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Advancing Sodium Multi-Quantum Coherences MRI on

Clinical Scanners

In recent years, sodium (23Na) Magnetic Resonance Imaging (MRI) has gained in-
creased attention, particularly with the development of ultra-high field >= 7 T MRI.
It provides non-invasive physiological information related to the cell’s vitality, mak-
ing it an exciting tool for medical research. 23Na MRI provides a non-invasive quan-
titative estimation of the tissue sodium concentration. However, 23Na MRI could
provide rich additional contrast information, which can be exploited by leveraging
23Na Multi-Quantum Coherences (MQC) MRI. Unfortunately, 23Na MQC MRI is
inherently slow and challenging to use in clinical protocols. As a result, the full
potential of 23Na MQC MRI has yet to be explored. This work focused on develop-
ing acceleration techniques to obtain 23Na MQC MRI in clinically acceptable scan
time. The proposed frameworks were extensively studied on numerical simulations,
phantom, and in vivo human brain data acquired at 3 and 7 T.

In the first part of this thesis, a custom-built multi-dimensional (5D) reconstruction
framework based on Compressed Sensing (CS) theory is presented. This framework
constitutes an advanced sampling strategy to accelerate the acquisition of 23Na MQC
MRI up to 3-fold, coupled with an iterative reconstruction algorithm that optimally
leverages 23Na MQC MRI’s signal structure to reconstruct highly undersampled
data reliably. A comprehensive study showed the advantages of the 5D CS over the
conventional 3D CS reconstruction. Reliable acceleration factors up to 3-fold were
possible, reducing acquisition times or increasing the spatial resolution to unprece-
dented 6x6x10mm3.

Secondly, the gained experience of MR signal sampling and reconstruction of under-
sampled 23Na MQC MRI from the first part was leveraged to improve the sequence
and the reconstruction framework. The sequence was adapted to simultaneously
acquire 23Na and 23Na MQC MRI, with 23Na MQC MRI being highly undersam-
pled. The reconstruction was performed by two advanced low-rank reconstruction
frameworks that optimally exploit the coherent information in the acquired data.
6x6x6mm3 in vivo 23Na MRI leveraging the Double Half-Echo technique was demon-
strated for the first time. The low-rank reconstruction performance for 23Na MQC
MRI was compared to the 5D CS model and outperformed 5D CS regarding SSIM,
RMSE, and SNR. Eventually, the novel accelerated acquisition was leveraged to ob-
tain whole-brain 23Na MQC MRI images with an unprecedented spatial resolution
of 8mm isotropic in 2x23 minutes, uniquely showcasing the sodium tissue charac-
teristics of white and grey matter. The simultaneously acquired sodium images at
6mm isotropic lay ground for a complete quantitative evaluation of brain sodium
MRI for future studies.

This thesis aimed to overcome 23Na MQC MRI’s obstacles, mainly targeting the
slow acquisition speed leading to lengthy acquisitions and limited spatial resolution.
Two advanced reconstruction frameworks have been proposed that efficiently lever-
age the highly multi-dimensional structure of 23Na MQC MRI and, therefore, out-
perform conventional reconstruction techniques. Additionally, an efficient sequence
was proposed that allows for simultaneous acquisition of 23Na and prospectively un-
dersampled 23Na MQC MRI within clinically acceptable time that allows for a direct
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comparison of 23Na and 23Na MQC MRI fostering the possibility to be used for clin-
ical studies. Extensive experiments demonstrated applicability on 3 and 7 T clinical
MRI, which makes the frameworks highly versatile and robust. In conclusion, the
presented sequence and reconstruction algorithms represent a promising framework
for future studies exploiting 23Na and 23Na MQC MRI with a clinical research focus.
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Weiterentwicklung der Natrium Multiquantenkohärenz

Magnetresonanztomographie auf klinischen Scannern

In den letzten Jahren erhielt die Natrium (23Na) Magnetresonanztomographie (MRT)
immer mehr Aufmerksamkeit, da sie nicht-invasiv wichtige Gewebeinformationen
bereitstellt, die direkt mit der Zellvitalität verknüpft sind. Ebenso hat die Entwick-
lung von Ultrahochfeld Scannern (>= 7 Tesla) dazu beigetragen, dass die Natrium
MRT immer häufiger verwendet wird. Das Besondere an der 23Na MRT ist, dass sie
die quantitative Bestimmung der Gewebe-Natriumkonzentration in vivo ermöglicht.
Neben der Gewebe-Natriumkonzentration, liefert die 23Na MRT weitere Informatio-
nen, die man mit Hilfe der 23Na Multiquantenkohärenz (MQC) Bildgebungstechnik
auflösen kann. Leider ist die Akquisitionszeit von 23Na MQC MRT für die klin-
ische Anwendung zu lang und macht es daher schwierig, das Potenzial der 23Na
MQC MRT vollständig zu untersuchen. Diese Arbeit beschäftigte sich mit der
Entwicklung von robusten Methoden zur Beschleunigung der Akquisition, welche
die klinische Anwendung von 23Na MQC MRT ermöglichen. Hierzu wurden ver-
schiedene Methoden entwickelt und in nummerischen Simulationen, Phantom und
in vivo Kopf-Messungen auf 3 und 7 Tesla miteinander verglichen.

Der erste Teil dieser Arbeit beschäftigte sich mit der Entwicklung eines mehrdi-
mensionalen (5D) Rekonstruktionsmodels basierend auf der Compressed Sensing
(CS) Theorie. Hierzu wurde eine fortschrittliche Unter-Abtastmethode verwendet,
die die Beschleunigung der 23Na MQC MRT ermöglichte. Die unterabgetasteten
Daten wurden mit Hilfe des Rekonstruktionsalgorithmus, unter Berücksichtigung der
Mehrdimensionalität des 23Na MQC Signals, optimal rekonstruiert. Ausführliche
Experimente demonstrierten den Vorteil der neuen gegenüber der herkömmlichen
Rekonstruktionsmethode und ermöglichte somit eine robuste Beschleunigung der
Akquisition um den Faktor drei. Aufgrund der beschleunigten Aufnahme konnte
erstmals eine höhere räumliche Auflösung von 6x6x10mm3 in vivo erzielt werden.

Für den zweiten Teil der Arbeit wurden die Kenntnisse bezüglich der Unterabtas-
tung aus dem ersten Teil verwendet, um die Rekonstruktion und die MRT-Sequenz
zu verbessern. Die Sequenz wurde erweitert um gleichzeitig 23Na MRT und unter-
abgetastete 23Na MQCMRT zu ermöglichen. Zum ersten Mal in der 23Na MRT wur-
den nieder-Rang Rekonstruktionsalgorithmen verwendet, um simultane 23Na MRT
und 23Na MQC MRT zu rekonstruieren. Der Vorteil dieser Rekonstruktionsalgorith-
men basiert darauf, dass kohärente Informationen stark komprimiert werden können.
Zum ersten Mal wurde die Doppel-Echo Technik angewandt, um 6x6x6mm3 23Na
in vivo MR Bilder aufzunehmen. Die Rekonstruktion der 23Na MQC Daten wurde
mit dem 5D CS Model aus dem ersten Teil der Arbeit quantitativ verglichen. Let-
ztlich wurde 23Na MQC MRT prospektiv unterabgetastet, um eine höhere räumliche
Auflösung von 8x8x8mm3 zu erzielen. Die neue Sequenz bietet die Möglichkeit simul-
tan 23Na und 23Na MQC MRT mit höherer räumlicher Auflösung in 2x23 Minuten
aufzunehmen, welches eine optimale Grundlage für weitere Studien bietet, in denen
das vollständige 23Na Signal untersucht werden kann.

Diese Arbeit zeigte Lösungen auf, wie die lange Akquisitionszeit der 23Na MQC
MRT effektiv reduziert und die limitierte räumliche Auflösung erhöht werden kann.
Hierfür wurden zwei Rekonstruktionsalgorithmen vorgestellt, die unterschiedlichen
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mathematischen Konzepten unterliegen. Beide Algorithmen wurden dahingehend
optimiert, dass diese die mehrdimensionale Struktur des 23Na MQC MRT Signals
optimal für die Rekonstruktion nutzen und demonstrierten verbesserte Rekonstruk-
tionsresultate als herkömmliche Algorithmen. Beide Methoden wurden ausgiebig in
silico, in vitro und in vivo getestet, um fundierte Aussagen über die Qualität der
Rekonstruktion treffen zu können. Des Weiteren wurde eine effiziente Sequenz en-
twickelt, die die simultane Akquisition von 23Na und 23Na MQC MRT ermöglicht.
Die neue Sequenz überzeugte durch die vereinfachte Rekonstruktion und die Robus-
theit der Akquisition aufgrund der kartesischen Aufnahmestrategie und stellt somit
eine wichtige Grundlage für weitere 23Na MRT Studien da.
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1. Introduction and Outline

1.1 Motivation

Sodium 23Na Magnetic Resonance Imaging (MRI) can provide valuable quantitative
information regarding cell vitality. In addition, the physical properties of the sodium
nucleus lead to multi-quantum coherence (MQC), which could uniquely reveal in-
sights into cell viability. However, sampling these MQCs is challenging because it is
inherently slow and thus, limited in its spatial resolution. Following, robust acceler-
ation is warranted. Emphasizing 23Na MQC MRI exhibits highly multi-dimensional
and structured information; this prior knowledge can be leveraged to design a dedi-
cated reconstruction allowing undersampled acquisition. Hence, the leading research
hypothesis for this work was defined as:

Can knowledge-driven image reconstruction improve 23Na MQC MRI towards
faster and better resolved whole-brain sodium quantitative imaging?

1.2 Outline

This thesis provides a brief introduction to NMR, MRI, and sodium MRI, with
the basic concepts of sparse and low-rank reconstructions given. Focused on image
reconstruction, the thesis resulted in two main research articles, with the first one
focusing on sparse image reconstruction and the second paper addressing low-rank
reconstruction frameworks to advance 23Na MQC MRI.

In the first project of this thesis, a sparse image reconstruction framework was
developed that optimally leverages the multi-dimensional signal structure of 23Na
MQC MRI. The framework is based on Compressed Sensing (CS) theory and was
compared to a standard three-dimensional CS framework. An extensive investigation
of numerical simulations, phantoms, and retro- and prospective in vivo brain data
acquired at 3 and 7 T was performed. This model enabled prospective undersampling
to obtain unprecedented 23Na MQC MRI spatial resolution while not exceeding
imaging time.

The second project involved advancing 23Na MQC MRI by leveraging two dedicated
low-rank matrix completion frameworks. Obtaining 23Na MQC MRI requires ac-
curate pulse sequences, and the used sequence in this study was improved to also
acquire conventional 23Na MRI. 23Na MRI was developed with the Double Half-
Echo technique, which samples two individual k-space halves. Both k-space halves
are reconstructed by leveraging an iterative framework with a low-rank coupling
constraint. Additionally, the multi-dimensional structure of 23Na MQC MRI was
leveraged in another low-rank matrix completion framework that exploits coherent
information to reconstruct highly undersampled 23Na MQC MRI. Comprehensive
experiments on numerical simulations, phantom, and retro- as well as prospective in
vivo data acquired at 7 T validated the new sequence and the low-rank reconstruc-
tion frameworks.



2 1. Introduction and Outline

1.3 Related Publications

Several chapters of this thesis have already been published in the international jour-
nal Magnetic Resonance in Medicine.

Licht C, Reichert S, Guye M, Schad LR, Rapacchi S. Multidimensional compressed
sensing to advance 23Na multi-quantum coherences MRI. Magn Reson Med. 2024;
91: 926-941. doi: 10.1002/mrm.29902

Licht C, Reichert S, Bydder M, et al. Low-rank reconstruction for simultaneous
double half-echo 23Na and undersampled 23Na multi-quantum coherences MRI.
Magn Reson Med. 2024; 1-16. doi: 10.1002/mrm.30132



2. Theoretical Background

2.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) describes an event in which a nucleus, placed
in an external static magnetic field, B0, interacts with a superimposed oscillating
magnetic field, B+

1 , and emits an electromagnetic wave in return. This signal exhibits
a frequency characteristic of the relationship between the nucleus and the magnetic
field. However, not every nucleus undergoes NMR. Only nuclei that have an intrinsic
nuclear magnetic moment, µ⃗, and angular momentum, J⃗ , which in return are nuclei
with a spin quantum number, I > 0. Following, nuclei with I = 0 do not undergo
NMR. A nucleus that is NMR sensitive is the hydrogen nucleus, 1H, which exhibits
a spin quantum number, I = 1/2, and, therefore, possesses a magnetic moment.
Owed to the magnetic moment, a nucleus with spin 1/2 is regarded as a dipole
magnet,[1, 2] which can be manipulated by an externally applied magnetic field.

Once the 1/2 nuclei are placed inside a magnetic field, the spins precess around its
main axis statistically aligned parallel or anti-parallel to the field lines.[2] Due to
parallel and anti-parallel alignment of the spins, manipulation of the magnetization
requires a defined amount of energy, ∆E.

∆E = ℏγB (2.1)

The manipulation of nuclear spins requires matching energy differences, ∆E, specific
to certain nuclei (Figure 2.1). Owed to the parallel and anti-parallel orientations,

Em

B0 =  0 T m = 

m = 

m = 

m = 

 = 79.92 MHz

B0 =  7.0 T

23Na
B0 = 0 T

B0 =  7.0 T

m = 

m = 

1H  = 298.06 MHz

Figure 2.1: Energy levels of two spin systems, 1/2 and 3/2, when placed inside
a homogeneous magnetic field, B0 = 7 T. The energy levels split up equidis-
tantly, with parallel orientation being energetically favorable rather than anti-
parallel.

only in spin 1/2 systems, two proton spin populations exist with the ratio defined
as[3]

n−

n+

= e−∆E/kT (2.2)

with k being the Boltzmann’s constant and T the absolute temperature.
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Since n−
n+

<ϵ 1 for 1H (at room temperature), a slightly larger portion of parallel
than anti-parallel spins exist. The difference between the resulting macroscopic
spin-up and spin-down vectors yields the final macroscopic magnetization vector.
The equilibrium Magnetization, M0, is then defined as

M0 =
Nγ2ℏ2I(I + 1)B0

3kT
(2.3)

The resulting magnetization depends on the number of nuclear spins, N , the gyro-
magnetic ratio, γ, and the static magnetic field, B0.[3]

Suppose a spin ensemble is placed inside a static magnetic field. In that case, each
magnetic moment from every spin in the magnetic field gets polarized along the
direction of the applied magnetic field. Hence, the sum of each magnetic moment,
µi, yields a net magnetization vector, M⃗ .[1]

M⃗ =
n∑

i=1

µ⃗i (2.4)

If no main magnetic field is applied, all the magnetic moments will cancel each other
M⃗ = 0.[1] However, suppose the spins are exposed to a static and homogeneous
magnetic field. In that case, the magnetic moment statistically aligns with the
direction of the magnetic field and precesses in that specific direction.

The Larmor frequency, ω⃗0, describes the precession frequency of the spins about B0

[4].

Larmor frequency: ω⃗0 = γB (2.5a)

Gyromagnetic ratio: γ =
µ⃗

J⃗
(2.5b)

The Larmor frequency is the frequency to which the spins are resonant. This linear
relationship is a fundamental concept in NMR as it relates the precession frequency
with the magnetic field strength the nuclei are exposed to. The gyromagnetic ratio,
γ, is defined as the ratio of the magnetic moment, µ⃗, to the angular momentum, J⃗
and is specific to every nuclei, for example: γ1H = 42.58 MHz/T or γ23Na = 11.26
MHz/T for the 23Na (sodium) nucleus. If the magnetic moment and the spin are in
the same direction, γ > 0. However, if γ < 0, the magnetic moment and the spin
are in opposite directions.

Since the magnetization, M⃗ , can be manipulated and is thus a function of time,
M(t) at time t, the magnetization behavior is expressed as a differential equation.

dM⃗

dt
= M⃗ × γB(r⃗) (2.6)

Equation 2.6 is the vectorized form of the Bloch equations,[5] without accounting for
relaxation. It is important to note that B(r⃗) includes all magnetic fields applied.[3]
The Bloch equation thus describes nuclear magnetization with respect to time1 and

1The magnetization vector, M⃗ , is not necessarily static as it can change directions. The Bloch
equations are sometimes referred to as the equations of motion of nuclear magnetization and were
introduced by Felix Bloch in 1946.[5]
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are the fundamental concepts to understand the formation of an NMR signal. Never-
theless, it is important to note that this equation only holds for macroscopic nuclear
magnetization when all individual magnetic moments are summed up, contributing
to a final macroscopic magnetization vector, M⃗ .

The human body consists of various molecules which are constantly vibrating. There-
fore, the center of mass of the molecules averaged over its multiple positions, can be
approximated by a single position. Indeed, small molecules’ precession is faster than
larger molecules such as proteins.[6] Following from Equation 2.5a, this precession
frequency is characteristic of specific molecules; hence, NMR can probe molecular
motion and the environment.

Radiofrequency pulse

Derived from Equation 2.6, the macroscopic magnetization can be manipulated by
superimposing an additional time-varying magnetic field Radiofrequency (RF ), B+

1 ,
which interacts with the nuclear spin, leading the spins to change their precession
direction.2

Beff = B0 +B+
1 (2.7)

The new precession direction is statistically given by the RF’s flip angle, θ.

θ = γ

∫ τ

t=0

B+
1 (t)dt (2.8)

With τ being the time the RF pulse is applied. The new precession frequency that
the tipped spins possess is then given by

ω1 = γB+
1 (2.9)

The RF pulse is most effective at matching (Larmor) frequency and is sent perpen-
dicular to the static magnetic field. However, the energy of the RF pulse is absorbed
by the body. This, in return, imposes restrictions on the in vivo application of RF
pulses, foremost to avoid tissue heating. The absorbed energy is termed Specific
Absorption Rate (SAR) and is defined as

SAR ∝
∫ t

0

|B+
1 (t)

2|dt (2.10)

In sodium NMR experiments, short, hard RF pulses are favored to minimize re-
laxation processes during the excitation. Nevertheless, following from Equation 2.8
and Equation 2.10, SAR imposes restrictions on in vivo NMR experiments, which
usually lead to elongation of the RF pulse not to exceed the SAR limit.

2For simplicity, a laboratory frame of reference is used. This frame of reference rotates clockwise
at the Larmor frequency, which enables the neglect of the precession of the net magnetization
vector, M⃗ , around the static magnetic field.[6] Hence, manipulating the magnetization vector can
be described as the tipping of a stationary vector.
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Thanks to the applied RF pulse, the macroscopic magnetization vector is tipped
towards the transverse plane (xy-plane). According to Faraday’s law, this induces
an electromotive force, ε, into the receiver coils.

ε = −dΦB

dt
(2.11)

Equation 2.11 states that the rate of change of the magnetic flux, ΦB, induces an
electromotive force, ε, in the receiver coil. After the RF pulse is applied, the net
magnetization vector is tipped, which changes the magnetic flux, dΦB, and therefore,
an electromotive force is induced. It follows that the induced electromotive force
over a given volume, V , is expressed as[4]

ε = − d

dt

∫
V

drM⃗xy(r⃗, t)B⃗
−
1 (r⃗, t) (2.12)

and is proportional to

ε ∝ SNMR ∝ γ3I(I + 1)cphyscbio (2.13)

with SNMR being the detected signal, cphys being the relative abundance (cphys = 1 for
23Na) and cbio representing the biological abundance. It follows from Equation 2.13
that the induced NMR signal highly depends on the gyromagnetic ratio of the in-
vestigated nucleus and the natural abundance. 1H NMR is the most clinically used
nucleus to obtain the NMR signal. Table 2.1 lists commonly used nuclei in NMR.
The second best choice regarding signal intensity is 23Na. Although other nuclei
than 1H are challenging to investigate, these nuclei have the potential to provide
additional information, which is not accessible via 1H NMR alone.

Table 2.1: NMR properties of several nuclei that are typically used, see [7].

Isotope Spin I γ
2π

[MHz/T] Abundance c [%] Rel. sensitivity

1H 1/2 42.58 99.99 1.0
2H 1 6.54 0.01 4.8× 10−3

19F 1/2 40.08 100 8.3× 10−1

23Na 3/2 11.27 100 9.3× 10−2

39K 3/2 1.99 93.26 4.8× 10−4

17O 5/2 5.77 0.04 2.9× 10−2

Relaxation

Maintaining the spins’ changed direction after the RF pulse was applied requires a
constant supply of energy in the form of an electromagnetic wave. If the RF pulse is
turned off, the spins return to their initial orientation.[2] Once all excessive energy
is dissipated, the spins are aligned with the main magnetic field’s direction, and
the magnetic flux is constant. Conclusively, no voltage is induced anymore. The
return of the net magnetization vector to its initial direction (z-axis), inducing an
electromotive force, is called Free Induction Decay (FID).[4] It refers to the signal
probed in NMR when only a single RF pulse is applied.



2.1. Nuclear Magnetic Resonance 7

The excessive energy that is dissipated is referred to as ’relaxation’, which is governed
by two significant effects:

1. Spin-lattice interaction (longitudinal relaxation, T1)
2. Spin-spin interaction (transversal relaxation, T2)

T1 - longitudinal relaxation
Spin-lattice interaction characterizes the return of the magnetization vector to its
equilibrium state along the direction of the static magnetic field. Thermal equilib-
rium is reached when Mz = M0. T1 is greatly influenced by the magnetic dipoles
in the surrounding environment. The magnetic fields generated by the additional
dipoles induce transitions between the spin populations n+ and n−. The energy
required for these transitions depends on the magnetic field strength, and following,
T1 increases with increasing field strength.[3]

T2 - transverse relaxation
The spin-spin interaction describes the decay rate of the transverse magnetization,
Mxy. The field components along z, generated by the same magnetic dipoles as de-
scribed in the previous paragraph about T1, also influence the transverse relaxation.
These additional fields lead to a broadening of the Larmor frequency spectrum, forc-
ing the spins to precess at slightly different frequencies. As a result, the spins lose
coherence towards each other3 in the transverse plane, with T2 < T1. These addi-
tional fields are small and, therefore, only contribute to T2 and not to T1 relaxation.
Following, T2 is independent of the magnetic field strength.[3]

With the relaxation time constants introduced, Equation 2.6 is extended to describe
the change of magnetization along the x-, y- and z-axis while taking T1 and T2

relaxation into account.

dMx

dt
= γ(M(t)×B)x −

Mx

T2

(2.14)

My

dt
= γ(M(t)×B)y −

My

T2

(2.15)

dMz

dt
= γ(M(t)×B)z −

M0 −Mz

T1

(2.16)

Since the transverse magnetization is described in the complex plane as Mxy(t) =
Mx(t) + iMy(t),[4] with i =

√
−1, the solutions to Equation 2.16 in the rotating

frame of reference are given by

Mxy(t) = Mxy(0)e
iω0te

− t
T2 (2.17)

Mz(t) = M0 − (M0 −Mz(0))e
− t

T1 (2.18)

After applying a perfect 90° RF pulse, the net magnetization is solely given by the
transverse magnetization, Mxy. In this state, the spins exchange energy between
themselves, e.g., dipole-dipole interaction. This leads to the spins losing their phase
coherence and, following, reduces Mxy, as previously discussed. The dephasing pro-
cess is further influenced by field inhomogeneities, resulting in deviations from the

3The process of coherence loss is also called ’dephasing’
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Figure 2.2: Longitudinal (T1) and transverse (T2) magnetization after a 90°
RF pulse was applied with T2 < T1. Full relaxation is observed when t = 5T1.

Larmor frequency, and therefore, relaxation occurs faster. Another constant de-
scribes this enhanced relaxation process, T ∗

2 .

1

T ∗
2

=
1

T2

+ γ∆B (2.19)

with ∆B being the magnetic field inhomogeneities. Whereas T2 is unaffected by the
magnetic field strength, T ∗

2 is highly affected, and thus, T ∗
2 reduces with increasing

field strength. T ∗
2 is always measured after excitation unless a refocusing RF pulse of

180° is applied to counter the field inhomogeneities related to dephasing processes.
Leveraging a 90° followed by a 180° RF pulse is termed a ’Spin-Echo-Experiment’.
However, without further energy deposition, the net magnetization returns to equi-
librium by dissipating the RF pulse-induced energy to the surroundings (lattice). T1

is optimally probed by leveraging an ’Inversion-Recovery-Experiment’, a spin echo
experiment with a 180° RF pulse applied before the 90° RF pulse.

Fourier transform

In general, periodic functions, f(x), are described as a combination of sin(x) and
cos(x). Replacing t ← x, the time-dependent periodic signal is described by the
Fourier series as

S(t) =
+∞∑
j=0

(Ajsin(ωjt) +Bjcos(ωjt)) (2.20)

with Aj and Bj being the amplitudes and ωj the oscillation frequency of frequency
j. If the amplitudes are known, any given signal, S(t), can be fully expressed in
terms of sin and cos functions. In this case, j ∈ N, with j > 0. To also account for
negative frequencies, Equation 2.20 is extended to

S(t) =
+∞∑

j=−∞

(
Aj

2
sin(ωjt)±

Bj

2
cos(ωjt)

)
(2.21)
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leading to an equivalent distribution of frequencies across the positive and negative
spectrum, giving rise to a complex signal. From Euler’s formula, it follows that

e−iωt = cos(ωt)− isin(ωt) (2.22)

with i =
√
−1. Finally, substituting Equation 2.22 into Equation 2.21 expresses

any given signal in the frequency domain and, finally, yields the continuous Fourier
transform

S(ω) =

∫ +∞

−∞
S(t)e−i2πωtdt (2.23)

The continuous Fourier transform (FT ), F , is a simple forward signal model, which
maps the periodic time-dependent signal, S(t), into a signal that solely depends on

the frequencies, ω and hence, the transform is given by S(t)
F−→ S(ω). Following,

the inverse Fourier transform is defined as

S(t) =

∫ +∞

−∞
S(ω)ei2πωtdω (2.24)

Therefore, the Fourier transform gives rise to the frequencies embedded in the origi-
nal signal, and the inverse Fourier transform recovers the time-dependent signal that
was represented in the frequency domain. The following paragraph demonstrates the
FT regarding the NMR spectrum and its application in MRI.

NMR spectrum

In theory, all nuclei of the same isotope share the same resonance frequency. How-
ever, the electron cloud surrounding a nucleus shields it from the main magnetic
field, with the shielding effect depending on the electron cloud’s density. The elec-
tron shielding effect leads to a slightly different local field Bloc = B0 + ∆B experi-
enced by the nucleus. Following, the same nuclei in different molecular environments
experience varying degrees of electron shielding and, thus, exhibit slightly different
local fields, Bloc. In conclusion, an alteration of the local field results in a change of
the Larmor frequency by ∆ω = B0 +∆B, also called a chemical shift.[8]

Given the FID in time, the FT computes dominant frequency components, giving
rise to the FID’s spectrum4. Referring to the first FID, FID1 in Figure 2.3, only a
single damped frequency makes up the FID and, thus, yields a single Lorentzian peak
in the frequency spectrum. Superimposing another FID, with ωFID2 > ωFID1 , the
Fourier transform reveals two Lorentzian peaks indicating two dominant frequencies
the time-dependent input signal is composed of. The Fourier transform is a powerful
tool for analyzing time-dependent signals by decomposing the input signal into a
combination of trigonometric functions. These functions are scaled by an amplitude,
which gives rise to the extent of each single function contributing to the final input
signal. The FT enables the determination of these amplitudes, providing valuable
information about the input signal5.

4An FID spectrum is a distribution of frequencies that the FID consists of. The FT reveals the
underlying frequency components and provides the FID’s frequency spectrum.

5In other words, the FT enables the expression of any time-dependent signal as a combination
of weighted trigonometric functions. Once each amplitude of the dominant functions is known, the
complete signal is mathematically described as a combination of these weighted functions.
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Figure 2.3: Two time-dependent free induction decays, FID1 and FID2, with
their respective Fourier transform, Ψ, giving rise to the FIDs’ spectrums.

Applying a Fourier transform, Ψ, to a time-dependent signal exhibits the frequency
components, Ψ(S(t)) → S(ω), and vice-versa; computing the inverse FT, Ψ−1, of
the frequency spectrum yields the time-dependent FID signal, Ψ(S(ω))−1 → S(t).
Figure 2.3 shows a spectrum of a non-local FID. However, additional information is
needed in imaging to spatially encode the signal, which will be discussed in the next
section.
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2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI ) is based on NMR. It is a constantly evolving
tool for the non-invasive study of anatomical structures and functions of the human
body, with MRI offering the ability to provide information for diagnosis of diseases,
anatomical information, and detection of early stages in pathologies.[9] MRI has two
major advantages over other imaging modalities. First, MRI does not rely on ionizing
radiation and second, MRI provides outstanding soft tissue contrast and is therefore
exceptionally well suited for in vivo head imaging. Despite MRI primarily being
used for anatomical imaging, it is also capable of functional imaging.[10] Functional
imaging gives rise to physiological parameters that provide additional information
besides anatomical structures. Foremost, information about tissue viability is of
interest.[11]

Generally speaking, MRI uses radiowaves coupled with strong magnetic fields to
excite the spins of a patient placed inside the scanner. The patient then re-emits
radiowaves that are processed into an image. The image represents a spin-density
weighted map of the region of interest, with the amplitude of the voxel being scaled
according to the underlying spin density.[1]

MRI involves three magnetic fields:

1. The static magnetic field, B0

2. The RF pulse to excite the spins, B+
1

3. The gradients, G(t)

With the gradients representing the most important component of MRI.[3] Instead
of measuring a single NMR signal across a volume, the gradients can discretize the
volume into a 2D or 3D grid. Hence, the gradients enable precise spatial encoding
of the NMR signal. These gradients are additional magnetic fields spanning the x,
y, and z-directions. Conclusively, the gradients enable the spatial encoding of the
signal to probe the effective spin density at the given location. Following, spatially
varying frequencies are probed in MRI, and Equation 2.5a is therefore extended to

ω(r⃗) = γB(r⃗) (2.25)

with r⃗ describing the spatial coordinate along the direction of the applied gradient.
Following, in terms of MRI, the Larmor frequency is a function dependent on the
spatial location. It thus represents a spatial frequency, which offers the opportunity
to obtain an image.[4]

Slice selection gradient

Conventional MRI acquires Two-dimensional (2D) slice snapshots; therefore, the RF
pulse needs to be applied to a specific region along the z-dimension of the body. By
applying a gradient along the z-direction of the patient, at the same time when the
RF pulse is applied, the precession frequencies along z are linearly changed, which
results in an offset that enables selection of a particular slice. The frequencies along
z are thus given by

ω(z) = γ(B0 +Gzz) (2.26)
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with Gz representing the gradient amplitude along the spatial coordinate, z. Only
the spins in the targeted slice precess with the Larmor frequency. Spins outside the
slice of interest experience a linear frequency offset, which makes them unresponsive
to the applied RF pulse. Hence, the RF pulse’s frequency matches only the frequency
of the selected slice and, thus, excites a pre-determined slice only. This imposes
restrictions on the slice thickness, either determined by the bandwidth of the applied
RF pulse and by the gradient’s slope across the patient.

Three-dimensional (3D) sequences provide initially higher SNR due to volumetric
excitation and do not leverage a slice selection gradient. These sequences excite the
whole volume, and the re-emitted signal is gridded into partitions along z. Hence,
the slice thickness, ∆z, is given by

∆z =
BWRF
γ
2π
Gz

(2.27)

with BWRF being the bandwidth of the RF pulse. Notably, most sequences used
for 23Na MRI are 3D, thus leveraging volumetric excitation to counter the initially
low SNR.

Frequency encoding gradient

In analogy to the slice selection gradient, spatial encoding along x is performed by
applying an additional gradient with a constant amplitude after the slice selection
gradient is turned off.

ω(x) = γ(B0 +Gxx) (2.28)

The changed precession frequency along x is thus directly linked to the gradient’s
strength experienced by the spins. However, the frequency encoding gradient ex-
hibits a continuous gradient amplitude, and the gradient’s strength is defined by the
gradient moment it accumulates over time. This gradient is applied continuously
while the signal is detected and converted.

Phase encoding gradient

Finally, spatial encoding along the y-direction is performed by applying a third gra-
dient, which also changes the precession frequencies concerning the spatial location
of the spins. However, this gradient is only applied briefly before detecting the Mag-
netic Resonance (MR) signal. Due to the changed frequencies along the y-direction,
the precession frequencies change, and after turning the gradient off, the selected
fraction of the spins precessed faster than others, which results in a relative change
of phase, ϕ. Hence, the phase difference is well known along the y-direction because
the amplitude and the time of application of the phase-encoding gradient are known.
The phase of the spins is related to the gradient according to

ϕ(y) = −γGyyt (2.29)

Applying the phase-encoding gradient results in a phase change, ϕ. This phase
change extent is given by the gradient’s amplitude, Gy, at the position, y, and by
the time, t, which defines how long the gradient was superimposed over B0.
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k-Space

k-Space is the matrix structure in which the NMR signal is stored. By applying
the gradients, the position in the k-space can be determined, and thus, the strength
and or the duration of the gradient applied is directly linked to the position in the
k-space matrix. Hence, a direct link between the k-space and the image domain
exists. The gradients’ relation to the position in the k-space is given by

x =
ω

γGx

↔ kx = γGxt

y =
ω

γGy

↔ ky = γGyt
(2.30)

with kx and ky representing the x- and y-position in k-space, respectively. It is
important to note that the position in k-space is directly linked to the applied
gradient. In contrast, the information of a single point in the k-space matrix is
related to all voxels in the image domain.

The k-space matrix can be arbitrarily filled, which leads to enhanced sampling strate-
gies compared to standard Cartesian. Furthermore, kmax in the k-space represents
the highest frequency sampled, determining the image domain’s resolution. The en-
tire width of the k-space matrix is given by kFoV = 2kmax. Additionally, the spacing
in k-space is defined by ∆kx and ∆ky for the spacings along x and y, respectively.
The relations of k-space and image domain for these parameters are defined as

∆k =
1

FoV
↔ ∆x =

1

kFoV

(2.31)

with FoV representing the Field of View (FoV ) and ∆x, the pixel size in image
domain with ∆x = ∆y. From Equation 2.31, it follows that the k-space and the
image domain are inversely proportional, posing gradient and sampling restrictions
for MRI. The Nyquist limits6 for the gradients are given by

∆t ≤ 2π

γGxNx∆x

∆Gy ≤
2π

γtNy∆y

(2.32)

Equation 2.32 shows that the frequency encoding gradient has to sample the signal
rapidly. Since the frequency encoding gradient is usually played continuously, this
criterion is always full-filled. However, the phase encoding gradient in y requires
small steps to match the desired pixel size, ∆y. As the phase encoding steps need
to be repeated N -times, this is, with the repetition time, one of the most crucial
parameters that determine the acquisition speed of MRI. Violating these sampling
limits results in aliasing artifacts.

6See section Image reconstruction for the definition of Nyquist limit
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Fourier transform in MRI

Referring to Equation 2.24 and Equation 2.30, by replacing ρ(x)← S(t) and kxx←
ωt, the time-dependency is substituted by spatial dependencies on x. Following, ρ(x)
represents a density function, which in MRI is the spin-density, and kxx represents
the position in k-space, which is directly linked to the gradient. With kx = γ

2π
Gxt,

this gives rise to the inverse Fourier transform (iFT ) used in MRI as

ρ(x) =

∫ +∞

−∞
S(kx)e

i2πkxxdkx (2.33)

From Equation 2.33, it follows that the inverse Fourier transform of k-space yields
the spin-density function, ρ(x), representing the investigated nuclei’s MR image7.

Gradient Recalled Echo Sequence

One of the most commonly used sequence8 is the Gradient Recalled Echo (GRE ),
Figure 2.4. Generally, a basic GRE sequence constitutes a single RF pulse, with
flip angles from θ = 5...90°, coupled with gradients used for spatial encoding of
the MR signal. GRE sequences are implemented as 2D snapshots or 3D volumetric
sequences. The frequency encoding gradient generates the echo in this sequence.
First, the slice-selective gradient along z is applied, followed by the phase encoding
gradient. Finally, the frequency encoding gradient is used to dephase the signal
first and then rephrase it to produce a gradient-stimulated echo in the center of the
Analog-to-Digital Converter (ADC )9 at the Echo Time (TE ), TEi with i being the
i-th echo. Following, the MR signal sampled with this sequence is governed by T2

*

decay, and hence, the longer the echo time is, the more the signal is weighted towards
T2

*. Extending the GRE to a multi-echo GRE sequence, more efficient sampling of
the T2

* signal curve can be realized. In this modification, the sequence consists
of multiple echoes that sample the signal at different time points. In this case,
the frequency encoding gradient creates multiple echoes by inverting the gradient
moment. The MRI sequence used in this thesis is based on a basic 3D GRE sequence.

The idea of gradients is more intuitive when described in the meaning of building
the k-space matrix. k-Space is defined as the matrix in which the MR scanner places
the FID with the help of an ADC. In the case of Cartesian sampling, the slice selec-
tive gradient determines the height of the matrix, and the phase encoding gradient
defines the row. Once this is set, the frequency encoding gradient determines the
position from left to right to fill the selected line of the k-space matrix. In other
words, the gradients determine the position in the k-space matrix where the FIDs are
stored. For each repetition time, a single k-space line is acquired (only for Cartesian
sampling), which is repeated until the whole k-space matrix is filled.

7Only the 1D Fourier Transform is described for simplicity since 2D or 3D reconstructions are
cascaded one-dimensional (1D) Fourier transforms computed along the respective dimensions.

8Sequences are scripts that coordinate the timing of RF pulses, gradients, and signal acquisition
parameters leading to a specific type of MR image.

9Analog to Digital Converter (ADC) is used to translate the analog signal (induced electromotive
force) into a digital signal that can be processed further.
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Figure 2.4: Sequence diagram of a 3D multi-echo GRE Sequence with the
corresponding timing of each gradient and ADC. The corresponding k-space
matrix construction is shown on the right.

2.3 Physics of the sodium nucleus

Other than 1H, 23Na is a 3/2 spin nucleus, which splits into four Zeeman levels when
exposed to an external applied magnetic field, B0, (Figure 2.1). Under certain con-
ditions, Multi-Quantum Coherence (MQC ) are observable, being superpositions be-
tween multiple quantum states. The quantum coherences for 23Na are Single Quan-
tum Coherence (SQC ), Double Quantum Coherence (DQC ), and Triple Quantum
Coherence (TQC ).[12] These MQCs are observed once the sodium nucleus is placed
inside a heterogeneous environment where it interacts with the surrounding Electric
Field Gradients (EFGs) of larger molecules. Therefore, probing MQCs could encode
information about the molecular environment of the 23Na nucleus.[12, 13]

Quadrupole interaction

Whereas the nuclear charge distribution for spin 1/2 nuclei is spherical, quadrupole
nuclei exhibit an asymmetric charge distribution (Figure 2.5).[8] Consequently, ro-
tations alter the electrostatic energy of the 23Na nucleus.
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Figure 2.5: Nuclear charge distribution for nuclei with spin I=1/2 and I=3/2.
For 1H, the charge distribution is spherical (a), whereas 23Na nuclei exhibit
an asymmetric nuclear charge distribution. For spin I=3/2, the orientations
can differ oblate (b) and prolate (c), with (c) being energetically favored.
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Owed to the asymmetric charge distribution, the 23Na nuclei also possess an electric
quadrupole moment. Spins with I>0 experience dipole-dipole interactions, whereas
spins with I>1/2 also exhibit electric quadrupole interactions. These lead to strong
coupling to local EFGs, and indeed, relaxation for quadrupole nuclei is predomi-
nantly governed by the quadrupole interaction.[14] Consequently, quadrupole nuclei
strongly interact with their molecular environment.

In isotropic environments, e.g. in fluids such as pure NaCl solutions, and when ex-
posed to an external magnetic field, B0 > 0, the 23Na nucleus exhibits four equidis-
tant energy levels (Figure 2.6, type d), which result in directly MR detectable SQC.
This is observable in saline solutions, with the fluctuating quadrupolar interaction
arising from short-term energy level splitting. As a result, the NMR spectrum is
made of a single Lorentzian peak for type d. In biological tissue, e.g. in White matter
(WM ) or Gray matter (GM ), the fluctuating interactions lead to two superimposed
peaks, leading to a broadened spectrum for type c environments (e.g. biological
tissue). In that case, the EFGs of surrounding molecules affect the 23Na nuclei,
enhanced due to the increased interaction time, and ultimately, giving rise to MQCs
(Figure 2.1, Type c). Suppose the 23Na nucleus is placed inside an anisotropic envi-
ronment, e.g. crystal-like structure. In that case, the EFGs of surrounding molecules
also affect the 23Na nuclei, finally leading to residual quadrupole interaction (Fig-
ure 2.1, Type a). This split into static energy levels leads to distinct resonances,
giving rise to multiple peaks at different frequencies in the NMR spectrum.

The extent of the EFGs affecting the 23Na nuclei highly depends on the molecular
environment and, thus, affects the 23Na nuclei differently.[13] Depending on the
correlation time, τc, the EFGs vary rapidly (extreme-narrowing regime, type d),
e.g., in CSF, or slower in biological tissues, e.g., in WM or GM. For the first case,
the T2 relaxation behavior of 23Na is solely described mono-exponentially. This
corresponds to a single damped frequency, which gives rise to a single peak in the
NMR spectrum. Outside the extreme-narrowing regime, the residual quadruple
interaction gives rise to bi-exponential relaxation behavior described as

S23Na = 0.6e
− TE

T∗
2f + 0.4e

−TE
T∗
2s (2.34)

with TE being the echo time, and T ∗
2f and T ∗

2s being the fast and slow components,
respectively. In regards to brain 23Na MRI, T ∗

2f is in the order of 0.8 to 3 ms, and T ∗
2s

is in the range of 15 to 65 ms.[11] Again, Equation 2.34 demonstrates the importance
of leveraging sequences with short echo times because most of the signal is governed
by T ∗

2f . With biological tissue being mostly heterogeneous, bi-exponential relaxation
is predominantly observed.
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Figure 2.6: Splitting of energy levels of sodium (top) and the resulting NMR
spectra (bottom) when exposed to different environments. Types d and c
correspond to isotropic environments and type a corresponds to anisotropic
environments. Adapted from [15] and [13].

Density operator and the Irreducible Tensor Formalism

The density operator contains information about the state of the quantum system.
For spin systems I=3/2, the matrix consists of 16 elements, with the off-diagonals
representing the coherences.

σ̂I=3/2 =


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44


Figure 2.7: The density operator, σ̂I=3/2, for a spin ensemble of I=3/2 and
the color-coded Zeeman energy levels with the MQCs, e.g., SQC, DQC and
TQC.

The colors represent Zero Quantum Coherence (ZQC ), SQC, DQC and TQC. At
thermal equilibrium, the coherences between the states are zero[8] e.g., when the
probe is placed inside B0. If no additional magnetic fields are applied, the popu-
lations’ sum is

∑
i σii = 1, giving rise to ZQC only. Following, manipulating the

magnetization enables probing coherences between energy levels and allows for MQC
MRI.
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To explain the complex NMR dynamics of quadrupole nuclei, in particular of 23Na,
the density operator, σ̂, is expressed in terms of irreducible spherical tensor opera-
tors, T̂lm.[16, 17] The tensor formalism suffices to explain the dynamics of the spin
systems’ Hamiltonian10 and the coherence evolution in MQC NMR sequences.

Similarly to the density operator, the irreducible spherical tensor operator basis, T̂lm

consists of 16 different operators (for 23Na) with rank, l = 0...3, and coherence order
m = −l,−l + 1...l − 1, l. The advantage of this tensor formalism is the rotation
properties, which are very convenient when strong RF pulses are applied. It is
important to note that hard RF pulses change the coherence order m, whereas the
relaxation process changes the rank l of the spherical tensor operator.[8] The tensor
formalism helps track the evolution of coherence when designing MQC sequences
and enables a precise representation of the MQCs when RF pulses and relaxation
alter the spin dynamics.[8]

Table 2.2: Irreducible spherical tensor operator for spin I=3/2 and the corre-
sponding definition for each rank and coherence combination.

T̂lm Description

T̂00 Identity

T̂10 Longitudinal magnetization

T̂20 Quadrupole magnetization

T̂30 Octupole magnetization

T̂1±1 Rank 1 SQC

T̂2±2 Rank 2 SQC

T̂3±3 Rank 3 SQC

T̂2±2 Rank 2 DQC

T̂2±3 Rank 3 DQC

T̂3±3 Rank 3 TQC

For further readings regarding the density operator and the irreducible tensor for-
malism, see [6, 8, 17, 18].

10The Hamiltonian operator, Ĥ, represents the total energy operator of a given system, with the
operator’s eigenvalues corresponding to the allowed energy levels, and its eigenvectors representing
the quantum states associated with the discrete energy levels.
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2.4 Sodium Magnetic Resonance Imaging

Physiology of Sodium and Clinical Motivation

Sodium (23Na) is an essential electrolyte involved in many physiological processes in
the human body.[19] Foremost, it helps to maintain ionic homeostasis and regulates
pH and transmission of nerve signals. Sodium is highly concentrated in the extra-
cellular space (≈ 140 mM) but less in the intracellular space (≈ 15 mM). However,
the intracellular volume fraction is around 80% of the tissues, with 20% being the
extracellular volume fraction.[11] Hence, the concentration of the electrochemical
gradient is pointing towards the intracellular space, which needs to be actively reg-
ulated by the Na+/K+ pump. Healthy cells can maintain this ion gradient, whereas
an alteration of the energy supply leads to an imbalance of homeostasis and changes
the intracellular sodium concentration.[11, 20] Conclusively, the sodium concentra-
tion is very sensitive to metabolic changes and could be used to distinguish healthy
from malignant tissue.
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Na+/K+ 
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Figure 2.8: Simplified schematics of the sodium/ potassium pump (Na+/K+

ATPase) balancing homeostasis to maintain the ion concentration gradients.

Sodium MRI

Whereas 1H MRI provides anatomical information, 23Na MRI provides sensitive
physiological information about the state of the tissue. Hence, sodium (23Na) MRI
is a promising tool to probe tissue ionic homeostasis, which in return could pro-
vide valuable information on tissue viability.[21–23] Sodium MRI is attractive for
its unique specificity to directly characterize tissue ionic homeostasis from the linear
correlation between the MR signal and the sodium concentration in vivo. Indeed,
with proper calibration and Ultrashort Echo Time (UTE ), 23Na MRI can map ap-
parent quantitative Tissue Sodium Concentration (TSC )[24–27].[28]

The cell’s vitality is closely related to the sodium concentration and, thus, offers great
potential to be a clinical marker for disease states.[11] Sodium MRI has been used to
assess various types of cancer,[29] brain tumors,[30, 31] in neurodegenerative diseases
such as Alzheimer’s disease[32] or multiple sclerosis.[33, 34] Thanks to the advent
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of ultra-high field (>=7 T) MRI and associated coil designs for dual-tuned 1H/23Na
complementary imaging, 23Na has received increased interest in recent years[11].[28]

However, 23Na MRI is challenging since sodium exhibits very short relaxation times
with T2

* mainly being in the range of 0.8-5 ms. Special sequences that capture
the rapidly decaying sodium signal efficiently have been developed. Typical sodium
sequences constitute non-Cartesian sampling, e.g., non-linear k-space sampling that
enables the start of sampling directly at the k-space center. This has the advantage
that UTEs below 1 ms are achievable. Despite the advantage of short echo times,
non-Cartesian sampling exhibits drawbacks, which lead to more complicated image
reconstruction, worsened Point Spread Function (PSF ), and susceptibility to gradi-
ent imperfections. Proper calibration of the image reconstruction framework and the
gradient performance are essential, making non-Cartesian 23Na MRI complicated.
However, derived from Equation 2.5a, 23Na MRI greatly benefits from increased
field strength, which makes sodium MRI an exciting and essential research tool at
ultra-high field scanners (>3 T).

2.5 Multi-Quantum Coherences Magnetic Resonance

Imging
Besides the TSC estimation, 23Na MRI enables MR contrasts that could further
provide information about the tissue’s health status. Due to sodium’s 3/2 spin,
Triple Quantum (TQ) coherences arise from the biexponential relaxation observ-
able in slow-motion regimes such as WM and GM and are susceptible to the nu-
cleus’ molecular environment.[13] The TQ signal of 23Na holds promises for novel
or complementary information to conventional 23Na MRI. LaVerde et al.[35] showed
that the TQ signal is sensitive to changes in the sodium surroundings earlier than
standard 23Na MRI. The TQ signal’s amplitude scales linearly with the intracel-
lular sodium concentration shown by Schepkin et al.[36] in rat hearts. 23Na TQ
imaging has been demonstrated in the brain,[15, 37–39] with a direct correlation
to PET,[40, 41] the knee[42] and in spinal disc tissue.[43] TQ imaging of primary
brain tumors has been demonstrated by Boada et al.[44]. It was proposed as a
valuable tool to monitor intracellular sodium content changes related to neoplastic
changes. Conclusively, studying the full 23Na MR signal by leveraging MQC imaging
techniques[15] to acquire Single Quantum (SQ) and TQ signal components jointly
could provide more and novel information about the tissue, the macroscopic sodium
environment and the cell’s vitality overall.[28]

Unfortunately, probing sodium’s MQCs is challenging and requires specialized se-
quences. A typical MQC sequence with the coherence pathways, utilizing the tensor
formalism, is depicted in Figure 2.9. A 23Na MQC MRI pulse sequence combines the
effects of relaxation and RF pulses to excite and disentangle MQCs, converting them
into an NMR-detectable signal. RF pulses change the coherence order of the tensor
operators, whereas relaxation periods alter the rank. Hence, these sequences lever-
age three strong 90° RF pulses that are phase-cycled11 and combined with evolution
periods to select the coherence of interest.[8]

11RF phase-cycling is used to suppress unwanted signals. Alteration of the RF pulse’s phase,
in combination with adequate post-processing of the measured signal, enables cancellation or en-
hancement of a specific FID.[45]



2.5. Multi-Quantum Coherences Magnetic Resonance Imging 21

The first pulse, α1, excites the spins. Directly after the pulse, only T11 and T1-1

coherences are observable, which correspond to the transverse magnetization in the
xy-plane. In conventional 23Na MRI, T1-1 coherence is solely probed. However, to
probe multi-quantum coherences, e.g., TQ coherences, an evolution period, τevo, is
crucial for the MQCs to build up. Thanks to the evolution period, T11 and T1-1

coherences evolve into T31 and T21, and T3-1 and T2-1, respectively. The extent
of MQC coherence build-up is determined by the length of the evolution period,
τevo, and differs for biological tissues. After the evolution period, a second 90° RF
pulse is applied to disentangle the MQCs from the SQ pathway, rapidly followed by
a third 90° RF pulse that converts the MQCs back into an MR detectable signal,
T1-1. MQC sequences applied in pre-clinical settings also deploy a 180° pulse during
evolution to counter B0 inhomogeneities. However, this is not applicable for in vivo
acquisitions due to the SAR restrictions.

Multi-Quantum Coherence Pathways
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Figure 2.9: Pulse sequence with a multi-echo readout for probing multi-
quantum coherences. Three strong RF pulses, α, coupled with appropriate
phase-cycling, ϕ + ∆ϕ, and adequate evolution periods, τevo, are needed to
probe all the coherence paths of interest. The tensor formalism suffices to
keep track of the quantum coherence pathway. Coherence pathways are color-
coded representing: ZQC, SQC, DQC and TQC. Spatial encoding gradients
are missing since they are equivalent, as shown in Figure 2.4.

The correct distinction of the MQCs from the SQ pathway is challenging, and there
are two ways to do this effectively. The first one is termed Multi-Quantum Filtering
(MQF). These sequences use the superposition principle by cycling the RF phases
to annihilate unwanted signals. Hence, the MQCs are the desired signal, and these
components constructively interfere. The final signal is the summation of the care-
fully selected components of interest. A drawback of this method is that only one
signal of interest can be probed per phase-cycle, e.g., only TQ.
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A different approach is based on SQ, Double Quantum (DQ), and TQ signal com-
ponents oscillating at different frequencies. The 23Na MQC signal (signal after the
evolution time, before the second RF pulse is applied) is a superposition of SQ, DQ,
and TQ signal components, each oscillating at different frequencies. These compo-
nents can be separated by computing the 1D FT along the phase-cycle dimension.
One advantage of this method is the ability to simultaneously detect both the SQ
and TQ signals. Another advantage is that this sequence allows for TQ signal quan-
tification by normalizing the TQ signal with respect to the SQ signal. The TQ/SQ
ratio is another contrast that could provide additional information and holds the
potential to quantify the TQ signal, potentially extending TSC information. This
type of sequence was used in this thesis. The RF phase-cycling concept followed by
the Fourier transform is depicted in Figure 2.10.

23Na MQC signal 23Na MQC spectrum

SQ

TQ/SQ

TQ/SQ ratio

TQ

Figure 2.10: Superimposed phase-cycled 23Na MQC signal. Leveraging RF
phase-cycling samples the signal at different positions, e.g., ϕ1. This results
in volumetric acquisitions along the echo time, TE, with the same phase. The
oscillating signal consists of multiple underlying signal components, with the
TQ signal component oscillating at a frequency three times higher than the
SQ signal. When a full phase-cycle was acquired, ϕ1...6, computing the Fourier
transform along the phase-cycling dimension, F (ϕ), reveals the 23Na MQC
spectrum (SQ and TQ). Computing the ratio of both images, the TQ/SQ
ratio provides an additional quantitative parameter and could reveal additional
tissue information and, thus, potentially extend conventional TSC estimation.

Since 180° RF refocusing pulses are unsuited for in vivo 23Na MQC MRI, different
methods have been developed to counter B0 inhomogeneities. Fleysher et al.[46]
proposed to acquire two data sets, χ0 and χ90, with 90° phase offsets between each
data set. Both data sets are combined to regain otherwise lost signal by leveraging
the quadrature combination.
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23Na MQC MRI is a challenging imaging procedure with the hurdles foremost given
by:

1. Suffers from low NMR sensitivity and, hence, low SNR
2. Inherently slow due to RF phase-cycling
3. Limited in spatial resolution due to slow acquisition speed
4. In vivo application restricted by SAR
5. TQ signal being susceptible to field inhomogeneities

However, there are strong motivations to evaluate sodium characterization in vivo.
Still, all the hurdles mentioned above have made this feat scarce, albeit the promising
results in the few published studies. Therefore, 23Na MQC MRI could significantly
benefit from advanced sequences and reconstruction frameworks, leading to faster
and better resolved whole-brain sodium quantitative imaging.

2.6 Image reconstruction

MRI is generally known for lengthy acquisitions, so robust acceleration techniques
are warranted. However, MR acceleration is limited by several factors, including
hardware and signal sampling restrictions, which will be discussed in the following
sections.

Acceleration

Sampling the MR signal is restricted by fundamental signal processing theorems,
foremost limited by the Nyquist-Shannon sampling theorem.[47] This theorem states
that a given signal, x(t), which contains frequencies no higher than Ωmax, is suffi-
ciently defined by sampling points taken with a spacing of 1/(2Ωmax). This theorem
imposes sampling restrictions onto the MR signal, guaranteeing perfect signal recon-
struction only if the sampling frequency, fs, is at least fs > 2ωmax. If the theorem is
violated, meaning an insufficient sampling density was used, the FT reconstructed
signal exhibits aliasing artifacts, which lead to erroneous reconstructions. The sam-
pling density and the highest frequency of the signal of interest highly limit MRI
acceleration potential. Since the MR signal is sampled in the frequency domain, the
sampling density, ∆k, must be chosen adequately to enable accurate FT reconstruc-
tion. However, acceleration is only achieved by skipping phase-encoding lines, which
changes the sampling density, ∆k.

The captured MR signal is related to the image by computing the inverse Fourier
transform. As described, the FIDs are stored in the k-space matrix, representing
the frequency domain signal. k-Space exhibits a crucial structure with the con-
trast information stored at the k-space matrix’s center. These are low-frequency
components and contain most of the signal’s information but lack the information
about finer structures such as edges. The detailed information is encoded in the
high-frequency components located at the periphery of the k-space matrix. How-
ever, both components must be adequately sampled to guarantee accurate image
reconstruction (Figure 2.11) when only a simple forward model, such as the FT, is
used. The inverse Fourier-transformed signal is considered the MR image.
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Figure 2.11: In MRI, the acquired k-space is related to the image domain via
an inverse Fourier transform of the k-space matrix (shown in the top row).
Low frequencies are concentrated in the center, whereas high frequencies are
stored at the edges of the k-space matrix. Both frequency components are
needed to guarantee accurate image reconstruction when using a simple iFT.

However, leveraging prior knowledge enables the reconstruction of the undersampled
MR signal aliasing-free. Partial Fourier samples only a fraction (typically 70%) of
the phase-encoding steps and reconstructs the missing lines by exploiting k-space
symmetry.[48] More advanced techniques utilize dedicated hardware multi-receive
coils to exploit redundancy in the data. Predominantly used are Generalized Auto-
calibrating Partially Parallel Acquisitions (GRAPPA[49]) and Sensitivity Encoding
(SENSE[50]). These reconstruction techniques compute a kernel that generalizes
the linear relationship between multiple images to synthesize missing lines. Un-
fortunately, these techniques are limited to multi-receive coils, which are rare for
sodium MRI. Therefore, this thesis investigated algorithms to accelerate 23Na MQC
MRI based on sparsity assumptions or low-rank projections that do not rely on
specific hardware.

2.6.1 Sparse image reconstruction

An efficient way to reconstruct undersampled signals is based on sparse representa-
tions. In mathematical terms, a matrix, A, with m× n elements and each element
denoted as amn, is considered sparse when most elements are 0. Hence, only a few
coefficients are needed to express most of the data variance.[51] In this thesis, spar-
sity is defined as most of the matrix’s entries have to be close to 0 to be considered
sparse.

Compressed Sensing (CS )[52–54] is a reconstruction technique that allows for ac-
celerated MRI while maintaining decent image quality and has been successfully
used for many years. The paradigm states that under the assumptions of incoherent
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subsampling and a transform domain in which the signal is sparse, the signal can be
almost perfectly recovered from a fraction of the sampled points,[53] even if one is
far below the maximum frequency bandwidth determined by the Nyquist-Shannon-
Theorem. The assumption of sparsity affects the k-space sampling, too. If the data
is sparse in a transform domain and thus only a few coefficients are needed to ex-
press most of the data variance, this prior knowledge can be leveraged to obtain a
fraction of the data in the first place. Following, the assumption of sparsity during
MR signal sampling reduces the redundancy of the acquired data and, therefore,
enables acceleration of the acquisition.

Most signals are not intrinsically sparse and must be made sparse using an adequate
transform, e.g., Wavelet transform[55, 56] (WT). These transforms decompose the
input signal into basis functions that can be recombined to approximate the original
signal. In general, the transform enables chronological sorting of the contributions of
each basis function from most important (expressing most of the variance) to least
important (only representing a small portion of the overall data variance). Low-
frequency components express most of the signal’s variance, whereas slight variance
is expressed by high-frequency components, e.g., noise or detailed information like
edges. Cutting out on the small basis functions results in a reduced amount of
retained information. However, these small values mostly contain noise and do not
contribute substantially to the final signal. Nevertheless, thresholding too many
values will result in blurry images since detailed information is missing.

In terms of undersampling, leveraging sparsity reduces the complexity of the recon-
struction problem and, in return, helps to find a better solution to the optimization
problem. It is important to note that the SNR in this transform domain determines
the quality of the reconstruction. The easier it is to distinguish between the signal
of interest and unwanted noise or interference, the easier it is to set appropriate
reconstruction parameters and thus improve the reconstruction results.

The idea of sparsity has been introduced in MRI by Lustig et al.[57] to reconstruct
undersampled MR images. CS leverages sparsity with the three major components
involved in the reconstruction being:

1. Incoherent undersampling
2. Sparsity and thresholding
3. Non-linear reconstruction that includes the sparsity regularization and fidelity

to the sampled data

The first prerequisite of CS is incoherent undersampling. Regarding MRI sampling,
k-space sampling is a crucial part and determines the quality of the reconstruction.
Coherent subsampling of k-space leads to folding artifacts, given by the relation of
∆k = 1/FoV . An acceleration factor of R=2 leads to ∆kR=2 = 2∆k, which reduces
the field of view by a factor of 2 — conversely, incoherent subsampling leads to
noise-like artifacts (Figure 2.12). Subsequently, undersampling the high-frequency
information more drastically while sampling the low-frequency components more
densely is termed Variable Density (VD) undersampling. VD undersampling repre-
sents an efficient sampling strategy to accelerate MRI.[57]
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Figure 2.12: Acceleration factor of R=4 with Cartesian sampling was used.
Coherent k-space sampling leads to folding artifacts. Leveraging prior knowl-
edge of the k-space structure, variable density enables sampling of low-
frequency components with higher density than high-frequency ones, yielding
noise-like (incoherent) artifacts.

Sparsity and thresholding

Sparsity in MRI is a concept to compress the data to remove unnecessary image
information, e.g., noise, and only to retain important imaging features. Computing
an inverse FT of the undersampled k-space results in aliased images, which appear
to be noise-like. Hence, an assumption can be made that the noise-like artifacts
are treated as noise; therefore, denoising techniques can be leveraged to remove
those. A conventional denoising technique is based on thresholding operations, which
retain signal components above a certain threshold and penalize everything below
the threshold.

The probed signal can be regarded as a superposition of the actual signal, S(t), and
the noise, η, following: Sη(t) = S(t) + η. If η is known, shrinkage operations can
obtain the optimal values representing the signal by applying a threshold, λ, with
λ = η. The hard thresholding function sets values below λ to zero and, thus, does
not affect values > λ.

Shrinkage(x) =

{
x if |x| > λ,

0 otherwise.
(2.35)

λ must be determined with caution not to remove signal components of interest
but to adequately remove noise-like artifacts. The concept of signal, noise, and
thresholding is shown in (Figure 2.13).



2.6. Image reconstruction 27

Sparse signal

Am
pl

itu
de

1 Noise

Threshold Shrinkage

Noisy signal

2 3

Denoised signal
+

Figure 2.13: Real-world signals are a superposition of the signal of interest and
noise (1). Thresholding the superimposed signal removes the bias introduced
by noise (2), yielding a denoised signal (3). This concept is used in Com-
pressed Sensing to cut out the undersampling-related artifacts and to reduce
the complexity of the optimization problem.

Other than the signal shown in Figure 2.13, MR signals after applying the inverse
FT are not intrinsically sparse unless time-of-flight12 MRI was acquired. Therefore,
the signal to reconstruct is transformed to become sparse, e.g., leveraging a Wavelet
transform13. Thanks to the transform, identifying the basis functions that express
most of the data variance is straightforward. Hence, thresholding is utilized only
to retain the most essential information (Figure 2.14). This way, the complexity of
the optimization problem is significantly reduced, and optimal values are found by
shrinkage operations14.

Non-linear reconstruction and regularization

CS is a non-linear iterative reconstruction algorithm that tries to solve an optimiza-
tion problem by exploiting sparsity in a suited transform domain. The optimization
problem contains a term that exploits sparsity and a data fidelity term that ensures
that the new solution remains consistent with the sampled points.

12Time of flight angiography is an MRI technique to visualize the vascular system, without the
need of additional contrast agents. Only the vessels appear bright, making these images intrinsically
sparse.

13Similar to the Fourier transform, Wavelet transform enables representing a time-dependent
signal as a combination of basis function, e.g., Wavelets. These wavelets represent functions that
can be time-shifted, elongated, or compressed to represent various frequencies. A Wavelet analysis
decomposes the given signal multiple times into low and high-frequency components while retaining
the information.

14Shrinkage operations refer to methods that reduce the values toward 0, e.g., hard thresholding.
In terms of complex signals, the shrinkage operation is performed on the complex conjugate.
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Figure 2.14: Hard thresholding with only 10% of the largest Wavelet transform
(WT) coefficients preserved. MR images are highly sparse in suited transform
domains but are not always intrinsically sparse.

Finally, optimal reconstruction results are only obtained by setting appropriate regu-
larization parameters15. Regularization parameters include the number of iterations,
weightings for the sparsity, and the data fidelity term and threshold values. Espe-
cially sparsity needs to be balanced to avoid excessive removal of signal information.
Setting these parameters is challenging and usually requires extensive study. There-
fore, methods have been proposed to set these values automatically.[58]

The complexity of the regularization scales with the dimensions involved and makes
multi-dimensional CS challenging. It is important to note that the more prior in-
formation about the signal is known and included in the CS algorithm, the more
accurate the iterative reconstruction will be. Additionally, it might converge faster
to the optimal solution as it constrains the optimization complexity. Even though
CS highly relies on the reconstruction parameters, once these values are set, CS’ po-
tential to recover signals only from a fraction of the required points is outstanding
and a powerful method to accelerate MRI.

15Regularization refers to terms/ methods that penalize the objective function one tries to op-
timize. The regularization terms are added to improve reconstruction results. However, this in-
creases the complexity of the optimization problem and requires careful selection of reconstruction
parameters, e.g., weighting of the contribution of these terms.
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Compressed Sensing in MRI

In general, sparsity MRI reconstruction, formulated as sparse MRI by Lustig et
al.[57], is defined as an optimization problem of the form:

min
u
||Ψ(u)||1 s.t. ||ΦF (u)− f ||22 < σ2 (2.36)

The first term is a L1 regularization term with u being the target image to re-
construct and Ψ the sparsifying transform operator, e.g., Wavelet transform. The
second term corresponds to the data fidelity with ΦF indicating the partial Fourier
transform followed by random undersampling, f representing the measured data in
the frequency domain, and σ2 being the variance of the signal noise.[28] The CS
algorithm is depicted in Figure 2.15. The Split Bregman method can solve this
optimization problem efficiently, with u being a convex function.[59]

k-space

Aliased image 

Updated image 

Wavelet domain

Figure 2.15: A standard CS algorithm leveraging the Wavelet transform as
sparsity domain to reconstruct undersampled MRI. VD undersampled k-space,
f , is inverse Fourier transformed, F−1, exhibiting the corrupted image, ui with
i being the iteration index. Applying the sparsifying transform, Ψ, to the
corrupted image, ui, enables the identification of relevant structures to retain.
Leveraging hard thresholding, with λ representing the threshold value, retains
a small fraction (10%) of the initial values. Computing the inverse sparsifying
transform, Ψ−1, reconstructs a cleaner image, ui+1, since the most variance
of the data is expressed in the retained Wavelet coefficients. Lastly, ui+1 is
Fourier transformed, F , and the new solution is updated with the acquired
k-space lines to ensure data consistency (L2 norm).
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Split-Bregman Method

The Split Bregman Method (SBM )[60] iteratively solves constrained optimization
problems16 by leveraging regularization. The explanation given here is based on
the work of Goldstein et al.[59] and Montesinos et al.[61]. Leveraging the Bregman
iteration technique, it was shown by Yin et al.[62] that the optimization problem,
e.g., the one given in Equation 2.36 for sparse MRI, can be split into multiple
unconstrained subproblems:

uk+1 = min
u
||Ψ(u)||1 s.t.

µ

2
||ΦF (u)− fk||22 (2.37a)

fk+1 = fk + f − ΦFu
k+1 (2.37b)

with µ being a penalty function weight and k the iteration index. For each iteration
k, the SBM solves and updates u in the frequency domain by applying the discrete
Laplacian operator.

Using the image gradient is a common sparsifying transform approach known as
Total Variation (TV ) (Figure 2.16). Extensive details (e.g., noise) can be removed
by minimizing TV, and the important features (e.g., edges) are retrieved. The
Split-Bregman method is especially well-suited to minimize TV and is computa-
tionally efficient as it converges quickly when proper reconstruction parameters are
chosen.[59] By replacing, Ψ , with the image gradient, ∇, as sparsifying domain, the
L1 regularization term of Equation 2.37a is rewritten as an isotropic 2D TV model:

||(∇xu,∇yu)||2 =
∑
i,j

√
(∇xui,j)2 + (∇yui,j)2 (2.38)

Figure 2.16: The first order derivatives, ∇, along x and y are shown. Com-
puting the image gradient is a suitable sparsifying transform since only strong
intensity changes are retained, reflecting important image features.

16SBM solves the constrained problem exactly for convex functions.[61] Convex functions exhibit
a local minimum, which is also a global minimum. Finding the minimum of a convex function
intrinsically represents the best possible solution, making it a desirable property for optimization
problems.
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Leveraging TV by replacing dx ← ∇xu and dy ← ∇yu, the SBM can solve the
problem stated in Equation 2.37a. Therefore, the problem is rewritten to apply the
SBM with the Bregman updates as follows

min
u
||(dx, dy)||2 +

µ

2
||ΦF (u)− fk||22

+
λ

2
||dkx −∇xu− bkx||22 +

λ

2
||dky −∇yu− bky||22

(2.39)

dx and dy are complex-valued functions, with the optimal values computed by shrink-
age operations. Two regularization terms are presented here, but additional regular-
ization terms can extend the expression in Equation 2.39. The adaptation of SBM
for 23Na MQC MRI is given in Section 3.1.

SBM has the advantage that it provides an error cancellation effect, which yields
fast convergence:

bk+1
i = bki + (∇iu

k+1 − dk+1
i )

fk+1 = fk + f − ΦFu
k+1

(2.40)

with i = x, y and bk+1
i representing the Bregman updates. For each iteration, k,

the SBM computes an updated solution for u and d. The errors of the optimized
and newly computed u and d are added back into the constraints. It follows from
Equation 2.39 that u and d are independent, enabling decoupling and solving them
separately by differentiation and isotropic shrinkage operator.[61]

Solving for u first, the following subproblem is defined

uk+1 =min
u

µ

2
||ΦF (u)− fk||22

+
λ

2
||dkx −∇xu− bkx||22 +

λ

2
||dky −∇yu− bky||22

(2.41)

Following Montesinos et al.[61], the complex expression in Equation 2.41 can be
simplified to solve u in the Fourier domain as

uk+1 = F−1(F (rk)./K) (2.42)

with K = λF (∆) + γ + µR where ∆ represents the discrete Laplacian operator and
F the n-dimensional Fourier transform.

Optimal values for d are obtained by leveraging isotropic shrinkage operations. First,
the optimization problem for d is defined as

(dk+1
x , dk+1

y ) = min
dx, dy

||(dx, dy)||2 ++
λ

2
||dkx −∇xu− bkx||22 +

λ

2
||dky −∇yu− bky||22

(2.43)

and Equation 2.43 being efficiently solved by leveraging generalized shrinkage oper-
ations

dk+1
i = max(sk − λ, 0)

∇iu
k + bki
sk

(2.44)
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with i = x, y and sk defined as

sk =
√

[(∇xuk+1 + bx)× (∇xuk+1 + bx)∗] + [(∇yuk+1 + by)× (∇yuk+1 + by)∗]

(2.45)

and ∗ representing the complex conjugate.

Conclusively, SBM decouples the L1 and L2 norms, which enables one to access each
constrained function consecutively by minimizing each function separately. Shrink-
age operations solve the L1 subproblem, whereas the L2 subproblem is solved ana-
lytically in the Fourier domain.[61] Hence, the Split Bregman method is well-suited
explicitly for large optimization problems,[59] even though it is non-memory efficient
when large-scale problems are solved.
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2.6.2 Low-rank image reconstruction

The matrix, A, with size m×n, with n spanning the columns, is considered low-rank
when most columns are linearly dependent. Hence, the rank of a two-dimensional
matrix reflects the degree of the linear dependence of its vectorized column space.
The lower the rank of a matrix, with fixed matrix size m×n, the more coherent the
information is. The information can, therefore, be expressed as a linear combination
of the column vectors in the matrix, A. In this thesis, the rank always refers to the
column rank.

A1 =


3 2 4 8
5 3 8 11
3 9 5 8
2 3 9 11

 A2 =


1 2 4 8
4 8 16 32
2 4 8 16
6 12 24 48


The given matrix, A1, has a rank of 4 and is, thus, not of low rank. However, the
matrix, A2, is of low-rank with a rank of 1 since every column vector is a linear com-
bination of the first column vector given. Similarly, this idea can be used in MRI to
reconstruct undersampled k-space data. As shown in Figure 2.17, MR images’ infor-
mation is highly compressible and well retained in low-rank approximations. Similar
to the sparsity concept, however, leveraging structural transforms can enhance the
MR signal’s low-rankness.

Figure 2.17: Original (left, rank=450) and low-rank approximation (right,
rank=150) of a 2D MR image. Most image variance is concentrated in the
large singular values, and thresholding (SVT) small numbers enables image
compression without compromising image quality. In this example, only a
third of the column vectors are retained.
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Low-rank image reconstructions are closely related to sparse reconstructions and
are also performed iteratively to solve the optimization problem. Whereas sparse
reconstructions use a transform domain to obtain sparsity, low-rank reconstructions
exploit coherent information by enforcing the low-rankness of the data. To reduce
the rank of a matrix, A, a Singular Value Decomposition (SVD)17 is computed. The
main concept is identifying important singular values expressing most data variance
(Figure 2.17). Following the idea of sparse reconstruction models, low-rank methods
compute the singular values, which can be regarded as the ’sparsifying transform’.
Thresholding those only to retain the largest values enforces low-rankness, termed
Singular Value Thresholding (SVT ). Only the largest singular values express the
most data variance (Figure 2.17), enabling high data compression. Additionally, it
reduces the complexity of the reconstruction problem. However, similar to sparse
models, low-rank models solely approximate the optimal solution.

An example of highly coherent information in MRI is multi-echo snapshots. Multi-
echo acquisitions in MRI are intrinsically low-rank[63] because they share informa-
tion along the echo time. Therefore, the multi-echo data is well expressed by a linear
combination of the vectorized snapshots arranged along the echo time. Most MR
images’ low-rankness can be further enhanced by reshaping the initial data structure
into a highly structured matrix. The Hankel structure represents such a matrix and
is often used in MR low-rank image reconstruction algorithms.

Hankel matrix

A Hankel matrix, AH , is a structured square matrix with constant skew diagonals.
Hence, a 5× 5 Hankel matrix, AH5, is defined as

AH5 =


a0 a1 a2 a3 a4
a1 a2 a3 a4 a5
a2 a3 a4 a5 a6
a3 a4 a5 a6 a7
a4 a5 a6 a7 a8


Regarding MRI, Hankel matrices are very useful for exploiting coherent information
efficiently. Especially for highly multi-dimensional signals, the structured matrix
exploits the redundancy across this multi-dimensional space. In other words, the
multi-dimensional signal is projected onto a structured 2D space, which is enforced
to be low-rank by computing an SVD followed by SVT. It is important to note that
the computed Hankel matrix in this thesis exhibits a Hankel-like structure and refers
to the Hanekl matrix of the k-space.

17Singular value decomposition is the eigendecomposition of a square matrix, A. It factorizes the
given matrix A into A = UΣV T , thus enabling in-depth linear analysis of the system matrix. U is
the unitary matrix, Σ are the singular values and V are the singular vectors. An SVD determines
how much data variance is expressed by leveraging only a subset of U , Σ, and V .
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Simultaneous auto-calibrating and k-space estimation

Simultaneous Auto-calibrating and k-space Estimation (SAKE )[64] is an MRI re-
construction algorithm that builds a structured Hankel-like matrix, AH , which is
enforced to be low-rank to synthesize missing data points (Figure 2.18). The al-
gorithm tries to find an optimal rank of the matrix, AH , that expresses the most
variance in the data with the least amount of linear combinations of column vectors.
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Figure 2.18: The SAKE algorithm reconstructs undersampled k-space data
from multiple coil elements by exploiting redundancy. Undersampled k-space
subspaces are vectorized into a 2D Hankel-like matrix by sliding a window
across all k-spaces. Afterward, an SVD is computed to identify the linear cor-
relations between the multiple subspaces, and by leveraging SVT, low-rankness
is enforced to help synthesize missing data points. Finally, the matrix is re-
shaped into the initial k-space matrices’ structures, and by ensuring data fi-
delity, the solution is iteratively updated. Optimization problem: u is the
image one wants to reconstruct, ΦF is the Fourier sampling operator relat-
ing reconstructed with acquired data, f , k′ is a prior estimate of rank(A) of
matrix AH , enforcing subspace SVD and H∗ is the inverse structured matrix
operator.
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SAKE tries to solve the following optimization problem of the form:

min
u
||ΦF (u)− f ||2 s.t. u = H∗(AH), rank(AH) = k′

(2.46)

with u being the image to reconstruct, ΦF being the Fourier sampling operator
relating reconstructed with acquired data, f , k′ is a prior estimate of rank(AH) of
matrix A, enforcing subspace SVD. H∗ being the inverse structured matrix operator,
see [64] and the l2 norm enforces data consistency. SAKE was developed to exploit
redundancy across multi-receive channels. Each receive coil, Coil1...n, exhibits a
small redundant sub-space of the original signal, k-space1...n, spanned across all
coil elements. Sliding a window across the k-space data, the redundant k-space is
restructured with the columns spanning vectorized blocks of the window. The sliding
window is moved line by line and, thus, creates a Hankel-like matrix structure.
However, owing to the sliding window’s finite size, these skew diagonal entries are
not constant throughout the matrix.

Double Half-Echo k-space sampling

As described previously, SAKE is a reconstruction algorithm that leverages a highly
structured matrix, and by enforcing the low-rankness of this matrix, missing data
points are synthesized. However, another low-rank reconstruction framework used
in this thesis also leverages structured low-rank matrices to combine two k-space
halves. This method is termed Double Half-Echo (DHE ).[65, 66]

Due to the very short relaxation times the sodium nucleus exhibits, sequences with
short echo times are needed to sample the signal rapidly. Then, sodium sequences
start sampling at the k-space center to capture most of the signal. Unfortunately,
conventional Cartesian sampling is not optimal for UTE sampling. Strong dephasing
gradients are needed to start sampling from left to right to fill the k-space matrix
adequately (Figure 2.19). Playing the read dephase gradient prolongs the echo
time. Hence, non-Cartesian sampling strategies are used that more efficiently cover
k-space, e.g., Twisted Projection Imaging (TPI),[67] density-adapted radial,[68] or
spiral sampling.[69] These acquisition strategies have the advantage of starting sam-
pling at the k-space center, yielding very short TEs, and are not limited to sampling
along a straight line. Despite their advantages of ultrashort echo times, these sam-
pling techniques are highly susceptible to gradient system imperfections and provide
slightly blurred images due to oversampling of the k-space center, which yields a de-
graded PSF.

Cartesian imaging remains one of the most SNR-efficient sampling strategies due to
its equal coverage of low and high-frequency components in k-space. Unfortunately,
conventional Cartesian imaging is limited by longer TEs, which is unsuitable for 23Na
MRI. However, despite using Cartesian sampling, the Double Half-Echo technique
dramatically reduces the echo time by starting sampling from the k-space center.
Hence, no or small read dephase gradients are needed, enabling the set of TE below
1 ms. However, a reverse (-kx) and a forward (+kx) k-space half must be acquired
to form a full k-space line. Therefore, two readout gradients, Gx and −Gx, must be
leveraged with reverse polarity (Figure 2.19). This increases the acquisition time by
a factor of 2, but on the other hand, it provides valuable information about physical
parameters such as B0 inhomogeneities or gradient delays.[65]
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Figure 2.19: Cartesian and non-Cartesian sampling strategies with the respec-
tive read gradients. The orange dots represent sampling points obtained with
the same gradient, whereas the green dots correspond to those sampled with
reversed gradient polarity.

Gradient imperfections

Gradients determine the position in k-space. However, gradients represent a dy-
namic system of additional magnetic fields that can be turned on or off. Regarding
23Na MRI, switching the gradients on should usually be performed in the shortest
time possible to minimize signal relaxation. Following this, the ramp times of the
gradients are minimized as much as possible. However, the gradient’s amplitude is
not consistently stable. After each ramp time, the gradient oscillates until it settles,
and a static gradient amplitude is given. If these gradients suffer from slight imper-
fections, the resulting k-space position is biased by these imperfections, which results
in a small offset of the actual k-space position. Following, sampling directly after
the ramp time requires corrections of these gradient imperfections by, for instance,
leveraging the gradient impulse response function, which is done in non-Cartesian
acquisitions, or, to a certain extent, by leveraging a low-rank reconstruction frame-
work, which was used in this thesis.

Image reconstruction of Double Half-Echo

As previously described, sampling the NMR signal right after the gradient’s ramp-
up results in k-space offsets from the gradient imperfections. However, a low-rank
framework can be applied to correct for these biases. Image reconstruction of the
DHE technique could be performed by manually inserting the two data sets into
a shared k-space matrix. However, this results in corrupted images (Figure 2.20),
which is owed to the gradient imperfections at the k-space center. Leveraging low-
rank matrices helps concatenate both k-space halves adequately.

The reconstruction algorithm is based on structured matrix completion by leveraging
the Hankel-like matrix structure. In particular, the structured Hankel-like matrix
is similarly built as in SAKE, but to jointly exploit the coherent information across
both k-space halves (Figure 2.21). Following, enforcing the low-rankness of the
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Figure 2.20: Reconstruction performance of manually (drop in place) inserting
forward and reverse k-space halves, and by leveraging structured matrix com-
pletion (DHE) as proposed by Bydder et al.[65] Reconstructed k-space (top
row) is inverse Fourier transformed to obtain the MR image (bottom row).

structured matrix enables the effective exploitation of the correlations along the
rows. Thus, the framework provides an artifact-free reconstruction of both k-space
halves.

Like SAKE, DHE low-rank reconstruction is an optimization problem that tries to
minimize the rank of the structured matrix, AH , and relates the measured data, f , to
the reconstructed data, u with the optimization problem given in Equation 2.46. The
algorithm uses both k-space halves, denoted as forward and reverse k-space. Both
halves are vectorized by sliding a window across both k-spaces, yielding a column
vector spanning all elements under the sliding window. This results in several column
vectors in which the forward and reverse k-space halves are stacked. Therefore,
some vectors contain shared information about adjacent k-space points of forward
and reverse k-space halves, which can be efficiently exploited. Finally, the result
is a structured matrix, AH . The matrix’s structure is associated with a block-wise
Hankel matrix, with skew diagonal blocks repeating rather than individual values.
Afterward, the SVD of the matrix, AH , is computed to identify the most significant
singular values and is then enforced to be of low-rank, ĀH , by leveraging SVT.
Retaining only the most essential singular values compresses the data and reduces
the complexity of the reconstruction problem. SVT minimizes the extent of the
reconstruction artifacts that arose when both k-space halves were manually inserted
into a single k-space matrix, e.g., drop in place method (Figure 2.20). Finally, the
least squares problem between the newly reconstructed data and the initial solution
is solved and fed back into the reconstruction algorithm, yielding both k-space halves
aliasing-free reconstructed.
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Figure 2.21: Image reconstruction and matrix formation for the DHE low-
rank framework. Both k-space halves (forward and reverse) are reshaped into
a Hanekl-like 2D matrix by consecutively sliding a window across both k-
space halves. The vectorized k-space halves are stacked along the columns
of the new matrix, with some vectors containing shared information about
both k-space halves. An SVD of the Hankel-like matrix is computed, followed
by SVT to enforce low-rankness. Lastly, the data is reshaped into its initial
structure, yielding two k-space halves while ensuring data consistency. The
solution is iteratively updated until the stopping criterion is met, which yields
two fully reconstructed k-space halves. u is the target image, ΦF representing
the Fourier sampling operator, f the acquired data in k-space, H represents
the structured matrix transform operator, with H∗ being the inverse matrix
transform operator and k′ the prior rank of the data.

Conclusively, both low-rank frameworks (SAKE and DHE) exploit coherent infor-
mation by creating a structured Hankel-like matrix. However, the main difference
between both techniques is that the matrices fulfill different structural purposes.
Whereas SAKE tries to synthesize missing data points by enforcing low rankness,
the DHE framework exploits the coherent information across both k-space halves to
minimize the extent of the artifacts arising from gradient imperfections. Neverthe-
less, both frameworks are non-linear reconstruction techniques that try to solve a
similar optimization problem related to rank reduction.
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3. Methods and Materials

This chapter introduces the experimental setups and has two sections with Sec-
tion 3.1 covering sparse reconstruction and Section 3.2 explaining low-rank recon-
struction for 23Na and 23Na MQC MRI. Parts of this chapter have been published
in Licht et al.[28] and Licht et al.[70] by Wiley.

3.1 Multi-Dimensional Compressed Sensing reconstruc-

tion to advance 23Na MQC MRI on clinical scanners

3.1.1 Image acquisition

3.1.1.1 Numerical simulation

23Na MQC brain data were simulated based on a numerical phantom from Collins
et al.[71] utilizing the Fleysher phase-cycle scheme.[46] Phantom brain data were
resized via interpolation of nearest neighbor to approximate 23Na MQC resolution
with 7x7x10mm3, resulting in a three-compartment model consisting of WM, GM
and Cerebrospinal fluid (CSF). T1 and T ∗

2 values for each compartment were assigned
according to the literature as [24, 72]: (T1/ T ∗

2f/ T ∗
2s in ms) for WM (34/ 3.4/ 18),

GM (32/ 3.6/ 15) and CSF (55/ 51/ 51) with a magnetic field strength of B0 =
3 T. 23Na NMR dynamics were simulated by leveraging the irreducible spherical
tensor operator formalism of Hancu et al.[73] and the evolution equations of van der
Maarel[16] with hard pulse approximation. Random Gaussian noise with varying
power defined as P = mean(η2) was added.

3.1.1.2 Phantom and in vivo

Imaging was performed on a NaCl/agarose phantom and 7 healthy volunteers at
3 T (4 volunteers) and 7 T (3 volunteers) MRI (Siemens MAGNETOM Trio and
Magnetom, Erlangen, Germany) systems, each equipped with a 1Tx/Rx dual-tuned
1H/23Na head coil (3 T: RAPID Biomedical, Rimpar, Germany, 7 T: QED, Cleve-
land, OH, USA). According to the Declaration of Helsinki, a local ethical committee
approved the study, and volunteers were recruited after providing written informed
consent. A custom 3D multi-echo multi-quantum sequence termed CRISTINA [15]
was used to obtain the single and triple-quantum filtered images with an optimized
2x6-step phase cycle.[74] Before each measurement, B0 shimming was performed to
minimize field inhomogeneities, and the flip angle of RF pulses was globally cali-
brated. CRISTINA evolution time for 3 T acquisitions was determined via a global
TQ time proportional phase incrementation (TQTPPI[75]) spectroscopic prescan
followed by a subsequent offline fit to map the TQ signal evolution over time to
determine optimal echo sampling time. The evolution time for 7 T scans was pre-set
to 10 ms.[74]

To validate accurate signal intensity reconstruction, fully sampled (R=1) images of
a phantom consisting of 9 tubes (350 mL each) with varying agarose (0, 2, and
4%) and sodium (50, 100, 150-mM) concentrations were obtained. For 3 T in vivo
acquisitions, a 2D anatomical 1H T1 scan was performed with a nominal resolution
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Table 3.1: Sequence parameters for numerical simulations, phantom study at
3 T, retrospective in vivo study at 3 T, and prospective in vivo study at 7 T.
*Hard pulse approximation was used.

Parameter Numerical Phantom In vivo In vivo
Simulation 3 T 3 T 3 T 7 T

FoV (mm3) 181x217x181 190x190x200 230x230x160 220x220x220
Matrix size 30x30x20 24x24x10 24x24x8 36x36x22
TE1/ ∆TE (ms) 1.0/ 5.0 1.67/ 6.4 1.62/ 6.2 1.16/ 4.5
Bandwidth (Hz/px) - 200 220 330
TR (ms) 200 150 150 196
Pulse duration (ms) 0* 0.5 0.5 0.7
Evolution time (ms) 10 12.1 10.1±2.12 10
Averages 1 17 11 7
TA (min) - 2x60 2x31 2x34

of 1x1x5mm3 within 4 min. For 7 T acquisitions, a prototype Compressed Sensing
3D anatomical 1H MP2RAGE [76] scan was performed with a nominal resolution of
1x1x1mm3 within 4 min. Four vials were placed next to the head, with concentra-
tions of agarose and 23Na of: (4%; 100 mM), (4%; 50 mM), (2%; 100 mM) and (2%;
50mM).

Numerical simulations, phantom, and 3 T in vivo data were retrospectively under-
sampled by factors of R=2 to 7, and in vivo 7 T data were prospectively under-
sampled by R=2. Additionally, one data set was more drastically undersampled
with R=3, yielding a matrix size 30x30x26. 3D variable-density random sampling
patterns, with undersampling solely performed along ky and kz, following a Poisson
distribution[77] were used to retrospectively and prospectively undersample 23Na
MQC k-space data. Undersampling patterns were alternated along phase-cycling
to enhance incoherence. The level of incoherence was measured by computing the
number of points sampled at least once during the phase-cycling, divided by the size
of the k-space matrix.

3.1.2 Image reconstruction

Split-Bregman method for accelerated 23Na MQC MRI

Owed to the fact that only 3D 23Na MQC MRI was acquired, the isotropic TV
model defined in Equation 2.38 was extended to 3D giving rise to:

||(∇xu,∇yu∇zu)||2 =
∑
i,j,l

√
(∇xui,j,l)2 + (∇yui,j,l)2 +∇zui,j,l)2 (3.1)

The CS algorithm proposed by Goldstein et al.[59] was used to develop the multi-
dimensional CS model for accelerated 23Na MQC MRI. It has been shown that
optimal reconstruction results are achieved by exploiting sparsity in all imaging
dimensions.[61] 23Na MQC MRI involves multi-echo sampling paired with RF phase-
cycling, which makes 23Na MQC MRI a Five-dimensional (5D) signal structure.
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Therefore, leveraging the multi-dimensional space of the signal by exploiting sparsity
in each dimension separately improves image reconstruction results. Subsequently,
the constrained optimization problem for 23Na MQC MRI is formulated as

min
u
∥|∇xu,∇yu,∇zu)||2 + ||ΨTEu||2 + ||Ψϕu||2 , s.t. ||ΦF (u)− f ||22 < σ2

(3.2)

ΨTE and Ψϕ represent the sparsifying transforms, e.g., Fourier transform along the
multi-echo and phase cycle dimensions, respectively. In analogy to Equation 2.39,
replacing dTE ← ΨTEu and dϕ ← Ψϕu allows to apply the SBM with the Bregman
updates to the optimization problem stated in Equation 3.2 as follows:

min
u
||(dx, dy, dz)||2 + ||dTE||2 + ||dϕ||2 +

µ

2
||ΦF (u)− fk||22

+
λ

2
||dkx −∇xu− bkx||22 +

λ

2
||dky −∇yu− bky||22

+
λ

2
||dkz −∇zu− bkz ||22 +

λ

2
||dkTE −ΨTEu− bkTE||22

+
λ

2
||dkϕ −Ψϕu− bkϕ||22

(3.3)

Again, dTE and dϕ are complex-valued, with bkn for n = x, y, z, TE, ϕ being the
Bregman updates at each iteration k. Consequently, the SBM solves and updates
u and d iteratively, where the error in the constraint is added back. Following, to
solve Equation 3.3 separately, it is decomposed into subproblems to solve uk+1 by
differentiation and dk+1 by isotropic shrinkage operators according to Equation 2.44.

uk+1 =min
u

µ

2
||ΦF (u)− fk||22 +

λ

2
||dkx −∇xu− bkx||22

+
λ

2
||dky −∇yu− bky||22 +

λ

2
||dkz −∇zu− bkz ||22

+
λ

2
||dkTE −ΨTEu− bkTE||22 +

λ

2
||dkϕ −Ψϕu− bkϕ||22

(3.4)

Meanwhile, spatial, temporal, and phase-cycle sparsity are introduced as individual
regularization terms. Hence, they are solved separately as:

(dk+1
x , dk+1

y , dk+1
z ) =min

d
||(dx, dy, dz)||2 +

λ

2
||dkx −∇xu

k+1 − bkx||22

+
λ

2
||dky −∇yu

k+1 − bky||22 +
λ

2
||dkz −∇zu

z+1 − bkx||22
(3.5)

sk =

√
[(∇xu

k+1 + bx)× (∇xu
k+1 + bx)

∗] + [(∇yu
k+1 + by)× (∇yu

k+1 + by)
∗]+

[(∇zu
k+1 + bz)× (∇zu

k+1 + bz)
∗]

with (.)∗ being the complex conjugate. Equivalently, the added regularization terms
to exploit sparsity along multi-echo and phase-cycle dimensions are solved by lever-
aging the general shrinkage operations as defined in Equation 2.44, according to

(dk+1
TE ) =min

dTE

||(dTE)||2 +
λ

2
||dkTE −ΨTEu

k+1 − bkTE||22

(dk+1
ϕ ) =min

dϕ
||(dϕ)||2 +

λ

2
||dkϕ −Ψϕu

k+1 − bkϕ||22
(3.6)



44 3. Methods and Materials

skTE =
√

[(ΨTEuk+1 + bTE)× (ΨTEuk+1 + bTE)∗]

skϕ =
√

[(Ψϕuk+1 + bϕ)× (Ψϕuk+1 + bϕ)∗]

Hence, the SBM for solving 2D regularized problems was further extended to 3D
and, finally, to 5D to apply to 23Na MQC MRI.

Multiple repetitions obtained with the same undersampling pattern were averaged
before reconstruction. Each phase-cycle data set, χ0 and χ90, were reconstructed
individually. The constrained optimization algorithm for 3D and 5D CS aims to
solve the following problems:

3D CS : min
u

λp||(∇xu,∇yu,∇zu)||2 s.t. ||ΦF (u)− f ||22 < σ2

5D CS : min
u

λp||(∇xu,∇yu,∇zu)||2 + λTE||ΨTEu||2 + λφ||Ψφu||2

s.t. ||ΦF (u)− f ||22 < σ2

(3.7)

with u being the target image to reconstruct, ∇ represents the first order derivative
along the spatial dimensions, x, y and z, Ψ the Fourier transform along the tem-
poral and phase cycle dimension and λ being the sparsity weighting parameter for
spatial, p = [x, y, z], multi-echo, TE, and phase-cycle dimension, ϕ. The optimal
values for each regularization term were explicitly computed by leveraging shrinkage
operations[59] that used different sparsity thresholds (β). The second term corre-
sponds to the data fidelity with ΦF indicating the partial Fourier transform followed
by random undersampling, f representing the measured data in the frequency do-
main, and σ2 being the variance of the signal noise. 3D CS reconstructed each 3D
volume separately. The pseudo-code for the proposed 5D CS algorithm is given
below.

Algorithm 1 Proposed CS algorithm for 23Na MQC MRI based on Split-Bregman
method.

Require: f 0 = f, K̂

while ||uk+1−uk||
||uk|| > 10−4 do

Sk+1 = λp∇T
x (∇xu

k − bxk) + λp∇T
y (∇yu

k − byk) + λp∇T
z (∇zu

k − bzk)+
λTEΨ

T
TE(ΨTEu

k − bTEk) + λφΨ
T
φ (Ψφu

k − bφk) ▷ S: Sparse components
rhsk+1 = (µF−1Rf)k + γuk + Sk+1

uk+1 = F−1(F(rhs)./K̂)
[xk+1, yk+1, zk+1] = shrink3(∇xu

k+1 + bxk,∇yu
k+1 + byk,∇zu

k+1 + bzk, βp) ▷
Thresholding

TEk+1 = shrink1(dTE
k+1 + bTEk, βTE)

φk+1 = shrink1(dφ
k+1 + bφk, βφ)

bxk+1 = bxk + dxk+1 − xk+1 ▷ Bregman updates
byk+1 = byk + dyk+1 − yk+1

bzk+1 = bzk + dzk+1 − zk+1

bTEk+1 = bTEk + dTEk+1 − TEk+1

bφk+1 = bφk + dφk+1 − φk+1

fk+1 = fk + f 0 −RF−1(uk+1) ▷ Data fidelity
end while
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Wavelet transform and Total Variation are common approaches to sparsify MR im-
ages. To select the best option, a comparison between these methods was performed.
Reconstruction performances of Wavelet transform and TV were tested, with both
performing similarly (Figure 9.1). Hence, TV was utilized as the transform to exploit
sparsity in the spatial domains.

In the 5D CS optimization problem, the latter regularization terms exploit sparsity
along the multi-echo and phase-cycle dimensions. A sparser domain is obtained by
separately computing the 1D Fourier transform along the multi-echo and phase-cycle
dimensions (Figure 3.1).

Figure 3.1: Demonstration of sparsity along the phase-cycling (A) and the
multi-echo, TE (B) with u being the image. (A) Performing the Fourier trans-
form along the phase-cycle dimension reveals the 23Na MQC spectrum. The
TQ image is depicted in image ϕ1, and the SQ images are shown in images ϕ3

and ϕ5. It is demonstrated that the images at index 2 and 6 are pure noise,
which shows that the image is sparser in the transformed domain. Addition-
ally, the Fourier transform directly enables the regularization on the 23Na
MQC spectrum, further improving reconstruction performance by tuning the
reconstruction towards either the SQ or TQ signal component. (B) Perform-
ing a Fourier transform along the multi-echo dimension reveals the dominant
Fourier coefficients, depicted at the center (TE5). Smaller Fourier coefficients
represent noise and are shown in TE1,TE9 and TE10. Conclusively, applying
the Fourier transform along the echo time and the phase-cycle dimension re-
sults in sparser images, reducing the optimization problem’s complexity. This
sparsity is exploited within the additional regularization terms of the 5D CS
model to find a better solution.
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Based on empirical evaluation, spatial sparsity term weighting was set to λp = 1,
with the optimal threshold being βp = 1.5 and βp = 0.3 for 3D and 5D CS, respec-
tively. However, multi-dimensional sparsity is challenging to balance. Therefore,
additional sparsity term weightings for 5D CS were determined by performing 144
CS reconstructions with weighting factors λTE = 0.1...1.2 and λϕ = 1...2.1 (12x12
combinations), enabling to find the optimal regularization parameters (Figure 9.2).
Identically, optimal sparsity thresholds for the additional terms in the 5D CS model
were empirically determined with βTE = 0.1...1.2 and βϕ = 1.0...2.1 (Figure 9.3).
Based on the empirical results, optimal sparsity weightings were λTE = 0.2 and
λϕ = 1.9 and optimal sparsity thresholds were βTE = 0.5 and βϕ = 1.6. Reconstruc-
tion times for numerical simulations were 550 seconds for 3D (50 iterations) and
227 seconds for 5D CS (300 iterations), and 3 T in vivo 313 seconds for 3D (100
iterations) and 55 seconds (250 iterations) for 5D CS.

3.1.3 Image processing

k-Space was zero-padded with the addition of 3D Hamming windowing. The first
two echoes of CRISTINA phase data were used to compute a 3D B0 map to obtain
the signal off-resonances for the combination of the two-phase cycles (χ0 and χ90)
according to Fleysher et al.[46]. Finally, applying a Fourier transform along the
phase-cycle dimension revealed the SQ and TQ spectra. Reconstructed SQ and TQ
images were fitted to the MQC bi-exponential model in Equation 3.8.

TQ : ATQ

(
e
− TE

T∗
2s − e

− TE
T∗
2f

)
e
− τ1

T∗
2s +DCTQ

SQ :

(
ASQ1e

−TE+τ1+τ2
T∗
2s + ASQ2e

−TE+τ1+τ2
T∗
2f

)
e
−TE+τ1+τ2

T2s∗ +DCSQ

(3.8)

with ATQ, ASQ1 , ASQ2 being triple- and single-quantum amplitude terms (slow and
fast), DCTQ,SQ = DC offset accounting for noise, T ∗

2s= T ∗
2 slow, T ∗

2f= T ∗
2 fast, τ1

= evolution time and τ2 = mixing time (time between second and third RF pulse).
The value of TQC at TE = 0 ms is 0 from theory and was added to the multi-
echo data to enhance the fit. First, the voxel-wise multiparametric fit of TQ was
performed, followed by the SQ fit with updated initial values, using non-linear least
squares solver in Matlab (R2020a, Mathworks, Natick, MA, USA) leveraging parallel
computing, providing T ∗

2s and T ∗
2f maps. The proposed workflow for the project is

depicted in Figure 3.2.

3.1.4 Image analysis

Quantitative analysis of the phantom study was performed in a pre-determined Re-
gion of Interest (ROI ) that was drawn over each tube on a single central slice,
avoiding edges. ROI mean values served to compute SQ and TQ/SQ ratios for
each tube. Linear regression was performed between SQ and prior known sodium
concentration, TQ/SQ ratio, and known agar concentrations. Retrospectively un-
dersampled numerical simulations and 3 T in vivo data, provided the fully sampled
images, were analyzed using the Structural Similarity Index (SSIM )[78], the Root
Mean Squared Error (RMSE ), and the Signal-to-Noise Ratio (SNR). For numerical
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Figure 3.2: Workflow including variable density undersampling and CS re-
construction for accelerated 23Na MQC MRI. (1) Image acquisition uses a 3-
pulse RF phase-cycled 3D Cartesian multi-echo readout sequence, yielding a 5-
dimensional signal structure involving 3D spatial, multi-echo, and phase-cycle
dimensions. Undersampling is performed along ky and kz (phase-encoding) by
alternating the patterns along the phase-cycle dimension, ϕ. (2) Undersampled
high-multidimensional k-space data is reconstructed leveraging a conventional
3D or a custom-built 5D CS algorithm that exploits sparsity in all imaging
dimensions. (3) The CS reconstructed data is processed using Fleysher com-
bination and applying a Fourier transform along the phase cycle dimension
revealed the 23Na MQC spectra, e.g., SQ and TQ signal components. Finally,
the reconstructed and processed images enable in vivo quantification of Tissue
Sodium Concentration (TSC) and TQ/SQ ratio.
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simulations, the metrics were evaluated over the whole image, whereas for the in
vivo study, the metrics were computed for the head only.

SSIM(u, ref) = l(u, ref) ∗ c(u, ref) ∗ s(u, ref)

RMSE(u, ref) =

√√√√ 1

n

n∑
i=1

|ui − refi|2

SNR(u, ref) = 20log10

(
uROI

σBG

) (3.9)

with ref being the fully sampled reference image and SSIM(u, ref) the product of
luminescence, l(u, ref), contrast, c(u, ref) and structure, s(u, ref). SI represents
the mean signal intensity in a specific region. uROI is the region of interest and
uBG is the noise obtained from the background, BG. Normalized intensity complex
magnitude images were used to compute the SSIM and the RMSE. For 7 T prospec-
tively undersampled data, the relative degree of focus was measured by computing
the focus measure as the energy of the Laplacian[79] inside the region of interest.
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3.2 Low-Rank reconstruction to advance 23Na MQC

MRI on clinical scanners

3.2.1 Modified CRISTINA sequence design

The three-pulse 3D Cartesian simultaneous Single and Triple Quantum 23Na
(CRISTINA)[15] sequence was modified to enable a one-line k-space sampling be-
tween the first and second RF pulse to capture a conventional sodium image. A
Cartesian Double Half-Echo (DHE) time was chosen to achieve a very short echo
time (TE). A fixed evolution time of 10 ms[74] and a bandwidth of 330 Hz/px were
used for all experiments. Compared to the MQC signals, the DHE signal benefits
from 1) a shorter echo time, 2) the contribution from the total sodium signal and 3)
a faster signal accumulation throughout the multiple phase-cycling steps. As such,
DHE and MQC shared the same FoV, but were decoupled for their matrix sizes
and k-space undersampling patterns. DHE data achieved higher-resolution sodium
images while MQC data targeted tissue sodium characterization, albeit with a lower
spatial resolution. To accelerate MQC 23Na acquisition and improve its spatial res-
olution, the MQC 23Na data were undersampled with Cartesian 3D ky-kz variable-
density random undersampling patterns following a Poisson distribution.[77] 23Na
MQC k-space data were undersampled first retrospectively and then prospectively.
Undersampling patterns were varied for each phase-cycling step to enhance incoher-
ence.

3.2.2 Numerical simulations

Double Half-Echo sodium images were simulated considering the two sodium signal
compartments according to Equation 3.10 with T1 and fast and slow T ∗

2 values (T1/
T ∗
2s/ T

∗
2f , in ms): WM (34/ 3.4/ 18), GM (32/ 3.6/ 15) and CSF (55/ 51/ 51).[24, 72]

S23Na = 0.6 ∗ e
− TE

T∗
2f + 0.4 ∗ e

−TE
T∗
2s (3.10)

Gradient imperfections were simulated by adding random phase offsets to the first
row of each k-space half. Additionally, noise, η, with the power of P = 0.0016 defined
as P = mean(η2), was added. Both k-space halves were simulated with an echo
fraction of 50 (i.e., no k-space overlap), 52, 54 and 56% of k-space sampled (Figure
2) to obtain short echo times. Sampling an echo fraction below 60% of each k-space
line has induced artifacts without the DHE low-rank framework.[65] Therefore, both
k-space halves were jointly reconstructed with a low-rank coupling constraint with
additionally added sparsity as detailed below. Following, two reconstructed k-space
halves are obtained. However, combining both k-space halves does not benefit SNR
since information was already shared during reconstruction.[65] Therefore, only the
fully reconstructed forward k-space half was retained.

Multi-quantum coherences data was simulated with the same T1 and T2* values
for each compartment. Simulation parameters included an evolution time set to
τevo = 10 ms, TR = 200 ms and field strength of B0 = 7 T. 23Na NMR dynamics
were simulated using the irreducible spherical tensor operator formalism of Hancu
et al.[73] and the evolution equations of van der Maarel[16] with the hard pulse
approximation. Random Gaussian noise with varying power was then added to the
data.
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3.2.3 Data acquisition

Experimentally, prior to the MQC sodium scans, B0 shimming was repeated with
a 1H-based vendor provided 3D shimming routine until convergence. A custom-
built B+

1 calibration sequence was employed to calibrate the three global 90° RF
pulses. Modified CRISTINA acquisition parameters were summarized in Table 3.2.
The DHE and MQC samplings shared the same FOV but were decoupled for their
matrix sizes, and thus their resolutions.

Phantom:
Fully sampled (R[MQC]=1) images of a phantom consisting of 9 tubes (350 mL each)
with varying agarose (0, 2 and 4%) and sodium (50, 100, 150-mM) concentrations
were obtained. Prospectively undersampled (R[MQC]=3) MQC images of the same
phantom were obtained conjointly with fully sampled DHE data.

in vivo:
The new CRISTINA sequence was tested on 6 volunteers (4 females, 2 males) under-
going 23Na and 23Na MQC MRI with 2 fully-sampled and 4 prospectively undersam-
pled datasets. The study was approved by local ethical committee and volunteers
were recruited after providing written informed consent according to the Declaration
of Helsinki. Four reference vials were placed next to the head, with concentrations
of agarose and 23Na of: (4%; 100 mM), (4%; 50 mM), (2%; 100 mM) and (2%; 50
mM). Each examination included a prototype 3D anatomical 1H MP2RAGE[76, 80]
scan performed with a nominal resolution of 1x1x1mm3 and accelerated 4-fold with
Compressed Sensing to fit within 4 min.

3.2.4 Image reconstruction

3.2.4.1 Double Half-Echo

DHE images were reconstructed by a low-rank coupling constraint proposed by Byd-
der et al.[65, 66]. Manually inserting the data (’drop-in-place’ method) into a single
k-space matrix results in strong aliasing artifacts.[65] To compensate for artifacts
arising from k-space undersampling, the framework identifies correlations along the
rows of both k-space halves by enforcing low-rankness of the structured k-space ma-
trix, as detailed in Figure 1 (1). Singular value filtering was used, leading to the
following optimization problem that is regularized by an additional sparsity con-
straint:

min
u
||ΦF (u)− f ||2 + λWT ||ΨF (u)||1 s.t. rank(AH) = k′, u = H∗(AH) (3.11)

with u being the target image, ΦF representing the Fourier sampling operator, f the
acquired data in k-space, λWT sparsity weighting parameter and ΨF the sparsifying
transform performing an inverse Fourier transform followed by a Wavelet transform.
H represents the structured matrix transform operator, with H∗ being the inverse
matrix transform operator and k′ the prior rank of the data. DHE reconstruction
was performed slice-wise, a kernel of size of 3x3 was used for simulations, phantom
and in vivo data. Reconstruction was performed for a maximum of 80 iterations
( 70 seconds) and with up to 75% of Wavelet sparsity.
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3.2.4.2 Multi-Quantum Coherences

Simultaneous autocalibrating and k-space estimation (SAKE[64]) is a low-rank re-
construction framework that builds a highly structured matrix to exploit coherent
information across various k-space subspaces, summarized in Figure 1 (2). It has
already been mentioned by Shin et al.[64] and Holme et al.[81] that a major draw-
back of SAKE is it is computationally expensive because, for each iteration, a new
SVD needs to be computed. We address this shortcoming by setting a prior rank for
the data matrix only to calculate a subset of singular vectors[82] (available from 1)
reducing reconstruction time as suggested by Shin et al.[64]. 23Na MQC data were
jointly reconstructed by 5D Compressed Sensing (5D CS[28]) or by SAKE, which
solves the following optimization problem

min
u
||ΦF (D(u))− f ||2 s.t. u = H∗(AH), rank(AH) = k′

(3.12)

with u being the image one wants to reconstruct, ΦF being the Fourier sampling
operator relating reconstructed with acquired data, f , D represents the matrix op-
erator to reshape the 5D signal input into a structured 4D matrix with alternating
echo and phase-cycle snapshots. k′ is a prior estimate of rank(AH) of matrix A, en-
forcing subspace SVD. H∗ being the inverse structured matrix operator, see[64] and
the l2 norm enforces data consistency. A kernel size of 3x3x2 for simulations, phan-
tom and in vivo data was used with a maximum of 100 iterations (reconstruction
time <2 min). The proposed workflow for the project is depicted in Figure 3.3.

Our experiments revealed that SAKE highly depends on optimal shrinkage thresh-
olds and the appropriate selection of ranks to retain a sufficient amount of singular
values that express most of the data variances. This is especially crucial for 23Na
MQC MRI since SQ and TQ signal components are jointly reconstructed by exploit-
ing coherent information of the superimposed 23Na MQC signal. Our experiments
showed that a shrinkage value that was too high led to signal leakage of SQ into
the TQ component, whereas a shrinkage value that was too low produced aliased
images (Figure 9.7).

3.2.5 Image processing

After reconstruction of the two undersampled 23Na MQC data sets (χ0 and χ90), they
were combined according to the method of Fleysher et al.[46]. Finally, applying a
Fourier Transform along the phase-cycle dimension revealed the SQ and TQ spectra.
Reconstructed SQ and TQ images were fitted to the MQC bi-exponential model.

TQ : ATQ

(
e
− TE

T∗
2s − e

− TE
T∗
2f

)
e
− τ1

T∗
2s +DCTQ

SQ :

(
ASQ1e

−TE+τ1+τ2
T∗
2s + ASQ2e

−TE+τ1+τ2
T∗
2f

)
e
−TE+τ1+τ2

T2s∗ +DCSQ

(3.13)

with ATQ, ASQ1 , ASQ2 being triple- and single-quantum amplitude terms (slow and
fast), DCTQ,SQ = DC offset accounting for noise, T ∗

2s= T ∗
2 slow, T ∗

2f= T ∗
2 fast, τ1

= evolution time and τ2 = mixing time (time between second and third RF pulse).

1https : //github.com/cpmusco/bksvd
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The value of the TQ signal at TE = 0 ms is 0 from theory and was added to the
multi-echo data to enhance the fit. First, the voxel-wise multi-parametric fit of TQ
was performed, followed by the SQ fit with updated initial values, using a non-linear
least squares solver in Matlab (R2020a, Mathworks, Natick, MA, USA) leveraging
parallel computing, providing T ∗

2s and T ∗
2f maps.

3.2.6 Image analysis

For the phantom study, quantitative analysis was performed in a pre-determined
region of interest (ROI) drawn over each tube on a single central slice, avoiding
edges. Linear regression was computed between the SQ signal, prior known sodium
concentrations, and the TQ/SQ ratio and prior known agar concentrations. For the
numerical simulations and in vivo data, provided the fully sampled images, structural
similarity index (SSIM)[78], root mean squared error (RMSE) and signal-to-noise
ratio (SNR) were computed for each undersampling experiment.

SSIM(u, ref) = l(u, ref) ∗ c(u, ref) ∗ s(u, ref)

RMSE(u, ref) =

√√√√ 1

n

n∑
i=1

|ui − refi|2

SNR(u, ref) = 20log10

(
uROI

σBG

) (3.14)

with ref being the fully sampled reference image and SSIM(x, y) the product of
luminescence, l(x, y), contrast, c(x, y) and structure, s(x, y). SI represents the
mean signal intensity in a specific region. uROI is the region of interest and uBG

is the noise obtained from the background, BG. Normalized intensity complex
magnitude images were used to compute the SSIM and the RMSE. MP2RAGE
images were segmented with SPM12 [83] into WM, GM, and CSF masks. TSC
estimates were obtained using linear interpolation based on reference vials placed
next to the volunteer’s head and/ or the CSF [84]. In addition, TSC and TQ/SQ
ratios were compared employing a two-sided t-test with α = 0.05. The DHE images
were reconstructed by manually inserting both k-space halves into a matrix (’drop-
in place’) or leveraging the low-rank coupling constraint. To evaluate the DHE
reconstruction, the relative degree of focus (FM) was measured by computing the
focus measure as the energy of the Laplacian [79] inside the region of interest.
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Figure 3.3: Proposed workflow to simultaneously acquire 23Na by leveraging
the DHE technique (1) and undersampled 23Na MQC MRI by utilizing the
SAKE framework. (1) Forward and reverse k-space halves are reconstructed
by a low-rank coupling constraint exploiting coherences along the k-space rows.
(2) Undersampled Multi-Quantum Coherences MRI is reconstructed using the
SAKE framework. Both image reconstruction frameworks utilize structured
2D matrices to exploit coherences across the 23Na and multi-dimensional 23Na
MQC k-spaces.



4. Results

Sparse and low-rank reconstructions to advance 23Na MQC MRI on clinical scanners
were investigated and the results are given in this chapter. Section 4.1 shows the
results for Compressed Sensing-based reconstructions at 3 and 7 T and Section 4.2
demonstrates the results for low-rank reconstruction for 23Na and 23Na MQC MRI
at 7 T. Parts of this chapter have been published in Licht et al.[28] and Licht et
al.[70] by Wiley.

4.1 Multi-Dimensional Compressed Sensing reconstruc-

tion to advance 23Na MQC MRI on clinical scanners

4.1.1 Numerical simulations

The realistic numerical simulation of a CRISTINA acquisition from the 3-
compartment 3D brain enabled the anticipation of the SQ and TQ noise levels with
and without k-space undersampling (Figure 4.1). Alternating the sampling masks
along the phase-cycle enabled to cover k-space by 82%, 76%, 62%, 50%, 40%, and
24% for R=2 to 7, respectively. Indeed, 3D and 5D Compressed Sensing improved
image reconstruction compared to zero-filling. Discrepancies between 3D and 5D CS
reconstructions were already observed at an undersampling factor of R=3. Mean
TSC values in WM, GM and CSF were found to be on par: 43 ± 14 mM, 45 ± 21
mM, 132± 31 mM for fully sampled, 43± 16 mM, 44± 20 mM, 118± 45 mM for 3D
CS and 43± 15 mM, 45± 22 mM, 131± 32 mM for 5D CS reconstructions, respec-
tively. Similarly, mean TQ/SQ ratio values in WM, GM, and CSF were 0.17± 0.05,
0.14±0.06, 0.08±0.06 for fully sampled, 0.16±0.05, 0.14±0.06, 0.10±0.07 for 3D CS
and 0.17± 0.05 and 0.14± 0.06, 0.08± 0.06 for 5D CS reconstructions, respectively.

All metrics, SSIM, RMSE, and SNR, confirmed 5D CS outperformed 3D CS both
along the echo time dimension for R=3 (Figure 4.1, B) or at various undersam-
pling rates (Figure 4.2, B). Mean values and standard deviations were reported in
Table 4.1, A. 5D CS proved to achieve low errors (RMSE), especially at R=2 and
R=3. Especially for the TQ reconstruction at R=3, 5D CS improved SSIM by 47%
and reduced RMSE by 2.5-fold. The SNR evolution over time revealed characteristic
SQ and TQ signal evolutions for both CS models. 5D CS consistently provided im-
proved reconstruction results across all undersampling factors, especially for higher
undersampling factors (R>3).

Reconstruction from 5D CS also proved to be more resilient to increased noise levels
than 3D CS (Figure 4.2, A). The SSIM, RMSE, SNR mean, and standard deviation
were given in Table 9.1. Notably, errors for R=3 TQ images increased almost linearly
with noise power for 5D CS. Although the TQ signal had a low SNR, 5D CS recovered
this signal component despite increasing noise levels. Especially remarkable is the
consistently improved SSIM and SNR for the TQ signal reconstructed by 5D CS.
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Figure 4.1: (A) Simulated SQ, TQ, and TQ/SQ brain data with a nominal
resolution of 7x7x10mm3 fully sampled and undersampled with R=3. The
noise was added (noise power P=1.4*10-4), and undersampled data were re-
constructed with zero-filling, 3D, and 5D CS. (B) Quantitative evaluation of
reconstruction performance for R=3 via SSIM, RMSE, and SNR for simulated
SQ and TQ brain data depicted in (A).

4.1.2 Phantom study

Image reconstruction from 3-fold retrospectively undersampled phantom data ac-
quired at 3T confirmed that 5D CS outperformed 3D CS. (Figure 4.3): under-
sampling artifacts were reduced, especially for vials 1-3, and image sharpness was
increased. Linear regression (Figure 4, C) was confirmed between the SQ signal and
the known NaCl concentration and between the TQ/SQ ratio and the known agar
concentration in each vial. The TSC was well preserved in both reconstructions.
Still, the 3D CS TQ/SQ ratio in vials 1 to 3 deviated more from the fully sampled
data, indicated by the arrow in the linear regression plot. Fully sampled phantom
data exhibited an SNR of 21.93 dB and 8.26 dB, 3D CS of 27.56 dB and 6.18 dB,
and 5D CS of 28.44 dB and 13.65 dB for SQ and TQ, respectively. Results of fit
parameter maps can be appreciated in supporting information (Figure 9.4), with
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Figure 4.2: Quantitative evaluation of reconstruction performance via SSIM,
RMSE, and SNR for simulated SQ and TQ brain data depicted in Figure 4.1.
(A) Additive noise performance evaluation regarding SSIM, RMSE, and SNR
for R=3, with 3D and 5D CS reconstructed and increasing noise levels. (B)
Reconstruction evaluation for different acceleration factors, R, for 3D and 5D
CS models obtained with the same noise power as used in Figure 4.1.

a summary of the T ∗
2 slow and fast components given in Table 9.2. There was no

significant difference between fully sampled and reconstructed T ∗
2 values for both 3D

and 5D CS.

4.1.3 3 T in vivo study

It was found that exploiting sparsity along the multi-echo and phase-cycle dimen-
sions improved reconstruction results compared to only exploiting sparsity along
either one of the dimensions (Figure 9.5, Table 9.3). Results from retrospectively
undersampled in vivo 23Na MQC brain data acquired at 3 T confirmed the superi-
ority of 5D CS over 3D CS (Figure 4.4). Images reconstructed by 3D CS exhibited
severe blurring, notably the SQ image and aliasing artifacts, as seen in the TQ im-
age. In contrast, most features observed in fully sampled images were preserved in
images reconstructed by 5D CS. The TSC and TQ/SQ ratio quantification in the
WM, GM, and CSF compartments demonstrated minimal discrepancies in region-
wise quantification. TSC for fully sampled data was 49 ± 66mM 36 ± 41mM and
141 ± 123mM, for 3D CS 54 ± 69mM 32 ± 42mM and 142 ± 128mM and for 5D
CS 51 ± 67mM 34 ± 38mM and 141 ± 126mM, for WM, GM and CSF, respec-
tively. TQ/SQ ratio was found to be 0.16 ± 0.06, 0.13 ± 0.04 and 0.11 ± 0.05 for
fully sampled, 0.15± 0.04, 0.14± 0.03 and 0.12± 0.04 for 3D CS, and 0.16± 0.06,
0.13± 0.04 and 0.11± 0.04 for 5D CS. At an undersampling factor of R=2, 3D and
5D CS performed similarly (Figure 4.4, A). However, at R=3, TQ reconstructed
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Figure 4.3: Phantom study: (A) Phantom design consisting of 9 different
vials (350-mL each) with different NaCl (50, 100, 150 mM) and varying agar
concentrations (0, 2 and 4%). Phantom vial enumeration for subsequent recon-
struction performance evaluation within each vial. (B) SQ, TQ, and TQ/SQ
ratio comparison of fully sampled, 3D, and 5D CS reconstruction for a retro-
spective undersampling factor of R=3. SQ and TQ images were fitted with
corresponding equations in Equation 3.8, respectively. Note the residual un-
dersampling artifacts in the 3D CS reconstruction. (C) Shows the linear re-
gression for the mean SQ signal intensity versus prior known TSC in each vial
for the fitted data. Data exhibited linear relationships of R2=0.99* for fully
sampled, 3D, and 5D CS reconstructed images. Additionally, linear regres-
sion was performed on each vial’s mean TQ/SQ signal intensity versus known
agar concentration. For the fitted data, linear relationship were found to be
R2=0.84*, R2=0.87*, R2=0.86* for fully sampled, 3D and 5D CS, respectively.
With R2 being the adjusted goodness-of-fit and * representing statistical signif-
icance (p<0.05). Computed T ∗

2 values can be found in supporting information
Table 9.3 and Figure 9.4.

with 3D CS exhibited residual undersampling artifacts, which were suppressed in
the 5D CS reconstruction. SSIM, RMSE, and SNR evaluated for R=3 along the echo
time showed consistently improved performance for the 5D CS model (Figure 4.4,
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B). With increasing undersampling factor, expected blurring and image degrada-
tion were observed. Nevertheless, 5D CS systematically provided higher quality SQ
images than 3D CS, even for high acceleration factors. Quantitative metrics were
given in Table 4.1, B.

Figure 4.4: (A) Visual representation of reconstruction performance for differ-
ent undersampling factors, R=2 to 3, for one volunteer acquired at 3 T. (B)
In vivo SNR, RMSE, and SSIM evaluation over all echoes and for one echo
over all undersampling factors for retrospectively undersampled in vivo brain
3 T data are shown.

Figure 4.5 shows three slices of a second volunteer’s T1w
1H and 23Na MQC brain

data acquired at 3 T and retrospectively undersampled by a factor R=3. Over the
multiple slices, SQ images reconstructed with the proposed 5D CS model exhibited
less blurring and finer imaging details. Similarly, joint CS reconstruction reduced
undersampling-related aliasing artifacts. Additionally, 5D CS provided fewer erro-
neous TQ/SQ ratio maps, as indicated by the arrow, and improved visual delineation
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between WM, GM, and CSF. Pushing acceleration further by reducing the number
of averages, 5D CS still proved to reconstruct reliable SQ and TQ images within an
acquisition time of less than 5 minutes (Figure 9.6).

4.1.4 7 T in vivo study

Leveraging a conservative two-fold prospective undersampling, the results of the 7
T in vivo study provided unprecedented resolution for MQC 23Na images (Figure
7). Zero-filling yielded blurry SQ and aliased TQ images. 5D CS provided increased
SQ image sharpness, which was also confirmed by the focus measure metric: ZF
= 2.19 ∗ 10−8, 3D CS = 2.28 ∗ 10−8, 5D CS = 2.50 ∗ 10−8. Additionally, 5D CS
reconstructed images provided increased SNR: ZF = 13.10/ 4.56 dB, 3D CS = 13.34/
6.87 dB, 5D CS = 17.62/ 11.88 dB for SQ and TQ, respectively. The SQ images
showed high signal intensity in the CSF compartment, whereas the TQ signal mostly
originated from the brain parenchyma. Combining these two images, the TQ/SQ
ratio for 3D and 5D CS was on par with 5D CS images, showing an improved
delineation between WM, GM, and CSF. It can be appreciated that WM exhibited
the highest TQ/SQ ratio 0.21± 0.11 and 0.19± 0.11, GM intermediate 0.11± 0.06
and 0.10 ± 0.06 and CSF the lowest 0.07 ± 0.04 and 0.07 ± 0.05 for 3D and 5D
CS, respectively. The improved 3D spatial resolution can also be appreciated in
the sagittal and coronal views, where the 5D CS reconstruction also enhances the
delineation between the respective compartments.
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Table 4.1: Mean and standard deviations for SSIM, RMSE, and SNR of re-
constructed SQ and TQ for (A) in silico and (B) in vivo. CSR=3 represents
the metrics for R=3 for SQ at TE=1 or TQ at TE=3. CSR represents the
metric evaluation averaged over all undersampling factors, R=2 to 7. Table
(A) corresponds to the numerical simulation (fully sampled: SNR SQ = 25.56
dB, TQ = 7.94 dB) and (B) to the in vivo study performed at 3 T (fully
sampled: SNR SQ = 22.73 dB, TQ = 8.40 dB).

Model Signal SSIM RMSE SNR (dB)

3D CSR=3

(A) SQ 0.88 0.038 30.01
TQ 0.57 0.117 6.19

TQ/SQ 0.75 0.052 −

5D CSR=3

SQ 0.99 0.010 27.27
TQ 0.84 0.044 8.28

TQ/SQ 0.95 0.017 −

3D CSR

SQ 0.81± 0.10 0.057± 0.022 −
TQ 0.56± 0.06 0.124± 0.024 −

TQ/SQ 0.74± 0.05 0.051± 0.008 −

5D CSR

SQ 0.94± 0.07 0.024± 0.018 −
TQ 0.76± 0.09 0.081± 0.040 −

TQ/SQ 0.85± 0.10 0.029± 0.015 −

3D CSR=3

(B) SQ 0.93 0.048 29.59
TQ 0.82 0.094 10.46

TQ/SQ 0.91 0.024 −

5D CSR=3

SQ 0.96 0.023 277
TQ 0.86 0.066 11.54

TQ/SQ 0.92 0.022 −

3D CSR

SQ 0.90± 0.04 0.065± 0.027 −
TQ 0.84± 0.02 0.075± 0.014 −

TQ/SQ 0.89± 0.03 0.027± 0.005 −

5D CSR

SQ 0.93± 0.04 0.037± 0.019 −
TQ 0.79± 0.07 0.097± 0.032 −

TQ/SQ 0.89± 0.05 0.027± 0.007 −
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4.2 Low-Rank reconstruction to advance 23Na MQC

MRI on clinical scanners

4.2.1 Numerical simulations

DHE:
The quantitative analysis revealed an optimal echo fraction of around 52% (Fig-
ure 4.7). Below 52%, blurred images with lower SSIM, increased RMSE, and reduced
SNR were observed. At an echo fraction of 52%, corresponding to a forward and
reverse k-space halves echo overlap of 4%, the reconstructed DHE image revealed
an SSIM of 0.90, an RMSE of 0.029, and an increased SNR of 14% when compared
to the fully sampled input image. Increased oversampling (>4%) did not show an
increase in quantitative metrics such as SSIM but further prolonged TE. Thus, all
DHE employed a 52% echo fraction. TSC estimations for fully sampled and DHE
reconstructed sodium images were found to be on par with 59 ± 6.55/ 61 ± 8.09,
64±14.00/ 64±13.54 and 90±28.09/ 90±29.54 for WM, GM and CSF respectively.

Figure 4.7: Numerical simulations of varying echo fractions and corresponding
echo times. Quantification of low-rank reconstruction performance revealed an
optimal echo fraction of around 52%.

MQC:
23Na MQC MRI was confirmed intrinsically redundant, and most of the variance in
the data was expressed by retaining 10% of the most significant singular values (Fig-
ure 9.7, A). By combining χ0 and χ90 to be reconstructed simultaneously, data re-
dundancy could be further enhanced, thus strengthening reconstruction performance
when compared to reconstructing χ0 and χ90 separately (Figure 9.7, B, Table 9.4).
At an R[MQC]=3 undersampling factor, 5D CS and SAKE provided aliasing-free
images (Figure 4.8, A). SQ images revealed their highest signal intensity in the CSF
compartment, whereas the TQ signal was highest in WM. TQ/SQ ratio was found
to be 0.16±0.06/ 0.13±0.06/ 0.07±0.05 for fully sampled, 0.16±0.06/ 0.13±0.06/
0.07±0.05 for 5D CS and 0.15±0.05/ 0.13±0.06/ 0.07±0.05 for SAKE, in WM, GM
and CSF, respectively. No statistical significance was found for the TQ/SQ ratio
between reconstruction models. However, improved SQ metrics were provided by
5D CS, whereas SAKE yielded enhanced metrics for TQ reconstruction (Figure 4.8,
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B and Table 4.2, A). Interestingly, SAKE reconstructed TQ snapshots along TE ex-
hibited greatly improved SSIM and RMSE compared to 5D CS, especially for later
echoes (TE5=20 ms to TE10=46 ms). SAKE improved SSIM by 50% and reduced
RMSE by 2-fold. Interestingly, for R[MQC]=3 and small noise levels, 5D CS pro-
vided improved image reconstruction for SQ, TQ, and the ratio maps. However,
with increasing noise levels (P>1x10-3), SAKE demonstrated consistently improved
TQ reconstruction (Figure 4.9, A), showing up to 2-fold improvement in SSIM and
RMSE. SAKE proved a more reliable reconstruction concerning SSIM, RMSE, and
SNR for SQ, TQ, and TQ/SQ ratio maps, particularly at higher noise levels.

Figure 4.8: (A) Numerical simulations of 3-fold undersampled 23Na MQC
MRI reconstructed with 5D CS and the SAKE framework. (B) Quantitative
evaluation of reconstruction performance via SSIM, RMSE, and SNR over
different undersampling factors, R.
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Figure 4.9: Quantitative evaluation of reconstruction performance regarding
SSIM, RMSE, and SNR for simulated SQ and TQ brain data. (A) Additive
noise performance evaluation for R=3, with 5D CS and SAKE reconstructed
and increasing noise levels. (B) Reconstruction evaluation for different accel-
eration factors, R, for 5D CS and SAKE models obtained with the same noise
power as used in Figure 4.8. All noise levels’ mean and standard deviations
were given in Table 9.5.

4.2.2 Phantom study

DHE:
A conventional 23Na MR image was obtained both in conjunction without
(R[MQC]=1) and with (R[MQC]=3) prospective undersampling of the 23Na MQC
data. The DHE image obtained from (R[MQC]=1) corresponded to 4 averages,
which provided sharp image details and a high signal-to-noise ratio. The DHE im-
age obtained with prospective MQC undersampling (R[MQC]=3) corresponded to
2 averages and suffered a lower SNR. It was found that the vials with the highest
sodium concentrations (3, 6, and 9) exhibited the highest signal intensity, and vials
1, 4, and 7, with 50 mM, had the lowest signal intensity. DHE images allowed to
estimate TSC regardless of agar concentrations thanks to its very short echo time
reducing its sensitivity to T ∗

2 decay: regression between DHE 23Na signal intensity
versus prior known TSC confirmed a linear relationship with R2=0.99* for both DHE
images (p<0.05). The SNR of the DHE images was 17.31 dB and 16.32 dB for fully
sampled and prospectively undersampled MQC acquisitions, respectively.

MQC:
SNR of fully sampled and retrospectively undersampled, reconstructed with either
5D CS or SAKE, 23Na MQC images were 19.68/ 6.69 dB, 23.58/ 8.77 dB, and 21.56/
9.70 dB, for SQ and TQ, respectively. Similarly, SNR for prospectively undersampled
SQ and TQ signals were 20.98/ 9.36 dB and 19.25/ 6.94 dB for 5D CS and SAKE,
respectively. Vials without agar (1 to 3) did not show any TQ signal, while vial 9,
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Figure 4.10: Phantom design consisting of 9 different vials (350 mL each) with
different NaCl (50, 100, 150 mM) and varying agar concentrations (0, 2 and
4%). Center slice image reconstruction comparison of 5D CS and SAKE for 3-
fold retro- and prospectively undersampled 23Na MQC MRI. Additionally, the
23Na DHE image is shown, which is obtainable without and with prospective
undersampling of 23NaMQCMRI. Linear regression was performed to evaluate
the linear relationship of the average signal intensity (SI) of 23Na and TQ/SQ
ratio with respect to the prior known TSC or agar gel concentration. Solid
lines correspond to retrospectively, dashed lines to prospectively undersampled
23Na MQC MRI.

with the highest agar and sodium concentrations, exhibited the highest TQ signal
intensity. Regression on both 5D CS or SAKE reconstructed images between mean
TQ/SQ ratio signal intensity and prior known agar concentration revealed excellent
linear relationships (R2=0.92* for fully sampled, R2=0.93* and R2=0.94* for retro-
spective 5D CS and SAKE, respectively). Prospectively undersampled TQ/SQ ratio
exhibited equivalent linear relationships of R2=0.91* and R2=0.92* for 5D CS and
SAKE, respectively.

4.2.3 Drop-in-place and low-rank Double Half-Echo reconstruction

The ’drop-in-place’ method showed residual smearing artifacts along the readout
direction. In contrast, the low-rank DHE framework provided artifact-free images
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Figure 4.11: Retrospective in vivo undersampling study. (A) In vivo recon-
struction results shown for ’drop-in-place’ and low-rank + sparse method of
23Na DHE. (B) Original and retrospectively undersampled (R=3), with zero-
filling (ZF), 5D CS, and SAKE reconstructed 23Na MQC MRI. (C) Quantita-
tive analysis regarding SSIM, RMSE, and SNR evaluated over the echo time,
TE.

with enhanced imaging details, confirmed by the focus measure, FM = 0.0026 vs
0.0029 for the ’drop-in-place’ and DHE methods. DHE images reconstructed with
the low-rank framework exhibited estimated mean TSC values of 52 ± 12, 51 ± 9,
and 113± 16 mM for WM, GM, and CSF, respectively.

4.2.4 MQC retrospective undersampling in vivo study

Despite 3-fold undersampling, SAKE enabled adequate reconstruction of SQ and
TQ signal components. The TQ image quality was improved over 5D CS, exhibiting
apparent structures corresponding to the fully sampled image (Figure 4.11, C and D,
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and Table Table 4.2, B). These similarities were also reflected in the TQ/SQ ratio,
which was highest in WM and lowest in the CSF. Interestingly, 5D CS provided
slightly higher SQ image quality (SSIM = 0.934 vs 0.939, RMSE = 0.031 vs 0.038,
respectively), whereas SAKE provided improved TQ image reconstruction (SSIM
= 0.784 vs 0.836, RMSE = 0.101 vs 0.051). SAKE proved enhanced TQ image
reconstruction across various undersampling factors (Figure 4.11, D).

4.2.5 MQC prospective undersampling in vivo study

DHE:
The new sequence and the two low-rank frameworks enabled a complete depiction of
23Na and 23Na MQC MRI, Figure 4.13. DHE acquisition enabled TSC estimation,
with TSC being the highest in the CSF compartment. Averaged TSC estimation
revealed 38± 9, 39± 11 and 135± 20 for all shown WM, GM, and CSF volunteers.

MQC:
Prospective undersampling enabled higher spatial resolution 23Na MQC MRI while
reducing scan time from 2x30[28] to 2x19 minutes. TQ/SQ ratio maps enabled
delineation between WM, GM, and CSF thanks to the increased spatial resolution.
It was found that TQ/SQ ratios for all shown volunteers were consistently the lowest
for the CSF and the highest for WM, with TQ/SQ ratios of 0.11± 0.03, 0.09± 0.02
and 0.05± 0.01 for WM, GM and CSF, respectively.

Figure 4.12: Prospective in vivo undersampling study. (A) Fully sampled 23Na
image obtained by leveraging the Double Half-Echo technique. (B) Prospec-
tively undersampled (R=3), with zero-filling (ZF), 5D CS, and SAKE recon-
structed 23Na MQCMRI. (C) Quantitative SNR evaluation over the echo time,
TE.
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Table 4.2: SSIM, RMSE, and SNR evaluation of retrospectively undersampled
23Na MQC MRI, reconstructed with either 5D CS or SAKE for (A) in silico
and (B) in vivo. CSR=3 and SAKER=3 represent the metrics for R=3 for SQ or
TQ. Table (A) corresponds to the numerical simulation (fully sampled: SNR
SQ = 21.72 dB, TQ = 4.03 dB) and (B) to the in vivo study performed at 7
T (fully sampled: SNR SQ = 18.52 dB, TQ = 8.62 dB).

Model Signal SSIM RMSE SNR (dB)

5D CSR=3

(A) SQ 0.89 0.022 25.66
TQ 0.44 0.131 4.63

TQ/SQ 0.73 0.047 −

SAKER=3

SQ 0.82 0.033 22.31
TQ 0.66 0.062 6.24

TQ/SQ 0.91 0.023 −

5D CSR=3

(B) SQ 0.934 0.031 21.91
TQ 0.784 0.101 12.11

TQ/SQ 0.876 0.055 −

SAKER=3

SQ 0.939 0.038 20.24
TQ 0.836 0.060 14.53

TQ/SQ 0.792 0.051 −
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5. Discussion

This chapter discusses the presented sparse and low-rank reconstruction frameworks
to advance 23Na MQC MRI on clinical scanners. Section 5.1 discusses Compressed
Sensing-based reconstructions and Section 5.2 discusses the results for low-rank re-
construction for 23Na and 23Na MQC MRI. Parts of this chapter have been published
in Licht et al.[28] and Licht et al.[70] by Wiley.

5.1 Multi-Dimensional Compressed Sensing reconstruc-

tion to advance 23Na MQC MRI on clinical scanners

This study showed that Compressed Sensing (CS) could be used for two major limi-
tations of 23Na multi-quantum coherence MRI: elongated acquisition time and poor
spatial resolution. Compressed Sensing for 23Na MQC MRI was evaluated in four
steps. First, a numerical simulation framework allowed to demonstrate the limita-
tions of 3D CS and the necessity to deploy 5D CS for this application. However, nu-
merical simulations, based on a simplistic segmentation of the human brain, lacked
realistic data with considerations for imperfect B+

1 and B0. Second, a calibrated
phantom confirmed experimentally the advantages of 5D CS over 3D CS. These ex-
periments clearly showed the limitations of 3D CS in providing reliable results in
low sodium concentration compartments. Nevertheless, phantom experiments of-
fer beneficial conditions such as large homogeneous regions. Third, a retrospective
study was performed on in vivo data acquired at 3 T. These data provided the first
opportunity to test various undersampling rates on in vivo data retrospectively. The
challenge was complete with all the elements to account for the B+

1 and B0 relative
inhomogeneity, the relatively lower SNR of a 3 T sodium head MRI, and the elon-
gated scan duration for a fully sampled acquisition. Conventional distance metrics
such as SSIM and RMSE did not always reflect visually perceived reconstruction im-
provement. These reconstruction performance evaluations may not be appropriate
since they also take irrelevant structures, such as the skull, into account, skewing
the metric evaluation. Strong from all these incremental validations of our 5D CS
framework, a prospectively undersampled in vivo acquisition was implemented. An
unprecedented spatial resolution for 23Na MQC MRI was sought as a fourth step.
Alternatively, a shortened acquisition could have been performed, although this op-
tion was not significantly different from the retrospective study. Eventually, with an
undersampling rate of 2, a 2.7-fold reduction of voxel volumes and the boost in SNR
thanks to the 7 T, whole brain 23Na MQC MRI was acquired with a resolution of
6x6x10mm3. A sharper distinction between gray and white matter MQC properties
could be observed in these images.

5.1.1 7 T in vivo study

Transitioning from 3 T to 7 T boosted the SNR, enabling potentially higher acceler-
ation. However, higher field strengths come with stricter SAR limitations, adversely
prolonging acquisition due to increased TR and diminishing the benefits of ultra-
high field 23Na MQC MRI. Moreover, the TQ signal highly depends on B+

1 as it
scales with sin5(α), further penalizing 7 T acquisitions. Future work could utilize
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flip angle mapping for B+
1 post-processing correction.[42] This study only considered

dual-tuned birdcage coils with single transmit and receive channels, both at 3 T and
7 T. Utilizing multi-receive channels could further push acceleration thanks to SNR
improvements and by simultaneously leveraging parallel acquisition techniques.[85]
Nevertheless, further work is needed to improve in vivo TSC quantification, which
could be achieved by including more echoes to enhance the fit.

5.1.2 Potential extensions to proposed image reconstruction

Additionally, changing the sampling pattern more frequently, e.g., for each repe-
tition and/or along the echo time, would reduce the fully sampled center region
and increase incoherence, potentially improving reconstruction quality. CRISTINA
phase-cycle leveraged 2x6 steps for the Fleysher combination[46] to compensate for
B0 inhomogeneity-induced signal loss occurring during the evolution time. To ac-
commodate the Fleysher combination, data sets χ0 and χ90 were identically under-
sampled in the current implementation. However, one could consider undersampling
each data set differently and combining them to extend the phase cycle dimension
for CS reconstruction, albeit with a different transform than the Fourier transform
employed in the presented algorithm.

Another extension from the proposed CS model could be to exploit joint constraints
across the multi-dimensional space instead of individual constraints. The chosen
separated framework permitted independent scaling of each regularization term, al-
lowing tuning them for optimal reconstruction results since sparsity might differ
among the 5 dimensions. Another joint approach could be tensor sparsity. Leverag-
ing multi-dimensional sparsity simultaneously, as proposed by Yu et al.[86] or Roohi
et al.[87] could improve image reconstruction. Additionally, improved reconstruc-
tion could be achievable by exploiting k-space similarity such as in LORAKS[88]
or SAKE[89] and thus not limiting the reconstruction to sparsity assumptions only.
It is also noteworthy that CS reconstruction performances are highly dependent on
the initial SNR of the signal. Hence, reconstruction performance and achievable ac-
celeration factors are severely limited by 23Na MQC MRI’s intrinsically poor SNR,
yielding noisy images even though fully sampled k-space was acquired. Following,
spatial TV sparsity could be improved by leveraging anatomical prior constraints as
proposed by Gnahm et al.[90], Lachner et al.[91], and Zhao et al.[92].

Another limitation of 23Na MQC MRI is that its TSC differs from the TSC measured
by conventional 23Na MRI. Indeed, CRISTINA’s apparent TSC is affected by T ∗

2 due
to the long evolution time. A more accurate TSC estimation could be obtained by
using an additional readout during the evolution time by leveraging a UTE readout
as included in the SISTINA[40] sequence. Following Aldung et al.[84] work, the
CSF was used as a reference in vivo to quantify TSC since it is less affected by B+

1

inhomogeneity and noise due to short T2 components compared to external vials
placed at the edges of the coil with agar content reducing their T2 values.
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5.1.3 Alternatives for improved image reconstruction

First, further reconstruction improvements could be expected by leveraging convo-
lutional neural networks proposed by Adlung et al.[93]. In particular, deep learning
techniques could be used to find optimal sparse signal representations.[94] Joint
frameworks combining Deep Learning and Compressed Sensing have also shown
promising results in regards to reduced reconstruction time[95] or overall enhanced
reconstruction quality by exploiting relevant features in the images.[96] Neverthe-
less, the performance highly depends on the amount of training data, which remains
limited for 23Na MQC MRI.

Second, reconstruction parameters were determined empirically based on SSIM and
RMSE assessment. Due to the intrinsic low SNR of the signal, optimization of re-
construction parameters was challenging. Further research could utilize Automated
Parameter Selection for Accelerated MRI Reconstruction as proposed by Ilicak et
al.[58] Furthermore, estimating the noise floor and computing the sparsity threshold
for this parameter could help find optimal sparsity thresholds for each dimension.

Third, the presented workflow was separated into image reconstruction (CS) and
image post-processing, which consisted of the Fleysher combination and model-
based reconstruction of fitting the signal equations. Future work could evaluate
the benefits of combining these steps by leveraging CS coupled with a model-based
reconstruction[97] that incorporates SQ and TQ signal fitting into CS. The pre-
sented 5D CS model exploits shared information of the superimposed 23Na MQC
signal and the spectrum by computing the 1D Fourier transform along the phase-
cycling dimension. Hence, the proposed 5D CS algorithm could easily be extended,
with additions for T ∗

2 signal decay, to a model-based image reconstruction that con-
siders relevant physical parameters and leverages the theoretical SQ and TQ signal
models. However, these model-based approaches add another level of complexity
and risk overfitting[97], which was deemed beyond the scope of this study.

Finally, the CRISTINA sequence is based on Cartesian readouts, which are SNR
efficient since they sample k-space more evenly. Alternatively, non-Cartesian read-
outs might be better suited to fulfill the prerequisite of incoherent undersampling
noise required for CS. Nevertheless, Cartesian sampling eases reconstruction proce-
dure, notably memory when handling large datasets, and is more robust to hardware
imperfections, potentially fostering reproducibility across different platforms. Fur-
thermore, alternating the sampling patterns along the phase cycle dimension pro-
moted incoherent undersampling artifacts, thus better satisfying CS reconstruction
theory. Further acceleration, however, could be achieved by leveraging Twisted Pro-
jection Imaging[67] or radial density-adapted[68] radial k-space sampling because
these methods provide increased initial SNR and additionally, enhance sampling
randomness. However, the 3D variable density Cartesian sampling technique has
already demonstrated potential in multiple CS applications. Furthermore, the pro-
posed multi-dimensional CS model’s strength lies in regularizing the phase-cycle
dimension, which would be similar between Cartesian and non-Cartesian sampling
trajectories. Finally, paired with a strong asymmetric first echo, 23Na MQC signal
Cartesian sampling could be performed with a short first echo time, benefiting the
SQ signal. Later echoes were fully sampled to balance the lower SNR, especially for
sampling the TQ signal.
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5.2 Low-Rank reconstruction to advance 23Na MQC

MRI on clinical scanners

It was demonstrated that low-rank reconstruction frameworks offer a double benefit
to advance 23Na and 23NaMQCMRI. By leveraging the Double Half-Echo technique,
we have shown that Cartesian sampling can acquire 23Na MR images. Utilizing a
low-rank coupling constraint, aliasing free 23Na MR images were reconstructed. Ad-
ditionally, we demonstrated that 23Na MQC MRI could be accelerated by taking
advantage of the shared information across its multi-dimensional space. The SAKE
framework was used to reconstruct the undersampled images. Based on the analysis
of in silico, in vitro, and in vivo experiments, we further showed the possibility of
combining both low-rank reconstruction frameworks into one acquisition to simul-
taneously obtain high-quality 23Na and higher resolution 23Na MQC MRI of the
human brain at 7 T.

DHE
The low-rank coupling constraint identifies correlations along the rows, and by mini-
mizing the rank and singular value thresholding, artifacts arising from undersampled
k-space were reduced. The oversampling of the k-space center represents a redundant
subspace exhibiting highly coherent information. The DHE reconstruction frame-
work uses this redundant subspace to concatenate both k-space halves efficiently.

MQC
The discrepancy between 5D CS and SAKE in improving the reconstruction of SQ
and TQ images parallels the nature of their signals. Our results showed that 5D CS
favored SQ while SAKE was more suited for TQ reconstruction. SQ signal offers a
higher initial SNR but is evanescent, with an exponential decay well suited for spar-
sity transformations but undermines its coherence across echo times. Oppositely,
the TQ signal is of low SNR but persists in time. Thus, the TQ signal is challenging
to dissociate from background noise using sparsifying transforms, as in Compressed
Sensing, but adequate for the low-rank assumption employed in the presented frame-
work. The question remains whether the two approaches can be combined to adapt
the reconstruction of each signal to their inherent nature and offer the best of the
two worlds.

5.2.1 Numerical simulations

DHE:
The simulations provided a theoretical framework to test optimal sequence and
image reconstruction parameters. A slightly increased echo fraction (52%) provided
the best image reconstruction. This was owed to the fact that if 50% of k-space
was sampled, no overlap in the k-space center was given, which could be used to
exploit coherent information shared across the two k-space halves. Once the echo
fraction exceeds 50%, the low-rank coupling constraint exploited redundant data
in the k-space center to optimally concatenate both k-space halves by minimizing
the joint rank of both halves. However, 23Na MRI requires short echo times, which
favors slight k-space center overlaps for both k-space halves. Numerical simulations
demonstrated that an echo fraction of 52% was a good compromise between accurate
image reconstruction (high SSIM) and enabling a short echo time (TE=0.5 ms).
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MQC:
It has been demonstrated that most of the data’s variance along the echo and phase-
cycle dimension is concentrated in a subset of singular values (Figure 9.7, A). 23Na
MQC MRI’s multi-dimensional signal structure is therefore well captured in low-
rank matrices and optimally suited for low-rank reconstruction frameworks. Inter-
estingly, the TQ’s quantitative metric evaluation (Figure 4.8, B and Figure 4.11, C)
reconstructed with SAKE revealed that exploiting the multi-dimensional structure
of 23Na MQC MRI simultaneously, efficiently identified coherent information, which
in return supported the reconstruction of later echoes. This is owed to the fact that
the largest singular values correspond to the signal components with the highest
magnitude, which in the case of the TQ signal is at TE=≈ 10 ms. The information
was used to reconstruct later echoes, which suffered lower SNR (Figure 4.8, B). This
claim was supported by the high SSIM and reduced RMSE that SAKE exhibited for
TQ. Furthermore, since noise is highly incoherent, the low-rank approximation in-
trinsically filters noise and improves TQ signal reconstruction. As a result, the SNR
evaluation over TE is almost constant for SAKE reconstructed 23Na MQC MRI,
especially when compared to the fully sampled data (Figure 4.8, B and Figure 4.11,
C). On the other hand, SAKE failed to provide optimal reconstruction results for
the SQ signal. Even though SAKE yielded aliasing-free and reduced blurring in
SQ images, 5D CS still outperformed SAKE in SQ reconstruction. SQ signal de-
cays rapidly after excitation, which intrinsically full-fills sparsity assumptions. As a
result, SQ is optimally reconstructed by leveraging a sparse reconstruction model,
and TQ benefits primarily from low-rank reconstruction frameworks that exploit
coherent information across the multi-dimensional space. It is shown that low-rank
matrices are very well suited to filter for a high amount of noise across the multi-
dimensional space (Figure 4.8). As noise is highly incoherent, the singular values
are small and, thus, thresholded by leveraging SVT. With increasing noise levels,
SAKE provided highly increased reconstruction performance compared to 5D CS,
already at noise levels of >1x10-3 (Figure 4.9.

5.2.2 Phantom study

DHE:
Based on the results of the phantom DHE images (2 and 4 averages), it could be
concluded that the DHE reconstruction framework benefits from increased initial
SNR. The DHE image reconstructed from 4 averages exhibited sharper imaging
details and less background noise than the DHE image obtained from two averages,
supported by the SNR analysis. However, doubling the number of averages should
yield an SNR increase of ≈

√
2, which was not seen in this case. This is owed to

the fact that the DHE reconstruction framework is non-linear because it optimizes
the objective function iteratively. In addition, using singular value thresholding
by leveraging a minimum variance filter influenced SNR. Despite the varying agar
concentrations in vials 3, 6, and 9, the DHE images’ signal intensity was similar.
Conclusively, the employed echo time was short enough to determine accurate TSC.
The DHE images obtained with and without prospective undersampling of MQC
data exhibited similar signal intensities and R2 values, indicating that obtaining a
23Na DHE image is possible with and without undersampling of 23Na MQC MRI.
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MQC:
The phantom study revealed accurate SQ and TQ signal reconstruction despite a
high retrospective and prospective undersampling factor of R=3. Since vials 1 to 3
did not contain agar gel, no TQ signal was observed for the respective tubes. Nev-
ertheless, incorporating a model-based reconstruction by fitting the signal equations
during each iteration of SAKE could improve the reconstruction results. Addition-
ally, SAKE’s performance highly relies on accurate thresholding values, which are
yet to be found. Furthermore, the complexity of finding the optimal regularization
value scales with the dimensionality of the data and, therefore, future work could
leverage an automated parameter selection algorithm as proposed by Ilicak et al.[58].
Nevertheless, a strong linear relationship was observed between the TQ/SQ ratio and
prior known agar concentration, indicating accurate TQ signal reconstruction.

5.2.3 Retrospective and prospective in vivo study

DHE:
Leveraging the knowledge from numerical simulations, the DHE framework enabled
the acquisition of high-resolution sodium MRI in vivo. Since a relatively conser-
vative spatial resolution of 3x3x15 mm3 was chosen, severe partial volume effects
were observed, especially in the central CSF compartment (Figure 4.11, A). Finally,
completely decoupling the DHE acquisition from the MQC acquisition enabled the
acquisition of conventional high-resolution sodium MRI while prospectively under-
sampling the MQC acquisition. Hence, a high-resolution DHE sodium MRI of 6x6x6
mm3 was obtained (Figure 4.13). Nevertheless, partial volume effects were observed,
which suggests a further increase in the spatial resolution of the DHE images by also
enhancing sampling efficiency.

MQC:
The retrospective analysis revealed that SAKE accurately reconstructed undersam-
pled 23Na MQC MRI (Figure 4.11, B and C). Accurate reconstruction performance
was given for an acceleration factor of R=3; therefore, prospective undersampling
was performed with the same acceleration factor. This enabled to reduce acquisition
time while increasing the spatial resolution of 23Na MQC MRI from 8x8x15 mm3 to
8x8x8 mm3. Similarly to the numerical phantom study, SAKE improved TQ image
reconstruction regarding SSIM and RMSE. Again, by simultaneously exploiting co-
herent information across the multi-dimensional space spanned by 23Na MQC MRI,
information from earlier echoes could be leveraged to support the reconstruction of
later echoes. Despite the TQ signal being of small amplitude, it is highly coherent
along the echo time, efficiently exploited in the 2D Hankel-like matrix involved in
the SAKE framework.

One advantage of the proposed sequence and the low-rank frameworks is that all
images are Cartesian sampled, which enables direct correlation of the images. Cor-
relating 23Na and 23Na MQC MRI revealed that the conventional sodium and the
SQ signal exhibited similar intensity distributions, with the highest signal intensity
found in the CSF compartment. On the other hand, the direct correlation showed
that the TQ signal pre-dominantly arose from the brain parenchyma, e.g., WM
and GM. The presented SQ and TQ contrasts carry different information about the
tissue, with the TQ signal being sensitive to restricted sodium ions.
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Computing the TQ/SQ ratio maps revealed consistent ratio values, which could
enable the normalization of the TQ signal with respect to the SQ signal. Following
this, the TQ/SQ ratio could potentially provide an additional quantitative metric
besides TSC. This study demonstrated that a consistent TQ/SQ ratio throughout
retro- and prospectively undersampled 23Na MQC MRI was found and fostered the
potential to be used as an additional quantitative metric.

5.2.4 Potential extensions to proposed image reconstruction

Similarly to Liu et al.[98], complementary information of adjacent partitions could
be leveraged to improve DHE image reconstruction. Variable density undersampling
coupled with a Compressed Sensing iterative reconstruction scheme could improve
DHE 23Na MRI sampling. Furthermore, an oversampling factor of 2 along the read-
out direction was used in this study but could be increased to enhance redundancy,
improving image reconstruction and potentially enabling 50% echo fraction sam-
pling. Thanks to the Cartesian nature of DHE, its utilization with 23Na multi-coil
arrays would allow parallel imaging acquisition techniques to improve acquisition
speed further. However, this work was limited to a single-channel transmit and re-
ceive coil; thus, this option was not further investigated. Nevertheless, the low-rank
framework reconstruction can easily be extended with parallel imaging.[99] Alterna-
tively, leveraging convolutional neural networks proposed by Adlung et al.[93] is a
promising avenue for improved reconstruction results.

Future work could leverage the DHE technique for 23Na MQC echoes to sample
the signal evolution more densely. Hence, small echo spacings could be possible,
potentially providing higher SNR TQ images. Generally, multi-echo acquisitions,
especially for sodium MRI, could benefit from the DHE sampling scheme. Short
relaxation times lead to T ∗

2 blurring, which could be mitigated by reduced readout
times because only half of k-space is acquired. The discretized signal along the multi-
echo dimension could be denser sampled with fewer blurring artifacts, yielding the
potential to quantify T ∗

2 more accurately. In addition, leveraging the Cartesian DHE
to acquire sodium MRI also opens the possibility of utilizing a non-isotropic field of
view, which could benefit the emerging field of sodium skin MRI.[100]
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6. Summary
This thesis work’s main objective was to advance 23Na MQC MRI on clinical scan-
ners. The motivation for investigating 23Na MQC MRI is to offer novel tissue in-
formation closely related to cellular health status. Nevertheless, it suffers from low
SNR, long acquisition times, and limited spatial resolution. Following, acceleration
by drastic undersampling of 23Na MQC MRI coupled with dedicated reconstruc-
tion frameworks that take advantage of the 23Na MQC MRI’s signal structure was
proposed. This thesis’ key contributions were:

1. For the first time, the reconstruction frameworks for 23Na MQC MRI were
extensively studied in silico, in vitro, and particularly interesting, in vivo at
both 3 T and 7 T MRI, enabling sound conclusions.

2. Application of the Compressed Sensing theory and the development of a ded-
icated multi-dimensional model to enable 3-fold acceleration of 23Na MQC
MRI.

3. For the first time, prospective undersampling enabled higher resolution 6x6x10
mm3 TQ/SQ ratio maps acquired at 7 T MRI.

4. An efficient sequence for simultaneous 23Na and 23Na MQCMRI was proposed.
5. Low-rank reconstructions exploiting signal’s intrinsic redundancy enable Dou-

ble Half-Echo 23Na and undersampled 23Na MQC MRI.

Regarding the leading research question of this thesis, defined as ”Can knowledge-
driven image reconstruction improve 23Na MQC MRI towards faster and better
resolved whole-brain sodium quantitative imaging?”, it has been demonstrated that
robust acceleration, coupled with sparse and low-rank reconstruction models, led to
better resolved whole-brain sodium quantitative imaging by 1) enhanced spatial
resolution and 2) enabling a comprehensive analysis of sodium signals in a single
acquisition.

With the basics for accelerated 23Na MQC MRI given, future research could, in
particular, investigate:

1. Extension of the reconstruction frameworks to also account for T ∗
2 signal decay

by leveraging a physical signal model.
2. Analysis of the potential to further accelerate the acquisition by undersampling

the phase-cycling steps and the phase-encoding lines of the k-space matrix.
3. Leverage prospective undersampling to increase spatial resolution on >7 T

MRI scanners.
4. Investigation of 23Na MQC MRI in clinically-focused studies such as brain

tumors or radiotherapy.
5. Application of machine-learning-based approaches to improve post-processing.
6. Deploying prospective variable-density undersampling combined with sparse

image reconstruction to improve 23Na DHE MRI and utilization of multi-
receive coils.

7. Exploration of the benefits of leveraging parallel RF transmit techniques.
8. In-depth study to compare non-Cartesian against Cartesian Double Half-Echo

23Na MRI.

A more detailed description of each point can be found in the Outlook section.
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7. Outlook

Multiple avenues exist to further research sodium multi-quantum MRI and explore
proposed acceleration techniques in other multidimensional MRI techniques. One
interesting step to improve the reconstruction would be to leverage the theoretical
information about the signal. Including physical signal models taking T ∗

2 decay
into account would help improve image reconstruction. Furthermore, this prior
information could be used to synthesize missing data points and, therefore, increase
undersampling potential. Extending the presented CS-based approach to a more
model-based refinement approach, with model-based image reconstructions getting
increased attention due to its wide range of applications,[97] could improve image
reconstruction quality. Despite the computational load, model-based reconstructions
have the advantage of providing quantitative maps of physical parameters.[101]

This thesis focused on undersampling the phase-encoding lines of the k-space matrix
to reduce acquisition time. However, closely related to the model-based approach,
one could also consider undersampling the phase-cycling steps, i.e., only acquiring
4 out of 6 phase-cycle steps to speed up the acquisition. As we have demonstrated,
phase cycling creates replicas of the signal that vary in phase and magnitude. Follow-
ing, phase-cycling produces redundant subspaces, making it a linear reconstruction
problem restricted to the pre-determined subspace of the fixed number of phase-cycle
steps and, therefore, ideally suited for subspace reconstruction frameworks.[102]
Leveraging prior information about the RF pulses and phase-cycling scheme coupled
with the model-based reconstruction framework could enable the reconstruction of
missing phase-cycle steps. This framework would not be limited to 23Na MQC MRI.
Still, it would apply to all MRI experiments that involve RF phase-cycling, such as
balanced steady-state free precession (bSSFP) for non-contrast-enhanced MRI[103]
or simultaneous T1 and T2 mapping.[104]

23Na MQC MRI on different field strengths

Despite this thesis’ work being majoritarily focused on 7 Tesla MRI, 23Na MQC
MRI could also benefit from the acceleration at other lower fields (<3 T). Despite
the initially low SNR, short TRs with several repetitions to oversample the k-space
center could enable MQC MRI on 1.5 T. Another benefit would be the decrease in
B+

1 -related issues and shortened RF pulses, which would minimize relaxation effects
during excitation.

Providing access to MQC acquisitions on clinical 3 T scanner enables more 23Na
MQC MRI data to be collected that could be leveraged for Machine Learning ap-
proaches, i.e., deep-learning-based reconstructions. Unfortunately, MQC MRI data
is still rare and thus hinders the potential to create dictionaries or AI-based post-
processing frameworks as proposed by Adlung et al.[93]. Further, considering the
clinical aspect, 3 T MRI is highly interesting for clinical studies.

While there is a clear advantage of acceleration on clinically used field strengths,
23Na MQC MRI on ultra-high field systems (>7 T) is also of particular interest.
Even though B+

1 issues and longer TRs are more severe,[105] acceleration could also
benefit ultra-high field acquisitions, making it more applicable as a research tool.



84 7. Outlook

Concerning B+
1 -related issues, parallel transmit techniques could help improve TQ

imaging, especially in regions at the periphery of the brain.

The advantage of simultaneous 23Na and 23Na MQC MRI

This thesis is the first to offer combined and accelerated conventional and multi-
quantum sodium MRI solely based on Cartesian sampling. This combination is
especially interesting as an extensive application of 23Na and 23Na MQC MRI in
brain tumors. Fiege et al.[40] have already demonstrated altered TQ signal inten-
sity in brain tumors. Paired with the TQ/SQ ratio, a new parameter could be
investigated throughout treatment to track treatment response. We have demon-
strated that the TQ/SQ ratio is reproducible across various acquisitions and is well
suited to be tested in a more clinical-oriented setting, i.e., radiotherapy.[106] With
the increasing interest in multinuclear MRI, improved hardware, and the herein pro-
posed sequence, an efficient framework offers the potential to correlate directly 23Na
and 23Na MQC. Hence, future research on the clinical application of 23Na MQC
MRI will significantly benefit from the proposed sequence and image reconstruction
frameworks.

Post-processing non-Cartesian 23Na MRI is challenging as it requires gradient correc-
tions and complex image reconstruction. The Cartesian DHE framework presented
here might ease these steps and offer a simple plug-and-play solution for different
scanners and institutions. Furthermore, the given DHE sequence has the poten-
tial to acquire an asymmetric field of view, which could be of high interest for the
emerging field of sodium skin or breast MRI.[100, 107].

To extend the benefits of Cartesian 23Na DHE MRI, its sampling needs to be opti-
mized, for example, by deploying 3D elliptical scanning. Elliptical selection would
reduce acquisition time by skipping high-frequency information, which can be re-
gained by homodyne reconstructions.[108, 109] However, more advanced sampling
strategies, e.g., using variable density undersampling, could accelerate 23Na DHE
MRI. It would necessitate leveraging non-linear reconstruction frameworks, such as
sparse reconstruction models.[57] However, to take complete advantage of the DHE
framework, a multi-receive coil must be used. The low-rank framework exploits
the redundancy of both k-space halves, and this redundancy is enhanced with an
increasing number of coil elements. Furthermore, the phased-array coils provide
higher SNR gains,[110] which will also benefit DHE reconstruction.

Finally, an extensive study comparing non-Cartesian (e.g., radial, elliptical k-space
sampling) with Cartesian DHE is warranted. Despite non-Cartesian sampling pro-
viding ultra-short echo times and efficient k-space coverage, it suffers from degraded
point-spread functions and is susceptible to gradient system imperfections. Consid-
ering these differences, an extensive study in vitro and in vivo is thus warranted to
demonstrate the performance of Cartesian DHE when compared to the gold standard
non-Cartesian UTE sequences.
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Impact to the 23Na community

The sodium MRI community remains exclusive to a few research centers but is
rapidly growing thanks to the advent of multinuclear ultra-high field MRI scanners.
This thesis is a perfect example as it emerged from a two-center collaboration to
investigate 23Na MQC MRI on 3 and 7 T scanners. Testing clinically relevant
field strengths is essential to embed sodium MRI as a clinical tool. Following, this
thesis work showed the broad applicability of 23Na MQC MRI on different field
strengths, also accounting for clinically relevant field strength. In conclusion, the
studies extended beyond mere research scanners, yet further investigation at 3 T is
required to draw more robust conclusions.

However, concepts of multi-dimensional image reconstruction frameworks are still
rare in MRI, especially in 23Na MRI. However, we have demonstrated the benefits
of leveraging our understanding of the MR signal structure to advance the acqui-
sition. Even though sparse reconstructions in terms of Compressed Sensing and
anatomically constrained reconstructions have been proposed, low-rank reconstruc-
tion frameworks are still lacking in the sodium MR field. Indeed, we have demon-
strated that sparsity and low-rank approximations are well suited for even initially
low SNR signals and, therefore, further illustrate the strength of these frameworks
in the context of 23Na MRI.

Low-rank frameworks, however, are not limited to image reconstruction. They can
also be leveraged for post-processing. Following, it could be investigated how well
relaxation times, e.g., T ∗

2 are captured in low-rank analysis, i.e., by leveraging Dy-
namic Mode Decomposition (DMD[111]). Additionally, since T ∗

2 measurements re-
quire multi-echo sampling, it offers great potential to boost SNR by leveraging the
low-rank approximations computed along the echo time. Hence, an SNR boost
might improve TSC quantification and T ∗

2 estimations in multi-echo acquisitions.
Furthermore, densely sampling the T ∗

2 curve is of concern for accurate relaxation
time estimations. The DHE technique could enable short inter-echo spacing in two
ramp times, improving multi-echo 23Na MRI.

Indeed, the new sequence leveraging Cartesian DHE 23Na and 23Na MQC MRI
combined with the reconstruction frameworks is easy to use and could be rapidly
implemented at various institutions. Each sodium acquisition could thus be ac-
companied by MQC sampling without extending imaging time. The complete 23Na
signal could always be investigated instead of being limited to the TSC estimation
only. However, the new sequence also allows the acquisition of 23Na MRI only.
Hence, the proposed sequence offers increased versatility for the sodium community
and a simple-to-use image reconstruction algorithm, making it a very convenient
framework overall. With the robust Cartesian sampling and low susceptibility to
gradient imperfections, even further suppressed by the low-rank reconstruction, and
also supporting conventional 1H acceleration techniques, it could be considered to
be a vendor-based sequence, which could also apply to other nuclei than 23Na. Fur-
thermore, DHE offers exciting properties that could be used even for 1H MRI, i.e.,
reduction of TR and increased robustness against banding artifacts.[65]
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9. Appendix

9.1 Multi-Dimensional Compressed Sensing reconstruc-

tion to advance 23Na MQC MRI on clinical scanners

Figure 9.1: Reconstruction evaluation of Wavelet and TV sparsifying trans-
form on numerical simulations. From left to right: fully sampled with additive
noise, 3-fold retrospectively undersampled, and with either zero-filling1, 3D
CS leveraging total variation or 3D CS using Wavelet transform reconstructed.
Wavelet transform allows multi-resolution decomposition for improved spar-
sity. However, this asset holds limited benefits in 23Na MQC MRI with limited
resolution. On the contrary, WT also exhibits the risk of border effects, espe-
cially in applications with noisy backgrounds, such as MQC sodium MRI. It
was found that WT and TV performed similarly, so TV was preferred as the
spatial sparsifying transform.
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Figure 9.2: Color plots of all metrics for different regularization term weight-
ings for the multi-echo dimension (λTE) and the phase-cycle dimension (λϕ)
evaluated on 3-fold undersampled numerical simulations. The square in red
shows the regularization parameter combination that provided the best re-
construction result. The graphs revealed that various values lead to high
reconstruction quality. It was also shown that decreasing the weight of the TE
regularization led to decreased reconstruction performance, whereas smaller
weights were beneficial for phase-cycle regularization. Interestingly, over-
weighting the regularization factors (λTE,ϕ>1) results in decreased reconstruc-
tion performance. Conclusively, a trade-off between optimal SSIM, RMSE, and
SNR was found using λTE = 0.2 and λϕ = 1.9.
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Figure 9.3: Color plots of all metrics for different sparsity thresholds for the
multi-echo dimension (βTE) and the phase-cycle dimension (βϕ) evaluated
on 3-fold undersampled numerical simulations. The square in red shows the
regularization parameter combination that provided the best reconstruction
result. It is demonstrated that the phase-cycling dimension can be made
sparser than the multi-echo dimension. Additionally, the graphs demonstrate
that various values lead to high reconstruction quality. Not regularizing the
phase-cycle dimension (βϕ = 0) leads to decreased reconstruction performance,
whereas small thresholds benefit TE regularization. Conclusively, a trade-off
between optimal SSIM, RMSE, and SNR was found using βTE = 0.5 and
βϕ = 1.6.
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Figure 9.4: Resulting fit parameter maps for a center slice of fully sampled,
3D, and 5D CS reconstructions obtained with an undersampling factor of R=3
(Figure 4.3). Maps are shown with a body mask. It can be appreciated that
vials containing 2 or 4% agar gel exhibit shorter T ∗

2 components as well as
larger TQ signal amplitudes. ASQ2 exhibited strong artifacts for the first row
of vials, which do not contain agar. Hence, no T2f component is expected to
yield a noisy ASQ2 parameter fit map. This artifact is even stronger for the
3D CS reconstruction due to the residual aliasing artifact. Additionally, the
3D CS parameters maps revealed extended blurring when compared to fully
sampled and 5D CS.
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Table 9.1: Mean and standard deviations for SSIM, RMSE, and SNR of sim-
ulated fully sampled and 3-fold undersampled SQ and TQ data for different
noise levels. Metrics were evaluated against noise-free, fully sampled data.

Model Signal SSIM RMSE SNR (dB)

Fully Sampled
SQ 0.81±0.11 0.029±0.018 21.45±3.46
TQ 0.43±0.20 0.150±0.075 4.99±2.58

TQ/SQ 0.74±0.16 0.065±0.034 -

3D CS
SQ 0.83±0.05 0.042±0.033 27.23±2.63
TQ 0.38±0.16 0.161±0.041 4.24±1.38

TQ/SQ 0.66±0.08 0.072±0.025 -

5D CS
SQ 0.86±0.12 0.026±0.014 24.39±2.94
TQ 0.52±0.26 0.132±0.072 5.90±2.12

TQ/SQ 0.75±0.16 0.052±0.030 -
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Table 9.2: Mean and standard deviations for T ∗
2 fast and slow components

(ms) of the shown slice in Figure 9.4 reconstructed with 3D and 5D CS at an
undersampling factor of R=3.

Vial T ∗
2 Fully Sampled 3D CS 5D CS

1
slow 61±4 57±7 56±9
fast 7±2 7±3 7±3

2
slow 62±4 61±2 63±4
fast 7±2 6±2 8±2

3
slow 60±1 60±2 60±2
fast 7±2 5±2 8±2

4
slow 16±1 16±1 18±2
fast 4±1 4±1 4±1

5
slow 19±1 19±1 20±<1
fast 4±<1 4±<1 4±<1

6
slow 21±1 21±2 21±2
fast 4±<1 4±<1 4±<1

7
slow 14±1 15±1 16±1
fast 3±<1 3±<1 3±<1

8
slow 16±1 16±1 16±2
fast 3±<1 3±<1 3±<1

9
slow 17±1 17±1 18±1
fast 3±<1 3±<1 3±<1
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Table 9.3: Quantitative reconstruction evaluation for 3D, 4D and 5D CS mod-
els that utilize different regularization terms. 5D CS demonstrated to provide
superior reconstruction quality. Images are shown in Figure 9.5.

Model Signal SSIM RMSE SNR (dB)

3D CS TV
SQ 0.92 0.058 16.07
TQ 0.82 0.095 8.07

TQ/SQ 0.82 0.036 -

4D CS TV + TE
SQ 0.96 0.027 17.61
TQ 0.83 0.083 10.26

TQ/SQ 0.84 0.032 -

4D CS TV + ϕ
SQ 0.96 0.030 17.76
TQ 0.86 0.063 9.76

TQ/SQ 0.85 0.032 -

5D CS TV + TE + ϕ
SQ 0.97 0.020 18.08
TQ 0.86 0.064 10.83

TQ/SQ 0.86 0.030 -
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9.2 Low-Rank reconstruction to advance 23Na MQC

MRI on clinical scanners

Figure 9.7: (A) 23Na MQC MRI is intrinsically highly redundant due to its
multi-dimensional space. This redundancy is shown by plotting the normalized
singular values of the singular values decomposition (SVD) of each data set,
χ, that was reshaped into a 2D matrix with the first dimension being [x,y,z]
and second dimension [TE,ϕ]. By computing the SVD along the multi-echo
and phase cycle dimension, it can be appreciated that most variance in the
data is expressed by only a few of the largest singular values. It is shown that
concatenating χ0 and χ90 further enhances low-rankness. (B) By reconstruct-
ing χ0 and χ90simultaneously, image reconstruction is improved (Table 9.4).
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Table 9.4: Quantitative reconstruction performance evaluation with χ0 and
χ90 combined or separately reconstructed. The SSIM was improved when the
data sets were reconstructed jointly.

Model Signal SSIM RMSE SNR (dB)

χ0 & χ90 separately
SQ 0.76 0.040 18.44
TQ 0.71 0.048 9.87

TQ/SQ 0.92 0.021 -

χ0 & χ90 combined
SQ 0.83 0.030 18.87
TQ 0.80 0.042 9.82

TQ/SQ 0.96 0.021 -

Table 9.5: Mean and standard deviations for SSIM, RMSE, and SNR of sim-
ulated fully sampled and 3-fold undersampled SQ and TQ data for different
noise levels. Metrics were evaluated against noise-free fully sampled data and
correspond to data shown in Figure 4.9, A. SSIM and RMSE of SQ and TQ
signals were evaluated over the whole image, whereas TQ/SQ ratio was eval-
uated for the region of interest.

Model Signal SSIM RMSE SNR (dB)

Fully Sampled
SQ 0.81± 0.11 0.029± 0.018 19.62± 2.36
TQ 0.43± 0.20 0.148± 0.0738 4.45± 2.24

TQ/SQ 0.74± 0.16 0.053± 0.030 -

5D CS
SQ 0.86± 0.12 0.026± 0.013 21.48± 1.67
TQ 0.52± 0.26 0.127± 0.0.069 5.10± 1.90

TQ/SQ 0.75± 0.16 0.048± 0.027 -

SAKE
SQ 0.76± 0.05 0.035± 0.005 20.19± 1.00
TQ 0.66± 0.12 0.067± 0.020 6.83± 0.17

TQ/SQ 0.90± 0.02 0.024± 0.003 -
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