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Summary
Analyses of expression profiles between different phenotypes of cancer patient
populations or models led to identifying gene modules, or gene expression signa-
tures, that describe specific biological mechanisms. A signature is often used to
describe the same mechanism in different contexts, for example, in large-scale
cancer gene expression studies. Over the past, gene expression signatures have
become readily available and collected in large signature databases like the
MsigDB. Although gene expression signatures represent a critical knowledge
base for the analysis of cancer populations, they are often carelessly applied or
contaminated by confounding processes, such as proliferation. This might be
why only a few gene expression signatures have reached clinical relevance.

Therefore, in the first chapter of this thesis, I aim to define a workflow that
assesses the quality and translatability of gene expression signatures, thereby
enabling the interpretation of their associated biological mechanisms in the con-
text of another cancer study. Additionally, I provide an analytical methodology,
to analyze a collection of gene expression signatures that describe a broad range
of cancer mechanisms. Additionally, I describe a webapplication named Roset-
taSX that uses this methodology and allows users to analyze public molecular
data of more than 11,000 cancer patients or cancer models. Finally, I will show
the applicability of my approach by recapitulating of the intrinsic breast can-
cer subtypes and other molecular characteristics. This first project will lay the
methodological foundation for two subsequent analyses.

In the second project, I use my approach to evaluate a set of gene expression
signatures postulated to describe epithelial-to-mesenchymal, mesenchymal, or
stemness phenotypes of cancer populations. Previous studies suggested that
cells in the tumor microenvironment contribute to individual signatures in spe-
cific cancer types. In this study, I applied my methodological approach to
analyze multiple levels of data granularity, including cancer cell line and single
cell data, in addition to clinical tumor data. The goal was to highlight the im-
pact of contamination on the largest combined set of mesenchymal signatures
investigated to date in this context. This project emphasized the significance
of thoroughly evaluating cancer cell content when utilizing these signatures. It
also demonstrated how incorrect conclusions about cancer characteristics can
be drawn when quality control is not rigorously applied in signature analyses.

The final chapter, will apply the methodological approach to evaluate the un-
derdiagnosis of large cell neuroendocrine carcinomas (LCNEC) in a real-world
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data non-small cell carcinoma (NSCLC) cohort. Although LCNEC was not
initially classified as a separate subtype of NSCLC, it has been classified as a
separate group in the most recent WHO classification recommendation. The
increased recognition of LCNEC over the past has shown an increase in the
prevalence of this rare disease, accounting for 1%-3% of all lung cancers. How-
ever, today, practical limitations, similarities, and overlap with other NSCLCs
are still complicating the diagnosis of LCNEC. Based on a RosettaSX analysis
that revealed neuroendocrine differentiation in many patients with NSCLC, I
will demonstrate how a machine learning model was used to assess the degree
of LCNEC underdiagnosis.

In summary, this work presents an integrated approach for evaluating gene ex-
pression signatures in depth. The signature analysis framework was applied
in two ways: for the in-depth assessment of gene expression signatures and
the comprehensive characterization of a patient population. The approach de-
scribed herein can provide robust findings for gene expression signatures that
are easily interpretable and can reveal previously unknown associations between
biomarkers and expression phenotypes.
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Zusammenfassung
Durch die Analyse von transkriptionellen Unterschieden zwischen verschiedenen
Phänotypen von Krebspatienten oder Krebsmodellen wurde eine Vielzahl von
Genmodulen, auch Genexpressionssignaturen genannt, identifiziert, die charak-
teristische Expressionsprofile für einen biologischen Mechanismus aufweisen.
Diese Signaturen werden häufig genutzt, um die Relevanz eines Mechanismus in
einem unabhängigen Datensatz zu evaluieren. In den vergangenen Jahren sind
große Datenbanken entstanden, wie z.B. MsigDB, die eine große Sammlung von
Signaturen bereitstellen. Obwohl solche Signaturen eine wichtige Ressource
für die Charakterisierung von Krebspatienten darstellen, werden sie häufig
falsch angewendet oder sind von Genen kontaminiert, die in andere Prozesse,
wie zum Beispiel Zellproliferation, involviert sind. Unter anderem aus diesen
Gründen finden Signaturen nur selten ihren Weg in die klinische Anwendung.

Deshalb ist das Ziel der ersten Studie dieser Thesis die Entwicklung eines
methodischen Ansatzes, der es ermöglicht, Genexpressionssignaturen in einem
neuen Datensatz zu evaluieren. Dadurch soll der biologische Mechanismus,
den die Signatur darstellt, beschrieben werden können. Zusätzlich stelle ich
eine Plattform namens RosettaSX vor, welche es ermöglicht, mithilfe einer
Sammlung von Signaturen, molekulare Phänotypen von 11.000 öffentlich ver-
fügbaren Krebspatienten und Krebsmodellen zu analysieren. Um den Nutzen
meines Analyseansatzes aufzuzeigen, beschreibe ich molekulare Merkmale
von etablierten Brustkrebsuntertypen anhand eines bekannten Brustkrebs-
Expressionsdatensatzes. Basierend auf den Methoden in diesem Teil der Arbeit
führe ich anschließend zwei weitere Studien durch.

Im zweiten Kapitel beschreibe ich, wie ich meinen Ansatz für die Evaluierung
einer Gruppe von Genexpressionssignaturen nutze. Diese Signaturen wurden
in verschiedenen Krebsarten identifiziert und es wurde postuliert, dass sie
epithelial-mesenchymale Transitionen, mesenchymale oder Stamzell-ähnliche
Eigenschaften abbilden. Obwohl für einige dieser Signaturen eine starker
Einfluss der Komposition der Tumormikroumgebung aufgezeigt wurde, fehlte
bislang eine umfangreiche Analyse dieser Signaturen. Ich stelle eine detailierte
Analyse dieser Signaturen in unterschiedlichen Genexpressiondaten -aus
Einzelzellen, Zellinien oder klinischen Tumoren- dar, die Evidenz für bisherige
Fehlinterpretationen dieser Signaturen und Hinweise für die Nutzung solcher
Signaturen in Geneexpressionsdaten komplexer Tumorgewebe liefert.



vii

Im letzten Kapitel nutze ich meinen Ansatz zur Untersuchung von Genex-
pressionssignaturen für die Verbesserung der Diagnose einer aggressiven Form
von Lungenkrebs, dem großzellig-neuroendokrinen Lungenkarzinom (LCNEC).
Während diese Unterform von der Weltgesundheitsorganisation (WHO)
zunächst nicht als eine separate Gruppe beschrieben wurde, stiegen dessen Fal-
lzahlen zuletzt. Heute wird geschätzt, dass 1%-3% aller Lungenkrebse LCNEC
sind. Obwohl die Diagnose zuletzt weiter optimiert wurde, erschweren technis-
che Limitierungen und die Ähnlichkeit zu anderen Krebsarten weiterhin die
Diagnose. Im dritten Kapitel beschreibe ich, wie ich mit Hilfe einer RosettaSX
Analyse zunächst eine häufige neuroendokrine Differenzierung von ursprünglich
als NSCLC diagnostizierten Lungentumoren feststelle. Anschließend nutze ich
einen Ansatz des maschinellen Lernens, um eine präzisere molekulare Diagnose
von LCNEC zu ermöglichen und das Ausmaß der Unterdiagnostik von LCNEC
zu untersuchen.

Zusammengefasst zeigt diese Arbeit einen analytischen Ansatz auf, der für die
umfassende Evaluierung von Genexpressionsignaturen genutzt werden kann.
Die Analyse von mehreren Krebsdatensätzen und verschiedenen Anwendungen
zeigen die breite Nutzbarkeit meines Ansatzes. Er gewährt einen sicheren
Nutzen von Genexpressionsignaturen für eine breite Menge von onkologis-
chen Genexpressionsdaten und ermöglicht eine differenzierte Interpretation
des Neuheitswerts von Signaturen unter Nutzung des Wissens um bereits
publizierte Signaturen.
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Chapter 1

Introduction

Understanding the molecular abnormalities that empower cancer cells to main-
tain abnormal cell growth is crucial in cancer research. By unraveling the riddle
of cancer development and progression, researchers can improve the diagnosis
of patients and gain insights into novel therapeutic options. The hallmarks of
cancer, introduced in 2000, describe fundamental mechanisms for cancer devel-
opment and have shown their relevance over the past decades (Hanahan 2022).
They comprise the ability of cancers to progress and survive (activation of cell
growth and deactivation of cell inhibition signals, angiogenesis, and metastasiz-
ing) or to block pathways that aim to arrest cell aging and apoptosis (Hanahan
and Weinberg 2000). Later, the originally postulated hallmarks were extended
by additional mechanisms, such as adapting energy support and immune escape,
phenotypic plasticity, and microbiome interplay (Hanahan and Weinberg 2011;
Hanahan 2022).

During cancer progression, the deregulation of biological pathways, which ini-
tially evolved to maintain the integrity of normal cell growth, leads to the
acquisition of hallmark cancer phenotypes. On a transcriptional level, these
deregulations are often traceable via molecular footprints that can be described
by analyzing unique expression patterns, also called gene expression signatures.
Through studies of these signatures, specific phenotypes can be characterized
by analyzing cancer populations (e.g., Guinney et al. 2015) or perturbed can-
cer models (e.g., Bild et al. 2006). Such analyses resulted in a tremendous
knowledge base that pictures the association between gene modules and bio-
logical processes called MsigDB (Subramanian et al. 2005). It provides an
exceptional resource for the characterization of biological processes and can
guide the characterization of cancer populations (Guo et al. 2022; McClure
et al. 2023; Aran et al. 2017). Functionally, gene expression signatures can
be assigned to separate phenomena that they aim to describe: the complex
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cell type mixtures in cancer samples (e.g., B-cells, Macrophages), the activity
of biological signaling pathways (e.g., YAP), larger biological processes (e.g.,
proliferation, immune response) or the cellular origin of cancer (e.g., germinal
center B-cell-like, BRCA-ness). When applied in the context of a cancer cohort,
gene expression signature profiles can be used to differentiate patient popula-
tions or characterize the relationship between other biomarkers and previously
described phenotypes described by signatures.

Gene expression signatures are sometimes limited in reproducibility, as they
were identified in specific experimental settings and not evaluated in indepen-
dent datasets; thus, their applicability can be limited to the original experi-
mental context (Chibon 2013). Similarly, gene expression signatures are often
confounded by other processes that deviate from the process initially intended
to be described. Consequently, a study by Venet, Dumont and Detours in
breast cancer indicated that many prognostic gene expression signatures are
strongly associated with the proliferation status (Venet, Dumont, and Detours
2011). Interestingly, they found that random gene expression signatures are of-
ten more prognostic than published gene expression signatures for breast cancer.
They showed that the random gene expression signatures contained proliferation
genes, resulting in the signatures’ prognostic value. This indicates that genes
involved in other processes can contain gene expression signatures, leading to
conclusions not warranted due to the contamination. The difficulty in providing
functionally clean signatures is probably one of the main reasons why only a
few signatures have been translated into clinical practice, such as the Oncotype
DX test for breast cancer (Paik et al. 2004) or coloPrint for colorectal cancer
(Salazar et al. 2011) stratification. Therefore, there is a need for an analysis
workflow to benefit from well-defined published gene expression signatures that
cover most cancer phenomena.

It is essential to evaluate their translatability to derive meaningful conclusions
from a gene expression signature. Cancer characterization studies often rely on
previously published gene expression signatures Subramanian et al. (2005) and
derive conclusions from their signature scores. However, the association of a set
of genes does not guarantee the same association between the set of genes in
an independent, separate dataset. Therefore, before generalizing signatures to
describe a specific phenotype, they must be evaluated for their translatability
in independent datasets (Dhawan et al. 2019).

For these reasons, the first objective of my work was to identify methods and
approaches to evaluate gene expression signatures across many datasets and
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sample types (e.g., cancer patient tumors and cancer models like cell lines).
The upcoming sections will outline the main methodological aspects of the fol-
lowing chapters. The final section of this chapter explains this thesis’s aim and
structure.

1.1 Oncogenic Principles in the Light of Gene
Expression Signatures

Many cancer hallmarks are driven by the deregulation of pathways or gene mod-
ules, which often can be traced by the analyses of gene expression profiles. One
of the largest approaches for identifying gene expression signatures describing
a wide range of biological phenotypes is the hallmark 50 collection (Liberzon et
al. 2015). Liberzon et al. combined unsupervised clustering with expert knowl-
edge to identify a subset of signatures from an enormous collection of gene
expression signatures (MsigDB). They identified 50 gene expression signatures
(out of 8,000) that describe larger biological mechanisms (e.g., proliferation, an-
giogenesis, epithelial-to-mesenchymal transition [EMT]) or signaling pathways
(e.g., NOTCH, estrogen receptor). This collection has become popular and is
frequently used as a reference for characterizing cancer populations (Hu et al.
2022). Besides larger collections, many other signatures were described in the
literature. The following sections introduce several hallmarks of cancer and
highlight individual gene expression signatures associated with phenomena that
contribute to a specific hallmark.

Regulation of Growth Promotion and Resistance
One of the original hallmarks of cancer is the autonomous regulation of cell
growth signaling. Multiple checkpoints that regulate a cell’s fate tightly control
the cell cycle, resulting in its differentiation or apoptosis (p.177-199, Wagener
and Müller 2010). Tumor cells adapt this process, allowing them to proliferate
and expand continuously. On a transcriptional level, the individual cell cycle
phases between the checkpoints have been associated with the upregulation of
specific sets of genes. Across many cancer indications, researchers identified
gene expression signatures that describe genes related to cell cycle regulation.
Dai et al. introduced a 50-gene expression signature, which was shown to be
related to genes activated during the 𝐺1 and 𝐺2 phase. In their study of breast
cancer patients, the signature profiles were significantly associated with poor
outcomes (Dai et al. 2005). Similarly, a clustering approach has been used to
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identify correlated ‘meta genes’ in more than 1,000 colorectal cancer samples
that differentiate a set of colorectal subtypes (Budinska et al. 2013). One of
the meta genes was associated with genes involved in the cell cycle, mitosis, and
other proliferation-related processes. Using microarray gene expression profiles
of 76 glioma samples, Phillips et al. characterized glioma subtypes (Phillips
et al. 2006). One of the three identified clusters involved cell cycle regulation-
specific markers. Oncogenes and tumor suppressor genes, guardians of balanced
cellular functions, are additional fundamental concepts in cancer research. For
example, the proto-oncogene MYC influences multiple cancer hallmarks, includ-
ing proliferation, angiogenesis, and immune surveillance (Dhanasekaran et al.
2022). Through cell perturbation experiments (overexpression of oncogenic sig-
naling pathways), Bild et al. identified a set of gene expression signatures for
signaling pathways, including MYC pathway activity (Bild et al. 2006). The
signature was significantly associated with patient outcomes and verified across
multiple datasets and cancer types. A well-known tumor suppressor pathway
is the Hippo pathway, which regulates cell differentiation and organ size across
organisms. The pathway gains importance in cancer due to its regulatory mech-
anisms in tumor initiation, metastasis, and drug resistance (Fu, De Angelis, and
Schiff 2021). It can be categorized as the hallmark of avoiding growth suppres-
sion and cell death. Thus, it is essential to characterize the activity of Hippo
in cancer indications. Wang et al. characterized somatic alterations, as well as
transcriptomic differences across many cancer indications (Y. Wang et al. 2018).
They indicated that core Hippo pathway genes are only mutated in a minority
of cancer indications, primarily in squamous cell carcinomas. However, tran-
scriptionally, they found a set of profoundly dysregulated Hippo downstream
genes. This gene set was derived from literature and validated on three ChipSeq
studies and cancer cell line protein expression data sets. The derived signature
score was significantly associated with patient survival in most analyzed cancer
indications.

The Tumor’s Interplay with the Microenvironment
Cell types in the tumor microenvironment (TME), stroma, and extracellular ma-
trix (ECM) can influence processes described by other cancer hallmarks, such
as inflammation, induction of angiogenesis, immune destruction, tumor inva-
sion, or genome instability. The stroma and its inherent ECM are key tissue
components that can profoundly influence tumor development and progression.
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While the ECM is a complex structure of molecules that can affect the interac-
tion between cells or regulate immune cell function (Sutherland, Dyer, and Allen
2023), the stroma is an umbrella term that, besides ECM, additionally comprises
cells that can vastly influence tumor development and progression (Valkenburg,
Groot, and Pienta 2018). In breast cancer, Farmer et al. identified a 50-gene
gene expression signature (metagene) that was proven predictive for chemother-
apy resistance (Farmer et al. 2009). Through the analysis of genes associated
with the luminal-basal, apocrine, stroma, T Cell, B Cell, adipocytes, prolifera-
tion, interferon, and hypoxia, they found that only the stroma metagene was
significantly associated with survival across multiple datasets. Subsequently,
by analyzing histologic sections, they showed significant enrichment of reactive
stroma in samples with high stroma scores. Similarly, in glioblastoma, Liang
et al. identified a gene expression signature with genes significantly predictive
for poor prognosis (Liang et al. 2005). Analyzing samples from different brain
diseases and modeling approaches, they identified a set of genes significantly
associated with survival across datasets. Genes involved in this signature were
primarily related to neural cell migration capabilities or ECM proteins.

The tumor microenvironment comprises the entirety of the ECM, stroma, im-
mune cells, and endothelial cells (Anderson and Simon 2020). In colorectal can-
cer (CRC), Bindea et al. performed an in-depth analysis of expression datasets
to identify cell type-specific gene expression signatures (Bindea et al. 2013). In-
terestingly, they showed the high variability of cell type compositions dependent
on the tumor stage and a strong association of individual cell types on patient
outcome. Their work resulted in a set of gene expression signatures that allows
the characterization of cell type compositions in complex tumor samples.

Cellular Plasticity and Metastasis
Cellular plasticity significantly impacts cancer cells’ invasiveness and metastatic
capability. A process that is involved in at least three cancer hallmarks (inva-
sion and metastasis, cell death resistance, and circumvent immune destruction)
is an epithelial-mesenchymal transition (Dongre and Weinberg 2019)). Through
this process, cells can lose their epithelial characteristics and gain mesenchymal
features, allowing them to switch from stationary to mobile status. This process
is well-known in normal tissue for wound healing but has also been extensively
studied in the context of cancer research. Several research groups have described
cancer subtypes that are characteristic for EMT, mesenchymal or stemness in
glioblastoma multiforme (GBM) (Phillips et al. 2006; Verhaak et al. 2010),



6 Chapter 1. Introduction

breast (Taube et al. 2010; Lien et al. 2007; Lehmann et al. 2011), neck cancer
squamous cell carcinoma (HNSC) (Walter et al. 2013), colorectal (Guinney et
al. 2015) and other indications (Liberzon et al. 2015). In colorectal cancer,
multiple studies analyzed gene expression data using unsupervised clustering
approaches and indicated a set of subtypes that describe patient populations
with distinctive characteristics (Sadanandam et al. 2013; Budinska et al. 2013;
Marisa et al. 2013; Roepman et al. 2014; Schlicker et al. 2012; Melo et al.
2013). Each of these studies described partly overlapping subtypes: Most of
the approaches identified a subtype that indicated characteristics of immune in-
filtration, and another subtype was associated with stemness, mesenchymality,
or EMT. A subsequent large-scale analysis by Guinney et al. combined the pre-
viously described subtyping approaches in four consensus molecular subtypes
(CMS). The four subtypes described samples with 1) immune infiltration, 2)
canonical, 3) Metabolic deregulation, and 4) mesenchymal and stem cell char-
acteristics. Subsequent studies indicated a strong dependency on the tumor
microenvironment of individual subtypes and proposed a separate algorithm
for pre-clinical models (Eide et al. 2017).

While the importance of EMT and cancer cell plasticity is generally widely
accepted, detecting EMT or a mesenchymal state by published gene expression-
based subtyping approaches has been criticized recently, especially for the CMS
subtype scheme for CRC (Dunne et al. 2016). Resolving this scientific debate
is paramount since subtyping schemes must deliver robust calls for individual
tumors and robust prevalence estimates on the population level when used for
drug development and treatment decisions.

The Cell of Origin Concept
Besides the hallmarks of cancer, the concept of cell of origin concept has evolved,
which describes the specific cell type from which cancer originated (Hoadley et
al. 2018). Although the cell-of-origin and hallmarks of cancer are distinct con-
cepts, they are strongly interconnected. In breast cancer, four subtypes were
associated with specific characteristics used for patient characterization and
stratification: luminal A/B, normal-like, and basal-like (Perou et al. 2000).
While the luminal subtypes originate from luminal epithelial cells, the basal-
like subtype originates from basal epithelial cells. As such, these subtypes
indicate critical signaling cascades that, among others, provide insights into
cancer hallmarks, such as proliferation. While the luminal subtype is primarily
driven by hormone-driven signaling via the estrogen receptor and progesterone
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receptors, the basal-like subtype is driven by other growth factors. Multiple
gene expression signatures evolved to differentiate these subtypes (Farmer et al.
2009; Calza et al. 2006). Similarly, several studies in diffuse large B-cell lym-
phoma (DLBCL) established gene expression signatures for the characterization
of two main types of glioblastomas: activated B cells (ABC)-like and germinal-
center B-cell (GCB)-like, for which there are also established gene expression
signatures (Masqué-Soler et al. 2013). As in breast cancer, the ABC-DLBCL
subtype showed characteristic pathway aberrations that are associated with
proliferation (Compagno et al. 2009). Neuroendocrine cells represent another
cell-of-origin group, which, for example, comprises small-cell lung carcinoma
(SCLC) and large-cell neuroendocrine carcinoma (LCNEC). SCLC accounts for
approximately 20% of all primary lung tumors, and LCNEC for 1% to 3%.
Patients with these tumors usually have inferior prognosis, and for LCNEC,
there is no standard therapeutic recommendation. Pathological classification is
strongly determined by morphological characteristics and immunohistochemical
neuroendocrine marker (NCAM1, CHGA, SYP, or INSM1) expression. Molec-
ular analysis indicated specific expression patterns that describe the neuroen-
docrine origin of these carcinomas in the lung and other tissues. In SCLC,
by analyzing neuroendocrine (NE) and non-neuroendocrine samples, Zhang et
al. could identify a set of highly NE tissue-specific markers. Using these mark-
ers, they identified cancer cell lines with high and low NE marker expression
to subsequently identify NE and non-NE genes in a differential gene expression
analysis (W. Zhang et al. 2018). This and other signatures on neuroendocrine
gene expression suggest that gene expression could be the precise diagnosis of
LCNEC within NSCLC. Better LCNEC diagnosis could help patients be treated
according to the cell of origin of their aggressive cancer.

1.2 Methods for Gene Expression Signatures
Since the introduction of the first gene expression signatures, many resources
have evolved. The number of signatures steadily grows, resulting in large
databases with thousands of gene expression signatures (PubMed search
https://pubmed.ncbi.nlm.nih.gov/, Figure 1.1). Additionally, multiple mea-
sures have evolved to characterize a gene expression signature’s profile or
activity.

This section introduces resources for gene expression signatures and provides
an overview of methods for scoring their activity and translatability.
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Figure 1.1: Number of publications for the search term ‘Gene expression
signature’ and ‘cancer’ or ‘oncology’ by year on PubMed (accessed 2024-01-
19).

Signature Collections
Over the past, thousands of gene expression signatures have evolved. The molec-
ular signature database (MsigDB) is one of the largest collections of gene signa-
tures (Subramanian et al. 2005; Liberzon et al. 2015). It comprises signatures
for mouse and human organisms. It is split into broad collections (H, C1-8),
describing hallmark signatures especially relevant for cancer research and com-
putationally derived or ontology-derived signatures. Each collection comprises
thousands of signatures. Although the database is an excellent resource for sig-
natures, its size and generality introduce several limitations. Even though these
resources are highly valuable and provide a resource, they must be used with
caution. Often, the signatures in these databases are not evaluated on multiple
independent datasets and thus might not describe the phenotype to which they
were assigned. Venet et al. showed that prognostic gene expression signatures
are often not more prognostic than randomly sampled gene sets (Venet, Du-
mont, and Detours 2011). The reason for that was that many of the signatures
were contaminated by proliferation markers that indirectly led to the prognostic
association of the signatures.

Similarly, other factors related to different mechanisms might confound gene
expression signatures. To comprehensively characterize a new gene expression
signature, it is essential to compare it to a suitable set of signatures covering a
broad range of cancer mechanisms. Additionally, the new signature should be
evaluated in the context of other signatures.
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Evaluating the Quality and Activity of Gene Expression
Signatures
The evaluation of gene expression signatures requires two steps: a) verifying
the integrity of the signature in a new dataset and b) evaluating the activity
of the signature. As pointed out, gene expression signatures can originate from
data-driven approaches, experiments, or other procedures. Additionally, they
might be derived from data generated with different technologies; sometimes,
they were validated on multiple datasets and sometimes not in a single dataset.
The hypothesis of using a gene expression signature on a dataset is that the
expression of the same set of genes in another dataset can robustly explain the
same phenomenon that was initially proposed.

To assess the relevance of a gene expression signature in a dataset that was
not used for the definition of a signature, it is essential to test the robustness
of the signature. One approach is the coherence score (CS), which has been
independently developed in the context of pathway analyses by others (Zien et
al. 2000; Rahnenführer et al. 2004; Fan et al. 2016; Staub 2012). The score
evaluates the correlation of the expression of gene pairs in a gene expression
signature. To calculate the coherence score for a signature of size 𝑘 with 𝑋1, 𝑋2,..., 𝑋𝑘 gene expression variables, for each pair (𝑋, 𝑌 ) the correlation coefficient
(e.g., Pearson correlation coefficient Kirch 2008) is calculated:

r𝑋𝑌 = ∑𝑛𝑖 (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − ̄𝑌 )√∑𝑛𝑖 (𝑋𝑖 − 𝑋̄)2 ∑𝑛𝑖 (𝑌𝑖 − ̄𝑌 )2 (1.1)

The average correlation coefficient of the upper triangular matrix of this pairwise
correlations matrix with 𝑖 rows and 𝑗 columns defines the CS (adapted from
Rahnenführer et al. 2004):

𝐶𝑆 ∶= 1(𝑘2) ∑1≤𝑖≤𝑗≤𝑘 𝑟𝑖𝑗 (1.2)

This formula calculates the average of the individual pairwise correlations (𝑟𝑖𝑗)
to determine a score indicating the strength of the association between the
genes in a signature. A high absolute value indicates a coordinated expression
of the genes in a signature, suggesting a persistent functional relationship. Al-
though similar approaches were implemented earlier (Zien et al. 2000), Staub
et al. introduced the term CS (Staub 2012).
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For the description of the activity of a gene expression signature, multiple ap-
proaches have been described (Foroutan et al. 2018; Yi et al. 2020; Tomfohr,
Lu, and Kepler 2005; Hänzelmann, Castelo, and Guinney 2013; E. Lee et al.
2008; Ebi et al. 2009). Early approaches use simple transformations to aggre-
gate gene expression profiles on a gene expression signature level. For example,
the ‘deregulation index’ used by Ebi et al. describes the average of the normal-
ized gene expression values of a gene expression signature (Ebi et al. 2009). A
slightly modified version was proposed by Lee et al., who first z-transformed
the expression data for each gene and then averaged the signature score by
summing the z values and dividing them by the square root of the number of
genes within the signature (E. Lee et al. 2008). In an algorithm called PLAGE,
Tomfohr et al. proposed to measure the activity of a gene expression signature
or pathway by using singular value decomposition (SVD). They termed the first
eigenvector as metagene (Tomfohr, Lu, and Kepler 2005). The gene set varia-
tion analysis (GSVA) method uses enrichment scores to define gene expression
signature scores (Hänzelmann, Castelo, and Guinney 2013). The authors use
the dataset’s complete gene expression signature matrix and rank the genes for
each sample. For each gene set, the distribution of ranks allows them to dif-
ferentiate whether the genes in a specific signature are coordinately higher or
lower expressed than other genes in the respective sample.

While the previous methods are tailored toward large-scale studies, individual
measures have evolved to define a single sample’s gene expression signature ac-
tivity. Among them, the single sample gene set variation enrichment analysis
(ssGSVEA) that was introduced by Barbie et al. (Barbie et al. 2009) and
the singscore, which was introduced for single sample analyses and differenti-
ates bidirectional and unidirectional gene expression signatures (Foroutan et
al. 2018). The authors rank genes for the bidirectional signatures based on
the expression levels in a single sample (descending for upregulated gene sets
and ascending otherwise). The average rank is normalized by the theoretical
maximum or minimum value. For signatures with unknown direction, the au-
thors use the absolute median-centered rank of the sample’s gene expression
abundance ranks.

Platforms
Over the past, there have been a few platforms or software solutions for eval-
uating gene expression signatures. One of the most evolved software solutions
is the SigQC R package (Dhawan et al. 2019), which systematically evaluates
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individual gene expression signatures based on multiple measures. It also al-
lows computing and comparing different scores for a signature or assessing the
contribution of individual signature genes. The overarching goal of sigQC is
evaluating a single signature or a small set of signatures and optimizing the
signature genes.

1.3 Resources for Molecular Cancer Character-
ization

To characterize and decode the complex biological phenomena in human tumor
tissues, large databases of molecular cancer profiles are required to derive knowl-
edge. Over the past years, many projects have evolved that aim to characterize
multiple modalities of single patients.

The Cancer Genome Atlas (TCGA) project is a large consortium that provides
access to data from more than 11,000 cancer patients (Weinstein et al. 2013).
Over the past decade, the resource offered a tremendous opportunity to charac-
terize cancer indications, develop a bioinformatics approach, or use it as a vali-
dation dataset. It, for example, provides access to gene copy number variation,
small nucleotide variation, mRNA expression, protein abundance, methylation,
and protein expression data. The dataset comprises 32 cancer indications with
up to 1,000 samples each.

Tempus is a commercial database for real-world data that is comprised of clini-
cal, response, and molecular data. The healthcare business Merck KGaA, Darm-
stadt, in-licensed data from multiple cancer indications. In this thesis, I had
access to more than 6,000 NSCLC patients from the Tempus database across
various modalities (single nucleotide variation [SNV], copy number variation
[CNV], gene expression, gene fusions) and clinical data from electronic health
records. Tempus developed a DNA-Seq assay, which is used as the basis for
copy number and single nucleotide calling, called xT targeted DNA-Seq assays
covering 595 (v. 1-2) or 648 (v. 3-4) genes (Beaubier et al. 2019). Similarly,
mRNA quantification is done by the RS-targeted RNA-Seq panel assay and
spans 39 Mb target region (19,396 genes).

The clinical data provides access to tumor characteristics, medications, out-
comes, clinical assessments, and adverse events. In the last chapter, outcome
data were not directly available from the Tempus database due to the raw form
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of real-world evidence data. I will describe additional details of the implemen-
tation later used to infer progression-free survival and overall survival in an
indication of interest.

The cancer cell line encyclopedia is a project that aims to provide a large-
scale dataset of cancer cell line models (Ghandi et al. 2019). Over the past
decade, the number of available data modalities for each model has been ex-
tended to gene expression, copy number, single nucleotide variation, CRISPR-
Cas, shRNA, protein expression (RPPA, Mass Spec), promotor methylation,
and more resources.

1.4 Machine Learning Concepts
Throughout this thesis, I will use several types of machine-learning approaches.
The overarching goal of machine learning models (i.e., a function to predict
the outcome from a set of features) is to learn properties from a set of input
variables (or features) to predict an outcome of interest for each sample of
input variables. The outcome might be a categorical (class prediction) or a
continuous variable (regression). Furthermore, machine learning approaches
can be grouped into supervised, unsupervised, and semi-supervised approaches.
While in the former approach, positive and negative samples are available for
training, and unlabeled samples are classified by the model, in the unsupervised
approach, no labeled samples are available. In addition to these two main
types of approaches, hybrid or special types of approaches exist. One approach
deals with a data situation in which only a few positive training samples are
available, but most are unlabeled. Additionally, the unlabeled data is expected
to comprise negative samples predomintly, and the model aims to predict the
expected additional positive labels among the unlabeled samples. This case is
called the Positive-Unlabeled (PU) problem, which requires specific designs of
machine learning approaches. I will apply one of these approaches in the last
part of this work to predict the cell of origin of a small set of NSCLCs.

The goal of a model is usually to predict the labels of a set of samples given a
set of features. To do so, evaluating a model’s generalizability (or performance)
is pivotal. The following steps are usually performed to train and evaluate a
model.

1. Split the data into a training and testing set

2. Preprocess the training data
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3. Train the model on the training data

4. Evaluate the model on the testing data

The first step allows the model to be trained on a set of data and evaluate its
performance on, for the model, unseen data. In the second step, the data is
preprocessed, which is a crucial step and might involve feature engineering, such
as a numerical transformation of a feature or the conversion of a continuous to
a categorical value. In the third step, the model is trained. It is essential to use
strategies to reduce the possibility of the model only being able to predict the
labels of the underlying data used to train (over-fitting) or not (under-fitting).
A common approach is to further split the data multiple times into subsets
called validation sets, in which the model is trained independently, which is a
strategy to obtain a more generalizable model. Lastly, the model is evaluated
on the test data split from the training data before model training. This last
step allows evaluation of the performance of unseen data and provides essential
insights into the model’s generalizability.

In the following sections, I will describe each step in more detail.

Feature Selection and Hyperparameter Optimization
As indicated above, it is crucial to implement a procedure that allows the model
to generalize beyond the data it has seen for training.

Machine learning models require a set of parameters that influence the learning
procedure and how well a model applies to a classification or regression task. In
the case of a random forest, key hyperparameters are mtry and ntree, represent-
ing the number of features used within a random forest’s splits and the number
of trees used. These parameters depend highly on the dataset under study,
and many approaches have evolved to avoid over-fitting. In the last chapter, I
use nested cross-validation, which splits the training data into multiple subsets,
named outer sets, for selecting features. As a second step, each outer set is
divided into additional subsets, which are used to identify the optimal hyper-
parameters for the selected features based on the outer set. Different methods
can be used to split the inner and outer sets. In the third chapter, I combine
bootstrapping and k-fold cross-validation (Figure 1.2).

For bootstrapping, a new set of data is generated from the training data of
the same size. However, samples are sampled with replacement, resulting in
redundancies of individual samples. For k-fold cross-validation, a dataset is split
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into k parts of the same size. A model is trained on k-1 subsets and evaluated
on the left-out subset. This process is repeated for each combination of subsets.
This procedure allows the model to assess model parameters or features on many
different subsets of the original data and evaluate small subsets of unseen data
(validation).

Figure 1.2: Schematic representation of k-fold cross-validation and nested
cross-validation. A: There are two nested loops of k-fold cross-validation in the
nested cross-validation. The training data is split into k training and validation
sets in the outer loop. It is usually used to select features. Each training split is
again divided into k parts for hyperparameter optimization. B: In k-fold cross-
validation, there is only one loop of splitting, which is used for hyperparameter
selection (e.g., when the features are already known)

Learning from Positive and Unlabeled Samples
Positive-unlabeled (PU) learning represents a subclass of machine learning prob-
lems in which the data has a small subset of positive samples and a large set
of unknown samples. That means that it is known that there is a subset of
samples that are positive but were not labeled as such. PU learning aims to
identify positive cases in unlabeled samples.

One approach for identifying positive samples in the unlabeled data combines
a machine-learning model with a binning approach (Mordelet and Vert 2014)
(Figure 1.3). This approach splits the data into 𝑘 bins of size 𝑚. Each bin
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comprises all known positive cases and a subset of unlabeled samples. A sepa-
rate model is trained for each bin, including hyperparameter optimization and
feature selection. As a last step, the class for all samples not used for train-
ing (excluding positive samples) is predicted, and the average prediction for a
sample is used as a final prediction.

The controlled binning of samples results in different combinations of positive
and unlabeled samples. In some subsets, the unlabeled samples might be true
negative; in others, there might be positive cases without a label and a mixture
of both. Thus, the trained models will sometimes differentiate true positives
from negatives or a mixture of true and false negatives.

Figure 1.3: Overview of a bagging approach for positive unlabeled learning.
The positive and unlabeled data are split into two sets (e.g., 75% and 25%).
Subsequently, the training data is divided into t bags with k unlabeled samples
(with replacement). Each bag also includes all positive samples and, separate
models are trained on each bag. The final prediction combines the classification
of the individual models.

Performance Evaluation
Multiple measures have evolved to evaluate how well a model fulfills its predic-
tion task, one frequently applied approach is the 𝐹1 Measure (Christen, Hand,
and Kirielle 2023). A contingency table is vital to many measures and counts
the number of true and false positives or negatives (e.g., correctly or wrongly
classified samples).
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Truth

Predicted true false
true true positive (TP) false positive (FP)
false false negative (FN) true negative (TN)

The contingency table can then define the precision (𝑟, i.e., true positive rate)
and precision (𝑝, i.e., true negative rate).

𝑟 = 𝑇 𝑃𝑇 𝑃 + 𝐹𝑁
𝑝 = 𝑇 𝑁𝑇 𝑁 + 𝐹𝑃

In binary classifications, the aim is often to increase TPR and TNR. The 𝐹1-
score is the harmonic mean of both.

𝐹1 = 2 𝑝 ∗ 𝑟𝑝 + 𝑟 (1.3)

in the case of PU-learning, there is however a lack of true negatives and thus it
is not possible to derive 𝑝. If the unlabeled samples are used as true negatives,
it often results in a biased performance estimation (Jain, White, and Radivojac
2017). Consequently, Lee et al. described a method that relies on precision only,
and was shown to work well (W. S. Lee and Liu 2003). They introduced the
following measure as a proxy for the 𝐹1 measure for PU-learning issues:

𝐹 𝑃𝑈1 = 𝑟2𝑃𝑟[𝑓(𝑥) = 1]𝑃𝑟[𝑓(𝑥) = 1] describing the probability of a sample being classified positive,
and 𝑟 representing recall.

1.5 Aims and Structure of this Work
This study aims to identify signatures and algorithms to establish a well-defined
set of high-quality signatures that can be applied to a novel expression dataset.
The goal is to provide critical insights into transcriptional phenotypes. Further-
more, I aim to demonstrate how this knowledge can be used to comprehensively
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characterize cancer populations and molecular readouts by in-depth analysis of
signatures. Finally, I strive to illustrate how cancer subtypes and associated
gene expression signatures can be identified by machine learning, demonstrate
their high quality by applying my gene expression signature analysis framework
and provide evidence that it can improve the diagnosis of cancer patients.

This thesis is organized into four chapters. The first chapter, the introductory
chapter, provides important aspects for the subsequent chapters. This section
provides a background on gene expression signatures and their association with
the hallmarks of cancer. It also offers an overview of essential resources and
methodologies used in subsequent chapters.

The second chapter will describe a methodological approach to analyzing gene
expression signatures. This approach utilizes gene expression signatures to rep-
resent their associated phenotype within other contexts. This allows me to
characterize gene expression data of cancers with the following goals: analyze
gene expression signatures compared to other signatures or characterize sets of
cancer samples (e.g., whole patient cohorts or cancer indications) comprehen-
sively with sets of signatures. Using this notion, I will describe a web platform
I released to the public that allows users to analyze gene expression signatures
across over 10,000 patient cancers and more than 1,000 cancer cell line models.

After describing the methodological approach, the second and third chapters fo-
cus on its application. In Chapter 3, the capabilities of the approach described
in Chapter 2 will be highlighted. This approach enables the analysis of vari-
ous cancer datasets and gene expression signatures to derive insights into the
associations of signatures suggested to describe cancer EMT, mesenchymal, or
stemness characteristics. Finally, in Chapter 4, I apply my workflow to identify
large cell neuroendocrine carcinomas (LCNEC), a rare lung cancer subtype, in
a real-world evidence dataset. While Chapter 3 demonstrated the applicability
of my approach for characterizing gene expression signatures, this final chapter
depicts how it can be used to describe biological mechanisms in cancer patients.
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Chapter 2

RosettaSX - An Approach for
Gene Expression Signature
Evaluation and Scoring

The analysis of gene expression signatures is often vital to cancer characteriza-
tion studies. In this chapter, I introduce a workflow that evaluates the applica-
bility of a collection of gene expression signatures in the study that differs from
their discovery study. Using this approach, I implement a public web service
that provides access to more than 11,000 pan-cancer patient tumor and cancer
cell line data across more than 33 cancer indications from TCGA and DepMap.
However, the workflow certainly applies to any dataset, which will be shown
in the later chapters. The work described in this chapter was published in an
article published in Neoplasia (Kreis et al. 2021).

2.1 Project Outline
As outlined in the first chapter, gene expression signatures have a long history
and have contributed significantly to the characterization of biological phenom-
ena in cancer research (Section 1.1). Their analysis allows the identification of
subpopulations in a cancer indication, the evaluation of active processes, and
the presence of cell types in a complex sample. Consequently, in cancer research,
studies often utilize gene expression signatures to describe the characteristics
of a population or to characterize a biomarker of interest (Qian et al. 2021).
Such studies often use previously defined collections of gene expression signa-
tures (e.g., hallmark 50) that were postulated to be of pivotal relevance in other
datasets and use gene expression signature scoring approaches that seek to rep-
resent the activity of a signature (Section 1.2). However, the composition of
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a population of samples might strongly vary between different studies. Thus,
it is essential to reevaluate the relevance of a gene expression signature in the
context of a new dataset. Otherwise, the gene expression signature might not
represent the phenomenon under study but the noise in the analyzed dataset
(Staub 2012). Additionally, collections, such as the hallmark 50 collection, lack
established signatures for individual cancer subtypes, such as cell of origin sig-
natures (Section 1.1), that are of pivotal importance for the characterization of
such cancers. When not using such signatures to analyze a cancer indication,
important characteristics might be overlooked.

Therefore, in this project, I implement a platform that combines the evaluation
of gene expression signatures to identify a robust set of signatures and sub-
sequently analyze these only in the context of a new dataset. The combined
analysis can help to identify relevant phenomena that drive the phenotypes of
the sample population. Once a set of relevant signatures is selected, they can
be used to characterize patterns of biomarkers, such as gene expression markers.
The embedded information can inform us about phenomena previously associ-
ated with a set of genes. Similarly, known subgroups of samples can be further
characterized by the signatures.

2.2 Methods
Here, I implemented a systematic approach that uses this property to verify
the translatability of a signature, selects relevant GES in a dataset, and finally
provides a web interface to analyze relevant signatures. This method section as
adapted from (Kreis et al. 2021)

Preprocessing Gene Expression Data
For the normalization of the gene expression data, I applied the trimmed mean
of M-values (TMM) method of the edgeR package (version 3.34.0, Robinson,
McCarthy, and Smyth 2009) to factor out differences in RNA composition be-
tween the samples of a cohort (i.e., TCGA cohort, and Experimental Factor
Ontology [EFO] anatomical entities for cancer cell lines). For the normaliza-
tion, I removed genes with less than ten reads in 70% of the samples in a cohort
or with less than 15 reads overall.
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Scoring Gene Expression Signatures
The platform selects relevant gene expression signatures using the CS (Staub
2012; Kreis et al. 2021). The CS evaluates whether the expression profiles
across a set of genes are synchronized. The score is defined by the average
pairwise correlation of all combinations of gene pairs, and a value approaching
one indicates a coherent signature (see Equation 1.2). I calculate the pairwise
Pearson correlation for all gene expression values (TMM normalized counts per
million [CPM]) and average the upper off-diagonal correlation coefficients in a
pairwise correlation matrix for each gene expression signature. A positive score
indicates that the genes are synchronously upregulated in at least a subset
of the analyzed sample population. Such a pattern might suggest that the
gene set as a group is coordinately regulated and possibly involved in the same
mechanisms. The significance of the CS is primarily dependent on the signature
size. Empirical p-values indicated that CSs larger than 0.2 are highly significant
(p-value < .0001) for a gene set of size 10 (see Section 1.2, Figure 2.2).

For the platform, I pre-calculate gene expression signature scores. For each
signature, I first log2 transformed and added one to the expression values (tran-
scripts per million [TPM] to account for gene length) and then z-scale the values
for each gene. Subsequently, I calculated the mean expression for each sample.
Others have referred to this score as a z-score or deregulation index (Hänzel-
mann, Castelo, and Guinney 2013; Ebi et al. 2009).

Software
Shiny is an R package for implementing interactive user interfaces (version 1.5.0,
Chang et al. 2022). The package and its extensions (version 1.1, Attali 2021)
enable building scalable and highly customized user interfaces. I combined
shiny with a lightweight data structure (fst 0.9.2 Klik 2022) to quickly access
molecular, clinical, and phenotype data. The shiny app’s central part is a
heatmap showing gene expression signatures. The user interface consists of
interactive inputs that allow the user to select heatmap annotations, such as
molecular readouts (e.g., gene expression, gene copy number alterations) or
clinical/phenotype information (e.g., gender).

The app runs on a public server (www.rosettasx.com) with 4 CPUs and 16 GB
of RAM with R 3.6.3. For further session information and R-package versions,
see Section B.1.

www.rosettasx.com
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Data availability
For this work, I used molecular and clinical data that was downloaded from the
Xena (Doldman et al. 2020) and genomic data commons (GDC) (Grossman
et al. 2016) database (accessed: 2020-03-15 and 2020-04-14), harmonized and
shared by Sven-Eric Schelhorn. For the cancer cell lines, I accessed molecular
and gene dependency data (SNP6 SNV: 19Q1, methylation: 19Q1, dependency:
20q2, RPPA: 19Q1, WES CNV: 20Q2) from the DepMap data portal (Meyers et
al. 2017; Barretina, Caponigro, and Stransky 2012; Dempster et al. 2019) and
used cell line annotations (provided by Sven-Eric Schelhorn) from Cellosaurus
(Bairoch 2018) to map cell lines to EFO. Gene expression signatures listed in
Table C.1 have been curated by Johanna Mazur, Miriam Urban, Sven-Eric
Schelhorn, Thomas Grombacher, Eike Staub, and me.

Statistical Tests
All analyses were performed in R (version 3.6.3, R Core Team 2021). Statistical
tests were implemented wiht base R functions. For the comparison of gene
expression levels and the IHC level of a biomarker I used Wilcoxon rank sum
test (Hollander, A. Wolfe, and Chicken 2015). For the evaluation of a significant
difference in the frequencies of a categorical variable (e.g., copy number change)
between two groups (e.g., intrinsic subtypes) I used the Pearson chi-square test
(Agresti 2006).

2.3 Results
The above-described obstacles guided me to implement an analytical workflow
and web service that allows users to analyze public cancer datasets. In the
following, I will first evaluate a collection of gene expression signatures gathered
by my research group. Subsequently, I will introduce a methodological approach
on which I build a web service named RosettaSX (Kreis et al. 2021). Using this
web service, I will analyze molecular data of TCGA Breast Invasive Carcinoma
(BRCA) patients and characterize the PAM 50 subtypes.

Evaluating the Significance of the Coherence Score
To demonstrate the effect of the CS, I will analyze a gene expression signature
proposed to describe the presence of T-cells (Bindea et al. 2013) in cancer
patients and cancer cell line models (Figure 2.1). To empirically evaluate the
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significance of the CSs for this signature, I generated 10,000 random gene ex-
pression signatures and determinated the number of signatures that reach an
equal or larger CS than the T-cell signature (i.e., an empirical p-value). While
the T-cell gene expression signature had a CS of 0.64 (empirical p-value < .001)
in the cancer patient data, the CS was lower in the TME naive samples (0.11,
empirical p-value = .895). This highlights that this signature reaches a signif-
icantly higher CS than random signatures, but only in the context where the
signature is expected to be relevant (i.e., biopsies comprising T-cells).

TCGA BRCA
(n=1,093)

Breast Cancer Cell Lines
(n=67)

ITM2A
NCALD
SKAP1
CD3E
CD2
CD3D
GIMAP5
CD6
LCK
CD96
CD3G
CD28
SH2D1A
TRAT1
BCL11B
PRKCQ

Signature Score
−2 −1 0 1 2

Figure 2.1: Gene expression levels of genes described as a gene set for T-
cells in bulk sequencing data. While the left heatmap shows the expression of
the signature genes in cancer patient data (TCGA BRCA), the right heatmap
shows the same set of genes in breast cancer cell lines. Red indicated a high
activity of the signature and blue a low activity. In patients with BRCA, almost
all genes have a coordinated expression. While patients on the left side have
high scores in most genes, patients on the right have almost exclusively low
scores. The cancer cell lines, however have an irregular expression of all genes,
indicating no functional association of the genes in this context.

The above example showed the importance of the CS on the interpretability of
a gene expression signature.

A more thorough evaluation of the empirical distribution of the CS allows me
to derive significant CS levels for gene expression signatures. Thus, for a set of
gene expression signature sizes (i.e., 3-100), I next created 10,000 random gene
expression signatures to derive empirical p-values (i.e., the number of random
signatures that reach an equal or larger value than a signature under study),
that later can be used as a measure for the evaluation of the significance of a CS
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for a gene expression signatures of interest (Figure 2.2). This analysis indicated
that the CS strongly depends on the size of the signature and that a cutoff of
0.2 filters signatures of size three, which are significant at an empirical p-value
of .05 (i.e., only 50 out of 10,000 random signatures of size three had a higher
CS than 0.2). Similarly, signatures of size 10 have an empirical p-value < .0001
(i.e., at most, one out of 10,000 random signatures of size 10 had a higher CS
than 0.2).

Figure 2.2: Distribution of empirical p-values for the CSs of signatures a size
of 3 to 400. For each entry on the x-axis (i.e., the size of the signature), I
sampled 10,000 random gene expression signatures in TCGA BRCA. The col-
ored lines indicate the empirical p-values for the individual size of the signature.
(Reprinted from Kreis et al. 2021)

I next evaluated the significance of the gene expression signature collection in
BRCA and compared it with a random gene expression signature collection of
comparable size (Figure 2.3). While the collection of random gene expression
signatures reached a maximal CS of 0.1, 156 signatures in the collection of
RosettaSX reached a score larger than 0.1. This indicates that the signatures
have a strong expression footprint that is not observable for random signatures.
However, 150 signatures did not reach a CS larger than 0.1, indicating that these
signatures do not describe a robust (i.e., coherently expressed) gene expression
module in this context. Still, these signatures might be relevant in another
context.
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Figure 2.3: Distribution of CSs for gene expression signatures in the Roset-
taSX gene expression signature collection and in a random collection of equal
size. Bar plots for the distribution of CSs grouped into intervals of size 0.1.
The top plot shows the CSs for the signatures in the RosettaSX collection, and
the bottom plot for a randomly generated collection of equal size. (Reprinted
from Kreis et al. 2021)

Comparison of Gene Expression Signature Scoring Meth-
ods
In the introduction section, I introduced multiple scores proposed for evaluat-
ing the activity of a gene expression signature (Section 1.2). In my work, I use
the z-score, which, for each sample, represents the average z-scaled expression
value of a set of genes. To evaluate the differences between the different scoring
methods, I compared the alignment of the scores to the CSs of the individual
gene expression signatures (Figure 2.4). Interestingly, the gene expression sig-
nature scores deviate a lot when the CS of the signature was low (e.g., below
0.2). However, the agreement between the different scoring systems was high
if the CS increased. These results indicate that the choice of scoring approach
has a minor influence on the analysis of the signatures that are filtered for their
robustness using the CS filter.
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Figure 2.4: Evaluation of gene expression signature scoring approaches com-
pared to the CS. Each point in the plot represents a gene expression signature of
the RosettaSX collection. The x-axis represents the CS of a signature, and the
y-axis represents the Pearson correlation between the gene expression signature
scores calculated by the different scoring approaches. Each panel compares the
methods indicated at the top and right sides of the plot. Colors describe the
size of the signature. (Reprinted from Kreis et al. 2021)
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Approach for Identifying Robust Gene Expression Signa-
tures
The general problem I seek to solve with this methodological approach is the
identification of relevant gene expression signatures in the context (e.g., TCGA
BRCA) of interest. Thus, the first step in this approach is selecting an indica-
tion and dataset of interest (Figure 3.1). Subsequently, a set of filtering criteria
allows the choice of relevant signatures (e.g., using the coherence filter). In
the next step, relevant annotations can be added to the analysis (e.g., already
defined cancer subtypes or relevant biomarkers). Finally, the filtered gene ex-
pression signatures are visualized in a heatmap that can either be clustered
using hierarchical clustering or ordered by an annotation of interest. In the lat-
ter case, the gene expression signatures are correlated with the annotation and
ordered by their association. This representation highlights gene expression
signatures that are associated with the respective annotation. Similarly, the
clustered representation highlights clusters of samples with mutual molecular
characteristics.

RosettaSX Analysis of Breast Cancer Intrinsic Subtypes
BRCA continues to be one of the leading diseases in women worldwide and is
expected to increase in the future (Xu et al. 2023). Previous studies described
luminal A and B, basal-like, human epidermal growth factor 2 (HER2)-enriched,
normal-like (Perou et al. 2000), and triple-negative (Brenton et al. 2005) as in-
trinsic molecular breast cancer subtypes. While luminal cancers usually express
one or two hormone receptors (i.e., estrogen receptor [ER], progesterone recep-
tor [PR]), the basal subtype usually does not express either receptor (Harbeck
et al. 2019). These subtypes and prognostic markers like Ki-67 have shown
clinical significance and are important prognostic markers in the clinics (Alli-
son 2021; Loibl et al. 2024). To showcase a workflow of RosettaSX, I analyzed
the TCGA BRCA cohort to recapitulate major findings in breast cancer. Fig-
ure 2.6 shows the final configuration of a RosettaSX analysis. The heatmap
was first filtered for coherent gene expression signatures and then supplemented
with important clinical markers, as provided by TCGA (ER, PR, and HER2 Im-
munohistochemistry [IHC] status) and pre-computed PAM50 subtypes (Fougner
et al. 2020). Additionally, I supplemented the heatmap with important gene
expression (ESR1: ER, and MKI67 : Ki-67 proliferation marker) and genomic
(ERBB2: HER2, and TP53) markers.
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Figure 2.5: Overview of a typical workflow analyzing of gene expression sig-
natures on RosettaSX. The user can choose from either cancer patients of the
TCGA dataset or cancer models of the CCLE and the cancer indication of
interest. Subsequently, the pre-computed gene expression signatures can be
filtered for a specific set of signatures or by the CS (default filter CS > 0.2).
Next, the user can analyze the gene expression signatures in a hierarchically
clustered heatmap or select additional molecular (e.g., SNV, CNV, gene ex-
pression) readouts relevant to the planned analysis. Additional readouts will
be added at the top of the heatmap as column annotations. If the user se-
lects an annotation, there is the option to correlate the filtered gene expression
signatures with the annotation and order the samples in descending order, au-
tomatically highlighting associated signatures. The heatmaps show signatures
in the rows and samples in the columns. (Reprinted from Kreis et al. 2021)

First, I compared the annotated markers with the annotated intrinsic subtypes.
In line with the description of intrinsic subtypes, the patients with luminal
cancer have a higher expression of ESR1 and stained positive for ER (two-sided
Wilcoxon rank sum test comparing ER status with ESR1 expression, p-value <
.0001, Figure 2.7 A.I) and PR, or both. Accordingly, most patients with basal-
like BRCA are negative for the hormone receptors and thus comprise a large
fraction of triple-negative cancers. Lastly, the HER2-like subtype is enriched
for ERBB2 copy number gains (chi-square, p-value < .0001, Figure 2.7 A.II).

Next, I compared the gene expression signature scores with the annotated in-
trinsic subtypes. A set of gene expression signatures by Calza et al. and Farmer
et al. describe the PAM50 subtypes (bold row labels). Increased levels of the
signatures descriptive for basal (Figure 2.6 clustered in the middle, Figure 2.7 B
fifth plot), luminal A (Figure 2.6 clustered at the bottom) and ERBB2/HER2
(Figure 2.6 clustered below the luminal and basal signatures, Figure 2.7 B third
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Figure 2.6: RosettaSX analysis of intrinsic molecular subtypes in TCGA
BRCA. The heatmap is split into the intrinsic molecular breast cancer subtypes
and shows gene expression signatures in the rows and patients in the columns.
Red and yellow colors indicate increased gene expression signature scores and
blue low scores. Additionally, the heatmap is supplemented with the receptor
status (ER, PR, and HER2), gene expression markers (MKI67 and ESR1),
and genomic aberrations (ERBB2 and TP53). The annotation on the left side
categorizes the signatures into different biological phenomena. I filtered for
gene expression signatures with CS ≥ 0.2, more than 60% of the signature
genes are available and the signature size is between 3 and 300. (Adapted from
Kreis et al. 2021)
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plot) showed a good agreement with the annotated PAM50 subtypes. However,
my analysis showed a substantial difference in the proliferation status between
TCGA luminal B and luminal A classified subtypes. While the luminal A sig-
nature described the luminal intrinsic subtypes well, the luminal B signature
(Calza et al. 2006) was also upregulated in the basal-like and HER2 enriched
subtypes (Figure 2.7 B first plot). Additionally, the luminal B signature was
strongly associated with proliferation signatures (e.g., Budinska et al. 2013;
Phillips et al. 2006) and the expression of MKI67 (Figure 2.7 A III). This
pattern aligned with previous studies that indicated high proliferation scores in
luminal B cancers (Feeley et al. 2014; Ades et al. 2014). Overall, this might
indicate, that the luminal B signature rather describes proliferation signals.

Previous studies showed that TP53 mutations are most prevalent in basal-like
breast cancer tumors (Mitri et al. 2022). In my analysis, the basal subtype was
associated with mutations in TP53 and elevated levels of signatures descriptive
for TP53 mutations (Miller et al. 2005; Troester et al. 2006). Additionally, the
proliferation marker MKI67 and proliferation scores were among the highest in
this subtype (Budinska et al. 2013; Liberzon et al. 2015).

Figure 2.7: Detailed representations of TCGA BRCA RosettaSX analysis.
A.I: Association between ESR1 mRNA expression and ER IHC status. A.II:
Number of patients with an ERBB2 copy number alterations. Gain: 1 (green),
loss: -1 (orange), diploid: 0 (grey), A.III: Comparison of the luminal B gene
expression score (Calza et al. 2006) and the mRNA expression of the prolifera-
tion marker MKI67. B: Gene expression signature scores for different biological
phenotypes and PAM50 subtypes in the intrinsic molecular BRCA subtypes.
(Reprinted from Kreis et al. 2021)
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At the upper part of the heatmap, there was a large cluster of signatures re-
lated to inflammation (Budinska et al. 2013; Ragulan et al. 2019; Lehmann
et al. 2011), interferon signaling (Dummer et al. 2020; Liberzon et al. 2015)
and the presence of cell types in the TME (Bindea et al. 2013; Angelova et
al. 2015). Although the pivotal importance of hormone receptors is primal
for patient stratification, more recent studies have started to evaluate the im-
portance of immune response (Klopfenstein et al. 2021). For example, the
presence of tumor-infiltrating lymphocytes (TIL) has gained importance and
was found to be an important prognostic marker, especially in patients with
triple-negative breast cancer, where TIL is associated with a better prognosis
(Denkert, Wienert, and Klauschen 2018). Similarly, using cancer models, Lan et
al. showed that type I interferon might be a predictive marker for chemotherapy-
treated ER-negative patients (Lan et al. 2019).

Another cluster of signatures in the lower part of the heatmap indicated high
gene expression signature scores for stroma, EMT, stemness, and mesenchymal
gene expression signatures, especially in the normal-like and luminal A subtype
(Sadanandam et al. 2013; Liberzon et al. 2015; Phillips et al. 2006; Farmer et al.
2009, Figure 2.7 B second plot). Previous studies in breast cancer hypothesized
a substantial contribution of stromal cells to the expression profiles of normal-
like breast cancers (Prat and Perou 2011). Accordingly, high levels of these
signatures have been associated with fibroblast content in breast, colorectal,
ovarian, and pan-cancer studies (Kreis et al. 2024; Puram et al. 2017; Izar
et al. 2020; Tyler and Tirosh 2021), possibly indicating a strong influence
if stromal cells in these profiles. However, concurrently, in-vivo studies showed
the presence of cancer cell-specific epithelial to mesenchymal plasticity in breast
cancer (Lüönd et al. 2021).

Overall, this analysis could recapitulate major characteristics of the inherent
breast cancer subtypes and highlight their complexity.

2.4 Discussion
In this chapter, I introduced RosettaSX, an analytical workflow for selecting ro-
bust gene expression signatures, and a web server for analyzing cancer datasets.
The server provides access to more than 11,000 cancer patients and cancer mod-
els. It guides the user through selecting a cancer indication, filtering for relevant
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gene expression signatures, and annotating relevant molecular of published in-
formation. Although individual components of this work have been used in the
past, to my knowledge, no comparable service is available.

To demonstrate the capabilities of RosettaSX, I exemplarily applied my method-
ological approach to the characterization of intrinsic subtypes in patients of the
TCGA BRCA cohort. In this analysis, I could recapitulate critical molecular
characteristics of the subtypes, such as the high proliferative features of luminal
B and basal-like subtypes (Feeley et al. 2014; Ades et al. 2014). Additionally, I
was also able to point out mechanisms that are still under active research Lüönd
et al. (2021), independent from the evolved intrinsic subtypes.

A key component of my approach is the gathered list of gene expression sig-
natures that build the foundation of the analyses. This collection warranted
robustness in broader applications across multiple cancer indications (unpub-
lished work). The collection aims to comprise a set of sparsely overlapping
gene expression signatures that describe fundamental biological phenomena in
a controlled, redundant manner. Combined with the step-wise filtering of the
collection, using the established CS (Staub 2012; Rahnenführer et al. 2004),
I am confident that many cancer properties can be characterized. I evaluated
the significance of the collection by thoroughly evaluating empirical CS distri-
butions (using random gene expression signatures), and a comparison with a
random gene expression signature collection or shuffled gene expression values
highlighted the significance of these genes.

The main criterion for assessing gene expression signatures I use is the CS.
Using empirical p-value distributions, I showed that the CS filters non-randomly
generated signatures and, by that, identifies robust signatures. Additionally,
the empirical p-values indicated that a CS larger than 0.2 filters for robust
signatures of size three at a significance level of p-value < .05 for signatures.
Furthermore, in the exemplary analysis of the TCGA BRCA cohort, multiple
lowly overlapping gene expression signatures that describe the same biological
mechanism passed the CS filter and were subsequently co-clustered.

In this chapter, I introduced a publicly available web service that enables users
to utilize gene expression signatures to characterize their biomarker of inter-
est. This platform combines well-established and frequently applied methods
for gene expression analysis to exploit important knowledge hidden in gene
expression signatures.
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Chapter 3

Investigating the True Source of
Increased EMT-Related
Signature Scores

In this chapter, I will apply the introduced RosettaSX framework to evaluate
a set of gene expression signatures. While the previous exemplary RosettaSX
analysis primarily focused on the characterization of known subtypes in a larger
cancer indication, this project focuses on comparing multiple gene expression
signatures with the signature collection of RosettaSX. This analysis allows me
to utilize gene expression signatures to correlate their expression profiles with
the signatures of interest and explore associated biological phenomena. The sub-
sequent analysis was published as part of my PhD studies in Clinical Research
Communications (Kreis et al. 2024).

3.1 Project Outline
The ability of cells to change from a static epithelial state to a mobile mes-
enchymal state, called EMT, is involved in normal tissue development, wound
healing, and cancer migration (J. Yang et al. 2020). Additionally, it was shown
that EMT also enables cells to enter a stem cell-like state (Mani et al. 2008),
which, in combination with the plasticity of EMT, is hypothesized to be an
essential requirement for cancer metastasis (Xu et al. 2023). While the pre-
cise differentiation of these processes is still under active research (Wilson et
al. 2020), several studies in BRCA, CRC, GBM, or HNSC have postulated
gene expression signatures that describe cancer subtypes with EMT (Lien et al.
2007; Taube et al. 2010; Guinney et al. 2015; Eide et al. 2017; Liberzon et al.
2015), stemness (Ragulan et al. 2019; Sadanandam et al. 2013) or mesenchymal
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(Walter et al. 2013; Verhaak et al. 2010; Phillips et al. 2006; Lehmann et al.
2011) characteristics (hereafter referred to as EMT-related).

Most of these studies analyzed gene expression data of bulk RNA sequencing
(RNA-Seq) biopsies, data comprising cancer cells and cells from the tumor mi-
croenvironment (TME). Thus, expression profiles in these biopsies are based
on complex mixed biological pathways describing the state of cancer cells and
cells in the TME. Therefore, signals from non-cancerous cells may confound
the derived gene expression signatures. Hence, low cancer cell content biopsies
describe expression profiles of cells in the TME, and those with high content de-
scribe cancer-specific profiles. Individual studies in HNSC (Puram et al. 2017),
ovarian (Izar et al. 2020), CRC cancer (Calon et al. 2015; Isella et al. 2015; H.
O. Lee et al. 2020; Chowdhury et al. 2021) and pan-cancer (Tyler and Tirosh
2021) have shown that there is a high contribution of non-cancer cells for in-
dividual EMT-related signatures. Puram et al. showed that patients initially
classified as mesenchymal HNSC could be assigned to other HNSC subtypes
when correcting for the influence of stromal signals. Similarly, in CRC and
breast cancer, studies of individual EMT-related signatures were shown to be
influenced by signals of fibroblasts. Consequently, these signatures were in-
dicated to be unsuitable for cancer cell lines models (Eide et al. 2017) and
are strongly dependent on the TME (Puram et al. 2017; Lehmann et al. 2016;
Chowdhury et al. 2021), resulting in discordant assignments of subtypes (Piskol
et al. 2019). Although previous studies highlighted these issues in individual
indications and signatures, a comprehensive analysis of EMT-related signatures
in bulk sequencing and single-cell RNA-Seq (scRNA-Seq) is lacking.

Therefore, in this project, I investigated a set of gene expression signatures fre-
quently used across different indications to describe cancer-specific EMT-related
characteristics (Figure 3.1 left side). I will evaluate nine questions that system-
atically narrow down the signals that might drive EMT-related gene expression
signature scores. Starting from a high-level perspective of bulk sequencing data
in cancer patient tumors, I will evaluate their association with gene expression
signatures of the RosettaSX collection (Figure 3.1 green cells). As this anal-
ysis primarily indicates the dependence of the signatures on the TME, I will
subsequently analyze bulk sequencing RNA-Seq data of cancer models that lack
influences of the TME (Figure 3.1 yellow cells). Finally, I will analyze the signa-
tures in scRNA-Seq data to differentiate gene expression signatures on a single
cell level (Figure 3.1 red cells).
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Figure 3.1: Overview of investigated gene expression signatures, datasets, and
questions analyzed in this chapter’s context. I first selected 11 gene expression
signatures used across many cancer indications. I subsequently investigated
these signatures in bulk RNA-Seq data from cancer patient tumors and cancer
cell line models to examine the questions listed on the right side in single-cell
RNA-Seq data. (Reprinted from Kreis et al. 2024)

3.2 Methods
The following methods section is partly adopted from a paper written and pub-
lished about this chapter in Cancer Research Communications (p. 517, Kreis et
al. 2024).

Processing of bulk RNA-Seq and scRNA-Seq Data
I used the trimmed mean of the M-Values (TMM) method with default param-
eters to normalize bulk RNA-Seq TCGA and CCLE mRNA gene expression
data (edgeR, version 3.36.0 Robinson, McCarthy, and Smyth 2009). I used
the downloaded TISCH2 scRNA-seq data without further evaluating cell type
clusters.

I applied a previously described method to integrate pseudobulk and TCGA
bulk gene expression data (Barrett et al. 2022). In short, counts of bulk RNA-
Seq gene expression were length-normalized (gencode Release 23, GRCh38.p3,
Frankish et al. 2019), and subsequently, I applied TMM normalization on both
pseudobulk and bulk RNA-Seq samples.



36 Chapter 3. Investigating the True Source of Increased EMT-Related
Signature Scores

Simulation of Pseudobulk Gene Expression Data
To differentiate the contribution of fibroblast content in bulk sequencing RNA-
Seq data, I simulated pseudobulk RNA-Seq data with different ratios of fibrob-
last and malignant cell RNA content. I used the SimBu R package (version
1.1.5, Dietrich 2023) and CRC scRNA-Seq data (GSE146771, see Table 3.1) to
simulate 20 pseudobulk samples that were generated with 20%-80% of fibroblast
cell RNA and 80%-20% malignant cell RNA.

Definition and Scoring of Gene Expression Signatures
For scoring and evaluating gene expression signatures, I used the previously de-
scribed gene expression signature collection (Section 2.2) and gene expression
signature scoring methods (Section 1.2). Similarly, I applied the previously
described coherence filtering to select robust gene expression signatures (Equa-
tion 1.2).

However, for each cell type cluster in scRNA-seq data, I used the addModule to
score gene expression signatures (Seurat, version 4.1.0, Hao et al. 2023, 2021;
Stuart et al. 2019; Butler et al. 2018; Satija et al. 2015). For the pseudobulk
data, I used the same scoring approaches described in Section 1.2 and calculated
CSs on the integrated bulk RNA-Seq and pseudobulk data.

Besides the described signatures, I added gene expression signatures for the
CMS4 subtype (EMT signatures). Guinney et al. and Eide et al. described
two separate machine learning models for classifying CMS subtypes in patient
data and preclinical models (Guinney et al. 2015; Eide et al. 2017). Thus,
no gene expression signature is available, and I derived a signature as a proxy
for the Guinney et al. CMS4 signature, I derived high-importance genes (using
mean accuracy decrease) from the trained random forest model (CMSClassifier
R package, version 1.0.0, Guinney et al. 2015). Accordingly, for the template
genes provided by the CMSCaller package (version 0.99.2) by Eide et al., I ex-
tracted the CMS4 template genes. Subsequently, using a one-sided Wilcoxon
rank sum test, I identified genes that had a significantly higher expression in the
CMS4 compared to the CMS1-3 TCGA CRC cohort (with a log2 fold change
larger two and a Bonferroni corrected p-value < .05, Bonferroni 1936). This pro-
cedure resulted in signatures of size 139, which I derived from the CMSclassified
model, and 33, which I derived from the CMSCaller model. This procedure only
approximates the original models but uses the information of the most impor-
tant genes associated with CMS4.
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Identifification of Cell Type Specifc Markers in scRNA-
seq Data
I used the FindMarkers function of the Seurat package (version 4.1.0, Hao et
al. 2023, 2021; Stuart et al. 2019; Butler et al. 2018; Satija et al. 2015) to find
genes of a gene expression signature that are differentially expressed between
cell type clusters (e.g., between fibroblasts and malignant cells). I filtered for
genes with a fold-change larger than 2 and a p-value < 1𝑥10−10.

Survival analysis
I downloaded the clinical outcome endpoints disease-free interval (DFI) and
overall survival (OS) from the supplementary data of (Liu et al. 2018). I fitted
univariate Cox PH models to the EMT-related gene expression signature scores
in BRCA, CRC, HNSC, and PAAD. Similarly, I fitted multivariate Cox PH
models, which accounted for the American Joint Committee on Cancer staging
(excluding patients with missing data) and adjusted p-values using the Holm
method (Holm 1979).

Methods for the Visualization of Results
All results were implemented with R (version 4.1.1 R Core Team 2021). Roset-
taSX analysis results are visualized with the ComplexHeatmap R package (ver-
sion 2.10.0), and heatmaps are clustered using Euclidean distance and complete
hierarchical clustering. I used Pearson correlation to correlate heatmap an-
notations (e.g., the tumor cell content) with gene expression signature scores.
Other plots are generated using ggplot2 (version 3.4.0). Tables are created
with (version 0.8.0, Iannone et al. 2024) and gtsummary (version 1.7.0, Sjoberg
et al. 2021). Statistical tests (i.e., Wilcoxon Rank sum test, Pearson corre-
lation) were implemented with rstatix (version 0.7.1, Kassambara 2023) and
survival analyses were implemented with the survival (version 3.3-1, Therneau
and Grambsch 2000) package. For additional session information for this chap-
ter see Section B.1.

Data Availability
TCGA and CCLE data were accessed as noted in Chapter 2 (Section 2.2). Ad-
ditionally, I downloaded cancer cell content measures (Consensus Purity Esti-
mation [CPE] and ABSOLUTE) from TCGAbiolinks (Mounir et al. 2019) and
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from the supplementary material of (Raphael et al. 2017). The TCGA decon-
volution analysis uses precomputed data access from (Luca et al. 2021) and
https://ecotyper.stanford.edu/carcinoma/.

Michail Yekelchyk downloaded the scRNA-seq data from the TISCH2 database
(D. Sun et al. 2021; Han et al. 2023), and I used the data in Table 3.1.

Table 3.1: Listing of scRNA-seq datasets accessed from the TISCH2 database.
The tumor type column indicates which tumor types of the respective dataset
were used and how many cells were extracted (D. Sun et al. 2021; Han et al.
2023). (Downloaded by Michail Yekelchyk).

Accession Reference Tumor Type Technology Cells

EMTAB8107 Qian et al. (2021) CRC, BRCA 10x Genomics 56,219
GSE148673 Gao et al. (2021) BRCA 10x Genomics 10,359
GSE161529 Pal et al. (2021) BRCA 10x Genomics 332,168
GSE146771 L. Zhang et al. (2020) CRC 10x Genomics 43,817
GSE166555 Uhlitz et al. (2021) CRC 10x Genomics 66,050
GSE141383 A. X. Chen et al. (2021) Glioma Microwell-seq 10,502
GSE103322 Puram et al. (2017) HNSC Smart-seq2 5,902

3.3 Results
I will analyze gene expression signatures in bulk sequencing data in the first
section. The overarching goal of the study of bulk sequencing data is to differen-
tiate signals originating from tumor cells, the TME, or the tumor macroenviron-
ment (i.e., paired NAT tissue). An in-depth comparison of biological processes
associated with the EMT-related signatures and the analysis of several types of
bulk sequencing data will allow me to differentiate these signals, subsequently
guiding me to identifying cell type-specific expression patterns.

TME processes are Associated with EMT-related Signa-
tures
One way to utilize RosettaSX is to analyze the association of a signature with
other previously published signatures and evaluate which other phenomena a
signature is associated with. Here, I analyzed a set of gene expression signatures
that describe immune-related (e.g., Finotello et al. 2019; Bindea et al. 2013;
Samoszuk, Tan, and Chorn 2005), stroma (e.g., Farmer et al. 2009; Liang
et al. 2005), cell of origin (Sadanandam et al. 2013; Budinska et al. 2013),
oncogenic mechanisms (Staub 2012; Liberzon et al. 2015; Melo et al. 2013)
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and biological signaling pathways (Creighton 2007; Liberzon et al. 2015) and
compared them with EMT-related signatures. First, I started with the analysis
of CRC. I filtered the 285 gene expression signature collection of RosettaSX
for a CS larger than 0.18 and selected signatures associated explicitly with
the TME or oncogenic signaling pathways. I reduced the CS by 0.02 because
individual subtype-specific gene expression signatures did not reach a CS of 0.2.
However, as indicated in Figure 2.2, a signature larger than four is significant at
a significance level of .05. I next grouped the signatures, which described similar
phenomena (e.g., proliferation, cell types, pathways) and reduced the number
of signatures within a group to at most three signatures using the Jaccard index
(at most 0.25, excluding EMT-related signatures). The filtered signatures are
displayed in Figure 3.3 in the left heatmap. Interestingly, cancer cell content
was negatively correlated with EMT-related (Figure 3.3 left heatmap, Figure 3.2
A). Additionally, their profiles aligned with each other and also with different
gene expression signatures describing cell types (e.g., B cell, T cell, macrophages
Bindea et al. 2013; Thorsson et al. 2018), stroma, ECM or fibroblasts (Farmer
et al. 2009; Samoszuk, Tan, and Chorn 2005; Liang et al. 2005) (Figure 3.3,
Figure 3.4). While the epithelial markers CDH1 and EPCAM are expressed
at a lower level in EMT-high samples (Figure 3.2 B), the mesenchymal VIM
marker is comparably higher expressed in these samples.

This analysis indicated that EMT-related signatures are significantly associated
with low cancer cell content biopsies and signatures that describe the TME.

EMT-related Signatures are Less Coherent in TME-naïve
Cancer Models
The above analyses indicated that EMT-related signatures are strongly linked
to processes in the TME. By analyzing cancer cell lines, I can evaluate gene
expression profiles originating from cancer cells, not TME cells. Thus, I next
evaluated the cancer cell specificity of EMT-related signature scores. Figure 3.3,
on the left side, the second heatmap shows the RosettaSX analysis of colorectal
cancer cell lines. Interestingly, multiple gene expression signatures that describe
the presence of cell types did not reach a CS larger than 0.2, indicating that
the signatures should not be evaluated in these samples (which is expected, as
they lack TME). However, individual stroma (Farmer et al. 2005) gene expres-
sion signatures reached a sufficient CS. These signatures had higher scores in a
small subpopulation of cell lines with high mesenchymal gene marker expression
(VIM) and low epithelial expression values (EPCAM and CDH1). A thorough
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Figure 3.2: Gene expression signatures and their association with tumor
content and the epithelial markers in cancer patient tumors and cancer cell
lines. A: Analysis of the association of cancer cell content readouts with EMT-
related signatures and other signatures of the RosettaSX collection (excluding
TME-related signatures). B: Pearson Correlation of EMT (Taube et al. 2010),
fibroblast/stroma (Farmer et al. 2009), mesenchymal (Phillips et al. 2006),
and a proliferation signature (Budinska et al. 2013) with cancer cell content
(CPE) (Mounir et al. 2019), bottom left annotation: Pearson correlation [95%
CI]. C: Comparison of EMT (Taube et al. 2010) and fibroblast/stroma (Farmer
et al. 2009) gene expression signature scores in relation to an epithelial gene
expression marker (EPCAM). (Reprinted from Kreis et al. 2024)
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Figure 3.3: RosettaSX analyses of CRC (left) and HNSC (right) cancer pa-
tient tumors and cancer cell lines. The two pairs of heatmaps show gene expres-
sion signatures for filtered gene expression signatures (rows) for either TCGA
tumors (columns) or cancer cell lines. Dark and light green indicates the corre-
lation coefficient with tumor purity on the left side of the heatmaps. Addition-
ally, two epithelial markers (CDH1 and EPCAM) and a mesenchymal marker
(VIM) are annotated above the heatmap. The annotated tumor purity orders
cancer patient samples. Cancer cell lines are ordered by VIM expression. Gene
expression signatures are ordered by their correlation with the sample’s cancer
cell content (primary tumors) or VIM expression levels (cancer cell lines). At
the top of the heatmaps are gene expression signatures negatively correlated
with cancer cell content. (Reprinted from Kreis et al. 2024)
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Figure 3.4: Pearson correlation coefficients between EMT-related gene expres-
sion signatures and signatures associated with low cancer cell content (T-cell,
ECM, fibroblasts, or macrophages (Thorsson et al. 2018; Liang et al. 2005;
Farmer et al. 2009; Samoszuk, Tan, and Chorn 2005; Bindea et al. 2013))
and high cancer cell content (CIN, MYC, Goblet-like (Liberzon et al. 2015;
Ragulan et al. 2019; Melo et al. 2013)). Red: positive association, white: no
association, blue: negative association. (Reprinted from Kreis et al. 2024)

investigation of cell lines with high signature scores indicated that they were
lineages of fibroblasts (i.e., HS698T, HS675T, and HS255T; Figure 3.2 C). To
evaluate the influence of these cell lines on the CS of the signatures, I removed
the cell lines with a fibroblast lineage. I reevaluated the CS of the EMT-related
signatures (Figure 3.5). Interestingly, the CS of all gene expression signatures
decreased, highlighting the large effect of the cell lines population derived from
a fibroblast lineage.

I then repeated the above-outlined RosettaSX analyses in HNSC, BRCA, GBM,
and PAAD (Figure 3.3 third and fourth heatmap, Figure A.1, Figure A.2, Fig-
ure A.3). Congruent with the analyses in CRC, the signatures showed that low
cancer cell content was associated with high signature scores in the analyses of
cancer patients and correlated with the mesenchymal markers VIM in cancer
cell lines.



3.3. Results 43

Figure 3.5: CS for the 11 EMT-related gene expression signatures in colorec-
tal cancer cell lines. Purple: using all cell lines, yellow: excluding fibroblast
lineages. (Reprinted from Kreis et al. 2024)

These results indicated that in TME-naïve samples, EMT-related signatures
have uncoordinated expression profiles and are not cancer cell-specific.

The Environment of a Tumor Influences Scores of EMT-
related Signatures
After I outlined the associations of EMT-related signature scores in cancer pa-
tient biopsies and TME-naive cancer models, I evaluated the expression of the
signatures in the broader range of a tumor sample - normal tissue adjacent to
the normal (NAT). TCGA provides paired tumor samples with NAT tissue for
a subset of their patients. To evaluate the influence of the TME and the tumor
macroenvironment (i.e., NAT used as a proxy), I divided the patient biopsies
based on the cancer cell content into low and high. Subsequently, I compared
the signature score levels in these samples with those of paired NAT samples
(Figure 3.6). I noted that the distribution of cancer cell content across the in-
dication is different, with the highest tumor content in BRCA (96.01%), CRC
(95.69%), and lowest in HNSC (85.95%).

The analysis indicated that in CRC and BRCA, all gene expression signature
scores were significantly lower in samples with low tumor content (Figure 3.6
lower comparisons). However, in HNSC, only the Walter et al., Verhaak et
al., and Lehmann et al. gene expression signatures were significantly higher
expressed in low compared to high tumor content samples (Lehmann et al.
2011; Walter et al. 2013; Verhaak et al. 2010). Interestingly, in BRCA (the
cohort with the highest tumor content samples), there was a significantly higher
expression of all signatures in the NAT samples than in the high cancer cell
content samples (Figure 3.6 lower comparisons). While in HNSC, none of the
signatures had higher scores in the NAT samples, in CRC, only the Walter et
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al. and Lehmann et al. signatures had significantly higher scores in NAT samples
(Walter et al. 2013; Lehmann et al. 2011).

These results indicate a profound influence of the TME and the macroenviron-
ment (i.e., NAT), especially in BRCA. This signal was less stringent in CRC
and HNSC, possibly attributable to the lower cancer cell content.

Figure 3.6: Gene expression signature scores in paired patient tumor (T) and
NAT biopsies. For TCGA BRCA, CRC, and HNSC, the tumor samples are
categorized into low or high cancer cell content samples using the upper and
lower quartiles. The bars indicate my comparisons using a Wilcoxon rank sum
test. ns: not significant, *: p < .05, **: p < .01, ***: p < .001, ****: p <
.0001. (Reprinted from Kreis et al. 2024)

Signatures are Associated with Cell Types Enriched in
Normal Tissue
Next, I evaluated the association of the gene expression signature scores with
different cell types and cell type states using precomputed deconvolution cell
type abundances (Figure 3.7). The data provides information on the cell type
and state in tumor and NAT tissue. Interestingly, most signatures were strongly
correlated with cell states specifically enriched in NAT tissue (e.g., epithelial
cells, CAF2, M2-like monocytes, mast cells). Still, there was also a positive
correlation with tumor-associated cell states; the strongest association was with
pro-angiogenic epithelial cells. However, a gene that was indicated to be strongly
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associated with the pro-angiogenic epithelial cell state was COL1A1. Luca et
al. listed the gene as one of the ten most associated with the pro-angiogenic
epithelial cell state (Luca et al. 2021). However, simultaneously, the gene was
also significantly related to fibroblasts by them and others (M. Li and Lu 2020;
Mingyue Li et al. 2020; Y. Chen et al. 2023).

I repeated the analysis in the CRC, HNSC, and PAAD TCGA datasets (Fig-
ure A.4; Figure A.5; Figure A.6). Overall, the correlation between the cell
state abundances and the EMT-related gene expression signatures was similar
to that in BRCA. The signature scores correlated with cell states reported to be
enriched in normal tissue. The only exceptions in CRC were Walter et al. and
Verhaak et al. (Walter et al. 2013; Verhaak et al. 2010).

Overall these results indicated, that overall the signatures are often strongly
correlated with cell types and states that are enriched in NAT tissue and also
cell states in tumor tissue, but that the deconvolution of these cell states might
be insufficient.

Malignant Cells Only Lowly Express EMT-related Signa-
tures
The above analyses showed that signals from the TME primarily drive EMT-
related signatures and that there is little evidence that they emerge from cancer
cell-intrinsic signals. Therefore, I next analyzed multiple scRNA-Seq datasets
to deconvolute the contribution of individual cell types to gene expression signa-
ture scores (Figure 3.8, Figure 3.9). While cell types with the highest expression
of the gene expression signatures comprised myofibroblasts, fibroblasts, and en-
dothelial, malignant cells had lower scores of the signatures, and only a tiny
fraction of malignant cells expressed the signatures. This pattern was recogniz-
able across cancer indications (BRCA, CRC, HNSC, and Glioma). The only
exception of gene expression signatures not primarily associated with fibroblasts
were two mesenchymal signatures by Walter et al. and Verhaak et al. (Walter
et al. 2013; Verhaak et al. 2010). Although many fibroblasts, myofibroblasts,
and endothelial cells expressed the signatures at a lower level, their expression
was higher in monocytes and macrophages (Figure 3.9).
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Figure 3.7: Deconvolution analysis of tumor and NAT samples in TCGA
BRCA. The EMT-related gene expression signatures (columns) levels correlate
with the abundance of different cell types and type states. Red indicates a pos-
itive correlation, and blue ia a negative correlation. *: significant association.
(Reprinted from Kreis et al. 2024)
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Figure 3.8: Single Cell RNA-seq gene expression signature levels for the
studied EMT-related signatures in BRCA, CRC, HNSC, and Glioma. If mul-
tiple datasets for a cancer indication were available, I averaged the percent
expressed and scaled average expression. Displayed are only malignant cells
and cell types with a high percentage of expressing cells. Red: high expres-
sion, green low expression, small dot: few cells express the signature, large dot:
many cells expressing the signature, x: cell type unavailable. (Reprinted from
Kreis et al. 2024)

EMT-related Signature Genes are Sparsely Expressed in
Malignant Cells
The previous analyses indicated a minor contribution of tumor cells to the
expression levels of the EMT-related gene expression signatures. Thus, I evalu-
ated if individual signature genes are significantly higher expressed in malignant
cells than in fibroblasts (the major contributors from the above section). Ta-
ble 3.2 shows the percentage of differentially expressed genes in malignant cells
or fibroblasts across all analyzed EMT-related gene expression signatures. The
maximal percentage of differentially expressed genes in cancer cells was 3.70%
for the stemness signature by Ragulan et al. (Ragulan et al. 2019). Besides this,
signature genes were frequently expressed in malignant cells (with up to 64%
of the genes Phillips et al. 2006). This effect was most prominent for the stem-
ness signatures (Ragulan et al. 2019; Sadanandam et al. 2013), a mesenchymal
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signature (Phillips et al. 2006), and individual EMT signatures (Taube et al.
2010; Lien et al. 2007; Liberzon et al. 2015) in BRCA and CRC. This analysis
indicates that only a small fraction of genes are significantly more expressed in
malignant cells than fibroblasts.

Table 3.2: Results of a differential gene expression analysis, comparing the
expression of genes of gene expression signatures between malignant cells and
fibroblasts. Signatures are grouped into EMT, stemness, and mesenchymal.
Each column shows the percentage of differentially expressed genes of gene
expression signatures in the malignant and fibroblasts across the different indi-
cations. (Reprinted from Kreis et al. 2024)

Geneset BRCA1 CRC1 Glioma1 HNSC1

EMT

Eide (2017) 2.1 (0.0) 2.6 (0.0) 0.0 (0.0) 5.6 (0.0)
Guinney (2015) 6.7 (0.0) 8.3 (0.0) 0.0 (0.0) 10.5 (0.0)
Liberzon (2019) 25.5 (0.2) 29.0 (0.0) 13.2 (0.5) 18.4 (1.0)
Lien (2008) 38.3 (0.0) 45.7 (0.0) 14.8 (0.0) 33.3 (0.0)
Taube (2010) 25.2 (0.4) 26.6 (0.0) 17.3 (0.0) 18.2 (1.1)

Mesenchymal

Lehmann (2011) 3.4 (0.0) 5.7 (0.0) 2.9 (0.0) 3.5 (0.0)
Phillips (2006) 56.4 (0.0) 64.1 (0.0) 38.5 (0.0) 38.5 (0.0)
Verhaak (2010) 3.7 (0.0) 4.1 (0.0) 2.6 (0.0) 2.6 (0.7)
Walter (2013) 5.6 (0.3) 6.3 (0.0) 2.8 (0.0) 5.2 (0.4)

Stemness

Ragulan (2019) 44.4 (3.7) 53.7 (0.0) 25.0 (0.0) 44.4 (0.0)
Sadanandam (2013) 27.4 (0.5) 35.7 (0.0) 8.2 (0.5) 25.9 (0.0)

1DEG fibroblast % (DEG malignant cells %)

Fibroblast-enriched Pseudobulk Samples Resemble Low
Cancer Content Samples
To further evaluate the association of fibroblasts on bulk sequencing samples,
I used a CRC single-cell dataset (H. O. Lee et al. 2020) to simulate pseudob-
ulk (Dietrich 2023) samples with varying fibroblast cell content. I compared
these pseudobulk samples with TCGA CRC samples in an integrated Roset-
taSX analysis (Figure 3.10). The study indicated a cluster of gene expression
signatures that describe CRC subtypes: transit amplified (Ragulan et al. 2019),
crypt (Budinska et al. 2013), or goblet-like (Ragulan et al. 2019). Additionally,
a cluster with oncogenic processes like proliferation (Staub 2012) had higher
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scores in samples with intermediate and high cancer cell content (top and bot-
tom clusters). Besides that, a large cluster of signatures is associated with cell
types, processes describing phenomena in the TME (Samoszuk, Tan, and Chorn
2005; Liang et al. 2005; Bindea et al. 2013), and EMT-related gene expression
signatures. In this cluster of signatures, the pseudobulk samples with high fi-
broblast content had higher expression levels and co-occurred with low cancer
cell content.

This analysis highlighted the pivotal contribution of high fibroblast content
to the EMT-related signature scores. Additionally, it became apparent that
fibroblast-enriched and low cancer-cell content samples have highly congruent
expression profiles.

Low Cancer Content Associated Genes Contribute Most
to Signature Scores
In the previous sections, I analyzed the gene expression signatures either on
bulk sequencing or scRNA-Seq data level. A combined analysis of the pre-
viously described readouts can differentiate which genes of a gene expression
signature contribute most to the signature scores in bulk RNA-Seq data and
show in which cell types these genes were primarily expressed. For this, I eval-
uated three measures: a) the correlation of a signature gene’s expression values
with the respective gene expression signature score, b) the correlation of a sig-
nature gene’s expression value with tumor purity, and c) the log fold change
of cancer cell expression vs. fibroblast expression from the single cell analysis.
Figure 3.11. While genes with the highest contribution to the signature scores
were lower expressed in high cancer cell content samples, those with a lower
influence on the signature scores were primarily associated with low cancer cell
content. Additionally, high-influence genes often had higher scores in fibrob-
lasts compared to malignant cells, especially for the Liberzon et al., Taube et
al., and Sadanandam et al. signatures (Taube et al. 2010; Liberzon et al. 2015;
Sadanandam et al. 2013). The Genes most often present in these signatures
and highly expressed in fibroblasts were COL3A1, COL1A2, and COL1A1.

Thus, for all signatures, I observed a high contribution of genes associated with
low tumor content and often highly expressed by fibroblasts. This analysis
indicated that all signatures strongly depend on signals from the TME, in most
cases, on the fibroblast content.
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EMT-related Gene Expression Signatures are Not Asso-
ciated with Prognosis
Individual signatures of the herein analyzed EMT-related gene expression signa-
tures have been described as prognostic (Sadanandam et al. 2013; Calon et al.
2015; Isella et al. 2015), but others could not recapitulate such findings (Mak
et al. 2016; Tan et al. 2014). Thus, I next reevaluated their prognostic value in
untreated TCGA patients. I evaluated their survival in univariate (Figure 3.12)
and multivariate proportional hazard (PH) models that account for tumor stage,
gender, and age of the patients Figure 3.13. Overall, there was no significant
association between decreased disease-free survival and overall survival across
any signature in any cohort.

3.4 Discussion
In this chapter, I decoded the contribution of signals stemming from tumor cells
and cells in the TME to EMT-related gene expression signature scores. The
in-depth analysis of intermingled gene expression profiles from bulk sequencing
data to single cell level using scRNA-Seq data clearly showed that none of
the 11 analyzed gene expression signatures was expressed by malignant cells,
but cells in the TME, primarily fibroblasts. Although the herein analyzed set
of signatures is, to my knowledge, the largest set of analyzed EMT-related
signatures, the highlighted issues with these signatures are possibly also present
in other indications.

The mesenchymal, stemness, or EMT characteristics have been characterized
in gene expression signatures across multiple cancer indications. My analysis
revealed that neither in the indications from which the signatures originated
nor in other indications did these signatures describe cancer-specific mesenchy-
mal characteristics (Figure 3.3, Figure A.1, Figure A.2, Figure A.3). Although
previous studies showed separate analyses for individual gene expression signa-
tures in ovarian, CRC, or HNSC (Calon et al. 2015; Isella et al. 2015; Puram
et al. 2017), a comprehensive analysis as in this work was lacking. My studies
showed that these signatures describe a strong signal observable across cancer
indications (as indicated by the CS). However, phenomena in the TME and
macroenvironment most often drive this association. Additionally, the EMT-
related signatures had low CSs in cancer models (lacking signals from cells in
the TME), reinforcing the high dependency on cancer cell extrinsic signals.
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My results highlight that the TME strongly influences elevated levels of EMT-
related gene expression. It became evident that especially in BRCA, the TME
and the macroenvironment (NAT tissue) had higher signature scores than the
samples with high cancer cell content (Figure 3.6). In CRC and HNSC, this
effect was less pronounced, possibly attributable to the overall lower cancer
cell content of all samples. This analysis indicated that sampling errors during
a biopsy can significantly impact the scoring of these signatures. Thus, it is
crucial to thoroughly control for a high cancer cell content when the goal is
to derive such molecular phenotypes from the samples under study. To further
differentiate the influence of signals of individual cell states stemming from cells
in the tumor and NAT tissue, I performed a gene expression deconvolution anal-
ysis (Figure 3.7, Figure A.4, Figure A.5, Figure A.6). It became apparent, that
high cell abundances of cell states, that were associated with NAT, strongly
correlated with most of the EMT-related signatures. One of the cell states that
had the highest correlation with EMT-related signature scores (pro-angiogenic
epithelial cells). However, Luca et al., indicated that this cell state was strongly
associated with the expression of COL1A1, which is also highly expressed by fi-
broblasts (M. Li and Lu 2020; Mingyue Li et al. 2020; Y. Chen et al. 2023). This
possibly indicates a impure deconvolution of this cell state and strengthens the
influence of fibroblasts on an increased expression of EMT-related signatures.

In my analyses of scRNA-Seq data, I found low or no contribution of malignant
cells to EMT-related gene expression signature scores (Figure 3.8, Figure 3.9,
Table 3.2). However, my analyses might lack granularity and the differentiation
of small cancer cell populations. More recent concepts describe cells in the TME
that guide small clusters of cancer cells via the concept of leader cells and tu-
mor budding (Williams et al. 2019; Vilchez Mercedes et al. 2021). My analysis
does not invalidate such concepts, as it lacks the granularity to detect such cell
clusters. The main point of my analysis is that the analyzed gene expression sig-
natures cannot differentiate such small populations in complex bulk sequencing
cancer samples. Additionally, cells in the TME or macroenvironment often ex-
press the genes in these gene expression signatures at higher levels. Thus, these
signatures are not sufficient to describe cancer-specific EMT-related processes.

While individual EMT-related gene expression signatures had an association
with patient outcome proposed (Sadanandam et al. 2013; Calon et al. 2015;
Isella et al. 2015), others could not recapitulate such findings. Except for TCGA
PAAD, none of my univariate Cox PH models indicated a significant association
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between high signature scores and OS or DFI (Figure 3.12, Figure 3.13). Simi-
larly, when correcting for confounding factors like age and gender in multivariate
models, only in PAAD, there was a significant association. The discrepancy be-
tween these results can be manifold; previous studies separated patients into
high and low gene expression signature scores, did not provide sufficient infor-
mation on the source of outcome data (Sehgal et al. 2024), or subset the gene
expression signatures (Calon et al. 2015). Consequently, these results, which
do not describe characteristics of the complete set of gene expression signatures,
are biased due to cutoff selection (Bennette and Vickers 2012; Busch 2021) or
rely on low-quality data (Liu et al. 2018).

This chapter showed RosettaSX’s capabilities in comparing a gene expression
signature with other gene expression signatures and using the associated phe-
nomena to characterize their profiles. Similar analysis of other biomarkers could
be used to describe related phenotypes.
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Figure 3.9: Scores for EMT-related signatures across different cancer cell
types in scRNA-seq data from BRCA, CRC, HNSC, and Glioma. (Reprinted
from Kreis et al. 2024)
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Figure 3.10: RosettaSX analysis of integrated TCGA CRC and pseudobulk
samples was generated using CRC scRNA-Seq data. The pseudobulk samples
are simulated from malignant and fibroblast cells only. Rows show the coher-
ent gene expression signatures, and columns show the individual samples. High
scores are indicated with red/orange colors and low scores with blue. The top
annotation indicates the tumor purity (i.e., CPE values for TCGA cancer pa-
tient tumors and the fraction of sampled malignant cell RNA for pseudobulk
samples) and the sample’s origin above it (red: TCGA, blue: pseudobulk sam-
ple). Pseudobulk samples contain a fraction of 20% to 80% of RNA sampled
from fibroblasts. (Reprinted from Kreis et al. 2024)
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Figure 3.11: Analysis of multiple measures to evaluate the contribution and
cell type specificity of individual genes in a gene expression signature. Each
panel shows the results for EMT-related signature, and the axes show the
correlation of the mRNA gene expression levels with the sample’s cancer cell
content (x-axis) and the respective gene expression signature (y-axis). Each
dot in the panels represents a gene of the gene expression signature. The color
indicates the fold-change between a comparison of malignant and fibroblasts
(blue: high expression in fibroblasts). (Reprinted from Kreis et al. 2024)
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Figure 3.12: Overview of results from univariate Cox PH models in BRCA,
CRC, HNSC, and PAAD (column panels), analyzing DFI and OS (row panels).
The colors indicate the process described by the gene expression signatures,
and each y-axis entry is one gene expression signature whose signature score
was used in the Cox PH model. (Reprinted from Kreis et al. 2024)
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Figure 3.13: Overview of results from multivariate Cox PH models in BRCA,
CRC, HNSC, and PAAD (column panels), analyzing DFI and OS (row panels).
Each model was corrected for tumor stage, gender, and age of the patients.
The colors indicate the process described by the gene expression signatures,
and each y-axis entry is one gene expression signature whose signature score
was used in the Cox PH model. (Reprinted from Kreis et al. 2024)
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Chapter 4

Exposing the Underdiagnosis of
Pulmonary LCNEC by Using
RosettaSX

I applied my RosettaSX platform to characterize gene expression signatures in
the previous chapters. In this chapter, I will apply the framework to identify and
describe a rare lung cancer subtype - large cell neuroendocrine carcinoma (LC-
NEC). Firstly, I will use RosettaSX to identify a subpopulation of patients with
NSCLC with high neuroendocrine gene expression signature scores. Secondly,
I will train a machine learning model using neuroendocrine gene expression
markers to subsequently investigate the underdiagnosis of LCNEC.

4.1 Project Outline
Neuroendocrine (NE) tumors are rare diseases that can occur among others in
the lung. NE tumors in the lung comprise 15% of small cell lung cancer (SCLC),
3% (LCNEC), and 2% (carcinoids) of all lung tumors, respectively (Rekhtman
2022). While there are multiple transcriptomic and genomic subtypes for SCLC,
LCNEC is less frequently characterized (George et al. 2018; W. Zhang et al.
2018). The main reason for this is its low prevalence and difficulties in patho-
logical classification (Kinslow et al. 2020; Lantuejoul et al. 2020; L. Yang, Fan,
and Lu 2022). The WHO guidelines recommend the presence of at least one
positive NE IHC marker (SYP, CHGA, NCAM1), along with neuroendocrine
morphology, high mitotic count, and visible necrotic tissue (Lindsay et al. 2021;
Meihui Li, Yang, and Lu 2022). However, the classification is often difficult due
to small biopsy sizes, limited testing for NE differentiation, and similarities with
other lung subtypes (Derks et al. 2019; Rekhtman 2022; L. Yang, Fan, and Lu
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2022). Additionally, the WHO’s 2021 extension to differentiate pure LCNEC
from those co-occurring with other NSCLC (called LCNEC combined) further
highlights the complexity of PCNEC classification and possible reasons for an
underdiagnosis of LCNEC (Lindsay et al. 2021; Kinslow et al. 2020).

Molecular studies can differentiate important markers, which can guide the
stratification of patients for therapeutic options. In LCNEC, early genomic
studies with up to 90 samples proposed two subtypes that indicate an NSCLC-
like or SCLC-like characteristic (Yoshimura et al. 2021). While the SCLC-
like subtype has characteristic co-alterations in TP53 and RB1, the NSCLC-
like subtype was proposed to have alterations in TP53 and STK11 or KEAP1
(George et al. 2018). A large-scale analysis of genomic data from 1,429 patients
with LCNEC recapitulated these genomic subtypes and extended the list of
NSCLC-like alterations by TP53, STK11, KRAS, CDKN2A, CDKN2B, MTAP,
SMARCA4, CDN11, FRG3, FGF9, FGF13 and CCND1 (Burns et al. 2024).
Transcriptionally, Heijboer et al. indicated that ASCL1-positive patients (tran-
scriptomic subtype in SCLC) are associated with poor prognosis (Heijboer et al.
2023). Clinically, patients suffering from LCNEC are primarily elderly males
with poor survival (Kinslow et al. 2020). Compared to patients with NSCLC,
those with LCNEC have worse prognosis and no standard therapy. The lack of
sufficient patients hinders the evaluation of therapeutic outcomes between ther-
apies. Patients are often treated either by NSCLC-like or SCLC-like therapies.
Past studies indicated contradictory results regarding the benefit of NSCLC-
like chemotherapy (CTx, e.g., pemetrexed, platinum combinations) or immune
checkpoint inhibitors (ICI, e.g., atezolizumab) (Rossi et al. 2005; Naidoo et
al. 2016; Sarkaria et al. 2011; J. M. Sun et al. 2012; Dudnik et al. 2021; V.
E. Wang et al. 2017; Sherman et al. 2020; Igawa et al. 2010). A study that
combined the classification of LCNEC based on genomic subtypes indicated a
more prolonged survival for patients with NSCLC-like LCNEC when treated
with medication frequently used for patients with SCLC (gemcitabine/taxane,
platinum combinations) (Zhuo et al. 2020). Although these efforts provided
essential insights into molecular variation and indicated the clinical significance
of LCNEC subtypes, limited data availability hindered an in-depth association
of these markers with clinical outcomes (Yoshimura et al. 2021; Zhuo et al.
2020).

Therefore, in the following, I evaluate the underdiagnosis of patients with LC-
NEC. To do so, I analyze molecular data from 5,329 patients with NSCLC to
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identify those with similar molecular features to pathologically classified LC-
NEC (pLCNEC) samples. This allows me to subsequently provide an in-depth
characterization of the molecular LCNEC (mLCNEC), highlighting clinical, ge-
nomic, and transcriptomic differences from patients suffering from NSCLC.

4.2 Methods
This methods section, in part, uses text from a manuscript currently under
review for submission.

Quality control of RNA-Seq data
To identify highly comparable gene expression profiles, I evaluated the distri-
bution of RNA-seq read counts across all available NSCLC samples. A high
deviation of read count distributions or a low or high library size (number of
reads for a sample) potentially reduces the comparability of a sample. Con-
sequently, I removed samples with less than 10 million, more than 60 million
reads, or a median absolute deviation (MAD) count value that exceeded the
interquartile range of all samples (MAD is within 25th, 75th quartile +/- 1.5
interquartile range). To further improve the comparability of this filtered set
of samples, I normalized the data using the trimmed mean of M-values (TMM)
(edgeR, version 3.36.0 Robinson, McCarthy, and Smyth 2009). Before applying
the method, I filtered out genes with less than one count per million counts in
20% of the samples. Lastly, as two versions of the xR assay were used for the
Tempus mRNA expression data generation, I applied the removeBatchEffect
function of the limma package to remove batch effects (Ritchie et al. 2015).

The batch-corrected CPM values were used to compare gene expression mark-
ers and pairwise correlation analyses of mRNA expression data. I used the
batch-corrected TPM values provided by Tempus to calculate gene expression
signature scores.

Definition of Clinical Annotations
For each patient, I used different time points of the patient’s clinical history
as a reference for retrieving clinical annotations (this and the following section
were elaborated with Jan Feifel). I analyzed the annotations for the survival
analyses relative to the time of primary diagnosis or the first line of therapy
administration. Similarly, I used the day of the biopsy to define the patient’s
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NE status for the machine learning model. On each of these reference days,
I extracted patient demographics (gender, age, TNM stage, smoking status,
and pathologist morphology) from the real-world Tempus database. If there
was missing stage information for individual patients, I used Tempus TNM
tumor staging information to impute the tumor stage information. For this,
relative to the reference day, I accessed TNM staging information (T stage,
N stage, and M stage) that preceded the reference day at most one year or
occurred no later than 14 days after the reference day. Additionally, if TNM
annotations appear within a 30-day window on different days, I combined them
to imputate the tumor stage using the AJCC Cancer staging manual (Amin
et al. 2016). Finally, I still lacked clinical annotations for individual patients
after this procedure. Consequently, using predictive mean matching, I applied
multiple chained equations (MICE) to impute stage and patient age with 20
imputations and 20 iterations.

That way, the pathologist’s morphology annotations used by my model were
accessed relative to the day of the biopsy, and the start date of the first line of
therapy was used as a reference for extracting demographics that are used as
covariates in the Cox proportional hazard models.

Patient Outcome Analyses
This study analyzes two types of patient outcomes: OS and progression-free
survival (PFS). The analyses start on the day of the biopsy or the day of the
first line of therapy administration.

For OS, patients were censored at the last known follow-up, and the day of
the patient’s death was used as a progression event. Similarly, PFS patients
were censored on the day of the last known follow-up. The first recurrence,
metastasis, or progressive disease outcome events defined the end day for PFS.
To account for delays in data acquisition, progression events within a 15-day
window after the reference date were ignored.

In all analyses, I accounted for immortal time bias due to the date of biopsy
or shifted administration of therapies (start is when the last medication was
given if multiple medications are part of a line of therapy) using the landmark
approach (Gleiss, Oberbauer, and Heinze 2018). In brief, if the biopsy or the last
medication of a line of therapy with medication combinations fell into the period
between start and end (immortal day), the number of days between the start
date and the immortal day was used as a starting point for subsequent analyses.
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All analyses were terminated if less than 10% or less than eight patients were
available for a stratum to ensure statistically reliable and unbiased results due
to small sample sizes.

The left-truncated time-to-event data is visualized by Kaplan-Meier plots
(survminer, version 0.4.9, Kassambara, Kosinski, and Biecek 2021) and
supplemented with p-values derived from univariate Cox PH models. For
multivariate Cox PH, I evaluated the influence of covariates (gender, age, or
TNM stage) using the Akaike Information Criterion (AIC). AIC provides a
measure to assess model complexity and the model fit.

Apply Machine Learning to Classify Molecular LCNEC
For this classification task, I hypothesized that a small fraction of the patients
were falsely classified as non-NE differentiated (1-2%) and thus expected a class
imbalance between NE and non-NE patients. Additionally, I needed concrete
examples of non-NE patients, which I lacked, because I hypothesized that not
all patients classified as non-NE were indeed non-NE. A group of methods that
do not rely on a complete set of defined positive and negative classes is positive
unlabeled (PU) learning (see 1.4.2). One of these methods uses bagged sets of
data in combination with a support vector machine model (SVM) to predict
the class of unlabeled samples (Mordelet and Vert 2014). Here I adopted this
approach and used the gene expression values of 151 genes that were published
in neuroendocrine gene expression signatures or indicated in association with a
neuroendocrine phenotype, SCLC, LCNEC, prostate, or pancreatic cancer (W.
Zhang et al. 2018; Ostano et al. 2020; Crona and Skogseid 2016; Tsai et al.
2017; Beltran et al. 2011; Simbolo et al. 2019; Balanis et al. 2019) as features
for the PU-learning approach.

For this approach, samples were either categorized into positive (i.e., the class
to be predicted) or unlabeled (i.e., the remaining patients) and split into t bags
(subsets of data) of size k. Samples are resampled with replacements from a
training data set. Therefore, each bag is comprised of all positive samples and
k unlabeled samples. Subsequently, a model is trained on each bag separately
using the unlabeled samples as negative class. In my case, samples annotated
with a neuroendocrine morphology by a pathologist represented positive, and all
other samples were unlabeled. The aim was to detect positive samples among
the unlabeled ones. Expression features are scaled and centered. Features
showing zero variance were removed from the training data.
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For the model training, the complete data is divided into 90% training and 10%
testing data along the patient dimension. Using the training data, 𝑡 bags are
sampled, and model is trained independently for each bag. For each bag, three
bootstraps of the bag data are used as an external set. A random number of
features is selected from the one with the strongest association with the positive
class (Wilcoxon rank sum test). Next, hyperparameters are selected using two
repeats of three-fold cross-validation on the internal set. After choosing the best
hyperparameters (using the 𝐹 𝑃𝑈1 metric, Section 1.4) from the internal cross-
validation validation sets, the final model with the best features is selected from
the external bootstrap validation sets. Finally, the bag configuration (i.e., t and
k) resulting in the best performance on the test set is selected as the final model
(i.e., the data that the model never saw).

Finally, each model predicts the probability of a sample belonging to the NE
class. Each model only predicts the probability for all positive and unlabeled
samples that were not part of the bag on which the model was trained. Finally,
a patient’s LCNEC status (from here on called mLCNEC) is determined by the
average prediction probability across all models that predicted a status for that
specific sample. Samples were classified as mNSCLC if their LCNEC prediction
probability fell between 0% and 25%, as mLCNEC if it ranged from 75% to 100
%, and as ambiguous if it ranged from 25% to 75%. Ambiguous samples were
excluded from downstream analyses.

The analyzed data is highly imbalanced on the expected numbers of examples for
positive and negative training cases. For the PU-learning approach, the training
data is expected to comprise false negatives in the unlabeled data (patients
with mLCNEC). Thus, standard metrics for model performance evaluation are
strongly affected and not used here. Instead, a previously described performance
measure for comparing models (W. S. Lee and Liu 2003) was used for model
evaluation (see Section 1.4, Equation 1.3).

The model reached a 𝐹 𝑃𝑈1 of 15.13 for the training data and 12.04 for the test
data. High values indicate better model performance, but the upper limit of
the measure is unbound and lacks a straightforward interpretation. The model’s
positive predictive value (PPV, train: 0.31, test: 0.29) and negative predictive
value (NPV, train: 1.00, test: 1.00) are highly biased due to the nature of PU-
learning problems. While the high NPV is explained by the high portion of
negative samples expected in the unlabeled data, the PPV turns out lower due
to the low fraction of positive cases in the unlabeled data, which is larger than
the number of available positive samples.
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Statistical Analyses
All statistical tests were implemented with functions of the rstatix package
(version 0.7.2, Kassambara 2023) and base R functions (R version 4.1.1 R Core
Team 2021), for additional session information see Section B.1. To compare gene
expression values or gene expression signatures between groups, I used Wilcoxon
rank sum tests and corrected for multiple testing using Holm correction (Holm
1979). When comparing counts across a 2x2 table (e.g., mutation status within
mLCNEC cohorts), I applied Fisher’s exact test and Chi-squared tests for larger
count tables (e.g., number of line of therapies [LoT] between cohorts). Lastly,
Pearson correlation coefficients were used to compare gene expression values or
signature scores.

Data Availability
The data analyzed in this study were part of the real-world multi-omics cancer
database assembled by Tempus AI, Inc. The data is subject to controlled access
for privacy and proprietary reasons. Tempus will make access to de-identified
data available pending a signed data use agreement. Requests for access should
be sent to publication.inquiry@tempus.com and will be responded to promptly,
starting the release date of this study.

I accessed de-identified targeted sequencing data from lung cancer tumor sam-
ples via the Tempus database. Depending on the assay version, the tumor
samples were profiled using the Tempus xT assay, a DNA-Seq panel capturing
598 or 648 genes. The tumors were also profiled using Tempus xR, an RNA
whole-transcriptome assay (19,396 genes).

4.3 Results

Analysis of Neuroendocrine Differentiation in an NSCLC
Cohort
I applied my RosettaSX framework on the complete NSCLC cohort to analyze
samples with NE differentiation. I first filtered for RNA-Seq samples with
sufficient quality (i.e., comparability of expression distributions) and analyzed
identified gene expression signatures with coherent gene expression signatures
(CS > 0.2, Figure 4.1). The analysis indicated a population of NSCLCs that
had a high expression of NE gene expression signatures (W. Zhang et al. 2018;
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Ostano et al. 2020). A subset of these carcinomas was classified as LCNEC
(i.e., LCNEC or Adenocarcinoma [ADC] with NE differentiation), but most of
these cases were classified as other NSCLC subtypes (i.e., ADC, SqCC). This
indicated that a substantial portion of samples was falsely classified as other
NSCLCs, even though, they showed signs of NE differentiation in my analysis.

A Machine Learning Method to Identify Molecular LC-
NEC
Overall, in the Tempus NSCLC cohort, the original pathological annotations
classified 1.77% of the patients as LCNEC. Based on previous reports, I expected
an increase of at least 1% (Rekhtman 2022). However, as I retrospectively lacked
thorough IHC testing for the positivity of NE markers across all patients with
NSCLC, I implemented a machine-learning model that, for each patient, pre-
dicts the probability of LCNEC-likeness. For this, I gathered a list of 151 NE
markers that have been associated with a neuroendocrine phenotype in neuroen-
docrine tumors (NET) (Balanis et al. 2019; Crona and Skogseid 2016), prostate
cancer (Tsai et al. 2017; Beltran et al. 2011), pancreatic cancer (Ostano et al.
2020), LCNEC (Simbolo et al. 2019), or SCLC (W. Zhang et al. 2018). For
my hypothesis, which assumes that there are patients with molecular LCNEC
(with LCNEC-like gene expression profiles, subsequently termed mLCNEC), I
used the expression of these genes to differentiate patients with LCNEC from
those with NSCLC. By that, the identified patient population will share molec-
ular characteristics with pathologically classified LCNEC (pLCNEC). However,
unsupervised machine learning approaches require true positive (i.e., NE) and
true negative (i.e., non-NE) patients, which I lacked because I could not label
patients as non-NE for sure. Therefore, I applied a PU-learning approach to
identify mLCNEC patients (Mordelet and Vert 2014) (see methods). Before
using my model, I removed 671 (11.18%) patients, which indicated a deviated
count distribution across all genes (see methods). For the final patient classifi-
cation, I averaged the prediction probabilities of all models. Each model only
predicted the status of a sample if it was not part of the model training data
(pLCNECs are an exception, as they are part of all parts, Figure 4.2 A). Finally,
I classified patients with an average prediction probability larger than 75% as
mLCNEC, ambiguous with a prediction probability between 25% and 75%, and
below 25% as mNSCLC (molecular NSCLC), resulting in cohorts of size 201
(mLCNEC), 4,795 (mNSCLC) and 333 (ambiguous) (Figure 4.2 B). Interest-
ingly, 24 (17 ambiguous and 7 mNSCLC) patients with pLCNEC had a low or
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Figure 4.1: RosettaSX analysis of patients with NSCLC in the Tempus
database. Rows represent coherent gene expression signatures and columns
for patients with NSCLC (CS > 0.2). Red indicates high signature scores, and
blue indicates low signature scores. The labels on the right side describe the
mechanism, defined by the author’s signature and year of publication. The
heatmap indicated a population of NSCLC patients with increased gene ex-
pression signature scores that are descriptive of NE differentiation.
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intermediate prediction probability for a NE phenotype (25th and 75th quan-
tile prediction probability: [18%; 72%]). This indicated that compared to other
patients, they only showed reduced signs of NE differentiation, so I removed
them from subsequent analyses. In the following sections, I will differentiate
multiple subgroups of the mLCNEC cohort. Patients are labeled mLCNECp
if they were classified as mLCNEC and belonged to the pLCNEC cohort, and
patients that only belong to the mLCNEC cohort are labeled mLCNECnotp.
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Figure 4.2: Overview of models that predicted the probability for LCNEC-
likeness and distribution of final prediction probability in relation to their final
classification. A: For each patient, multiple models predict the probability of
NE differentiation, but only if the patient was not part of its training dataset for
the respective model. Each bar represents the number of patients that received
a prediction probability by the number of models indicated at the bottom. B:
Distribution of prediction probability across all patients with NSCLC. The final
prediction of a sample is based on the averaged prediction probabilities across
all models that provided a prediction for the respective sample. Lastly, the
classification of a sample is based on the aggregated probability: ambiguous
(25-75%), mNSCLC (0-25%), or mLCNEC (75-100%). Blue: patients with mL-
CNEC, dark-grey: patients with mNSCLC, ambiguous: patients with unknown
LCNEC-likeness



4.3. Results 69

Model Illustrates the Underdiagnosis of Neuroendocrine
Carcinomas
To evaluate the model results, I evaluated three NE markers used for LCNEC
classification (as I lacked protein expression data, I used mRNA gene expres-
sion data of SYP, CHGA, and NCAM). I also evaluated an NE gene expression
signature describing NE differentiation in SCLC (W. Zhang et al. 2018). Com-
pared to the mNSCLC cohort, the expression of these markers was significantly
higher than in the mLCNEC (and mLCNECp and mLCNECnotp) cohorts (Fig-
ure 4.3, right side). Lower NE markers were significantly more frequent in the
mLCNECnotp compared to the mLCNECp cohort. In a second step, I compared
the NE levels among the pathological annotated morphologies between the pa-
tients classified as mLCNEC or mNSCLC (Figure 4.3 C). Across all indications,
there was a significantly higher expression of at least two neuroendocrine mark-
ers in the mLCNECnotp cohort than in other NSCLCs. The difference was
more significant in patients originally annotated as ADC than those with SqCC
(Figure 4.3 C right).

Overall, these results show that my model identified patients with solid signs of
neuroendocrine differentiation.

Model Selected Genes with High Specificity
Next, I evaluated which genes were most frequently selected by my implemented
bagging approach (i.e., genes with the highest classification importance). All
25 models selected BSN, KIF1A, RUNDC3A, SCG3, and SYP, and 24 out of
25 models selected INSM1, KIF5C, and MAST1 as the most essential genes
for mLCNEC classification. Figure 4.4 highlights the gene expression values
of these genes in mNSCLC, mLCNEC, and pLCNEC patients, with a high
alignment of the scores in the mLCNEC cohort. These genes are a subset of
the NE differentiation SCLC gene expression signature (W. Zhang et al. 2018).
However, they have not been mentioned in the context of LCNEC. Many of these
genes are well-known neuronal markers (Tsai et al. 2017; Swarts, Ramaekers,
and Speel 2015) or have been associated with other NE tumors (Lázaro et al.
2019; W. Zhang et al. 2018).
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Figure 4.3: Graphical abstract of this chapter and evaluation of the model.
A: In this section, I analyze a population of patients with NSCLC to identify
patients that share molecular characteristics (mLCNEC, orange) with patho-
logically classified LCNECs (pLCNEC, pink). For this, I will implement a
machine-learning model that allows me to identify patients that were either
classified as pLCNEC and mLCNEC (mLCNECp, green) or only molecular
LCNEC (mLCNECnotp, orange). Finally, I will use this enriched mLCNEC co-
hort to characterize genomic, transcriptomic and clinical properties. B: Gene
expression of NE markers (CHGA, NCAM1 and SYP) currently used in the
clinics and gene expression signature scores of a NE signature (W. Zhang et
al. 2018) between patients with NSCLC, mLCNECp and mLCNECnotp. C:
Pathological annotation of the identified patients with mLCNEC (left) and
the difference of NE marker expression of the identical morphologies in the
remaining NSCLC patients.

Figure 4.4: Expression of gene expression markers most frequently selected by
the bagging approach. For each gene, the expression in patients with mNSCLC
(grey), mLCNEC (light blue), or pLCNEC (dark blue) is shown. Except for
ITGB4 and MYOF, the median expression is higher in patients with mLCNE
or pLCNEC for all genes.
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Core Molecular LCNEC Genes Are Coherent Across
Studies
The above analyses indicated a significantly higher expression of NE markers in
the identified sample populations. However, a validation of the genes in indepen-
dent cohorts will further strengthen the capability of the genes to describe NE
differentiation. Therefore, I next used the most critical, positively associated
genes as an 8-gene expression signature and evaluated their coherent expression
in independent cohorts (Figure 4.5). One cohort comprised 66 LCNEC and
another 81 SCLC samples (George et al. 2018, 2015). I compared the CS of my
8-gene signature with 10,000 random signatures of equal size sampled from the
151 NE markers I used for the model training. Additionally, for comparison, I
applied the same procedure to the NE SCLC (25-gene) Zhang et al. signature
(W. Zhang et al. 2018). The empirical p-values (i.e., a fraction of random signa-
tures of equal size with the same or more extreme p-value) were determined for
my signature and the Zhang et al. signature and was significantly higher than
random signatures in both LCNEC and SCLC cohorts (p-value < .0001, and
p-value < .0001).

One of the studies also comprised the IHC status for synaptophysin (SYP),
chromogranin (CHGA), and neural cell adhesion molecule 1 (NSCM1) for 66
patients (George et al. 2018). The comparison of gene expression signature
scores of my 8-gene signature showed a significantly higher expression in IHC-
positive patients for SYP (one-sided Wilcoxon rank sum test, p-value < .001)
and CHGA (one-sided Wilcoxon rank sum test, p-value < .001) but not for
NCAM1 (one-sided Wilcoxon rank sum test, p-value = .56)

These results indicated that my signature (i.e., the top eight mLCNEC pos-
itively associated markers selected by my model) represents a coordinately
expressed gene module across different cohorts. Additionally, the signature
aligned well with the protein expression status of two out of three NE markers
currently used in the clinical classification of LCNEC, indicating that the top
features describe an NE phenotype well.

Molecular LCNECs Resemble Clinical LCNEC Charac-
teristics
I next evaluated the clinical characteristics of my identified mLCNEC cohort
to determine similarities with the characteristics of patients with mNSCLC or
those with pLCNEC (Table 4.1). Overall, I classified 201 (3.77%) patients of the
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Figure 4.5: Empirical p-value distribution of 10,000 randomly sampled 8-gene
(red) and 25-gene (blue) expression signatures compared to the 25-gene Zhang
et al. NE and my 8-gene expression signature. Solid vertical lines indicate the
CS of the annotated gene expression signature, and dashed lines indicate an
empirical p-value smaller than .05.

Tempus NSCLC cohort (that had sufficient RNA-Seq quality) as mLCNEC. 77
of these patients were initially diagnosed with ADC, 27 with carcinoma, 11 with
SqCC, 3 carcinoid, and 1 with malignant neoplasm by a pathologist (Figure 4.3).
Patients with mLCNEC had a median age of 64 and were more frequently female
with a history of smoking. While patients with mNSCLC often were never
smokers (NSCLC: 15%, mLCNEC: 9%), patients with mLCNEC were frequently
current smokers or past smokers at the time of biopsy (NSCLC: 85%, mLCNEC:
91%). Additionally, patients with mLCNEC are usually diagnosed with stage
IV cancers (NSCLC: 67%, mLCNEC: 81%), while stage I-III tumors were more
frequent in the mNSCLC cohort. I did not observe substantial differences in
ethnicity or the number of lines of therapy (LoT, Fisher’s exact test, p = .21)
that a patient received between the cohorts.
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Table 4.1: Clinical characteristics of the NSCLC, pLCNEC (all pathologically classified LCNEC), mNSCLC (QC passed NSCLC only),
mLCNEC (including mLCNECp and mLCNECnotp), mLCNECp and mLCNECnotp.

Characteristic NSCLC, N =
5,329 (100%)

pLCNEC, N =
106 (2.0%)

mNSCLC, N =
4,795 (90%)

mLCNEC, N =
201 (3.8%)

mLCNECp, N
= 82 (1.5%)

mLCNECnotp,
N = 119 (2.2%)

Gender, n (%)
Female 2,674 (50%) 53 (50%) 2,400 (50%) 107 (53%) 39 (48%) 68 (57%)
Male 2,655 (50%) 53 (50%) 2,395 (50%) 94 (47%) 43 (52%) 51 (43%)
Age, Median (IQR) 67 (61, 73) 66 (58, 71) 67 (61, 74) 65 (59, 71) 65 (57, 71) 64 (61, 71)
Missing 19 0 17 1 0 1
Smoking Status, n (%)
Current smoker 412 (18%) 10 (23%) 364 (18%) 21 (23%) 7 (21%) 14 (24%)
Never smoker 321 (14%) 5 (12%) 305 (15%) 9 (9.7%) 5 (15%) 4 (6.8%)
Past smoker 1,571 (68%) 28 (65%) 1,392 (68%) 63 (68%) 22 (65%) 41 (69%)
Missing 3,025 63 2,734 108 48 60
Ethnicity, n (%)
American Indian or Alaska
Native

10 (0.3%) 0 (0%) 7 (0.2%) 0 (0%) 0 (0%) 0 (0%)

Asian 185 (4.7%) 0 (0%) 175 (4.9%) 5 (3.6%) 0 (0%) 5 (6.0%)
Black or African American 468 (12%) 8 (11%) 414 (12%) 17 (12%) 7 (13%) 10 (12%)
Native Hawaiian or Other
Pacific Islander

3 (<0.1%) 0 (0%) 3 (<0.1%) 0 (0%) 0 (0%) 0 (0%)

White 3,275 (83%) 68 (89%) 2,959 (83%) 117 (84%) 49 (88%) 68 (82%)
Missing 1,388 30 1,237 62 26 36
Stage, n (%)
I-III 1,584 (33%) 19 (20%) 1,479 (35%) 35 (19%) 13 (18%) 22 (21%)
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IV 3,156 (67%) 75 (80%) 2,781 (65%) 145 (81%) 61 (82%) 84 (79%)
Missing 589 12 535 21 8 13
Line of Therapies, n (%)
1 2,730 (51%) 56 (53%) 2,453 (51%) 100 (50%) 45 (55%) 55 (46%)
2+ 1,662 (31%) 33 (31%) 1,480 (31%) 75 (37%) 26 (32%) 49 (41%)
none 937 (18%) 17 (16%) 862 (18%) 26 (13%) 11 (13%) 15 (13%)
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Genomic Aberrations of Molecular LCNECs Align with
LCNEC Aberrations
Genomic information was available for all 201 patients of the identified mLC-
NEC cohort. Figure 4.6 displays the top mutated genes (SNV, amplification,
or deletion). 30.85% and 59.20% of the patients with mLCNEC belonged to
the SCLC-like (TP53 and RB1 mutated) and NSCLC-like (TP53, CDKN2B,
CDKN2A, MTAP, STK11, KRAS, SMARCA4, FGF3, FGF4 or CCND1) ge-
nomic LCNEC subtypes (Burns et al. 2024; W. Zhang et al. 2018). My
identified mLCNECnotp cohort primarily belonged to the NSCLC-like subtype
(Fisher’s exact test, p < 0.001). Additionally, in the NSCLC-like subtype,
I observed a significant enrichment of never-smokers with ch9p21 amplifica-
tions (one-sided Wilcoxon rank Sum test, p < 0.001). Most of the highly mu-
tated genes have previously been either identified as enriched in SCLC-like
(PTEN) or NSCLC-like (KEAP1) or as similarly prevalent in both subtypes
(NF1, NOTCH1) (Burns et al. 2024). Previous LCNEC studies have not identi-
fied FOXA1 amplification, which I found in 9% of the patients with mLCNEC.
It frequently co-occurred with previously mentioned amplifications of NKX2-1
(comparing increased alterations in either gene between mLCNEC and mN-
SCLC, Fisher’s exact test, p = .01) (Burns et al. 2024; George et al. 2018).

Besides these known subtype alterations, I also observed gene alterations
related to proliferation (APC, NF1), RAS/RAF/MAPK pathway (KRAS),
PI3K/AKT/mTOR pathway (PI3CA), DNA Damage Response (DDR) (FAT1,
SMARCA4, KMT2C, KMT2D), Notch signaling (NOTCH1, NOTCH3).
Additionally, I found alterations in MYC (6%) and MYCL (8%) that have
been mentioned in the context of SCLC, LCNEC, and NSCLC (Burns et al.
2024; Mollaoglu et al. 2017; Eftekhari Kenzerki et al. 2023).
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Figure 4.6: Overview of most frequent alterations in the patients with mLCNEC. At the top of the heatmap, the tumor mutational
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RosettaSX Reveals Main Transcription Programs in mL-
CNEC
The most extensive transcriptional analysis of LCNEC samples was provided by
George et al. and only comprised 66 patients (George et al. 2018). I analyzed
the 201 mLCNEC to identify transcription programs that indicate transcrip-
tional subtypes within the mLCNEC cohort using RosettaSX. For the analysis
of 306 signatures, I first narrowed the signatures down to 85 signatures that
had a CS below 0.2. Finally, I filtered the signatures using the Jaccard index
(maximally 0.25), selecting a maximum of 3 signatures for an individual process
(e.g., proliferation, EMT). The remaining 63 signatures are shown in Figure 4.7.
I used unsupervised clustering for the patients (columns) and signatures (rows).
Additionally, I supplemented the heatmap with markers for SCLC-like LCNEC
stratification (TP53, RB1 alterations), the genomic LCNEC subtypes (NSCLC-
like and SCLC-like), and mLCNEC (mLCNECp or mLCNECnotp) subtypes.

Patients clustered into two mutually inclusive clusters, with predominantly high
proliferation scores in the first cluster (Dai et al. 2005; Phillips et al. 2006) and
high immune and stroma signatures in the second cluster (Farmer et al. 2009;
Bindea et al. 2013). TP53, RB1 co-alterations were significantly enriched in
the proliferation cluster (Wilcoxon rank sum test, p < .001), and homozygous
mutations in TP53 were significantly associated with lower scores of the Farmer
et al. stroma gene expression signature (Wilcoxon rank sum test, p < .001). A
group of patients had increased EMT, mesenchymal, or stemness gene expres-
sion signatures but low proliferation scores. As indicated in the previous section,
such a pattern possibly indicates a high contribution of stromal cells, not cancer
cells, that results in this expression pattern (Kreis et al. 2024). Biopsies in this
cluster were significantly associated with lower cancer cell content (one-sided
Wilcoxon rank sum test, p < .001).

Accordingly, the gene expression signature scores clustered into two larger clus-
ters (at the bottom of the heatmap), describing proliferation and immune signa-
tures, but also a third cluster describing a variety of mechanisms, like neuroen-
docrine differentiation (W. Zhang et al. 2018; Ostano et al. 2020), PTEN loss
(Saal et al. 2008), SqCC, or ADC (Hou et al. 2010). Interestingly, high scores
of signatures characteristic for ADC or SqCC were significantly associated with
the original pathological annotations for ADC or SqCC (one-sided Wilcoxon
Rank Sum test, other mLCNEC vs. ADC: p < .001, other mLCNEC vs. SqCC:
p < .001).
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Finally, when comparing the gene expression signatures between the patients
with mLCNECp or mLCNECnotp, there were no significant differences, except
for a NE signature, which was significantly higher in the mLCNECp, compared
to the mLCNECnotp cohort (one-sided Wilcoxon rank sum test, p < .001).

Clinical and Molecular LCNEC Receive Different Treat-
ments
As described in the project outline, patients with LCNEC lack specific recom-
mendations for therapies and instead are often treated with NSCLC-like (e.g.,
pemetrexed or gefitinib) or SCLC-like (e.g., etoposide and platinum chemother-
apy) regimens (Dingemans et al. 2021; Hendriks et al. 2023). Therefore, I next
evaluated which therapies were administered to patients with mLCNEC as the
first line of therapies (LoT). 175 (87%) patients with mLCNEC received their
first LoT between 2013 and 2023 and overall received a median of 1.6 LoT (rang-
ing from zero to ten LoTs). The patients received combinations of CTx, Immune
checkpoint inhibitors (ICI), ICI in combination with CTx, Tyrosine kinase in-
hibitors (TKI), and other targeted therapies (Table 4.2). The most frequently
administered drug types administered to patients with mLCNEC were combi-
nations of CTx (79) or CTx + ICI (75). Although such combinations were also
most frequently administered to mNSCLC patients, the ratio of administrated
therapies differed significantly between mNSCLC and mLCNEC (Chi-square
test, p < .001). However, when comparing the ratio of administered therapies
between patients with mLCNECp and mLCNECnotp, there was no significant
difference (CTx or CTx+ICI, Fisher’s exact test, p = .255).

When comparing the frequencies of administered drug types between mLCNECp
and mLCNECnotp patients, the latter received therapies comparable with mN-
SCLC (carboplatin, pembrolizumab, and pemetrexed (22) and carboplatin, dur-
valumab, and paclitaxel (15)). In contrast, patients with mLCNECp received
therapies that were comparable with the pLCNEC cohort (cisplatin and etopo-
side (18), atezolizumab, carboplatin, and etoposide (15), and carboplatin and
etoposide (15)). It is worth highlighting that the most frequently administered
drugs for both mLCNECnotp and mLCNECp are the standard therapies for
either NSCLC (carboplatin, pembrolizumab, and pemetrexed, (Velcheti et al.
2021; Hendriks et al. 2023)), or SCLC (cisplatin, etoposide with and without
atezolizumab, (Dingemans et al. 2021)).

Interestingly, only patients with mLCNECnotp also received targeted therapies,
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Figure 4.7: RosettaSX analysis of the mLCNEC cohort. The rows of the
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the standard first-line therapy for ADCs with an EGFR mutation, EGFR ty-
rosine kinase inhibitors (TKIs). Studies have shown that patients indeed ini-
tially benefit from this therapy but that these patients inevitably develop re-
sistance, for example, by histologic transformation of ADCs to LCNECs or
SCLCs (Baglivo et al. 2017; Lim et al. 2014; M. Lee et al. 2022). Six pa-
tients with mLCNECnotp had a biopsy after the treatment with osimertinib (a
TKI inhibitor). Consequently, the therapy selection might have resulted in a
transformation of ADCs to LCNECs.

These results show that patients with mLCNECnotp (the patients my model
identified) are treated differently than mLCNECp patients, in the worst case,
to the patient’s disadvantage.
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Table 4.2: Listing of therapies that were administered to at least four patients with mLCNEC in comparison to patients with mNSCLC,
mLCNECp and mLCNECnotp. Medications are grouped into drug types (CTx, CTx+ICI or TKI) and percentages are relative to all
administered therapies (including the medications not shown here).

1st LoT1 mNSCLC,N=3,893 mLCNEC,N=173 mLCNECnotp,N=104mLCNECp,N=69 pLCNEC,N=74

CTx, ICI, n (%)

Carboplatin, Pembrolizumab, Pemetrexed 705 (18.1) 27 (15.6) 22 (21.2) 5 (7.2) 6 (8.1)
Carboplatin, Durvalumab, Paclitaxel 378 (9.7) 17 (9.8) 15 (14.4) 2 (2.9) 2 (2.7)
Carboplatin, Paclitaxel, Pembrolizumab 184 (4.7) 5 (2.9) 3 (2.9) 2 (2.9) 2 (2.7)
Atezolizumab, Carboplatin, Etoposide 1 (0.0) 19 (11.0) 4 (3.8) 15 (21.7) 16 (21.6)

CTx, n (%)

Carboplatin, Paclitaxel 465 (11.9) 15 (8.7) 13 (12.5) 2 (2.9) 3 (4.1)
Carboplatin, Pemetrexed 347 (8.9) 8 (4.6) 8 (7.7) - (-) - (-)
Cisplatin, Pemetrexed 260 (6.7) 7 (4.0) 7 (6.7) - (-) - (-)
Cisplatin, Etoposide 77 (2.0) 22 (12.7) 4 (3.8) 18 (26.1) 20 (27.0)
Carboplatin, Etoposide 17 (0.4) 20 (11.6) 5 (4.8) 15 (21.7) 15 (20.3)

Tyrosine Kinase Inhibitors (TKI), n (%)

Osimertinib 282 (7.2) 6 (3.5) 6 (5.8) - (-) - (-)

1Only listing therapies with at least four administrations.
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Molecular LCNEC is Associated with Poor Prognosis
Patients with LCNEC were reported to have a comparably shorter OS of 9 (CI
8.2, 9.8) months compared to 11 (CI 10.9, 11.1) months for those with NSCLC
(Kinslow et al. 2020). Thus, I next evaluated the prognosis of my identified
mLCNEC cohort in relation to the mNSCLC cohort (Figure 4.8). Due to the
low number of patients with stage I-III mLCNEC, I either analyzed patients
with stage IV tumors only or patients with stage I-IV tumors. I accessed clinical
records with a median follow-up time of 17.5 (mNSCLC) and 15.8 (mLCNEC)
months. Using a univariate Cox PH model to evaluate differences between the
OS of patients with mLCNEC and those with mNSCLC (stage I-IV), I found
that patients with mLCNEC had a significantly shorter OS (hazard ratio [HR]
= 1.65 (95% CI 1.34, 2.03; p < .001)). Similarly, patients with mNSCLC had a
significantly longer PFS (HR = 0.64 (95% CI 0.54, 0.77; p < .001)). To reduce
the effect of the enrichment of stage I-III patients in the mLCNECnotp cohort,
I only evaluated the survival of stage IV tumors. The results of these analyses
aligned with the previous results, highlighting a shorter survival for mLCNEC
patients compared to those with mNSCLC (OS, HR = 1.47 (95% CI 1.17, 1.84;
p < .001), PFS, HR = 1.62 (95% CI 1.28, 2.06; p < .001)).

To evaluate the influence of confounding factors, I next used multivariate Cox
PH models to account for confounding factors. A stage-stratified Cox PH
model, correcting for gender and age at primary diagnosis, showed a signifi-
cantly shorter PFS with an HR of 1.80 (95% CI 1.46, 2.22; p < .001). Similarly,
a gender- and age-stratified CoxPH model, correcting for stage, also indicated
a shorter OS with an HR of 1.47 (95% CI 1.17, 1.83; p < .001)) (Figure 4.8 A
top panel). This indicated a significantly worse prognosis for patients with mL-
CNEC compared to those with mNSCLC, even when I accounted for commonly
described confounding factors like gender (Q. Yang et al. 2019).

Finally, I evaluated prognostic differences between mNSCLC, mLCNECp, and
mLCNECnotp. A multivariate Cox PH model, stratified by gender and tu-
mor stage, adjusted for age, indicated reduced OS for both mLCNECp and
mLCNECnotp with an HR of 1.95 (95% CI 1.42, 2.68; p < .001) and 1.32 (95%
CI 1.01, 1.74; p = .045), respectively.

Overall, these results highlight that patients with mLCNEC have a poor prog-
nosis compared to those with mNSCLC. My analyses showed that this is true
not only for the mLCNECp cohort but also for the mLCNECnotp cohort.
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First Line of Therapy Influences Prognosis of Molecular
LCNEC
I next compared PFS and OS between the major drug types (CTx, CTx+PD1,
and CTx+PDL1) within the mLCNEC cohort. Due to the small number of pa-
tients with stage I-III mLCNEC that received a first line of therapy, I restricted
my analysis to stage IV cancers. The median OS was not reached (CTx, 95% CI:
[11.14, -]), 7.6 (CTx + PD1, 95% CI: [6.02, -]), and 11.2 (CTx + PDL1, 95% CI:
[6.61, -]), respectively and for PFS, none of the therapy types reached a median
survival. Finally, I used a Cox PH model, stratified by gender, to account for
confounding effects and evaluate the influence of the first LoT drug type on OS.
Compared to a combination of CTx, a therapy with CTx and ICI + anti-PDL1
had a non-significant increased HR of 1.86 (95% CI 0.75, 4.62; p = .2). Sim-
ilarly, a combination of CTx and ICI + anti-PD1 therapy has a significantly
increased HR of 2.58 (95% CI 1.12, 5.90; p = .025). These results highlight
the poor prognosis of patients with mLCNECp and those with mLCNEC. Ad-
ditionally, it highlights that the most advantageous current therapeutic option
for mLCNEC patients is a combination of CTx.
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Figure 4.8: OS and PFS Kaplan-Meier curves are separated by the patient’s disease (mLCNEC or mNSCLC) or the type of therapy
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Investigation of the Association between Molecular Alter-
ations and Outcome
I identified multiple molecular characteristics that differentiate molecular sub-
types in my mLCNEC cohort in the previous analyses. As a final analysis, I
set these alterations in relation to PFS and OS. I selected genomic aberrations
and transcription programs with enough patients and analyzed their association
with OS using univariate Cox PH models. From the transcriptomic programs
(either immune infiltration or proliferation), only the proliferation gene expres-
sion signature (Dai et al. 2005) was significantly associated with poor prognosis
(HR = 1.75, 95% CI 1.12, 2.73; p = .014) and immune infiltration (Budinska
et al. 2013) indicated a non-significant trend towards increased survival (HR =
0.78, 95% CI 0.57, 1.07; p = .121). Except for deletions of TP53 (HR = 2.07,
95% CI 1.22, 3.50; p = .007) or deletions in either gene of the top 5 mutated
genes (TP53, RB1, LRBP1B, KEAP1, or STK11, HR = 2.45, 95% CI 1.23, 4.88;
p = .011), none of the alterations were significantly associated with PFS. How-
ever, none of the markers was significantly associated with OS in a multivariate
Cox PH model (stratified by gender and corrected for age and stage).

Consequently, besides a proliferation signature transcriptionally, no biomarker
was associated with patient outcome.

4.4 Discussion
This project focused on applying RosettaSX to characterize a population of
NSCLC with signs of NE differentiation. Using my RosettaSX approach, I
first identified the prevalent NE differentiation status of the samples and then
applied RosettaSX for the transcriptional characterization of the cohort. This
study reinforced previously reported misclassification of patients with LCNEC
in an NSCLC real-world evidence dataset (Lindsay et al. 2021; Kinslow et al.
2020; Zhuo et al. 2020). More stringent testing for the NE differentiation status
of patients with NSCLC might further increase the prevalence of LCNEC.

The WHO recommendation for LCNEC classification obligates an NE mor-
phology and positive IHC staining for at least one NE marker (CHGA, SYP,
NCAM1, Andrini et al. 2022). As I lacked NE marker IHC readouts, I analyzed
mRNA expression data. All single-gene NE markers were significantly more
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highly expressed in patients with mLCNEC than mNSCLC (Figure 4.3). How-
ever, previous studies have shown these markers may have low LCNEC speci-
ficity (Andrini et al. 2022). Therefore, I evaluated a well-established SCLC NE
gene expression signature, which provides a more robust NE differentiation sta-
tus (W. Zhang et al. 2018), which was also significantly higher in patients with
mLCNEC (Figure 4.3). Although IHC data might not recapitulate NE mRNA
marker expression perfectly, my analysis indicates that the actual prevalence of
LCNEC is almost 4%, not 1-3%, as previously stated (Rekhtman 2022). Lastly,
in a validation cohort, using the high-importance markers of my model for two
out of three NE markers, I recapitulated high scores in IHC-positive patients.
Thus, in line with Zhuo et al., my analyses also revealed an underdiagnosis
of LCNEC (Zhuo et al. 2020). A more comprehensive NE differentiation in
current clinical practice might mitigate this problem (i.e., using a more robust
gene expression panel).

Another factor that can influence the variable NE marker expression might
be the introduction of LCNEC combined in the 2021 WHO recommendation
(Nicholson et al. 2022). The pLCNEC cohort comprised 14 LCNECs with ev-
idence of NE differentiation combined with other NSCLCs. Although I could
not retrospectively differentiate LCNEC combined, my gene expression signa-
ture analysis indicated a subset of patients with increased NE and ADC or
SqCC characteristic gene expression signatures. This suggests that my mLC-
NEC cohort also comprised a fair number of patients with LCNEC combined
SqCC or ADC.

Besides the molecular characteristics, the herein identified mLCNEC cohort
showed a good agreement with the previously described characteristics of LC-
NEC. The identified mLCNEC cohort is enriched for late-stage tumors with a
comparably poor prognosis. The set of genomic mutations and aberrations that
I found recapitulated findings from previous studies (Burns et al. 2024; George
et al. 2018) with the two previously described NSCLC-like and SCLC-like
subtypes. In addition, I observed 333 patients who had ambiguous prediction
probabilities for their NE status. A subset of these ambiguous samples might
be a sample with an NE differentiation status, which would further increase the
frequency of LCNEC. My analysis indicated that patients treated with CTx +
ICI-anti PD1 in their first LoT had significantly worse survival at an HR = 2.58
(95% CI 1.12, 5.90; p=0.025). Combined with the shorter PFS and OS (starting
from primary diagnosis), these results depict insufficient therapies for patients
with mLCNEC. My analysis describes a sufficiently sized patient population
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that, despite its poor prognosis, lacks targeted therapies.

This project highlighted the drastic underdiagnosis of LCNEC and its still lack-
ing therapy options. I highlighted the beneficial effect of a more thorough NE
marker evaluation or gene panel screening, which might improve the diagnosis of
LCNEC. Although my analysis was based on one of the largest NSCLC cohorts
for which transcriptomic data is available today, future studies are required to
investigate the advantage of individual therapy regimens further.
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Chapter 5

Discussion

The objectives of this study were the description and application of a workflow
and the implementation of a platform for the evaluation of gene expression
signatures. I first established the RosettaSX framework for in-depth signature
analyses throughout the two subsequent chapters. I then highlighted the frame-
work’s capabilities to recapitulate breast cancer’s molecular features. In the
subsequent chapters, I demonstrated the platform’s utility to unravel the actual
phenotype of EMT-related gene expression signatures and improve the molecu-
lar diagnosis of the phenotype of lung cancer patients. This study describes a
methodology easily transferable to various cancer datasets and enables in-depth
evaluations of gene expression signatures.

5.1 The Unique Value of My RosettaSX Ap-
proach for Gene Expression Signature
Analyses

In the second chapter, I outlined a method that can generically be used to assess
phenotypic patterns in gene expression data of cancers using gene expression
signatures, the RosettaSX collection. Through the utilization of gene expres-
sion signatures, my approach makes use of the prior knowledge of published
gene expression signatures. In new experimental contexts, it provides access to
functional links proposed for the RosettaSX signatures in their original studies.
Capturing this knowledge is valuable since it has often been verified experimen-
tally or through comprehensive analyses in the literature and therefore comes
with a high likelihood that such signatures are of good quality.

Many studies use an alternative approach to analyze new cancer gene expression
data sets. It is based on de-novo clustering of gene expression data followed by
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annotation of cluster-associated molecular or clinical phenotypes (e.g., George
et al. 2018). Although this approach might sometimes lead to the identification
of new patterns in a dataset under study, it hardly provides links to already
existing knowledge about gene expression programs. It disregards already iden-
tified gene expression signatures that have been demonstrated to be associated
with a specific phenotype (e.g., W. Zhang et al. 2018; Masqué-Soler et al. 2013;
Perou et al. 2000). It frequently leads to the re-discovery of signatures for
phenomena for which other (and often better) signatures have been described
already.

My signature set in RosettaSX has been carefully selected for limited functional
redundancy. This means there is a limited number of signatures that describe
one specific phenomenon, like immune cell infiltration (Bindea et al. 2013), can-
cer cell type (W. Zhang et al. 2018; Perou et al. 2000), proliferation activity
(Dai et al. 2005), or interferon signaling (Dummer et al. 2020). I try to cover all
hallmarks that can be recurrently detected in gene expression studies of cancer
cohorts by such small sets of signatures. The gene sets of signatures that stand
for a particular phenomenon or hallmark hardly overlap. For a new data set
that will be investigated with my RosettaSX analysis framework, this limited
redundancy of signatures can provide useful information about gene expression
programs. The rediscovery of relevance (by the CS) and co-clustering (by hierar-
chical clustering of signature profiles) of a set of functionally related signatures
-that have been detected independently in different published studies- is a strong
hint at the relevance of their function in the data set that is under investiga-
tion. No other signature analysis framework gives access to such comprehensive
information in a similar way. Published workflows based on Gene Set Enrich-
ment Analysis (Subramanian et al. 2005) variants also allow conclusions about
large sets of signatures. Still, associations between signatures are not detected,
the redundancy of signatures for specific functions is not controlled, and the
translatability of signatures into a new data context is not assessed.

My approach builds on a gene expression signature collection that can differenti-
ate several processes involved in the hallmarks of cancer (Liberzon et al. 2015)
and, also beyond that, comprises signatures that describe important cancer-
specific properties (e.g., cell of origin). Therefore, the signature collection is not
only limited to a specific set of signatures (e.g., biological pathways, hallmark
signatures) but can also be extended to involve signatures relevant to the con-
text under investigation. This is different from other approaches, which rely on
smaller sets of signatures that try to describe the activity of specific signaling



5.2. Context Matters – The Influence of Confounding Factors 91

pathways (Schubert et al. 2018). These methods are most often tailored to
predicting the activity of particular pathways but require additional data that
is usually unavailable for large-scale datasets or many hallmark phenomena.
Instead, I rigorously apply the CS concept to be able to focus on signatures
that show coordinated regulation of their genes as a measure of relevance in a
new data context (Staub 2012). The CS concept needs minimal information; it
does not even need annotation of sample groups in the data under investigation
which is a requirement for canonical Gene Set Enrichment Analyses that are
frequently performed on the extensive collection of MsigDB signatures (Subra-
manian et al. 2005). My RosettaSX approach fills a gap in the landscape of
analytical procedures for gene expression signatures.

5.2 Context Matters – The Influence of Con-
founding Factors

While studies frequently apply gene expression signatures to characterize a
biomarker, they often skip an essential step - the context under study. Without
further evaluation, many studies use gene expression signature collections, such
as the hallmark 50 dataset. Although these signatures were shown to describe
a particular phenomenon in discovery data, assuming the set of genes explains
the same phenomenon in another data context (i.e., another gene expression
dataset) is not valid. Regardless of whether a signature is applicable in a new
context, the signature profiles can be calculated and will indicate populations
with low and high signature scores. However, it is questionable if these profiles
describe the originally anticipated phenomenon if the genes are not coordinately
up- and down-regulated across samples of the new data set. This became es-
pecially apparent in the second chapter of my work in which I evaluated gene
expression signatures in different contexts. My analyses in section Section 3.3
highlighted that signatures describing phenomena in the TME are only coherent
in the context of data that comprises TME.

However, Chapter 3 highlighted that, even though a gene expression signature
might be highly relevant in another context, there are signs of contamination.
While the EMT-related signatures indicated a highly reproducible expression
footprint across various datasets, they did not describe the originally antici-
pated phenomena which frequently have been attributed to the mesenchymal
status of cancer. At this point, my approach again highlighted its advantageous
capabilities. The analysis of multiple gene expression signatures that cover a
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wide range of cancer-specific phenomena, associating the signatures with each
other and evaluating the integrity of signatures. The observer can determine
the biological context with which the signature is associated.

The current RosettaSX implementation is limited to analyzing cancer patients
and cancer models. However, a future extension of the platform might be
archived by the addition of further datasets, such as pseudobulk data from
scRNA-seq studies, as analyzed in section Section 3.3. Through the analyses
of pseudobulk data, tailored towards samples that describe cell type-specific
expression phenotypes, I was able to evaluate gene expression signatures and
their association with the cell composition of the TME.

5.3 The Importance of a Comprehensive Gene
Expression Signature Collection

In the third study on the underdiagnosis of LCNEC within NSCLC, I high-
lighted the capability of my analytical framework, RosettaSX, to quickly iden-
tify biological meaningful cancer subpopulations in a large cancer cohort. The
analysis revealed high signature scores for well-established NE signatures in a
subset of patients. Subsequent analyses highlighted that these patients recapit-
ulated molecular features of previously described LCNEC characteristics. Thus,
while Chapter 2 highlighted the application of my analytical framework in the
gene expression signature dimension, in this chapter I highlighted the utility of
my analytical framework on the patient dimension. As indicated in the previ-
ous section, the analysis in section Section 4.3 showed that the NE expression
profiles represent a unique cell of origin phenotype that cannot be detected
with other gene expression signature collections (e.g., hallmark 50 Liberzon et
al. 2015). Only the composition of the gene expression signature collection
of RosettaSX, which combines hallmark signatures with specific cancer-specific
signatures, allows a comprehensive analysis of cancer indications. Indeed, the
evolution of a signature collection is a continuous process. While this thesis is
finalized, new signatures for other phenomena included in RosettaSX manifest
themselves in cancer expression data. Comprehensive analyses of large signature
databases for the identification of additional signatures, as by Cantini et al., or
the evaluation of signatures using single-cell data will be of primal importance
for the future development of RosettaSX (Cantini et al. 2018).

For the field of LCNEC, my analysis indicates that there is a population of
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patients that share molecular similarities with pLCNEC but are most often
classified as ADCs or SqCC. Overall, these patients had a poorer prognosis
than the patient population pathologists classified them. The threshold for the
prediction of a mLCNEC phenotype was chosen rather conservatively. Further
analyses in this direction and a more thorough investigation of borderline neg-
ative cases might even result in a higher prevalence of this aggressive form of
lung cancer and ultimately, in the exploration of better therapeutic options for
these patients.





95

Chapter 6

Conclusion

In this thesis, I describe an integrated approach to gene expression signature
analysis that can be applied in multiple ways to better characterize molecular
phenomena of importance to tumors based on expression data. My analysis ap-
proach facilitates the discovery of associations with other biomarkers. Through
analyzing of multiple data types and cancer indications, I demonstrated the
power of the approach for the characterization of known and the discovery of
novel gene expression signatures. As examples, I describe the comprehensive
analysis of breast cancer gene expression data, the recovery of limited applica-
bility and interpretation flaws of signatures for EMT and mesenchymality in
the clinical context, and the discovery and in-depth characterization of a gene
expression signature for molecularly defined LCNEC.

The consistent evaluation of the quality and applicability of a gene expression
signature, which is often ignored, can, at worst result in misapplication of gene
expression signatures over a long period and ultimately lead to false conclusions.
In contrast, the rigorous application of quality principles in gene expression
signature studies helps to discover new ways of molecular diagnoses, as shown
here for LCNEC.
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Figure A.1: RosettaSX analysis for TCGA BRCA samples and CCLE breast
cancer cell lines. Please see Figure 3.3 for a detailed description of color codes
and analysis details.
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Figure A.2: RosettaSX analysis for TCGA GBM samples and CCLE central
nervous system cancer cell lines. Please see Figure 3.3 for a detailed description
of color codes and analysis details.
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Figure A.3: RosettaSX analysis for TCGA PAAD and CCLE cancer cell
lines. Please see Figure 3.3 for a detailed description of color codes and analysis
details.
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Figure A.4: Deconvolution analysis of TCGA CRC tumor and NAT tissue.
For details, see Figure 3.7.
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Figure A.5: Deconvolution analysis of TCGA HNSC tumor and NAT tissue.
For details, see Figure 3.7.
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Figure A.6: Deconvolution analysis of TCGA PAAD tumor and NAT tissue.
For details, see Figure 3.7.
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Appendix B

Reproducibility

I implemented all analyses in R. The RosettaSX platform is accessible via
www.rosettasx.com. Additionally, scripts and reproducible environments (us-
ing renv, Ushey and Wickham 2023) for the individual projects are available
upon request.

B.1 R Session Information

Quarto Project of The Thesis
R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

locale: LC_CTYPE=C.UTF-8, LC_NUMERIC=C, LC_TIME=C.UTF-8,
LC_COLLATE=C.UTF-8, LC_MONETARY=C.UTF-8, LC_MESSAGES=C.UTF-
8, LC_PAPER=C.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=C.UTF-8 and LC_IDENTIFICATION=C

attached base packages: stats, graphics, grDevices, datasets, utils, methods
and base

loaded via a namespace (and not attached): Rcpp(v.1.0.12), di-
gest(v.0.6.34), jsonlite(v.1.8.8), evaluate(v.0.23), rlang(v.1.1.2), cli(v.3.6.2),
renv(v.1.0.3), rstudioapi(v.0.15.0), rmarkdown(v.2.25), tools(v.4.1.1), pan-
der(v.0.6.5), xfun(v.0.41), yaml(v.2.3.8), fastmap(v.1.1.1), compiler(v.4.1.1),
BiocManager(v.1.30.22), htmltools(v.0.5.7) and knitr(v.1.45)

Chapter 2 - RosettaSX Server
R version 3.6.3 (2020-02-29)
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Platform: x86_64-pc-linux-gnu (64-bit)

locale: LC_CTYPE=de_DE.utf8, LC_NUMERIC=C, LC_TIME=de_DE.utf8,
LC_COLLATE=de_DE.utf8, LC_MONETARY=de_DE.utf8, LC_MESSAGES=de_DE.utf8,
LC_PAPER=de_DE.utf8, LC_NAME=de_DE.utf8, LC_ADDRESS=de_DE.utf8,
LC_TELEPHONE=de_DE.utf8, LC_MEASUREMENT=de_DE.utf8 and
LC_IDENTIFICATION=de_DE.utf8

attached base packages: stats, graphics, grDevices, utils, datasets, methods
and base

other attached packages: shiny(v.1.5.0)

loaded via a namespace (and not attached): tidyr(v.1.0.0), jsonlite(v.1.6),
foreach(v.1.4.7), RhpcBLASctl(v.0.20-137), R.utils(v.2.9.2), bupaR(v.0.4.4),
rintrojs(v.0.2.2), pander(v.0.6.5), xlsxjars(v.0.6.1), shinyhelper(v.0.3.2), xop-
modules(v.0.6.7), yaml(v.2.2.0), pillar(v.1.8.1), glue(v.1.4.0), digest(v.0.6.23),
xopdata(v.1.0.1), RColorBrewer(v.1.1-2), promises(v.1.1.0), colorspace(v.1.4-
1), plyr(v.1.8.5), shinycssloaders(v.0.2.0), htmltools(v.0.5.4), httpuv(v.1.5.2),
R.oo(v.1.23.0), pkgconfig(v.2.0.3), GetoptLong(v.0.1.7), purrr(v.0.3.3),
xtable(v.1.8-4), scales(v.1.1.0), later(v.1.0.0), tibble(v.3.1.8), ggplot2(v.3.3.2),
generics(v.0.0.2), DT(v.0.13), withr(v.2.1.2), shinyjs(v.1.1), fst(v.0.9.2),
cli(v.3.6.0), magrittr(v.1.5), mime(v.0.8), R.methodsS3(v.1.7.1), fansi(v.0.4.0),
xoprosettasxshinyapp(v.0.3.4), doParallel(v.1.0.15), forcats(v.0.4.0), shinycus-
tomloader(v.0.9.0), shinydashboard(v.0.7.1), tools(v.3.6.3), data.table(v.1.12.8),
GlobalOptions(v.0.1.1), lifecycle(v.1.0.3), ComplexHeatmap(v.2.3.1), stringr(v.1.4.0),
xlsx(v.0.6.3), munsell(v.0.5.0), shinyEventLogger(v.0.1.1), cluster(v.2.1.4),
eventdataR(v.0.2.0), compiler(v.3.6.3), rlang(v.1.0.6), shinyjqui(v.0.3.2),
grid(v.3.6.3), shinydashboardPlus(v.0.7.0), iterators(v.1.0.12), xopcode(v.0.1.19),
rjson(v.0.2.20), htmlwidgets(v.1.5.1), circlize(v.0.4.8), miniUI(v.0.1.1.1),
shinyWidgets(v.0.5.1), gtable(v.0.3.0), codetools(v.0.2-19), mongolite(v.2.2.0),
R6(v.2.4.1), sparkline(v.2.0), lubridate(v.1.7.9), knitr(v.1.26), dplyr(v.1.1.0),
fastmap(v.1.1.0), utf8(v.1.1.4), clue(v.0.3-57), shape(v.1.4.4), rJava(v.0.9-11),
stringi(v.1.4.3), parallel(v.3.6.3), Rcpp(v.1.0.3), vctrs(v.0.5.2), png(v.0.1-7),
xfun(v.0.11) and tidyselect(v.1.2.0)

Chapter 3
R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)
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locale: LC_CTYPE=C.UTF-8, LC_NUMERIC=C, LC_TIME=C.UTF-8,
LC_COLLATE=C.UTF-8, LC_MONETARY=C.UTF-8, LC_MESSAGES=C.UTF-
8, LC_PAPER=C.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=C.UTF-8 and LC_IDENTIFICATION=C

attached base packages: stats, graphics, grDevices, datasets, utils, methods
and base

loaded via a namespace (and not attached): Rcpp(v.1.0.10),
ps(v.1.6.0), digest(v.0.6.29), later(v.1.3.0), R6(v.2.5.1), jsonlite(v.1.8.4), evalu-
ate(v.0.15), rlang(v.1.0.6), cli(v.3.6.0), renv(v.1.0.1), rstudioapi(v.0.13), rmark-
down(v.2.20), tools(v.4.1.1), pander(v.0.6.5), xfun(v.0.36), fastmap(v.1.1.0),
yaml(v.2.3.5), compiler(v.4.1.1), processx(v.3.5.3), BiocManager(v.1.30.19),
htmltools(v.0.5.2), knitr(v.1.38) and quarto(v.1.2)

Chapter 4
R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

locale: LC_CTYPE=C.UTF-8, LC_NUMERIC=C, LC_TIME=C.UTF-8,
LC_COLLATE=C.UTF-8, LC_MONETARY=C.UTF-8, LC_MESSAGES=C.UTF-
8, LC_PAPER=C.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=C.UTF-8 and LC_IDENTIFICATION=C

attached base packages: stats, graphics, grDevices, datasets, utils, methods
and base

loaded via a namespace (and not attached): backports(v.1.4.1),
circlize(v.0.4.15), xopdata(v.1.2.2), workflows(v.1.1.3), igraph(v.1.6.0),
splines(v.4.1.1), RApiSerialize(v.0.1.2), listenv(v.0.9.0), ggplot2(v.3.4.4),
digest(v.0.6.33), yardstick(v.1.2.0), foreach(v.1.5.2), htmltools(v.0.5.7), tar-
gets(v.1.4.1), parsnip(v.1.1.1), fansi(v.1.0.6), magrittr(v.2.0.3), tune(v.1.1.2),
gtsummary(v.1.7.2), base64url(v.1.4), cluster(v.2.1.6), doParallel(v.1.0.17),
tzdb(v.0.4.0), readr(v.2.1.4), recipes(v.1.0.9), ComplexHeatmap(v.2.10.0),
globals(v.0.16.2), gower(v.1.0.1), RcppParallel(v.5.1.7), matrixStats(v.1.2.0),
R.utils(v.2.12.3), hardhat(v.1.3.0), timechange(v.0.2.0), rsample(v.1.2.0), di-
als(v.1.2.0), colorspace(v.2.1-0), xfun(v.0.41), dplyr(v.1.1.4), callr(v.3.7.3),
crayon(v.1.5.2), probably(v.1.0.2), stringfish(v.0.16.0), survival(v.3.5-
7), zoo(v.1.8-12), iterators(v.1.0.14), glue(v.1.6.2), survminer(v.0.4.9),
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gtable(v.0.3.4), ipred(v.0.9-14), GetoptLong(v.1.0.5), car(v.3.1-2), fu-
ture.apply(v.1.11.0), shape(v.1.4.6), BiocGenerics(v.0.40.0), abind(v.1.4-5),
scales(v.1.3.0), rstatix(v.0.7.2), Rcpp(v.1.0.11), xtable(v.1.8-4), clue(v.0.3-
65), GPfit(v.1.0-8), bit(v.4.0.5), km.ci(v.0.5-6), stats4(v.4.1.1), lava(v.1.7.3),
prodlim(v.2023.08.28), fstcore(v.0.9.18), RColorBrewer(v.1.1-3), pkgcon-
fig(v.2.0.3), R.methodsS3(v.1.8.2), nnet(v.7.3-19), utf8(v.1.2.4), here(v.1.0.1),
tidyselect(v.1.2.0), rlang(v.1.1.2), DiceDesign(v.1.10), munsell(v.0.5.0),
tools(v.4.1.1), cli(v.3.6.2), generics(v.0.1.3), broom(v.1.0.5), ggdendro(v.0.1.23),
stringr(v.1.5.1), fastmap(v.1.1.1), yaml(v.2.3.8), processx(v.3.8.3), RhpcBLASctl(v.0.23-
42), knitr(v.1.45), bit64(v.4.0.5), pander(v.0.6.5), survMisc(v.0.5.6),
purrr(v.1.0.2), future(v.1.33.0), R.oo(v.1.25.0), arrow(v.14.0.0.1), xml2(v.1.3.6),
brio(v.1.1.4), compiler(v.4.1.1), rstudioapi(v.0.15.0), png(v.0.1-8), test-
that(v.3.2.1), ggsignif(v.0.6.4), gt(v.0.10.0), chisq.posthoc.test(v.0.1.2), tib-
ble(v.3.2.1), lhs(v.1.1.6), broom.helpers(v.1.14.0), stringi(v.1.7.6), ps(v.1.7.5),
forcats(v.1.0.0), lattice(v.0.22-5), Matrix(v.1.6-2), KMsurv(v.0.1-5), vc-
trs(v.0.6.5), furrr(v.0.3.1), pillar(v.1.9.0), lifecycle(v.1.0.4), BiocMan-
ager(v.1.30.22), GlobalOptions(v.0.1.2), data.table(v.1.14.10), R6(v.2.5.1),
qs(v.0.26.1), renv(v.1.0.3), gridExtra(v.2.3), IRanges(v.2.28.0), paral-
lelly(v.1.36.0), codetools(v.0.2-19), MASS(v.7.3-60), assertthat(v.0.2.1),
rprojroot(v.2.0.4), rjson(v.0.2.21), withr(v.2.5.2), S4Vectors(v.0.32.4),
hms(v.1.1.3), parallel(v.4.1.1), fst(v.0.9.8), grid(v.4.1.1), rpart(v.4.1.23),
timeDate(v.4032.109), tidyr(v.1.3.0), class(v.7.3-22), carData(v.3.0-5), gg-
pubr(v.0.6.0) and lubridate(v.1.9.3)
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Appendix C

RosettaSX Platform

C.1 Gene expression signature collection
Table C.1: Listing of gene expression signatures that are used by the Roset-
taSX approach

Geneset Name No. Genes PubMed ID

classical_PCA_Collisson2011_21460848 22 21460848
claudin_low_down_BRCA_Prat2013_20813035 356 20813035
FA_down_Gene2013_24036430 179 24036430
classical_HNCA_Walter2013_23451093 62 23451093
EMTspheres_CRC_up_Hwang2011_21640118 50 21640118

bcell_Bindea2013_24138885 35 24138885
RS_down_Kim2013_22846430 21 22846430
hallmark50_apical_junction_Liberzon2019_26771021 200 26771021
neutrophils_Bindea2013_24138885 31 24138885
crypt_markers_CRC_Budinska2013_23836465 16 23836465

stemness_RamalhoSantos2002_12228720 202 12228720
TP53mut_up_BRCA_Miller2005_16141321 5 16141321
HC1B_progGroup_GBM_Freije2004_15374961 9 15374961
basal_subtype_LSCC_Wilkerson2011_20643781 17 20643781
hallmark50_inflammation_response_Liberzon2019_26771021 200 26771021

ERBB2_subtype_BRCA_Calza2007_16846532 7 16846532
M5_12_IFN_Chaussabel2008_18631455 58 18631455
polypeptide_PDAC_normal_Enge2017_28965763 1 28965763
CCS2_MSI_CRC_DeSousaEMelo2013_23584090 45 23584090
EGFR_Mischel2003_12700671 16 12700671

chr17q21_32_amplicon_cluster5_BRCA_Farmer2005_15897907 17 15897907
serrated_adenoma_CRC_ConesaZamora2013_22696308 9 22696308
TA_Sadanandam2013_23584089 183 23584089
CellCycle_BRCA_Dai2005_15899795 33 15899795
immune_responce_CRC_Budinska2013_23836465 102 23836465

luminal_cluster6_BRCA_Farmer2005_15897907 16 15897907
hallmark50_xenobiotic_metabolism_Liberzon2019_26771021 200 26771021
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MSI_up_CRC_Jorissen2009_19088021 192 19088021
clusterC_MB_Kool2008_18769486 136 18769486
AKT_Creighton2007_17213801 57 17213801

BRAFlikeness_up_Popovici2012_22393095 31 22393095
HIF1A_targets_Semenza2001_11248550 36 11248550
IFNg_Dummer2020_32007138 5 32007138
hippo_up_YAP_transfection_up_Zhang2008_18413746 40 18413746
LAR_refined_BRCA_Lehmann2011_21633166 233 21633166

chr12q13_15_Mischel2003_12700671 17 12700671
TA_Ragulan2019_31113981 7 31113981
MSI_down_CRC_Jorissen2009_19088021 182 19088021
WNT_NanoStr_MB_Northcott2013_22057785 5 22057785
MTOR_PI3K_S6K_inhib_Heinonen2008_18652687 16 18652687

hypoxia_GBM_Liang2005_15827123 21 15827123
MSI_down_CRC_Watanabe2006_17047040 57 17047040
hallmark50_MTORC1_Liberzon2019_26771021 200 26771021
hallmark50_hypoxia_Liberzon2019_26771021 200 26771021
LSCC_vs_LAD_Kuner2009_18486272 10 18486272

tcell_Bindea2013_24138885 19 24138885
hallmark50_faty_acid_metabolism_Liberzon2019_26771021 158 26771021
ERBB2_down_BRCA_Bertucci2004_14743203 5 14743203
EMT_down_Taube2010_20713713 152 20713713
MSI_CRC_Watanabe2006_17047040 29 17047040

NKcell_monocytes_Heise2014_thesis 18 thesis
IFN_Staub2015_internal 7 internal
hallmark50_MYC_targets1_Liberzon2019_26771021 200 26771021
beta_PDAC_normal_Enge2017_28965763 1 28965763
polypeptide_PDAC_normal_Murano2016_27693023 18 27693023

hallmark50_G2M_Liberzon2019_26771021 200 26771021
HC2B_progGroup_GBM_Freije2004_15374961 14 15374961
mesenchymal_GBM_Phillips2006_16530701 15 16530701
HRD_Peng2015_24553445 223 24553445
WNT_DeSousaEMelo2012_22056143 55 22056143

metastasis_BRCA_lung_Minn2005_16049480 54 16049480
hallmark50_complement_Liberzon2019_26771021 200 26771021
mesenchymal_up_GBM_Verhaak2010_20129251 164 20129251
stroma_metagene_BRCA_Farmer2005_19122658 49 19122658
EMTspheres_CRC_down_Hwang2011_21640118 57 21640118

BL1_refined_BRCA_Lehmann2011_21633166 28 21633166
gem_pdac_organoid_tiriac2018_29853643 130 29853643
NE_top50_weight_pan_balanis2019_31287989 50 31287989
5fu_pdac_organoid_tiriac2018_29853643 62 29853643
BRCAness_high_Konstantinopoulos2010_20547991 32 20547991

mesenchymal_down_GBM_Verhaak2010_20129251 45 20129251
ABC_DLBCL_Scott2014_24398326 8 24398326
basal_HNCA_Walter2013_23451093 199 23451093
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PRF_MB_Staub2012_22937182 21 22937182
chr8_amplicon_cluster2_BRCA_Farmer2005_15897907 33 15897907

RAS_Bild2006_16273092 237 16273092
MSI_down_CRC_Kim2009_19034969 22 19034969
SCC_LC_Hou2011_20421987 47 20421987
hallmark50_androgen_response_Liberzon2019_26771021 100 26771021
Bcell_Heise2014_thesis 48 thesis

BRAFlikeness_down_Popovici2012_22393095 31 22393095
Tcell_rest_Heise2014_thesis 48 thesis
IGF_down_Creighton2008_18757322 455 18757322
basal_subtype_BRCA_Calza2007_16846532 17 16846532
YAP_Mazur2020_aacr2019:A38 4 aacr2019:A38

hallmark50_EMT_Liberzon2019_26771021 400 26771021
hallmark50_IFNg_response_Liberzon2019_26771021 200 26771021
ER_pos_BRCA_Abba2006_15762987 9 15762987
IFN_Feng2006_16947629 5 16947629
BL2_refined_BRCA_Lehmann2011_21633166 23 21633166

bronchoid_markers_LC_Hayes2006_17075127 17 17075127
pDC_Angelova2015_25853550 18 25853550
Bcell_IRIS_Abbas2005_15789058 86 15789058
classical_up_GBM_Verhaak2010_20129251 152 20129251
FOLFOX_resistance_CRC_Tsuji2012_22095227 18 22095227

proneural_down_GBM_Verhaak2010_20129251 73 20129251
Tcell_IRIS_Abbas2005_15789058 14 15789058
classical_down_GBM_Verhaak2010_20129251 56 20129251
HC2A_progGroup_GBM_Freije2004_15374961 10 15374961
NKcell_Heise2014_thesis 49 thesis

hallmark50_KRAS_signaling_down_Liberzon2019_26771021 200 26771021
VGFA_HUVEC_Abe2002_12197474 12 12197474
DC_Angelova2015_25853550 34 25853550
MSI_up_CRC_Kim2009_19034969 36 19034969
poor_prognosis_BRCA_Teschendorff2007_17076897 15 17076897

MSI_Kruhffer2005_15956967 9 15956967
hallmark50_mitotic_spindle_Liberzon2019_26771021 199 26771021
tcpeI_CSC_Lottaz2010_20145155 8 20145155
human_SC_Conrad2008_18849962 39 18849962
poor_prognosis_CRC_Laiho2007_16819509 32 16819509

DDRD_Mulligan2014_24402422 24 24402422
beta_PDAC_normal_Li2016_26691212 100 26691212
inflammatory_Sadanandam2013_23584089 175 23584089
TNFa_NFkB_response_Tian2005_15722553 20 15722553
hallmark50_coagulation_Liberzon2019_26771021 138 26771021

WNT_MB_Staub2012_22937182 11 22937182
clusterB_MB_Kool2008_18769486 197 18769486
hallmark50_protein_secretion_Liberzon2019_26771021 96 26771021
radioresistance_up_BRCA_Speers2016_25904749 23 25904749
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IFN_Walsh2007_17968926 6 17968926

GCB_DLBCL_Scott2014_24398326 7 24398326
hcc_tumorinItiatingEpCAMpos_Yamashita2009_19150350 45 19150350
radioresistance_Khodarev2004_14755057 51 14755057
neutrophils_Angelova2015_25853550 16 25853550
bcell_markers_Newell2010_20501946 15 20501946

CIP2_knockdown_up_Niemel2013_22809314 42 22809314
QMPDA_PCA_Collisson2011_21460848 20 21460848
hallmark50_myogenesis_Liberzon2019_26771021 200 26771021
hallmark50_TNFa_via_NFKb_Liberzon2019_26771021 200 26771021
secretory_subtype_LSCC_Wilkerson2011_20643781 24 20643781

ERBB2_up_BRCA_Bertucci2004_14743203 23 14743203
hallmark50_unfloald_protein_response_Liberzon2019_26771021 113 26771021
metastasis_BRCA_bone_Kang2004_12842083 11 12842083
non_serrated_conventional_CRC_Laiho2007_16819509 68 16819509
dendriticCell_Heise2014_thesis 17 thesis

KRAS2i_up_SweetCordero2005_15608639 23 15608639
KRAS2i_down_SweetCordero2005_15608639 26 15608639
ABC_MethExp_DLBCL_Shaknovich2010_20610814 10 20610814
neural_up_GBM_Verhaak2010_20129251 80 20129251
LPS_NFkB_targets_Sharif2007_17222336 69 17222336

cytotoxic_Bindea2013_24138885 17 24138885
MTOR_PI3K_S6K_siRNA_Heinonen2008_18652687 45 18652687
mesenchymal_HNCA_Walter2013_23451093 245 23451093
CCS3_serrated_CRC_DeSousaEMelo2013_23584090 46 23584090
pac_pdac_organoid_tiriac2018_29853643 111 29853643

oxa_pdac_organoid_tiriac2018_29853643 98 29853643
hallmark50_PI3K_AKT_MTOR_Liberzon2019_26771021 105 26771021
RS_up_Kim2013_22846430 10 22846430
delta_PDAC_normal_Murano2016_27693023 17 27693023
IFN_tcell_bcell_cluster1_BRCA_Farmer2005_15897907 43 15897907

acinar_PDAC_normal_Li2016_26691212 100 26691212
alpha_PDAC_normal_Enge2017_28965763 1 28965763
GCB_DLBCL_Wright2003_12900505 22 12900505
hallmark50_Bell_pca_Liberzon2019_26771021 80 26771021
molBL_DLBCL_MasquSoler2013_24030260 6 24030260

hallmark50_ocidative_phosphorylation_Liberzon2019_26771021 200 26771021
TP53mut_down_BRCA_Miller2005_16141321 16 16141321
DDRD_group3_Mulligan2014_24402422 7 24402422
macrophages_Bindea2013_24138885 33 24138885
alpha_PDAC_normal_Li2016_26691212 100 26691212

BRAF_high_up_Wong2011_20802181 80 20802181
stroma_cluster4_BRCA_Farmer2005_15897907 19 15897907
EMT_up_Taube2010_20713713 93 20713713
mesenchymal_PDAC_normal_Enge2017_28965763 1 28965763
BRAF_Kannengiesser2009_19383316 24 19383316
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goblet_like_Sadanandam2013_23584089 94 23584089
SHH_MB_Staub2012_22937182 21 22937182
exocrine_PCA_Collisson2011_21460848 20 21460848
beta_PDAC_normal_Murano2016_27693023 14 27693023
alpha_PDAC_normal_Murano2016_27693023 17 27693023

IFN_Rice2014_24183309 4 24183309
proliferation_GBM_Phillips2006_16530701 5 16530701
IFN_MB_Staub2012_22937182 10 22937182
hippo_up_YAP_transfection_down_Zhang2008_18413746 42 18413746
hallmark50_NOTCH_Liberzon2019_26771021 32 26771021

M3_4_IFN_Chaussabel2008_18631455 59 18631455
CCS1_CIN_CRC_DeSousaEMelo2013_23584090 51 23584090
DDR_score_low_Kang2012_22505474 4 22505474
EMT_BRCA_Lien2008_17603561 32 17603561
proliferation_GBM_Liang2005_15827123 22 15827123

clusterE_MB_Kool2008_18769486 75 18769486
hallmark50_IL5_JAK_STAT3_signaling_Liberzon2019_26771021 87 26771021
PTEN_loss_down_BRCA_Saal2008_18066063 69 18066063
hallmark50_WNT_bCatenin_Liberzon2019_26771021 42 26771021
typeII_CSC_Lottaz2010_20145155 21 20145155

hallmark50_reactive_oxygen_species_Liberzon2019_26771021 49 26771021
SRC_Bild2006_16273092 55 16273092
hallmark50_adipogenesis_Liberzon2019_26771021 200 26771021
MSL_refined_BRCA_Lehmann2011_21633166 275 21633166
immune_GBM_Liang2005_15827123 35 15827123

hallmark50_spermatogenesis_Liberzon2019_26771021 135 26771021
BRCAness_low_Konstantinopoulos2010_20547991 27 20547991
MYC_Bild2006_16273092 187 16273092
EMTspheres_up_OV_Wang2012_22160925 33 22160925
BRCAness_Severson2018_28851423 77 28851423

MED12_KD_down_Huang2012_23178117 18 23178117
stem_like_Ragulan2019_31113981 9 31113981
WNT_DwAftDomNegTCFexpr_VanDerFlier2007_17320548 15 17320548
hallmark50_bile_acis_metabolism_Liberzon2019_26771021 112 26771021
proliferation_Budinska2013_23836465 83 23836465

proliferation_BRCA_Cardoso2016_27557300 47 27557300
FA_up_Gene2013_24036430 52 24036430
classical_subtype_LSCC_Wilkerson2011_20643781 18 20643781
EMTspheres_down_OV_Wang2012_22160925 28 22160925
IM_refined_BRCA_Lehmann2011_21633166 174 21633166

granulopoiesis_SLE_Bennett2003_12642603 20 12642603
chr20q_CRC_Budinska2013_23836465 33 23836465
hallmark50_IFNa_response_Liberzon2019_26771021 97 26771021
CIP2_knockdown_down_Niemel2013_22809314 15 22809314
YAP_Wang2019_30380420 21 30380420

ECM_GBM_Liang2005_15827123 19 15827123
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hallmark50_P53_Liberzon2019_26771021 200 26771021
treg_Bindea2013_24138885 1 24138885
Tcell_active_Heise2014_thesis 50 thesis
chr1p_loss_down_GBM_Ngo2007_17440165 7 17440165

atypical_HNCA_Walter2013_23451093 132 23451093
luminal_apocrine_cluster7_BRCA_Farmer2005_15897907 20 15897907
hallmark50_KRAS_signaling_up_Liberzon2019_26771021 200 26771021
NE_high_25_sclc_zhang2018_29535911 25 29535911
classical_pdac_moffit2016_26343385 62 26343385

NE_low_25_sclc_zhang2018_29535911 25 29535911
GCB_MethExp_DLBCL_Shaknovich2010_20610814 6 20610814
eosinophil_Angelova2015_25853550 15 25853550
MED12_KD_MEKi_resistant_Huang2012_23178117 54 23178117
DDR_score_high_Kang2012_22505474 19 22505474

luminalB_subtype_BRCA_Calza2007_16846532 9 16846532
RSI_Eschrich2009_19735873 9 19735873
hallmark50_ER_late_Liberzon2019_26771021 200 26771021
M_refined_BRCA_Lehmann2011_21633166 25 21633166
topotecan_Pitroda2014_24670686 12 24670686

enterocyte_Ragulan2019_31113981 9 31113981
PTENi_down_Vivanco2007_17560336 45 17560336
enterocyte_Sadanandam2013_23584089 127 23584089
deathFromCancer_Glinsky2005_15931389 11 15931389
MSI_up_CRC_Staubna_internal 63 internal

hypoxia_Chi2007_16417408 17 16417408
acinar_PDAC_normal_Enge2017_28965763 1 28965763
ERBB2_amplicon_cluster8_BRCA_Farmer2005_15897907 7 15897907
claudin_low_up_BRCA_Prat2013_20813035 424 20813035
RPS_Pitroda2018_28341751 4 28341751

hallmark50_glycolysis_Liberzon2019_26771021 200 26771021
hallmark50_uv_response_up_Liberzon2019_26771021 158 26771021
HRD_score_Lu2016_25062964 114 25062964
hypoxia_Harris2002_11902584 81 11902584
ductal_PDAC_normal_Enge2017_28965763 1 28965763

serrated_CRC_Laiho2007_16819509 82 16819509
hallmark50_apical_surface_Liberzon2019_26771021 44 26771021
ABC_DLBCL_MasquSoler2013_24030260 11 24030260
IFN_SLE_Bennett2003_12642603 26 12642603
high_risk_LC_Chen2007_17202451 5 17202451

primitive_subtype_LSCC_Wilkerson2011_20643781 30 20643781
hallmark50_heme_metabolism_Liberzon2019_26771021 200 26771021
stem_like_Sadanandam2013_23584089 207 23584089
ABC_DLBCL_Wright2003_12900505 21 12900505
IGF_up_Creighton2008_18757322 381 18757322

GCB_DLBCL_MasquSoler2013_24030260 9 24030260
MSI_up_CRC_Watanabe2006_17047040 68 17047040
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DDRD_down_Mulligan2014_24402422 18 24402422
WNT_cluster_MB_Kool2008_18769486 46 18769486
SCC_markers_LC_Hayes2006_17075127 15 17075127

luminalA_subtype_BRCA_Calza2007_16846532 12 16846532
ADC_LC_Hou2011_20421987 5 20421987
SHH_NanoStr_MB_Northcott2013_22057785 5 22057785
neural_down_GBM_Verhaak2010_20129251 129 20129251
hallmark50_apoptosis_Liberzon2019_26771021 161 26771021

apocrine_basal_hypoxia_cluster3_BRCA_Farmer2005_15897907 15 15897907
TGFb_early_Verrecchia2001_11279127 50 11279127
LAD_vs_LSCC_Kuner2009_18486272 9 18486272
IFN_Bilgic2010_19877033 3 19877033
hallmark50_E2F_targets_Liberzon2019_26771021 400 26771021

clusterD_MB_Kool2008_18769486 67 18769486
DDRD_group4_Mulligan2014_24402422 10 24402422
hallmark50_cholesterol_homeostasis_Liberzon2019_26771021 74 26771021
HC1A_progGroup_GBM_Freije2004_15374961 10 15374961
PTEN_loss_up_BRCA_Saal2008_18066063 110 18066063

proneural_up_GBM_Verhaak2010_20129251 135 20129251
hallmark50_peroxisome_Liberzon2019_26771021 104 26771021
PARPi_Daemen2013_22875744 7 22875744
TP53_mut_down_BRCA_Troester2007_17150101 16 17150101
WNT_canonical_KRASdep_Singh2012_22341439 32 22341439

recurr_score_oncotypeDB_BRCA_Paik2005_15591335 16 15591335
MYC_Chandriani2010_19690609 101 19690609
neutrophils_Heise2014_thesis 50 thesis
hallmark50_uv_response_down_Liberzon2019_26771021 144 26771021
hallmark50_TGFb_Liberzon2019_26771021 54 26771021

E2F3_Bild2006_16273092 224 16273092
EGFRmut_LC_Shibata2007_17459062 26 17459062
M1_2_IFN_Chaussabel2008_18631455 32 18631455
hallmark50_angiogenesis_Liberzon2019_26771021 36 26771021
BRAF_high_down_Wong2011_20802181 27 20802181

TP53_mut_up_BRCA_Troester2007_17150101 32 17150101
delta_PDAC_normal_Enge2017_28965763 1 28965763
platinum_sensitivity_Kang2012_22505474 23 22505474
radioresistance_down_BRCA_Speers2016_25904749 26 25904749
hallmark50_IL2_STAT5_signaling_Liberzon2019_26771021 200 26771021

hallmark50_MYC_targets2_Liberzon2019_26771021 58 26771021
hallmark50_allograft_rejection_Liberzon2019_26771021 200 26771021
nonMolBL_DLBCL_MasquSoler2013_24030260 4 24030260
rapamycin_Akcakanat2010_19778445 27 19778445
hallmark50_DDR_Liberzon2019_26771021 150 26771021

hallmark50_ER_early_Liberzon2019_26771021 200 26771021
goblet_like_Ragulan2019_31113981 5 31113981
mDC_monocytes_Heise2014_thesis 14 thesis
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inflammatory_Ragulan2019_31113981 8 31113981
BetaCatenin_Bild2006_16273092 76 16273092

hallmark50_hedgehog_Liberzon2019_26771021 36 26771021
PTENi_up_Vivanco2007_17560336 17 17560336
ribosomal_proteins_Ashburner2000_10802651 68 10802651
proNeural_GBM_Phillips2006_16530701 14 16530701
NE_high_prostate_ostano2020_32041153 8 32041153

sn38_pdac_organoid_tiriac2018_29853643 137 29853643
basal_like_pdac_moffit2016_26343385 26 26343385
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