observations using the fixed geometry during a clear sky day were impossible
due to the weather conditions. Therefore, the current analysis is limited to cloudy scenes. The
background brightness exhibits greater variability in the vertical direction than in the horizontal
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Figure 5.11: Comparison of the CMF and CLU retrieval for two scans during a fixed geometry observation
on June 8, 2023. Both observations are 1 h 16 min apart and show backgrounds of different cloudy scenes.
Panels a) and b) show the CMF retrieval, while panels c) and d) show the CLU retrieval. The CLU retrieval
closes gaps in the plume, but shows striping patterns. Panels e) and f) show the emission estimates from
the XSF method. The emission estimates of both retrievals follow the same trend, but the CLU retrieval
provides more continuous estimates since many frames of the CMF retrieval are zero.
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direction due to the movement of distant clouds. The CH4 plume is easily identifiable as a band
of enhancements between 20 m and 30 m height. While the CMF retrieval shows several gaps
in the plume observations, the CLU retrieval fills these gaps. As in the scanning geometry, the
CLU method can detect parts of the plume that are too faint for the CMF retrieval. However,
the CLU plume observations exhibit striping features, particularly in Figure 5.11c. Striping across
several lines suggests shortcomings in the referencing, e.g., due to the temporal distance of ap-
proximately one hour between the plume and background observation. The frame-wise emission
estimates are shown in panels e) and f) of Figure 5.11. Gaps in the plume cause the XSF estimate to
drop to zero, while the CLU estimate still produces a non-zero value. Comparing the XSF results
from the CMF and CLU retrievals, they follow the same trend, with the CMF falling to zero for
the smaller CLU values.

Clear-sky observations are necessary to evaluate the performance of the fixed geometry in more
detail. The following discussion is thus preliminary. The first results of the fixed geometry are
promising. The plume appears as a band in the images, likely continuous under favorable con-
ditions. Thus, it provides high-frequent flux estimates through a vertical cross-section. The ge-
ometry necessitates explicit background scans for differential matched filter methods. Ideally, the
camera alternates automatically between background scans upwind of the shaft and plume scans
downwind. During the 2023 campaign, the first fixed geometry observations required manual al-
ternation between background and plume scans, which was time-consuming. At the time, the ne-
cessity of background scans was unclear, so they were taken only after prolonged periods (hours)
of plume scans. Taking background scans more frequently is likely to benefit the retrieval since the
referencing of the spectra improves. The fixed geometry may provide a higher temporal resolution
of the plume evolution compared to the scanning geometry. Additionally, the co-moving effect
of the camera and plume (as discussed later in Section 5.3.1) is eliminated, making the data easier
to interpret. In future applications, this geometry offers new possibilities for analyzing point-
source emissions. For example, the camera can be positioned sideways to observe a horizontal
cross-section above the shaft outlet.

5.3 Emission Time Series

The following sections present time series of CH4 emissions from the Pniówek V coal mine ven-
tilation shaft. As explained in Section 5.2, applying a matched filter retrieval on hyperspectral
images enables the identification of emitted CH4 plumes. Each image provides a single estimate
of the emission and an error based on the IME method for scanning observations and the XSF
method for fixed geometry observations.
Section 5.3.1 discusses the impact of atmospheric turbulence on the emission estimates. The error
estimate of the single image already includes small-scale turbulence, but the scanning geometry re-
quires a more detailed analysis. Section 5.3.2 presents the emission time series for eight campaign
days, with several hundred plume observations per day. Four days are from the 2022 campaign
and four from the 2023 campaign. Preliminary emission estimates from in-situ sensors in the
shaft are compared to the emission estimates from the camera for the collaborative data in 2023.
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Figure 5.12: Scan to scan variability of emission estimates on June 13, 2023. Three consecutive scans are
shown, taken 1 min apart. The panels below the observations show the emission estimates from the IME
method, revealing substantial short term variability. The emission estimates decrease from 3.33 tCH4 h−1

to 1.86 tCH4 h−1. The lowest panel shows the whole emission time series of the day, highlighting the period
of the three observations above.

5.3.1 Impact of Turbulence on Emission Estimation

Typical measurement days yield several hundred emission estimates. A single scan emission esti-
mate includes uncertainty based on the observed plume mass variability along the plume, wind
speed, and wind direction. Plume variability along the trajectory is the dominant source of uncer-
tainty in the single emission estimates on all days (Table 5.1). Mass balance methods assume con-
stant emissions over the timescale they are applied. Since they rely on the conservation of mass,
they require the flux in the observed region (area for IME, cross-section for XSF) to represent
the source. Various factors contribute to the observed plume mass variability, namely (a) back-
ground artifacts, (b) dilution below the detection limit, (c) turbulent transport, and (d) source
variability. The method aims to observe source variability and distinguish it from the other fea-
tures outlined below. Background artifacts within the plume mask may lead to either underesti-
mating or overestimating distinct plume parts. The CoMF retrieval suppresses artifacts outside
the plume mask but is unable to handle artifacts inside the plume mask. Visual inspection sug-
gests rare background artifacts under cloudy conditions inside the plume, but these cases account
for less than 1 % of the scans. Based on this investigation, spurious artifacts inside the plume have
no substantial influence on the time series. Entrainment of ambient air causes the dilution of the
CH4 plume, an effect that accumulates as the plume travels away from the source. The retrieval
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detection limit and the plume masking algorithm determine which part of the plume is lost to
dilution. Figure 5.6 demonstrates that the combo masking effectively reduces the mass portion
lost to dilution. Typically, it amounts to a few percent for the observations presented here, as the
plume is observed near the source. Turbulent transport causes prominent density fluctuations
in the observed plume. Turbulence arises when the external forces on a fluid exceed the viscous
forces. The Reynolds number of typical atmospheric flows is on the order of 106 to 107, leading
to rich turbulence structures (e.g., Woitischek et al., 2021a). Density fluctuations along the plume
cause variability of the emission estimates between each segment. The following paragraphs pro-
pose a technique to differentiate between turbulent transport and source variability.

Figure 5.12 displays the variability of emission estimates from the CLU retrieval on June 13,
2023. Visually, every plume observation is reasonable despite the cloudy conditions. The emis-
sion estimates change significantly within the three minutes of observation. However, simulta-
neous observations inside the shaft suggest that the emissions change only on longer time scales
(see Section 5.3.2). Furthermore, Woitischek et al. (2021a) performed a laboratory experiment us-
ing a constant source and measured plume thickness at cross-sections along the plume. They find
significant variability at all distances from the source, although the magnitude and frequency of
the density fluctuations decrease with distance. Thus, variability caused by turbulence is expected
to contribute to the observed scan-to-scan variability. For CH4 plume observations, turbulent
transport (a) displaces mass in the plume, inducing concentration gradients, and (b) causes differ-
ences between the wind field above the shaft and the camera, where the LIDAR is located. Mass
displacements happen simultaneously with the advective transport of the plume and evolve over
time. As turbulence in the atmosphere is a statistical process, averaging the emission estimate over
a long enough temporal or spatial interval removes the turbulent variability from a flux estimate.
However, Woitischek et al. (2021a) point out that source variability can only be detected on time
scales longer than the averaging interval. Therefore, the averaging interval should balance a length
sufficient to mitigate turbulent variability with brevity to optimize temporal resolution for source
variability.

The observed plume length in each scan represents its averaging interval, and the emission esti-
mate already accounts for density variations within the observed plume. The scanning geometry
of the camera interacts with the observed plume length in an image. For snapshot images, the
observed plume length equals the plume length in the image. This is not true for scanning obser-
vations since the plume moves while the camera rotates to scan the FOV. The scan speed vscan at
the plume is given by

vscan = ωrot ·D , (5.1)

where ωrot is the camera’s angular velocity and D is the distance between camera and shaft. In
the most extreme case, the plume moves at the scan speed, causing the camera to follow the same
plume segment along the scan. In this case, the observed plume length is zero, and the camera
observes only temporal variability in a plume cross-section. This effect causes increased scan-to-
scan variability when the camera follows a diluted or enhanced part of the plume. For example, it
might cause the strong enhancement feature in the first plume observation in Figure 5.12.

Calculating the observed plume length requires considering the camera’s rotation, the ambient
wind speed, and the observation geometry. As in the derivation of the IME method, a plume of
length dim,c appears with a length of dim = dim,c · sin(ϕ) in an image, where ϕ is the angle
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Figure 5.13: Effect of the convolution of plume and scan speed during a scan. The plume is assumed to
move with a constant speed of 5 m s−1 (green) to the right and the camera scans over 350 m (orange) of the
plume. The observed plume length dobs (blue) is shown in dependence of the scan speed vscan.

between the plume travel direction and the camera’s viewing direction. Likewise, the effective
plume speed in the image is ueff = u · sin(ϕ), where u is the plume speed. The observed plume
length dobs reads

dobs = dim,c ·
(
1− ueff

vscan

)
, (5.2)

following from the ambient wind and the camera’s settings. Negative plume speeds indicate that
the camera moves against the plume, while positive speeds indicate that the camera moves with
the plume. Figure 5.13 shows the effect of the convolution of the plume and scan speed during
a scan on dobs. Note that low scan speeds correspond to longer scan times. The observation
approaches a snapshot image for a scan speed much higher than the plume speed. The observed
plume length is zero for a scan speed equal to the plume speed and negative if the plume overtakes
the camera’s FOV during the scan. If the camera scans against the plume, each frame observes a
wider plume interval than expected from the camera’s horizontal opening angle. Thus, scanning
against the plume travel direction causesdobs > dim,c. Observing the plume in the fixed geometry
of the camera simplifies calculating dobs. Assuming that the plume moves constantly through the
camera’s FOV, the observed plume length reads

dobs,fix = ueff · ncatint ·Nframes , (5.3)

where nca is the number of co-added spectra of integration time tint in each frame and Nframes

is the number of frames in a scan. Scanning and fixed geometry experiments are assigned an ob-
served plume length according to Equations (5.2) and (5.3), respectively. An experiment consists
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Figure 5.14: Panel a) shows the effective plume (orange) and scan (blue) speeds for all scanning experiments
of the USCB campaigns. Panel b) shows the factor |1− ueff/vscan|−1, which modulates the observed
plume length in each scan. Boxes extend from the first to the third quartile of the data, with a line (orange)
at the median. The whiskers extend to the farthest data point lying within 1.5 times the inter-quartile range
from the box, and crosses show outliers. Note the logarithmic x-axis in panel b).

of consecutive scans with identical settings, like scanning angle, detector exposure time, and view-
ing geometry.

The turbulent mixing length dturb is assumed to represent the optimal trade-off between miti-
gating turbulence and achieving temporal resolution. Observing plumes of sufficient lengthdturb
requires a total of η scans, given by

η =
dturb
dobs

=
dturb
dim,c

·
∣∣∣∣1− ueff

vscan

∣∣∣∣−1

, (5.4)

assuming every scan observes the same plume length. Figure 5.14 shows the effective plume and
scan speeds for all scanning experiments of the USCB campaigns. Moreover, Figure 5.14 lists the
corresponding factor |1−ueff/vscan|−1 modulating η. The effective plume speed for each exper-
iment is the mean plume speed during the experiment. For the 2023 campaign, all of these factors
are larger than one since the wind consistently drove the plume to the right. Thus, additional
scans are required to observe a plume of sufficient length. For June 18 to 20, 2022, the factors are
below one, which benefits the temporal resolution.
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Figure 5.15: Turbulent diffusion coefficient estimated from the observations of June 19, 2022. The plume
shown is the averaged CH4 enhancement of 266 observations between 07:28 - 13:28 UTC. The mean
plume height (blue) is at the maximum concentration of the plume, while σz is calculated according to
Equation (5.7) for each downwind frame (dotted blue). From the dispersion width, the turbulent diffusion
coefficient is estimated toK = 10.9 m2 s−1 from a linear fit (orange) between the plume area and the plume
lifetime.

The turbulent mixing lengthdturb is an empirical concept, and it depends on atmospheric con-
ditions like boundary layer height, surface roughness and temperature, and source parameters.
Thus, calculating a precise value for dturb poses significant challenges. A dimensional analysis is
used to estimate dturb based on the available information. The Péclet Number Pe is a dimen-
sionless number that relates the advective transport to the diffusive transport of some physical
quantity. It can be derived from the advection-diffusion equation, see Appendix A.3.1 (Brasseur
and Jacob, 2017). Using turbulent instead of molecular diffusion, as done by Varon et al. (2018), Pe
is defined as

Pe =
u · dPe
K

, (5.5)

where u is the wind speed, dPe is the mixing length, andK is the turbulent diffusion coefficient.
The turbulent diffusion coefficient is a function of the turbulent mixing length and the turbulent
velocity scale. It acts similarly to the molecular diffusion coefficient in the diffusion equation
(e.g., Roedel and Wagner, 2011, Chapter 6). The turbulent mixing length is the correlation length
scale of the turbulent velocity fluctuations. It is analog to the mean free path length in molecular
diffusion. Usually, the turbulent diffusion coefficient is unknown, and a literature value for an
atmospheric stability class is taken. On local scales, K typically ranges between 10 m2 s−1 and
50 m2 s−1 (Gifford, 1968; D’Isidoro et al., 2010; Varon et al., 2018). Since our observations provide
repeated images of emission plumes, the turbulent diffusion coefficient can be estimated from
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the time series. The plume width is expected to grow proportional to the square root of the time
at long distances from the source (e.g., Taylor, 1922; Weil et al., 2002). Roedel and Wagner (2011) derive
the expression

σ2 = 2 ·K · τ , (5.6)

where σ is the standard deviation of the concentration distribution, i.e., a measure of the plume
width, and τ is the time. Dosio (2005) provides a method to estimateK from a plume observation
if the mean height is known. Averaging single scans over extended periods yields a smooth plume
observation, as shown in Figure 5.15. The maximum concentration is taken as the mean plume
height in each frame. According to Nieuwstadt (1992), the vertical dispersion of a plume is given
by

σ2z =

∫
c · z′2dV∫
c · dV

, (5.7)

where c is the observed CH4 concentration and z′ is the vertical distance from the mean plume
height. Figure 5.15 shows the turbulent diffusion coefficient estimated from the June 19, 2022,
observations between 07:28 and 13:28 UTC. Equation (5.7) yields σz for each distance d down-
wind of the source. The lifetime of the plume is estimated by τ = dim/ueff . The plume disper-
sion σ2z increases linearly with the plume lifetime. Thus, K follows from a linear fit using Equa-
tion (5.6). Empirically, more than 150 plume images are required to obtain a smooth plume obser-
vation. Thus, the temporal trend of boundary layer turbulence can not be observed. Performing
the analysis yields six estimates ofK from four days, falling between 8 m2 s−1 and 14 m2 s−1.

The length scaledPe determines if advection dominates over the turbulent diffusion. Table A.2
lists the key quantities for all experiments of the USCB campaigns. Typical image plume lengths
dim,c range from 110 m to 270 m, while the observed plume lengths dobs range from 13 m to
420 m per scan. Wind speeds range from 3 m s−1 to 8 m s−1, and a turbulent diffusion coefficient of
K = 10 m2 s−1 is assumed for all experiments. For large Péclet numbers ofPe = 100 to 1000, the
length scale dPe ranges from 140 m to 3700 m. Since this is only a rough estimate, a conservative
turbulent mixing length ofdturb = 3000 m is taken for all experiments. Choosing a value close to
the upper limit provides an observation of sufficient length to mitigate the turbulent variability,
requiring η scans in the respective experiment. Section 5.3.2 discusses the resulting averaging in-
tervals in more detail. However, Brunner et al. (2023) suggest that airborne snapshot observations
of plumes still only allow an accuracy of 20 % in IME emission estimates due to turbulence, even
though their simulated plumes are nearly 100 km long.

The proposed assessment for distinguishing between turbulent and source variability has lim-
itations. It does not account for temporal variability observed in scanning experiments, the cam-
era’s opening angle, and the dead times between frames. Additionally, the turbulent mixing length
is not a well-defined physical quantity but rather a length scale loosely associated with fluid dy-
namic processes. However, the method described above uses standard tools of turbulent trans-
port to provide a reasonable estimate for the turbulent mixing length. It relies on an independent
observation of the turbulent diffusion coefficient, which is unavailable in most studies. This in-
formation is available here through the repeated imaging of the plume, presenting an advantage
of the technique at hand.
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Table 5.1: Daily average emission estimates E [tCH4 h−1] and average error ∆E [tCH4 h−1] from a total
ofNscan scans. Furthermore, the averaged relative error ∆E/E [%] with its contributions from the wind
speed ∆u [%], the wind direction ∆ϕ [%], and the plume density ∆ρ [%] of Equation (4.36). The range
of theEroll [tCH4 h−1] is the range from the minimal to the maximal rolling-mean emission estimate. The
rolling mean kernel size ηrep is calculated from the fixed and scanning experiments’ η.

Date Nscan ηrep E range ofEroll ∆E ∆E/E ∆ρ ∆u ∆ϕ

2022-06-17 247 232 1.56 n.a. 0.21 14.1 12.1 4.2 4.6
2022-06-18 293 7 2.15 0.92 - 4.00 0.40 18.1 16.1 3.3 6.7
2022-06-19 457 11 2.16 1.41 - 2.88 0.23 10.7 9.4 3.5 2.8
2022-06-20 160 16 4.57 3.01 - 5.59 0.72 15.5 12.1 5.0 5.5
2023-06-08 275 18 2.02 1.33 - 2.91 0.38 15.0 14.0 4.3 1.7
2023-06-11 315 35 1.85 1.14 - 2.34 0.28 15.9 15.3 3.5 0.7
2023-06-12 436 41 1.87 1.29 - 2.90 0.26 15.5 15.1 3.3 0.7
2023-06-13 477 24 2.15 1.42 - 2.89 0.34 15.9 14.8 4.0 2.7

5.3.2 Emission Variability FromCoalMine Operations

HySpex observations of the Pniówek V coal mine ventilation shaft took place during the 2022
and 2023 campaigns, spanning a comprehensive eight-day period characterized by diverse obser-
vation conditions. On June 17, 2022, there was cloud cover and unfavorable wind conditions
because the plume was moving at nearly the same speed as the camera’s FOV. In the following
days, the background conditions were mainly homogeneous and cloud-free. The wind direction
error for emission estimates on June 18, 2022, is larger than on the other days since the plume
travel direction was close to the critical threshold. On June 19, 2022, favorable observation con-
ditions prevailed, effectively showcasing the method’s capabilities. The final day of the 2022 time
series, June 20, consists of observations with relatively low wind speeds (≤ 3 m s−1). Thus, the
plumes rise higher within the images and develop more pronounced transport features, increasing
the plume density error. During the 2023 campaign, observation conditions were stable over the
four days. The wind speed was ideal, and the plume traveled perpendicular to the camera’s line of
sight. The plume was consistently co-moving with the camera’s FOV, and a persistent cloud cover
extended over the whole campaign period. Technical problems prevented scanning observations
on June 8, 2023, after 09:30 UTC, but fixed observations were possible for the remaining day.
Figures 5.17 and 5.19 show example images from each day.
As described in Section 5.2.1, quality criteria remove scans with flawed plume masking or com-
promising wind direction. Table A.1 lists the number of scans before and after the quality filter
for each day and which filter criteria are responsible for removing the scans. Depending on the
observation conditions, they remove between 1 % and 44 % of the scans. Wind direction is the
dominant factor in the data yield. An unfortunate wind direction can remove observations over
prolonged periods (morning of June 20, 2022) or sporadically if the wind direction fluctuates
around the critical threshold (June 18, 2022).

Table 5.1 lists the daily average emission estimates E and the average error ∆E for every pre-
sented observation day. Each day encompasses between 160 and 477 scans after quality filtering.
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The average relative error ranges between 10.7 % and 18.1 % for a single scan, with smaller errors
in favorable observation conditions. As expected from Equation (4.36), the wind direction error
is situational. If the wind drives the plume perpendicular to the camera’s viewing direction, the
wind direction error is well below 3 %. Unstable wind conditions around the critical threshold of
sinϕ = 0.45 cause the highest mean wind direction error of 6.7 %. The wind speed error ranges
between 3 % and 5 %, with low wind speeds causing a higher relative uncertainty. The wind LI-
DAR is a valuable addition to the setup since it accurately constrains the ambient wind field. Most
top-down plume observations rely on meteorological wind models, which are known to have sig-
nificant uncertainties in the boundary layer (e.g., Jongaramrungruang et al., 2019; 2022; Brunner et
al., 2023; Roger et al., 2023b). For the ground-based observations, the plume density variability
dominates the error budget in single scans with 9.4 % to 16.1 %.

As described in Section 5.3.1, distinguishing source variability from turbulent transport re-
quires averaging η scans. Since the observed plume length depends on the wind- and scan speed,
η changes for each experiment. Table A.2 lists η for each experiment, and Table 5.1 lists a repre-
sentative ηrep for each day. Here, ηrep is the experiment-average η weighted by each experiment’s
scans. ηrep corresponds to the daily temporal resolution of the method since each image acqui-
sition takes approximately one minute. In terms of the temporal resolution, the June 17, 2022,
observations can be considered the worst-case scenario. The effective wind speed matches the
scanning speed within 10 %, so the observation contains only minimal spatial variability during
a single scan. The temporal resolution is estimated at 232 min, which is insufficient for infer-
ring the diurnal variability of the coal mine ventilation shaft. Generally, plumes co-moving with
the scan direction will impede the temporal resolution of the method. Except for June 17, 2022,
the temporal resolution ranges between 20 min and 76 min for co-moving plumes. Ideally, the
plume moves against the scanning direction, which enables a temporal resolution below 16 min,
as of June 18 to 20, 2022. The fixed geometry falls between the two scan cases, yielding a temporal
resolution between 12 min and 20 min for the three presented cases. Thus, an option to set the
camera rotation direction based on the wind direction is planned for future applications.
Figures 5.16 and 5.18 show the observed time series during the presented days. Every panel in-
cludes the single scan emission estimates after quality filtering, excluding scans with flawed plume
masking or compromising wind direction (Knapp et al., 2023a). A moving mean of different ker-
nel sizes within the expected temporal resolution range (min(η), ηrep,max(η)) on that day il-
lustrates the observed diurnal variability. The range of η is computed for fixed and scanning ex-
periments separately. Smaller kernel sizes increase the observed diurnal variability. Figure 5.18c
suggests that the fixed geometry observations fit well with the scanning observations, i.e., no ap-
parent biases exist between the methods. Table 5.1 lists the rolling mean range alongside a daily
temporal resolution. The data show that shaft emissions can deviate from the daily mean by as
much as 34 % to 55 %. The only exception is June 18, 2022, which shows maximum deviations
between 57 % and 86 %.

In-situ instruments observed shaft emissions alongside the HySpex camera, providing prelim-
inary emission estimates for comparison. One source is pellistor sensors in the shaft, as used in
Swolkień et al. (2022). These sensors measure the CH4 concentration in 0.1 % steps every second
and report them as a mean over 60 s. The pellistors provide low-quality observations since their
purpose is to detect dangerous CH4 concentrations in the shaft. However, they are installed in ev-
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ery shaft and operate continuously2. The pellistor sensors provide a continuous data set in 2023
but, due to extended downtime, only a few reliable data points in 2022. Furthermore, a TDLAS
open path experiment was mounted on top of Pniówek V on June 13, 2023. It observed the CH4

column along a transect across the shaft outlet. A Prandtl tube inside the shaft provides the flow
speed to convert the TDLAS and pellistor concentration measurements to emission fluxes.
In comparing the emission estimates of the 2023 campaign, HySpex consistently yielded smaller
values than the observations from TDLAS and pellistor sensors. The CLU retrieval estimates re-
sult in 30 %, 22 %, 22 %, and 20 % lower daily emissions than the pellistor observations on June
8, 11, 12, and 13, 2023, respectively. However, the CLU observations improve the consistency
between the observations significantly compared to the CMF method, which results in approx-
imately 50 % lower emissions than the CLU. Several potential explanations exist for the incon-
sistency between the in-situ and HySpex observations. The observation conditions were chal-
lenging for the matched filter retrieval due to heavy cloud coverage. Additionally, the UAS gen-
eration relies on the single-scattering approximation of the RTE, which is deficient for the ob-
served cloud coverage. Albeit these challenging conditions, the daily mean emissions follow a
similar trend, showing comparable day-to-day variabilities ((Emax −Emin)/Emean) of 15 % and
19 % for the HySpex and pellistor, respectively. During the 2022 campaign, the HySpex observa-
tions show increasing emissions from 1.55 tCH4 h−1 to 4.57 tCH4 h−1 between June 17 and 20.
The available pellistor observations show a similar trend for the first three days (1.23 tCH4 h−1

to 2.39 tCH4 h−1) yet disagree with the observations on June 20 (1.08 tCH4 h−1). However, the
comparison is inconclusive since the pellistor was not operational during most of the observation
periods. The TDLAS and pellistor observations exhibit less diurnal variability than the HySpex
observations during the 2023 campaign. The HySpex observations display some residual corre-
lation with the effective plume speed, with a Pearson correlation coefficient ranging from 0.00
to 0.26 (see Figure A.7). However, the correlation does not explain the observed discrepancy in
diurnal variability. An upcoming publication led by the IMEO and the AGH Kraków will focus
on a detailed comparison of the emission estimates based on the strengths and weaknesses of all
participating methods.

In summary, the presented observations demonstrate that the camera observations can observe
the diurnal variability of coal mining emissions. The temporal resolution ranges from 10 min to
232 min, depending on observation conditions. However, choosing a scanning direction oppo-
site to the plume travel direction can reliably improve the temporal resolution for future scan-
ning observations. Typical uncertainties are below 20 % for a single scan, with the plume density
variability dominating the error budget. Although clouds challenge the matched filter retrieval,
plume identification and emission quantification are still possible. However, non-compliance of
the radiative transfer model with the observed cloud coverage may introduce systematic errors.
The supplementary information of Knapp et al. (2023a) includes several videos of the observations,
providing a more intuitive understanding of the method’s capabilities. In addition to the source
emission, these observations also provide information on the turbulent state of the atmosphere
(see Figure 5.15) or the CH4 injection height into the atmosphere.

2At least in theory. In practice, there can be long periods when the sensor does not observe a new data point and only
reports the last value recorded (J. Swolkień, pers. communication).
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Figure 5.16: Emission time series observed during the 2022 campaign. Panels a) to d) show measurements
from June 17, 18, 19, and 20, respectively. Single HySpex observations using the DMF method (blue) are
shown. Rolling averages (orange) illustrate the diurnal variability. The kernel sizes are min(η), ηrep, and
max(η) of the respective day following Table A.2. There was only one experiment conducted on June 18,
2022, so the range in panel b) is for illustration only. Simultaneous emission estimates using in-situ data is
given (black) whenever available, with the dotted line marking detector downtimes.
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Figure 5.17: Example observations from June 17, 18, 19, and 20 in 2022 (panels a) to d)).
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Figure 5.18: Same as Figure 5.16, but for June 8, 11, 12, and 13 in 2023. HySpex observations were per-
formed in a scanning (dark blue) and fixed (light blue) observation geometry. Panels a) and b) include
extended intervals without observations. These are due to technical problems on June 8 and fixed viewing
geometry data without corresponding background scans on June 11. Averaging kernel sizes in panel a) and
c) are given for the scanning and fixed experiments separately, the scanning being the one before the slash.
Panel d) includes the coinciding TDLAS observations (gray).
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Figure 5.19: Example observations from June 8, 11, 12, and 13 in 2023 (panels a) to d)).
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6 CarbonDioxide Emissions From a
Coal-Fired Power Plant

This chapter presents the first ground-based imaging observations of CO2 plumes. The obser-
vations were performed at the Grosskraftwerk Mannheim (GKM), which is the largest coal-fired
power plant in Baden-Württemberg, Germany. It serves as a validation target for the methods pre-
sented in this thesis. Knapp et al. (2023b) covers most results presented in this chapter. However,
this chapter contains a more detailed description of all field observations and the advantages of
the DMF retrieval compared to the CMF retrieval. Section 6.1 introduces the GKM, the available
information on the power plant, and the performed observations. Section 6.2 describes the image
processing and the retrieval of the CO2 column enhancements. Finally, Section 6.3 presents the
emission estimates and compares them to the bottom-up emissions of the GKM.

6.1 GrosskraftwerkMannheim

The GKM is a coal-fired power plant in Mannheim, Germany (49.44 °N, 8.50 °E). It burns hard
coal and uses cogeneration to simultaneously produce electricity and district heating. The max-
imum capacity of the GKM is 2146 MW of electrical power and 1500 MW of district heating.
From the 2146 MW of electrical power, 1958 MW are available for the public grid, and 188 MW
are used for the internal power consumption of the power plant. The power plant consists of
nine units, numbered from 1 to 9. Only units 6 to 9 are still in operation, of which unit 9 was last
commissioned in 2015.

The GKM reports their annual emissions to the E-PRTR. Its yearly reports contain energy
production and fuel consumption, e.g., Grosskraftwerk (2015). On average, the GKM released
ηtot = 955.1 gCO2 kWh−1 between the years 2015 and 2021 (Table A.3). The Umweltbunde-
samt (UBA) provides a German average emission factor of η = 335.2 gCO2 kWh−1 for hard
coal at 100 % efficiency (Sandau et al., 2021). Unit 9 has a maximum capacity of 911 MW and
operates at a net efficiency of 46.5 % (Grosskraftwerk, 2015), translating to an emission factor of
η9 = 722 gCO2 kWh−1. Assuming that units 6 (P6 = 475 MW), 7 (P7 = 480 MW), and 8
(P8 = 280 MW) have the same efficiency, their emission factor η6−8 follows from

ηtot =
1

Ptot
(P9 · η9 + (P6 + P7 + P8) · η6−8) (6.1)

⇒ η6−8 = 1127 gCO2 kWh−1 , (6.2)

where Ptot = 2146 MW is the total power production. Units 6 to 8 were built in 1975, 1983,
and 1993, respectively, explaining their lower efficiency compared to unit 9. Therefore, the GKM
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operates unit 9 preferentially, and the other units are only used when the demand for electricity
and district heating is high.

6.1.1 Field Observations

Two suitable locations are available for the GKM observations. The first is located south of the
GKM at Backofen-Riedwiesen, Brühl (49.41 °N, 8.51 °E), and the second is located in the west at
Kiefweiher, Altrip (49.44 °N, 8.45 °E). Both options provide an unobstructed view of the GKM’s
chimneys from a distance of 3 km to 4 km. The wind direction forecast determines the best obser-
vation spot since favorable conditions drive the plume perpendicular to the camera’s line of sight.
The camera observed the GKM on 12 days between 2021 and 2023. Since the GKM operates
unit 9 preferentially, the camera observes unit 9 on 10 of these days. From early 2022, the wind
LIDAR was available for the observations and positioned near the camera.

Prior to the measurements, the camera’s roll angle is levelled using the AHRS. The camera is
then tilted such that its vertical FOV covers primarily the blue sky, and only the tips of the chim-
neys are visible in the lower part of the image. The horizontal FOV extends from approximately
1° upwind of the chimney to up to 20° downwind of the chimney. Thus, the FOV contains the
plume, upwind frames for reference spectra, and the blue sky background for the matched filter
retrieval. The chimney tip serves as a landmark for calculating the camera’s VEA and VAA in all
pixels. Typical exposure times range between 8 ms and 20 ms. Every frame co-adds 5 to 10 indi-
vidual exposures, such that a typical scan of 10° takes 40 s to 90 s. At the observing distance, the
spatial resolution of the image is 2 m to 3 m. Table A.4 lists information on all days of observa-
tions, including the camera settings.

Observations were planned according to the weather forecast. Ideal conditions feature a clear
sky to ensure scene homogeneity for the matched filter retrieval. Condensation in the exhaust
plume prevents the CO2 retrieval in affected pixels. Thus, the ambient temperature should be
high enough to prevent water condensation in the plume. Finally, stable wind directions over
the observation period are favored since relocating between the observation spots takes about 2 h.
Since the campaigns at the GKM are a proof-of-concept study for CO2 observations, the weather
conditions requirements were relaxed on some days to test the limits of the method. Therefore,
the measurement conditions prevented successful CO2 retrieval or emission inversion on several
days. Common problems were condensation in the plume or scene heterogeneity due to clouds or
aerosols. As described above, preventing such problems requires sunny and warm days. Renew-
able energy, like solar power, produces cheaper energy than coal-fired power plants. Thus, the
GKM reduces its power production or even shuts down on such days, preventing plume observa-
tions. In the end, observations from five of the 12 days were suitable for evaluating the developed
method. From the other seven days, two suffered from low emissions, two from unfavorable wind
directions, and three from scene heterogeneity. Table A.4 includes a short description of the ob-
servation conditions for all days.

6.1.2 A Priori Data

Both the retrieval and the inversion require a priori information about the atmosphere and the
power plant. The operator of the GKM kindly provided proprietary information about the power

96



6.1 Grosskraftwerk Mannheim

Figure 6.1: Bottom-up emission estimate for unit 9 of the GKM on March 26, 2022. The emissions follow
from the instantaneous power production and the emission factor of 722 gCO2 kWh−1 for unit 9. The
colored time span shows the time of the observations. Every color represents a different averaging interval,
for which the mean bottom-up emissions are shown.

plant for the days of observations. The data includes 10 m meteorological observations at the
power plant, consisting of wind speed and direction, temperature, pressure, and relative humidity.
Furthermore, operational data of the power plant is available, including the coal consumption,
the exhaust volume flow rate at the chimney top, the chimney tip diameter, and the exhaust gas
temperature. Both the meteorological and operational datasets have a resolution of 1 min. Similar
information can be taken from literature, e.g., Pregger and Friedrich (2009), in case such data is
unavailable. However, the data from the operator is more reliable and specific to the GKM. It
provides coinciding information to the camera observations, which is not the case for literature
data. Table A.5 lists the a priori information for each observation period detailed in Section 6.2,
taken as the mean value of the available data.

The instantaneous power production of the GKM provides a bottom-up estimate of the CO2

emissions using the emission factors from Section 6.1. The GKM proprietary data includes the
power production of unit 9 but not for the other units. Four of the five observation days target
unit 9. Only on May 13, 2022, unit 6 was observed since unit 9 malfunctioned. The Fraunhofer-
Institut für Solare Energiesysteme (ISE) allocates German power plant energy production with
15 min resolution. Since the GKM data shows that unit 6 was the only operational unit on May
13, 2022, we use the ISE data to estimate the CO2 emissions of unit 6 on that day. These high-
resolution and site-specific emissions serve as a validation opportunity for the inversion results.
Figure 6.1 shows an example of the bottom-up emission estimate for the observation periods.

Wind information is available from both the GKM data and the LIDAR observations. Typi-
cal observations at chimney height show a wind speed of 3 m s−1 to 8 m s−1 with hourly standard
deviations of 0.9 m s−1. The LIDAR data covers all observation days except September 8, 2021.
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Table 6.1: The first three columns list the time (UTC) interval of the observations, the unit number of the
power plant that was observed, and if the Windranger 200 was available. Column 5 lists the camera’s mean
VAA, approximately aligning with north (N) or east (E), and column 6 lists the distanceD to the observed
unit. Columns 7 and 8 list the AERONET AOD at 2000 nm and the asymmetry parameter (g) of the
scattering phase function. Column 9 lists if condensation was observed in the plume. For more detailed
atmospheric conditions, see Tables A.4 and A.5.

Date & time Unit LIDAR VAA [°] D [m] AOD g Cond.

2021-09-08 12:13 - 16:36 9 No 347 (N) 3183 0.012 0.82 No
2022-03-23 14:51 - 17:36 9 Yes 94 (E) 3760 0.022 0.78 Yes
2022-03-26 13:31 - 17:36 9 Yes 347 (N) 3179 0.035 0.77 Yes
2022-03-28 15:35 - 16:28 9 Yes 91 (E) 3760 0.063 0.76 Yes
2022-05-13 12:21 - 15:39 6 Yes 333 (N) 4098 0.065 0.76 No

The a priori wind data for September 8, 2021, follows from scaling the GKM wind speed to the
chimney height using Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data (In-
ness et al., 2019). Figure A.8 shows the CAMS scaling and a typical wind LIDAR profile. Since the
emission inversion simultaneously retrieves the wind field, these observations provide a starting
point for the inversion grid.

Calculating the UAS for the matched filter employs the atmospheric aerosol content. The clos-
est AERONET station to Mannheim is located in Karlsruhe, Germany (49.10 °N, 8.44 °E). It
provides the daily mean AOD at 2000 nm and the asymmetry factor of each observation day.
Thus, the UAS generation of the matched filter retrieval utilizes the daily aerosol information for
the solution of the RTE. However, the AERONET station is located 50 km south of the GKM.
Since AOD may vary significantly over such distances, the AERONET data may not represent
the aerosol load at the GKM. Table 6.1 lists the AERONET parameters for all observation days.
Furthermore, it lists the observed unit, mean VAA of the camera, the target distance, and whether
condensation occurred in the plume.

6.2 Image Processing

Each observation day provides several hundred scans, which are preprocessed according to Sec-
tion 3.1. In contrast to the CH4 observations presented in Chapter 5, the SNR in single scans is
too low to retrieve CO2 column enhancements. The high atmospheric background concentra-
tion of 420 ppm means that the additional absorption signal of the plume is small. Therefore, the
CO2 retrieval requires averaging of the scans to increase the SNR in the observation. Section 6.2.1
describes the averaging and the generation of a plume condensation mask. Section 6.2.2 compares
the CMF to the DMF retrieval approach for several examples. Finally, Section 6.2.3 describes the
process and settings of the emission estimation.
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Figure 6.2: Panel a) shows the saturation of a single image. The red border surrounds pixels showing an
enhanced saturation, either from reflectance at the chimney or condensation in the plume. Panel b) shows
the saturation of the averaged image. The colored lines mark the areas to which a certain fraction of the
scans have contributed. The black line marks a manual mask excluding the tip of the chimney. Note that
the averaged image has dimensions of VEA and VAA, while the single scan has dimensions of line and
frame. Plot adapted from Knapp et al. (2023b).

6.2.1 Averaging and CondensationMask

The CO2 retrieval operates on averaged scans from 50 min to 90 min. All scans are scanned vi-
sually for corruption, e.g., due to obstacles in the FOV or a significant change in cloud coverage.
Only scans passing the visual inspection proceed to the averaging. Emission plumes may show
condensation due to co-emitted water vapor in the early stages of the plume development, de-
pending on the ambient conditions. The condensation is visible as a white cloud in the plume
and significantly changes the photon path length in the plume. Thus, evaluating this part of the
plume would lead to large uncertainties in the retrieval. A plume condensation mask identifies and
excludes these pixels from further processing. Figure 6.2 illustrates the principle of the conden-
sation mask. Since condensation increases the saturation of the observed spectrum significantly
compared to the blue sky background, the mask is generated from the saturation of the images.
The pixel saturation Sjk is defined as the maximum of the spectrum Ljk in the pixel at frame j
and line k, i.e., Sjk = max

channel
(Ljk). The blue sky background saturation follows from

Bjk = med
j

(Sjk) ·

 med
k

(Sjk)〈
med
k

(Sjk)

〉
j


⊺

, (6.3)

where med is the median and ⟨·⟩j is the mean over the scan. Equation (6.3) is the outer product
of the saturation median along the frames and the normalized median along the lines. Thus,Bjk
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represents a smoothed background saturation of the image. The use of the median asserts that the
exceptionally high saturation of condensation pixels does not influence the calculation of Bjk.
The mask identifies condensation pixels by subtractingBjk from the image saturation Sjk. Each
pixel deviating by more than 3σ from the residual distribution is identified as a condensation
pixel. Flagged pixels in a scan do not contribute to the averaged image. If less than 90 % of scans
contribute to a pixel in the averaged image, the pixel is removed from the retrieval. This procedure
assumes that condensation affects only a small fraction of a scan.

DMF retrieval algorithms require dividing each spectrum by a reference. The referencing of
each spectrum within a line to the background spectrum is performed for each scan individually,
before averaging the scans. Thus, the background spectrum is specific to the situation of every
scan. It is taken as a 20-frame mean upwind of the source.

6.2.2 CarbonDioxide Observations

The following section describes the CMF and DMF retrieval performance for the CO2 plume
observations. Figure 6.3 illustrates how an increasing averaging period improves the plume obser-
vation as more pixel enhancements exceed the detection limit. Averages from 50 min to 90 min
provide a good compromise between the plume observation quality and the temporal resolution
of the emission estimates for the presented cases. The matched filter retrieval of the averaged im-
age employs a UAS LUT generated from daily AERONET data as described in Section 4.1.5. It
uses the observation mean SAA and SZA and the pixel-specific VAA and VEA to compute the
UAS. Knapp et al. (2023b) describe observations using the DMF retrieval, while the comparison
to CMF retrievals is added here to underline the performance difference.

Seven of the 12 observation days were not suitable for emission estimates. Figure A.10 shows
two example plumes excluded from further processing due to unfavorable wind and scene hetero-
geneity. Panel a) shows an observation on September 6, 2021, where the plume rises straight from
the chimney to approximately 350 m height before seemingly turning left. Slow winds or wind
directions parallel to the camera’s line of sight cause the plume to rise vertically in the image. It
is impossible to discern plume transport from these observations, and the forward model cannot
accurately replicate the plume’s shape. Panel b) shows an observation on March 24, 2022, where
the plume is only visible close to the plume and subject to significant striping. Again, the plume
shape is indiscernible, making an emission estimation impossible.

The five days chosen for further processing cover a range of observation conditions. The con-
ditions were fine on June 8, 2022, with clear skies and a priori observation angles of (−53 ± 13)°.
However, the sky became increasingly dark and heterogeneous in the afternoon, causing the re-
trieval noise to increase. On March 23, 2023, significant condensation in the early stages of the
plume and an acute observation angle (33 ± 28)° posed challenges to the retrieval. March 26,
2023, again showed favorable conditions. The ambient temperature increased steadily, reaching
20 °C around 14:30 UTC. While condensation prevents a plume observation before this time,
the following two periods yield a discernible plume of connected enhancements above the detec-
tion limit. A Sahara dust event increased the aerosol load on March 28, 2023, causing the sky to
be hazy and relatively bright in the shortwave infrared. Finally, the camera observed power plant
unit 6 instead of unit 9 on May 13, 2023, under fair weather and favorable wind.

100



6.2 Image Processing

Figure 6.3: Improvement of the plume observation with increasing temporal averaging using the DMF. All
observations are from September 8, 2021, starting at 12:13 UTC. The averaging period is in each panel’s
title and increases from left to right. CO2 enhancements above the detection limit are colored yellow to
red, and a black border marks the observation plume mask. Enhancements outside the mask but above the
detection limit are shown slightly transparent. The observed plume becomes clearer with each increase in
temporal averaging.

Figure 6.4 shows retrieved CO2 enhancements using the CMF and DMF for March 26 and
May 13, 2023. The days illustrate how the DMF outperforms the CMF retrieval. Enhancements
exceeding the 2σ detection limit are potential plume pixels. The observation plume mask is the
largest contiguous area of such pixels. The CMF retrieval is prone to striping, visible as vertical
lines in the images. Panels a) and b) in Figure 6.4 illustrate how the CMF retrieval may fail to iden-
tify faint plumes due to striping or a low SNR. While the CMF is capable to identify CO2 plumes,
the DMF retrieval mitigates the striping and identifies larger parts of the plume (Figure 6.4, panels
c) and d)). Figure 6.5 shows the SNR of the CMF and DMF retrievals for the two days shown in
Figure 6.4. The histogram compares SNR values from the observation plume mask of the DMF
retrieval. Thus, the DMF histogram contains no SNR values below two since this serves as the
plume masking threshold. Note that the SNR reaches similar values for CO2 in hourly averaged
spectra as for CH4 in single scans (see Figures 5.5 and 5.10). While the CMF can still identify
most of the plumes in the presented observations, the DMF retrieval performs persistently better
regarding SNR and observed plume size. Furthermore, striping is particularly problematic for
emission estimates using plume fitting, as the striping signal is not included in the forward model.
Thus, the DMF retrieval is the preferred method for the CO2 observations.

Figure 6.6 shows the DMF retrievals for all five observation days, yielding 11 plumes images.
All observations show an evident plume beginning at the chimney. The ambient wind carries
the plumes downwind as they rise and disperse. As the images are long-term averages, turbulent
features are blurred out in the ensemble, similar to, e.g., volcanic plume observations in Woitischek
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Figure 6.4: Comparison of the CMF and DMF retrieval performance. Panels a) and b) show observations
from May 13, 2022, between 12:21 and 15:39 UTC. Panels c) and d) show observations from March 26,
2022, between 15:56 and 17:36 UTC. The left panels, a) and c), show the CMF retrieval results, while
the right panels, b) and d), show the DMF retrieval results. The images show enhancements above the 2σ
detection limit. The DMF enhancements show overall higher enhancements, less striping, and a larger and
more realistic plume shape. Colors from yellow to red indicate increasing CO2 column enhancements.
The pixel brightness is shown in blue (dark) to white (bright). Missing values result from manual masking
or condensation.

et al. (2021b). Plume observations in March 2022 show missing pixels close to the chimney due
to condensation, and the plume on May 13 shows a stripe-like pattern in the plume mask. These
observations are included to illustrate the limitations of the method.

6.2.3 Emission Estimation

A Gaussian plume inversion yields an emission estimate for each plume in Figure 6.6. Section 4.2.2
describes the inversion method in detail. Figure 6.7 gives an overview of the evaluation process of
CO2 emission estimates. For each ambient wind speed in the parameter space, the IBJpluris model
of Janicke and Janicke (2001) calculates the plume shape. The wind LIDAR observations provide
an adequate initial range for the parameter grid, yet the grid is expanded if the inversion yields no
minimum in the initial range. The meteorological and proprietary data of the GKM provide all
further information required by IBJpluris specifically for the observation period. Table A.5 lists
the a priori data used for the plume generation. The inversion minimizes theχ2

r -distance between
the observed plume and the simulated plumes. The brute-force grid samples theχ2

r -surfaces with
step sizes of 0.2 m s−1 to 0.3 m s−1 for the ambient wind speed, 5° for the wind direction, 0.1 for the
emission scaling kc, and 0.1 - 0.4 for the plume width scaling kb. Since kc represents the emission
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Figure 6.5: Comparison of the SNR of the retrievals in Figure 6.4. Panel a) and b) show data from May 13
and March 26, 2022, respectively. The DMF retrieval shows a higher SNR for all observations. The SNR
is taken from all pixels in the observation plume mask of the DMF retrieval.

estimate, it is sampled a final time in 0.01 steps at the optimal parameters (k̂b, ûa, ϕ̂) to improve
the emission estimate given the other three parameters.

Seven plumes from three days fulfill the requirements for the inversion procedure. On Septem-
ber 08, 2021, March 26, and 28, 2022, measurements yielded clear plume observations with lit-
tle to no condensation and favorable wind conditions. Plume observations show comparatively
small plumes after 14:24 UTC on September 8, 2021, and before 15:55 on March 26, 2022. The
small plume sizes were caused by low background brightness and power plant activity, respec-
tively. However, a visual inspection reveals no obvious non-compliance with the Gaussian plume
shape assumption. Low wind speeds of ûa = 1.4 m s−1 and a high aerosol load on March 28,
2022, cause slow transport of the emitted CO2 and a bright background illumination. Thus, the
observation reveals a particularly large plume. The plume observation is coarsened to constrain
the computational cost by averaging two by two neighboring pixels.

The plume images collected under unfavorable conditions on March 23 and May 13, 2022, are
particularly well-suited to illustrate the method’s limitations. On March 23, 2022, an acute ob-
servation angle reduces the apparent plume size due to the unfavorable projection. Furthermore,
condensation removes a considerable part from the early stages of the plume. Thus, the observa-
tion contains fewer pixels to inform the inversion. On May 13, 2022, wind conditions were fa-
vorable with 5.5 m s−1 at 62° observation angle, and the AOD was comparatively high with 0.065
at 2000 nm. However, the observed plumes show two enhancement patches, one above and one
below the expected plume shape. Figure A.9 shows the retrieved image between 12:21 and 14:01
UTC on May 13, 2022. The stripe-like patches follow the background saturation and cause en-
hanced patches in the plume edges. Scene heterogeneity may cause such features, similar to sur-
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Figure 6.6: Plume images for all periods of the five observation days. The images share the yellow to red
colorbar for the CO2 column enhancements. The blue (dark) to white (bright) color in the background
shows the pixel brightness. The white rectangular shapes in the lower part of the images are masks excluding
the chimney tip. Plumes as shown in Knapp et al. (2023b).
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Figure 6.7: Flowchart of the CO2 emission estimation technique. The IBJpluris model of Janicke and Janicke
(2001) models a plume shape given the input parameters from the GKM and a range of wind speeds. The
wind LIDAR provides a priori wind information. The averaged observation image is used as input for
the matched filter retrieval, which operates with an observation-specific UAS. The inversion scans over a
parameter grid in a brute-force manner. The emission estimate is given by minimumχ2

r distance. Processes
are yellow, settings are orange, (interim) results are red, and internal and external data are blue and green,
respectively.

face albedo variations in top-down measurements. Irrespective of the origin of these artifacts, the
Gaussian model cannot represent these patterns.

Mass balance methods like the IME or XSF do not rely on the observation complying with
a model assumption. Obvious enhancement artifacts from scene heterogeneity can be removed
via visual inspection, avoiding a systematic bias. However, there are several shortcomings to the
mass balance methods. Plume parts lost below the detection bias the emission estimate low. The
Gaussian plume model enables an estimate of the plume mass lost to the detection limit. Mass
balance methods use the observed mass inside a plume mask, as done for CH4 in Chapter 5. The
model informs on the mass outside the plume mask. Only the frames containing the plume are
used for the IME and XSF calculations. The lost mass fraction is the ratio of the total simulated
mass to the observed mass in these frames. Typical lost mass fractions fall between 20 % and 25 %
for the larger plume observations but may reach up to 46 % for fainter plumes like on March 26,
2022, 14:44 - 15:55 UTC (Figure A.11). Applying mass balance techniques to the CO2 observa-
tions will underestimate the emissions by the same amount. Furthermore, mass balance methods
require knowledge on the plume’s flow direction and speed. The wind LIDAR delivers the neces-
sary information for the CH4 emission estimates since it observes the wind field at plume height
at a distance of 1 km. However, the CO2 plumes extend above the wind LIDAR range since the
chimneys of the GKM are 180 m (unit 9) and 200 m (units 6 - 8) high. The thermal plume rise in
the early stages of the plume development further complicates mass balance methods. At a plume
cross-section, the IME requires the time since the emission and the XSF the plume velocity per-
pendicular to the travel direction. Both quantities are hard to compute reliably for the observed
bent-over plume shapes. In fact, it also requires fitting a model to the observations. Thus, the
Gaussian plume inversion is the preferred emission estimation method for the presented CO2

observations.
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Figure 6.8: Correlation plot of the expected and retrieved emissions. The dotted line marks the 1:1 line.
Each color represents a day: September 8, 2021 (blue), March 23, 2022 (yellow), March 26, 2022 (green),
March 28, 2022 (orange), and May 13, 2022 (pink). The symbols represent observation periods. Solid
markers denote days with favorable and open markers denote days with unfavorable conditions. Adapted
from Knapp et al. (2023b).

6.3 Comparison to Validation Data

The optimal parameter set from the Gaussian plume inversion yields a retrieved emission esti-
mate for each plume observation. Table 6.2 lists the parameters and the corresponding retrieved
and expected power plant emissions. The GKM dataset provides precise knowledge of the power
plant’s energy production. Thus, the correlative bottom-up emissions serve as validation data for
the retrieved emissions. Figure 6.8 shows the correlation plot for the emission values. Observa-
tion conditions have been favorable in seven of 11 plume observations. The retrieved emissions
from these plumes show an overall reasonable agreement with the expected emissions. On aver-
age, they amount to 84 % of the expected emissions and have a relative uncertainty of 24 %. Five
of the seven observations agree with the expected emissions within their uncertainties. The power
plant emissions increased during the observation period on March 26, 2022, from 223 tCO2 h−1

to 445 tCO2 h−1 between 14:44 - 15:55 and 15:56 - 17:36 UTC. The emission estimates from the
plume observations follow the source variability, indicating that the method can observe diurnal
changes in emission rates. The March 28, 2022, observation provides a preliminary lower limit
for the wind speed necessary for the method to work. It agrees with the expected emissions at an
ambient wind speed of ûa = 1.4 m s−1. Observations on September 8, 2021, between 14:24 and
16:35 UTC, agree with the expected emissions within the uncertainty range, while observations
between 12:13 and 14:23 UTC underestimate the expected emissions. The estimated observation
angle ϕ̂ is between -35° and -30° for these observations. This angle is significantly steeper than the a

priori observation angle of (−53 ± 13)°, which was derived from ERA5 data since there is no wind
LIDAR data on September 8, 2021. Observations on March 23, 2022, indicate that acute obser-

106



6.3 Comparison to Validation Data

Table 6.2: Column one lists the observation time period, and column two the expected emissions
Eexp [tCO2 h−1] (Section 6.1.2). The retrieved emissions Eret are listed in column three, with the uncer-
tainty range in parentheses. Columns four to seven give the optimal inversion parameters k̂c, k̂b, ϕ̂ [°], and
ûa [m s−1]. Note that k̂c is the relative scaling between retrieved and expected emissions, i.e., it represents
the relative deviation. The last column shows the minimum χ2

r for each observation.

Date & time Eexp Eret k̂c k̂b ϕ̂ ûa χ̂2
r

2021-09-08
12:13 - 13:15 576 352 [271 to 438] 0.61 [0.47 to 0.76] 1.5 -34 8.3 1.88
13:17 - 14:23 576 444 [346 to 536] 0.77 [0.60 to 0.93] 1.8 -30 10.4 3.24
14:24 - 15:26 576 553 [415 to 755] 0.96 [0.72 to 1.31] 1.8 -35 7.6 0.66
15:27 - 16:35 587 475 [346 to 640] 0.81 [0.59 to 1.09] 1.9 -25 9.2 0.65

2022-03-26
14:44 - 15:55 223 223 [160 to 303] 1.00 [0.72 to 1.36] 2.0 -131 3.4 0.30
15:56 - 17:36 455 414 [310 to 533] 0.91 [0.68 to 1.17] 1.4 -116 3.8 0.62

2022-03-28
15:35 - 16:28 479 393 [292 to 518] 0.82 [0.61 to 1.08] 1.9 -65 1.4 0.85

2022-03-23
14:51 - 16:13 576 173 [133 to 225] 0.30 [0.23 to 0.39] 1.2 15 5.7 1.34
16:14 - 17:36 579 486 [382 to 637] 0.84 [0.66 to 1.10] 1.8 65 3.9 1.24

2022-05-13
12:21 - 14:01 364 517 [379 to 663] 1.42 [1.04 to 1.82] 7.0 40 6.2 1.77
14:02 - 15:39 235 369 [277 to 463] 1.57 [1.18 to 1.97] 7.0 85 6.6 3.00

vation angles may cause emission underestimation, which might also apply to the observations on
September 8, 2021. Potential sources of systematic errors in the retrievals are background hetero-
geneity of the scene, CO2 features in the image region of the reference spectrum, or assumptions
in the unit absorption spectrum calculations like aerosol content.

Figure 6.8 shows that observations taken under challenging conditions do not agree with the
bottom-up estimates of the power plant emissions. Two plume observations from March 23,
2022, illustrate the effect of acute observation angles and condensation. The wind LIDAR pro-
vides an a priori observation angle of (33 ± 30)° and (33 ± 25)° for the observation between 14:51
and 16:13 UTC and 16:14 to 17:36 UTC, respectively. The ideal fitting parameter ϕ̂ = 15° for
the earlier observation agrees with the a priori value, but the retrieved emissions underestimate
the expected emissions significantly by 70 [61 to 77] %. The later observation agrees with the ex-
pected emissions, yet the retrieved observation angle of 65° is inconsistent with the LIDAR ob-
servations. The results indicate that acute observation angles and plume condensation limit the
applicability of the method. Thus, both features may serve as filter criteria in future observations.
Plume observations on May 13, 2022, do not comply with the Gaussian plume assumption due
to stripe-like features close to the plume. Retrieved emissions significantly overestimate the power
plant emissions for both observations. The stripes appear at the plume edges, causing an overesti-
mation of the width scaling factor kb. Typical values for kb range between 1.2 and 2.0, while they
reach 7.0 for both plumes on May 13, 2022. The forward model compensates for the stripes by
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increasing the overall observed mass, attributing higher emissions to the source. In this case, the
non-compliance of the observations with the Gaussian plume shape could be identified, and the
emission estimates excluded from the validation. However, in other cases, the effect might be too
small to be recognized visually but still large enough to propagate in the emission estimate.
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7 Conclusions andOutlook

This work presents ground-based observations of atmospheric CO2 and CH4 plumes using a sta-
tionary HySpex SWIR-384 spectral camera. It comprises a complete processing chain for estimat-
ing point source emissions from raw hyperspectral data. Proof-of-concept field studies at sources
of CO2 and CH4 demonstrate the method’s capabilities. The stationary camera allows for re-
peated observation of the same source with a temporal resolution of approximately one minute,
yielding several hundred hyperspectral images per day. A statistical retrieval enables quantifying
atmospheric enhancements of CO2 and CH4 in emission plumes. Emission estimates based on
plume images provide time series with hourly (CO2) to sub-hourly (CH4) resolution. Particular
advantages of the described methods are (a) a high specificity to the target gas by spectroscopically
resolving the absorption features, (b) imaging capability enabling unambiguous source attribu-
tion, (c) operating distances spanning the kilometer scale, and (d) observation of diurnal and day-
to-day emission variability of the source. Additionally, all required instruments fit inside a single
car and can operate on batteries for a full day, allowing for flexible target selection.

Incorporating stationary imaging of atmospheric CO2 and CH4 into existing greenhouse gas
observation techniques enhances Monitoring and Verification Support (MVS) capabilities for
greenhouse gas emissions. The methods developed in this study provide complementary infor-
mation to snapshot images obtained from aircraft and satellite platforms, enabling emission esti-
mates on shorter time scales and, particularly for CH4, in conditions characterized by cloud cover.
Additionally, imaging CH4 plumes in the SWIR spectral range complements established meth-
ods, such as put forward by Gålfalk et al. (2016) and Zimmerle et al. (2020), which rely on the thermal
contrast of the gas. The observations made possible by this technique facilitate the estimation of
CH4 source variability on time scales ranging from minutes to days. The presented technique
enabled ground-based imaging of CO2 emission plumes for the first time. It allows for estimat-
ing hourly emissions of strong point sources under favorable observation conditions. Thus, this
work demonstrates promising results in fulfilling remote sensing needs for measuring greenhouse
gas fluxes (Bastviken et al., 2022). Ground-based emission estimates may serve to validate snapshot
images and offer insights into the accuracy of their instantaneous source flux estimates concern-
ing source variability and intermittency. The application of remote sensing at the kilometer scale
extends the array of potential targets to include hard-to-reach sources, such as volcanoes or re-
stricted areas. Operating at ill-constrained sources holds the potential for independent emission
verification, providing valuable contributions to bottom-up inventories in the future. For exam-
ple, Wang et al. (2024) point out systematic underestimation of landfill CH4 bottom-up emissions
and their potential for low-cost abatement. Moreover, imaging local sources could be a valuable
tool to increase public awareness of local emissions and promote emission reduction measures
(Jungmann et al., 2022). The following paragraphs outline the development of the retrieval and the
results from the proof-of-concept studies at CO2 and CH4 point sources.
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7 Conclusions and Outlook

The first methodological development of this thesis concerns quantifying atmospheric col-
umn enhancements of CO2 and CH4 in image pixels containing an emission plume. A lin-
earized matched filter algorithm exploits molecular absorption features of CO2 and CH4 around
2.0 μm and 2.3 μm, respectively. The method incorporates various refinements from the litera-
ture, namely an iterative scheme from Foote et al. (2020) to improve accuracy and a robust plume
masking from Roger et al. (2023a) in cloudy conditions. However, the matched filter requires ad-
ditional adaptations due to the horizontal viewing geometry. First, the target signature depends
significantly on the observation geometry. Thus, the developed matched filter employs a pixel-
specific target signature based on the camera’s FOV. Second, retrieving ground-based observations
requires the whole image for sufficient background statistics, while airborne applications usually
treat lines independently to reduce striping. A differential matched filter (DMF) mitigates this
effect in the presented data. The DMF outperforms the classic matched filter regarding SNR and
observed plume size in all observation conditions, especially in homogeneous, clear skies.
Potential future methodological advancements include refinements in the retrieval and target sig-
nature calculation. Log-normal matched filter approaches, such as those presented by Pei et al.
(2023), may improve accuracy, particularly in pixels with high optical depths. Furthermore, the
target signature calculation could benefit from refinements in the instrument characterization or
the radiative transfer description. Haveresch (2023) develops a physical inversion routine based on
the single-scattering solution of the RTE. This routine enables the simultaneous retrieval of ef-
fective aerosol parameters and atmospheric CO2 and CH4 column concentrations. Processing
hyperspectral images on a pixel-by-pixel basis is more computationally expensive than using the
matched filter. The physical retrieval is favorable for complex scenes, such as co-emitted aerosols,
which are inherently challenging for matched filter retrievals. Combining complementary aspects
from statistical and physical retrievals, such as providing the spectral sample covariance matrix to
the physical inversion, has shown promising results in reducing the correlation of CH4 enhance-
ments and background heterogeneity (Hochstaffl et al., 2023).

The thesis expands on CH4 emission time series from coal mine ventilation shafts previously
published in Knapp et al. (2023a). A co-located wind LIDAR provides precise wind information
for emission estimates based on mass balance methods. Favorable conditions comprise a clear sky
and wind speeds above approximately 2 m s−1 perpendicular to the camera’s line of sight. How-
ever, the method successfully identifies emission plumes from single scans in clear-sky and cloudy
conditions. The dataset comprises 2660 quality-filtered plume images captured over eight days
with varying observation conditions. Single-scan emission estimates show relative uncertainties
between 10 % and 18 %. Higher uncertainties coincide with background heterogeneity, low wind
speeds, or unfavorable wind direction. In order to discern the emission variability of the source
from turbulent transport features, averaging the emission estimates over several scans becomes
necessary. The temporal resolution varies between 10 min and 232 min. Considering this, rolling-
averaged emission estimates are between 34 % and 55 % lower or higher than the daily mean. How-
ever, always scanning against the wind direction will reliably push the temporal resolution to its
lower limit in future applications. The daily estimates of CH4 emissions from the observed coal
mine shaft range from 1.56 tCH4 h−1 to 4.57 tCH4 h−1. The source strength is consistent with
previous studies (Luther et al., 2019; Andersen et al., 2021; Swolkień et al., 2022) and the observed
variability emphasizes the added value of temporally resolving the emissions. Preliminary com-
parisons with coinciding in-situ observations indicate that day-to-day variability is similar, but in-
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situ emission estimates are consistently higher than camera measurements and exhibit less diurnal
variability. Further investigation and extended side-by-side observations are required to under-
stand the differences between the two methods better.
Future deployments at CH4 sources include a controlled release experiment to validate the method
against well-known bottom-up emissions. Furthermore, other CH4 sources like the oil and gas
sector (Bhardwaj et al., 2022; Foulds et al., 2022) and landfills (Cusworth et al., 2020; Kumar et al., 2023)
also show considerable emission variability and are potential targets for stationary imaging. Dif-
fuse sources like landfills may not produce a distinct enhancement plume, yet mass balance tech-
niques independent of plume masking, such as divergence methods (Liu et al., 2021; Chulakadabba
et al., 2023), can effectively overcome such challenges.

Repeated ground-based observations of a localized CO2 source enable imaging of the emis-
sion plume (Knapp et al., 2023b). Proof-of-concept observations come from a medium-sized coal-
fired power plant in Mannheim, Germany, with an annual emission of approximately 4.9 MtCO2.
Plume observations of CO2 require averaging images over 50 min to 90 min to increase the SNR.
Temporal averages of plume observations allow fitting a Gaussian plume model to the observation
in good approximation. A newly developed forward model based on bent-over Gaussian plume
shapes simulates a plume observation. An inversion minimizes the χ2

r -difference between sim-
ulated and observed plumes, providing the best estimate of the source emissions. As expected,
the method is sensible to non-compliance of the observation with Gaussian model assumptions,
e.g., striping or background artifacts. However, plume observations with stable, homogeneous
backgrounds typically comply with the assumptions. Seven plume observations under such con-
ditions were recorded between 2021 and 2023. Temporally resolved bottom-up emissions based
on activity data supplied by the power plant’s operator serve as a validation opportunity for each
observation period. The estimated emission rates of these seven observations average 84 % of the
expected emissions with a mean relative uncertainty of 24 %. Thus, they agree reasonably well
with the expected emissions. Furthermore, measurements on March 26, 2022, indicate that the
retrieved emission estimates follow diurnal trends in the power plant’s bottom-up emissions.
Ongoing observation efforts at the power plant provide a growing dataset for methodological
refinements. Further development of the technique could provide independent verification for
CO2 emissions, especially for less well-known anthropogenic sources or natural sources such as
volcanoes.
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A Appendix

A.1 Appendix to Instrument Chapter

A.1.1 Detector Background

Each detector reading contains a background signal according to Equation (3.1):

DNzj = Nph,zj ·QEz · SF ·REzj +BGzj . (A.1)

The background contributionBG is due to a pixel dark currentDC and an offsetOS. It follows
for each detector pixel from

BG = SF · β(T ) · tint +OS , (A.2)

where β(T ) is a temperature dependent flux in photo-electrons per second and SF the scaling
factor of photo-electrons to digital numbers [DU]. Figure A.1 shows the dark current and off-
set for each detector pixel. The values follow from background observations of the camera with
increasing integration times. Background observations are detector readouts while the shutter of
the camera prevents ambient light from falling onto the detector. The times were chosen as mul-
tiples of the minimum frame period of 2.332 ms up to 13.992 ms. The background signal was
between 4000 DU and 12 000 DU. For each pixel, a linear fit following Equation (A.2) yields
OS and SF · β(T ). The retrieval of CO2 and CH4 uses the spectral interval above channel 190.
The background contributes an average of

OS = (2702 ± 569) DU (A.3)
SF · β(T ) = (541 ± 52) DU ms−1 (A.4)

to the signal in this detector area.

A.1.2 Bad PixelMask Generation

This section provides additional information on the extended bad pixel mask presented in Sec-
tion 3.1.2. A stable power supply provided 13.0 V and 2.1 A to four halogen lamps. The lamps
illuminate the integrating sphere’s interior. The system was allowed to stabilize thermally for two
hours prior to measurements. The detector temperature remained stable at 147 K during the mea-
surements. Each frame exposed the detector 4.7 ms to the light source. 150 scans of 200 frames
provide a 30 000 frames time series for each detector pixel. The technique is designed to find vari-
ability in the detector pixel response over several scans. Thus, the following steps are performed:
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Figure A.1: Panel a) shows the detector offset signal and panel b) the detector dark current. Both values
follow from a detector pixel-wise interpolation of dark signals.

Figure A.2: Panel a) shows the relative responsitivity matrix provided by NEO. Panel b) shows the bad pixel
mask, including the bad pixels identified by NEO (green) and additional bad pixels from the Institut für
Umweltphysik (IUP) (orange). Note that the additional pixel partly correspond with a circular feature in
the detector center that can also be seen in panel a).
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1. A Gaussian filter removes the frame-to-frame variability. This step removes noise from the
time series to observe a “baseline” of each pixel.

2. The integrating sphere is not perfectly homogeneous. Thus, every line observes a different
brightness. Furthermore, the detector sensitivity also introduces some residual spatial het-
erogeneity. All baselines are normalized by their temporal mean, correcting for integrating
sphere and detector pixel heterogeneity.

3. The integrating sphere’s brightness shows small temporal variability despite the stable power
supply. This source variability acts on all pixels identically. Thus, subtracting the median
signal in each time step from the normalized baseline corrects for source variability. Fig-
ure 3.5a shows this as “corrected signal”.

4. For each pixel, the standard deviation along the frames σ̃(channel, line) is computed. Tem-
porally stable detector pixels show only little remaining variability, since the previous steps
remove variability from noise and light source.

5. Higher signal channels show lesser standard deviations. Therefore, the instability is defined
with respect to the channel. Every channel exists in all 384 spatial lines. For each line, the
mean and standard deviation of σ̃ is computed.

6. The instability of Figure 3.5b is the number of standard deviation each pixel’s σ̃ deviates
from the channel’s mean.

7. The whole time series of 30 000 frames is divided into ten intervals. If the instability is
larger than five in at least half of the intervals, the corresponding pixel is considered bad.

Note that step 7 is included since the behavior of the detector pixels was not unambiguous. The
newly found bad pixels are likely to exhibit increased temporal variability but may also perform
“normally” over limited periods. Likewise, other detector pixels show erratic behavior in rare cases.
The procedure aims to minimize the contribution of flawed detector pixels to the image. How-
ever, striping in the matched filter retrievals indicates that flawed detector pixels still contribute to
the evaluation. The flawed detector pixel is usually easily identified from the (differential) spec-
trum. Manually excluding the pixel and repeating the retrieval is a feasible but cumbersome so-
lution. Figure A.2 shows the camera’s relative responsitivity matrix and the bad pixel mask. The
method identifies pixels in a circular shape in the detector center as bad. This feature is also visible
in the relative responsitivity matrix, indicating that the area differs from the remaining detector.
The stripe around channel 100 in the detector responsitivity results from an additional optical
filter on the detector.

115



A Appendix

A.2 Appendix toMethod Chapter

A.2.1 Matched Filter Derivation

This section provides more detailed derivations of the matched filter retrieval than Section 4.1.
There are several ways to derive the matched filter. It follows from maximizing the signal-to-
noise ratio, and a derivation can be found on https://en.wikipedia.org/wiki/Matched_filter

(accessed January 2024). This section will derive the matched filter from maximizing the likeli-
hood of an observation, using a similar approach as Foote et al. (2020). Furthermore, a derivation
using the normal equations following Rodgers (2000) is given. The latter helps to understand the
implementation of pixel-specific UAS and the iterative solution of the sparsity constraint. The
notation of this chapter follows Section 4.1.

From the Likelihood

The likelihood of an observation describes how likely it was to make this observation given a the-
oretical description. The theoretical description of the matched filter retrieval is a multivariate
Gaussian distribution with mean vector µ and covariance C. Furthermore, the model includes a
linear attenuation t scaled with the signal strength α in each pixel. As stated in Equation (4.8),
the likelihood of the retrieval is given by

L(L1, . . . ,LN |α⃗) = 1√
(2π)C det(C)N

· exp

(
−1

2

N∑
i=1

(Li − (µ+ αit))
⊺C−1(Li − (µ+ αit))

)
.

(A.5)

The closed-form solution of the matched filter follows from maximizing the observation’s likeli-
hood with respect to α⃗. Maximizing this likelihood is the same as minimizing the negative log-
likelihood:

ˆ⃗α =argmin
α

N∑
i=1

d
⊺
iC−1di (A.6)

di =Li − αit− µ . (A.7)
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The log-likelihood can be differentiated analytically to

0 = − ∇⃗α ln(L) (A.8)

= − ∇⃗α ln

(
1√

(2π)C det(C)N

)

+
1

2
∇⃗α

(
N∑
i=1

(Li − αit− µ)
⊺C−1(Li − αit− µ)

) (A.9)

= ∇⃗α

N∑
i=1

(Li − αit− µ)
⊺C−1(Li − αit− µ) (A.10)

The minimizer ˆ⃗α follows from minimizing the individual terms, i.e., finding α for each pixel.
Thus, the following holds for each pixel i ∈ N :

0 =
∂

∂α
(L− αt− µ)

⊺C−1(L− αt− µ) (A.11)

=− 2L
⊺C−1t+ 2µ

⊺C−1t+ 2αt
⊺C−1t (A.12)

=(µ−L)
⊺C−1t+ αt

⊺C−1t , (A.13)

leading to the CMF equation

αi =
(Li − µ)

⊺C−1t

t⊺C−1t
. (A.14)

From theNormal Equations

Consider a measurement vector L, which has dimensions pixels times channels (N × C). The
forward model describes each entry in a Lambert-Bert fashion, with a pixel-specific UAS. It can
be written as 

L11

L12
...

L1C

L21
...

LNC


= L = F (α⃗) =



µ1e
−α1s11

µ2e
−α1s12

...
µCe

−α1s1C

µ1e
−α2s21

...
µCe

−αNsNC


. (A.15)

The Taylor expansion of the forward model around α = 0 up to the linear term is

L = F (α⃗)|α=0 +

(
∂F

∂α⃗

)∣∣∣∣
α=0

α⃗ (A.16)

= µ′ +Kα⃗ , (A.17)
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where the vector L contains the observed spectra in all pixels, the vector α⃗ contains the enhance-
ments in all pixels, and µ′ repeats the mean radiance vector µ N times for dimensional consis-
tency. Note that vectors of dimensionN × C (spatial pixels times channel) are written bold and
vectors of dimensionN use the vector arrow. The weighting function matrix K is given by

K =



−µ1s11 0 · · · 0
−µ2s12 0 · · · 0

...
...

...
...

−µ2s1C 0 · · · 0
...

... . . . ...
0 0 · · · −µCsNC


(A.18)

≡



t11 0 · · · 0
t12 0 · · · 0

...
...

...
...

t1C 0 · · · 0
...

... . . . ...
0 0 · · · tNC


(A.19)

dim(K) = NC ×N , (A.20)

with tiz ≡ −µzsiz , where i is the pixel and z the channel.
Defining the “data vector” y as y = L− µ′, the forward model assumes the form

y = Kα⃗ , (A.21)

which is the well-known form of a linear system. Since y is subject to uncertainties, K is not triv-
ially invertible. The matched filter assumes that the measurements are prone to a multivariate nor-
mally distributed error with expected value 0 and covariance matrixC in each pixel. Furthermore,
the pixels are assumed to be independent, such that the mean radiance vector µ,dim(µ) = C ,
and covariance matrix C, dim(C) = C × C , follow as the sample mean and sample covariance
of the observation. The error covariance matrix Sy therefore becomes

Sy =


C 0 · · · 0
0 C · · · 0
...

... . . . ...
0 0 · · · C

 , (A.22)

repeating C N times on the diagonal, i.e., assuming all observed spectra are prone to the same
error. The problem described above can be solved as a weighted least-squares problem, i.e., the
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optimal solution is the one that minimizes the residual distance of y and Kα⃗ in a least-squares
sense. Thus, the solution follows from

ˆ⃗α = argmin
α⃗

(y −Kα⃗)⊺S−1
y (y −Kα⃗) . (A.23)

This equation may be solved using the Cholesky factorization Sy = ZZ⊺:

(y −Kα⃗)⊺S−1
y (y −Kα⃗) = (y −Kα⃗)⊺(ZZ⊺

)−1(y −Kα⃗) (A.24)

= (Z−1y − Z−1Kα⃗)⊺(Z−1y − Z−1Kα⃗) (A.25)

≡ (ỹ − K̃α⃗)⊺(ỹ − K̃α⃗) (A.26)

= ||ỹ − K̃α⃗||22 . (A.27)

Building on the solution of the linear least squares problem (e.g., Aster and Thurber, 2013, Equation
2.3), the solution to the original problem is given by

ˆ⃗α = (K̃⊺K̃)−1K̃⊺
ỹ (A.28)

= ((Z−1K)
⊺Z−1K)−1(Z−1K)

⊺Z−1y (A.29)
= (K⊺S−1

y K)−1K⊺S−1
y y (A.30)

≡ Gy . (A.31)

The treatment of least-squares optimization allows propagating the measurement error covari-
ance Sy to the estimate of the parameters Sα:

Sα = GSyG
⊺ (A.32)

= · · · (A.33)
= (K⊺S−1

y K)−1 . (A.34)

Calculating the matrices in Equation (A.30) shows that the presented derivations of the matched
filter are consistent. The multiplication of

K⊺S−1
y =


t11 t12 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · tNC−1 tNC

×


C−1 0 · · · 0
0 C−1 · · · 0
...

... . . . ...
0 0 · · · C−1

 (A.35)
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yields a matrix that can be multiplied on a vector of lengthN × C , e.g., the measurement vector
y. It will result in a vector of the parameter vector sizeN that reads

K⊺S−1
y y =


∑C

j

∑C
i t1iC

−1
ij (L1j − µj)∑C

j

∑C
i t2iC

−1
ij (L2j − µj)
...∑C

j

∑C
i tNiC−1

ij (LNj − µj)

 =


t
⊺
1C−1y1

t
⊺
2C−1y2

...
t
⊺
NC−1yN

 , (A.36)

where yi denotes the spectral measurement in pixel i (minus the mean spectral vector) and ti the
corresponding target signature.
Calculating the remaining term of Equation (A.30) in analogy leads to

K⊺S−1
y K =


t
⊺
1C−1t1 0 · · · 0

0 t
⊺
2C−1t2 · · · 0

...
... . . . ...

0 · · · 0 t
⊺
NC−1tN

 , (A.37)

which is a diagonal matrix. Thus, it is trivially inverted to

(K⊺S−1
y K)−1

ii = (t
⊺
iC−1ti)

−1 . (A.38)

Note that this is the parameter error covariance matrix Sα as given by Köhler et al. (2015).
Solving the linear least squares problem for α⃗ leads to

ˆ⃗α =


(t

⊺
1C−1t1)

−1(t
⊺
1C−1y1)

(t
⊺
2C−1t2)

−1(t
⊺
2C−1y2)

...
(t

⊺
NC−1tN )−1(t

⊺
NC−1yN )

 , (A.39)

which is the classic matched filter in each pixel with a pixel-wise unit enhancement spectra.
It may be noted here that the matched filter follows a so-called “unity-gain constrained” in most
publications of greenhouse gas imaging. This constraint means a signal strength of one twill give 1
as the output. That is merely a design choice, and many applications of the matched filter provide
the signal-to-noise ratio as the result. Thus, the matched filter may read

αi =
(Li − µ)

⊺C−1t√
t⊺C−1t

, (A.40)

in some sources.
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The derivation via the normal equation allows a natural introduction of the sparsity constraint.
Foote et al. (2020) introduce it as a L0-regularization on the retrieved enhancements. Candès et al.
(2008) trace the L0-regularization from

ˆ⃗α = argmin
α

(
||ỹ − K̃α⃗||22 + ||α⃗||0

)
(A.41)

back to a L1-regularization

ˆ⃗α = argmin
α

(
||ỹ − K̃α⃗||22 + ||Lα⃗||1

)
(A.42)

with updating weights L. The matrix entries have the form Lii = α−1
i,m−1, wherem is the num-

ber of iterations. Aster and Thurber (2013, Chapter 7) provides several algorithms to solve a L1-
regularized least-squares problem. Choosing the Iterative Reweighted Least Squares (IRLS) algo-
rithm leads to

ˆ⃗α = argmin
α

(
||ỹ − K̃α⃗||22 + β||Lα⃗||1

)
(A.43)

with the regularization parameterβ. Following the derivation in the book and using the positivity
constraint on α, the solution to the constrained problem is given by

F (α⃗) = ||K̃α⃗− ỹ||22 + β||Lα⃗||1 (A.44)

∇αF (α⃗) = 2K̃⊺K̃α⃗− 2K̃⊺
ỹ + β∇⃗α

N∑
i,j

|Lijαj | L diagonal (A.45)

0 = 2K̃⊺K̃α⃗− 2K̃⊺
ỹ + β∇⃗α

N∑
i

|Liiαi| α positive (A.46)

0 = 2K̃⊺K̃α⃗− 2K̃⊺
ỹ + β∇⃗α

N∑
i

Liiαi (A.47)

0 = 2K̃⊺K̃α⃗− 2K̃⊺
ỹ + βdiag−1(L) (A.48)

⇒ ˆ⃗α = (K̃⊺K̃)−1(K̃⊺
ỹ − β

2
diag−1(L)) , (A.49)

where diag−1(L) is the N -dimensional vector consisting of the diagonal entries of L. This is
in agreement with the results of Foote et al. (2020) for β = 2. Since L depends on α⃗, again an
iterative solution is required. The initialization step computes α⃗ based on the classic matched
filter. Subsequently, L and α are updated iteratively until convergence. The MAG1C algorithm
exploits the iterative solution by simultaneously optimizing µ and C.
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A.2.2 ComboMatched Filter

Figure A.3: Comparison of the narrowband and broadband enhancements of the CoMF for all pixels inside
the plume mask. The data is taken from a clear (June 19, 2022, panels a+b) and a cloudy (June 13, 2023,
panels c+d) measurement day. With increasing enhancements, the broadband enhancement is systemati-
cally biased low against the narrowband enhancement in cloudy cases. The bias is insignificant for clear sky
conditions. This behavior is consistent for the CMF and DMF retrievals and also reported in Roger et al.
(2023b).
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A.2.3 Methane UAS
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Figure A.4: Unit absorption spectra of methane from 2050 nm to 2525 nm. Panels a) to c) show the depen-
dency on the viewing geometry. While one observation angle varies, the other two are fixed to SZA= 30°,
VEA= 10°, and ∆Φ = 180°.
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A.3 Appendix toMethane Chapter

A.3.1 The Péclet Number

The Péclet number is a dimensionless number used in transport phenomena. It follows, similar to
the Reynolds number, from a dimensional analysis of the transport equation (Brasseur and Jacob,
2017). The continuity equation (without sources) for a scalar quantity c and its flux j⃗ reads

∂c

∂t
+∇j⃗ = 0 . (A.50)

The advection-diffusion equation follows from the flux being the sum of an advective and a dif-
fusive term

j⃗ = v⃗c−D∇c , (A.51)

where v⃗ is the advection velocity andD is the diffusion coefficient. Thus, the continuity equation
becomes

∂c

∂t
+∇(v⃗ · c)−D∇2c = 0 . (A.52)

The dimensionless form of Equation (A.52) transforms each term to dimensionless numbers us-
ing characteristic values for each quantity. The Péclet number is defined as the ratio of the advec-
tive to the diffusive term

Pe =
∇(v⃗ · c)
D∇2c

=
u/L

D/L2
=
uL

D
, (A.53)

where L is a characteristic length scale and u a characteristic velocity. Figure A.5 illustrates the
temporal evolution of a scalar quantity c in a one-dimensional domain.
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Figure A.5: Illustration of the advection-diffusion equation. The temporal evolution of a scalar quantity c
is determined by an advection of u = 1 and a diffusion ofD = 0.01.

124



A.3 Appendix to Methane Chapter

A.3.2 PlumeMasking in Single Scans

The correct masking and subsequent identification of emission plumes in images is ongoing re-
search. Especially fully automated algorithms are under investigation since they are required to
deal with the amount of data provided by satellites every day. Typical challenges are false positives
in the enhancement maps, mostly due to scene heterogeneity, and disconnected plume fragments.
The latter may appear due to turbulent transport, which either dilutes a plume part below the de-
tection limit or disconnects a plume part completely.

Identifying the plume in the ground-based HySpex observations from the CoMF masking re-
quires the separation of above-threshold patches into false positives and true plume signal. BePjk

the mask in each pixel jk, with P = 1 above the threshold and P = 0 else. The algorithm used
for both scanning and fixed geometry images in Chapter 5 follows several steps:

1. Sum P over all frames to gain the number of patch-pixels in each line.

2. Cluster consecutive lines with non-zero values, i.e., identify which connected lines contain
potential plume pixels.

3. The plume is assigned to the cluster of lines with the highest density of patch-pixels.

Furthermore, patches upwind of the plume are excluded in the scanning geometry. This approach
was found by testing different methods, and performs well in both the scanning and fixed geome-
try. Visual inspection suggests that nearly all plumes are identified correctly in the presented data.
However, improvements are under way to consolidate the plume identification procedure. In the
scanning geometry, choosing the patch closest to the known source location is a physically mean-
ingful initial guess. The fixed geometry exhibits a tube of enhancements meandering through the
single observations, such that connecting subsequent scans is a promising approach.

A.3.3 Time Series
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Table A.1: The total number of performed scans at each observation day. The number of scans that passed
the quality control is given in the second column, and the removed fraction [%] is in the third column.
The following columns give the number of scans removed due to the different quality control criteria.
These are the vicinity to the shaft, the downwind mass ratio, the plume travel direction, and the plume size
(Section 5.2). Note that multiple criteria may flag a single scan, so the numbers do not necessarily add up.

Date Scans Passed Removed Vicinity Ratio Direction Size

2022-06-17 317 247 22.1 38 44 14 7
2022-06-18 522 293 43.9 22 100 149 0
2022-06-19 555 457 17.7 16 27 4 4
2022-06-20 286 160 44.1 0 61 103 0
2023-06-08 290 275 5.2 0 0 0 0
2023-06-11 338 315 6.8 21 2 1 2
2023-06-12 449 436 2.9 7 2 2 0
2023-06-13 484 477 1.4 4 1 4 0
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Figure A.6: Diurnal variability of the methane emissions from coal mine ventilation shafts during seven
observation days. The change of the methane emissions is shown relative to the daily mean emissions, with
the lower bound (blue) and the upper bound (orange) marker size proportional to the mean emissions.
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Figure A.7: Correlation of the methane emissions from coal mine ventilation shafts with the effective wind
speed for each observation day. The Pearson correlation coefficient R2 is given for each day.
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Table A.2: For every experiment performed in the USCB campaigns, the effective plume speed ueff [m s−1]
and the scan speed vscan [m s−1] are given. A scan speed of 0 m s−1 denotes a fixed viewing geometry ex-
periment. These are used to calculate the factor r =

(
1− ueff

vscan

)
, which determines the observed plume

length dobs [m] from the plume length in the image dim,c [m]. The turbulent mixing length dturb [m] is
estimated from the Péclet Number Pe = 100 and the diffusion coefficient K . Given a conservative esti-
mate of dturb = 3000 m, the number of scans required to observe a plume of sufficient length is given by
η.

Date: Experiment vscan ueff r dim dim,c dobs dPe η

2022-06-17: 1 3.6 3.9 -0.10 110 133 13 263 232
2022-06-18: 1 3.3 -3.2 1.98 119 210 417 318 7
2022-06-18: 2 3.3 -3.2 1.98 119 210 417 318 7
2022-06-19: 2 3.6 -4.9 2.35 93 110 260 210 12
2022-06-19: 4 3.4 -5.5 2.59 104 116 302 191 10
2022-06-20: 1 3.6 -2.7 1.77 98 106 187 370 16
2023-06-08: 3 10.3 4.2 0.59 223 231 137 242 22
2023-06-08: 4 0 4.5 - - - 153 - 20
2023-06-08: 6 0 5.7 - - - 196 - 15
2023-06-08: 9 6.2 5.0 0.18 222 226 41 199 73
2023-06-08: 10 7.4 4.5 0.39 221 222 88 225 34
2023-06-11: 1 9.8 6.3 0.35 240 243 86 160 35
2023-06-11: 2 9.3 6.7 0.28 222 224 64 150 47
2023-06-11: 4 9.3 5.6 0.40 242 246 99 182 30
2023-06-11: 5 9.3 5.8 0.38 241 245 93 179 32
2023-06-11: 7 7.7 5.9 0.23 240 248 57 172 52
2023-06-12: 1 7.7 6.5 0.16 240 242 40 156 76
2023-06-12: 2 9.3 6.6 0.29 240 242 69 152 43
2023-06-12: 3 9.3 7.1 0.24 237 239 58 142 52
2023-06-12: 4 0 6.7 - - - 249 - 12
2023-06-12: 6 7.1 5.3 0.25 233 242 62 192 49
2023-06-13: 1 7.1 3.0 0.57 241 269 154 347 20
2023-06-13: 2 9.3 4.3 0.54 242 260 140 244 21
2023-06-13: 3 7.1 5.4 0.25 242 253 62 190 48
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A.4 Appendix to CarbonDioxide Chapter

Figure A.8: Panel a) shows wind data from GKM measured at 10 m height on September 8th, 2021 (or-
ange). The wind profile is taken from ERA5 and interpolated to the stack location in space and time (blue).
The wind speed is scaled according to the profile to 180 m (green), the stack tip height of unit 9. Panel b)
shows the vertically measured wind profile from the Windranger 200 on May 26, 2022. The distributions
are the 2 min rolling mean values of the wind speeds during the time of observation. Image and caption as
in Knapp et al. (2023b).

Table A.3: The table lists the GKM yearly electricity production [TW h] from their annual reports and
reported carbon dioxide emissions [MtCO2] from the E-PRTR. The power plant emits 955 gCO2 kWh−1

on average.

Year 2015 2016 2017 2018 2019 2020 2021

Electric Power 7.779 8.633 7.363 7.185 4.974 4.158 5.167
CO2 Emissions 7.32 7.88 6.86 6.74 4.92 4.18 5.00
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Table A.4: Each day on which the camera observed the GKM chimneys. Columns one to three list the date, observed unit, and location of the camera. Bold dates
mark the days that have been processed beyond the retrieval since they show either favorable conditions or illustrate the methods limitations. The abbreviations
BR and KW denote Backofen-Riedwiesen and Kiefweiher, respectively. The next three columns list the camera settings of the observations, i.e., the exposure
time texp, the number of co-additions HSNR, and the azimuth scan length ∆VAA. Column 7 lists the time tscan it took to complete a full azimuth scan. The
last column gives a short description of the measurement conditions.

Date Target Loc. texp [ms] HSNR ∆VAA [°] tscan [s] Measurement conditions

2021-04-28 Unit 8 BR 24.8 8 6 65 Clear sky, plume travels at an acute observation angle
2021-08-25 Unit 9 BR 10.8 8 11 70 Clouds appear shortly after beginning of observations
2021-09-06 Unit 9 BR 14.8 8 10 75 Low wind speeds cause plume to rise vertically
2021-09-08 Unit 9 BR 14.8 8 6 49 Clear sky, favorable winds
2022-03-23 Unit 9 KW 14.8 8 10 77 Plume condensation, acute observation angle
2022-03-24 Unit 9 KW 9.8 5 7.5 45 Plume condensation, high aerosol load, visually homogeneous

but heterogeneity in observations
2022-03-26 Unit 9 BR 9.8 5 7 43 Plume condensation vanishes during observation period, high

aerosol load, favorable wind
2022-03-28 Unit 9 KW 11.8 8 6 46 Plume condensation, high aerosol load, low wind speed
2022-04-20 Unit 6 BR 11.8 8 6.6 48 Plume condensation, clear sky, low ambient temperature

(16 °C)
2022-05-13 Unit 6 BR 9.8 10 8.5 57 Clouds in image background, favorable wind
2023-05-03 Unit 9 KW 12 8 22 85 Clouds in image background, low GKM emissions
2023-07-07 Unit 9 BR 13.8 5 10 53 Clear sky, low winds, low GKM emissions
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Table A.5: Collection of all a priori information as presented in Knapp et al. (2023b). Errors are given as the standard deviation of the quantity during the average
time period of the measurement. The subscript a denotes ambient conditions, e denotes the initial plume conditions, and c0 denotes the CO2 concentration
above the chimney.

Date and
time

pa [hPa] Ta [°C] RHa [%] ua [m s−1] ϕ [°] Te [°C] ue [m/s] c0 [g m−3]

2021-09-08
12:13-13:15

1016.5 ± 0.1 25.9 ± 0.3 45.5 ± 2.0 7.1 ± 2.2a -53 ± 11a 63.1 ± 0.2 13.4 ± 0.1 188 ± 2

2021-09-08
13:17-14:23

1016.2 ± 0.5 26.8 ± 0.3 40.3 ± 0.9 8.1 ± 1.6a -53 ± 11a 62.9 ± 0.3 13.4 ± 0.1 188 ± 2

2021-09-08
14:24-15:26

1015.3 ± 0.2 27.6 ± 0.2 38.3 ± 0.6 7.6 ± 1.7a -51 ± 18a 63.1 ± 0.1 13.4 ± 0.1 188 ± 2

2021-09-08
15:27-16:35

1014.4 ± 0.2 27.9 ± 0.1 38.1 ± 0.5 7.8 ± 2.1a -53 ± 12a 63.0 ± 0.2 13.3 ± 0.1 192 ± 2

2022-03-23
14:51-16:13

1029.4 ± 0.3 20.0 ± 0.2 25.5 ± 0.1 5.1 ± 0.9b 33 ± 30b 60.6 ± 0.1 12.5 ± 0.1 201 ± 2

2022-03-23
16:14-17:36

1028.7 ± 0.1 19.7 ± 0.2 25.1 ± 0.1 3.7 ± 0.9b 33 ± 25b 60.6 ± 0.1 12.4 ± 0.1 204 ± 2

2022-03-26
14:44-15:55

1028.2 ± 0.2 20.1 ± 0.1 28.7 ± 0.1 5.6 ± 0.8b -97 ± 24b 61.0 ± 0.3 7.4 ± 0.4 131 ± 12

2022-03-26
15:56-17:36

1027.7 ± 0.0 19.9 ± 0.2 28.7 ± 0.3 6.0 ± 0.7b -109 ± 23b 59.3 ± 0.2 11.1 ± 1.8 179 ± 55

2022-03-28
15:35-16:28

1019.9 ± 0.3 22.6 ± 0.2 33.4 ± 0.2 2.9 ± 0.7b -60 ± 34b 59.0 ± 0.5 11.3 ± 0.5 185 ± 13

2022-05-13
12:21-14:01

1020.2 ± 0.1 25.4 ± 0.3 34.2 ± 1.5 5.4 ± 0.8b 72 ± 44b 62.3 ± 0.7 12.1 ± 0.1 427 ± 53

2022-05-13
14:02-15:39

1020.0 ± 0.1 25.3 ± 0.3 32.5 ± 0.4 5.6 ± 0.9b 80 ± 37b 61.9 ± 0.3 12.8 ± 1.1 259 ± 70

a from ERA5 scaling of the GKM 10 m wind field.
b from LIDAR observation
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Figure A.9: Plume observation on May 13, 2022, between 12:21 and 14:01 UTC. The CO2 enhancements
(red to yellow) show a distinct plume. However, the saturation of the spectral vectors (blue to white,
both background and contour lines) is not uniform, but shows some horizontal stripes. The saturation
at 2122 nm is chosen as a transparent channel close to the CO2 absorption. The plume observation cor-
relates with these patterns, especially below and above the plume. Thus, the Gaussian plume model is not
able to reproduce the observation correctly.

Figure A.10: Example of two plumes detected under conditions which prevent an emission estimation.
Pixel saturation is shown in blue to white, enhancements in yellow to red. Panel a) shows a plume with
unfavorable wind conditions, and some background correlated enhancements above and left of the plume.
Panel b) shows a plume where most CO2 is missing due to the condensation mask, and there is residual
striping in the DMF retrieval. The plumes have been observed on September 6, 2021, and March 24, 2022,
respectively.
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Figure A.11: The fraction of the observed plume mass divided by the simulated plume mass for each obser-
vation. The observed plume mass is the sum of all observed enhancements within the observation plume
mask. The simulated plume mass is the sum of all modelled enhancements between the first and the last
frame in which the plume is observed.
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Glossary

ADC Analog-to-digital converter
AERONET AErosol RObotic NETwork
AHRS Attitude and heading reference system
AOD Aerosol optical depth
ASR At-sensor radiance
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
BPM Bad pixel mask
CAMS Copernicus Atmosphere Monitoring Service
CLU clustered differential matched filter
CMF Classic matched filter
CO2M CO2 Monitor
COCCON COllaborative Carbon Column Observing Network
COMET Carbon Dioxide and Methane
CoMF Combo matched filter
DMF Differential matched filter
DOAS Differential optical absorption spectroscopy
E-PRTR European Pollutant Release and Transfer Register
EnMAP Environmental Mapping and Analysis Program
FOV Field of view
FTIR Fourier transform infrared
FWHM Full width at half maximum
GHG Greenhouse gas
GHGSat Greenhouse Gas Satellite
GKM Grosskraftwerk Mannheim
GOSAT Greenhouse gases Observing SATellite
GPS Global Positioning System
HITRAN HIgh-resolution TRANsmission molecular absorption database
ILS Instrument line shape
IMAP-DOAS Iterative Maximum A Posteriori Differential Optical Absorption

Spectroscopy
IME Integrated mass enhancement
IMEO International Methane Emissions Observatory
INS Inertial navigation system
IPCC Intergovernmental Panel on Climate Change
IRLS Iteratively re-weighted least squares
ISE Fraunhofer-Institut für Solare Energiesysteme

135



Glossary

IUP Institut für Umweltphysik
LIDAR Light detection and ranging
LUT Look-up table
MAG1C Matched filter with Albedo correction and reweiGhted L1 sparsity

Code
MAMAP Methane Airborne MAPper
MCT Mercury cadmium telluride
MVS Monitoring and Verification Support
NASA National Aeronautics and Space Administration
NEE Noise equivalent enhancement
NEO Norsk Elektro Optikk
NIR Near infrared
OCO-2 Orbiting Carbon Observatory 2
OCO-3 Orbiting Carbon Observatory 3
OGI Optical gas imaging
PRISMA PRecursore IperSpettrale della Missione Applicativa
PSF Point spread function
RMSE Root mean square error
RTE Radiative transfer equation
SAA Solar azimuth angle
Sentinel-5P Sentinel-5 Precursor
SNR Signal-to-noise ratio
SSD Spectral sampling distance
SWIR Shortwave infrared
SZA Solar zenith angle
TCCON Total Carbon Column Observing Network
TDLAS Tunable diode laser absorption spectroscopy
TIR Thermal infrared
TROPOMI TROPOspheric Monitoring Instrument
UAS Unit absorption spectrum
UBA Umweltbundesamt
UNEP United Nations Environment Programme
UNFCCC United Nations Framework Convention on Climate Change
USCB Upper Silesian Coal Basin
UV Ultraviolet
VAA Viewing azimuth angle
VEA Viewing elevation angle
VIS Visible
VZA Viewing zenith angle
XSF Cross-sectional flux
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