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Abstract

This paper investigates nowcasting Growth-at-Risk (GaR) using consensus fore-
casts from the Survey of Professional Forecasters (SPF) in the US. Incorporating
SPF consensus forecasts into the conditional mean of an AR-GARCH type model
significantly enhances nowcasting accuracy for GaR and the conditional density of
GDP growth. While there is strong time variation in both the lower and upper
quantiles of the GDP growth distribution, integrating skewness and fat tails into
the model does not improve forecasting accuracy. By accounting for changes in the
conditional mean of the GDP growth distribution over time, these findings highlight
the value of SPF consensus projections for GaR nowcasting.
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1 Introduction

In monitoring the economic outlook, the focus of researchers and policymakers has recently
shifted toward measuring economic downside risks. In particular, Growth-at-Risk (GaR),
popularized by Adrian et al. (2019), typically represents the 5% or 10% quantile of the
conditional GDP growth distribution as a measure of tail risk. This shift has prompted
major institutions, including the International Monetary Fund (IMF), and central banks
like the Federal Reserve Bank of New York and the European Central Bank (ECB), to
publish GaR forecasts for major economies.

This paper proposes nowcasting quarterly GaR in real-time by leveraging the consensus
forecasts from the US Survey of Professional Forecasters (SPF). Specifically, I use the
median point predictions of the SPF as a predictor for the conditional mean of quarterly
GDP growth. To assess the uncertainty around consensus forecasts, I employ a Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) model. The GARCH model,
incorporating SPF consensus projections, provides timely nowcasts of GaR as well as
the entire conditional density of GDP growth. A realistic out-of-sample evaluation
demonstrates that incorporating the current economic outlook through SPF consensus
forecasts significantly improves predictive performance for GaR and the conditional density
of GDP growth.

So far, a substantial part of the literature employs Quantile Regressions (QR) to assess
economic downside risk, indicating that lower quantiles of GDP growth vary with financial
conditions (Giglio et al., 2016; Adrian et al., 2019, 2022; Ferrara et al., 2022). Conditional
on financial indicators, the predictive GDP growth distribution exhibits time-varying lower
quantiles, while the center and the upper part of the distribution are relatively constant
over time. This has led to a surge in research findings that GDP growth is negatively
skewed during economic downturns and vice versa (see, for example, Adrian et al., 2019;
Delle Monache et al., 2023).

In the context of predicting GaR, Brownlees and Souza (2021) provide evidence that a
standard volatility model, such as the GARCH(1,1) model, tends to exhibit better out-of-
sample predictive performance than the QR approach. Moreover, their findings suggest that
the conditional GDP growth distribution is not significantly skewed and is moderately fat-
tailed. Similarly, Carriero et al. (2022), including a large set of macroeconomic indicators
in quantile regression models, also find that skewness is not a robust feature of GDP
growth. Overall, these results highlight that both asymmetry and time-variation in higher
moments crucially depend on the choice of the model and the conditioning information.

What these models have in common is that the practical application for real-time
economic monitoring faces two main challenges. The first challenge stems from the delayed
releases of macroeconomic indicators, often referred to as the ragged-edge problem (Wallis,
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1986). For instance, the first estimate of US GDP is typically released at the end of the first
month of the subsequent quarter, while the nowcast from the US SPF becomes available
mid-quarter. Additionally, macroeconomic indicators are available at different frequencies.
While GDP is measured quarterly, some indicators like the Chicago Fed’s National Financial
Conditions Index (NFCI) are reported weekly, and others are even reported daily. This
discrepancy in reporting frequencies necessitates the use of models capable of handling
mixed-frequency data (see, for example, Ghysels et al., 2004, 2007; Giannone et al., 2008;
Andreou et al., 2013). In the context of GaR, the timely incorporation of new data releases
and revisions is crucial. Carriero et al. (2022) demonstrate that exploiting a large set
of macroeconomic indicators in real-time improves the nowcast accuracy throughout the
current quarter. Similarly, Ferrara et al. (2022) utilize daily financial conditions indicators
in real-time for daily GaR predictions.

To circumvent the problem of delayed releases and mixed-frequency data, I exploit the
consensus point predictions of the SPF. Rather than relying on a large set of macroeconomic
indicators with varying release frequencies, the SPF offers a comprehensive assessment
about the current economic outlook. The SPF is a quarterly survey that asks a panel
of professional forecasters to provide point predictions of quarterly GDP for the current
quarter and up to four quarters ahead (Clements et al., 2023). In particular, at short
horizons of up to one quarter ahead, the SPF consensus point forecasts often outperform
standard time-series models (Stark et al., 2010; Faust and Wright, 2013). This superior
performance can likely be attributed to the aggregation of forecasts from multiple experts
who efficiently incorporate a large pool of information and quickly adapt to major changes
in the economic environment (Ang et al., 2007).

Regarding the prediction of conditional quantiles of GDP growth, the SPF is relatively
unexplored. Adams et al. (2021) use financial conditions to explain fluctuations in the
uncertainty around SPF consensus forecasts. Based on the conditional forecast error
distribution, they construct GaR nowcasts, finding that incorporating financial conditions
leads to significant out-of-sample improvements compared to GaR forecasts constructed
solely from past forecast errors. The SPF also elicits density forecasts, which have been
studied in the context of Growth-at-Risk by Ganics et al. (2020) and of Inflation-at-Risk
by Andrade et al. (2014).

This paper contributes to the literature in several ways. First, it bridges the gap
between the existing evidence on the short-horizon accuracy of the SPF consensus forecasts
and the predictive performance of the GARCH model for nowcasting GaR. By integrating
the SPF consensus forecasts into the GARCH model, this paper provides a tool for timely
assessments of economic downside risks. Second, it relates to the nowcasting literature
by leveraging the SPF in real-time, utilizing the timely information captured by the SPF
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consensus forecasts. This approach incorporates the current economic outlook without
necessitating the inclusion of potentially numerous macroeconomic indicators with varying
frequencies, delayed releases, and later revisions. Thirdly, this paper contributes to the
literature on assessing the uncertainty around consensus forecasts. Instead of eliciting
entire probability distributions, this paper derives conditional densities by exploiting the
forecast errors of the survey consensus forecasts (Reifschneider and Tulip, 2019; Clark
et al., 2020; Adams et al., 2021).

The real-time out-of-sample evaluation reveals that the consensus forecasts of the SPF
offer valuable information for GaR prediction. When conditioned on the SPF’s median
nowcasts, the GARCH model significantly outperforms quantile regressions with NFCI in
predicting lower quantiles of the GDP growth distribution. Moreover, the NFCI provides
limited additional predictive gains once the SPF nowcasts become available mid-quarter.
Furthermore, the SPF’s consensus projections are not only informative about downside
risk but also about the upper quantiles of the GDP growth distribution. By accounting
for changes in the conditional mean of the GARCH model, the SPF enhances forecasts of
the entire GDP growth distribution. In addition, the out-of-sample analysis indicates that
incorporating skewness and fat tails does not lead to an improved forecasting performance.
While this observation does not necessarily imply symmetry in the true conditional
distribution of GDP growth, it suggests that employing a more flexible distribution than
the normal distribution lacks justification from a short-horizon forecasting perspective.

The remainder of the paper is organized as follows. Section 2 provides a review of the
related literature. Section 3 details the data and the associated release calendar. The
forecasting models are explained in Section 4, followed by an explanation of the evaluation
metrics in Section 5. Section 6 discusses the findings of the out-of-sample analysis and
provides robustness checks. Finally, Section 7 concludes the paper.

2 Related Literature

Growth-at-Risk as a risk-measure gained prominence following its adoption by institutions
like the IMF (Prasad et al., 2019), making it a focal point for research on economic tail
risks modeled through predictive quantile regressions (see, for example, De Nicolò and
Lucchetta, 2017; Adams et al., 2021; Amburgey and McCracken, 2023). In particular,
due to the influential paper by Adrian et al. (2019), much of the empirical literature
focuses on the negative correlation of financial conditions and economic downside risks.
They find that lower quantiles of the conditional GDP growth distribution significantly
vary with financial conditions whereas the upper part of the distribution is relatively
stable over time. This time-varying asymmetry led to the conclusion that GDP growth
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exhibits negative skewness during recessions and is closer to being symmetric or even
positively skewed during expansions (Delle Monache et al., 2023). Similarly, Giglio et al.
(2016) provide evidence that systemic risk measures have an asymmetric effect on the
conditional distribution of macroeconomic outcomes. However, rather than interpreting
this as evidence in favor of time-varying skewness, they argue that systemic risk measures
are more informative about the lower tail than the central tendency or the upper tail of
macroeconomic indicators.

The existing literature also suggests that the predictive distribution of GDP depends
on the conditioning information and the methods employed. For example, Carriero et al.
(2022) employ Bayesian quantile regressions with a rich set of macroeconomic indicators,
revealing that GDP growth exhibits only a slight degree of asymmetry. In a complementary
approach, Brownlees and Souza (2021) utilize a GARCH model to analyze GDP growth,
estimating the innovation distribution nonparametrically. Their findings suggest that GDP
growth is not significantly skewed and displays moderately fat tails. Furthermore, the
finding of Adrian et al. (2019) that only the lower tail of GDP growth is time-varying
could also be explained by a symmetric distribution that exhibits simultaneous changes in
the mean and variance (Carriero et al., 2020). This suggests that predicting GaR entails
modeling the conditional mean and variance, along with possibly kurtosis, rather than
focusing on time-varying skewness (Fagiolo et al., 2008; Figueres and Jarociński, 2020;
Plagborg-Møller et al., 2020).

There is also a more critical perspective on the predictive ability of financial conditions
for growth vulnerability. For instance, Reichlin et al. (2020) find little additional predictive
power of financial conditions for the lower tail of GDP when real economic indicators
are incorporated. Similarly, Plagborg-Møller et al. (2020) demonstrate that predictive
quantile regressions using both financial and economic variables only provide limited
information about the conditional mean of GDP growth at very short horizons, with
imprecise estimates for higher moments and longer horizons. The evidence suggests
that aggregate financial indexes exhibit strong co-movements with real variables that are
related to GDP growth. This would imply that movements in the NFCI are endogenous
to economic conditions and explain why the marginal predictive information of financial
conditions beyond macroeconomic variables is modest (Plagborg-Møller et al., 2020).
Nevertheless, given the strong correlation of the NFCI and real variables relevant to GDP
growth, the NFCI’s inclusion in forecasting models may still offer valuable insights into
Growth-at-Risk dynamics.

This paper also directly draws on the work of Brownlees and Souza (2021), who apply
the GARCH model to a country-panel for GaR forecasting. Their study shows that the
purely backward-looking univariate GARCH model tends to outperform the quantile
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regression approach that includes the NFCI in predicting the lower tail of GDP growth.
Additionally, they find that the density forecasts generated by the GARCH model are
more accurate. While their findings raise further questions about the effectiveness of using
the NFCI as an advanced risk measure, it is worth noting that they focus on forecast
horizons of at least one quarter ahead, in contrast to nowcasting current quarter GDP
growth. However, their results underscore the advantage of modeling the volatility of
GDP growth through dynamics captured in the GARCH model, which avoids the need to
specify predictors for tail risks that may not exhibit robust predictive ability over time.
By remaining agnostic about the source of economic downside risks, the GARCH model
can yield better forecasts even in the case of misspecification (Brownlees and Souza, 2021).

One limitation is that applying a univariate GARCH model for monitoring GaR
only exploits past information through lags of GDP. By incorporating the SPF into the
conditional mean of the GARCH model, this paper is directly related to the literature
on constructing predictive densities by assessing the uncertainty around survey consensus
forecasts. For example, Reifschneider and Tulip (2019) discuss how the Federal Open
Market Committee (FOMC) of the US Federal Reserve uses historical forecast errors
of the Summary of Economic Projections to gauge the FOMC’s forecasting uncertainty.
Based on the root mean squared forecast errors estimated on a rolling window, they
construct unconditional confidence bands around consensus projections of the FOMC.
While many central banks report fan charts based on the size of past forecast errors, these
approaches assume that forecast uncertainty is constant or evolves slowly. However, Clark
et al. (2020) find that historical forecast errors exhibit notable time variation. Specifically
for the US SPF, they show that modeling the forecast error variance through stochastic
volatility enhances density forecasts. Similarly, Adams et al. (2021) use quantile regressions
incorporating financial conditions to explain variations in the uncertainty around SPF
point projections, demonstrating that conditioning on the NFCI results in significantly
improved predictive densities around SPF point forecasts.

By leveraging the SPF median forecasts to nowcast GaR, this paper draws on the
existing evidence on the forecasting accuracy of SPF consensus projections. While studies
have noted biases in individual survey forecasts (see, for example, Zarnowitz, 1985; Elliott
et al., 2008), consensus forecasts of professional forecasters offer accurate macroeconomic
predictions (Ang et al., 2007; Giannone et al., 2008; Bańbura et al., 2013, 2021), and often
outperform standard time-series models, particularly at shorter horizons (Stark et al.,
2010; Faust and Wright, 2013). For instance, Stark et al. (2010) find that the real-time
SPF median projections for current quarter GDP outperform model estimates. However,
they also highlight the rapid deterioration of forecast accuracy for horizons beyond one
quarter.
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While the SPF also provides density forecasts through histograms, which have been
explored in the context of macroeconomic tail risks (Andrade et al., 2014; Ganics et al.,
2020), this paper opts against utilizing them for several reasons. One significant drawback
is that these density forecasts pertain to current and next-year GDP growth, making them
fixed-event forecasts. Ganics et al. (2020) propose a density combination approach to
obtain fixed-horizon forecasts that are well calibrated. However, their method relies on a
continuous distribution, which needs to be constructed from the bin probabilities. Inferring
aggregate predictive densities from individual survey histograms presents challenges, with
common approaches involving fitting a parametric distribution to the empirical CDF
implied by the bin probabilities and aggregating over individual forecaster densities, not
necessarily in that order. Moreover, difficulties arise from changes in bin widths over time
and unbounded intervals at the tails. In addition, forecasters contribute to challenges by
rounding their forecasts and occasionally assigning zero probability to some bins (Bassetti
et al., 2023).

Despite efforts, judgmental density forecasts are often found to be misspecified and
poorly calibrated (Rossi and Sekhposyan, 2019). Krüger and Plett (2024) find that methods
based on the forecast error distribution provide better interval estimates than those implied
by SPF density forecasts. In addition, subjective density means are less accurate and
updated less frequently than point predictions from survey panelists (Clements, 2010,
2014). Lastly, subjective distributions may not accurately reflect GDP growth but rather
indicate survey panelists’ confidence in their forecasts. Bańbura et al. (2021) observe
overconfidence among SPF respondents and document that integrating point predictions
improves model-based density forecasts, while second moments compromise predictive
accuracy.

Lastly, this paper relates to the large body of literature on real-time nowcasting,
which focuses on updating GDP forecasts as new data becomes available. This approach,
formalized by Giannone et al. (2008) and surveyed by Bańbura et al. (2013), highlights
the importance of incorporating data releases and revisions in real-time to improve the
accuracy of GDP growth forecasts. Similarly, incorporating high-frequency financial data
in real-time improves out-of-sample nowcasts of GDP growth both in terms of the central
tendency (Andreou et al., 2013) and tail risks (Ferrara et al., 2022). In the context of GaR,
Carriero et al. (2022) demonstrate that exploiting a large set of macroeconomic indicators
in real-time improves the nowcast accuracy throughout the current quarter.

For a realistic out-of-sample nowcasting evaluation, real-time vintage data on GDP is
readily available, and surveys like the SPF provide real-time forecasts (Clements et al.,
2023). However, the first vintage of NFCI data only became available in 2011. Consequently,
a substantial amount of evidence is based on the final NFCI vintage observed at the end
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of the evaluation period (see, for example, Adrian et al., 2019; Reichlin et al., 2020;
Brownlees and Souza, 2021; Carriero et al., 2022). To avoid look-ahead bias in the out-of-
sample analysis, I rely on unofficial real-time weekly vintages of the NFCI constructed by
Amburgey and McCracken (2023).

3 Real-time data and predictors

This paper focuses on real-time nowcasting of Growth-at-Risk in quarter t, necessitating
the use of real-time data to avoid look-ahead bias. Given the delayed publication of GDP
data, Figure 1 provides an overview of the releases and revisions of quarterly GDP.

Figure 1: Release calender

GDP(1)
t−1 SPFt|t GDP(2)

t−1

1 3 5 7 9 11 13 15

quarter t

GDP(3)
t−1 GDP(1)

tGDP(3)
t−2

1197

SPFt|t−1GDP(2)
t−2

Notes: This graph sketches the release and revision dates of GDP together with the release dates of
the SPF forecasts. The numbers on the time line indicate the weeks in each quarter.

In the fourth week of quarter t, the Bureau of Economic Analysis (BEA) releases the
first estimate of the previous quarter’s GDP, denoted by GDP(1)

t−1. Consequently, during the
early weeks of quarter t, the GDP of t−1 remains unavailable. Approximately one and two
months after the initial release, the BEA issues the first and second major revisions, leading
to the second (GDP(2)

t−1) and third (GDP(3)
t−1) estimate of GDP, respectively. Analogously,

the initial estimate for current-quarter GDP, GDP(1)
t , is published at the end of the first

month of quarter t+ 1.
The release calendar depicted in Figure 1 also shows release dates of the SPF. The

SPF is a quarterly survey of macroeconomic forecasts for the US. Starting in the fourth
quarter of 1968, the survey was initially conducted by the American Statistical Association
and the National Bureau of Economic Research. Since 1990, the Federal Reserve Bank of
Philadelphia (FED) has been running the survey that consists of roughly 40 professional
forecasters (Clements et al., 2023). For GDP, based on the median SPF projections, the
FED provides forecasts for the annualized percentage points quarter-over-quarter growth
rates. This includes nowcasts for the current quarter and up to forecasts of one-year ahead
quarterly growth rates. Usually, the survey is released mid-quarter, i.e., around the sixth
to seventh week of a quarter.
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Table 1 summarizes the latest available information in real-time on a weekly basis,
omitting even numbered weeks to save space. To reconstruct the information set available
in each week of quarter t, I take monthly vintages of real GDP from the Real-Time Data
Set for Macroeconomists of the FED and match them with the historical release dates
available on ALFRED.1 For quarterly GDP, in week w of quarter t, let ys,w denote the
annualized quarterly log growth rates for quarters s < t according to

ys,w = ys|t,w = 400 · log(GDPs|t,w −GDPs−1|t,w), (1)

where GDPs|t,w denotes real GDP in quarter s obtained from the monthly vintage available
in week w of quarter t. Due to delayed releases of GDP, in the first three weeks of quarter
t, since GDP in t−1 is not available, growth rates are only obtained for s = 1, . . . , t−2. In
the following weeks, w = 4, . . . , 15, a forecaster has information on GDP for s = 1, . . . , t−1,
with a first revision, GDP(2)

t−1, between the 7th and the 9th week.

Table 1: Real-time information available for predicting GDP
growth in quarter t

week (w) Variables

1 GDP(3)
t−2 = GDPt−2|t,12, SPFt|t−1, NFCIt−1,12|t,1

3 GDP(3)
t−2 = GDPt−2|t,12, SPFt|t−1, NFCIt,2|t,3

5 GDP(1)
t−1 = GDPt−1|t,4, SPFt|t−1, NFCIt,4|t,5

7 GDP(1)
t−1 = GDPt−1|t,4, SPFt|t, NFCIt,6|t,7

9 GDP(2)
t−1 = GDPt−1|t,8, SPFt|t, NFCIt,8|t,9

11 GDP(2)
t−1 = GDPt−1|t,8, SPFt|t, NFCIt,10|t,11

13 GDP(3)
t−1 = GDPt−1|t,12, SPFt|t, NFCIt,12|t+1,1

15 GDP(3)
t−1 = GDPt−1|t,12, SPFt|t, NFCIt+1,2|t+1,3

Notes: This table demonstrates the latest realizations of GDP, SPF,
and the NFCI available for odd numbered weeks throughout quarter t
and the first three weeks of quarter t+ 1.

Concerning the SPF, at any given moment and across forecast horizons, the survey
projections are real-time forecasts. To reconstruct the information flow provided by the
SPF thus only requires knowledge about the timing of the survey. Since the FED is in
charge of the SPF, release dates are available on the web page of the FRED, permitting
an exact alignment with the available information set.2 In the first five to six weeks of

1The BEA reported GNP until the end of 1991. Thus, for a substantial part of the sample, GDP refers
to GNP.

2For the first quarter in 1990, the FED is uncertain about the release date. The release date is thus
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each quarter, only the one-step ahead projections, SPFt|t−1, are available. Consequently,
one can only exploit the nowcasts, SPFt|t, in the second half of a quarter. To facilitate
notation, let SPFs,w denote the SPF median projections for s = 1, . . . , t, available in week
w = 1, . . . , 15 of quarter t according to

SPFt,w =

SPFt|t−1 if w ≤ 6

SPFt|t if w > 6
. (2)

Lastly, Table 1 displays data releases of the Chicago Fed’s NFCI. The NFCI is a weekly
estimate of financial conditions in the US, incorporating a comprehensive set of financial
indicators including money markets, debt and equity markets, and the banking system. Its
construction is described in detail in Brave and Butters (2018). The index is standardized
to have a mean of zero and a standard deviation of one, with positive readings historically
associated with tighter than average financial conditions, and vice versa.

Official real-time vintages of the NFCI are obtainable on ALFRED. As the first vintage
became available in 2011, many studies employ the final vintage of the NFCI. However,
pseudo out-of-sample analyses ignore the filtering uncertainty that primarily affects the
real-time NFCI at sample endpoints (Brownlees and Souza, 2021). Moreover, the NFCI
incorporates factors directly dependent on GDP, such as the corporate debt-to-GDP
ratio, which can introduce look-ahead bias when used in pseudo out-of-sample analyses.
Therefore, I rely on unofficial real-time weekly vintages of the NFCI constructed by
Amburgey and McCracken (2023). These unofficial vintages begin in 1988 and include
NFCI data dating back to 1973.

The NFCI is typically released on Wednesdays, incorporating data up to the preceding
Friday, resulting in a one-week publication delay. Considering the quarterly frequency
of GDP data, a simple aggregation scheme is to align weekly NFCI data in week w at a
quarterly frequency such that

NFCIs,w = NFCIs,w−1|t,w, (3)

where NFCIs,w−1|t,w is the NFCI in week w − 1 of quarter s, available from the latest
NFCI vintage in week w of quarter t. For instance, in the first week of quarter t,
NFCIs,1 = NFCIs−1,12|t,1, whereas in the second week, NFCIs,2 = NFCIs,1|t,2, and so on.

chosen to be in the seventh week of the first quarter of 1990. However, this only affects the first quarter
of the out-of-sample evaluation.
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4 Forecasting models

The aim is to nowcast Growth-at-Risk for quarter t in real-time. Therefore, GaR is
re-estimated on a weekly frequency, taking into account the latest information available
at the end of each week. The nowcasting exercise starts in the first fully observed week
of the quarter t and ends in the third week of the subsequent quarter t + 1. Thus, for
each quarter t through the evaluation period, there are 15 weeks considered. The release
of the first estimate of GDP is usually in the fourth week of quarter t + 1. Therefore,
the real-time data and the associated nowcasts are updated up to the latest releases and
revisions just before the Bureau of Economic Analysis (BEA) publishes the first estimate
of GDP for quarter t. This approach to timing is identical to the one of Carriero et al.
(2022), ensuring that the forecast horizons are comparable across quarters.

4.1 GARCH-type models

For GaR prediction, Brownlees and Souza (2021) find that the GARCH(1,1) model and
quantile regressions exhibit similar out-of-sample performance. Therefore, I consider
AR-GARCH-type models to nowcast quantiles of the GDP growth distribution. The
conditional mean and variance of yt,w are modeled as

µt|t,w =

φ0,w + φ1,wyt−2,w + xµt,wδw if w ≤ 3

φ0,w + φ1,wyt−1,w + xµt,wδw if w > 3
(4)

σ2
t|t,w = ωw + αwε

2
t−1,w + βwσ

2
t−1|t−1,w + exp(xσt,wγw), (5)

where εt,w = yt,w − µt|t,w, ωw > 0, αw > 0, βw > 0, and αw + βw < 1. Thus, all GARCH-
type specifications considered are of the form AR(1)-xµt,w-GARCH(1,1)-xσt,w, where xµt,w
and xσt,w represent vectors of additional explanatory variables for the conditional mean
and the conditional variance, respectively. The elements in xσt,w are standardized to have
mean zero and variance one. Assuming normality, the conditional distribution of GDP
growth in week w is

yt|t,w ∼ N (µt|t,w, σ2
t|t,w). (6)

Equation (4) resembles a linear regression of yt,w on a constant, one lag of GDP growth,
and additional predictors in xµt,w. Similarly, equation (5) corresponds to a GARCH(1,1)
specification, allowing for potential predictors in xσt,w. To ensure a strictly positive condi-
tional variance, explanatory variables for σ2

t|t,w are incorporated through the exponential
function, exp(·).
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In the baseline specification (henceforth AR-GARCH), both xµt,w and xσt,w are omitted,
resulting in a purely univariate time series model with an AR(1) specification for the
conditional mean. When incorporating real-time median SPF projections in equation
(4), i.e., xµt,w = SPFt,w, the model is denoted as SPF-GARCH.3 Regarding the NFCI, it
is uncertain whether including it in the conditional mean or variance would refine GaR
nowcasts. Thus, the out-of-sample predictive efficacy of the NFCI is evaluated both in the
conditional mean and variance.

The GARCH model parameters in equations (4) and (5) are estimated by quasi-
maximum likelihood. Mean predictions, µ̂t|t,w, are readily available from estimates on the
parameters in equation (4). Conditional quantiles and density forecasts can be obtained
from estimates on the conditional volatility, σ̂2

t|t,w, in equation (5) and assuming normality
in equation (6). In week w of quarter t, the nowcast of the conditional τ -quantile, where
τ ∈ (0, 1), is then given by

Q̂GARCH
t|t,w (τ) = µ̂t|t,w +

√
σ̂2
t|t,wF

−1(τ), (7)

where F−1(·) is the inverse cumulative distribution function of N (0, 1). Due to the small
sample sizes in the out-of-sample analysis, assuming a standard normal distribution for the
innovations aims to achieve a parsimonious parameterization. A more flexible distribution
that features skewness and fatness is studied in the robustness section, revealing that the
normality assumption is justified from a forecasting perspective.4

4.2 Quantile regressions

As popularized by Adrian et al. (2019), among others, in the GaR literature, quantile
regressions of Koenker and Bassett (1978) are a commonly used method to predict
conditional quantiles of the GDP growth distribution. At time T , for the conditional
τ -quantile, the vector of quantile regression parameters βτw is estimated by minimizing the
asymmetric absolute loss function

β̂τw = argmin
βτw∈Rk

T−j∑
t=1

(yt,w − xt,wβτw )( τ − 1(yt,w−xt,wβτw<0)), (8)

where yt,w represents GDP growth rates available in week w of quarter T , xt,w is a vector
of predictors, 1(·) is the indicator function, and j depends on the release date of previous

3Choosing to include the median instead of the mean SPF projections is arbitrary but more robust
against extreme individual forecasts. However, in the robustness section 6.5.1, employing the mean SPF
forecasts yields nearly identical out-of-sample results for GaR and density forecasts.

4Instead of assuming normality, employing the empirical quantiles of the estimated standardized
GARCH residuals results in almost identical predictive performance.
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quarters’ GDP, taking values in {1, 2}. Thus, in weeks w = 1, . . . , 3, the sum runs from
t = 1 to T − 2, and in weeks w = 4, . . . , 15, it runs from t = 1 to T − 1. The index w

emphasizes that the quantile regressions are re-estimated each week. Then, the predicted
τ -quantile of GDP growth in quarter t conditional on data up to week w reads

Q̂QR
t|t,w(τ) ≡ Q̂QR

yt,w(τ |xt,w) = xt,wβ̂
τ
w. (9)

Thus, for each quarter t through the evaluation period, there are 15 nowcasts Q̂τ
t|t,w, for

w = 1, . . . , 15.
In the baseline specification, the autoregressive quantile regression (QR-AR) only

includes a constant and one lag of yt,w, i.e., xt,w = (1, yt−j,w). If xt,w also includes the
NFCIt,w (SPFt,w), this specification is referred to as QR-NFCI (QR-SPF).

5 Forecast evaluation

I define the “true” outcomes of GDP growth following the approach of Carriero et al.
(2022) and others. This involves using GDP growth rates available one quarter after the
initial release of GDP. Thus, actual GDP growth is defined as annualized quarterly log
growth rates according to

yt = 400 · (log(GDPt|t+2,1)− log(GDPt−1|t+2,1)), (10)

where GDPt|t+2,1 denotes the latest revised version of GDP for quarter t available in the
first week of quarter t+ 2, typically corresponding to the third monthly release, GDP(3)

t .
Therefore, identical to Carriero et al. (2022), the actual GDP growth rates are given by
the second releases in the quarterly real-time vintages available at the FED database.

For evaluating conditional quantile nowcasts, the quantile score (QS) is a strictly
consistent scoring rule (Gneiting, 2011). The asymmetric piecewise linear loss function for
the τ -quantile in week w of quarter t is computed as

QSτt,w = (1(Q̂t|t,w(τ)≥yt) − τ)(Q̂t|t,w(τ)− yt), (11)

where yt denotes actual GDP. To evaluate predictive distributional forecasts, the Continuous
Ranked Probability Score (CRPS) is strictly consistent and is approximated by

CRPSt,w = 2
J − 1

J−1∑
j=1

Q̂t|t,w(τj), (12)

where τj = j/J and J = 20 (Gneiting and Raftery, 2007).
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Statistical inference on the out-of-sample predictive performance requires comparing
many models against each other. Instead of testing each competitor model against a
benchmark model, say QR-AR, I report the model confidence set (MCS) of Hansen et al.
(2011) based on the Diebold and Mariano (1995) and West (1996) test to account for the
problem of multiple comparisons. This approach has the advantage of jointly testing the
null hypothesis of equal predictive performance of the considered models. Let M0 denote
the set of all competing models indexed by k = 1, . . . , K. Then, the relative performance
of two models, k and l, is measured by the loss differential, dwkl,t ≡ Lkt,w − Llt,w, at week w
through quarters t, for all k, l ∈M0. Here, the loss functions considered are either QSτt,w
or CRPSt,w. The null hypothesis is H0 : E(dwkl,t) = 0 for all k, l ∈ M, where M ⊂ M0.
The 1 − α% MCS is defined as M? ≡ {k ∈ M0 : E(dwkl,t) ≤ 0 for all l ∈ M0}. The test
statistic, TM = max

k,l∈M
|twkl|, is based on the average loss difference

twkl = d
w

kl

se(dwkl)
for all k, l ∈M, (13)

where d
w

kl and se(dwkl) are the mean and the standard error of dwkl,t. Thus, the test
sequentially eliminates the worst-performing model from M0 if TM exceeds the critical
value, indicating a rejection of equal performance. Since the asymptotic distribution of
TM is nonstandard, it is simulated by block-bootstrapping, where I use 15.000 replications.
As barely any autocorrelations of loss differentials are significant after the second lag, the
block length chosen is 3. However, the results are not sensitive to these settings.5

One critical aspect is the limiting distribution of TM if models in M0 are nested.
Specifically, for this distribution to exist, dwkl,t must be stationary with strictly positive
variance. Thus, a common approach is to estimate the models on a rolling window,
ensuring a well-behaved asymptotic distribution with the variance of dwkl,t bounded away
from zero (Giacomini and White, 2006). However, the use of quarterly data results in
considerable estimation uncertainty due to small sample sizes. Consequently, I employ
expanding window estimation to reduce estimation uncertainty and thus increase power of
the MCS. Additionally, robustness checks using rolling window estimation show that the
results remain qualitatively unchanged.

In determining the evaluation period, a trade-off exists between selecting a later starting
point for higher estimation accuracy and choosing an earlier starting point to increase
the test procedure’s power. Given the SPF’s inception in 1968, the evaluation period
spans from the first quarter of 1990 to the fourth quarter of 2019, resulting in 85 in-
sample observations at the beginning of the evaluation period. Excluding the onset of the

5The MCS procedure is implemented in the MFE Toolbox of Sheppard (2009), available at https:
//www.kevinsheppard.com/code/matlab/mfe-toolbox/.
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COVID-19 pandemic yields 120 out-of-sample observations to assess the models’ prediction
accuracy. Additionally, to evaluate the predictive performance during the pandemic, the
analysis extends to the subsequent two years. For the evaluation, I report the 90% MCS,
conducting tests of equal predictive performance at the 10% significance level.

6 Empirical results

This section presents the empirical results on the accuracy of the real-time nowcasts of
Growth-at-Risk. In the following, I exclude the COVID-19 pandemic to ensure that one
extreme outlier is not driving the results. Later, I will extend the sample and moreover
study two periods of economic turmoil separately. Excluding the pandemic, the evaluation
starts in the first quarter of 1990 and ends in the fourth quarter of 2019, resulting in 120
out-of-sample observations.

Before turning to quantile- and density forecasts, I provide motivating evidence that
supports exploiting the information content provided by the SPF median forecasters and
updating data in real-time. Regarding the SPF forecasting performance, Table 2 shows
summary statistics of the forecast errors of the SPF median projections. The average
one-step ahead forecast error of the SPF is close zero, whereas the nowcasts seem to be
too optimistic on average. However, for both forecast horizons, the forecast errors are not
significantly different from zero, suggesting that unbiasedness of the SPF median forecasts
cannot be rejected. In addition, the root mean squared forecast error (RMSFE) of the
nowcasts is significantly smaller than of the one-step ahead forecasts (p-value = 0.06).
Thus, the forecast accuracy of the SPF increases for shorter horizons.

The lower panel reports estimates for the Mincer and Zarnowitz (1969) (MZ) regression,
i.e., a regression of actual GDP growth on the SPF projections, resulting in coefficient
estimates on the constant, ρ0, and the SPF median forecasts, ρ1. Jointly testing ρ0 = 0
and ρ1 = 1 reveals that unbiasedness and efficiency of the SPF median forecasts cannot
be rejected. In particular, for the nowcasts, the constant is close to zero and the slope
coefficient is close to unity. Moreover, the R2 increases from 0.28 to 0.49. Thus, the SPF
consensus point predictions have desirable properties, especially for short horizons.

Next, to motivate utilizing the real-time information flow as GDP and SPF data are
released, Table 3 presents the RMSFE for different forecast origins within a quarter, starting
from the first fully observed week. Specifically, I consider nowcasts of the conditional mean
of GDP growth based on different AR-GARCH type specifications, with the univariate
AR-GARCH model solely relying on past releases of GDP growth. Gray areas in the table
indicate the 90% MCS.

First, the RMSFE of the purely autoregressive AR-GARCH model tends to become
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Table 2: SPF unbiasedness and efficiency

SPF error One-step ahead Nowcasts
mean -0.035 (0.200) 0.220 (0.144)
RMSFE 1.850 1.557

MZ regression One-step ahead Nowcasts
ρ0 -0.658 (0.816) 0.027 (0.340)
ρ1 1.252 (0.292) 1.087 (0.132)
R2 0.280 0.492
p-value 0.680 0.220

Notes: The upper panel reports the mean forecast error and root
mean squared forecast error (RMSFE) of the SPF. The lower panel
shows estimates of the Mincer-Zarnowiz (MZ) regressions. Newey-
West standard errors are reported in parentheses. The reported
p-values concern the joint null hypothesis H0 : ρ0 = 0, ρ1 = 1.
The evaluation period is 1990:Q1 to 2019:Q4, consisting of 120
observations.

Table 3: Out-of-sample evaluation of mean forecasts

week
RMSFE 1 3 5 7 9 11 13 15
AR-GARCH 2.21 2.19 2.02 2.02 1.99 1.99 2.01 2.01

+xµt,w = SPFt,w 1.96 1.95 1.89 1.65 1.60 1.60 1.60 1.60
+xµt,w = NFCIt,w 2.18 2.20 1.95 1.99 1.98 1.99 1.95 2.01

Notes: This table reports the root mean squared forecast errors (RMSFE) over the out-of-
sample evaluation period. The columns indicate the week of a quarter at which the nowcast is
formed. Gray areas represent the 90% model confidence set based on the mean squared error
loss and bold letters are the lowest RMSFE within each column. All models are estimated on an
expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting of 120 observations.

smaller with decreasing forecast horizon, demonstrating that incorporating the latest
releases and revisions of GDP data leads to improvements in nowcasting GDP growth.
The reduction in the average forecast errors is most prominent between the third and fifth
weeks, associated with the publication of the first estimate of the previous quarter’s GDP.
Later revisions published between weeks 7 and 9 and between weeks 11 and 13 appear less
informative.

Second, adding the SPF to the conditional mean of the AR-GARCH mostly significantly
reduces out-of-sample forecast errors. In the first four weeks, the SPF-GARCH model
exploits the one-step ahead median SPF forecast. Apart from a few exceptions, the release
of the SPF nowcast occurs between the fifth and seventh weeks. The results reveal that the
publication of the SPF median nowcast strongly reduces the RMSFE. Thus, accounting
for the latest releases of both GDP and SPF reduces forecast errors. Interestingly, the
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AR-GARCH model, including the SPF as an additional regressor, results in larger losses
than the SPF median projections shown in Table 2. The increased estimation uncertainty
of the GARCH model translates into slightly less accurate forecasts of GDP growth,
however, these differences are not significant.

Lastly, adding the NFCI into the conditional mean does not improve forecast accuracy,
indicating that financial conditions are not informative about the center of the conditional
GDP growth distribution.

6.1 SPF versus NFCI

To predict Growth-at-Risk as well as the conditional density of GDP growth, the models
considered are GARCH and quantile regressions. In order to evaluate downside and
upside risk, I report the average 10% and 90% quantile scores. The predictive density
is assessed by the CRPS. Table 4 reports average losses of the quantile scores and the
CRPS, along with the 90% MCS for different forecast origins within a quarter, starting in
the first fully observed week. The upper panel shows results for 10% quantile nowcasts of
GDP growth. Both univariate specifications, AR-GARCH and QR-AR, exhibit increasing
nowcast accuracy as GDP releases and revisions become available during the quarter.
Notably, there are two distinct declines in average losses observed between weeks 3 to 5
and between weeks 7 to 9. The former coincides with the release of the first estimate of
GDP for the previous quarter, while the latter is attributable to its first revision. Moreover,
the AR-GARCH model performs better than the QR-AR approach, in line with Brownlees
and Souza (2021).

Incorporating the NFCI into quantile regressions underscores its substantial predictive
power for downside risk. The results demonstrate that quantile regressions utilizing the
NFCI as an explanatory variable perform best in the first weeks. While this finding is not
new - avoiding look-ahead bias - it confirms previous research (see, for example, Giglio
et al., 2016; Adrian et al., 2019; Ferrara et al., 2022).

In quantile regressions, the NFCI serves directly as a predictor for the targeted quantile.
In the GARCH model, assuming normality, the NFCI predicts downside risk by explaining
changes in the conditional mean or variance. Incorporating the NFCI into either the
conditional mean, xµt,w, or the conditional variance, xσt,w, reduces the nowcast errors
compared to the basic AR-GARCH model, contrasting the findings by Brownlees and
Souza (2021). However, at the beginning of the quarter, the AR-GARCH with NFCI in
the conditional mean or variance yields higher quantile losses than the QR-NFCI model.
Towards the end of the quarter, the GARCH models incorporating NFCI, whether in the
conditional mean or volatility, demonstrate a predictive performance similar to that of the
QR-NFCI model.
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Table 4: Out-of-sample evaluation using SPF or NFCI

week
10% quantile score 1 3 5 7 9 11 13 15
AR-GARCH 0.44 0.43 0.40 0.40 0.37 0.37 0.37 0.37

+xµt,w = NFCIt,w 0.40 0.38 0.36 0.36 0.35 0.35 0.34 0.34
+xσt,w = NFCIt,w 0.41 0.39 0.37 0.36 0.34 0.34 0.34 0.33
+xµt,w = SPFt,w 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

QR-AR 0.50 0.51 0.49 0.49 0.47 0.47 0.47 0.47
+NFCIt,w 0.31 0.32 0.32 0.32 0.30 0.33 0.32 0.33
+SPFt,w 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31

90% quantile score 1 3 5 7 9 11 13 15
AR-GARCH 0.40 0.40 0.35 0.35 0.36 0.36 0.36 0.36

+xµt,w = NFCIt,w 0.41 0.42 0.38 0.38 0.37 0.39 0.37 0.37
+xσt,w = NFCIt,w 0.42 0.41 0.38 0.38 0.39 0.39 0.39 0.38
+xµt,w = SPFt,w 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

QR-AR 0.55 0.54 0.46 0.46 0.46 0.46 0.47 0.46
+NFCIt,w 0.46 0.45 0.39 0.37 0.37 0.38 0.39 0.40
+SPFt,w 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33

CRPS 1 3 5 7 9 11 13 15
AR-GARCH 1.25 1.24 1.14 1.14 1.13 1.13 1.14 1.14

+xµt,w = NFCIt,w 1.27 1.28 1.15 1.17 1.16 1.17 1.15 1.17
+xσt,w = NFCIt,w 1.28 1.25 1.17 1.17 1.16 1.15 1.16 1.15
+xµt,w = SPFt,w 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

QR-AR 1.35 1.34 1.25 1.25 1.24 1.24 1.25 1.25
+NFCIt,w 1.22 1.24 1.17 1.17 1.18 1.18 1.18 1.19
+SPFt,w 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00

Notes: This table reports the average losses of the 10% and the 90% quantile scores in the
top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate
the week of a quarter at which the nowcast is formed. Gray areas represent the 90% model
confidence set and bold letters are the lowest average losses within each column. All models are
estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting of
120 observations.

The most striking result of Table 4 is the inclusion of the SPF-GARCH model in the
MCS. In the first five weeks, the SPF-GARCH model utilizes the one-step ahead median
SPF forecasts in the conditional mean. Throughout this period, the QR-NFCI exhibits
lower quantile losses. As the SPF nowcasts become available between weeks 5 and 7, in
the second half of the quarter, the SPF-GARCH significantly outperforms its competitors,
except for the QR-NFCI approach in weeks 7 to 9. The SPF median nowcast in a GARCH
framework outperforms the NFCI in both GARCH and QR specifications in predicting
GaR. This finding holds only for the GARCH specification. The MCS does not include
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the QR-SPF model, although, in the last weeks of the nowcasting exercise, the QR-SPF
model exhibits similar average quantile losses. This suggests that quantile regressions do
not exploit the information flow stemming from the SPF median forecasts for predicting
downside risk as effectively as the GARCH model does.

Examining the 90% quantile losses, the middle panel of Table 4 assesses the predictive
performance concerning upside risk. The SPF notably enhances the 90% quantile nowcasts
for both the GARCH model and quantile regressions. However, employing median SPF
forecasts in the GARCH model is statistically superior compared to quantile regressions
in forecasting the upper quantiles of the GDP growth distribution. While the NFCI also
decreases the out-of-sample losses in quantile regressions, its effect is less pronounced
compared to the SPF. Interestingly, the QR-NFCI model performs worse than the purely
backward-looking AR-GARCH model. Moreover, when explaining changes in the mean
and variance in the GARCH model, the NFCI appears uninformative, contributing mainly
to estimation uncertainty in the baseline AR-GARCH model. This finding suggests that
although the NFCI serves as a strong predictor for downside risk, it is not capable of
explaining variation in the upper part of the GDP growth distribution, in line with Giglio
et al. (2016).

Finally, the bottom panel of Table 4 examines the CRPS, evaluating the predictive
performance across the entire distribution. Given the SPF’s enhancement of both lower and
upper quantile predictions in the GARCH model, it’s unsurprising that the SPF-GARCH
model significantly outperforms other models in predicting the conditional density of
GDP growth. Moreover, the SPF median forecasts improve the predictive performance of
quantile regressions. It is important to note that the median SPF projections focus on the
center of the distribution. Consequently, using the SPF nowcasts directly as an explanatory
variable for the conditional mean calibrates the entire distributional forecast through mean
changes. Conversely, in quantile regressions, the weight of the SPF median nowcast is
determined by different quantile regression coefficients for each quantile separately. As
the SPF-GARCH model yields more precise predictive densities, the former approach
proves to be more effective in this context. Moreover, the AR-GARCH results in a sharper
predictive density than the QR-NFCI approach, underscoring that the NFCI’s predictive
ability holds exclusively for lower quantiles of GDP growth.

In summary, the findings highlight that the median SPF nowcasts are informative
across all quantiles of GDP growth, with the SPF-GARCH model producing the most
precise predictive densities. In the SPF-GARCH model, the conditional mean utilizes the
SPF consensus nowcasts to capture variation in the central tendency of GDP growth, while
the conditional volatility of the GARCH model helps generate a conditional density around
the predicted mean of GDP growth. However, GARCH effects are strong, as indicated by
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β in the conditional variance in equation (5), which typically ranges between 0.8 and 0.9
throughout the out-of-sample period. Hence, incorporating the SPF median projections
enhances predicting the distribution of GDP growth by providing accurate forecasts of
the conditional mean, thus reducing past forecast errors, which alters the dynamics in the
conditional volatility of the GARCH model. The GARCH model imposes more structure,
while the SPF captures structural changes, which turns out advantageous, particularly with
small sample sizes. Additionally, while not in the MCS, quantile regressions incorporating
the SPF provide the second-best density nowcasts, demonstrating superior predictive
performance in comparison to the QR-NFCI approach.

Figure 2 illustrates the real-time predictive distribution of the SPF-GARCH model
in panel (a) and the QR-NFCI approach in panel (b). Both models produce conditional
10% quantile nowcasts that closely track the patterns of quarterly GDP growth (black
line). However, the QR-NFCI median nowcasts (blue line) appear to miss economic up-
and downswings. In contrast, the SPF-GARCH model shows pronounced dynamics in
the conditional mean of its predictive distribution. In addition, the upper quantiles of
the QR-NFCI are relatively constant over time, except for the aftermath of the global
financial crisis around 2009, in line with Adrian et al. (2019). Notably, most of the
variation observed in panel (b) originates from GDP releases when updating the nowcasts
within a quarter. The time-variation remains modest for a given week across quarters. In
contrast, the predicted 90% quantiles of the SPF-GARCH model are less volatile within
a quarter yet exhibit more variation across quarters, closely mirroring the GDP growth
evolution. Lastly, as indicated by the significantly smaller CRPS, the density forecasts of
the SPF-GARCH model are more closely centered around actual GDP growth than those
of the QR-NFCI.

6.2 SPF and NFCI combined

In the previous section, the SPF and the NFCI are considered separately as predictors,
demonstrating that the SPF is superior over the entire distribution. The NFCI is infor-
mative about lower quantiles but less for the other parts of the distribution. However, in
the first weeks of a quarter, the QR-NFCI model achieves the lowest scores at the 10%
quantile of GDP growth. Thus, in this section, to assess whether the NFCI adds additional
predictive gains to the SPF, both indicators are considered jointly.

To enhance comparability, I include the SPF-GARCH and the QR-SPF model from
Section 6.1 and add the NFCI to these specifications to test for additional predictive gains.
In addition, since the quantile regression with NFCI produces the lowest losses at the
10% quantile in the first weeks of a quarter, the QR-NFCI model is also included in this
analysis.
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Figure 2: Real-time nowcasts

(a) SPF-GARCH

(b) QR-NFCI

Notes: This figure illustrates real-time nowcasts of quarterly US GDP growth over the out-of-sample
evaluation period 1990:Q1 to 2019:Q4 for the SPF-GARCH model in panel (a) and the QR-NFCI approach
in panel (b). The black line represents actual GDP growth, while the blue line shows the predicted
median forecasts. In panel (a), where the SPF-GARCH model assumes a normal distribution, the median
corresponds to the mean. The grey area indicates density forecasts ranging from the 10% to the 90%
conditional quantiles.

Table 5 presents the out-of-sample results of this comparison. In the upper panel, for
the 10% quantile of GDP growth, the QR-NFCI model performs best in the first weeks,
while the SPF-GARCH model with NFCI in the conditional mean exhibits the lowest
scores towards the end of the quarter. However, all models except the QR-SPF approach
are contained in the MCS, indicating that the SPF-GARCH model is not significantly
outperformed.
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Table 5: Out-of-sample evaluation using NFCI and SPF combined

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

+xµt,w = NFCIt,w 0.37 0.35 0.34 0.28 0.27 0.27 0.27 0.27
+xσt,w = NFCIt,w 0.35 0.34 0.33 0.28 0.28 0.28 0.28 0.28

QR-SPF 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31
+NFCIt,w 0.29 0.30 0.29 0.28 0.27 0.27 0.28 0.28

QR-NFCI 0.31 0.32 0.32 0.32 0.30 0.33 0.32 0.33

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

+xµt,w = NFCIt,w 0.37 0.36 0.34 0.32 0.31 0.31 0.31 0.31
+xσt,w = NFCIt,w 0.37 0.36 0.36 0.34 0.32 0.32 0.32 0.31

QR-SPF 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33
+NFCIt,w 0.41 0.39 0.36 0.35 0.34 0.34 0.34 0.34

QR-NFCI 0.46 0.45 0.39 0.37 0.37 0.38 0.39 0.40

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

+xµt,w = NFCIt,w 1.18 1.16 1.09 1.01 0.97 0.97 0.97 0.98
+xσt,w = NFCIt,w 1.14 1.14 1.10 1.01 0.98 0.98 0.98 0.98

QR-SPF 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00
+NFCIt,w 1.17 1.17 1.12 1.02 0.98 0.99 0.98 0.99

QR-NFCI 1.22 1.24 1.17 1.17 1.18 1.18 1.18 1.19
Notes: This table reports the average losses of the 10% and the 90% quantile scores in the

top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate
the week of a quarter at which the nowcast is formed. Gray areas represent the 90% model
confidence set and bold letters are the lowest average losses within each column. All models are
estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting of
120 observations.

In terms of the 90% quantile, the SPF-GARCH model consistently provides the
lowest out-of-sample losses, significantly outperforming the QR-NFCI approach. Moreover,
adding the NFCI to the SPF-GARCH model does not result in predictive gains. Similarly,
indicated by the CRPS, the SPF-GARCH model produces significantly more precise
density forecasts than the QR-NFCI approach. Overall, across the entire distribution, the
SPF-GARCH model is among the best performing models, with the addition of the NFCI
showing no significant improvement in predictive accuracy.
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6.3 Growth-at-Risk during economic turmoils

Up to this point, I excluded the COVID-19 pandemic from the analysis due to its sudden
and extreme impact on GDP, which could potentially distort the main findings of the
paper. In this section, I extend the evaluation period up to 2022:Q4 to test the robustness
of the conclusions drawn in Section 6.1. Given the exceptional nature of the COVID-19
pandemic, both the purely backward-looking AR-GARCH model and the QR-AR model
exhibit large forecast errors at the pandemic’s onset, leading to a loss in the power of the
MCS procedure. As the primary focus remains on the median SPF projections, I exclude
the purely backward-looking models and focus on the SPF-GARCH model, as well as the
QR-SPF and QR-NFCI approaches.

However, extending the evaluation period masks some insights about the predictive
performance of the SPF and the NFCI during economic turmoils. Therefore, I additionally
examine two major economic crises separately: the global financial crisis (GFC) in 2007-
2008 and the COVID-19 pandemic in 2020-2022.

6.3.1 Including the COVID-19 pandemic

Table 6 presents the out-of-sample results when including the COVID pandemic in the
evaluation sample. The main results established earlier remain consistent. In the first
weeks, the NFCI is more informative about the 10% quantiles than the SPF one-step
ahead forecast. However, once the SPF nowcast becomes available, the SPF-GARCH
model is the significantly best-performing approach. Similarly, for the 90% quantile and
the predictive density of GDP growth, apart from a few exceptions, the SPF-GARCH
model achieves the lowest losses. Again, the GARCH model utilizes the SPF median
nowcasts more effectively than quantile regressions.

6.3.2 The global financial crisis

Focusing on Growth-at-Risk during the GFC, the upper panel of Table 7 displays the
real-time average 10% quantile losses from 2007:Q4 to 2009:Q3. The table does not contain
information about the MCS due to the low statistical power resulting from the small
number of observations (eight quarters).

At the beginning of the quarter, the NFCI provides the most accurate GaR nowcasts,
suggesting that the NFCI is a strong predictor of economic downside risk during the
financial crisis.6 For instance, in the third week of a quarter, the 10% quantile loss is less
than one-third of the loss associated with the SPF-GARCH model. However, in the second

6During the GFC, the average quantile losses of the QR-NFCI fluctuate notably throughout quarters,
likely reflecting the increased volatility of the real-time NFCI during this period.
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Table 6: Out-of-sample evaluation including the COVID pandemic

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.74 0.73 0.73 0.33 0.34 0.34 0.34 0.34
QR-NFCI 0.65 0.67 0.67 0.67 0.67 0.68 0.67 0.67
QR-SPF 0.76 0.76 0.74 0.39 0.37 0.37 0.37 0.37

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.55 0.55 0.44 0.32 0.32 0.32 0.32 0.32
QR-NFCI 0.64 0.65 0.69 0.68 0.67 0.67 0.67 0.69
QR-SPF 0.54 0.54 0.59 0.38 0.36 0.36 0.36 0.36

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.74 1.74 1.66 1.08 1.06 1.07 1.07 1.07
QR-NFCI 1.82 1.84 1.84 1.84 1.84 1.84 1.84 1.84
QR-SPF 1.70 1.70 1.69 1.15 1.10 1.11 1.10 1.10

Notes: This table reports the average losses of the 10% and the 90% quantile scores in
the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2022:Q4, consisting of 132 observations.

half of the quarter, conditional on the SPF median nowcasts, the SPF-GARCH model and
the QR-SPF model match the predictive performance of the QR-NFCI approach.

Table 7: Growth-at-Risk during economic turmoils

week
Financial Crisis 1 3 5 7 9 11 13 15
SPF-GARCH 1.16 1.16 1.01 0.33 0.34 0.34 0.33 0.33
QR-NFCI 0.48 0.33 0.49 0.32 0.30 0.34 0.30 0.45
QR-SPF 0.97 0.97 0.81 0.30 0.30 0.30 0.30 0.30

COVID 1 3 5 7 9 11 13 15
SPF-GARCH 4.53 4.53 4.53 0.85 0.86 0.86 0.87 0.87
QR-NFCI 4.04 4.08 4.14 4.22 4.29 4.23 4.10 4.07
QR-SPF 3.88 3.88 3.81 0.88 0.90 0.90 0.90 0.90

Notes: This table reports the average losses of the 10% quantile score during the
global financial crisis and the COVID pandemic. The columns indicate the week of
a quarter at which the nowcast is formed. Bold letters indicate the lowest average
losses within in each column. All models are estimated on an expanding window. The
evaluation period in the top panel is 2007:Q4 to 2009:Q3 i.e., 8 observations, and in the
bottom panel is 2020:Q1 to 2022:Q4, i.e., 12 observations.
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Figure 3 compares actual GDP against the median forecast of the SPF-GARCH in
panel (a) and QR-NFCI in panel (b), respectively. The gray-shaded areas represent the
predictive densities in terms of the 10% to 90% quantiles. Preceding the global financial
crisis, quantile regressions with NFCI as conditioning information seem to provide overly
pessimistic nowcasts of GaR. However, when GDP growth fell sharply in 2008:Q4, the
conditional 10% quantiles of the QR-NFCI track the movements of GDP growth well.
In contrast, even in the fourth quarter of 2008, the surveys panelists did not anticipate
the severity of this event. Consequently, the SPF-GARCH model underestimates GaR
in the fourth quarter of 2008. In the first quarter of 2009, the one-step ahead median
SPF forecast again resulted in a conditional 10% quantile that was well above the actual
growth rate. Eventually, the economic assessment of the median SPF nowcast released in
the middle of 2009:Q1 drops to -5.2%, and the associated 10%-90% quantile range covers
the actual GDP growth rate of -6.4%.

Figure 3: Real-time nowcasts through the global financial crisis

(a) SPF-GARCH (b) QR-NFCI

Notes: This figure depicts real-time nowcasts of quarterly US GDP growth during the global financial
crisis from 2007:Q4 to 2009:Q3 for the SPF-GARCH model in panel (a) and the QR-NFCI approach
in panel (b). The black line represents actual GDP growth, while the blue line shows the predicted
median forecasts. In panel (a), where the SPF-GARCH model assumes a normal distribution, the median
corresponds to the mean. The grey area indicates density forecasts ranging from the 10% to the 90%
conditional quantiles.

In summary, at the onset of the GFC, the SPF-GARCH model suffers from less frequent
updates, whereas the NFCI quickly reacts to new information. It takes the SPF median
panelist until the second quarter of subsequently strongly negative growth rates to adjust
accordingly. Nevertheless, starting from the middle of 2009:Q1, the SPF anticipates the
magnitude and the timing of the financial crisis and the subsequent upswing well. This
explains the relatively large 10% quantile losses of the SPF-GARCH in the first weeks of
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the quarter, and the mechanism of matching to the performance of the QR-NFCI nowcasts
toward the end of the quarter.

6.3.3 The COVID-19 pandemic in isolation

The nature of the shock to the economy represented by the COVID-19 pandemic is
quite distinct from that of the global financial crisis. Thus, the bottom panel in Table
7 is concerned with the period 2020:Q1 to 2022:Q4. As becomes evident, the QR-NFCI
nowcasts exhibit large 10% quantile losses. As panel (b) in Figure 4 shows, the QR-
NFCI density nowcasts completely miss the down- and upswings of GDP growth during
the COVID pandemic. Moreover, even extreme quantiles suffer from quantile crossing.
Specifically, the median is not strictly between the estimated 10% and 90% quantile
and during the fourth quarter of 2020, the 10% quantile lies above the 90% quantile, as
indicated by the red-shaded area.7

In the first five weeks, based on the SPF median one-step ahead forecast, the SPF-
GARCH model also exhibits considerable average 10% quantile losses. By week 7, with
the release of the median nowcast, these losses decrease dramatically by over 80%. Panel
(a) of Figure 7 illustrates how updating the SPF improves the GaR nowcasting accuracy.
In the first quarter of 2020, at the onset of the lockdown measures, the SPF panelists
did not adjust their assessment of the economic outlook. However, by mid-2020:Q2,
the SPF released a median nowcast of -32.2% GDP growth, close to the actual rate of
-32.9%, aligning the predictive density closely with the actual outcome. Moreover, in the
following quarter, the SPF median projections anticipated the timing and magnitude of
the subsequent upswing.

In conclusion, while the SPF consensus one-step ahead forecast in the second quarter
of 2020 resulted in a large forecast error and wide prediction intervals in the subsequent
quarters, the SPF consensus nowcasts improve the predictive density by shifting the center
of the conditional distribution.8

6.4 GDP growth and skewness

The preferred model for nowcasting quantiles and the density of GDP growth is the
GARCH model employing SPF nowcasts in the conditional mean. Up to now, to make
estimation and forecasting operational, GDP growth is assumed to be normally distributed.
However, the evidence provided by Adrian et al. (2019) and Delle Monache et al. (2023),

7Prior to the pandemic, there is no instance of the 10% and 90% quantiles crossing. Only in one
quarter in the early nineties does the median lie above the 90% quantile.

8From a practitioner’s perspective, the large conditional variances in the quarters following the COVID-
19 pandemic are undesirable. An easy fix is to treat the onset of the pandemic as an extreme outlier and
replace the SPF one-step ahead forecast by the median nowcast for 2020:Q2 in the subsequent quarters.
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Figure 4: Real-time nowcasts through the COVID-19 pandemic

(a) SPF-GARCH (b) QR-NFCI

Notes: This figure depicts real-time nowcasts of quarterly US GDP growth during the COVID-19
pandemic from 2029:Q4 to 2021:Q2 for the SPF-GARCH model in panel (a) and the QR-NFCI approach
in panel (b). The black line represents actual GDP growth, while the blue line shows the predicted
median forecasts. In panel (a), where the SPF-GARCH model assumes a normal distribution, the median
corresponds to the mean. The grey area indicates density forecasts ranging from the 10% to the 90%
conditional quantiles. The red area in panel (b) highlights periods where the predicted 10% quantile
exceeds the 90% quantile.

among others, suggests that the conditional GDP growth distribution for the US exhibits
time-varying skewness and moderately fat tails. They specifically find that US GDP
growth is negatively skewed during economic downturns, and vice versa. In contrast,
Brownlees and Souza (2021) and Carriero et al. (2022) do not find that GDP growth is
significantly skewed.

Owing to the mixed evidence in the literature, I first revisit the out-of-sample predictive
performance of the SPF-GARCH model, incorporating skewness and fat tails by assuming
that GDP growth follows a skewed t-distribution. Subsequently, I present in-sample
evidence on the distribution of GDP growth following the methodology proposed by
Adrian et al. (2019).

6.4.1 SPF-GARCH with skew t-distribution

In line with Adrian et al. (2019), the skew t-distribution used in this analysis is the
one developed by Azzalini and Capitanio (2003). The probability density function of y,
omitting subscripts for notational convenience, is given by

f(y;µ, σ, ξ, ν) = 2
σ
t
(
y − µ
σ

; ν
)
T

ξ y − µ
σ

√√√√ ν + 1
ν + (y−µ)2

σ2

; ν + 1
 , (14)
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where t(·) and T (·) denote the pdf and the cdf of the Student t-distribution, µ determines
the location, and σ is the scale parameter. The shape parameter ξ controls the skewness,
and the degrees of freedom parameter ν governs the fatness. During the evaluation period,
the conditional skew t-distribution of GDP growth for each week in each quarter is denoted
by

yt|t,w ∼ St(µt|t,w, σt|t,w, ξt|t,w, νt|t,w), (15)

where µt|t,w and σt|t,w are determined by equations (4) and (5) correspondingly. The
log-likelihood of GARCH-type models employing a skew t-distribution follows directly
from the density in equation (14). The conditional quantiles are computed using numerical
integration of the quantile function.

As special cases, the density in (14) reduces to the Student t-distribution for ξ = 0
and to the skew normal distribution for ξ 6= 0 and ν =∞. When ξ = 0 and ν =∞, the
distribution simplifies to the normal distribution with mean µ and variance σ2.

The results of the different SPF-GARCH specifications are presented in Table 8, where
‘Skewed t’ indicates the average losses associated with the unrestricted skew-t distribution.
‘Skewed Normal’ and ‘Symmetric t’ refer to the restricted specifications, featuring skewness
or fatness, respectively, and ‘Normal’ denotes the specification with normally distributed
errors studied in Sections 6.1.

The findings suggest limited benefits from departing from the normality assumption,
as seen by the similar out-of-sample losses of all specifications. In particular, across the
entire distribution of GDP growth, fitting the unrestricted skew t-distribution does not
improve the prediction accuracy. Only the skew normal distribution leads to small but
significant improvements at the 90% quantile. While this lack of noteworthy improvements
doesn’t imply symmetry in US GDP growth, the evidence suggests that, at least with the
limited sample sizes available, and the short forecasting horizon considered, incorporating
both skewness and fatness does not yield out-of-sample forecasting enhancements.

Figure A.1 demonstrates that, conditional on the SPF nowcasts, the skew t-distribution
exhibits pronounced variations in the conditional mean in panel (b) and some volatility
dynamics in panel (d). Similarly, panels (b) and (d) of Figure A.2 show that skewness is
mostly centered around zero, while the kurtosis suggests moderately fat tails. In Figure
A.3, panels (a) and (b) depict skewness for the skew normal distribution, while panels (c)
and (d) illustrate kurtosis for the Student t-distribution. Once conditioned on the SPF
nowcasts, the evidence again suggests a symmetric conditional GDP growth distribution
with mild excess kurtosis.
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Table 8: Out-of-sample evaluation of SPF-GARCH with skew t-distribution

week
10% quantile score 1 3 5 7 9 11 13 15
Normal 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29
Skewed Normal 0.37 0.37 0.35 0.28 0.29 0.30 0.30 0.30
Symmetric t 0.35 0.35 0.34 0.28 0.29 0.29 0.29 0.29
Skewed t 0.36 0.36 0.34 0.28 0.30 0.30 0.30 0.30

90% quantile score 1 3 5 7 9 11 13 15
Normal 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31
Skewed Normal 0.35 0.36 0.35 0.31 0.30 0.30 0.30 0.30
Symmetric t 0.34 0.34 0.33 0.31 0.31 0.31 0.31 0.31
Skewed t 0.35 0.35 0.34 0.32 0.31 0.31 0.31 0.31

CRPS 1 3 5 7 9 11 13 15
Normal 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96
Skewed Normal 1.14 1.13 1.10 0.99 0.95 0.96 0.96 0.96
Symmetric t 1.12 1.11 1.08 0.99 0.96 0.96 0.96 0.96
Skewed t 1.14 1.14 1.09 0.98 0.97 0.97 0.97 0.97

Notes: This table reports the average losses of the 10% and the 90% quantile scores in
the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2019:Q4, consisting of 120 observations.

6.4.2 A quantile matching approach

From a forecasting perspective, incorporating skewness and fatness does not enhance the
predictive performance of the SPF-GARCH model. This lack of improvement could be
attributed to conditional GDP growth potentially exhibiting symmetry and not being
excessively fat-tailed. Alternatively, the flexibility offered by the skew t-distribution
introduces increased estimation uncertainty, which might not be justified in a forecasting
exercise with relatively small sample sizes. This section aims to provide further insights
into the influence of conditioning information on the distribution of GDP growth, taking
an in-sample perspective.

To illustrate the impact of the conditioning information on the conditional GDP growth
distribution, I employ the semi-parametric quantile matching approach introduced by
Adrian et al. (2019). First, I estimate quantile regressions of GDP growth on a constant
and one explanatory variable, i.e., either the quarterly lag of NFCI or the SPF, for the
10%, 25%, 75%, and 90% quantiles. Given the in-sample approach, I use the current
vintages of GDP growth and the NFCI, and the median nowcasts of the SPF. The sample
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studied covers the period from 1973:Q1 to 2019:Q4.
Second, for each quarter, the parameters of the skew t-distribution are obtained through

minimizing the squared distance between the estimated quantiles, denoted as Q̂τ
t|xt−1

, where
xt−1 represents either the NFCI or the median SPF nowcast, and the quantile function of
the skew t-distribution F−1(τ, µt, σt, ξt, νt) based on the density defined in equation (14).
Therefore, the parameters of the skew t-distribution are computed according to

{µ̂t, σ̂t, ξ̂t, ν̂t} = argmin
µ,σ,ξ,ν

∑
τ

(
Q̂τ
t|xt−1 − F

−1(τ ;µ, σ, ξ, ν)
)2
, (16)

where τ = {0.1, 0.25, 0.75, 0.9} represents the respective quantiles.
Figure A.4 illustrates the evolution of the implied mean and variance of the skew

t-distribution. Panels (a) and (b) show large changes in the implied mean over time,
with more pronounced swings when conditioning on the SPF compared to the NFCI.
Additionally, panels (c) and (d) depict time variation in the implied variance. When
conditioning on the NFCI, the skew t-distribution exhibits notable spikes in the variance
during the 1970s, 1980s, and the global financial crisis, reflecting its limited ability to
account for dynamics in the conditional mean compared to the SPF.

Figure A.5 compares the impact of the conditioning information on the implied skewness
in panels (a) and (b) and the kurtosis in panels (c) and (d). Conditional on both the NFCI
and the SPF, there is evidence in favor of time-varying skewness. However, when the
SPF median nowcasts are incorporated, there is less pronounced variation. Regarding the
kurtosis, both approaches indicate some level of excess kurtosis, implying that conditional
GDP growth is moderately fat-tailed. In general, there appears to be no clear link between
the dynamics in the kurtosis and specific economic events of turmoil.

In summary, the in-sample evidence demonstrates that the shape of the skew t-
distribution crucially depends on the conditioning information. While conditioning on
the NFCI results in predominant time-variation in the implied variance and skewness,
incorporating the SPF median nowcasts suggests that dynamics in the conditional mean
are the most notable feature of the conditional GDP growth distribution. Although there
are some movements in the skewness, the findings based on the SPF median nowcasts are
more in line with the evidence provided by Brownlees and Souza (2021) and Carriero et al.
(2022). The resulting shape of GDP growth appears slightly negatively skewed and mildly
fat-tailed, which helps to explain why departing from normality does not yield notable
out-of-sample predictive improvements in the previous section.
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6.5 Robustness analysis

6.5.1 Mean versus median SPF forecasts

Regarding the measure of the SPF consensus projections, both the mean and the median
of the panelists’ forecasts could be employed. So far, the median SPF forecast was treated
as the consensus forecast, which is more robust to extreme point predictions of individual
forecasters of the SPF. This section compares the mean and the median SPF projections
as conditioning information for the SPF-GARCH model.

Table B.1 shows the out-of-sample results of the SPF-GARCH model incorporating
either the mean or the median SPF projections. For the 10% and 90% quantiles, the
differences in the prediction accuracy are small and insignificant. For the predictive density,
the median SPF results in significant, albeit small, improvements. Table B.2 exhibits
similar results for quantile regressions. Thus, the findings of this paper are robust to the
choice of measure to construct point forecasts from the SPF panelists.

6.5.2 Forecaster disagreement

The SPF consensus forecasts derived from individual point predictions offer a useful
summary of the economic outlook provided by the survey panelists. However, relying
solely on a single measure of central tendency overlooks the rich information contained
within the survey data.

One approach to capturing the cross-sectional dispersion in expectations among fore-
casters is to consider their disagreement. Abel et al. (2016) suggest the interquartile range
(IQR) as a measure of forecasters’ disagreement according to

SPF IQR
t,w = SPF 0.75

t,w − SPF 0.25
t,w ,

where SPF 0.25
t,w and SPF 0.75

t,w denote the 25% and 75% quantiles of the panelists’ point fore-
casts. The SPF also elicits probabilistic predictions through histogram forecasts, allowing
for deriving measures of subjective uncertainty. However, the SPF asks respondents about
fixed-event density forecasts, i.e., GDP growth for the current and the following calendar
year. While disagreement is not a direct measure of uncertainty (see, for example, Abel
et al., 2016; Glas, 2020), fixed-horizon disagreement is readily available from individual
point predictions.

Table B.3 presents the out-of-sample results when incorporating the IQR into the
SPF-GARCH and the QR-SPF model. Adding the interquartile range to the conditional
volatility of the SPF-GARCH model significantly improves the nowcasts of Growth-at-Risk
and results in the lowest CRPS. Thus, periods of increased dispersion among survey
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panelists positively affect the conditional variance, which helps explain downside risk,
although only by a small margin. At the 90% quantile, the SPF-GARCH augmented by
the interquartile range in the conditional mean performs best. However, these refinements
are small, implying that out-of-sample nowcast improvements are mainly due to the SPF
consensus forecasts rather than disagreement among panelists.

The QR-SPF model including the IQR is mostly contained in the MCS. Especially at
the 90% quantile, conditional on the one-step ahead forecasts, including disagreement in
the conditioning information of quantile regressions results in the lowest forecast errors.
Conditional on the SPF nowcasts, the GARCH specifications tend to perform better.
Overall, the evidence suggests that survey disagreement is informative, but improvements
over the models exploiting the median SPF forecasts are modest.

6.5.3 Consensus forecast error distribution

An alternative strategy to gauge uncertainty around consensus forecasts is to exploit the
historical forecast errors (Reifschneider and Tulip, 2019). One straightforward approach is
to estimate the conditional τ -quantile of GDP growth using the τ -quantile of past forecast
errors added to the median SPF forecast. Thus, the nowcast is estimated as

Q̂error
t|t,w (τ) = SPFt,w + q̂τeSPFt,w

, (17)

where SPFt,w is the median SPF one-step ahead forecast or nowcast, depending on week w
within quarter t, and q̂τ

eSPFt,w
denotes the empirical τ -quantile of the real-time SPF median

forecast error, eSPFt,w ≡ yt,w − SPFt,w.
Adams et al. (2021) show that financial conditions help explain dynamics in the

distribution of the median SPF forecast errors over time. They employ quantile regressions
to model the τ -quantile of the SPF median forecast error distribution conditional on the
NFCI according to

QNFCI
eSPFt,w

(τ) ≡ QeSPFt,w
(τ |xt,w) = xt,wβ

τ
w,

where xt,w contains a constant and the real-time NFCI in week w of quarter t. The
predicted quantile of GDP growth is obtained as

Q̂NFCI
t|t,w (τ) = SPFt,w + Q̂NFCI

eSPFt,w
(τ). (18)

Table B.4 compares the out-of-sample accuracy of the SPF-GARCH model with the
approaches outlined in equations (17) and (18). The SPF-GARCH model demonstrates
superior forecasting performance for downside risk. However, conditional on the SPF
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nowcasts, the 90% quantile forecasts based on Q̂error
t|t,w (τ) and Q̂NFCI

t|t,w (τ) show lower average
quantile losses compared to SPF-GARCH, yet these differences are not statistically
significant. Furthermore, the conditional density forecasts indicate similar predictive
performances among all three methods. Consequently, the SPF-GARCH model remains
the most suitable choice, particularly for forecasting Growth-at-Risk.

6.5.4 NFCI at higher frequency

Up to now, the NFCI has been analyzed only at a quarterly frequency, utilizing observations
from the latest available vintage within week w. Since this approach discards numerous
observations, another alternative is to aggregate weekly NFCI by means of a mixed-data
sampling (MIDAS) approach. The results of Carriero et al. (2022) indicate that the
information flow from weekly financial indicators does not substantially enhance the
nowcasting accuracy compared to monthly aggregates, although it is not harmful either.
Castelnuovo and Mori (2022) thus propose to use quantile regressions with three monthly
lags, i.e., xt,w = (NFCIt,w−1, NFCIt,w−5, NFCIt,w−9). They estimate the model quarterly
and find modest yet significant improvements. Therefore, this monthly aggregation scheme,
denoted by NFCImt,w, is tested in real-time. Despite the findings of Carriero et al. (2022), a
weekly MIDAS approach is employed to assess the weekly information flow more efficiently.
The weekly NFCI data is aggregated according to

NFCIθt,w =
m∑
i=1

θi(λ1, λ2)NFCIt,w−i,

where θi(λ1, λ2) is the unrestricted beta weight

θi(λ1, λ2) = (i/(m+ 1))λ1−1 (1− i/(m+ 1))λ2−1∑m
k=1 (i/(m+ 1))λ1−1 (1− i/(m+ 1))λ2−1 , (19)

with λ1 ≥ 1, λ2 ≥ 1, and m is the lag length of weekly NFCI realizations. Motivated by
using three monthly lags, the weekly lag length is chosen to include twelve weeks, i.e.,
m = 12.

Table B.5 presents the out-of-sample results for the SPF-GARCH model, both without
NFCI and with quarterly NFCI incorporated into the conditional mean. In addition,
this table displays the outcomes for the aggregated versions, NFCImt,w and NFCIθt,w,
respectively. Monthly aggregation initially shows mild nowcasting gains at the 10%
quantile compared to weekly aggregation, aligning with previous studies by Castelnuovo
and Mori (2022) and Carriero et al. (2022). However, following the release of the SPF
nowcast, the utilization of NFCI at a higher frequency does not notably enhance the
prediction accuracy of GaR. At the 90% quantile and in terms of the CRPS, the SPF-
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GARCH model without NFCI tends to perform best. Nevertheless, the differences in the
average losses are generally small and insignificant.

Similar insights are obtained when the NFCI is used as conditioning information in the
volatility of the SPF-GARCH model (Table B.6). Regarding quantile regressions, monthly
and weekly aggregation does not help increase the nowcasting accuracy of Growth-at-Risk
either (Table B.7). Overall, when taking the SPF into account, the real-time analysis
shows that there is little reason to employ a MIDAS approach to the NFCI.

6.5.5 SPF recession probability

The SPF also asks respondents about the probability for a decline in real GDP in the
current quarter and the following four quarters, also referred to as the “Anxious Index”.
Especially at short horizons, the average recession probability across panelists provides
accurate forecasts for economic downturns (Lahiri and Wang, 2013). Depending on the
week w of the quarter t, let SPF rec

t,w denote the one-step ahead or the nowcast of the SPF
mean probability for a negative growth rate in quarter t.

To assess the potential benefits of incorporating the subjective recession probability,
Table B.8 presents the out-of-sample results integrating SPF rec

t,w into both the SPF-GARCH
model and the QR-SPF approach. When conditioned on the one-step ahead SPF forecasts,
the utilization of the anxious index yields marginal improvements in the predictive accuracy
for downside risks within the quantile regression framework. However, the SPF-GARCH
model is never outperformed and provides the smallest average losses across the entire
distribution.

6.5.6 Rolling window estimation

To address concerns related to asymptotically vanishing estimation uncertainty due to
a recursive estimation scheme (Giacomini and White, 2006), Table B.9 replicates the
main results of this paper using a rolling window of 85 observations, corresponding to the
number of SPF surveys available in the first quarter of 1990. Overall, the key findings
remain robust. The increased estimation uncertainty affects the power of the MCS at the
10% quantile, resulting in nonsignificant results. Nevertheless, the SPF-GARCH model
consistently demonstrates the lowest losses once the nowcast is available. For the 90%
quantile score and the CRPS, the differences remain significant.

7 Conclusion

This study investigates the effectiveness of using SPF median projections for nowcasting
quarterly GaR in the US. Nowcasts are constructed using both AR-GARCH type models
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and quantile regressions. In a real-time out-of-sample forecasting evaluation, incorporating
SPF consensus forecasts into the conditional mean of the GARCH model demonstrates
superior predictive performance for GaR and the conditional density of GDP growth,
especially following the release of the SPF nowcasts mid-quarter.

The SPF consensus projections are informative across the entire distribution of GDP
growth, and the results based on the SPF-GARCH model, assuming normality, suggest
notable time variation in both the lower and upper quantiles of GDP growth. Departing
from symmetry, and incorporating fatness, does not enhance the forecasting accuracy for
downside risk. While this does not imply that the conditional distribution of GDP growth
is symmetric, these findings indicate that, given the short samples at hand, a more flexible
distribution is not justified in the context of nowcasting GaR.

The SPF consensus forecasts emerge as highly informative for tail risk and the entire
predictive distribution of GDP growth, particularly at short horizons. This study advocates
for the inclusion of SPF consensus forecasts in the macroeconomic toolkit for real-time
assessment of downside risks. While the focus is on US GDP, future research could extend
these findings to the ECB SPF as well as explore Inflation-at-Risk and Unemployment-at-
Risk.
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Appendices

A Figures

Figure A.1: Mean and variance of the skew t-distribution

(a) Mean of skew t: SPFt|t−1 (b) Mean of skew t: SPFt|t

(c) Variance of skew t: SPFt|t−1 (d) Variance of skew t: SPFt|t

Notes: This figure illustrates real-time estimates of the mean and variance of the skew t-distribution
over the out-of-sample evaluation period from 1990:Q1 to 2019:Q4 for the SPF-GARCH model. Panels (a)
and (c) utilize the SPF one-step ahead median forecasts, while panels (b) and (d) employ the nowcasts.
The shaded areas indicate periods of US recessions as identified by the GDP-based recession indicator.
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Figure A.2: Skewness and kurtosis of the skew t-distribution

(a) Skewness of skew t: SPFt|t−1 (b) Skewness of skew t: SPFt|t

(c) Kurtosis of skew t: SPFt|t−1 (d) Kurtosis of skew t: SPFt|t

Notes: This figure illustrates real-time estimates of the skewness and kurtosis of the skew t-distribution
over the out-of-sample evaluation period from 1990:Q1 to 2019:Q4 for the SPF-GARCH model. Panels (a)
and (c) utilize the SPF one-step ahead median forecasts, while panels (b) and (d) employ the nowcasts.
The shaded areas indicate periods of US recessions as identified by the GDP-based recession indicator.
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Figure A.3: Skewness of the skew normal and kurtosis of the t-distribution

(a) Skew normal distribution: SPFt|t−1 (b) Skew normal distribution: SPFt|t

(c) Student t-distribution: SPFt|t−1 (d) Student t-distribution: SPFt|t

Notes: This figure illustrates real-time estimates of the skewness of the skew normal distribution
and the kurtosis of the Student t-distribution over the out-of-sample evaluation period from 1990:Q1 to
2019:Q4 for the SPF-GARCH model. Panels (a) and (c) utilize the SPF one-step ahead median forecasts,
while panels (b) and (d) employ the nowcasts. The shaded areas indicate periods of US recessions as
identified by the GDP-based recession indicator.
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Figure A.4: In-sample mean and variance

(a) NFCI: mean (b) SPF: mean

(c) NFCI: variance (d) SPF: variance

Notes: This figure illustrates the in-sample mean and variance from 1973:Q1 to 2019:Q4 based on
the semi-parametric quantile matching approach outlined in Section 6.4.2. As conditioning information,
panels (a) and (c) utilize the latest vintage of the NFCI, while panels (b) and (d) employ the SPF median
nowcasts. The shaded areas indicate periods of US recessions as identified by the GDP-based recession
indicator.
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Figure A.5: In-sample skewness and kurtosis

(a) NFCI: skewness (b) SPF: skewness

(c) NFCI: kurtosis (d) SPF: kurtosis

Notes: This figure illustrates the in-sample skewness and kurtosis from 1973:Q1 to 2019:Q4 based on
the semi-parametric quantile matching approach outlined in Section 6.4.2. As conditioning information,
panels (a) and (c) utilize the latest vintage of the NFCI, while panels (b) and (d) employ the SPF median
nowcasts. The shaded areas indicate periods of US recessions as identified by the GDP-based recession
indicator.

43



B Tables

Table B.1: SPF-GARCH using median versus mean SPF

week
10% quantile score 1 3 5 7 9 11 13 15
mean SPF 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29
median SPF 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

90% quantile score 1 3 5 7 9 11 13 15
mean SPF 0.34 0.34 0.34 0.32 0.31 0.31 0.31 0.31
median SPF 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

CRPS 1 3 5 7 9 11 13 15
mean SPF 1.13 1.12 1.10 1.01 0.98 0.98 0.98 0.98
median SPF 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

Notes: This table reports the average losses of the 10% and the 90% quantile scores in
the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2019:Q4, consisting of 120 observations.

Table B.2: QR-SPF using median versus mean SPF

week
10% quantile score 1 3 5 7 9 11 13 15
mean SPF 0.43 0.43 0.42 0.34 0.31 0.31 0.31 0.31
median SPF 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31

90% quantile score 1 3 5 7 9 11 13 15
mean SPF 0.39 0.39 0.39 0.36 0.34 0.34 0.34 0.34
median SPF 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33

CRPS 1 3 5 7 9 11 13 15
mean SPF 1.18 1.18 1.15 1.05 1.01 1.01 1.01 1.01
median SPF 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00

Notes: This table reports the average losses of the 10% and the 90% quantile scores in
the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2019:Q4, consisting of 120 observations.
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Table B.3: Out-of-sample evaluation using the SPF interquantile range

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

+xµt,w = SPF IQR
t,w 0.36 0.36 0.35 0.28 0.29 0.29 0.29 0.29

+xσt,w = SPF IQR
t,w 0.35 0.35 0.34 0.27 0.28 0.28 0.28 0.28

QR-SPF 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31
+SPF IQR

t,w 0.37 0.37 0.36 0.31 0.28 0.29 0.29 0.29

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

+xµt,w = SPF IQR
t,w 0.33 0.33 0.33 0.31 0.30 0.30 0.30 0.30

+xσt,w = SPF IQR
t,w 0.35 0.35 0.34 0.32 0.31 0.31 0.31 0.31

QR-SPF 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33
+SPF IQR

t,w 0.33 0.32 0.29 0.31 0.32 0.32 0.32 0.32

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

+xµt,w = SPF IQR
t,w 1.12 1.12 1.08 0.99 0.95 0.96 0.95 0.95

+xσt,w = SPF IQR
t,w 1.11 1.11 1.09 0.99 0.95 0.96 0.95 0.95

QR-SPF 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00
+SPF IQR

t,w 1.13 1.13 1.08 1.00 0.97 0.97 0.97 0.97
Notes: This table reports the average losses of the 10% and the 90% quantile scores in the

top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate
the week of a quarter at which the nowcast is formed. Gray areas represent the 90% model
confidence set and bold letters are the lowest average losses within each column. All models are
estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting
of 120 observations.
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Table B.4: Out-of-sample evaluation using SPF forecast errors

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29
Q̂error
t|t,w (0.1) 0.43 0.43 0.43 0.38 0.38 0.38 0.38 0.38

Q̂NFCI
t|t,w (0.1) 0.36 0.36 0.35 0.34 0.36 0.36 0.36 0.38

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31
Q̂error
t|t,w (0.9) 0.40 0.40 0.40 0.34 0.30 0.30 0.30 0.30

Q̂NFCI
t|t,w (0.9) 0.35 0.34 0.34 0.31 0.29 0.28 0.28 0.28

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96
Q̂error
t|t,w (τ) 1.13 1.13 1.13 1.04 1.03 1.03 1.03 1.03

Q̂NFCI
t|t,w (τ) 1.09 1.09 1.09 1.02 1.03 1.04 1.04 1.05
Notes: This table reports the average losses of the 10% and the 90% quantile scores in

the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2019:Q4, consisting of 120 observations.
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Table B.5: Out-of-sample evaluation of MIDAS-NFCI in the conditional mean

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

+xµt,w = NFCIt,w 0.37 0.35 0.34 0.28 0.27 0.27 0.27 0.27
+xµt,w = NFCImt,w 0.35 0.33 0.33 0.30 0.30 0.30 0.31 0.30
+xµt,w = NFCIθt,w 0.38 0.36 0.35 0.29 0.27 0.27 0.27 0.27

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

+xµt,w = NFCIt,w 0.37 0.36 0.34 0.32 0.31 0.31 0.31 0.31
+xµt,w = NFCImt,w 0.34 0.35 0.32 0.33 0.32 0.32 0.33 0.32
+xµt,w = NFCIθt,w 0.38 0.38 0.36 0.33 0.32 0.31 0.31 0.32

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

+xµt,w = NFCIt,w 1.18 1.16 1.09 1.01 0.97 0.97 0.97 0.98
+xµt,w = NFCImt,w 1.14 1.14 1.07 1.04 1.01 1.00 1.02 1.01
+xµt,w = NFCIθt,w 1.20 1.21 1.14 1.01 0.98 0.98 0.97 0.98

Notes: This table reports the average losses of the 10% and the 90% quantile scores in the
top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate
the week of a quarter at which the nowcast is formed. Gray areas represent the 90% model
confidence set and bold letters are the lowest average losses within each column. All models are
estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting of
120 observations.
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Table B.6: Out-of-sample evaluation of MIDAS-NFCI in the conditional volatility

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

+xσt,w = NFCIt,w 0.35 0.34 0.33 0.28 0.28 0.28 0.28 0.28
+xσt,w = NFCImt,w 0.60 1.07 0.42 0.32 0.28 0.28 0.29 0.31
+xσt,w = NFCIθt,w 0.36 0.35 0.34 0.28 0.28 0.28 0.28 0.27

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

+xσt,w = NFCIt,w 0.37 0.36 0.36 0.34 0.32 0.32 0.32 0.31
+xσt,w = NFCImt,w 0.60 1.06 0.41 0.34 0.32 0.31 0.32 0.32
+xσt,w = NFCIθt,w 0.36 0.37 0.36 0.34 0.32 0.32 0.32 0.32

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

+xσt,w = NFCIt,w 1.14 1.14 1.10 1.01 0.98 0.98 0.98 0.98
+xσt,w = NFCImt,w 1.54 2.42 1.20 1.04 0.99 0.98 0.99 1.00
+xσt,w = NFCIθt,w 1.16 1.16 1.11 1.02 0.98 0.98 0.98 0.98

Notes: This table reports the average losses of the 10% and the 90% quantile scores in the
top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate
the week of a quarter at which the nowcast is formed. Grey areas represent the 90% model
confidence set and bold letters are the lowest average losses within each column. All models are
estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4, consisting of
120 observations.
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Table B.7: Out-of-sample evaluation of quntile regression with MIDAS-NFCI

week
10% quantile score 1 3 5 7 9 11 13 15
QR-SPF 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31

+NFCIt,w 0.29 0.30 0.29 0.28 0.27 0.27 0.28 0.28
+NFCImt,w 0.32 0.30 0.33 0.30 0.28 0.29 0.30 0.27
+NFCIθt,w 0.36 0.34 0.30 0.28 0.27 0.28 0.28 0.28

90% quantile score 1 3 5 7 9 11 13 15
QR-SPF 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33

+NFCIt,w 0.41 0.39 0.36 0.35 0.34 0.34 0.34 0.34
+NFCImt,w 0.40 0.39 0.35 0.35 0.34 0.33 0.31 0.33
+NFCIθt,w 0.37 0.38 0.36 0.35 0.34 0.34 0.33 0.34

CRPS 1 3 5 7 9 11 13 15
QR-SPF 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00

+NFCIt,w 1.17 1.17 1.12 1.02 0.98 0.99 0.98 0.99
+NFCImt,w 1.17 1.16 1.14 1.03 1.00 1.01 0.98 0.99
+NFCIθt,w 1.18 1.19 1.13 1.01 0.99 0.99 0.98 0.99

Notes: This table reports the average losses of the 10% and the 90% quantile scores in
the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the
90% model confidence set and bold letters are the lowest average losses within each column.
All models are estimated on an expanding window. The evaluation period is 1990:Q1 to
2019:Q4, consisting of 120 observations.
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Table B.8: Out-of-sample evaluation using the SPF recession probability

week
10% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.36 0.35 0.35 0.28 0.29 0.29 0.29 0.29

+xµt,w = SPF rec
t,w 0.35 0.35 0.34 0.28 0.29 0.29 0.29 0.29

+xσt,w = SPF rec
t,w 0.38 0.38 0.37 0.31 0.30 0.30 0.30 0.30

QR-SPF 0.44 0.44 0.43 0.35 0.31 0.31 0.31 0.31
+SPF rec

t,w 0.33 0.33 0.33 0.29 0.29 0.29 0.29 0.29

90% quantile score 1 3 5 7 9 11 13 15
SPF-GARCH 0.34 0.34 0.34 0.31 0.31 0.31 0.31 0.31

+xµt,w = SPF rec
t,w 0.34 0.34 0.34 0.32 0.32 0.31 0.31 0.31

+xσt,w = SPF rec
t,w 0.37 0.37 0.36 0.34 0.32 0.31 0.32 0.32

QR-SPF 0.39 0.39 0.38 0.36 0.33 0.33 0.33 0.33
+SPF rec

t,w 0.38 0.38 0.36 0.34 0.33 0.33 0.33 0.33

CRPS 1 3 5 7 9 11 13 15
SPF-GARCH 1.12 1.12 1.09 0.99 0.96 0.96 0.96 0.96

+xµt,w = SPF rec
t,w 1.12 1.11 1.09 0.99 0.97 0.97 0.97 0.97

+xσt,w = SPF rec
t,w 1.15 1.15 1.12 1.01 0.97 0.97 0.97 0.97

QR-SPF 1.17 1.17 1.14 1.03 1.00 1.00 1.00 1.00
+SPF rec

t,w 1.14 1.14 1.11 1.01 0.98 0.99 0.98 0.98
Notes: This table reports the average losses of the 10% and the 90% quantile scores in

the top and the middle panel. The panel at the bottom shows the average continuously
ranked probability score (CRPS) over the out-of-sample evaluation period. The columns
indicate the week of a quarter at which the nowcast is formed. Gray areas represent the 90%
model confidence set and bold letters are the lowest average losses within each column. All
models are estimated on an expanding window. The evaluation period is 1990:Q1 to 2019:Q4,
consisting of 120 observations.
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Table B.9: Rolling window out-of-sample evaluation using NFCI and SPF

week
10% quantile score 1 3 5 7 9 11 13 15
AR-GARCH 0.42 0.41 0.39 0.39 0.35 0.35 0.36 0.36

+xµt,w = NFCIt,w 0.44 0.42 0.36 0.37 0.42 0.37 0.30 0.33
+xσt,w = NFCIt,w 0.41 0.38 0.35 0.35 0.33 0.34 0.33 0.34
+xµt,w = SPFt,w 0.38 0.38 0.36 0.29 0.29 0.29 0.29 0.29

QR-AR 0.45 0.46 0.43 0.43 0.42 0.42 0.42 0.42
+NFCIt,w 0.32 0.33 0.33 0.32 0.31 0.33 0.33 0.33
+SPFt,w 0.42 0.42 0.40 0.34 0.31 0.31 0.31 0.31

90% quantile score 1 3 5 7 9 11 13 15
AR-GARCH 0.39 0.39 0.33 0.33 0.33 0.34 0.34 0.34

+xµt,w = NFCIt,w 0.42 0.41 0.39 0.41 0.48 0.43 0.39 0.41
+xσt,w = NFCIt,w 0.44 0.45 0.38 0.38 0.37 0.37 0.37 0.37
+xµt,w = SPFt,w 0.34 0.34 0.32 0.30 0.29 0.30 0.30 0.30

QR-AR 0.40 0.40 0.35 0.35 0.36 0.36 0.37 0.37
+NFCIt,w 0.42 0.42 0.36 0.35 0.35 0.36 0.37 0.38
+SPFt,w 0.37 0.37 0.34 0.32 0.31 0.31 0.32 0.32

CRPS (equal weights) 1 3 5 7 9 11 13 15
AR-GARCH 1.23 1.21 1.13 1.13 1.12 1.12 1.13 1.13

+xµt,w = NFCIt,w 1.29 1.27 1.16 1.18 1.30 1.21 1.12 1.16
+xσt,w = NFCIt,w 1.31 1.32 1.16 1.17 1.16 1.17 1.16 1.18
+xµt,w = SPFt,w 1.16 1.16 1.08 0.98 0.95 0.96 0.96 0.96

QR-AR 1.24 1.24 1.15 1.15 1.14 1.14 1.15 1.15
+NFCIt,w 1.22 1.25 1.17 1.17 1.16 1.17 1.17 1.17
+SPFt,w 1.19 1.19 1.10 1.00 0.97 0.98 0.98 0.98

Notes: This table reports the average losses of the 10% and the 90% quantile scores in the
top and the middle panel. The panel at the bottom shows the average continuously ranked
probability score (CRPS) over the out-of-sample evaluation period. The columns indicate the
week of a quarter at which the nowcast is formed. Gray areas represent the 90% model confidence
set and bold letters are the lowest average losses within each column. All models are estimated on
a rolling window with 85 observations. The evaluation period is 1990:Q1 to 2019:Q4, consisting
of 120 observations.
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