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Abstract

Pharmacogenomics (PGx) investigates how genetic factors influence the effects and side
effects of drugs. Recently, however, PGx has moved beyond the genome and aims at also
accounting for epigenetic and transcriptomic variation to further study differences in drug
response between patients. Typically, PGx is mainly concerned with germline variation in
pharmacogenes, encoding drug-metabolizing enzymes and transporters, that influence phar-
macokinetics and drug metabolism. In contrast, somatic variation has so far been studied
almost exclusively in drug target genes. In this thesis, the genomic, epigenetic, and tran-
scriptomic variation of 60 selected pharmacogenes was analyzed based on germline DNA
sequencing, tumor DNA and RNA sequencing, and tumor methylation profiling. The data
was derived frommatched tumor and germline control samples of 2,371 cancer patients suf-
fering from rare or advanced cases of cancers that have already undergone all standard lines
of treatment. The focus of this thesis was especially on somatic variation and its effects
on pharmacokinetics in the tumor, which has so far been neglected in pharmacogenomic
research but has already been hypothesized repeatedly as a potential mechanism for the de-
velopment of drug resistance in tumors.
First, a comprehensive and efficient in-silico PGx analysis pipelinewas developed. Germline
samples were analyzed for star-allele genotypes and phenotypes based on known functional
single nucleotide polymorphisms and copy number variants. In addition, rare variants in
the germline of these patients, and their functional effect were assessed using variant effect
prediction tools. These rare variants were integrated into the germline PGx profiles which
showed that they can superimpose on the phenotypes derived solely from star alleles. The
pipeline was also integrated into a molecular tumor board workflow providing PGx recom-
mendations.
Comprehensive PGx analyses were also carried out for the tumor samples. The results
showed that in rare cases somatic variants at star-allele positions can change the genotype
between tumor and matched control sample. However, a large part of somatic variation of
the pharmacogenes included copy number aberrations. Analyses of the expression in the
tumor samples revealed that some (especially phase II genes and transporters) are expressed
in multiple tumor types. In addition, the expression of some genes was strongly associated
with the copy number aberrations while for others methylation seems to be the major regu-
lating factor. Finally, a combined multivariate analysis of all the aforementioned data levels
was done to assess the proportion of variance explained in tumor gene expression.
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Zusammenfassung

Die Pharmakogenomik (PGx) untersucht, wie genetische Faktoren die Wirkungen und Ne-
benwirkungen von Medikamenten beeinflussen. In letzter Zeit hat sich die Pharmakogeno-
mik jedoch über das Genom hinaus entwickelt und hat das Ziel, auch epigenetische und tran-
skriptomische Variation zu berücksichtigen, um Unterschiede in der Arzneimittelreaktion
zwischen Patienten noch genauer untersuchen und beschreiben zu können. Typischerweise
befasst sich die Pharmakogenomik hauptsächlich mit Keimbahnvarianten in Pharmakoge-
nen, die für Enzyme und Transporter codieren, welche die Pharmakokinetik und den Arznei-
mittelstoffwechsel beeinflussen. Im Gegensatz dazu wurde somatische Variation bisher fast
ausschließlich in Genen, die Arzneimittel-Targets darstellen, untersucht. In dieser Arbeit
wurde deshalb die genomische, epigenetische und transkriptomische Variation von 60 aus-
gewählten Pharmakogenen anhand von Keimbahn-DNA-Sequenzierung, Tumor-DNA- und
RNA-Sequenzierung sowie Tumor-Methylierungsprofilierung analysiert. Die Daten stam-
men von gepaarten Tumor- und Keimbahnproben von 2.371 Krebspatienten mit seltenen
oder fortgeschrittenen Krebserkrankungen, die bereits alle Standardtherapien durchlaufen
haben. Der Schwerpunkt dieser Arbeit lag insbesondere auf somatischer Variation und deren
Auswirkung auf die Pharmakokinetik im Tumor, die bisher in der pharmakogenomischen
Forschung vernachlässigt wurden, aber in der Theorie bereits mehrfach als möglicher Me-
chanismus für die Entwicklung von Arzneimittelresistenzen in Tumoren diskutiert wurde.
Zunächst wurde eine umfassende und effiziente in-silico Pharmakogenomik-Pipeline ent-
wickelt. Keimbahnproben wurden auf Sternallel-Genotypen und -Phänotypen basierend auf
bekannten funktionellen Einzelnukleotidpolymorphismen und Kopienzahlvarianten analy-
siert. Darüber hinaus wurden seltene Varianten in der Keimbahn dieser Patienten gefunden,
und ihre funktionelle Wirkung wurde mithilfe von computerbasierten Prädiktionstools un-
tersucht. Diese seltenen Varianten wurden in die Keimbahn-PGx-Profile der Patienten inte-
griert, und es zeigte sich, dass sie die Phänotypen, welche ausschließlich aus Sternallelen
abgeleitet wurden, überlagern können. Die Pipeline wurde auch in denWorkflow eines mol-
eularen Tumorboards integriert, der den Onkologen Pharmakogenomik-Empfehlungen für
die Behandlung bereitstellt.
Umfassende pharmakogenomische Analysen wurden auch für die Tumorproben durchge-
führt. Die Ergebnisse zeigten, dass in seltenen Fällen somatische Varianten an bekannten
Sternallel-Positionen zu einer Veränderung des Genotyps zwischen Tumor und Kontroll-
probe eines Patienten führen können. Ein großer Teil der somatischen Variation der ausge-
wählten Pharmakogene umfasste jedoch Kopienzahlaberrationen. Analysen der Expression
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viii Zusammenfassung

in den Tumorproben zeigten, dass einige (insbesondere Phase-II Gene und Transporter) in
mehreren Tumorarten exprimiert werden. Darüber hinaus war die Expression einiger Gene
stark mit den Kopienzahlaberrationen assoziiert, während für andere die Methylierung den
hauptsächlichen Regulationsfaktor darstellte. Schließlich wurde eine kombinierte Analyse
aller oben genannten Datenebenen mithilfe eines multivariaten Modells durchgeführt, um
deren Einfluss auf die Expression der Pharmakogene im Tumor zu untersuchen.
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Chapter 1

Introduction

1.1 Next-Generation-Sequencing

The ability to determine nucleotide sequences of ribonucleic acids such as DNA or RNA, the
genetic basis of all living organisms, has made significant progress in recent decades and has
revolutionized the life sciences. From the initial development of low-throughput methods
such as Sanger sequencing [1], and the advances made in the Human Genome Project [2]
to high-throughput techniques like those employed in the 1000 Genomes Project [3], there
has been a continuous technological evolution for generation and analysis of sequencing
data. Next-generation sequencing (NGS) refers to sequencing methods that are character-
ized bymassive parallelization enabling a significant increase in speed compared to previous
methods. NGS has been a breakthrough offering unparalleled precision and efficiency for
decoding an individual’s genetic information [4], as the entire sequence of a human genome
can be determined within a single day.

NGS is comprised of the following methods: The DNA to be sequenced is divided into
smaller pieces (fragments), which are amplified (e.g. by polymerase chain reaction) and
can then be sequenced in parallel. In NGS the sequencing-by-synthesis method is often
used, a term introduced by one of the vendors. Here all DNA fragments (library) are bound
to a flow cell and read out by the continuous addition of complementary bases marked with
fluorescent dye, requiring no chain termination [5, 6]. The respective color stands for one
of the 4 nucleobases (adenine, guanine, cytosine, thymine) and can be recorded using an
imaging system (base calling). This generates short reads (35-700 base pairs [6]) of the
sequenced DNA, usually stored in FASTQ file format [7], which can subsequently be used
to align the reads to a genome reference. This allows to determine the original region of the
genome the reads belong to and therefore enables a reconstruction of the complete sequence.
The amount of reads covering a genomic position is referred to as coverage (often one aims
at >30 [8]). The higher the coverage, the higher the probability to correctly discriminate
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2 Next-Generation-Sequencing

sequencing errors (with a close to random and uniform distribution) from actual mutations
or variants (all at the same position). Reads together with their coordinates obtained via
alignment are stored in a compressed BAM format (binary alignment map) [7] and can be
used for a wide variety of computer-based analyses.

One of the main applications of NGS is research in diseases with genetic alterations, like
mendelian inherited diseases with germline alterations or cancer with mostly somatic, but
also sometimes germline alterations [9–11]. To identify the genetic causes of a disease, it is
necessary to determine in which way the genetic information of affected individuals differs
from that of healthy ones. In NGS there are different approaches, notably whole exome
sequencing (WES) and whole genome sequencing (WGS), targeting only protein-coding
regions or the entire genome, respectively. Additionally, RNA sequencing (RNA-Seq) pro-
vides detailed transcriptomic information (via sequencing a cDNA library obtained after
reverse transcription) [12]. This vast amount of biological data has led to the development
of increasingly specialized algorithms for subsequent analyses. An example is the detection
of genetic variants that the genome of a patient carries in comparison to a standardized ref-
erence genome. These can be detected by variant calling [13], which uses aligned reads and
determines the positions at which the investigated sequence differs from the reference [14].
This enables, for example, the detection of mutations in a tumor and allows subsequent bi-
ological interpretation. Such mutations in a tumor can either be inherited (in the case of
germline mutations) or acquired in the course of a lifetime through somatic mutation pro-
cesses. In personalized oncology, NGS facilitates the discovery of diagnostic and prognostic
molecular biomarkers. This understanding has led to the design of targeted therapies that
selectively intervene in molecular pathways driving tumorigenesis and progression [15,16].

Since the possibilities ofmodern omics technologies are no longer restricted to only sequenc-
ing DNA or RNA, but instead also enable the generation of a wealth of other biological data
such as methylation or abundance of proteins andmetabolites through other high-throughput
technologies, more and more methods have been developed to integrate and analyze these
data layers together in order to obtain the most comprehensive picture of the underlying
biology of diseases [17]. These multi-omics approaches involve the simultaneous analysis
and integration of diverse molecular datasets such as genomics, epigenomics, transcrip-
tomics, proteomics, or metabolomics for classification, clustering, or correlation tasks [18].
In cancer research, multi-omics allows researchers to decipher complex oncogenic pathways
and comprehend disease heterogeneity [19]. This systems biology perspective enabled by
multi-omics goes beyond isolated molecular findings, offering a holistic view of cancer as a
complex, dynamic system. This depth of information not only refines our understanding of
cancer types but also aids in the identification of robust biomarkers critical for early diagno-
sis, prognosis, and predicting treatment responses [16]. Moreover, the integrative analysis
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of multi-omics datasets extends to personalized medicine, where tailored treatment strate-
gies are developed based on the unique molecular profiles of individual patients [17, 20].

1.2 Pharmacogenomics and Drug Metabolism

Pharmacogenomics, often referred to as PGx, is a field of research that tries to investigate
how genetic variation influences an individual’s response to drugs and includes pharma-
cokinetic and pharmacodynamic processes [21–23]. Genetic factors are thought to con-
tribute to 15%–30% of the variance in drug response between individuals [24]. However,
it is still common nowadays for patients to receive standard doses of medication that have
been developed for a standard, average patient based on regular clinical trials. Pharmacoge-
nomics, as part of personalized medicine, tries to address the limitations of this one-size-
fits-all approach and leverages genetic information to optimize drug therapy for individual
patients [25]. Based on the individual genetic make-up of each patient, an optimal dosage
can be determined for many drugs. PGx has gainedmajor importance and attention due to its
high potential to improve the practice of drug-based medicine, making it safer by reducing
side effects and simultaneously increasing efficacy [26]. Despite these advances, compre-
hensive clinical implementation of PGx is progressing only slowly and is mainly limited to
individual well-proven associations between single genes and drugs for which commercial
tests are available. The genes of interest for PGx are the so-called pharmacogenes which
are genes coding for proteins that interact with drugs including drug transporters, drug-
metabolizing enzymes, and drug targets. Drug metabolism is part of xenobiotic metabolism,
which generally also includes other exogenous substances like environmental toxins. The
genes that regulate xenobiotic metabolism are summarized as ADME genes, being a subset
of pharmacogenes. ADME refers to the individual steps of the path drugs or other xeno-
biotics take through the body (pharmacokinetics). These include absorption (A) into the
bloodstream, distribution (D) throughout the body, metabolism (M) including the break-
down and chemical modification/detoxification, and excretion (E) from the body. Some
ADME genes are additionally involved in the metabolism of endogenous substances like
hormones or fatty acids [27]. Besides ADME, the effect of drugs on their targets and thus
on the body (pharmacodynamics) is also a major component of pharmacogenomic research.
Drug metabolism can conceptually be divided into distinct phases in which a substance un-
dergoes different chemical modifications. This involves phase I, phase II, and phase III re-
actions, as well as drug transport across cell membranes [28]. Usually, drugs have lipophilic
properties, which is why they have to be metabolized to become more water-soluble to be
excreted. In phase I metabolism, enzymes such as cytochrome P450 initiate oxidation, re-
duction, and hydrolysis reactions. The primary objective is to introduce functional groups,
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such as hydroxyl, rendering the drug more polar and reactive. This prepares the drug for
subsequent reactions in phase II which involves transferase enzymes. These catalyze the ad-
dition of large functional groups to phase I metabolites, increasing their water solubility, and
usually reducing their pharmacological activity (except for pro-drugs). In phase III, further
modifications can take place before efflux drug transporters finally eliminate the modified
drug from the cell and ultimately the metabolites leave the body through urine or bile. To-
gether, these phases ensure the efficient processing and elimination of drugs, preventing
their accumulation to toxic levels and facilitating their safe removal from the body.

In the following, the genes and enzymes involved in drug metabolism are described in more
detail. Phase I is mainly comprised of reactions involving cytochrome P450 enzymes. Cy-
tochromes contain heme as a prosthetic group and are involved in various biological pro-
cesses that include the transfer of electrons such as oxidation and reduction reactions (e.g.
electron transport chain). Cytochrome P450 enzymes, often abbreviated as CYPs, are a spe-
cific family of cytochromes that play a crucial role in the biotransformation of xenobiotics
and endogenous substances [29]. These enzymes are primarily located in the endoplasmic
reticulum of hepatocytes and, to a lesser extent, in other tissues. The ”P450” designation
comes from the fact that these enzymes absorb light at a wavelength of 450 nm. Cytochrome
P450 enzymes are categorized into different subfamilies and isoforms based on their ge-
netic and structural characteristics [30]. The major subfamilies of CYP genes involved in
drug metabolism are CYP1, CYP2, and CYP3, which account for the metabolism of about
70-80% of clinically used drugs [31]. A comprehensive understanding of the role and func-
tion of cytochrome P450 enzymes is critical in the fields of pharmacology and personalized
medicine. For example, tacrolimus, an immunosuppressive drug mostly used after organ
transplantation, is mostly metabolized by CYP3A5, and depending on genetic variation the
achieved dosage can vary considerably between patients [32]. Additionally, drug-drug in-
teractions, as well as dietary compounds, can also influence the activity of cytochrome P450
enzymes. Therefore, these enzymes are important factors to consider in drug development,
prescribing medications, and optimizing therapeutic outcomes.

Examples of phase II drug-metabolizing enzymes include several transferases such as glu-
tathione S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), sulfotransferases
(SULTs), N-acetyltransferases (NATs), and methyltransferases. These enzymes catalyze re-
actions including glutathione conjugation, glucuronidation, sulfation, acetylation, andmethy-
lation of a broad range of substrates, including environmental toxins, carcinogens, and cer-
tain types of drugs. For example, UGT1A1 metabolizes the active metabolite SN-38 of the
prodrug irinotecan, a topoisomerase inhibitor used to treat several forms of cancer. Patients
harboring certain variants in this gene are more susceptible to accumulation of SN-38 re-
sulting in toxicity and guidelines with recommendations about dose reduction have been
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developed accordingly [33].

The combined action of both phase I and phase II drug-metabolizing enzymes contributes to
the overall clearance of xenobiotics. Additionally, drug transporters are vital for the influx
and efflux transport of drugs across cell membranes, playing a crucial role in pharmacoki-
netics including drug disposition and elimination. Generally, there are 3 superfamilies of
drug transporters: solute-linked carrier (SLC), solute-carrier organic anion (SLCO), and
ATP-binding cassette (ABC) transporters [34]. These transporters facilitate the passive and
active (ATP-requiring) transport of drugs across cell membranes. Variants in drug trans-
porters can impact intracellular drug levels and dosage has to be adjusted accordingly. For
example, cellular uptake of statins, a class of drugs commonly used to lower cholesterol lev-
els, is facilitated by SLCO1B1 and patients carrying increased function alleles have a higher
risk of muscle pain and myopathy during treatment [35].

Drug metabolism takes place primarily in the hepatocytes of the liver, which is the major
organ responsible for the biotransformation of exogenous substances, including drugs. The
liver contains a high concentration of enzymes involved in both phase I and phase II re-
actions. However, the expression of some pharmacogenes is also present in other tissues
and also in cancers to some extent [36–38]. It has been hypothesized that the expression of
ADME genes in tumors can contribute to drug resistance by affecting local transport and
biotransformation in the tumor. Most evidence to date has been provided about changes in
drug transport mechanisms but also the altered activity of drug-metabolizing enzymes in tu-
mors is part of current research efforts. The ABCB1 and ABCG2 transporters, also known as
multidrug-resistance-protein (MDR1) and breast-cancer-resistance-protein (BCRP) respec-
tively, contribute to cancer drug resistance [39, 40]. These transporters are responsible for
efflux transport of anticancer drugs from cancer cells, reducing their intracellular concen-
tration and, consequently, their effectiveness. This process, known as multidrug resistance,
can lead to the failure of chemotherapy [41, 42]. Therefore, understanding and potentially
inhibiting the function of these transporters is a crucial aspect in overcoming drug resistance
in cancer therapy [43]. Other forms of cancer resistance are the mutation of drug targets in
the tumor and the activation of compensatory pathways. Genetic variation in drug targets
can cause cancer cells to be susceptible or resistant to certain drugs, which is the basis of
targeted therapies [44]. Especially in precision oncology, targeting or inhibiting specific
proteins or pathways that are driving the growth and survival of a tumor has gained impor-
tance in recent years.

Variations in pharmacogenes can range from small variants (SNV, InDels) to large struc-
tural events (CNVs, fusions) including duplications and deletions of parts or even whole
genes [45]. These can have various functional consequences on the protein level (loss or
gain of function), resulting from missense, stop-loss, or splicing variants, deletions, or am-
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plifications. The star allele nomenclature has been established to clearly identify and report
these functional variants of pharmacogenes [46]. Star alleles are a set of genetic variants that
determine a certain functional genotype and can affect how an individual responds to drugs.
The star allele naming convention uses standardized combinations of numbers, letters, and
a star symbol. For example, the variant rs776746 (6981A>G, splice defect) in the CYP3A5
gene can be identified as CYP3A5*3. This naming convention helps non-specialists to iden-
tify and understand these variants more easily and avoid reporting errors. Definitions of star
alleles are curated by consortia like the Pharmacogene Variation Consortium1. In germline
PGx, these functional variants can be translated into several phenotypes of the resulting
enzymes or transporters, ranging e.g. from poor to ultrarapid metabolism or decreased to
increased transport of drugs. These germline metabolizer profiles have been shown to have
a high impact on systemic drug metabolism and thereby also affect response and toxic-
ity [23]. For these phenotypes, there are established guidelines on drugs that are affected,
which are developed, for example, by the CPIC (Clinical Pharmacogenetics Implementation
Consortium) and DPWG (Dutch Pharmacogenetics Working Group) consortia. Integrating
such PGx data into personalized oncology is leading to more effective treatment with fewer
adverse effects since many cancer drugs have a narrow therapeutic index [47–49]. ADME
pharmacogenomic profiling, when integrated into a molecular tumor board, holds great po-
tential to benefit cancer patients [50–52]. In the context of cancer treatment, where ther-
apeutic options must be increasingly personalized, pharmacogenomic profiling can aid in
drug selection and dosage optimization. In this way, oncologists can tailor treatment strate-
gies to optimize drug response and minimize adverse effects. Individuals who may be more
susceptible to specific drugs or those who require dosage adjustments based on their genetic
profile can be determined ahead of therapy.

In addition to germline variation, there is also somatic tumor-specific variation arising from
various endogenous and exogenous causes and mutational processes [53–55]. These so-
matic variants can generally also occur in pharmacogenes in tumor cells. The focus of
pharmacogenomics has so far mostly been on germline variants in ADME genes affecting
systemic drug metabolism. However, to comprehensively describe altered drug metabolism
as a resistance mechanism in tumors, the tumor-specific somatically acquired variants also
have to be taken into account. The relevance of the activity of ADME genes in tumors has
often been discussed [41,56–63], but the exact tumor-specific variations on different omics
layers have not yet been comprehensively described. Somatic variations could affect the
function and expression of pharmacogenes, thereby influencing drug metabolism and trans-
port in the tumor cells and ultimately influence anti-cancer drug efficacy. For example, the
activity of ABC transporters has been shown to increase the efflux of drugs from tumor

1https://www.pharmvar.org/

https://www.pharmvar.org/


The NCT/DKTK MASTER Program 7

cells [42, 58, 64].

Recently, as in many areas of life sciences, pharmacogenomics has been expanded to include
further omics layers (usually referring to the entirety of data of certain biological molecules
or processes), leading to the emergence of the term pharmaco-omics [65, 66]. Here, not
only genetic variation but also the expression and methylation of pharmacogenes, as well
as the abundance of drug-interacting proteins and their effect on drug response are being in-
vestigated. The insights from pharmacogenomics and ADME research have fundamentally
reshaped the pharmaceutical landscape. It has not only improved the efficacy and safety
of existing medications but also influenced drug discovery and development. For instance,
pharmacogenomic insights can guide the selection of the most promising drug candidates
during the early stages of drug development, increasing the likelihood of success in clinical
trials.

1.3 The NCT/DKTKMASTER Program

NCT/DKTKMASTER2 (Molecularly Aided Stratification for Tumor Eradication Research)
is a precision oncology program, headed by the National Center for Tumor Diseases (NCT)
Heidelberg and The German Cancer Consortium (DKTK), that provides comprehensive
molecular analysis and personalized treatment recommendations for patients suffering from
rare cancers of any age and for young adults with advanced cancers that exhausted available
standard therapies. Rare cancers pose unique challenges due to their limited prevalence and
the resulting scarcity of research and treatment options. Advanced cancers are often resis-
tant to established standard therapies, requiring targeted treatment approaches. Molecular
diagnostics in MASTER include biomarkers derived from matched control and tumor DNA
sequencing (whole exome or genome), tumor RNA sequencing, and array-based methyla-
tion profiling. By leveraging such multi-omics data, the program seeks to identify targetable
lesions and other molecular features that can inform personalized treatment strategies [67].
Based onmolecular biomarkers recommendations are assigned to different treatment baskets
including ”tyrosine kinase signaling, PI3K-AKT-mTOR signaling, RAF-MEK-ERK signal-
ing, developmental pathways (e.g. Hedgehog signaling), DNA damage response signaling,
cell cycle regulation, and immune evasion” [68]. The complete workflow3 of MASTER is
depicted in Figure 1.1. After patient registration and enrollment, samples of the tumor tissue
and peripheral blood are taken and subjected to sequencing. This is followed by molecular
profiling using bioinformatics pipelines. Results are then curated and interpreted by clinical

2https://www.nct-heidelberg.de/en/research/molecular-stratification/master.html
3https://www.nct-heidelberg.de/forschung/molecular-stratification/master/

master-workflow.html

https://www.nct-heidelberg.de/en/research/molecular-stratification/master.html
https://www.nct-heidelberg.de/forschung/molecular-stratification/master/master-workflow.html
https://www.nct-heidelberg.de/forschung/molecular-stratification/master/master-workflow.html
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bioinformaticians and provided to the oncologists. The multidisciplinary approach of the
program, which includes a molecular tumor board, has led to the identification of targetable
lesions in more than 80% of patients [69]. Additionally, the program is involved in the de-
velopment of molecularly stratified clinical trials, further contributing to the advancement
of precision oncology. This advanced omics-based research has the potential to uncover the
complexities of rare and advanced cancers, which could lead to the development of more
personalized treatments and better outcomes.
Molecular data in MASTER is stored in an R data structure called dataMASTER which
includes patient metadata and several biological data layers (e.g. germline and somatic small
and structural variants, fusions, and expression data) in the form of MultiAssayExperiment
or RaggedExperiment R objects [70]. This data structure is highly protected and accessible
only from inside the DKFZ network. Currently, it contains molecular data from more than
4600 patients and is regularly updated with new data as patients are continuously enrolled
in MASTER.

Figure 1.1: Clinical workflow of NCT/DKTKMASTER.
Image taken from NCT website3.
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1.4 Aims of this Thesis

As illustrated in the previous sections, pharmacogenes are essential for the metabolism of
endogenous and exogenous substances including xenobiotics like drugs or carcinogens, and
therefore play an important role in the development and treatment of cancer. By gaining a
comprehensive understanding of germline and tumor-specific pharmacogenomic processes,
therapies can be further personalized and tailored to individual cancer patients. For example,
known associations between germline PGx variation and drug metabolism can be used to
avoid ineffective doses and serious side effects. Furthermore, understanding somatic PGx
variation in the tumor can be used to develop more effective therapies that exploit weak-
nesses or circumvent resistance mechanisms. In this thesis, the NCT/DKTK MASTER co-
hort is used as an exemplary cohort of a broad range of cancer patients for various germline
and somatic PGx analyses. An overview of this thesis is shown in Figure 1.2.
For germline PGx, this thesis aims to establish a computational pipeline for variant identifi-
cation, genotyping, translation into star alleles, and assignment of phenotypes. This pipeline
is applied to the MASTER cohort for a retrospective analysis of known and novel germline
variants, their distributions, descriptive statistics across the different tumor entities, and their
functional consequences. Furthermore, the integration of germline PGx profiling into the
molecular tumor board, providing actionable recommendations for treatment decisions, is a
major objective.
For somatic PGx, the research objectives encompass a thorough examination of differences
between germline and tumor pharmacogenomic profiles, as well as the comprehensive as-
sessment of somatic variants in pharmacogenes and their functional effects. Further aims
are the analysis of methylation and expression in tumors, as well as the association of vari-
ants and methylation patterns with expression profiles. Additionally, a major aim is the
integration and combined analysis of all data layers (including genomic, epigenetic, and
transcriptomic information) to be able to assess the effect of variants and methylation on
tumor expression. Through these research objectives, this thesis wants to advance current
knowledge of PGx factors, especially tumor-specific effects, influencing the outcomes of
cancer treatment.

In summary this thesis includes the following aims:
Germline Pharmacogenomics:

• The development and implementation of a computational pipeline for pharmacoge-
nomic analysis from NGS data, including variant identification, and translation into
star alleles, genotypes, and phenotypes. This comprises the evaluation, integration,
and harmonization of available algorithms.
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• A retrospective pharmacogenomic analysis of cancer patients of the NCT/DKTK
MASTER cohort using the implemented pipeline to identify known pharmacoge-
nomic germline variants (including SNV, CNV, and translated star allele genotypes
and phenotypes).

• Assessment of the distributions and descriptive statistics of these variants. Exam-
ination of the actionable genotypes identified through germline pharmacogenomic
profiling and the derived clinical implications from existing PGx guidelines.

• Identification of differences in germline PGx profiles between the cancer entities in-
cluded in MASTER.

• Integration of germline PGx profiling based on NGS data into the molecular tumor
board of the MASTER program. The pipeline has to be adapted to report relevant
pharmacogenomic variants of patients. This includes mapping genotyping results to
PGx guidelines relevant to administered cancer drugs and supportive medication, as
well as deriving recommendations for dose adjustments and warnings about possible
toxicities. This also requires the generation of a comprehensive structured report for
physicians aiding pharmacogenomics-informed treatment decisions.

• Investigation of rare and novel germline PGx variants that are not covered by current
standards or known star allele genotypes. Assessment of the distributions, descriptive
statistics, and functional consequences of these variants. For the latter, computational
tools for predicting the potential impact on enzyme or transporter are required (Variant
Effect Prediction).

Somatic Pharmacogenomics:

• Identification of differences between the pharmacogenomic profiles of the matched
germline and tumor samples. This includes analysis of somatic variants (SNVs, In-
dels, and sCNAs) that are exclusively present in the tumor and are resulting in geno-
type changes (affecting star alleles). This also shows the limitations when applying
germline PGx profiling to tumor tissue and tests the applicability of dedicated so-
matic variant calling tools, which are however not specifically developed for the PGx
domain, to PGx genotyping in tumor samples.

• Comprehensive assessment of somatic variants present in pharmacogenes in the tumor
samples (SNC, Indel, sCNAs) and their distributions in the different cancer entities.

• Investigation of the functional effect of these somatic variants in the tumor.

• Investigation of the origin of pharmacogenomic sCNAs and their potential causes.
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• Analysis of pharmacogene expression in the tumor entities. This includes analyzing
how a subset of the somatic variants affect expression in the tumor.

• Assessment of promoter and intragenic methylation of the pharmacogenes in the tu-
mors andwhether there are entity-specific differences. Testing the influence ofmethy-
lation on expression in the tumor.

• Integration of the different data layers (genomic, epigenetic, transcriptomic) to assess
the respective proportion of variance explained in tumor gene expression. Assessment
of entity-specific patterns.

In addition tomymain project described above, I was involved in several side projects during
my time as a doctoral researcher. These included the genomic and transcriptomic analysis of
some specific rare cancer entities within MASTER (parathyroid carcinoma, adrenocortical
carcinoma, and chordoma). These results are also presented in this thesis in separate chap-
ters. The focus of these projects was the identification of recurrent germline and somatic
mutations (SNVs, InDels, CNVs/CNAs, fusions), mutational signatures, and quantification
of immune cell admixture in order to expand the current knowledge about these diseases,
contribute to their molecular characterization, and find potential rationales for targeted treat-
ments.

Figure 1.2: Overview of this thesis. Pharmacogenomic analyses were performed based on next-
generation sequencing data from matched control and tumor samples of the NCT/DKTK MASTER
program (including DNA sequencing, RNA sequencing, and DNA methylation profiling).





Chapter 2

Results

2.1 Overview of the MASTER Cohort

I analyzed the germline and somatic pharmacogenomic profile of 2,371 cancer patients of
the MASTER cohort. This is the subset of the total of over 4500 cases for which the DNA
sequencing was done with WGS (the rest being WES). The patients in MASTER represent
a wide spectrum of cancers, including mainly young adults suffering from advanced stages
of common cancers or adult patients of any age with rare cancers [68, 69]. An overview of
cancer types and corresponding case numbers is shown in Figure 2.1. A large fraction of
the cohort consisted of soft tissue sarcomas (291, 12.5%), neuroendocrine neoplasms (254,
10.8%), and hepatopancreaticobiliary cancers (169, 7.2%). Also, other forms of sarcomas
and rare cancers (1.35-5%), as well as rare subgroups of more common cancers such as
colorectal (159, 6.7%) or breast are represented (79, 3.3%). The median age of the patients
at the time of the molecular tumor board was 48 years with a minimum of 16 and amaximum
of 86 years (Figure 2.1). The gender ratio was approximately 50/50 (1178 females, 1193
males). The availability of the various omics datasets of MASTER that I used for this thesis
is shown in Figure 2.2.

13
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Figure 2.1: Case numbers for cancer entities in theMASTER cohort and age distribution. STS:
Soft Tissue Sarcoma, CUP: Cancer of Unknown Primary, NSCLC: Non-Small Cell Lung Cancer,
GIST: Gastrointestinal Stromal Tumor.
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Figure 2.2: Availability of sequencing and PGx data in MASTER

2.2 Pharmacogenomics Analysis Pipeline

To enable the comprehensive and automated analyses of pharmacogenomic variation in large
NGS datasets, I developed an in-silico pharmacogenomics pipeline (PGx pipeline) as shown
in Figure 2.3 using the workflow management system Nextflow [71]. This pipeline inte-
grates the PGx genotyping tools Aldy [72], Cyrius [73], PyPGx [74] and Stargazer [75,76].
Details on pipeline implementation, tools, and supported genes can be found in method sec-
tion 6.1.1 and Table 6.2 in the appendix. To derive PGx results from matched germline and
tumor samples of the MASTER cohort, the pipeline was run at several time points until data
freeze if a sufficient number of new patients were enrolled in MASTER. The reproducibility
of the pipeline was demonstrated by the fact that the results for already included samples
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remained stable across runs. In addition, parallelization of the pipeline allowed good scal-
ability for the analysis of larger cohorts. With a selected set of 18 patients for which both
WGS and WES of blood samples were available, it was investigated whether the cover-
age of important functional star allele variants was sufficient with exome sequencing. For
many variants, mostly regulatory and intronic variants e.g. in CYP3A4/5, CYP2D6, and
CYP2C19, no sufficient coverage could be ensured in the WES samples, as shown in Figure
2.4 highlighted with red rectangles. Therefore, only WGS was used throughout this thesis.

Figure 2.3: PGx pipeline for detection and analysis of pharmacogenomic variants. The core
part (grey) includes the PGx genotyping tools and consensus harmonization of results. The pipeline
also enables the detection and inclusion of additional germline variants (orange) and somatic SNVs
and CNAs (blue).
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Figure 2.4: Comparison of how many important genomic loci are covered between WGS (left)
and WES (right) of 18 patients for important functional PGx variants. Regulatory and intronic
variants, like in CYP3A4/5, CYP2D6, and CYP2C19 were not sufficiently covered in the WES sam-
ples as highlighted by the red rectangles.

Contributions: Sebastian Pirmann assessed the suitability of the genotyping tools and de-
veloped the PGx pipeline using Nextflow and additional R and Python scripts. Roman
Tremmel and Sebastian Pirmann curated tables for the mapping of variants and star alle-
les between genotyping tools (see method section 6.1.1).

2.3 Germline Pharmacogenomics in MASTER

Many studies have demonstrated that germline variation in ADME genes impacts the over-
all metabolism of cancer drugs, affecting both the obtained effective dosage throughout the
body and the probability of experiencing side effects [47,77–79]. Therefore, one of the aims
of this was to establish a comprehensive picture of pharmacogenomic germline variation in
cancer patients by analyzing 2,371 WGS cases of the MASTER cohort. Section 2.3.1 de-
scribes the output of the genotyping tools included in the PGx pipeline, and shows their
concordance, limitations, and the approach for harmonizing results into a consensus. The
consensus germline genotype and phenotype results of the 60 pharmacogenes are described
in section 2.3.2. This section mainly deals with already known functional variants (star al-
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leles) and their distribution across the different cancer entities in MASTER. Since it was
shown that, in addition to small variants, copy number variants also have a major influence
on the function of pharmacogenes [80–82], in section 2.3.3 a comprehensive overview of
pharmacogenomic germline CNVs detected in the MASTER cohort is given. Section 2.3.4
contains additional rare or novel germline small variants found in the MASTER cohort be-
yond known star alleles and their predicted functional effect, as it has been reported that rare
individual variants account for about 10% of functional variants and can influence individual
drug response [83]. Finally, section 2.3.5 describes how pharmacogenomics profiling with
the developed PGx pipeline was integrated into the molecular tumor board workflow of the
MASTER program for providing treatment recommendations and improving personalized
cancer therapy.

2.3.1 PGx Pipeline Results and Harmonization of Consensus Geno-
types

First, I have compared the results of the individual tools. The raw results of the four
tools were concordant in 93% of the cases on average (Table 2.1). Genes with more than
99% overlap were CACNA1S, CYP1A1, CYP1A2, CYP2A13, CYP2C9, CYP2J2, CYP2R1,
CYP2S1,CYP3A43,CYP4B1,CYP19A1,CYP26A1,G6PD,GSTP1, IFNL3,NUDT15,RYR1,
SLC15A2, SLCO1B3, SLCO2B1, TBXAS1, TPMT, UGT1A4, and VKORC1. In general,
lower concordance was observed for genes with a large number of known variants (e.g.
CYP2D6, DPYD) compared to those for which only very few variants are known and im-
plemented in the tools (CACNA1S, CYP26A1, VKORC1). For a small number of genes,
the concordance between tools was generally low including CYP2D6 (60.1%), CYP4F2
(73.5%), GSTM1 (79.4%), UGT1A1 (87.7%), DPYD (88.8%). Among the reasons for these
discrepancies were nonidentical naming conventions and different sets of supported variants
of the genotyping tools. A major problem of the tools was that some variants could not be
phased based on the short-read sequencing input. This led to contradictory star allele re-
sults (e.g. CYP4F2*2, *3, *4). Additionally, some tools have problems with calling certain
variants like CFTR F508del, SULT1A1 heterozygous deletions (only reliably detected by
PyPGx), GSTM1 deletions, or UGT1A1*28 & *80. Differences in naming conventions and
supported variant sets were partially resolved by defined rules and manual curation. The
harmonization process increased the overall concordance to 98%. For most genes, a higher
concordance was achieved as shown in Table 2.1. The largest improvement was made for
CYP2D6 from 60.1% to 98%. Not for all genes 100% concordance was reached after cura-
tion because in 1.6% of genotype calls, all tools reported discrepant results that could not be
resolved. Approximately one-third of these discrepancies are different results in CYP4F2
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where the tools provide different phasing results and the genotype cannot be reliably deter-
mined by short-read sequencing. For one sample, the genotype in CYP2D6 could not be
determined as none of the tools provided an output. In a small subset of patients (n=25),
consensus star allele genotypes of 10 selected pharmacogenes were confirmed by Roman
Tremmel using a custom Openarray TaqMan panel, as used in [84]. Unfortunately, this
small number of samples did not allow a sound evaluation of the accuracy of the pipeline
compared to this orthogonal method.

Table 2.1: Concordance of genotyping results between tools before and after harmonization.
Concordance was only calculated if at least 2 tools supported the genotyping of the gene.

Gene Concordance Concordance
(harmonized) Comment

ABCB1 - -
ABCG2 - -
CACNA1S 100.0% 100.0%
CFTR 96.0% 100.0% Stargazer does not detect all F508del
COMT - -
CYP17A1 - -
CYP19A1 99.7% 99.9% Stargazer does not detect all *4
CYP1A1 99.2% 100.0%
CYP1A2 99.5% 100.0%
CYP1B1 98.7% 98.7%
CYP26A1 100.0% 100.0%
CYP2A13 99.7% 100.0%
CYP2A6 93.7% 98.2%
CYP2B6 94.2% 99.5%
CYP2C19 85.1% 99.9%
CYP2C8 97.3% 100.0%
CYP2C9 99.0% 100.0%

CYP2D6 60.1% 98.0% Large number of alleles and differences between
implemented variants in tools

CYP2E1 74.3% 95.0%
CYP2F1 94.0% 99.7%
CYP2J2 99.3% 100.0%
CYP2R1 99.6% 100.0%
CYP2S1 99.7% 100.0%
CYP2W1 98.5% 100.0%
CYP3A4 79.7% 100.0%
CYP3A43 99.4% 100.0%
CYP3A5 93.7% 100.0%
CYP3A7 98.7% 99.8%
CYP4A11 - -
CYP4A22 - -
CYP4B1 99.4% 99.7%

CYP4F2 69.9% 73.5% Due to phasing differences of the tools concerning
2, *3, *4 (unresolvable with short read sequencing)

DPYD 88.8% 88.8% Discrepant results between all tools
F5 - -
G6PD 99.6% 99.6%
GSTM1 60.6% 79.4% Discrepancies in deletion calls
GSTP1 99.0% 99.9%
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GSTT1 97.7% 98.4%
IFNL3 99.8% 99.8%
NAT1 57.5% 99.0%
NAT2 97.9% 99.5%
NUDT15 99.7% 100.0%
POR 98.5% 99.6%
PTGIS - -
RYR1 99.8% 100.0%
SLC15A2 99.4% 99.5%
SLC22A2 98.1% 98.7%
SLCO1B1 72.6% 99.4%
SLCO1B3 99.3% 99.3%
SLCO2B1 99.8% 99.8%
SULT1A1 91.0% 97.5% Only pypgx was able to call deletions
TBXAS1 99.7% 99.7%
TPMT 99.7% 100.0%
UGT1A1 85.9% 87.7% Tools have problems calling *28 and *80
UGT1A4 99.2% 99.5%
UGT2B15 93.5% 95.5%
UGT2B17 97.4% 97.6%
UGT2B7 98.3% 100.0%
VKORC1 100.0% 100.0%
XPC - -

2.3.2 Germline Genotypes and Phenotypes of Pharmacogenes

The germline consensus genotypes for the 60 pharmacogenes were determined from WGS
data of peripheral blood samples of each patient using the PGx pipeline. While the com-
plete genotyping results and allele frequencies of all genes for the whole MASTER cohort
can be found in Table 6.3 in the appendix, the distributions of star alleles for selected phar-
macogenes, that are affecting the metabolism of anti-cancer drugs and align with available
guidelines (e.g. CPIC, DPWG), are shown in Figure 2.5. The distribution of genotypes of
CYPs matched expected population frequencies that have been previously described [85].
96.4% of patients possessed at least one actionable genotype, allowing for treatment adjust-
ments based on the guidelines. This is in line with previously reported results [86,87]. The
amount of genes with actionable genotypes per patient is shown in Figure 2.6. For most
patients, 2 or more genes carried actionable genotypes.
The germline consensus genotyping results were translated into phenotypes for applicable
genes (14/60). A complete overview of these results can be found in the appendix (Table
6.4). Depending on the gene, these phenotypes range from poor to ultrarapid metabolism
in the case of drug-metabolizing enzymes or poor to increased function for transporters, as
well as more specific phenotypes for individual genes like F5 (Coagulation Factor V; fa-
vorable/unfavorable response). The distribution of translated phenotypes for the individual
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Figure 2.5: Frequencies of alleles for cancer entities in the MASTER cohort. Only selected
genes, that are directly related to anti-cancer drug metabolism, are shown here. Genotyping results
of the remaining genes can be found in the appendix in Table 6.3.
Relevant cancer drugs for each gene are:
CYP2D6: Tamoxifen; DPYD: 5-FU, Capecitabine, Tegafur; NUDT15/TPMT : Azathioprine, Mer-
captopurine; UGT1A1: Irinotecan.
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Figure 2.6: Number of pharmacogenes with actionable genotypes per patient. For most patients,
2 or more genes carried an actionable genotype.
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cancer entities of the MASTER cohort is shown in Figure 2.7 for selected genes. Small dif-
ferences in the frequencies were observed between entities and were tested for significance
using Fisher tests. Hepatopancreaticobiliary cancers were enriched for normal metaboliz-
ers of CYP3A5 (p = 0.003). In contrast, CYP3A5 poor metabolizers were least frequent in
colorectal cancers (p = 0.005). Ultrarapid metabolizers of CYP2D6 were more common in
upper gastrointestinal cancers (p = 0.006). Intermediate metabolizers of DPYD were more
frequent in cancers of unknown primary (CUP) (p = 0.001). Only the frequency differ-
ences of intermediate metabolizers of DPYD in CUP remained significant after adjustment
for multiple testing.
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Figure 2.7: Metabolizer and transporter phenotypes of selected pharmacogenes in the MAS-
TER cohort. The colors reflect enzyme phenotypes e.g. poor to ultrarapid metabolizer, transporter
activity (increase, normal, and decreased function), and other phenotypes such as F5 (favorable/unfa-
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patients). The y-axis shows the 21 different entity baskets of the MASTER cohort.

Contributions: Sebastian Pirmann ran the pipeline, analyzed the data, and created the fig-
ures. Roman Tremmel and Sebastian Pirmann curated genotype and phenotype results, com-
puted concordance, and created harmonization andmapping tables. Roman Tremmel ran the
genotyping experiments with the Openarray TaqMan panel.

2.3.3 Germline Copy Number Variants in Pharmacogenes

Based on the PGx pipeline results I analyzed germline CNVs for 17 pharmacogenes (CYP1B1,
CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP2E1, CYP4F2, G6PD,GSTM1, GSTT1, IFNL3,
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SLC22A2, SLCO1B1, SLCO1B3, SULT1A1, UGT1A4, UGT2B15, UGT2B17) including dif-
ferent types of CNVs such as duplications, deletions, and pseudogene hybrids. The fre-
quency results are shown in Table 2.2. Of note, Stargazer can call CNVs for all its supported
51 pharmacogenes, while the remaining tools are restricted to known CNVs. However,
only in the reported 17 genes, CNVs of considerable quality were detected by Stargazer.
The results for G6PD, located on the X chromosome, correctly re-identified male patients
by calling heterozygous deletions of the gene. Furthermore, the pipeline identified the most
common deletions for the genesGSTM1,GSTT1, andUGT2B17 in frequencies as published.
Other well-documented frequent deletions were found inCYP2D6, CYP2A6, and SULT1A1,
which were in accordance with published data [88]. The deletions in SULT1A1 were only
sufficiently called by PyPGx. In contrast, Aldy could not detect homozygous deletions of
GSTM1, occurring in 709 patients(29.9%), whereas the other two tools consistently iden-
tified these deletions in all cases. Well-known duplications of SULT1A1, CYP2D6, and
CYP2E1 were detected also with expected frequencies. Hybrids with pseudogenes were
called for CYP2A6/7, CYP2B6/7, and CYP2D6/7. Additionally, rare whole-gene and partial
deletions were detected including the CYP2C19 locus, the end of SLCO1B3 and the whole
SLCO1B1 gene, the whole CYP1B1 gene, a partial deletion of IFNL3, and intronic deletions
of UGT1A4 and SLC22A2 (Figure 2.8).

Table 2.2: Germline CNVs in pharmacogenes and their frequencies in the MASTER cohort.
CNVs were detected by genotyping tools in the PGx pipeline.

Gene Tool Deletions Duplications Hybrids with pseudogenes
CYP1B1 Stargazer 0,04%
CYP2A6 Aldy, PyPGx, Stargazer 1,7% 0,6% 5,2%
CYP2B6 PyPGx, Stargazer 0,1%
CYP2C19# Stargazer 0,1%
CYP2D6 all 6,2% 5,8% 11,9%
CYP2E1 PyPGx, Stargazer 0,2% 4,2%
G6PD Aldy, PyPGx, Stargazer 51%
GSTM1* Aldy, PyPGx, Stargazer 89,9%
GSTT1 PyPGx, Stargazer 64,9%
IFNL3# Stargazer 0,04%
SLC22A2# PyPGx, Stargazer 0,3%
SLCO1B1 Stargazer 0,08%
SLCO1B3# Stargazer 0,04%
SULT1A1 PyPGx, Stargazer 4,8% ## 31,8%
UGT1A4# PyPGx, Stargazer 0,1%
UGT2B15 PyPGx, Stargazer 0,7% 1,0%
UGT2B17 PyPGx, Stargazer 54,5%
*for calculation the sample size was lower (n=1903) due to the exclusion of samples with indeterminate calls
#including partial deletions of exonic or intronic sequence
##deletions were only sufficiently called by PyPGx
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(a) CYP2C19 whole deletion leading to a copy number of one compared to
the reference locus.
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(b) CYP2C19 partial deletion where the beginning of the gene has a copy
number of one.
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(c) SLCO1B3 partial deletion leading to a copy number of one in the rear
end of the gene.
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(d) SLCO1B1 whole deletion leading to a copy number of one compared to
the reference locus. This is the same sample as (c), showing that this deleted seg-
ment spans from the rear end of SLCO1B3 over the whole SLCO1B1 locus.
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(e) CYP1B1 whole deletion leading to a copy number of one compared to
the reference locus.
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(f) IFNL3 partial deletion. The deleted segment starts before the gene
and affects about half of it, where the copy number changes to one.
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(g) UGT1A4 partial deletion leading to a copy number of one in the first
intron.
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(h) SLC22A2 partial deletion leading to a copy number of one in the second
intron.

Figure 2.8: Stargazer CNV plots of rare whole gene and partial deletions affecting CYP1B1,
CYP2C19, IFNL3, SLC22A2, SLCO1B1, SLCO1B3, and UGT1A4. Per CNV (a-h), 4 panels are
displayed. The upper left panel shows read depth (coverage, indicated by green dots) over the ge-
nomic position, for the gene of interest (including a gene track with introns and exons). The upper
right panel always shows read depth for the reference locus VDR, to which the coverage of the gene
of interest is compared for CNV calling. The lower left panel shows absolute copy numbers over
the genomic position for the gene of interest (red line). The lower right panel displays the allele
fractions of PGx SNVs over genomic position for the gene of interest (blue dots), in addition to the
aforementioned copy number information. All samples were diploid and the copy number of the
reference locus VDR was always two.
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Contributions: Sebastian Pirmann ran the pipeline and curated and analyzed the CNV data.
Roman Tremmel and Sebastian Pirmann assessed the CNV types, frequencies, and stargazer
plots of selected variants.

2.3.4 AdditionalGermlineVariants in Pharmacogenes beyond StarAl-
leles and their Functional Effect

The germline WGS data allowed me to analyze the occurrence of additional germline SNVs
in the 60 pharmacogenes beyond the well-known star allele variants. All SNVs in the MAS-
TER germline samples that were not part of common star allele definitions were identified
through GATK variant calling and filtered accordingly. In total, 66,813 unique variants
were found. Generally, additional variants were detected in all individuals and across all
60 analyzed pharmacogenes, but at varying rates. Genes with the highest total numbers of
additional variants in all patients (containing duplicates) included DPYD (13,369), TBXAS1
(4,746), and RYR1 (4,410) while UGT1A1 (7), CYP3A7 (11), and GSTT1 (18) harbored the
least variants.

The 66,813 unique variants were annotated using ANNOVAR. The annotations showed
that 60,213 (90%) of the additional variants were located in introns. Descriptive statis-
tics for the remaining 6,582 (10%) variants are depicted in Figure 2.9 and included exonic
non-synonymous/missense (1,624; 24.7%), 3’ UTR (1,335; 20.3%), downstream (1,132;
17.2%), upstream (1,116; 17%), exonic synonymous (929; 14.1%), 5’ UTR (366; 5.6%),
exonic start-loss/stop-loss/stop-gain (46; <1%) and splicing variants (34; <1%). The dis-
tribution of these results per gene is shown in Figure 2.10. Generally, the variability of
numbers and types of additional variants between genes was high. RYR1 had by far the
most unique variants, mainly non-synonymous SNVs. In contrast, UGT1A1 carried almost
no variants. Interestingly, a large fraction of genes also harbored a high amount of 3’ UTR
variants. On average a patient carried 3,092 additional variants across all 60 investigated
genes, with 4,620 variants in the most affected and 760 variants in the least affected patient.

For the additional missense variants (n=1,624), I used an ADME-optimized variant effect
prediction (VEP) framework (APF) [91] in addition to established and validated VEP mod-
els to determine the impact of these variants on the functionality of the resulting protein in
silico. The consensus of the predictions, using optimized thresholds for APF and standard
thresholds for all other models, is displayed in Figure 2.11. The standard tools that had the
highest overlap with the optimized APF were CADD [92] (86%), PolyPhen2 [93] (80%),
MutationAssessor [94] (80%), and FATHMM_MKL [95] (80%). The least consensus with
APF was observed for PROVEAN [96] (38%) and FATHMM [97] (47%). In general, there
were considerable differences between the predictions of the tools, and the level of agree-
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UTR3:
1335 (20.3%)

UTR5:
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downstream:
1132 (17.2%)
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Figure 2.9: Types and frequencies of additional non-intronic germline small variants found
in the MASTER cohort. Variants were called using GATK [89] and annotated with ANNOVAR
[90]. The missense variants were functionally assessed using the ADME-optimized Variant Effect
Prediction Framework (APF) [91]. UTR3=3’ UTR, UTR5=5’ UTR.
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Figure 2.10: Types and frequencies of additional non-intronic germline small variants found
in the MASTER cohort per gene. UTR3=3’ UTR, UTR5=5’ UTR.

ment was rather moderate. About half of the missense variants (856, 53%) were predicted
as damaging to the protein function by APF (~1% of all additional germline variants). The
complete list of germline variants predicted to be damaging can be found in Table 6.5 in
the appendix. The remaining variants (768) were predicted as neutral, i.e. having no im-
pact on the resulting protein. The average population allele frequency for additional non-
synonymous variants (both damaging and neutral) across all genes was 0.4% showing that,
as expected from previous studies, most of these variants were rare, with 99.9% having
minor allele frequency <1% (Figure 2.12).

While the number of predicted damaging variants was modestly, but significantly correlated
with the gene length (R2 = 0.38, p = 0.0044), the number of neutral variants was not
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Figure 2.11: Consensus heatmap showing prediction overlap of classical and ADME optimized
VEP methods for all germline missense variants. Class prediction only included damaging or
neutral. Consensus was calculated based on the Jaccard index of matching predictions.
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length-dependent (R2 = 0.19, p = 0.15, Figure 2.13). Most (unique) additional damaging
variants were detected in the genes RYR1 (138), CFTR (66), and CACNA1S (59). The least
affected genes included CYP3A4 (2), UGT1A1 (2) and TPMT (2). However, relative to
gene length, IFNL3, CYP1A1, CYP2A13, and GSTP1 harbored most damaging variants. It
is noteworthy that althoughUGT1A1 carried the least amount of additional variants (7), still
2 of them were damaging. Linkage analysis using LDlink [98] showed no linkage between
the predicted damaging and known star allele variants which suggests their independent
impact on the protein function. Overall 2,066 (87%) of all patients carried at least one
damaging variant in one of the 60 investigated genes. On average a patient carried 2.4
additional variants across all these genes, with 12 variants in the most affected and 1 variant
in the least affected patients. In total, 2.3% of all damaging variants in all patients and genes
occurred homozygous (affecting both copies), while the remaining were heterozygous. In
the homozygous case, the damaging variant can lead to a complete loss of function for a
gene with potentially strong consequences. To see at which positions the damaging variants
are located in the gene and which functional groups of the resulting protein are affected, I
created lollipop plots (Figure 2.14). Most interesting was one damaging variant, 3157G>T
in exon 7 of CYP2D6 which results in R329L amino acid substitution, and which occurred
in 627 patients (26% of the cohort).

1e−05

1e−04

1e−03

1e−02

1e−01

A
B

C
B

1
A

B
C

G
2

C
A

C
N

A
1S

C
F

T
R

C
Y

P
17

A
1

C
Y

P
19

A
1

C
Y

P
1A

1
C

Y
P

1A
2

C
Y

P
1B

1
C

Y
P

26
A

1
C

Y
P

2A
13

C
Y

P
2A

6
C

Y
P

2B
6

C
Y

P
2C

19
C

Y
P

2C
8

C
Y

P
2C

9
C

Y
P

2D
6

C
Y

P
2E

1
C

Y
P

2F
1

C
Y

P
2J

2
C

Y
P

2R
1

C
Y

P
2S

1
C

Y
P

2W
1

C
Y

P
3A

4
C

Y
P

3A
43

C
Y

P
3A

5
C

Y
P

4A
11

C
Y

P
4A

22
C

Y
P

4B
1

C
Y

P
4F

2
D

P
Y

D F
5

G
6P

D
G

S
T

M
1

G
S

T
P

1
G

S
T

T
1

IF
N

L3
N

AT
1

N
AT

2
N

U
D

T
15

P
O

R
P

T
G

IS
R

Y
R

1
S

LC
15

A
2

S
LC

22
A

2
S

LC
O

1B
1

S
LC

O
1B

3
S

LC
O

2B
1

S
U

LT
1A

1
T

B
X

A
S

1
T

P
M

T
U

G
T

1A
1

U
G

T
1A

4
U

G
T

2B
15

U
G

T
2B

17
U

G
T

2B
7

V
K

O
R

C
1

X
P

C

P
op

ul
at

io
n 

A
lle

le
 F

re
qu

en
cy

APF damaging neutral

Figure 2.12: Population allele frequencies (ExACAll) for additional non-synonymous germline
variants. Frequencies were annotated using ANNOVAR [90]. Colors show prediction of APF [91]
(red: damaging variants, grey: neutral variants). The y-axis is logarithmically scaled.

Finally, the APF results for the 856 predicted damaging variants were compared with the
predictions of AlphaMissense [99], a recently published method to predict the influence of
missense variants on protein fitness incorporating AlphaFold protein structure information.
AlphaMissense results1 were available for 44 of the 60 genes, resulting in data for only
50% of the variants. 35% of these variants were predicted as damaging by both APF and

1https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg19.tsv.gz

https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg19.tsv.gz
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Figure 2.13: Correlation of gene length and number of additional germline small variants.
Colors show the prediction of APF [91] (red: damaging variants, grey: neutral variants). The
number of variants predicted to be damaging correlated with the length of the genes (Spearman
R2 = 0.38, p = 0.0044). The y-axis is logarithmically scaled.

AlphaMissense. AlphaMissense further classified 46% as benign and 19% as ambiguous
(Figure 2.15). A subset of carefully selected variants for SLCO1B1 were subjected to addi-
tional functional validation in vitro using transporter assays. The experiments are ongoing
and the results are still pending at the time of submission of this thesis.
The predicted damaging non-synonymous variants of APF were then combined with the
germline genotyping results of section 2.3.2, to see how these affect the star allele results
and metabolizer phenotypes of the patients. When considering patients with extensive, nor-
mal, or increased metabolizer phenotype (i.e. having two or more functional alleles of a
gene), 109 patients (4.6%) carried at least one of the predicted damaging variants in one
pharmacogene which could reduce the actual enzyme activity or transporter function. The
most affected gene was CYP2D6, in which 49 extensive/ultrarapid metabolizer patients car-
ried one of three functional variants (rs3915951 R329L, rs200229206 N82T, rs141739595
R380C). Further less affected genes included ABCG2 (22 patients, 13 SNVs), CYP2B6
(14 patients, 6 SNVs), SLCO1B1 (10 patients, 5 SNVs), CYP2C19 (7 patients, 7 SNVs),
UGT1A1 (3 patients, 2 SNVs), and CYP2C9 and TPMT (2 patients, 2 SNVs). In contrast,
629 patients (26.5%) with a decreased or poor phenotype carried additional variants, pri-
marily in CYP2D6, CYP3A5, and CYP2B6. Here the additional variant could either have
minimal to no effect if it hits the less functional copy or result in an even stronger loss of
function in case the remaining functional copy is affected. Due to short-read sequencing-
based limitations in phasing, these two scenarios may not be disentangled in most cases.
As a result, the metabolizer phenotype in all these patients might be wrongly assigned with
potential clinical implications during drug therapy.
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Figure 2.14: Lollipop plots showing positions of predicted damaging variants in CYP2D6,
CYP3A4, and SLCO1B1.

Figure 2.15: Predicted functional effects of AlphaMissense for the 856 variants that were pre-
dicted as damaging by APF. Figure created by Roman Tremmel.
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Contributions: Sebastian Pirmann analyzed and curated the data on additional germline
variants, ran the experiments with ANNOVAR and APF, and created the figures. Yitian
Zhou helped with the setup and preparations for APF. Roman Tremmel and Sebastian Pir-
mann analyzed the AlphaMissense results.

2.3.5 Implementation of Germline Pharmacogenomics Reporting in a
Molecular Tumor Board

The PGx pipeline, which was developed as part of his thesis and used for the retrospec-
tive analysis of the MASTER cohort, was integrated into the prospective clinical workflow
of the molecular tumor board of the NCT/DKTK MASTER precision oncology program.
For this purpose, the pipeline is applied weekly to incoming germline WGS samples of
patients, and genotypes for a core panel of selected genes (CYP2B6, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, CYP3A5, DPYD, F5, SLCO1B1, TPMT, UGT1A1, VKORC1) are are
being determined. These are then annotated with CPIC guideline recommendations2 and
uploaded to the knowledge management and decision support system KnowledgeConnec-
tor3 (KC) [100], where they can be assessed by the treating physicians. Figure 2.16 shows
a screenshot of the pharmacogenomics page in the KC for an exemplary patient including
consensus genotypes and phenotypes, as well as associated recommendations for matching
drugs. More than 280 patients have been analyzed so far, however, since this project is in the
implementation phase, no statement regarding the application, utility, or any other endpoint
can be made yet.

2https://cpicpgx.org/guidelines/
3https://www.dkfz.de/de/clinical-trial-office/knowledgeconnector.html

https://cpicpgx.org/guidelines/
https://www.dkfz.de/de/clinical-trial-office/knowledgeconnector.html
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Figure 2.16: Example of PGx tab inKnowledgeConnector formolecular tumor board. Personal
details have been redacted as this is a real patient. Some of the displayed text is in German since the
MASTER tumor board is held in Germany.
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Contributions: Sebastian Pirmann adapted the PGx pipeline for integration in the tumor
board and wrote a Python script for adding CPIC annotations. Alexander Knurr and Ben-
jamin Roth provided interfaces for the CPIC database lookup and Knowledge Connector
upload. Peter Horak provided guidance on the selected set of relevant genes and drugs.

2.4 Somatic Pharmacogenomics in MASTER

This section provides an overview of the somatic variation of drug metabolizing enzymes
and transporters in tumors, that could contribute to altered intra-tumor metabolism and drug
resistance. First, I assessed the differences in genotyping results of the PGx pipeline between
matched germline and tumor samples of the MASTER patients (section 2.4.1). However,
since the tools could only detect a small part of the somatic variation, I subsequently used
variant calling pipelines optimized for tumor samples to describe the somatic pharmacoge-
nomic profile of the tumors even more comprehensively. Therefore, I have investigated all
somatic SNVs and CNAs in the 60 selected pharmacogenes for all tumor samples of the
MASTER cohort (sections 2.4.2 and 2.4.3). After showing the complete spectrum of so-
matic PGx variants, I return to the resulting problems and limitations of the application of
PGx genotyping tools to tumor samples, which showed that the genotyping differences de-
scribed in section 2.4.1 only represent a small fraction of functional changes (section 2.4.4).

2.4.1 PGx Pipeline Results of Tumor Samples

The PGx tools were developed for germline and have not been applied to tumor samples pre-
viously. Therefore, I first compared the consensus star allele genotypes between matched
control and tumor samples of the MASTER patients. This comparison allowed me to see
how much the results between matched samples differ due to somatic variation and how
much of this is detectable by the PGx tools. For this, the BAM files of the tumor samples
were used as input to the PGx pipeline following the same workflow as in the germline
analysis in section 2.3.1. Based on the pipeline outputs, 95.3% of genotypes for all genes
were identical between matched germline and tumor samples. However, for 66% of the
patients, at least one differing genotype was observed for at least one gene, whereas in 34%
of patients, all results were in concordance. Genes with the most differences between tumor
and control samples, in more than 15% of the samples, were UGT2B15, SULT1A1, G6PD,
and SLC22A2, GSTT1, and UGT2B17 (Figure 2.17). In these genes, the genotype differ-
ences mainly stem from the fact that the tools detect in the tumor sample a copy number
that is different from the germline sample. For example, an altered copy number in the
tumor was detected, e.g. in 510 patients in SULT1A1. Other interesting differences were



34 Somatic Pharmacogenomics in MASTER

found in CYP2C9 and CYP2C19. Examples of such genotype changes include 46 patients
who carried heterozygous star allele CYP2C19*1/*17 in the germline. In these patients,
the genotype changed to either homozygous increased function alleles (*17/*17) or *1/*1
in the tumor. Similar results were observed in 27 patients with germline *1/*2 or *1/*3
germline genotypes of CYP2C9 changing to homozygous *1/*1. Additionally, in 28 pa-
tients, the heterozygous *1/*28 germline genotype of UGT1A1 changed to wildtype *1/*1.
It is important to note that all these genotype differences were solely assessed from the out-
put of the PGx pipeline, and are based on the implemented set of variants. This set includes
known germline pharmacogenomic SNVs and CNVs, and possibly neglected superimposed
somatic variation. Therefore, I used optimized pipelines to further investigate and compre-
hensively describe the somatic variation in the pharmacogenes and to assess the limitations
of the implemented tools regarding somatic variations. These analyses are shown in the
following sections.
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Figure 2.17: Number of differing genotypes (star allele calls) per gene between matched
germline and tumor samples.

Contributions: Sebastian Pirmann performed all analyses and created all of the figures.

2.4.2 Somatic pharmacogenomic SNVs

All somatic SNVs in the tumor samples of the MASTER patients were extracted from an
established DKFZ in-house small variant calling pipeline [101,102]. The pipeline removes
germline variants in the tumor by subtracting the variants found in the matched control
sample. In the whole cohort, 175 unique somatic SNVs were occurring at known germline
SNV positions that are part of star allele definitions (hereafter called PGx SNVs), across
the 60 analyzed genes in 1% of patients (n=24). The 175 somatic PGx SNVs were detected
most frequently in CYP2D6, CYP2B6, CYP4A22, and SLC15A2. In 6 of the 24 patients,
these variants lead to a star allele diplotype change in the tumor compared to the germline.
The reason why not all variants lead to a change is because I did not distinguish between
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suballeles that, besides the main functional variant, carried a different set of variants (e.g.,
CYP2D6*4.001 or *4.002). In summary, 0.3% of all patients had a metabolizer or trans-
porter phenotype change in their tumor compared to their germline sample based on so-
matic SNVs occurring at known PGx SNV positions. This shows that these somatic SNVs
at known PGx SNV positions explain only a very small proportion of the differences in
observed genotypes between the matched samples described above.
In addition to the somatic PGx SNVs, there were 22,271 additional exclusive somatic SNVs
in the 60 analyzed genes in total. As illustrated in Figure 2.18, 20620 (93%) were intronic,
and the remaining 1561 (7%) were non-intronic variants including exonic non-synonymous
(635, 38.5%), exonic synonymous (375, 22.7%), upstream (283, 17.1%), downstream (255,
15.4%), 3’ UTR (54, 3.3%), 5’ UTR (19, 1.2%), exonic start-loss/stop-loss/stop-gain (28,
1.7%) and splicing variants (2, <1%) as annotated using ANNOVAR. In comparison to the
corresponding distribution in germline variants, considerable differences were found for
exonic non-synonymous SNVs (40% vs. 23%) and 3’ UTR (4% vs. 20%). Distributions of
variant types per gene are displayed in Figure 2.19.

UTR3:
54 (3.3%)

UTR5:
19 (1.2%)

downstream:
255 (15.4%)

exonic_nonsynonymous SNV:
635 (38.5%)

exonic_startloss:
2 (0.1%)

exonic_stopgain:
25 (1.5%)

exonic_stoploss:
1 (0.1%)

exonic_synonymous SNV:
375 (22.7%)

splicing:
2 (0.1%)

upstream:
283 (17.1%)

Figure 2.18: Types and frequencies of additional non-intronic somatic variants found in the
MASTER cohort. Variants were extracted from OTP SNV Calling Workflow and annotated using
ANNOVAR [90]. Missense variants were further functionally assessed using the ADME Variant
Effect Prediction Framework [91]. UTR3=3’ UTR, UTR5=5’ UTR.

Similar to the germline, 54% of the additional non-synonymous/missense variants were pre-
dicted as functional by APF [91]. In contrast to the germline, the additional somatic SNVs
were correlated to gene length for both neutral (R2 = 0.27, p = 0.047) and damaging vari-
ants (R2 = 0.47p = 0.00048); however, the correlation for damaging variants was stronger.
The number of damaging variants found in the germline was higher than in the tumor for
most genes, as shown in Figure 2.20. Figure 2.21 summarizes the comparison of germline
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the MASTER cohort per gene. RYR1 harbors most somatic variants, both synonymous and non-
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Figure 2.20: Numbers of predicted damaging germline and somatic SNVs per gene.
For most genes the fraction of damaging germline variants was higher.
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and somatic small variants in the MASTER cohort for the 60 analyzed pharmacogenes. It
shows the amount of known and additional SNVs found in germline and tumor samples,
their type, functional prediction (for exonic-nonsynonymous variants), and their distribu-
tion across gene regions. Out of the 2,603 PGx variants that are supported by the genotyping
tools and are part of star alleles, 1007 were found in the germline and 175 additionally in the
tumor samples. Compared to the implemented variants, a large number of additional vari-
ants were found. While for these additional variants, the ratio between intronic and exonic
variants was approximately equal, germline variants were more numerous in absolute terms.
In the tumor, an enrichment of non-synonymous variants was observed while the ratio of
predicted damaging variants stayed similar.
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Figure 2.21: Comparison of germline and somatic SNVs found in the pharmacogenes for the
MASTER cohort. Includes known PGx variants and additional variants with functional prediction
in germline and tumor. Figure created by Roman Tremmel.

Contributions: Sebastian Pirmann performed all analyses and created most of the figures.
Roman Tremmel created Figure 2.21.

2.4.3 Somatic Pharmacogenomic Copy Number Aberrations

Somatic copy number aberrations (sCNAs), defined as chromosomal gains and losses of
varying sizes, are known to play a major role in the origin and progression of cancer [103,
104] and have been suggested to promote drug resistance in the context of pharmacogenes
[105, 106]. Therefore, I investigated the sCNA profiles in the 60 pharmacogenes. sCNA
calling results were available for 2,174 patients from the DKFZ in-house pipeline ACESeq
[107]. This pipeline calls sCNAs by segmenting the WGS based on coverage as well as
B-allele frequency and subsequently merges neighboring segments with the same number
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of allele-specific copies. In addition, an estimate of the combination of base ploidy and
purity (tumor cell content) of the tumor sample is obtained by fitting copy number states
to integer numbers. The average tumor ploidy was 3 (ranging from 1.4 to 6.5), showing
some extent of cancer-specific aneuploidy [108–110]. Only sCNA segments overlapping
with pharmacogenes were included in the following analyses.
In total, I found 63,536 sCNA events across 25,971 unique segments, including amplifica-
tions, duplications, deletions, and loss of heterozygosity (LOH) affecting pharmacogenes.
The segments of these sCNA events covered a wide range of sizes from 1 kilobase to 138
megabases (Figure 2.22). 95.5% of sCNA segments were relatively large in the size ranges
of chromosome arm-level events (> 106 base pairs). Figure 2.23 shows the total number of
sCNAs of the 60 pharmacogenes in the MASTER cohort per sCNA category. The 63,536
CNVs included 25,689 duplications, 20,604 deletions, 15,929 LOH events, and 1,314 am-
plifications. This number of sCNAs is considerably higher than the SNVs presented in the
previous section and involves far more base pairs, indicating that sCNAs contribute sub-
stantially to somatic variation in pharmacogenes.
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Figure 2.22: Histogram of segment sizes of sCNAs affecting pharmacogenes.

As shown in Figure 2.24, the genes could be separated into 3 groups which were enriched for
deletions, duplications, or equally affected by both at the cohort-wide level. Additionally,
loss of heterozygosity (LOH) occurred very frequently across deleted genes but was also
found in duplicated genes to a lesser extent. Generally, the top three most sCNA-affected
genes were NAT1/2 and NUDT15 which were mostly deleted and affected by LOH. The
least sCNA-affected genes were SULT1A1, GSTP1, CYP1B1, and VKORC1. Most dele-
tions were found in NUDT15 (706), NAT1 (670), and NAT2 (658), whereas PTGIS (92) and
F5 (99) were the least affected by deletions. In contrast, most duplications were found in
PTGIS (841), CYP2W1 (808), F5 (785), and POR (782). Genes with the lowest number
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Figure 2.23: Total numbers of sCNA events in the 60 pharmacogenes in the MASTER cohort.
SCNAs in all 60 pharmacogenes for the whole MASTER cohort were extracted from the ACESeq
pipeline [107].

of duplications included CYP26A1 and CYP2C8/9/19 (165 each). The highest number of
amplifications was detected in SLCO1B1/3 (72). These findings are in line with pan-cancer-
wide observations of recurrent gains and losses of chromosome segments and explain that
various pharmacogenes are susceptible to either duplications or deletions [104]. Examples
include deletions on chromosomes 1p (CYP2J2, CYP4B1/4A11/4A22, DPYD, andGSTM1),
3p (XPC), 4q (UGT2B7/15/17 and ABCG2), 8p (NAT1/2), 10q (CYP2C8/9/19, CYP2E1,
CYP17A1, and CYP26A1), 13q (NUDT15), 22q (COMT, GSTT1, and CYP2D6), or dupli-
cations on chromosome 1q (CACNA1S and F5), 7pq (CYP2W1, CYP3A4/5/7/43, ABCB1,
CFTR,POR, and TBXAS1), 12p (SLCO1B1/3), 20q (PTGIS). Pharmacogenes that were least
affected by sCNAs (CYP1A1/2 and UGT1A1/4) were located in regions 2q and 15q where
only very few pan-cancer-wide gains and losses were observed [104].

The analysis of sCNA events was also stratified by cancer entities, results of which are
shown in the heatmaps in Figure 2.25. For each sCNA type, cancer entity, and gene, the
fraction of affected patients was calculated (scaled percentages in the heatmaps). The frac-
tion of sCNA-affected patients per cancer entity and genewas up to 80% for duplications and
deletions, 20% for amplifications, and almost 100% for LOH in some entities and genes. The
genes that were highly duplicated across many entities included F5 and CACNA1S (1q), PT-
GIS (20q), and mainly genes located on chromosome 7 including CYP2W1, POR, ABCB1,
theCYP3A family, TBXAS1, andCFTR. Colorectal and neuroendocrine cancers were among
the entities with the highest fractions of duplicated genes, whereas GIST, hematopoietic
cancers, and synovial sarcomas harbored the least duplications. Notable cases in which
individual entities and genes differed from the rest of the cohort were an enrichment of
duplications of NUDT15 in colorectal cancer, TPMT in melanoma, and NAT1/2 in Ewing
sarcoma/PNET. In line with the fact that they represent a stronger alteration, amplifications
were generally less common than duplications; entities mostly affected were breast and uro-
logic cancers. Breast cancers had the most frequent amplifications across several genes, but
especially in SLCO2B1, XPC, and GSTP1. SLCO1B1/3 were frequently amplified in uro-
logic cancers. In addition to the frequent duplications of NUDT15 in colorectal cancer, am-



40 Somatic Pharmacogenomics in MASTER

plifications of NUDT15 as well as PTGIS were also enriched in this entity. In summary, the
sCNAs in NUDT15 for colorectal cancers differed greatly from the other entities in which
NUDT15 was generally deleted. As shown below in section 2.5.1 (Figure 2.32), NUDT15
was also expressed the highest in colorectal cancers. For deletions, the most affected genes
were NUDT15, genes located on chromosome 10q including CYP2E1, the CYP2C family,
CYP17A1, CYP26A1, and NAT1/2 (8p). In total, leiomyosarcomas, GIST, colorectal, and
breast cancers had the most deletions across many genes. In contrast, hematopoietic cancers
showed the least deletions. Some entity-specific enrichments were deletions of NAT1/2 in
colorectal and breast cancers and SLC22A2 in melanomas. LOH was mainly observed in
the same genes and entities that were enriched for deletions. Examples included GIST and
leiomyosarcoma, as well as breast and bone cancers. Interestingly, LOH was also found
very frequently in many genes in the neuroendocrine cancers, which, however, were not as
strongly affected by deletions suggesting copy number-neutral LOH.

For many tumor entities, the whole genome-wide sCNA profile has already been described
and matches some of the entity-specific patterns observed here. For example, frequent sC-
NAs, including deletions and LOH of many chromosomal segments were previously found
in leiomyosarcoma [111], especially on chromosome 10qwhich includes the genesCYP2Cs,
CYP2E1, CYP17A1, and CYP26A1, which were also found to be frequently deleted in this
entity in this work. However, it has to be noted that the cohorts described in [111] and here to
some extent contain the same samples. Also, frequent deletions of the p arm of chromosome
1 have been reported in GIST [112–115], which includes the frequently deleted CYP4B1,
CYP4A11, CYP4A22, CYP2J2, DPYD, and GSTM1 found in this entity. The frequent dupli-
cations located on chromosome 7q (POR, CYP3A4/5/7/43, CFTR, and TBXAS1) in colorec-
tal cancer match known chromosomal gains of this region [116–118]. The role of LOH of
CYP2D6 in breast cancer has been described repeatedly by previous studies [119–122] and
additionally, LOH was found in many other pharmacogenes where deletions were observed
in breast cancer like chromosome 8p which includes NAT1/2 [123]. These are only some
non-exhaustive examples where the observed sCNAs of pharmacogenes follow the reported
genomic sCNA profile of the respective cancers. In summary, some of the pharmacoge-
nomic sCNA events appear to be common at pan-cancer level, while others are related to
entity-specific genomic patterns.

It is known that tumor cells carry complex structural aberrations in their genome. In par-
ticular, oncogenes and tumor suppressor genes that promote tumor development [124] and
may thus have characteristics of driver genes are often affected by sCNAs. As already
shown in the previous analyses (Figure 2.25), for some cancer entities the sCNA profile of
pharmacogenes follows the same chromosomal patterns that have been described in these
individual entities, which could be linked to specific driver genes. Furthermore, as 95.5%
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Figure 2.24: Number of somatic CNAs of pharmacogenes in the MASTER cohort. 3 groups
could be separated on a pan-MASTER level.

of the analyzed sCNA segments were large (>1000kb) in size, they contain many genes
in addition to the analyzed pharmacogenes, including driver genes such as oncogenes and
tumor suppressors. I thus wanted to investigate whether these driver genes could be the
cause of the observed PGx-sCNA profiles since pharmacogenes are currently not suspected
of being cancer drivers themselves. Therefore, I analyzed whether well-known relevant
cancer genes, as listed in the cancer gene census [125], including oncogenes (n=106), and
tumor suppressors (n=183) are commonly among the co-affected genes in the sCNA seg-
ments (genes described as both oncogene and tumor suppressor in the cancer gene census
list were excluded). The hypothesis was that deletions of pharmacogenes can be observed
more frequently in loci containing tumor suppressors in the neighborhood and vice versa,
that duplications are more commonly detected when oncogenes are located in the proximity
of the pharmacogene.

For each sCNA event of each patient affecting a pharmacogene, I summarized the number
of oncogenes and tumor suppressors located on the same sCNA segment. In this data, I
found 19,787 sCNA segments (76.2% of all sCNA segments) that included pharmacogenes
coaffected with either oncogenes and/or tumor suppressors. As shown in figure 2.26, glob-
ally, the fraction of co-duplications of pharmacogenes with oncogenes (60%) was higher
than with tumor suppressors (40%), and co-deletions occurred more frequently with tu-
mor suppressors than with oncogenes (56% vs. 44%). There were gene-specific differ-
ences, which are shown in Figure 2.26. For POR and VKORC1 no sCNA events including
oncogenes or tumor suppressors could be found, however, these genes were close to cen-
tromeres and the evaluation of these segments showed that ACEseq has problems merg-
ing neighboring segments here, leading to small isolated regions for these genes. Conse-
quently, these were removed for subsequent analyses. As illustrated in Figure 2.26, genes
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Figure 2.25: Heatmaps with somatic CNAs of pharmacogenes per cancer entity in MASTER.
Each heatmap shows one sCNA type (Amplification, Duplication, Deletion, and LOH) with cancer
entities as columns and pharmacogenes as rows. The intensity of the heatmap shows the fraction of
patients affected by this sCNA type in the respective pharmacogene and entity.
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commonly (>60%) deleted together with tumor suppressors were CYP26A1, CYP2C8/9/19,
and CYP2E1. Common duplications (>60%) with oncogenes were found for ABCB1 and
CYP3A4/5/7/43. Interestingly, I observed unexpected patterns for some genes including
SULT1A1, G6PD, GSTP1, and SLCO1B2 where duplications occurred despite none of the
included oncogenes being present. These genes had only tumor suppressors in their prox-
imity and had co-duplications with these in 46-70% of events. The sCNA events affecting
pharmacogenes together with oncogenes and tumor suppressors are summarized per cancer
entity in Figure 2.27.
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Figure 2.26: Somatic sCNAs of pharmacogenes including co-affected oncogenes and tumor
suppressors ordered by event type. (DUP: Duplication, DEL: Deletion, OG: oncogene, TSG:
tumor suppressor gene).

Next, I examined chromosomal regions more closely for all pharmacogenes and their neigh-
boring oncogenes and tumor suppressors. Figures 2.28 and 2.29 depict the ideograms of
sCNA events (duplications in red, deletions in blue) across chromosomes and show neigh-
boring oncogenes (red text) and tumor suppressors (blue text) for each pharmacogene (black
text). The group of commonly duplicated pharmacogenes on the long arm of chromosome 7
including ABCB1, CYP3A4/5/7/43, overlapped with locations of the oncogenes TRRAP and
GRM3. Particularly colorectal and neuroendocrine cancers showed this enrichment pat-
tern. Also SLCO1B1/3which were most frequently amplified (26%) in urologic cancers are
closely located next to the KRAS oncogene on chromosome 12p. PTGIS, mostly amplified
in colorectal cancers, is located in the proximity of several oncogenes (SRC, SALL4,GNAS).
The role of SRC, a well-known proto-oncogene, in colorectal cancers has been previously
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Figure 2.27: sCNAs co-affecting pharmacogenes with oncogenes and tumor suppressors per
entity. (DUP: Duplication, DEL: Deletion, OG: oncogene, TSG: tumor suppressor gene).

discussed [126, 127], and gains of the long arm of chromosome 20 including GNAS [128]
have been reported. This is reflected by the high amount of duplications and amplifications
of PTGIS in the colorectal cancer group found here. Furthermore, PTGIS itself has also
recently also been studied in the context of this entity [129, 130] and amplifications were
found to be the most frequent alteration. Additionally, high expression of PTGIS in colorec-
tal cancer was associated with worse overall survival [130]. In contrast, on chromosome 13
NUDT15 was frequently co-deleted with tumor suppressor RB1, which is a well-known
cancer driver. For example, frequent deletions in Leiomyosarcomas included segments on
chromosomes 10 and 13, and the respective tumor suppressors in these regions like PTEN,
BRCA2, and RB1 are commonly observed features in this cancer [111]. The CYP2C gene
family on chromosome 10 was among the most commonly deleted genes and is close to
several tumor suppressors like PTEN, FAS, CPEB3, and SUFU.
In some regions where CNAs with oncogenes and tumor suppressors were equally frequent,
no enrichment of duplication or deletions was found (chromosome 15q24withCYP1A genes
and chromosome 2q37 with UGT1A genes). In contrast, the genes showing unexpected pat-
terns like SULT1A1, G6PD, GSTP1, and SLCO2B1 as mentioned earlier, only had tumor
suppressors in their proximity but were still frequently duplicated. For SULT1A1 andG6PD
duplications were even more frequent than deletions, while forGSTP1 and SLCO2B1 dupli-
cations and deletions occurred equally frequent. Figure 2.30 shows the correlation between
the number of sCNA events affecting a pharmacogene (duplications and deletions) and the
number of oncogenes and tumor suppressors in proximity (located on the same sCNA seg-
ment). With increasing numbers of driver genes in proximity, the amount of sCNAs in-
creases for both categories. Several somatic pharmacogenomic CNAs could therefore be
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passenger events originating during the development of cancer through oncogenic muta-
tional processes.
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Figure 2.28: Ideogram displaying co-localization of sCNAs in pharmacogenes with oncogenes
and tumor suppressors on chromosomes 1-11. Deleted segments are marked in blue and dupli-
cated segments in red. Pharmacogenes are labeled in black text, tumor suppressors in blue text, and
oncogenes in red text.
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Figure 2.29: Ideogram displaying co-localization of sCNAs in pharmacogenes with oncogenes
and tumor suppressors on chromosomes 12-X. Deleted segments are marked in blue, and dupli-
cated segments in red. Pharmacogenes are labeled in black text, tumor suppressors in blue text, and
oncogenes in red text.
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Figure 2.30: Correlation of the number of sCNAs and the number of co-affected oncogenes
and tumor suppressors. The left panel shows the number of deletions per gene found in MASTER
and the number of tumor suppressors in proximity. The right panel shows the same for duplications
and oncogenes in proximity. Correlation was calculated using Kendall’s tau coefficient.

Contributions: Sebastian Pirmann performed all analyses and created all of the figures.
Małgorzata Oleś provided R code for extraction of sCNA data from the dataMASTER ob-
ject.

2.5 SCNAs, Epigenetics, and their Effect on Tumor Ex-
pression of Pharmacogenes

In the following sections, I present data from other omics layers beyond DNA for the phar-
macogenes. In section 2.5.1 I show results of analyses of the somatic gene expression pro-
files of pharmacogenes in the MASTER entities from tumor bulk RNA-sequencing data.
Furthermore, I assessed the effect of sCNAs on gene expression. The methylation of phar-
macogenes in the tumor and its effect on expression is described in section 2.5.2. Lastly, a
combined multivariate model of the genomic, epigenomic, and transcriptomic data, for es-
timating the contribution of each layer to pharmacogene activity in the tumor, is presented
in section 2.5.3.
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2.5.1 Pharmacogene Expression in Tumors

The expression of ADME genes and the effect of somatic variants on the transcriptome
will be assessed in the following section, as they may contribute to drug response and
resistance [37]. RNA expression of pharmacogenes in tumor samples has been reported
for several cancers [62, 131–133]. I analyzed the expression of the selected 60 pharmaco-
genes in the MASTER cohort from available bulk RNA-sequencing of the tumor samples
(n=1936). TPM normalized values were calculated from raw read counts per gene for each
patient. A general tendency of higher expression of phase II genes and transporters com-
pared to phase I genes was observed cohort-wide, as shown in Figure 2.31 (Kruskal-Wallis
test, p < 2 ∗ 10−16). Phase I enzymes had a few high expression outliers, mainly from
hepatopancreaticobiliary, gastrointestinal, and colorectal cancers.

p < 2.22e−16
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Figure 2.31: Comparison of expression per gene class (Phase I, Phase II, Transporter).
TPM values were grouped by gene class and tested with a Kruskal-Wallis test. Pairwise post-hoc-
testing was done with Wilcoxon tests.

Next, I investigated whether there are entity-specific differences in the expression of phar-
macogenes across the different tumor tissues. The heatmap in Figure 2.32 shows the mean
log2-transformed TPM values per cancer entity for all 60 pharmacogenes. As illustrated, the
expression patterns of pharmacogenes in the different cancers could be classified into five
groups, using hierarchic clustering as implemented in the ComplexHeatmap package [134].
The first cluster contains GSTP1, POR, COMT, VKORC1, G6PD, XPC, NUDT15, and
TPMT with expression in and only minor variation between tumor entities. This group
comprises mainly phase II genes and genes involved in metabolic processing of substances
other than drugs. GSTP1 was the highest ubiquitously expressed gene and in accordance
with this finding, high expression of GSTP1 was already reported in several cancers [135–
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138]. The second cluster contained several phase II pharmacogenes like SULT1A1, DPYD,
GSTM1/GSTT1, as well as the organic anion transporter SLCO2B1, CYP1B1, and CYP2R1,
which were all expressed, but less high than the genes in the first cluster. This is consistent
with the increased expression found for phase II genes across the whole pan-rare cancer
MASTER cohort. Of note, this cluster includes PTGIS and TBXAS1 which catalyze the
modification of prostaglandin H2 [139,140]. Two other gene clusters were characterized by
low or moderate tissue-specific expression patterns of mainly phase I genes like CYP2/3/4
families and some ABC and SLC transporters, as well as mostUGTs. The tissue-specific pat-
terns in these two clusters mostly distinguish cancers of drug-metabolizing organs, where
generally higher expression of these genes was observed, from the remaining cohort. For
example, cancers where phase I genes and transporters had rather low expression were bone
cancers, lipo- and synovial sarcoma, and hematopoietic cancers. The remaining cluster is
comprised of genes with generally low expression across all cancers except for some tissue-
specific outliers like CYP17A1 in neuroendocrine cancer tissues.
The majority of analyzed genes code for drug-metabolizing enzymes and drug transporters
which are usually highly expressed in the main drug-metabolizing tissues like the liver,
kidney, and intestines. As expected, the expression of these genes in the hepatopancreatico-
biliary, gastrointestinal, and colorectal cancer entities was significantly higher compared to
the remaining cancer entities (Kruskal-Wallis test, p = 1.7 ∗ 10−6). This indicates that the
intra-tumor metabolism of drugs could be particularly relevant for these tumors. Addition-
ally, for some genes and entities outliers of expression levels were observed. These include
PTGIS in GIST, CYP2S1 in upper gastrointestinal and colorectal cancers, and NUDT15,
NAT2, CYP2B6, CYP2W1, and CFTR in colorectal cancer. Tumor-specific expression of
CYP2W1 in colorectal cancer has been reported previously [141–143].
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Figure 2.32: Somatic RNA expression of pharmacogenes in the cancer entities of theMASTER
cohort. The heatmap shows the average expression of baskets (for visualization log2(TPM+1) was
used and averaged for each cancer). The plot below indicates the distribution of expression across
cancer entities (with inverted y-axis, i.e., having increasing values towards the bottom). The entity
with the highest expression is labeled and hepatic, pancreatic, gastrointestinal, and colorectal cancers
are marked in red. These cancers had significantly higher expression across all genes (Wilcoxon test
p = 1.7 ∗ 10−6).
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Contributions: Sebastian Pirmann performed all analyses, and created all of the figures.
Figure 2.32 was created together with Roman Tremmel.

2.5.2 Association of Pharmacogenomic sCNAs with Tumor Gene Ex-
pression

It is known that sCNAs play a role in the origin and progression of cancer and that changes in
the copy number of a gene can affect its expression [144]. This association has been reported
for several important oncogenes and tumor suppressors like MYC, KRAS, RB1, and TP53
[144], but has also been shown for pharmacogenes in germline [145]. Therefore, I performed
a cohort-wide analysis of expression levels and sCNA status for the pharmacogenes to see
if comparable effects could be observed in the tumor tissues. For every pharmacogene,
patients were stratified into three sCNA groups (deleted, neutral, duplicated/amplified), the
association of which with the corresponding TPM values were then tested using Kruskal–
Wallis tests (Figure 2.33). Among the highly significant results after Benjamini-Hochberg
correction were NUDT15 (padj = 2.84 ∗ 10−56), POR (padj = 2.85 ∗ 10−39), XPC (padj =

1.24 ∗ 10−29), COMT (padj = 7.2 ∗ 10−29), TPMT (padj = 2.42 ∗ 10−25), CYP2R1 (p =

2.33 ∗ 10−21), SLC15A2 (3.96 ∗ 10−17), and GSTP1 (padj = 8.99 ∗ 10−14).

Interestingly, almost all of these genes were in the clusters of high or enhanced expression
(Figure 2.32). NUDT15 was also among the genes most heavily affected by sCNAs and
in particular had the highest number of deletions across most cancer entities. The highly
expressed GSTP1 had a less strong but still significant association, however, it was among
genes with the lowest number of sCNAs and mostly duplicated/amplified in breast can-
cer. This suggests that especially for GSTP1 there might be other mechanisms (other than
sCNAs) that regulate the expression in the tumor. Association for POR was also highly sig-
nificant and it was one of the most frequently duplicated genes across many entities. POR
plays a major role in drug metabolism as it codes for the enzyme NADPH-cytochrome P450
oxidoreductase and is essential for the functionality of CYP enzymes by transfer of electrons
from NADPH [146].

Similar association analyses of sCNA status and expression levels were also performed for
each cancer entity separately. Results are shown in Figure 2.34. Significant results af-
ter Benjamini-Hochberg correction included NUDT15, COMT, DPYD, POR in soft tissue
sarcoma, XPC, RYR1, and CYP2R1 in neuroendocrine and adrenal cancers, NAT1 in col-
orectal and upper gastrointestinal cancers, and TPMT in liposarcoma. Many of the signif-
icant genes of the cohort-wide analysis were confirmed and I was able to assess in which
tissues the highest association signal was present. Of note, this sub-group analysis was
dependent on sample sizes. NUDT15 was highly duplicated, amplified, and expressed in
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colorectal cancer whereas for the remaining entities it was mainly deleted; however, it re-
mained below the significance threshold after adjustment for multiple testing, most likely
due to the low case numbers in the deletion group. Still, the effect of NUDT15 sCNAs
on gene expression was strong in colorectal cancers and significant if tested separately as
shown in Figure 2.35. Entity-specific effects where sCNAs were significantly associated
with expression were observed for NAT1 in upper gastrointestinal and colorectal cancers
and RYR1 in neuroendocrine and adrenal cancer. The potential of expression of NAT1 as a
prognostic biomarker for colorectal cancer has been investigated [147]. Also, several stud-
ies have found NAT1 polymorphisms and hypermethylation as risk factors for colorectal
cancer [148–150]. RYR1 appears in several studies on somatic variants of neuroendocrine
cancers and pituitary adenomas [151, 152], but there is no pathophysiological connection
yet. In conclusion, it can be said that there is a high association between sCNAs and the
expression levels of several pharmacogenes in tumor tissue, especially for the more highly
expressed genes.

Kruskal−Wallis, p < 2.2e−16
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Figure 2.33: Cohort wide association of sCNA status and expression levels. A: The Y-axis shows
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Figure 2.34: Entity-wise correlation of sCNA status and RNA expression levels. The Y-axis
shows the significance of the Kruskal–Wallis tests.
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Figure 2.35: Correlation of sCNA status and RNA expression levels of NUDT15 in colorectal
cancers Compared to the remaining entities (right panel) the sample size of the deletion group was
rather small, as especially in colorectal cancers NUDT15 was more often duplicated in contrast to
the rest of the cohort. The effect of sCNAs on expression is strong, but in the cohort-wide analysis
it remained below significance.



SCNAs, Epigenetics, and their Effect on Tumor Expression of Pharmacogenes 55

Contributions: Sebastian Pirmann performed all analyses and created all of the figures.

2.5.3 Methylation of Pharmacogenes in Tumors

In the following, I give an overview of methylation of pharmacogenes in tumor samples
of the MASTER program. Methylation plays a major role in regulating the expression of
genes [153] and is known to promote cancer through activation of oncogenes by hypomethy-
lation or silencing of tumor suppressors by hypermethylation [154]. For ADME genes, epi-
genetic mechanisms of regulation have already been described for normal and tumor tissues;
the current state of the art indicates that individual differences in drug response cannot be
explained by genetic variation alone [155].

In this work, DNA methylation (5-Methylcytosin) was measured with Illumina 850k EPIC
Arrays as previously described [156] and was available for 1,792 of the 2,371 patients se-
quenced with WGS (75% ). Beta values of 1579 CpG sites in the 60 pharmacogenes were
extracted. These included 1226 intragenic CpG sites and 353 promoter CpGs up to 5000
base pairs upstream of the transcription start site (TSS). Numbers of CpGs per gene that were
measured and extracted from the EPIC array are displayed in Figure 2.36. For CYP3A7 and
UGT2B7 no CpG sites in the 5000 base pair region upstream of the TSS were available, also
no intragenic CpGs were available for CYP2A6 and IFNL3. Genes with the most analyzed
CpGs included e.g. RYR1, TBXAS1, POR, DPYD.

For all statistical analyses, beta values were transformed into M values since they have
been shown to be more valid for statistical analysis due to their homoscedasticity [157,
158]. In contrast, beta-values have high heteroscedasticity in the strongly methylated and
unmethylated regions and are problematic for models that assume normally distributed data.
Still, beta values were used for visualization since they are more easily interpretable. The
distributions of beta and M values for all analyzed CpG sites are displayed in Figure 2.37.

First, I averaged the beta values of all CpG sites per gene and cancer entity to examine
global tendencies of methylation as shown in the heatmap in Figure 2.38(A). Based on the
clustering of the methylation values in the heatmap, a rough grouping of carcinomas vs. sar-
comas can be seen, with overall methylation values being slightly higher in the carcinomas.
The genes with the highest methylation values across entities includedUGT2B15, CYP2C8,
and SLC15A2. The least methylated genes were CYP26A1, NUDT15, and GSTT1. Some
genes showed general entity-specific differences such as CYP2A13 and CYP2E1 or individ-
ual outliers of single entities like CYP2D6 and CYP2W1 which, e.g., were less methylated
in synovial sarcoma.

Additionally, average beta values of CpG sites separated by chromatin state (promoter vs. in-
tragenic) are shown in the lower panel (B) of Figure 2.38. Beta value cutoffs were defined as



56 SCNAs, Epigenetics, and their Effect on Tumor Expression of Pharmacogenes

XPC
VKORC1
UGT2B7

UGT2B17
UGT2B15

UGT1A4
UGT1A1

TPMT
TBXAS1

SULT1A1
SLCO2B1
SLCO1B3
SLCO1B1
SLC22A2
SLC15A2

RYR1
PTGIS

POR
NUDT15

NAT2
NAT1
IFNL3

GSTT1
GSTP1
GSTM1

G6PD
F5

DPYD
CYP4F2
CYP4B1

CYP4A22
CYP4A11

CYP3A7
CYP3A5

CYP3A43
CYP3A4
CYP2W1
CYP2S1
CYP2R1
CYP2J2
CYP2F1
CYP2E1
CYP2D6
CYP2C9
CYP2C8

CYP2C19
CYP2B6
CYP2A6

CYP2A13
CYP26A1

CYP1B1
CYP1A2
CYP1A1

CYP19A1
CYP17A1

COMT
CFTR

CACNA1S
ABCG2
ABCB1

0 30 60 90

number of cpgs

region

intragenic

promoter
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Figure 2.37: Distributions of beta andM values for all CpG sites in pharmacogenes. Beta values
were used for visualization and M values for statistical analysis.

hypermethylated (beta > 0.75) and hypomethylated (beta < 0.25). Genes showing promoter
hypermethylation in several cancer entities included POR,G6PD, CYP2C8, UGT2B15, and
SLC15A2. Hypomethylation of promoters was found for genes XPC, NUDT15, TPMT,
DPYD, CYP2S1, CYP2J2, CYP16A1, and CYP1A1. Intragenic hypermethylation of genes
in several entities included CYP2C8, UGT2B15, NAT2, and CYP17A1. In contrast, intra-
genic hypomethylation affected GSTP1, VKORC1 NUDT15, GSTT1, CYP2R1, SLCO1B1,
andCYP26A1. For some genes, promoter and intragenic CpGs showed the same direction of
methylation like NUDT15, CYP2C8, UGT2B15, and CYP26A1. For other genes, promoter
and intragenic methylation generally differed in direction like DPYD and XPC.
Most genes in the highly expressed group had a tendency towards lower promoter and
intragenic methylation values while the methylation values in the tissue-specific expres-
sion groups were most diverse. The group of low-expressed genes tended to have a higher
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promoter and intragenic methylation. NUDT15, which was most notably hypomethylated
across all entities, also showed high expression as well as a high association of expression
with sCNA status. In contrast, the expression of POR also had a high association with sCNA
status, but methylation, especially in the promoter, was generally high (average beta value
> 0.75).

Figure 2.38: Overview of entity-specific methylation of pharmacogenes. The upper panel (A)
shows entity-specific promoter and intragenic methylation for all pharmacogenes separated by ex-
pression groups. The lower panel (B) shows a heatmap of beta methylation values per gene and
cancer entity describing global patterns of methylation across cancer entities and pharmacogenes.

Next, I performed an entity-specific correlation analysis between methylation and expres-
sion levels using Spearman correlation tests between M and TPM values per CpG site and
gene within each cancer entity. GSTT1 and GSTM1 were removed from the analysis since
their frequent germline deletions resulted in outliers of very low expression. Figure 2.39
shows the results of the correlation tests separated by promoter and intragenic CpGs and the
direction of correlation using a significance cutoff of adjusted p-values < 0.001. The top
200 significant results can additionally be found in Table 6.7 in the appendix.
In principle, among all 1,579 CpG sites, there were 1,200 (427 unique CpGs, 27%) negative
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and 1,540 (524 unique CpGs, 33%) positive significant correlations across all entities and
genes. The number of significant p-values was higher for the intragenic CpGs (798 unique
intragenic and 313 unique promoter CpGs). However, the analysis included 3.5 times more
intragenic ones. Overall, p-values for the intragenic CpGswere considerably lower, showing
a stronger association with expression. For intragenic CpGs more positive (1,419 with 466
unique CpGs) than negative (1,008 with 344 unique CpGs) correlations were found while
for promoter CpGs the opposite was observed (121 positive correlations with 58 unique
CpGs, and 192 negative with 58 unique CpGs).
Most significant results (lowest p-values) were found in the high and enhanced expression
groups for negative correlation and intragenic CpG sites. In the group of highly expressed
genes, 312 (120 unique CpGs) negative and 26 (20 unique CpGs) positive correlations were
found. However, except for one promoter CpG, the positive correlations were exclusively
intragenic. Also, in the high expression group, the negatively correlated intragenic CpGs
had lower p-values (lowest p=1.22 ∗ 10−37) compared to positively correlated ones (lowest
p=5.37 ∗ 10−09). The significant correlations in the high and enhanced expression groups
were predominantly observed in the three entities neuroendocrine tumors, soft tissue sarco-
mas, and colorectal cancers.
For GSTP1 several intragenic CpG sites were negatively correlated with expression in neu-
roendocrine cancers and melanoma, but also in many other entities with lower significance.
Also, many intragenic CpGs in POR were negatively correlated with expression in neu-
roendocrine cancers. In soft tissue sarcomas, intragenic CpGs in PTGIS were significantly
correlated with expression. In the enhanced expression group, DPYD showed a significant
positive correlation for intragenic CpGs. , Top hits for negatively correlated promoter CpGs
included CYP2W1 in colorectal and F5 in neuroendocrine cancers. Expression of CYP2W1
in colorectal cancers has been reported to be regulated by methylation [159]. For positively
correlated CpGs, the intragenic results included neuroendocrine cancer with ABCB1, and
soft tissue sarcomas with DPYD. For positively correlated promoter CpGs also ABCB1 in
neuroendocrine cancers was significant. Selected examples of the most significant correla-
tion tests are shown in the lower panel in Figure 2.39.
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Figure 2.39: Correlation of methylation values and expression per CpG site grouped by gene
and cancer entity. Selected scatterplots of highly correlated CpG sites are displayed below.
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Contributions: Sebastian Pirmann performed all analyses and created all of the figures.
Daniel Lipka provided the methylation data from the EPIC arrays.

2.5.4 Multivariate Models of Somatic Pharmacogene Expression

The influence of germline variants on expression, protein activity, and drug response is
evident for many pharmacogenes including CYPs, UGTs, GSTs, SULTs, and transporters.
With the next analysis, I aimed to investigate the combined influence of germline variants,
somatic variants, and epigenetics on the intra-tumor gene expression of pharmacogenes.
The univariate effect of somatic genetic and epigenetic variation on the somatic ADME
expression was described thoroughly in the previous sections. As demonstrated in the pre-
vious analyses the activity of some ADME genes seems to be mainly influenced by sCNAs
(NUDT15) while for others expression seems to be more strongly regulated by methylation
(GSTP1). In this section, I aimed to understand the amount of variance that is explained by
the genetic and epigenetic factors on ADME RNA expression. Therefore I integrated these
data layers and used multivariate linear regression models, as the interpretability of such
models is high. The curated germline genotype results of the pipeline were combined with
sCNAs and methylation data in order to model RNA expression. In total, complete data was
available for 1,450 patients.

The choice of input data for the regression models was motivated by the following rea-
soning: (i) the functional effect of germline star alleles has been extensively demonstrated
and the germline variants are also present in the tumor; (ii) only very rarely (in 1% of pa-
tients), somatic SNVs in the tumors matched both the very position and the exact exchange
of thoroughly described germline PGx SNVs; (iii) due to complex convolution of small
variants and sCNAs in tumor genomes, an exact determination of the zygosity of the small
variants may remain unreliable making an exact star allele genotyping for tumors difficult.
The combination of genotyping results from the germline with somatic CNAs was therefore
considered as a good approximation for the genetic component influencing intra-tumor gene
expression.

GSTT1 and GSTM1 were excluded from the analysis because of their frequent germline
deletions. For methylation, CpG sites were further restricted to the ones that were signif-
icantly correlated to expression based on the previous univariate analysis (padj < 0.0001),
to reduce the amount of features in this data layer. First, for each gene, models were fitted
pan-MASTER cohort-wide, and then further models were fitted per cancer entity separately
using the following formula for multivariate linear regression:

TPM ∼ consensus_genotype_germline+ sCNA_type+ significant_cpgs.
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For each model, the selected features were extracted and grouped by data layer (germline
genotype, somatic CNAs, andmethylation). The significance of features for the cohort-wide
models per gene is shown in figure 2.40; results were grouped by expression gene classes
as described above. In the group of highly expressed genes sCNA status was mostly the
dominating feature while for the tissue-specific expression groups, methylation was most
significant, confirming the results of the previous univariate analyses. The most significant
results include methylation in CYP3A5, CYP2S1, CYP2C9, and UGT2B15 in the tissue-
specific expression group. Also, findings for NUDT15, for which sCNAs had the most
significant association with expression and in which methylation was generally low, were
confirmed in this analysis. In contrast, GSTP1 was also highly expressed but the associa-
tion with sCNA status was lower. As expected from the previous methylation analysis, the
multivariate models for this gene mainly contain CpG sites as a dominant feature.
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Figure 2.40: Most significantly associated features of linear models for somatic RNA expres-
sion. For every gene a multivariate linear model was constructed taking genetic and epigenetic data
as input. For each model, the most significantly associated feature was extracted. Genes are grouped
by expression category as described above and the y-axis shows the significance of the feature in the
regression models.

The results of the entity-specific models per gene are displayed in Figure 2.41. For some
entities, no model could be created due to limited cohort size and the resulting lack of feature
levels (gray tiles in Figure 2.41). In summary, methylation was the most strongly associ-
ated factor for 44 (75.8%) pharmacogenes, followed by star allele genotypes for 5 (8.6%),
and sCNAs for 4 (6.8%) pharmacogenes as shown in the right row annotation barplot. The
remaining 5 genes had equal numbers of associations of at least 2 data layers. For all enti-
ties, methylation was the dominant feature across most genes as shown in the top column
annotation barplot. Entities with the most methylation-associated genes included soft tissue
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sarcomas, hepatopancreaticobiliary cancers, and neuroendocrine tumors. The proportions
of genes for which sCNAs and germline genotypes were the top features were approxi-
mately equal between the entities. Genes predominantly influenced by star alleles were
genes from the CYP family includingCYP2A6,CYP2B6,CYP2D6,CYP2F1, andCYP4A22.
This seems plausible for CYP2D6, as here the largest number of genotypes is known and
functionally studied and there are around 40 non-functional alleles, wheremethylation status
and additional somatic copies have no effect on expression in the tumor. Genes for which
sCNAs play the major regulative role were NUDT15, XPC, G6PD, and VKORC1. For the
remaining genes, methylation was most strongly associated. In the high-expression group,
sCNAs and methylation were the dominating factors while germline genotype associations
were rare. The enhanced expression group showed methylation as a dominating feature for
all genes except CYP2R1, the expression of which was associated with sCNAs. In the re-
maining 3 groups, methylation was also the most significant feature with some exceptions,
such as CYP3A4, which also has a proportion of sCNAs.
The analysis confirmed some results from the univariate entity-wide association analyses.
For instance, the regulation of GSTP1 expression was mainly associated with methylation
in neuroendocrine cancers. Another example is the influence of methylation on CYP2W1
on expression in colorectal cancers. Also, the dependency of NAT1 expression in colorectal
cancer and NUDT15 expression in soft tissue sarcoma on sCNA status was confirmed.
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Figure 2.41: Top features of linear models for somatic expression.
Entity-specific multivariate linear models for all pharmacogenes were constructed based on genetic
and epigenetic data. For each model, the top significant feature was extracted.
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Contributions:
Sebastian Pirmann performed all analyses and created all of the figures.

2.6 Genomic and Transcriptomic Analyses of Rare Can-
cers

The following sections show the results of three side projects about cancer genomics cohort
analyses for different rare cancers (parathyroid carcinomas, adrenocortical carcinomas, and
chordomas) that were part of larger collaborations. Being part of these collaborations, I car-
ried out genomic and transcriptomic analyses based on germline and tumor whole genome
DNA and tumor bulk RNA sequencing.

2.6.1 Parathyroid Carcinoma

Parathyroid carcinoma (PC) is an extremely rare form of cancer with a yearly incidence of
about 3-5 per 10 million [160]. Currently, there are no established systemic treatments or
known actionable alterations, and the risk of recurrence after surgical removal is high [161].
In this study, the genomic and transcriptomic profiles of 4 advanced (metastatic) PC patients
(2 female, 2 male) were analyzed, with the aim of identifyingmolecular alterations that drive
the disease and providing recommendations for personalized experimental treatment. The
complete publication of the study can be found here [162]. This section will only focus on
the computational analyses of the genome and transcriptome that were performed as part of
the larger study.
The genomic analyses included the detection of germline and somatic variants from WGS.
This included small variants (SNV, Indels) somatic copy number aberrations (sCNAs), and
structural variants (translocations, inversions). Gene fusions were detected and gene ex-
pression was quantified from RNA-seq of the tumor samples. The genomic landscape, in-
cluding a selected set of recurrently mutated genes (present in >1 patient) and genes that
are known drivers for PC, is depicted as an oncoprint in Figure 2.42. Germline SNVs (non-
synonymous) were only found in one patient in MUTYH and MSH6. Somatic SNVs in
one patient affected CDC73 (stop gain) andMSH6 (non-synonymous). Indels were present
in CDC73 (frameshift deletion) and MEN1 (non-frameshift deletion). Gene level sCNAs
included deletions in 3 patients in CDC73, DICER1, MEN1, HRAS, and amplifications in
CCND1 and HRAS. One fusion was found in one patient in DICER1. Arm-level events
were found for chromosome regions chr3q (3 deletions, one copy number-neutral LOH)
and chr13q (3 deletions). Two of the patients had a ploidy larger than two. The total num-
ber of variants for each patient including all genes (beyond the listed genes) are shown in
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the bar plots in the column annotation at the top of the oncoprint. One case had a very high
mutational burden (>40000 SNVs) and fulfilled the criteria of a hypermutated tumor.
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Figure 2.42: Oncoprint showing the genomic landscape of 4 parathyroid carcinoma cases. The
listed genes are a subset of recurrently mutated or PC-relevant genes. The top annotations show the
total numbers of SVs, InDels, and SNVs per patient in all genes (also beyond the displayed ones).
Additional top annotations include sex, ploidy, tumor cell content (TCC), and recurrently CNA-
affected genomic regions (chromosome arm-level events).

Additionally, I performed a mutational signature analysis based on somatic SNVs with
YAPSA [163] to identify underlying mutational processes. The signatures found in the
patients and their respective exposure values with error bars representing 95% confidence
intervals are shown in Figure 2.43. The detected signatures [54] included single-base sub-
stitution signature 3 found in 3 patients (SBS3), which is associated with homologous re-
combination repair deficiency (HRD), SBS2, and SBS13 resulting from overactivation of
APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) in all patients,
and SBS18 resulting from damage by reactive oxygen species in one patient.
Based on TPM expression values calculated from available bulk RNA-Sequencing of the
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Figure 2.43: Exposures barplot showing the exposure to different mutational processes that
underlie the mutational signatures in the tumors of the patients.

tumor samples I performed an in silico immune cell type quantification with the immunede-
conv package [164]. The package includes seven different algorithmswith five deconvolution-
based approaches and 2methods based onmarker genes. Marker-genemethods quantify cell
types independently based on signature gene expression values, either directly [165,166] or
through a statistical test for enrichment [167]. Deconvolution methods formulate the prob-
lem as linear equations using signature and gene expression matrices [168–174]. Various
regression techniques, such as support vector regression, constrained least square regres-
sion, or linear least square regression, are employed for this purpose. Results of the de-
convolution analysis with Cibersort [170] are shown in figure 2.44. 3 of 4 patients mainly
had macrophages (M1, M2, M3) and T cells present in their tumor microenvironment. The
amount of B cells in all samples was rather low. For one patient (PC-C) there were fewer
admixed immune cells in the tumor compared to the others. Also, one patient (PC-A) had
a higher fraction of T cells present in the tumor, with a high number of CD8+ T cells and
T-follicular helper cells. In contrast, PC-D had high numbers of regulatory T cells and M2
macrophages, while fewer M1 macrophages, CD8+ T cells, and T-follicular helper cells.
This indicated a potential response of PC-D to immune checkpoint inhibitor treatment.
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Figure 2.44: Results of immune cell deconvolution of parathyroid carcinoma patients with
Cibersort [170]. Based on RNA-Sequencing from tumor samples (top: absolute values, bottom:
percentages).

Contributions: Matthias Kroiß and Veronica Teleanu designed the study, selected patients,
collected clinical data, and drafted the manuscript. Sebastian Pirmann and Nagarajan Para-
masivam performed genomic variant analyses and generated the oncoprint. Sebastian Pir-
mann did the mutational signature analysis and immune cell deconvolution and created the
respective figures.

2.6.2 Adrenocortical Carcinoma

Adrenocortical carcinoma (ACC) is a rare (0.7–2 per million) and aggressive form of cancer
originating in the adrenal cortex [175, 176], which is the outer layer of the adrenal glands.
Prognosis varies by stage, with generally poor outcomes for advanced stages. Current treat-
ments involve mostly surgery and chemotherapy. Therefore, comprehensive genomic anal-
yses are still needed to better understand the drivers and find potential targeted treatment
options. Although several studies have already been carried out, the entire picture of the
origin and progression of ACC has not yet been fully deciphered. The aim of this project
was to investigate the genomic and transcriptomic landscape of this uniquely large cohort
of ACC patients to gain more detailed insights into this rare disease.

Whole genome or exome sequencing data of peripheral blood and tumor samples was avail-
able for 113 ACC patients, with additional tumor bulk RNA sequencing in 89 cases. Figure
2.45 shows the genomic landscape of recurrently mutated genes and chromosomal segments
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in the cohort. The tumor mutational burden was rather low in most cases, with a few ex-
ceptions with up to 40 mutations per megabase. Among the most frequently mutated genes
(20-40%) were previously reported ACC drivers like TP53, TERT, ZNRF3, CTNNB1 [176].
The single most frequently mutated gene (38%) was TP53, affected by somatic SNVs, in-
dels, and a few somatic homozygous deletions and germline SNVs. Frequent amplifica-
tions were found in TERT located on chromosome 5 in cytoband 5p15.33. Another mainly
sCNA-affected gene was ZNRF3, with a high amount of homozygous deletions resulting
from deletions of chromosomal segment 22q12.1. Interestingly, CYP17A1 was also altered
in 16% of cases, mostly affected by gene fusions, and the pharmacogenomic analysis of
the MASTER cohort has shown that this gene was highly expressed in neuroendocrine and
adrenal cancers.
Chromosomal regions recurrently affected by sCNAs (significantly amplified or deleted
across cohort) were identified using GISTIC [177] and confirmed previously reported pat-
terns [175, 176]. These included frequent (50-70%) amplifications of regions on chromo-
somes 12 (CDK4) and 19 (CCNE1), and deletions of regions on chromosome 22 (ZNRF3,
40-50%). The complete GISTIC profile of the cohort is shown in Figure 2.46.
Mutational signatures were analyzed with YAPSA [163] and significantly enriched signa-
tures included AC1, AC2, AC3, AC13, and AC23. AC1 is a clocklike signature from spon-
taneous deamination of 5-methylcytosine to thymine. AC2 and AC13 are resulting from
APOBEC activity, while AC3 is related to defective homologous repair. The origin of AC23
is currently still unknown [53,54].
Additionally, immune cell deconvolution was performed with immunedeconv [164], as de-
scribed earlier, for the 89 cases where tumor bulk RNA sequencing was available. The
amount of infiltrating immune cells was rather low for most samples with a few exceptions
of high T-cell, and one case with high B-cell contributions.
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Figure 2.45: Oncoprint showing the genomic landscape of the adrenocortical carcinoma cohort.
From top to bottom this integrated oncoprint shows deconvolution of admixed immune cells, mu-
tational burden, mutational signatures, gene level alteration, and chromosome segment alterations.
Each column represents one sample.

One of the few drugs used for adjuvant therapy of ACC is mitotane, a cytostatic agent that
selectively inhibits cell division in the adrenal cortex [178]. By increasing free cholesterol
mitotane leads to cell death [179, 180]. However, its mechanism of action is yet to be fully
described. There have been studies investigating the effect of several pharmacogenes on mi-
totane concentrations achieved in ACC patients, including variants in CYP2B6, CYP2W1,
CYP2C19, SLCO1B1/3 [181–183]. For example, the variant rs3745274 inCYP2B6was pre-
viously reported to influence mitotane concentrations [181]. For 43 patients measurements
of maximum achieved mitotane concentrations were available from two time points, prior
to biopsy and at the last follow-up. The genotypes of rs3745274 for these patients (GG=25,
GT=13, TT=5) were determined using the PGx pipeline. Figure 2.47 shows the distribution
of concentration for the three genotype groups at the two time points. In both cases, no sig-
nificant difference in concentrations could be found between the genotypes. Unfortunately,
it was not possible to carry out a more detailed analysis as no concentration measurements
over time, such as concentration curves, were available.
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Figure 2.46: All recurrently amplified and deleted chromosome segments identified in the ACC
cohort by GISTIC [177]. The G-score (y-axis) shows the significance of recurrently amplified and
deleted regions in the whole cohort. The most frequently affected chromosome regions are labeled
and were also integrated into the oncoprint above.

GG

TG

TT

0 20 40

g
e

n
o

ty
p

e
 r

s
3

7
4

5
2

7
4

n

13

25

5

pre biopsy

GG

TG

TT

10 20 30 40

Max. Concentration

g
e

n
o

ty
p

e
 r

s
3

7
4

5
2

7
4

last follow up

CYP2B6 Mitotane

Figure 2.47: Mitotane concentration in different CYP2B6 rs3745274 genotypes.

Contributions: Matthias Kroiß and Veronica Teleanu designed the study, selected patients,
and collected clinical data. Sebastian Pirmann performed genomic analyses and created the
oncoprint, did the mutational signature analysis and immune cell deconvolution, and created
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the respective figures.

2.6.3 Chordoma

Chordoma is a rare cancer (incidence of 0.18-0.84 per million per year [184]) that typically
originates in the vicinity of bones of the skull, spine, and sacrum arising from residual noto-
chord tissue, a structure formed during early embryonic development [185]. These tumors
are slow-growing but locally aggressive [186] and despite surgery being the primary treat-
ment, complete removal can be challenging due to the tumor’s invasive nature and nearby
critical structures [185,187]. Ongoing research and clinical trials aim to enhance our under-
standing and treatment options for chordoma, and organizations like the Chordoma Foun-
dation 4 provide valuable resources and awareness for researchers and those affected by this
rare cancer.
As part of a larger collaboration investigating multi-omics data of chordomas in the NC-
T/DKTK MASTER program, I performed genomic and transcriptomic analyses of these
chordoma patients (n=103). Figure 2.48 shows the oncoprint with the genomic landscape
of the chordoma cohort including small (SNVs, InDels) variants, sCNAs, structural variants,
and gene fusion, both germline and somatic. Additionally, the oncoprint includes immune
cell deconvolution results, from 68 available tumor RNA sequencing samples and the local-
ization of the tumor to distinguish chordoma subtypes. For most recurrently mutated genes,
the number of patients in which they were mutated was rather low. Variants in the most
frequently mutated gene CDKN2A, mainly homozygous deletions, affected 32% of the co-
hort. Due to the frequent homozygous deletions ofCDKN2A, a subcohort of chordomas was
treated with palbociclib as part of a clinical trial (PMO1601:CDK4/6 inhibition in locally
advanced/metastatic chordoma) which is currently still being evaluated (ClinicalTrials.gov
Identifier NCT031107445). The next most frequently mutated gene FN1 already affected
only 16% of the cohort. The number of germline variants was rather low and the proportion
of small variants in the recurrently mutated genes generally only covers a small part of the
cohort. Compared to the few small variants, many genes were affected by fusions like FN1,
ACAN, SASH1, SSP1, COL1A2, and EEF1A1.
The cohort also showed frequent amplifications and deletions of several chromosomal re-
gions. Most frequently affected by deletions was 9p21.3 (67%) followed by several regions
on chromosomes 1, 3, 14, and 22. The complete profile of chromosomal aberrations ana-
lyzed with GISTIC [177] is shown in Figure 2.49. Deletions of chromosomal regions (chro-
mosomes 1, 2, 4, 9, 10, 13, 14, 18, 21, and 22) were far more frequent than amplifications
(chromosomes 1, 2, 7, and 19). Some of these alterations are known across many cancer

4https://www.chordomafoundation.org/
5https://classic.clinicaltrials.gov/ct2/show/NCT03110744

https://www.chordomafoundation.org/
https://classic.clinicaltrials.gov/ct2/show/NCT03110744


72 Genomic and Transcriptomic Analyses of Rare Cancers

Chordoma
C

O
5

0
C

O
4

9
C

O
4

2
C

O
3

3
C

O
3

0
C

O
9

0
C

O
2

C
O

7
0

C
O

1
5

C
O

8
3

C
O

6
C

O
8

4
C

O
1

4
C

O
3

1
C

O
5

2
C

O
1

8
C

O
4

7
C

O
1

3
C

O
9

5
C

O
2

5
C

O
1

0
C

O
6

0
C

O
2

1
C

O
3

5
C

O
3

2
C

O
3

8
C

O
6

8
C

O
4

5
C

O
1

C
O

1
1

C
O

1
6

C
O

4
3

C
O

8
9

C
O

3
4

C
O

3
C

O
5

9
C

O
6

7
C

O
7

2
C

O
5

7
C

O
4

8
C

O
5

5
C

O
8

5
C

O
6

6
C

O
7

6
C

O
8

7
C

O
7

7
C

O
5

C
O

6
1

C
O

7
C

O
3

7
C

O
2

6
C

O
7

1
C

O
4

C
O

6
9

C
O

7
3

C
O

7
9

C
O

8
0

C
O

5
1

C
O

4
4

C
O

3
9

C
O

2
3

C
O

7
5

C
O

8
1

C
O

1
2

C
O

9
6

C
O

2
2

C
O

1
7

C
O

9
C

O
8

6
C

O
6

3
C

O
2

8
C

O
3

6
C

O
4

1
C

O
5

4
C

O
6

4
C

O
5

6
C

O
6

2
C

O
4

0
C

O
8

C
O

4
6

C
O

1
9

C
O

6
5

C
O

2
0

C
O

2
4

C
O

2
7

C
O

2
9

C
O

5
3

C
O

5
8

C
O

7
4

C
O

7
8

C
O

8
2

C
O

8
8

C
O

9
1

C
O

9
2

C
O

9
3

C
O

9
4

0

2

4

6

8

ImmuneCells

0

5

10

TMB

Ploidy

TumorCellContent

TAI

MSI
Localisation

Sex

DNASeq

32%
16%
14%
10%

8%
8%
8%
7%
7%
7%
6%
6%
6%
6%
6%
6%
5%
5%
5%
5%
5%
5%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%
4%

CDKN2A
FN1
ACAN
PBRM1
SASH1
CFTR
COL1A2
ZFHX3
RP11−307P5.1
KIF26A
SPP1
NEB
TTN
EEF1A1
CACNA1A
RYR2
PTEN
SYNE1
TRIO
ARID1A
THOC3
GAPDH
SZT2
CTGF
ZNF865
KRT19
DNAH9
GJB2
EXPH5
LDLR
COL18A1
TSC1
TP53
ANO6
LRP1B
PLEC
LRP1
DSCAML1
PRDM2
COL1A1
HERC2
CMYA5
PIK3CA
COL2A1
AHNAK
ENO1

0 5 10 15

Alterations

snv
snv_germline
indel
indel_germline
fusion
amp
hdel

Ploidy

1

2

3

4

5

6
TumorCellC.	

0

0.2

0.4

0.6

0.8

1
TAI

0

5

10

15

20

MSI

High
Low

LOH.HRD+LST

High
Intermediate
Low

Localisation_Basket

Clivus/skull
Other
Sacrum
Spine

Sex

female
male

DNASeq

WES
WGS

C
ib
e
rs
o
rt

B cell naive
B cell memory
B cell plasma
T cell CD8+
T cell CD4+ naive
T cell CD4+ memory resting
T cell CD4+ memory activated
T cell follicular helper
T cell regulatory (Tregs)
T cell gamma delta
NK cell resting
NK cell activated
Monocyte
Macrophage M0
Macrophage M1
Macrophage M2
Myeloid dendritic cell resting
Myeloid dendritic cell activated
Mast cell activated
Mast cell resting
Eosinophil
Neutrophil

Figure 2.48: Oncoprint showing the genomic landscape of the chordoma cohort. The structure
is similar to the oncoprints shown in the previous sections. The top annotation contains immune
cell deconvolution results, tumor mutational burden (TMB), ploidy and purity of the tumor samples,
telomeric allelic imbalance (TAI) score, microsatellite instability (MSI) score, and the tumor local-
ization. The matrix in the center shows samples as columns and mutated genes (sorted by frequency
of mutations in the cohort) as columns. The barplot annotation on the right shows the aggregated
number of all types of mutations per gene in the cohort.

types like 9p (MTAP, CDKN2A/B), 10q (PTEN), 13q (RB1), and 17p (TP53). In general,
considerably more deleted than amplified genome regions were detected.

Based on the available bulk RNA-seq data of the tumor samples, I assessed the proportions of
admixed and infiltrating immune cells in 68 cases by applying deconvolution algorithms as
described earlier [164]. Results generated with cibersort [170] are shown in the top annota-
tion of Figure 2.48. The total number of admixed immune cells differs considerably between
patients. The immune cell deconvolution mainly showed an admixture of macrophages, in
a few cases a very high amount of T cells, and a small amount of B cells in some cases.

I then also used the bulk RNA-seq data to assess differentially expressed genes between lo-
calization subgroups, comparing spine/sacrum (n=33) and skull-based (n=27) chordomas.
Figure 2.50 shows a volcano plot with differentially expressed genes between the groups.
Genes on the left-hand side were upregulated in spine/sacrum-based chordomas while genes
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Figure 2.49: Recurrently amplified and deleted genomic regions in chordomas as detected by
GISTIC. The top track shows the most significantly amplified segments and affected genes, with
significance (q-values) on the y-axis. The track in the center displays aggregated frequencies of
amplifications and deletions in the whole cohort, distributed over chromosomes, showing the whole
genome pattern of frequent sCNAs. The bottom track shows the most significantly deleted segments
and affected genes, with significance (q-values) on the y-axis (mirrored).

on the right-hand side were upregulated in skull-based chordomas. The most differen-
tially expressed genes that were highly expressed in skull-based chordomas include SLN,
COX6A2, MYL2, whereas genes expressed in spine/sacrum chordomas included PTCHD2.
Additionally, gene set enrichment analysis of the list of differentially expressed genes be-
tween spine/sacrum and skull-based chordomas was performed with the R packages cola
[188] and simplifyEnrichment [189]. The enrichment analysis was run with gene Ontology
(GO) terms. These enrichment terms represent the rows and columns of the matrices in
Figures 2.51 and 2.52. The terms are then clustered by semantic similarity in the GO tree,
allowing for recurrence assessment and display in word clouds, with words displayed larger
being more frequently represented in the gene list. Common terms enriched in both chor-
doma types are from genes related to development, organization, proliferation, transport,
and regulation. Terms exclusively present in the skull-based chordomas are cytokinesis,
and viral. Terms exclusively present in the spine/sacrum-based chordomas are apoptotic,
adhesion, and repolarization.
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Figure 2.50: Differentially expressed genes between spine/sacrum and skull-based chordomas.
The y-axis shows the significance and the x-axis shows the log2 fold change of expression values
between the groups. Genes upregulated in spine/sacrum-based chordomas are shown on the left, and
the ones upregulated in skull-based chordomas on the right.
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Figure 2.51: Gene set enrichment analysis of genes upregulated in spine/sacrum-based chor-
domas from differential gene expression analysis. The word clouds show GO terms associated
with the list of upregulated genes, with font size according to the significance of the terms.
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Figure 2.52: Gene set enrichment analysis of genes upregulated in skull-based chordomas from
differential gene expression analysis. The word clouds show GO terms associated with the list of
upregulated genes, with font size according to the significance of the terms.
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PGx analysis of all matched control samples (peripheral blood) of the chordoma patients
was performed using the PGx pipeline, described in section 2.2, analogous to the PGx anal-
ysis of the whole MASTER cohort. I analyzed variants of pharmacogenes associated with
effects related to toxicity, efficacy, or metabolism on drugs important for anticancer/chor-
doma therapies and supportive medications. Genotype and resulting phenotype information
on key pharmacogenes such as CYP2D6, CYP3A4/5, TPMT, and UGT1A1 was obtained
from the pipeline results. Results for 10 selected pharmacogenes (CYP2B6, CYP2C19,
CYP2C9, CYP2D6, CYP3A5, DPYD, SLCO1B1, TPMT,UGT1A1, VKORC1) in 61 samples
were validated using a quantitative PCR (qPCR) assay covering 60 of the most frequent
variants. There was a >99% concordance between the results inferred from WGS and the
genotypes generated by qPCR showing the accuracy of the ensemble genotyping approach
of the PGx pipeline. The detected variants allowed the investigation of functional pheno-
types. 16 patients with functional CYP3A5*1/*3 or CYP3A4*1/*22 diplotypes were found
that may correlate with toxicity due to altered metabolism and drug concentrations com-
pared with non-carriers for several drugs, including tyrosine kinase inhibitors. Furthermore,
four homozygous carriers of UGT1A1 genotype *28 susceptible to adverse effects during
pazopanib treatment were identified among the 61 patients. Moreover, approximately one-
third of the patients carried a CYP2D6 genotype for which guideline recommendations are
available.

Contributions: Sebastian Pirmann performed the genomic and transcriptomic analyses and
created all Figures. Roman Tremmel performed the PGx genotype validation with quanti-
tative PCR (qPCR) assays.





Chapter 3

Discussion

In drug-based anti-cancer therapies, the effectiveness of the therapy and the minimization of
undesirable side effects are of paramount importance. Both pharmacokinetic (pertaining to
how the body processes the drug) and pharmacodynamic (concerning what the drug does to
the body) factors determine drug response. Genes encoding drug metabolizing enzymes and
drug transporters play an important role and influence drug dose, adverse drug events, and
the efficacy of drugs [26]. Regarding to cancer therapies, ADME processes can be separated
into two categories based on anatomic localization: processes in healthy tissue, mainly in
the liver of cancer patients, which are encoded by the germline genome and variation of
which can be attributed to germline variation, vs. processes in cancer tissue, the regulation
of which is additionally modulated by somatic variation. Germline variation in ADME
genes influences the systemic metabolism of cancer drugs and thus the achieved effective
dose. This germline variation thus influences potential side effects or may even lead to
non-response [23,47,77–79], given that most cancer drugs have a narrow therapeutic index
[47, 48]. Examples include variants leading to DPYD deficiency, which in turn can result
in severe toxicity during 5-FU treatment [190], or variants in UGT1A1 that are associated
with a higher likelihood of side effects like diarrhea and neutropenia from irinotecan [33].
Moreover, in order to achieve the desired effect, most cancer drugs must reach a certain dose
in the tumor cells. This means that in addition to the systemic, mainly hepatic metabolism,
intratumor processes can affect the efficacy of a drug. These may be increased efflux from
the cancer cell, increased drug inactivation, or decreased active uptake [41, 42, 56–58, 58–
64].

Therefore, the primary aim of this thesis was to comprehensively describe the germline and
somatic ADME profiles of cancer patients from the NCT/DKTKMASTER precision oncol-
ogy program using NGS data including genomic, epigenetic, and transcriptomic data. A set
of 60 pharmacogenes was curated for the analysis based on the following criteria: genes for
which star alleles have been defined and which are supported by genotyping tools, as well

79
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as the most important genes for which guidelines exist. The breadth of the DNA sequencing
data (WGS) allowed the detection of complete genomic profiles. In the germline, this in-
cluded rare individual variants that were predicted to be functional by in-silico tools beyond
known functional PGx alleles. In the tumor samples, a complex interplay of somatic ge-
netic variation (SNV, sCNA), epigenetics, and expression of pharmacogenes was observed.
These combinations and alterations may have various recently discussed [57,60,62,63] and
yet-to-be-deciphered effects on therapeutic outcomes by driving cancer drug resistance or
increasing targetability. All the data layers assessed in this thesis helped to further inves-
tigate the pharmacogenomic landscape of cancer and to obtain an as accurate as possible
picture of the pharmacogenomic profiles of cancer patients.
The objective of the second part of this thesis was to investigate the genomic and transcrip-
tomic landscape of several rare cancer entities based onNGS data. In three projects, parathy-
roid carcinomas, adrenocortical carcinomas, and chordomas were investigated. These co-
hort analyses showed that a comprehensive molecular analysis and description of these dis-
eases can decipher disease-specific mechanisms on a molecular level, give a rationale for
implementing available targeted therapies, or even point to new therapeutic options.

3.1 Pharmacogenomic Analysis Pipeline

The analysis of pharmacogenomic variation for clinical and research purposes has pro-
gressed in recent years from array-based genetic testing of individual genes for specific
variants to a comprehensive pharmacogenomic characterization based on NGS [191, 192].
However, comprehensive direct comparisons of the clinical benefits of NGS vs. panel-
based PGx genotyping are still lacking and the number of studies to date is small [193].
Although WES data is commonly available and clinically used, in this thesis only WGS
was considered as it is inherently more comprehensive, given that some star alleles (e.g.
CYP2C19*17, CYP3A4*22, or CYP3A5*3) include regulatory upstream, intronic, or splic-
ing variants. These variants were not sufficiently covered byWES in the analyzedMASTER
samples as shown in section 2.2 and in particular Figure 2.4. These limitations have also
been observed by others [194, 195].
Several computational tools have been developed that facilitate PGx analyses directly from
NGS data [72–76,196,197]. A comprehensive overview by colleagues and myself can also
be found in [198]. My aim was to develop a PGx analysis pipeline that incorporates many
of these tools to determine consensus genotypes for 60 pharmacogenes based on WGS data.
The applicability of this pipeline was tested in the MASTER cohort for germline as well as
matching tumor samples. Although the concordance of some of the tools was previously
tested by others and high accuracy with orthogonal methods was reported [199], I observed
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significant gene-dependent differences between the tools integrated in the pipeline (Table
2.1). Therefore, I developed a consensus approach that compensates for the differences of
the individual tools wherever possible. The evaluation of the PGx pipeline indicated that
this consensus approach, i.e. an ensemble of several algorithms, represents an advantage
over the use of a single tool and increases the reliability and concordance of the results.
This was also observed in previous efforts to combine PGx results of several computational
tools. A study by Tafazoli et al. [200] reported similar problems in combining PGx results
which differed between tools due to their implemented variant sets. To resolve these issues
they have implemented a majority rule and in the case that this does not apply, the Stargazer
results are used as default. In my pipeline, however, if the discrepancy between the tools
cannot be resolved, a more conservative approach was chosen and no final result is provided.
In addition, their study is only based on 100 exomes, which, as I described at the beginning,
do not cover some important PGx variants compared to the genomes used here. The number
of patients used in their study was also substantially lower than in this work.

For instance, I observed discrepancies due to different naming conventions between the used
PGx tools. By resolving this issue the concordance of several genes was increased (e.g. for
CYP2D6 from 60 to 98%). However, some discrepancies remain, like for CYP4F2 only a
minor increase in concordance was achieved (69 to 73%). The reason is the discrepancy in
phasing results for the alleles *2, *3, and *4, highlighting one of the limitations of short-
read NGS. Besides phasing of SNVs, further limitations include errors of read alignment
in repetitive/homologous regions as ADME genes have many pseudogenes, and a reliable
calling of CNVs from coverage data. Novel technologies such as long-read sequencing
could resolve these issues [201]. Of note, most of the tools have also recently incorporated
long-read NGS analysis as an option, however such data was not available in MASTER. In
addition, the genotyping tools showed inherent problems when applied to tumor samples,
which will be discussed in more detail below.

Of note, another high-quality PGx tool has recently been developed called PharmCAT1

(Pharmacogenomics Clinical Annotation Tool) [202–204]. Since the prerequisite input for
this tool are reads aligned to the reference genome GRCh38, I have not implemented it into
the PGx pipeline. A realignment or likely error-prone liftover was not feasible for the large
number of MASTER samples. However, since the new reference genome will also be es-
tablished in the MASTER program in the near future, PharmCAT could also be integrated
thereafter.

Finally, the implementation of the pipeline in Nextflow allows easy portability and use on
various computational systems. In addition to retrospective pharmacogenomic analyses of
large patient cohorts like MASTER, which can be performed rapidly with the pipeline, as

1https://pharmcat.org/

https://pharmcat.org/
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the parallelization approach enables fast processing, there is also the possibility to apply this
pipeline in an ongoing clinical setting and to derive PGx recommendations from databases
like CPIC. This was demonstrated by integrating the pipeline into the molecular tumor board
workflow of NCT/DKTKMASTER. In summary, the results have shown that in silico geno-
typing methods are very useful and accurate for germline samples, even though there re-
mains some effort needed for standardization, inclusion of rare variants, and confirmation
by adding orthogonal methods. Nevertheless, the pipeline results for the MASTER patients
showed that the repurposing of NGS data with respect to pharmacogenes is comprehensively
possible.

3.2 Germline Pharmacogenomics in MASTER

Germline pharmacogenomic variation has been linked to inter-individual variability of drug
response and side effects of many anti-cancer drugs [44, 205]. Furthermore, there is some
evidence that altered metabolism of carcinogens may promote the development of can-
cer [206]. The MASTER cohort represents a very diverse group of cancers and is well
suited to study pan-cancer germline pharmacogenomic variation.

PGx genotyping results and actionable variants
The consensus genotyping results of the PGx pipeline showed that 96.4% of patients had at
least one gene that carried an actionable genotype. On average the MASTER patients car-
ried two actionable genotypes across the 60 analyzed genes (with up to 6 genes maximum in
a few patients (Figure 2.6)). These numbers were in line with frequencies observed in other
cohorts with samples of European ancestry [26] and demonstrate the importance of phar-
macogenomic genotyping of cancer patients in a clinical setting. The PGx pipeline analyses
several genes that are relevant for anti-cancer drug therapies including CYP2D6, TPMT &
NUDT15, UGT1A1 and DPYD for which germline genotype results could be determined in
MASTER. For these genes, guidelines with treatment recommendations for cancer drugs
have already been established by international consortia like the CPIC (Clinical Pharma-
cogenetics Implementation Consortium) or the DPWG (Dutch Pharmacogenetics Working
Group).
CYP2D6 influences the effective concentration of the prodrug tamoxifen by metabolizing
it into its active form endoxifen. Tamoxifen is commonly used for the treatment of hor-
mone receptor-positive breast cancers and is a type of selective estrogen receptor modu-
lator that works by blocking the growth effects of estrogen in breast tissue and CYP2D6
poor/intermediate metabolizers are anticipated to exhibit reduced endoxifen concentrations
[122,207–210]. 46.2% of breast cancer patients in MASTER had poor/intermediate metab-
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olizer status for CYP2D6.

Variants in TPMT and NUDT15 have been shown to affect the metabolism and toxicity
of thiopurine drugs, such as mercaptopurine (6-MP) and azathioprine [211–215]. These are
commonly used in cancer therapy, particularly in the treatment of hematologicmalignancies,
such as leukemia, due to their antimetabolite and immunosuppressive effects. In MASTER,
about 8% of patients were TPMT intermediate or poor metabolizers being susceptible to
thiopurine-related toxicities. The proportion in hematopoietic cancers was 8.75%.

DPYD plays an important role in the breakdown of fluoropyrimidines into inactive metabo-
lites. Fluoropyrimidine drugs, such as 5-fluorouracil (5-FU) and capecitabine, are used
in cancer chemotherapy, particularly in the treatment of colorectal and breast cancer and
other solid tumors. However, in patients with decreased DPYD functionality, there is an
increased risk of elevated levels of active 5-FU, which can result in severe and potentially
life-threatening toxicities [190, 216–218]. Therefore, current guidelines recommend a 25-
50% dose reduction for DPYD intermediate metabolizers [217]. In the MASTER cohort,
about 6% of patients were DPYD intermediate metabolizers and these comprised 6.3% of
breast and 3.7% of colorectal cancer patients.

UGT1A1 is involved in irinotecan metabolism and variants have been associated with the
risk of severe toxicity, such as (febrile) neutropenia or diarrhea [33]. For poor metabolizers
(12% in MASTER) it is recommended to reduce the starting dose to 70%. Additional genes
with available CPIC or DPWG guideline recommendations that were analyzed by the PGx
pipeline and are related to anti-cancer therapies or supportive medications include ABCG2,
CACNA1S, CFTR, CYP2B6, CYP2C9, CYP2C19, SLCO1B1, and VKORC1.

An implementation strategy based on the aforementioned germline results was pursued in
the context of this thesis with the integration of the PGX pipeline in the prospective work-
flow of the molecular tumor board (MTB) of the NCT/DKTKMASTER precision oncology
program. The resulting benefit and outcome evaluation of this new functionality in theMTB
have to be investigated in the future. As of now, no statement can be made regarding the
application, utility, or any other endpoint. The retrospective results from the MASTER co-
hort have shown that there is generally great potential for comprehensive pharmacogenomic
analysis of NGS data with in silico methods, which can provide valuable information about
known actionable germline variants in a therapeutic setting.

Among the recommended interventions in MASTER, therapies related to tyrosin kinase sig-
naling made up 35% [68]. Such tyrosine kinase inhibitors (TKIs) are extensively metabo-
lized by isozymes of theCYP3A family andUGT1A1 and are actively transported by ABCB1
[219]. However, a guideline is not yet available. Nevertheless, variants of CYP3A4/5 and
ABCB1 membrane drug transporters have been reported to affect resistance and toxicity
to TKIs like, e.g., sunitinib, imatinib, or pazopanib [220]. My analysis showed that 8% of
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MASTER patients carry at least one reduced functionalCYP3A4 allele (*22) and that 13.6%
are expressors ofCYP3A5 (at least one *1) with potential effect for the drug therapy. Further
studies are warranted to elucidate the impact of these genetic variants on the plasma levels
of TKIs as well as metabolites and the ADR profile.

Since the available clinical data in MASTER is sparse and it is a last-line setting where the
patients have had many pre-treatments and where a very diverse set of targeted therapies is
applied, there was no opportunity to go into a deeper analysis of germline-related drug re-
sponse and side effect mechanism in these cancer entities. Another limitation of this cohort
is the current classification of entity baskets in the MASTER program, as some groups (like
soft tissue sarcoma) combine various diseases and it would be better to subdivide them even
more precisely. Such efforts are currently ongoing based on OncoTree [221] which means
that subgroups of individual entities will be categorized even more precisely in the future
and additional analyses can be carried out thereafter.

PGx variants and cancer susceptibility

The distribution of germline metabolizer and transporter phenotypes between the cancer
entities in MASTER was quite similar, however, previous studies reported associations be-
tween certain alleles and susceptibility to cancer such as forCYP2A6 and lung cancers [222].
Furthermore, genetic variations in CYP1A1 and CYP1B1 genes can reduce the detoxifying
metabolism of polycyclic aromatic hydrocarbons (PAHs) and therefore contribute to higher
susceptibility to cancers associated with PAH exposure, such as lung cancer. Hence, the
efficiency of detoxification processes is influenced by genetic variation in ADME enzymes,
which can affect an individual’s ability to eliminate environmental substances, including car-
cinogens. Certain environmental substances are pro-carcinogens, which can be converted
into carcinogenic forms through metabolic processes. Gene-environment interactions can
contribute to the variability in cancer risk observed among individuals with similar environ-
mental exposures. In summary, many mechanisms for the metabolism of exogenous and
endogenous substances suspected of causing cancer have already been described but study
findings are inconsistent and have been debated [150,223–229]. Nevertheless, my analysis
showed an enrichment of normal metabolizers of CYP3A5 in hepatopancreaticobiliary can-
cers, ultrarapid metabolizers of CYP2D6 in upper gastrointestinal cancers, and intermediate
metabolizers of DPYD in cancers of unknown primary (CUP).

Germline copy number variants

The analysis of germline CNVs has shown that very rare variants like the CYP1B1 whole
gene deletion can be found if a sufficiently large cohort is used for analysis. However, these
CNVs could only be detected by Stargazer (of the tools in the pipeline), as it is the only tool
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that has implemented a generic CNV detection for all genes based on coverage information.
The rare deletion of the wholeCYP1B1 gene and the resulting loss of function has been asso-
ciated with primary congenital glaucoma [230,231]. Also, some rare CNVs that have been
previously described, like partial deletions of CYP2C19 and SLCO1B3 [232], were found
in MASTER. These results indicate that it is not sufficient to include only known common
CNVs in the genotyping tools, as CNVs contribute to pharmacogenomic variability to a high
degree and are well studied in only a subset of ADME genes [81, 88].

Additional germline variants and variant effect prediction

A large part of the inheritable variation in drug response isn’t explained by common vari-
ants, suggesting other genetic factors are significant. In the last years, rare genetic variants,
which make up over 90% of genetic diversity in pharmacogenes, were suggested as a main
contributor [83]. Even though the variant effect prediction tools used in this work only al-
lowed the prediction of non-functionality, i.e., damaging effects, and I therefore was not
able to analyze the potential effect of rare variants on increased protein function, I did ana-
lyze the occurrence of additional SNVs beyond the known star alleles in the WGS data and
assessed their impact on protein function. Furthermore, I combined the predicted damaging
rare variants with the functional haplotypes/star alleles to better assess their superimpos-
ing non-functional effect and their relevance for drug response or ADR risks, which, to my
knowledge, is an innovative approach and has not been published so far.

The results in MASTER showed that there is an enormous number of rare variants (99.9%
with MAF <1%). 24.7% of them were exonic missense variants and half of these were pre-
dicted to be damaging to protein function showing that they can have functional effects.
The analysis of rare variants in relation to common known alleles showed that in 27.6%
of the patients affected by damaging rare variants, these occur in combination with at least
one reduced or non-functional allele (e.g. CYP2D6*4, CYP3A5*3). In contrast, I observed
94.5% of the patients with at least one damaging variant in combination with normal or in-
creased function alleles. Furthermore, in 109 patients (5.28%), at least one of the damaging
variants was homozygous, affecting both copies of the respective gene. In these individu-
als, the actual underlying genotype and therefore the resulting protein function may have
been incorrectly determined due to the existence of additional non-functional rare variants.
These findings are extending published work that has illustrated the importance of taking
rare individual variants in pharmacogenes into account [83,233–235]; however, underlying
star alleles had not been taken into account there. Generally, I observed that none of the rare
damaging variants seem to be linked to known star alleles suggesting individual interfering
effects on protein function. A complete list of predicted damaging variants in the germline
samples of MASTER can be found in Table 6.5 in the appendix.
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The contribution of rare variants was particularly evident in 49 CYP2D6 ultrarapid metabo-
lizers in which 3 different damaging variants were found that could interfere with the actual
phenotype (rs3915951, rs200229206, rs141739595). One of these three SNVs, rs3915951,
was recently found in denisovan genomes and a papuan individual and was predicted to
likely impact enzyme function [236]. The other variants rs200229206 and rs141739595
were present in gnomAD but have not been described or functionally analysed elsewhere.

Due to the continuous decrease in sequencing costs, NGS data is increasingly used in routine
clinical settings. Consequently, the functional prediction of rare variants, whether through
in silico, in vitro, or in vivo methods, is becoming more important. A lot of work is still
needed to thoroughly assess the function of these variants in order to include them in future
guidelines so that patients can benefit from them. Methods for a comprehensive functional
analysis of pharmacogenomic variants of unknown significance have been previously re-
viewed by colleagues and myself [198]). The comparison of the variant effect prediction
tools on the SNVs in MASTER (Figure 2.11) has shown that optimizing such tools for the
respective area of application like pharmacogenomics offers advantages over more gener-
alized prediction models, as the general concordance was moderate. This has also been
demonstrated in previous studies [91, 237]. The functional analysis of pharmacogenomic
variants in silico has made great progress in recent years with a plethora of available tools
and will continue to improve as the capabilities of artificial intelligence increase and VEP
methods are further optimized. However, these results must always be validated in the lab-
oratory with orthogonal methods before these functional variants are used in clinical prac-
tice, a necessity also highlighted by the moderate overlap of predictions between AlphaMis-
sense [99], the current state-of-the-art, and the domain-specific APF framework. Generally,
the functional validation of the selected SLCO1B1 variants has shown that in silico methods
are suitable for discovering new relevant variants and predicting their effect. This allows to
follow a rational step-wise approach: the enormous number of variants that are potentially
interesting and relevant for further studies can initially be limited and filtered, to keep the
subsequent laboratory work manageable. The analysis of the abundance of additional rare
germline SNVs has clearly shown how important a comprehensive pharmacogenomic char-
acterization of the patient is and that the current collection of star alleles has to be extended
to account for such variants.

Some pharmacogenes were more frequently affected by germline SNVs than others. The
number of additional variants between the genes was highly variable, which is related to
both the gene length and the degree of research into the genes to date (e.g. for CYP2D6, the
most studied pharmacogene, a large number of variants have already been described and in-
corporated into star alleles, which is why only very few rare variants can still be discovered
here).
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3.3 Somatic Pharmacogenomics in MASTER

PGx studies in cancer to date investigated mostly germline variants in pharmacogenes, fo-
cusing on systemic pharmacokinetic and pharmacodynamic effects [26]. Despite FDA ap-
proval of some pharmacogenes as biomarkers [238, 239], notably excluding ABC trans-
porters andmost CYPs, the emphasis remains on germline variants rather than tumor-specific
mutations, which are likely contributing to treatment resistance and poor response. How-
ever, the importance of considering somatic mutations has gained attention recently [57,
240]. Ensuring sufficient drug exposure within tumors is vital for the efficacy of systemic
therapies with chemotherapeutic drugs or small molecules. Membrane transporters, pri-
marily from ABC or SLC families, facilitate the transport of such drugs across cell mem-
branes [240–242]. Germline variation in these genes is acknowledged to affect transporter
activity and impact intracellular drug concentrations. In contrast, the potential effects of
somatic genetic and epigenetic alterations in these genes during cancer progression due to
somatic events were only recently recognized. These somatic variants could further influ-
ence drug exposure within tumors and it is conceivable that treatments with systemic cancer
drugs, inducing somatic mutations, might result in the proliferation and outgrowth of resis-
tant tumor subclones.
In this thesis, the somatic genomic (SNV, CNA), epigenomic, and transcriptomic variation
in tumors was systematically investigated for the 60 selected pharmacogenes. As mentioned
above, despite many current advances, the focus of pharmacogenomics in oncological clin-
ical practice and research is still mainly on germline variants in ADME genes, and somatic
variants are only studied as drug targets in cancer [47, 48]. Although a couple of studies
investigated the association of somatic expression levels of ADME genes and clinical out-
comes in cancers [37], a comprehensive description of somatic variation in ADME genes
in tumor samples from a large cohort has not been carried out in this way before, as so-
matic variants have so far mainly been studied in drug targets and not in ADME genes.
However, the importance of ADME variation in tumors has recently been recognized and
discussed [57, 60, 62, 63]. This chapter discusses the findings of these somatic analyses.

PGx genotyping in tumors and limitations of genotyping tools
I assessed the extent to which the genotyping results of the PGx pipeline for the tumor sam-
ples differed from those of the matched germline due to somatic variation. These differences
exceeded 15% for some genes, affecting 66% of the patients overall, as shown in section
2.4.1. Among the reasons leading to the captured star allele changes in tumors, I identi-
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fied somatic SNVs as a minor effect, and sCNAs, especially LOH, as major contributors.
Generally, there were limitations of the genotyping tools with respect to tumor WGS data.
Subtotal tumor cell content (purity), a substantial portion of aneuploidy, as well as a missing
stable reference locus for CNV calling (commonly VDR is used in the genotyping tools, but
if itself affected by a sCNA, this choice is suboptimal) limited the applicability of the tools
and even made them unsuitable for a reliable genotyping of tumor samples. This obser-
vation is based on my comparative analysis with somatic genomic profiles extracted from
specially optimized pipelines for tumor samples covering varying tumor cell content and
complex genomic alterations such as aneuploidy, sCNAs, and LOH. In the next sections, I
will discuss these findings in more detail.

Most importantly, the observed genomic differences between matched germline and tumor
samples underline the fact that tumor samples should not be used as a proxy for pharma-
cogenomic germline genotyping - a finding which is also mentioned in the CPIC guideline
on tamoxifen [209]. This is based on studies that showed that the CYP2D6 locus is fre-
quently (15-41%) affected by LOH in breast cancer tissue [119, 121], which led to 19% of
CYP2D6*4 calls being discordant between tumor andmatched normal control samples (buc-
cal cells). However, as sCNAs including LOH were found to be very abundant in pharma-
cogenes inMASTER, this recommendation seems to be generalizable to many other ADME
genes, also given that in 66% of MASTER patients, there were differing genotyping results
between matched samples.

Another challenge for genotyping arises from the phasing of variants in the tumor. As shown
in the germline results, PGx genotyping tools showed some problems with phasing variants
from short-read sequencing. In the tumor, however, there can be arbitrary numbers of copies
of a gene (due to aneuploidy or sCNAs) making accurate phasing even more challenging.
Current efforts are undertaken to come closer to bioinformatic solutions to this problem and
to assess how many copies of a gene in the tumor are affected by a variant (ZygosityPredic-
tor [243]). Unfortunately, for a considerable fraction of the variants, the problem of phasing
from short reads remains. If long-read sequencing or also a hybrid approach with both short
and long reads were used here, phasing could be very much enhanced and a determination
of the exact star allele configuration in tumor samples would be possible in most cases.

Somatic SNVs in pharmacogenes

I thoroughly investigated whether somatic SNVs affect known loci of star allele variants of
60 pharmacogenes using SNV data from the pipelines optimized for somatic SNV calling
in tumor samples. I showed for the first time that mutations occur at known PGx SNV loci
(star allele defining variants), however, compared to the number of sCNAs found in the
tumors, these seem to only be minor contributors to somatic pharmacogenomic variation.
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The proportion of these star allele changes in the MASTER patients was quite low (1% of
patients carried such somatic variants). Although this was rarely observed in the MASTER
cohort, the impact on the few affected patients could still be considerable, as in 27% of
these patients a somatic mutation caused a metabolizer phenotype change compared to the
germline. For non-PGx-SNVs, three times more germline than somatic SNVs were found in
total. However, the ratio of predicted damaging variants was roughly the same in both cases
(approx. 50%). Interestingly, the proportion of non-synonymous variants was higher in the
somatic than in the germline SNVs (40% and 23%), which could indicate an accumulation
of such variants in the tumor possibly due to a reduced selective pressure [244]. This finding
also confirms previous results fromWGS data on ABC and SLC drug transporters in a large
cohort of metastatic cancer patients [57]. The study showed that somatic SNVs found in
the coding regions of the transporters were mainly non-synonymous variants and also cor-
related with gene length. Another study analyzed the occurrence of somatic variants in ABC
transporters and CYP genes in the TCGA and COSMIC datasets and discussed the potential
role of these variants in drug resistance [240]. Among the top 30 mutated transporters and
genes, they also found ABCB1, ABCG2, CFTR which underlines the results found in data
from the MASTER program in this work.

Regrettably, the aforementioned studiesmissed any prediction on variant functionality. How-
ever, I showed that the ratio of predicted damaging variants in the tumor was roughly the
same as in the germline, with half of the variants having damaging effects. This finding is
of importance to refine further assessments on drug resistance. I observed also differences
between the drug transporter genes. While for ABCB1 about 55% of variants were damag-
ing, the fraction of damaging variants in ABCG2 was 83%. This finding is important since
depending on which transporters are affected, the tumor cell could be more or less suscep-
tible to a specific therapy [241]. The damaging variants could lead to reduced activity of
the drug metabolizing enzymes and transporters in the tumor. For transporters, this could
mean both a reduction in the uptake of the drug into the tumor cell and a reduction in its
elimination. Depending on which transporters are affected, the tumor cell could be more or
less susceptible to the therapy [241]. For the phase 1 and 2 enzymes, the damaging variants
could lead to an increased effect of the drug, as it is degraded more slowly in the tumor cell
and more dose remains at the site of action [41,56]. In contrast for prodrugs opposite effects
could be plausible.

SomaticCNAs in pharmacogenes, entity-specific patterns and relation to cancer drivers

In this thesis, I observed that somatic CNAs are abundant and very frequently affecting
pharmacogenes in tumors. In contrast, only little has been described in other studies about
the amount of contribution of sCNAs to somatic pharmacogenomic variation [57]. However,
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this is modulated by different, not standardized definitions of sCNAs. The chosen definition
in this thesis is quite broad and includes both small focal events and large segments of the size
of chromosome arms. This definition is based on the ACESeq pipeline [107], which merges
neighboring regions of the same copy number into larger segments when segmenting the
whole genome. The set of investigated genes could be separated into 3 groups and showed
that for most genes there is a cohort-wide tendency for either duplications (e.g. ABCB1,
CFTR, CYP3A family, or PTGIS) or deletions (ABCG2, CYP2C family, NAT1/2, NUDT15)
reflecting the genome-wide pan-cancer pattern of sCNAs previously reported [104].

In addition to the pan-rare-cancer analysis, the analysis of sCNA events in the different can-
cer entities revealed entity-specific patterns of somatic pharmacogenomic CNAs that mainly
follow the reported genomic/chromosomal sCNA profile of these cancers. This precise de-
scription of somatic pharmacogenomic CNAs in the various cancer entities has not been
done before and is a major finding of this thesis. Examples include deletions on the q arms
of chromosomes 10 and 13 with resulting LOH in leiomyosarcomas, deletion on chromo-
some 1p with LOH in GIST, amplifications of chromosome 7q in colorectal cancers, and
deletions and LOH of regions on chromosomes 8 and 22 including CYP2D6 in breast can-
cer [111, 116, 119–122]. The frequency of LOH of CYP2D6 in breast cancer in MASTER
was about 50% and previous studies reported frequencies of 15% for HER2-positive, 35%
for ER-positive, and 41% for ER-negative breast cancers in TCGA [121]. The frequently
amplified regions q21-22 on chromosome 7, including the ABCB1 efflux transporter and
CYP3A genes found in MASTER, had already been reported to contribute to drug resis-
tance in cancer cells [245].

Due to the observed abundance of sCNAs in the pharmacogenes, I analyzed whether these
might be related to sCNAs in neighboring oncogenes and tumor suppressors, which are com-
mon cancer driver events. The hypothesis was that deletions of pharmacogenes co-occur
more frequently with tumor suppressors and duplications with oncogenes in their vicinity.
This analysis has shown that the somatic pharmacogenomic CNAs could at least partially
be passenger events, arising due to other oncogenic processes. Regions dense in onco-
genes or with single very impactful oncogenes were more frequently duplicated affecting
the closely located pharmacogenes. This was demonstrated for chromosome 7q including
ABCB1, CYP3A genes, and oncogenes GRM3, and TRRAP, as well as SLCO1B1/3 which
are close to KRAS on chromosome 12. Accordingly, ABCB1 and SLCO1B3 have also re-
cently been reported to be most frequently affected by somatic sCNAs among drug trans-
porters [57]. The results of the oncogene analyses presented here thus provide a potential
explanation for this phenomenon. Furthermore, the role of SLCO1B3 in resistance to can-
cer treatment and in precision oncology has been discussed, suggesting exploitation of the
overactivity of influx transporters in tumors as a therapeutic option to increase intracellu-
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lar drug levels, or demonstrating resistance by deactivation of such transporters [246, 247].
SLCO1B3was duplicated and most expressed in colorectal cancers, however, it was demon-
strated in colon cancer cells that they harbor a specific variant of SLCO1B3 that has reduced
transport ability resulting in reduced uptake of substrates [248]. In colorectal cancers, PT-
GIS was amplified together with SRC, for which increased expression in colorectal cancer
was suggested to increase metastatic activity and lead to chemotherapy resistance through
various signaling pathways. Therefore, blocking SRC could potentially be beneficial in
treating colon cancer [127]. High expression and amplification of PTGIS have also been as-
sociated with poor prognosis in colorectal cancer patients through various cancer-promoting
effects [130]. Complementarily to co-amplifications with oncogenes, the relationship be-
tween deleted pharmacogenes and deleted tumor suppressors was also impressively demon-
strated in the MASTER results, for example for NUDT15, which was frequently deleted in
leiomyosarcoma, where deletions of neighboringRB1 andBRCA2 are common events [111].
Cohort-wide XPC, which is important in nucleotide excision repair [249,250], was rather af-
fected by deletions. It could be possible that the deletions in the tumors lead to an increased
mutation rate and thus to tumor progression. In contrast, XPC was frequently amplified
in breast cancers in MASTER. An increased activity of this gene could indicate a coping
mechanism of the tumor against chromosomal instability or chemotherapeutic drugs.

Tumor expression of pharmacogenes

Regarding the expression of ADME genes in tumors there have only been a few studies
which mainly compared tumors with corresponding healthy tissue. The analysis of ADME
gene expression from tumor RNA-Seq data in this work revealed that a large proportion of
them seem to be active in tumor tissues. Generally, phase II genes and transporters were
more expressed than phase I genes. While some genes were highly expressed across all can-
cer entities like GSTP1, other genes showed a more tissue-specific pattern. Overexpression
of GSTP1 has been previously reported in several cancers [135,136]. GSTs are involved in
drug resistance either via increased detoxification or by inhibiting the MAPK pathway and
resulting apoptosis [43]. POR, which was also among the highly expressed genes, had been
described to influence tamoxifen-resistance in breast cancer via the STAT1/c-Myc path-
way [251]. Other more specific genes in the group of highly expressed genes included
XPC which is important for the DNA nucleotide excision repair pathway and the cause of
Xeroderma pigmentosum [249, 250] and, as described above, it has been suggested that
expression of XPC could provide a coping mechanism against the intended chromosomal
instability resulting from chemotherapeutic drugs.

An analysis of correlation between DNA alterations and gene expression showed a signif-
icant influence of sCNAs on expression for 32% of the 60 genes in an entity-dependent
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manner. Although at the level of pharmacogenes, these sCNAs are likely to be passenger
events, they do affect RNA expression of ADME genes and could thus have an impact on
intratumor drug transport and metabolism. Correlation of expression and sCNAs was re-
cently also reported for drug transporters [57]. As described earlier, drugs and xenobiotics
are mostly metabolized in a small set of drug-metabolizing tissues, inlcuding the liver and
the colon. In the gene expression analysis carried out here, the expression of pharmacogenes
was generally higher in those cancers whose cells of origin were in drug-metabolizing tis-
sues. The fact that in addition, ADME genes were also expressed in tumors in which one
would not expect it based on tissue of origin may have various causes. Theoretically, e.g.,
this may be explained the same way as for other genes in cancer, i.e. by loss of genomic im-
printing through epigenetics [154]. However, no comprehensive comparison could be made
with the healthy tissue of the respective tumor entities, as MASTER has such rare tumor en-
tities that for many the tissue of origin is not even known. It is therefore not possible to say
whether the expression shown here is increased or decreased compared to normal tissue,
meaning that this analysis only allows a comparison between the different tumor entities.

The analysis of promoter and intragenic methylation of ADME genes in the tumors (see be-
low) showed that there are strong differences both at the levels of different genes and of dif-
ferent entities. Generally, the differences in methylation between the entities were largest for
the group of predominantly tissue-specifically expressed genes. In contrast, entity-specific
differences were smallest for the most strongly expressed genes. For example, NUDT15
was hypomethylated in all entities and expressed at similar levels.

Tumor methylation of pharmacogenes and entity-specific patterns

Many studies have shown that one important factor in the regulation of ADME genes in
cancer is DNA methylation as reviewed by Fisel et al. [155]. However, previous work has
mainly investigated hypo- or hypermethylation in comparison to the respective healthy tis-
sue. The analyses shown here assessed the differences between the various tumor types
and therefore do not allow any relative conclusions to be drawn about the difference from
healthy tissue. Nevertheless, the methylation analyses showed that there is a difference in
DNA methylation of some ADME genes between cancer entities. The correlation of ex-
pression and methylation in MASTER has shown significant results for a few promoter
and a large amount of intragenic CpGs across several entities. Many of these associations
followed the expected pattern of anti-correlation of methylation and expression in the pro-
moter. However, a surprising number of anti-correlations were also found for CpGs in the
gene body, which is much less expected. This may be due to the fact that in several PGx
genes, DNA methylation may not be the main source of regulation for gene expression, in
particular in the highly expressed genes.
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Much has been reported, for example, about methylation and expression of CYP2W1 in
colorectal cancer. My analyses showed that two CpG sites in the promoter of CYP2W1
were found to be significantly negatively correlated with expression in colorectal cancers in
MASTER and this entity was an outlier with the highest expression of this gene. Expression
of CYP2W1 can be found in fetal and cancerous tissues of the colon but not in healthy tissue
and it has been shown to be a prognostic marker associated with worse survival [141–143,
252]. Furthermore, CYP2W1 has been suggested as a target for the treatment of colorectal
cancer [253]. In accordance with previous work, the results of the methylation analysis
suggest epigenetic mechanisms for the activation of CYP2W1 in colorectal cancers [159].
Although it showed only low expression in most cancers in MASTER, UGT1A1 expression
was previously reported to be regulated by methylation in colon cancer and it has been
hypothesized that this results in differential efficacy of irinotecan [254,255].

The prognostic and diagnostic role ofGSTP1 in cancer has been thoroughly discussed [256]
and the results presented here showed ubiquitous expression across all cancers. The correla-
tion analysis of expression and sCNAs as well as methylation suggests copy number status
and DNA methylation in the gene body as the main factor influencing tumor expression
of GSTP1. Hypermethylation of GSTP1 has already been shown several times for various
types of cancer compared to healthy tissue. However, the analyses carried out here show
that GSTP1 is hypomethylated and strongly expressed relative to the other ADME genes
examined.

Multivariate models of somatic pharmacogene expression

I used multivariate models to integrate all data layers of the previous analyses. This con-
firmed several results of the univariate analyses including the sCNA-dependent expression
of NUDT15 and POR in soft tissue sarcoma, TPMT in leiomyosarcoma, XPC and CYP2R1
in neuroendocrine cancers, and NAT1 in colorectal cancers. The germline genotype data ap-
pears to be particularly relevant for genes where germline CNVs are frequent, which seem
to translate through to the tumor and affect their expression. This was true for CYP2D6,
CYP2A6, andUGT2B17. Furthermore, the multivariate analyses confirmed the dependency
of expression on methylation for GSTP1, POR, and ABCB1 in neuroendocrine cancers,
DPYD and PTGIS in soft tissue sarcoma, and CYP2W1 in colorectal cancers.

However, there are some more detailed differences in the two individual factors (sCNAs,
methylation). In particular, this can be shown for the group of ubiquitously highly expressed
genes. NUDT15 shows almost exclusive dependence on sCNA status, while it is also dom-
inant in POR, VKORC, and XPC, where methylation shows some additional influence. For
the remaining genes from the ubiquitously highly expressed group, COMT, G6PD, GSTP1,
and TPMT, the methylation effects are stronger. ForGSTP1 and TPMT in particular, methy-
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lation is by far the most expression-influencing factor. While NUDT15, POR, and XPC
showed the most significant results in the association of sCNAs and expression, the associ-
ation for the remaining genes in this group was not as strong, which can now be attributed to
the additional influence of methylation. GSTP1 expression was still strongly correlated with
sCNAs but was the weakest among the genes of this group. Accordingly, the multivariate
analysis shows the greatest influence of methylation. For NUDT15, where expression is
almost exclusively associated with sCNAs, the single methylation analysis showed that it is
hypomethylated cohort-wide, both in the intragenic regions and in the promoter. Therefore,
no influence of methylation is to be expected here. In the group of enhanced expression
genes, CYP2R1 was, as expected, mainly dependent on sCNAs, while it still plays a more
subordinate role in DPYD and SULT1A1. For CYP1B1, PTGIS, SLCO2B1, and TBXAS1,
methylation has the greatest influence, which explains why these genes did not emerge from
the correlation between sCNAs and expression. In the genes that were expressed in a tissue-
specific manner, methylation is by far the dominant feature.

3.4 Genomic and Transcriptomic Analyses of Rare Can-
cers

As mentioned above, MASTER is a precision oncology program which aims at identify-
ing targetable lesions through broad molecular profiling in either young adult patients with
relapsed/refractory cancer, or adult patients with rare cancers at any age. A posteriori, the
samples collected this way can be assembled to cohorts, and cancer genomics strategies
can be applied to characterize the entities. Due to the focus on rare cancers, for several
rare cancer entities, the MASTER program has generated comparably large cohorts. In the
framework of this thesis, I was involved in genomically characterizing three of them. In
general, the whole genome and transcriptome-based analyses provided valuable insights
that allowed to describe the diseases even more precisely and provided clinically relevant
information.

Parathyroid Carcinoma

In the case of parathyroid carcinoma (PC), targeted treatment based on the molecular data
was applied in two of four patients and resulted in stable disease. This was achieved using
immune checkpoint inhibitors in one patient and muti-receptor tyrosine kinase inhibitors
followed by PARP (Poly(ADP-Ribose) Polymerase) inhibitors in the second patient. In
the genomic data, previously reported mutations relevant to PC were confirmed including
deactivatingCDC73 (Cell Division Cycle 73) and over-activatingCCND1 (Cyclin D1) vari-
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ants [257, 258]. Research on DICER1 mutations in parathyroid carcinoma is ongoing. In
two of the four patients, a fusion and deletion of the gene were detected. DICER1mutations
have been found to have a significant impact on the development and behavior of various en-
docrine tumors, including those that occur in the thyroid, parathyroid, pituitary, and adrenal
cortex. If present in the germline, these mutations are associated with a rare genetic disorder
known as DICER1 syndrome, which predisposes individuals to the development of differ-
ent tumors, both benign and malignant [259]. The MEN1 gene, which encodes the protein
menin, if mutated in the germline, is associated with Multiple Endocrine Neoplasia Type 1,
a hereditary condition that is linked to the development of various endocrine tumors [257].
However, the variants found in MEN1 here were somatic. Germline mutations were found
in one patient in MSH6 and MUTYH. The MSH6 gene is associated with Lynch syndrome,
which increases the risk of developing certain types of cancers, particularly colorectal can-
cer. MSH6 is part of the DNA mismatch repair pathway and is responsible for producing
a protein that plays a crucial role in repairing DNA. Defects in the MSH6 gene can lead
to the accumulation of unrepaired DNA errors, increasing the risk of tumor formation, es-
pecially in the colon [260]. Yet, links to parathyroid carcinoma for MSH6 have not been
established. MUTYH is involved in the base excision repair pathway, which corrects DNA
damage that can result from exposure to certain chemicals or ROS (reactive oxygen species)
In accordance, in this patient the mutational signature SBS18 was present, resulting from
damage by reactive oxygen species. Other mutational signatures that were found in the PC
patients were APOBEC-related (SBS2/13). APOBEC activity was found to be enriched in
CDC73 mutated PC by others [258], and in accordance the signature was present in the
CDC73 mutated patient in this work. CDC73 (Cell Division Cycle 73) is a tumor suppres-
sor gene that codes for the nuclear protein parafibromin, which regulates transcription as a
subunit in the PAF1 (RNA Polymerase II Associated Factor) complex [261]. Mutations of
this gene in the germline lead to a predisposition to diseases such as Hyperparathyroidism-
Jaw Tumor (HPT-JT) syndrome and parathyroid carcinoma [261]. For CDC73 mutated PC
also a lower fraction of immune cells had been reported, which could not be replicated here
since the patient with the lowest amount of immune cells did not have a CDC73 mutation.
The analysis of the small PC cohort nevertheless provided important findings for genomic
characterization and subsequent clinical treatment decisions. In addition, new potentially
important genetic variants not previously described for PC, such as MSH6 and MUTYH as
a predisposition element, were uncovered.

Adrenocortical Carcinoma

The analysis of adrenocortical carcinomas (ACC) offered a unique opportunity for genomic
characterization of this disease due to the large cohort size (n=113), which is very special for
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such a rare disease. Previous efforts to characterize the genomic landscape of ACC included
several studies with cohort sizes ranging from 33 to 91 cases [175,176,262,263], however,
compared to the cohort analyzed here these were not pretreated or advanced stages. The
mutational landscape of ACCs identified in this work confirmed many of the previously
reported driver genes including inactivating TP53, CTNNB1, and MEN1 mutations, ampli-
fications of TERT, and deletions of ZNRF3. The frequent mutations in TTN (27% of the
ACC cohort) were previously reported in metastatic cancer patients [262]. 66 samples of
the ACC cohort were metastasic, but there seems to be no biological link between TTN and
ACCs; mutations in TTN in cancer seem to result from a generally high mutational bur-
den [264] and the fact that the gene is relatively long, passenger mutations are thus likely.
However, the mutational burden in the ACC cohort was rather low in most patients. An-
other frequent event reported in ACCs is whole genome doubling [176] and the analyzed
cohort here showed a tumor ploidy larger than 2 in 87% of patients. GISTIC analysis by
two other studies showed similar genomic patterns of amplified and deleted chromosomal
segments as shown here [175, 176, 265]. Confirmed were e.g. gains on chromosomes 5
(TERT), 12, and 19, and losses on chromosomes 2 and 22 (ZNRF3) among many others. In-
terestingly, with regard to pharmacogenomics, CYP17A1 fusions were frequently detected
in the ACC cohort and may be related to the alteration of steroidogenic signaling in these
tumors. However there was no recurrent common fusion partner, therefore the importance
of these findings is questionable. Generally, excess of secreted steroid hormones affects
around 60% of patients and was linked to suppression of infiltrating immune cells result-
ing in tumor promotion and poorer survival [266, 267]. This is consistent with the fact that
the immune cell deconvolution from the RNA-Seq data of the ACC cohort revealed only
a small proportion of tumor-infiltrating immune cells for most patients. In addition, for
several pharmacogenes (CYP2B6, CYP2W1, CYP2C19, SLCO1B1/3) previous studies have
reported multiple associations between PGx variants and achieved mitotane concentrations.
Mitotane is a selective cytotoxic drug for the adrenal cortex and a steroidogenesis inhibitor.
The correlation of available mitotane concentration measurements with the PGx variants
determined via the PGx pipeline was investigated. Unfortunately, due to the limited avail-
ability of the drug concentration measurements, no robust results were achieved there.

Chordoma

The mutation landscape has shown that generally, only a few mutations per sample oc-
cur in the chordoma cohort. This is consistent with previous studies that have shown that
chordomas are not highly mutated. In the cohort analyzed, 13% of the chordomas did not
show any mutations in the recurrently mutated genes (mutated in at least 4% of the sam-
ples). The frequent homozygous deletions of CDKN2A have been reported several times as
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a chordoma-specific trait [268]. This loss makes the patients suitable for therapy with CDK
inhibitors such as palbociclib. This therapeutic option is currently being tested with a small
sub-cohort of chordoma patients in a clinical trial ”NCT-PMO-1601: CDK4/6 inhibition
in locally advanced/metastatic chordoma” (ClinicalTrials.gov Identifier NCT031107442).
GITSIC analysis revealed frequent amplifications of chromosome segment 6p27 including
the TBXT gene coding for the brachyury transcription factor (responsible for the axial polar-
ization of the embryo during development), which is expressed in the majority of chordomas
and contributing to cell proliferation [269].

2https://classic.clinicaltrials.gov/ct2/show/NCT03110744

https://classic.clinicaltrials.gov/ct2/show/NCT03110744




Chapter 4

Conclusion

The results presented in this thesis make contributions to the field of cancer pharmacoge-
nomics by investigating the complex landscape of germline and tumor variation of pharma-
cogenes in a large cohort of cancer patients. PGx profiles of the MASTER patients have
been thoroughly assessed including germline and somatic variation as well as their impact
on the activity of pharmacogenes in tumors, potentially contributing to drug resistance.

The developed pharmacogenomics pipeline has proven to be suitable for the fast and reli-
able determination of star allele genotypes and resulting phenotypes as well as retrieving
guideline recommendations for germline samples. During the development of the pipeline,
it became apparent that a great deal of effort is required to harmonize the complex, his-
torically evolved nomenclature of star allele variants between the various genotyping tools.
However, this harmonization is essential and enables the determination of a consensus result
of an ensemble approach, which increases the reliability.

When applying the developed PGx pipeline to rare cancers in the MASTER cohort, I was
able to show that 96.4% of patients carry at least one gene with an action-necessitating phe-
notype. Furthermore, the analysis of additional rare and functional variants beyond star
allele definitions has shown that it is equally important to integrate these into the pharma-
cogenomic profile of a patient and to take them into account. The integration of the pipeline
results into the MASTER molecular tumor board has translated the gained knowledge di-
rectly into practice in order to quickly generate a benefit for future patients.

Somatic variants in pharmacogenes in tumors have not yet been comprehensively described.
This thesis has shown that somatic SNVs only play a minor role in the PGx profile of the
tumor, but suggests that sCNAs have a major contribution to somatic PGx variation. Adding
analyses of tumor RNA expression and tumor DNA methylation highlighted the complex-
ity of intra-tumor PGx. Specialized tools were identified as essential for the detection and
analysis of somatic variations, distinct from germline PGx genotyping methods. SCNAs
affecting pharmacogenes, partially as passenger events in vicinity to drivers, emerged as a
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major contributor to somatic pharmacogenomic variation. Pharmacogenes can be grouped
based on gene expression in the tumor. In general, the expression of phase II genes was
highest, followed by transporters and phase I genes. Tissue-specific expression patterns
were observed for a large proportion of the genes, with tumors in organs involved in drug
metabolism (like liver or colorectal cancer) showing the highest relative expression. A cor-
relation analysis of sCNAs and expression showed that especially for a group of highly
expressed genes like e.g. NUDT15 and POR the correlation was very strong. Specifically
for NUDT15, sCNAs seem to be the major determinant of expression in the tumor. The
methylation analysis revealed high diversity across genes, entities, and chromatin states
(promoters vs. gene body). In general, methylation correlated negatively with expression.
Examples are strong associations for intragenic CpGs that were negatively correlated with
expression in highly expressed genes. Particularly expression of GSTP1 in neuroendocrine
cancers and CYP2W1 in colorectal cancers seem to be regulated by several intragenic CpGs.

A multivariate analysis modeled gene expression taking sCNAs, methylation, and germline
star alleles as input, both pan-MASTER and in entity-specific settings. Results of the uni-
variate analyses were confirmed and extended and in particular, general principles which
data layers have the main contribution to the regulation of gene expression of which gene
class were derived.



Chapter 5

Outlook

Thorough pharmaco-omics characterization of cancer patients can not only prevent side
effects, but it could also pre-emptively reveal resistancemechanisms, optimize identification
of (co-)targets on the tumor, and therefore still has untapped potential for personalized cancer
therapies.

The results of this thesis provide the basis for a wealth of ideas for subsequent projects.
First, similar analyses could be carried out and compared with other large NGS data sets of
cancer patients to investigate recurring patterns or possible differences in more detail. In
addition, deeper analyses of the entity-specific mechanisms could be pursued. MASTER
also includes a few longitudinal and multi-regional tumor samples taken from the same
patients at different times or from different regions of the body (from both primary tumors
and metastases). These samples could be used to investigate a possible evolution of PGx
variation in the tumor over time (such as acquired resistancemutations in pharmacogenes) or
local differences in pharmacogene activity between different metastases of the patient. An
additional aspect that was not considered in this thesis is intratumoral heterogeneity. Not
every cell in a tumor is identical and therefore the somatic PGx variants shown here may
only affect a subpopulation of tumor cells or subclone of the tumor. Future projects could
aim to investigate whether PGx resistance mechanisms offer a possible selective advantage
and thus lead to the outgrowing of resistant subclones.

Another follow-up project could be the analysis of allele-specific expression of pharmaco-
genes in tumors. It could be investigated whether some alleles (e.g. with increased protein
activity) are preferentially expressed in the tumor. For this purpose, the coverage of het-
erozygous SNPs from RNA and DNA sequencing could be compared. Since it was shown
that some pharmacogenes are ubiquitously expressed in all tumors while others show tissue-
specific patterns, another idea would be to study the activity of transcription factors to better
understand the regulation of pharmacogene expression in the tumor. In addition, the ex-
pression in the tumor entities should be compared relative to the respective healthy tissue to
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identify up or down-regulations wherever the tissue of origin is known.
Additional possibilities for a multitude of additional analyses would arise if sufficient clin-
ical data on the drugs administered, observed side effects, and the success of the therapy
would become available. Association analyses between the genetic factors shown here and
clinical phenotypes could then be carried out. This would contribute important knowledge
for the future development of predictivemodels that provide personalized pharmacogenomic
recommendations for treating cancer patients. This could be realized by the implementation
of supervised models based on state-of-the-art machine learning algorithms for the predic-
tion of outcomes and adverse events from pharmaco-omics data.
In summary, it can be said that the role of pharmacogenes in cancer is very diverse and that
this topic still offers many opportunities for deeper research into specific mechanisms.



Chapter 6

Methods

6.1 Methods for Pharmacogenomic Analyses

6.1.1 PGx Pipeline

I developed an in silico PGx pipeline, for comprehensive and automated analyses of phar-
macogenomic variation in large NGS datasets, using Nextflow (22.07.1-edge, DSL version
2) [71], a structured Unix-style environment for creating software-based data processing
and analysis workflows. The pipeline can be applied to short reads aligned to the GRCh37
(hg19) reference genome (BAM files) fromwhole genome sequencing of peripheral blood or
tumor samples for the genotyping of 60 pharmacogenes as illustrated in code block 6.1. The
pipeline combines multiple star allele calling or genotyping tools, including Aldy v4.3 [72],
Cyrius v1.1.1 [73], PyPGX v0.19.0 [74] and Stargazer v1.0.8 [75, 76], to derive genotypes
and phenotypes for the 60 supported pharmacogenes, mainly including genes coding for
drug transporters as well as phase I and phase II drug-metabolizing enzymes. These tools
have been shown to have comparable performance to orthogonal PGx testingmethods [199].
PyPGx includes 59 genes, Stargazer 58, Aldy 35, and Cyrius is specifically designed to
only call CYP2D6 variants. Stargazer can call CNVs for all its supported 51 pharmaco-
genes, while the remaining tools are restricted to known CNVs. A Complete overview of
the genotyping tools can be found in Table 6.1 and Table 6.2 in the appendix. Most geno-
typing tools allow usage of whole exome sequencing data, however, only whole genome
sequencing was used in this thesis since it is inherently more comprehensive for PGx analy-
ses as some star alleles (e.g. CYP2C19*17, CYP3A4*22, or CYP3A5*3) include regulatory
upstream, intronic, or splicing variants. A comparison of coverage of these variants in WES
and WGS is shown in Figure 2.4 in the results section. The genotyping tools and their
post-processing were implemented as encapsulated Nextflow processes (code block 6.2).
Each tool internally performs variant calling, phasing, and star allele matching, as well as
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coverage analysis for copy number estimation, to determine resulting diplotypes. All soft-
ware packages were integrated via a conda environment (Anaconda 2019.07, conda 4.10.1,
python 3.7.9, R 4.0.0) and the pipeline’s runtime was optimized through parallel processing
for each sample and gene. Nextflow ensures reproducibility through tracking of all executed
processes. In total, the pipeline supports 2,603 known pharmacogenomic SNVs of 60 genes
which can be matched to the star allele nomenclature [46]. Because The output of each tool
is slightly different due to differences in naming conventions, covered variants, and the final
calling results, I implemented a harmonization workflow to call a consensus result (includ-
ing mapping tables of variants and star alleles). For each sample, this workflow merged
the results of the tools by a combination of majority voting, regular expression-based rules,
and a look-up table. This table was manually curated for each pharmacogene if the auto-
matic rules were not sufficient (the table is confidential and part of a patent application;
it is not shown here). Furthermore, the pipeline reports additional germline SNVs using
the GATK HaplotypeCaller and GenotypeGVCFWorkflow (GATK 4.2.0.0). Moreover, the
pipeline also integrates the results of somatic SNVs and sCNAs of tumor samples based
on tumor-specific in-house variant calling workflows for SNVs [101, 102] and for sCNAs,
ACESeq1 [107] (allele-specific copy number estimation from whole genome sequencing).

For the integration into the molecular tumor board of the NCT/DKTK MASTER program
for the prospective analysis of regularly incoming new patient samples, additional Bash
and Python scripts were developed that apply the pipeline to the new patient samples every
week and for a selected set of genes: (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4,
CYP3A5, DPYD, F5, SLCO1B1, TPMT, UGT1A1, and VKORC1). The specific genotypes
are annotated with CPIC recommendations. For this purpose, a local copy of the CPIC
database was set up on the DKFZ cluster which can be queried with SQL (Structured Query
Language) queries.

Table 6.1: Technical overview of genotyping tools (adapted from [198]).

Tool Nr. genes NGS technology Input file Genome reference Accessibility Output

Aldy 35
WGS, WES,
long-read, array

BAM hg19, hg38 Command line Diplotype, additional variants

Cyrius 1 WGS BAM hg19, hg38 Command line Diplotype

PyPgx 59
WGS, WES,
long-read, array

BAM hg19, hg38 Command line
Diplotype, phenotype,
recommendation

Stargazer 58
WGS, WES,
long-read, array

BAM (coverage),
VCF

hg19, hg38 Command line Diplotype, phenotype

1https://aceseq.readthedocs.io/en/latest

https://aceseq.readthedocs.io/en/latest
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1 //Workflow Definition for PGx Pipeline
2 workflow pgx_pipeline {
3

4 take:
5 input_bams
6

7 main:
8 // Run all PGx tools and GATK on input bam files
9 input_bams | (cyrius_genotyping &
10 pypgx_genotyping &
11 aldy_genotyping &
12 gatk_haplotypecaller &
13 gatk_depthofcoverage_germline)
14 gatk_genotype_gvcf(gatk_haplotypecaller.out)
15 stargazer_input = gatk_genotype_gvcf.out
16 .join( gatk_depthofcoverage_germline.out, by: 0 )
17 stargazer_genotyping_germline(stargazer_input)
18

19 // Collect ouptut files of all PGx tools
20 aldy_results=aldy_genotyping.out.result.collect()
21 cyrius_results=cyrius_genotyping.out.result.collect()
22 pypgx_results=pypgx_genotyping.out.result.collect()
23 stargazer_results=stargazer_genotyping_germline.out.result.collect()
24 results=aldy_results.concat(cyrius_results, pypgx_results, stargazer_results)
25 .flatten()
26 .toList()
27

28 // Combine results into one table and apply consensus and harmonization rules
29 merge_pgx_tools_results(results)
30 postprocess_results (merge_pgx_tools_results.out.merged_file)
31 }
32

33 workflow {
34 bam_files = Channel.fromPath(params.input_bam_files_path, checkIfExists: true)
35 .map { file -> [ file.getName()
36 .replaceFirst(/_merged.mdup.bam/, ""),
37 file ]}
38 bai_files = Channel.fromPath(params.input_bai_files_path, checkIfExists: true)
39 .map { file -> [ file.getName()
40 .replaceFirst(/_merged.mdup.bam.bai/, ""),
41 file ]}
42 input = bam_files.join(bai_files, by: 0)
43 pgx_pipeline(input)
44 }

Code Block 6.1: Definition of PGx pipeline as Nextflow workflow
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1 //Process Definition for Cyrius
2 process cyrius_genotyping {
3

4 errorStrategy { task.attempt <= maxRetries ? 'retry' : 'ignore' }
5 maxRetries 2
6 cpus 2
7 memory '8 GB'
8 time { 2.hour }
9 conda '/omics/groups/OE0246/internal/s754n/conda_envs/pharmacogenomics'
10 tag "${sample_id}"
11 publishDir "${params.cyrius_results_dir}${sample_id}/", mode: 'copy'
12

13 input:
14 tuple val(sample_id), path(cyrius_bam), path(cyrius_bai)
15

16 output:
17 path ("*.tsv"), emit: result
18 path ("*.json"), emit: json
19

20 script:
21 """
22 echo $cyrius_bam > sample_list.txt
23 python3 ${params.cyrius_dir}star_caller.py -m sample_list.txt -g 37 -p ${sample_id}_cyrius -o

\$PWD --threads $task.cpus
24 sed -e s/_merged.mdup//g -i ${sample_id}_cyrius.tsv
25 rm sample_list.txt
26 """
27 }

Code Block 6.2: Cyrius genotyping as Nextflow process

6.1.2 NCT/DKTKMASTER Data

For the PGx analysis, I used a subcohort of the NCT/DKTK MASTER program that in-
cluded 2371 patients with whole genome sequencing data of matched control and tumor
samples. In brief, nucleic acids were isolated from blood and somatic tissue. The library
preparation and sequencing of DNA and RNA, alignment and mapping of sequencing data,
somatic variant calling (SNV, InDel, sCNA), and quality control measures for MASTER
samples were performed as previously described [68, 69]. Methylation (5-methylcytosine)
was measured with Illumina Infinium MethylationEPIC 850K microarrays as described
in [156]. All tumor samples were assessed for sufficient tumor cell content (>20%) by a
board-certified pathologist. SCNA calling results were available for 2174 tumor samples,
RNA expression for 1911, and methylation data for 1792. Sequencing data until Novem-
ber 2021 as used in [69] has been deposited in the European Genome-phenome Archive
(https://www.ebi.ac.uk/ega/datasets) under accession EGAS00001004813. The data cutoff
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date for the analyses performed in this thesis was July 7, 2023. Samples included in MAS-
TER between the publication of Horak et al. [69] and the data cutoff date of this thesis were
processed by the same methods. Patients included in MASTER provided written informed
consent for the banking of tumor and control tissue, molecular analysis, and the collection
of clinical data under a protocol (S-206/2011) as approved by the Ethics Committee of the
Medical Faculty of Heidelberg University. All studies were conducted in accordance with
the Declaration of Helsinki.

6.1.3 Germline Pharmacogenomics

Matched control samples (peripheral blood) of 2371MASTER patients were used for whole
genome sequencing and short read alignment to reference genome GRCh37/hg19 (build
37, version hs37d5) using workflows as described previously [69]. The alignment files
were used as input to the PGx pipeline to detect pharmacogenomic SNVs and CNVs and
call consensus genotypes and phenotypes of 60 pharmacogenes as described in section
4.1.1. Germline CNVs were extracted from the pipeline results and manually assessed
using coverage and allele frequency plots created by Stargazer [75, 76] and the Integra-
tive Genomics Viewer (version 2.8.10) [270]. Analysis of frequencies and types of star
alleles and CNVs was done using custom R scripts (version 4.3.0) with the tidyverse and
ggplot2 packages. Specific information about selected variants was obtained from Pharm-
Var (https://www.pharmvar.org/) and PharamGKB (https://www.pharmgkb.org/).
Within the PGx pipeline, additional germline SNVs including rare or novel variants were
detected using GATK HaplotypeCaller and GenotypeGVCF workflow [89] with standard
parameters using the following commands:

1 gatk --java-options -Xmx2g HaplotypeCaller
2 -R $reference_genome
3 -I $bam
4 -O $output_vcf_file
5 -L $pgx_gene_interval_list
6 -ERC GVCF
7 --output-mode EMIT_ALL_ACTIVE_SITES
8

9 gatk --java-options -Xmx4g GenotypeGVCFs
10 -R $reference_genome
11 -V $output_vcf_file -O $output_vcf

Code Block 6.3: GATK variant calling commands used in the PGx pipeline

https://www.pharmvar.org/
https://www.pharmgkb.org/
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6.1.4 Variant Effect Prediction and Validation

Germline and somatic SNVs that were not part of any star allele definition used in the PGx
pipeline (unlike the 2,603 known pharmacogenomic SNVs) were extracted from the VCF
files produced by the GATK HaplotypeCaller and GenotypeGVCF workflow using bcftools
(version 1.12). The VCFs with the remaining variants (not part of star alleles) of all sam-
ples were then merged with bcftools and converted into a TSV table format. The variants
were then annotated with ANNOVAR [90] using standard parameters and the following Perl
command (Perl version 5.24.1):

1 perl table_annovar.pl additional_variants_MASTER.tsv humandb/
2 -buildver hg19
3 -out additional_variants_MASTER_annovar.tsv
4 -remove
5 -protocol refGene,cytoBand,exac03,avsnp147,dbnsfp30a
6 -operation gx,r,f,f,f
7 -nastring .
8 -polish
9 -xref example/gene_xref.txt

Code Block 6.4: ANNOVAR command used to annotate SNVs

These annotations included variant type, gene region, and ExAC population frequencies.
The ANNOVAR results were filtered for exonic missense variants which were further used
as input for an ADME-optimized functional prediction framework APF [91] to predict dam-
aging effects to the resulting ADME protein function. The framework was re-implemented
as an R function with the help of Yitian Zhou. The optimized framework was chosen since
standard VEP tools were trained on pathogenic variants and have been shown to have poorer
performance on pharmacogenomic variants [91, 233]. The APF framework includes an en-
semble of established and validated VEP models but uses prediction thresholds that were
optimized on datasets of known pharmacogenomic variants. Additionally, I compared the
APF framework predictions with the ones of the standard VEP methods. Prediction re-
sults were created with the optimized and standard thresholds, as described in [91], for
each integrated VEP method. The concordance of predictions was calculated as the frac-
tion of matching classifications (Jaccard index). The concordance heatmap (2.11) was cre-
ated using the R package ComplexHeatmap (version 2.16.0) [134]. AlphaMissense [99]
variant effect prediction results were downloaded from https://storage.googleapis.
com/dm_alphamissense/AlphaMissense_hg19.tsv.gz and filtered for the variants that
were predicted as damaging by APF. The AlphaMissense data only included about 50%
of the APF variants. For these 50% the overlap of AlphaMissense and APF was deter-

https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg19.tsv.gz
https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg19.tsv.gz
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mined. Spearman Correlation of the number of variants and gene length per pharmaco-
gene was performed using the R function stat_cor(method ="sp") from ggpubr (ver-
sion 0.6.0). Information on gene length was obtained from GENCODE release 19 (https:
//www.gencodegenes.org/human/release_19.html). Lollipop plots of damaging vari-
ants and affected gene regions were created with the maftools package (version 2.18.0)
[271].

6.1.5 Somatic Pharmacogenomic SNVs and sCNAs

Tumor samples of 2371 MASTER patients were used for whole genome sequencing and
short read alignment to reference genome GRCh37/hg19 (build 37, version hs37d5) as de-
scribed previously [69]. The alignment bam files were used as input to the PGx pipeline
to detect somatic pharmacogenomic SNVs and CNAs and call consensus genotypes and
phenotypes of 60 pharmacogenes as described in section 4.1.1. The differences in pipeline
results (star alleles) between matched control and tumor samples were assessed using cus-
tom R scripts. All additional somatic SNVs in the tumor samples of the MASTER patients
were extracted from an established DKFZ in-house analysis pipeline (SNVCalling Work-
flow) [101, 102]. The pipeline removes germline variants in the tumor by subtracting the
variants found in the matched control sample. SNVs at known star allele loci were extracted
using the list of variants implemented in the PGx pipeline. Similar to the germline analysis
described above, all additional SNVs were annotated with ANNOVAR using standard pa-
rameters, and subsequently exonic non-synonymous SNVs were functionally assessed with
the ADME-optimized functional prediction framework APF [91].
The sCNA calling results were extracted from the DKFZ in-house pipeline ACESeq [107].
This pipeline calls sCNAs by segmenting the WGS based on coverage and B-allele fre-
quency (BAF) as well as a coverage ratio of tumor and matched control sample. By fitting
segment copy number states to integer numbers, the pipeline tries to find the optimal base
ploidy and purity (tumor cell content) of the sample. ACESeq results from the output files
of all samples were merged into one data frame and descriptive statistics were computed
using R.
The list of oncogenes (106) and tumor suppressor genes (183) for the analysis of sCNA
segments was obtained from the cancer gene census [125] (https://cancer.sanger.ac.
uk/census#). For each sCNA segment affecting a pharmacogene, the co-affected onco-
genes and tumor suppressors were extracted. Numbers of co-affected genes were counted
for each overlapping segment using the join_overlap_inner() function of the plyranges
R package (1.20.0) [272]. Plots of chromosomal regions recurrently affected by sCNAs
were created with the karyoploteR package (version 1.28.0) [273].

https://www.gencodegenes.org/human/release_19.html
https://www.gencodegenes.org/human/release_19.html
https://cancer.sanger.ac.uk/census#
https://cancer.sanger.ac.uk/census#
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6.1.6 Somatic Pharmacogenomic Expression Anaylses

Bulk RNA-Seq data from tumor samples was available for 1911 patients of the MASTER
cohort. Sample processing, RNA-sequencing, and alignment were done as previously de-
scribed [69]. The expression of the 60 pharmacogenes in the cancer entities of theMASTER
cohort was analyzed based on TPM (transcript per million reads) values. For statistical and
downstream analyses, TPMvalues were log2 transformed. The expression heatmapwas cre-
ated using the R package ComplexHeatmap (version 2.16.0) [134]. For the analysis of the
association of sCNAs and expression levels, patients were categorized into 3 sCNA groups
(deleted, neutral, duplicated/amplified). The association of sCNA category and TPM values
was computed globally for the whole MASTER cohort and per cancer entity and pharmaco-
gene using Kruskal-Wallis Rank Sum Tests. Plots were created in R using ggplot2. P-values
were adjusted by the Benjamini-Hochberg method and p-values below 0.05 were considered
statistically significant.

6.1.7 Somatic Pharmacogenomic Methylation Analyses

Illumina InfiniumMethylationEPIC 850kmicroarrays were used tomeasure beta andM val-
ues for 1792 tumor samples as previously described [156]. From the list of all available CpG
sites, I filtered for intragenic CpGs in the gene body and promoter CpGs up to 5000 base
pairs upstream of the transcription start site (TSS) of the 60 ADME genes. This included
1226 intragenic and 353 promoter CpGs. Statistical analyses were based onMvalues and for
visualization beta values were used as recommended [157, 158]. The methylation heatmap
(Figure 2.38) was created using the R package ComplexHeatmap (version 2.16.0) [134].
The remaining plots were created with ggplot2. Correlation analysis of methylation and
expression per CpG site grouped by gene and cancer entity was done using Spearman cor-
relation tests between the M values of each CpG and the corresponding TPM expression
values. P values were adjusted by Benjamini-Hochberg correction and p-values below 0.05
were considered statistically significant.

6.1.8 Multivariate Analyses of Somatic Pharmacogene Expression

For the development of themultivariate models, the separate data layers (germline genotype,
sCNA, tumor methylation, and tumor expression) were merged into one dataframe contain-
ing complete data of 1450 patients. The included CpG sites from the methylation data were
further restricted to the ones that were significantly correlated to expression based on the
previous analysis using a cutoff by adjusted p-value (padj < 0.0001) to reduce the number
of features. The multivariate models were constructed with the function lm() of the stats R
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package and the following formula:

TPM ∼ consensus_genotype_germline+ sCNA_type+ significant_cpgs.

For each of the genes, a model was fitted cohort-wide, and model parameters including
coefficients and p-values were extracted. Additional models were fitted per cancer entity
and gene separately using the same formula and preprocessing. For visualization features
were categorized into 3 categories (germline genotype, somatic CNAs, and methylation),
and the most significant/predictive feature per model was extracted. Plots were created
using the R packages ComplexHeatmap (version 2.16.0) [134] and ggplot2.

6.2 Methods forGenomic andTranscriptomicCohortAnal-
yses

Patient inclusion, sample collection, and processing were part of the NCT/DKTK MAS-
TER program as described earlier and in [69]. Germline and somatic genomic data (SNVs,
InDels, fusions, sCNAs) were derived from the DKFZ OTP pipelines and the integrated
RObject dataMASTER which encapsulates all genomic data and patient metadata of the
MASTER cohort. This is an object of the type MultiAssayExperiment, and there is a
pipeline that fills this object with content from variant calling pipelines at regular intervals.
Variants for the oncoprints were filtered by recurrence depending on cohort size and to-
tal amount of variants (25% for parathyroid carcinoma, 10% for adrenocortical carcinoma,
and 4% for chordoma). Oncoprints were plotted using a custom R script merging all in-
cluded data and the oncoPrint function of the R package ComplexHeatmap [134]. Muta-
tional signature analysis was performed based on the aforementioned somatic SNVs with
the R package YAPSA [163] and standard parameters, including signature-specific cutoffs.
Quantification of immune cell admixture was done with the immunedeconv R package (ver-
sion 2.0.2) which includes several established algorithms [164]. Results for display were
obtained from the Cibersort results of immunedeconv. GISTIC [177] analysis of regions
recurrently affected by sCNAs was done based on sCNAs extracted from the previously
mentioned ACESeq pipeline results which are also integrated into dataMASTER. The GIS-
TIC command line tool was integrated into a custom R script. Differential gene expression
(DGE) for the chordoma subgroups was analyzed with the DESeq2 package (1.42.0) based
on raw read counts from bulk tumor RNA-sequencing, as it performs internal normaliza-
tion of read counts [274]. Volcano plots of DGE results were plotted with EnhancedVol-
cano (version 1.20.0). Gene set enrichment analysis and assignment of Gene Ontology
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terms [275] was done with the functional_enrichment() method of the cola R pack-
age using standard parameters [188]. Similarity measures of the GO terms and representa-
tion of the matrix were computed with the simplifyEnrichment R package [189] using the
simplifyGOFromMultipleLists() function and a p-value cutoff of 0.001.
PGx genotyping of chordoma samples was done with the PGX pipeline as described in the
PGx analysis of the MASTER cohort. Validation of the PGx genotypes of chordoma sam-
ples was conducted by Roman Tremmel at IKP Stuttgart using selected TaqMan assays and
real-time PCR as described in [84].
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Appendix

Table 6.2: Overview of integrated genotyping tools and supported genes.
G=Genotype, P=Phenotype, SV=Structural Variants

Gene Gene Family Aldy(4.3) Cyrius(1.1.1) PyPGX(0.19.0) Stargazer(1.0.8)
ABCB1 Transporter G
ABCG2 Transporter G, P
CACNA1S Transporter G, P G, P, SV
CFTR Other G G, P G, P, SV
COMT Other G
CYP17A1 Phase I G G G, P, SV
CYP19A1 Phase I G G G, P, SV
CYP1A1 Phase I G G, P, SV
CYP1A2 Phase I G, SV G, SV G, P, SV
CYP1B1 Phase I G G G, P, SV
CYP26A1 Phase I G G, P, SV G, P, SV
CYP2A13 Phase I G G G, P, SV
CYP2A6 Phase I G G, P G, P, SV
CYP2B6 Phase I G G, P G, P, SV
CYP2C19 Phase I G, SV G, SV G, P, SV G, P, SV
CYP2C8 Phase I G G, SV G, P, SV
CYP2C9 Phase I G G G, P, SV
CYP2D6 Phase I G G G, P, SV
CYP2E1 Phase I G G G, P, SV
CYP2F1 Phase I G G G, P, SV
CYP2J2 Phase I G G G, P, SV
CYP2R1 Phase I G G G, P, SV
CYP2S1 Phase I G G, P G, P, SV
CYP2W1 Phase I G G G, P, SV
CYP3A4 Phase I G G G, P, SV
CYP3A43 Phase I G
CYP3A5 Phase I G
CYP3A7 Phase I G G, P, SV
CYP4A11 Phase I G G, SV G, P, SV
CYP4A22 Phase I G
CYP4B1 Phase I G G, P, SV
CYP4F2 Phase I G G, P, SV
DPYD Phase I G G, P G, P, SV
F5 Other G, P
G6PD Other G G, SV G, P, SV
GSTM1 Phase II G, SV G, SV G, P, SV
GSTP1 Phase II G G G, P, SV
GSTT1 Phase II G, SV G, P, SV
IFNL3 Other G G, P G, P, SV
NAT1 Phase II G G G, P, SV
NAT2 Phase II G G G, P, SV
NUDT15 Phase II G G, P G, P, SV
POR Other G G, P, SV
PTGIS Other G
RYR1 Other G, P G, P, SV
SLC15A2 Transporter G G, P, SV
SLC22A2 Transporter G, SV G, P, SV
SLCO1B1 Transporter G G, P G, P, SV
SLCO1B3 Transporter G G, P, SV
SLCO2B1 Transporter G G, P, SV
SULT1A1 Phase II G, SV G, P, SV
TBXAS1 Other G G, P, SV
TPMT Phase II G G, P G, P, SV
UGT1A1 Phase II G G, P G, P, SV
UGT1A4 Phase II G, SV G, P, SV
UGT2B15 Phase II G G G, P, SV
UGT2B17 Phase II G, SV G, P, SV
UGT2B7 Phase II G, SV G, P, SV
VKORC1 Other G G G, P, SV
XPC Other G
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Table 6.3: Genotyping results from PGx pipeline for MASTER cohort. For some samples and
genes no genotyping tool could provide a result (None)

Gene Consensus Genotype n Frequency
ABCB1 *1/*2 1192 49.75%
ABCB1 *2/*2 788 32.89%
ABCB1 *1/*1 416 17.36%
ABCG2 Reference/Reference 1955 81.59%
ABCG2 Reference/rs2231142 416 17.36%
ABCG2 rs2231142/rs2231142 25 1.04%
CACNA1S Reference/Reference 2396 100.00%
CFTR *WT/*WT 2303 96.12%
CFTR Reference/F508del 53 2.21%
CFTR Reference/R117H 13 0.54%
CFTR Reference/Reference 13 0.54%
CFTR Reference/F1052V 5 0.21%
CFTR Reference/D1152H 2 0.08%
CFTR Reference/G1069R 2 0.08%
CFTR None 1 0.04%
CFTR R117H/F508del 1 0.04%
CFTR Reference/F1074L 1 0.04%
CFTR Reference/G551D 1 0.04%
CFTR Reference/R74W 1 0.04%
COMT *Met/*ValA 935 39.02%
COMT *Met/*Met 620 25.88%
COMT *ValA/*ValA 359 14.98%
COMT *Met/*ValB 209 8.72%
COMT *ValA/*ValB 154 6.43%
COMT *ValB/*ValB 62 2.59%
COMT *Met/*ValC 13 0.54%
COMT *ValA/*ValC 8 0.33%
COMT *ValA/*ValE 6 0.25%
COMT *ValB/*ValC 5 0.21%
COMT *A72S/*ValA 4 0.17%
COMT *ValD/*ValD 3 0.13%
COMT *ValE/*ValE 3 0.13%
COMT *Met/*MetB 2 0.08%
COMT *ValC/*ValC 2 0.08%
COMT *A72S/*Met 1 0.04%
COMT *A72S/*ValB 1 0.04%
COMT *Met/*ValD 1 0.04%
COMT *Met/*ValE 1 0.04%
COMT *MetB/*ValA 1 0.04%
COMT *ValB/*ValE 1 0.04%
CYP17A1 Reference/Reference 2394 99.92%
CYP17A1 G90D/G90D 1 0.04%
CYP17A1 Reference/R347H 1 0.04%
CYP19A1 *1/*1 2068 86.31%
CYP19A1 *1/*4 178 7.43%
CYP19A1 *1/*3 135 5.63%
CYP19A1 *3/*4 6 0.25%
CYP19A1 *4/*4 3 0.13%
CYP19A1 *1/*2 2 0.08%
CYP19A1 None 2 0.08%
CYP19A1 *2/*4 1 0.04%
CYP19A1 *3/*3 1 0.04%
CYP1A1 *1/*1 1738 72.54%
CYP1A1 *1/*2 351 14.65%
CYP1A1 *1/*4 191 7.97%
CYP1A1 *2/*2 35 1.46%
CYP1A1 *1/*5 32 1.34%
CYP1A1 *2/*4 27 1.13%
CYP1A1 *4/*4 10 0.42%
CYP1A1 *1/*13 4 0.17%
CYP1A1 *2/*5 4 0.17%
CYP1A1 *2/*13 2 0.08%
CYP1A1 *13/*13 1 0.04%
CYP1A1 None 1 0.04%
CYP1A2 *1/*1 2394 99.92%
CYP1A2 *1/*3 1 0.04%
CYP1A2 *1/*6 1 0.04%
CYP1B1 *2/*3 583 24.33%
CYP1B1 *3/*3 420 17.53%
CYP1B1 *3/*4 379 15.82%
CYP1B1 *2/*4 247 10.31%
CYP1B1 *2/*2 224 9.35%
CYP1B1 *1/*3 177 7.39%
CYP1B1 *1/*2 132 5.51%
CYP1B1 *1/*4 85 3.55%
CYP1B1 *4/*4 70 2.92%
CYP1B1 None 30 1.25%
CYP1B1 *1/*1 27 1.13%
CYP1B1 *3/*6 7 0.29%
CYP1B1 *2/*6 5 0.21%
CYP1B1 *1/*6 2 0.08%
CYP1B1 *4/*6 2 0.08%
CYP1B1 *4/*7 2 0.08%
CYP1B1 *3/*5 1 0.04%
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CYP1B1 *3/*7 1 0.04%
CYP1B1 *6/*6 1 0.04%
CYP1B1 *6/*7 1 0.04%
CYP26A1 *1/*1 2395 99.96%
CYP26A1 *1/*4 1 0.04%
CYP2A13 *1/*1 2294 95.74%
CYP2A13 *1/*2 42 1.75%
CYP2A13 *1/*7 42 1.75%
CYP2A13 *1/*8 13 0.54%
CYP2A13 *2/*2 3 0.13%
CYP2A13 *1/*3 2 0.08%
CYP2A6 *1/*1 1514 63.19%
CYP2A6 *1/*9 254 10.60%
CYP2A6 *1/*14 139 5.80%
CYP2A6 *1/*12 98 4.09%
CYP2A6 *1/*2 83 3.46%
CYP2A6 *1/*18 63 2.63%
CYP2A6 None 44 1.84%
CYP2A6 *1/*21 34 1.42%
CYP2A6 *1/*4 23 0.96%
CYP2A6 *9/*9 19 0.79%
CYP2A6 *9/*14 13 0.54%
CYP2A6 *1/*7 10 0.42%
CYP2A6 *1/*35 9 0.38%
CYP2A6 *1/*22 7 0.29%
CYP2A6 *9/*12 7 0.29%
CYP2A6 *2/*12 6 0.25%
CYP2A6 *1/*1x2 5 0.21%
CYP2A6 *18/*18 5 0.21%
CYP2A6 *9/*18 5 0.21%
CYP2A6 *1/*17 4 0.17%
CYP2A6 *1/*34 4 0.17%
CYP2A6 *2/*9 4 0.17%
CYP2A6 *9/*21 4 0.17%
CYP2A6 *1/*28 3 0.13%
CYP2A6 *12/*14 3 0.13%
CYP2A6 *12/*21 3 0.13%
CYP2A6 *14/*18 3 0.13%
CYP2A6 *1x2/*2 3 0.13%
CYP2A6 *12/*12 2 0.08%
CYP2A6 *12/*18 2 0.08%
CYP2A6 *1x2/*21 2 0.08%
CYP2A6 *2/*2 2 0.08%
CYP2A6 *9/*17 2 0.08%
CYP2A6 *1/*10 1 0.04%
CYP2A6 *1/*15 1 0.04%
CYP2A6 *1/*39 1 0.04%
CYP2A6 *1/*9x2 1 0.04%
CYP2A6 *14/*14 1 0.04%
CYP2A6 *14/*21 1 0.04%
CYP2A6 *18/*21 1 0.04%
CYP2A6 *1x2/*14 1 0.04%
CYP2A6 *1x2/*17 1 0.04%
CYP2A6 *1x2/*39 1 0.04%
CYP2A6 *1x2/*9 1 0.04%
CYP2A6 *2/*18 1 0.04%
CYP2A6 *2/*4 1 0.04%
CYP2A6 *4/*14 1 0.04%
CYP2A6 *4/*18 1 0.04%
CYP2A6 *4/*4 1 0.04%
CYP2A6 *4/*9 1 0.04%
CYP2B6 *1/*1 684 28.55%
CYP2B6 *1/*6 580 24.21%
CYP2B6 *1/*5 316 13.19%
CYP2B6 *6/*6 138 5.76%
CYP2B6 *1/*2 132 5.51%
CYP2B6 *5/*6 124 5.18%
CYP2B6 *2/*6 68 2.84%
CYP2B6 *1/*4 66 2.75%
CYP2B6 *2/*5 33 1.38%
CYP2B6 *4/*6 28 1.17%
CYP2B6 *1/*22 27 1.13%
CYP2B6 *5/*5 27 1.13%
CYP2B6 *1/*15 18 0.75%
CYP2B6 *6/*22 18 0.75%
CYP2B6 *1/*10 15 0.63%
CYP2B6 *6/*15 13 0.54%
CYP2B6 None 13 0.54%
CYP2B6 *1/*11 8 0.33%
CYP2B6 *2/*2 7 0.29%
CYP2B6 *2/*4 7 0.29%
CYP2B6 *4/*5 6 0.25%
CYP2B6 *5/*15 6 0.25%
CYP2B6 *6/*10 6 0.25%
CYP2B6 *1/*13 5 0.21%
CYP2B6 *2/*22 4 0.17%
CYP2B6 *1/*9 3 0.13%
CYP2B6 *4/*10 3 0.13%
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CYP2B6 *5/*11 3 0.13%
CYP2B6 *2/*10 2 0.08%
CYP2B6 *2/*15 2 0.08%
CYP2B6 *3/*22 2 0.08%
CYP2B6 *4/*15 2 0.08%
CYP2B6 *4/*9 2 0.08%
CYP2B6 *5/*10 2 0.08%
CYP2B6 *5/*13 2 0.08%
CYP2B6 *5/*22 2 0.08%
CYP2B6 *6/*11 2 0.08%
CYP2B6 *6/*13 2 0.08%
CYP2B6 *6/*7 2 0.08%
CYP2B6 *1/*18 1 0.04%
CYP2B6 *1/*26 1 0.04%
CYP2B6 *1/*29 1 0.04%
CYP2B6 *1/*3 1 0.04%
CYP2B6 *1/*38 1 0.04%
CYP2B6 *1/*7 1 0.04%
CYP2B6 *10/*29 1 0.04%
CYP2B6 *11/*22 1 0.04%
CYP2B6 *15/*22 1 0.04%
CYP2B6 *2/*11 1 0.04%
CYP2B6 *2/*12 1 0.04%
CYP2B6 *2/*13 1 0.04%
CYP2B6 *2/*36 1 0.04%
CYP2B6 *4/*13 1 0.04%
CYP2B6 *6/*18 1 0.04%
CYP2B6 *9/*9 1 0.04%
CYP2C19 *1/*1 977 40.78%
CYP2C19 *1/*17 622 25.96%
CYP2C19 *1/*2 414 17.28%
CYP2C19 *2/*17 171 7.14%
CYP2C19 *17/*17 120 5.01%
CYP2C19 *2/*2 49 2.05%
CYP2C19 *1/*8 11 0.46%
CYP2C19 *1/*4 6 0.25%
CYP2C19 *1/*3 4 0.17%
CYP2C19 *1/*35 4 0.17%
CYP2C19 *8/*17 4 0.17%
CYP2C19 None 3 0.13%
CYP2C19 *1/*6 2 0.08%
CYP2C19 *2/*8 2 0.08%
CYP2C19 *3/*17 2 0.08%
CYP2C19 *1/*33 1 0.04%
CYP2C19 *15/*17 1 0.04%
CYP2C19 *17/*35 1 0.04%
CYP2C19 *2/*3 1 0.04%
CYP2C19 *35/*35 1 0.04%
CYP2C8 *1/*1 1656 69.12%
CYP2C8 *1/*3 408 17.03%
CYP2C8 *1/*4 205 8.56%
CYP2C8 *1/*15 34 1.42%
CYP2C8 *3/*3 33 1.38%
CYP2C8 *3/*4 26 1.09%
CYP2C8 *1/*2 10 0.42%
CYP2C8 *4/*4 8 0.33%
CYP2C8 *3/*15 5 0.21%
CYP2C8 *4/*15 4 0.17%
CYP2C8 *1/*7 2 0.08%
CYP2C8 *2/*3 2 0.08%
CYP2C8 *15/*15 1 0.04%
CYP2C8 *2/*2 1 0.04%
CYP2C8 *2/*4 1 0.04%
CYP2C9 *1/*1 1555 64.90%
CYP2C9 *1/*2 453 18.91%
CYP2C9 *1/*3 258 10.77%
CYP2C9 *2/*3 45 1.88%
CYP2C9 *2/*2 40 1.67%
CYP2C9 *1/*12 10 0.42%
CYP2C9 *3/*3 9 0.38%
CYP2C9 *1/*11 5 0.21%
CYP2C9 *1/*8 5 0.21%
CYP2C9 *2/*12 4 0.17%
CYP2C9 *1/*14 1 0.04%
CYP2C9 *1/*29 1 0.04%
CYP2C9 *1/*34 1 0.04%
CYP2C9 *1/*36 1 0.04%
CYP2C9 *1/*5 1 0.04%
CYP2C9 *1/*62 1 0.04%
CYP2C9 *1/*9 1 0.04%
CYP2C9 *2/*11 1 0.04%
CYP2C9 *2/*20 1 0.04%
CYP2C9 *2/*43 1 0.04%
CYP2C9 *3/*12 1 0.04%
CYP2C9 None 1 0.04%
CYP2D6 *1/*1 291 12.15%
CYP2D6 *1/*2 236 9.85%
CYP2D6 *1/*4 177 7.39%
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CYP2D6 *1/*41 151 6.30%
CYP2D6 *1/*35 114 4.76%
CYP2D6 *1/*68+*4 103 4.30%
CYP2D6 *2/*2 69 2.88%
CYP2D6 *2/*4 65 2.71%
CYP2D6 *2/*41 60 2.50%
CYP2D6 *1/*5 56 2.34%
CYP2D6 None 49 2.05%
CYP2D6 *2/*68+*4 45 1.88%
CYP2D6 *4/*41 43 1.79%
CYP2D6 *2/*35 42 1.75%
CYP2D6 *4/*35 39 1.63%
CYP2D6 *4/*4 38 1.59%
CYP2D6 *1/*9 34 1.42%
CYP2D6 *4/*68+*4 32 1.34%
CYP2D6 *1/*10 25 1.04%
CYP2D6 *2/*5 25 1.04%
CYP2D6 *35/*41 23 0.96%
CYP2D6 *4/*5 23 0.96%
CYP2D6 *1/*3 22 0.92%
CYP2D6 *1/*33 22 0.92%
CYP2D6 *41/*68+*4 20 0.83%
CYP2D6 *35/*68+*4 19 0.79%
CYP2D6 *1/*6 18 0.75%
CYP2D6 *1/*4+*4 15 0.63%
CYP2D6 *35/*35 15 0.63%
CYP2D6 *2/*6 13 0.54%
CYP2D6 *2/*9 13 0.54%
CYP2D6 *2/*10 12 0.50%
CYP2D6 *9/*35 12 0.50%
CYP2D6 *1/*1x2 11 0.46%
CYP2D6 *41/*41 11 0.46%
CYP2D6 *9/*41 11 0.46%
CYP2D6 *10/*41 10 0.42%
CYP2D6 *5/*35 10 0.42%
CYP2D6 *4/*10 9 0.38%
CYP2D6 *5/*41 9 0.38%
CYP2D6 *1/*32 8 0.33%
CYP2D6 *1/*36+*10 8 0.33%
CYP2D6 *1/*59 8 0.33%
CYP2D6 *1x2/*2 8 0.33%
CYP2D6 *1x2/*41 8 0.33%
CYP2D6 *2/*3 8 0.33%
CYP2D6 *3/*4 8 0.33%
CYP2D6 *4/*9 8 0.33%
CYP2D6 *1/*2x2 7 0.29%
CYP2D6 *10/*68+*4 7 0.29%
CYP2D6 *1x2/*4 7 0.29%
CYP2D6 *3/*35 7 0.29%
CYP2D6 *3/*41 7 0.29%
CYP2D6 *10/*35 6 0.25%
CYP2D6 *2/*2x2 6 0.25%
CYP2D6 *2/*33 6 0.25%
CYP2D6 *2x2/*35 6 0.25%
CYP2D6 *5/*68+*4 6 0.25%
CYP2D6 *68+*4/*68+*4 6 0.25%
CYP2D6 *3/*5 5 0.21%
CYP2D6 *33/*41 5 0.21%
CYP2D6 *4/*13 5 0.21%
CYP2D6 *4/*6 5 0.21%
CYP2D6 *6/*68+*4 5 0.21%
CYP2D6 *9/*68+*4 5 0.21%
CYP2D6 *1/*116 4 0.17%
CYP2D6 *1/*22 4 0.17%
CYP2D6 *1/*28 4 0.17%
CYP2D6 *1/*2x3 4 0.17%
CYP2D6 *1/*4x2 4 0.17%
CYP2D6 *1x2/*68+*4 4 0.17%
CYP2D6 *2/*32 4 0.17%
CYP2D6 *2/*59 4 0.17%
CYP2D6 *3/*68+*4 4 0.17%
CYP2D6 *33/*68+*4 4 0.17%
CYP2D6 *4/*33 4 0.17%
CYP2D6 *4/*59 4 0.17%
CYP2D6 *6/*35 4 0.17%
CYP2D6 *1/*15 3 0.13%
CYP2D6 *1/*27 3 0.13%
CYP2D6 *13/*41 3 0.13%
CYP2D6 *1x2/*35 3 0.13%
CYP2D6 *2/*4+*4 3 0.13%
CYP2D6 *2x2/*4 3 0.13%
CYP2D6 *2x2/*41 3 0.13%
CYP2D6 *3/*10 3 0.13%
CYP2D6 *4+*4/*35 3 0.13%
CYP2D6 *4+*4/*41 3 0.13%
CYP2D6 *4/*4+*4 3 0.13%
CYP2D6 *41+*68/*68+*4 3 0.13%
CYP2D6 *5/*10 3 0.13%
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CYP2D6 *5/*5 3 0.13%
CYP2D6 *5/*59 3 0.13%
CYP2D6 *5/*9 3 0.13%
CYP2D6 *6/*41 3 0.13%
CYP2D6 *1/*11 2 0.08%
CYP2D6 *1/*13 2 0.08%
CYP2D6 *1/*17 2 0.08%
CYP2D6 *1/*68x5+*4 2 0.08%
CYP2D6 *10/*36+*10 2 0.08%
CYP2D6 *13+*2/*6 2 0.08%
CYP2D6 *1x2/*9 2 0.08%
CYP2D6 *2/*13 2 0.08%
CYP2D6 *2/*13+*1 2 0.08%
CYP2D6 *2/*22 2 0.08%
CYP2D6 *2/*29 2 0.08%
CYP2D6 *2/*36+*10 2 0.08%
CYP2D6 *2/*41x2 2 0.08%
CYP2D6 *2/*43 2 0.08%
CYP2D6 *2/*4x2 2 0.08%
CYP2D6 *22/*68+*4 2 0.08%
CYP2D6 *28/*41 2 0.08%
CYP2D6 *2x2/*13 2 0.08%
CYP2D6 *2x2/*68+*4 2 0.08%
CYP2D6 *3/*13 2 0.08%
CYP2D6 *3/*59 2 0.08%
CYP2D6 *3/*9 2 0.08%
CYP2D6 *33/*33 2 0.08%
CYP2D6 *33/*35 2 0.08%
CYP2D6 *4/*108 2 0.08%
CYP2D6 *4/*28 2 0.08%
CYP2D6 *4/*7 2 0.08%
CYP2D6 *4x2/*33 2 0.08%
CYP2D6 *4x2/*41 2 0.08%
CYP2D6 *4x2/*68+*4 2 0.08%
CYP2D6 *59/*68+*4 2 0.08%
CYP2D6 *6/*33 2 0.08%
CYP2D6 *9x2/*10 2 0.08%
CYP2D6 *1/*122 1 0.04%
CYP2D6 *1/*124 1 0.04%
CYP2D6 *1/*125 1 0.04%
CYP2D6 *1/*1x3 1 0.04%
CYP2D6 *1/*21 1 0.04%
CYP2D6 *1/*29 1 0.04%
CYP2D6 *1/*2x4 1 0.04%
CYP2D6 *1/*31 1 0.04%
CYP2D6 *1/*35x2 1 0.04%
CYP2D6 *1/*41x3 1 0.04%
CYP2D6 *1/*43 1 0.04%
CYP2D6 *1/*45 1 0.04%
CYP2D6 *1/*68x2+*4 1 0.04%
CYP2D6 *1/*7 1 0.04%
CYP2D6 *1/*71 1 0.04%
CYP2D6 *1/*9x2 1 0.04%
CYP2D6 *10/*10 1 0.04%
CYP2D6 *10/*13 1 0.04%
CYP2D6 *10/*39 1 0.04%
CYP2D6 *13+*2/*35 1 0.04%
CYP2D6 *13+*2/*4 1 0.04%
CYP2D6 *13+*2/*9 1 0.04%
CYP2D6 *13/*22 1 0.04%
CYP2D6 *13/*35 1 0.04%
CYP2D6 *13/*68+*4 1 0.04%
CYP2D6 *17/*29 1 0.04%
CYP2D6 *17/*35 1 0.04%
CYP2D6 *17/*41 1 0.04%
CYP2D6 *1x2/*10 1 0.04%
CYP2D6 *1x2/*1x3 1 0.04%
CYP2D6 *1x4/*2 1 0.04%
CYP2D6 *2/*11 1 0.04%
CYP2D6 *2/*116 1 0.04%
CYP2D6 *2/*127 1 0.04%
CYP2D6 *2/*2x3 1 0.04%
CYP2D6 *2/*7 1 0.04%
CYP2D6 *2/*74 1 0.04%
CYP2D6 *22x2/*35 1 0.04%
CYP2D6 *27/*27 1 0.04%
CYP2D6 *28/*35 1 0.04%
CYP2D6 *2x2/*10 1 0.04%
CYP2D6 *2x2/*9 1 0.04%
CYP2D6 *2x4/*13 1 0.04%
CYP2D6 *32/*33 1 0.04%
CYP2D6 *32/*35 1 0.04%
CYP2D6 *35+*68/*68+*4 1 0.04%
CYP2D6 *35/*115 1 0.04%
CYP2D6 *35/*39 1 0.04%
CYP2D6 *35/*59 1 0.04%
CYP2D6 *36+*10/*36+*10 1 0.04%
CYP2D6 *4+*4/*22 1 0.04%
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CYP2D6 *4+*4/*68+*4 1 0.04%
CYP2D6 *4/*19 1 0.04%
CYP2D6 *4/*22 1 0.04%
CYP2D6 *4/*35x2 1 0.04%
CYP2D6 *4/*36+*10 1 0.04%
CYP2D6 *4/*41x2 1 0.04%
CYP2D6 *4/*41x3 1 0.04%
CYP2D6 *4/*43 1 0.04%
CYP2D6 *4/*4x2 1 0.04%
CYP2D6 *41/*108x2 1 0.04%
CYP2D6 *41/*119 1 0.04%
CYP2D6 *41/*124 1 0.04%
CYP2D6 *41/*68x5+*4 1 0.04%
CYP2D6 *5/*28 1 0.04%
CYP2D6 *5/*6 1 0.04%
CYP2D6 *68+*4/*116 1 0.04%
CYP2D6 *82/*68+*68+*4 1 0.04%
CYP2D6 *9/*10 1 0.04%
CYP2D6 *9/*33 1 0.04%
CYP2E1 *1/*1 1645 68.66%
CYP2E1 *1/*7 459 19.16%
CYP2E1 None 119 4.97%
CYP2E1 *1x2/*7 73 3.05%
CYP2E1 *7/*7 67 2.80%
CYP2E1 *1/*7x2 18 0.75%
CYP2E1 *1/*1x2 7 0.29%
CYP2E1 *1/*3 4 0.17%
CYP2E1 *7/*7x2 3 0.13%
CYP2E1 *1/*4 1 0.04%
CYP2F1 *1/*1 862 35.98%
CYP2F1 *1/*2 532 22.20%
CYP2F1 *1/*5 262 10.93%
CYP2F1 *1/*3 168 7.01%
CYP2F1 *1/*4 139 5.80%
CYP2F1 *2/*2 75 3.13%
CYP2F1 *2/*5 75 3.13%
CYP2F1 *2/*3 64 2.67%
CYP2F1 *1/*6 41 1.71%
CYP2F1 *2/*4 33 1.38%
CYP2F1 *3/*5 32 1.34%
CYP2F1 *4/*5 24 1.00%
CYP2F1 *3/*3 17 0.71%
CYP2F1 *3/*4 13 0.54%
CYP2F1 *5/*5 13 0.54%
CYP2F1 *2/*6 9 0.38%
CYP2F1 *4/*6 8 0.33%
CYP2F1 *5/*6 8 0.33%
CYP2F1 *4/*4 7 0.29%
CYP2F1 None 7 0.29%
CYP2F1 *3/*6 5 0.21%
CYP2F1 *6/*6 2 0.08%
CYP2J2 *1/*1 2063 86.10%
CYP2J2 *1/*7 310 12.94%
CYP2J2 *7/*7 19 0.79%
CYP2J2 *1/*3 3 0.13%
CYP2J2 *1/*9 1 0.04%
CYP2R1 *1/*1 2396 100.00%
CYP2S1 *1/*1 2274 94.91%
CYP2S1 *1/*3 121 5.05%
CYP2S1 *1/*2 1 0.04%
CYP2W1 *1/*1 1413 58.97%
CYP2W1 *1/*6 614 25.63%
CYP2W1 *1/*2 214 8.93%
CYP2W1 *2/*6 72 3.01%
CYP2W1 *6/*6 60 2.50%
CYP2W1 *2/*2 23 0.96%
CYP3A4 *1/*1 2179 90.94%
CYP3A4 *1/*22 186 7.76%
CYP3A4 *1/*3 9 0.38%
CYP3A4 *1/*7 6 0.25%
CYP3A4 *22/*22 6 0.25%
CYP3A4 *1/*15 4 0.17%
CYP3A4 *1/*10 3 0.13%
CYP3A4 *1/*16 2 0.08%
CYP3A4 *10/*22 1 0.04%
CYP3A43 *1/*1 2075 86.60%
CYP3A43 *1/*2 213 8.89%
CYP3A43 *1/*3 95 3.96%
CYP3A43 *2/*2 7 0.29%
CYP3A43 *2/*3 3 0.13%
CYP3A43 *3/*3 2 0.08%
CYP3A43 None 1 0.04%
CYP3A5 *3/*3 2064 86.14%
CYP3A5 *1/*3 310 12.94%
CYP3A5 *1/*1 15 0.63%
CYP3A5 *3/*6 2 0.08%
CYP3A5 *1/*6 1 0.04%
CYP3A5 *3/*7 1 0.04%
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CYP3A5 *6/*6 1 0.04%
CYP3A5 *6/*7 1 0.04%
CYP3A5 None 1 0.04%
CYP3A7 *1/*1 1954 81.55%
CYP3A7 *1/*2 404 16.86%
CYP3A7 *2/*2 34 1.42%
CYP3A7 None 4 0.17%
CYP4A11 *1/*1 1779 74.25%
CYP4A11 *1/F434S 568 23.71%
CYP4A11 F434S/F434S 47 1.96%
CYP4A11 *1/S353G 2 0.08%
CYP4A22 *1/*1 1055 44.03%
CYP4A22 *1/*5 421 17.57%
CYP4A22 *1/*12 376 15.69%
CYP4A22 *1/*15 244 10.18%
CYP4A22 *5/*12 60 2.50%
CYP4A22 *5/*15 49 2.05%
CYP4A22 *12/*12 44 1.84%
CYP4A22 *12/*15 44 1.84%
CYP4A22 *5/*5 36 1.50%
CYP4A22 *1/*9 23 0.96%
CYP4A22 *15/*15 16 0.67%
CYP4A22 *5/*9 6 0.25%
CYP4A22 *9/*12 5 0.21%
CYP4A22 *1/*3 3 0.13%
CYP4A22 *3/*12 3 0.13%
CYP4A22 *3/*15 2 0.08%
CYP4A22 *1/*13 1 0.04%
CYP4A22 *1/*4 1 0.04%
CYP4A22 *3/*5 1 0.04%
CYP4A22 *3/*9 1 0.04%
CYP4A22 *4/*4 1 0.04%
CYP4A22 *5/*13 1 0.04%
CYP4A22 *6/*6 1 0.04%
CYP4A22 *9/*15 1 0.04%
CYP4A22 *9/*9 1 0.04%
CYP4B1 *1/*1 1225 51.13%
CYP4B1 *1/*2 479 19.99%
CYP4B1 *1/*3 423 17.65%
CYP4B1 *2/*3 95 3.96%
CYP4B1 *2/*2 44 1.84%
CYP4B1 *1/*4 42 1.75%
CYP4B1 *3/*3 32 1.34%
CYP4B1 *1/*5 18 0.75%
CYP4B1 None 8 0.33%
CYP4B1 *3/*4 7 0.29%
CYP4B1 *2/*4 6 0.25%
CYP4B1 *2/*5 6 0.25%
CYP4B1 *3/*5 5 0.21%
CYP4B1 *5/*5 4 0.17%
CYP4B1 *4/*4 1 0.04%
CYP4B1 *4/*5 1 0.04%
CYP4F2 *1/*1 1302 54.34%
CYP4F2 None 635 26.50%
CYP4F2 *1/*3 345 14.40%
CYP4F2 *2/*3 71 2.96%
CYP4F2 *3/*3 31 1.29%
CYP4F2 *1/*2 10 0.42%
CYP4F2 *2/*2 2 0.08%
DPYD *1/*1 646 26.96%
DPYD *1/*5 393 16.40%
DPYD None 268 11.19%
DPYD *1/*9 169 7.05%
DPYD *5/*9 100 4.17%
DPYD *9/*rs2297595 98 4.09%
DPYD *5/*5 90 3.76%
DPYD *1/*6 84 3.51%
DPYD *5/*rs2297595 58 2.42%
DPYD *1/*HapB3 51 2.13%
DPYD *5/*6 48 2.00%
DPYD *1/*rs2297595 47 1.96%
DPYD *1/*4 46 1.92%
DPYD *9/*9 41 1.71%
DPYD *1/*rs17376848 36 1.50%
DPYD *4/*5 24 1.00%
DPYD *5/*HapB3 21 0.88%
DPYD *6/*9 20 0.83%
DPYD *5/*rs17376848 19 0.79%
DPYD *6/*rs2297595 16 0.67%
DPYD *1/*2 15 0.63%
DPYD *9/*rs17376848 15 0.63%
DPYD *9/*HapB3 11 0.46%
DPYD *1/*rs67376798 10 0.42%
DPYD *4/*9 8 0.33%
DPYD *6/*6 7 0.29%
DPYD *rs2297595/*HapB3 6 0.25%
DPYD *6/*rs17376848 5 0.21%
DPYD *5/*rs67376798 4 0.17%
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DPYD *9/*rs45589337 3 0.13%
DPYD *9/*rs67376798 3 0.13%
DPYD *1/*rs145112791 2 0.08%
DPYD *1/*rs61622928 2 0.08%
DPYD *4/*6 2 0.08%
DPYD *4/*rs2297595 2 0.08%
DPYD *5/*rs45589337 2 0.08%
DPYD *6/*HapB3 2 0.08%
DPYD *9/*rs61622928 2 0.08%
DPYD *HapB3/*HapB3 2 0.08%
DPYD *rs2297595/*rs17376848 2 0.08%
DPYD *1/*13 1 0.04%
DPYD *1/*rs114096998 1 0.04%
DPYD *2/*4 1 0.04%
DPYD *2/*5 1 0.04%
DPYD *2/*6 1 0.04%
DPYD *2/*9 1 0.04%
DPYD *2/*rs17376848 1 0.04%
DPYD *4/*4 1 0.04%
DPYD *4/*HapB3 1 0.04%
DPYD *4/*rs67376798 1 0.04%
DPYD *5/*7 1 0.04%
DPYD *5/*rs59086055 1 0.04%
DPYD *5/*rs72549308 1 0.04%
DPYD *6/*rs148799944 1 0.04%
DPYD *rs45589337/*HapB3 1 0.04%
DPYD *rs67376798/*HapB3 1 0.04%
F5 Reference/Reference 2238 93.41%
F5 Reference/Leiden 150 6.26%
F5 Leiden/Leiden 8 0.33%
G6PD *B/*B 1186 49.50%
G6PD *B/*DEL 1181 49.29%
G6PD None 9 0.38%
G6PD *B/*seattle 6 0.25%
G6PD *A-/*DEL 3 0.13%
G6PD *A/*DEL 2 0.08%
G6PD *B/*Gond 2 0.08%
G6PD *B/*mediterranean 2 0.08%
G6PD *mediterranean/*DEL 2 0.08%
G6PD *A/*B 1 0.04%
G6PD *Surabaya/*DEL 1 0.04%
G6PD *Union,Maewo,Chinese-2,Kalo/*DEL 1 0.04%
GSTM1 *0/*0 722 30.13%
GSTM1 *0/*A 662 27.63%
GSTM1 None 493 20.58%
GSTM1 *0/*B 318 13.27%
GSTM1 *A/*B 96 4.01%
GSTM1 *A/*A 76 3.17%
GSTM1 *3/*3 20 0.83%
GSTM1 *1/*2 8 0.33%
GSTM1 *A/*Ax2 1 0.04%
GSTP1 *A/*A 1087 45.37%
GSTP1 *A/*B 764 31.89%
GSTP1 *A/*C 257 10.73%
GSTP1 *B/*B 151 6.30%
GSTP1 *B/*C 114 4.76%
GSTP1 *C/*C 20 0.83%
GSTP1 None 2 0.08%
GSTP1 *B/*D 1 0.04%
GSTT1 *0/*A 1141 47.62%
GSTT1 *A/*A 801 33.43%
GSTT1 *0/*0 415 17.32%
GSTT1 None 39 1.63%
IFNL3 *1/*1 1130 47.16%
IFNL3 *1/*rs12980275 1010 42.15%
IFNL3 *rs12980275/*rs12980275 251 10.48%
IFNL3 None 5 0.21%
NAT1 *4/*4 1266 52.84%
NAT1 *4/*10 605 25.25%
NAT1 *4/*11 107 4.47%
NAT1 *10/*10 95 3.96%
NAT1 *3/*4 80 3.34%
NAT1 *4/*14 66 2.75%
NAT1 *10/*11 30 1.25%
NAT1 None 25 1.04%
NAT1 *4/*15 22 0.92%
NAT1 *4/*22 19 0.79%
NAT1 *10/*14 15 0.63%
NAT1 *4/*17 15 0.63%
NAT1 *3/*10 13 0.54%
NAT1 *10/*15 6 0.25%
NAT1 *11/*14 6 0.25%
NAT1 *10/*17 4 0.17%
NAT1 *3/*11 4 0.17%
NAT1 *3/*15 3 0.13%
NAT1 *3/*3 3 0.13%
NAT1 *10/*22 2 0.08%
NAT1 *10/*27 2 0.08%
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NAT1 *11/*11 2 0.08%
NAT1 *14/*14 2 0.08%
NAT1 *11/*17 1 0.04%
NAT1 *14/*15 1 0.04%
NAT1 *3/*14 1 0.04%
NAT1 *4/*27 1 0.04%
NAT2 *5/*6 557 23.25%
NAT2 *4/*5 493 20.58%
NAT2 *5/*5 474 19.78%
NAT2 *4/*6 357 14.90%
NAT2 *6/*6 210 8.76%
NAT2 *4/*4 155 6.47%
NAT2 *5/*7 40 1.67%
NAT2 *6/*7 36 1.50%
NAT2 *4/*7 21 0.88%
NAT2 *5/*12 12 0.50%
NAT2 None 12 0.50%
NAT2 *13/*13 5 0.21%
NAT2 *6/*12 5 0.21%
NAT2 *4/*12 3 0.13%
NAT2 *4/*13 3 0.13%
NAT2 *5/*13 2 0.08%
NAT2 *7/*7 2 0.08%
NAT2 *11/*11 1 0.04%
NAT2 *12/*12 1 0.04%
NAT2 *4/*14 1 0.04%
NAT2 *4/*19 1 0.04%
NAT2 *5/*11 1 0.04%
NAT2 *5/*14 1 0.04%
NAT2 *6/*13 1 0.04%
NAT2 *6/*14 1 0.04%
NAT2 *7/*12 1 0.04%
NUDT15 *1/*1 2338 97.58%
NUDT15 *1/*3 31 1.29%
NUDT15 *1/*6 15 0.63%
NUDT15 *1/*9 7 0.29%
NUDT15 *1/*2 2 0.08%
NUDT15 *1/*10 1 0.04%
NUDT15 *1/*4 1 0.04%
NUDT15 *1/*5 1 0.04%
POR *1/*1 1217 50.79%
POR *1/*28 967 40.36%
POR *28/*28 189 7.89%
POR None 9 0.38%
POR *1/*29 5 0.21%
POR *1/*45 2 0.08%
POR *1/*5 2 0.08%
POR *28/*45 2 0.08%
POR *1/*11 1 0.04%
POR *27/*28 1 0.04%
POR *28/*46 1 0.04%
PTGIS *1/*1 2396 100.00%
RYR1 *1/*1 2393 99.87%
RYR1 *1/*S15 1 0.04%
RYR1 *1/*S17 1 0.04%
RYR1 *1/*S29 1 0.04%
SLC15A2 *1/*2 1169 48.79%
SLC15A2 *1/*1 753 31.43%
SLC15A2 *2/*2 463 19.32%
SLC15A2 None 11 0.46%
SLC22A2 *1/*2 753 31.43%
SLC22A2 *2/*3 404 16.86%
SLC22A2 *2/*2 389 16.24%
SLC22A2 *1/*1 384 16.03%
SLC22A2 *1/*3 318 13.27%
SLC22A2 *3/*3 100 4.17%
SLC22A2 None 32 1.34%
SLC22A2 *1/*6 4 0.17%
SLC22A2 *2/*6 2 0.08%
SLC22A2 *2/*S1 2 0.08%
SLC22A2 *3/*6 2 0.08%
SLC22A2 *1/*4 1 0.04%
SLC22A2 *2/*4 1 0.04%
SLC22A2 *2/*DEL 1 0.04%
SLC22A2 *3/*4 1 0.04%
SLC22A2 *3/*S1 1 0.04%
SLC22A2 *6/*6 1 0.04%
SLCO1B1 *1/*1 758 31.64%
SLCO1B1 *1/*14 382 15.94%
SLCO1B1 *1/*15 374 15.61%
SLCO1B1 *1/*37 178 7.43%
SLCO1B1 *1/*20 127 5.30%
SLCO1B1 *14/*15 115 4.80%
SLCO1B1 *1/*5 81 3.38%
SLCO1B1 *14/*14 56 2.34%
SLCO1B1 *15/*15 54 2.25%
SLCO1B1 *14/*37 46 1.92%
SLCO1B1 *15/*37 44 1.84%
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SLCO1B1 *14/*20 29 1.21%
SLCO1B1 *15/*20 28 1.17%
SLCO1B1 *5/*15 28 1.17%
SLCO1B1 *5/*14 22 0.92%
SLCO1B1 *37/*37 18 0.75%
SLCO1B1 None 14 0.58%
SLCO1B1 *20/*37 13 0.54%
SLCO1B1 *1/*46 5 0.21%
SLCO1B1 *5/*37 5 0.21%
SLCO1B1 *5/*5 4 0.17%
SLCO1B1 *20/*20 3 0.13%
SLCO1B1 *37/*46 2 0.08%
SLCO1B1 *1/*19 1 0.04%
SLCO1B1 *1/*26 1 0.04%
SLCO1B1 *1/*31 1 0.04%
SLCO1B1 *1/*45 1 0.04%
SLCO1B1 *14/*27 1 0.04%
SLCO1B1 *14/*46 1 0.04%
SLCO1B1 *15/*19 1 0.04%
SLCO1B1 *20/*46 1 0.04%
SLCO1B1 *31/*37 1 0.04%
SLCO1B1 *4/*14 1 0.04%
SLCO1B3 *rs7311358/*rs7311358 1655 69.07%
SLCO1B3 *Reference/*rs7311358 647 27.00%
SLCO1B3 *1/*1 78 3.26%
SLCO1B3 None 16 0.67%
SLCO2B1 *1/*1 2188 91.32%
SLCO2B1 *1/*S464F 111 4.63%
SLCO2B1 *1/*S1 88 3.67%
SLCO2B1 None 4 0.17%
SLCO2B1 *S464F/*S464F 3 0.13%
SLCO2B1 *S1/*S1 1 0.04%
SLCO2B1 *S1/*S464F 1 0.04%
SULT1A1 *1/*2 705 29.42%
SULT1A1 *1/*1 594 24.79%
SULT1A1 *1/*1x2 343 14.32%
SULT1A1 *2/*2 270 11.27%
SULT1A1 *1x2/*2 248 10.35%
SULT1A1 *1/*1x3 70 2.92%
SULT1A1 None 60 2.50%
SULT1A1 *1x3/*2 31 1.29%
SULT1A1 *1/*2x2 26 1.09%
SULT1A1 *2/*2x2 19 0.79%
SULT1A1 *3/*3 6 0.25%
SULT1A1 *1/*1x4 5 0.21%
SULT1A1 *1x2/*1x3 5 0.21%
SULT1A1 *1x3/*2x2 3 0.13%
SULT1A1 *1x4/*2 3 0.13%
SULT1A1 *2/*2x3 3 0.13%
SULT1A1 *1x2/*1x4 2 0.08%
SULT1A1 *1/*2x4 1 0.04%
SULT1A1 *1x2/*2x3 1 0.04%
SULT1A1 *1x4/*3 1 0.04%
TBXAS1 *1/*1 2092 87.31%
TBXAS1 *1/*8 115 4.80%
TBXAS1 *1/*7 93 3.88%
TBXAS1 *1/*3 44 1.84%
TBXAS1 *1/*2 11 0.46%
TBXAS1 *3/*3 10 0.42%
TBXAS1 *1/*9 7 0.29%
TBXAS1 None 7 0.29%
TBXAS1 *1/*5 5 0.21%
TBXAS1 *7/*8 4 0.17%
TBXAS1 *8/*8 3 0.13%
TBXAS1 *1/*4 2 0.08%
TBXAS1 *3/*7 1 0.04%
TBXAS1 *3/*9 1 0.04%
TBXAS1 *7/*7 1 0.04%
TPMT *1/*1 2198 91.74%
TPMT *1/*3 172 7.18%
TPMT *1/*2 9 0.38%
TPMT *3/*3 6 0.25%
TPMT *1/*9 5 0.21%
TPMT *1/*12 4 0.17%
TPMT *1/*8 1 0.04%
TPMT *2/*3 1 0.04%
UGT1A1 *1/*1 1075 44.87%
UGT1A1 *1/*80+*28 990 41.32%
UGT1A1 None 295 12.31%
UGT1A1 *1/*6 14 0.58%
UGT1A1 *1/*36 7 0.29%
UGT1A1 *1/*80+*37 4 0.17%
UGT1A1 *1/*28 2 0.08%
UGT1A1 *1/*60 2 0.08%
UGT1A1 *6/*6 2 0.08%
UGT1A1 *6/*80+*28 2 0.08%
UGT1A1 *36/*80+*28 1 0.04%
UGT1A1 *36/*80+*37 1 0.04%
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UGT1A1 *80+*28/*80+*28 1 0.04%
UGT1A4 *1/*1 1722 71.87%
UGT1A4 *1/*3 406 16.94%
UGT1A4 *1/*2 197 8.22%
UGT1A4 *3/*3 22 0.92%
UGT1A4 *2/*3 19 0.79%
UGT1A4 None 12 0.50%
UGT1A4 *2/*2 10 0.42%
UGT1A4 *1/*4 4 0.17%
UGT1A4 *1/*S2 2 0.08%
UGT1A4 *2/*S2 1 0.04%
UGT1A4 *3/*4 1 0.04%
UGT2B15 *4/*5 436 18.20%
UGT2B15 *2/*4 334 13.94%
UGT2B15 *2/*5 310 12.94%
UGT2B15 *4/*4 277 11.56%
UGT2B15 *1/*4 200 8.35%
UGT2B15 *5/*5 185 7.72%
UGT2B15 *2/*2 164 6.84%
UGT2B15 *1/*2 160 6.68%
UGT2B15 *1/*5 135 5.63%
UGT2B15 None 108 4.51%
UGT2B15 *1/*1 41 1.71%
UGT2B15 *2x2/*5 8 0.33%
UGT2B15 *2/*S1 5 0.21%
UGT2B15 *2x2/*4 5 0.21%
UGT2B15 *4/*S1 5 0.21%
UGT2B15 *1/*S1 3 0.13%
UGT2B15 *2/*2x2 2 0.08%
UGT2B15 *2/*4x2 2 0.08%
UGT2B15 *4x2/*5 2 0.08%
UGT2B15 *5/*6 2 0.08%
UGT2B15 *5/*S1 2 0.08%
UGT2B15 *1/*2x2 1 0.04%
UGT2B15 *1/*4x2 1 0.04%
UGT2B15 *1/*5x2 1 0.04%
UGT2B15 *1x2/*5 1 0.04%
UGT2B15 *2/*5x2 1 0.04%
UGT2B15 *2/*6 1 0.04%
UGT2B15 *2/*DEL 1 0.04%
UGT2B15 *4/*DEL 1 0.04%
UGT2B15 *5/*5x2 1 0.04%
UGT2B15 *5/*DEL 1 0.04%
UGT2B17 *1/*1 1031 43.03%
UGT2B17 *1/*2 1006 41.99%
UGT2B17 *2/*2 301 12.56%
UGT2B17 None 58 2.42%
UGT2B7 *1/*2 1141 47.62%
UGT2B7 *2/*2 693 28.92%
UGT2B7 *1/*1 548 22.87%
UGT2B7 *1/*3 8 0.33%
UGT2B7 *2/*3 4 0.17%
UGT2B7 *2/*4 1 0.04%
UGT2B7 *3/*3 1 0.04%
VKORC1 Reference/rs9923231 1157 48.29%
VKORC1 Reference/Reference 843 35.18%
VKORC1 rs9923231/rs9923231 396 16.53%
XPC Reference/rs2228001 1126 46.99%
XPC rs2228001/rs2228001 845 35.27%
XPC Reference/Reference 364 15.19%
XPC rs2228000/rs2228000 1 0.04%
XPC rs2228000/rs2228001 1 0.04%

Table 6.4: Translated phenotypes for applicable pharmacogenes from PGx pipeline for MAS-
TER cohort. Phenotypes are not available for all alleles (Indeterminate).

Gene Consensus Phenotype n Frequency
ABCG2 Normal Function 1955 81.59%
ABCG2 Decreased Function 416 17.36%
ABCG2 Poor Function 25 1.04%
CACNA1S Uncertain Susceptibility 2396 100.00%
CFTR Indeterminate 2367 98.79%
CFTR Favorable Response 29 1.21%
COMT Indeterminate 2391 99.79%
CYP2B6 Normal Metabolizer 1184 49.42%
CYP2B6 Intermediate Metabolizer 853 35.60%
CYP2B6 Poor Metabolizer 153 6.39%
CYP2B6 Rapid Metabolizer 112 4.67%
CYP2B6 Indeterminate 93 3.88%
CYP2B6 Ultrarapid Metabolizer 1 0.04%
CYP2C19 Normal Metabolizer 974 40.65%
CYP2C19 Rapid Metabolizer 625 26.09%
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CYP2C19 Intermediate Metabolizer 621 25.92%
CYP2C19 Ultrarapid Metabolizer 121 5.05%
CYP2C19 Poor Metabolizer 54 2.25%
CYP2C19 Indeterminate 1 0.04%
CYP2C9 Normal Metabolizer 1553 64.82%
CYP2C9 Intermediate Metabolizer 783 32.68%
CYP2C9 Poor Metabolizer 56 2.34%
CYP2C9 Indeterminate 4 0.17%
CYP2D6 Normal Metabolizer 1246 52.00%
CYP2D6 Intermediate Metabolizer 861 35.93%
CYP2D6 Poor Metabolizer 154 6.43%
CYP2D6 Indeterminate 69 2.88%
CYP2D6 Ultrarapid Metabolizer 66 2.75%
CYP3A5 Poor Metabolizer 1987 82.93%
CYP3A5 Intermediate Metabolizer 311 12.98%
CYP3A5 Indeterminate 83 3.46%
CYP3A5 Normal Metabolizer 15 0.63%
DPYD Normal Metabolizer 2246 93.74%
DPYD Intermediate Metabolizer 149 6.22%
DPYD Poor Metabolizer 1 0.04%
F5 Favorable Response 2238 93.41%
F5 Unfavorable Response 158 6.59%
IFNL3 Indeterminate 1268 52.92%
IFNL3 Favorable Response 1128 47.08%
NUDT15 Normal Metabolizer 2338 97.58%
NUDT15 Intermediate Metabolizer 40 1.67%
NUDT15 Indeterminate 18 0.75%
RYR1 Uncertain Susceptibility 2394 99.92%
RYR1 Malignant Hyperthermia Susceptibility 2 0.08%
SLCO1B1 Normal Function 1517 63.31%
SLCO1B1 Decreased Function 687 28.67%
SLCO1B1 Increased Function 93 3.88%
SLCO1B1 Poor Function 88 3.67%
SLCO1B1 Indeterminate 9 0.38%
SLCO1B1 Possible Decreased Function 2 0.08%
TPMT Normal Metabolizer 2198 91.74%
TPMT Intermediate Metabolizer 181 7.55%
TPMT Indeterminate 10 0.42%
TPMT Poor Metabolizer 7 0.29%
UGT1A1 Normal Metabolizer 1063 44.37%
UGT1A1 Intermediate Metabolizer 1016 42.40%
UGT1A1 Poor Metabolizer 293 12.23%
UGT1A1 Indeterminate 24 1.00%

Table 6.5: Predicted damaging non-synonymous SNVs in germline. In silico prediction was done
with the APF framework [91].

Chr Pos Ref Alt rsID Gene Region Type FunctionalPrediction
1 47264908 A G rs772338414 CYP4B1 exonic nonsynonymous SNV damaging
1 47276502 A G rs753724766 CYP4B1 exonic nonsynonymous SNV damaging
1 47276532 C T rs56059446 CYP4B1 exonic nonsynonymous SNV damaging
1 47278174 G A rs148753850 CYP4B1 exonic nonsynonymous SNV damaging
1 47278243 A G rs144157811 CYP4B1 exonic nonsynonymous SNV damaging
1 47279612 G A rs139750942 CYP4B1 exonic nonsynonymous SNV damaging
1 47279636 C T rs144659997 CYP4B1 exonic nonsynonymous SNV damaging
1 47279696 C T rs200200785 CYP4B1 exonic nonsynonymous SNV damaging
1 47279697 G A rs372884535 CYP4B1 exonic nonsynonymous SNV damaging
1 47279898 C T rs45446505 CYP4B1 exonic nonsynonymous SNV damaging
1 47280765 T G rs746996053 CYP4B1 exonic nonsynonymous SNV damaging
1 47280785 G A rs144531409 CYP4B1 exonic nonsynonymous SNV damaging
1 47280852 A C rs12094024 CYP4B1 exonic nonsynonymous SNV damaging
1 47280875 C T . CYP4B1 exonic nonsynonymous SNV damaging
1 47282755 G C rs59694031 CYP4B1 exonic nonsynonymous SNV damaging
1 47282816 G C . CYP4B1 exonic nonsynonymous SNV damaging
1 47283850 T A . CYP4B1 exonic nonsynonymous SNV damaging
1 47283878 G A rs141281141 CYP4B1 exonic nonsynonymous SNV damaging
1 47395917 C T rs148423796 CYP4A11 exonic nonsynonymous SNV damaging
1 47395918 G A rs150500700 CYP4A11 exonic nonsynonymous SNV damaging
1 47395969 T C . CYP4A11 exonic nonsynonymous SNV damaging
1 47398439 C T rs771932669 CYP4A11 exonic nonsynonymous SNV damaging
1 47398493 C T rs199678286 CYP4A11 exonic nonsynonymous SNV damaging
1 47399915 G A . CYP4A11 exonic nonsynonymous SNV damaging
1 47399944 G A rs141672858 CYP4A11 exonic nonsynonymous SNV damaging
1 47399986 G A rs755248704 CYP4A11 exonic nonsynonymous SNV damaging
1 47400714 G A . CYP4A11 exonic nonsynonymous SNV damaging
1 47400803 G T . CYP4A11 exonic nonsynonymous SNV damaging
1 47401231 C T rs143503396 CYP4A11 exonic nonsynonymous SNV damaging
1 47402373 T C rs143639289 CYP4A11 exonic nonsynonymous SNV damaging
1 47402453 C G rs144085677 CYP4A11 exonic nonsynonymous SNV damaging
1 47406943 G A rs375391044 CYP4A11 exonic nonsynonymous SNV damaging
1 47603326 C T rs148805480 CYP4A22 exonic nonsynonymous SNV damaging
1 47603338 G A rs112604161 CYP4A22 exonic nonsynonymous SNV damaging
1 47606567 A T rs61507155 CYP4A22 exonic nonsynonymous SNV damaging
1 47607808 G C rs752724599 CYP4A22 exonic nonsynonymous SNV damaging
1 47607812 T C rs371221965 CYP4A22 exonic nonsynonymous SNV damaging
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1 47607825 G A rs138940178 CYP4A22 exonic nonsynonymous SNV damaging
1 47610029 A C rs778465891 CYP4A22 exonic nonsynonymous SNV damaging
1 47610314 C G rs369645508 CYP4A22 exonic nonsynonymous SNV damaging
1 47610574 C T rs61736431 CYP4A22 exonic nonsynonymous SNV damaging
1 47610627 C T rs371439568 CYP4A22 exonic nonsynonymous SNV damaging
1 47611756 A T . CYP4A22 exonic nonsynonymous SNV damaging
1 47611765 G A rs150794228 CYP4A22 exonic nonsynonymous SNV damaging
1 47614422 C T rs148057835 CYP4A22 exonic nonsynonymous SNV damaging
1 47614425 C T rs138009089 CYP4A22 exonic nonsynonymous SNV damaging
1 60370563 C A rs748001282 CYP2J2 exonic nonsynonymous SNV damaging
1 60370667 C T rs142713068 CYP2J2 exonic nonsynonymous SNV damaging
1 60373495 C G . CYP2J2 exonic nonsynonymous SNV damaging
1 60373523 G T rs767380029 CYP2J2 exonic nonsynonymous SNV damaging
1 60377365 C T rs115453547 CYP2J2 exonic nonsynonymous SNV damaging
1 60377366 G A rs201070738 CYP2J2 exonic nonsynonymous SNV damaging
1 60377940 C A . CYP2J2 exonic nonsynonymous SNV damaging
1 97658683 G T . DPYD exonic nonsynonymous SNV damaging
1 97700472 G A rs547099198 DPYD exonic nonsynonymous SNV damaging
1 97700520 G T rs374825099 DPYD exonic nonsynonymous SNV damaging
1 97700521 C A rs672601276 DPYD exonic nonsynonymous SNV damaging
1 97771825 C T rs778298325 DPYD exonic nonsynonymous SNV damaging
1 97771841 C A rs202212118 DPYD exonic nonsynonymous SNV damaging
1 97839117 C G . DPYD exonic nonsynonymous SNV damaging
1 98015214 C A . DPYD exonic nonsynonymous SNV damaging
1 98015252 T C . DPYD exonic nonsynonymous SNV damaging
1 98039375 A G rs200693895 DPYD exonic nonsynonymous SNV damaging
1 98157329 G C . DPYD exonic nonsynonymous SNV damaging
1 98164964 C A rs376073289 DPYD exonic nonsynonymous SNV damaging
1 98187101 T C . DPYD exonic nonsynonymous SNV damaging
1 98205979 A T . DPYD exonic nonsynonymous SNV damaging
1 98293716 T C rs367619008 DPYD exonic nonsynonymous SNV damaging
1 98386442 C T rs769820114 DPYD exonic nonsynonymous SNV damaging
1 110231863 G C rs572826828 GSTM1 exonic nonsynonymous SNV damaging
1 110231874 G T rs199816990 GSTM1 exonic nonsynonymous SNV damaging
1 169483582 C T . F5 exonic nonsynonymous SNV damaging
1 169489822 G C . F5 exonic nonsynonymous SNV damaging
1 169495167 C T rs774639785 F5 exonic nonsynonymous SNV damaging
1 169495169 T G . F5 exonic nonsynonymous SNV damaging
1 169495234 A G rs377129476 F5 exonic nonsynonymous SNV damaging
1 169497292 C T rs6026 F5 exonic nonsynonymous SNV damaging
1 169497306 G A rs141977229 F5 exonic nonsynonymous SNV damaging
1 169499000 T C rs41272455 F5 exonic nonsynonymous SNV damaging
1 169499020 G C rs6034 F5 exonic nonsynonymous SNV damaging
1 169500173 C T rs201556325 F5 exonic nonsynonymous SNV damaging
1 169509629 T A . F5 exonic nonsynonymous SNV damaging
1 169509650 A G . F5 exonic nonsynonymous SNV damaging
1 169509698 C A rs139288793 F5 exonic nonsynonymous SNV damaging
1 169510849 T A . F5 exonic nonsynonymous SNV damaging
1 169511464 C A rs199507543 F5 exonic nonsynonymous SNV damaging
1 169511830 T C . F5 exonic nonsynonymous SNV damaging
1 169512106 T C rs144979314 F5 exonic nonsynonymous SNV damaging
1 169513573 T C . F5 exonic nonsynonymous SNV damaging
1 169513743 A G . F5 exonic nonsynonymous SNV damaging
1 169519112 C T rs6020 F5 exonic nonsynonymous SNV damaging
1 169519934 G A rs368387623 F5 exonic nonsynonymous SNV damaging
1 169524438 A G . F5 exonic nonsynonymous SNV damaging
1 169524505 G A rs746260106 F5 exonic nonsynonymous SNV damaging
1 169524537 C G rs118203906 F5 exonic nonsynonymous SNV damaging
1 169524573 G T . F5 exonic nonsynonymous SNV damaging
1 169525926 C T rs747353298 F5 exonic nonsynonymous SNV damaging
1 169528493 G T rs144937515 F5 exonic nonsynonymous SNV damaging
1 169541513 C A . F5 exonic nonsynonymous SNV damaging
1 169541561 A G rs367901835 F5 exonic nonsynonymous SNV damaging
1 201009011 C T rs72749169 CACNA1S exonic nonsynonymous SNV damaging
1 201009182 A G rs12139527 CACNA1S exonic nonsynonymous SNV damaging
1 201012622 A G . CACNA1S exonic nonsynonymous SNV damaging
1 201013535 G A rs183195890 CACNA1S exonic nonsynonymous SNV damaging
1 201013548 C T rs138768414 CACNA1S exonic nonsynonymous SNV damaging
1 201013574 C T rs372436488 CACNA1S exonic nonsynonymous SNV damaging
1 201016671 C T rs775885648 CACNA1S exonic nonsynonymous SNV damaging
1 201016695 T C rs373248127 CACNA1S exonic nonsynonymous SNV damaging
1 201019588 G C rs371849585 CACNA1S exonic nonsynonymous SNV damaging
1 201019610 T C rs748210869 CACNA1S exonic nonsynonymous SNV damaging
1 201020150 A G . CACNA1S exonic nonsynonymous SNV damaging
1 201021695 G C . CACNA1S exonic nonsynonymous SNV damaging
1 201021733 C T rs200042281 CACNA1S exonic nonsynonymous SNV damaging
1 201021734 G A rs780390034 CACNA1S exonic nonsynonymous SNV damaging
1 201022344 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201022387 C T rs138144724 CACNA1S exonic nonsynonymous SNV damaging
1 201022621 C T rs530655602 CACNA1S exonic nonsynonymous SNV damaging
1 201022657 C T rs750637537 CACNA1S exonic nonsynonymous SNV damaging
1 201023671 C T rs148870919 CACNA1S exonic nonsynonymous SNV damaging
1 201027599 C A . CACNA1S exonic nonsynonymous SNV damaging
1 201028331 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201030563 C A . CACNA1S exonic nonsynonymous SNV damaging
1 201031099 G A rs200224590 CACNA1S exonic nonsynonymous SNV damaging
1 201031217 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201031636 A T . CACNA1S exonic nonsynonymous SNV damaging
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1 201034983 C T rs569324688 CACNA1S exonic nonsynonymous SNV damaging
1 201034997 A G rs575247457 CACNA1S exonic nonsynonymous SNV damaging
1 201035025 C T rs373701906 CACNA1S exonic nonsynonymous SNV damaging
1 201035034 C T rs146903750 CACNA1S exonic nonsynonymous SNV damaging
1 201035070 C G . CACNA1S exonic nonsynonymous SNV damaging
1 201035428 C T rs146823170 CACNA1S exonic nonsynonymous SNV damaging
1 201036117 G A rs200334886 CACNA1S exonic nonsynonymous SNV damaging
1 201038312 A C rs752178238 CACNA1S exonic nonsynonymous SNV damaging
1 201038650 C T rs139956524 CACNA1S exonic nonsynonymous SNV damaging
1 201039487 G A rs759887262 CACNA1S exonic nonsynonymous SNV damaging
1 201044667 A T rs144590408 CACNA1S exonic nonsynonymous SNV damaging
1 201046058 C T rs142356235 CACNA1S exonic nonsynonymous SNV damaging
1 201046128 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201046205 C T rs4915212 CACNA1S exonic nonsynonymous SNV damaging
1 201047034 C T rs748711395 CACNA1S exonic nonsynonymous SNV damaging
1 201047133 C A rs150590855 CACNA1S exonic nonsynonymous SNV damaging
1 201047133 C T rs150590855 CACNA1S exonic nonsynonymous SNV damaging
1 201047187 A T . CACNA1S exonic nonsynonymous SNV damaging
1 201052335 C A . CACNA1S exonic nonsynonymous SNV damaging
1 201052382 A G rs146136274 CACNA1S exonic nonsynonymous SNV damaging
1 201052398 C T rs750807406 CACNA1S exonic nonsynonymous SNV damaging
1 201054623 C T rs763360081 CACNA1S exonic nonsynonymous SNV damaging
1 201058501 C T rs776311349 CACNA1S exonic nonsynonymous SNV damaging
1 201058513 C T rs35534614 CACNA1S exonic nonsynonymous SNV damaging
1 201058529 G A rs555596737 CACNA1S exonic nonsynonymous SNV damaging
1 201058543 G A rs200665694 CACNA1S exonic nonsynonymous SNV damaging
1 201058579 G A rs767790285 CACNA1S exonic nonsynonymous SNV damaging
1 201060837 T C rs566565917 CACNA1S exonic nonsynonymous SNV damaging
1 201060844 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201061111 G A rs141204958 CACNA1S exonic nonsynonymous SNV damaging
1 201063146 T C rs140330831 CACNA1S exonic nonsynonymous SNV damaging
1 201079344 G C rs12406479 CACNA1S exonic nonsynonymous SNV damaging
1 201079372 T C . CACNA1S exonic nonsynonymous SNV damaging
1 201079384 T G rs373778743 CACNA1S exonic nonsynonymous SNV damaging
2 38298080 C T rs138388190 CYP1B1 exonic nonsynonymous SNV damaging
2 38298394 C T rs79204362 CYP1B1 exonic nonsynonymous SNV damaging
2 38301585 T A rs749521942 CYP1B1 exonic nonsynonymous SNV damaging
2 38301756 C T . CYP1B1 exonic nonsynonymous SNV damaging
2 38301847 C T rs57865060 CYP1B1 exonic nonsynonymous SNV damaging
2 38301879 T A rs72549383 CYP1B1 exonic nonsynonymous SNV damaging
2 38301919 T C . CYP1B1 exonic nonsynonymous SNV damaging
2 38301924 T C . CYP1B1 exonic nonsynonymous SNV damaging
2 38302291 A T rs9282671 CYP1B1 exonic nonsynonymous SNV damaging
2 38302297 G A . CYP1B1 exonic nonsynonymous SNV damaging
2 38302332 C G . CYP1B1 exonic nonsynonymous SNV damaging
2 38302377 G A rs201824781 CYP1B1 exonic nonsynonymous SNV damaging
2 234627616 G C rs45510694 UGT1A4 exonic nonsynonymous SNV damaging
2 234627634 C A rs144275831 UGT1A4 exonic nonsynonymous SNV damaging
2 234627647 C T rs199607987 UGT1A4 exonic nonsynonymous SNV damaging
2 234627827 T C . UGT1A4 exonic nonsynonymous SNV damaging
2 234627932 C T . UGT1A4 exonic nonsynonymous SNV damaging
2 234627939 G C rs149433426 UGT1A4 exonic nonsynonymous SNV damaging
2 234628073 G A . UGT1A4 exonic nonsynonymous SNV damaging
2 234628179 T C . UGT1A4 exonic nonsynonymous SNV damaging
2 234628292 A C rs147342917 UGT1A4 exonic nonsynonymous SNV damaging
2 234628319 A C . UGT1A4 exonic nonsynonymous SNV damaging
2 234669100 A C rs140365717 UGT1A1 exonic nonsynonymous SNV damaging
2 234669569 C A . UGT1A1 exonic nonsynonymous SNV damaging
3 14187609 A T rs776266193 XPC exonic nonsynonymous SNV damaging
3 14189464 C T rs775486844 XPC exonic nonsynonymous SNV damaging
3 14190078 C T rs200148127 XPC exonic nonsynonymous SNV damaging
3 14193906 G A . XPC exonic nonsynonymous SNV damaging
3 14197964 G A . XPC exonic nonsynonymous SNV damaging
3 14199593 C T rs763740883 XPC exonic nonsynonymous SNV damaging
3 14199594 G A rs753379728 XPC exonic nonsynonymous SNV damaging
3 14199642 C T . XPC exonic nonsynonymous SNV damaging
3 14199940 C A rs182616621 XPC exonic nonsynonymous SNV damaging
3 14200115 C T rs376808339 XPC exonic nonsynonymous SNV damaging
3 14201260 A G . XPC exonic nonsynonymous SNV damaging
3 14206331 A C . XPC exonic nonsynonymous SNV damaging
3 14206341 G C rs184879571 XPC exonic nonsynonymous SNV damaging
3 14206351 C G rs778281904 XPC exonic nonsynonymous SNV damaging
3 14206353 A C rs35629274 XPC exonic nonsynonymous SNV damaging
3 121615340 G T rs151029304 SLC15A2 exonic nonsynonymous SNV damaging
3 121616330 C T . SLC15A2 exonic nonsynonymous SNV damaging
3 121616364 T C . SLC15A2 exonic nonsynonymous SNV damaging
3 121630432 A G rs747718082 SLC15A2 exonic nonsynonymous SNV damaging
3 121631884 G A rs759936043 SLC15A2 exonic nonsynonymous SNV damaging
3 121634092 T C . SLC15A2 exonic nonsynonymous SNV damaging
3 121634123 C A . SLC15A2 exonic nonsynonymous SNV damaging
3 121641638 G A rs778421141 SLC15A2 exonic nonsynonymous SNV damaging
3 121641965 T G rs761781029 SLC15A2 exonic nonsynonymous SNV damaging
3 121643217 C T rs765554353 SLC15A2 exonic nonsynonymous SNV damaging
3 121643850 G A rs778014741 SLC15A2 exonic nonsynonymous SNV damaging
3 121643880 C T . SLC15A2 exonic nonsynonymous SNV damaging
3 121658304 A G rs370025673 SLC15A2 exonic nonsynonymous SNV damaging
3 121658320 G A . SLC15A2 exonic nonsynonymous SNV damaging
4 69403599 A G rs138121512 UGT2B17 exonic nonsynonymous SNV damaging
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4 69416515 G T rs377204498 UGT2B17 exonic nonsynonymous SNV damaging
4 69417580 G A rs148430260 UGT2B17 exonic nonsynonymous SNV damaging
4 69426346 A G rs748669369 UGT2B17 exonic nonsynonymous SNV damaging
4 69431385 G C . UGT2B17 exonic nonsynonymous SNV damaging
4 69433479 C G rs145791375 UGT2B17 exonic nonsynonymous SNV damaging
4 69433505 C G rs148958723 UGT2B17 exonic nonsynonymous SNV damaging
4 69433763 T A rs143522336 UGT2B17 exonic nonsynonymous SNV damaging
4 69512917 C T rs72551390 UGT2B15 exonic nonsynonymous SNV damaging
4 69512937 T A rs199547744 UGT2B15 exonic nonsynonymous SNV damaging
4 69513006 C T rs147866157 UGT2B15 exonic nonsynonymous SNV damaging
4 69513007 G A rs147164238 UGT2B15 exonic nonsynonymous SNV damaging
4 69519875 G A rs138762595 UGT2B15 exonic nonsynonymous SNV damaging
4 69533786 T G rs147882612 UGT2B15 exonic nonsynonymous SNV damaging
4 69533852 C T rs371697004 UGT2B15 exonic nonsynonymous SNV damaging
4 69533886 C T rs758424244 UGT2B15 exonic nonsynonymous SNV damaging
4 69535705 C A . UGT2B15 exonic nonsynonymous SNV damaging
4 69535823 T G rs200638397 UGT2B15 exonic nonsynonymous SNV damaging
4 69535835 G T rs747378153 UGT2B15 exonic nonsynonymous SNV damaging
4 69536234 G T rs529876617 UGT2B15 exonic nonsynonymous SNV damaging
4 69536261 C T . UGT2B15 exonic nonsynonymous SNV damaging
4 69962375 T C rs61361928 UGT2B7 exonic nonsynonymous SNV damaging
4 69962737 C T rs747704916 UGT2B7 exonic nonsynonymous SNV damaging
4 69962821 C A . UGT2B7 exonic nonsynonymous SNV damaging
4 69964336 C T rs758222821 UGT2B7 exonic nonsynonymous SNV damaging
4 69964341 C T . UGT2B7 exonic nonsynonymous SNV damaging
4 69968588 A G rs767539882 UGT2B7 exonic nonsynonymous SNV damaging
4 69973863 A T . UGT2B7 exonic nonsynonymous SNV damaging
4 69973866 G A rs771987274 UGT2B7 exonic nonsynonymous SNV damaging
4 69973877 G A rs771444554 UGT2B7 exonic nonsynonymous SNV damaging
4 69973890 G A rs753133394 UGT2B7 exonic nonsynonymous SNV damaging
4 69973920 C A rs563256432 UGT2B7 exonic nonsynonymous SNV damaging
4 69973974 T A rs144232904 UGT2B7 exonic nonsynonymous SNV damaging
4 69978184 G T rs145217059 UGT2B7 exonic nonsynonymous SNV damaging
4 89016685 C T rs748169857 ABCG2 exonic nonsynonymous SNV damaging
4 89016695 T G rs200894058 ABCG2 exonic nonsynonymous SNV damaging
4 89016707 G A . ABCG2 exonic nonsynonymous SNV damaging
4 89016744 C A rs759323853 ABCG2 exonic nonsynonymous SNV damaging
4 89018670 C T rs45605536 ABCG2 exonic nonsynonymous SNV damaging
4 89020542 A G . ABCG2 exonic nonsynonymous SNV damaging
4 89020572 C T . ABCG2 exonic nonsynonymous SNV damaging
4 89022416 C T rs765641486 ABCG2 exonic nonsynonymous SNV damaging
4 89022448 G A rs769734146 ABCG2 exonic nonsynonymous SNV damaging
4 89039261 C T . ABCG2 exonic nonsynonymous SNV damaging
4 89039300 C T . ABCG2 exonic nonsynonymous SNV damaging
4 89042860 T G rs12721643 ABCG2 exonic nonsynonymous SNV damaging
4 89042886 C G . ABCG2 exonic nonsynonymous SNV damaging
4 89052340 G A rs770985871 ABCG2 exonic nonsynonymous SNV damaging
4 89053780 T C rs148475733 ABCG2 exonic nonsynonymous SNV damaging
4 89060966 T C rs769486810 ABCG2 exonic nonsynonymous SNV damaging
6 18132390 G A rs755899157 TPMT exonic nonsynonymous SNV damaging
6 18139230 C A . TPMT exonic nonsynonymous SNV damaging
6 160645750 C T rs372435157 SLC22A2 exonic nonsynonymous SNV damaging
6 160645766 C G rs144511904 SLC22A2 exonic nonsynonymous SNV damaging
6 160662580 A G rs754967456 SLC22A2 exonic nonsynonymous SNV damaging
6 160663405 A G rs762784077 SLC22A2 exonic nonsynonymous SNV damaging
6 160664672 C T rs567153149 SLC22A2 exonic nonsynonymous SNV damaging
6 160664679 C T rs535926721 SLC22A2 exonic nonsynonymous SNV damaging
6 160664726 A G rs779624954 SLC22A2 exonic nonsynonymous SNV damaging
6 160664733 C A rs150866933 SLC22A2 exonic nonsynonymous SNV damaging
6 160664793 C A rs759789804 SLC22A2 exonic nonsynonymous SNV damaging
6 160668223 G A rs868711069 SLC22A2 exonic nonsynonymous SNV damaging
6 160668329 A C rs144729356 SLC22A2 exonic nonsynonymous SNV damaging
6 160670336 G C rs767713938 SLC22A2 exonic nonsynonymous SNV damaging
6 160671633 C T rs372563664 SLC22A2 exonic nonsynonymous SNV damaging
6 160677647 T C . SLC22A2 exonic nonsynonymous SNV damaging
6 160677662 C T rs370177229 SLC22A2 exonic nonsynonymous SNV damaging
6 160679387 T G rs748283994 SLC22A2 exonic nonsynonymous SNV damaging
6 160679473 G A . SLC22A2 exonic nonsynonymous SNV damaging
6 160679570 T G . SLC22A2 exonic nonsynonymous SNV damaging
6 160679600 C A . SLC22A2 exonic nonsynonymous SNV damaging
6 160679772 G C rs139039970 SLC22A2 exonic nonsynonymous SNV damaging
7 1022945 C T rs544975130 CYP2W1 exonic nonsynonymous SNV damaging
7 1024180 G A rs200427519 CYP2W1 exonic nonsynonymous SNV damaging
7 1024861 C G rs117826462 CYP2W1 exonic nonsynonymous SNV damaging
7 1024867 G A rs750767254 CYP2W1 exonic nonsynonymous SNV damaging
7 1026828 C T . CYP2W1 exonic nonsynonymous SNV damaging
7 1027109 C T . CYP2W1 exonic nonsynonymous SNV damaging
7 1027114 G A rs549964637 CYP2W1 exonic nonsynonymous SNV damaging
7 1027150 G A rs201612311 CYP2W1 exonic nonsynonymous SNV damaging
7 1027922 G A rs752381534 CYP2W1 exonic nonsynonymous SNV damaging
7 1028294 C T rs200715910 CYP2W1 exonic nonsynonymous SNV damaging
7 1028337 T G rs201684384 CYP2W1 exonic nonsynonymous SNV damaging
7 75608776 A T rs782037392 POR exonic nonsynonymous SNV damaging
7 75608819 G C rs782226844 POR exonic nonsynonymous SNV damaging
7 75608844 G A rs375997962 POR exonic nonsynonymous SNV damaging
7 75610404 T A . POR exonic nonsynonymous SNV damaging
7 75610418 A G rs782681272 POR exonic nonsynonymous SNV damaging
7 75610912 G A rs782746344 POR exonic nonsynonymous SNV damaging
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7 75611612 C T rs200471958 POR exonic nonsynonymous SNV damaging
7 75612919 G T . POR exonic nonsynonymous SNV damaging
7 75612936 T G . POR exonic nonsynonymous SNV damaging
7 75613075 G A rs540924885 POR exonic nonsynonymous SNV damaging
7 75613084 T C rs782419727 POR exonic nonsynonymous SNV damaging
7 75613108 G A rs562241770 POR exonic nonsynonymous SNV damaging
7 75614128 C G . POR exonic nonsynonymous SNV damaging
7 75614482 C T rs72557935 POR exonic nonsynonymous SNV damaging
7 75614485 G A rs375535318 POR exonic nonsynonymous SNV damaging
7 75614511 G A rs72557936 POR exonic nonsynonymous SNV damaging
7 75614928 T G rs781929293 POR exonic nonsynonymous SNV damaging
7 75614954 G A rs373347327 POR exonic nonsynonymous SNV damaging
7 75615084 C T rs782248163 POR exonic nonsynonymous SNV damaging
7 75615273 G A rs779082897 POR exonic nonsynonymous SNV damaging
7 75615367 C T . POR exonic nonsynonymous SNV damaging
7 75615678 A T . POR exonic nonsynonymous SNV damaging
7 75615698 G A rs372930296 POR exonic nonsynonymous SNV damaging
7 87133704 C T rs201578293 ABCB1 exonic nonsynonymous SNV damaging
7 87133729 G A . ABCB1 exonic nonsynonymous SNV damaging
7 87135236 C T rs202030954 ABCB1 exonic nonsynonymous SNV damaging
7 87135302 G A rs199676098 ABCB1 exonic nonsynonymous SNV damaging
7 87138710 C A . ABCB1 exonic nonsynonymous SNV damaging
7 87138736 A G rs199931681 ABCB1 exonic nonsynonymous SNV damaging
7 87138760 T G rs55852620 ABCB1 exonic nonsynonymous SNV damaging
7 87150164 C T rs774299788 ABCB1 exonic nonsynonymous SNV damaging
7 87160644 A G rs375296280 ABCB1 exonic nonsynonymous SNV damaging
7 87174210 T G rs145840638 ABCB1 exonic nonsynonymous SNV damaging
7 87175195 T C rs141018820 ABCB1 exonic nonsynonymous SNV damaging
7 87175288 C T rs56107566 ABCB1 exonic nonsynonymous SNV damaging
7 87175289 G A rs28381914 ABCB1 exonic nonsynonymous SNV damaging
7 87175318 A T . ABCB1 exonic nonsynonymous SNV damaging
7 87175330 C A . ABCB1 exonic nonsynonymous SNV damaging
7 87178749 C T rs763454753 ABCB1 exonic nonsynonymous SNV damaging
7 87178750 G A rs199852575 ABCB1 exonic nonsynonymous SNV damaging
7 87179256 G A rs142600685 ABCB1 exonic nonsynonymous SNV damaging
7 87179329 C G rs201178758 ABCB1 exonic nonsynonymous SNV damaging
7 87179815 T A rs144933300 ABCB1 exonic nonsynonymous SNV damaging
7 87180049 T C rs199766539 ABCB1 exonic nonsynonymous SNV damaging
7 87180094 C T rs200966236 ABCB1 exonic nonsynonymous SNV damaging
7 87183138 G A . ABCB1 exonic nonsynonymous SNV damaging
7 87196129 C T rs61122623 ABCB1 exonic nonsynonymous SNV damaging
7 87196272 C T rs201352004 ABCB1 exonic nonsynonymous SNV damaging
7 87214993 G A rs761584848 ABCB1 exonic nonsynonymous SNV damaging
7 99250194 T C . CYP3A5 exonic nonsynonymous SNV damaging
7 99250288 C G . CYP3A5 exonic nonsynonymous SNV damaging
7 99250365 T C rs149888520 CYP3A5 exonic nonsynonymous SNV damaging
7 99261707 A G rs142004817 CYP3A5 exonic nonsynonymous SNV damaging
7 99262851 A C rs147489136 CYP3A5 exonic nonsynonymous SNV damaging
7 99264600 G T rs539204136 CYP3A5 exonic nonsynonymous SNV damaging
7 99270222 G T rs41279857 CYP3A5 exonic nonsynonymous SNV damaging
7 99270262 G T . CYP3A5 exonic nonsynonymous SNV damaging
7 99361591 C A rs71581996 CYP3A4 exonic nonsynonymous SNV damaging
7 99367810 C A rs752473076 CYP3A4 exonic nonsynonymous SNV damaging
7 99425774 G T . CYP3A43 exonic nonsynonymous SNV damaging
7 99441825 T G . CYP3A43 exonic nonsynonymous SNV damaging
7 99445188 G T rs140041607 CYP3A43 exonic nonsynonymous SNV damaging
7 99445207 A G rs149853346 CYP3A43 exonic nonsynonymous SNV damaging
7 99453321 C T rs749902724 CYP3A43 exonic nonsynonymous SNV damaging
7 99454459 C G rs746142784 CYP3A43 exonic nonsynonymous SNV damaging
7 99454482 G A rs45621431 CYP3A43 exonic nonsynonymous SNV damaging
7 99459342 A G rs139401065 CYP3A43 exonic nonsynonymous SNV damaging
7 99459381 G A . CYP3A43 exonic nonsynonymous SNV damaging
7 99461160 G T rs143991326 CYP3A43 exonic nonsynonymous SNV damaging
7 99461219 G A rs145743239 CYP3A43 exonic nonsynonymous SNV damaging
7 99461225 G A rs142155405 CYP3A43 exonic nonsynonymous SNV damaging
7 117120162 C T rs193922501 CFTR exonic nonsynonymous SNV damaging
7 117120186 C G . CFTR exonic nonsynonymous SNV damaging
7 117144344 C T rs1800073 CFTR exonic nonsynonymous SNV damaging
7 117144378 C T rs143456784 CFTR exonic nonsynonymous SNV damaging
7 117144402 C A rs397508220 CFTR exonic nonsynonymous SNV damaging
7 117149147 G A rs1800076 CFTR exonic nonsynonymous SNV damaging
7 117171037 G A rs201958172 CFTR exonic nonsynonymous SNV damaging
7 117171038 C T . CFTR exonic nonsynonymous SNV damaging
7 117171120 C G rs759310470 CFTR exonic nonsynonymous SNV damaging
7 117171122 T C rs35516286 CFTR exonic nonsynonymous SNV damaging
7 117171155 T C rs397508727 CFTR exonic nonsynonymous SNV damaging
7 117174348 C T rs578029902 CFTR exonic nonsynonymous SNV damaging
7 117174349 G A rs1800079 CFTR exonic nonsynonymous SNV damaging
7 117174401 C A rs397508754 CFTR exonic nonsynonymous SNV damaging
7 117174403 T C rs766640075 CFTR exonic nonsynonymous SNV damaging
7 117175323 G A rs138338446 CFTR exonic nonsynonymous SNV damaging
7 117175372 A G rs121909046 CFTR exonic nonsynonymous SNV damaging
7 117176630 A G rs191456345 CFTR exonic nonsynonymous SNV damaging
7 117180173 C T rs397508814 CFTR exonic nonsynonymous SNV damaging
7 117180174 G A rs143486492 CFTR exonic nonsynonymous SNV damaging
7 117180186 A G rs150691494 CFTR exonic nonsynonymous SNV damaging
7 117180198 T G . CFTR exonic nonsynonymous SNV damaging
7 117180217 C G rs121909016 CFTR exonic nonsynonymous SNV damaging
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7 117180285 G A rs397508137 CFTR exonic nonsynonymous SNV damaging
7 117180297 C T rs77409459 CFTR exonic nonsynonymous SNV damaging
7 117180336 C G rs1800086 CFTR exonic nonsynonymous SNV damaging
7 117180363 C T rs75053309 CFTR exonic nonsynonymous SNV damaging
7 117182078 A C rs73215912 CFTR exonic nonsynonymous SNV damaging
7 117182116 C T rs143860237 CFTR exonic nonsynonymous SNV damaging
7 117188795 G A rs765791986 CFTR exonic nonsynonymous SNV damaging
7 117199641 A G rs1800091 CFTR exonic nonsynonymous SNV damaging
7 117199648 T G rs74571530 CFTR exonic nonsynonymous SNV damaging
7 117199683 G A rs77646904 CFTR exonic nonsynonymous SNV damaging
7 117199705 A G rs374453187 CFTR exonic nonsynonymous SNV damaging
7 117227874 A G rs75789129 CFTR exonic nonsynonymous SNV damaging
7 117230408 G A . CFTR exonic nonsynonymous SNV damaging
7 117230411 G A rs1800097 CFTR exonic nonsynonymous SNV damaging
7 117232223 C T rs1800100 CFTR exonic nonsynonymous SNV damaging
7 117232329 A T rs748664864 CFTR exonic nonsynonymous SNV damaging
7 117232470 C T rs140455771 CFTR exonic nonsynonymous SNV damaging
7 117232631 G A . CFTR exonic nonsynonymous SNV damaging
7 117232638 A G rs397508375 CFTR exonic nonsynonymous SNV damaging
7 117232642 A G rs1800103 CFTR exonic nonsynonymous SNV damaging
7 117232662 A C . CFTR exonic nonsynonymous SNV damaging
7 117234999 G A . CFTR exonic nonsynonymous SNV damaging
7 117243741 T G rs193922511 CFTR exonic nonsynonymous SNV damaging
7 117243828 T C rs1800110 CFTR exonic nonsynonymous SNV damaging
7 117246736 C T rs747139295 CFTR exonic nonsynonymous SNV damaging
7 117250575 G C rs1800111 CFTR exonic nonsynonymous SNV damaging
7 117250609 G A rs184724618 CFTR exonic nonsynonymous SNV damaging
7 117250625 A G rs149279509 CFTR exonic nonsynonymous SNV damaging
7 117251817 G A . CFTR exonic nonsynonymous SNV damaging
7 117254688 G C rs397508550 CFTR exonic nonsynonymous SNV damaging
7 117254714 A G rs397508556 CFTR exonic nonsynonymous SNV damaging
7 117254743 C A rs397508565 CFTR exonic nonsynonymous SNV damaging
7 117267592 G T rs1800120 CFTR exonic nonsynonymous SNV damaging
7 117267610 A G rs150326506 CFTR exonic nonsynonymous SNV damaging
7 117267720 C A . CFTR exonic nonsynonymous SNV damaging
7 117267812 T G rs34911792 CFTR exonic nonsynonymous SNV damaging
7 117292899 G A rs769931559 CFTR exonic nonsynonymous SNV damaging
7 117292931 C G rs80034486 CFTR exonic nonsynonymous SNV damaging
7 117304834 G T rs113857788 CFTR exonic nonsynonymous SNV damaging
7 117305584 G A rs780396890 CFTR exonic nonsynonymous SNV damaging
7 117306992 G A rs867990936 CFTR exonic nonsynonymous SNV damaging
7 117307154 A G . CFTR exonic nonsynonymous SNV damaging
7 139529239 C G . TBXAS1 exonic nonsynonymous SNV damaging
7 139572060 T C rs757418800 TBXAS1 exonic nonsynonymous SNV damaging
7 139572102 T C rs771838691 TBXAS1 exonic nonsynonymous SNV damaging
7 139611050 T C rs184269562 TBXAS1 exonic nonsynonymous SNV damaging
7 139611089 T A rs370871916 TBXAS1 exonic nonsynonymous SNV damaging
7 139636023 A G rs774271298 TBXAS1 exonic nonsynonymous SNV damaging
7 139636038 C T . TBXAS1 exonic nonsynonymous SNV damaging
7 139655298 G A rs769131779 TBXAS1 exonic nonsynonymous SNV damaging
7 139655341 C G rs137946697 TBXAS1 exonic nonsynonymous SNV damaging
7 139655362 G A rs748986878 TBXAS1 exonic nonsynonymous SNV damaging
7 139657466 G A rs568328354 TBXAS1 exonic nonsynonymous SNV damaging
7 139657540 C T rs140774405 TBXAS1 exonic nonsynonymous SNV damaging
7 139706981 A G . TBXAS1 exonic nonsynonymous SNV damaging
7 139715558 T C . TBXAS1 exonic nonsynonymous SNV damaging
7 139715564 A G . TBXAS1 exonic nonsynonymous SNV damaging
7 139715597 C T . TBXAS1 exonic nonsynonymous SNV damaging
7 139715599 G A rs759019222 TBXAS1 exonic nonsynonymous SNV damaging
7 139715603 G A . TBXAS1 exonic nonsynonymous SNV damaging
7 139717481 G A rs756633372 TBXAS1 exonic nonsynonymous SNV damaging
7 139717485 C A rs753974178 TBXAS1 exonic nonsynonymous SNV damaging
7 139717523 G A rs149988492 TBXAS1 exonic nonsynonymous SNV damaging
7 139717523 G T rs149988492 TBXAS1 exonic nonsynonymous SNV damaging
7 139717626 A T rs200663004 TBXAS1 exonic nonsynonymous SNV damaging
7 139719829 C T rs13306050 TBXAS1 exonic nonsynonymous SNV damaging
7 139719877 A G rs780924927 TBXAS1 exonic nonsynonymous SNV damaging
8 18079675 T C . NAT1 exonic nonsynonymous SNV damaging
8 18080005 T C . NAT1 exonic nonsynonymous SNV damaging
8 18080128 C T rs141552883 NAT1 exonic nonsynonymous SNV damaging
8 18257522 T G . NAT2 exonic nonsynonymous SNV damaging
8 18257529 T C . NAT2 exonic nonsynonymous SNV damaging
8 18257647 G T . NAT2 exonic nonsynonymous SNV damaging
8 18258046 C A . NAT2 exonic nonsynonymous SNV damaging
8 18258099 C A rs771698130 NAT2 exonic nonsynonymous SNV damaging
8 18258202 G T rs749948990 NAT2 exonic nonsynonymous SNV damaging
10 94834543 T C rs762272547 CYP26A1 exonic nonsynonymous SNV damaging
10 94834578 G A rs140213678 CYP26A1 exonic nonsynonymous SNV damaging
10 94834596 G A rs757177182 CYP26A1 exonic nonsynonymous SNV damaging
10 94834621 G T rs150571738 CYP26A1 exonic nonsynonymous SNV damaging
10 94834668 C T rs368680474 CYP26A1 exonic nonsynonymous SNV damaging
10 94834937 G T rs763644436 CYP26A1 exonic nonsynonymous SNV damaging
10 94835632 C T rs142962735 CYP26A1 exonic nonsynonymous SNV damaging
10 94836750 A C rs200904706 CYP26A1 exonic nonsynonymous SNV damaging
10 94837005 G A rs750770595 CYP26A1 exonic nonsynonymous SNV damaging
10 96522522 G C rs769429735 CYP2C19 exonic nonsynonymous SNV damaging
10 96522551 C T rs750669985 CYP2C19 exonic nonsynonymous SNV damaging
10 96534903 C G . CYP2C19 exonic nonsynonymous SNV damaging
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10 96535189 G A rs141774245 CYP2C19 exonic nonsynonymous SNV damaging
10 96535224 G C rs374950950 CYP2C19 exonic nonsynonymous SNV damaging
10 96535225 G A rs766813172 CYP2C19 exonic nonsynonymous SNV damaging
10 96535296 G C rs181297724 CYP2C19 exonic nonsynonymous SNV damaging
10 96540292 C T rs61311738 CYP2C19 exonic nonsynonymous SNV damaging
10 96541719 G A rs577255883 CYP2C19 exonic nonsynonymous SNV damaging
10 96580394 G T rs778852965 CYP2C19 exonic nonsynonymous SNV damaging
10 96602666 T A rs201132803 CYP2C19 exonic nonsynonymous SNV damaging
10 96602680 G A rs201509150 CYP2C19 exonic nonsynonymous SNV damaging
10 96612490 G A rs770375701 CYP2C19 exonic nonsynonymous SNV damaging
10 96701616 T A . CYP2C9 exonic nonsynonymous SNV damaging
10 96708905 G A . CYP2C9 exonic nonsynonymous SNV damaging
10 96740966 G A . CYP2C9 exonic nonsynonymous SNV damaging
10 96741073 C A rs139532088 CYP2C9 exonic nonsynonymous SNV damaging
10 96748616 G C . CYP2C9 exonic nonsynonymous SNV damaging
10 96748751 C T rs530950257 CYP2C9 exonic nonsynonymous SNV damaging
10 96796999 T A . CYP2C8 exonic nonsynonymous SNV damaging
10 96798663 A G . CYP2C8 exonic nonsynonymous SNV damaging
10 96798666 G T . CYP2C8 exonic nonsynonymous SNV damaging
10 96798758 T G rs201301235 CYP2C8 exonic nonsynonymous SNV damaging
10 96798795 C T rs143386810 CYP2C8 exonic nonsynonymous SNV damaging
10 96818263 G C . CYP2C8 exonic nonsynonymous SNV damaging
10 96824609 A C . CYP2C8 exonic nonsynonymous SNV damaging
10 96827024 A G . CYP2C8 exonic nonsynonymous SNV damaging
10 96827075 C T rs369591911 CYP2C8 exonic nonsynonymous SNV damaging
10 96827409 C G . CYP2C8 exonic nonsynonymous SNV damaging
10 96829125 G T rs756655248 CYP2C8 exonic nonsynonymous SNV damaging
10 104590528 G C rs147557447 CYP17A1 exonic nonsynonymous SNV damaging
10 104590596 C T rs763457719 CYP17A1 exonic nonsynonymous SNV damaging
10 135341012 C T . CYP2E1 exonic nonsynonymous SNV damaging
10 135341012 C G rs76271067 CYP2E1 exonic nonsynonymous SNV damaging
10 135345131 G A rs773718909 CYP2E1 exonic nonsynonymous SNV damaging
10 135345657 G A rs60452492 CYP2E1 exonic nonsynonymous SNV damaging
10 135350645 A G rs753186824 CYP2E1 exonic nonsynonymous SNV damaging
10 135350716 A C . CYP2E1 exonic nonsynonymous SNV damaging
11 14899807 A G rs545401539 CYP2R1 exonic nonsynonymous SNV damaging
11 14899823 C T rs782741911 CYP2R1 exonic nonsynonymous SNV damaging
11 14900710 T C rs201004240 CYP2R1 exonic nonsynonymous SNV damaging
11 14900766 G T . CYP2R1 exonic nonsynonymous SNV damaging
11 14900824 A T rs782535484 CYP2R1 exonic nonsynonymous SNV damaging
11 14900891 C G rs781954755 CYP2R1 exonic nonsynonymous SNV damaging
11 14901708 A G rs145224817 CYP2R1 exonic nonsynonymous SNV damaging
11 14901831 A G rs200183599 CYP2R1 exonic nonsynonymous SNV damaging
11 14902021 C T rs143448859 CYP2R1 exonic nonsynonymous SNV damaging
11 14902131 G A rs781970760 CYP2R1 exonic nonsynonymous SNV damaging
11 14902179 G C . CYP2R1 exonic nonsynonymous SNV damaging
11 14907326 C T . CYP2R1 exonic nonsynonymous SNV damaging
11 14907417 C T rs782115359 CYP2R1 exonic nonsynonymous SNV damaging
11 14913535 A G . CYP2R1 exonic nonsynonymous SNV damaging
11 67351964 G T rs192307201 GSTP1 exonic nonsynonymous SNV damaging
11 67351981 C A rs752215721 GSTP1 exonic nonsynonymous SNV damaging
11 67351992 A T rs45506591 GSTP1 exonic nonsynonymous SNV damaging
11 67352636 C T . GSTP1 exonic nonsynonymous SNV damaging
11 67352698 A T rs199833944 GSTP1 exonic nonsynonymous SNV damaging
11 67353861 T C . GSTP1 exonic nonsynonymous SNV damaging
11 67353950 G C rs753365034 GSTP1 exonic nonsynonymous SNV damaging
11 74875027 G A . SLCO2B1 exonic nonsynonymous SNV damaging
11 74876878 G A rs142693902 SLCO2B1 exonic nonsynonymous SNV damaging
11 74876889 C T rs148248368 SLCO2B1 exonic nonsynonymous SNV damaging
11 74880370 G A rs35199625 SLCO2B1 exonic nonsynonymous SNV damaging
11 74883531 T C . SLCO2B1 exonic nonsynonymous SNV damaging
11 74904401 C T rs747713084 SLCO2B1 exonic nonsynonymous SNV damaging
11 74904589 C T . SLCO2B1 exonic nonsynonymous SNV damaging
11 74904608 C T rs764144223 SLCO2B1 exonic nonsynonymous SNV damaging
11 74911293 G A rs143480565 SLCO2B1 exonic nonsynonymous SNV damaging
11 74914358 T A . SLCO2B1 exonic nonsynonymous SNV damaging
12 21325624 C T rs576786579 SLCO1B1 exonic nonsynonymous SNV damaging
12 21325651 C T rs769900186 SLCO1B1 exonic nonsynonymous SNV damaging
12 21331570 G A rs142101690 SLCO1B1 exonic nonsynonymous SNV damaging
12 21331921 A G . SLCO1B1 exonic nonsynonymous SNV damaging
12 21331930 G A rs147421160 SLCO1B1 exonic nonsynonymous SNV damaging
12 21331940 G A rs374113543 SLCO1B1 exonic nonsynonymous SNV damaging
12 21355611 C A rs141779296 SLCO1B1 exonic nonsynonymous SNV damaging
15 51503075 G A rs763421146 CYP19A1 exonic nonsynonymous SNV damaging
15 51503226 C A . CYP19A1 exonic nonsynonymous SNV damaging
15 51504546 C T rs199887515 CYP19A1 exonic nonsynonymous SNV damaging
15 51504587 A G . CYP19A1 exonic nonsynonymous SNV damaging
15 51507273 C G . CYP19A1 exonic nonsynonymous SNV damaging
15 51507335 A G rs143839949 CYP19A1 exonic nonsynonymous SNV damaging
15 51510760 A T rs143562020 CYP19A1 exonic nonsynonymous SNV damaging
15 51514627 C T . CYP19A1 exonic nonsynonymous SNV damaging
15 51514699 G A rs201842322 CYP19A1 exonic nonsynonymous SNV damaging
15 51520054 T C . CYP19A1 exonic nonsynonymous SNV damaging
15 51520054 T A . CYP19A1 exonic nonsynonymous SNV damaging
15 75012837 C A rs56343424 CYP1A1 exonic nonsynonymous SNV damaging
15 75012838 G A rs148638069 CYP1A1 exonic nonsynonymous SNV damaging
15 75013005 C T rs180744198 CYP1A1 exonic nonsynonymous SNV damaging
15 75013098 G A rs769227467 CYP1A1 exonic nonsynonymous SNV damaging
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15 75013344 C T rs750520977 CYP1A1 exonic nonsynonymous SNV damaging
15 75013576 C T rs201174966 CYP1A1 exonic nonsynonymous SNV damaging
15 75013932 C G . CYP1A1 exonic nonsynonymous SNV damaging
15 75014027 A G rs4987133 CYP1A1 exonic nonsynonymous SNV damaging
15 75014049 G A rs34260157 CYP1A1 exonic nonsynonymous SNV damaging
15 75014718 G A rs149687459 CYP1A1 exonic nonsynonymous SNV damaging
15 75014727 G A rs61747605 CYP1A1 exonic nonsynonymous SNV damaging
15 75014847 T C . CYP1A1 exonic nonsynonymous SNV damaging
15 75014861 G A . CYP1A1 exonic nonsynonymous SNV damaging
15 75014884 G T rs140459785 CYP1A1 exonic nonsynonymous SNV damaging
15 75014957 T G rs202221673 CYP1A1 exonic nonsynonymous SNV damaging
15 75015036 G A rs45442501 CYP1A1 exonic nonsynonymous SNV damaging
15 75015045 C G rs35196245 CYP1A1 exonic nonsynonymous SNV damaging
15 75015063 C T rs375219443 CYP1A1 exonic nonsynonymous SNV damaging
15 75015138 C T rs141173079 CYP1A1 exonic nonsynonymous SNV damaging
15 75015147 G A rs754416936 CYP1A1 exonic nonsynonymous SNV damaging
15 75015206 A G rs17861094 CYP1A1 exonic nonsynonymous SNV damaging
15 75015243 T C rs35035798 CYP1A1 exonic nonsynonymous SNV damaging
15 75015293 A G rs565370983 CYP1A1 exonic nonsynonymous SNV damaging
15 75042122 C T rs60086777 CYP1A2 exonic nonsynonymous SNV damaging
15 75042389 G A rs34067076 CYP1A2 exonic nonsynonymous SNV damaging
15 75042488 C T rs758124536 CYP1A2 exonic nonsynonymous SNV damaging
15 75042767 G C rs765435682 CYP1A2 exonic nonsynonymous SNV damaging
15 75042776 G A rs201537008 CYP1A2 exonic nonsynonymous SNV damaging
15 75043539 C T rs45468096 CYP1A2 exonic nonsynonymous SNV damaging
15 75044485 C T rs148157092 CYP1A2 exonic nonsynonymous SNV damaging
15 75044519 C T . CYP1A2 exonic nonsynonymous SNV damaging
15 75045593 G C . CYP1A2 exonic nonsynonymous SNV damaging
15 75045602 A G . CYP1A2 exonic nonsynonymous SNV damaging
15 75047346 G A rs763531887 CYP1A2 exonic nonsynonymous SNV damaging
16 28617243 C T . SULT1A1 exonic nonsynonymous SNV damaging
16 28617437 T C rs140288278 SULT1A1 exonic nonsynonymous SNV damaging
16 28617472 G A rs150459557 SULT1A1 exonic nonsynonymous SNV damaging
16 28618170 T C rs759716692 SULT1A1 exonic nonsynonymous SNV damaging
16 28618278 C T rs141878102 SULT1A1 exonic nonsynonymous SNV damaging
16 28619647 G C rs144188544 SULT1A1 exonic nonsynonymous SNV damaging
16 28619676 C T rs760293838 SULT1A1 exonic nonsynonymous SNV damaging
16 28619838 C G rs375616347 SULT1A1 exonic nonsynonymous SNV damaging
16 28619841 G A rs201320226 SULT1A1 exonic nonsynonymous SNV damaging
16 28620112 T C rs143603811 SULT1A1 exonic nonsynonymous SNV damaging
16 31102655 G A rs72547528 VKORC1 exonic nonsynonymous SNV damaging
16 31105894 G T rs781304132 VKORC1 exonic nonsynonymous SNV damaging
16 31105945 C A rs61742245 VKORC1 exonic nonsynonymous SNV damaging
19 15989688 G C rs762784709 CYP4F2 exonic nonsynonymous SNV damaging
19 15990222 C T rs138971789 CYP4F2 exonic nonsynonymous SNV damaging
19 15990223 G A rs142113670 CYP4F2 exonic nonsynonymous SNV damaging
19 15990703 C T rs772862283 CYP4F2 exonic nonsynonymous SNV damaging
19 15996756 G A rs200373927 CYP4F2 exonic nonsynonymous SNV damaging
19 15996828 G C rs145174239 CYP4F2 exonic nonsynonymous SNV damaging
19 15996851 G A rs757642625 CYP4F2 exonic nonsynonymous SNV damaging
19 16001215 C A rs3093153 CYP4F2 exonic nonsynonymous SNV damaging
19 16003189 G A rs200629062 CYP4F2 exonic nonsynonymous SNV damaging
19 38931405 G T . RYR1 exonic nonsynonymous SNV damaging
19 38933004 C G rs769890047 RYR1 exonic nonsynonymous SNV damaging
19 38934252 C T rs118192173 RYR1 exonic nonsynonymous SNV damaging
19 38935253 G C . RYR1 exonic nonsynonymous SNV damaging
19 38937121 C T rs727504129 RYR1 exonic nonsynonymous SNV damaging
19 38937148 A G rs766836202 RYR1 exonic nonsynonymous SNV damaging
19 38937375 G A rs772767943 RYR1 exonic nonsynonymous SNV damaging
19 38942430 G A . RYR1 exonic nonsynonymous SNV damaging
19 38942437 G A rs532700459 RYR1 exonic nonsynonymous SNV damaging
19 38945887 A G rs147723844 RYR1 exonic nonsynonymous SNV damaging
19 38945972 C T . RYR1 exonic nonsynonymous SNV damaging
19 38946109 A G rs780036569 RYR1 exonic nonsynonymous SNV damaging
19 38946141 T G . RYR1 exonic nonsynonymous SNV damaging
19 38946315 A C rs779551357 RYR1 exonic nonsynonymous SNV damaging
19 38948261 A G rs747459771 RYR1 exonic nonsynonymous SNV damaging
19 38948702 A G . RYR1 exonic nonsynonymous SNV damaging
19 38948720 C T rs757908433 RYR1 exonic nonsynonymous SNV damaging
19 38948803 C T rs772751128 RYR1 exonic nonsynonymous SNV damaging
19 38948887 G A rs138874610 RYR1 exonic nonsynonymous SNV damaging
19 38949893 A G rs147320363 RYR1 exonic nonsynonymous SNV damaging
19 38949911 G C . RYR1 exonic nonsynonymous SNV damaging
19 38949938 G A rs147918857 RYR1 exonic nonsynonymous SNV damaging
19 38951044 G A . RYR1 exonic nonsynonymous SNV damaging
19 38951086 A G . RYR1 exonic nonsynonymous SNV damaging
19 38951142 C T rs142548565 RYR1 exonic nonsynonymous SNV damaging
19 38954066 G C . RYR1 exonic nonsynonymous SNV damaging
19 38954130 C T rs143701391 RYR1 exonic nonsynonymous SNV damaging
19 38954139 G A rs370634440 RYR1 exonic nonsynonymous SNV damaging
19 38954391 G A rs147515913 RYR1 exonic nonsynonymous SNV damaging
19 38954490 A T . RYR1 exonic nonsynonymous SNV damaging
19 38955362 C T rs201827275 RYR1 exonic nonsynonymous SNV damaging
19 38956757 C T rs143179371 RYR1 exonic nonsynonymous SNV damaging
19 38956780 G A rs748676912 RYR1 exonic nonsynonymous SNV damaging
19 38956955 G T . RYR1 exonic nonsynonymous SNV damaging
19 38958270 C T . RYR1 exonic nonsynonymous SNV damaging
19 38958369 C T rs750429900 RYR1 exonic nonsynonymous SNV damaging
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19 38960055 G A . RYR1 exonic nonsynonymous SNV damaging
19 38964369 A T . RYR1 exonic nonsynonymous SNV damaging
19 38964370 G T . RYR1 exonic nonsynonymous SNV damaging
19 38964371 A T . RYR1 exonic nonsynonymous SNV damaging
19 38964372 A T . RYR1 exonic nonsynonymous SNV damaging
19 38964376 G T . RYR1 exonic nonsynonymous SNV damaging
19 38964377 A G . RYR1 exonic nonsynonymous SNV damaging
19 38964382 T G . RYR1 exonic nonsynonymous SNV damaging
19 38965975 A G rs137933390 RYR1 exonic nonsynonymous SNV damaging
19 38965983 G A rs772111760 RYR1 exonic nonsynonymous SNV damaging
19 38968461 C T rs200546266 RYR1 exonic nonsynonymous SNV damaging
19 38969139 C T rs752736122 RYR1 exonic nonsynonymous SNV damaging
19 38974074 C T . RYR1 exonic nonsynonymous SNV damaging
19 38974155 C T . RYR1 exonic nonsynonymous SNV damaging
19 38976316 C T . RYR1 exonic nonsynonymous SNV damaging
19 38976331 G A rs146504767 RYR1 exonic nonsynonymous SNV damaging
19 38976610 G C . RYR1 exonic nonsynonymous SNV damaging
19 38976655 C T rs34934920 RYR1 exonic nonsynonymous SNV damaging
19 38980786 C T rs751621150 RYR1 exonic nonsynonymous SNV damaging
19 38983186 C T rs758631725 RYR1 exonic nonsynonymous SNV damaging
19 38985040 A G . RYR1 exonic nonsynonymous SNV damaging
19 38985070 G A . RYR1 exonic nonsynonymous SNV damaging
19 38985135 C T rs750275456 RYR1 exonic nonsynonymous SNV damaging
19 38985195 G C rs143398211 RYR1 exonic nonsynonymous SNV damaging
19 38987056 G A rs537994744 RYR1 exonic nonsynonymous SNV damaging
19 38987105 C G . RYR1 exonic nonsynonymous SNV damaging
19 38987133 A G . RYR1 exonic nonsynonymous SNV damaging
19 38987509 G A . RYR1 exonic nonsynonymous SNV damaging
19 38989817 A G rs34390345 RYR1 exonic nonsynonymous SNV damaging
19 38990346 G A rs146306934 RYR1 exonic nonsynonymous SNV damaging
19 38990409 G A rs777021627 RYR1 exonic nonsynonymous SNV damaging
19 38990446 A G . RYR1 exonic nonsynonymous SNV damaging
19 38990455 G A rs749136416 RYR1 exonic nonsynonymous SNV damaging
19 38990562 C T rs145787667 RYR1 exonic nonsynonymous SNV damaging
19 38990594 G T rs193922808 RYR1 exonic nonsynonymous SNV damaging
19 38990601 T A rs118192174 RYR1 exonic nonsynonymous SNV damaging
19 38991271 C T rs141959437 RYR1 exonic nonsynonymous SNV damaging
19 38991355 C A rs141298868 RYR1 exonic nonsynonymous SNV damaging
19 38991605 T C . RYR1 exonic nonsynonymous SNV damaging
19 38993310 G A rs751180702 RYR1 exonic nonsynonymous SNV damaging
19 38993537 T C rs769326916 RYR1 exonic nonsynonymous SNV damaging
19 38993543 A C . RYR1 exonic nonsynonymous SNV damaging
19 38993572 G C rs193922825 RYR1 exonic nonsynonymous SNV damaging
19 38995499 G A rs545688934 RYR1 exonic nonsynonymous SNV damaging
19 38995509 A G rs112196644 RYR1 exonic nonsynonymous SNV damaging
19 38995965 C T rs147707463 RYR1 exonic nonsynonymous SNV damaging
19 38995998 C G rs35180584 RYR1 exonic nonsynonymous SNV damaging
19 38998362 G A rs79294840 RYR1 exonic nonsynonymous SNV damaging
19 39001369 G A rs759007399 RYR1 exonic nonsynonymous SNV damaging
19 39002726 G C . RYR1 exonic nonsynonymous SNV damaging
19 39002913 G A rs145044872 RYR1 exonic nonsynonymous SNV damaging
19 39006751 C G rs587784379 RYR1 exonic nonsynonymous SNV damaging
19 39006759 G A . RYR1 exonic nonsynonymous SNV damaging
19 39006807 A G rs199738299 RYR1 exonic nonsynonymous SNV damaging
19 39008026 A G rs200950673 RYR1 exonic nonsynonymous SNV damaging
19 39008109 A T . RYR1 exonic nonsynonymous SNV damaging
19 39008109 A C rs201588259 RYR1 exonic nonsynonymous SNV damaging
19 39008161 G A rs757753317 RYR1 exonic nonsynonymous SNV damaging
19 39008173 G A rs756487708 RYR1 exonic nonsynonymous SNV damaging
19 39008276 A C . RYR1 exonic nonsynonymous SNV damaging
19 39009877 C T rs118204421 RYR1 exonic nonsynonymous SNV damaging
19 39009932 G A rs137932199 RYR1 exonic nonsynonymous SNV damaging
19 39009974 G A rs754760055 RYR1 exonic nonsynonymous SNV damaging
19 39010076 G T . RYR1 exonic nonsynonymous SNV damaging
19 39013682 C T rs150977342 RYR1 exonic nonsynonymous SNV damaging
19 39016006 A C . RYR1 exonic nonsynonymous SNV damaging
19 39016020 C T rs375127981 RYR1 exonic nonsynonymous SNV damaging
19 39016059 A G . RYR1 exonic nonsynonymous SNV damaging
19 39016132 G A rs143987857 RYR1 exonic nonsynonymous SNV damaging
19 39017670 A T rs199689862 RYR1 exonic nonsynonymous SNV damaging
19 39018366 C G rs748082431 RYR1 exonic nonsynonymous SNV damaging
19 39019010 G T . RYR1 exonic nonsynonymous SNV damaging
19 39019242 C G rs114351116 RYR1 exonic nonsynonymous SNV damaging
19 39026677 G A rs145087576 RYR1 exonic nonsynonymous SNV damaging
19 39027398 C T rs138593495 RYR1 exonic nonsynonymous SNV damaging
19 39028586 A T . RYR1 exonic nonsynonymous SNV damaging
19 39028598 A T . RYR1 exonic nonsynonymous SNV damaging
19 39034191 A G rs147136339 RYR1 exonic nonsynonymous SNV damaging
19 39034446 C G . RYR1 exonic nonsynonymous SNV damaging
19 39038927 C T . RYR1 exonic nonsynonymous SNV damaging
19 39039016 G A . RYR1 exonic nonsynonymous SNV damaging
19 39051820 A T rs765132716 RYR1 exonic nonsynonymous SNV damaging
19 39051876 C A rs193922849 RYR1 exonic nonsynonymous SNV damaging
19 39051876 C T . RYR1 exonic nonsynonymous SNV damaging
19 39052023 G A rs151119428 RYR1 exonic nonsynonymous SNV damaging
19 39052029 C A rs761486041 RYR1 exonic nonsynonymous SNV damaging
19 39055897 T G . RYR1 exonic nonsynonymous SNV damaging
19 39055930 G A rs539194350 RYR1 exonic nonsynonymous SNV damaging
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19 39056409 G C . RYR1 exonic nonsynonymous SNV damaging
19 39057618 A G rs139647387 RYR1 exonic nonsynonymous SNV damaging
19 39057626 G C rs150396398 RYR1 exonic nonsynonymous SNV damaging
19 39058426 G A . RYR1 exonic nonsynonymous SNV damaging
19 39058480 C T rs763661413 RYR1 exonic nonsynonymous SNV damaging
19 39062797 G A rs752668333 RYR1 exonic nonsynonymous SNV damaging
19 39062801 A G . RYR1 exonic nonsynonymous SNV damaging
19 39066601 G T . RYR1 exonic nonsynonymous SNV damaging
19 39068588 C T rs766887342 RYR1 exonic nonsynonymous SNV damaging
19 39068670 C T rs146793368 RYR1 exonic nonsynonymous SNV damaging
19 39070731 G A rs193922875 RYR1 exonic nonsynonymous SNV damaging
19 39076790 C G rs368874586 RYR1 exonic nonsynonymous SNV damaging
19 39078031 C T rs374070555 RYR1 exonic nonsynonymous SNV damaging
19 39078052 C T rs140584202 RYR1 exonic nonsynonymous SNV damaging
19 39734325 G A rs150748693 IFNL3 exonic nonsynonymous SNV damaging
19 39734352 C T rs62120527 IFNL3 exonic nonsynonymous SNV damaging
19 39734490 G A rs139076671 IFNL3 exonic nonsynonymous SNV damaging
19 39734507 C T . IFNL3 exonic nonsynonymous SNV damaging
19 39734531 G A rs779256274 IFNL3 exonic nonsynonymous SNV damaging
19 39734721 T G . IFNL3 exonic nonsynonymous SNV damaging
19 39734754 G A rs145428712 IFNL3 exonic nonsynonymous SNV damaging
19 39734773 C G rs147679979 IFNL3 exonic nonsynonymous SNV damaging
19 41349763 G A rs561053481 CYP2A6 exonic nonsynonymous SNV damaging
19 41351288 C T rs757428419 CYP2A6 exonic nonsynonymous SNV damaging
19 41351288 C G . CYP2A6 exonic nonsynonymous SNV damaging
19 41351867 C T . CYP2A6 exonic nonsynonymous SNV damaging
19 41351924 C G . CYP2A6 exonic nonsynonymous SNV damaging
19 41351935 A T rs148693084 CYP2A6 exonic nonsynonymous SNV damaging
19 41352791 G A rs780129128 CYP2A6 exonic nonsynonymous SNV damaging
19 41354126 G C rs771986786 CYP2A6 exonic nonsynonymous SNV damaging
19 41354593 A G rs777098658 CYP2A6 exonic nonsynonymous SNV damaging
19 41354651 C G rs61562160 CYP2A6 exonic nonsynonymous SNV damaging
19 41355777 C T rs145308399 CYP2A6 exonic nonsynonymous SNV damaging
19 41355802 C A rs368359507 CYP2A6 exonic nonsynonymous SNV damaging
19 41355839 C T rs752300065 CYP2A6 exonic nonsynonymous SNV damaging
19 41497314 G A rs781365650 CYP2B6 exonic nonsynonymous SNV damaging
19 41509919 A G . CYP2B6 exonic nonsynonymous SNV damaging
19 41509934 C T rs138264188 CYP2B6 exonic nonsynonymous SNV damaging
19 41509987 C T . CYP2B6 exonic nonsynonymous SNV damaging
19 41510301 G A rs139173201 CYP2B6 exonic nonsynonymous SNV damaging
19 41512872 G A rs58871670 CYP2B6 exonic nonsynonymous SNV damaging
19 41512901 T A rs767612288 CYP2B6 exonic nonsynonymous SNV damaging
19 41512910 C A . CYP2B6 exonic nonsynonymous SNV damaging
19 41515959 C T . CYP2B6 exonic nonsynonymous SNV damaging
19 41515998 C T rs373559488 CYP2B6 exonic nonsynonymous SNV damaging
19 41518204 G C rs187378204 CYP2B6 exonic nonsynonymous SNV damaging
19 41522557 G A rs764288403 CYP2B6 exonic nonsynonymous SNV damaging
19 41594486 C G rs781487437 CYP2A13 exonic nonsynonymous SNV damaging
19 41594522 T C rs551458619 CYP2A13 exonic nonsynonymous SNV damaging
19 41594916 A G rs138627841 CYP2A13 exonic nonsynonymous SNV damaging
19 41596044 G A rs201720562 CYP2A13 exonic nonsynonymous SNV damaging
19 41596059 G C rs764008365 CYP2A13 exonic nonsynonymous SNV damaging
19 41596322 T G . CYP2A13 exonic nonsynonymous SNV damaging
19 41599593 A G . CYP2A13 exonic nonsynonymous SNV damaging
19 41600182 G A rs200636194 CYP2A13 exonic nonsynonymous SNV damaging
19 41600191 C T rs138941528 CYP2A13 exonic nonsynonymous SNV damaging
19 41600212 C T rs149632806 CYP2A13 exonic nonsynonymous SNV damaging
19 41600240 T C . CYP2A13 exonic nonsynonymous SNV damaging
19 41600254 C A rs116368403 CYP2A13 exonic nonsynonymous SNV damaging
19 41600317 C T rs147797134 CYP2A13 exonic nonsynonymous SNV damaging
19 41600925 C T rs202218822 CYP2A13 exonic nonsynonymous SNV damaging
19 41600976 A T . CYP2A13 exonic nonsynonymous SNV damaging
19 41601694 G A rs772441450 CYP2A13 exonic nonsynonymous SNV damaging
19 41601710 T C rs201481142 CYP2A13 exonic nonsynonymous SNV damaging
19 41601727 A G rs762462392 CYP2A13 exonic nonsynonymous SNV damaging
19 41601785 C T rs781684223 CYP2A13 exonic nonsynonymous SNV damaging
19 41627401 G C rs2287941 CYP2F1 exonic nonsynonymous SNV damaging
19 41627402 T G rs2287942 CYP2F1 exonic nonsynonymous SNV damaging
19 41627408 A C rs140643766 CYP2F1 exonic nonsynonymous SNV damaging
19 41627432 G A . CYP2F1 exonic nonsynonymous SNV damaging
19 41628001 G A rs200744662 CYP2F1 exonic nonsynonymous SNV damaging
19 41630629 G C rs182353952 CYP2F1 exonic nonsynonymous SNV damaging
19 41630642 T A rs372824170 CYP2F1 exonic nonsynonymous SNV damaging
19 41630665 C T rs376080668 CYP2F1 exonic nonsynonymous SNV damaging
19 41630767 C T . CYP2F1 exonic nonsynonymous SNV damaging
19 41630783 C T rs138507242 CYP2F1 exonic nonsynonymous SNV damaging
19 41633809 G A rs139951793 CYP2F1 exonic nonsynonymous SNV damaging
19 41633841 A C rs146029724 CYP2F1 exonic nonsynonymous SNV damaging
19 41633853 C G rs139597756 CYP2F1 exonic nonsynonymous SNV damaging
19 41699287 C T . CYP2S1 exonic nonsynonymous SNV damaging
19 41699344 C T . CYP2S1 exonic nonsynonymous SNV damaging
19 41700468 C T rs62119652 CYP2S1 exonic nonsynonymous SNV damaging
19 41704373 C T . CYP2S1 exonic nonsynonymous SNV damaging
19 41707230 C T rs145747863 CYP2S1 exonic nonsynonymous SNV damaging
19 41711887 G T rs148468532 CYP2S1 exonic nonsynonymous SNV damaging
19 41711977 C T . CYP2S1 exonic nonsynonymous SNV damaging
20 48124465 G A rs372248049 PTGIS exonic nonsynonymous SNV damaging
20 48124477 G A rs774641163 PTGIS exonic nonsynonymous SNV damaging
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20 48124489 C T rs373851981 PTGIS exonic nonsynonymous SNV damaging
20 48127583 G A rs747383414 PTGIS exonic nonsynonymous SNV damaging
20 48129759 G C rs767323052 PTGIS exonic nonsynonymous SNV damaging
20 48130913 G T . PTGIS exonic nonsynonymous SNV damaging
20 48140626 C T rs61734270 PTGIS exonic nonsynonymous SNV damaging
20 48156124 C T rs759208880 PTGIS exonic nonsynonymous SNV damaging
20 48156149 C T rs143394422 PTGIS exonic nonsynonymous SNV damaging
20 48156236 C T rs148768155 PTGIS exonic nonsynonymous SNV damaging
20 48184620 C T . PTGIS exonic nonsynonymous SNV damaging
22 42522605 G C . CYP2D6 exonic nonsynonymous SNV damaging
22 42522724 G T rs79392742 CYP2D6 exonic nonsynonymous SNV damaging
22 42522990 G A rs757030056 CYP2D6 exonic nonsynonymous SNV damaging
22 42523483 C T rs776076897 CYP2D6 exonic nonsynonymous SNV damaging
22 42523484 G A rs141739595 CYP2D6 exonic nonsynonymous SNV damaging
22 42523636 C A rs3915951 CYP2D6 exonic nonsynonymous SNV damaging
22 42524295 G A rs146819268 CYP2D6 exonic nonsynonymous SNV damaging
22 42525797 C T rs746115614 CYP2D6 exonic nonsynonymous SNV damaging
22 42525847 T G rs200229206 CYP2D6 exonic nonsynonymous SNV damaging
X 153760404 T A . G6PD exonic nonsynonymous SNV damaging
X 153762288 C G . G6PD exonic nonsynonymous SNV damaging
X 153762577 A G . G6PD exonic nonsynonymous SNV damaging
X 153762607 T A . G6PD exonic nonsynonymous SNV damaging
X 153762618 C G . G6PD exonic nonsynonymous SNV damaging
X 153762628 A C . G6PD exonic nonsynonymous SNV damaging
X 153762640 T G . G6PD exonic nonsynonymous SNV damaging
X 153762641 G A . G6PD exonic nonsynonymous SNV damaging
X 153774294 A T . G6PD exonic nonsynonymous SNV damaging

Table 6.6: Predicted damaging non-synonymous SNVs in tumor. In silico prediction was done
with the APF framework [91].

Chr Pos Ref Alt rsID Gene Region Type FunctionalPrediction
1 47283819 G A rs773003953 CYP4B1 exonic nonsynonymous SNV damaging
1 47395831 G T . CYP4A11 exonic nonsynonymous SNV damaging
1 47398439 C T rs771932669 CYP4A11 exonic nonsynonymous SNV damaging
1 47399965 T C . CYP4A11 exonic nonsynonymous SNV damaging
1 47402458 C T rs62621075 CYP4A11 exonic nonsynonymous SNV damaging
1 47403738 C G . CYP4A11 exonic nonsynonymous SNV damaging
1 47606542 C T rs780190981 CYP4A22 exonic nonsynonymous SNV damaging
1 47607785 G A rs2056900 CYP4A22 exonic nonsynonymous SNV damaging
1 47609034 T C . CYP4A22 exonic nonsynonymous SNV damaging
1 47610115 G A . CYP4A22 exonic nonsynonymous SNV damaging
1 47611765 G A rs150794228 CYP4A22 exonic nonsynonymous SNV damaging
1 47614284 G A rs554623281 CYP4A22 exonic nonsynonymous SNV damaging
1 60366644 G C . CYP2J2 exonic nonsynonymous SNV damaging
1 60370634 T C . CYP2J2 exonic nonsynonymous SNV damaging
1 60373542 C T . CYP2J2 exonic nonsynonymous SNV damaging
1 60377426 G T . CYP2J2 exonic nonsynonymous SNV damaging
1 60377849 T C . CYP2J2 exonic nonsynonymous SNV damaging
1 60381688 C T . CYP2J2 exonic nonsynonymous SNV damaging
1 97544536 C G . DPYD exonic nonsynonymous SNV damaging
1 97547984 C T rs776236081 DPYD exonic nonsynonymous SNV damaging
1 97658670 G T . DPYD exonic nonsynonymous SNV damaging
1 97658729 G T . DPYD exonic nonsynonymous SNV damaging
1 97700466 C T . DPYD exonic nonsynonymous SNV damaging
1 97700550 C T . DPYD exonic nonsynonymous SNV damaging
1 97771741 G T . DPYD exonic nonsynonymous SNV damaging
1 97847992 C T rs548783838 DPYD exonic nonsynonymous SNV damaging
1 97915679 C A . DPYD exonic nonsynonymous SNV damaging
1 97981388 G A . DPYD exonic nonsynonymous SNV damaging
1 98015180 T G . DPYD exonic nonsynonymous SNV damaging
1 98039478 G A . DPYD exonic nonsynonymous SNV damaging
1 98058866 C T . DPYD exonic nonsynonymous SNV damaging
1 98144732 A C . DPYD exonic nonsynonymous SNV damaging
1 98164985 C T . DPYD exonic nonsynonymous SNV damaging
1 98386466 G A rs772097379 DPYD exonic nonsynonymous SNV damaging
1 110230503 T C . GSTM1 exonic nonsynonymous SNV damaging
1 110230813 C T . GSTM1 exonic nonsynonymous SNV damaging
1 169484765 A G . F5 exonic nonsynonymous SNV damaging
1 169484842 A T . F5 exonic nonsynonymous SNV damaging
1 169487723 C G . F5 exonic nonsynonymous SNV damaging
1 169494143 C T . F5 exonic nonsynonymous SNV damaging
1 169497162 G A . F5 exonic nonsynonymous SNV damaging
1 169497240 C G . F5 exonic nonsynonymous SNV damaging
1 169500107 C T rs775890784 F5 exonic nonsynonymous SNV damaging
1 169505812 C A . F5 exonic nonsynonymous SNV damaging
1 169511471 T C . F5 exonic nonsynonymous SNV damaging
1 169512106 T C rs144979314 F5 exonic nonsynonymous SNV damaging
1 169512188 C G . F5 exonic nonsynonymous SNV damaging
1 169519112 C T rs6020 F5 exonic nonsynonymous SNV damaging
1 169519977 T C . F5 exonic nonsynonymous SNV damaging
1 169528433 G T . F5 exonic nonsynonymous SNV damaging
1 169528463 C T . F5 exonic nonsynonymous SNV damaging
1 169541549 C G . F5 exonic nonsynonymous SNV damaging
1 169541566 G T . F5 exonic nonsynonymous SNV damaging
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1 201016295 C T rs774256022 CACNA1S exonic nonsynonymous SNV damaging
1 201016734 C T rs533353353 CACNA1S exonic nonsynonymous SNV damaging
1 201021748 C A . CACNA1S exonic nonsynonymous SNV damaging
1 201022618 G A . CACNA1S exonic nonsynonymous SNV damaging
1 201022621 C T rs530655602 CACNA1S exonic nonsynonymous SNV damaging
1 201023649 C G . CACNA1S exonic nonsynonymous SNV damaging
1 201027563 G C . CACNA1S exonic nonsynonymous SNV damaging
1 201029910 G A . CACNA1S exonic nonsynonymous SNV damaging
1 201030485 G T . CACNA1S exonic nonsynonymous SNV damaging
1 201031162 C T rs747618077 CACNA1S exonic nonsynonymous SNV damaging
1 201036049 C T . CACNA1S exonic nonsynonymous SNV damaging
1 201036093 T G . CACNA1S exonic nonsynonymous SNV damaging
1 201036117 G C . CACNA1S exonic nonsynonymous SNV damaging
1 201046158 A G . CACNA1S exonic nonsynonymous SNV damaging
1 201047050 C T rs557195329 CACNA1S exonic nonsynonymous SNV damaging
1 201047107 C A . CACNA1S exonic nonsynonymous SNV damaging
1 201058513 C T rs35534614 CACNA1S exonic nonsynonymous SNV damaging
1 201058532 G A rs151005797 CACNA1S exonic nonsynonymous SNV damaging
1 201060852 G A . CACNA1S exonic nonsynonymous SNV damaging
2 38297923 G A . CYP1B1 exonic nonsynonymous SNV damaging
2 38298152 C A rs149049138 CYP1B1 exonic nonsynonymous SNV damaging
2 38298250 T C . CYP1B1 exonic nonsynonymous SNV damaging
2 38298332 T A . CYP1B1 exonic nonsynonymous SNV damaging
2 38298365 G C . CYP1B1 exonic nonsynonymous SNV damaging
2 38298394 C T rs79204362 CYP1B1 exonic nonsynonymous SNV damaging
2 38302075 G A rs368041729 CYP1B1 exonic nonsynonymous SNV damaging
2 234627720 C T . UGT1A4 exonic nonsynonymous SNV damaging
3 14190078 C T rs200148127 XPC exonic nonsynonymous SNV damaging
3 14206318 C T . XPC exonic nonsynonymous SNV damaging
3 14207048 C T rs778771038 XPC exonic nonsynonymous SNV damaging
3 14220055 C T . XPC exonic nonsynonymous SNV damaging
3 121616366 G A . SLC15A2 exonic nonsynonymous SNV damaging
3 121641697 G A . SLC15A2 exonic nonsynonymous SNV damaging
3 121659234 C T rs775409002 SLC15A2 exonic nonsynonymous SNV damaging
4 69416406 A C . UGT2B17 exonic nonsynonymous SNV damaging
4 69417601 G A . UGT2B17 exonic nonsynonymous SNV damaging
4 69513067 G A . UGT2B15 exonic nonsynonymous SNV damaging
4 69513067 G T . UGT2B15 exonic nonsynonymous SNV damaging
4 69533825 C T rs367595613 UGT2B15 exonic nonsynonymous SNV damaging
4 69535897 T C . UGT2B15 exonic nonsynonymous SNV damaging
4 69536234 G A rs529876617 UGT2B15 exonic nonsynonymous SNV damaging
4 69973886 C A . UGT2B7 exonic nonsynonymous SNV damaging
4 69973895 C A . UGT2B7 exonic nonsynonymous SNV damaging
4 89015796 C T . ABCG2 exonic nonsynonymous SNV damaging
4 89016739 T C rs762421964 ABCG2 exonic nonsynonymous SNV damaging
4 89020507 A C . ABCG2 exonic nonsynonymous SNV damaging
4 89039280 C A . ABCG2 exonic nonsynonymous SNV damaging
4 89052323 G T rs2231142 ABCG2 exonic nonsynonymous SNV damaging
4 89053778 C T . ABCG2 exonic nonsynonymous SNV damaging
6 160663365 A T . SLC22A2 exonic nonsynonymous SNV damaging
6 160664719 G C . SLC22A2 exonic nonsynonymous SNV damaging
6 160668320 C G . SLC22A2 exonic nonsynonymous SNV damaging
6 160670282 A C rs316019 SLC22A2 exonic nonsynonymous SNV damaging
6 160677728 A T . SLC22A2 exonic nonsynonymous SNV damaging
6 160679669 C T rs548362661 SLC22A2 exonic nonsynonymous SNV damaging
6 160679734 T C . SLC22A2 exonic nonsynonymous SNV damaging
7 1027090 C T rs759809358 CYP2W1 exonic nonsynonymous SNV damaging
7 75608886 G A . POR exonic nonsynonymous SNV damaging
7 75611546 C T . POR exonic nonsynonymous SNV damaging
7 75613105 C T . POR exonic nonsynonymous SNV damaging
7 75613154 T C . POR exonic nonsynonymous SNV damaging
7 75614167 T C . POR exonic nonsynonymous SNV damaging
7 75614484 C T rs781999828 POR exonic nonsynonymous SNV damaging
7 75614990 C T rs781994682 POR exonic nonsynonymous SNV damaging
7 75615699 A G . POR exonic nonsynonymous SNV damaging
7 87133683 G A . ABCB1 exonic nonsynonymous SNV damaging
7 87135257 G T . ABCB1 exonic nonsynonymous SNV damaging
7 87138706 C T . ABCB1 exonic nonsynonymous SNV damaging
7 87145862 G A . ABCB1 exonic nonsynonymous SNV damaging
7 87145935 T A . ABCB1 exonic nonsynonymous SNV damaging
7 87148705 C T . ABCB1 exonic nonsynonymous SNV damaging
7 87160680 C A . ABCB1 exonic nonsynonymous SNV damaging
7 87168621 C T . ABCB1 exonic nonsynonymous SNV damaging
7 87168639 C T . ABCB1 exonic nonsynonymous SNV damaging
7 87170695 G A . ABCB1 exonic nonsynonymous SNV damaging
7 87175318 A T . ABCB1 exonic nonsynonymous SNV damaging
7 87178735 G T . ABCB1 exonic nonsynonymous SNV damaging
7 87179855 G C . ABCB1 exonic nonsynonymous SNV damaging
7 87180124 T G . ABCB1 exonic nonsynonymous SNV damaging
7 87183082 G C . ABCB1 exonic nonsynonymous SNV damaging
7 87190630 G C . ABCB1 exonic nonsynonymous SNV damaging
7 87214897 C G . ABCB1 exonic nonsynonymous SNV damaging
7 87214992 C T rs199551851 ABCB1 exonic nonsynonymous SNV damaging
7 99361560 G A rs770129614 CYP3A4 exonic nonsynonymous SNV damaging
7 99381677 C T . CYP3A4 exonic nonsynonymous SNV damaging
7 99434157 G T . CYP3A43 exonic nonsynonymous SNV damaging
7 99447233 C G . CYP3A43 exonic nonsynonymous SNV damaging
7 99461219 G A rs145743239 CYP3A43 exonic nonsynonymous SNV damaging
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7 117149147 G A rs1800076 CFTR exonic nonsynonymous SNV damaging
7 117171037 G A rs201958172 CFTR exonic nonsynonymous SNV damaging
7 117174373 G C . CFTR exonic nonsynonymous SNV damaging
7 117175333 C T . CFTR exonic nonsynonymous SNV damaging
7 117180180 C T . CFTR exonic nonsynonymous SNV damaging
7 117180297 C T rs77409459 CFTR exonic nonsynonymous SNV damaging
7 117180323 C T rs397508147 CFTR exonic nonsynonymous SNV damaging
7 117180347 C T rs144720913 CFTR exonic nonsynonymous SNV damaging
7 117182148 G T . CFTR exonic nonsynonymous SNV damaging
7 117182155 G T rs397508174 CFTR exonic nonsynonymous SNV damaging
7 117188801 C T . CFTR exonic nonsynonymous SNV damaging
7 117199651 G A . CFTR exonic nonsynonymous SNV damaging
7 117199683 G A rs77646904 CFTR exonic nonsynonymous SNV damaging
7 117199688 C G rs140552874 CFTR exonic nonsynonymous SNV damaging
7 117227878 C T . CFTR exonic nonsynonymous SNV damaging
7 117232158 G A . CFTR exonic nonsynonymous SNV damaging
7 117232223 C T rs1800100 CFTR exonic nonsynonymous SNV damaging
7 117232347 G A rs397508342 CFTR exonic nonsynonymous SNV damaging
7 117232427 C A . CFTR exonic nonsynonymous SNV damaging
7 117232611 C A . CFTR exonic nonsynonymous SNV damaging
7 117242881 T C . CFTR exonic nonsynonymous SNV damaging
7 117246769 G A rs764644021 CFTR exonic nonsynonymous SNV damaging
7 117251646 A G rs374403559 CFTR exonic nonsynonymous SNV damaging
7 117282492 G T . CFTR exonic nonsynonymous SNV damaging
7 117282508 G A . CFTR exonic nonsynonymous SNV damaging
7 117304776 G T . CFTR exonic nonsynonymous SNV damaging
7 117304781 C A . CFTR exonic nonsynonymous SNV damaging
7 117307043 A T . CFTR exonic nonsynonymous SNV damaging
7 139611094 A T . TBXAS1 exonic nonsynonymous SNV damaging
7 139653218 C T rs373695119 TBXAS1 exonic nonsynonymous SNV damaging
7 139717481 G A rs756633372 TBXAS1 exonic nonsynonymous SNV damaging
8 18079663 C T . NAT1 exonic nonsynonymous SNV damaging
8 18079929 T G . NAT1 exonic nonsynonymous SNV damaging
10 94834659 G A . CYP26A1 exonic nonsynonymous SNV damaging
10 94835050 C T . CYP26A1 exonic nonsynonymous SNV damaging
10 94836729 A T . CYP26A1 exonic nonsynonymous SNV damaging
10 94836903 G A . CYP26A1 exonic nonsynonymous SNV damaging
10 96534947 C T . CYP2C19 exonic nonsynonymous SNV damaging
10 96541686 C T . CYP2C19 exonic nonsynonymous SNV damaging
10 96580341 G T . CYP2C19 exonic nonsynonymous SNV damaging
10 96580341 G A . CYP2C19 exonic nonsynonymous SNV damaging
10 96602689 C T . CYP2C19 exonic nonsynonymous SNV damaging
10 96698527 C T . CYP2C9 exonic nonsynonymous SNV damaging
10 96708970 G A . CYP2C9 exonic nonsynonymous SNV damaging
10 96731954 A G . CYP2C9 exonic nonsynonymous SNV damaging
10 96741123 C T rs767815842 CYP2C9 exonic nonsynonymous SNV damaging
10 96745901 A G . CYP2C9 exonic nonsynonymous SNV damaging
10 96748604 G A . CYP2C9 exonic nonsynonymous SNV damaging
10 96797060 C T rs748167187 CYP2C8 exonic nonsynonymous SNV damaging
10 96798659 G A . CYP2C8 exonic nonsynonymous SNV damaging
10 96798774 G C rs74454169 CYP2C8 exonic nonsynonymous SNV damaging
10 96805672 T A . CYP2C8 exonic nonsynonymous SNV damaging
10 96824696 A T . CYP2C8 exonic nonsynonymous SNV damaging
10 96827038 C A . CYP2C8 exonic nonsynonymous SNV damaging
10 96829041 C T . CYP2C8 exonic nonsynonymous SNV damaging
10 104591315 G A . CYP17A1 exonic nonsynonymous SNV damaging
10 104592323 G A rs104894142 CYP17A1 exonic nonsynonymous SNV damaging
10 104594546 A G . CYP17A1 exonic nonsynonymous SNV damaging
10 135342087 A G . CYP2E1 exonic nonsynonymous SNV damaging
10 135345664 C T rs548262477 CYP2E1 exonic nonsynonymous SNV damaging
10 135350675 G A rs745528149 CYP2E1 exonic nonsynonymous SNV damaging
10 135352430 C T . CYP2E1 exonic nonsynonymous SNV damaging
11 14900665 G A . CYP2R1 exonic nonsynonymous SNV damaging
11 67353646 G T . GSTP1 exonic nonsynonymous SNV damaging
11 74876847 T G . SLCO2B1 exonic nonsynonymous SNV damaging
11 74876893 G A rs764735701 SLCO2B1 exonic nonsynonymous SNV damaging
11 74876908 G A rs763847000 SLCO2B1 exonic nonsynonymous SNV damaging
11 74880370 G A rs35199625 SLCO2B1 exonic nonsynonymous SNV damaging
11 74880729 C G . SLCO2B1 exonic nonsynonymous SNV damaging
11 74880749 G A . SLCO2B1 exonic nonsynonymous SNV damaging
11 74904463 G A rs757854988 SLCO2B1 exonic nonsynonymous SNV damaging
11 74907630 C A . SLCO2B1 exonic nonsynonymous SNV damaging
11 74915588 C T rs144746239 SLCO2B1 exonic nonsynonymous SNV damaging
11 74915590 G T . SLCO2B1 exonic nonsynonymous SNV damaging
12 21325589 C G . SLCO1B1 exonic nonsynonymous SNV damaging
12 21327634 T C . SLCO1B1 exonic nonsynonymous SNV damaging
12 21331882 G T . SLCO1B1 exonic nonsynonymous SNV damaging
12 21349974 A G rs192911820 SLCO1B1 exonic nonsynonymous SNV damaging
12 21353467 C G . SLCO1B1 exonic nonsynonymous SNV damaging
12 21358894 G A . SLCO1B1 exonic nonsynonymous SNV damaging
12 21370053 G A . SLCO1B1 exonic nonsynonymous SNV damaging
12 21370068 A T . SLCO1B1 exonic nonsynonymous SNV damaging
13 48615244 A G . NUDT15 exonic nonsynonymous SNV damaging
15 51503190 C T rs201638381 CYP19A1 exonic nonsynonymous SNV damaging
15 51504584 C A . CYP19A1 exonic nonsynonymous SNV damaging
15 51504711 C T . CYP19A1 exonic nonsynonymous SNV damaging
15 51507327 G A . CYP19A1 exonic nonsynonymous SNV damaging
15 51520051 C T rs745845217 CYP19A1 exonic nonsynonymous SNV damaging
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15 51529063 T A . CYP19A1 exonic nonsynonymous SNV damaging
15 51529141 C G . CYP19A1 exonic nonsynonymous SNV damaging
15 75014889 A G . CYP1A1 exonic nonsynonymous SNV damaging
15 75015204 C T . CYP1A1 exonic nonsynonymous SNV damaging
15 75015395 G T . CYP1A1 exonic nonsynonymous SNV damaging
15 75042329 C T . CYP1A2 exonic nonsynonymous SNV damaging
15 75042771 C T . CYP1A2 exonic nonsynonymous SNV damaging
15 75042776 G A rs201537008 CYP1A2 exonic nonsynonymous SNV damaging
15 75042820 C A rs542879792 CYP1A2 exonic nonsynonymous SNV damaging
15 75045550 G A . CYP1A2 exonic nonsynonymous SNV damaging
15 75047279 G C rs763859277 CYP1A2 exonic nonsynonymous SNV damaging
19 15989736 C T rs146148233 CYP4F2 exonic nonsynonymous SNV damaging
19 15990211 C T rs764508037 CYP4F2 exonic nonsynonymous SNV damaging
19 15990222 C T rs138971789 CYP4F2 exonic nonsynonymous SNV damaging
19 15990451 C A . CYP4F2 exonic nonsynonymous SNV damaging
19 15996785 C A . CYP4F2 exonic nonsynonymous SNV damaging
19 15996840 G A . CYP4F2 exonic nonsynonymous SNV damaging
19 16001215 C A rs3093153 CYP4F2 exonic nonsynonymous SNV damaging
19 16006346 C T rs372270252 CYP4F2 exonic nonsynonymous SNV damaging
19 16006348 G A . CYP4F2 exonic nonsynonymous SNV damaging
19 38931388 G A rs755878800 RYR1 exonic nonsynonymous SNV damaging
19 38931457 G A . RYR1 exonic nonsynonymous SNV damaging
19 38934430 G A rs142474192 RYR1 exonic nonsynonymous SNV damaging
19 38935236 G A rs766256366 RYR1 exonic nonsynonymous SNV damaging
19 38939322 G A . RYR1 exonic nonsynonymous SNV damaging
19 38946139 A T . RYR1 exonic nonsynonymous SNV damaging
19 38946372 A G . RYR1 exonic nonsynonymous SNV damaging
19 38948796 G T . RYR1 exonic nonsynonymous SNV damaging
19 38948884 G A rs376526576 RYR1 exonic nonsynonymous SNV damaging
19 38949807 C A . RYR1 exonic nonsynonymous SNV damaging
19 38949827 C A . RYR1 exonic nonsynonymous SNV damaging
19 38951043 G A . RYR1 exonic nonsynonymous SNV damaging
19 38951097 C T . RYR1 exonic nonsynonymous SNV damaging
19 38951143 G A rs777191617 RYR1 exonic nonsynonymous SNV damaging
19 38954096 G A rs267605463 RYR1 exonic nonsynonymous SNV damaging
19 38955331 G A . RYR1 exonic nonsynonymous SNV damaging
19 38956903 C T rs139006437 RYR1 exonic nonsynonymous SNV damaging
19 38956949 C A . RYR1 exonic nonsynonymous SNV damaging
19 38958302 G C . RYR1 exonic nonsynonymous SNV damaging
19 38958345 G C . RYR1 exonic nonsynonymous SNV damaging
19 38959663 G A . RYR1 exonic nonsynonymous SNV damaging
19 38959954 C T . RYR1 exonic nonsynonymous SNV damaging
19 38960007 G A rs760235443 RYR1 exonic nonsynonymous SNV damaging
19 38964255 G A rs750256869 RYR1 exonic nonsynonymous SNV damaging
19 38964278 G A . RYR1 exonic nonsynonymous SNV damaging
19 38966023 G A . RYR1 exonic nonsynonymous SNV damaging
19 38966089 C T rs191656849 RYR1 exonic nonsynonymous SNV damaging
19 38969105 G T . RYR1 exonic nonsynonymous SNV damaging
19 38976313 G A . RYR1 exonic nonsynonymous SNV damaging
19 38976331 G A rs146504767 RYR1 exonic nonsynonymous SNV damaging
19 38976415 G A rs371566475 RYR1 exonic nonsynonymous SNV damaging
19 38976498 G A . RYR1 exonic nonsynonymous SNV damaging
19 38976585 G A . RYR1 exonic nonsynonymous SNV damaging
19 38976649 C T . RYR1 exonic nonsynonymous SNV damaging
19 38976654 C T . RYR1 exonic nonsynonymous SNV damaging
19 38976759 G A . RYR1 exonic nonsynonymous SNV damaging
19 38979883 A C . RYR1 exonic nonsynonymous SNV damaging
19 38985124 G A rs530885842 RYR1 exonic nonsynonymous SNV damaging
19 38986931 G C . RYR1 exonic nonsynonymous SNV damaging
19 38987107 G A rs773947484 RYR1 exonic nonsynonymous SNV damaging
19 38989854 A G . RYR1 exonic nonsynonymous SNV damaging
19 38990452 G A . RYR1 exonic nonsynonymous SNV damaging
19 38990457 G A rs111364296 RYR1 exonic nonsynonymous SNV damaging
19 38991285 G A rs765019465 RYR1 exonic nonsynonymous SNV damaging
19 38991494 C T . RYR1 exonic nonsynonymous SNV damaging
19 38991613 G T . RYR1 exonic nonsynonymous SNV damaging
19 38991616 G A . RYR1 exonic nonsynonymous SNV damaging
19 38993204 G A rs771523641 RYR1 exonic nonsynonymous SNV damaging
19 38993271 A G . RYR1 exonic nonsynonymous SNV damaging
19 38993295 G A rs753507343 RYR1 exonic nonsynonymous SNV damaging
19 38994881 C T . RYR1 exonic nonsynonymous SNV damaging
19 38997544 C T . RYR1 exonic nonsynonymous SNV damaging
19 38998429 G A . RYR1 exonic nonsynonymous SNV damaging
19 39001201 C G rs374272827 RYR1 exonic nonsynonymous SNV damaging
19 39002229 C T rs761187396 RYR1 exonic nonsynonymous SNV damaging
19 39002998 C G . RYR1 exonic nonsynonymous SNV damaging
19 39003006 C T rs61739911 RYR1 exonic nonsynonymous SNV damaging
19 39006806 G A rs185371036 RYR1 exonic nonsynonymous SNV damaging
19 39008241 G C . RYR1 exonic nonsynonymous SNV damaging
19 39015975 G A rs371645169 RYR1 exonic nonsynonymous SNV damaging
19 39016131 C T rs759605800 RYR1 exonic nonsynonymous SNV damaging
19 39016132 G A rs143987857 RYR1 exonic nonsynonymous SNV damaging
19 39017669 A G . RYR1 exonic nonsynonymous SNV damaging
19 39018300 C T . RYR1 exonic nonsynonymous SNV damaging
19 39019292 C T . RYR1 exonic nonsynonymous SNV damaging
19 39019295 A G . RYR1 exonic nonsynonymous SNV damaging
19 39025961 G T . RYR1 exonic nonsynonymous SNV damaging
19 39034427 A G . RYR1 exonic nonsynonymous SNV damaging
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19 39034489 G A . RYR1 exonic nonsynonymous SNV damaging
19 39034492 C G . RYR1 exonic nonsynonymous SNV damaging
19 39051943 G A . RYR1 exonic nonsynonymous SNV damaging
19 39052011 G A . RYR1 exonic nonsynonymous SNV damaging
19 39071088 T C . RYR1 exonic nonsynonymous SNV damaging
19 39075640 A G . RYR1 exonic nonsynonymous SNV damaging
19 39075715 G T rs193922892 RYR1 exonic nonsynonymous SNV damaging
19 39075728 C T rs546322293 RYR1 exonic nonsynonymous SNV damaging
19 41349877 G A . CYP2A6 exonic nonsynonymous SNV damaging
19 41351864 C T . CYP2A6 exonic nonsynonymous SNV damaging
19 41351933 C T rs771319834 CYP2A6 exonic nonsynonymous SNV damaging
19 41351950 G A . CYP2A6 exonic nonsynonymous SNV damaging
19 41351981 C T . CYP2A6 exonic nonsynonymous SNV damaging
19 41356267 G C . CYP2A6 exonic nonsynonymous SNV damaging
19 41497314 G A rs781365650 CYP2B6 exonic nonsynonymous SNV damaging
19 41509972 G A . CYP2B6 exonic nonsynonymous SNV damaging
19 41510301 G A rs139173201 CYP2B6 exonic nonsynonymous SNV damaging
19 41518385 C T . CYP2B6 exonic nonsynonymous SNV damaging
19 41594853 C T . CYP2A13 exonic nonsynonymous SNV damaging
19 41594951 G T . CYP2A13 exonic nonsynonymous SNV damaging
19 41596420 T C . CYP2A13 exonic nonsynonymous SNV damaging
19 41597670 C A . CYP2A13 exonic nonsynonymous SNV damaging
19 41600230 A G . CYP2A13 exonic nonsynonymous SNV damaging
19 41601727 A G rs762462392 CYP2A13 exonic nonsynonymous SNV damaging
19 41622188 C T rs200700685 CYP2F1 exonic nonsynonymous SNV damaging
19 41626317 A T . CYP2F1 exonic nonsynonymous SNV damaging
19 41627414 T C . CYP2F1 exonic nonsynonymous SNV damaging
19 41630764 C T . CYP2F1 exonic nonsynonymous SNV damaging
19 41631519 C A . CYP2F1 exonic nonsynonymous SNV damaging
19 41709525 G T . CYP2S1 exonic nonsynonymous SNV damaging
19 41711916 C G . CYP2S1 exonic nonsynonymous SNV damaging
20 48127625 G C . PTGIS exonic nonsynonymous SNV damaging
20 48127647 G A rs377540375 PTGIS exonic nonsynonymous SNV damaging
20 48156118 G A . PTGIS exonic nonsynonymous SNV damaging
20 48156125 G T . PTGIS exonic nonsynonymous SNV damaging
20 48164460 A G . PTGIS exonic nonsynonymous SNV damaging
20 48166656 C T . PTGIS exonic nonsynonymous SNV damaging
20 48166689 G A . PTGIS exonic nonsynonymous SNV damaging
22 42522927 C T rs574629217 CYP2D6 exonic nonsynonymous SNV damaging
22 42523636 C A rs3915951 CYP2D6 exonic nonsynonymous SNV damaging
X 153760303 C T . G6PD exonic nonsynonymous SNV damaging
X 153760885 T G . G6PD exonic nonsynonymous SNV damaging
X 153761819 G A . G6PD exonic nonsynonymous SNV damaging
X 153763477 C T . G6PD exonic nonsynonymous SNV damaging
X 153775028 C T . G6PD exonic nonsynonymous SNV damaging

Table 6.7: Top 200 significant CpGs from correlation analysis of methylation and expression.

Gene CpG Region Cancer Entity Correlation Direction Adjusted P Value
GSTP1 cg11566244 intragenic Neuroendocrine and Adrenal -0.6863 neg 1.23E-37
GSTP1 cg09038676 intragenic Neuroendocrine and Adrenal -0.6647 neg 1.55E-34
PTGIS cg08788055 intragenic STS: other -0.5364 neg 8.25E-33
GSTP1 cg06928838 intragenic Neuroendocrine and Adrenal -0.6454 neg 5.05E-32
GSTP1 cg07493922 intragenic Melanoma -0.8213 neg 2.10E-31
GSTP1 cg07493922 intragenic Other -0.6397 neg 3.45E-28
ABCB1 cg00862116 intragenic Neuroendocrine and Adrenal -0.5948 neg 8.87E-26
GSTP1 cg22224704 intragenic Neuroendocrine and Adrenal -0.5938 neg 1.02E-25
TPMT cg16056511 intragenic STS: other -0.4834 neg 1.06E-25
PTGIS cg06357305 intragenic STS: other -0.4701 neg 4.51E-24
DPYD cg16511333 intragenic STS: other 0.4699 pos 4.51E-24
GSTP1 cg26250609 intragenic Neuroendocrine and Adrenal -0.5766 neg 5.98E-24
DPYD cg00080253 intragenic STS: other 0.4679 pos 7.82E-24
SULT1A1 cg01332815 intragenic Melanoma -0.754 neg 1.99E-23
TBXAS1 cg12104698 intragenic Other -0.5916 neg 4.31E-23
POR cg02138834 intragenic Neuroendocrine and Adrenal -0.5658 neg 6.63E-23
ABCB1 cg24138422 intragenic Neuroendocrine and Adrenal 0.5628 pos 1.30E-22
POR cg02727959 intragenic Neuroendocrine and Adrenal -0.5625 neg 1.32E-22
DPYD cg25969802 intragenic STS: other 0.4551 pos 1.70E-22
CYP2S1 cg05312704 intragenic Other 0.5827 pos 2.62E-22
TBXAS1 cg12104698 intragenic STS: other -0.4486 neg 8.94E-22
POR cg20220522 intragenic Neuroendocrine and Adrenal -0.5534 neg 9.34E-22
POR cg02742533 intragenic Neuroendocrine and Adrenal -0.5527 neg 1.04E-21
PTGIS cg06357305 intragenic Leiomyosarcoma -0.6676 neg 2.42E-21
ABCB1 cg07469128 intragenic Neuroendocrine and Adrenal 0.545 pos 5.61E-21
PTGIS cg08788055 intragenic Leiomyosarcoma -0.6624 neg 6.78E-21
POR cg18630265 intragenic Neuroendocrine and Adrenal -0.543 neg 8.28E-21
ABCG2 cg23706819 intragenic STS: other -0.4345 neg 2.68E-20
DPYD cg10890168 intragenic STS: other 0.4341 pos 2.90E-20
CYP2J2 cg02089480 intragenic STS: other 0.4331 pos 3.59E-20
ABCB1 cg26551025 intragenic Neuroendocrine and Adrenal 0.5322 pos 7.83E-20
DPYD cg17752576 intragenic STS: other 0.4295 pos 8.37E-20
POR cg16182457 intragenic Neuroendocrine and Adrenal -0.5311 neg 9.44E-20
DPYD cg11226378 intragenic STS: other 0.4263 pos 1.78E-19
ABCB1 cg05496710 intragenic Neuroendocrine and Adrenal 0.5278 pos 1.81E-19
GSTP1 cg04920951 intragenic Neuroendocrine and Adrenal -0.5273 neg 1.97E-19
NAT1 cg22116708 intragenic Other -0.5493 neg 2.29E-19
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PTGIS cg09062977 intragenic STS: other 0.419 pos 9.46E-19
CYP3A5 cg05867406 intragenic Neuroendocrine and Adrenal -0.518 neg 1.29E-18
ABCB1 cg22899422 intragenic Neuroendocrine and Adrenal 0.5176 pos 1.37E-18
NAT1 cg18509990 intragenic STS: other 0.4171 pos 1.39E-18
ABCB1 cg00001224 intragenic Neuroendocrine and Adrenal 0.5172 pos 1.42E-18
GSTP1 cg22224704 intragenic Melanoma -0.6958 neg 1.44E-18
POR cg21748691 intragenic Neuroendocrine and Adrenal -0.5167 neg 1.49E-18
CYP2E1 cg05417377 intragenic STS: other 0.4146 pos 2.31E-18
DPYD cg11055641 intragenic Other 0.5339 pos 4.26E-18
GSTP1 cg07493922 intragenic STS: other -0.4118 neg 4.29E-18
CYP2C9 cg23202385 intragenic Neuroendocrine and Adrenal 0.5107 pos 4.73E-18
GSTP1 cg22224704 intragenic Hepatopancreaticobiliary -0.6605 neg 7.39E-18
DPYD cg08024495 intragenic STS: other 0.4081 pos 9.73E-18
POR cg15177211 intragenic Neuroendocrine and Adrenal -0.5065 neg 1.04E-17
POR cg27342333 intragenic Neuroendocrine and Adrenal -0.506 neg 1.11E-17
DPYD cg00080253 intragenic Other 0.5271 pos 1.38E-17
GSTP1 cg07493922 intragenic Hepatopancreaticobiliary -0.6559 neg 1.53E-17
NAT1 cg22116708 intragenic STS: other -0.4055 neg 1.63E-17
CYP4B1 cg14222679 intragenic STS: other 0.405 pos 1.79E-17
RYR1 cg01781084 intragenic Neuroendocrine and Adrenal 0.5031 pos 1.82E-17
SULT1A1 cg14944435 intragenic Melanoma -0.6796 neg 1.95E-17
ABCB1 cg07479137 intragenic Neuroendocrine and Adrenal 0.5022 pos 2.10E-17
RYR1 cg20880196 intragenic Neuroendocrine and Adrenal 0.4982 pos 4.53E-17
NAT1 cg21172319 intragenic Other -0.5196 neg 5.02E-17
CYP2D6 cg12720083 intragenic Neuroendocrine and Adrenal -0.4975 neg 5.02E-17
CYP2W1 cg03322234 promoter Colorectal -0.6586 neg 8.15E-17
RYR1 cg08761223 intragenic STS: other 0.3974 pos 9.00E-17
UGT1A1 cg23714547 intragenic Neuroendocrine and Adrenal -0.3601 neg 1.03E-16
UGT1A4 cg23714547 intragenic Neuroendocrine and Adrenal -0.3601 neg 1.03E-16
ABCB1 cg27507700 intragenic Neuroendocrine and Adrenal -0.4932 neg 1.06E-16
ABCB1 cg00373554 intragenic Neuroendocrine and Adrenal 0.4931 pos 1.06E-16
DPYD cg16320208 intragenic Other 0.5146 pos 1.16E-16
GSTP1 cg07493922 intragenic Neuroendocrine and Adrenal -0.492 neg 1.27E-16
NAT1 cg21172319 intragenic STS: other -0.3946 neg 1.51E-16
F5 cg12674918 promoter Neuroendocrine and Adrenal -0.4898 neg 1.88E-16
CYP4B1 cg00503298 intragenic STS: other 0.3933 pos 1.97E-16
ABCB1 cg24138422 intragenic STS: other 0.3932 pos 1.99E-16
GSTP1 cg22224704 intragenic STS: other -0.393 neg 2.04E-16
DPYD cg17140186 intragenic STS: other 0.3906 pos 3.48E-16
F5 cg25256723 promoter Neuroendocrine and Adrenal -0.4843 neg 4.95E-16
SULT1A1 cg01332815 intragenic Neuroendocrine and Adrenal -0.483 neg 6.27E-16
CYP2S1 cg23532138 intragenic STS: other 0.3871 pos 7.24E-16
SULT1A1 cg22042399 intragenic Melanoma -0.6558 neg 7.47E-16
GSTP1 cg07493922 intragenic Unknown -0.7441 neg 1.42E-15
DPYD cg25633983 intragenic STS: other 0.3894 pos 1.71E-15
CYP2C8 cg04164578 intragenic STS: other 0.3828 pos 1.73E-15
PTGIS cg08788055 intragenic Melanoma -0.6496 neg 1.88E-15
SULT1A1 cg14944435 intragenic STS: other -0.3801 neg 2.99E-15
POR cg05153729 intragenic Neuroendocrine and Adrenal -0.4733 neg 3.30E-15
DPYD cg00260775 intragenic STS: other 0.3786 pos 4.02E-15
UGT2B7 cg10961486 intragenic Neuroendocrine and Adrenal 0.4712 pos 4.70E-15
PTGIS cg25962137 intragenic STS: other 0.3776 pos 4.86E-15
SLCO2B1 cg18589858 intragenic STS: other -0.3773 neg 5.21E-15
POR cg14500655 intragenic Neuroendocrine and Adrenal -0.469 neg 6.69E-15
GSTP1 cg22224704 intragenic Other -0.4902 neg 6.76E-15
TBXAS1 cg06239618 intragenic Other 0.4896 pos 7.38E-15
POR cg08262464 intragenic Neuroendocrine and Adrenal -0.4674 neg 8.58E-15
ABCB1 cg22403253 intragenic Neuroendocrine and Adrenal 0.4672 pos 8.83E-15
ABCB1 cg06977014 intragenic Neuroendocrine and Adrenal 0.4665 pos 9.94E-15
RYR1 cg06891424 intragenic STS: other 0.3726 pos 1.29E-14
ABCB1 cg07611207 intragenic Neuroendocrine and Adrenal 0.4646 pos 1.35E-14
CYP2W1 cg23332328 intragenic Neuroendocrine and Adrenal -0.4638 neg 1.54E-14
DPYD cg25969802 intragenic Other 0.4856 pos 1.55E-14
DPYD cg16511333 intragenic Other 0.4832 pos 2.02E-14
TBXAS1 cg12104698 intragenic Melanoma -0.6316 neg 2.34E-14
SLCO2B1 cg23577865 intragenic Neuroendocrine and Adrenal -0.4592 neg 3.27E-14
DPYD cg25633983 intragenic Colorectal 0.6214 pos 3.65E-14
UGT1A1 cg00764099 intragenic Neuroendocrine and Adrenal 0.3328 pos 3.74E-14
UGT1A4 cg00764099 intragenic Neuroendocrine and Adrenal 0.3328 pos 3.74E-14
SULT1A1 cg22375718 intragenic STS: other 0.3665 pos 4.04E-14
CYP4B1 cg19092343 intragenic STS: other 0.3665 pos 4.04E-14
RYR1 cg24830036 intragenic Neuroendocrine and Adrenal 0.4576 pos 4.08E-14
DPYD cg17752576 intragenic Other 0.4777 pos 4.62E-14
CYP2C9 cg14191040 intragenic Neuroendocrine and Adrenal 0.4567 pos 4.64E-14
POR cg16684958 intragenic Neuroendocrine and Adrenal -0.4555 neg 5.66E-14
ABCB1 cg19199866 intragenic Neuroendocrine and Adrenal 0.4555 pos 5.66E-14
F5 cg09891761 intragenic Neuroendocrine and Adrenal -0.4549 neg 6.13E-14
DPYD cg07313437 intragenic STS: other 0.3632 pos 7.38E-14
ABCB1 cg07469128 intragenic STS: other 0.3635 pos 7.46E-14
CYP2A13 cg11988807 intragenic Other 0.4743 pos 7.52E-14
RYR1 cg22393277 intragenic Neuroendocrine and Adrenal 0.4529 pos 8.38E-14
TBXAS1 cg06239618 intragenic STS: other 0.3622 pos 8.67E-14
DPYD cg08024495 intragenic Other 0.4721 pos 1.06E-13
DPYD cg07717191 intragenic Colorectal 0.6078 pos 1.06E-13
CYP2C8 cg12759420 intragenic STS: other 0.361 pos 1.08E-13
RYR1 cg13982590 intragenic STS: other 0.3605 pos 1.19E-13
DPYD cg11227979 intragenic STS: other 0.361 pos 1.23E-13
PTGIS cg08788055 intragenic Other -0.4707 neg 1.28E-13
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RYR1 cg01781084 intragenic STS: other 0.3598 pos 1.31E-13
RYR1 cg20880196 intragenic STS: other 0.3597 pos 1.34E-13
RYR1 cg01781084 intragenic Other 0.4702 pos 1.34E-13
GSTP1 cg11566244 intragenic Melanoma -0.6175 neg 1.35E-13
ABCB1 cg14319793 intragenic Neuroendocrine and Adrenal 0.4484 pos 1.61E-13
ABCB1 cg02364454 intragenic Neuroendocrine and Adrenal 0.4478 pos 1.75E-13
DPYD cg10890168 intragenic Other 0.4684 pos 1.75E-13
CYP2W1 cg22025233 intragenic Colorectal -0.6035 neg 1.75E-13
GSTP1 cg11566244 intragenic STS: other -0.3575 neg 1.98E-13
CACNA1S cg00095526 intragenic STS: other -0.3574 neg 1.99E-13
ABCB1 cg25438493 intragenic Neuroendocrine and Adrenal -0.4461 neg 2.25E-13
GSTP1 cg11566244 intragenic Hepatopancreaticobiliary -0.5883 neg 2.35E-13
SULT1A1 cg01332815 intragenic STS: other -0.3559 neg 2.62E-13
ABCB1 cg13287933 intragenic Neuroendocrine and Adrenal 0.445 pos 2.62E-13
UGT1A1 cg01478198 intragenic Other -0.3382 neg 2.63E-13
UGT1A4 cg01478198 intragenic Other -0.3382 neg 2.63E-13
CYP4F2 cg01231180 intragenic Neuroendocrine and Adrenal 0.4449 pos 2.63E-13
DPYD cg02805559 intragenic STS: other 0.3552 pos 2.87E-13
DPYD cg24960006 intragenic Colorectal 0.5991 pos 2.96E-13
DPYD cg08024495 intragenic Colorectal 0.5987 pos 3.10E-13
NAT1 cg20726908 intragenic STS: other 0.3544 pos 3.29E-13
CYP2W1 cg15914863 promoter Colorectal -0.5979 neg 3.39E-13
DPYD cg24960006 intragenic STS: other 0.3541 pos 3.48E-13
ABCB1 cg00141548 intragenic Neuroendocrine and Adrenal -0.4427 neg 3.55E-13
COMT cg08825848 intragenic Neuroendocrine and Adrenal -0.4418 neg 4.09E-13
PTGIS cg08788055 intragenic Breast -0.6635 neg 4.33E-13
SULT1A1 cg14944435 intragenic Hepatopancreaticobiliary -0.5825 neg 4.66E-13
CYP2E1 cg16538390 intragenic STS: other 0.3523 pos 4.74E-13
CYP2J2 cg11540204 intragenic Colorectal -0.595 neg 4.77E-13
DPYD cg11226378 intragenic Colorectal 0.5938 pos 5.63E-13
CYP2D6 cg12720083 intragenic Hepatopancreaticobiliary -0.5793 neg 7.01E-13
CYP2W1 cg08911208 intragenic Neuroendocrine and Adrenal -0.4379 neg 7.38E-13
RYR1 cg18684755 intragenic Other 0.4577 pos 7.80E-13
POR cg22567591 intragenic Neuroendocrine and Adrenal -0.4372 neg 8.15E-13
TBXAS1 cg05711445 intragenic Other -0.4572 neg 8.30E-13
COMT cg08730070 intragenic Melanoma -0.6019 neg 8.87E-13
DPYD cg16320208 intragenic STS: other 0.3485 pos 9.24E-13
POR cg03135313 intragenic Neuroendocrine and Adrenal -0.4359 neg 9.69E-13
CYP2S1 cg05312704 intragenic STS: other 0.3479 pos 1.03E-12
NAT1 cg07470176 intragenic STS: other 0.3473 pos 1.16E-12
COMT cg16834011 intragenic Neuroendocrine and Adrenal -0.4344 neg 1.21E-12
CYP2E1 cg13092589 intragenic STS: other 0.3469 pos 1.21E-12
DPYD cg11055641 intragenic STS: other 0.3465 pos 1.32E-12
DPYD cg07313437 intragenic Other 0.4539 pos 1.32E-12
SULT1A1 cg14944435 intragenic Neuroendocrine and Adrenal -0.432 neg 1.73E-12
NAT1 cg17579232 intragenic Other -0.4518 neg 1.79E-12
DPYD cg13959721 intragenic Melanoma 0.5953 pos 1.96E-12
PTGIS cg01346423 intragenic Hepatopancreaticobiliary 0.5704 pos 2.04E-12
SULT1A1 cg02266268 intragenic STS: other 0.3439 pos 2.21E-12
GSTP1 cg07493922 intragenic Urologic -0.5973 neg 2.32E-12
RYR1 cg02226644 intragenic Other 0.4498 pos 2.32E-12
COMT cg10122187 intragenic Melanoma -0.5937 neg 2.34E-12
CYP2W1 cg07131210 intragenic Neuroendocrine and Adrenal -0.4297 neg 2.35E-12
ABCB1 cg05496710 intragenic STS: other 0.343 pos 2.37E-12
NAT2 cg17522953 intragenic STS: other 0.3422 pos 2.77E-12
CFTR cg26635219 intragenic Colorectal -0.5794 neg 3.14E-12
RYR1 cg22393277 intragenic STS: other 0.3414 pos 3.16E-12
ABCB1 cg00001224 intragenic STS: other 0.3412 pos 3.25E-12
DPYD cg14072140 intragenic Colorectal 0.5789 pos 3.30E-12
ABCB1 cg09105881 intragenic Neuroendocrine and Adrenal -0.4269 neg 3.52E-12
CYP2A13 cg04017324 promoter Other 0.4462 pos 3.76E-12
PTGIS cg09062977 intragenic Other 0.4461 pos 3.84E-12
DPYD cg01750053 intragenic Other 0.4455 pos 4.18E-12
DPYD cg10890168 intragenic Colorectal 0.5768 pos 4.20E-12
NAT1 cg15138846 intragenic Other -0.4446 neg 4.69E-12
DPYD cg25633983 intragenic Other 0.4491 pos 5.32E-12
GSTP1 cg22224704 intragenic Urologic -0.5895 neg 5.60E-12
CYP2W1 cg04141948 intragenic Colorectal -0.5743 neg 5.60E-12
DPYD cg16511333 intragenic Colorectal 0.5733 pos 6.32E-12
DPYD cg11226378 intragenic Other 0.4422 pos 6.49E-12
DPYD cg17140186 intragenic Other 0.4421 pos 6.55E-12
SLCO2B1 cg05706446 intragenic STS: other -0.3362 neg 7.52E-12
UGT2B15 cg01714676 intragenic Neuroendocrine and Adrenal 0.4214 pos 7.52E-12
ABCB1 cg07872519 promoter Neuroendocrine and Adrenal 0.4219 pos 7.71E-12
TBXAS1 cg06365890 intragenic Other -0.4401 neg 8.66E-12
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