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Data-driven Measures for Dose Reduction and Image Quality Enhancement in
Computed Tomography
Dose reduction without sacrificing image quality is one of the primary aims of computed
tomography (CT) research. Especially in interventional applications, which require multiple
scans, dose reduction is paramount. Two pathways of arbitrarily reducing dose are the reduction
of tube current (low-mAs CT) and reduction of number of projections (sparse-view CT). The
former will increase noise, the latter sparseness artifacts, such that there is a trade-off between
dose and image quality in either case. Additionally, if the patient does not fully fit in the
field of measurement, as is typical for interventional cone-beam CT, the image will suffer from
truncation artifacts and a small field of view. Novel deep neural networks have shown promising
results in a variety of image processing tasks. The aim of this thesis is therefore to analyze the
different low-dose CT realizations in conjunction with deep learning-based image processing and
facilitate reconstruction from truncated projections with both a data-driven and iterative method.
Quantitative image quality analysis of low-dose CT is performed with several conventional and
task-based methods. The latter are able to distinguish between sufficiently and insufficiently
trained networks, ensuring a safe utilization of deep learning-based methods. The well-trained
neural networks are able to support the tested 80% dose reduction by restoring image quality.
Between the different realizations of low-dose CT, low-mAs CT is determined as preferable.
Both detruncation methods achieve satisfactory results. However, the computational cost of
DART remains prohibitive while the deep learning-based detruncation promises to increase the
field of view in real-time. This in turn may improve image guidance and secondary algorithms
during operations.

Datengetriebene Maßnahmen zur Dosisreduktion und Bildqualitätsverbesserung in
der Computertomographie
Dosisreduktion ohne Verringerung der Bildqualität ist einer der Forschungsschwerpunkte im
Bereich Computertomographie (CT). Besonders in interventionellen Anwendungen, die oft
wiederholte Aufnahmen benötigen, ist Dosisreduktion entscheidend. Zwei mögliche Wege die
Dosis beliebig zu verringern, sind die Senkung des Röhrenstroms und die Verringerung der
Projektionsanzahl. Ersteres bewirkt ein Ansteigen des Bildrauschens, letzteres verursacht
Streifenartefakte. Somit gibt es in beiden Fällen einen Kompromiss zwischen Dosis und
Bildqualität. Falls der Patient nicht in das Messfeld passt, was üblich für interventielle C-Arm
Systeme ist, entstehen Trunkierungsartefakte und das Field-of-View ist verkleinert. Neuartige
neuronale Netze haben bereits für diverse Anwendungen aus der Bildverarbeitung hervorragende
Ergebnisse geliefert. Das Ziel dieser Arbeit ist daher, die verschiedenen Niedrigdosis-CT-
Implementierungen im Verbund mit Deep Learning-basierter Bildverbesserung zu analysieren,
sowie die Rekonstruktion aus trunkierten Rohdaten mithilfe einer Deep Learning-basierten und
einer iterative Methode zu ermöglichen. Zur quantitativen Bildqualitätsanalyse der Niedrigdosis-
Scans wurden mehrere konventionelle und Aufgaben-basierte Metriken implementiert. Letztere
sind in der Lage zwischen ausreichend und unzureichend trainierten Netzen zu unterscheiden
und gewährleisten so die sichere Verwendung von Deep Learning Algorithmen. Die Netze
ermöglichen eine Dosisreduktion von 80% durch die Wiederherstellung der Bildqualität. Von
den Methoden zur Dosissenkung wird die Senkung des Röhrenstroms als zu bevorzugen bewertet.
Beide Methoden zur Detrunkierung liefern zufriedenstellende Ergebnisse. Allerdings ist der mit
DART verbundene Rechenaufwand derzeit noch weitaus größer als die Inferenzzeit des Netzes,
welches Korrekturen in Echtzeit verspricht. Diese können möglicherweise zur Verbesserung der
Bildsteuerung während Operationen oder nachfolgenden Algorithmen beitragen.
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1 | Introduction

Computed tomography (CT) is one of the main imaging modalities in the clinical
workflow. It generates cross-sectional slices of the human body from several X-ray
projections in scan times of a few seconds [1]. Historically, it was the first modality
to provide images that were not inhibited by the superposition of different structures
[2]. Four years after its invention by Hounsfield in 1973 [3], about 1000 systems were
installed [4]. In the modern clinical landscape, virtually every hospital has at least one
CT [5], which highlights its unequivocal importance to current diagnostics.
While CT was initially used primarily for diagnostics, developments in flat panel detec-
tor technology have made three-dimensional (3D) imaging available to interventional
applications via C-arm cone-beam computed tomography (CBCT) systems [6]–[10]. This
includes image guidance for minimally invasive procedures, e.g. for vascular stenting
[7], [11], [12], embolization [13], spine surgery [14], and follow-up treatments after
hip replacement [15]. Other scenarios in which CBCT is performed are chemo- and
radioembolization for cancer treatment [13], [16], [17], radiotherapy [6], [9], [18], and
dental scans [19], [20]. In general, the scans may be used both for image guidance, as
well as verification of treatment success.
The main concern when employing CT stems from the X-rays that are used in the image
formation: each scan is associated with a significant radiation dose to the patient, and in
the interventional context, to the clinical staff. The exact dose varies between patients,
body region and type of exam. Wider cross-sections, e.g. shoulders or abdomen, or
obese patients, require more radiation to achieve satisfactory image qualities [1]. While
a single abdominal may only cause an effective dose of 4.5 mSv, oftentimes it is necessary
to perform multiple acquisitions, increasing the total dose to the patient. For example,
treatment planning in radiotherapy requires follow-up scans to tailor the plan to the
actual patient position and identify treatment progress [9], [16], [18]. Likewise, image-
guided surgeries necessitate continued updates on the position of surgical instruments
[7], [21]. As a 3D CBCT needs a large number of projections, two-dimensional (2D)
X-ray imaging, e.g. 2D fluoroscopy, is still prevalent for interventions [22]. In order to
enable more frequent utilization of 3D scans, thus providing the surgeon with additional
information leading to improved surgeries, dose reductions are mandatory.
Dose reduction has therefore long been one of the primary research aims related
to CT. Several hardware and software-based approaches have been investigated and
implemented in commercial systems. Methods that act before the reconstruction
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CHAPTER 1. INTRODUCTION

process include prefilters that shape the spectrum of the X-ray beam in a manner that
reduces low energy photons [1], [23]–[25]. This decreases the fraction of photons that
contribute to patient dose but not to the detected signal and increases image quality.
The development of novel photon counting CT detectors promises further potential for
low-dose CT, partially due to a lack of electronic noise [26]–[30]. As stated before, the
dose required for a diagnostically valuable image changes with the cross-section of the
patient. Because the thickness of the patient is not the same for all directions, tube
current modulation (TCM) is able to reduce the dose for projections where the beam
has to penetrate less tissue, and vice versa [23], [31]–[35]. This leads to a more efficient
utilization of radiation in terms of image noise. Likewise, the TCM can be used to
protect specific organs or minimize the effective dose of the acquisition [29], [36].
In general, the dose can be arbitrarily reduced by decreasing the tube current, or
the number of projections. Both will lead to a net decrease in X-rays and thus dose,
but will deteriorate the image quality if not sufficiently corrected for. Reducing the
tube current in so-called low-mAs CT increases the noise of the measured projections
according to the Poisson distribution of X-ray detection [1], [37]. This noise is then
transferred to the image in the reconstruction. A plethora of methods have been
developed to reduce image noise. These include adaptive filters [24], [38]–[41] and
advanced iterative reconstructions that may include a sophisticated model of the CT
data generation process [42]–[46]. Likewise, sparse-view CT, i.e. acquisitions with
fewer projections, causes streak-like artifacts in the image due to the reduced angular
sampling. A variety of iterative [47]–[50] and compressed sensing methods [47], [51]–[55]
have been established to reconstruct from sparse data.
While conventional methods have enabled moderate dose reductions already, novel
deep learning algorithms have shown highly promising results in a multitude of image
processing tasks [56]–[60]. This includes classification [61], [62] and segmentation
of medical images [63]–[66]. Neural networks (NNs) have also been applied to low-
mAs scans, yielding favorable results [41], [67]–[79]. Recently, the first deep learning
methods have been implemented in commercial CT systems [80]–[82]. NNs incorporate
prior information via the training process into the image correction, thus achieving
results superior to conventional methods. Similarly, deep learning-based algorithms
have successfully reduced artifacts in sparse-view acquisitions [55], [58], [76], [83]–[104].
Despite the large amount of literature on either method of dose reduction, there is
scarcely any research on which approach is preferable [76].
Another case of reconstructing scans with insufficient raw data is the problem of
truncated projections [1]. This occurs frequently in interventional CBCT, where the
detector is often only 30 cm wide in axial direction, such that the patient does not
fully fit in the field of measurement (FOM). The collimation of the X-ray beam may be
further reduced, to decrease the patient dose [9]. Conventional reconstruction algorithms
applied to these data will create cupping artifacts inside the field of view (FOV) [1], [105].
In addition, information outside the FOV is lost, which may be beneficial for secondary
algorithms such as positron emission tomography (PET) attenuation correction, scatter
correction or beam hardening correction [106]. Established methods to reduce truncation
artifacts typically extrapolate the singorams based on some simplified patient model,
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e.g. a water cylinder [106]–[112]. Another algorithm that has been employed for the
reconstruction from insufficient raw data, primarily limited angle and sparse acquisitions
but also truncation, is the discrete algebraic reconstruction technique (DART) method
[113]–[123]. Recently, deep learning-based methods have shown promising results for
the detruncation task [95], [124]–[131].
While state-of-the-art NN appear to outperform analytic or iterative methods in image
reconstruction and processing, they are significantly less predictable [132]. Indeed,
the networks themselves can be considered a black box due to the large number of
parameters. One approach to remedy this lack of interpretability, is to use the network
to find parameters of an analytic or iterative method [42]. To ensure the safe utilization
of networks in general, sophisticated quality assurance is necessary. This is especially
important in medical imaging. For instance, the removal of a lesion by a denoising
algorithm may lead to a misdiagnosis.
The aim of this thesis is to investigate the potential of deep learning-based methods to
reduce CT dose in conjunction with low-mAs and sparse-view CT, and to reconstruct
images from truncated data. Specifically, this work analyses different approaches to
low-dose CT and seeks to determine the optimal combination of reducing tube current
and number of projections. The low-dose scans are corrected with dedicated NNs,
and evaluated on classical image quality measures as well as task-based metrics. For
the latter, low-dose scans of patients with liver lesions are simulated and corrected.
Furthermore, several metrics of lesion segmentation accuracy are computed with a
state-of-the-art deep segmentation algorithm. In addition, analytical model observers
are implemented to determine lesion detectability in proximity to human perception
[133]–[141]. The work then investigates whether the metrics are able to distinguish
between sufficiently and insufficiently trained networks. For the task of detruncation,
truncated scans are simulated and subsequently reconstructed with a dual-domain NN,
as well as DART-based detruncation. The results are then quantitatively analyzed
inside and outside the original FOV.
The structure of this work is as follows: Chapter 2 contains the fundamentals of X-ray
computed tomography, including the underlying physical processes, image reconstruction
methods and artifacts. In addition, it discusses the basics of machine learning and
NNs. Chapter 3 describes the methodology of this work. It outlines the simulation of
low-dose CT, network architectures and training schemes. Furthermore, it introduces
the task-based image quality metrics. Moreover, the detruncation algorithms are
presented. Chapter 4 provides the experimental results. First, dose reduction approaches
are evaluated and compared. This is followed by an ablation study of the network
architecture and the loss function. Subsequently, the developed metrics are applied to
insufficiently trained networks. Finally, the DART and NN detruncation results are
shown. Chapter 5, summarizes and discusses the results of this work. Lastly, chapter 6
draws the conclusions of this thesis.
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2 | Fundamentals

2.1 Interactions of X-Rays with Matter
CT is made possible by the interaction of X-rays with the patient and detector. X-rays
are photons generated as bremsstrahlung or characteristic X-rays within in a wavelength
range of 10−8 m to 10−13 m [2]. Notably, photons originating from radioactive decay are
called γ-rays, even if they fall into the wavelength range above. The diagnostic value
of X-rays was acknowledged immediately, such that they have been used for medical
imaging since their discovery by W. C. Röntgen in 1898 [1], [142].

2.1.1 Lambert-Beer Law

As an X-ray beam passes through matter, a fraction of the photons will interact with the
object and are attenuated. Two parameters govern how strongly the beam is attenuated:
the linear attenuation coefficient µ and the thickness of the material d. The attenuation
coefficient depends on the energy of the photon E and the object material, i.e. its
density. For simplicity, the following examines a mono-energetic X-ray pencil beam
with an initial intensity I0 and a homogeneous object. After passing through the object,
the intensity of the beam is

I = I0 · e−µ · d, (2.1)

according to the Lambert-Beer law. In diagnostic imaging, most X-rays have energies
between 30 keV and 150 keV. In this case, three physical effects contribute to the
total attenuation coefficient: Rayleigh scattering (µR), the photoelectric effect (µP),
and Compton scattering (µC) [1], [105]. Figure 2.1 illustrates the partial and total
attenuation coefficients of water and lead for different photon energies. A fourth effect,
pair production, becomes relevant for high energy X-rays, i.e. above 1.022 MeV. Figure
2.2 details the physical processes involved in the relevant interactions, which will be
discussed in detail in the following subsections. Note that the Lambert-Beer law only
holds for a pencil beam, where all scattered photons are removed from the beam. For
a brief overview of scatter in CT, see section 2.4. The total attenuation µ is then the
sum of the three partial attenuation coefficients:

µ = µR + µP + µC. (2.2)
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Figure 2.1: Contributions of Rayleigh scattering, the photoelectric effect and Compton
scattering to the total attenuation coefficient of water (left) and lead (right).
The diagnostic energy window that is relevant for CT is indicated. From [2].

Typically, interaction probabilities are indicated by the cross-section σ. Expressing µ in
terms of σ yields

µ = ρNA
A

σ, (2.3)

where ρ is the density of the material, NA is Avogadro’s number and A is the nucleon
number. The first term in the equation above is the number of atoms per unit volume.
Note that since the density of a material can fluctuate, databases primarily list the mass
attenuation coefficient µ

ρ . The next sections elaborate on the different photon-matter
interactions and discuss their relevance for varying energies and materials based on the
cross-section.
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Figure 2.2: Relevant interactions of X-rays with matter, including Rayleigh scattering
(left), the photoelectric effect (middle) and Compton scattering (right).

2.1.2 Rayleigh Scattering

As illustrated in Figure 2.2, Rayleigh scattering describes an event where an X-ray
photon is scattered off a bound electron such that no photon energy is lost [1], [2], [105],
[143]. It is therefore also referred to as elastic or coherent scattering. Although no
energy is transferred, the direction of the photon path changes slightly. As evident in
Figure 2.1, Rayleigh scattering is more important for low energies and heavy atoms.
The cross-section is proportional to

σR ∝ Z2/E2, (2.4)

where E is the photon energy and Z is the atomic number. While Rayleigh scattering
is relevant for very dense materials, as seen in Figure 2.1, in the diagnostic range it is
the least important effect for water.

2.1.3 Compton Scattering

If the scattering process transfers energy to the electron, the process is called Compton
scattering, or inelastic scattering. In contrast to Rayleigh scattering, where the photon
interacts with a bound electron, Compton scattering involves a quasi-free electron,
typically a valence electron in an outer shell [1], [2], [105], [143]. As shown in Figure 2.2,
the photon path is changed by a scattering angle, and the electron leaves the atomic
shell. Due to the energy transfer, the photon energy after scattering is

E′ = E
1

1 + E
mec(1 − cos ϑ)

. (2.5)

Here, ϑ is the scattering angle and me is the electron mass. The total cross-section is

σC ∝ Z√
E

. (2.6)
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Figure 2.1 shows that in the diagnostic range, Compton scattering is the dominant
interaction for water. In addition, the attenuation coefficient is significantly more
constant over the energy range than for Rayleigh scattering or the photoelectric effect.
Thus, Compton scattering primarily provides low-contrast information [2].

2.1.4 Photoelectric Effect

The third relevant photon-matter interaction is the photoeffect. Here, the X-ray photon
is fully absorbed by the atom, removing an electron as visualized in Figure 2.2 [1], [2],
[105], [143]. A lower shell now has a vacancy, which is energetically unfavorable. Thus,
an electron from an outer shell will drop into the lower shell under emission of a photon.
Since the energy of the emitted photon is equal to the energy difference between the two
levels, it is called characteristic photon. Likewise, the photoelectric absorption requires
photon energies above the binding energy of the respective shell. Thus, the graph of
the attenuation coefficient has characteristic edges, as seen in Figure 2.1 for lead. The
cross-section of the photoelectric absorption follows

σP ∝ Z4/E3. (2.7)

Due to the Z dependence, the photoelectric effect dominates the total attenuation for
high-Z materials.

2.2 Data Acquisition
The first step of data acquisition in CT is the generation of X-rays. Figure 2.3 illustrates
an X-ray tube. A cathode produces electrons, which are accelerated towards an anode
target. A magnetic field deflects the electrons to achieve the correct path. When
electrons hit the anode, they create bremsstrahlung and characteristic radiation. Most
of the energy, about 99%, is wasted as heat [2]. Therefore, the target must have a high
melting point and is cooled during the scan. For the same reason the most common
anode material is tungsten. Another benefit of tungsten is its high atomic number,
which increases the cross-section of the photoelectric effect, as presented in the previous
section. This leads to better tube performance due to an improved X-ray efficiency [1].
After tube generates an X-ray beam, it is collimated and pre-filtered to adjust the shape
and spectrum. This reduces the patient dose, which allows for higher image quality
by having a larger fraction of X-rays contribute to the image formation [1], [23]. In
addition, changing the spectrum also alters contrast between tissues in the reconstructed
images. After pre-filtration, the beam passes through the patient. Parts of the beam
are attenuated according to section 2.1. The remaining X-rays reach the detector,
which converts the X-rays into an electronic signal. In a conventional energy-integrating
detector, the X-rays first interact with a scintillator, commonly Gd2O2S [144]. This
produces photons in the visible spectrum that are subsequently measured in a photo
diode. After digitization this yields an intensity value I. The projection value p is
finally calculated by solving Equation (2.1) for µ · d, i.e. dividing by a pre-calibrated
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Figure 2.3: Schematic of an X-ray tube. The anode is rotating for better heat dissipation.

intensity without patient I0 and taking the negative logarithm. This value is finally
saved for each rotation angle and detector pixel in the so-called sinogram.

2.3 Image Reconstruction
After the CT data are measured, a reconstruction algorithm is required to produce slice
images from the projection data. In order to adequately sample the patient, a 2D scan
needs to cover 180 degrees. Besides the standard filtered back-projection (FBP), several
more sophisticated reconstruction techniques are in use, as illustrated in chapter 1. This
primarily includes iterative reconstruction and state-of-the-art deep learning algorithms
[2], [29]. In view of the multitude of algorithms and different scan geometries, only the
analytic FBP will be derived here with a parallel beam geometry. In current clinical
practice, fan- and cone-beam geometries with spiral trajectories are prevalent [1]. The
algorithms used for these more complex geometries are often related to the FBP.
Figure 2.4 illustrates the geometry used in this study. Each pixel in the sinogram, i.e.
each projection value p, is associated with its position along the detector ξ and the
rotation angle of the X-ray source ϑ. The projection p is thus an integral along the
X-ray beam, which can be described by a line with x cos ϑ + y sin ϑ = ξ. Ignoring effects
such as scatter, the projection value is consequently related to the attenuation of the
patient µ as follows:

p(ϑ, ξ) =
∫

µ(x, y)δ(x cos ϑ + y sin ϑ − ξ) dx dy, (2.8)

where δ(·) is the Dirac delta function. The X-ray transform follows as the sum of all
possible line integrals [105]. For 2D acquisitions, the X-ray transform is also referred to
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Figure 2.4: 2D parallel beam geometry for the filtered backprojection

as Radon transform [2]. Equation (2.8) describes the forward process in CT. However,
the desired variable is the attenuation distribution µ, as this constitutes the cross-
sectional image. Therefore, the equation must be inverted. This is possible with the
Fourier-Slice theorem, defined as

P (ϑ, u) = M(u cos ϑ, u sin ϑ). (2.9)

Here, P (ϑ, u) = Fp(ϑ, ξ) is the Fourier transform of the sinogram and similarly
M(ux, uy) = Fµ(x, y) is the Fourier transform of the image. In the above equa-
tion, it holds that ux = u cos ϑ, uy = u sin ϑ and dux duy = |u| du dϑ. Although it seems
that an inverse Fourier transform of M would directly lead to the desired image, the
discrete angular sampling of CT would create artifacts. Instead, using Equations (2.8)
and (2.9) together gives the FBP:

µ(x, y) =
∫ π

0
dϑ

∫ ∞

−∞
|u|P (ϑ, u)e2πiu(x cos ϑ + y sin ϑ) dϑ

=
∫ π

0
dϑ

∫ ∞

−∞
K(u)P (ϑ, u)e2πiuξ du.

(2.10)

The ramp filter K(u) = |u| is required to prevent the aforementioned artifacts. The
expression can be further reduced with the convolution theorem:

µ(x, y) =
∫ π

0
dϑp(ϑ, ξ) ∗ k(ξ)|ξ=x cos ϑ+y sin ϑ. (2.11)
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The kernel k(ξ) that is convolved with the sinogram follows as

k(ξ) = F−1K(u) = −1
2π2ξ2 . (2.12)

The discretized version of this kernel, under consideration of the Nyquist frequency
of the data, is known as the Ram-Lak kernel [1]. On commercial systems, a variety
of vendor-specific kernels are in use. This way, characteristics of the image can be
adjusted in the reconstruction process. For instance, a sharper kernel will lead to higher
resolution at the cost of higher noise. Generally, the attenuation values µ are not used
for diagnosis. Instead, they are re-scaled in reference to the attenuation value of water
and presented in Hounsfield units, defined as

CT(x, y) = µ(x, y) − µWater
µWater

· 1000 HU. (2.13)

By definition, water has a value of 0 HU. Other values include air at −1000 HU, fat
at −80 HU, liver at 50 HU, spongy bone around 200 HU and cortical bone between
350 and 2000 HU [1]. CT values are typically represented as 12 Bit integers with an
offset of −1024 HU. Consequently, highly attenuating materials such as metals may
have values above the maximum value of 3071 HU [105]. In non-medical applications,
where water is not relevant, Hounsfield units (HU) values are not in use. Instead, the
attenuation values themselves are used, or re-scaled to the dominant material [145].

2.4 Image Artifacts
CT image reconstruction heavily revolves around avoiding and correcting image artifacts.
In the context of low-dose CT, image noise and sparseness artifacts are most relevant.
Other artifacts include beam hardening, scatter, motion artifacts, metal artifacts, and
truncation [105]. The latter is especially relevant in applications using CBCT, as
detectors typically are not able to cover the full patient and is the secondary focus of
this work.

2.4.1 Noise

In order for an X-ray to contribute to the sinogram, it must pass through the patient
and interact with the detector. However, as described in section 2.1, the photon-object
interactions are associated with a probability. As a consequence, the number of X-ray
photons that reach the detector follows a Poisson distribution [1], where the probability
of an individual photon to be measured is(

1 − e−µD(E)dD
)

e−p(E). (2.14)

Here, µD(E) is the attenuation coefficient of the detector material at X-ray energy E,
dD is the intersection length of photon and detector, and p(E) is the line integral of
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the attenuation of the patient along the X-ray beam. The detected signal S is now
equivalent to

S =
∫

dEa(E)N(E), (2.15)

where a(E) and N(E) are the detector response and number of photons at energy E,
respectively. Typically, a(E) ∝ E. The attenuation value is defined as Q = − ln S/ES0,
where ES0 is the expected value of the detected signal without patient. Due to the
Poisson characteristic of detected X-rays, Q can be estimated as

EQ ≈ − ln ES

ES0
(2.16)

and

VarQ ≈ VarS
(ES)2 , (2.17)

where Var signifies the variance. Due to the linear nature of FBP, the projection noise
will linearly propagate to the image domain [1], [2], [105]. Under the assumption of a
monochromatic X-ray beam, the equations simplify to

EQ ≈ − ln EN

EN0
(2.18)

and

VarQ ≈ 1
EN0

eEQ. (2.19)

As evident, the variance is indirectly proportional to the number of X-ray photons
before the patient. Decreasing the tube current, and therefore the dose, by a factor of
two will consequently lead to an increase of image noise to

√
2 = 141% of the full dose

image. Figure 2.5 illustrates how the image noise increases with decreasing N0, i.e. tube
current. In addition, due to the exponential term, the noise will further increase for
obese patients. Another source of noise is the electronic noise of the detector element
itself [37].
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Figure 2.5: Examples of increasing image noise with decreasing number of photons
relative to full dose. Bottom row shows difference to ground truth. C = 0 HU,
W = 500 HU for CT images, C = 0 HU, W = 100 HU for difference images.

2.4.2 Sparseness

According to Equation (2.11), a CT image can be reconstructed from the integral
of all rays passing through the patient over an angle of 180 deg. However, due to
the discretization of CT system and reconstruction software, only a finite number of
line integrals are available. Thus, the integral in Equation (2.11) becomes a sum [2].
Provided that the number of projections is high, this will not impact the image. However,
if the number of projections is reduced below a certain limit, the patient is insufficiently
sampled in the angular direction. Then, the image reconstruction presents an ill-posed
inverse problem and conventional algorithms such as FBP cause streak artifacts in the
image [58], [105]. Figure 2.6 provides an example of sparseness artifacts increasing with
decreasing number of projections. Interestingly, reducing the projections also increases
image noise, as fewer rays are averaged for each pixel during the backprojection process.
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Figure 2.6: Examples of increasing sparseness artifacts with decreasing number of
projections. Bottom row shows difference to ground truth. C = 0 HU,
W = 500 HU for CT images, C = 0 HU, W = 100 HU for difference images.

2.4.3 Truncation

If parts of the patient are not fully inside the FOM, the projections will be insufficient
for conventional reconstruction. Firstly, the FOV will be reduced in size. Secondly,
truncation artifacts appear as hyperdense areas close to the edge of the FOV [1].
Depending on the amount of truncation, CT values accuracy deteriorates inside the
whole image. Figure 2.7 presents reconstructions with varying number of equally-sized
detector pixels. Note that values outside of the FOM are set to zero. To prevent
truncation artifacts, the sinogram is extrapolated to simulate a laterally larger detector.
With conventional algorithms, only the data inside the field of measurement can be
returned to high image quality. For data outside of the field of measurement, more
sophisticated methods are required [1].
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Figure 2.7: Examples of increasing truncation artifacts with decreasing number of
detector pixels. Bottom row shows difference to ground truth. C = 0 HU,
W = 1000 HU for CT images, C = 0 HU, W = 1000 HU for difference
images.

2.5 Neural Networks

neural network are a major component of the current machine learning landscape. In
contrast to traditional methods, where the relationship between input and output is
hardcoded into the algorithm, neural networks learn this transformation from the data
[56]. Currently, NNs produce state-of-the-art results in many image processing tasks
[57]–[60].

2.5.1 Neurons

Neurons, as in the human brain, are the foundational unit of NN processing. A single
neuron is defined mathematically as

a′ = σ

(∑
k

akwk + b

)
, (2.20)

where ak are some real input values, and a′ is the output. Together with the weights
wk and bias b, which are later determined during the training process, the inputs are
linearly transformed. In order to be able to model non-linear transformations, the
so-called activation function σ must be a non-linear function itself [56]. One popular
activation function is the rectified linear unit (ReLU) [146], [147], which is defined as

σ(x) = max(0, x). (2.21)
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Figure 2.8: Fully-connected layer with two inputs, three neurons, and one output.

2.5.2 Layers

A single neuron has not enough computational power to perform the desired processing
tasks. Therefore, neurons are arranged in layers, such that the outputs of neurons of
the first layer will be used as input for neurons of the next layer and so forth. How
exactly the layers are connected is an important aspect of network design. Two of the
most common layers are fully-connected (FC) layers and convolutional layers.

i.) Fully-Connected Layers

As the name suggests, in a FC layer, each neuron is connected to all neurons of the
previous layer [56]. Figure 2.8 illustrates a simple neural network with two inputs,
an FC layer with three neurons, and one output. Note that the middle layer is also
referred to as hidden layer, as the user only interacts with the input and output layers.
For large numbers of neurons and layers, this type of layer will create a significant
computational cost. Increasing the number of neurons by a factor of two for two FC
layers will quadruple the number of weights between them. Therefore, this type of layer
is most commonly used for low-dimensional inputs. These may occur in low-resolution
imaging or after other network layers have reduced the dimensionality [56], [57], [59],
[132]. For example, classification tasks usually include FC layers at the end of the
network to produce the final estimates.
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ii.) Convolutional Layers

In convolutional layers, each neuron only sees a small subset of neurons from the previous
layer, significantly reducing computational costs. Here, the weights are employed as
elements of a convolution kernel, such that the ith neuron of layer j is defined as

aj
i = σ

 N∑
k=−N

aj−1
i+k wj

k + bj

 , (2.22)

where the input neurons k only include those within the convolution kernel of size
2N + 1, given by wk. Figure 2.9 visualizes a one-dimensional (1D) convolution layer
with a 3 × 1 kernel. In order to retain the tensor size, the input layer is padded with
zeros. Otherwise, the output tensor will have a reduced size depending on the stride
and kernel size of the convolution layer. As convolutions are already a omnipresent
in traditional image processing, it is not surprising that convolutional layers are used
extensively for deep learning-based approaches as well. Networks based on convolutional
layers are called convolutional neural network. Equation (2.22) can be adapted to any
input dimension, e.g. 2D images and 3D volumes, by converting the 1D convolution to
higher dimensional equivalents. For inputs with multiple channels, for instance color
images or outputs from deeper network layers, one would typically use one kernel for
each combination of input and output channel [56], [57].
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Figure 2.9: Schematic of a 1D convolutional layer. The input layer is zero-padded to
ensure that the output is the same size.

2.5.3 Network Training

As stated above, neural networks determine their internal parameters from the data.
Since convolutional neural networks (CNNs) can have billions of weights and biases
to be calculated, the so-called training process cannot performed manually. The most
common approach is supervised training [57]. Here, the network is provided with inputs,
e.g. noisy images, and corresponding desired target, e.g. clean images. Since each image
is perfectly sorted into either category, they are called labeled. In principle, the training
consists of three steps. First, the input is fed into the network and processed. Secondly,
the difference to the desired target is computed according to some loss function. The
loss function has significant impact on the training result, as it defines what constitutes
an accurate network output. A common choice for image correction tasks is mean
squared error (MSE) [57], [58]. Thirdly, the network parameters are updated depending
on the value of the loss function. This is typically performed via backpropagation or
gradient-descent optimization, for instance the Adam optimizer [148], [149]. Usually,
the network weights are updated after a small number of samples, called batches,
have passed through the network. After all training data have been used, one epoch
concludes. This is ideally followed by evaluating the network on validation data, which
have been excluded from training. The validation step ensures that the network is
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capable of performing well on unseen data. It also aids in determining hyperparameters
of the network training [56], [57]. The training process is finally stopped after some
predetermined amount of epochs has passed, the improvement becomes too small, or
a target metric is reached. Although supervised training is conceptually the simplest
form of network training, it requires accurate input-target-pairs. If these cannot be
generated, e.g. due to unrealistic simulations, more sophisticated training schemes are
required [57], [150], [151].
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3 | Materials & Methods

3.1 Low-Dose CT Correction

3.1.1 Simulating Low-Dose CT Data

In order to train a CNN for low-dose CT denoising and destreaking, a large training
dataset is required. Ideally, the data consists of real low-dose and corresponding high-
dose scans. While this is possible with phantom measurements, performing multiple
acquisitions is infeasible for patients due to dose concerns and patient movement.
Nevertheless, supervised learning is still possible as low-dose scans can be simulated from
diagnostic CT volumes. As an alternative to using labeled data, several unsupervised
methods have been proposed in the literature, as discussed in section 2.4.
This work uses the publicly available Liver Tumor Segmentation (LiTS) Benchmark
dataset, which contains 130 CT volumes with corresponding liver and lesion segmentation
[66]. Figure 3.1 provides examples of the LiTS dataset. So far, there have been three
LiTS challenges, namely at International Symposium on Biomedical Imaging (ISBI)
2017, Medical Image Computing and Computer Assisted Intervention Society (MICCAI)
2017, and MICCAI 2018. The first two were dedicated to lesion segmentation, and
joint liver and lesion segmentation, respectively. The latter was part of a larger image
segmentation challenge, including nine other tasks. Various state-of-the-art segmentation
methods have been developed for and tested on the dataset [64]–[66]. Other large public
and private datasets exist and were considered. Ultimately, the LiTS data were chosen
due to the availability of high-quality pretrained segmentation networks for task-based
image quality assessment, as described in section 3.2.2. Besides the 130 volumes with
ground truth segmentation, the dataset includes an additional 70 volumes without
segmentation intended for the final challenge benchmark. These volumes were excluded
from this study, as the ground truth segmentation is necessary for testing. Note that
several institutions and radiologists were involved in the creation of the dataset, such
that the detailed look of the segmentations differs from patient to patient. In Figure
3.1 this is evident in the jagged liver segmentation for the leftmost case.
The LiTS scans typically feature a pixel size of around 0.8 mm. Although the dataset is
for lesion segmentation, the volumes are mostly full body CT acquisitions ranging from
hip to shoulders. Since only image data is available, the corresponding raw data must
be generated artificially. A monochromatic forward projection of the CT volumes yields
the ground truth sinograms. The forward projection is performed in parallel beam
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Figure 3.1: Example data from the LiTS dataset. Top row shows the CT images,
bottom row the corresponding segmentation of liver (grey), and lesions
(white). C = 0 HU, W = 500 HU.

geometry with Nmax = 512 equally-spaced projections covering 180◦. Each projection
contains M = 512 detector pixels 0.8 mm apart.
Under the assumption that the ground truth images do not contain a significant amount
of noise, low-mAs scans were simulated by directly adding Poisson noise to the sinograms.
This models the Poisson behavior of photons being detected by an X-ray detector, as
described in section 2.4.1. Electronic noise is not simulated. With a photon number of
I0, the noisy projections plow-mAs are calculated as

plow-mAs(θ, ξ) = − ln(Poisson(I0 exp p(θ, ξ))/I0), (3.1)

where p(θ, ξ) is the sinogram value at rotation angle θ and detector position ξ.
For sparse-view CT, the number of projections N were reduced by the appropriate
factor. Each instance of sparse-view CT was generated with a new forward projection,
as the angular spacing is not always an integer multiple of the non-sparse angular
increments.
To combine sparse-view CT with low-mAs CT, apply Equation (3.1) to the sparse
sinogram. Since the dose should remain the same for all instances of low-dose CT, the
total number of photons must be identical. With the simulation parameters N and I0,
this equates to

D ∝ I0N, (3.2)

where D is the patient dose. Given a desired dose reduction by a factor α, the low-dose
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CT with photon number I0,LD and number of projections NLD fulfills

DLD = 1
α

D ∝ 1
α

I0N = I0
αI

N

αN
= I0,LDNLD,

I0,LD = I0
αI

,

N0,LD = N

αN
,

(3.3)

where αI and αN are the factors reducing the tube current and number of projections,
respectively. Since the total dose reduction factor is always equal to α, regardless of
dose implementation, it holds that

α = αIαN . (3.4)

Evidently, αI and αN are inversely proportional. Figure 3.2 visualizes the relationship
between tube current and number of projections at equal dose. Therefore, to the have
fairly spaced pairs of αI,N , they are sampled as

αI = α

αN
= e

k
K−1 ln(α), and αN = e(1− k

K−1 ) ln(α), (3.5)

where 0 ≤ k ≤ K − 1, k, K ∈ Z determines what fraction of the dose reduction is
achieved by reducing the tube current, and K is the number of dose implementations.
Figure 3.3 plots the trade-off between number of projections and tube current on a
log-log scale.
This study investigated a dose reduction 80%, i.e. α = 5, with five different realizations
of low-dose CT. The high-dose photon number of the ground truth scans Imax was set
to 1.5 × 106 photons and the number of projections to N = 512. These parameters serve
to generate high-dose images, which can also be compared to the ground truth. To
simulate a dose reduction of 80%, low-dose images were generated according to Equation
(3.5). This yields N ∈ {512, 342, 229, 153, 102} and I0 ∈ Imax{0.2, 0.30, 0.45, 0.67, 1.0}
as highlighted in Figure 3.3.
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Figure 3.2: Relationship between number of projections and tube current at constant
dose for different dose implementations. Red dashed lines mark the tested
configurations.
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Figure 3.3: Tube current vs. number of projections for the five tested dose implementa-
tions on a log-log scale. Red dashed lines mark the tested configurations.
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3.1.2 CNN Denoising

i.) Network Architecture

This study uses a W-Net to correct the low-dose images. A similar architecture was
previously employed for sparse-view CT reconstruction [87]. Figure 3.4 describes the
W-Net architecture. It consists of three components: First, a sinogram domain residual
U-Net (U-NetSino) [152] corrects sparseness artifacts and noise in the sinogram. Secondly,
a differentiable FBP layer reconstructs the image. This layer uses a Ram-Lak kernel for
the filtering step. Note that in [87], the FBP layer is also trainable. Finally, an image
domain residual U-Net (U-NetImg) removes leftover artifacts and image noise. Figure 3.5
illustrates the U-Net architecture in more detail. The architecture is 2D and identical
for both the sinogram and image domain network. Note that the different low-dose CT
realizations feature differently sized sinograms. In addition, image correction is easier
for networks to learn than image generation. Thus, the low-dose images are forward
projected in the full-view geometry to produce the input sinograms. Consequently, the
network corrects the full, but corrupted sinograms.

ii.) Network Training

The training of the W-Net combines three loss functions. Let SN, SGT, and fS be
the noisy sinogram, ground truth sinogram, and sinogram domain U-Net. Then, the
sinogram loss is given by

LS = ∥fS(SN) − SGT∥2, (3.6)

i.e. the MSE of network output and ground truth. Similarly, the FBP loss is

LFBP = 0.9995∥fFBP(SS) − IGT∥2 + 0.0005LPerc(fFBP(SS), IGT), (3.7)

where fFBP is the reconstruction layer, IGT the ground truth image and SS = fS(SN)
the output of the sinogram network. In the above equation, the second part of the loss
function is perceptual loss. Perceptual loss is calculated by feeding the ground truth
and test image through a pre-trained VGG-19 network [153] and extracting the features
of the second convolution layer in second and third block [75], [78], [126], [154]. Then,
the MSE is computed between ground truth and test image over the concatenated
output features. For the perceptual loss, the images are windowed to C = 100 HU and
W = 1000 HU and scaled to the range [0 1]. The last loss function is

LI = 0.9995∥fI(IFBP) − IGT∥20.0005LPerc(fI(IFBP), IGT), (3.8)

where fI is the image domain U-Net, and IFBP is the output of the FBP layer. The
network is trained end-to-end, therefore the loss functions are combined as

Ltot = αSLS + αFBPLFBP + αILI, (3.9)
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Figure 3.4: Network architecture of the W-Net used for denoising of the low-dose images.
The FBP module consists of a convolution with the Ramlak kernel and a
differentiable backprojection layer. For a detailed description of the U-Nets,
see Figure 3.5

Figure 3.5: Detailed architecture of the U-Nets for denoising the sinogram and images.
Input and output are connected with a residual connection.

where αFBP = αI = 1 and αS = 0.001 are set empirically.
To train the networks, the paired low- and high-dose images based on the LiTS dataset
are split into training, validation and test set. This study uses 90 patients for training,
20 for validation and 20 for testing. The networks are trained for 20 epochs using an
Adam optimizer [148], [149] with β1 = 0.9, β2 = 0.999 and a learning rate of 0.005.
All models are implemented in Tensorflow and trained on an NVIDIA Geforce GTX
2080Ti.

iii.) Insufficiently Trained Networks

One critical aspect of NNs is that the network mostly functions as a black box [57], [132].
The task of quality assurance (QA) therefore becomes even more important than for
conventional, analytical algorithms. When CNNs are designed for clinical applications,
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the necessity of QA is further exacerbated. This study investigates if the methods of
image quality assessment described in section 3.2 can be utilized to identify networks
that were insufficiently trained. Networks can be trained insufficiently in a plethora
of ways. One common issue is when the training data belong to a different domain or
distribution than the test data. For example, training on phantom data while testing
on patient data. The problem also occurs when the simulation process cannot produce
images that are accurately mimicking the real data [132], [151]. In CT, this is often the
case with deep learning-based metal artifact reduction (MAR), as metal artifacts are
highly complex. Some methods therefore include a domain adaption step, to adjust the
CNN to the real data [155]. If the training data is drawn from the correct distribution,
but the set of training data is too small, the network will overfit on the given data.
Then, it will not generalize to the overall distribution, i.e. produce suboptimal results on
the test data. Finally, when the number of epochs is too small, the training process will
not find the optimal network weights, leading to a decrease in overall performance [132].
This study artificially reduces the quality of the network training by either reducing the
size of the training set or reducing the number of epochs.

3.2 Image Quality Assessment

3.2.1 Conventional Analysis

For quantitative analysis, calculate root mean squared error (RMSE) and structural
similarity index metric (SSIM) of the test set compared to the ground truth images.
RMSE is defined as

RMSE(x, y) =

√√√√ 1
n

n∑
i=1

(yi − xi)2, (3.10)

where n is the number of pixels, y is the tested image, and x is the ground truth. For
SSIM, this work uses the mean local SSIM, defined as

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
x + C1)(σ2

x + σ2
y + C2) , (3.11)

where µ, σ, and σxy are the local mean, standard deviation, and cross-covariance,
respectively. The constants are set to C1 = (0.01 ∗ L)2 and C2 = (0.03 ∗ L)2, with the
dynamic range L. SSIM was not developed for images with negative numbers, such as
CT images in the Hounsfield scale [156]. Therefore, CT images are mapped from [-400,
600] HU to the range [0, 1], i.e.

Î =


0, I < −400
I+400
1000 , −400 ≤ I ≤ 600

1, I > 600,

(3.12)
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with the original image I in HU. This corresponds to a window with center of C = 100 HU
and width of W = 1000 HU. This prioritizes relevant soft tissue information in the
images, as well as bone-tissue boundaries. The dynamic range of the rescaled images is
consequently L = 1.

3.2.2 Lesion Segmentation

i.) Data Preparation

To fully evaluate the image quality before and after CNN processing, conventional
image quality metrics are insufficient. Instead, task-based metrics are required. One
potential low-dose imaging task is liver and lesion segmentation. For this purpose, a
segmentation of liver and liver lesions is performed in the CT volumes. Since the LiTS
dataset was originally compiled for a segmentation challenge, there are a multitude of
state-of-the-art deep learning-based approaches in the literature that are trained on
these data [64]–[66]. The hybrid dense U-Net (H-DenseUNet) by Li et al. [64] placed
first in the original challenge and is publicly available including the trained weights.
Figure 3.6 illustrates the network architecture. The H-DenseUNet consists of a 2D
U-Net for intra-slice features, a 3D U-Net for inter-slice features, and a hybrid feature
fusion layer to obtain the final segmentation. This way, the network can leverage 3D
information at relatively low computational cost. Note that the input volumes are
truncated to a range of -200 to 250 HU to further emphasize the relevant CT values.
The network output is further processed by hole-filling, selecting the largest connected
component for the liver, and removing lesions outside the liver.
In order to calculate the segmentation metrics below, the predicted lesions must be
matched to the ground truth lesions. This is done in several steps, following the
algorithm by [66]. First, 3D-connected components are labeled in both prediction and
ground truth to determine individual lesions. At this point, several issues might prevent
a simple one-to-one mapping of prediction and ground truth. Figure 3.8 illustrates
potential problems: A ground truth lesion being represented by multiple lesions in the
prediction constitutes a split error. Conversely, a merge error is when multiple ground
truth lesions are combined in the prediction. Finally, both problems can occur together
as a split and merge error.
In order to facilitate the analysis, the metrics are not calculated per individual lesion,
but for small sets of lesions. A correspondence algorithm matches lesion from ground
truth and prediction. In essence, the algorithm transforms the many-to-many mapping
problem to two many-to-one mappings. Figure 3.9 shows the algorithm on two examples.
First, lesions in the ground truth are merged if they are overlapped by a lesion in the
prediction. Here, only the largest overlap is counted for each ground truth lesion, i.e.
each ground truth lesion corresponds either to no predicted lesion or to exactly one. In
the second step, lesions in the predicted segmentation are merged if they overlap the
same ground truth lesion. Again, only the largest overlap is taken into consideration.
This ensures a one-to-one mapping of sets of lesions.
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Figure 3.6: Architecture of the H-DenseUNet used for liver and lesion segmentation.
From [64].

Figure 3.7: H-DenseUNet segmentations of liver and lesions on the ground truth LiTS
dataset. Ground truth liver in grey, ground truth lesions in white, predicted
liver in red, and predicted lesions in green. From [64].
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Figure 3.8: Possible issues in the mapping of predicted lesions to ground truth lesions.
Solid fill indicates ground truth lesions, hatched interior a predicted lesion.
Corresponding lesions have the same color. From [66].

Figure 3.9: Two examples of the correspondence algorithm to find matched lesions in
ground truth (solid fill) and prediction (hatched). First, the ground truth
lesions are merged if a predicted lesion overlaps them. Second, predicted
lesions are merged if they overlap the same (merged) ground truth lesion.
Corresponding lesions have the same color. From [66].
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ii.) Metrics

There is a plethoraa of metrics to analyze segmentation quality [157]. This work
compares dice score, relative volume difference (RVD), average symmetric surface
distance (ASD), root mean squared symmetric surface distance (RMSD), maximum
symmetric surface distance (MSD), lesion recall, and lesion precision. The latter two
are technically detectability metrics, but can be calculated due to the correspondence
algorithm and are therefore included in this part of the analysis. To ensure a standardized
implementation of the metrics, the publicly available LiTS evaluation code is used [66].
Dice score measures the overlap of two binary masks A and B as

dice(A, B) = 2|A ∩ B|
|A| + |B|

, (3.13)

where |A| indicates the number of voxels in set A. For a perfect segmentation, the dice
score is equal to 1. As the binary masks can be analyzed per individual lesion, per
patient and per data set, there are several possible dice scores. This work investigates
both per case dice, and global dice. The former gives a higher weight to patients with
low tumor burden.
RVD is similar to dice, however does not take into account the overlap of the two masks,
only their size difference. This metric is meaningful in cases where the exact position of
lesions is less important than the absolute size of the tumor. It is defined as

RVD(A, B) = |B| − |A|
|A|

, (3.14)

where A is the reference volume. RVD goes to 0 for a perfect segmentation.
ASD provides a metric to determine how far the surfaces of ground truth and predicted
lesion are apart. Let SA be the surface pixels of mask A and d(x, SA) the shortest
distance from voxel x to the surface of A. Here, shortest is defined as smallest Euclidean
distance. Then, ASD is given by

ASD(A, B) = 1
|SA| + |SB|

 ∑
x∈SA

d(x, SB) +
∑

x∈SB

d(x, SA)

 . (3.15)

ASD goes to 0 as the segmentation improves.
RMSD is similar to ASD, but sums the square distances as follows:

RMSD(A, B) =
√

1
|SA| + |SB|

√∑
x∈SA

d2(x, SB) +
∑

x∈SB

d2(x, SA). (3.16)

Again, a perfect segmentation yields a value of 0. Naturally, RMSD is strongly correlated
with ASD. However, using squared distances causes larger surface errors to more heavily
impact the final metric.
MSD is another surface metric and also referred to as Hausdorff distance. Instead of
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calculating average values over both surfaces, only the maximum distances are taken
into account:

MSD(A, B) = max (maxx∈SA
d(x, SB), maxx∈SB

d(x, SA)) . (3.17)

As with the other surface distances, a value of 0 indicates a perfect prediction. Since
effectively only a single voxel pair is considered in the final metric, MSD is highly
sensitive to outliers. Simultaneously, evaluating the maximum error can be clinically
interesting, especially for surgical applications.
Lesion recall, also known as sensitivity, is a measure of lesion detection. It is defined as

Recall = TP
TP + FN , (3.18)

where TP and FN are the true positives and false negatives, respectively. For a perfect
segmentation, there would be no false negatives and recall would equal 1. This measure
emphasizes the identification of true lesions, regardless of the number of false positives.
Finally, lesion precision indicates how reliable a positive prediction is and is given by

Precision = TP
TP + FP , (3.19)

where FP are the false positives. As with recall, a perfect prediction leads to a value of
1. Generally, a high recall may be considered preferable to a high precision. This is
because false positives can be ruled out by the radiologist, while missing lesions can
lead to a potentially dangerous misdiagnosis.

3.2.3 Detectability Metrics

i.) Data Preparation

To complement the deep lesion segmentation analysis, a signal known exactly (SKE)
model observer study is implemented. For this purpose, a dataset of images with and
without lesion present is generated. Artificial 2D lesions L are inserted into the volumes
as

L(x, y) = C

2

(
1 − erf

(
r(x, y) − R

n

))
, (3.20)

where C is the contrast to the liver, r is the distance to the lesion center, R is the radius
of the lesion, and n determines how smooth the lesion goes down to zero. The function
is chosen in accordance with [158] in order to simulate realistic liver-tumor transitions.
In general, R can be a 3D function. This allows the parameterization of complicated
lesion shapes, e.g. by fitting a spherical function to an existing lesion. For simplicity
and reproducability, this work only considers circular lesions, i.e. R(x, y, z) = R.
Figure 3.10 shows the data preparation process. First, a random lesion location is
chosen. To ensure that the simulated lesion is within the liver and does not overlap
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Figure 3.10: Pipeline for the model observer study.

any existing lesions, the liver mask excluding the ground truth lesions is eroded with a
square structuring element that corresponds to the simulated lesion size. This leaves
only areas far from a real lesion or air. Then, for each slice, the artificial lesion is
inserted at a random point on this binary map. This yields the signal-present ground
truth images. The process in section 3.1.1 subsequently produces low-dose CT images
as previously. Note that the dataset without lesions, i.e. the signal-absent images, does
not have to be generated again, as it is available from the previous experiment. Finally,
the CNNs correct the images, and patches of size 100 × 100 centered around the lesion
position are extracted from the signal-present and signal-absent images. This study
analyzes two kinds of lesions: small lesions with R = 2 mm and C = −40 HU, and
medium lesions with R = 4 mm and C = −20 HU.
Model observer (MO) studies are typically categorized by the type of signal and
background in the test images, divided into "known-exactly" and "known-statistically"
[139], [141], [159]. This work implements a SKE study, i.e. all the parameters of the
lesion signal are known beforehand. One possibility of a signal known statistically (SKS)
task would be to randomize the lesion location within the image patch. This work
generates a dataset such that each image patch is from a different patient slice. Although
all lesions are placed within the liver and not on an existing lesion, the background may
still contain distinct features other than image noise, e.g. vessels or existing lesions
far from the center. Therefore, the background is only known statistically and the
MO study is SKE-background known statistically (BKS) [160]. In addition, section
4.2.2 investigates a background known exactly (BKE) study, with 100 different noise
realizations for each image patch.

ii.) Model Observer Analysis

To analyze the signal absent and signal present patches, a channelized hotelling observer
(CHO) with 40 Gabor channels is employed. The task for the the model observer is to
determine whether a lesion is present in the test image or not. Internally, the image is
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channelized by multiplying with the channels. This reduces the problem dimensionality
and emulates the human visual system [134], [139]. Subsequently, the observer calculates
a decision variable λ. If λ is above a certain threshold T , a lesion is detected. The
model observer is implemented utilizing the publicly available IQModelo software [137].
Figure 3.11 shows the Gabor channels used in this study. The channels are not
rotationally symmetric, unlike many other common CHO channel types, which aids in
signal detection. It follows that they typically feature a high detection performance
[137]. Although the simulated lesions are circular, the image noise is object dependent
and therefore not isotropic. Thus, Gabor channels still appear an adequate choice for
the channels. Each 2D Gabor channel G(i, j) is defined as

G(i, j) = exp
(
−4(ln 2((i − i0)2 + (j − j0)2)/w2

s

)
×cos 2πfc((i − i0) cos θ + (j − j0) sin θ) + ξ,

(3.21)

where i0, j0 is the center of the channel, ws is the spatial width, θ the orientation,
ξ a phase offset, and fc the center frequency [159]. The spatial width is related to
the bandwidth of the filter wf by ws = 4(ln 2)/(πwf ). To generate the channels, four
bandwidths were used, namely wf = [1/32, 1/16, 1/8, 1/4] cycles/pixel with center
fc = [3/64, 3/32, 3/16, 3/8]. The orientation was chosen as θ = [0, 1/5, 2/5, 3/5, 4/5]π
and the phase offset as ξ = [0, π/2].
The model observer can be evaluated based on its receiver operating characteristic
(ROC) curve [139]. The ROC curve plots the true positive rate vs. the false positive
rate for different decision thresholds T . Thus it provides information about how well λ
is able to differentiate between signal present and absent images. A more convenient
metric is the area under receiver operating characteristic curve (AUC), which is directly
related to the signal-to-noise ratio (SNR) of the observer. Here, AUC = 1 indicates a
perfect observer, while AUC = 0.5 represents random guessing. If the AUC were below
0.5, the decision of the model observer could simply be inverted. Therefore, the value is
always 0 ≤ AUC ≤ 1 [139], [161]. Notably, IQModelo provides an unbiased estimate
of AUC confidence intervals directly from the test set. It does not require separate
training and test sets to give an estimate. In this study, the two-sided 95% confidence
intervals are compared.
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Figure 3.11: Gabor channels used for the channelized hotelling observer.
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3.3 Detruncation

Ideally, the CT system acquires projections that cover the full patient cross-section
for all angles. This is the case for the simulations for the low-dose CT experiments.
Assuming a parallel beam geometry as before, the number of detector pixels Mf of size
∆ξ is sufficient to reconstruct a FOV with radius

RM,f = ξf,max = 1
2(Mf − 1)∆ξ. (3.22)

Note that the detector is centered, such that the detector width directly corresponds to
the maximum FOV.
If the sinogram is truncated, only Mt < Mf detector pixels are available. Following
Equation (3.22), this will decrease the maximum FOV accordingly. In addition, even
the reduced FOV will suffer from cupping artifacts as illustrated in Figure 2.7 [1], [105].
In order to restore image quality inside the FOV and possibly reconstruct structures in
the extended field of view (eFOV), the sinogram must be extrapolated by 1

2(Mf − Mt)
pixels on either side of the truncated sinogram. Note that the maximum reasonable
eFOV is defined by the bore size of the system.

3.3.1 Simulating Truncated CT Data

To generate full and truncated sinograms, the ground truth images from the LiTS
dataset are monochromatically forward-projected in parallel beam geometry. The
geometry is identical to the one described in section 3.1.1, i.e. N = 512 projections
with an angular range of 0 to 180◦ and Mf = 512 detector pixels with a pixel size of
0.8 mm. Two levels of truncation are simulated: 25% and 50%. Thus, the truncated
detectors have Mt = 384, 256 pixels, respectively. No additional noise is added to the
projections.

3.3.2 Cosine Detruncation

One method of extrapolating the missing data in the sinogram is a simple cosine
detruncation [106]. Here, the sinogram smoothly goes to zero between the outermost
acquired pixels at position ±ξt,max and the new outermost pixels at ±ξf,max. The
detruncated sinogram pd is defined as

pd(ϑ, ξ) =


pd(ϑ, ξ), |ξ| < ξt,max

cos ||ξ|−ξt,max|
2π(ξf,max−ξt,max)pd(ϑ, ±ξt,max), ξt,max < |ξ| < xif,max

0, |ξ| > ξf,max,

(3.23)

where the value for extrapolation depends on whether ξ is positive or negative.
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Figure 3.12: Scheme of the DART reconstruction.

3.3.3 DART Detruncation

DART combines prior information in the form of discretization with real-valued algebraic
reconstruction [118]–[120]. Figure 3.12 shows the basic DART scheme. The main
principle of DART is to leave some pixels untouched during each iteration of some
iterative reconstruction. These fixed pixels are set to constant values, e.g. 0 HU for soft
tissue pixels and −1000 HU for air. In this manner, prior knowledge is introduced into
the system, and the number of equations in the reconstruction are reduced, improving
the reconstruction.
There are there are three main design concerns with DART: determining which pixels
to fix, the value of said fixed pixels, and the iterative reconstruction of the free pixels.
After an initial reconstruction, DART determines the free and the fixed pixels. For this
purpose, the image is segmented into several tissues via thresholding. In this work, pixels
are segmented into soft tissue and air. Subsequently, pixels that are fully surrounded
by pixels of the same class are fixed and set to the average value of their class. This
process is essentially a grayscale erosion of the tissue map with a 3 × 3 structuring
element. In addition, each fixed pixel is given an additional probability of 65% to be
classified as free. This allows the DART algorithm to change values inside homogeneous
patches, i.e. create and remove holes. The fixed pixels are forward projected, and
their contribution is then subtracted from the raw-data. Five simultaneous algebraic
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reconstruction technique (SART) iterations finally update the free image pixels only
[162]. One SART iteration is defined as

fnew = f + λ
1

XT 1XT
(

p − Xf

X1

)
, (3.24)

where f is the current image estimate, fnew is the new estimate, p are the raw data, λ
is a relaxation factor, X is the forward-projection and XT is the back-projection. Note
that other iterative reconstruction algorithms are also feasible in the context of DART
[118].
One issue in DART is the accumulation of noise on the free pixels, as all noise in the raw
data is distributed only on the free pixels. To remedy this, a bilateral filter smoothes the
free pixels after SART, which concludes the DART iteration. DART has no well-defined
stopping criterion. Instead, a fixed number of iterations Niter = 1500 is performed. To
increase convergence speed, the bilateral filter is set stronger in early iterations. A
conventional cosine detruncation as described in the previous section provides the initial
reconstruction. Note that while DART was designed to produce segmented images, the
algorithm internally uses real valued images, which are used in this study [118]. The
DART image is finally utilized as a prior image and forward projected with Mf. This
DART sinogram is used to complete the original raw data in order to expand the FOV.

3.3.4 CNN Detruncation

As a data-driven comparison method to the DART detruncation, a W-Net as introduced
in section 3.1.2, is trained to predict ground truth images from truncated CT sinograms.
As with the network for low-dose CT, 90 patients are used for training, 20 for validation
and 20 for testing. The network is trained separately for the 25% and 50% truncated
sinograms. Besides the number of training epochs, which is set to 30, the other training
parameters are as detailed in section 3.1.2. The W-Net results are again used as prior
images to complete the original raw data.

3.3.5 Analysis

For quantitative analysis, several metrics are employed. First, the image quality inside
the original FOV is measured by RMSEFOV in comparison to the ground truth images.
Similarly, the image quality inside the larger eFOV is computed as RMSEFOV. Further-
more, SSIM is calculated over the whole image. Finally, the images are segmented by
thresholding into air and patient with a threshold of −600 HU. On these segmentations,
the dice score is computed.
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This chapter presents the experimental results of the CNN denoising and detruncation.
First, the different combinations of sparse-view and low-mAs CT are compared based on
the image metrics introduced in the previous section. Earlier experiments on this subject
were presented at IEEE Medical Imaging Conference 2023 [163]. Second, an ablation
study analyzes the importance of the different network components and loss function.
Third, the image metrics are applied to denoised images inferred from insufficiently
trained networks to determine whether the metrics can be used for quality assurance.
Finally, the detruncation results are shown. Initial results with the DART detruncation
were presented at the CT Meeting 2022 [164].

4.1 Comparison of Dose Reduction Approaches
This subsection analyzes how the W-Net is able to improve the image quality of
images from different dose reduction approaches. Figure 4.1 illustrates the denoising
performance of the W-Net on a pelvis scan. Clearly, all denoised images are visually
superior to the low-dose images. Both image noise and sparseness artifacts are strongly
reduced or removed. The noise texture of the denoised images closely resembles the
ground truth and no oversmoothing is apparent. Nevertheless, some texture difference
are visible that originate from the perceptual loss. In some instances, fine structures in
the ground truth are not visible or altered in the CNN output, in particular for the case
with N = 102. However, the structures are heavily obscured by noise and artifacts in
the low-dose images. The difference images further indicate that the network enhanced
the edges of some of the bone structures. To further showcase the denoising ability
of the CNN on different anatomies, Figures 4.2 and 4.3 give the network outputs for
an abdomen and thorax case, respectively. Similarly to the previous case, the CNNs
are able to restore image quality for all low-dose realizations in both body regions.
Still, some inconsistencies compared to the ground truth remain. While the low-dose
images clearly decrease in image quality as N becomes smaller, the differences are less
significant between the dose realizations after CNN processing.
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Figure 4.1: Denoising results for a pelvis slice. First row shows high-dose image, ground
truth, and difference of high-dose to ground truth. Difference images are
with respect to the ground truth. C = 0 HU, W = 500 HU for CT images,
C = 0 HU, W = 100 HU for difference images.
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Figure 4.2: Denoising results for an abdomen slice. First row shows high-dose image,
ground truth, and difference of high-dose to ground truth. Difference images
are with respect to the ground truth. C = 0 HU, W = 500 HU for CT
images, C = 0 HU, W = 100 HU for difference images.
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Figure 4.3: Denoising results for a thorax slice. First row shows high-dose image, ground
truth, and difference of high-dose to ground truth. Difference images are
with respect to the ground truth. C = 0 HU, W = 500 HU for CT images,
C = 0 HU, W = 100 HU for difference images.

44



4.1. COMPARISON OF DOSE REDUCTION APPROACHES

4.1.1 Conventional Image Quality Metrics

In addition to the qualitative comparison, a quantitative analysis was performed. For
this purpose, RMSE and SSIM were calculated for each slice of the test set and averaged.
Table 4.1 summarizes the results. Notably, the image quality of the uncorrected
low-dose images is not equal when measured with either metric. Instead, there is
a trend of improved image quality, i.e. lower RMSE and higher SSIM, for higher
numbers of projections. This indicates that despite equal dose, sparseness artifacts are
more detrimental to these conventional measures. Going from N = 512 to N = 102
on increases RMSE by 50% and decreases SSIM by 6%. After denoising, all dose
realizations feature significantly reduced RMSE and increased SSIM. All RMSE values
are superior to the simulated high-dose images. This highlights the ability of the W-Net
to correct all investigated scan types. While all networks perform well, the trend of
decreasing image quality as N decreases remains, with N = 102 performing worst in
both metrics. However, as the image quality of all images is high, the differences are not
as relevant. The mean relative differences between full sparse-view and full low-mAs CT
are now 6% and 0.7% for MSE and SSIM, respectively. Based on a Wilcoxon signed-rank
test, the differences between uncorrected and corresponding corrected images, as well
as between the corrected images are all statistically significant.

Metric Dataset N = 512 N = 342 N = 229 N = 153 N = 102 High-Dose

RMSE Low-Dose 47.056 47.765 49.460 46.229 72.290 21.417
W-Net 17.930 17.783 17.661 17.992 19.064 21.417

SSIM Low-Dose 0.7846 0.7823 0.7790 0.7661 0.7385 0.9020
W-Net 0.9479 0.9480 0.9482 0.9461 0.9415 0.9020

Table 4.1: Conventional quantitative image quality analysis of the W-Net denoising
using RMSE (in HU) and SSIM.
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4.1.2 Task-based Image Quality Metrics

i.) Model Observer Study

Although widely used, conventional image quality metrics do not accurately represent
the diagnostic value of a CT image. Instead, task-based metrics can better summarize
image quality with respect to specific clinical scenarios. Here, results for the lesion
segmentation and MO study will be shown. Figure 4.4 presents signal present patches of
the 2 mm lesion study before and after denoising. In addition, the signal-only image is
computed by subtracting . Again, all networks were able to restore image quality in the
low-dose image patches. The signal is barely visible in both the high-dose and corrected
images, making a qualitative assessment difficult. Figure 4.5 shows the denoising results
of the 4 mm lesion study. As before, the W-Net is able to reduce the noise in all cases.
The large lesion is clearly visible in all network outputs. Similar to Figure 4.1, some
edges are enhanced.
Table 4.2 provides the quantitative SKE-BKS results in form of 95% confidence intervals
of the AUC estimates. As with the conventional metrics, the AUC estimates indicate a
trend of decreasing image quality for low-dose CT with fewer projections. The trend
is valid for both investigated lesion sizes. For instance, the lower bound of the AUC
estimate decreases by 4% from N = 512 to N = 102. After CNN denoising, all but
one AUC estimate (for N = 342) increases. This indicates that the denoising process
did not remove any details from the image as would for instance be expected from a
simple smoothing. The increase in AUC is more pronounced for the larger lesion size,
possibly because the network more easily distinguishes large, low contrast lesions from
the background. Although N = 512 yields the best results for both lesion sizes, there
is no clear trend of increasing AUC for increasing number of projections. In contrast
to the conventional metrics, the AUC of W-Net images does not reach the level of the
high-dose image, implying that not all information lost in the low-dose simulation could
be recovered.

Dataset N = 512 N = 342 N = 229 N = 153 N = 102 High-Dose

2
m

m Low-Dose 0.8720
0.8773

0.8705
0.8758

0.8691
0.8745

0.8651
0.8705

0.8376
0.8430

0.9348
0.9391

W-Net 0.8800
0.8853

0.8641
0.8696

0.8704
0.8758

0.8736
0.8790

0.8661
0.8715

0.9348
0.9391

4
m

m Low-Dose 0.8290
0.8327

0.8273
0.8327

0.8258
0.8312

0.8211
0.8265

0.8095
0.8149

0.8810
0.8863

W-Net 0.8491
0.8546

0.8405
0.8460

0.8401
0.8455

0.8384
0.8438

0.8422
0.8476

0.8810
0.8863

Table 4.2: 95% confidence intervals of AUC estimates for the SKE-BKS model observer
for 2 mm and 4 mm lesions with and without W-Net denoising.

46



4.1. COMPARISON OF DOSE REDUCTION APPROACHES

Figure 4.4: Denoising results for the model observer study with a 2 mm lesion. First
row shows high-dose image, ground truth, difference of high-dose to ground
truth, and high-dose signal image. Difference images are with respect to
the ground truth. Signal images are calculated as the difference between
signal-present and signal-absent images. C = 0 HU, W = 500 HU for CT
images, C = 0 HU, W = 100 HU for difference images.
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Figure 4.5: Denoising results for the model observer study with a 4 mm lesion. First
row shows high-dose image, ground truth, difference of high-dose to ground
truth, and high-dose signal image. Difference images are with respect to
the ground truth. Signal images are calculated as the difference between
signal-present and signal-absent images. C = 0 HU, W = 500 HU for CT
images, C = 0 HU, W = 100 HU for difference images.
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Metric N = 512 N = 342 N = 229 N = 153 N = 102
Per Case Dice 0.832 0.830 0.819 0.848 0.806
Global Dice 0.923 0.926 0.926 0.928 0.923
RVD -0.052 -0.003 -0.004 -0.014 -0.022
ASD 0.671 0.644 0.637 0.633 0.650
RMSD 0.974 0.943 0.928 0.929 0.945
MSD 4.226 4.270 4.112 4.109 4.229
Recall 0.653 0.651 0.644 0.662 0.642
Precision 0.614 0.584 0.673 0.721 0.627

Table 4.3: Quantitative results of the segmentation of liver lesions after W-Net denoising.

ii.) Segmentation

Besides the MO study, a segmentation-based approach was used to analyze the denoised
CT images. First, the liver and liver lesions are segmented in the images after W-Net
denoising. Subsequently, the quality of the segmentation is quantified with several
metrics as described in section 3.2.2. Figure 4.6 shows two example segmentation results
from the test set. In all cases, the algorithms identified all regions containing. Despite
the overall good segmentation, in some instances the segmented lesions merge multiple
ground truth lesions. It should noted, however, that these merges occur for lesions
that belong to the same 3D object. In the first case, the predicted segmentation is
significantly smoother than the ground truth. No significant difference in segmentation
accuracy is evident between the dose instances. Table 4.3 provides the quantitative
results of the segmentation. N = 153 produced the best metrics, besides RVD (third
best) and RMSD (second best). N = 512 and N = 102 generally perform worse than
the other dose instances in RVD and surface metrics. Otherwise, there is no clear trend
visible.
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Figure 4.6: CNN-based segmentation contours of liver and liver lesions after W-Net
denoising of low-dose CT. Liver ground truth in yellow, segmented liver in
purple, ground truth lesions in blue, segmented lesions in red. C = 25 HU,
W = 450 HU.
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4.2 Validation of Task-Based Metrics

4.2.1 Segmentation Metrics

From the data above it is unclear how accurately the segmentation-based metrics are
able to identify high quality CT images. Therefore, to validate the findings, a new
test set was created consisting of ten different noise realizations of five volumes. As
before, all volumes were denoised by the W-Net and subsequently segmented by the
H-DenseUNet as described in section 3.2.2 [64]. This set can now be used to validate
the segmentation metrics. Table 4.4 provides the results of the validation study, i.e.
the mean and standard deviation of each metric. Apart from global dice, the standard
deviations are relatively high, especially for RVD. In addition, a Wilcoxon signed-rank
test was performed. The test indicated that only very few of the measures yielded
significant differences between dose implementations. For example, dice per case was
not significant. On the contrary, global dice differences are significant, apart from
the comparisons between N = 512, 342, and 102. This indicates that the low-dose
realizations are equivalent in terms of segmentation performance within the accuracy of
the test.
Another point of interest is what the test segmentations should be compared to. The
segmentation metrics might be considered a surrogate to estimate the proximity of the
test image to the distribution of the ground truth. However, if the test image were
identical to the ground truth image, the H-DenseUNet segmentation would not yield the
ground truth segmentation and consequently not yield perfect metric scores. Thus, one
should examine the efficacy of comparing the test segmentation to the H-DenseUNet
output for the ground truth CT image. Table 4.5 gives the results for the validation
set. When compared to Table 4.4, it is noticable that most metrics shift in a common
direction. In some cases, the ranking of the noise implementations changes slightly, but
most comparisons remain as before.
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Metric N = 512 N = 342 N = 229 N = 153 N = 102

Per Case Dice 0.802
±0.037

0.796
±0.028

0.800
±0.032

0.811
±0.039

0.784
±0.022

Global Dice 0.952
±0.0003

0.953
±0.0005

0.954
±0.0005

0.959
±0.0003

0.953
±0.0005

RVD 0.077
±0.024

0.071
±0.014

0.085
±0.023

0.015
±0.023

0.039
±0.021

ASD 0.717
±0.022

0.670
±0.018

0.629
±0.014

0.562
±0.015

0.670
±0.015

RMSD 1.025
±0.047

0.953
±0.025

0.911
±0.023

0.834
±0.017

0.963
±0.023

MSD 5.133
±0.325

4.841
±0.247

4.966
±0.306

4.414
±0.206

5.077
±0.302

Recall 0.829
±0.020

0.829
±0.021

0.856
±0.020

0.842
±0.027

0.841
±0.017

Precision 0.529
±0.034

0.543
±0.030

0.568
±0.043

0.638
±0.035

0.539
±0.031

Table 4.4: Validation results of the segmentation metrics based on ten repeated mea-
surements of five volumes. Metric values are given as mean and standard
deviation over the ten noise instances.

Metric N = 512 N = 342 N = 229 N = 153 N = 102

Per Case Dice 0.817
±0.037

0.812
±0.033

0.811
±0.037

0.822
±0.037

0.793
±0.024

Global Dice 0.962
±0.000

0.965
±0.001

0.967
±0.000

0.971
±0.000

0.964
±0.001

RVD 0.033
±0.038

0.042
±0.024

0.090
±0.046

0.011
±0.031

0.005
±0.018

ASD 0.791
±0.043

0.681
±0.054

0.744
±0.038

0.622
±0.042

0.805
±0.025

RMSD 1.167
±0.070

1.014
±0.063

1.087
±0.043

0.961
±0.044

1.160
±0.030

MSD 5.485
±0.338

4.710
±0.296

5.014
±0.229

4.591
±0.180

5.576
±0.318

Recall 0.828
±0.029

0.839
±0.026

0.870
±0.028

0.870
±0.036

0.839
±0.016

Precision 0.617
±0.042

0.642
±0.042

0.673
±0.052

0.769
±0.038

0.627
±0.032

Table 4.5: Validation results of the segmentation metrics calculated in reference to the
CNN segmentations of the ground truth CT images. Values given as mean
and standard deviation over the ten noise instances.
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4.2.2 Model Observer

In addition to validating the segmentation-based metrics, it is also of interest to
investigate the MO study in-depth. While SKE-BKS studies are highly clinically relevant,
they might not yield the best assessment of image quality after CNN processing. For
this purpose, for each lesion position from five of the test volumes, 100 noise instances
were generated with and without lesions and corrected with the CNN. This leads to
two datasets for both lesion sizes: 904 SKE-BKE datasets with 100 signal-absent and
present images each, and 100 SKE-BKS datasets with 904 different backgrounds.
Figure 4.7a and 4.7b plot the SKE-BKS AUC confidence intervals results for the 2 mm
and 4 mm lesion study without W-Net denoising, respectively. As evident, the image
quality is reduced as the number of projections decreases. This agrees with the previous
findings on conventional image quality metrics in section 4.1.1. Figure 4.8a and 4.8b
show the same graph but for CNN corrected images. According to the data, the
previously seen trend is gone. Compared to Table 4.2, the relative ranking of the dose
implementations has not changed, suggesting that the SKE-BKS study yields consistent
results.
Figure 4.9a and 4.9b illustrate the SKE-BKE results for the uncorrected low-dose CT.
Since the MO is able to virtually perfectly distinguish the signal-present and -absent
images, internal Gaussian noise with standard deviation of 100 HU was added to the
MO. All low-dose instances feature almost identical AUC values at the same lesion size.
Figure 4.10a and 4.10b show the corresponding results for corrected images. Firstly,
N = 342 and 229 are being outperformed by the other low-dose implementations.
Secondly, compared to Figure 4.9, the AUC for corrected images decreases, indicating a
loss of image quality due to the W-Net processing. Thus, BKE and BKS studies yield
conflicting results.
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(a) 2 mm lesions.

(b) 4 mm lesions.

Figure 4.7: 95% confidence interval estimates of the AUC for the repeated SKE-BKS
model observer with low-dose images. Red dashed lines indicate mean value.
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(a) 2 mm lesions.

(b) 4 mm lesions.

Figure 4.8: 95% confidence interval estimates of the AUC for the repeated SKE-BKS
model observer with denoised images. Red dashed lines indicate mean value.
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(a) 2 mm lesions.

(b) 4 mm lesions.

Figure 4.9: AUC spread for the SKE-BKE model observer with low-dose images.
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(a) 2 mm lesions.

(b) 4 mm lesions.

Figure 4.10: AUC spread for the SKE-BKE model observer with denoised images.
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4.3 Ablation Study
This section explores the network components and loss function of the W-Net and how
they influence the denoising performance.

4.3.1 Network Architecture

As detailed in section 3.1.2, the W-Net consists of three parts: a projection domain
U-Net, a reconstruction layer, and an image domain U-Net. For the ablation study,
three network architectures are investigated: projection domain U-Net with FBP layer
U-NetProj, only the image domain U-Net U-NetImg, and the full W-Net. For simplicity,
not all dose configurations are tested. Instead, to show both denoising and destreaking
performance, the number of projections is set to N = 229.
Figure 4.11 shows the CNN results for a pelvis case. The U-NetSino output features
remaining streaks. Furthermore, the image is smoothed, as highlighted by the difference
image. The image domain and dual domain networks both provide good results, the
latter more closely resembling the ground truth. The W-Net again enhances some bone
edges. Figure 4.12 and 4.13 present an abdomen and thorax case, respectively. Again,
the sinogram method performs worst. Table 4.6 provides the quantitative results for
the conventional metrics. U-NetImg features the lowest RMSE, and best SSIM. The full
W-Net has the second lowest RMSE and second highest SSIM, yielding better metrics
than the high-dose image. The sinogram domain network yields the worst results and
is inferior to the high-dose images in terms of RMSE.
Figure 4.14 and 4.15 showcase the performance on the 2 mm and 4 mm lesion model ob-
server dataset, respectively. Here, the smoothing performed by U-NetSino and U-NetImg
becomes more apparent. The signal is most visible for the image domain and dual
domain results. Table 4.7 lists the quantitative results of the model observer study.
For both lesion sizes, the full W-Net yields the best results, with an increase of up to
9% in the lower AUC bound compared to the partial networks. Surprisingly, U-NetImg
performs worse than U-NetSino.
Finally, Figure 4.16 and Table 4.8 highlight the segmentation results. Overall all tested
network architectures feature similar qualitative segmentation performance. The full
W-Net yields superior results in global dice, RVD, ASD, RMSD, MSD and recall. The
image domain network gives the worst results in all tested metrics besides recall, where
it performs second best.

Metric U-NetSino U-NetImg W-Net Low-Dose High-Dose

RMSE 22.436 13.441 17.661 49.460 21.417
SSIM 0.930 0.953 0.948 0.7790 0.9020

Table 4.6: Conventional quantitative results using RMSE (in HU) and SSIM for the
ablation study with N = 229.
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Figure 4.11: Network architecture ablation study denoising results for N = 229. Differ-
ence images are with respect to the ground truth. C = 0 HU, W = 500 HU
for CT images, C = 0 HU, W = 100 HU for difference images.
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Figure 4.12: Network architecture ablation study denoising results for N = 229. Differ-
ence images are with respect to the ground truth. C = 0 HU, W = 500 HU
for CT images, C = 0 HU, W = 100 HU for difference images.
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Figure 4.13: Network architecture ablation study denoising results for N = 229. Differ-
ence images are with respect to the ground truth. C = 0 HU, W = 500 HU
for CT images, C = 0 HU, W = 100 HU for difference images.
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Figure 4.14: Network ablation study denoising results for the model observer study
with a 2 mm lesion and N = 229. First row shows high-dose image,
ground truth, difference of high-dose to ground truth, and high-dose signal
image. Difference images are with respect to the ground truth. C = 0 HU,
W = 500 HU for CT images, C = 0 HU, W = 100 HU for difference
images.
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Figure 4.15: Network architecture ablation study denoising results for the model observer
study with a 4 mm lesion and N = 229. First row shows high-dose image,
ground truth, difference of high-dose to ground truth, and high-dose signal
image. Difference images are with respect to the ground truth. C = 0 HU,
W = 500 HU for CT images, C = 0 HU, W = 100 HU for difference
images.
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Figure 4.16: Network architecture ablation study segmentation contours of liver and
liver lesions after denoising of low-dose CT with N = 229. First row shows
high-dose image, ground truth, difference of high-dose to ground truth, and
high-dose signal image. Liver ground truth in yellow, segmented liver in
purple, ground truth lesions in blue, segmented lesions in red. C = 25 HU,
W = 450 HU.
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Lesion U-NetSino U-NetImg W-Net Low-Dose High-Dose

2 mm 0.8702
0.8755

0.8625
0.8680

0.8704
0.8758

0.8691
0.8745

0.9348
0.9391

4 mm 0.8347
0.8402

0.8327
0.8381

0.8401
0.8455

0.8258
0.8312

0.8810
0.8863

Table 4.7: 95% confidence intervals of AUC estimates of the SKE-BKS model observer
for the network architecture ablation study with N = 229.

Metric U-NetSino U-NetImg W-Net

Per Case Dice 0.825 0.811 0.819
Global Dice 0.925 0.923 0.926
RVD -0.020 -0.058 -0.004
ASD 0.661 0.678 0.637
RMSD 0.970 0.986 0.928
MSD 4.351 4.279 4.112
Recall 0.630 0.639 0.644
Precision 0.739 0.595 0.673

Table 4.8: Network architecture ablation study results of the segmentation of liver
lesions after CNN denoising with N = 229.

4.3.2 Loss Function

Apart from the network architecture itself, the loss function plays a vital part in how
the denoising will be performed. Therefore, this subsection investigates how removing
the perceptual loss component and only using MSE for training influences the W-Net
output. Figure 4.17, 4.18, and 4.19 show three cases that were corrected with either
MSE or MSE with perceptual, as presented in section 4.1. As apparent, the MSE loss
causes reduced image noise, but only by smoothing the images. Using perceptual loss
ensures a similar noise texture compared to the ground truth. The same is visible in
Figures 4.20 and 4.21, which highlight the MO patches. The signal is generally more
visible when using perceptual loss. Table 4.9 gives the conventional image metrics. The
network trained only on MSE yields significantly lower RMSE values and better SSIM
for N = 342, 229, and 153. Both networks are able to reach the image quality of the
high-dose reference.
Table 4.10 presents the quantitative results of the MO study. In contrast to the
conventional metrics, the model observer study indicates that training with perceptual
loss yields far superior metric scores for both lesion sizes. Notably, MSE does not
improve the AUC score relative to the low-dose CT for several cases. Finally, Figure
4.22 and Table 4.11 display the segmentation results. For sparse-view CT, a small
non-existing lesion is predicted by both networks. Comparing the values to Table 4.3,
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Dataset N = 512 N = 342 N = 229 N = 153 N = 102 High-Dose
R

M
SE

Low-Dose 47.056 47.765 49.460 46.229 72.290 21.417
MSE 20.891 13.466 13.733 13.945 21.816 21.417

MSE+Perc 17.783 17.661 17.992 17.992 19.064 21.417

SS
IM

Low-Dose 0.7846 0.7823 0.7790 0.7661 0.7385 0.9020
MSE 0.9431 0.9536 0.9528 0.9519 0.9397 0.9020

MSE+Perc 0.9479 0.9480 0.9482 0.9461 0.9415 0.9020

Table 4.9: Conventional quantitative results for MSE and MSE with perceptual loss
functions using RMSE (in HU) and SSIM.

Dataset N = 512 N = 342 N = 229 N = 153 N = 102 High-Dose

2
m

m Low-Dose 0.8720
0.8773

0.8705
0.8758

0.8691
0.8745

0.8651
0.8705

0.8376
0.8430

0.9348
0.9391

MSE 0.8687
0.8741

0.8499
0.8554

0.8475
0.8530

0.8593
0.8647

0.8385
0.8457

0.9348
0.9391

MSE+Perc 0.8800
0.8853

0.8641
0.8696

0.8704
0.8758

0.8736
0.8790

0.8661
0.8715

0.9348
0.9391

4
m

m Low-Dose 0.8290
0.8327

0.8273
0.8327

0.8258
0.8312

0.8211
0.8265

0.8095
0.8149

0.8810
0.8863

MSE 0.8460
0.8515

0.8158
0.8212

0.8119
0.8173

0.8295
0.8349

0.8119
0.8173

0.8810
0.8863

MSE+Perc 0.8491
0.8546

0.8405
0.8460

0.8401
0.8455

0.8384
0.8438

0.8422
0.8476

0.8810
0.8863

Table 4.10: 95% confidence intervals of AUC of the model observer study for MSE and
MSE with perceptual loss functions.

the surface metrics indicate that perceptual loss improves image quality. Otherwise, no
clear trends are noticable.
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Figure 4.17: Loss function study denoising results for MSE and MSE with perceptual
loss for a pelvis scan. C = 0 HU, W = 500 HU.
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Figure 4.18: Loss function study denoising results for MSE and MSE with perceptual
loss for an abdomen scan. C = 0 HU, W = 500 HU.
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Figure 4.19: Loss function study denoising results for MSE and MSE with perceptual
loss for a thorax scan. C = 0 HU, W = 500 HU.
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Figure 4.20: Loss function study denoising results for the model observer study with a
2 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.21: Loss function study denoising results for the model observer study with a
4 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.22: Loss function study segmentation contours of liver and liver lesions after
denoising of low-dose CT. Liver ground truth in yellow, segmented liver in
purple, ground truth lesions in blue, segmented lesions in red. C = 25 HU,
W = 450 HU.
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Metric N = 512 N = 342 N = 229 N = 153 N = 102
Per Case Dice 0.809 0.834 0.818 0.835 0.805
Global Dice 0.917 0.925 0.925 0.924 0.921
RVD -0.124 0.009 -0.001 -0.045 0.008
ASD 0.728 0.668 0.650 0.657 0.678
RMSD 1.037 0.984 0.942 0.949 0.990
MSD 4.331 4.341 4.184 4.070 4.402
Recall 0.635 0.651 0.653 0.657 0.655
Precision 0.553 0.652 0.690 0.636 0.572

Table 4.11: Quantitative results of the segmentation of liver lesions after CNN denoising
with MSE loss function.

4.4 Quality Assurance of Insufficiently Trained Networks
Since CNNs can be considered a black box, it is critically important that image metrics
are able to identify networks that were insufficiently trained. This includes training
with too few samples and stopping training too early. This section analyzes both issues,
using N = 229 projections for all tested networks.

4.4.1 Reducing Training Set Size

Here, the W-Net was trained with fewer than the full NTrain = 29906. Figure 4.23a
and 4.23b plot the training and validation loss curves for different sizes of the train set,
respectively. Note that network training was stopped early when there was no further
improvement in the validation loss. It is evident that although the network with only
1% of the training images yields similar training loss than the other networks, it is
clearly inferior in terms of validation loss. In general, fewer training samples correlate
with lower validation loss, but not with lower training loss. This highlights the necessity
of large datasets to ensure that the trained networks are able to generalize.
Figures 4.24, 4.25, 4.26 provide network results for a pelvis, abdomen and thorax scan,
respectively. Image quality noticeably deteriorates as the training set is reduced. The
by far worst results occur when only 1% of the full dataset is used, as prominently
illustrated in the difference images. Figure 4.27 and 4.28 show the MO study patches.
Again, image quality decreases when training on fewer samples. When training on 1% of
the data, streak artifacts are prominent. Figure 4.29 presents the segmentation images.
The segmentations, in contrast to the CT images, are similar for all training sets.
The quantitative results are listed in Table 4.12 for conventional metrics, 4.13 for
AUC, and 4.14 for segmentation-based metrics. The conventional metrics suffer as
fewer training samples are used, although using 20% of the dataset yielded the second
worst results. However, all SSIM values are above the high-dose reference. MO and
segmentation performance also decrease almost monotonically as the dataset is shrunk.
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(a) Training loss

(b) Validation loss.

Figure 4.23: Loss curves for trainings with different number of samples NTrain. The
x-axis indicates number of updates equivalent to an epoch with full train
set.
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Figure 4.24: Denoising results for different sizes of the train set for a pelvis scan.
N = 229 and NTrain, 100% = 29904. C = 0 HU, W = 500 HU.
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Figure 4.25: Denoising results for different sizes of the train set for an abdomen scan.
N = 229 and NTrain, 100% = 29904. C = 0 HU, W = 500 HU.
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Figure 4.26: Denoising results for different sizes of the train set for a thorax scan.
N = 229 and NTrain, 100% = 29904. C = 0 HU, W = 500 HU.
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Figure 4.27: Train set size study denoising results for the model observer study with a
2 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.28: Train set size study denoising results for the model observer study with a
4 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.29: Train set size study segmentation contours of liver and liver lesions after
denoising of low-dose CT. Liver ground truth in yellow, segmented liver in
purple, ground truth lesions in blue, segmented lesions in red. C = 25 HU,
W = 450 HU.
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Metric 100% 20% 10% 5% 1% High-Dose

RMSE 17.992 23.634 21.605 23.002 34.094 21.417
SSIM 0.9482 0.9267 0.9340 0.9308 0.9086 0.9020

Table 4.12: Conventional quantitative results for different train set sizes relative to full
set using RMSE (in HU) and SSIM.

100% 20% 10% 5% 1% High-Dose

2 mm 0.8704
0.8758

0.8693
0.8748

0.8686
0.8740

0.8666
0.8720

0.8596
0.8651

0.9348
0.9391

4 mm 0.8401
0.8455

0.8397
0.8452

0.8361
0.8416

0.8372
0.8426

0.8353
0.8407

0.8810
0.8863

Table 4.13: 95% confidence intervals of AUC of the model observer study for different
train set sizes relative to full set and two lesion sizes.

Metric 100% 20% 10% 5% 1%

Per Case Dice 0.819 0.822 0.800 0.792 0.788
Global Dice 0.926 0.923 0.918 0.915 0.915
RVD -0.004 0.018 -0.031 -0.047 -0.029
ASD 0.637 0.678 0.699 0.719 0.755
RMSD 0.928 1.000 1.003 1.031 1.099
MSD 4.112 4.521 4.560 4.763 4.789
Recall 0.644 0.646 0.638 0.626 0.621
Precision 0.673 0.706 0.615 0.589 0.608

Table 4.14: Quantitative results of the segmentation of liver lesions after CNN denoising
with different relative train set sizes.
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4.4.2 Reducing Number of Epochs

For this experiment, the number of training epochs was reduced. Figure 4.30, 4.31 and
4.32 show a hip, abdomen and thorax scan, respectively. For all patients, the image
quality decreases as the number of epochs is reduced. This is especially evident in the
hip scan, where the network leaves streaks between the bones when trained for only one
or two epochs. The model observer results are depicted in Figures 4.33 and 4.34, where
similar trends are visible. The difference images indicate that bone-tissue transitions
are smoothed for low number of epochs. Figure 4.35 provides the segmentation images.
As for previous experiments, all networks perform similarly well.
Table 4.15, 4.16, and 4.17 list the conventional, MO, and segmentation-based quantatitive
results. In the conventional metrics, higher number of epochs seem to correlate with
worse RMSE, while SSIM is similar for all networks. Notably, NEpoch = 5 yields the best
results. Likewise, NEpoch = 5 produces the best AUC values. Otherwise, lower number
of epochs correlate with a lower image quality. Finally, no clear trend is noticeable in
the segmentation metrics, which agrees with the qualitative assessment of Figure 4.35.

Metric 20 10 5 2 1 High-Dose

RMSE 17.992 17.363 14.051 15.002 15.529 21.417
SSIM 0.9482 0.9484 0.9507 0.9471 0.9465 0.9020

Table 4.15: Conventional quantitative results for different number of epochs with N =
229 using RMSE (in HU) and SSIM.
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Figure 4.30: Denoising results for different numbers of epochs for a hip scan with
N = 229. C = 0 HU, W = 500 HU.
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Figure 4.31: Denoising results for different numbers of epochs for an abdomen scan with
N = 229. C = 0 HU, W = 500 HU.
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Figure 4.32: Denoising results for different numbers of epochs for a thorax scan with
N = 229. C = 0 HU, W = 500 HU.
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Figure 4.33: Epoch number study denoising results for the model observer study with a
2 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.34: Epoch number study denoising results for the model observer study with a
4 mm lesion. First row shows high-dose image, ground truth, difference
of high-dose to ground truth, and high-dose signal image. C = 0 HU,
W = 500 HU.
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Figure 4.35: Epoch number segmentation contours of liver and liver lesions after de-
noising of low-dose CT. Liver ground truth in yellow, segmented liver in
purple, ground truth lesions in blue, segmented lesions in red. C = 25 HU,
W = 450 HU.
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20 10 5 2 1 High-Dose

2 mm 0.8704
0.8758

0.8701
0.8754

0.8709
0.8763

0.8688
0.8741

0.8521
0.8576

0.9348
0.9391

4 mm 0.8401
0.8455

0.8390
0.8446

0.8401
0.8456

0.8398
0.8453

0.8147
0.8201

0.8810
0.8863

Table 4.16: 95% confidence intervals of AUC of the model observer study for different
number of epochs with N = 229 and two lesion sizes.

Metric 20 10 5 2 1

Per Case Dice 0.819 0.823 0.819 0.821 0.822
Global Dice 0.926 0.927 0.926 0.925 0.928
RVD -0.004 0.016 0.013 -0.040 0.012
ASD 0.637 0.668 0.673 0.665 0.626
RMSD 0.928 0.990 1.001 0.976 0.916
MSD 4.112 4.494 4.550 4.350 4.092
Recall 0.644 0.621 0.623 0.646 0.646
Precision 0.673 0.793 0.768 0.659 0.685

Table 4.17: Quantitative results of the segmentation of liver lesions after CNN denoising
with different number of epochs.

4.5 Detruncation

This section showcases the reconstruction of CT images from truncated raw data. Two
truncation amounts were investigated, 50% and 25%.

4.5.1 50% Truncation

Figure 4.36 shows intermediate reconstruction of the DART algorithm. The algorithm
is initialized with an FBP of a cosine detruncation. DART seems to converge slower for
the thorax scan, which also features a hypodense artifact below the spine. The earlier
iterations are blurrier, due to the stronger filtering step. The final images are close to
the ground truth images in outline, but bone structures and fat tissue are not correctly
resolved due to the binary nature of the DART implementation. In the third case, the
DART result is significantly darker in the center than the ground truth image.
Figure 4.37 and 4.38 provide the detruncated images and sinograms, respectively. Note
that for the DART and W-Net, the algorithm output is used to complete the original
sinograms. DART, the W-Net, and the conventional cosine detruncation are all able to
improve image quality in the original FOV. However, DART and W-Net also restore
information in the eFOV. In both cases, there are inconsistencies in the transition from
FOV to eFOV.
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Metric Truncated Cosine W-NetPrior W-Net DARTPrior DART

RMSEFOV

1262.166
702.760
1355.924
1270.852

53.013
58.138
103.173
127.749

26.691
23.865
18.134
27.364

28.631
25.281
16.454
29.360

65.475
87.737
163.097
93.322

20.557
92.844
42.402
16.315

RMSEeFOV

873.312
538.059
900.285
852.035

258.439
290.387
282.489
279.175

121.997
122.305
84.569
97.245

120.201
119.128
82.512
95.635

140.840
258.969
212.77
184.214

127.996
258.569
190.303
175.793

SSIM

0.6891
0.7730
0.6115
0.5746

0.8252
0.8415
0.7594
0.8057

0.8901
0.9252
0.9279
0.9172

0.8841
0.9221
0.9206
0.9011

0.8532
0.8285
0.7728
0.8460

0.8807
0.8424
0.8321
0.8728

Dice

0.4652
0.5761
0.6069
0.6117

0.8810
0.7350
0.8725
0.9009

0.9780
0.9532
0.9862
0.9843

0.9782
0.9563
0.9863
0.9848

0.9818
0.8781
0.9604
0.9634

0.9820
0.8776
0.9603
0.9634

Table 4.18: Quantitative results for 50% truncation with RMSE in HU for four test
cases.

Table 4.18 gives the quantitative results for the detruncation. Here, the prior images
indicate the immediate algorithm output without projection completion of the original
raw data. All algorithms successfully restore image quality in the FOV, confirming the
qualitative results. Both W-Net and DART are superior to the cosine detruncation.
In addition, the W-Net generally outperforms the DART detruncation, both with and
without projection completion.
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Figure 4.36: Intermediate DART iterations with 50% truncation. C = 0 HU, W =
1000 HU.
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Figure 4.37: Detruncation result images with 50% truncation. C = 0 HU, W = 500 HU.
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Figure 4.38: Detruncation result projections with 50% truncation. C = 0 HU, W =
500 HU.
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4.5.2 25% Truncation

Figure 4.39 and 4.40 illustrate the detruncation results for a truncation of 25%. Com-
pared to the previous experiment, the truncation artifacts are less significant. Again,
all three algorithms are able to correct the CT values in the FOV. Only the W-Net and
DART restore information in the eFOV. However, DART again suffers from artifacts
at the edge of the original FOV, and cannot adequately reconstruct fat tissue in the
extrapolated regions.
Table 4.19 gives the corresponding quantitative results. Inside the FOV, the DART
prior image produces the worst RMSE results among the detruncation algorithms. This
is partially due to the high noise in the DART reconstruction. Otherwise, the DART
and W-Net results are superior to the conventional cosine detruncation. Overall, the
W-Net yields the best metrics.
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Figure 4.39: Detruncation result images with 25% truncation. C = 0 HU, W = 500 HU.
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Figure 4.40: Detruncation result projections with 25% truncation. C = 3.5, W = 7.
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Metric Truncated Cosine W-NetPrior W-Net DARTPrior DART

RMSEFOV

566.596
176.168
351.551
252.080

19.429
42.917
30.964
43.372

9.302
6.054
3.241
4.172

15.264
15.368
11.000
8.824

88.907
111.269
147.653
88.648

20.481
35.498
21.641
17.541

RMSEeFOV

591.62
207.101
378.072
281.715

136.113
136.201
118.302
138.703

73.581
58.209
28.379
52.563

71.280
57.412
28.572
52.317

116.073
113.985
153.573
121.000

88.590
80.717
101.884
100.667

SSIM

0.817
0.9289
0.8475
0.9089

0.9145
0.9406
0.9270
0.9416

0.9477
0.9705
0.9830
0.9862

0.9432
0.9705
0.9770
0.9829

0.8972
0.9322
0.8188
0.8867

0.9420
0.9574
0.9340
0.9542

Dice

0.7892
0.9358
0.9067
0.9480

0.9635
0.9564
0.9831
0.9807

0.9855
0.9819
0.9967
0.9958

0.9861
0.9808
0.9966
0.9957

0.9874
0.9768
0.9856
0.9861

0.9878
0.9789
0.9863
0.9867

Table 4.19: Quantitative results for 25% truncation with RMSE in HU for four test
cases.

97





5 | Summary & Discussion

This thesis investigated two applications of deep learning-based image processing: the
removal of noise and streak artifacts in low-dose CT, and the sinogram completion of
truncated CT scans. The latter was also accomplished with an iterative approach. This
chapter will first discuss the low-dose CT results, then the detruncation.

5.1 Low-Dose CT Denoising

Dose in CT can almost arbitrarily be saved by either reducing the number of projections
or the tube current. However, this kind of dose reduction entails a deterioration of image
quality. In order to remove the inevitable noise and sparseness artifacts in low-dose CT
images, a W-Net was implemented. The network employs two U-Nets, which correct
the sinogram and image, respectively. To enable an end-to-end training of the network,
the two U-Nets were connected with a differentiable FBP layer.
The W-Net was trained for five different dose implementations, ranging from low-mAs
CT with conventional number of projections, to sparse-view CT with full tube current
per projection. All scans were simulated with a 80% dose reduction compared to the
high dose image. As shown in section 4.1, the W-Net was able to significantly improve
image quality for all tested scan configurations. This suggests that deep learning-based
methods may enable significant dose reductions in CT. Qualitatively, some discrepancies
remained when comparing the images to the ground truth.
There are two main interpretations for these inaccuracies: Firstly, the network is unable
to sufficiently discriminate between content and noise. Secondly, some image details are
completely covered by noise or streaks in the low-dose simulation process.
In the first interpretation, the network cannot fully separate image content from noise
and artifacts, although enough information is available. The bottleneck is consequently
either the network architecture or the training process. U-Nets, and correspondingly
also W-Nets, have been shown to perform well on a variety of image processing tasks
[60], [132], [152]. While the network architecture may thus be not fully optimal, it
should be sufficient, as indicated by the satisfactory denoising results. Section 4.3.1
further investigated the network components of the W-Net, illustrating the effectiveness
of combined sinogram and image denoising. Sinogram-only denoising produced worse
results and did not accurately restore image details. Ideally, a network architecture
search should be performed to further optimize the parameters of the two U-Nets.
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In the training process, the primary design choices are the training data and the loss
function. In this study, the test cases are generated with the same process as the
training data, such that there is no distribution mismatch between training and testing
stage. As the Adam optimizer is state-of-the-art [149], the loss function becomes the
most influential remaining factor in the network performance. This work employs a
combination of MSE and perceptual loss, implemented by comparing intermediate
feature layers of a pre-trained VGG-19 network [153]. The perceptual loss ensures
that the final image has a similar noise texture and resolution as the ground truth
data [77]. Notably, the VGG-19 itself is trained on photographs, not on CT images.
Therefore, the rigor of this type of perceptual loss function is debatable in the context
of CT imaging. In addition, a suboptimal choice of hyperparameters in the loss function
may lead to texture artifacts in the CNN output. This includes choosing VGG-19
layers that correspond to content instead of texture, and setting the MSE contribution
too low in the total loss. In contrast, using MSE loss without perceptual loss lead to
a further reduction in image noise, but at the cost of overly smoothing the images.
This resulted in lower task-based metrics, as presented in section 4.3.2. It is therefore
evident, that standalone MSE is not optimal for the denoising problem as structures are
blurred. Another aspect is the fact that the ground truth images in the LiTS dataset
still contained a small amount of noise themselves [66]. This means that a comparison
to the ground truth images does not perfectly represent a comparison to the ideal
patient image. Thus, a noiseless image would neither produce minimal loss nor optimal
conventional image quality metrics.
If on the contrary, the image details are fully disguised by noise or artifacts, the low-dose
CTs may not contain enough information for the CNN to restore the structures. If this
is the case, a denoising or destreaking algorithm performs adequately when removing
artifacts but not resolving the details. Otherwise, the algorithm might insert new
features into the images, so-called hallucinations. Although the W-Net does use prior
information by merit of the network training process, using additional patient-specific
information, e.g. a previous scan, may further enable the network to infer fine structures
and reduce artifacts [67]. Conversely, this would enable more drastic dose reductions.
This is especially interesting for interventional applications that require multiple scans
in short succession.

5.1.1 Low-Dose CT Realizations

As stated above, the W-Net successfully reduced noise and sparseness artifacts in all
investigated dose configurations. At the same time, the image quality differed between
the setups. Before correction, there is a clear trend of decreasing image quality as
the number of projections decreases. Thus, in a conventional imaging scenario, it is
decisively preferable to reduce the tube current instead. In conjunction with W-Net
processing, the differences between the acquisitions become less pronounced. Generally,
scans with more projections still perform better in both conventional and task-based
metrics, but the trend is not as clear as before. As low-mAs CT performs best both
with and without denoising, it appears beneficial to always use the maximum number of
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projections. Conversely, the relatively small difference after CNN correction imply that
the comparative advantage of deep learning-based image processing is in sparse-view CT,
i.e. CNNs are more relevant for sparse acquisitions than for low-mAs scans. However, a
more sophisticated analysis of information content is needed to properly support this
claim.
While the results of this work support a preference of low-mAs over sparse-view CT from
an image processing perspective, another crucial aspect is the technical feasibility. In a
modern diagnostic CT system, the X-ray source and detector do not in step-and-shoot
mode. Instead, the gantry is continuously rotating during the scan [1]. As a consequence,
each projection is measured over a small angular range instead of a single position.
Accordingly, if the number of projections is large, the angle covered by each projection
is negligibly small. When the number of projections decreases, a single projection will
cover a larger angle, essentially smearing information in the angular direction. This will
further deteriorate image quality. In the simulations shown in this thesis, this smearing
is not taken into account, exacerbating the advantage of low-mAs CT. In addition,
this procedure involves raising the rotation speed of the system, which is typically not
supported by commercial CT systems. One could avoid this by simply intermittently
turning off the X-ray tube during the rotation. This rapid on-off switching, however, is
not available for the high power X-ray tubes in current diagnostic CT. Pulsed X-ray
tubes exist do exist for several interventional CBCT machines, making sparse-view
acquisitions more interesting for these system [165].
C-arm CBCT systems are predominantely used for 2D imaging, such as X-rays imaging
or 2D fluoroscopy [9]. Yet they are capable of 3D protocols, albeit with significantly
higher acquisition times and lower image quality compared to diagnostic CT. The
benefit of sparse-view CBCT would be faster scan times, as well as reduced dose. In
addition, interventional applications often require multiple successive scans, which add
a significant dose penalty to the use of 3D protocols. Algorithms have been proposed
utilizing the inherent sparseness of the difference between follow-up scans, allowing for
a drastic reduction of number of projections [99].
One particular application of sparse-view CBCT are retroactively gated cardiac acquisi-
tions [12]. Here, the sinogram is divided according to the phase of the heart beat while
the C-arm slowly rotates around the patient. As a result, each phase-gated sinogram
only contains a subset of the full sinogram, with a correspondingly lower number of
projections. This imaging scenario is distinctly removed from the low-dose CT discussed
in this work, as there is no trade-off between projections and tube current in cardiac
CT. Furthermore, the projections are not equally distributed over all angles, such that
the reconstruction must also consider limited angle artifacts.
While low-mAs CT should be preferred for most low-dose acquisitions, there is a limit to
how low the tube current can be set. If the X-ray flux drops below a certain threshold,
the signal will be indistinguishable from the electronic noise of the detector [105].
Then, image reconstruction will be impossible. Photon starvation typically occurs
in the context of metal artifacts, where the affected projections will be replaced via
interpolation [1]. Of course, this is not feasible for low-dose CT, where the whole
sinogram would have to be replaced. Under these circumstances, and at equal dose, the
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only viable solution is decreasing the number of projections and increasing tube current.
This study has not considered electronic noise in the noise simulation, which is one of
its limitations. At the dose level simulated, the photon noise should still be dominant,
such that the exclusion of electronic noise is not significant. Electronic noise can be
avoided in patient scans by using novel photon counting detectors, which do not suffer
from this type of noise [28].

5.1.2 Image Metrics

Quantitative analysis is an integral component of medical image processing. Many
established and widely-used metrics, however, do not properly relay the diagnostic value
of the images. This necessitates more refined pathways of quantifying image quality,
for instance via task-based metrics. In this study, three kinds of metrics have been
used: conventional (RMSE, SSIM), segmentation-based (dice, RVD, ASD, RMSD, MSD,
recall, precision), and model observer-based (AUC). In addition, perceptual loss and
MSE were used in network training.
In terms of ease of use, the conventional metrics are far superior to the task-based ones.
They are fast to calculate and only require the ground truth images as reference. If no
ground truth was available, one could place an region of interest (ROI) and measure the
image noise as the standard deviation inside the ROI. The low computation times and
simplicity make them a natural choice as loss function for network training. Despite
their advantages, in this study, the conventional metrics did not perfectly align with
the human perception of image quality.
The shortcomings of RMSE, MSE, and SSIM are evident in several parts of this thesis.
MSE as a loss function was deemed inferior to MSE with perceptual loss in section 4.3.2.
Although the latter could be considered a conventional metric, as it is computed as the
MSE of two feature layers, it requires a sophisticated, pre-trained CNN. Moreover, the
network trained only with MSE performed better on traditional metrics, while yielding
worse images qualitatively and measured on task-based metrics. This highlights the
discrepancy between image quality and performance on conventional image quality
metrics. The same could be observed for the insufficiently trained networks in section
4.4.
In contrast to conventional metrics, task-based image quality analysis requires a signifi-
cant effort. For the segmentation-based metrics, each volume had to be segmented into
liver and liver lesions, followed by an elaborate algorithm to determine the final metrics.
To measure detectability, a separate lesion dataset was simulated, and evaluated with a
model observer. Despite the computation cost associated with these relatively compli-
cated metrics, the results are decidedly more meaningful and interpretable. Compared
to the conventional and segmentation-based metrics, AUC was an effective tool for
identifying insufficiently trained networks and comparing loss functions, as shown in
section 4.4 and 4.3.2, respectively. Two lesion sizes were investigated in the context of
the MO study. The CNN denoising was generally more effective for the larger lesion
with 4 mm radius and 20 HU contrast. In some cases for the small lesion with 2 mm
radius and 40 HU contrast, AUC was measured higher without denoising. This indicates
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that the W-Net is better at preserving larger structures, even if they have lower contrast.
Besides the SKE-BKS study setup used for the majority of this thesis, 4.2.2 also shows
SKE-BKE results. Since the ability of the CHO to distinguish between signal and
no-signal images is almost perfect on BKE datasets, internal noise had to be added to
give meaningful values. Here, the W-Net did not improve image quality. This suggests
that the network output is inconsistent when the same image with different noise is
used as input.
In this work, segmentation-based metrics were used to evaluate denoising performance.
In principle, lowering noise without affecting image content should yield better a better
segmentation. Likewise, if the noise is removed together with a loss of details or
resolution, the segmentation should suffer. Overall, the segmentation metrics did not
show the desired level of accuracy, as presented in section 4.2.1. Consequently, the
differences of segmentation metrics visible in the other parts of this thesis are within
the margin of error of the metrics themselves. Since the H-DenseUNet [64] was trained
on the ground truth data, a distribution mismatch might be the cause for the large
deviations. This could then require a complete retraining of the H-DenseUNet for tested
dose configuration and denoising network. Another approach that was tested was to
compare the H-DenseUNet predictions not to the ground truth segmentations, but to
the H-DenseUNet predictions on the ground truth CT volumes. Then, if the distribution
of the denoised volumes is close to the distribution of ground truth volumes, the H-
DenseUNet predictions should be similar. This, in effect, is somewhat comparable to the
principles of perceptual loss. The resulting segmentation metrics were generally higher
than when comparing with the ground truth, but otherwise no significant difference
was apparent. In essence, the tested CT datasets feature comparable image quality
within the accuracy of the segmentation-based analysis. One important factor is that
the H-DenseUNet performs several pre- and post-processing steps that may cause the
network output to be highly similar for the tested images.

5.2 Detruncation
The second part of this thesis considered the CT reconstruction from truncated projec-
tions, which is a frequent problem especially in interventional CBCT. Although basic
extrapolation methods can alleviate the truncation artifacts in the FOV, the remaining
information outside the FOV is lost. While this information should not be used for
clinical diagnosis, it can be utilized for secondary algorithms such as beam-hardening
correction. In this work, two algorithms were implemented to restore image details in
both the FOV and the eFOV: the iterative DART detruncation [164], and the deep
learning-based W-Net.
In the case of 25% truncation, where only a small fraction of the patient is outside
the FOV, both algorithms provided overall satisfactory results. For the case of 50%
truncation, the accuracy in the eFOV decreases for both DART and the W-Net, as
expected. Here, each algorithm suffers from different issues, while the W-Net generally
outperforms the DART detruncation. The DART image does not correctly estimate
different tissue types, as it uses a binarization step to enable the reconstruction. This
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leads to an overestimation of patient size in regions with bone, and an underestimation
in regions with fat tissue, and produces the wrong CT values. A possible approach to
remedy this, is to increase the number of thresholds in the discretization step [114].
One would, however, have to consider a potential increase in the time until convergence
as the system is now more complex. In contrast, the W-Net is able to differentiate
between different tissues but does not consistently produce realistic patient outlines.
Although the perceptual loss performed well for the denoising task, it may be preferable
to add a loss that penalizes deviations in patient outline, such as dice score.
Another benefit of the W-Net is its low inference time compared to DART. The latter
requires a large number of iterations, each including multiple forwards-projection (FP)
and back-projection (BP) steps, until convergence. Meanwhile, W-Net only uses a
single FBP. There are several ways of decreasing the computational cost of DART. For
instance, the problem can be downsampled for the early iterations of the algorithm
[122]. In this work, the smoothing filter was stronger in early iterations to accelerate
convergence. A reduction of matrix size may yield a similar effect, besides reducing
the computational burden of the individual FPs and BPs. Later iterations should be
performed on the original pixel size, to ensure high resolution results. Another way is to
combine DART with other methods. A deep learning-guided update step could speed
up convergence immensely. If an analytic method is desired, region growing methods
could steer the early iterations to more quickly expand the patient outline. A third
option could be to include other prior information. For example, a camera image from
above the patient could provide the patient outline from above. Then, the algorithm
only needs to find the part of the outline not visible on the camera and fill in the tissues.
Several other approaches have previously been discussed in the literature [113], [115],
[116], [121].
The detruncation analysis in this work has four major limitations: First, due to the
computational cost of DART, only individual slices were compared instead of the full test
set. Thus, section 4.5 functions more as a proof-of-principle case study, than an extensive
comparison. Second, only basic DART [118] was implemented while there are more
sophisticated variations that may produce better detruncation results. Third, modern
scanners do not use parallel beam geometry but fan-beam or cone-beam geometries.
The general results of this work should be transferable to these geometries, e.g. by
rebinning, but other geometries might influence the performance of either DART or the
W-Net. Fourth, the detruncation results were only analyzed with conventional image
metrics. If the results are to be used in a secondary algorithm, e.g. scatter estimation,
the detruncation algorithms should be evaluated on metrics related to said application
[106].
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Dose reduction is one of the primary concerns of CT research. Several pathways of
arbitrarily reducing dose exist, including decreasing the tube current and lowering the
number of projections. However, these methods inadvertently cause a deterioration of
image quality. This thesis has shown that data-driven CNNs can drastically improve
image quality of low-dose CT. They can thus enable dose reduction without sacrificing
diagnostic value of the images. This in turn will permit more frequent usage of 3D
image guidance during surgeries, providing the surgeon with spatial information. In
order to ensure consistent network outputs, task-based metrics were used to differentiate
between well- and insufficiently trained networks. Here, detectability as measured by
a model observer study allowed for a quantitative analysis close to human perception
and identified inferior networks. This paves the way for a safe utilization of CNN-
based methods in the clinical workflow, where accurate and reliable algorithms are
paramount. In addition, low-mAs protocols were deemed preferable to sparse-view
scans, although the CNN was able to decrease the differences. Finally, truncated CT
scans were successfully reconstructed both iteratively with a DART-based method,
as well as in data-driven manner with a dual domain CNN. Especially the latter has
shown the potential of improving the image quality of acquisitions with small detectors.
The additional information outside of the FOV may help guide the surgeon during an
operation by placing the FOV in the context of the remaining anatomy. In addition, the
larger FOV increases the performance of secondary algorithms such as beam-hardening
or attenuation correction, further improving treatment accuracy.

105





Bibliography

[1] W. Schlegel, C. P. Karger, and O. Jäkel, Eds., Medizinische Physik: Grundlagen –
Bildgebung – Therapie – Technik. Berlin, Heidelberg: Springer Berlin Heidelberg,
2018.

[2] T. M. Buzug, Computed Tomography. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008.

[3] G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part 1.
Description of system,” The British Journal of Radiology, volume 46, number 552,
pages 1016–1022, 1973.

[4] M. M. Ter-Pogossian, “Basic principles of computed axial tomography,” Seminars
in Nuclear Medicine, volume 7, number 2, pages 109–127, 1977.

[5] A. A. Ginde, A. Foianini, D. M. Renner, M. Valley, and C. A. Camargo Jr,
“Availability and Quality of Computed Tomography and Magnetic Resonance
Imaging Equipment in U.S. Emergency Departments,” Academic Emergency
Medicine, volume 15, number 8, pages 780–783, 2008.

[6] V. Tacher and H. Kobeiter, “State of the Art of Image Guidance in Interventional
Radiology,” Journal of the Belgian Society of Radiology, volume 102, number S1,
page 7, 2018.

[7] J. H. Siewerdsen, M. J. Daly, G. Bachar, D. J. Moseley, G. Bootsma, K. K.
Brock, S. Ansell, G. A. Wilson, S. Chhabra, D. A. Jaffray, and J. C. Irish,
“Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-
guided interventions: From proof of principle to patient protocols,” presented
at the Medical Imaging, J. Hsieh and M. J. Flynn, Eds., San Diego, CA, 2007,
65101A.

[8] S. Raj, F. G. Irani, K. H. Tay, and B. S. Tan, “C-arm Cone Beam Computed
Tomography: A New Tool in the Interventional Suite,” Annals of the Academy
of Medicine, Singapore, volume 42, number 11, pages 585–592, 2013.

[9] R. C. Orth, M. J. Wallace, and M. D. Kuo, “C-arm Cone-beam CT: General
Principles and Technical Considerations for Use in Interventional Radiology,”
Journal of Vascular and Interventional Radiology, volume 20, number 7, S538–
S544, 2009.

107



Bibliography

[10] L. De Beuckeleer, “Cone Beam CT-arthrography of the wrist: High resolution
images at low radiation dose,” in collaboration with K. Carpentier, B. De Foer,
and M. Pouillon, 857 words, 2014.

[11] G. Böning, W. M. Lüdemann, J. Chapiro, M. Jonczyk, B. Hamm, R. W. Gün-
ther, B. Gebauer, and F. Streitparth, “Clinical Experience with Real-Time 3-D
Guidance Based on C-Arm-Acquired Cone-Beam CT (CBCT) in Transjugular
Intrahepatic Portosystemic Stent Shunt (TIPSS) Placement,” CardioVascular
and Interventional Radiology, volume 41, number 7, pages 1035–1042, 2018.

[12] J. Rieber, C. Rohkohl, G. Lauritsch, H. Rittger, and O. Meissner, “Kardiale
Anwendung der C-Arm-Computertomographie,” Der Radiologe, volume 49, num-
ber 9, pages 862–867, 2009.

[13] S. Kakeda, Y. Korogi, N. Ohnari, J. Moriya, N. Oda, K. Nishino, and W.
Miyamoto, “Usefulness of Cone-Beam Volume CT with Flat Panel Detectors in
Conjunction with Catheter Angiography for Transcatheter Arterial Emboliza-
tion,” Journal of Vascular and Interventional Radiology, volume 18, number 12,
pages 1508–1516, 2007.

[14] S. Schafer, S. Nithiananthan, D. J. Mirota, A. Uneri, J. W. Stayman, W. Zbijew-
ski, C. Schmidgunst, G. Kleinszig, A. J. Khanna, and J. H. Siewerdsen, “Mobile
C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation
dose, and integration with interventional guidance,” Medical Physics, volume 38,
number 8, pages 4563–4574, 2011.

[15] Y. Otake, J. W. Stayman, W. Zbijewski, R. J. Murphy, M. D. Kutzer, R. H.
Taylor, J. H. Siewerdsen, and M. Armand, “Model-based cone-beam CT re-
construction for image-guided minimally invasive treatment of hip osteolysis,”
presented at the SPIE Medical Imaging, D. R. Holmes and Z. R. Yaniv, Eds.,
Lake Buena Vista (Orlando Area), Florida, USA, 2013, 86710Y.

[16] V. Tacher, A. Radaelli, M. Lin, and J.-F. Geschwind, “How I Do It: Cone-
Beam CT during Transarterial Chemoembolization for Liver Cancer,” Radiology,
volume 274, number 2, pages 320–334, 2015.

[17] S. B. Solomon and S. G. Silverman, “Imaging in Interventional Oncology,”
Radiology, volume 257, number 3, pages 624–640, 2010.

[18] G. Landry and C. Hua, “Current state and future applications of radiological
image guidance for particle therapy,” Medical Physics, volume 45, number 11,
2018.

[19] J.-J. Yu, G.-T. Kim, Y.-S. Choi, E.-H. Hwang, J. Paek, S.-H. Kim, and J. C.
Huang, “Accuracy of a cone beam computed tomography–guided surgical stent
for orthodontic mini-implant placement,” The Angle Orthodontist, volume 82,
number 2, pages 275–283, 2012.

108



Bibliography

[20] C. Holberg, S. Steinhäuser, P. Geis, and I. Rudzki-Janson, “Cone-Beam Computed
Tomography in Orthodontics: Benefits and Limitations,” Journal of Orofacial
Orthopedics / Fortschritte der Kieferorthopädie, volume 66, number 6, pages 434–
444, 2005.

[21] T. M. Peters, “Image-guidance for surgical procedures,” Physics in Medicine
and Biology, volume 51, number 14, R505–R540, 2006.

[22] R. Gupta, C. Walsh, I. S. Wang, M. Kachelrieß, J. Kuntz, and S. Bartling, “CT-
Guided Interventions: Current Practice and Future Directions,” in Intraoperative
Imaging and Image-Guided Therapy, F. A. Jolesz, Ed., New York, NY: Springer
New York, 2014, pages 173–191.

[23] K. Rajendran, B. A. Voss, W. Zhou, S. Tao, D. R. DeLone, J. I. Lane, J. M.
Weaver, M. L. Carlson, J. G. Fletcher, C. H. McCollough, and S. Leng, “Dose
Reduction for Sinus and Temporal Bone Imaging Using Photon-Counting De-
tector CT With an Additional Tin Filter,” Investigative Radiology, volume 55,
number 2, pages 91–100, 2020.

[24] C. H. McCollough, M. R. Bruesewitz, and J. M. Kofler, “CT Dose Reduction
and Dose Management Tools: Overview of Available Options,” RadioGraphics,
volume 26, number 2, pages 503–512, 2006.

[25] J. Steidel, J. Maier, S. Sawall, and M. Kachelrieß, “Dose reduction potential in
diagnostic single energy CT through patient-specific prefilters and a wider range
of tube voltages,” Medical Physics, volume 49, number 1, pages 93–106, 2022.

[26] X. Wang, A. Zamyatin, and D. Shi, “Dose reduction potential with photon
counting computed tomography,” presented at the SPIE Medical Imaging, N. J.
Pelc, R. M. Nishikawa, and B. R. Whiting, Eds., San Diego, California, USA,
2012, page 831 349.

[27] K. Rajendran, M. Petersilka, A. Henning, E. R. Shanblatt, B. Schmidt, T. G.
Flohr, A. Ferrero, F. Baffour, F. E. Diehn, L. Yu, P. Rajiah, J. G. Fletcher,
S. Leng, and C. H. McCollough, “First Clinical Photon-counting Detector CT
System: Technical Evaluation,” Radiology, volume 303, number 1, pages 130–138,
2022.

[28] M. J. Willemink, M. Persson, A. Pourmorteza, N. J. Pelc, and D. Fleischmann,
“Photon-counting CT: Technical Principles and Clinical Prospects,” Radiology,
volume 289, number 2, pages 293–312, 2018.

[29] M. M. Lell and M. Kachelrieß, “Recent and Upcoming Technological Devel-
opments in Computed Tomography: High Speed, Low Dose, Deep Learning,
Multienergy,” Investigative Radiology, volume 55, number 1, pages 8–19, 2020.

[30] H. Huflage, R. Hendel, A. S. Kunz, S. Ergün, S. Afat, N. Petri, V. Hartung,
P. Gruschwitz, T. A. Bley, and J.-P. Grunz, “Investigating the Small Pixel
Effect in Ultra-High Resolution Photon-Counting CT of the Lung,” Investigative
Radiology, volume 59, number 4, pages 293–297, 2024.

109



Bibliography

[31] J. N. Althén, “Automatic tube-current modulation in CT—a comparison between
different solutions,” Radiation Protection Dosimetry, volume 114, number 1-3,
pages 308–312, 2005.

[32] S. Rizzo, M. Kalra, B. Schmidt, T. Dalal, C. Suess, T. Flohr, M. Blake, and
S. Saini, “Comparison of Angular and Combined Automatic Tube Current
Modulation Techniques with Constant Tube Current CT of the Abdomen and
Pelvis,” American Journal of Roentgenology, volume 186, number 3, pages 673–
679, 2006.

[33] M. Gies, W. A. Kalender, H. Wolf, C. Suess, and M. T. Madsen, “Dose reduction
in CT by anatomically adapted tube current modulation. I. Simulation studies,”
Medical Physics, volume 26, number 11, pages 2235–2247, 1999.

[34] M. K. Kalra, M. M. Maher, T. L. Toth, B. Schmidt, B. L. Westerman, H. T.
Morgan, and S. Saini, “Techniques and Applications of Automatic Tube Current
Modulation for CT,” Radiology, volume 233, number 3, pages 649–657, 2004.

[35] X. Li, W. P. Segars, and E. Samei, “The impact on CT dose of the variability
in tube current modulation technology: A theoretical investigation,” Physics in
Medicine and Biology, volume 59, number 16, pages 4525–4548, 2014.

[36] L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M.
Lell, J. Maier, and M. Kachelrieß, “Patient-specific radiation risk-based tube
current modulation for diagnostic CT,” Medical Physics, volume 49, number 7,
pages 4391–4403, 2022.

[37] M. Cesarelli, P. Bifulco, T. Cerciello, M. Romano, and L. Paura, “X-ray fluo-
roscopy noise modeling for filter design,” International Journal of Computer
Assisted Radiology and Surgery, volume 8, number 2, pages 269–278, 2013.

[38] A. Maier, L. Wigström, H. G. Hofmann, J. Hornegger, L. Zhu, N. Strobel, and
R. Fahrig, “Three-dimensional anisotropic adaptive filtering of projection data
for noise reduction in cone beam CT,” Medical Physics, volume 38, number 11,
pages 5896–5909, 2011.

[39] M. Kachelrieß, O. Watzke, and W. A. Kalender, “Generalized multi-dimensional
adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-
beam CT,” Medical Physics, volume 28, number 4, pages 475–490, 2001.

[40] Y. Zhang, J. Zhang, and H. Lu, “Statistical Sinogram Smoothing for Low-
Dose CT With Segmentation-Based Adaptive Filtering,” IEEE Transactions on
Nuclear Science, volume 57, number 5, pages 2587–2598, 2010.

[41] S. V. Mohd Sagheer and S. N. George, “A review on medical image denoising
algorithms,” Biomedical Signal Processing and Control, volume 61, page 102 036,
2020.

[42] J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, J. Sun, Z. Xu, and J. Ma,
“Optimizing a Parameterized Plug-and-Play ADMM for Iterative Low-Dose CT
Reconstruction,” IEEE Transactions on Medical Imaging, volume 38, number 2,
pages 371–382, 2019.

110



Bibliography

[43] L. L. Geyer, U. J. Schoepf, F. G. Meinel, J. W. Nance, G. Bastarrika, J. A.
Leipsic, N. S. Paul, M. Rengo, A. Laghi, and C. N. De Cecco, “State of the
Art: Iterative CT Reconstruction Techniques,” Radiology, volume 276, number 2,
pages 339–357, 2015.

[44] P. B. Noël, S. Engels, T. Köhler, D. Muenzel, D. Franz, M. Rasper, E. J.
Rummeny, M. Dobritz, and A. A. Fingerle, “Evaluation of an iterative model-
based CT reconstruction algorithm by intra-patient comparison of standard
and ultra-low-dose examinations,” Acta Radiologica, volume 59, number 10,
pages 1225–1231, 2018.

[45] M. Beister, D. Kolditz, and W. A. Kalender, “Iterative reconstruction methods
in X-ray CT,” Physica Medica, volume 28, number 2, pages 94–108, 2012.

[46] H. Zhang, J. Wang, D. Zeng, X. Tao, and J. Ma, “Regularization strategies
in statistical image reconstruction of low-dose x-ray CT : A review,” Medical
Physics, volume 45, number 10, 2018.

[47] E. Y. Sidky, C.-M. Kao, and X. Pan. “Accurate image reconstruction from few-
views and limited-angle data in divergent-beam CT.” (2009), [Online]. Available:
http://arxiv.org/abs/0904.4495 (visited on 03/26/2024), preprint.

[48] S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, Z. Liang, and J. Ma, “Sparse-
view x-ray CT reconstruction via total generalized variation regularization,”
Physics in Medicine and Biology, volume 59, number 12, pages 2997–3017, 2014.

[49] J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, and
X. Pan, “Evaluation of sparse-view reconstruction from flat-panel-detector cone-
beam CT,” Physics in Medicine and Biology, volume 55, number 22, pages 6575–
6599, 2010.

[50] J. Huang, Y. Zhang, J. Ma, D. Zeng, Z. Bian, S. Niu, Q. Feng, Z. Liang, and W.
Chen, “Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose
Image Induced Total Variation Prior,” PLoS ONE, volume 8, number 11, G.
Wang, Ed., e79709, 2013.

[51] S. Hashemi, S. Beheshti, P. R. Gill, N. S. Paul, and R. S. C. Cobbold, “Accelerated
Compressed Sensing Based CT Image Reconstruction,” Computational and
Mathematical Methods in Medicine, volume 2015, pages 1–16, 2015.

[52] G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing
(PICCS): A method to accurately reconstruct dynamic CT images from highly
undersampled projection data sets: Prior image constrained compressed sensing
(PICCS),” Medical Physics, volume 35, number 2, pages 660–663, 2008.

[53] H. Kudo, T. Suzuki, and E. A. Rashed, “Image reconstruction for sparse-view CT
and interior CT— introduction to compressed sensing and differentiated back-
projection,” Quantitative Imaging in Medicine and Surgery, volume 3, number 3,
2013.

111

http://arxiv.org/abs/0904.4495


Bibliography

[54] Z. Zhu, K. Wahid, P. Babyn, D. Cooper, I. Pratt, and Y. Carter, “Improved Com-
pressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction,”
Computational and Mathematical Methods in Medicine, volume 2013, pages 1–15,
2013.

[55] S. Kazuo, K. Kawamata, and H. Kudo, “Combining compressed sensing and
deep learning using multi-channel CNN for image reconstruction in low-dose
and sparse-view CT,” in International Forum on Medical Imaging in Asia 2021,
R.-F. Chang, Ed., Taipei, Taiwan: SPIE, 2021, page 23.

[56] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, volume 521,
number 7553, pages 436–444, 2015.

[57] A. Maier, C. Syben, T. Lasser, and C. Riess, “A gentle introduction to deep learn-
ing in medical image processing,” Zeitschrift für Medizinische Physik, volume 29,
number 2, pages 86–101, 2019.

[58] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep Convolutional
Neural Network for Inverse Problems in Imaging,” IEEE Transactions on Image
Processing, volume 26, number 9, pages 4509–4522, 2017.

[59] M. I. Razzak, S. Naz, and A. Zaib, “Deep Learning for Medical Image Processing:
Overview, Challenges and Future,” 2017.

[60] P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning
Applications,” in 2018 Fourth International Conference on Computing Com-
munication Control and Automation (ICCUBEA), Pune, India: IEEE, 2018,
pages 1–6.

[61] J. Zhang, Y. Xie, Q. Wu, and Y. Xia, “Medical image classification using synergic
deep learning,” Medical Image Analysis, volume 54, pages 10–19, 2019.

[62] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image
classification with convolutional neural network,” in 2014 13th International
Conference on Control Automation Robotics & Vision (ICARCV), Singapore:
IEEE, 2014, pages 844–848.

[63] N. Mahmoodian, H. Thadesar, M. Sadeghi, M. Georgiades, M. Pech, and C.
Hoeschen, “Segmentation of Living and ablated Tumor parts in CT images Using
ResLU-Net,” Current Directions in Biomedical Engineering, volume 8, number 2,
pages 49–52, 2022.

[64] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng. “H-DenseUNet: Hybrid
Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes.”
(2018), [Online]. Available: http://arxiv.org/abs/1709.07330 (visited
on 03/24/2024), preprint.

[65] K. Roth, T. Konopczyński, and J. Hesser. “Liver Lesion Segmentation with
slice-wise 2D Tiramisu and Tversky loss function.” (2019), [Online]. Available:
http://arxiv.org/abs/1905.03639 (visited on 03/24/2024), preprint.

112

http://arxiv.org/abs/1709.07330
http://arxiv.org/abs/1905.03639


Bibliography

[66] P. Bilic, P. Christ, H. B. Li, et al., “The Liver Tumor Segmentation Benchmark
(LiTS),” Medical Image Analysis, volume 84, page 102 680, 2023.

[67] C. Wu, P. Zhang, Y. Xu, and J. Yao, “Combined spatial and temporal deep
learning for image noise reduction of fluoroscopic x-ray sequences,” in Medical
Imaging 2020: Physics of Medical Imaging, H. Bosmans and G.-H. Chen, Eds.,
Houston, United States: SPIE, 2020, page 145.

[68] K. A. S. H. Kulathilake, N. A. Abdullah, A. Q. M. Sabri, and K. W. Lai, “A review
on Deep Learning approaches for low-dose Computed Tomography restoration,”
Complex & Intelligent Systems, volume 9, number 3, pages 2713–2745, 2023.

[69] K. Choi, S. H. Kim, and S. Kim, “Self-supervised denoising of projection data for
low-dose cone-beam CT,” Medical Physics, volume 50, number 10, pages 6319–
6333, 2023.

[70] A. A. Zamyatin, L. Yu, and D. Rozas, “3D residual convolutional neural network
for low dose CT denoising,” in Medical Imaging 2022: Physics of Medical Imaging,
W. Zhao and L. Yu, Eds., San Diego, United States: SPIE, 2022, page 165.

[71] F. Wagner, M. Thies, L. Pfaff, O. Aust, S. Pechmann, D. Weidner, N. Maul, M.
Rohleder, M. Gu, J. Utz, F. Denzinger, and A. Maier. “On the Benefit of Dual-
domain Denoising in a Self-supervised Low-dose CT Setting.” (2022), [Online].
Available: http://arxiv.org/abs/2211.01111 (visited on 03/24/2024),
preprint.

[72] C. Niu, M. Li, X. Guo, and G. Wang, “Self-supervised dual-domain network for
low-dose CT denoising,” in Developments in X-Ray Tomography XIV, B. Müller
and G. Wang, Eds., San Diego, United States: SPIE, 2022, page 15.

[73] L. Chao, P. Zhang, Y. Wang, Z. Wang, W. Xu, and Q. Li, “Dual-domain attention-
guided convolutional neural network for low-dose cone-beam computed tomog-
raphy reconstruction,” Knowledge-Based Systems, volume 251, page 109 295,
2022.

[74] Z. Zhang, X. Liang, W. Zhao, and L. Xing, “Noise2Context: Context-assisted
learning 3D thin-layer for low-dose CT,” Medical Physics, volume 48, number 10,
pages 5794–5803, 2021.

[75] M. Gholizadeh-Ansari, J. Alirezaie, and P. Babyn, “Deep Learning for Low-Dose
CT Denoising Using Perceptual Loss and Edge Detection Layer,” Journal of
Digital Imaging, volume 33, number 2, pages 504–515, 2020.

[76] T. Humphries, S. Coulter, D. Si, M. Simms, and R. Xing, “Comparison of deep
learning approaches to low dose CT using low intensity and sparse view data,”
in Medical Imaging 2019: Physics of Medical Imaging, H. Bosmans, G.-H. Chen,
and T. Gilat Schmidt, Eds., San Diego, United States: SPIE, 2019, page 156.

[77] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang,
L. Sun, and G. Wang, “Low-Dose CT Image Denoising Using a Generative
Adversarial Network With Wasserstein Distance and Perceptual Loss,” IEEE
Transactions on Medical Imaging, volume 37, number 6, pages 1348–1357, 2018.

113

http://arxiv.org/abs/2211.01111


Bibliography

[78] M. P. Heinrich, M. Stille, and T. M. Buzug, “Residual U-Net Convolutional
Neural Network Architecture for Low-Dose CT Denoising,” Current Directions
in Biomedical Engineering, volume 4, number 1, pages 297–300, 2018.

[79] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, “Low-dose
CT denoising with convolutional neural network,” in 2017 IEEE 14th Interna-
tional Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia:
IEEE, 2017, pages 143–146.

[80] P. Barca, S. Domenichelli, R. Golfieri, L. Pierotti, L. Spagnoli, S. Tomasi, and
L. Strigari, “Image quality evaluation of the Precise image CT deep learning
reconstruction algorithm compared to Filtered Back-projection and iDose4: A
phantom study at different dose levels,” Physica Medica, volume 106, page 102 517,
2023.

[81] R. Singh, S. R. Digumarthy, V. V. Muse, A. R. Kambadakone, M. A. Blake,
A. Tabari, Y. Hoi, N. Akino, E. Angel, R. Madan, and M. K. Kalra, “Image
Quality and Lesion Detection on Deep Learning Reconstruction and Iterative
Reconstruction of Submillisievert Chest and Abdominal CT,” American Journal
of Roentgenology, volume 214, number 3, pages 566–573, 2020.

[82] Y. Noda, T. Kaga, N. Kawai, T. Miyoshi, H. Kawada, F. Hyodo, A. Kam-
badakone, and M. Matsuo, “Low-dose whole-body CT using deep learning image
reconstruction: Image quality and lesion detection,” The British Journal of
Radiology, volume 94, number 1121, page 20 201 329, 2021.

[83] B. Guan, C. Yang, L. Zhang, S. Niu, M. Zhang, Y. Wang, W. Wu, and Q. Liu,
“Generative Modeling in Sinogram Domain for Sparse-View CT Reconstruc-
tion,” IEEE Transactions on Radiation and Plasma Medical Sciences, volume 8,
number 2, pages 195–207, 2024.

[84] Y. Zhang, H. Chen, W. Xia, Y. Chen, B. Liu, Y. Liu, H. Sun, and J. Zhou,
“LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed
Sensing CT,” IEEE Transactions on Radiation and Plasma Medical Sciences,
volume 7, number 2, pages 132–142, 2023.

[85] Z. Li, C. Ma, J. Chen, J. Zhang, and H. Shan, “Learning to Distill Global Rep-
resentation for Sparse-View CT,” in 2023 IEEE/CVF International Conference
on Computer Vision (ICCV), Paris, France: IEEE, 2023, pages 21 139–21 150.

[86] S. Kim, B. Kim, J. Lee, and J. Baek, “Sparsier2Sparse: Self-supervised con-
volutional neural network-based streak artifacts reduction in sparse-view CT
images,” Medical Physics, volume 50, number 12, pages 7731–7747, 2023.

[87] T. Cheslerean-Boghiu, F. C. Hofmann, M. Schulthei, F. Pfeiffer, D. Pfeiffer, and
T. Lasser, “WNet: A Data-Driven Dual-Domain Denoising Model for Sparse-
View Computed Tomography With a Trainable Reconstruction Layer,” IEEE
Transactions on Computational Imaging, volume 9, pages 120–132, 2023.

[88] S. Wang, X. Li, and P. Chen, “ADMM-SVNet: An ADMM-Based Sparse-View
CT Reconstruction Network,” Photonics, volume 9, number 3, page 186, 2022.

114



Bibliography

[89] E. Y. Sidky and X. Pan, “Report on the AAPM deep-learning sparse-view CT
grand challenge,” Medical Physics, volume 49, number 8, pages 4935–4943, 2022.

[90] H. Shibata, S. Hanaoka, Y. Nomura, T. Nakao, T. Takenaga, N. Hayashi, and
O. Abe, “On the Simulation of Ultra-Sparse-View and Ultra-Low-Dose Com-
puted Tomography with Maximum a Posteriori Reconstruction Using a Progres-
sive Flow-Based Deep Generative Model,” Tomography, volume 8, number 5,
pages 2129–2152, 2022.

[91] Y. Guo, Y. Wang, M. Zhu, D. Zeng, Z. Bian, X. Tao, and J. Ma, “Dual domain
closed-loop learning for sparse-view CT reconstruction,” in 7th International
Conference on Image Formation in X-Ray Computed Tomography, J. W. Stayman,
Ed., Baltimore, United States: SPIE, 2022, page 60.

[92] Y. Zhang, H. Chen, W. Xia, Y. Chen, B. Liu, Y. Liu, H. Sun, and J. Zhou,
“Dual-domain reconstruction network for sparse-view CT,” in Developments in
X-Ray Tomography XIII, B. Müller and G. Wang, Eds., San Diego, United States:
SPIE, 2021, page 36.

[93] C. Zhang, Y. Li, and G. Chen, “Accurate and robust sparse-view angle CT image
reconstruction using deep learning and prior image constrained compressed
sensing (DL-PICCS),” Medical Physics, volume 48, number 10, pages 5765–5781,
2021.

[94] W. Wu, D. Hu, C. Niu, H. Yu, V. Vardhanabhuti, and G. Wang, “DRONE:
Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Re-
construction,” IEEE Transactions on Medical Imaging, volume 40, number 11,
pages 3002–3014, 2021.

[95] A. R. Podgorsak, M. M. Shiraz Bhurwani, and C. N. Ionita, “CT artifact
correction for sparse and truncated projection data using generative adversarial
networks,” Medical Physics, volume 48, number 2, pages 615–626, 2021.

[96] S. Majee, T. Balke, C. Kemp, G. Buzzard, and C. Bouman, “Multi-Slice Fusion
for Sparse-View and Limited-Angle 4D CT Reconstruction,” IEEE Transactions
on Computational Imaging, volume 7, pages 448–462, 2021.

[97] D. Hu, J. Liu, T. Lv, Q. Zhao, Y. Zhang, G. Quan, J. Feng, Y. Chen, and L. Luo,
“Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruc-
tion,” IEEE Transactions on Radiation and Plasma Medical Sciences, volume 5,
number 1, pages 88–98, 2021.

[98] H. Zhang, B. Liu, H. Yu, and B. Dong. “MetaInv-Net: Meta Inversion Network
for Sparse View CT Image Reconstruction.” (2020), [Online]. Available: http:
//arxiv.org/abs/2006.00171 (visited on 03/26/2024), preprint.

[99] C. Shieh, Y. Gonzalez, B. Li, X. Jia, S. Rit, C. Mory, M. Riblett, G. Hugo,
Y. Zhang, Z. Jiang, X. Liu, L. Ren, and P. Keall, “SPARE: Sparse-view recon-
struction challenge for 4D cone-beam CT from a 1-min scan,” Medical Physics,
volume 46, number 9, pages 3799–3811, 2019.

115

http://arxiv.org/abs/2006.00171
http://arxiv.org/abs/2006.00171


Bibliography

[100] Z. Zhang, X. Liang, X. Dong, Y. Xie, and G. Cao, “A Sparse-View CT Recon-
struction Method Based on Combination of DenseNet and Deconvolution,” IEEE
Transactions on Medical Imaging, volume 37, number 6, pages 1407–1417, 2018.

[101] D. H. Ye, G. T. Buzzard, M. Ruby, and C. A. Bouman. “Deep Back Projection for
Sparse-View CT Reconstruction.” (2018), [Online]. Available: http://arxiv.
org/abs/1807.02370 (visited on 03/26/2024), preprint.

[102] S. Xie, X. Zheng, Y. Chen, L. Xie, J. Liu, Y. Zhang, J. Yan, H. Zhu, and Y. Hu,
“Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruc-
tion,” Scientific Reports, volume 8, number 1, page 6700, 2018.

[103] F. Thaler, K. Hammernik, C. Payer, M. Urschler, and D. Štern, “Sparse-View
CT Reconstruction Using Wasserstein GANs,” in Machine Learning for Medical
Image Reconstruction, F. Knoll, A. Maier, and D. Rueckert, Eds., volume 11074,
Cham: Springer International Publishing, 2018, pages 75–82.

[104] Y. Han and J. C. Ye. “Framing U-Net via Deep Convolutional Framelets: Appli-
cation to Sparse-view CT.” (2018), [Online]. Available: http://arxiv.org/
abs/1708.08333 (visited on 03/26/2024), preprint.

[105] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent
Advances, 2nd ed. Bellingham: SPIE press, 2009.

[106] N. Waltrich, S. Sawall, J. Maier, J. Kuntz, K. Stannigel, K. Lindenberg, and
M. Kachelrieß, “Effect of detruncation on the accuracy of Monte Carlo-based
scatter estimation in truncated CBCT,” Medical Physics, volume 45, number 8,
pages 3574–3590, 2018.

[107] Y. Xia, A. Maier, H. G. Hofmann, F. Dennerlein, K. Mueller, and J. Hornegger,
“Reconstruction from truncated projections in cone-beam CT using an efficient
1D filtering,” presented at the SPIE Medical Imaging, R. M. Nishikawa and
B. R. Whiting, Eds., Lake Buena Vista (Orlando Area), Florida, USA, 2013,
page 86681C.

[108] Wang Xian-Chao, Yan Bin, Liu Hong-Kui, Li Lei, Wei Xing, Hu Guo-En, Na-
tional Digital Switching System Engineering and Technological Research Center,
Zhengzhou 450002, China; and Faculty of Infrastructure Engineering, Dalian
University of Technology, Dalian 116000, China, “Efficient reconstruction from
truncated data in circular cone-beam CT,” Acta Physica Sinica, volume 62,
number 9, page 098 702, 2013.

[109] J. S. Maltz, S. Bose, H. P. Shukla, and A. R. Bani-Hashemi, “CT Truncation arti-
fact removal using water-equivalent thicknesses derived from truncated projection
data,” in 2007 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Lyon, France: IEEE, 2007, pages 2907–2911.

[110] K. Sourbelle, M. Kachelriess, and W. A. Kalender, “Reconstruction from trun-
cated projections in CT using adaptive detruncation,” European Radiology,
volume 15, number 5, pages 1008–1014, 2005.

116

http://arxiv.org/abs/1807.02370
http://arxiv.org/abs/1807.02370
http://arxiv.org/abs/1708.08333
http://arxiv.org/abs/1708.08333


Bibliography

[111] J. Hsieh, E. Chao, J. Thibault, B. Grekowicz, A. Horst, S. McOlash, and T. J.
Myers, “A novel reconstruction algorithm to extend the CT scan field-of-view,”
Medical Physics, volume 31, number 9, pages 2385–2391, 2004.

[112] R. Clackdoyle, F. Noo, Junyu Guo, and J. Roberts, “Quantitative reconstruction
from truncated projections in classical tomography,” IEEE Transactions on
Nuclear Science, volume 51, number 5, pages 2570–2578, 2004.

[113] D. Frenkel, N. Six, J. De Beenhouwer, and J. Sijbers, “Tabu-DART: A dy-
namic update strategy for efficient discrete algebraic reconstruction,” The Visual
Computer, volume 39, number 10, pages 4671–4683, 2023.

[114] Y. He, W. Ming, R. Shen, and J. Chen, “IDART: An Improved Discrete Tomog-
raphy Algorithm for Reconstructing Images With Multiple Gray Levels,” IEEE
Transactions on Image Processing, volume 31, pages 2608–2619, 2022.

[115] R. Pua, M. Park, S. Wi, and S. Cho, “A pseudo-discrete algebraic reconstruction
technique (PDART) prior image-based suppression of high density artifacts in
computed tomography,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
volume 840, pages 42–50, 2016.

[116] X. Zhuge, W. J. Palenstijn, and K. J. Batenburg, “TVR-DART: A More Ro-
bust Algorithm for Discrete Tomography From Limited Projection Data With
Automated Gray Value Estimation,” IEEE Transactions on Image Processing,
volume 25, number 1, pages 455–468, 2016.

[117] K. Batenburg, S. Bals, J. Sijbers, C. Kübel, P. Midgley, J. Hernandez, U. Kaiser,
E. Encina, E. Coronado, and G. Van Tendeloo, “3D imaging of nanomaterials by
discrete tomography,” Ultramicroscopy, volume 109, number 6, pages 730–740,
2009.

[118] K. Batenburg and J. Sijbers, “Dart: A Fast Heuristic Algebraic Reconstruction
Algorithm for Discrete Tomography,” in 2007 IEEE International Conference on
Image Processing, San Antonio, TX, USA: IEEE, 2007, pages IV –133–IV –136.

[119] K. J. Batenburg and J. Sijbers, “DART: A Practical Reconstruction Algorithm
for Discrete Tomography,” IEEE Transactions on Image Processing, volume 20,
number 9, pages 2542–2553, 2011.

[120] K. J. Batenburg, J. Sijbers, H. F. Poulsen, and E. Knudsen, “DART: A robust
algorithm for fast reconstruction of three-dimensional grain maps,” Journal of
Applied Crystallography, volume 43, number 6, pages 1464–1473, 2010.

[121] N. Six, J. D. Beenhouwer, and J. Sijbers, “pDART: Discrete algebraic recon-
struction using a polychromatic forward model,”

[122] A. Dabravolski, K. J. Batenburg, and J. Sijbers, “A Multiresolution Approach to
Discrete Tomography Using DART,” PLoS ONE, volume 9, number 9, K. Chen,
Ed., e106090, 2014.

117



Bibliography

[123] H. Banjak, M. Costin, C. Vienne, R. Guillamet, and V. Kaftandjian, “Iterative CT
reconstruction on limited angle trajectories applied to robotic inspection,” in AIP
Conference Proceedings, AIP Publishing LLC, volume 1806, 2017, page 020 009.

[124] C. Zhang and G. Chen, “Deep-Interior: A new pathway to interior tomographic
image reconstruction via a weighted backprojection and deep learning,” Medical
Physics, volume 51, number 2, pages 946–963, 2024.

[125] G. Belotti, G. Fattori, G. Baroni, and S. Rit, “Extension of the cone-beam CT
field-of-view using two complementary short scans,” Medical Physics, mp.16869,
2023.

[126] B. S. Khural, M. Baer-Beck, E. Fournié, K. Stierstorfer, Y. Huang, and A.
Maier, “Deep learning-based extended field of view computed tomography image
reconstruction: Influence of network design on image estimation outside the scan
field of view,” Biomedical Physics & Engineering Express, volume 8, number 2,
page 025 021, 2022.

[127] M. Rossi, G. Belotti, C. Paganelli, A. Pella, A. Barcellini, P. Cerveri, and G.
Baroni, “Image-based shading correction for narrow-FOV truncated pelvic CBCT
with deep convolutional neural networks and transfer learning,” Medical Physics,
volume 48, number 11, pages 7112–7126, 2021.

[128] J. H. Ketola, H. Heino, M. A. K. Juntunen, M. T. Nieminen, and S. I. Inki-
nen, “Deep learning-based sinogram extension method for interior computed
tomography,” in Medical Imaging 2021: Physics of Medical Imaging, H. Bosmans,
W. Zhao, and L. Yu, Eds., Online Only, United States: SPIE, 2021, page 123.

[129] Y. Huang, A. Preuhs, M. Manhart, G. Lauritsch, and A. Maier, “Data Extrap-
olation From Learned Prior Images for Truncation Correction in Computed
Tomography,” IEEE Transactions on Medical Imaging, volume 40, number 11,
pages 3042–3053, 2021.

[130] G. P. Fonseca, M. Baer-Beck, E. Fournie, C. Hofmann, I. Rinaldi, M. C. Ollers,
W. J. Van Elmpt, and F. Verhaegen, “Evaluation of novel AI-based extended field-
of-view CT reconstructions,” Medical Physics, volume 48, number 7, pages 3583–
3594, 2021.

[131] P. Bao, W. Xia, K. Yang, W. Chen, M. Chen, Y. Xi, S. Niu, J. Zhou, H. Zhang,
H. Sun, Z. Wang, and Y. Zhang, “Convolutional Sparse Coding for Compressed
Sensing CT Reconstruction,” IEEE Transactions on Medical Imaging, volume 38,
number 11, pages 2607–2619, 2019.

[132] M. Nielsen, “Neural Networks and Deep Learning,”
[133] D. Gomez-Cardona, C. P. Favazza, S. Leng, B. A. Schueler, and K. A. Fetterly,

“Adaptation of a channelized Hotelling observer model to accommodate anthro-
pomorphic backgrounds and moving test objects in X-ray angiography,” Medical
Physics, volume 50, number 11, pages 6737–6747, 2023.

118



Bibliography

[134] A. Ba, C. Abbey, D. Racine, A. Viry, F. R. Verdun, S. Schmidt, and F. Bochud,
“Channelized Hotelling observer correlation with human observers for low-contrast
detection in liver CT images,” Journal of Medical Imaging, volume 6, number 02,
2019.

[135] D. Racine, N. Ryckx, A. Ba, F. Becce, A. Viry, F. R. Verdun, and S. Schmidt,
“Task-based quantification of image quality using a model observer in abdom-
inal CT: A multicentre study,” European Radiology, volume 28, number 12,
pages 5203–5210, 2018.

[136] C. Ma, L. Yu, B. Chen, C. Favazza, S. Leng, and C. McCollough, “Impact of
number of repeated scans on model observer performance for a low-contrast
detection task in computed tomography,” Journal of Medical Imaging, volume 3,
number 2, page 023 504, 2016.

[137] A. Wunderlich, F. Noo, B. D. Gallas, and M. E. Heilbrun, “Exact Confidence
Intervals for Channelized Hotelling Observer Performance in Image Quality Stud-
ies,” IEEE Transactions on Medical Imaging, volume 34, number 2, pages 453–
464, 2015.

[138] Y. Zhang, S. Leng, L. Yu, R. E. Carter, and C. H. McCollough, “Correlation
between human and model observer performance for discrimination task in CT,”
Physics in Medicine and Biology, volume 59, number 13, pages 3389–3404, 2014.

[139] L. Zhang, C. Cavaro-Ménard, and P. Le Callet, “An overview of model observers,”
IRBM, volume 35, number 4, pages 214–224, 2014.

[140] L. Zhang, B. Goossens, C. Cavaro-Ménard, P. L. Callet, and D. Ge, “Channel-
ized model observer for the detection and estimation of signals with unknown
amplitude, orientation, and size,” Journal of the Optical Society of America A,
volume 30, number 11, page 2422, 2013.

[141] X. He and S. Park, “Model Observers in Medical Imaging Research,” Theranostics,
volume 3, number 10, pages 774–786, 2013.

[142] W. C. Röntgen, “Über eine neue Art von Strahlen,” Sitzungsbericht Phys.-Med.
Gesellschaft, volume 137, pages 132–141, 1895.

[143] J. T. Bushberg, Ed., The Essential Physics of Medical Imaging, 2nd ed. Philadel-
phia: Lippincott Williams & Wilkins, 2002, 933 pages.

[144] H. Alkadhi, Ed., Wie funktioniert CT? eine Einführung in Physik, Funktion-
sweise und klinische Anwendungen der Computertomographie. Berlin Heidelberg:
Springer, 2011, 272 pages.

[145] S. Carmignato, W. Dewulf, and R. Leach, Eds., Industrial X-Ray Computed
Tomography. Cham: Springer International Publishing, 2018.

[146] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,”

119



Bibliography

[147] K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified linear
unit used in deep learning,” in 2015 International Joint Conference on Neural
Networks (IJCNN), Killarney, Ireland: IEEE, 2015, pages 1–8.

[148] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.”
(2017), [Online]. Available: http://arxiv.org/abs/1412.6980 (visited on
03/27/2024), preprint.

[149] Z. Zhang, “Improved Adam Optimizer for Deep Neural Networks,” in 2018
IEEE/ACM 26th International Symposium on Quality of Service (IWQoS),
Banff, AB, Canada: IEEE, 2018, pages 1–2.

[150] Y. Zhang, N. Yue, M. Su, B. Liu, Y. Ding, Y. Zhou, H. Wang, Y. Kuang, and K.
Nie, “Improving CBCT quality to CT level using deep learning with generative
adversarial network,” Medical Physics, volume 48, number 6, pages 2816–2826,
2021.

[151] J. Lee, J. Gu, and J. C. Ye, “Unsupervised CT Metal Artifact Learning Us-
ing Attention-Guided -CycleGAN,” IEEE Transactions on Medical Imaging,
volume 40, number 12, pages 3932–3944, 2021.

[152] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for
Biomedical Image Segmentation.” (2015), [Online]. Available: http://arxiv.
org/abs/1505.04597 (visited on 03/24/2024), preprint.

[153] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition.” (2015), [Online]. Available: http://arxiv.org/
abs/1409.1556 (visited on 03/27/2024), preprint.

[154] F. Yang, D. Zhang, K. Huang, Z. Gao, and Y. Yang, “Incomplete projection
reconstruction of computed tomography based on the modified discrete algebraic
reconstruction technique,” Measurement Science and Technology, volume 29,
number 2, page 025 405, 2018.

[155] M. Du, K. Liang, L. Zhang, H. Gao, Y. Liu, and Y. Xing, “Deep-Learning-Based
Metal Artefact Reduction With Unsupervised Domain Adaptation Regularization
for Practical CT Images,” IEEE Transactions on Medical Imaging, volume 42,
number 8, pages 2133–2145, 2023.

[156] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment:
From Error Visibility to Structural Similarity,” IEEE Transactions on Image
Processing, volume 13, number 4, pages 600–612, 2004.

[157] T. Heimann, B. Van Ginneken, M. Styner, et al., “Comparison and Evaluation
of Methods for Liver Segmentation From CT Datasets,” IEEE Transactions on
Medical Imaging, volume 28, number 8, pages 1251–1265, 2009.

[158] J. Solomon and E. Samei, “A generic framework to simulate realistic lung,
liver and renal pathologies in CT imaging,” Physics in Medicine and Biology,
volume 59, number 21, pages 6637–6657, 2014.

120

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


Bibliography

[159] M. Eckstein, J. Bartroff, C. Abbey, J. Whiting, and F. Bochud, “Automated
computer evaluation and optimization of image compression of x-ray coronary
angiograms for signal known exactly detection tasks,” Optics Express, volume 11,
number 5, page 460, 2003.

[160] Y. Li, J. Chen, J. L. Brown, S. T. Treves, X. Cao, F. H. Fahey, G. Sgouros, W. E.
Bolch, and E. C. Frey, “DeepAMO: A multi-slice, multi-view anthropomorphic
model observer for visual detection tasks performed on volume images,” Journal
of Medical Imaging, volume 8, number 04, 2021.

[161] A. Wunderlich and F. Noo, “Evaluation of the impact of tube current modulation
on lesion detectability using model observers,” in 2008 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver,
BC: IEEE, 2008, pages 2705–2708.

[162] A. H. Andersen and A. C. Kak, “Simultaneous Algebraic Reconstruction Tech-
nique (SART): A Superior Implementation of the Art Algorithm,” Ultrasonic
Imaging, volume 6, number 1, pages 81–94, 1984.

[163] A. Byl, S. Sawall, M. Rafecas, C. Hoeschen, and M. Kachelrieß, “Low-dose CT:
Reducung tube current, number of projections, or both?” In 2023 IEEE Medical
Imaging Conference Abstract Booklet, IEEE, 2023, pages 1009–1010.

[164] A. Byl, M. Knaup, M. Rafecas, C. Hoeschen, and M. Kachelrieß, “Detruncation of
clinical CT scans using a discrete algebraic reconstruction technique prior,” in 7th
International Conference on Image Formation in X-Ray Computed Tomography,
J. W. Stayman, Ed., Baltimore, United States: SPIE, 2022, page 74.

[165] N. M. Sheth, W. Zbijewski, M. W. Jacobson, G. Abiola, G. Kleinszig, S. Vogt,
S. Soellradl, J. Bialkowski, W. S. Anderson, C. R. Weiss, G. M. Osgood, and
J. H. Siewerdsen, “Mobile C-Arm with a CMOS detector: Technical assessment
of fluoroscopy and Cone-Beam CT imaging performance,” Medical Physics,
volume 45, number 12, pages 5420–5436, 2018.

121





List of Publications

Parts of this thesis have been published in the following journal articles and conference
contributions:

Journal Articles

[1] A. Byl, L. Klein, S. Sawall, S. Heinze, H.-P. Schlemmer, and M. Kachelrieß,
“Photon-counting normalized metal artifact reduction (NMAR) in diagnostic
CT,” Medical Physics, volume 48, number 7, pages 3572–3582, 2021.

[2] A. Byl, “A semi-analytical solution to the Schrödinger equation with Gaussian
well,” Student Undergraduate Research E-journal!, volume 4, 2018.

Conference Contributions

[1] A. Byl, S. Sawall, M. Rafecas, C. Hoeschen, and M. Kachelrieß, “Low-dose CT:
Reducung tube current, number of projections, or both?” In 2023 IEEE Medical
Imaging Conference Abstract Booklet, IEEE, 2023, pages 1009–1010.

[2] A. Byl, M. Knaup, M. Rafecas, C. Hoeschen, and M. Kachelrieß, “Detruncation of
clinical CT scans using a discrete algebraic reconstruction technique prior,” in 7th
International Conference on Image Formation in X-Ray Computed Tomography,
SPIE, volume 12304, 2022, pages 353–359.

[3] A. Byl, L. Klein, J. Hardt, S. Sawall, H.-P. Schlemmer, S. Heinze, and M.
Kachelrieß, “Metal artifact reduction in photon counting CT using pseudo-
monochromatic images,” in 6th International Conference on Image Formation
in X-Ray Computed Tomography, 2020, pages 256–259.

[4] A. Byl, L. Klein, J. Hardt, E. Wehrse, H.-P. Schlemmer, S. Heinze, M. Uhrig,
S. Sawall, and M. Kachelrieß, “Dedicated metal artefact reduction for photon
counting CT,” in ECR 2020 Book of Abstracts, European Society of Radiology,
2020, page 138.

123



[5] L. Klein, L. Enzmann, A. Byl, C. Liu, S. Sawall, A. Maier, J. Maier, M. Lell, and
M. Kachelrieß, “Organ-specific vs. patient risk-specific tube current modulation
in thorax CT scans covering the female breast,” in 7th International Conference
on Image Formation in X-Ray Computed Tomography, SPIE, volume 12304,
2022, pages 329–335.

[6] L. Klein, L. Enzmann, A. Byl, C. Liu, S. Sawall, A. Maier, J. Maier, M. Lell,
and M. Kachelrieß, “Potential CT radiation dose reduction to the female breast
by a novel risk-minimizing tube current modulation,” in Proceedings of the 108th
Scientific Assembly and Annual Meeting of the Radiological Society of North
America (RSNA), 2022.

[7] P. Trapp, A. Byl, L. Klein, S. Heinze, H.-P. Schlemmer, S. Sawall, and M.
Kachelrieß, “Bin-combination-based noise reduction for metal artifact reduction
in photon counting CT,” in ECR 2021 Book of Abstracts, European Society of
Radiology, 2021.

[8] S. Heinze, K. Yen, A. Tsaklakidis, L. Klein, A. Byl, M. Kachelrieß, H.-P.
Schlemmer, and S. Sawall, “Forensische bildgebung 2.0,” in Tagungsband der 99.
Jahrestagung der Deutschen Gesellschaft für Rechtsmedizin, 2020.

[9] L. Klein, L. Hardt, A. Byl, E. Wehrse, S. Heinze, M. Uhrig, H.-P. Schlemmer, C.
Ziener, S. Heinze, and M. Kachelrieß, “Kernel considerations for high resolution
photon-counting CT: Dose reduction versus spatial resolution,” in ECR 2020
Book of Abstracts, European Society of Radiology, 2020, page 137.

124



Acknowledgments

I would like to express my gratitude to everybody who has helped and supported my
research:

Prof. Dr. Joao Seco for his role as first examiner, and his guidance in the context of
the thesis advisory committee.
Prof. Dr. Marc Kachelrieß, for the opportunity to do my doctoral studies in his
department and supervising my research, as well as his invaluable insights, expertise
and suggestions. Thank you for always finding the time to discuss my work.
Prof. Dr. Jürgen Hesser, for his input and encouragement during the thesis advisory
committee meetings.
The external partners of the KI-INSPIRE project, especially Prof. Dr. Christoph
Hoeschen, Prof. Dr. Magdalena Rafecas, and Dr.-Ing. Ali Pashazadeh, for the
successful collaboration.
Dr. Joscha Maier and Dr. Stefan Sawall for their assistance and constructive comments.
All current and former colleagues in E025, with whom I have been more than glad to
spend time inside and outside the office. My special thanks go to Fabian (for both his
friendship and coffee), Carlo, Edith, Elias, Markus, Mishal, Philip, and Tim.
Prof. Dr. André Schöning and Priv.-Doz. Dr. Zoltán Harman for agreeing to serve as
examiners for the oral defense.
I am sincerely grateful to my family for their encouragement and support during my
studies.
Finally, I express my deep gratitude to Emmy for her unwavering support and faith in
me. Without you, this work may not have been possible.
This work was supported by the German Federal Ministry for the Environment, Na-
ture Conservation, Nuclear Safety and Consumer Protection (BMUV) under grant
67KI2036B.

125





I hereby assure, that I composed this work by myself and did not use any other
than the listed resources.

Heidelberg, March 28, 2024




	List of Acronyms
	List of Tables
	List of Figures
	Introduction
	Fundamentals
	Interactions of X-Rays with Matter
	Data Acquisition
	Image Reconstruction
	Image Artifacts
	Neural Networks

	Materials & Methods
	Low-Dose CT Correction
	Image Quality Assessment
	Detruncation

	Results
	Comparison of Dose Reduction Approaches
	Validation of Task-Based Metrics
	Ablation Study
	Quality Assurance of Insufficiently Trained Networks
	Detruncation

	Summary & Discussion
	Low-Dose CT Denoising
	Detruncation

	Conclusions
	Bibliography

