
I N A U G U R A L – D I S S E R T A T I O N
zur

Erlangung der Doktorwürde

der

Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften

der

R u p r e c h t – K a r l s – U n i v e r s i t ä t

H e i d e l b e r g

vorgelegt von

Dipl.-Chem., B.Sc. (Math.) Marta Sauter

aus Zabrze, Polen

Tag der mündlichen Prüfung

. .

NUMERICAL METHODS FOR BILEVEL OPTIMAL CONTROL OF

CONSTRAINED BIOMECHANICAL MULTBODY SYSTEMS WITH

APPLICATIONS IN DIAGNOSIS OF CEREBRAL PALSY

Betreuer

Prof. Dr. Dr. h. c. mult. Hans Georg Bock

Apl. Prof. Dr. rer. nat. Sebastian Wolf

Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung mathematischer Modelle und numerischer Methoden basierend auf Op-

timalsteuerung zur Erstellung eines Klassifizierungs- und Diagnoseschemas für den pathologischen Gang von

Patienten mit Zerebralparese (CP). Der pathologische Gang von CP-Patienten ist noch immer nicht vollständig

verstanden und Gegenstand aktueller Forschung. Methoden zur Diagnose oder Klassifizierung des Gangs von

CP-Patienten sind essentiell für eine verlässliche Interventions- und Behandlungsplanung. Um dieses über-

geordnete Ziel zu erreichen modellieren wir den Körper der CP-Patienten durch ein starres, biomechanisches

Mehrkörpersystem. Die Dynamik dieses Mehrkörpersystems tritt auf als Beschränkung eines Optimalsteue-

rungsproblems (OCP), das wir zur Beschreibung des pathologischen Gangs aufsetzen. Dieses Vorgehen basiert

auf der allgemeinen Annahme, dass Optimierung ein grundlegendes Prinzip der menschlichen Fortbewegung

ist, so dass der Gang als optimal in Bezug auf eine Kombination verschiedener ausgewählter Optimierungskri-

terien interpretiert werden kann. Um ein kalibriertes personalisiertes Gangmodell zu erhalten, müssen unbe-

kannte Modellparameter und Gewichte verschiedener Optimierungskriterien im OCP unter Berücksichtigung

von gegebenen Bewegungsdaten aus dem HEIDELBERG MOTIONLAB identifiziert werden. Wir formulieren ein

zweistufiges inverses OCP: Auf der oberen Ebene dieses zweistufigen Optimierungsproblems haben wir ein Pa-

rameterschätzproblem, das durch das parametrisierte OCP der unteren Ebene, das den Gang eines Patienten

mit CP beschreibt, beschränkt wird. Bei gegebenen Bewegungserfassungsdaten können die Unbekannten so

bestimmt werden, dass das entwickelte Gangmodell am besten zu den gegebenen Messungen passt.

Für die Lösung von zweistufigen inversen OCPsbetrachten wir einen direkten Lösungsansatz durch Anwen-

dung der Mehrzielmethode und ersetzen das resultierende nichtlineare Programm (NLP) durch seine Op-

timalitätsbedingungen erster Ordnung. Daraus ergibt sich ein sogenanntes Mathematisches Programm mit

Komplementaritätsbedingungen - eine anspruchsvolle Klasse von NLPs. Wir etablieren eine neue mathemati-

sche Methode unter Berücksichtigung bekannter spezifischer Eigenschaften der zugrundeliegenden Beschrän-

kungen und schlagen effiziente numerische Algorithmen vor. In diesem sogenannten Direct Simultaneous

Approach with Fixed Active Set (DISIMFAS) nutzen wir darüber hinaus gegebene Strukturen aus, die sich

aus der Mehrzielmethode und dem zweistufigen Optimierungsproblem ergeben. In dieser Arbeit entwickeln

wir das Softwarepaket PARDYNOPT mit einer effizienten Implementierung des vorgeschlagenen DISIMFAS.

PARDYNOPT implementiert darüber hinaus numerische Methoden zur Lösung von OCPs im Allgemeinen, ba-

sierend auf der Mehrzielmethode und ist modular aufgebaut um zukünftige Erweiterungen und Untersuchun-

gen zu ermöglichen.

Die Leistungsfähigkeit der entwickelten numerischen Methode wird anhand einer Reihe von unterschiedli-

chen Bilevel Inverse OCPs demonstriert, worunter wir auch ein neues Bilevel Inverse OCP für ein menschen-

ähnliches Bewegungsmodell erarbeiten und analysieren, mit vielversprechenden Ergebnissen für eine zukünf-

tige Anwendung der vorgeschlagenen Methode zur Identifizierung unbekannter Parameter im Gangmodell von

Patienten mit CP. Als einen wesentlichen Schritt in diese Richtung entwickeln wir in dieser Arbeit ein persona-

lisiertes Modell eines starren Mehrkörpersystems für einen Patienten mit CP, in einer Weise, dass dessen Dy-

namik die Hauptmerkmale des pathologischen Gangs erfassen kann. Wir schlagen ein OCP vor, das durch die

Dynamik des starren Mehrkörpersystems beschränkt wird, mit einem Least-Squares Term als Optimierungskri-

terium, um die Rekonstruktion der zugrundeliegenden Dynamik des vorgeschlagenen CP-Modells für gegebe-

ne Bewegungserfassungsdaten zu untersuchen. Darüber hinaus leiten wir ein geeignetes parametrisiertes OCP

mit einer ausgewählten Kombination von Optimierungskriterien für den Gang eines CP-Patienten ab. Dieses

Gangmodell kann als untere Ebene in der zweistufigen inversen OCP-Formulierung dienen. Die Eignung des

CP-Gangmodells wird durch die Analyse von Lösungen unterschiedlich gewichteter OCPs bewertet.

V

VI

Abstract

This thesis aims at developing mathematical models and numerical methods for establishing a classification

and diagnosis scheme for the pathological gait of Cerebral Palsy (CP) patients based on Optimal Control (OC).

The pathological gait of CP patients is still an ongoing field of research and not completely understood. Meth-

ods to diagnose or classify the gait of CP patients are important for intervention and treatment planning. For

this purpose we model the patient’s body by a biomechanical rigid multibody system. The dynamics of this

multibody system appear as constraints in an Optimal Control Problem (OCP), which we use to describe the

pathological gait. This is based on the common assumption that optimization serves as a fundamental princi-

ple of human locomotion, such that the gait can be interpreted as optimal with respect to a well-chosen com-

bination of varying optimization criteria. To achieve a calibrated patient-specific gait model, unknown model

parameters and objective weights of various optimization criteria in the OCP have to be identified under con-

sideration of given motion capture data from the HEIDELBERG MOTIONLAB. We formulate a Bilevel Inverse

OCP: on the upper level of this bilevel optimization problem we have a Parameter Estimation (PE) Problem,

constrained by the lower level parametrized OCP describing the gait of a patient with CP. With given motion

capture data the unknowns can be determined, such that the developed gait model fits the given measurements

best.

For solving Bilevel Inverse OCPs we consider a direct solution approach by applying the Direct Multiple

Shooting Method and replace the resulting lower level Nonlinear Programming Problem (NLP) by its first-

order optimality conditions. This results in a so-called Mathematical Program with Complementarity Con-

straints (MPCC) - a challenging class of NLPs. We establish a novel mathematical method under consideration

of known specific characteristics of the underlying constraints, and propose efficient numerical algorithms. In

this so-called Direct Simultaneous Approach with Fixed Active Set (DISIMFAS), we furthermore exploit given

structures, which arise as a result of the Direct Multiple Shooting Method and the bilevel optimization problem.

In this thesis, we develop the software package PARDYNOPT with an efficient implementation of the proposed

DISIMFAS. PARDYNOPT furthermore implements numerical methods for solving OCPs in general based on the

Direct Multiple Shooting Method and is designed in a modular way for further extensions and investigations.

The performance of the developed numerical method is demonstrated on a set of different Bilevel Inverse

OCPs. Among these, we derive and analyse a new Bilevel Inverse OCP for a human-like locomotion model with

promising results for future application of the proposed method to identify unknown parameters in the gait

model of patients with CP. As an essential step in this direction, in this thesis we develop a rigid multibody sys-

tem model for a patient with CP, such that its dynamics can capture the main characteristics of the pathological

gait. We propose an OCP constrained by the rigid multibody system dynamics with a least-squares objective to

investigate the reconstruction of the underlying dynamics of the proposed CP model to given motion capture

data. Furthermore, we derive an adequate parametrized OCP with a well-chosen combination of optimiza-

tion criteria for the gait of a CP patient. This gait model can serve as a lower level in the Bilevel Inverse OCP

formulation. The suitability of the CP gait model is evaluated by analyzing solutions of differently weighted

OCPs.

VII

VIII

Acknowledgements

Without the support and help of others, such a thesis would hardly be possible. Therefore, I want to say thank

you to all my supporters and appreciate their valuable contribution, which enabled me to grow in so many

ways.

Thanks to:

My supervisors and mentors Ekaterina Kostina and Hans Georg Bock, for giving me the opportunity to perform

this thesis on such an exciting topic and especially for the constant support and supervision, valuable discus-

sions and the always warm atmosphere.

Johannes Schlöder for his supervision and support and all the interesting discussions and helpful input.

Sebastian Wolf from the HEIDELBERG MOTIONLAB for the great cooperation, supervision and his introduction

into cerebral palsy and gait analysis. Also for the possibility to work with the gait analysis data, which enabled

my work. Therefore, I would also like to thank everyone involved in deriving this data.

Katja Mombaur and the members of her group Optimization, Robotics & Biomechanics for the numerous fruit-

ful meetings and discussions, which have always been a source of inspiration and motivation. Special thanks

to Monika Harant for her help with the CP model.

All members of SimOpt and NumOpt, for the friendly atmosphere and many coffees, support with all kinds of

problems and helpful discussions. Special thanks to Andreas Sommer for his great support, as well as valuable

input to ParDynOpt and for proofreading this thesis. Also thanks to Andreas Meyer and Leo Wirsching for their

support with ParDynOpt.

The doctoral office and Anastasia Valter, Jeannette Walsch, and Herta Fitzer for their help with administrative

challenges.

My parents for their help in any situation and their constant and unconditional support throughout my life.

Without them all of this would have not been possible.

My brother and family for being there and always making me smile.

And, finally, my family, Hanna, Felix, and Max for always believing in me and their unconditional love. I am so

grateful that you were with me all these years.

IX

X

Contents

Acknowledgements IX

Introduction 1

I Foundations 7

1 Nonlinear Programming 9

1.1 Basic Definitions . 9

1.1.1 First-Order Necessary Optimality Conditions . 10

1.2 Numerical Methods for Nonlinear Programming . 11

1.2.1 Interior-Point Methods . 11

1.2.2 Sequential Quadratic Programming . 12

1.2.3 The Generalized Gauß-Newton Method . 13

1.3 Mathematical Programs with Complementarity Constraints (MPCCs) 15

1.3.1 Problem Formulation . 15

1.3.2 Towards Constraint Qualifications and Stationarity for MPCCs 16

1.3.3 Numerical Methods for MPCCs . 18

2 Optimization of Dynamic Systems 21

2.1 Optimal Control of Dynamic Systems . 21

2.1.1 General Problem Formulation . 21

2.1.2 Multi-Stage Problem Formulation with Discontinuities . 24

2.2 Numerical Methods for Optimal Control Problems (OCPs) . 25

2.2.1 The Direct Multiple Shooting Method . 25

2.2.2 Derivative Generation . 29

2.3 Parameter Estimation (PE) in Dynamic Systems . 30

2.3.1 Problem Formulation . 31

2.3.2 An Approach to Solve PE Problems in Dynamic Systems . 31

2.4 Bilevel Inverse Optimal Control Problems . 32

2.4.1 Problem Formulation . 32

2.4.2 Solution Approaches for Bilevel Inverse OCPs . 33

2.4.3 The Direct All-at-Once Approach . 34

3 Human Locomotion and Cerebral Palsy 39

3.1 Human Locomotion as an OCP . 39

3.1.1 Dynamics of Rigid Multibody Systems . 39

3.1.2 A General Multi-Stage OCP Formulation . 41

3.2 Cerebral Palsy (CP) . 44

3.2.1 Introduction and Classification . 44

3.2.2 Characteristics of Cerebral Palsy Gait . 45

XI

II Contributions 47

4 An Efficient Direct Approach for Bilevel Inverse OCPs with Fixed Active Set 49

4.1 Introduction and Motivation . 49

4.2 Numerical Solution Approach . 50

4.2.1 Step 1: Application of the Direct Multiple Shooting Method on the Lower Level 51

4.2.2 Step 2: Reformulation of the Lower Level NLP on a Fixed Active Set 52

4.2.3 Step 3: Replacement of the Lower Level NLP by its KKT Conditions 53

4.2.4 Step 4: Solution of the One-Level NLP with Tailored Numerical Methods 55

4.3 Structure Exploitation and Hessian Approximation . 55

4.3.1 Objective Gradients . 56

4.3.2 Constraint Vector and Gradient of Lower Level Lagrangian 57

4.3.3 Constraint Jacobian of One-Level NLP . 60

4.3.4 Approximation of Hessian of Lagrangian . 64

4.3.5 Approximation of Hessian of Lagrangian in a Generalized Gauß-Newton Framework 64

4.4 Outlook: Sequential Algorithm with Identification of Active Set . 64

4.4.1 Determination of Active Set . 64

4.4.2 A Sequential Algorithm for Active-Set Identification . 65

5 Bilevel Inverse OCP for Identification of Unknowns in a Basic Walker Gait Model 67

5.1 Dynamics of a Basic Walker Model . 67

5.1.1 Equations of Motion for Single Support Phase Right . 68

5.1.2 Equations of Motion for Single Support Phase Left . 69

5.1.3 Collision Impacts after each Phase . 70

5.1.4 Explicit Formulation of the Equations of Motion . 70

5.2 A Multi-Stage OCP for the Gait of a Basic Walker . 73

5.2.1 Objective Function . 74

5.2.2 Dynamics and its Transitions . 74

5.2.3 Constraints . 75

5.3 Bilevel Inverse OCP of a Basic Walker Gait Model . 77

6 Modeling of Cerebral Palsy Patients’ Gait 79

6.1 Rigid Multibody System Model for a Patient with CP . 79

6.1.1 Segments, Joints and DOFs . 79

6.1.2 Implementation Notes . 84

6.2 Modeling of the Dynamics for a CP Patient . 84

6.2.1 Full Gait Cycle and Phasewise Dynamics . 84

6.2.2 Generalized Coordinates, Velocities, and Accelerations . 85

6.2.3 Active and Passive Joint Actuation . 86

6.2.4 Patient-Specific Model Parameters . 87

6.2.5 Foot Contact Model and Self-Penetration Constraints . 88

6.2.6 Accessing Motion Capture Data . 89

6.2.7 Creation of a Digital Twin . 89

6.2.8 Determination of Patient-Specific Knee Axes . 90

6.2.9 Implementation Notes . 91

6.3 Dynamics Reconstruction as a Least-Square Multi-Stage OCP . 91

6.3.1 Least-Squares Objective Function . 92

XII

6.3.2 Dynamics and its Transitions . 93

6.3.3 Constraints . 93

6.4 A Multi-Stage OCP for the Gait of a Patient with CP . 97

6.4.1 Objective Function . 97

6.5 Comparison to CP Gait Model by Hatz and other Existing Models . 99

6.6 Outlook: Bilevel Inverse OCP for Identification of Unknowns in CP Gait 100

6.7 Pilot Study: Identification of Optimal Weights by Deep Neural Networks (DNNs) 101

6.7.1 Basic Concept and Motivation . 101

6.7.2 Learning weights via DNNs . 102

III Implementations and Numerical Results 105

7 The Software Package PARDYNOPT 107

7.1 Introduction and Software Structure . 107

7.2 Framework in PARDYNOPT for OCPs and Bilevel Inverse OCPs . 111

7.2.1 Setting up Problems in PARDYNOPT . 111

8 Bilevel Inverse Optimal Control in Two Case Studies 115

8.1 Case Study: Rocket Car and Multi-Stage Formulations . 115

8.1.1 An OCP for the Rocket Car and its Solutions for Selected Settings 115

8.1.2 Multi-Stage Bilevel Inverse OCPs for Selected Settings . 117

8.1.3 Summary . 125

8.2 Case Study: Polar Robot and a Comparison of PARDYNOPT with PARAOCP 126

8.2.1 An OCP for the Polar Robot Example . 127

8.2.2 Numerical Set-Up for Case Studies A and B . 128

8.2.3 Case Study A: Performance of PARDYNOPT . 129

8.2.4 Case Study B: Comparison of PARDYNOPT with PARAOCP . 136

8.2.5 Summary . 139

9 Bilevel Inverse Optimal Control for a Basic Walker Gait Model 141

9.1 Case Study: Basic Walker as Basic Model for Human Locomotion . 141

9.1.1 Bilevel Inverse OCP for a Basic Walker Example . 142

9.1.2 Summary . 144

10 Numerical Results for Cerebral Palsy Gait Model 149

10.1 Solution Approaches, Initialization and Implementation Notes . 149

10.2 Reconstruction of CP Gait Model using Motion Capture Data . 150

10.3 Numerical Analysis of Gait Syntheses for CP Gait Model . 152

10.3.1 Summary and Outlook . 154

10.4 Case Study: Identification of Weights for Optimal CP Gait by DNNs 158

10.4.1 Simulation of Training Data . 158

10.4.2 DNN Set-Up and Training . 158

10.4.3 Identification of Weights via Trained DNN . 159

10.4.4 Summary and Outlook . 160

Conclusion and Outlook 161

Appendix A Software Package: PARDYNOPT 163

XIII

A.1 Selected Initialization Methods in PARDYNOPT . 163

A.2 A Complete Example - The Rocket Car . 164

A.2.1 OCP for Rocket Car Example . 167

A.2.2 Bilevel Inverse OCP for Rocket Car Example . 169

Appendix B CP Gait Model 173

B.1 Optimal Differential States and Controls of Dynamics Reconstruction 173

B.2 Optimal Differential States and Controls of CP Gait Synthesis . 177

Bibliography 181

List of Figures 194

List of Tables 196

List of Acronyms 197

XIV

Introduction

Motivation and Overarching Goal

Cerebral Palsy (CP) is not a disease in the ordinary sense, but a collection of early childhood movement dis-

orders with a prevalence of approximately 0.2% of live births [48]. These movement disorders are caused by

abnormal development or damage in parts of the brain that control motor function. It is associated with im-

paired motor function, coordination, and abnormal muscle tone. Symptoms range from barely noticeable to

severe and limiting movement disorders. These disorders can affect one or more limbs and may even lead to

paralysis and joints that become so stiff that they can no longer be moved. Fortunately, although CP is not cur-

able, there exist a variety of measures that can be taken to promote the patient’s mobility and independence.

One way is to use clinical gait analysis for therapy decision making by the physicians. This gait analysis pro-

vides kinematic information on joint angle positions during walking and the corresponding kinetic data, and

gives further insight after electromyographic examination in activities of selected muscles. Although an objec-

tive and consistent diagnosis of CP gait disorders is necessary for the determination and verification of therapy

strategies, it usually requires a high degree of clinical experience and, hence, strongly depends on the treating

physicians. Our overarching goal is to develop a mathematical and numerical framework for inverse problems

enabling a consistent diagnosis and support medical doctors with an automated diagnostic tool. As an im-

portant step in this direction we transfer investigated medical challenges to adequate mathematical tasks, and

derive inverse problems to support physicians in diagnosis under consideration of provided motion capture

data from the HEIDELBERG MOTIONLAB [173]. Consequently, for the purpose of classifying CP gaits and identi-

fying patient-specific parameters, we are faced with highly non-smooth bilevel optimization problems, which

we tackle on three different levels.

Level 1: To describe CP gaits mathematically, appropriate and personalized models of the patients’ bodies

have to be developed covering the main pathological physiology. This can be achieved by detailed rigid multi-

body system models, for which the underlying phasewise defined dynamics can be calculated by solving the

resulting equations of motion.

Level 2: It is a common assumption that the human gait is a result of a person’s decision guided by certain

optimization criteria and constraints [10, 11]. This means that optimization serves as a guiding principle of

bipedal locomotion of humans [129]. As a consequence human locomotion can be mathematically formulated

as an Optimal Control Problem (OCP) with the underlying dynamics as described at level 1 and torques and

forces as controls. An adequate Optimal Control (OC) model for the gait of a CP patient has to capture the main

characteristics of the pathological gait with a well-chosen combination of various optimization criteria (such as

stability, energy efficiency, or reduction of executed mechanical work), state and control inequality constraints,

and given physiological parameters.

Level 3: For the purpose of classifying CP gaits and identifying patient-specific parameters, such as joint dis-

placements and skeleton deformations, as well as a (parametrized) optimization criterion supporting medical

diagnosis with the derived OCP of a constrained biomechanical multibody system from level 2, we formulate

a bilevel optimization problem under consideration of provided motion capture data from the HEIDELBERG

MOTIONLAB [173]. This results in a so-called Bilevel Inverse OCP: a parameter estimation problem constrained

by the OCP derived on level 2 with the underlying dynamics from level 1. The essential role of this mathema-

tical model as a so-called digital twin is to provide the physicians with a non-invasive diagnosis tool. However,

this overarching goal can only be achieved by developing reliable mathematical methods to solve these kind of

bilevel optimization problem, which is one key aspect in this thesis.

1

Contents

As basis for our work, we use the foundations laid by Hatz in [80].

Scope of this Thesis

This work is part of the project "Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by

Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems" [27], guided by Prof. Dr. Ekaterina

A. Kostina and Prof. Dr. Dr. h. c. mult. Hans Georg Bock, which emerged from the long-standing collaboration

with Apl. Prof. Dr. rer. nat. Sebastian Wolf and the HEIDELBERG MOTIONLAB [173] of the Department of Ortho-

pedics and Trauma Surgery of the Heidelberg University Hospital. It aims a detailed investigation of involved

medical challenges, which arise from the morbid conditions of patients with CP with resulting pathological

gaits. In close cooperation with Sebastian Wolf from the HEIDELBERG MOTIONLAB the key challenges could be

identified and helpful inside in the medical background could be accomplished. This enables us to transfer

these challenges and insights to adequate mathematical tasks. Within the overall project, our ultimate goal is

"[...] to develop a reliable mathematical and numerical framework for

• inverse problems to support proper diagnosis and

• parameter optimization and OCP to improve the planning of interventions" [27],

and to provide a routinely applicable tool for the physicians. In this work we focus on diagnosis of CP gait,

whereas in the side project [151] therapy design of CP is the main topic.

To meet the appearing challenges, especially in the field of biomechanical modeling of the locomotor sys-

tem, and optimization and simulation of human gaits, our work was supported by close collaboration with

Prof. Dr. Katja Mombaur - now at University Waterloo as holder of the "Canada Excellence Research Chair for

Human-Centred Robotics & Machine Intelligence", and her former working group "Optimization in Robotics

and Biomechanics" at Heidelberg University.

For a routinely applicable mathematical tool for the physicians and a sustainable software development,

which enables future extentions by connecting other software packages through suitable interfaces, we coop-

erated with the "Scientific Computing Sustainable Software Collaboratory" under the supervision of Ekaterina

Kostina at the Interdisciplinary Center for Scientific Computing.

Contributions

AMathematical Method for Solving Bilevel Inverse Optimal Control Problems

To meet our ultimate goal, which is the identification of optimization criteria and model parameters in an OCP

describing the gait of a patient with CP, we derive a direct simultaneous method for solving Bilevel Inverse

OCPs. These kinds of bilevel problems comprise a Parameter Estimation (PE) Problem on the upper level and

a parametrized OCP on the lower level, where parameters are determined, such that given measurements are

met. In our direct simultaneous solution approach - the so-called Direct Simultaneous Approach with Fixed

Active Set (DISIMFAS) - we start with a parametrization of the dynamics by applying the Direct Multiple Shoot-

ing Method [26] and an appropriate discretization of the controls, constraints and objective function. Before

we reformulate the bilevel problem as a one-level problem, only those discretized inequality constraints are in-

cluded and fixed that correspond to the optimal active set under consideration of given structural information

on the underlying dynamic system. The lower level of the resulting bilevel Nonlinear Programming Problem

(NLP) is then replaced by its first-order optimality conditions, which leads to a structured one-level NLP, which

is solved by tailored numerical solution methods developed in this thesis. Generally, the optimal active set of

the lower level cannot easily be determined under consideration of given measurements, therefore, the pro-

posed method can be embedded in a sequential algorithm for the identification of the optimal active set.

2

Contents

Structure Exploitation in Numerical Algorithms for Bilevel Inverse Optimal Control Problems

A desired feature of the DISIMFAS developed in this thesis is its routine applicability by physicians for the iden-

tification of unknowns in a patient-specific CP gait model. To meet this desired feature and for reliability, we

establish an efficient and structure exploiting algorithm to solve Bilevel Inverse OCPs by applying the DISIM-

FAS and solving the resulting highly structured NLP. We exploit given structures for several parts in the algo-

rithm, which have to be provided in standard NLP solvers for an efficient calculation of essential quantities.

These exploitations cover needed quantities by interior-point methods, Sequential Quadratic Programming

(SQP) methods, and the Generalized Gauß-Newton Method.

Efficient Implementation of the Proposed Mathematical Method

In this work we developed a modular C++ software package PARDYNOPT within the Scientific Computing Sus-

tainable Software Collaboratory under the supervision of Ekaterina Kostina at the Interdisciplinary Center for

Scientific Computing. It was constructed in such a way that its modules can easily be exchanged and extended

in the future for a sustainable implementation. In addition to general OCPs, our software package allows us to

solve Bilevel Inverse OCPs efficiently. It realizes the proposed DISIMFAS and provides interfaces to the software

package IPOPT [169] for the solution of the resulting structured one-level NLP with an efficient interior-point

method. Furthermore, interfaces for SNOPT [71] and FILTERSQP [59] are prepared for implementations of SQP

methods. For setting up a dynamic model in a comfortable way, an interface to the software package SOLVIND

[5] is integrated. Furthermore, SOLVIND provides Ordinary Differential Equation (ODE) and Differential Al-

gebraic Equation (DAE) solvers in an Internal Numerical Differentiation (IND) framework [23, 24] for exact

derivative generation using Automatic Differentiation (AD) with an interface to the software package ADOL-C

[170]. This powerful feature of the software suite SOLVIND is also supported by PARDYNOPT.

Numerical Investigations of the Proposed Method in two Case Studies

Our derived solution approach for Bilevel Inverse OCPs in the implementation PARDYNOPT is investigated

numerically in two case studies apart from human locomotion with different focuses. In the first case study, we

consider the well-known structure of the resulting control functions in a rocket car example, which was, e.g.,

investigated in [81]. In our analysis, distinct multi-stage problem formulations lead to successful applications

of our DISIMFAS in a Bilevel Inverse OCP setting with simulated measurements. In a second case study, we

consider a polar robot example as derived by Steinbach [164] and discuss the performance of our solution

approach under consideration of given structural information and compare it to results of Hatz [80] with the

Direct All-at-Once Approach.

Bilevel Inverse Optimal Control Model for a Basic Human-Like Locomotion with Numerical Investigations of the
Proposed Solution Approach

For numerical investigations of our DISIMFAS in the context of human locomotion, we derive a Bilevel Inverse

OCP for the identification of unknown model parameters and objective weights in a basic walker gait model.

This model, which we developed during the project, serves as a basic model for human locomotion. We provide

a full description of the corresponding problem formulation. Furthermore, the performance of our proposed

method in its implementation in PARDYNOPT is discussed in detail.

Parametrized Optimal Control Model for the Gait of a Patient with Cerebral Palsy and its Analysis for Deployment
in a Bilevel Inverse OCP Set-Up

To meet our ultimate goal to support physicians with a diagnosis tool for evaluation of possible interventions

on the locomotor system and therapy management of CP patients, we develop a CP gait model with 20 Degrees

of Freedom (DOFs) based on the work of Hatz [80] under consideration of given measurements provided by

3

Contents

the HEIDELBERG MOTIONLAB [173]. With patient-specific knee axes, an integration of passive reset forces as

restriction on the range of motion in the knees of CP patients, and a suitable combination of optimization cri-

teria we are able to capture the typical pathological gait with an adequate incorporation of complexity into our

gait model. This is demonstrated by numerical investigations, where a reconstruction of the derived dynamics

of our newly developed rigid mulitbody system model of a CP patient is performed. Furthermore, with our de-

rived multi-stage OCP formulation for the gait of a CP patient, varying gaits for differently weighted objective

functions could be synthesized, which motivates us to use our OCP formulation in a Bilevel Inverse OCP set-up

for the identification of unknowns for an appropriate calibration of the patient-specific gait model.

Supervised Learning Approach Based on Deep Neural Networks for the Identification of Optimal Weight in our CP
Gait Model

As a pilot study, we develop a supervised learning approach, which is based on the application of Deep Neu-

ral Networks (DNNs). In a first online phase the DNN is trained on simulated data by solving the derived

parametrized OCPs describing the gait of a patient with CP for varying objective weights. The appropriately

trained DNN is then used in an offline phase for the estimation of optimal weights by propagation of newly

obtained measurements through the DNN. The proposed supervised learning approach is investigated in a

case study on simulated data for the developed CP gait model, where the objective weights could be identified

reasonably well.

Thesis Overview

This thesis comprises three main parts: Foundations, Contributions, and Implementations and Numerical Re-

sults. The first part presents foundations that the contributions of this thesis are build on. In the second part

the contributions of this thesis, which are investigated numerically in the third part, are described in detail.

Part 1: Foundations

In chapter 1 we start with basic definitions for NLPs and introduce the concepts of selected numerical meth-

ods for solving these kinds of problems. We discuss a challenging class of NLPs: Mathematical Programs with

Complementarity Constraints (MPCCs), as they appear in direct simultaneous solution approaches for Bilevel

Inverse OCPs. In chapter 2 an overview on optimization of dynamic systems is given. It introduces a gen-

eral problem formulation for OCPs and describes the special class of multi-stage OCPs with discontinuities.

Selected numerical methods for these kinds of problems are presented. Furthermore, PE problems and a so-

lution approach are discussed. As a main topic of this thesis, we state the general problem formulation for

Bilevel Inverse OCPs used throughout this thesis and give a brief overview on selected solution approaches.

In more detail we discuss the Direct All-at-Once Approach [80], as a basis for our DISIMFAS. In chapter 3 we

introduce how human locomotion can be described using OC and give some background on the disease CP

and the characteristic pathological gait.

Part 2: Contributions

The main contributions of this thesis in the field of mathematics and orthopedic biomechanics, as already

introduced above, are presented in detail in the second part of this thesis. Therein, we start with the devel-

oped mathematical method for Bilevel Inverse OCPs and our motivation behind this approach. In section 4.2

we discuss each step of the numerical solution approach in detail and provide tailored numerical methods

with structure exploitation to solve the resulting NLP. In section 4.4 we give an outlook on the embedding of

the DISIMFAS in a sequential algorithm for the identification of the active set. In chapter 5, a Bilevel Inverse

OCP formulation for the identification of unknowns in a basic model for human-like locomotion is developed.

Therein, we start with the underlying dynamics of the rigid multibody system model of a basic walker model

4

Contents

[150], followed by an appropriate multi-stage OCP formulation describing its gait. This derived OCP serves as

the lower level in the Bilevel Inverse OCP of a basic walker gait model. In the final chapter of the second part

of this thesis the developed patient-specific CP gait model is presented. The derived rigid multibody system

model as well as the corresponding underlying dynamics are discussed in detail. Furthermore, a least-squares

multi-stage OCP formulation for the reconstruction of the dynamics to given motion capture data from the

HEIDELBERG MOTIONLAB [173] is provided. In section 6.4 a multi-stage OCP formulation for the gait of a pa-

tient with CP is discussed with a combination of well-chosen optimization criteria. After a detailed comparison

to the CP gait model by Hatz and other existing models, we provide a Bilevel Inverse OCP formulation for the

identification of unknowns in the CP gait model as an outlook for further research. Part 2 is concluded with the

development of a supervised learning approach for the identification of optimal weights in the derived CP gait

model via DNNs.

Part 3: Implementations and Numerical Results

In the final part of this thesis we start with implementation details on the newly developed software package

PARDYNOPT with the general software structure and the framework for setting up OCPs and Bilevel Inverse

OCPs. The performance of the developed numerical method DISIMFAS is investigated in chapter 8 in two case

studies, covering rocket car and polar robot examples, as, e.g., introduced in [81, 80, 164], and in chapter 9 for

the Bilevel Inverse OCP for a basic walker gait model derived in chapter 5. Finally, in chapter 10 we analyze

our derived CP gait model from chapter 6 numerically, and additionally perform a case study of the supervised

learning approach for identification of optimal weights via DNNs, followed by a conclusion and outlook.

Computational Environment The numerical results presented in chapter 8, chapter 9 and chapter 10 have been

achieved on an Ubuntu 20.04 LTS system powered by an Intel Core i7-8550U CPU with 15.5 GiB main memory

available.

5

6

Part I

Foundations

7

Chapter 1

Nonlinear Programming

In this chapter we review some basic theory on nonlinear programming used in this thesis. We start with basic

definitions, followed by a selection of numerical methods for nonlinear programming: interior-point methods,

SQP, and the Generalized Gauß-Newton method. The presentations in the first and second sections mainly

follow the book of Nocedal and Wright [132]. For the Generalized Gauß-Newton method the content is based

on the thesis of Sommer [161] with references therein. The final section is dedicated to a challenging class of

NLPs: MPCCs, and provides only a brief overview following Fletcher et al. [61]. The interested reader is referred

to the references given in the last section.

1.1 Basic Definitions

Throughout this section we follow the book of Nocedal and Wright [132] for selected material on the theory of

constrained nonlinear optimization and start with the definition for NLPs.

Definition 1.1 (Nonlinear Programming Problem)

A Nonlinear Programming Problem is a constrained nonlinear optimization problem of the form

min
x∈Rn

f (x) (1.1a)

s. t. 0 = ci (x), i ∈ E , (1.1b)

0 ≤ ci (x), i ∈ I , (1.1c)

where f :Rn →R is called the objective function and c :Rn →R|E∪I| represent the equality constraints for com-

ponents ci (x), i ∈ E and the inequality constraints for ci (x), i ∈ I . All functions are supposed to be sufficiently

smooth, real-valued, and I and E are two disjoint finite sets of indices. The cardinality of both sets is denoted

by |E ∪I|. 4

Definition 1.2 (Feasible Set)

The feasible set Ω is defined as

Ω := {x|ci (x) = 0, i ∈ E ,ci (x) ≥ 0, i ∈ I} . 4

Definition 1.3 (Active Set)

Let x ∈ Ω be feasible. Then the active set A(x) at point x consists of all indices i ∈ E of equality constraints

together with the indices of inequality constraints i for which ci (x) = 0, such that

A(x) := E ∪ {i ∈ I|ci (x) = 0} .

Furthermore, we define the active set which belongs to inequality constraints as

Aic(x) :=A(x)∩I = {i ∈ I|ci (x) = 0} . (1.2)
4

The inequality constraint i ∈ I is called active at a feasible point x, if ci (x) = 0, and inactive if the strict inequality

ci (x) > 0 is satisfied.

9

CHAPTER 1 NONLINEAR PROGRAMMING

Definition 1.4 (Local and Global Solution)

• A feasible point x∗ ∈Ω is a local solution of problem (1.1) if there is a neighborhood N of x∗ such that

f (x) ≥ f (x∗),∀x ∈N ∩Ω.

It is called a strict local solution if the inequality is strictly fulfilled.

• A feasible point x∗ ∈Ω is a global solution of problem (1.1) if

f (x) ≥ f (x∗),∀x ∈Ω.

It is called a strict global solution if the inequality is strictly fulfilled. 4

Definition 1.5 (Lagrangian Function)

The Lagrangian function of the general problem (1.1) is L :Rn ×R|E |×R|I| →R and defined by

L(x,λ,µ) := f (x)−
∑
i∈E

λi ci (x)−
∑
i∈I

µi ci (x),

with Lagrange multipliers λ ∈R|E | and µ ∈R|I|. The cardinality of each set is denoted by | · |. 4

Definition 1.6 (Linear Independence Constraint Qualification (LICQ),[83])

Given the feasible point x ∈Ω and the active set from definition 1.3, the Linear Independence Constraint Qual-

ification holds at x if the set of active constraint gradients

{∇ci (x), i ∈A(x)} ,

is linearly independent. 4

A generalization of LICQ is the Mangasarian-Fromowitz Constraint Qualification (MFCQ), which is a weaker

condition than the LICQ and defined in the following.

Definition 1.7 (Mangasarian-Fromowitz Constraint Qualification,[120])

Given the feasible point x ∈ Ω and the active set from definition 1.3, the Mangasarian-Fromowitz Constraint

Qualification holds at x if the following conditions are satisfied:

• The set of equality constraint gradients

{∇ci (x), i ∈ E} ,

is linearly independent.

• There exists a vector w ∈Rn such that

∇ci (x)T w > 0,∀i ∈A(x)∩I and ∇ci (x)T w = 0,∀i ∈ E . 4

1.1.1 First-Order Necessary Optimality Conditions

In the following we state the first-order necessary optimality conditions which are also known as Karush-Kuhn-

Tucker (KKT) conditions.

Theorem 1.8 (Karush-Kuhn-Tucker Conditions, [99, 107])

Suppose x∗ is a local solution of problem (1.1). Furthermore, let functions f and ci be continuously differen-

tiable, and the LICQ or MFCQ be fulfilled at x∗. Then there exist Lagrange multipliers λ∗ ∈ R|E | and µ∗ ∈ R|I|

10

NONLINEAR PROGRAMMING CHAPTER 1

such that

0 =∇xL(x∗,λ∗,µ∗), (Stationarity) (1.3a)

0 = ci (x∗), ∀i ∈ E , (Primal Feasibility) (1.3b)

0 ≤ ci (x∗), ∀i ∈ I , (Primal Feasibility) (1.3c)

0 ≤µ∗, (Dual Feasibility) (1.3d)

0 =µ∗
i ci (x∗), ∀i ∈ I . (Complementarity) (1.3e)

For a given solution x∗, the Lagrangian multipliers are unique, if the LICQ holds. 4

Proof See Nocedal and Wright [132], chapter 12.3. �

The complementarity conditions (1.3e) imply that inequality constraint ci (x∗) is active or that the correspond-

ing Lagrange multiplier µ∗
i = 0 is zero, or both. Together with the definition of the active set Aic in (1.2), that

belongs to inequality constraints the stationarity condition (1.3a) can be rewritten as

0 =∇xL(x∗,λ∗,µ∗) =∇ f (x∗)−
∑
i∈E

λ∗
i ∇ci (x∗)−

∑
i∈Aic(x∗)

µ∗
i ∇ci (x∗).

1.2 Numerical Methods for Nonlinear Programming

In this section we give a brief overview on selected numerical methods for nonlinear programming and start

with interior-point methods, followed by SQP and the Generalized Gauß-Newton Method. Numerical methods

for nonlinear programming are addressed by many textbooks, e.g., Fletcher [58], Geiger and Kanzow [67], Gill

et al. [72], and Nocedal and Wright [132]. Here we summarize some essential characteristics of each method

following the latter reference and refer the interested reader to the corresponding chapters in the book by No-

cedal and Wright [132, Chapters 10,18,19].

1.2.1 Interior-Point Methods

Interior-point methods - also known as barrier methods - for nonlinear optimization were already developed in

the 1950s, but gained more interest by the late 1990s. An efficient implementation of an interior-point method

in the software package IPOPT [169] is also integrated as NLP solver in PARDYNOPT developed in this work.

We start by considering NLP problem (1.1) of definition 1.1 and reformulate it as

min
x,s

f (x) (1.4a)

s. t. 0 = ci (x), i ∈ E , (1.4b)

0 = ci (x)− si , i ∈ I , (1.4c)

0 ≤ si , i ∈ I , (1.4d)

by the introduction of a slack variables s ∈R|I|, such that the inequality constraints can be written as equalities.

Let L(x∗, s∗,λ∗,µ∗) denote the Lagrangian of the reformulated NLP (1.4). Then the KKT conditions (1.3) are

0 =∇x,sL(x∗, s∗,λ∗,µ∗) (1.5a)

0 = ci (x), i ∈ E , (1.5b)

0 = ci (x)− s, i ∈ I , (1.5c)

0 ≤ si , i ∈ I , (1.5d)

0 ≤µi , i ∈ I , (1.5e)

ν= siµi , i ∈ I , (1.5f)

11

CHAPTER 1 NONLINEAR PROGRAMMING

if parameter ν = 0,ν ∈ R. Equations (1.5f) with ν = 0 and (1.5d), (1.5e) introduce a combinatorial aspect into

solving the equation system (1.5) in determining the optimal active set. This difficulty can be circumvented by

enforcing ν to be strictly positive. In the homotopy approach, a sequence of so-called perturbed KKT conditions

of the form (1.5) are solved, where the positive parameters νk are iteratively driven to zero, while s,µ > 0 and,

hence, remain in the interior.

1.2.2 Sequential Quadratic Programming

SQP methods are frequently used for non-linearly constrained optimization, and are appropriate for small and

large problem sizes. The basic concept of SQP methods is to solve a sequence of quadratic subproblems. We

start with an equality constrained NLP of the following form

min
x∈Rn

f (x) (1.6a)

s. t. 0 = c(x), (1.6b)

where f : Rn → R and c : Rn → R|E | are smooth functions. In the SQP approach at interate xk NLP (1.6) is

modeled by a quadratic subproblem. This subproblem is then minimized to produce a new iterate to solve the

original problem.

The KKT conditions (1.3) for the equality-constrained NLP (1.6) can be summarized in

F (x,λ) =
(
∇xL(x,λ)

c(x)

)
= 0, (1.7)

where λ ∈R|E | are the Lagrange multipliers related to the equality constraints and

∇xL(x,λ) =∇ f (x)−∇c(x)Tλ,

the gradient of the Lagrange function with respect to x. ∇c(x) denotes the constraint Jacobian, where the rows

are the gradients ∇ci (x), i ∈ E . The equation system (1.7) can now be solved by applying Newton’s method, see

e.g. [132, Chapter 11]. Therefore, we define the Jacobian of (1.7) as

J (x,λ) =
(
∇2

xxL(x,λ) −∇c(x)T

∇c(x) 0

)
, (1.8)

and obtain an update of the current iterate (xk ,λk)(
xk+1

λk+1

)
=

(
xk

λk

)
+

(
pk

pλ

)
, (1.9)

where pk and pλ solve the following Newton-KKT system(
∇2

xxL(xk ,λk) −∇c(xk)T

∇c(xk) 0

)(
pk

pλ

)
=

(
−∇ f (xk)+∇c(xk)Tλk

−c(xk)

)
. (1.10)

If matrix (1.8) is regular, the solution of the equation system in (1.10) is well-defined. This is the case for the

KKT matrix, if the following assumption holds at (x,λ) = (xk ,λk).

Assumption 1.1

• The constraint Jacobian ∇c(x) has full rank,

12

NONLINEAR PROGRAMMING CHAPTER 1

• The matrix ∇2
xxL(x,λ) is positive definite on the null space of the constraint gradients, that is

d T ∇2
xxL(x,λ)d > 0∀d 6= 0 such that ∇c(x)d = 0. 4

The steps pk and pλ determined by (1.9) and (1.10) can also be interpreted as the solution of a Quadratic

Program (QP) of the following form:

min
p

1

2
pT ∇2

xxL(xk ,λk)p +∇ f (xk)T p (1.11a)

s. t. 0 =∇c(xk)p + c(xk). (1.11b)

If the assumption 1.1 holds, QP (1.11) has a unique solution (pk ,νk), which satisfies the following KKT condi-

tions:

0 =∇2
xxL(xk ,νk)pk +∇ f (xk)−∇c(xk)Tνk (1.12)

0 =∇c(xk)pk + c(xk), (1.13)

where νk ∈ R|E | define the Lagrange multipliers. We have that νk = λk + pλ = λk+1, if we subtract ∇c(xk)Tλk

from both sides of the first equation in the Newton-KKT system (1.10). Hence, (pk ,νk) can be identified with

the solution of (1.10). Both interpretations - the new iterate (xk+1,λk+1) as the solution of QP (1.11) or as an

iterate generated by Newton’s method in (1.9) and (1.10) - have their justification. The first interpretation is

often used in the analysis of convergence properties, whereas the latter interpretation serves as a starting point

for the derivation of practical algorithms. In the following, we state a local SQP algorithm in a basic form.

Algorithm 1 Scheme of the Local SQP Method

1: Choose an initial pair (x0,λ0), k ← 0

2: while a convergence test is not satisfied at (xk ,λk) do

3: Evaluate f (xk),∇ f (xk),∇2
xxL(xk ,λk),c(xk) and ∇c(xk)

4: Compute solution (pk ,λk+1) of QP (1.11)

5: xk+1 ← xk +pk

6: k ← k +1

7: end while

Algorithm 1 can be extended for solving the general NLP (1.1) with inequality constraints from definition 1.1 by

linearization of both the equality and inequality constraints to obtain the following QP

min
p

1

2
pT ∇2

xxL(xk ,λk)p +∇ f (xk)T p (1.14a)

s. t. 0 =∇ci (xk)p + ci (xk), i ∈ E , (1.14b)

0 ≤∇ci (xk)p + ci (xk), i ∈ I . (1.14c)

Replacing QP (1.11) by QP (1.14) in algorithm 1 leads to a local SQP method for the general case. The solution

of the inequality constrained QP can be achieved by applying algorithms for quadratic programming as, e.g.

the ones described in the textbook of Nocedal and Wright [132, Chapter 16].

1.2.3 The Generalized Gauß-Newton Method

The Generalized Gauß-Newton method was introduced by Bock [25] for solving equality and inequality con-

strained nonlinear least-squares problems, which generalizes the classical Gauß-Newton method for un-

constrained nonlinear least-squares problems as described, e.g., in [132]. The presentation of this subsec-

tion mainly follows the theses of Bock [25], Hatz [80], and Sommer [161], and the textbook of Nocedal and

13

CHAPTER 1 NONLINEAR PROGRAMMING

Wright [132]. We start with an equality-constrained nonlinear least-squares problem of the following form

min
x∈Rn

1

2
‖r (x)‖2

2 (1.15a)

s. t. 0 = c(x), (1.15b)

where the residual function r : Rn → Rnl sq and the equality constraint function c : Rn → R|E | are smooth func-

tions. The KKT conditions (1.3) for NLP (1.15) are given by(
∇xL(x,λ)

c(x)

)
= 0, (1.16)

where λ ∈R|E | are the Lagrange multipliers related to the equality constraints and

∇xL(x,λ) =∇r (x)T r (x)−∇c(x)Tλ, (1.17)

the gradient of the Lagrange function with respect to x. Similar to the above case for the derivation of the SQP

method, the equation system (1.16) can now be solved by applying Newton’s method. Therein, we obtain an

update of the current iterate (xk ,λk)(
xk+1

λk+1

)
=

(
xk

λk

)
+

(
pk

pλ

)
, (1.18)

where pk and pλ solve the following Newton-KKT system(
∇2

xxL(xk ,λk) −∇c(xk)T

∇c(xk) 0

)(
pk

pλ

)
=

(
−∇r (xk)T r (xk)+∇c(xk)Tλk

−c(xk)

)
. (1.19)

The Hessian of the Lagrangian in (1.19) can be approximated by

∇2
xxL(x,λ) =∇r (x)T ∇r (x)+

nl sq∑
i=1

ri (x)∇2ri (x)−
nm∑
i=0

λi∇2ci (x) (1.20a)

≈∇r (x)T ∇r (x). (1.20b)

This approximation can be made if (see [25]):

• The residuals ri (x) are small.

• The multipliers λ become small close to the solution.

The latter statement can be expected, because the gradient of the Lagrangian (1.17) should become small close

to the solution. Consequentially, because of the first statement expecting that the residuals are small, the mul-

tipliers λ become small close to the solution as well. With approximation (1.20b) the Newton-KKT system can

be written as(
∇r (xk)T ∇r (xk) −∇c(xk)T

∇c(xk) 0

)(
pk

pλ

)
=

(
−∇r (xk)T r (xk)+∇c(xk)Tλk

−c(xk)

)
. (1.21)

The solution (pk , pλ) of (1.21) can be furthermore interpreted as the solution of a linearized nonlinear least-

squares problem as

min
p∈Rn

1

2
‖r (x)+∇r (x)p‖2

2 (1.22a)

s. t. 0 = c(x)+∇c(x)p, (1.22b)

14

NONLINEAR PROGRAMMING CHAPTER 1

under the following assumptions:

Assumption 1.2

• The constraint Jacobian ∇c(x) has full row rank,

• The approximation ∇r (x)T ∇r (x) of the Hessian of the Lagrangian is positive definite on the null space of

the constraint gradients, that is

d T ∇r (x)T ∇r (x)d > 0∀d 6= 0 such that ∇c(x)d = 0. 4

If we identify the Lagrange multipliers νk with λk+1 in the equation system (1.21) both views are equivalent

and, hence, a step in each iteration of a Generalized Gauß-Newton method can be computed by solving the

Newton-KKT system (1.21) or by solving the linearized nonlinear least-squares problem (1.22). A sketch of the

basic algorithm of the Generalized Gauß-Newton method is illustrated in the following.

Algorithm 2 Scheme of the Generalized Gauß-Newton Method

1: Choose an initial pair (x0,λ0), k ← 0

2: while a convergence test is not satisfied at (xk ,λk) do

3: Evaluate r (xk),∇r (xk),c(xk) and ∇c(xk)

4: Compute solution (pk ,λk+1) of linearized nonlinear least-squares problem (1.22)

5: xk+1 ← xk +pk

6: k ← k +1

7: end while

The Generalized Gauß-Newton can also be extended to inequality-constrained nonlinear least-squares prob-

lems. Further details on the Generalized Gauß-Newton method, such as, e.g., the existence of a generalized

inverse as a solution operator for the linearized problem (1.22) can be found in the work of Bock [25].

1.3 Mathematical Programs with Complementarity Constraints

Mathematical Programs with Complementarity Constraints (MPCCs) are optimization problems, where the

so-called complementarity constraints appear within constraints. MPCCs are considered as generalizations

of bilevel programs in which the solution of the underlying problem is implicitly characterized. An excellent

overview can be found, e.g., in Luo et al. [119]. The constraints of MPCCs fail to satisfy standard Constraint

Qualifications (CQs) at any feasible point, including the LICQ and the MFCQ, see e.g. Chen and Florian [33].

Due to their challenging treatment and their wide applicability to practical problems, MPCCs have attracted

considerable research efforts during the last decades, see Scheel and Scholtes [149], Scholtes [154, 155], Outrata

[133, 134], Flegel and Kanzow [56], Flegel [55], Hoheisel et al. [88], Kanzow and Schwartz [97, 98], Luo et al. [119],

Pang and Fukushima [136], Ye [176], Raghunathan and Biegler [142], Steffensen and Ulbrich [162], Gfrerer [68],

Guo and Ye [76], and Gfrerer and Ye [69].

Recent focus has been put on generalizations to infinite dimension by Herzog et al. [82], Hintermüller and

Kopacka [84], Hintermüller and Surowiec [85], Hintermüller et al. [86], and Mehlitz and Wachsmuth [122].

1.3.1 Problem Formulation

MPCCs are NLPs with a special structure and can be defined as follows:

15

CHAPTER 1 NONLINEAR PROGRAMMING

Definition 1.9 (Mathematical Programs with Complementarity Constraints)

A Mathematical Program with Complementarity Constraints is a constrained nonlinear optimization problem

of the form

min
x,s,t

f (x, s, t) (1.23a)

s. t. 0 = ci (x, s, t), i ∈ E , (1.23b)

0 ≤ ci (x, s, t), i ∈ I , (1.23c)

0 ≤ s ⊥ t ≥ 0, (1.23d)

where x ∈Rn , s ∈Rns , t ∈Rns are the optimization variables, f :Rn×Rns ×Rns →R is called the objective function

and c :Rn ×Rns ×Rns →R|E∪I| represent the equality constraints for components ci (x), i ∈ E and the inequality

constraints for ci (x), i ∈ I . All functions are supposed to be smooth, real-valued functions, and I and E are

two disjoint finite sets of indices. The so-called complementarity constraint 0 ≤ s ⊥ t ≥ 0 denotes 0 ≤ s, 0 ≤ t ,

sT t = 0. 4

The combinatorial structure of the complementarity constraint (1.23d) results in the violation of standard CQs,

e.g. LICQ and MFCQ, at any feasible point of MPCCs:

Lemma 1.10 (Violation of Standard CQs for MPCCs)

Let (x, s, t) be a feasible point for (1.23). Then MFCQ is violated for the NLP formulation of (1.23):

min
x,s,t

f (x, s, t) (1.24a)

s. t. 0 = ci (x, s, t), i ∈ E , (1.24b)

0 ≤ ci (x, s, t), i ∈ I , (1.24c)

0 ≤ s,0 ≤ t , (1.24d)

0 = sT t . (1.24e)
4

Proof See Chen et al. [32], Scheel and Scholtes [149]. �

Because standard solution methods for NLPs rely on the satisfaction of CQ, the special problem class of MPCCs

is challenging and needs appropriate treatment.

1.3.2 Towards Constraint Qualifications and Stationarity for MPCCs

In this section we present a tailored CQ for MPCCs and two selected concepts for stationarity, where we mainly

follow the publication of Fletcher et al. [61] based on the development of Scheel and Scholtes [149]. Beside the

last-mentioned articles, the interested reader is advised to the thesis of Flegel [55] and references therein for a

comprehensive discussion on CQs and stationarity for MPCCs.

We start with two index sets Is ,It ⊂ {1, . . . ,ns } with

Is ∪It = {1, . . . ,ns },

and denote their respective complements in {1, . . . ,ns } by Ic
s , Ic

t . Note that the finite index sets {1, . . . ,ns }, E ,

and I are chosen to be disjoint. We define:

16

NONLINEAR PROGRAMMING CHAPTER 1

Definition 1.11 (Relaxed Nonlinear Programming Problem (RNLP))

The Relaxed Nonlinear Programming Problem (RNLP) corresponding to the MPCC (1.23) is defined as

min
x,s,t

f (x, s, t) (1.25a)

s. t. 0 = ci (x, s, t), i ∈ E , (1.25b)

0 ≤ ci (x, s, t), i ∈ I , (1.25c)

0 = si , i ∈ Ic
t , (1.25d)

0 ≤ si , i ∈ It , (1.25e)

0 = ti , i ∈ Ic
s , (1.25f)

0 ≤ ti , i ∈ Is . (1.25g)
4

Note that if (x∗, s∗, t∗) is a local solution of the Relaxed Nonlinear Programming Problem (RNLP) (1.25) and

satisfies the complementarity constraint (1.23d), then it is also a local solution of the original MPCC (1.23) of

definition 1.9.

Definition 1.12 (Set of Degenerate Indices)

Let (x, s, t) be feasible for MPCC (1.23). Then the set of degenerate indices is defined by

D(x, s, t) := {i |si = ti = 0} orD := Is ∩It . (1.26)
4

Definition 1.13 (MPCC Lagrangian)

The MPCC Lagrangian Lcc :Rn ×Rns ×Rns ×R|E |×R|I|×Rns ×Rns →R is given by

Lcc (x, s, t ,λ,µ,ν,σ) := f (x, s, t)−
∑
i∈E

λi ci (x)−
∑
i∈I

µi ci (x)−νT s −σT t ,

with Lagrange multipliers λ ∈R|E |, µ ∈R|I|, ν ∈Rns and σ ∈Rns . 4

In the following we define a CQ tailored to the MPCC (1.23) - the MPCC-LICQ:

Definition 1.14 (MPCC-LICQ)

Let s, t ≥ 0,ci (x, s, t) = 0, ∀i ∈ E ,ci (x, s, t) ≥ 0, ∀i ∈ I and define index sets

Is := {i ∈ {1, . . . ,ns }|si = 0} and It := {i ∈ {1, . . . ,ns }|ti = 0}.

Then the MPCC (1.23) is said to satisfy the MPCC-LICQ at (x, s, t), if the corresponding RNLP (1.25) satisfies

LICQ at this point. 4

In the remainder of this section we give the definitions of two different and closely related stationarity concepts:

Bouligand-stationarity and strong stationarity. In [55], [114] and [176], e.g., an overview on more stationarity

concepts for MPCCs can be found.

Definition 1.15 (B-Stationarity)

A point (x∗, s∗, t∗) is called Bouligand, or B-stationary, if d = 0 solves the following linear program with com-

plementarity constraints:

min
d

∇ f (x∗, s∗, t∗)T d (1.27a)

s. t. 0 = ci (x∗, s∗, t∗)+∇ci (x∗, s∗, t∗)d , i ∈ E , (1.27b)

17

CHAPTER 1 NONLINEAR PROGRAMMING

0 ≤ ci (x∗, s∗, t∗)+∇ci (x∗, s∗, t∗)d , i ∈ I , (1.27c)

0 ≤ (s∗+ds) ⊥ (t∗+dt) ≥ 0. (1.27d)
4

Definition 1.16 (Strong Stationarity)

A point (x∗, s∗, t∗) is called strong stationary, if there exist multipliers λ,µ,ν,σ such that:

0 =∇x,s,tLcc (x∗, s∗, t∗,λ,µ,ν,σ), (1.28a)

0 = ci (x∗, s∗, t∗), i ∈ E , (1.28b)

0 ≤ ci (x∗, s∗, t∗), i ∈ I , (1.28c)

0 ≤ s∗, (1.28d)

0 ≤ t∗, (1.28e)

0 = s∗i or 0 = t∗i , i ∈ {1, . . . ,ns } (1.28f)

0 ≤µ, (1.28g)

0 =µi ci (x∗, s∗, t∗), i ∈ I , (1.28h)

0 = ν◦ s∗, (1.28i)

0 =σ◦ t∗, (1.28j)

0 ≤ νi and 0 ≤σi , if i ∈D(x∗, s∗, t∗)(1.26), (1.28k)

where ◦ denotes the element-wise vector multiplication (Hadamard product). 4

The conditions for strong stationarity in (1.28) of an MPCC (1.23) are the stationarity conditions of the relaxed

NLP (1.25) from definition 1.11 at (x∗, s∗, t∗). Scheel and Scholtes [149] have shown that B-stationarity is equiv-

alent to strong stationarity if MPCC-LICQ holds.

1.3.3 Numerical Methods for MPCCs

Several approaches to MPCCs have been investigated where the complementarity constraint is expressed as a

nonlinear equation. These primarily include nonlinear equation, smoothing and regularization, penalization,

and structural approaches which are explained briefly in the following. We mainly rely on the comprehensive

overview in the thesis of Lenders [111], where the interested reader is advised to.

Nonlinear Equation Approaches

Treating the equilibrium or complementarity constraint as a nonlinear equation and solving the arising prob-

lem with an algorithm for general nonlinear programs, especially SQP methods, showed success on a wide

range of practical problems, see e.g. Leyffer [113], Fletcher and Leyffer [60], Fletcher et al. [61]. However, this

methodology still shows deficits such as the fact that convergence to points with trivial descents cannot be ex-

cluded without strong assumptions. Recently, Andreani et al. [14] could improve the results of Izmailov et al.

[93] for the case with unbounded multipliers by showing that a second order augmented Lagrangian method

converges to M-stationary points under MPCC-LICQ.

Smoothing and Regularization Approaches

Smoothing and regularization approaches in which the complementarity constraint is expressed as a nonlinear

complementarity constraint function have also been extensively studied by Facchinei et al. [50], Scholtes [153],

Ralph and Wright [143], Pang and Fukushima [136], and several approaches were suggested, e.g. by Fukushima

and Tseng [63], Raghunathan and Biegler [142], Liu and Sun [118], Lin and Fukushima [116, 117], DeMiguel

18

NONLINEAR PROGRAMMING CHAPTER 1

et al. [42], Kadrani et al. [96], Steffensen and Ulbrich [162], Kanzow and Schwartz [98], Hatz [80], Stein [163],

Chen and Wan [34]. A review of these approaches can be found in Hoheisel et al. [88].

Penalization Approach

Another approach is to reformulate the problem by penalizing the objective function with the complementarity

constraint, e.g. performed by Fukushima et al. [64], Hu and Ralph [91], Luo et al. [119], Leyffer et al. [115], Jiang

and Ralph [95], Scholtes and Stöhr [156], Stöhr [165], Benson et al. [22], Anitescu [15, 16], Anitescu et al. [17],

Clason et al. [36].

Structural Function Approach

Further methods were developed where the complementarity constraint is formulated as a structural con-

straint in a subproblem by Giallombardo and Ralph [70], Kirches et al. [102], Benko and Gfrerer [21]. One

notable example is the combination of SQP with Sequential Linear Programming performed in Leyffer and

Munson [114]. With this approach convergence to points without trivial descents under realizable conditions

could be achieved. Lenders [111] developed a similar algorithm to this approach which is an extension of

the Sequential Linear Equality Constraint Quadratic Programming Method (SLEQP) of Nocedal and Waltz in

[30, 31] for nonlinear programs to MPCCs. A more recent approach which falls in this category was suggested

by Kirches et al. [103]: the Sequential Linearization Method for Bound-Constrained MPCCs, where in each it-

eration of the proposed algorithm a linear program with complementarity constraints is solved to obtain an

estimate of the active set.

19

20

Chapter 2

Optimization of Dynamic Systems

This chapter focuses on optimization of dynamic systems described by ODEs, and in particular on OCPs, PE

Problems and Bilevel Inverse OCPs. In the first section various problem formulations for OCPs are given and

their transformations are discussed following the thesis of Meyer [124]. The second section is concerned with

the Direct Multiple Shooting Method developed by Bock and Plitt [26, 138] as a tailored numerical method to

treat OCPs and gives a brief overview on possible methods for derivative generation. In the third section PE

Problems are discussed with their problem formulation and an approach to solve these kinds of problems. For

more details on PE Problems we refer to the works of Bock [25] and Schlöder [150]. The last section introduces

a special class of hierarchical optimization of dynamics systems: a Bilevel Inverse OCP. The corresponding

problem formulation for this PE Problem constrained by an OCP is provided and various solution approaches

are discussed with a more detailed discussion on the Direct All-at-Once Approach [80]. For more details on

Bilevel Inverse OCPs, the interested reader is referred to the references given in the last section.

2.1 Optimal Control of Dynamic Systems

In this section we start with a general problem formulation for OCPs and give possible transformation tech-

niques to end up with a special multi-stage OCP with discontinuities, which later can be used to model the

human gait as described in section 3.1.

2.1.1 General Problem Formulation

We start with a general OCP for dynamic processes described by an ODE system on time horizon T = [ts, tf] ⊂R
with fixed initial time ts and final time tf, and ts < tf. It can be formulated as

min
x ,u

φM(tf, x(tf))+
∫ tf

ts

φL(t , x(t),u(t))dt (2.1a)

s. t. ẋ(t) = f (t , x(t),u(t)), t ∈ T , (2.1b)

0 ≤ c(t , x(t),u(t)), t ∈ T , (2.1c)

0 = r ec(ts, x(ts), tf, x(tf)), (2.1d)

0 ≤ r ic(ts, x(ts), tf, x(tf)). (2.1e)

In the following the arising variables and sufficiently smooth functions in OCP (2.1) are described:

• Bolza type objective (2.1a) incorporates a Mayer term φM : R×Rnx → R and a Lagrange term where φL :

T ×Rnx ×Rnu →R,

• differential states denoted by x : T →Rnx ,

• control functions denoted by u : T →Rnu ,

• dynamics described by a system of ODEs (2.1b) with the right-hand side f : T ×Rnx ×Rnu →Rnx ,

• boundary equality constraints r ec : T ×Rnx ×T ×Rnx →Rnec in (2.1d) and

• inequality constraints r ic : T ×Rnx ×T ×Rnx →Rnic constraints in (2.1d),

21

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

• mixed control-state constraints combined in c : T ×Rnx ×Rnu →Rnc (2.1c).

The OCP of general form described here is a so-called non-autonomous problem. In problems of this kind,

the arising functions depend explicitly on the time of the process, whereas in autonomous problems this is

not the case. Every non-autonomous problem (2.1) can be transformed into an autonomous problem. This

transformation technique together with other selected transformations as described in the thesis of Meyer [124]

are introduced in the following. As a result, we can then formulate a multi-stage OCP (2.7) in subsection 2.1.2

which is equivalent to the general problem formulation in (2.1), and, hence, general numerical approaches can

be applied to the special class as well.

Transformation to Autonomous Problem

With the introduction of an additional differential state t (·) with ṫ (t) = 1, t (ts) = ts, a non-autonomous problem

can be easily transformed to an autonomous problem.

Embedding of Global Parameters

Global parameters p ∈ Rnp can be a part of the dynamic model and may enter objective functions φM(·) and

φL(·), right-hand side functions f (·) or equality and inequality constraint functions r ic(·) and r ec(·), respec-

tively, and mixed control-state constraints c(·). Such model parameters can be treated as additional controls,

which are constant over T . In the following we call them constant control parameters.

Transformation to Multi-Stage Problems

Many processes in nature cannot easily be represented by a single ODE system because the dynamics may

change. To overcome this drawback the dynamics can be modeled in phases and be embedded in a multi-

stage OCP. Therefore, nS consecutive so-called model stages with index j = 1, . . . ,nS are defined on fixed possibly

empty time horizons T j := [tj−1, tj] with ordered time points

ts = t0 ≤ t1 ≤ . . . ≤ tnS = tf. (2.2)

This results in differential states xj(t) and control functions uj(t) on each model stage. Together with phasewise

defined Mayer type and Langrange type objective functionals φM
j (·) and φL

j (·), respectively, right-hand side

functions fj(·) and mixed control-state constraints cj(·) the multi-stage OCP can be formulated as

min
x1,...,xnS ,
u1,...,unS

nS∑
j=1
φM

j (tj, xj(tj))+
∫ tj

tj−1

φL
j (t , xj(t),uj(t))dt (2.3a)

s. t. ẋj(t) = fj(tj, xj(t),uj(t)), t ∈ T j, j = 1, . . . ,nS, (2.3b)

0 ≤ cj(tj, xj(t),uj(t)), t ∈ T j, j = 1, . . . ,nS, (2.3c)

0 = r ec(t0, x1(t0), t1, x1(t1), . . . , xnS (tnS)), (2.3d)

0 ≤ r ic(t0, x1(t0), t1, x1(t1), . . . , xnS (tnS)). (2.3e)

Boundary constraints are included in (2.3d) and (2.3d).

Transformation to Fixed Time Intervals

The general problem formulation in (2.1) and the multi-stage OCP (2.3) are defined on time horizons with

fixed initial time ts and fixed final time tf. However, in many applications, processes with a priori unknown

final time have to be considered. In this paragraph we show how the resulting OCP with free final time can be

transformed onto a fixed and normalized time interval [0,1] such that it is equivalent to problem formulations

(2.1) and (2.3).

22

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

In this work we focus on multi-stage OCPs with discontinuities with free final time, later introduced in sub-

section 2.1.2. Hence, at this point we also consider phasewise defined dynamic processes as in the previous

paragraph on possibly empty time horizons T j := [tj−1, tj] for each model stage j = 1, . . . ,nS with free time points

ordered as in (2.2). However, for nS = 1 the general case of only one model stage is included. To perform a linear

time transformation, we fix initial time ts = 0 of the first model stage without loss of generality and consider a

mapping tj : [0,1] → T j on each model stage j = 1, . . . ,nS defined by

tj(t̃) :=
nS−1∑
j=1

dj + t̃ ·dj,

where we introduce the duration parameters dj = tj−tj−1 and combine them in the vector d :=
(
d1 . . . dnS

)T
.

This parameter vector can be embedded in an OCP of the form (2.1) or (2.3) according to the previous para-

graph "Embedding of Global Parameters" on page 22. With the definition of the differential states and control

functions as

x̃j : [0,1] →R
nxj , x̃j(t̃) := xj(tj(t̃)),

ũj : [0,1] →R
nuj , ũj(t̃):= uj(tj(t̃)),

where tj(t̃) ∈ T j, the ODE system for all model stages is given by

˙̃xj(t̃) = ∂xj(tj(t̃))

∂tj
· ∂tj(t̃)

∂t̃

= dj · fj(tj(t̃), xj(tj(t̃)),uj(tj(t̃)))

= dj · fj(tj(t̃), x̃j(t̃), ũj(t̃)).

Note that in general, the dimensions of the differential states and control functions, nxj and nuj , respectively,

may differ on each model stage. However, in our applications of chapter 8, chapter 9, and chapter 10 the

dimensions of the differential states and control functions, nx and nu, respectively, stay the same on each model

stage. For all remaining functions in OCP (2.1) and (2.3) - the objective function and the constraints - we can

proceed in a similar way. In total, this results in an OCP of the form

min
x̃ ,ũ,d

φM(t (1), x̃(1))+
∫ 1

0
φL(t (t̃), x̃(t̃), ũ(t̃),d)dt̃ (2.6a)

s. t. ˙̃x(t̃) = d ◦ f (t (t̃), x̃(t̃), ũ(t̃)), t̃ ∈ [0,1], (2.6b)

0 ≤ c(t (t̃), x̃(t̃), ũ(t̃)), t̃ ∈ [0,1], (2.6c)

0 = r ec(t (0), x̃(0), t (1), x̃(1)), (2.6d)

0 ≤ r ic(t (0), x̃(0), t (1), x̃(1)), (2.6e)

where ◦ denotes the element-wise vector multiplication (Hadamard product). Problem (2.6) is defined on fixed

normalized time horizons t̃ ∈ [0,1] for each model stage with duration parameters d ∈RnS as time-independent

optimization variables. The other variables are represented in their compact form

x̃(t̃) :=


x̃1(t̃)

...

x̃nS (t̃)

 and ũ(t̃) :=


ũ1(t̃)

...

ũnS (t̃)

 .

23

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

All remaining phasewise defined functions which appear in OCP (2.6) are treated similarly to the right hand

side function

f (t (t̃), x̃(t̃), ũ(t̃)) :=


f1(t1(t̃), x̃1(t̃), ũ1(t̃))

...

fnS (tnS (t̃), x̃nS (t̃), ũnS (t̃))

 .

In the following we omit the tilde which appears in the quantities after time transformation for autonomous

problems for a clearer presentation.

Transformations of Objective Functions

The objective function in (2.1a) is of Bolza type and combines a Mayer type objective φM(·) and a Lagrange

type objective φL(·). With the introduction of additional differential states, differentiation, and integration

these types can be easily transformed into each other.

2.1.2 Multi-Stage Problem Formulation with Discontinuities

In this thesis we consider human locomotion of rigid multi-body system models which can be interpreted as an

OCP, see section 3.1 for more details. Its dynamics are often phasewise defined with discontinuities between

phases. If the sequence of the dynamics with its transitions is not known in advance, it results in a switched OCP

as, e.g., in [124, 151]. Contrary to this, if the consecutive order of all phases is predefined human locomotion

can be formulated by multi-stage OCPs with discontinuities. These kinds of problems are numerically easier to

solve as the challenging switched OCPs.

In this thesis we are concerned with Bilevel Inverse OCPs: PE problems constrained by an OCP as intro-

duced later in section 2.4 with the ultimate goal to describe the individual gait of a CP patient. Hence, in our

case with given measurement data of the dynamic process, the sequence of the dynamics is already predefined.

Therefore, on the lower hierarchical level we choose a multi-stage OCP formulation with discontinuities, which

incorporates the multi-stage structure in consecutive order on fixed normalized time horizons T j := [0,1] for

each model stage j = 1, . . . ,nS with free duration parameters dj ∈ R. For autonomous systems with model pa-

rameters p ∈Rnp this OCP can be formulated as

min
x ,u,d

nS∑
j=1
Φj(xj(t),uj(t),dj,α, p) (2.7a)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (2.7b)

xj+1(0) =∆j(xj(1), p), j = 1, . . . ,nS −1, (2.7c)

0 ≤ cj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (2.7d)

0 = r ec(x1(0), x1(1), . . . , xnS (1), p), (2.7e)

0 ≤ r ic(x1(0), x1(1), . . . , xnS (1), p), (2.7f)

where the phasewise defined quantities and functions xj(·),uj(·), fj(·),cj(·), andΦj(·) correspond to the ones in

the general problem formulation (2.1) after time transformation as in (2.6) combined with a transformation to

autonomous systems and an embedding of global parameters from subsection 2.1.1. The objective function on

each model stage is of Bolza type and is represented by a weighted sum of nM Mayer type optimization criteria

φM
jk and nL Lagrange type optimization criteriaφL

jk as follows

Φj(xj(t),uj(t),dj,α, p) =
nM∑
k=1

αk ·φM
jk (xj(1),dj, p)+

nM+nL∑
k=nM+1

αk ·
∫ 1

0
dj ·φL

jk(xj(t),uj(t), p)dt .

24

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

The corresponding ojective weights are denoted by α ∈ RnM+nL . Discontinuities between phases can be mod-

eled by transitions of the values of differential states xj of two consecutive model stages at phase transition.

This transition is described by equation (2.7c). If no discontinuity between two phases occurs, only an identity

mapping has to be considered.

If additional knowledge of the process is available further multi-point equality and inequality conditions

can be included in equations (2.7e) and (2.7f), respectively, and then have to be fulfilled on each model stage

j = 1, . . . ,nS on specific normalized time points

0 = t ec
j,0 < t ec

j,1 < . . . < t ec
j,nec,j

= 1 and 0 = t ic
j,0 < t ic

j,1 < . . . < t ic
j,nec,j

= 1,

respectively. However, in order to ensure a clear representation, equations (2.7e) and (2.7f) only comprise

boundary conditions on each phase which are related to (2.1d) and (2.1e) in the general formulation. By ap-

plying the transformations described in subsection 2.1.1 and adding equation (2.7c) to the boundary condition

OCP (2.7) can be represented in the general form of (2.1).

2.2 Numerical Methods for Optimal Control Problems

In general, we distinguish between indirect and direct solution approaches for OCPs. In indirect solution ap-

proaches the OCP is considered as an infinite dimensional optimization problem. For this continuous OCP

optimality conditions are established. This results in a nonlinear multipoint boundary value problem that has

to be solved numerically. In contrast to indirect solution approaches, in direct solution approaches the OCP

is first discretized and transformed to a finite-dimensional NLP. This resulting NLP can then be solved by ap-

plying the methods described in section 1.2. In these numerical methods derivatives have to be generated,

hence, we also give a brief overview on this topic in the last section. In this thesis we choose the direct solution

approach and, in particular, the so-called Direct Multiple Shooting Method that is described in the following.

2.2.1 The Direct Multiple Shooting Method

The Direct Multiple Shooting Method was developed by Bock and Plitt [26, 138]. An efficient implementation

of the Direct Multiple Shooting Method can be found, e.g., in the optimal control package MUSCOD-II by

Leineweber [108], with a comprehensive overview of the method itself and some advanced extensions in [109,

110]. The software package PARDYNOPT tailored for the DISIMFAS developed in this thesis implements the

Direct Multiple Shooting Method as well.

In the following, we give a brief overview of the approach and consider a single-stage OCP similar to the

multi-stage formulation from previous subsection 2.1.2 on a fixed normalized time horizon [0,1] with free du-

ration parameter d ∈R and given model parameters p and objective weightsα as follows

min
x ,u,d

nM∑
k=1

αk ·φM
k (x(1),d , p) (2.8a)

s. t. ẋ(t) = d · f (x(t),u(t), p), t ∈ [0,1], (2.8b)

0 ≤ c(x(t),u(t), p), t ∈ [0,1], (2.8c)

0 = r ec(x(0), x(1), p), (2.8d)

0 ≤ r ic(x(0), x(1), p), (2.8e)

where nS is set to 1 and the stage index j as well as the transition condition (2.7c) are omitted. For a clearer

representation, only Mayer terms are considered in the problem formulation of (2.8). As described earlier in

subsection 2.1.1 by introducing an additional state and an ODE, the Lagrange type objective can be trans-

formed to a Mayer type objective so this is an adequate formulation and is used in the following to describe the

Direct Multiple Shooting Method.

25

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

Discretization of Control Function

In the direct approach the control functions u(t) on infinite dimensional space are approximated by a finite set

of piecewise defined functions with local support. Therefore, we introduce the discretization grid, also called

multiple shooting grid

0 = t ms
0 < t ms

1 < . . . < t ms
N = 1, (2.9)

and replace the control functions u(t) on each multiple shooting interval T i = [t ms
i , t ms

i+1] for i = 0, . . . ,N−1 and

for each component j = 1, . . . ,nu by some given (typically polynomial) basis functions ξij : T i ×Rnqij → R such

that

ûij(t) := ξij(t , qij), t ∈ T i, i = 0, . . . ,N−1. (2.10)

The locally defined control parameters are denoted by qij ∈Rnqij . For j = 1, . . . ,nu the components are combined

in the vectors qi :=
(

qi
T
1 . . . qi

T
nu

)T
. For completeness, for the final node t ms

N of the chosen time grid we

introduce additional control parameters such that qN := qN−1 and

ûN(t ms
N , qN) := ûN−1(t ms

N , qN−1).

In total, the control functions u(·) can be approximated by

û(t , q) =
{

ûi(t , qi), if t ∈ [t ms
i , t ms

i+1), for i = 0, . . . ,N−1,

ûN(t , qN), if t = t ms
N ,

(2.11)

with ûi(·) =
(
ûi1(·) . . . ûinu (·)

)T
where each component is defined in (2.10) and control parameters combined

in q :=
(

q T
0 . . . q T

N

)T
. For instance, piecewise constant approximations for all nu components of control

functions u(t) can be written as

ûi(t , qi) = qi, t ∈ T i, i = 0, . . . ,N−1.

If a piecewise linear approximation is preferred on each multiple shooting interval for i = 0, . . . ,N− 1 and for

each component j = 1, . . . ,nu we have

ûij(t , qij) = q1
ij +

t − t ms
i−1

t ms
i − t ms

i−1

(
q2

ij −q1
ij

)
, t ∈ T i, i = 0, . . . ,N−1,

with qij :=
(
q1

ij q2
ij

)T
∈ R2. If desired, continuity can be ensured at the multiple shooting nodes by additional

constraints such as

ûi(t ms
i+1, qi) = ûi+1(t ms

i+1, qi+1), i = 0, . . . ,N−2,

e.g., in the piecewise linear case. Similarly, approximations with higher polynomial order can be used. How-

ever, for many applications piecewise constant or piecewise linear control approximations are sufficient. Al-

though basis functions with higher order represent the true control functions more accurately from the mathe-

matical point of view, they often cannot be realized in the application itself.

After control discretization, the control functions in OCP (2.8) are replaced by control parameters q ∈ Rnq

as optimization variables which enter the arising functions, e.g. the ODE in (2.8b): f (x(t), û(t , q), p). In the

following we mostly use piecewise constant approximations of all control functions.

26

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

Parametrization of Dynamics

Suppose we have the same multiple shooting grid (2.9) as in the previous section

0 = t ms
0 ≤ t ms

1 ≤ . . . ≤ t ms
N = 1,

and choose an approximated control function from (2.11). Then the ODE model is parametrized by the intro-

duction of variables s =
(

sT
0 . . . sT

N

)T
with si ∈Rnx such that on each multiple shooting intervalT i = [t ms

i , t ms
i+1]

for i = 0, . . . ,N−1 the following Initial Value Problems (IVPs)

ẋ(t) = d · f (x(t), ûi(t , qi), p), t ∈ T i for i = 0, . . . ,N−1, (2.12a)

x(t ms
i) = si, (2.12b)

are solved. The interval solutions are denoted by x(t ; si, qi,d , p) to emphasize the dependence on the variables

si, control parameters qi, duration parameter d , and model parameters p at multiple shooting node t ms
i . To

ensure a continuous solution, additional continuity conditions or matching conditions have to be fulfilled at

the multiple shooting nodes:

0 = x(t ms
i+1; si, qi,d , p)− si+1, i = 0, . . . ,N−1.

Similarly, by setting x0(t ms
0) = xs the initial condition at the first multiple shooting node

0 = xs − s0, (2.13)

has to hold and can be incorporated in the boundary conditions of OCP (2.8).

In the multi-stage setting in subsection 2.1.2 the model stage index j enters the discretized quantities for

distinction between different phases, which are defined on multiple shooting grids

0 = t ms
j,0 ≤ t ms

j,1 ≤ . . . ≤ t ms
j,Nj

= 1, j = 1, . . . ,nS −1.

Then the transition condition (2.7c) between two model stages j and j +1 can be represented by

0 =∆j(xj(t ms
j,Nj

; sj,Nj−1, qj,Nj−1,dj, p), p)− sj+1,0, j = 1, . . . ,nS −1. (2.14)

It describes the transition between the last multiple shooting node of model stage j and the first node of model

stage j +1.

Discretization of Constraints

After discretization of the control functions and parametrization of the dynamics on the multiple shooting grid,

the mixed control-state constraints in OCP (2.8) are enforced to hold only at the multiple shooting nodes such

that

0 ≤ c(si, ûi(t ms
i , qi), p), i = 0, . . . ,N.

In many applications this assumption is sufficient. However, if this is not the case and the constraints are

violated significantly between the multiple shooting nodes, one can refine the multiple shooting grid or use an

approach as described in [140, 141], which leads to more computational effort.

27

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

Furthermore, the boundary equality and inequality constraints, (2.8d) and (2.8e), respectively, are written as

0 = r ec(s0, sN, p),

0 ≤ r ic(s0, sN, p),

which also include initial condition (2.13) at the first multiple shooting node.

Resulting NLP

With discretization of the control functions, parametrization of the dynamics and discretization of the con-

straints on the fixed and normalized multiple shooting grid (2.9) together with an appropriate Mayer type ob-

jective of the form

Φ(sN,d ,α, p) :=
nM∑
k=1

αk ·φM
k (sN,d , p),

and given model parameters p and objective weights α, the OCP (2.8) defined on the fixed and normalized

time horizon t ∈ [0,1] = [t ms
0 , t ms

N] results in a Multiple Shooting NLP as follows:

min
s,q ,d

Φ(sN,d ,α, p) (2.15a)

s. t. 0 = x(t ms
i+1; si, qi,d , p)− si+1, i = 0, . . . ,N−1, (2.15b)

0 ≤ c(si, ûi(t ms
i , qi), p), i = 0, . . . ,N, (2.15c)

0 = r ec(s0, sN, p), (2.15d)

0 ≤ r ic(s0, sN, p). (2.15e)

NLP (2.15) can be solved by the methods described in section 1.2. For the interested reader more details on

structure exploiting SQP methods tailored to multi-stage OCPs can be found in [108] and [109, 110]. Interior

point methods can be found, e.g., in [123, 169].

For a more compact representation of NLP (2.15) the multiple shooting variables are combined in the vectors

vi :=
(

sT
i q T

i

)T
with si ∈ Rnx and qi ∈ Rnqi , where the dimension of the control parameters on each node de-

pends on the chosen control approximation. These shooting vectors are combined in the total multiple shoot-

ing variable vector v :=
(

v T
0 . . . v T

N

)T
∈Rnv , with the dimension nv := (N+1) · (nx +nqi) and the correspond-

ing simple upper and lower bounds, which are denoted by v :=
(

v 0
T . . . v N

T
)T

and v :=
(

v 0
T . . . v N

T
)T

,

respectively. Without loss of generality we assume that all simple bounds are excluded from inequality con-

straints c(·) from (2.15c) and r ic(·) from (2.15e), and use notations c̃(·) and r̃ic(·) in the following. Together with

this assumption all equality and inequality constraints without simple bounds can be combined in constraint

functions

Cec(v ,d , p) :=


x(t ms

1 ; s0, q0,d , p)− s1

...

x(t ms
N ; sN−1, qN−1,d , p)− sN

r ec(s0, sN, p)

 and Cic(v , p) :=


c̃(s0, û0(t ms

0 , q0), p)
...

c̃(sN, ûN(t ms
N , qN), p)

r̃ic(s0, sN, p)

 ,

with dimensions nCec and nCic , respectively. Additionally, we introduce slack variables w ∈ RnCic and collect

both constraint functions into one equality constraint function such that

C (z , p) :=
(

Cec(v ,d , p)

Cic(v , p)−w

)
= 0 with w ≥ 0,

28

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

where z :=
(

v T d w T
)T

∈Rnz combines the decision variables in the NLP with dimension nz := nv +1+nCic .

In total, NLP (2.15) can be rewritten in compact form as

min
z

Φ(sN,d ,α, p) (2.17a)

s. t. 0 =C (z , p), (2.17b)

z ≤ z ≤ z , (2.17c)

where model parameters p ∈Rnp and objective weightsα ∈RnM have fixed values. The upper and lower bounds

are set to z :=
(

v T d ∞
)T

and z :=
(

v T d 0
)T

, respectively. If no simple bounds on the variables appear,

the values of the bounds can be set to +∞ or −∞.

The resulting NLP can then be solved with the methods described in section 1.2. This compact NLP formula-

tion is later used for the lower level in Bilevel Inverse OCPs when we introduce the Direct All-at-Once Approach

by Hatz [80] and when we describe our DISIMFAS in chapter 4. Within these methods the model parameters p

and objective weightsα are identified.

2.2.2 Derivative Generation

The NLP (2.15) of the previous subsection, as well as other later in this thesis introduced NLPs as a result of

direct approaches applied onto PE Problems and Bilevel Invers OCPs, can be solved by the methods described

in section 1.2. All these methods are derivative-based and, hence, accurate and efficient derivative generation

is required.

There are various ways to compute derivatives of model functions, e.g. analytical differentiation by hand,

symbolic differentiation by computer algebra systems, finite difference approximation, or AD. The latter two

variants are briefly discussed in the following. The one-sided finite difference approximation for a function

g (y) can be computed by

d

dy
g (y) = g (y +h)− g (y)

h
+O(h),

with perturbation h > 0. It results in an error of O(h). For central differences approximations computed as

d

dy
g (y) = g (y +h)− g (y −h)

2h
+O(h2),

an error of O(h2) is obtained. The advantage of the finite differences approach is its simple implementation.

The function g (y) at hand can be treated as a "black box" and, hence, no further information on the structure is

needed. However, the approach might suffer from high computational effort for function evaluations and lack

of accuracy. A more sophisticated approach for derivative generation is AD, which can produce exact deriva-

tives up to machine precision. Therein, functions are represented as compositions of elementary operations.

Their derivatives are then computed by applying the chain rule systematically. Various variants are available

such as forward and reverse modes, as well as the propagation of Taylor coefficients for higher order derivatives.

For a comprehensive discussion on AD we refer the reader to the textbook of Griewank and Walther [74].

As a result of the Direct Multiple Shooting Method we also need derivatives of the states x(t ms
i+1; si, qi,d , p) as

a result of the solution of an IVP with respect to multiple shooting variables si, control parameters qi, dura-

tion parameters d , and eventually model parameters p . These derivatives are also called sensitivities as they

describe the sensitivity of the trajectory with respect to the initial values and parameters. In the following we

give a brief overview on selected approaches and refer to the work of Albersmeyer [5] for a comprehensive

introduction.

29

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

External Numerical Differentiation (END)

The END approach is a method of perturbed trajectories and can be realized by applying the finite differences

approach described above after solving the nominal IVP for the original values and once again for slightly per-

turbed values. Despite its advantage that END is easy to implement, it suffers from a huge drawback: the incon-

sistency of the computed derivatives. The finite differences approach assumes that the functions at hand are

differentiable, which is not the case for general integration procedures because of adaptive components and

iterative solvers. Especially if second or higher order derivatives are needed, this approach does not necessarily

approximates the exact derivatives to a satisfactory accuracy.

Internal Numerical Differentiation (IND)

In the concept of IND invented by Bock [23, 24] the lack of non-smoothness can be overcome. The basic idea

is to freeze the adaptive components during integration procedure for the approximation of the nominal tra-

jectory and the perturbed trajectory, and differentiate the adaptively generated discretization scheme. This

approach results in the generation of consistent derivatives and in combination with AD the derivatives com-

puted together with the nominal trajectory are exact up to machine precision. In the thesis of Albersmeyer [5]

adjoint based algorithms and numerical methods for sensitivity generation based on AD are developed. These

methods are implemented in the software package SOLVIND [5] with an interface to ADOL-C by Walther and

Griewank [171]. In our work SOLVIND is integrated in the software package PARDYNOPT, see chapter 7, and

used for the generation of first- and second-order derivatives of model functions. Additionally, its implementa-

tion of an adaptive Backward Differentiation Formulas (BDF) method with an interface to DAESOL-II [5] and

the corresponding sensitivity generations using IND is applied up to second-order derivatives.

Variational Differential Equation (VDE)

Another approach for the generation of sensitivities is the solution of a VDE system defined on each multiple

shooting interval. For the generation of sesitivities with respect to the initial states the equations system is as

follows

d

dt
G(t ; si, qi,d , p) = ∂

∂x

(
d · f (x(t), ûi(t , qi), p)

) ·G(t ; si, qi,d , p), t ∈ T i, (2.18a)

G(t ms
i ; si, qi,d , p) = Inx , (2.18b)

for i = 0, . . . ,N−1 as it can be shown that

G(t ; si, qi,d , p) = d

dsi
x(t ms; si, qi,d , p).

The VDE approach can be realized by applying IND to overcome the inconsistency of the derivative approxi-

mations. The VDE system can be integrated together with the initial value problem (2.12). Similar to (2.18) the

sesitivities with respect to parameters qi,d and p can be computed as well.

2.3 Parameter Estimation in Dynamic Systems

In this section a constrained PE problem is considered, where a parameter-dependent dynamic model is fitted

to given measurements. We start with the problem formulation, where the arising variables and functions are

defined, and then describe a direct solution approach based on the Direct Multiple-Shooting Method intro-

duced earlier in subsection 2.2.1.

30

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

2.3.1 Problem Formulation

We consider a PE problem, where a weighted least-squares objective is minimized constrained by an underlying

parameter-dependent ODE model with boundary conditions and additional state constraints. The objective

function comprises measurements η ∈Rnm×nh observed at specific time points

ts ≤ t m
0 < t m

1 < . . . < t m
nm

≤ tf.

and the corresponding model response function h :R×Rnx ×Rnp →Rnm×nh evaluated at these time points. We

assume that the measurements ηnk are afflicted with independent, additive, and normally distributed errors

εnk with zero mean and variances σ2
nk. Then for a correct model with true parameters p∗ we get

ηnk = hk(t m
n , x(t m

n), p∗)+εnk, n = 0, . . . ,nm −1, k = 0, . . . ,nh −1.

Hence, for finding an optimal trajectory x(t) with the corresponding optimal model parameters p which meet

the measurement data best, a PE problem can be formulated as follows

min
x ,p

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(t m

n , x(t m
n), p)−ηnk

)2

σ2
nk

(2.19a)

s. t. ẋ(t) = f (t , x(t), p), t ∈ T , (2.19b)

0 ≤ c(t , x(t), p), t ∈ T , (2.19c)

0 = r ec(ts, x(ts), tf, x(tf), p), (2.19d)

0 ≤ r ic(ts, x(ts), tf, x(tf), p), (2.19e)

defined on the fixed time horizon T = [ts, tf] ⊂Rwith initial time ts and final time tf, ts < tf. In the following the

remaining variables and sufficiently smooth functions in (2.19) are described:

• differential states denoted by x : T →Rnx ,

• model parameters denoted by p ∈Rnp ,

• dynamics described by a system of ODEs (2.19b) with the right-hand side f : T ×Rnx ×Rnp →Rnx ,

• boundary equality constraints r ec :R×Rnx ×R×Rnx ×Rnp →Rnec in (2.19d),

• inequality constraints r ic :R×Rnx ×R×Rnx ×Rnp →Rnic in (2.19e),

• state constraints c : T ×Rnx ×Rnp →Rnc in (2.19c).

2.3.2 An Approach to Solve Parameter Estimation Problems in Dynamic Systems

One approach to solve PE Problems of the form (2.19) is to apply the Direct Multiple Shooting Method described

in subsection 2.2.1 for parametrization of the dynamics and discretization of all arising constraints. This results

in an NLP as follows:

min
s,p

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(t m

n , x(t m
n ; s, p), p)−ηnk

)2

σ2
nk

(2.20a)

s. t. 0 = x(t ms
i+1; t ms

i , si, p)− si+1, i = 0, . . . ,N−1, (2.20b)

0 ≤ c(t ms
i , si, p), i = 0, . . . ,N, (2.20c)

0 = r ec(t ms
0 , s0, t ms

N , sN, p), (2.20d)

0 ≤ r ic(t ms
0 , s0, t ms

N , sN, p). (2.20e)

31

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

which can then be solved with a tailored Generalized Gauß-Newton method as introduced in subsection 1.2.3.

For more details we refer to the works of Bock [25] and Schlöder [150].

2.4 Bilevel Inverse Optimal Control Problems

Bilevel optimization of problems comprising an OCP on the lower hierarchy level is related to differential

games. Vajda and Isaacs [166] investigated this in their ground-breaking work during the 1950s, which can also

be considered as a generalization of bilevel optimization to a function space in the field of finite-dimensional

nonlinear mathematical optimization. Detailed introduction to bilevel optimal control can be found in Bard [19],

Dempe et al. [43, 46], Shimizu et al. [160], and Lewis et al. [112]. Constraint qualifications and necessary opti-

mality conditions of bilevel problems are discussed in Ye [174], Ye [175], Mehlitz [121], Benita and Mehlitz [20],

and Mehlitz and Wachsmuth [122].

In this thesis we deal with a special class of Bilevel OCPs: PE Problems constrained by OCPs, and refer to it as

Bilevel Inverse OCPs. In the following, the problem formulation we mainly consider in this thesis is introduced,

which incorporates the multi-stage structure from subsection 2.1.2 on the lower level and a least-squares term

as objective function on the upper level. Further, an overview of various solution approaches and a brief intro-

duction to the Direct All-at-Once Approach, see [81, 80], are given.

2.4.1 Problem Formulation

In this thesis we mostly deal with a hierarchical problem, where the upper level PE problem is constrained

by the lower level multi-stage OCP (2.7) with discontinuities from subsection 2.1.2. This problem class differs

from the classical PE Problem as introduced in section 2.3, where the constraints model a dynamic process

with unknown parameters. In contrast to the classical PE Problem in Bilevel Inverse OCPs the PE Problem

is constrained by a dynamic optimization problem. This lower level OCP describes a dynamic process with

unknown parameters that optimizes given criteria. The Bilevel Inverse OCP on fixed normalized time horizons

T j := [0,1] for each model stage j = 1, . . . ,nS can be formulated as follows:

min
α,p ,

x ,u,d

1

2

nS∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
hjk(xj(t m

jn), p)−ηjnk

)2

σ2
jnk

(2.21a)

s. t.

min
x ,u,d

nS∑
j=1
Φj(xj(t),uj(t),dj,α, p) (2.21b)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (2.21c)

xj+1(0) =∆j(xj(1), p), j = 1, . . . ,nS −1, (2.21d)

0 ≤ cj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (2.21e)

0 = r ec(x1(0), x1(1), . . . , xnS (1), p), (2.21f)

0 ≤ r ic(x1(0), x1(1), . . . , xnS (1), p), (2.21g)

nM+nL∑
k=1

αk = 1,α≥ 0, (2.21h)

p ≤ p ≤ p , (2.21i)

where the arising model parameters p ∈ Rnp and objective weights α ∈ RnM+nL are determined by fitting the

model to given measurement data η ∈ Rnη with the dimension nη := ∑nS
j=1

(
nj

m ·nj
h

)
. To avoid redundant so-

lutions, the constraint (2.21h) is added to the Bilevel Inverse OCP. Further, bounds on the model parameters

are included in (2.21i). In the following we describe the upper level objective function and refer the reader to

subsection 2.1.2 for a detailed introduction to the lower level multi-stage OCP and all defined quantities.

32

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

The least-squares objective function (2.21a) comprises measurements η ∈ Rnη observed at specific time

points. After time transformations to fixed normalized time horizons T j := [0,1] for each model stage these

time points are defined as

0 ≤ t m
j,0 < t m

j,1 < . . . < t m

j,n
j
m−1

≤ 1, j = 1, . . . ,nS.

The corresponding model response hj : R
nxj ×Rnp → Rn

j
m×n

j
h is evaluated at these time points. Similar to the

classical PE Problem we assume that the measurements ηjnk are afflicted with independent, additive, and nor-

mally distributed errors εjnk with zero mean and variances σ2
jnk. Then for a correct model with true parameters

p∗ we get

ηjnk = hjk(xj(t m
jn), p∗)+εjnk, j = 1, . . . ,nS, n = 0, . . . ,nj

m −1, k = 0, . . . ,nj
h −1.

2.4.2 Solution Approaches for Bilevel Inverse Optimal Control Problems

The bilevel optimization problem we deal with can be solved in various ways. Here, we distinguish between

simultaneous and bilevel approaches. Clever and Mombaur [37] presented a direct inverse optimal control

framework which was first investigated by Mombaur et al. [130] using the latter of these two approaches where

the bilevel structure of the problem was exploited. In this approach in each iteration of the upper level pa-

rameter estimation problem, the lower level OCP has to be solved. A derivative free method was used for the

upper level and a direct structure exploiting SQP method solved the lower level OCP in each iteration using

MUSCOD-II, a software package developed by Leineweber [108]. With this inverse optimal control frame-

work, optimality criteria in whole-body human walking were identified for seven different subjects.

On the other side, Bilevel Inverse OCPs can be solved using simultaneous approaches. These methods

mainly rely on the substitution of the lower level OCP by its optimality conditions. The term simultaneous

refers to the fact that in these approaches the upper and lower level problems are solved together at the same

time, where the optimality conditions of the lower level OCP serve as a constraint in the upper level PE prob-

lem. Knauer [104], and Knauer and Büskens [105] proposed a simultaneous approach for handling an infinite-

dimensional bilevel optimization problem by replacing the lower level OCP by its first order optimality condi-

tions based on Pontryagin’s Maximum Principle [139]. In their work, inequality constraints were not consid-

ered. The resulting one-level problem was then solved by a direct method using special SQP. For discretiza-

tion of the nonlinear discontinuous boundary value problem collocation was considered. Alternatively, the

one-level problem was solved - again based on Pontryagin’s maximum principle - using an indirect method.

However, both approaches based on Pontryagin’s Maximum Principle on the upper level are not easily appli-

cable for modeling human locomotion where a highly non-smooth multi-level OCP with mixed control-state

constraints has to be solved.

Another possible approach, which again falls into the category of simultaneous approaches, is to first dis-

cretize the problem before reformulation of the resulting lower level problem by its KKT optimality conditions.

Albrecht et al. [8, 9, 6] developed methods for solving parameter estimation problems comprising OCPs as

constraints. They also used a simultaneous approach and reformulated the OCP, after a collocation-based

discretization, by its KKT conditions. Due to the omission of inequality constraints the resulting nonlinear

problem can be solved with an interior-point method. This approach has been successfully used to identify

optimization criteria for arm motions [9] or human navigation [8]. In contrast, if inequality constraints are

present in the discretized lower level problem the replacement by its KKT conditions results in an MPCC - a

challenging class of NLPs, see discussion and solution approaches in section 1.3. In the context of human lo-

comotion Albrecht and Ulbrich [7] compared various regularization and lifting strategies for the treatment of

arising complementarity constraints. In this work a simple dynamic model was used, which navigates from

start to final position. A more complex dynamic model of a CP patient’s gait was considered in the work of

33

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

Hatz [80], where the Direct All-at-Once Approach was successfully applied in a first analysis. Therein, the lower

level OCP is reformulated by its KKT optimality conditions, after a multiple shooting based parametrization of

the states and an adequate discretization of the controls via the Direct Multiple Shooting Method developed by

Bock and Plitt [26, 138]. In general, when applying simultaneous approaches, the resulting one-level NLP and

the original problem are not necessarily mathematically equivalent, see, e.g., [44, 45] for a detailed discussion

on this topic.

In this thesis, we use the Direct All-at-Once Approach as a basis for the development of our DISIMFAS in

chapter 4 due to its lower computational effort compared to bilevel approaches and its promising results for a

collection of benchmark problems in [80].

2.4.3 The Direct All-at-Once Approach

The DISIMFAS developed in this thesis mainly relies on the Direct All-at-Once Approach with a direct method

for the treatment of the lower level OCP by Hatz et al. [81] and Hatz [80]. In this section we give a brief overview

of this efficient and simultaneous approach to solve Bilevel Inverse OCPs of the form (2.21) as stated in sub-

section 2.4.1 and discuss the challenges which appear. Although, according to [81] the lower level OCP can

be treated with an indirect method in the Direct All-at-Once Approach as well, in [80] the Indirect All-at-Once

Approach relates to this particular case. When we use the phrase Direct All-at-Once Approach, we only refer to

the simultaneous approach with a direct method on the lower level. The main steps of the Direct All-at-Once

Approach are as follows. First the lower level multi-stage OCP is treated with a direct method according to

the Direct Multiple Shooting Method described earlier in subsection 2.2.1. This results in a finite-dimensional

nonlinear bilevel program with a structured NLP on the lower level similar to the single-stage counterpart in

equation (2.15). In a second step, this lower level NLP is then replaced by its necessary optimality conditions

which transforms the bilevel program to a one-level NLP of special class: an MPCC. Finally, the resulting struc-

tured NLP is solved with a tailored Generalized Gauss Newton method. In the following we briefly introduce

the steps described above for a Bilevel Inverse OCP with a single-stage OCP on the lower level as the one in the

problem formulation (2.8) used in subsection 2.2.1. We formulate the Bilevel Inverse OCP on a fixed normalized

time horizon t ∈ [0,1] with free duration parameter d ∈R as follows

min
α,p ,

x ,u,d

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(2.22a)

s. t.

min
x ,u,d

nM∑
k=1

αk ·φM
k (x(1),d , p) (2.22b)

s. t. ẋ(t) = d · f (x(t),u(t), p), t ∈ [0,1], (2.22c)

0 ≤ c(x(t),u(t), p), t ∈ [0,1], (2.22d)

0 = r ec(x(0), x(1), p), (2.22e)

0 ≤ r ic(x(0), x(1), p), (2.22f)
nM∑
k=1

αk = 1,α≥ 0, (2.22g)

p ≤ p ≤ p . (2.22h)

All arising variables and functions are introduced in subsection 2.4.1 where nS is set to 1 and the stage index j as

well as the transition condition (2.21d) are omitted. Furthermore, only Mayer terms are considered. Similar to

subsection 2.2.1 the single-stage formulation facilitates the notation, on the one hand, and captures the main

characteristics of the mathematical method, on the other hand. Situations where the multi-stage formulation

may affect the described method are rare and mostly covered by incorporating the transition condition (2.21d)

34

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

in our discussions. We briefly introduce the Direct All-at-Once Approach and follow the presentation in [80].

For a more elaborate, detailed description the interested reader is advised to the contributions of Hatz et al.

[81, 80].

Step 1: Apply the Direct Multiple Shooting Method on the Lower Level OCP

The lower level single-stage OCP is treated with the Direct Multiple Shooting Method according to subsec-

tion 2.2.1, where discretization of control functions, parametrization of differential states and discretization of

constraints lead to NLP (2.15). This structured NLP replaces the lower level OCP in Bilevel Inverse OCP (2.22)

such that we can formulate a finite-dimensional bilevel nonlinear problem of the following form

min
α,p ,
s,q ,d

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(2.23a)

s. t.

min
s,q ,d

Φ(sN,d ,α, p) (2.23b)

s. t. 0 = x(t ms
i+1; si, qi,d , p)− si+1, i = 0, . . . ,N−1, (2.23c)

0 ≤ c(si, ûi(t ms
i , qi), p), i = 0, . . . ,N, (2.23d)

0 = r ec(s0, sN, p), (2.23e)

0 ≤ r ic(s0, sN, p). (2.23f)
nM∑
k=1

αk = 1,α≥ 0, (2.23g)

p ≤ p ≤ p . (2.23h)

The least-squares objective (2.23a) depends on the term x(t m
n), which we shortly explain in the following. Let

the trajectory x(t ; si, qi,d , p) be the solution of an IVP (2.12) on multiple shooting interval T i = [t ms
i , t ms

i+1] as

described in subsection 2.2.1. Then the term x(t m
n) := x(t m

n ; si, qi,d , p) means that this trajectory is evaluated

at a specific time point t m
n ∈ T i which lies in this particular multiple shooting interval. At this point, please

note that in a multi-stage environment in addition to matching conditions (2.23c) also transition conditions

between model stages would enter NLP (2.23) with equation (2.14). These transition constraints are enforced

between the last multiple shooting node of one model stage and the first node of its successor model stage as

described in subsection 2.2.1.

In the following we use the more compact representation of NLP (2.17) on the lower level (with an equivalent

reformulation of the bounds), where we combine all constraints into one constraint function C (·) by introduc-

ing slack variables w ∈RnCic such that the NLP can be written in the form

min
α,p ,z

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(2.24a)

s. t.

min
z

Φ(sN,d ,α, p) (2.24b)

s. t. 0 =C (z , p), (2.24c)

0 ≤ z − z , (2.24d)

0 ≤ z − z , (2.24e)
nM∑
k=1

αk = 1,α≥ 0, (2.24f)

p ≤ p ≤ p , (2.24g)

35

CHAPTER 2 OPTIMIZATION OF DYNAMIC SYSTEMS

with simple bounds on the decision variables z :=
(

v T d w T
)T

as the only appearing inequality constraints

on the lower level, where the variables are combined in the vectors vi :=
(

sT
i q T

i

)T
and v :=

(
v T

0 . . . v T
N

)T
.

Step 2: Replace the Lower Level NLP by its KKT Conditions

When replacing the parametrized and discretized lower level optimal control problem by its optimality condi-

tions one should be aware of the fact that the original problem and the resulting one-level NLP, which is an

MPCC as introduced in the following, are not necessarily mathematically equivalent, see, e.g. [44, 45], for a

detailed discussion on this topic. We start with the Lagrange function in compact notation such that we have

L(Z) :=Φ(z ,α, p)−λT C (z , p)−µT
z

(
z − z

)−µT
z

(
z − z

)
,

where all variables are combined into vector Z :=
(

zT λT µT αT pT
)T

with the newly introduced La-

grange multipliers λ ∈ RnCec+Cic related to equality constraints (2.24c) and µ :=
(
µT

z
µT

z

)T
with µz ∈ Rnz and

µz ∈Rnz related to simple bounds (2.24d) and (2.24e), respectively.

According to theorem 1.8 and the assumption that LICQ holds at the solution, the KKT conditions of the

lower level problem can be formulated as

Stationarity:

0 =∇zL(Z), (2.25a)

Primal Feasibility:

0 =C (z , p), (2.25b)

0 ≤ z − z , (2.25c)

0 ≤ z − z , (2.25d)

Dual Feasibility:

0 ≤µ, (2.25e)

Complementarity:

0 =µz ◦
(
z − z

)
, (2.25f)

0 =µz ◦
(
z − z

)
, (2.25g)

where ◦ denotes the element-wise vector multiplication (Hadamard product), and the gradient of the La-

grangian with respect to the lower level variables is defined by

∇zL(Z) :=∇zΦ(z ,α, p)−∇z C (z , p)Tλ−∇z
(
z − z

)T
µz −∇z

(
z − z

)T
µz (2.26a)

=∇zΦ(z ,α, p)−∇z C (z , p)Tλ+µz −µz. (2.26b)

Replacing the discretized and parametrized lower level problem by conditions (2.25) leads to the following

structured one-level NLP

36

OPTIMIZATION OF DYNAMIC SYSTEMS CHAPTER 2

min
Z

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(2.27a)

s. t. 0 =∇zL(Z), (2.27b)

0 =C (z , p), (2.27c)

0 ≤ z − z , (2.27d)

0 ≤ z − z , (2.27e)

0 ≤µ, (2.27f)

0 =µz ◦
(
z − z

)
, (2.27g)

0 =µz ◦
(
z − z

)
, (2.27h)

nM∑
k=1

αk = 1,α≥ 0, (2.27i)

p ≤ p ≤ p , (2.27j)

where vector Z :=
(

zT λT µT αT pT
)T

includes all decision variables. ∇zΦ(z ,α, p) and ∇z C (z , p) enter

the gradient of the Lagrangian in (2.26). Its definitions and the specific structure are given in chapter 4 when

we describe our DISIMFAS in detail, where these quantities are also needed and the occuring structures have

to be exploited for an efficient implementation.

Problem (2.27) belongs to the special class of MPCCs. In section 1.3 we give a brief overview on general

MPCCs and its solution approaches. As mentioned there, the numerical treatment of these kinds of prob-

lems is challenging and using general NLP solvers may lead to degenerated quadratic programs due to the lack

of valid constraint qualifications, e.g. MFCQ and LICQ. Hence, an appropriate handling of complementarity

constraints (2.27g) and (2.27h) is necessary as, e.g., the lifting approach developed by Hatz [80]. However, an

important observation in a first analysis of a CP patient’s gait in [80, Chapter 15] is that this regularization

approach, in which the complementarity constraint is expressed as a nonlinear complementarity constraint

function proved inappropriate for solving this highly non-smooth large-scale NLP. Because of this an exact

penalty approach as described in Benson et al. [22] is used.

In chapter 4 we present the DISIMFAS as a solution approach for Bilevel Inverse OCPs to overcome the

difficulty of arising MPCCs.

Step 3: Solve the One-Level NLP with the Generalized Gauß-Newton Method

The one-level NLP (2.27) can be solved with the Generalized Gauß-Newton Method as introduced in subsec-

tion 1.2.3 and in subsection 2.3.2 for PE problems. We refer the interested reader to the contribution of Hatz in

[80, Chapter 5] for a more detailed description and a presentation of an efficient structure exploitation. An im-

plementation of the proposed method with several approaches for handling the complementarity constraints,

e.g. the Lifting approach, can be found in the software package PARAOCP, [80]. It is realized within a SQP

framework based on the NLP solver FILTERSQP[59], where the Hessian of the Lagrangian of NLP (2.27) is ap-

proximated appropriately.

37

38

Chapter 3

Human Locomotion and Cerebral Palsy

In this chapter we introduce how human locomotion can be described using optimal control and start the first

section with dynamics of rigid multibody systems before we give a general multi-stage OCP formulation for

the human gait. Furthermore, as this thesis is concerned with gaits of CP patients in the second section the

disease Cerebral Palsy and its classification are described. The chapter is finalized with a brief overview on

typical characteristics of CP gait.

3.1 Human Locomotion as an OCP

The human body and its locomotion have been intensively investigated throughout various disciplines, such

as biology, physiology, neuroscience, robotics, biomechanics, and others. In this section we focus on rigid

multibody systems and its dynamics, and provide an appropriate OCP formulation to describe the human

gait. We follow the work of Mombaur [128], Felis [52], and Hatz [80], where the first part is mainly based on

theoretical foundations as described in the book of Featherstone [51]. Various other textbooks covering the

dynamics of rigid multibody systems are available, such as the ones by Jain [94], Shabana [157], Khalil [100],

and Craig [39].

3.1.1 Dynamics of Rigid Multibody Systems

For studying human locomotion there are various ways to model the body of a specific subject. One can use

very complex skeletal muscle models as in the work of Millard et al. [125] and Delp et al. [41], or stick to basic

inverted pendulum models as in the simplest walking model of Garcia et al. [66]. The choice of the model

depends on the specific application. In this work we focus on rigid multibody systems as we use the results of

Hatz [80] as a basis. We assume that single segments of the body are connected via joints, where the torques are

acting directly at the joints. The motion of such a multibody model can be described by considering a minimal

number of coordinates or DOFs, denoted with ndofs. A typical choice are position and orientation of one base,

such as for example the pelvis, and internal DOFs at the joints. In the following, these minimal coordinates or

generalized coordinates are defined by q(t) ∈Rndofs . The corresponding generalized velocities, accelerations and

forces are denoted in the following by q̇(t), q̈(t) and τ(t) ∈Rndofs , respectively. All quantities together with given

model parameters combined in the vector p ∈ Rnp describe the system and its movement at a specific time

point t ∈ R. Multibody systems with one base segment belong to so-called underactuated systems. In these

systems the number of actuated DOFs is smaller than the number of DOFs, nact < ndofs. The generalized forces

of these types of systems can be written as

τ(t) =
(

0

τact(t)

)
,

where τact(t) ∈Rnact are the actuated generalized forces acting on the actuated joints. In the following we omit

the time-dependency.

Our focus lies in modeling the human gait which can be described by a periodic repetition of gait cycles.

Each of these gait cycles consists of two steps with almost the same start and end posture. For one gait cycle

we consider a sequence of different phases, where in each phase at least one point of the multibody model is in

39

CHAPTER 3 HUMAN LOCOMOTION AND CEREBRAL PALSY

contact witch the ground. If only one foot is in contact with the ground it is called single support phase, if both

feet are in contact it is a double support phase. Depending on the used contact model for the foot both phases

can be divided in even more subphases. With the previously introduced quantities, the generalized coordinates

q , their corresponding generalized velocities q̇ , generalized accelerations q̈ , generalized forces τ, and model

parameters p , the dynamics of rigid multibody systems can be described by the following equations of motion

H(q , p)q̈ +C (q , q̇ , p) =τ, (3.1)

where H(q , p) ∈ Rndofs×ndofs is a symmetric joint space inertia matrix, C (q , q̇ , p) ∈ Rndofs a generalized bias force

which includes additional forces such as Coriolis, gravitational or centrifugal force. If we assume that the mass

of each body or segment of the rigid multibody system is non-zero, the inertia matrix H(q , p) is positive definite

and regular. The equations of motion from (3.1) describe the dynamics of a multibody system without external

contacts. Considering the human gait, in each phase of the whole gait cycle we have at least one contact point

interacting with the ground. Hence, we have to use equations of motion with external contacts to describe the

locomotion. In our studies, we focus on so-called holonomic scleronomic constraints without friction, see, e.g.,

[51] for a detailed explanation, which can be written as

g (q , p) = 0, (3.2)

and fix the points of the body to the ground which are part of the contact model in one specific phase of the

whole gait cycle. For each of the different phases with varying contact models the dynamics of a rigid multibody

system can be expressed by its equations of motion with external contacts

H(q , p)q̈ +C (q , q̇ , p) =τ+G(q , p)Tλ, (3.3a)

g (q , p) = 0, (3.3b)

where the so-called contact Jacobian is defined by

G(q , p) := ∂g (q , p)

∂q
,

and the contact force denoted by λ. The equation system (3.3) is a DAE system of index 3. It can be reduced to

a DAE system of index 1 in the way as described in the following. We define the so-called contact Hessian by

γ(q , q̇ , p) :=−Ġ(q , p)q̇ ,

and differentiate equation (3.3b) twice with respect to time t .

d2

dt 2 g (q , p) = d

dt

(
G(q , p)q̇

)
=G(q , p)q̈ +Ġ(q , p)q̇

=G(q , p)q̈ −γ(q , q̇ , p) (3.4)

Setting equation (3.4) to 0 we obtain from (3.3)

H(q , p)q̈ +C (q , q̇ , p) =τ+G(q , p)Tλ, (3.5a)

G(q , p)q̈ −γ(q , q̇ , p) = 0. (3.5b)

If we ensure that equation (3.2) and G(q , p)q̇ = 0 hold, the equation systems (3.3) and (3.5) are equivalent.

Because (3.4) is set to 0 both conditions only have to be ensured at the beginning of the contact. After reformu-

40

HUMAN LOCOMOTION AND CEREBRAL PALSY CHAPTER 3

lation we obtain a linear equation system(
H(q , p) G(q , p)T

G(q , p) 0

)(
q̈

−λ

)
=

(
τ−C (q , q̇ , p)

γ(q , q̇ , p)

)
, (3.6)

which can be solved uniquely if the constraints g (q , p) are not redundant and, hence, the constraint Jacobian

G(q , p) has full rank.

Collision Impacts

When the rigid multibody system gets in contact with the environment high forces occur. This process can be

described by a collision model. If we assume that the contact happens instantaneously with a discontinuous

change in the generalized velocities before and after contact we can formulate the following linear equation

system(
H(q , p) G(q , p)T

G(q , p) 0

)(
q̇+

−Λ

)
=

(
H(q , p)q̇−

−eG(q , p)q̇−

)
, (3.7)

with a restitution parameter e ∈ [0,1], and the contact impulse Λ. The velocity before contact is denoted by q̇−

and the velocity after contact by q̇+. With a restitution parameter of e = 1 a perfectly elastic collision can be

modeled, whereas for a parameter e = 0 the collision is perfectly inelastic. For all human locomotion models

described in this thesis we assume, that the contact velocity is 0 at collision, which is equivalent to a restitution

parameter e = 0 and, hence, a perfectly inelastic collision.

There exist various software tools to set up the equations of motion, e.g. the HUMANS toolbox [1] or the

Rigid-Body Dynamics Library, RBDL [53]. In the latter software efficient algorithms, such as the Recursive

Newton-Euler Algorithm, the Composite Rigid-Body Algorithm, and the famous Articulated Body Algorithm, are

implemented as described in the thesis of Felis [52] on the basis of Featherstone [51]. Because of its proven

efficiency in many applications including optimal control, e.g. in [54, 126], or bilevel inverse optimal control,

e.g. in [49], RBDL is also used to evaluate the dynamics in the gait model for a CP patient, see chapter 6.

3.1.2 A General Multi-Stage OCP Formulation

The human gait model for a rigid multibody system can be interpreted as a predefined consecutive order of

different phases and the transitions between. These phases incorporate the dynamics described in subsec-

tion 3.1.1 by (3.5) with its characteristic constraint sets in each phase. Transitions between these phases have

to be defined and occuring collisions, for instance at touch-down of the foot with the ground, can be evalu-

ated by solving the linear equation system (3.7). In the field of biomechanics and robotics "[...] it is a common

assumption that optimization is a guiding principle" of human locomotion, [131]. Hence, in the following we

interpret the human gait as optimal with respect to a well-chosen but unknown combination of different opti-

mization criteria. With this assumption we can formulate a multi-stage OCP as introduced in subsection 2.1.2.

For convenience, we state it here on fixed and normalized time horizons T j := [t j
s, t j

f] = [0,1] as follows

min
x ,u,d

nS∑
j=1
Φj(xj(t),uj(t),dj,α, p) (3.8a)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (3.8b)

xj+1(t j+1
s) =∆j(xj(t j

f), p), j = 1, . . . ,nS −1, (3.8c)

0 ≤ cj(xj(t),uj(t), p), t ∈ T j, j = 1, . . . ,nS, (3.8d)

0 = r ec(x1(t 1
s), x1(t 1

f), . . . , xnS (t nS
f), p), (3.8e)

0 ≤ r ic(x1(t 1
s), x1(t 1

f), . . . , xnS (t nS
f), p), (3.8f)

41

CHAPTER 3 HUMAN LOCOMOTION AND CEREBRAL PALSY

with stage durations dj combined in the time-independent control parameter vector d =
(
d1 . . . dnS

)T
,

and stage transition time before and after transition, t j
f = 1 and t j+1

s = 0, respectively, for each model stage

j = 1, . . . ,nS as defined in subsection 2.1.2 together with the remaining variables and functions. In the follow-

ing we give a more detailed explanation of the quantities that occur in (3.8) when describing a human gait

including phasewise dynamics with jumps.

Optimization Variables

For setting up an OCP as in (3.8) in addition to the duration parameters dj of each model stage, j = 1, . . . ,nS,

differential states xj and control functions uj can be defined as

xj(t) :=
(

qj(t)

q̇j(t)

)
and u(t) :=τact

j (t), (3.9)

where for each model stage the generalized coordinates qj(t) and the corresponding generalized velocities q̇j(t)

are combined in the differential states and the generalized actuated torques τact
j (t) used as control functions.

To receive a more complex model of the actuated torques which include active and passive components, τa
j

and τp
j , respectively,

τact
j (t) =τact

j (τa
j (t),τp

j (t)) (3.10)

the active part τa
j can be taken as controls instead of using the total actuated torques τact

j . Another choice is

for instance to add these active torques τa
j to the differential states and use their time derivatives τ̇a

j as control

functions,

xj(t) :=


qj(t)

q̇j(t)

τa
j (t)

 and u(t) := τ̇a
j (t), (3.11)

which is done in chapter 6 for the patient-specific CP gait model to obtain more smooth human-like motions.

Nevertheless, for a clearer notation we choose representation (3.9) in the following descriptions in this chapter,

as it is also used in the basic walker gait model of section 5.2 .

Objective Function

As introduced at the beginning of this subsection 3.1.2 we interpret the human gait as optimal with respect to

certain optimization criteria. The objective function is of Bolza-type and represented by

Φj(xj(t),uj(t),dj,α, p) =
nM∑
k=1

αk ·φM
jk (xj(t j

f),dj, p)

+
nM+nL∑

k=nM+1
αk ·

∫ t
j
f

t
j
s

dj ·φL
jk(xj(t),uj(t), p)dt .

Optimization criteria might include criteria like energy consumption, comfort or stability. If we are interested

in meeting given measurements, these criteria have to be chosen in such a way that with an selected combina-

tion of nM+nL criteria and individual weightsα=
(
α1 . . . αnM+nL

)T
the gait of the person can be reproduced

within an acceptable accuracy. The identification of the usually unknown quantities α and p can be achieved

by solving a Bilevel Inverse OCP of type (2.21) from section 2.4 based on given motion capture data. In chap-

ter 5 and chapter 6 Bilevel Inverse OCPs for a basic human like motion and the gait of a CP patient are derived,

respectively.

42

HUMAN LOCOMOTION AND CEREBRAL PALSY CHAPTER 3

Dynamics on Model Stages and their Transitions

For each model stage, j = 1, . . . ,nS, on the time horizon T j = [t j
s, t j

f] = [0,1] with duration parameter dj we can

define equations of motion as in (3.5) depending on the actual constraint set g j(qj, p) which applies on the rigid

multibody system during walking. With differential states and controls as defined in (3.9) for equation (3.8b) in

multi-stage OCP (3.8) we have the following ODE system for model stage j

ẋj(t) = dj · fj(xj(t),uj(t), p)

= dj · fj(qj(t), q̇j,τj(t), p)

= dj ·
(

q̇j(t)

q̈j(t)

)
, t ∈ T j, (3.13)

with initial conditions on xj at the beginning t j
s = 0 of each stage incorporated in

g j(qj(t j
s), p) = 0, (3.14a)

Gj(qj(t j
s), p)q̇j(t j

s) = 0, (3.14b)

and included in equation (3.8e) in the way as described in the following paragraph. The generalized accelera-

tion q̈j(t) in (3.13) can be expressed as part of the solution of

(
H(qj, p) Gj(qj, p)T

Gj(qj, p) 0

)(
q̈j

−λj

)
=

(
τj −C (qj, q̇j, p)

γj(qj, q̇j, p)

)
, (3.15)

with contact force λj, contact Jacobian Gj(qj, p) and contact Hessian γj(qj, q̇j, p).

Without loss of generality we assume that between two dynamic model stages a transition occurs, see (3.8c),

which is expressed through

xj+1(t j+1
s) =∆j(xj(t j

f), p), j = 1, . . . ,nS −1,

where ∆j : R
nxj ×Rnp → R

nxj is a mapping between differential state xj(t j
f) at the end of model stage j and

xj+1(t j+1
s) at the beginning of the subsequent model stage j+ 1. In case where no collision appears the func-

tion ∆j(·) is supposed to be identity mapping. Whereas a jump in the velocities occurs, if for instance one foot

gets in touch with the ground and a perfectly inelastic collision takes place. The transition function is defined

as identity mapping of the generalized coordinates, qj(t j
f) = qj+1(t j+1

s), and as part of the solution of the linear

equation system similar to (3.7) at model stage with index j

(
H(qj+1, p) Gj+1(qj+1, p)T

Gj+1(qj+1, p) 0

)(
q̇+

j+1

−Λj+1

)
=

(
H(qj, p)q̇−

j

0

)
, (3.16)

with contact impulse Λj+1 right after collision. The velocity before contact is denoted by q̇−
j := q̇j(t j

f) and the

velocity right after contact by q̇+
j+1 := q̇j+1(t j+1

s).

Constraints in the Multi-Stage OCP

Because of transition condition (3.8c) it is sufficient to enforce initial conditions (3.14) to hold at the beginning

of the first model stage. The equivalence of equation systems (3.15) and the corresponding equations of motion

(3.3) extended by model index j is still ensured for all model stages. Hence, only initial conditions (3.14) for j = 1

are included in equation (3.8e) together with other equality multi-point boundary conditions. To describe the

human gait by an OCP as in (3.8) there are various ways to include the appearing constraints, such as collision

avoidance with the surrounding, self-penetration avoidance or positive contact force at single support phase.

43

CHAPTER 3 HUMAN LOCOMOTION AND CEREBRAL PALSY

Additionally, periodicity constraints might be of interest. All these equality and inequality constraints enter the

multi-stage OCP (3.8) in equations (3.8d), (3.8e) and (3.8f).

3.2 Cerebral Palsy

CP is a group of movement disorders that appear in early childhood and is defined as "[...] a group of permanent

disorders of the development of movement and posture, causing activity limitation, that are attributed to non-

progressive disturbances that occurred in the developing fetal or infant brain." [147]. In the first section of this

chapter we will give a short introduction into CP, its causes, symptoms, and treatment. In the second section

we will discuss the pathological gait associated with CP patients. This section is based on [18, 48, 75, 106, 137]

3.2.1 Introduction and Classification

CP is the most common childhood movement disorder with a prevalence of approximately 0.2% of live births.

While the exact cause is often unknown, risk factors and potential mechanisms include but are not limited to

genetic disposition, difficult delivery (hypoxia during birth), preterm birth, head trauma, and certain maternal

infections (e.g. toxoplasmosis) during pregnancy. A detailed overview on CP including its causes, symptoms,

and treatment is given in, e.g., [18, 47, 48, 65, 75, 106, 167, 137]. As a consequence of the brain lesion, CP is

characterized by a variety of symptoms and impairments of motor function but can be also accompanied by

problems with speaking, hearing, sensation, and vision. CP manifests in an abnormal muscle tone and sensory

system. This especially can affect posture and result in deformed skeleton and joints. CP is primarily associ-

ated with abnormal reflexes, muscle tone, or coordination and motor development. This results in progressive

orthopedic damage especially to bone and joint deformities.

Classification

There are a multitude of classifications used for CP in clinical practice that aim to guide treatment allocation

by physicians. The most common systems, which can also be combined, include the classification according

to the severity level (no CP, mild, moderate, severe), classification according to the topographical distribution

of the impairment, classification based on the motor function, and the Gross Motor Function Classification

System (GMFCS) [135].

The topographical classification describes the number of extremities or a defined side of the body that are

affected. This includes Mono-, Di-, Tri-, Tetra- or Quadri-, and Pentaplegia for the number of extremities (head

and neck as fifth included) and for the sides of the body Hemi- (one arm and one leg on one side of the body)

and Paraplegia (upper or usually lower half of the body).

The classification of CP according to motor function gives indication about the region of the brain that is

injured. It leads to two main classes, spastic and non-spastic. These have both multiple variations and it is

possible that mixtures occur. Spastic CP accounts for the majority of CP cases with approximately 80% of cases

being spastic. Spastic CP implies increased muscle tone that results in rigidity and stiffness due to continuously

contracting muscles. Non-spastic CP mainly implies involuntary movements that can be also accompanied by

tremors, or poor coordination and balance. Non-spastic CP can be further divided into two main subclasses,

ataxic (affects coordinate movement, impaired balance and coordination) and dyskinetic (associated with in-

voluntary movements).

CP can also be classified according to the GMFCS, which is a universal scheme that can be applied to all

forms of CP. The GMFCS consists of a five level system according to the severity of activity limitation, which

correspond to the extent of functional capacities of the patient [135].

44

HUMAN LOCOMOTION AND CEREBRAL PALSY CHAPTER 3

3.2.2 Characteristics of Cerebral Palsy Gait

CP is a complex and heterogeneous continuum of motor disorders. This is further the case for the resulting

orthopedic impairments. As a consequence of the joint and bone deformities and often occurring stiffness and

rigidity, CP often leads to gait difficulties that increase over time and result in pathological gaits that span a

broad continuum of deviations. The heterogeneous, complex, and wide range of clinical presentation of CP

makes diagnosis and treatment allocation difficult.

The treatment of CP is limited to managing the orthopedic impairments and further symptoms. The main

approaches are conservative therapy (e.g. physiotherapy), pharmacotherapy with antispasmodics to relax hy-

pertonic muscles (e.g. botulinum toxin), and orthopedic interventions that include orthotic devices to stabi-

lize joints and surgery, which includes loosening tight muscles or osteotomy to correct bone alignment. In

Figure 3.1 the posture of a patient with CP before and after multiple orthopedic interventions is shown.

Figure 3.1: This figure shows the posture of a patient with CP bofore (upper row) and after (lower row) interven-
tions. The picture is provided by the HEIDELBERG MOTIONLAB [173].

A focus of diagnosis and orthopedic intervention is set on the pathological gait of CP patients. The typical

pathological gait patterns of spastic CP patients can be classified into four types for spastic hemiplegia (drop

foot, equinus with various knee positions; type 1-4 [172]) and four types for spastic diplegia (true equinus, jump

gait, apparent equinus and crouch gait [146]). Nevertheless, gait deviations in CP patients are highly variable

and a continuum of deviations rather than well delineated.

A cornerstone of CP diagnosis and treatment planning is gait analysis. Gait analysis collects quantitative,

spatiotemporal data on kinematics via motion capture and visual assessment of the gait from different angles,

as well as measurement of kinetic data like ground reaction and joint forces, as well as electromyography for

measurement of muscle contraction. Combined with further data on muscle strength, passive range of motion,

body measurements like bone length, height and weight, gait analysis can generate important characteristics

of the pathological gait of CP patients and support intervention evaluation and planning and may distinguish

gait deviations from compensatory strategies. Gait analysis aims at identifying the cause of the way that CP

patients walk.

Such gait analysis in the context of CP patient treatment are routinely performed in clinical practice. In Hei-

delberg this is done by the HEIDELBERG MOTIONLAB [173] that is embedded in the Department of Orthopedic

Surgery of the Heidelberg University Hospital and supports the project of this thesis by providing gait analy-

sis data of CP patients. In Figure 3.2 it is illustrated how Vicon motion capture marker [2] are attached to the

skin of a patient with CP. To further improve the existing protocols and methods this thesis aims at establish-

45

CHAPTER 3 HUMAN LOCOMOTION AND CEREBRAL PALSY

ing a diagnosis methodology based on Bilevel Inverse Optimal Control with underlying rigid multibody system

dynamics to calibrate a patient-specific CP gait model under consideration of given motion capture data, see

chapter 6 and chapter 10.

Figure 3.2: This figure shows the posture of a patient with CP with attached Vicon motion capture marker. The
picture is provided by the HEIDELBERG MOTIONLAB [173].

46

Part II

Contributions

47

Chapter 4

An Efficient Direct Approach for Bilevel Inverse OCPs with Fixed Active Set

In this chapter we present our new mathematical method, the Direct Simultaneous Approach with Fixed Active

Set - or DISIMFAS for short - for its efficient and reliable use in the identification of unknowns in a CP patient’s

gait model by solving a Bilevel Inverse OCP. General feasibility is shown by its successful application in two

challenging numerical examples apart from human locomotion, the rocket car example and the polar robot

example in chapter 8. Furthermore, in chapter 9 its performance is investigated for a basic gait model - the

basic walker model from chapter 5.

This chapter is organized as follows. It starts with an introduction, where we give the general problem for-

mulation and the motivation behind the developed numerical method. In section 4.2 the solution approach is

derived in detail and in section 4.4 an outlook is given how the identification of the active set can be integrated

in a sequential algorithm.

4.1 Introduction and Motivation

Our ultimate goal is the identification of optimization criteria and model parameters in an OCP describing

the gait of a CP patient by solving a Bilevel Inverse OCP of the form (2.21) as introduced in section 2.4. As al-

ready discussed in detail in section 2.4, the numerical solution of these kinds of bilevel problems is challenging.

Hence, already available solution approaches mostly cannot easily be applied in the context of human locomo-

tion, where a large-scale Bilevel Inverse OCP has to be solved with a highly non-smooth multi-level OCP on the

lower level with mixed control-state constraints. In our investigations, the Direct All-at-Once Approach (see

subsection 2.4.3) in the implementation PARAOCP [80] with selected approaches for the treatment of the aris-

ing complementarity constraints, has shown to be not sufficient for the basic walker example of chapter 5 using

simulated measurements - although it is a basic model for human locomotion with only few DOFs compared

to the CP gait model from chapter 6. Even our extension of the proposed method by solving the resulting one-

level NLP (2.27) with an efficient interior-point method IPOPT [169] together with the regularization scheme by

Scholtes [153] for the complementarity constraints failed for the basic walker example of chapter 5. In all cal-

culations, infeasible quadratic programs occured that arise from the resulting MPCCs and the lack of standard

CQs. These could not be tackled within the solution procedure by selected regularization and penalization ap-

proaches in PARAOCP. Nevertheless, in a first analysis of a CP patient’s gait in [80, Chapter 15] the exact penalty

approach as described in Benson et al. [22] lead to a solution. However, in this analysis the complementarity

constraints, which are expected to vanish for a sufficiently large penalization parameter, could not be driven to

zero in the solution.

Hence, the development of a different solution strategy was necessary to meet our ultimate goal for an effi-

cient and reliable numerical method to solve Bilevel Inverse OCPs for CP gaits. A desired feature is its routinely

applicability by physicians. Hence, on the one hand, information on the given dynamic process should be in-

corporated in such a way that expert knowledge of the physicians is not lost but can be an integral part of the

whole solution approach. On the other hand, structure exploitation should facilitate the solution method for

easy application.

The Bilevel Inverse OCP (2.21) we consider is of a special class: a PE problem constrained by a multi-stage

OCP with discontinuities, where the unknowns in the optimal control model are determined by fitting the

49

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

model to given measurement data. This condition enables us to incorporate some given structural information

of the dynamic process we are looking at, and in particular of the gait of a CP patient. In general, because in our

setting the deviation of the model to measurement data is minimized, bounds on decision variables can often

be chosen in such a way that the variables usually stay in the interior of their natural bounds or at least the

cases where these bounds might get active are rare. Hence, the considered index set of possible active bounds

can be reduced.

In the special case, where the lower level OCP describes the gait of a CP patient the inequality mixed control-

state constraints as well as inequality multi-point boundary constraints are usually already met by given mea-

surement data. One prominent example is the constraint which ensures that one foot remains above ground

during a single support phase. Another example are self-penetration constraints. Despite their essential role

when the OCP is solved alone, in the bilevel framework these constraints can be formulated very loose or might

be even neglected completely. Furthermore, we are interested in rigid multibody system models for the human

gait, which incorporate potentially appearing limited range of motion already in the equations of motion them-

selves, rather than using simple bounds on the variables. Especially in modeling the so-called crouched gait of

CP patients, a parametrized dynamic model should be considered, because essential information regarding

possible clinical treatments can be extracted from the individually determined parameters. In chapter 6 such

a patient-specific CP gait model is established.

All these circumstances motivated the development of a numerical method for PE problems constrained by a

multi-stage OCP with discontinuities under consideration of structural information gained from measurement

data. The essence of our method is to make a suitable guess of the optimal active set of the lower level OCP. In

the following section the new solution approach for Bilevel Inverse OCPs is described in detail.

4.2 Numerical Solution Approach

The main steps of the DISIMFAS are based on the Direct All-at-Once Approach by Hatz et al. [81, 80]. In the first

step, the lower level multi-stage OCP is treated with a direct method according to the Direct Multiple Shoot-

ing Method described earlier in subsection 2.2.1. The resulting finite-dimensional nonlinear bilevel program

comprises a structured NLP on the lower level. In contrast to the Direct All-at-Once Approach, in the newly

proposed method this lower level NLP is first reformulated by considering a guess of the optimal active set

before replacing it by its KKT conditions. This transforms the bilevel program to a one-level NLP which is no

MPCC as in the Direct All-at-Once Approach [80], see subsection 2.4.3, but of general form (1.1) as defined in

chapter 1. Hence, numerical methods from section 1.2 can be used.

For an efficient implementation, we exploit the special structure of the NLP and give needed quantities for

a tailored General Gauß Newton method in a SQP framework as well as for general SQP and interior-point

methods. The identification of the optimal active set in a sequential approach is the topic of section 4.4.

In the following we describe the steps summarized above in more detail under consideration of the Bilevel

Inverse OCP (2.22) with a single-stage OCP on the lower level from subsection 2.4.3. The Bilevel Inverse OCP

(2.22) is defined on a fixed normalized time horizon t ∈ [0,1] with free duration parameter d ∈ R. All arising

variables and functions are introduced in subsection 2.4.1. Without loss of generality only Mayer type objec-

tives are considered. As outlined in the introduction of the Direct All-at-Once Approach, at this point, the

single-stage formulation facilitates the notation and concurrently captures the main characteristics of the ma-

thematical method as well. Situations where the multi-stage formulation may affect the proposed method are

rare and mostly covered by incorporating the transition condition (2.21d).

50

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

4.2.1 Step 1: Application of the Direct Multiple Shooting Method on the Lower Level

This step is the same as in the Direct All-at-Once Approach [80] and already described in subsection 2.4.3. In

the following the application of the Direct Multiple Shooting Method on the lower level OCP is explained briefly

with focus on the quantities that are required later in section 4.3. The resulting bilevel NLP (4.5) that is used in

the next steps of our DISIMFAS differs in the formulation of the bounds on the variables, but is equivalent to

(2.24).

The lower level single-stage OCP is treated with the Direct Multiple Shooting Method according to subsec-

tion 2.2.1, where the differential states are parametrized and the control functions, constraints, and lower level

objective are discretized on the multiple shooting grid

0 = t ms
0 ≤ t ms

1 ≤ . . . ≤ t ms
N = 1.

This leads to NLP (2.15). For a more compact representation as stated in NLP (2.17), the variables are combined

on each shooting node i = 0, . . . ,N in the vectors vi :=
(

sT
i q T

i

)T
and collected in v :=

(
v T

0 . . . v T
N

)T
accord-

ing to subsection 2.2.1. Furthermore, slack variables w ∈ RnCic are introduced, such that all constraints can be

combined in one constraint function

C (z , p) :=
(

Cec(v ,d , p)

Cic(v , p)−w

)
= 0 with w ≥ 0, (4.1)

where z :=
(

v T d w T
)T

, z ∈ Rnz . Simple bounds on the variables of the lower level NLP are defined as

z :=
(

v T d ∞
)T

and z :=
(

v T d 0
)T

. Without loss of generality, we assume that

zr 6= zr, for all r = 0, . . . ,nz −1. (4.2)

Variables that are fixed to a specific value can be included in the equality constraints Cec(·). In the compact

notation of (4.1) all matching conditions which arise due to the application of the Direct Multiple Shooting

Method and remaining boundary equality constraints are combined in the vector

Cec(v ,d , p) :=


x(t ms

1 ; s0, q0,d , p)− s1

...

x(t ms
N ; sN−1, qN−1,d , p)− sN

r ec(s0, sN, p)

 , (4.3)

and all mixed control-state constraints together with further boundary inequality constraints enter

Cic(v , p) :=


c̃(s0, û0(t ms

0 , q0), p)
...

c̃(sN, ûN(t ms
N , qN), p)

r̃ic(s0, sN, p)

 , (4.4)

where all simple bounds on the variables are excluded from the original inequality constraints and, hence, the

tilde notation is used. Furthermore, please note that in a multi-stage environment in addition to matching con-

ditions also transition conditions between the model stages would enter the equality constraint vector (4.3) as

described in subsection 2.2.1.

Altogether, the lower level OCP is now replaced by this structured NLP in compact form as stated in (2.17)

with the assumption in (4.2). Finally, this leads to the finite-dimensional bilevel nonlinear problem of the

51

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

following form

min
α,p ,z

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(4.5a)

s. t.

min
z

Φ(sN,d ,α, p) (4.5b)

s. t. 0 =C (z , p), (4.5c)

z ≤ z ≤ z , (4.5d)
nM∑
k=1

αk = 1,α≥ 0, (4.5e)

p ≤ p ≤ p , (4.5f)

with simple bounds on the decision variables z =
(

v T d w T
)T

as the only inequality constraints of the lower

level NLP in (4.5d). The least-squares objective (4.5a) depends on the term x(t m
n) and is treated according to

step 1 of subsection 2.4.3.

4.2.2 Step 2: Reformulation of the Lower Level NLP on a Fixed Active Set

The finite-dimensional nonlinear bilevel program (4.5) comprises a structured NLP on the lower level for which

we assume that the LICQ holds at the solution z∗. Furthermore, we assume that z∗ is unique in some neigh-

borhood. To provide an adequate reformulation of the lower level NLP we consider general active-set methods

for inequality-constrained problems. The essence of active-set methods is to start by making a guess of the op-

timal active set A∗. The optimal active set is defined as the index set of all constraints on the lower level, which

are satisfied as equalities at the solution. Hence, the idea is now to consider a suitable guess of the optimal

active set, before the lower level NLP is replaced by its KKT conditions.

We first define an ordered index set for the inequality constraints (4.5d) related to the upper and lower

bounds on the lower level optimization variables z ∈Rnz by

I :=
{

r|zr ≤ zr ≤ zr

}
= {0, . . . ,nz −1} ,

starting with 0 to simplify the notation in later sections. Furthermore, let z ∈Ω be feasible, E the index set that

corresponds to the equality constraints on the lower level, and order the indices in E = {nz, . . . ,nz+nCec+nCic−1}

such that E ∩I =;, then the active set for the lower level NLP in (4.5) can be written as

A(z) := E ∪{
r ∈ I|0 = zr − zr

}∪{
r ∈ I|0 = zr − zr

}
,

and the active sets that belong to the active upper bounds and active lower bounds as

A(z) := {
r ∈ I|0 = zr − zr

}
and A(z) :=

{
r ∈ I|0 = zr − zr

}
,

respectively. With the assumption that zr 6= zr for all variables r = 0, . . . ,nz −1, as stated in subsection 4.2.1, the

active sets related to the bounds are disjoint and we have

A(z)∩A(z) =;.

The optimal active set A∗ :=A(z∗) and the active sets related to the inequality constraints Aic
∗

:=A(z∗) and

Aic∗ :=A(z∗) are defined as the active sets at the solution z∗. We assume above that the LICQ is satisfied and,

hence, the active constraints are linearly independent at the solution. On the lower level we can now formulate

52

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

an NLP of the form

min
z

Φ(sN,d ,α, p) (4.6a)

s. t. 0 =C (z , p), (4.6b)

0 = zr − zr, ∀r ∈Aic
∗

, (4.6c)

0 = zr − z
r
, ∀r ∈Aic∗, (4.6d)

which only comprises equality constraints on the optimal active set A∗. NLP (4.6) is equivalent to the lower

level NLP in (4.5), if all zr with r ∉Aic
∗

and r ∉Aic∗ satisfy zr ≤ zr ≤ zr.

Of course, in general the optimal active set is not known in advance. We introduce the working set W as

a suitable guess of the optimal active set A∗ with linearly independent constraint gradients. If we replace

the optimal active sets in (4.6c) and (4.6d) by the corresponding working sets W and W , respectively, we can

formulate a bilevel problem as follows

min
α,p ,z

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(4.7a)

s. t.

min
z

Φ(sN,d ,α, p) (4.7b)

s. t. 0 =C (z , p), (4.7c)

0 = zr − zr, ∀r ∈W , (4.7d)

0 = zr − z
r
, ∀r ∈W . (4.7e)

nM∑
k=1

αk = 1,α≥ 0, (4.7f)

p ≤ p ≤ p , (4.7g)

where the working sets related to the bounds are disjoint because of the assumption that zr 6= zr for all variables

r = 0, . . . ,nz −1 and we have

W(z)∩W(z) =;. (4.8)

In the case, where the guess of the working set W is set to the optimal active set A∗, bilevel NLPs (4.5) and (4.7)

are equivalent. With a suitable first guess of the working set W0 the optimal active set A∗ can be identified by a

sequential algorithm as to be discussed in section 4.4. In each outer iteration k of the sequential algorithm an

NLP of the form (4.7) on a fixed working set Wk :=W(zk) is treated according to the following subsection 4.2.3

and subsection 4.2.4.

4.2.3 Step 3: Replacement of the Lower Level NLP by its KKT Conditions

In this step, the lower level NLP of the bilevel problem (4.7) is replaced by its KKT conditions. This transforms

the bilevel program into a one-level NLP. Because of the reformulation in step 2 according to subsection 4.2.2

the resulting NLP is no MPCC as in the approach of Hatz [80], see also subsection 2.4.3, but of general form

(1.1) as defined in chapter 1 and, hence, standard NLP solvers can be applied.

53

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

We introduce Lagrange multipliers λ ∈ RnCec+nCic related to equality constraints (4.7c) and µ ∈ Rnz related to

simple bounds. The entries of µ are defined by

µr :=


µzr

, if r ∈W ,

µz
r
, if r ∈W ,

0, otherwise,

where the value of the r-th component corresponding to active upper bound zr is denoted byµzr
and the one for

the corresponding active lower bound z
r

by µz
r
. Furthermore, we introduce matrices denoted by IW ∈R|W |×nz

and IW ∈ R|W |×nz , which are composed of standard unit vectors er ∈ Rnz corresponding to indices r ∈W and

r ∈W , respectively. Then multiplier vectors µz ∈ R|W | and µz ∈ R|W | related to upper and lower bounds, re-

spectively, can be defined by

µz := I T
W

·µ and µz := I T
W ·µ. (4.9)

The newly introduced Lagrange multipliers in (4.9) together with the Lagrange multipliersλ related to equality

constraints and the decision variables z ,α, and p of the bilevel NLP (4.7) can be combined in the variable vector

Z :=
(

zT λT µT
z

µT
z αT pT

)T
.

Now the Lagrange function of the lower level NLP of (4.7) on a fixed guess W of the optimal active set A∗ is

defined by

L(Z) :=Φ(z ,α, p)−λT C (z , p)−
∑

r∈W
µr

(
zr − zr

)− ∑
r∈W

µr

(
zr − z

r

)
.

Furthermore, with the introduction of vectors µ̂z ∈Rnz and µ̂z ∈Rnz related to upper and lower bounds, respec-

tively, defined by

(µ̂z)r :=
{
µr, if r ∈W ,

0, otherwise,
and (µ̂z)r :=

{
µr, if r ∈W ,

0, otherwise,
(4.10)

the gradient of the Lagrangian with respect to the lower level variables z can be written as

∇zL(Z) :=∇zΦ(z ,α, p)−∇z C (z , p)Tλ−
∑

r∈W
µr∇z

(
zr − zr

)− ∑
r∈W

µr∇z

(
zr − z

r

)
=∇zΦ(z ,α, p)−∇z C (z , p)Tλ+ µ̂z − µ̂z.

Note that the non-zero entries of the vectors µ̂z and µ̂z are the corresponding entries of the Lagrange multipli-

ers µz and µz, respectively.

With the assumption that LICQ holds at the solution of the lower level problem the KKT conditions can now

be formulated as

Stationarity:

0 =∇zL(Z), (4.12a)

Primal Feasibility:

0 =C (z , p), (4.12b)

0 = zr − zr, ∀r ∈W , (4.12c)

0 = zr − z
r
, ∀r ∈W , (4.12d)

54

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

according to theorem 1.8 in subsection 1.1.1. Replacing the discretized and parametrized lower level problem

by conditions (4.12) leads to the following structured one-level NLP

min
Z

1

2

nm−1∑
n=0

nh−1∑
k=0

(
hk(x(t m

n), p)−ηnk
)2

σ2
nk

(4.13a)

s. t. 0 =∇zL(Z), (4.13b)

0 =C (z , p), (4.13c)

0 = zr − zr, ∀r ∈W , (4.13d)

0 = zr − z
r
, ∀r ∈W , (4.13e)

nM∑
k=1

αk = 1,α≥ 0, (4.13f)

p ≤ p ≤ p . (4.13g)

If the estimated working set is already the optimal active set A∗ the resulting one-level NLP solves the original

Bilevel Inverse OCP (2.22). It should be noted, that as stated in [80] for the Direct All-at-Once Approach "[...]

for a general OCP on the lower level in (2.22), the bilevel problem and the resulting one-level problem are not

necessarily mathematically equivalent". In this thesis, we do not cover investigations in this direction, and refer

the interested reader to, e.g., [44, 45] for a detailed discussion on this topic. In the next subsection we describe

how NLP (4.13) can be solved efficiently with standard solvers for constrained NLPs.

4.2.4 Step 4: Solution of the One-Level NLP with Tailored Numerical Methods

In the last step, the one-level NLP (4.13) is solved on a given fixed working setW as a guess for the optimal active

setA∗. The identification of the optimal active set with a sequential algorithm is discussed in section 4.4, where

step 4 is performed in each outer iteration.

In the following section 4.3, we focus on the exploitation of given structures in NLP (4.13). This investigation

is then used for efficient computation and derivative generation of quantities needed by most state-of-the-art

solvers, which implement variants of the numerical methods for NLPs described in section 1.2.

In the software package PARDYNOPT of chapter 7 the DISIMFAS is realized including the structure exploita-

tion described in the following. For integration of the arising IVPs and the corresponding sensitivity generation,

as well as the computation of derivatives of other model functions up to second order are realized within an

interface to SOLVIND [5]. This software package was developed by Albersmeyer in the Simulation and Op-

timization group of Bock at Interdisciplinary Center for Scientific Computing at Heidelberg University, and

provides ODE and DAE solvers in an IND framework for exact derivative generation using AD with ADOL-C

[170]. Furthermore, PARDYNOPT provides interfaces to IPOPT [169] for the solution of the resulting structured

one-level NLP (4.13) with an efficient interior-point method and a BROYDEN–FLETCHER–GOLDFARB–SHANNO

(BFGS) Hessian approximation. Interfaces for SNOPT [71] and FILTERSQP [59] are also prepared for implemen-

tations of SQP methods with appropriate hessian approximations for a Generalized Gauß-Newton framework

as described at the end of the following section 4.3.

4.3 Structure Exploitation and Hessian Approximation

This section is structured as follows. We first provide the gradients of the upper level objective, and the con-

straints with a focus on the gradient of the Lagrangian of the lower level NLP ∇zL(·) and exploit their structures.

Furthermore, for an efficient implementation the sparsity of the Jacobian of the constraints is investigated. The

section 4.3 is completed with a discussion on adequate Hessian approximations of the Lagrangian of the struc-

tured one-level NLP (4.13) for tailored interior-point methods or SQP methods, as well as for a Generalized

Gauß-Newton framework.

55

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

4.3.1 Efficient Computation of Objective Gradients

We start with the objective of the one-level NLP (4.13). To simplify the notation we assume that the measure-

ment grid is the same as the multiple shooting grid

0 = t ms
0 ≤ t ms

1 ≤ . . . ≤ t ms
N = 1,

and introduce a weighted residual vector R(s, p) :=Σ−1(h(s, p)−η), such that the objective can be rewritten as

1

2

∥∥R(s, p)
∥∥2

2 =
1

2

∥∥Σ−1(h(s, p)−η)
∥∥2

2 , (4.14)

where η :=
(
ηT

0 . . . ηT
N

)T
combines all measurements into one measurement vector. Furthermore, a vector

with corresponding model answers is defined by h(s, p) :=
(
h0(s0, p)T . . . hN(sN, p)T

)T
, and a diagonal ma-

trix with standard deviations byΣ := diag(σ0, . . . ,σN). In this notation each vector, ηi and hi(si, p), respectively,

includes nh entries and the matricesσi themselves are also diagonal matrices with nh non-zero entries related

to each shooting node i = 0, . . . ,N. They read as follows

ηi =


ηi0

...

ηinh−1

 , hi(si, p) =


h0(si, p)

...

hnh−1 (si, p)

 , and σi =


σi0

. . .

σinh−1

 .

Now the gradient of (4.14) with respect to the decision variables Z can be written as

∇Z

(
1

2

∥∥R(s, p)
∥∥2

2

)
=∇Z R(s, p)T ·R(s, p),

with ∇Z R(s, p) denoted as the Jacobian of the residual vector, where only those entries are non-zero that cor-

respond to the parametrized multiple shooting state variables s and the model parameters p . At each multiple

shooting node i = 0, . . . ,N we define submatrices by

∇vi R(si, p) =σ−1
i


∂h0(si,p)
∂si,0

. . . ∂h0(si,p)
∂si,nx−1

0 . . . 0
...

. . .
...

...
. . .

...
∂hnh−1 (si,p)

∂si,0
. . .

∂hnh−1(si,p)

∂si,nx−1
0 . . . 0

=
(
∗ 0

)
∈Rnh×(nx+nq),

as Jacobians related to node i with respect to variables vi :=
(

sT
i q T

i

)T
. If we combine them into

∇v R(s, p) =


∇v0 R(s0, p) 0 . . . 0

0 ∇v1 R(s1, p)
. . .

...
...

. . .
. . . 0

0 . . . 0 ∇vN R(sN, p)

=



(
∗ 0

)
. . . 0

0
(
∗ 0

) . . .
...

...
. . .

. . . 0

0 . . . 0
(
∗
)

 , (4.15)

it results in a block-diagonal structure of the Jacobian of the residual vector R(·) with respect to all variables v .

Whereas, the Jacobian with respect to model parameters p reads as follows

∇p R(s, p) =Σ−1
(
∇p h0(s0, p)T ∇p h1(s1, p)T . . . ∇p hN(sN, p)T

)T
, (4.16)

with the Jacobians ∇p hi(si, p) ∈ Rnh×np of each measurement function hi(·) with respect to model parameters

p . All other entries of ∇Z R(s, p) are zero. In sum, if we recall the variables vector of the one-level NLP defined

56

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

by

Z :=
(

zT λT µT
z

µT
z αT pT

)T

=
(

v T
0 . . . v T

N d w T λT µT
z

µT
z αT pT

)T
,

with vi =
(

sT
i q T

i

)T
, i = 0, . . . ,N, the Jacobian of the residual vector can be written in compact notation as

∇Z R :=
(
∇v RT 0 0 0 0 0 0 ∇p RT

)T
, (4.17)

where the arguments of ∇v R and ∇p R are omitted for a clearer presentation.

4.3.2 Constraint Vector with Structure Exploitation of Gradient of Lower Level Lagrangian

We now consider the constraints of the NLP (4.13). The constraints (4.13d) - (4.13g) given above are mostly sim-

ple bounds on variables, whereas the constraint vector in (4.13c), e.g., includes the matching conditions that

incorporate the result of integrations of the arising dynamic equations systems. The structure of this constraint

vector is already given in subsection 4.2.1 in equation (4.1).

It remains to consider the gradient of the Lagrangian of the lower level NLP as it appears as constraint (4.13b)

in the one-level NLP. Hence, for efficient calculations its special structure is now exploited. The Lagrangian is

defined by

∇zL(Z) :=∇zΦ(z ,α, p)−∇z C (z , p)Tλ+ µ̂z − µ̂z,

where the vectors µ̂z and µ̂z are already defined in equation (4.10) of subsection 4.2.3, such that we concentrate

on ∇zΦ(z ,α, p) and ∇z C (z , p)Tλ in the following.

The lower level objective is a combination of Mayer type optimization criteria,

Φ(z ,α, p) =
nM∑
k=1

αk ·φM
k (sN,d , p).

Hence, if we recall the variables of the lower level NLP to be

z :=
(

v T
0 . . . v T

N d w T
)T

, with vi =
(

sT
i q T

i

)T
, i = 0, . . . ,N, (4.19)

the gradient ∇zΦ(z ,α, p) has only non-zero entries for the multiple shooting state parameters sN at the last

node

M vN
N :=

(
(M sN

N)T 0
)T

∈Rnx+nq , with M sN
N :=

nM∑
k=1

αk ·
∂φM

k (sN,d , p)

∂sN
,

and the duration parameter d

M d :=
nM∑
k=1

αk ·
∂φM

k (sN,d , p)

∂d
∈R.

In compact notation the gradient of the lower level objective can be written as

∇zΦ(z ,α, p) :=
(v︷ ︸︸ ︷

0 . . . 0 (M vN
N)T

d︷ ︸︸ ︷
M d

w︷ ︸︸ ︷
0

)T
. (4.20)

A Lagrange type objective generally leads to a dense gradient of the objective.

57

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

The term ∇z C (z , p)Tλ is of special structure. It incorporates the Jacobian of the lower level constraint vector

C (z , p) ∈ RnCec+nCic (4.3) with respect to the variables vector z ∈ Rnz in (4.19) multiplied by the corresponding

Lagrange multipliersλ ∈RnCec+nCic .

We start with the matching conditions by defining

cms(v ,d , p) :=


x(t ms

1 ; s0, q0,d , p)− s1

...

x(t ms
N ; sN−1, qN−1,d , p)− sN

 ,

such that the equality constraint vector in (4.3) reads as

Cec(v ,d , p) :=
(

cms(v ,d , p)

r ec(s0, sN, p)

)
∈RnCec . (4.21)

To give the special structure of the Jacobian of the matching conditions we consider the derivatives of the

solutions of the IVPs, x(t ms
i+1; si, qi,d , p), also called sensitivities, with respect to the intermediate initial values

si, the control parameters qi, and the duration parameter d , such that we can define

G s
i :=

∂x(t ms
i+1; si, qi,d , p)

∂si
, G q

i :=
∂x(t ms

i+1; si, qi,d , p)

∂qi
, and Gd

i :=
∂x(t ms

i+1; si, qi,d , p)

∂d
,

for each shooting node i = 0, . . . ,N−1 with the dimensions G s
i ∈ (Rnx×nx),G q

i ∈ (Rnx×nq), and Gd
i ∈ (Rnx×1). Fur-

thermore, the derivatives of each matching condition with respect to the parametrized state variables si+1 are

∂
(
x(t ms

i+1; si, qi,d , p)− si+1
)

∂si+1
=−Inx , ∀i = 0, . . . ,N−1,

where Inx denotes the identity matrix with nx diagonal entries. For a more compact presentation in (4.22) the

previously defined quantities G s
i and G q

i are combined into submatrices

G v
i :=

(
G s

i G q
i

)
∈Rnx×(nx+nq), ∀i = 0, . . . ,N−1,

and the negative (nx ×nx) identity matrix −Inx and the (nx ×nq) null matrix 0nx×nq into submatrix

I v :=
(
−Inx 0nx×nq

)
∈Rnx×(nx+nq).

Then, the Jacobian of the matching conditions cms(·) with respect to variables ẑ =
(

v T d
)T

, where we ex-

cluded the slack variables w from the lower level NLP variables z , can be written as

∇ẑ cms(v ,d , p) =


G v

0 I v 0 . . . 0 Gd
0

0 G v
1 I v . . .

... Gd
1

...
. . .

. . .
. . . 0

...

0 . . . 0 G v
N−1 I v Gd

N−1

 . (4.22)

The first N columns in (4.22) correspond to derivatives with respect to each vi :=
(

sT
i q T

i

)T
, i = 0, . . . ,N, which

are collected in v :=
(

v T
0 . . . v T

N

)T
. The separability of the Jacobian of the matching conditions with respect

to the variables v yields in a block-diagonal structure, where the only dense last column includes the derivatives

with respect to the duration parameter d . Note that all derivatives of the matching conditions with respect to

the slack variables w ∈ RnCic are zero. The needed sensitivities can be calculated by the methods described in

subsection 2.2.2. If we have more than one model stage, at transitions between two stages instead of matching

58

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

conditions the stage transition conditions defined in equation (2.14) in subsection 2.2.1 have to be considered

together with their derivative generation.

The equality boundary conditions are combined in r ec(s0, sN, p) and only depend on the parametrized states

of the first and the last multiple shooting nodes, s0, sN, beside the model parameters p . The derivatives with

respect to the lower level variables vi :=
(

sT
i q T

i

)T
, i = 0,N, can be written as

R v
ec,i :=

(
R s

ec,i 0nec×nq

)
∈Rnec×(nx+nq), for i = 0,N,

with

R s
ec,0 := ∂r ec(s0, sN, p)

∂s0
, and R s

ec,N := ∂r ec(s0, sN, p)

∂sN
.

Together with equation (4.22) the Jacobian of the equality constraints with respect to variables ẑ , slack variables

w excluded, reads

∇ẑ Cec(v ,d , p) =



G v
0 I v 0 . . . 0 Gd

0

0 G v
1 I v . . .

... Gd
1

...
. . .

. . .
. . . 0

...

0 . . . 0 G v
N−1 I v Gd

N−1

R v
ec,0 0 . . . 0 R v

ec,N 0


. (4.23)

Further, we consider the Jabobian of the arising inequality constraint vector, which is defined in (4.4), with

respect to the lower level variables z . We define the derivatives of the mixed control-state constraints at each

shooting node by

D v
i :=

(
D s

i D q
i

)
∈Rnc̃×(nx+nq), ∀i = 0, . . . ,N,

with

D s
i :=

∂c̃(si, ûi(t ms
i , qi), p)

∂si
and D q

i :=
∂c̃(si, ûi(t ms

i , qi), p)

∂qi
, ∀i = 0, . . . ,N,

and the derivatives of the inequality boundary conditions with respect to v at the first and last multiple shoot-

ing node by

R v
ic,i :=

(
R s

ic,i 0nĩc×nq

)
∈Rnĩc×(nx+nq), for i = 0,N,

with

R s
ic,0 := ∂r̃ic(s0, sN, p)

∂s0
, and R s

ic,N := ∂r̃ic(s0, sN, p)

∂sN
.

Then the Jacobian of the inequality constraint vector Cic(v , p) with respect to variables ẑ can be written as

∇ẑ Cic(v , p) =



D v
0 0 . . . 0 0

0 D v
1

. . .
... 0

...
. . .

. . .
...

0

0 . . . 0 D v
N 0

R v
ic,0 0 . . . 0 R v

ic,N 0


. (4.24)

59

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

Because of the decoupled control path constraints, a block-diagonal substructure can be exploited. Note that

all derivatives with respect to model parameter d are zero and appear in the last column of (4.24).

It remains to consider the derivatives of the total constraint vector C (·) with respect to the introduced

slack variables w . Because their only contribution is the subtraction from the inequality constraint vector

Cic(v , p)−w , with w ≥ 0, see definition (4.3), the Jacobian is the negative identity matrix −InCic
with nCic diag-

onal entries and we have

∇w
(
Cic(v , p)−w

)
:=−InCic

.

Then the Jacobian of the total constraint vector with respect to all lower level NLP variables z can be written

in compact notation as

∇z C (z , p) =
(
∇ẑ Cec(v ,d , p) 0

∇ẑ Cic(v , p) −InCic

)
, (4.25)

with the given structure exploitation in equations (4.23) and (4.24). To provide all summands in the gradient

of the Lagrangian of the lower level problem, the remaining quantity ∇z C (z , p)Tλ can now easily be computed

with the investigated special structure of (4.25).

4.3.3 Constraint Jacobian of One-Level NLP

The exploitation of the sparsity pattern of the constraint Jacobian provides a great contribution for an efficient

implementation of the proposed method, if used by standard NLP solvers. Jacobians of the constraints on the

objective weights (4.13f) and model parameters (4.13g) are easily computed and, hence, not considered at this

point. We focus on the general structure of the Jacobian of the constraints related to the one-level NLP (4.13).

Similar to equation (4.9) we again introduce matrices IW ∈ R|W |×nz and IW ∈ R|W |×nz , which are composed

of standard unit vectors er ∈ Rnz corresponding to indices r ∈W and r ∈W , respectively. Then the constraints

can be combined into one vector

Ĉ (Z) =


∇zL(Z)

C (z , p)

I T
W

· (z − z
)

I T
W · (z − z

)

 . (4.26)

The sparse structure of the constraint Jacobian is already visible when constructed as follows

∇Z Ĉ =


∇2

zL ∇2
zλL ∇2

zµz
L ∇2

zµz
L ∇2

zαL ∇2
z pL

∇z C 0 0 0 0 ∇pC

∇z

(
I T
W

· (z − z
))

0 0 0 0 0

∇z

(
I T
W · (z − z

))
0 0 0 0 0

 , (4.27)

with respect to the variables vector Z :=
(

zT λT µT
z

µT
z αT pT

)T
. Note that we omitted

the arguments due to a clearer presentation. This is also done in the following. If we take a closer look at each

submatrix of the Jacobian∇Z Ĉ stated in (4.27), the structure of submatrix∇z C was already exploited previously,

and other submatices are simply the positive or negative matrices IW and IW , or its transposed counterpart.

Additionally, there are some dense blocks, whereas others have special structures which are provided in the

following, e.g. the Hessian of the Lagrangian of the lower level NLP denoted by ∇2
zL.

60

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

We start with the Jacobians corresponding to the submatrices of the last two rows in (4.27) with respect to the

lower level NLP variables z . These can be written as

∇z

(
I T
W

· (z − z
))=−I T

W
,

∇z

(
I T
W · (z − z

))= I T
W .

Further, the submatrices ∇2
zµz

L and ∇2
zµz

L are of similar structure and can be derived as

∇2
zµz

L= IW ,

∇2
zµz

L=−IW .

The submatrix ∇2
zλL is simply the transposed negative Jacobian of the equality constraints of the lower level

NLP ∇z C , defined by

∇2
zλL=−∇z C T .

∇z C ∈RnCec nz was previously exploited in (4.25) with the given structures in (4.23) and (4.24).

Before we consider the special structure of the Hessian of the Lagrangian of the lower level NLP denoted by

∇2
zL, we take a look at the gradients with respect to the weights α and the model parameters p . We start with

the only contribution of the objective weight in ∇2
zαL ∈ Rnz×nα . Because the gradient ∇zΦ(z ,α, p) defined in

(4.20) has only non-zero entries for the multiple shooting state parameters sN at the last node and the duration

parameters d we have

∇2
zαL=



0 0 . . . 0
...

...
. . .

...

0 0 . . . 0
∂φM

1 (sN,d ,p)
∂sN

∂φM
2 (sN,d ,p)
∂sN

. . .
∂φM

nM
(sN,d ,p)

∂sN

0 0 . . . 0
∂φM

1 (sN,d ,p)
∂d

∂φM
2 (sN,d ,p)
∂d . . .

∂φM
nM

(sN,d ,p)

∂d

0 0 . . . 0


. (4.30)

The contributions of model parameters p enter the constraint Jacobian in submatrices ∇2
z pL and ∇pC with

the dimensions Rnz×np and R(nCec+nCic)×np , respectively. We start with the latter one and define according to

the investigation of the structure of ∇z C in (4.25) the derivatives related to the arising matching conditions in

(4.21) by

G p
i :=

∂x(t ms
i+1; si, qi,d , p)

∂p
∈Rnx×np ,

for each shooting node i = 0, . . . ,N−1, and the derivatives of the equality and inequality boundary conditions

which appear in the sub vectors (4.21) and (4.4) by

R p
ec := ∂r ec(s0, sN, p)

∂p
, and R p

ic := ∂r̃ic(s0, sN, p)

∂p
,

respectively, with the dimensions R p
ec ∈ Rnec×np and R p

ic ∈ Rnĩc×np . Furthermore, the derivatives of the mixed

control-state constraints at each shooting node are denoted by

D p
i :=

∂c̃(si, ûi(t ms
i , qi), p)

∂p
∈Rnc̃×np , ∀i = 0, . . . ,N.

61

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

In sum, we have a dense representation for the Jacobian of the whole lower level constraint vector with respect

to model paramaters defined by

∇pC =
(
(G p

0)T . . . (G p
N−1)T (R p

ec)T (D p
0)T . . . (D p

N)T (R p
ic)T

)T
. (4.31)

Similar to the above case, because of the global model parameter p the submatrix ∇2
z pL ∈ Rnz×np is dense and

has no special structure which can be exploited. Its computation is performed by generating the derivatives of

the gradient of the lower level Lagrangian (4.11) with respect to p . If we use the notations ∇2
vipL ∈R(nx+nq)×np ,

∀i = 0, . . . ,N, and ∇2
d pL ∈R1×np , we have

∇2
z pL=

(
∇2

v0pLT . . . ∇2
vNpLT ∇2

d pL
T 0

)T
, (4.32)

with respect to z :=
(

v T
0 . . . v T

N d w T
)T

where vi =
(

sT
i q T

i

)T
, i = 0, . . . ,N. Note that all second

derivatives with respect to the slack variables w are zero. In contrast to the dense submatrix ∇2
z pL the Hessian

of the Lagrangian of the lower level NLP, denoted by ∇2
zL ∈ Rnz×nz , comprises a very special structure because

of its separability with respect to the variables vi on each inner node i = 1, . . . ,N−1. To demonstrate this we in-

troduce the Lagrange multipliers defined asλ :=
(
(λms)T (λec)T (λc̃)T (λic)T

)T
, which correspond to the

matching conditions, the equality boundary conditions, the mixed control-state constraints, and the inequal-

ity boundary conditions, respectively, and consider the Lagrangian of the lower level problem in more detail

by

L(Z):=Φ(z ,α, p)−λT C (z , p)−
∑

r∈W
µr

(
zr − zr

)− ∑
r∈W

µr

(
zr − z

r

)
=

nM∑
k=1

αk ·φM
k (sN,d , p)

−
N−1∑
i=0

(λms
i)T (x(t ms

i+1; si, qi,d , p)− si+1)− (λec)T r ec(s0, sN, p)

−
N∑

i=0
(λc̃

i)T (c̃(si, ûi(t ms
i , qi), p))− (λic)T r̃ic(s0, sN, p)

+
(
(λc̃)T (λic)T

)
w −

∑
r∈W

µr
(
zr − zr

)− ∑
r∈W

µr

(
zr − z

r

)
=

N−1∑
i=1

Li +L0,N +Llin (4.33)

with the following definitions

Li:=− (λms
i)T x(t ms

i+1; si, qi,d , p)− (λc̃
i)T c̃(si, ûi(t ms

i , qi), p)

L0,N:=
nM∑
k=1

αk ·φM
k (sN,d , p)

− (λms
0)T x(t ms

1 ; s0, q0,d , p)− (λec)T r ec(s0, sN, p)

− (λc̃
0)T c̃(s0, û0(t ms

0 , q0), p)− (λc̃
N)T c̃(sN, ûN(t ms

N , qN), p)

− (λic)T r̃ic(s0, sN, p)

Llin:=
N−1∑
i=0

(λms
i)T si+1 +

(
(λc̃)T (λic)T

)
w −

∑
r∈W

µr
(
zr − zr

)− ∑
r∈W

µr

(
zr − z

r

)
.

With the compact notation in (4.33) it is obvious that the only coupling between two shooting variables appears

between the first and the last state variables. With respect to the inner multiple shooting nodes the correspond-

ing Hessian blocks are separable. Furthermore, all contributions in the Hessian of the lower level Lagrangian

62

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

related to Llin are zero because of the linear dependency of the state parameters si, the slack variables w and

the NLP variables zr∀r ∈W related to the working set. However, the Hessian blocks with respect to the duration

parameter d are all dense.

We now exploit the structure of the block-diagonal Hessian with respect to the variables vi =
(

sT
i q T

i

)T
as a

result of the separability. Each (nx +nq)× (nx +nq)-block is defined by

∇2
vi
Li =

 ∂2

∂s2
i
Li

∂2

∂qi∂si
Li

∂2

∂si∂qi
Li

∂2

∂q2
i
Li

 , for all i = 1, . . . ,N−1.

Furthermore, we define the following blocks for the first and the last shooting node

∇2
vi
L0,N =

 ∂2

∂s2
i
L0,N

∂2

∂qi∂si
L0,N

∂2

∂si∂qi
L0,N

∂2

∂q2
i
L0,N

 , i = 0,N,

and

∇2
vivj

L0,N =
 ∂2

∂sj∂si
L0,N

∂2

∂qj∂si
L0,N

∂2

∂sj∂qi
L0,N

∂2

∂qj∂qi
L0,N

 , i, j ∈ {0,N}, i 6= j.

For the dense part of the Hessian with respect to the duration parameters we use the notations ∇2
vid

L =
∇2

d vi
LT ∈ R(nx+nq)×1 and ∇2

dL ∈ R. In sum, this yields to the following symmetric structure of the Hessian

of the Lagrangian of the lower level NLP with respect to the lower level decision variables z

∇2
zL=



∇2
v0
L0,N 0 . . . 0 ∇2

v0vN
L0,N ∇2

v0dL 0

0 ∇2
v1
L1

. . .
... 0

...
. . .

. . . 0
...

...

0 . . . 0 ∇2
vN−1

LN−1 0
...

∇2
vNv0

L0,N 0 . . . 0 ∇2
vN
L0,N

∇2
v0dL

∇2
d v0

L . . . ∇2
d vN

L ∇2
dL

0 . . . 0



. (4.35)

Together with the definitions and the exploited structures given above for the Hessian of the lower level La-

grangian ∇2
zL in (4.35), the Jacobians of the lower level constraint vector ∇z C in (4.25) and ∇pC in (4.31) with

respect to variables z and p , respectively, the Jacobians of the gradient of the Lagrangian of the lower level∇2
zαL

in (4.30) and ∇2
z pL in (4.32) with respect to weights α and parameters p , respectively, we can now investigate

the structure of the whole Jacobian of the one-level NLP first defined in (4.27) as follows

∇Z Ĉ (Z) =


∇2

zL −∇z C T IW −IW ∇2
zαL ∇2

z pL
∇z C 0 0 0 0 ∇pC

−I T
W

0 0 0 0 0

I T
W 0 0 0 0 0

 , (4.36)

with respect to the variables vector Z :=
(

zT λT µT
z

µT
z αT pT

)T
, where IW ∈ R|W |×nz

and IW ∈ R|W |×nz , are composed of standard unit vectors er ∈ Rnz corresponding to indices r ∈W and r ∈W ,

respectively.

63

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

4.3.4 Approximation of Hessian of Lagrangian

In interior-point methods as well as in SQP methods the Hessian of the Lagrangian of the one-level NLP (4.13)

appears in the basic algorithms. Replacing the Hessian by a quasi-Newton approximation might be beneficial

due to several reasons. For instance, computations of exact Hessians can be very expensive, especially when

using finite differences. Especially, in large-scale NLPs, which might result from modeling the human gait

in detail, this could have a tremendous impact on the efficiency of the proposed method. Furthermore, the

Hessian of the Lagrangian might get indefinite when computed exactly, which causes difficulties in finding a

solution. However, with an adequate, computationally less expensive quasi-Newton approximation one can

ensure positive definiteness of the Hessian. BFGS update formulas, see Broyden [29], Fletcher [57], Goldfarb

[73], and Shanno [158] , or limited-memory variants, denoted by L-BFGS, for large-scale and sparse NLPs are

prominent choices. We refer to the textbook of Nocedal and Wright [132] for a comprehensive discussion on

this topic.

In our implementation of the proposed method in PARDYNOPT, see chapter 7, and the numerical results

of chapter 8 and chapter 9 we use IPOPT [169] by Wächter and Biegler as an implementation of an interior-

point method. There, we choose an L-BFGS update formula for the Hessian approximation to overcome the

drawbacks of an exact Hessian.

4.3.5 Approximation of Hessian of Lagrangian in a Generalized Gauß-Newton Framework

One-level NLP (4.13) belongs to the special class of nonlinear least-squares problems. Full step Generalized

Gauss-Newton methods converge locally to stable minima, see [25]. This advantage over SQP methods in gen-

eral can be exploited by an appropriate approximation of the Hessian of the Lagrangian and realized within

a SQP framework, see subsection 1.2.3 for more detail. With the definition of the Gauß-Newton objective in

(4.14) and the Jacobian of the residual vector in (4.17) with the submatrices stated in (4.15) and (4.16) the Hes-

sian approximation of the Lagrangian as ∇Z RT ∇Z R can be computed and used in standard SQP solvers, e.g.

FILTERSQP [59] and SNOPT[71]. In our implementation of the proposed method in PARDYNOPT a General-

ized Gauß-Newton type approximation of the Hessian of the Lagrangian is integrated and interfaces to the SQP

solvers mentioned above are prepared and can easily be extended for future research.

4.4 Outlook: Sequential Algorithm with Identification of Active Set

In this section we give an outlook how the optimal active set A∗ related to the lower level OCP in the structured

one-level (4.13) could be identified within a sequential algorithm and discuss possible realizations.

4.4.1 Determination of Active Set

Active-set methods are broadly used in constrained optimization, e.g. in linear programming or quadratic

programming. In these methods estimates of the active set are determined and updated in each step of the

algorithms. Active-set methods play an important role in SQP methods, where variants of two different ap-

proaches are common - an inequality constrained QP approach and an equality constrained QP approach. In

the first approach in each iteration of the SQP algorithm an inequality constrained QP is solved and with infor-

mation from resulting multipliers a guess of the optimal active set is performed until a KKT point of the NLP

of interest is found. Whereas in the latter approach, the identification of the active set and the calculation of

iterates, where an equality constrained QP is solved on the estimated active set, are separated from each other.

For a comprehensive discussion the reader is advised to the textbook of Nocedal and Wright [132, Chapter 18].

Inspired by these approaches a possible sequential algorithm is sketched in the following subsection.

64

AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET CHAPTER 4

4.4.2 A Sequential Algorithm for Active-Set Identification

In problem (4.13) from section 4.2 the working setW(z) is a suitable guess of the optimal active setA∗ related to

the lower level OCP with linearly independent constraint gradients. In the case, where the guess of the working

set is the same as the optimal active set, bilevel NLPs (4.5) and (4.7) are equivalent and, hence, the solution of

the structured one-level NLP (4.13) on this optimal active set is the final solution of the original Bilevel Inverse

OCP (2.22) and nothing else has to be done. If this is not the case, the optimal active set A∗ can be identified

by a sequential algorithm as sketched in the following.

Algorithm 3 Sequential Determination of Active Set

1: Choose feasible z0 and set initial working set W0

2: Obtain Z 0 from solution of one-level NLP (4.13) on W0, k ← 0

3: while KKT conditions (2.25) of lower level in (4.5) are not satisfied at Z k do

4: Determine new active set and obtain Wk+1

5: Compute solution Z k+1 of one-level NLP (4.13) on new working set Wk+1

6: k ← k +1

7: end while

We choose an initial z0 to be feasible, and start with a suitable first guess of the working set W0 :=W(z0).

Initial iterate Z 0 with

Z k :=
(
(zk)T (λk)T (µk

z
)T (µk

z)T (αk)T (pk)T
)T

,

for k = 0 is then obtained by solving the one-level NLP (4.13) on fixed W0. In each iteration k of this algorithm

an NLP of the form (4.7) is treated according to the steps from subsection 4.2.3 and subsection 4.2.4, where the

resulting structured one-level NLP (4.13) is solved on a fixed guess Wk :=W(zk). If the solution Z k at iteration

k meets the KKT conditions of the lower level of the original bilevel NLP (4.5), the guess Wk is supposed to

be equivalent to the optimal active set A∗ and the algorithm terminates. The KKT conditions of the lower

level problem are stated in the following. With the assumption that LICQ holds and with the introduction of

Lagrange multiplier vectors µ̂z ∈ Rnz and µ̂z ∈ Rnz related to upper and lower bounds, respectively, defined in

(4.10) and combined inµ :=
(
µ̂T

z
µ̂T

z

)T
, the KKT conditions of the lower level problem of bilevel NLP (4.5) can

be formulated as (2.25) in subsection 2.4.3.

If at iterate k in algorithm 3 the solution Z k of the one-level NLP (4.13) does not meet KKT conditions (2.25),

a new suitable guess of the active set has to be determined. This can be done for instance by adding the in-

dices of the inequality constraints in (2.25c) and (2.25d) to the next working set Wk+1 at iterate k + 1 which

are not satisfied, and, in addition, dropping the indices related to Lagrange multipliers µ < 0, which do not

fulfill equation (2.25e). Furthermore, the complementarity constraints (2.25f) and (2.25f) have to be fulfilled.

In the identification of the optimal active set A∗ it is important to ensure that all constraint gradients related

to working set Wk are linearly independent at iteration point Z k .

The whole procedure in the active-set determination might cause combinatorial difficulty of nonlinear pro-

gramming, see [132, Chapter 15.2], hence, further investigation is mandatory for a sophisticated approach

applied to a more general problem class. However, in our research we consider a special class of problems: a

parameter estimation problem constrained by an OCP, where the human gait is modeled. In this particular

case given measurement data can be incorporated for the choice of the working set. As already mentioned in

section 4.1 the indices related to simple bounds on the variables v as well as bounds on the duration parameter

d can mostly be dropped completely. Furthermore, the upper bounds on the slack variables w are set to ∞
and can also be neglected. For the lower bounds on the slack variables the situation becomes different. The

indices related to this bounds incorporate information about active mixed control-state constraints and active

boundary inequality constraints of the original problem at the solution. However, in many cases due to mea-

65

CHAPTER 4 AN EFFICIENT DIRECT APPROACH FOR BILEVEL INVERSE OCPS WITH FIXED ACTIVE SET

surements one can reduce the index set of all possible working sets and, hence, can already start with a suitable

guess of the optimal active set. This facilitates the identification of the active set and reduces the combinatorial

difficulty significantly.

66

Chapter 5

Bilevel Inverse OCP for Identification of Unknowns in a Basic Walker Gait
Model

In this chapter we give a Bilevel Inverse OCP formulation to identify unknown quantities in a basic model for

human locomotion meeting given measurements. We derive a suitable multi-stage OCP for a two dimensional

rigid multibody system - a basic walker as the one first stated in [66]. Its dynamics with external contacts,

which enter our gait model, was already introduced and derived in the work of Schlöder [151]. A multi-stage

OCP formulation is also given there. In our work we follow the detailed description of [151] and adapt the OCP

to a more suitable formulation for our purposes with extended bounds and a terminal condition. This can be

done because the OCP serves as the lower level in our Bilevel Inverse OCP formulation.

This chapter is structured as follows. In the first section we give the underlying phasewise dynamics of a

basic walker, which are described by equations of motion in implicit form as in the general formulation (3.6) in

subsection 3.1.1. Furthermore, we derive the equations of motion in explicit form. The second section is con-

cerned with the derivation of a suitable gait model for the basic walker as the solution of an OCP. Finally, in the

last section a Bilevel Inverse OCP is stated as a PE Problem constrained by the previously defined multi-stage

OCP. Therein, the gait model is fitted to given measurement data for the identification of unknown quantities

in a basic walker model.

5.1 Dynamics of a Basic Walker Model

The basic walker model consists of two rigid and massless sticks of length ` which are connected through a

revolute joint located at the base segment with point mass M . At the end of both sticks feet segments are added

with point masses m = ml = mr as illustrated in Figure 5.1. In the following the length of the sticks, as well as

the point masses of the head and the feet are combined in the model parameter vector p =
(
` M m

)T
.

We consider a full gait cycle with two steps where the initial and final posture coincide and start with a single

support phase 1 with the right foot fixed to the ground. After an instantaneous transition where a perfectly in-

elastic collision of the left foot takes place, a single support phase 2 with left foot contact follows. The gait cycle

ends when the right foot touches the ground again and a second transition with a perfectly inelastic collision

is performed. In total, two dynamic phases have to be considered and the transitions between. To describe the

full periodic gait cycle of the basic walker multibody system we start with the generalized coordinates. They

include the horizontal and vertical position of the base segment or head, xh(t) and yh(t), respectively. Further-

more, they incorporate the angles, ϕl (t) and ϕr (t), which describe the rotation of the left and right leg around

the base segment, respectively. In summary, we have the following generalized coordinate vectors q with four

entries and its corresponding generalized velocities denoted by q̇ and accelerations by q̈

q =


q0

q1

q2

q3

=


xh

yh

ϕl

ϕr

 ,

where we omit the time dependency which is also done in the following sections for a more compact represen-

tation. Furthermore, the basic walker model is actuated through torques acting at the revolute joint located at

67

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

Table 5.1: Definition of quantities which appear to describe the equations of motion (3.15) for the basic walker
example with the definitions given in this chapter.

Symbol Description
xh horizontal position of base segment (head)
yh vertical position of base segment (head)
ϕl rotation of left leg around head
ϕr rotation of right leg around head
ϕ̇l angular velocity of left leg
ϕ̇r angular velocity of right leg
τl left torque around head
τr right torque around head
xl horizontal position of left foot
yl vertical position of left foot
xk horizontal position of right foot
yk vertical position of right foot
` length of legs
M mass of base segment
m mass of foot segment
g gravitational acceleration

the base segment. In the equations of motion the following torque vector is considered:

τ=


0

0

τact
0

τact
1

=


0

0

τl

τr

 .

In Table 5.1 the most frequently used quantities are summarized and in Figure 5.1 illustrated to describe the

equations of motion of the rigid multibody system for the basic walker.

Figure 5.1:Basic walker model described by a rigid multibody system model with four DOFs. With red segments
the figure depicts the right leg and with blue segments the left leg. Illustration taken from [151].

5.1.1 Equations of Motion for Single Support Phase Right

In the first phase we fix the right foot to the ground at
(
x0 0

)T
and let the basic walker multibody system

perform one step with the left foot. This single support phase of the right foot is denoted by phase 1 in the

68

BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL CHAPTER 5

following. To set up the underlying dynamics we start with the Cartesian coordinates of the right foot denoted

by

xr = xh −`sinϕr ,

yr = yh −`cosϕr ,

and define the following constraint set

g1(q , p) =
(

xh −`sinϕr

yh −`cosϕr

)
−

(
x0

0

)
= 0.

Together with the contact Jacobian described by

G1(q , p) = ∂g1(q , p)

∂q
=

(
1 0 0 −`cosϕr

0 1 0 `sinϕr

)
,

and the contact Hessian

γ1(q , q̇ , p) =−Ġ1(q , p)q̇ =
(
−`ϕ̇2

r sinϕr

−`ϕ̇2
r cosϕr

)
,

the equations of motion can be set up under consideration of Lagrangian mechanics as done in [151]. We then

obtain a symmetric and positive definite joint space inertia matrix

H(q , p) =


M +2m 0 −m`cosϕl −m`cosϕr

0 M +2m m`sinϕl m`sinϕr

−m`cosϕl m`sinϕl m`2 0

−m`cosϕr m`sinϕr 0 m`2

 ,

and the generalized bias force defined by

C (q , q̇ , p) =


m`ϕ̇2

l sinϕl +m`ϕ̇2
r sinϕr

m`ϕ̇2
l cosϕl +m`ϕ̇2

r cosϕr + (M +2m)g

mg`sinϕl

mg`sinϕr

 ,

with gravitational acceleration g . Together with all these quantities the equations of motion are given by equa-

tion system (3.15) in subsection 3.1.2.

5.1.2 Equations of Motion for Single Support Phase Left

In a second phase the left foot is fixed to the ground and the right foot swings above ground to perform a second

step. The Cartesian coordinates of the left foot are defined by

xl = xh −`sinϕl ,

yl = yh −`cosϕl .

Similar to the previous phase 1, the single support phase of the left foot is denoted by phase 2 in the following.

For the dynamics of phase 2 the joint space inertia and generalized bias force are the same as above. The

contact Jacobian reads

69

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

G2(q , p) = ∂g2(q , p)

∂q
=

(
1 0 −`cosϕl 0

0 1 `sinϕl 0

)
,

and contact Hessian is denoted by

γ2(q , q̇ , p) =−Ġ2(q , p)q̇ =
(
−`ϕ̇2

l sinϕl

−`ϕ̇2
l cosϕl

)
.

Analogous to the first phase the equations of motion for the second phase are given by equation (3.15) in sub-

section 3.1.2 with the previously defined quantities.

5.1.3 Collision Impacts after each Phase

With all quantities defined in the previous subsections we can formulate the collision after the first phase where

the left foot touches the ground, as well as the second collision of the right foot after the second phase. The

change in the generalized velocities can be computed as part of the equation system (3.16). For a more detailed

derivation of the equations of motion in implicit form as summarized in this subsection we refer to appendix

A.1 in [151].

5.1.4 Explicit Formulation of the Equations of Motion

In this subsection we derive the equations of motion in explicit form to use them in a Bilevel Inverse OCP

framework in section 9.1 treated with our DISIMFAS, which was developed and implemented as part of this

thesis in the software package PARDYNOPT. Because SOLVIND [5] with its interface to ADOL-C [171] is chosen

for sensitivity and derivative generation using AD in the sense of IND, an explicit formula for the equations of

motion is mandatory. We compute the inverses of the matrices

Mj :=
(

H(q , p) Gj(q , p)T

Gj(q , p) 0

)
,

which arise in the equations of motion for each phase j = 1,2, as well as in the linear equation system to describe

the collision of the left or right foot at touch-down. The matrices M1 and M2 are symmetric and, hence, so are

their inverses M−1
1 and M−1

2 , respectively. In the following we present our results achieved for both inverses,

which were independently confirmed by [151]. With the greatest common divisor

gcd = M +m sin2(ϕl −ϕr),

and Mj(k, l), where k = 0, . . . ,5 denotes the row entry and l = 0, . . . ,5 the column, the first row of M−1
1 reads

M−1
1 (0,0) = 1

gcd
cos2ϕr ,

M−1
1 (0,1) =− 1

2gcd
sin(2ϕr),

M−1
1 (0,2) = 1

`gcd
cosϕr cos(ϕl −ϕr),

M−1
1 (0,3) = 1

`gcd
cosϕr ,

M−1
1 (0,4) = 1

gcd

(
(m +M)sin2ϕr −m sinϕl sinϕr cos(ϕl −ϕr)

)
,

M−1
1 (0,5) = 1

gcd
cosϕr

(
M sinϕr +m cosϕl sin(ϕr −ϕl)

)
.

70

BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL CHAPTER 5

The second row is:

M−1
1 (1,0) = M−1

1 (0,1),

M−1
1 (1,1) = 1

gcd
sin2ϕr ,

M−1
1 (1,2) =− 1

`gcd
sinϕr cos(ϕl −ϕr),

M−1
1 (1,3) =− 1

`gcd
sinϕr ,

M−1
1 (1,4) = 1

gcd

(
(cosϕr sinϕr (M +m sin2ϕl)−m cosϕl sinϕl sin2ϕr)

)
,

M−1
1 (1,5) = 1

gcd

(
(m +M)cos2ϕr −m cosϕl cosϕr cos(ϕl −ϕr)

)
.

The third row is:

M−1
1 (2,0) = M−1

1 (0,2),

M−1
1 (2,1) = M−1

1 (1,2),

M−1
1 (2,2) = 1

m`2 gcd
(M +m),

M−1
1 (2,3) = 1

`2 gcd
cos(ϕl −ϕr),

M−1
1 (2,4) = 1

`gcd
(m +M)sinϕr sin(ϕr −ϕl),

M−1
1 (2,5) = 1

`gcd
(m +M)cosϕr sin(ϕr −ϕl).

The fourth row is:

M−1
1 (3,0) = M−1

1 (0,3),

M−1
1 (3,1) = M−1

1 (1,3),

M−1
1 (3,2) = M−1

1 (2,3),

M−1
1 (3,3) = 1

`2 gcd
,

M−1
1 (3,4) = 1

`gcd

(
m sinϕl sin(ϕr −ϕl)−M cosϕr

)
,

M−1
1 (3,5) = 1

`gcd

(
m cosϕl sin(ϕr −ϕl)+M sinϕr

)
.

The fifth row is:

M−1
1 (4,0) = M−1

1 (0,4),

M−1
1 (4,1) = M−1

1 (1,4),

M−1
1 (4,2) = M−1

1 (2,4),

M−1
1 (4,3) = M−1

1 (3,4),

M−1
1 (4,4) =− 1

gcd

(
M 2 sin2ϕr +Mm(sin2ϕr +1)+m2 sin2(ϕr −ϕl)

)
,

M−1
1 (4,5) =− 1

2gcd
M(m +M)sin(2ϕr),

71

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

and the sixth row is:

M−1
1 (5,0) = M−1

1 (0,5),

M−1
1 (5,1) = M−1

1 (1,5),

M−1
1 (5,2) = M−1

1 (2,5),

M−1
1 (5,3) = M−1

1 (3,5),

M−1
1 (5,4) = M−1

1 (4,5),

M−1
1 (5,5) =− 1

gcd

(
M 2 cos2ϕr +Mm(cos2ϕr +1)+m2 sin2(ϕr −ϕl)

)
.

The results for the inverse M−1
2 for phase 2 are summarized in the following. The first row reads:

M−1
2 (0,0) = 1

gcd
cos2ϕl ,

M−1
2 (0,1) =− 1

2gcd
sin(2ϕl),

M−1
2 (0,2) = 1

`gcd
cosϕl ,

M−1
2 (0,3) = 1

`gcd
cosϕl cos(ϕl −ϕr),

M−1
2 (0,4) = 1

gcd

(
(m +M)sin2ϕl −m sinϕl sinϕr cos(ϕl −ϕr)

)
,

M−1
2 (0,5) = 1

gcd
cosϕl

(
M sinϕl +m cosϕr sin(ϕl −ϕr)

)
.

The second row reads:

M−1
2 (1,0) = M−1

2 (0,1),

M−1
2 (1,1) = 1

gcd
sin2ϕl ,

M−1
2 (1,2) =− 1

`gcd
sinϕl ,

M−1
2 (1,3) =− 1

`gcd
sinϕl cos(ϕl −ϕr),

M−1
2 (1,4) = 1

gcd

(
(cosϕl sinϕl (M +m sin2ϕr)−m cosϕr sinϕr sin2ϕl)

)
,

M−1
2 (1,5) = 1

gcd

(
(m +M)cos2ϕl −m cosϕl cosϕr cos(ϕl −ϕr)

)
.

The third row reads:

M−1
2 (2,0) = M−1

2 (0,2),

M−1
2 (2,1) = M−1

2 (1,2),

M−1
2 (2,2) = 1

`2 gcd
,

M−1
2 (2,3) = 1

`2 gcd
cos(ϕl −ϕr),

M−1
2 (2,4) = 1

`gcd

(
m sinϕr sin(ϕl −ϕr)−M cosϕl

)
,

M−1
2 (2,5) = 1

`gcd

(
m cosϕr sin(ϕl −ϕr)+M sinϕl

)
.

72

BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL CHAPTER 5

The fourth row reads:

M−1
2 (3,0) = M−1

2 (0,3),

M−1
2 (3,1) = M−1

2 (1,3),

M−1
2 (3,2) = M−1

2 (2,3),

M−1
2 (3,3) = 1

m`2 gcd
(M +m),

M−1
2 (3,4) = 1

`gcd
(m +M)sinϕl sin(ϕl −ϕr),

M−1
2 (3,5) = 1

`gcd
(m +M)cosϕl sin(ϕl −ϕr).

The fifth row reads:

M−1
2 (4,0) = M−1

2 (0,4),

M−1
2 (4,1) = M−1

2 (1,4),

M−1
2 (4,2) = M−1

2 (2,4),

M−1
2 (4,3) = M−1

2 (3,4),

M−1
1 (4,4) =− 1

gcd

(
M 2 sin2ϕl +Mm(sin2ϕl +1)+m2 sin2(ϕr −ϕl)

)
,

M−1
2 (4,5) =− 1

2gcd
M(m +M)sin(2ϕl).

The sixth row reads:

M−1
2 (5,0) = M−1

2 (0,5),

M−1
2 (5,1) = M−1

2 (1,5),

M−1
2 (5,2) = M−1

2 (2,5),

M−1
2 (5,3) = M−1

2 (3,5),

M−1
2 (5,4) = M−1

2 (4,5),

M−1
1 (5,5) =− 1

gcd

(
M 2 cos2ϕl +Mm(cos2ϕl +1)+m2 sin2(ϕr −ϕl)

)
.

5.2 A Multi-Stage OCP for the Gait of a Basic Walker

To set up an OCP for the gait of the basic walker multibody system from section 5.1 with its dynamics, we

consider the general multi-stage OCP formulation (3.8) from subsection 3.1.2 describing the human gait. The

problem formulation chosen here serves as the lower level in the Bilevel Inverse OCP later introduced in sec-

tion 5.3. Therein, a PE Problem is stated constrained by a two-stage OCP describing two steps.

We start with the definition of optimization variables as in subsection 3.1.2. The differential states are phase-

wise defined as

xj =
(

qj

q̇j

)
=



qj0

qj1

qj2

qj3

q̇j0

q̇j1

q̇j2

q̇j3


=



x j
h

y j
h

ϕ
j
l

ϕ
j
r

ẋ j
h

ẏ j
h

ϕ̇
j
l

ϕ̇
j
r


,

73

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

with model stage index j = 1,2. The controls are set to the actuated generalized forces and enter the equations

of motion with

τj =


0

0

uj0

uj1

 and uj =
(

uj0

uj1

)
=

(
τact

j0

τact
j1

)
=

(
τ

j
l

τ
j
r

)
.

With all later in this section introduced constraints in subsection 5.2.3 together with objective function (5.17)

in subsection 5.2.1, dynamics (5.18), and transition conditions (5.19) in subsection 5.2.2, the multi-stage OCP

is set up completely to describe two steps of a basic walker multibody system and reads as follows:

min
x1,x2,u1,u2,

d1,d2

α1(d1 +d2)+α2

2∑
j=1

∫ t
j
f

t
j
s

(
uj0

2(t)+uj1
2(t)

)
dt (5.16a)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1,2, (5.16b)

x2(t 2
s) =∆1(x1(t 1

f), p), (5.16c)

x1(t 1
s) =∆2(x2(t 2

f), p), (5.16d)

0 ≤ cj(xj(t), p), t ∈ T j, j = 1,2, (5.16e)

0 = r ec(x1(t 1
s), x1(t 1

f), x2(t 2
f), p), (5.16f)

0 ≤ r ic(x1(t 1
f), x2(t 2

f), p), (5.16g)

xj ≤ xj(t) ≤ xj, t ∈ T j, j = 1,2, (5.16h)

uj ≤ uj(t) ≤ uj, t ∈ T j, j = 1,2, (5.16i)

0 ≤ dj, j = 1,2. (5.16j)

It is defined on fixed and normalized time horizons T j := [t j
s, t j

f] = [0,1] with stage duration parameters dj for

each model stage j = 1,2 and stage transition times before and after collision, t 1
f = t 2

f = 1 and t 2
s = t 1

s = 0,

respectively, as introduced in subsection 2.1.2 together with the remaining variables and functions. The arising

quantitiesα=
(
α1 α2

)T
and p =

(
` M m

)T
are variables in Bilevel Inverse OCP (5.28). In the following we

give a more detailed explanation of all the quantities that occur in OCP (5.16).

5.2.1 Objective Function

The objective function we define is of Bolza-type and consists of a weighted sum of a Mayer-type objective that

summarizes the duration parameters, and a Lagrange-type objective that sums over the integrated controls

squared on each model stage j = 1,2

2∑
j=1
Φj(xj(t),uj(t),d ,α, p) =α1(d1 +d2)+α2

2∑
j=1

∫ t
j
f

t
j
s

(
uj0

2(t)+uj1
2(t)

)
dt , (5.17)

with weights α1 and α2. The first term minimizes the total duration of the whole process, whereas the second

term minimizes the energy required to make two steps.

5.2.2 Dynamics and its Transitions

The dynamics on each model stage j = 1,2 enter the multi-stage OCP formulation in (5.16b) and include the

following ODE system

74

BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL CHAPTER 5

ẋj(t) = dj · fj(xj(t),uj(t), p)

= dj ·
(

q̇j(t)

q̈j(t)

)
, t ∈ T j = [t j

s, t j
f], (5.18)

where the generalized acceleration q̈j is part of the solution of the equations of motion (3.15) with the quantities

defined in section 5.1. Their transitions are denoted by

x2(t 2
s) =∆1(x1(t 1

f), p) and x1(t 1
s) =∆2(x2(t 2

f), p), (5.19)

where the first condition enters the OCP in (5.16c) and couples the differential states x1 of model stage 1 at final

time t 1
f with the differential states x2 of model stage 2 at initial time t 2

s . The second condition in (5.16d) maps

the differential states x2 of model stage 2 at final time t 2
f to the differential states x1 of model stage 1 at initial

time t 1
s . This is a small difference to the general problem formulation of (3.8) but simplifies the formulation

of periodicity constraints. For the first transition ∆1(·) the generalized coordinates q1(t 1
f) = q2(t 2

s) stay the

same at collision. Whereas, in the second transition condition ∆2(·), terminal condition (5.24) and periodicity

condition (5.25) are included, see subsection 5.2.3. The instantaneous change in the generalized velocities q̇j

can be calculated using the general formulation (3.16) with the given quantities of the previous section.

5.2.3 Constraints

In this subsection we formulate path constraints (5.16e) and multi-point boundary constraints (5.16f) and

(5.16g) arising in the multi-stage OCP describing the gait of a basic walker multibody system. The Cartesian

coordinates as defined in section 5.1 and its velocities for left and right foot, k ∈ {l ,r }, are denoted by

x j
k = x j

h −`sinϕj
k ,

y j
k = y j

h −`cosϕj
k ,

ẋ j
k = ẋ j

h −`ϕ̇j
k cosϕj

k ,

ẏ j
k = ẏ j

h +`ϕ̇j
k sinϕj

k ,

with model stage index j = 1,2.

Initial Conditions

At initial time, t 1
s = 0, t 1

s ∈ T 1, the horizontal position of the base segment is fixed to 0 and the vertical position

of both feet to the ground. The angles ϕ1
l (t 1

s) and ϕ1
r (t 1

s) are left free for optimization of the initial posture of

the basic walker model. Furthermore, we ensure that the velocities in the right foot are set to 0. It is sufficient

to enforce the initial conditions

x1
h(t 1

s) = 0,

y1
l (t 1

s) = 0,

y1
r (t 1

s) = 0,

ẋ1
r (t 1

s) = 0,

ẏ1
r (t 1

s) = 0,

to hold at the beginning of the first model stage incorporated in (5.16f) because of the transition conditions

(5.16c) and (5.16d).

75

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

Constraints at Phase 1: Single Support Right Foot

During the first single support phase of the right foot in model stage 1 we have to ensure that the left foot does

penetrate the ground only within a given threshold

y1
l (t) ≥−ε, t ∈ T 1,

where ε> 0 is a small number and for instance chosen to be 0.1` in section 9.1. As the legs in the basic walker

multibody system are modeled as rigid sticks without knees, this relaxation has to be included and is chosen in

such a way that this constraint is not violated in the solution of the Bilevel Inverse OCP in the following section.

Constraints at First Transition

At first transition time, t 1
f = 1, t 1

f ∈ T 1, right before the collision of the left foot takes place, the following condi-

tions are posed:

y1
l (t 1

f) = 0,

ẏ1
l (t 1

f) ≤ 0,

where the left foot touches the ground with a negative velocity, which ensures that the foot approaches the

ground from above.

Constraints at Phase 2: Single Support Left Foot

Similar to the first phase during the second phase the right foot should swing above ground allowing a small

penetration ε> 0, and the following constraint should hold:

y2
r (t) ≥−ε, t ∈ T 2.

Constraints at Second Transition

At second transition time, right before collision, t 2
f = 1, t 2

f ∈ T 2, the following conditions are posed:

y2
r (t 2

f) = 0,

ẏ2
r (t 2

f) ≤ 0,

which are similar to the ones at first transition time.

Terminal Condition, Periodicity Constraints and Bounds on Differential States and Controls

The multi-stage OCP formulation described in this section serves as the lower level in the Bilevel Inverse OCP

of section 5.3 where the upper level is a PE fitting the gait model to measurement data. Because of the given

data a fixed terminal condition can be set to some measured value

x2
h(t 2

f) = ηf, (5.24)

for instance ηf = 0.9` as chosen in section 9.1, where simulated measurements are used in the Bilevel Inverse

OCP. Furthermore, for the gait model of a basic walker multibody system we want periodicity constraints on

the generalized coordinates to hold, such as

y1
h(t 1

s) = y2
h(t 2

f), (5.25a)

ϕ1
l (t 1

s) =ϕ2
l (t 2

f), (5.25b)

76

BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL CHAPTER 5

ϕ1
r (t 1

s) =ϕ2
r (t 2

f). (5.25c)

Together with an instantaneous jump in the generalized velocities at the second phase transition between dif-

ferential states x2(t 2
f) at the end of model stage 2 and differential states x1(t 1

s) at the beginning of model stage

1, the constraints (5.24) and (5.25) are already included in the second transition condition of (5.16d).

The given measurements in the Bilevel Inverse OCP allow to use extended bounds in the lower level OCP

formulation. Therefore, bounds (5.16h) for the differential states

−1`≤ x j
h ≤ 3`,

−5`≤ y j
h ≤ 5`,

−π≤ϕj
k≤ π, k ∈ {l ,r },

−10`≤ q̇jk≤ 10` k ∈ {0,1,2,3},

can be chosen in such a way that they are not reached in the solution. In the same way extended bounds (5.16i)

for the controls are chosen. In section 9.1 for ` = 1, M = 2,m = 1 lower bounds ujk = −10 and upper bounds

ujk = 10 were sufficient for k ∈ {0,1}. Furthermore, the duration parameters for each model stage have to be

positive, see (5.16j).

5.3 Bilevel Inverse OCP of a Basic Walker Gait Model

In this section we formulate a Bilevel Inverse OCP of the form (2.21) for the identification of weights α =(
α1 α2

)T
and model parameters p =

(
` M m

)T
in the underlying multi-stage OCP for the gait of a ba-

sic walker model. On the upper level we have a PE problem with given measurements constrained by the lower

level OCP (5.16) of section 5.2, and, furthermore, conditions on the unknown objective weights and model pa-

rameters. In section 9.1 we use simulated measurements on each model stage, j = 1,2, for the position of the

base segment, x j
h and y j

h , and the angles ϕj
l and ϕj

r , for a better investigation of the DISIMFAS from chapter 4

on the basic walker example - as a basic model for human locomotion. The measurements are generated by

solving an OCP for some given weights α and model parameters p . We add multivariate normally distributed

noise εwith zero mean and standard deviationσ to the generalized coordinates q∗OCP
j of the solution trajectory

of the corresponding lower level OCP and get

ηjnk = q∗OCP
jk (t m

jn)+εjnk, j = 1,2, n = 0, . . . ,nj
m −1, k = 0, . . . ,3. (5.27)

For this set-up, where we have simulated measurements η from (5.27), we can formulate the following Bilevel

Inverse OCP

min
α,p ,

x ,u,d

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
qjk(t m

jn)−ηjnk

)2

σ2
jnk

(5.28a)

s. t. (x ,u,d) solve OCP (5.16), (5.28b)

α1 ≥ 0,α2 = 1, (5.28c)

p ≤ p ≤ p , (5.28d)

where the weight α2 is set to 1 and, thus, eliminated as variable in the Bilevel Inverse OCP. This can be done, if

we know that its value is not 0, which is the case in our application in section 9.1 and used at this point. Another

choice is to define α1 +α2 = 1, α≥ 0 as in the general formulation (2.21) in section 2.4. Furthermore, in a more

general set-up, where we have other experimental dataηwith standard deviationσ and a given model response

77

CHAPTER 5 BILEVEL INVERSE OCP FOR IDENTIFICATION OF UNKNOWNS IN A BASIC WALKER GAIT MODEL

h as stated in section 2.4, we can define the upper level objective (5.28a) of the Bilevel Inverse OCP by

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
hjk(xj(t m

jn), p)−ηjnk

)2

σ2
jnk

.

All other arising quantities and functions in (5.28) are already introduced and defined in the previous two sec-

tions. Numerical results using the derived Bilevel Inverse OCP formulation for the basic walker gait model are

presented in chapter 9, where the performance of our DISIMFAS from chapter 4 is investigated.

78

Chapter 6

Modeling of Cerebral Palsy Patients’ Gait

Modeling the gait of patients with CP is a challenging task and already proven gait models for healthy persons,

such as the HEIMAN model by Felis [52], might fail because of significant differences in their gaits. These

differences in the gait models originate, e.g., from the typical club foot of CP patients, where the heels never

touch the ground, as well as from their asymmetrical stature and the resulting importance to capture the full 3-

D motion. In this chapter we derive a rigid multibody system model for one patient with CP and the underlying

dynamics, and formulate a multi-stage OCP describing the gait based on the work of Hatz [80]. Therein, on

the one side a sufficiently detailed model has to be considered to reproduce the main characteristics of the

CP gait, and on the other side the computational complexity should not exceed a desired level, because the

developed gait model is meant to serve as a constraint in a Bilevel Inverse OCP fitting the gait of a patient with

CP to given measurement data. With the developed framework, in the future gait models for other patients with

CP can be easily stated using measurements, e.g. from the HEIDELBERG MOTIONLAB [173], and furthermore

investigated by solving Bilevel Inverse OCPs. In chapter 10 the discussion on modeling of CP patients’ gait is

continued. There, numerical results concerning the proposed dynamics reconstruction of a patient with CP

from section 6.3 are given and an analysis of varying gaits is provided by solving the multi-stage OCP from

section 6.4 with differently weighted optimization criteria.

6.1 Rigid Multibody SystemModel for a Patient with Cerebral Palsy

The rigid multibody system model for a patient with CP developed in this work is based on the CP gait model

published in the thesis of Hatz [80, Chapter 12]. We first describe our model in detail and later give some com-

mon features of both models and emphasise their differences in section 6.5. The patient-specific rigid multi-

body system model with 20 DOFs is composed of 14 bodies or segments - head, upper, middle and lower trunk,

upper and lower arms, shanks thighs, and feet - which are connected through joints in the way as illustrated in

Figure 6.1. The lower trunk segment is also called pelvis and used as basis segment with its origin located in the

so-called floating base joint or pelvis joint with six DOFs, which is attached to the global reference frame. The

location and orientation of each segment or body of the patient-specific model is then defined by local coordi-

nate frames at the connecting joints and their transformations based on the textbook of Featherstone [51]. The

following description of the developed CP model is inspired by the HEIMAN model in the thesis of Felis [52].

6.1.1 Segments, Joints and DOFs

The properties of the segments which build the CP rigid multibody system model are defined by length, mass,

Center of Mass (CoM) and inertia matrix of the body. In Table 6.1 the lengths and the relative masses of each

segment are listed based on measurements from the HEIDELBERG MOTIONLAB, estimates by Hatz [80], and

values provided in de Leva [40]. Furthermore, in Table 6.2 the relative CoMs r̃ CoM in local coordinates and the

corresponding relative radii of gyration r̃ gyr of each segment are given, see [80] with values based on [1] and

[40]. With the total body mass mbody from Table 6.4 the mass of each segment i is defined by mi = mbody · m̃i.

Here, the subscripts i ∈ {pelvis, thigh_r, shank_r, foot_r, thigh_l, shank_l, foot_l, m_trunk, u_trunk, u_arm_r,

l_arm_r, u_arm_l, l_arm_l, head} correspond to the segment names as defined in Table 6.1. Together with

segment length li the inertia matrix of each segment at its CoM, calculated by r CoM
i = li · r̃ CoM

i , is then given by

79

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

Figure 6.1: Model for a CP patient described by a rigid multibody system with 20 DOFs. With red segments the
figure depicts the right leg and with green segments the left leg. Illustration created using MESHUP[52].

the following formula

I CoM
i =


(li · r̃ gyr

ix)2 ·mi 0 0

0 (li · r̃ gyr
iy)2 ·mi 0

0 0 (li · r̃ gyr
iz)2 ·mi

 .

Additional quantities needed for setting up the rigid multibody system model for a CP patient are listed in

Table 6.3.

In the following we give the locations, the corresponding DOFs and the connections to neighboring segments

of each joint in the CP multibody system model. We use local coordinate frames at each joint and describe the

relative translation and rotation of the child segment’s frame to the coordinate frame of the parent segment,

see Figure 6.2 for an illustration on the locations of the local coordinate frames in our rigid multibody system

model for a CP patient. Translations are defined by 3-D linear displacement vectors denoted by r ∈R3, whereas

rotations are defined by matrices E ∈ R3×3. In general, with angles ϕi located at each joint i ∈ {pelvis, hip_r,

hip_l, ankle_r, ankle_l} and with the notations sj = sin(ϕij) and cj = cos(ϕij) for j = {y, x, z} all arising rotations of

the local coordinate frames for segments around the y-,x- and z-axis (fixed upper body joints and knee joints

excluded) are described by

E y xz (ϕi) = Ry Rx Rz =


cy cz + sx sy sz sx sy cz − cy sz cx sy

cx sz cx cz −sx

sx cy sz − sy cz sy sz + sx cy cz cx cy

 , (6.1)

using the Euler-angle convention Y X Z with (3×3)-rotation matrices Rx ,Ry and Rz defined by

Rx =


1 0 0

0 cx −sx

0 sx cx

 , Ry =


cy 0 sy

0 1 0

−sy 0 cy

 , and Rz =


cz −sz 0

sz cz 0

0 0 1

 , (6.2)

see, e.g. [39]. The subscripts i ∈ {pelvis, hip_r, hip_l, ankle_r, ankle_l} inϕi correspond to the joint names in the

lower body defined in the following. In section 6.2 an extra subsection 6.2.8 is dedicated to the determination of

the patient-specific knee axes for the rotational DOF in the corresponding knee joints i ∈ {knee_r, knee_l} based

80

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

Table 6.1: Individual segment masses used in the rigid multibody system model of a CP patient taken from
thesis of Hatz [80] based on own estimates, measurement data of a CP patient from HEIDELBERG MOTIONLAB,
and [40].

Segment Name Length [m] Mass [%]
Pelvis lpelvis 0.135 m̃pelvis 0.1117
Thigh Right lthigh_r 0.3545 m̃thigh_r 0.1279
Shank Right lshank_r 0.3990 m̃shank_r 0.0433
Foot Right lfoot_r 0.1405 m̃foot_r 0.0137
Thigh Left lthigh_l 0.3616 m̃thigh_l 0.1279
Shank Left lshank_l 0.3792 m̃shank_l 0.0433
Foot Left lfoot_l 0.1175 m̃foot_l 0.0137
Middle Trunk lm_trunk 0.17 m̃m_trunk 0.1633
Upper Trunk lu_trunk 0.17 m̃u_trunk 0.1596
Upper Arm Right lu_arm_r 0.17 m̃u_arm_r 0.0271
Lower Arm Right ll_arm_r 0.17 m̃l_arm_r 0.0162
Upper Arm Left lu_arm_l 0.17 m̃u_arm_l 0.0271
Lower Arm Left ll_arm_l 0.17 m̃l_arm_l 0.0162
Head lhead 0.1 m̃head 0.0694

on motion capture data. For more details on joints, coordinate frames and transformations in rigid multibody

system models we refer the reader to the textbooks of Featherstone [51] and Craig [39].

Pelvis The joint located at the base segment - called pelvis joint - has six DOFs which allows three translations

(along x-, y- and z- axis) and three rotations around the axes y , x and z. The pelvis joint is connected to the

origin of the global reference frame and can take values rpelvis =
(
xpelvis ypelvis zpelvis

)T
for the 3-D linear

displacement and Epelvis = E y xz (ϕpelvis) as defined in (6.1) for the (3× 3) orientation matrix using the Euler-

angle convention Y X Z .

Figure 6.2: This figure depicts the global and local coordinate frames located at the joints of the CP rigid multi-
body system with 20 DOFs. The green axes depict the y-, the red axes the x-, and the blue axes the z-direction.
Illustration created using MESHUP[52].

81

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

Table 6.2: Location of relative CoM for individual segments and its relative radii of gyration in % of the seg-
ment length in local coordinates used in the rigid multibody system model of a CP patient taken from thesis of
Hatz [80] based on [1] and [40].

Segment Name Relative CoM (r̃ CoM) Relative Radius of Gyration (r̃ gyr)

Pelvis
(
0 0 (1−0.6115)

)T (
0.615 0.551 0.587

)T

Thigh Right
(
0 0 −0.4095

)T (
0.329 0.329 0.149

)T

Shank Right
(
0 0 −0.4365

)T (
0.251 0.246 0.102

)T

Foot Right
(
0 0 −0.4

)T (
0.124 0.245 0.257

)T

Thigh Left
(
0 0 −0.4095

)T (
0.329 0.329 0.149

)T

Shank Left
(
0 0 −0.4395

)T (
0.251 0.246 0.102

)T

Foot Left
(
0 0 −0.4

)T (
0.124 0.245 0.257

)T

Middle Trunk
(
0 0 (1−0.4502)

)T (
0.482 0.383 0.468

)T

Upper Trunk
(
0 0 (1−0.5066)

)T (
0.505 0.320 0.465

)T

Upper Arm Right
(
0 0 −0.5772

)T (
0.285 0.269 0.158

)T

Lower Arm Right
(
0 0 −0.4574

)T (
0.276 0.265 0.121

)T

Upper Arm Left
(
0 0 −0.5772

)T (
0.285 0.269 0.158

)T

Lower Arm Left
(
0 0 −0.4574

)T (
0.276 0.265 0.121

)T

Head
(
0 0 (1−0.5002)

)T (
0.303 0.261 0.315

)T

Table 6.3: Additional quantities to set up a rigid mulitbody system model for a CP patient taken from thesis
of Hatz [80] based on measurements from HEIDELBERG MOTIONLAB [173], and the Plug-In-Gait model in the
Vicon system [2].

Quantity Value [m] Description
dhip_l 0.068 width of left hip
dhip_r 0.068 width of right hip
dshoulder_l 0.068 width of left shoulder
dshoulder_r 0.068 width of right shoulder
dneck 0.1 length of neck

Joints of Upper Body All joints of the upper body are fixed in an average position according to [80], because

the provided motion capture data from the HEIDELBERG MOTIONLAB [173] for the chosen patient only include

motions of the lower body. The connections of these joints are described in the following, where we start with

the joint between the middle trunk segment and the pelvis segment, the so-called lumbar joint. It is located

at rlumbar =
(
0 0 lpelvis

)T
. The upper body of the CP model is slightly inclined. This rotation of the local

coordinate frame is defined by the rotation matrix Elumbar = E y xz (ϕlumbar) from (6.1) with fixed angle vector

ϕlumbar =
(
ϕlumbar,y ϕlumbar,x ϕlumbar,z

)T
=

(
0.12 −0.05 0

)T
.

Table 6.4: Total body mass and height of CP patient taken from thesis of Hatz [80] based on measurements from
HEIDELBERG MOTIONLAB [173].

Quantity Value Unit
total body mass 39.2 [kg]
total body height 1.46 [m]

82

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

All following transformations of the local coordinate frames located at the joints of the upper body are char-

acterized by a fixed 3-D linear displacement vector. The joint which connects the middle trunk segment

and the upper trunk segment is called thorax joint and is located in the parent frame of the lumbar joint at

rthorax =
(
0 0 lm_trunk

)T
. This thorax joint serves as origin of the parent coordinate frame for three joints:

the neck joint, which connects the upper trunk segment and the head, and the shoulder right and shoulder left

joints, which connect the upper trunk segment and the upper arm right and upper arm left segments, respec-

tively. Their locations in the parent frame are defined by

rneck =
(
0 0 lu_trunk

)T
,

rshoulder_r =
(
0 −dshoulder_r lu_trunk

)T
,

rshoulder_l =
(
0 dshoulder_l lu_trunk

)T
.

Finally, the lower left and right arm segments are connected to the corresponding upper arm segments by elbow

right and elbow left joints located at rneck =
(
0 0 −lu_arm_r

)T
and rneck =

(
0 0 −lu_arm_l

)T
, respectively.

Hip Right, Hip Left The right and left hip joints are located in the local coordinate frame of the pelvis at

rhip_r =
(
0 −dhip_r 0

)T
and rhip_l =

(
0 dhip_l 0

)T
, respectively. They connect the right and left thighs

with the pelvis and each of the hip joints has three rotational DOFs around the y-,x-, and z-axis defined by

Ei = E y xz (ϕi), i ∈ {hip_r,hip_l} from (6.1).

Knee Right, Knee Left The right knee joint is located at rknee_r =
(
0 0 −lthigh_r

)T
and the left knee joint at

rknee_l =
(
0 0 −lthigh_l

)T
in local coordinate frames of the corresponding left and right hip joint, respectively.

They connect the shanks with the thighs and each of the knee joints has only one rotational DOFs around

patient-specific knee axes. The determination of the knee axes from given motion capture data is described in

a following subsection 6.2.8. Here, we denote each knee axis with ki =
(
ki,x ki,y ki,z

)T
, i ∈ {knee_r,knee_l}

and achieve a rotation around this axis by an equivalent transformation. We first rotate the local coordinate

frame described by a fixed rotation matrix

Ei = E xz (ϕi) = (Rx Rz)T , i ∈ {knee_r,knee_l} (6.3)

with matrices (6.2), where the fixed angles ϕi,x and ϕi,z of the vector ϕi =
(
ϕi,y ϕi,x ϕi,z

)T
are defined by the

equation system
ki,x

ki,y

ki,z

= E xz (ϕi)
T ·


0

1

0

=


−sz

cx cz

sx cz

 , i ∈ {knee_r,knee_l}, (6.4)

with the notations sj = sin(ϕij) and cj = cos(ϕij) for j = {x, z}. The calculated values for the previously introduced

quantities are given in Table 6.5. Each knee joint has one DOF around the local y-axis.

Ankle Right, Ankle Left The right ankle joint is located at rankle_r =
(
0 0 −lshank_r

)T
and the left ankle joint

at rankle_l =
(
0 0 −lshank_l

)T
in local coordinate frames of the corresponding right and left knee joint, respec-

tively. The ankle joints connect feet with shanks and each joint has three DOFs. For easier comparison to given

measurements the fixed rotations of the local coordinate frames in the knee joints are first reversed by apply-

ing a rotation described by the transposed matrix E T
i of (6.3) for i ∈ {knee_r,knee_l}. Then the three rotational

DOFs in the ankle joints are described by a rotation matrix Ei = E (ϕi), i =∈ {ankle_r,ankle_l} as defined in (6.1).

83

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

Table 6.5: Calculated values of quantities for definition of patient-specific knee axes of CP patient based on
measurements from HEIDELBERG MOTIONLAB [173] and a transformation of Euler-Angle to Axis-Angle repre-
sentation.

Quantity Values Description Unit

kknee_r
(
0.0363 0.9791 0.2000

)T
knee axis right [m]

ϕknee_r
(
ϕknee_r,y 0.2015 −0.0363

)T
fixed angles in Eknee_r (6.3) [rad]

kknee_l
(−0.0667 0.9801 −0.1869

)T
knee axis left [m]

ϕknee_l
(
ϕknee_l,y 0.1884 0.0667

)T
fixed angles in Eknee_l (6.3) [rad]

6.1.2 Implementation Notes

We use the customizable implementation of the HEIMAN model described in the thesis of Felis [52] as basis

and inspiration for our multibody system model of a CP patient. In the software package RBDL, which is used

for the generation of equations of motion, models can be loaded from LUAMODEL files. This enables us in

the future to easily use the implemented framework developed in this thesis for multiple CP patients by only

customizing the LUAMODEL file after determination of the patient-specific knee axes under consideration of

given measurement data.

6.2 Modeling of the Dynamics for a CP Patient

In this section we define required quantities, such as generalized coordinates, velocities, and accelerations, as

well as active and passive generalized forces acting at the joints and arising model parameters. Together with

a given foot contact model, as discussed in subsection 6.2.5, the phasewise equations of motion can then be

set up. They are then used to describe a full gait cycle of the rigid multibody system model for a CP patient

from section 6.1 under consideration of constraints such as, e.g. self-penetration avoidance. Furthermore, the

applied methods for accessing motion capture data from the HEIDELBERG MOTIONLAB [173] and the derivation

of the patient-specific knee axes in the CP gait model from this measurements are described in the following.

6.2.1 Full Gait Cycle and Phasewise Dynamics

According to the work of Hatz [80] we choose a full gait cycle without considering double support phases be-

cause of their minor importance, but use a different start and end point of the gait sequence with only two full

single support phases instead of three. Therein, the initial and final posture coincide within a suitable range.

We start with a single support phase 1 with right foot fixed to the ground. After an instantaneous transition

where a perfectly inelastic collision of the left foot takes place, a single support phase 2 with left foot contact

follows. The gait cycle ends when the right foot touches the ground again and a second transition with a per-

Touchdown Single support right Touchdown Single support left Touchdown

Figure 6.3: This figure illustrates the gait cycle considered in the CP gait model.

84

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

(rpelvis,ϕpelvis)

ϕknee_r

ϕknee_l

ϕhip_r ϕhip_l

ϕankle_r ϕankle_l

Figure 6.4: Model for a CP patient described by a rigid multibody system with 20 DOFs. The figure depicts the
corresponding generalized coordinates. Illustration created using MESHUP[52].

fectly inelastic collision is performed. In total, two dynamic phases have to be considered and their transitions

between at touch down, see Figure 6.3.

As introduced in subsection 3.1.1 the equations of motion (3.6) at each single support phase, as well as linear

equation systems (3.7) for the transitions between for the rigid multibody system model of a CP patient from

section 6.1 can be set up under consideration of the quantities described in the following and the given contact

model of subsection 6.2.5.

6.2.2 Generalized Coordinates, Velocities, and Accelerations

To describe the full periodic gait cycle of the multibody system of a CP patient we start with the generalized

coordinates. They include three DOFs for the position of the pelvis joint, rpelvis(t), and three DOFs for its

orientation, ϕpelvis(t), in the global reference frame. Furthermore, the generalized coordinates incorporate all

angles, which describe the rotations of the segments connected through joints as described in the last section,

denoted byϕi(t) for i ∈ {pelvis, hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l}. In summary, we have the following

generalized coordinate vector

q =



rpelvis

ϕpelvis

ϕhip_r

ϕknee_r

ϕankle_r

ϕhip_l

ϕknee_l

ϕankle_l


∈Rndofs , (6.5)

with ndofs = 20 entries and rpelvis =
(
xpelvis ypelvis zpelvis

)T
, ϕi =

(
ϕi,y ϕi,x ϕi,z

)T
for i ∈ {pelvis, hip_r,

hip_l, ankle_r, ankle_l}, and ϕi =ϕi,y for i ∈ {knee_r, knee_l}. The time dependency is omitted for a more com-

pact representation, which is often done in the following. Its corresponding generalized velocities are denoted

by q̇ ∈Rndofs and accelerations by q̈ ∈Rndofs .

85

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

6.2.3 Active and Passive Joint Actuation

The rigid multibody system model is actuated through torques acting directly at the joints. Therefore, in the

equations of motion the following generalized forces vector is considered:

τ=
(

0

τact

)
=



0

τhip_r

τknee_r

τankle_r

τhip_l

τknee_l

τankle_l


∈Rndofs , (6.6)

that combines all relevant forces and torques. In our gait model for a CP patient, where each step is performed

by interaction with the ground, the pelvis segment is not actuated, such that corresponding generalized forces

are zero, τpelvis = 0 ∈ R6. Hence, the number of actuated DOFs is nact = ndofs −6 and the actuated generalized

forces or torques are denoted by τact ∈ Rnact . To model active actuated forces τa ∈ Rnact as a result of muscle

contractions on the one hand, and passive forces τp ∈ Rnact caused by tendons and ligaments on the other

hand, the total actuated torque is represented as a sum of both contributions and defined by

τact
i =τa

i +τ
p
i , (6.7)

for i ∈ {hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l}. To avoid oscillations around rotation axes we introduce

damping terms as, e.g. in [92, 131], as part of the passively actuated torques by

τ
damp
i =−δiϕ̇i, (6.8)

with damping parameter vectors δi > 0 and joint velocity vectors ϕ̇i related to the corresponding generalized

coordinates for i ∈ {hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l}. Furthermore, we consider so-called passive

reset forces as part of the passively actuated torques to model the restricted range of motion in the knees of

many CP patients, and specifically in the gait model developed in this thesis for one particular CP patient. With

given bounds on the range of motion, denoted by β
i

for the lower bound and βi for the upper bound, passive

reset forces describe the lower and upper limit of the range of motion by

τreset
i = exp

(
−κi(ϕi −βi

)
)
, (6.9)

τreset
i =−exp

(
κi(ϕi −βi)

)
, (6.10)

respectively, with curvature parameters κi,κi > 0 and generalized coordinates ϕi for i ∈ {knee_r, knee_l}. With

this approximation the crouched gait of patients with CP can be modeled within an acceptable amount of com-

plexity introduced into the dynamics of our rigid multibody system model for a CP patient with 20 DOFs. This

approach is inspired by [13, 125] and has been successfully applied in [151] for a case study of a simpler rigid

multibody system model with 7 DOFs to model interventions of CP patients. In sum, with the definition in (6.8)

for the damping terms, the passively actuated torques in equation (6.7) can be written as

τ
p
i =τdamp

i , (6.11)

for the hip and ankle joints, i ∈ {hip_r, hip_l, ankle_r, ankle_l}, and together with the definition for the reset

forces in (6.9) as

τ
p
i =τdamp

i +τreset
i +τreset

i , (6.12)

86

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

for the knee joints, i ∈ {knee_r, knee_l}. In Table 6.6 and Table 6.7 the most frequently used quantities are sum-

marized and in Figure 6.4 illustrated to describe the dynamics of the rigid multibody system for a CP patient.

Table 6.6:Definition of quantities which appear to describe the equations of motion for the rigid multibody sys-
tem model for a CP patient with the definitions given in this chapter. The corresponding angular velocities and
accelerations are denoted by ϕ̇i and ϕ̈i, respectively, for i ∈ {pelvis, hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l}.
The translational velocities and accelerations at the pelvis joint are defined by ṙpelvis and r̈pelvis, respectively.

Symbol Description
rpelvis position of pelvis joint in global reference frame
ϕpelvis orientation of local frame of pelvis joint in global reference frame
ϕhip_r rotation of right thigh around y, x, z-axes in local frame of right hip joint
ϕknee_r rotation of right shank around y-axis in local frame of right knee joint
ϕankle_r rotation of right foot around y, x, z-axes in local frame of right ankle joint
ϕhip_l rotation of left thigh around y, x, z-axes in local frame of left hip joint
ϕknee_l rotation of left shank around y-axis in local frame of left knee joint
ϕankle_l rotation of left foot around y, x, z-axes in local frame of left ankle joint
τhip_r right torque around y, x, z-axes in local frame of right hip joint
τknee_r right torque around y-axis in local frame of right knee joint
τankle_r right torque around y, x, z-axes in local frame of right ankle joint
τhip_l left torque around y, x, z-axes in local frame of left hip joint
τknee_l left torque around y-axis in local frame of left knee joint
τankle_l left torque around y, x, z-axes in local frame of left ankle joint

Table 6.7: Definition of model parameters which appear to describe the passively actuated forces or torques τp
i

for each joint i ∈ {hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l} of the rigid multibody system model for a CP
patient with the definitions given in this chapter.

Model Parameter Description
δi damping parameter vector with contributions around y, x, z-axes

for i ∈ {hip_r, hip_l, ankle_r, ankle_l} and contributions around
y-axis for i ∈ {knee_r, knee_l}

β
i

lower bound of range of motion for i ∈ {knee_r, knee_l}

βi upper bound of range of motion for i ∈ {knee_r, knee_l}
κi curvature parameter of lower limit for i ∈ {knee_r, knee_l}
κi curvature parameter of upper limit for i ∈ {knee_r, knee_l}

6.2.4 Patient-Specific Model Parameters

We define all arising parameters described in the last subsection and listed in Table 6.7 as patient-specific

model parameters and summarize them into a vector p =
(
δT ζT

)T
∈Rnp , where all damping parameters are

combined in

δ :=
(
δT

hip_r δT
hip_l δT

knee_r δT
knee_l δT

ankle_r δT
ankle_l

)T
,

and all parameters corresponding to the restricted range of motion in the knees in

ζ :=
(
β

knee_r
βknee_r κknee_r κknee_r β

knee_l
βknee_l κknee_l κknee_l

)T
.

Each of these parameters depends on the particular CP patient and the given motion capture data. A suitable

subset of identifiable model parameters can be determined by solving a Bilevel Inverse OCP as stated in sec-

87

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

tion 6.6, where a PE Problem, which minimizes the deviation of the model response to given measurements,

is constrained by the multi-stage OCP describing the gait of a patient with CP. In general, the Bilevel Inverse

OCP (6.42), as well as the dynamics reconstruction (6.18) of a CP gait, which we both derive in the following,

may have more than one local solution for varying parameter realizations. Hence, a suitable subset of un-

known model parameters in both problem formulations has to be considered with structurally and practically

identifiable parameters as defined in the thesis of Sommer [161].

6.2.5 Foot Contact Model and Self-Penetration Constraints

We model ankle joints and feet contacts with the ground at the tip of each foot as, e.g. in [49, 80]. This enables

us to capture the typical gait of CP patients, where often no contact at the heels takes place, However, in our

gait model contrary to [80], where only one point per foot serves as contact with the ground, we consider two

contact points per feet ρk
i for k ∈ {hal,met5} approximately at Hallux (hal) and fifth metatarsal (met5) positions

at each foot, i ∈ {foot_l,foot_r}, see Figure 6.5.

Figure 6.5:On the left subfigure the positions of the foot contact at Hallux point (blue circle) and fifth Metatarsal
point (green circle) at each foot are illustrated, picture designed by Freepik [62]. They are transferred to the de-
rived gait model for a CP patient as shown on the right subfigure (red circles are the contact points). Illustration
created using MESHUP[52].

The constraint vectors can then be written as

gi(q) =



g hal
i,x (q)

g hal
i,y (q)

g hal
i,z (q)

g met5
i,x (q)

g met5
i,z (q)

 ∈R5, for i ∈ {foot_r, foot_l}, (6.13)

at the right and left foot, respectively.

In section 6.4 we state a multi-stage OCP formulation for the gait of a rigid multibody system model for a

CP patient. Therein, for differently weighted optimization criteria varying gaits can be synthesized. To avoid

self-penetration of the segments in the rigid multibody system model, constraints have to be fulfilled in the

solution of the corresponding OCP. We introduce points ρi(q) ∈R3 for i = 0, . . . ,nρ on the lower body segments

of the CP model and ensure that the euclidean distances

δ
pen
k (q) = ‖ρi(q)−ρj(q)‖2 > εpen, for k = 0, . . . ,npen −1, (6.14)

are always greater than some given threshold εpen of npen selected pairs (i, j), with i, j ∈ {0, . . . ,nρ} such that i 6= j.

In the reconstruction of the dynamics in section 6.3, as well as in the Bilevel Inverse OCP stated in section 6.6,

where the objectives are least-squares terms, which minimize the deviation of the model response to some

given motion capture data, these self-penetration constraints can be neglected.

88

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

6.2.6 Accessing Motion Capture Data

The measurements taken in this thesis for modeling the gait of a CP patient are provided by the HEIDELBERG

MOTIONLAB [173] using the Vicon motion capture system with a corresponding Plug-In-Gait model [2]. As a

result of the used Plug-In-Gait model offsets have to be considered to reproduce given motion capture data as

described by Hatz [80] in more detail. One important remark is that in our calculations these offsets, which

are summarized in Table 6.8, are already applied on the used measurement data for dynamics reconstruction,

such that they do not enter the gait model anymore in contrast to [80].

Table 6.8: Values of offsets added to measured Euler angles ϕv
i of the Plug-In-Gait model in the Vicon system

[2] used at the HEIDELBERG MOTIONLAB [173] for i ∈ {knee_r, knee_l} around the z-axes and for i ∈ {ankle_r,
ankle_l} around the y, x− axes; source HUMANS implementations of the CP model used in Hatz [80].

Offsets Value [rad] Description
oknee_r,z 0.1011 offset added to measured angles ϕm

knee_r,z =ϕv
knee_r,z +oknee_r,z

oankle_r,y −1.5133 offset added to measured angles ϕm
ankle_r,y =ϕv

ankle_r,y +oankle_r,y

oankle_r,x −0.5932 offset added to measured angles ϕm
ankle_r,x =ϕv

ankle_r,x +oankle_r,x

oknee_l,z −0.1843 offset added to measured angles ϕm
knee_l,z =ϕv

knee_l,z +oknee_l,z

oankle_l,y −1.5463 offset added to measured angles ϕm
ankle_l,y =ϕv

ankle_l,y +oankle_l,y

oankle_l,x 0.5666 offset added to measured angles ϕm
ankle_l,x =ϕv

ankle_l,x +oankle_l,x

We use the open-source biomechanical toolkit BTK [3] to access the motion capture data generated within the

Plug-In-Gait model provided by Vicon, which is stored in acquisition files in c3d format. The data incorporates

recorded motion capture data of the whole measuring process at each time frame, and other static measure-

ments, such as, e.g., body mass and height, as well as positions of joint centers. We extract data of one gait

cycle, which starts at take-off of the left foot, and ends after performing two steps at a second take-off of the

same foot. The given data is then processed within an own MATLAB implementation using an interface to BTK

for accessing the needed data for our purposes.

6.2.7 Creation of a Digital Twin

On the one side, we generate initial guesses for the reconstruction of the dynamics in section 6.3 of the previ-

ously introduced rigid multibody system model of a CP patient in section 6.1 based on all joint angles provided

by the Vicon Plug-In-Gait model at the corresponding time frames. On the other side, for the generation of

measurements used in the dynamics reconstruction we again consider all joint angles provided by the Vicon

Plug-In-Gait model at the corresponding time frames and transform them as described in the following. We

develop a second rigid multibody system model as a digital twin for a CP patient in the same way as before

in section 6.1, but with three DOFs in each knee joint. The provided angles by the Vicon Plug-In-Gait model

can now be used directly within this model for motion generation of the whole gait cycle after processing and

applying offsets in our MATLAB implementation. We specify identical points on the lower bodies in the LU-

AMODELs as illustrated in Figure 6.6 of both models - the previously developed CP model with 1-DOF knee

axes for dynamics reconstruction and the CP model with 3-DOFs knee axes, which is used as reference. On

the latter reference model the measured and processed Vicon joint angles are applied, such that the positions

of the points in the global reference frame at each time frame of the gait cycle are used as measurements de-

noted by ηP ∈ Rnmeas in the OCP formulation (6.18) later introduced in section 6.3. Therein, the deviation of

the positions of the corresponding points of the original CP model with patient-specific 1-DOF knee axes to

these generated measurements is minimized by solving the multi-stage OCP for the reconstruction of the dy-

namics. Furthermore, the local knee joint angles based on the Vicon Plug-In-Gait model are transformed to an

adequate format, such that they can be used in the following section for the determination of patient-specific

knee axes.

89

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

Figure 6.6: The left subfigure depicts selected points, which are attached to the rigid multibody system model
for a CP patient with 1−DOF in each knee (left body), and the corresponding multibody system with 3−DOFs
in each knee (right body in grey) for comparison to given motion capture data via Vicon joint angles. The right
subfigure shows the overlap of both models while minimizing the deviation of the corresponding points at
selected measurement time. Illustration created using MESHUP[52].

6.2.8 Determination of Patient-Specific Knee Axes

For the determination of the knee axes in the developed rigid multibody system model of a CP patient of sec-

tion 6.1 we use the processed local knee joint angles based on the Vicon Plug-In-Gait model measured at each

time frame of the whole gait cycle. These extracted Euler angles at time points n ∈ {0, . . . ,nm −1} are denoted by

(ϕm
i)n =

(
(ϕm

i,y)
n

(ϕm
i,x)

n
(ϕm

i,z)
n

)T
,

at right and left knee joints i ∈ {knee_r, knee_l} with added offsets to the angles around the z-axes as described

in Table 6.8. They are used to construct rotation matrices

(R y xz
i)n = R y xz ((ϕm

i)n) =


cy cz + sx sy sz sx sy cz − cy sz cx sy

cx sz cx cz −sx

sx cy sz − sy cz sy sz + sx cy cz cx cy



=


(r 00

i)n (r 01
i)n (r 02

i)n

(r 10
i)n (r 11

i)n (r 12
i)n

(r 20
i)n (r 21

i)n (r 22
i)n

 ,

at each time point for the right and left knee with the notations sj = sin(ϕm
ij)

n
and cj = cos(ϕm

ij)
n

for j = {y, x, z}

using the Euler-angle convention Y X Z as in (6.1). With these rotation matrices (R y xz
i)n for each knee joint

i ∈ {knee_r, knee_l} the Euler angles can be transformed to angle-axis-representations as, e.g., described in the

book of Craig [39] by

(θi)n = arccos

(
(r 00

i)n + (r 11
i)n + (r 22

i)n −1

2

)
, (6.15a)

(ki)n = 1

2sin(θi)n


(r 21

i)n − (r 12
i)n

(r 02
i)n − (r 20

i)n

(r 10
i)n − (r 01

i)n

 . (6.15b)

90

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

For the determination of the resulting patient-specific knee axes ki at the right and left knee joints i ∈ {knee_r,

knee_l}, equation (6.15b) is considered and the normalized means of all corresponding vectors (ki)n at time

points n ∈ {0, . . . ,nm − 1} are calculated. The values for ki are summarized in Table 6.5. The resulting fixed

angles ϕi,x and ϕi,z of the vectorϕi =
(
ϕi,y ϕi,x ϕi,z

)T
are then defined by the equation system (6.4).

6.2.9 Implementation Notes

There exist various software tools to set up the equations of motion, e.g. the HUMANS toolbox [1] and the

RBDL C++ software package by Felis [53] developed in the group of Mombaur at Heidelberg University. In

this work we decided to calculate the dynamics with the efficient implementation in RBDL of some essential

dynamics algorithms based on Featherstone [51]. Among other algorithms it contains the Articulated Body

Algorithm for forward dynamics, and the Composite Rigid Body Algorithm for an efficient computation of the

joint space inertia matrix. Its successful use is proven in many publications, such as [54, 49, 38, 92], to mention

only a few.

6.3 Dynamics Reconstruction to Motion Capture Data as a Multi-Stage OCP with
Least-Squares Objective

Before we state the multi-stage OCP formulation in section 6.4 describing the gait of a CP patient, we first

reconstruct the underlying dynamics to comply with formulated constraints under consideration of given mo-

tion capture data provided by the HEIDELBERG MOTIONLAB [173]. This reconstruction is already a multi-stage

OCP with a least-squares objective function tracking measurements of a sequence of two steps performed by

the CP patient. It serves as starting point for the analysis and synthesis of gaits with differently weighted objec-

tives in section 6.4 and fixed model parameters, and gives already a first hint if the dynamics of the developed

multibody system model with the patient-specific knee axes can reproduce the gait of the CP patient under

consideration of an adequate contact model and other suitable constraints describing two steps.

We start with the definition of optimization variables as introduced in (3.11) in subsection 3.1.2. The differ-

ential states are phasewise defined by

xj =


qj

q̇j

τa
j

 ∈R2ndofs+nact , (6.16)

with model stage index j = 1,2. The first component of xj represents the generalized coordinates qj ∈ Rndofs

defined in (6.5) for the rigid multibody system model of a CP patient with ndofs = 20. The second component

includes the corresponding generalized velocities denoted by q̇j ∈ Rndofs . As third component the active joint

forces denoted by τa
j ∈Rnact ,nact = ndofs−6 = 14 are set, which are defined according to (6.6) and (6.7) described

in subsection 6.2.3. The passive forces τp
j ∈ Rnact enter the equations of motion for the rigid multibody system

model with (6.11) at the hips and ankle joints, and with (6.12) at the knee joints. The controls are set to the

derivatives of the active generalized forces as

uj = τ̇a
j ∈Rnact . (6.17)

With all later introduced constraints in subsection 6.3.3 together with the least-squares objective function

(6.20), the dynamics (6.21), and transition conditions (6.22) the multi-stage OCP for the reconstruction of given

motion capture data is set up completely to meet the dynamics and constraints describing two steps of the rigid

91

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

multibody system model for a CP patient and reads as follows:

min
x1,x2,u1,u2,p̂

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
hjk(xj(t m

jn), p)−ηP
jnk

)2

σ2
jnk

+γR
2∑

j=1

∫ t
j
f

t
j
s

(
W τ̇‖uj(t)‖2

2

)
dt (6.18a)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1,2, (6.18b)

x2(t 2
s) =∆1(x1(t 1

f), p), (6.18c)

x1(t 1
s) =∆2(x2(t 2

f), p), (6.18d)

0 ≤ cj(xj(t), p), t ∈ T j, j = 1,2, (6.18e)

0 = r ec(x1(t 1
s), x1(t 1

f), x2(t 2
f), p), (6.18f)

0 ≤ r ic(x1(t 1
f), x2(t 2

f), p), (6.18g)

xj ≤ xj(t) ≤ xj, t ∈ T j, j = 1,2, (6.18h)

uj ≤ uj(t) ≤ uj, t ∈ T j, j = 1,2, (6.18i)

d m
j = dj, j = 1,2, (6.18j)

p̂ ≤ p̂ ≤ p̂ . (6.18k)

It is defined on fixed and normalized time horizons T j := [t j
s, t j

f] = [0,1] with fixed stage duration parameters dj

to given measurements d m
j for each model stage j = 1,2 and stage transition times before and after collision,

t 1
f = t 2

f = 1 and t 2
s = t 1

s = 0, respectively, as introduced in subsection 2.1.2 together with the remaining variables

and functions. Some of the arising model parameters p defined in subsection 6.2.4 are fixed to estimated

values based on measurements provided by the HEIDELBERG MOTIONLAB [173], β
i
,βi, i = {knee_r, knee_r}. The

remaining damping parameters δ and curvature parameters κi,κi, i = {knee_r, knee_r} are combined in the

parameter vector p̂ , which can be estimated within the reconstruction by solving (6.18). In the following we

give a more detailed explanation of all other quantities that occur in OCP (6.18).

6.3.1 Least-Squares Objective Function

For the reconstruction of a measured gait cycle we use a least-squares objective. With this choice the devia-

tion of the model response to given motion capture data is minimized, such that all constraints are fulfilled

to perform two full steps under consideration of the dynamics for the CP multibody system model from sec-

tion 6.1 and its transitions between. The least-squares objective function (6.18a) comprises measurements

ηP ∈ Rnmeas from a real-world process observed at specific time points, which was processed as described in

subsection 6.2.6 and subsection 6.2.7. After time transformations on fixed normalized time horizons T j := [0,1]

for each model stage these time points are defined as

0 = t m
j,0 < t m

j,1 < . . . < t m

j,n
j
m−1

= 1, j = 1,2. (6.19)

The corresponding model response function hj : Rnx ×Rnp → Rn
j
m×n

j
h is evaluated at these time points. We

assume that the measurements ηP
jnk are afflicted with independent, additive, and normally distributed errors

εjnk with zero mean and variances σ2
jnk. Then for a correct model with true parameters p∗ we get

ηjnk = hjk(xj(t m
jn), p∗)+εjnk, j = 1,2, n = 0, . . . ,nj

m −1, k = 0, . . . ,nj
h −1.

Furthermore, we add a regularization term to the least-squares objective to avoid oscillations in the controls. It

is weighted by a diagonal matrix W τ̇ ∈Rnact×nact to account for different order of magnitude and scaled appro-

92

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

priately by γR ∈R . In sum, the objective is then defined by

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
hjk(xj(t m

jn), p)−ηP
jnk

)2

σ2
jnk

+γR
2∑

j=1

∫ t
j
f

t
j
s

(
W τ̇‖uj(t)‖2

2

)
dt . (6.20)

6.3.2 Dynamics and its Transitions

The dynamics on each model stage j = 1,2 are summarized in (6.18b) in the multi-stage OCP formulation and

include the following ODE system

ẋj(t) = dj · fj(xj(t),uj(t), p) (6.21a)

= dj ·


q̇j(t)

q̈j(t)

uj(t)

 , t ∈ T j = [t j
s, t j

f], (6.21b)

where the generalized acceleration q̈j is part of the solution of the equations of motion (3.15) for the rigid multi-

body system model of a CP patient from section 6.1 with the quantities defined in section 6.2. Its transitions

are denoted by

x2(t 2
s) =∆1(x1(t 1

f), p) and x1(t 1
s) =∆2(x2(t 2

f), p), (6.22)

where the first condition enters the OCP in (6.18c) and couples the differential states x1 of model stage 1 at final

time t 1
f with the differential states x2 of model stage 2 at initial time t 2

s . The second condition in (6.18d) maps

the differential states x2 of model stage 2 at final time t 2
f to the differential states x1 of model stage 1 at initial

time t 1
s . This is a small difference to the general problem formulation of (3.8) but simplifies the formulation of

periodicity constraints. For the first transition∆1(·) the generalized coordinates q1(t 1
f) = q2(t 2

s) stay the same at

collision. Whereas in the second transition condition∆2(·), terminal condition (6.32) and periodicity condition

(6.33) are included, see subsection 6.3.3. The instantaneous change in the generalized velocities q̇j can be

calculated using the general formulation (3.16) with the given quantities of the previous sections.

6.3.3 Constraints

In this subsection we formulate path constraints (6.18e) and multi-point boundary constraints (6.18f) and

(6.18g) arising in the multi-stage OCP for reconstruction of the gait of a CP patient. Furthermore, as men-

tioned above, periodicity conditions and terminal conditions are given and combined in the second transition

condition (6.18d). All introduced constraints here also arise in the multi-stage OCP formulation of section 6.4

minimizing a chosen weighted combination of optimization criteria to describe synthesized gaits of a CP pa-

tient. In the latter OCP formulation the constraints introduced at this point are furthermore extended by self-

penetration constraints as defined in subsection 6.2.5.

We denote the two contact points k ∈ {hal,met5} per foot and the corresponding velocities in global coordi-

nates by

ρ
jk
i =

(
ρ

jk
i,x ρ

jk
i,y ρ

jk
i,z

)T
,

ρ̇
jk
i =

(
ρ̇

jk
i,x ρ̇

jk
i,y ρ̇

jk
i,z

)T
,

at the left and right foot i ∈ {foot_l,foot_r} with model stage index j = 1,2. The same contact points are also used

in subsection 6.2.5 to set up the constraint set (6.13). For the arising ground reaction forces at the left and right

93

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

foot we write

ν
jk
i =

(
ν

jk
i,x ν

jk
i,y ν

jk
i,z

)T
.

The positions of joints i ∈ {hip_r, hip_l, knee_r, knee_l, ankle_r, ankle_l} in the global reference frame are de-

noted by ρj
i =

(
ρ

j
i,x ρ

j
i,y ρ

j
i,z

)T
and the corresponding velocities by ρ̇j

i =
(
ρ̇

j
i,x ρ̇

j
i,y ρ̇

j
i,z

)T
.

Initial Conditions

At initial time t 1
s = 0 the vertical position of both feet is fixed to the ground ηground and the position of the

pelvis joint r 1
pelvis =

(
x1

pelvis y1
pelvis z1

pelvis

)
in x and y direction is fixed to measurements ηs

pelvis,x and ηs
pelvis,y,

respectively,

ρ1,hal
foot_r,z(t 1

s) = ηground,

ρ1,met5
foot_r,z(t 1

s) = ηground,

ρ1,hal
foot_l,z(t 1

s) = ηground,

ρ1,met5
foot_l,z(t 1

s) = ηground,

x1
pelvis(t 1

s) = ηs
pelvis,x,

y1
pelvis(t 1

s) = ηs
pelvis,y.

All remaining generalized positions are left free for optimization of the initial posture of the CP walker model.

Furthermore, we ensure that the velocities in the right foot are set to 0 and that the vertical ground reaction

forces at the right foot are positive with

ρ̇1,hal
foot_r,x(t 1

s) = 0,

ρ̇1,hal
foot_r,y(t 1

s) = 0,

ρ̇1,hal
foot_r,z(t 1

s) = 0,

ρ̇1,met5
foot_r,x(t 1

s) = 0,

ρ̇1,met5
foot_r,z(t 1

s) = 0,

ν1,hal
foot_r,z(t 1

s) ≥ 0.

It is sufficient to enforce the initial conditions to hold at the beginning of the first model stage incorporated in

(6.18f) because of the transition conditions (6.18c) and (6.18d).

Constraints at Phase 1: Single Support Right Foot

During the first single support phase t ∈ T 1 of the right foot in model stage 1, we have to ensure that the left

foot does not penetrate the ground and that both ankles stay above ground

ρ1,hal
foot_r,z(t) ≥ ηground,

ρ1,met5
foot_r,z(t) ≥ ηground,

ρ1
ankle_r,z(t) ≥ ηground,

ρ1
ankle_l,z(t) ≥ ηground,

Furthermore a positive vertical ground reaction force at the right contact point has to be fulfilled such that

ν1,hal
foot_r,z(t) ≥ 0,

94

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

holds at the first single support phase. Later in the multi-stage OCP formulation in section 6.4 avoidance of

self-penetration is achieved by (6.14) as described in subsection 6.2.5.

Constraints at First Transition

At first transition time t 1
f = 1 right before the collision of the left foot takes place, the following conditions are

posed:

ρ1,hal
foot_l,z(t 1

f) = ηground,

ρ1,met5
foot_l,z(t 1

f) = ηground,

ρ̇1,hal
foot_l,z(t 1

f) ≤ 0,

ρ̇1,met5
foot_l,z(t 1

f) ≤ 0,

ν1,hal
foot_l,z(t 1

f) ≥ 0,

where the left foot touches the ground with a negative velocity, which ensures that the foot enters the ground

from above.

Constraints at Phase 2: Single Support Left Foot

Similar to the first phase during the second phase t ∈ T 2 the right foot should swing above ground and the

following constraints should hold:

ρ2,hal
foot_l,z(t) ≥ ηground,

ρ2,met5
foot_l,z(t) ≥ ηground,

ρ2
ankle_r,z(t) ≥ ηground,

ρ2
ankle_l,z(t) ≥ ηground,

ν2,hal
foot_l,z(t) ≥ 0.

Similar to the first single support phase, in the second phase in the multi-stage OCP formulation in section 6.4

avoidance of self-penetration is achieved by (6.14) as described in subsection 6.2.5.

Constraints at Second Transition

At second transition time t 2
f = 1 right before collision the following conditions are posed:

ρ2,hal
foot_r,z(t 2

f) = ηground, (6.31a)

ρ2,met5
foot_r,z(t 2

f) = ηground, (6.31b)

ρ̇2,hal
foot_r,z(t 2

f) ≤ 0, (6.31c)

ρ̇2,met5
foot_r,z(t 2

f) ≤ 0, (6.31d)

ν2,hal
foot_r,z(t 2

f) ≥ 0, (6.31e)

which are similar to the ones at first transition time.

95

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

Terminal Condition, Periodicity Constraints and Bounds on Differential States and Controls

The multi-stage OCP formulation for reconstruction with a least-squares objective described in this section fits

the gait model to measurement data. Because of the given data a fixed terminal condition can be set by

x2
pelvis(t 2

f) = ηf
pelvis,x, (6.32)

to some measured value ηf
pelvis,x. Furthermore, for the gait model of a CP walker multibody system we want

periodicity constraints only on selected generalized coordinates and velocities to hold, such that redundancies

in the constraints are avoided:

y1
pelvis(t 1

s) = y2
pelvis(t 2

f), (6.33a)

z1
pelvis(t 1

s) = z2
pelvis(t 2

f), (6.33b)

ϕ1
pelvis(t 1

s) =ϕ2
pelvis(t 2

f), (6.33c)

ẋ1
pelvis(t 1

s) = ẋ2
pelvis(t 2

f), (6.33d)

ϕ1
i (t 1

s) =ϕ2
i (t 2

f), i ∈ {hip_r,hip_l,knee_r,knee_l,ankle_r,ankle_l}, (6.33e)

ϕ̇1
i (t 1

s) = ϕ̇2
i (t 2

f), i ∈ {hip_r,hip_l,knee_r,knee_l,ankle_r,ankle_l}. (6.33f)

Together with the conditions (6.31) at the second phase transition between the end of model stage 2 and the

beginning of model stage 1 we include the constraints (6.32) and (6.33) in the second transition condition

(6.18d) in the OCP formulation.

Considering given measurements in OCP (6.18) allows to use the following bounds in (6.18h) for the differ-

ential states
−10

−10

−10

≤ r j
pelvis ≤


10

10

10

 ,


−0.5

−0.25

−0.5

≤ϕj
pelvis≤


0.3

0.3

0.4

 ,


−1.4

−0.5

−0.7

≤ϕj
i ≤


0.75

0.5

0.7

 , i ∈ {hip_r,hip_l},

(
−0.01

)
≤ϕj

i ≤
(
1.9

)
, i ∈ {knee_r,knee_l},

−2.7

−1.2

−0.8

≤ϕj
i ≤


0.45

1.2

0.8

 , i ∈ {ankle_r,ankle_l},

−50 ≤ q̇ji ≤ 50, i ∈ {0, . . . ,ndofs −1},

−500 ≤τa
ji ≤ 500, i ∈ {0, . . . ,nact −1},

which are estimated using the digital twin described in subsection 6.2.7 and can be chosen in such a way that

they are not reached in the solution. In the same way, extended bounds (6.18i) for the controls are chosen:

lower bounds uji =−104 and upper bounds uji = 104 were sufficient for i ∈ {0, . . . ,nact −1}.

In addition to these loose bounds, we formulate tighter lower bounds on ϕ
j
i, i ∈ {knee_r,knee_l} at initial

and transition times to avoid "free energy" contributions from the passive reset forces. In our calculations for

ϕ
j
i ≥βi

+εpass we set εpass = 0.1 following given motion capture data for the dynamics reconstruction.

96

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

6.4 A Multi-Stage OCP for the Gait of a Patient with CP

To formulate an OCP for the gait of the CP walker multibody system from section 6.1 with its dynamics from

section 6.2, we consider the general multi-stage OCP formulation (3.8) from subsection 3.1.2 describing the

human gait. With all in section 6.3 introduced quantities and functions such as differential states (6.16) and

controls (6.17), the constraints in subsection 6.3.3 together with the dynamics (6.21), transition conditions

(6.22), and the objective function (6.36) defined in the following in subsection 6.4.1, the multi-stage OCP is set

up completely to describe two synthesized steps of the rigid multibody system model for a CP patient and reads

as follows:

min
x1,x2,u1,u2,

d1,d2

2∑
j=1
Φj(xj(t),uj(t),dj,α, p) (6.35a)

s. t. ẋj(t) = dj · fj(xj(t),uj(t), p), t ∈ T j, j = 1,2, (6.35b)

x2(t 2
s) =∆1(x1(t 1

f), p), (6.35c)

x1(t 1
s) =∆2(x2(t 2

f), p), (6.35d)

0 ≤ cj(xj(t), p), t ∈ T j, j = 1,2, (6.35e)

0 = r ec(x1(t 1
s), x1(t 1

f), x2(t 2
f), p), (6.35f)

0 ≤ r ic(x1(t 1
f), x2(t 2

f), p), (6.35g)

xj ≤ xj(t) ≤ xj, t ∈ T j, j = 1,2, (6.35h)

uj ≤ uj(t) ≤ uj, t ∈ T j, j = 1,2, (6.35i)

0 ≤ dj, j = 1,2. (6.35j)

It is defined on fixed and normalized time horizons T j := [t j
s, t j

f] = [0,1] with stage duration parameters dj for

each model stage j = 1,2 and stage transition times before and after collision, t 1
f = t 2

f = 1 and t 2
s = t 1

s = 0, re-

spectively, as introduced in subsection 2.1.2 together with the remaining variables and functions. In contrast to

the least-squares OCP (6.18) the duration parameters dj are left free for optimization, whereas all arising model

parameters p defined in subsection 6.2.4 are fixed to the solution of the reconstruction. The most quantities

and functions that occur in OCP (6.35) are the same as defined in the previous section 6.3. In the synthesis of

varying gaits for the rigid multibody system model of a CP patient the main differences to the previous section,

where a given motion is reconstructed, is the objective function as defined in more detail in subsection 6.4.1.

Furthermore, the constraints as described in subsection 6.3.3 have to be extended by self-penetration con-

straints (6.14) as described in subsection 6.2.5 to avoid penetration of the segments. This is needed because

the deviation to given motion capture data is no longer minimized. In fact, here we are interested to compare

various gaits, which are synthesized under consideration of differently weighted optimization criteria.

6.4.1 Objective Function

As introduced at the beginning of subsection 3.1.2 we interpret the human gait as optimal with respect to a well

chosen combination of different optimization criteria. In general, the objective function is of Bolza-type and

represented by

2∑
j=1
Φj(xj(t),uj(t),dj,α, p) =

nM∑
k=1

αk ·
2∑

j=1
φM

jk (xj(t j
f),dj, p) (6.36)

+
nM+nL∑

k=nM+1
αk ·

2∑
j=1

∫ t
j
f

t
j
s

dj ·φL
jk(xj(t),uj(t), p)dt ,

97

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

with weights αk ∈ RnM+nL . For the gait of patients with CP we formulate optimization criteria described in the

following. If we are interested in meeting given measurements these criteria have to be chosen in such a way

that with a selected combination of nM +nL criteria and individual weights α =
(
α1 . . . αnM+nL

)T
the gait

of the patient can be reproduced within an acceptable accuracy. The identification of the usually unknown

quantities α and p can be achieved by solving a Bilevel Inverse OCP of type (2.21) from section 2.4 based on

given motion capture data.

The nL = 4 individual optimization criteria we choose are of Lagrange-type and defined in the following.

Optimization Criterion: Maximize Stability

The first optimization criterion serves as a stability criterion by minimizing the deviation of the y-components

of the position of the hip joint ρj
i,y, i ∈ {hip_r, hip_r} of the supported leg and the corresponding contact point

ρ
j,hal
i,y , i ∈ {foot_r, foot_r}, respectively, at each model stage j = 1,2. It is weighted by the euclidean distance

squared of both contact points defined by

δfeet,j(qj(t)) =
∥∥∥ρj,hal

foot_r(qj(t))−ρj,hal
foot_l(qj(t))

∥∥∥2

2
,

which is always positive because of stated constraints for self-penetration avoidance in the OCP formulation

of (6.35). This ensures that the contribution of the stability criterion is higher if the swinging leg is close to the

supporting leg, and less important near the change of two single support phases. At the first single support

phase of the right foot the criterion is formulated as

φL
11(x1(t),u1(t), p) := 1

δfeet,1(q1(t))
·
(
ρ1,hal

foot_r,y(q1(t))−ρ1
hip_r,y(q1(t))

)2
, (6.37)

and at second single support phase of the left foot we have

φL
21(x2(t),u2(t), p) := 1

δfeet,2(q2(t))
·
(
ρ2,hal

foot_l,y(q2(t))−ρ2
hip_l,y(q2(t))

)2
. (6.38)

The stability criterion stated here differs from other criteria found, e.g. in [87, 128] and references therein.

Some of them rely on the so-called zero moment point or the angular momentum over the CoM. However, in

our dynamic rigid multibody system model for a CP patient only two contact points per foot are chosen and

the upper body joints are fixed, such that we use the stability criterion proposed by Hatz [80] and modify it by

a weighted factor to account for the varying contribution during walking.

Optimization Criterion: Minimize Absolute Mechanical Work

The second criterion minimizes the sum over the component-wise and weighted absolute mechanical works,

which must be generated at each actuated joint around the corresponding axes. It is defined by

φL
j2(xj(t),uj(t), p) := 1

δstep,j

∥∥∥W ττa
j (t)◦ q̇ act

j (t)
∥∥∥

1
= 1

δstep,j

nact−1∑
k=0

∣∣∣wτ
kτ

a
jk(t)q̇jk+6(t)

∣∣∣ , (6.39)

where q̇ act
j (t) is a subvector of q̇j(t) with entries corresponding to the actuated joints and ◦denotes the element-

wise vector multiplication. Furthermore, δstep,j is the step length at the corresponding model stage j = 1,2, and

W τ ∈ Rnact×nact is a diagonal matrix with entries wτ
k ∈ R for k = 0, . . . ,nact −1. These weights wτ

k > 0 account for

the different order of magnitude of the active torques acting at the joints. In the actual implementation we do

not use the L1 norm, but a smooth approximation given by

‖v‖1 ≈
∑

k

√
v2

k +εsmooth,

98

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

where the vector is set to v :=W ττa
j (t)◦ q̇ act

j (t) and with εsmooth > 0 sufficiently small to ensure differentiability.

Optimization Criterion: Minimize Squared Torques

As a criterion for the required effort to perform two steps we choose a weighted sum over the squared active

torques. We define the third Lagrange-term by

φL
j3(xj(t),uj(t), p) := 1

δstep,j
· ‖W ττa

j (t)‖2
2, (6.40)

where δstep,j and W τ ∈Rnact×nact are the same as above.

Optimization Criterion: Minimize Squared Torque Derivatives

Furthermore, the last criterion minimizes a weighted sum over the squared controls described by

φL
j4(xj(t),uj(t), p) := 1

δstep,j
‖W τ̇ ·uj(t)‖2

2 =
1

δstep,j
‖W τ̇ · τ̇a

j (t)‖2
2, (6.41)

which is divided by the step length at model stages j = 1,2, and weighted by a diagonal matrix W τ̇ ∈Rnact×nact ,

where each entry w τ̇
k ∈R for k = 0, . . . ,nact −1 accounts for the different order of magnitude.

In chapter 10 the discussion on modeling of CP patients’ gait is continued. Therein, the numerical results of

the reconstruction of the dynamics of a patient with CP to motion capture data provided by the HEIDELBERG

MOTIONLAB [173] are given by solving the least-squares multi-stage OCP (6.18) from the previous section 6.3.

Furthermore, varying synthesized gaits of a patient with CP are analyzed under consideration of the multi-stage

OCP (6.35) from this section with differently weighted optimization criteria.

6.5 Comparison to CP Gait Model by Hatz [80] and other Existing Models

In this work we decided to solve the equations of motion with RBDL by Felis [53] with an interface to LU-

AMODELs, as described in section 6.2. We implemented the previously introduced multibody system model of

a CP patient from section 6.1 as a LUAMODEL. Originally, the CP model by Hatz was built using the proprietary

software package HUMANS [1] for the generation of the corresponding equations of motion. For the most part,

the structure of our multibody systems model’s segments and their connections through joints are the same as

in the CP model by Hatz. The main differences in the rigid multibody system model, apart from the implemen-

tation framework, are the patient-specific knee axes determined under consideration of motion capture data

as described in subsection 6.2.8. This patient-specific knee axes enable us to incorporate only one DOF around

the particular axis in each knee joint, to cope with the degenerated "physical" joints of the CP patient which

result in the characteristic crouched gait. Three DOFs in each knee joint as in the CP model by Hatz might lead

to numerical instability when solving OCPs describing the gait as in section 6.4. In other rigid multibody sys-

tem models, such as the HEIMAN model by Felis, the three dimensional gait with the additional asymmetrical

stature of the patient cannot be captured appropriately. Furthermore, in the dynamic model of section 6.2 the

contact model differs to the one in [80]. On the one side, as in the thesis of Hatz [80], we also incorporated the

need of an forefoot contact to cope with the typically appearing so-called club foot or pes equinus gait of CP pa-

tients, where the heel never touches the ground. However, on the other side, instead of only one contact point

at the tip of each foot, we include two contact points at hallux and metatarsal 5 positions. Furthermore, we

enforce a positive reaction force during single support phase at the corresponding foot at hallux point. There

are other, more detailed foot contact models available in the literature, e.g. finite-element approximations of

continuum mechanics models, as in Halloran et al. [78], surrogate models like (3D-) volumetric contact mod-

els, as in Brown and McPhee [28], and rigid foot-ground contact models, as in Felis and Mombaur [54], Ren

et al. [144]. We decided to stick with the simpler contact model because of our ultimate goal to use the multi-

99

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

stage OCP formulation as lower level in the Bilevel Inverse OCP and the need to reduce the complexity of our

gait model to an acceptable level. Beside the contact model in [80], a similar model has proven its successful

integration in an optimization-based approach for predicting sprinting and long jump motions, where also a

forefoot contact takes place. It has been published recently in the thesis of Emonds [49]. In our multi-stage OCP

formulation to describe the gait of a patient with CP, we propose a well-chosen combination of optimization

criteria under consideration of results by [12, 49, 52, 80] and use active torques derivatives as controls to obtain

more smooth human-like motions, as e.g. in [49]. Other than in the OCP gait model of Hatz, where only active

torques are considered, we distinguish between active and passive torque contributions in the joint actuation.

In the latter torque contribution, damping terms are incorporated in the actuated joints to reduce vibrations,

as e.g. in [79]. Furthermore, to be able to capture the typical crouched gait of patients with CP, we add passive

reset forces to the passively actuated torques of the knee joints. This modeling approach was proposed in the

work of Schlöder [150] to model treatment planning for patients with CP and applied in a case study to a basic

2−D model with 7 DOFs. In the numerical results of chapter 10, the limited range of motion of a patient with

CP can be reconstructed to given real world data. Hence, in future research our more complex personalized

CP gait model should also be investigated for application of model based treatment planning. Before this can

be performed model parameters and objective weights in the multi-stage OCP (6.35) have to be identified by

solving a Bilevel Inverse OCP, where a PE Problem is constraint by the derived OCP. An interesting extention

of our proposed CP gait model would be to parametrize the individual knee axes. Then the arising additional

model parameters could be identfied by solving a corresponding Bilevel Inverse OCP as the one stated in the

following section 6.6. As a result, this provides a calibrated patient-specific gait model that may be used in

model based treatment planning additionally covering interventions related to changes in the rotational range

of knee joints.

6.6 Outlook: Bilevel Inverse OCP for Identification of Unknowns in CP Gait

In this section we formulate a Bilevel Inverse OCP of the form (2.21) for the identification of individual weights

α and model parameters p in the underlying multi-stage OCP for the gait of the rigid multibody system model

of a CP patient described in the previous sections. On the upper level we have a PE problem with given mea-

surements constrained by the lower level OCP (6.35) of section 6.4, and, furthermore, conditions on the un-

known objective weights and model parameters. At this point we assume, that all model parameters are struc-

turally and practically identifiable for the available measurement data, see subsection 6.2.4. If this is not the

case in practice, a suitable subvector of the model parameter vector can be identified via the Bilevel Inverse

OCP, and the remaining parameters might be determind directly from given measurements. For this set-up,

where we have measurements ηP processed as described in subsection 6.2.6 and subsection 6.2.7, and a least-

squares objective (6.20) on the upper level as defined in subsection 6.3.1 we can formulate the following Bilevel

Inverse OCP

min
α,p ,

x ,u,d

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
hjk(xj(t m

jn), p)−ηP
jnk

)2

σ2
jnk

+γR
2∑

j=1

∫ t
j
f

t
j
s

(
W τ̇‖uj(t)‖2

2

)
dt (6.42a)

s. t. (x ,u,d) solve OCP (6.35), (6.42b)

nM+nL∑
k=1

αk = 1,α≥ 0, (6.42c)

p ≤ p ≤ p . (6.42d)

All other arising quantities and functions in (6.42) are already introduced and defined in the previous sections.

Self-penetration avoidance can be neglected in the constraints of the lower level OCP, because of the fitting

to given measurements. Our DISIMFAS from chapter 4 to solve these kinds of problems was implemented

100

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

in the software package PARDYNOPT as described in chapter 7. However, so far the actual implementation of

RBDL [53] is not compatible to ADOL-C [171], which is used in the SOLVIND [108] interface for derivative

generation. It is left for future research to investigate the proposed DISIMFAS from chapter 4 with regard to

the patient-specific Bilevel Inverse OCP stated above. Unfortunately, so far for the Direct All-at-Once Approach

in PARAOCP [80] already for the Bilevel Inverse OCP of the basic walker model described in chapter 5 no con-

vergence could be achieved because of arising infeasible quadratic programs within the solution procedure.

Also a replacement of the underlying SQP method by an interior-point approach with selected regularization

and penalization approaches, such as Scholtes-regularization [153] or lifting approach [80], as described in

section 1.3 could not tackle the infeasibility problems arising from the resulting MPCCs. With the omission of

the arising inequality constraints in the resulting NLP by applying the DISIMFAS and, hence, a reduction of the

complexity of the problem, we are optimistic that we can achieve better results for Bilevel Inverse OCP (6.42)

with PARDYNOPT after adaptation of RBDL in the future. In the case study in chapter 9 of the basic walker

model described in chapter 5 the DISIMFAS was successfully applied on a basic human-like locomotion.

6.7 Pilot Study: Identification of Optimal Weights by Deep Neural Networks

In this section we follow another approach for the identification of optimal weights in the previously derived

CP gait model. In contrast to the optimization based mathematical methods considered so far, in this study we

use Deep Neural Networks (DNNs). The approach using DNNs is based on the work of Afkham et al. [4] and

the references therein. In the next sections we follow the description in [4] and refer to Schmidhuber [152] for

a comprehensive overview on DNNs.

6.7.1 Basic Concept and Motivation

In contrast to chapter 4, where the Bilevel Inverse OCP (6.42) is solved by applying the DISIMFAS, in this section

we consider a so-called supervised learning approach. In Russell and Norvig [148] the following definition

for the latter approach is given: "In supervised learning the agent observes some example input-output pairs

and learns a function that maps from input to output." This approach might also lead to bilevel optimization

problems, as in the work of Haber and Tenorio [77]. However, in the supervised learning approach described

here, which is based on [4], this is not the case. In a first step a DNN is trained with simulated measurements by

solving a set of lower level OCPs describing the CP gait for differently weighted optimization criteria. Therein,

a mapping from simulated measurements to corresponding objective weights is approximated. If the DNN is

trained appropriately, in a second step optimal weights for newly obtained measurements can be computed by

forward propagation through the network.

This approach does not fall into the categories of the previously introduced solution methods for Bilevel

Inverse OCPs described in subsection 2.4.2, where the problem at hand is solved numerically with indirect

or direct methods. The mathematical challenges, which are accompanied by the approaches for the solution

of Bilevel Inverse OCPs considered so far, on the one hand, and the possibility of providing a high amount

of simulated data by solving OCPs for differently weighted objective functions, on the other hand, motivated

us to consider machine learning approaches, which have gained increasing popularity in recent years, and, in

particular, the supervised learning approach by Afkham et al. [4]. In the following section we develop a learning

approach for optimal weights for the CP gait model described previously via DNNs based on the latter approach

as a first study in this direction. This section 6.7 is then concluded with a case study in section 10.4. Note that

in the following we partially use different notations as in the previous sections.

101

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

6.7.2 Learning weights via DNNs

We start with a measurement model that comprises measurements η ∈Rnη observed at specific time points as

described in subsection 6.3.1, such that for true model parameters p∗ we have

ηjnk = hjk(xj(t m
jn), p∗)+εjnk, j = 1,2, n = 0, . . . ,nj

m −1, k = 0, . . . ,nj
h −1, (6.43)

where the indices j correspond to model stages, n to the time points, and k to entries of the measurement

functions. In the following without loss of generality, we consider the model response defined as

hjk(xj(t m
jn), p∗) := qjk(t m

jn), for k = 0, . . . ,ndofs −1, (6.44)

where the corresponding generalized coordinates are evaluated at time points t m
jn and combined into vector

q ∈ Rnη . Note that the resulting measurements are not the same as described in subsection 6.2.7 by creating

a digital twin. In contrast to the Bilevel Inverse OCP formulation (6.42) of the last section, in the supervised

learning approach described here, we only seek for unknown objective weights α and assume that all arising

model parameters p are already known.

In [4] the regularization parameters of inverse problems are identified. These parameters are part of the ob-

jective function minimizing a model-data misfit enhanced by a regularization term. In our case the distinctive

feature to the approach in [4] is that objective weights, that are part of the OCP (6.35) describing the CP gait

need to be identified. This means that the considered generalized coordinates in (6.44) correspond to the solu-

tion of OCP (6.35) for individual weights α, that need to be determined, such that given measurements (6.43)

are met.

In the following considerations we suppose that the solution of the OCP (6.35) is unique for given objec-

tive weights, and avoid redundancies by ensuring that
∑4

k=1αk = 1,α ≥ 0. Furthermore, we assume that there

exists a continuous function ΦDNN : Rnη → Rnα that maps measurements η comprising observed generalized

coordinates at specific time points onto objective weightsα ∈Rnα ,

ΦDNN(η) =α. (6.45)

The nonlinear functionΦDNN is supposed to be well-defined. The basic idea in the supervised machine learn-

ing approach, is to approximate this function ΦDNN by a DNN denoted by Φ̂DNN and use the estimated DNN

for identification of objective weights for newly obtained measurements.

Algorithm 4 Learning objective weights via DNNs

Offline Phase

1: Require CP gait model described by OCP (6.35) with known model parameters

2: Solve nS OCPs of the form (6.35) for variedα∗
(s), s = 1, . . . ,nS

3: Obtain optimal generalized coordinates q∗
(s), s = 1, . . . ,nS as training signals

4: Set-up DNN Φ̂DNN = Φ̂DNN(η,θ)

5: Use optimal pairs (6.46) as training data to compute network parameters θ̂

Online Phase

6: Obtain new data η (e.g. from HEIDELBERG MOTIONLAB)

7: Propagate η through trained DNN to get α̂= Φ̂DNN(η; θ̂)

8: Solve OCP (6.35) withα= α̂ to obtain optimal differential states and controls

In algorithm 4, an overview of the approach for the identification of optimal weights via DNNs is illustrated.

Therein we distinguish between an offline phase and an online phase. In the offline phase the DNN Φ̂DNN is

102

MODELING OF CEREBRAL PALSY PATIENTS’ GAIT CHAPTER 6

α= Φ̂DNN(η;θ)

η W1, y1, a1 WL, yL, aL WL+1 α

input hidden layer 1 hidden layer L output layer L+1 output

Figure 6.7: This figure depicts a schematic representation of a DNN Φ̂DNN(η;θ) with L hidden layers. Each
hidden layer ` is determind by an activation function a`, weights W`, and biasesy`. The DNN mapps an input
η onto an outputα defined for given network parameter vector θ, which combines all weights and biases.

trained on nS simulated data pairs

(η(s),α(s)) = (q∗
(s),α

∗
(s)), s = 1, . . . ,nS, (6.46)

where q∗
(s) are the solutions of OCPs (6.35) for given varying objective weights α∗

(s). For training we choose

the solutions q∗
(s) directly without adding noise. In the offline phase the trained DNN Φ̂DNN is used to obtain

estimated objective weights α̂ for given measurements η. Finally, optimal differential states and controls can

be calculated by solving OCP (6.35) for the estimated weights. In the following we describe the online phase in

more detail, where we consider a fully-connected neural network.

With the assumption that there exists a functionΦDNN (6.45) that can be approximated by a DNN Φ̂DNN, we

define a so-called fully-connected feedforward neural network as Φ̂DNN :Rnη ×Rnθ →Rnα with

Φ̂DNN(η;θ) = (
φnL+1(θnL+1)◦ . . .◦φ1(θ1)

)
(η) =α, (6.47)

where ◦ denotes the component-wise composition of functions φ` : Rnη`−1 ×Rnθ` → Rnη` for network layers

`= 1, . . . ,nL+1. The dimension of the input is set to the dimension of the measurement vector ηwith nη0 = nη.

For the output layer `= L+1 the dimension is nηnL+1 = nα, which corresponds to the weightα as output. DNN

(6.47) describes a parametrized mapping between measurements η and objective weights α, with network

parameter vector θ =
(
θT

1 . . . θT
nL+1

)T
∈ Rnθ comprising parameters θ` ∈ Rnθ` of each layer ` = 1, . . . ,nL +1.

These network parameters θ` combine entries of so-called network weights W` and biases y`. The parameter

vector for layer ` can be, e.g. defined as θ` =
(

y T
`

Vec(W`)T
)T

, with y` ∈ Rnη` and W` ∈ Rnη`×nη`−1 , where

Vec(W`) denotes a vector comprising all entries of the weight matrix. For the so-called hidden network layers

`= 1, . . . ,nL the functionsφ` of each layer are defined as

φ`(θ`)(η`−1) = a`(W`η`−1 + y`),

where a` : Rnη` → Rnη` are typically nonlinear activation functions. One prominent example for an activation

function is the rectified linear unit function ReLU : R→ R with ReLU (x) = max(0, x), such that a` is defined,

e.g., as

a`(x`) =
(
ReLU (x`1) . . . ReLU (x`nη`

)
)T

for `= 1, . . . ,nL, (6.48)

where x` = W`η`−1 + y`. The last layer ` = nL + 1 is called the output layer and is supposed to be a linear

transformation with no bias term defined by φnL+1(θnL+1)(ηnL) = WnL+1ηnL . In the design of the DNN (6.47)

several choices can be made. For instance the number of hidden network layers nL, the width of each hidden

layer nη` , and the type of activation function (6.48) at each layer ` = 1, . . . ,nL can be varied, e.g., according to

universal approximation properties as e.g., in [89, 90].

103

CHAPTER 6 MODELING OF CEREBRAL PALSY PATIENTS’ GAIT

In the online phase the goal is to determine the network parameters θ with an estimated parameter set θ̂ pro-

viding an accurate approximation of the DNN Φ̂DNN(η; θ̂) ≈ΦDNN(η). With nS simulated data (6.46) the DNN

(6.47) is trained as described in the following. The solutions q∗
(s) of OCPs (6.35) for given varying objective

weights α∗
(s) are used as inputs η(s) ∈ Rnη in the DNN and the corresponding objective weights α∗

(s) as outputs

α(s) ∈ Rnα . Note that because of the assumtion that the model response in the measurement model (6.43) is

defined by (6.44) and without consideration of noise on the training data, the solutions q∗
(s) can be used directly

for approximation of the DNN. Then the network parameters θ̂ can be estimated, e.g., by solving the following

optimization problem

θ̂ = argmin
θ

1

nS

nS∑
s=1

‖Φ̂DNN(q∗
(s);θ)−α∗

(s)‖2
2. (6.49)

In (6.49) the sum over all mean squared errors between the parametrized DNN (6.47) evaluated at q∗
(s) and the

objective weights α∗
(s) for all training pairs s = 1, . . . ,nS is minimized and the estimated network parameters

are set to the solution θ̂ = θ∗. Various numerical methods for solving these kinds of optimization problems

are available. Among these methods stochastic approximation methods as introduced, e.g., in [145, 159], are

commonly used, such as the stochastic gradient descent method and variants like ADAM [101]. The resulting

trained DNN can then be used in the offline phase of algorithm 4 to obtain estimated objective weights α̂

for newly available measurement data η. Finally, the OCP (6.35) for the estimated weights can be solved to get

optimal differential states and controls. In section 10.4 the investigation of the identification of optimal weights

in the CP gait model via the DNN derived in this section is concluded in a case study.

104

Part III

Implementations and Numerical Results

105

Chapter 7

The Software Package PARDYNOPT

The software package PARDYNOPT was developed and implemented in the course of this thesis with support

from Andreas Sommer and Leonard Wirsching and initial contributions by Andreas Meyer, within the Scientific

Computing Sustainable Software Collaboratory under the supervision of Ekaterina Kostina at the Interdisci-

plinary Center for Scientific Computing. In the following a brief overview of its functionality is given.

7.1 Introduction and Software Structure

Apart from general OCPs, our software package PARDYNOPT allows us to solve Bilevel Inverse OCPs of the

form (2.21) efficiently. It realizes the proposed DISIMFAS as described in chapter 4 and provides interfaces

to the software package IPOPT [169] for the solution of the resulting structured one-level NLP (4.13) with an

efficient interior-point method. Furthermore, interfaces for SNOPT [71] and FILTERSQP [59] are prepared for

implementations of SQP methods. For setting up a dynamic model in a comfortable way, an interface to the

software package SOLVIND [5] is integrated. SOLVIND was developed by Albersmeyer in the group of Hans

Georg Bock and provides ODE and DAE solvers in an IND framework for exact derivative generation using AD

with an interface to the software package ADOL-C [170]. This powerful feature of the software suite SOLVIND

is also supported by PARDYNOPT.

PARDYNOPT is a C++ software package constructed in a modular way. It implements interfaces to dynamic

model descriptions, discretization methods, evaluations of model functions and corresponding derivative gen-

erations, and integrates various NLP solvers. It is constructed in such a way, that its modules can easily be

exchanged and extended in the future. Furthermore, PARDYNOPT also provides the possibility to solve other

problems than the ones already implemented in a convenient way. In the future this can be realized by new im-

plementation of the corresponding problem formulation and its translation into the resulting NLP, under con-

sideration of already existing modules such as, e.g., modules for model description, discretization and function

evaluation with derivative generation.

In Figure 7.6 the basic structure of PARDYNOPT is depicted. In the following we give an overview by referring

to the shown class diagram on a conceptual level and describe each module marked with a frame in the figure.

A more detailed description how to set up a OCP and a Bilevel Inverse OCP within the user interface is described

in section 7.2.

In sum, we give only a brief overview of the structure in PARDYNOPT and features implemented therein. For

a more detailed insight and better understanding of useful concepts for the realization of the modular structure

we refer the reader to the source code.

Problem DescriptionModule

To set up a problem in PARDYNOPT, in a first step an object of the ProblemDescription class has to be instan-

tiated by the user. Hence, we start with the problem description module in Figure 7.1. Therein, the number of

model stages, the chosen discretization methods for the dynamics and the control functions with the possibility

of user defined discretization grids per stage can be specified. Furthermore, the ProblemDescription class in-

corporates the dynamic models of all model stages. These dynamic models are incorporated in a derived class

of the abstract Model class with a chosen model description. Within the implemented ModelSolvInd class the

model description of the software package SOLVIND [5] is integrated. Hence, the dynamic model can be set

107

CHAPTER 7 THE SOFTWARE PACKAGE PARDYNOPT

Figure 7.1: This figure depicts the PARDYNOPT structure of the problem description module on a conceptual
level.

up in a very comfortable way. Furthermore, in the ProblemDescription class discontinuities can be modeled

with a transition stage of duration 0 by defining the corresponding model stage as StageType::transition,

whereas dynamic model stages are defined by StageType::dynamic. Setting NodeEvaluatorType::solvind

when constructing a ProblemDescription object enables SOLVIND’s function evaluator and ODE and DAE

solvers in an IND framework to evaluate model functions, integrate the initial value problems, and generate

exact derivatives using AD with an interface to the software package ADOL-C [170]. Furthermore, the NLP

solver of choice can be specified within the ProblemDescription class. Setting NlpSolverType::ipopt uses

the interface to the IPOPT [169] software package with an efficient implementation of an interior-point method.

Other interfaces can be provided for SQP methods such as SNOPT [71] or FILTERSQP [59].

ProblemModule

Figure 7.2: This figure depicts the PARDYNOPT structure of the problem module on a conceptual level.

The main module in PARDYNOPT is described by the abstract Problem class and its derived classes in Figure 7.2.

Such a special Problem object is instantiated by the user for a given ProblemDescription. After finalized ini-

108

THE SOFTWARE PACKAGE PARDYNOPT CHAPTER 7

tialization it is then solved according to the provided description by calling the method solve() of the corre-

sponding derived Problem class. So far, a ProblemMs class is integrated which implements the Direct Multiple

Shooting Method and, e.g., provides evaluation of matching conditions and generation of sensitivities. It serves

as a base class for ProblemMsOcp class and ProblemMsParaOcp class to set up an OCP or a Bilevel Inverse OCP,

respectively. Our DISIMFAS is implemented in the derived ProblemMsParaOcpActiveSetFix class of the ab-

stract class ProblemMsParaOcp.

NLP TranslatorModule

Figure 7.3: This figure depicts the PARDYNOPT structure of the NLP translator module on a conceptual level.

Each specific problem can be translated into the corresponding NLP within the NLP translator module in Fig-

ure 7.3. Therein, the abstract class NlpTranslator serves as a base class for the derived classes NlpTranslator-

MsOcp and NlpTranslatorMsParaOcpActiveSetFix, which are related to the classes of the problem module

ProblemMsOcp and ProblemMsParaOcpActiveSetFix, respectively. Within this structure an extension for other

solution methods can easily be implemented.

NLP SolverModule

Figure 7.4: This figure depicts the PARDYNOPT structure of the NLP solver module on a conceptual level.

The NlpSolverWork struct serves as a collection of all data needed to set up a NLP within the module NLP

solver in Figure 7.4. Therein, interfaces to various NLP solvers are provided, e.g. an interior-point method is

implemented in the IPOPT framework within the NlpSolverIpopt class. In an actual implementation of the

virtual method Problem::solve() an object of the corresponding NlpTranslator class is instantiated which

operates on the data stored in a NlpSolverWork object. All needed quantities by the chosen NLP solver such

as objective, constraints, Jacobians, Hessians of the Lagrangian as well as primal and dual variables with all di-

mensions are provided within methods implemented in the NlpTranslator class, which in turn uses attributes

and methods of the corresponding Problem instance.

109

CHAPTER 7 THE SOFTWARE PACKAGE PARDYNOPT

Internal Structure and Function Evaluation/Derivative GenerationModules

Figure 7.5: This figure depicts the PARDYNOPT structure of the internal structure module and the function eval-
uation/derivative generation module on a conceptual level.

Each Problem object incorporates arrays of pointers to Stage instances related to given model stages which

itself comprise arrays of pointers to Node objects related to the discretization grid. This setup is depicted in

the module internal structure in Figure 7.5. Within this structure the model variables and function evalu-

ations with derivative generation can be spread out on Node level with an interface to the module function

evaluation/derivative generation. So-called mappers are implemented for an efficient way to update Node vari-

ables with model variables on Problem level on the one side, and update results of function evaluations or

derivatives from Node level to realizations on Problem level on the other side. All needed data by the NLP

solver is first evaluated on Node level and later collected according to the problem at hand in a second step.

This facilitates a parallelization of the source code in the future. Each Stage is described by its own set of

model functions and each Stage object comprises an array of pointers to NodeEvaluator instances accord-

ing to the number of Node objects with access to the Model object and the ModelDescription object therein.

On Node level all model functions are provided in struct ModelFunction. They in turn comprise pointers to

Function objects with FunctionInterface as actual interfaces to specific model functions and its derivatives

enabled by the NodeEvaluator instance. In our special implementation of an NodeEvaluatorSolvInd class,

the actual function evaluations and derivative generations are provided by derived classes of the base class

110

THE SOFTWARE PACKAGE PARDYNOPT CHAPTER 7

FunctionInterfaceSolvInd. Therein, also solutions of ODE systems and the corresponding sensitivities can

be performed using the powerful software suite SOLVIND.

7.2 Framework in PARDYNOPT for OCPs and Bilevel Inverse OCPs

In this section we present how to set up an OCP and a Bilevel Inverse OCP in PARDYNOPT within the Problem-

MsOcp class and the ProblemMsParaOcpActiveSetFix class, respectively. In appendix A.2 we provide a com-

plete example - the rocket car example (described in more detail in chapter 8).

7.2.1 Setting up Problems in PARDYNOPT

In the software package PARDYNOPT a specific Problem can be instatiated and solved by first providing a

ProblemDescription object. The user is advised to call a constructor of the ProblemDescription class as

the one in Listing 7.1. The first parameter describes an array of pointers to Model instances per model stage.

In the actual implementation of PARDYNOPT one ModelSolvInd object per stage can be instantiated by calling

the constructor

ModelSolvInd (std : : s t r i n g model_file , std : : s t r i n g model_name) .

SOLVIND models have to be set up by the user, see an example in Listing A.3 in appendix A.2. Here all model

functions, like right-hand-side, objective functions and constraints with all corresponding function output di-

mensions as well as dimensions for states, controls, model parameters and duration parameters are speci-

fied. Furthermore, the second parameter in the ProblemDescription constructor in Listing 7.1 describes the

number of model stages, and the following parameter an array of stage types. Therein, StageType::dynamic

determines the corresponding stage to be dynamic, and StageType::transition declares a stage to be of du-

ration 0 with a given function to describe a transition. In the last parameter of the constructor of the class

ProblemDescription, an array of numbers of nodes per model stage are defined. In the Direct Multiple Shoot-

ing Method the number of nodes correspond to the number of multiple shooting nodes per model stage.

Listing 7.1: Constructor of ProblemDescription class.

1 /**

2 * \brief Construct a new ProblemDescription object.

3 * \param model Array of models.

4 * \param num_stages Number of stages.

5 * \param stage_type Array of stage types.

6 * \param num_nodes Array of numbers of nodes.

7 */

8 ProblemDescription(Model** model,

9 Dimension num_stages,

10 StageType* stage_type,

11 Dimension* num_nodes);

With several setting methods, as the ones in Listing 7.2, the predefined model discretization, node evalua-

tor and NLP solver types can be changed by the user after instantiation of an ProblemDescription object.

So far for model discretization the Direct Multiple Shooting Method is implemented and, hence, Dynamic-

DiscretizationType::multiple_shooting is available with GridType::simple, GridType::equidistant-
_normalized or GridType::userdefined, where the user can specify the preferred multiple shooting time

grid. By default GridType::simple is activated. In the actual implementation of PARDYNOPT we use the

ControlDiscretizer::solvind, where ControlDiscretizationType::piecewise_const is set on the mul-

tiple shooting time grid for a piecewise constant control approximation. If nonlinear constraints appear in

the problem formulations they are enforced on the multiple shooting grids according to the Direct Multiple

Shooting Method as described in subsection 2.2.1. Nonlinear mixed control-state constraints or initial and fi-

nal conditions can be defined in the SOLVIND model, see [5]. Usually, they are treated as decoupled equality

111

CHAPTER 7 THE SOFTWARE PACKAGE PARDYNOPT

Figure 7.6: Total PARDYNOPT structure on a conceptual level.112

THE SOFTWARE PACKAGE PARDYNOPT CHAPTER 7

and inequality constraints on the corresponding multiple shooting nodes. If periodicity constraints have to be

taken into account, they can be realized with coupled equality and inequality constraints defined on the first

and last shooting node. For a more detailed introduction how to set up a SOLVIND model we refer to the source

code and the work of Albersmeyer in [5]. Note, that so far in PARDYNOPT all appearing inequality constraints

in the resulting NLP beside simple bounds on variables are formulated as equality constraints by introduc-

ing slack variables. Furthermore, in PARDYNOPT NodeEvaluatorType::solvind for function evaluation and

derivative generation is available, and NlpSolverType::ipopt can be used. In the future extensions for these

specifications will be provided. Before a ProblemDescription object is passed to a specific Problem class, we

first have to call the method finalize_problem_description() to indicate the finalization of the description

of the problem at hand.

Listing 7.2: Setting methods in ProblemDescription class

1 /**

2 * \brief Set the model discretization types.

3 * \param dyn_disc_type Dynamic discretization type.

4 * \param dyn_grid_type Dynamic grid type.

5 * \param ctrl_disc_type Array of control discretization types.

6 */

7 void set_model_discretization_types(DynamicDiscretizationType dyn_disc_type,

8 GridType dyn_grid_type,

9 ControlDiscretizationType** ctrl_disc_type);

10

11 /**

12 * \brief Set the node evaluator type.

13 * \param node_eval_type Node evaluator type.

14 */

15 void set_node_evaluator_type(NodeEvaluatorType node_eval_type);

16

17 /**

18 * \brief Set the nlp solver type.

19 * \param nlp_solver_type Nlp solver type.

20 */

21 void set_nlp_solver_type(NlpSolverType nlp_solver_type);

22

23 /**

24 * \brief Finalize problem description.

25 */

26 void finalize_problem_description();

Now we can instantiate the preferred Problem by calling a constructor of the derived class ProblemMsOcp for

solving an OCP with the Direct Multiple Shooting Method as described in subsection 2.2.1, or a constructor of

ProblemMsParaOcpActiveSetFix for solving an Bilevel Inverse OCP with the DISIMFAS derived in chapter 4,

see Listing 7.3. Within this software design, the implementation of further problem formulations might be

realized under consideration of already available modules.

Listing 7.3: Constructors of ProblemMsOcp and ProblemMsParaOcpActiveSetFix.

1 /**

2 * \brief Construct a new ProblemMsOcp object.

3 * \details By calling this constructor an instance for solving

4 * an Optimal Control Problem using Multiple Shooting

5 * for discretization is created.

6 * \param problem_desc Problem description defined by user.

7 */

8 ProblemMsOcp(ProblemDescription* problem_desc);

9

10 /**

113

CHAPTER 7 THE SOFTWARE PACKAGE PARDYNOPT

11 * \brief Construct a new ProblemMsParaOcpActiveSetFix object.

12 * \details By calling this constructor an instance for solving

13 * a Parameter Estimation Problem constrained by an

14 * Optimal Control Problem using the Direct Simultaneous

15 * Optimization Approach with Fixed Active Set is created.

16 * \param problem_desc Problem description defined by user.

17 */

18 ProblemMsParaOcpActiveSetFix(ProblemDescription* problem_desc);

After creating an object of the problem at hand, several initialization methods are available (some are depicted

in Listing A.1 in appendix A.1). The methods which can be used for both problems, the ProblemMsOcp and the

ProblemMsParaOcpActiveSetFix, are implemented in the parent class ProblemMs.

Finally, by calling the method finalize_initialization() the problem is indicated to be fully initialized

such that the solution process of the resulting NLP can be initiated with the method solve(), see Listing 7.4.

The results are written on screen and printed in text files for visualization by a provided python script.

Listing 7.4: Finalize initialization and solve a specific Problem.

1 /**

2 * \brief Finalize initialization.

3 * \details

4 */

5 virtual void finalize_initialization() override;

6

7

8 /**

9 * \brief Solve the Problem.

10 * \details

11 */

12 virtual void solve() override;

So far, technical settings for SOLVIND and the chosen NLP solver IPOPT can be specified in the source code

of PARDYNOPT. A suitable user interface with more options will be provided in the future. Please note that in

this chapter not all features implemented in PARDYNOPT are described and only a brief overview is given with

selected options. For a more detailed description we refer the reader to the source code. of PARDYNOPT.

114

Chapter 8

Bilevel Inverse Optimal Control in Two Case Studies

In this chapter we present two case studies for assessing the applicability and performance of our DISIMFAS

described in chapter 4, which is implemented in the software package PARDYNOPT, see chapter 7. In both

studies we use simulated measurements for a better investigation of the proposed method to identify corre-

sponding objective weights and model parameters. In section 8.1 a case study for a rocket car example is given.

We investigate the solutions of OCPs for various cases and formulate single and multi-stage Bilevel Inverse

OCPs, which incorporate the known structure of the control function. The intention of this study is to show

that exploited structure information can be successfully integrated in our DISIMFAS. In section 8.2 we give an

example for a rigid multibody system - the polar robot as deduced in [164]. Here, we first analyze the DISIMFAS

with regard to differently structured initial guesses and second, compare our results with the solution given in

[80], which was achieved with the Direct All-at-Once Approach implemented in PARAOCP.

8.1 Case Study: Rocket Car and Multi-Stage Formulations

We consider a rocket car example, as introduced, e.g., in [80, 81] and set up a single stage OCP of the form

(2.1). It describes an optimal movement of a car from one position to another including friction and fuel con-

sumption. The solutions are investigated for three selected settings and structures of the control functions are

exploited. With this information and simulated measurements, we then formulate various single and multi-

stage Bilevel Inverse OCPs of the form (2.21) tailored to the specific settings of the lower level OCPs for the

rocket car example and solve them using our DISIMFAS to determine optimal weights and model parameters.

8.1.1 An OCP for the Rocket Car and its Solutions for Selected Settings

We start with a general problem formulation for a single stage OCP of the form (2.1) describing the optimal

movement of a rocket car, where the end time is unknown a priori. As a result of the time transformation onto a

fixed time horizon, T = [0,1], the stage duration parameter d1 enters the following OCP together with the other

quantities defined in Table 8.1 as follows:

min
x ,u,d

Φ(·) =α1 ·d1 −x2(1) (8.1a)

s. t. ẋ0(t) = d1x1(t), t ∈ T , (8.1b)

ẋ1(t) = d1
(
u0(t)−p0x2

1(t)
)

/
(
x2(t)+γ)

, t ∈ T , (8.1c)

ẋ2(t) =−d1%u2
0(t), t ∈ T , (8.1d)

x0(0) = 0, x1(0) = 0, x2(0) = 1, (8.1e)

x0(1) = 10, x1(1) = 1, (8.1f)

−10 ≤ x0(t) ≤ 10, t ∈ T , (8.1g)

−10 ≤ x1(t) ≤ 10, t ∈ T , (8.1h)

0 ≤ x2(t) ≤ 10, t ∈ T , (8.1i)

−1 ≤ u0(t) ≤ 1, t ∈ T , (8.1j)

0 ≤ d1, (8.1k)

115

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

where the value of the control function u0(t) lies between −1 and 1. The objective function, Φ(·), is a com-

bination of end time, d1, and fuel consumption, −x2(1). For comparison of solutions of (8.1) with differently

weighted objective functions, we choose three settings for the weight α1 as shown in Table 8.2. With increasing

value of α1 the contribution of the duration parameter in the objective function increases in order to reach the

end position faster. The friction parameter arises in the term p0x2
1(t)/

(
x2(t)+γ)

which corresponds to Newton

friction and is set to p0 = 0.1 in all OCPs formulations, see Table 8.2.

Table 8.1: Definition of quantities which appear in OCP (8.1) for the rocket car example, as well as in the OCP
and Bilevel Inverse OCP formulations in the following subsection. In the OCPs the friction parameter is set to
p0 = 0.1. In the Bilevel Inverse OCPs this parameter is determined together with the objective weight α1.

Symbol Description Value
x0 position x0(0) = 0, x0(1) = 10
x1 velocity x1(0) = 0, x1(1) = 1
x2 fuel mass x2(0) = 1
u0 control force
d1 stage duration
p0 friction
γ car mass 0.1
% fuel conversion rate 0.1

For all cases the OCPs are solved with the software package PARDYNOPT and its implementation of the Direct

Multiple Shooting Method [26] as described in subsection 2.2.1 with an equidistant multiple shooting grid with

20 nodes and constant controls on each multiple shooting interval. Furthermore, for the arising initial value

problems SOLVIND is used with an adaptive BDF method in DAESOL-II [5] and its sensitivity and derivative

generation with its interface to ADOL-C [171]. A interior-point method with its implementation in IPOPT [169]

solves the resulting NLP with an exact Hessian approximation and a convergence tolerance set to 10−6 (defined

in [169] as error tolerance), see also Table 8.4. The initial guesses for the state values are set to
(
0 0 0

)T

at each multiple shooting node and the initial guesses for the values of all control parameters are set to 1. The

results are illustrated in Figure 8.1 and summarized in Table 8.3. The violation of the constraints in the resulting

NLPs as well as the infeasibility measure for the corresponding dual variables, see IPOPT [169], are comparably

small.

Table 8.2: Three cases with selected settings for the objective weight α1 and the friction parameter p0 in OCPs
of the rocket car example.

α1 p0

case 1 0.06 0.1
case 2 0.2 0.1
case 3 0.5 0.1

All three settings lead to different solutions and especially to different structures of the approximation of the

control function u0(t) as shown in Figure 8.2. In case 1 the approximation of the control function lies com-

pletely in the interior of the interval [−1,1], which means that no control bound is active at any time t ∈ T . In

contrast to the first case, for the remaining two settings the control function approximation reaches its max-

imum value in the first phase such that the upper bound 1 gets active. After a second phase, where the ap-

proximation of the control function lies in the interior for case 2 and case 3, only for the latter case the control

function reaches its minimum value −1 in a third phase.

116

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

Table 8.3: Computational results of OCP (8.1) for the rocket car example in the three selected settings summa-
rized in Table 8.2. The computations are performed with the Direct Multiple Shooting Method implemented in
PARDYNOPT.

case 1 (α1 = 0.06) case 2 (α1 = 0.2) case 3 (α1 = 0.5)

objectiveΦ∗ −3.7796 ·10−1 5.5224 ·10−1 2.2570
constraint violation 4.40 ·10−9 1.23 ·10−8 1.20 ·10−7

dual infeasibility 6.57 ·10−10 2.08 ·10−9 2.52 ·10−8

iterations 20 20 20
d∗

1 7.8931 6.0072 5.5453

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

time t

x 0
(t

)

Position

0 1 2 3 4 5 6 7 8

0

1

2

time t

x 1
(t

)

Velocity

0 1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

time t

x 2
(t

)

Fuel Mass

0 1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

1

time t

u
0

(t
)

Control Force

optimal states and controls for α1 = 0.06
optimal states and controls for α1 = 0.2
optimal states and controls for α1 = 0.5

Figure 8.1: Optimal differential states and controls in the solutions of OCPs with differently weighted objective
for three cases as summarized in Table 8.2. All results are computed with PARDYNOPT by applying the Direct
Multiple Shooting Method with 20 shooting nodes.

8.1.2 Multi-Stage Bilevel Inverse OCPs for Selected Settings

Now we incorporate the gained knowledge from subsection 8.1.1 and formulate suitable Bilevel Inverse OCPs of

the form (2.21), which cover the different structures of the control function approximations in the three cases,

see Figure 8.2. In the following we set up a single stage problem for case 1, a two-stage problem for case 2,

and a three-stage problem for case 3. The resulting Bilevel Inverse OCPs are then solved with our DISIMFAS

implemented in PARDYNOPT as described in chapter 4.

117

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 2 4 6 8

−1

−0.5

0

0.5

1

time t

co
n

tr
o

lf
o

rc
e

u
0

(t
)

case 1

0 2 4 6

−1

−0.5

0

0.5

1

time t

case 2

0 2 4

−1

−0.5

0

0.5

1

time t

case 3

Figure 8.2: This figure depicts the structures of the approximation of the optimal control function in the solu-
tions of the OCP (8.1) for selected settings from Table 8.2. In case 1 no bounds of the control parameters are
active, whereas in case 2 and case 3 in a first phase the upper bound is active and then in a second phase no
bounds are active. Only for case 3 the lower bound of the control parameters is active in a third phase.

In all cases we choose equidistant multiple shooting grids on all model stages and piecewise constant con-

trol approximations on the same time grids. Furthermore, SOLVIND is used with an adaptive BDF method

DAESOL-II [5] for solving the initial value problems arising in the lower level OCPs and the implemented

sensitivity and derivative generation with its interface to ADOL-C [171]. The resulting NLPs are then solved

with IPOPT [169] with a convergence tolerance set to 10−6 (defined in [169] as error tolerance). For the con-

straint Jacobian we choose the structure exploiting implementation in PARDYNOPT and for the Hessian of the

Lagrangian a limited-memory quasi-NEWTON method (L-BFGS update formula) in IPOPT.

Table 8.4: Setting used in PARDYNOPT to solve the one stage OCP (8.1), the two-stage OCP (8.3), the three-stage
OCP (8.3) and their corresponding Bilevel Inverse OCPs (8.2), (8.4) and (8.6).

OCPs Bilevel Inverse OCPs
solution method Direct Multiple Shooting Direct Simultaneous Approach

Method with Fixed Active Set
multiple shooting nodes (20), (7,14), (14,5,3) (20), (7,14), (14,5,3)
NLP solver IPOPT IPOPT

convergence tolerance 10−6 10−6

constraint Jacobian sparse sparse
Hessian exact BFGS update
integrator and derivatives SOLVIND SOLVIND
initial guess α1 - 1
initial guess p0 - 0.2

Pseudo-measurements are generated in all cases from solutions x∗OCP of the corresponding lower level OCPs

(8.1), (8.3), and (8.5). In case 1 independent, normally distributed noise ε is added with zero mean and a

standard deviation σwith values σ0 = 0.05 ·5,σ1 = 0.05 ·1.0,σ2 = 0.05 ·0.9 by

ηnk = x∗OCP
k (t m

n)+εnk, n = 0, . . . ,nm −1, k = 0,1,2.

In case 2 and case 3 the pseudo-measurements are generated with

ηjnk = x∗OCP
jk (t m

jn)+εjnk, n = 0, . . . ,nj
m −1, k = 0,1,2,

118

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

by adding noise with zero mean and a standard deviation of σ0 = 0.05 ·5,σ1 = 0.05 ·1.2,σ2 = 0.05 ·0.8 for case 2

with the stage indices j = 1,2, and a standard deviation of σ0 = 0.05 ·5,σ1 = 0.05 ·1.5,σ2 = 0.05 ·0.7 for case 3

with j = 1,2,3. The measurement time grids are chosen to be the same as the multiple shooting grids. For case

1 the number of multiple shooting nodes is 20 as in the previous subsection, summarized in Table 8.4. The

discretization of case 2 results in 7 multiple shooting nodes for the first model stage and 14 for the second. For

case 3 with three model stages we choose a grid of 14 for the first stage, 5 for the second and 3 for the last model

stage. In all cases, for measurement generation the OCPs are solved with PARDYNOPT in a similar setting as

described in the previous subsection, see Table 8.4.

For solving the Bilevel Inverse OCPs, in all three cases the initial guess for the objective weight α1 is set to 1

and for the model parameter p0 to 0.2. The initial state values are set to the simulated pseudo-measurements

at each multiple shooting node and the initial values for all duration parameters and control parameters are

chosen to be 1. Only the control parameters in the third stage of the third case are set to −1, where they are fixed

to the lower bound. The setting in PARDYNOPT used to solve Bilevel Inverse OCPs for all cases is summarized

in Table 8.4.

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

time t

x 0
(t

)

Position

0 1 2 3 4 5 6 7 8

0

0.5

1

1.5

time t

x 1
(t

)

Velocity

0 1 2 3 4 5 6 7 8

0.85

0.9

0.95

1

time t

x 2
(t

)

Fuel Mass

optimal states and controls of OCP (α1 = 0.06)
optimal states and controls of Bilevel Inverse OCP
simulated measurements

0 1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

1

time t

u
0

(t
)

Control Force

Figure 8.3: This figure depicts the optimal differential states and controls in the solution of Bilevel Inverse OCP
(8.2) for case 1 computed with the DISIMFAS in PARDYNOPT with 20 multiple shooting nodes. This result is
compared to the corresponding OCP (8.1) solution with PARDYNOPT by applying the Direct Multiple Shoot-
ing Method. Because the solutions are very similar the lines mostly overlap in the illustration. With the OCP
solution pseudo-measurements are generated as described at the beginning of subsection 8.1.2. They are illus-
trated in the plots by dots.

119

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

Single-Stage Bilevel Inverse OCP for Case 1

The control function for case 1, see Figure 8.2, lies completely in the interior of the interval [−1,1], therefore,

we choose a one stage formulation to solve a Bilevel Inverse OCP of the form

min
α1,p0,
x ,u,d

Ψ(·) = 1

2

nm−1∑
n=0

2∑
k=0

(
xk(t m

n)−ηnk
)2

σ2
k

(8.2a)

s. t. (x ,u,d) solve OCP (8.1), (8.2b)

0 ≤α1 ≤ 10, (8.2c)

−20 ≤ p0 ≤ 20, (8.2d)

where the upper level PE is constrained by the lower level OCP (8.1). To apply our DISIMFAS described in

chapter 4 only equality constraints of the discretized lower level OCP and bounds on the decision variables re-

lated to the fixed active set are considered in the resulting NLP (4.13). Because of the chosen loose bounds

on the state variables and the known structure of the control approximation, in case 1 the working set W
as a guess of the active set A∗ is empty. Hence, all bounds on the NLP variables related to the constraints

(8.1g)-(8.1k) are neglected. In the solution of Bilevel Inverse OCP (8.2) these bound constraints are still satis-

fied. In Figure 8.3 the optimal differential states and control parameters in the solution of (8.2) calculated with

PARDYNOPT are illustrated. In Table 8.5 the results achieved with small constraint violation and infeasibility

measure, see IPOPT [169], are summarized.

The DISIMFAS converges after 13 iterations with an objective value of 8.5863 and a stage duration of

7.8147. With a relative error of 1.20% for objective weight α∗
1 = 6.0718 · 10−2 and 7.40% for model parameter

p∗
0 = 9.2603 ·10−2, both quantities are reproduced with a relative error of less than 10%.

Table 8.5: Computational result of Bilevel Inverse OCP (8.2) for case 1 with our DISIMFAS in PARDYNOPT with
settings summarized in Table 8.4 and comparison of the estimates α∗

1 and p∗
0 to the true values and the phase

duration d∗
1 to the corresponding OCP (8.1) solution.

case 1 Bilevel Inverse OCP (8.2)

objectiveΨ∗ 8.5863
constraint violation 4.33 ·10−12

dual infeasibility 1.79 ·10−10

iterations 13

parameters estimate (rel. Err%) true value
α∗

1 6.0718 ·10−2 (1.20%) 0.06
p∗

0 9.2603 ·10−2 (7.40%) 0.1

stage duration OCP (8.1)
d∗

1 7.8147 7.8931

Two-Stage Bilevel Inverse OCP for Case 2

In the solution of (8.1) with the settings of case 2 the upper bound of the control function is active in a first

phase. After this phase it lies in the interior of the interval [−1,1] as in the results of case 1, see Figure 8.2.

Incorporating this structural information the single stage OCP (8.1) can be reformulated into a two-stage OCP

of the following form

120

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

min
x ,u,d

Φ(·) =α1 · (d1 +d2)−x22(1) (8.3a)

s. t. ẋj0(t) = djxj1(t), t ∈ T j, j = 1,2, (8.3b)

ẋj1(t) = dj
(
uj0(t)−p0xj1

2(t)
)

/
(
xj2(t)+γ)

, t ∈ T j, j = 1,2, (8.3c)

ẋj2(t) =−dj%uj0
2(t), t ∈ T j, j = 1,2, (8.3d)

x1(1) = x2(0), (8.3e)

x10(0) = 0, x11(0) = 0, x12(0) = 1, (8.3f)

x20(1) = 10, x21(1) = 1, (8.3g)

−10 ≤ xj0(t) ≤ 10, t ∈ T j, j = 1,2, (8.3h)

−10 ≤ xj1(t) ≤ 10, t ∈ T j, j = 1,2, (8.3i)

0 ≤ xj2(t) ≤ 10, t ∈ T j, j = 1,2, (8.3j)

u10(t) = 1, t ∈ T 1, (8.3k)

−1 ≤ u20(t) ≤ 1, t ∈ T 2, (8.3l)

0 ≤ d , (8.3m)

with the quantities defined in Table 8.1 extended by a stage subscript, j = 1,2, for the differential states and con-

trols. Similar to OCP (8.1) we perform a time transformation on both stages onto fixed time horizons T j = [0,1],

j = 1,2, such that stage duration parameters d =
(
d1 d2

)T
are added to the optimization variables in OCP

(8.3).

With simulated measurements from the solution of (8.3) with the chosen objective weight α1 and model

parameter p0 for case 2 we set up a two-stage Bilevel Inverse OCP, where the upper level PE is constrained by

the lower level OCP (8.3) as follows

min
α1,p0,
x ,u,d

Ψ(·) = 1

2

2∑
j=1

n
j
m−1∑
n=0

2∑
k=0

(
xjk(t m

jn)−ηjnk

)2

σ2
k

(8.4a)

s. t. (x ,u,d) solve OCP (8.3), (8.4b)

0 ≤α1 ≤ 10, (8.4c)

−20 ≤ p0 ≤ 20. (8.4d)

In the resulting NLP (4.13) of the DISIMFAS only equality constraints of the discretized lower level OCP and

bounds on the decision variables related to the fixed active set arise. Similar to the previous case, under con-

sideration of the known structure of the control approximation, all bounds on the NLP variables related to the

constraints (8.3h)-(8.3j) and (8.3l) are neglected. However, in the solution of Bilevel Inverse OCP (8.4) these

bound constraints are still satisfied. To incorporate the active upper bound of the control function in the solu-

tion of OCP (8.1) for case 2, the control function is fixed to its upper bound 1 in (8.3k) at the first model stage.

The DISIMFAS converges after 19 iterations with an objective value of 8.6764 and stage durations d∗
1 = 2.1839

and d∗
2 = 3.7759. With a relative error of 0.71% for objective weight α∗

1 = 1.9859 · 10−1 and 8.26% for model

parameter p∗
0 = 9.1744 ·10−2 both quantities are reproduced with a relative error of less than 10%.

In Figure 8.4 the optimal differential states and control parameters in the solution of Bilevel Inverse OCP

(8.4) calculated with PARDYNOPT are illustrated and compared to the two-stage OCP (8.3) and the single-stage

OCP (8.1) solutions for the second case. In Table 8.6 the results achieved with small constraint violation and

infeasibility measure, see IPOPT [169], are summarized.

121

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 1 2 3 4 5 6

0

2

4

6

8

10

time t

x j
0

(t
)

Position

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

time t

x j
1

(t
)

Velocity

0 1 2 3 4 5 6

0.7

0.8

0.9

1

time t

x j
2

(t
)

Fuel Mass

optimal states and controls of one stage OCP (α1 = 0.2)
optimal states and controls of OCP (α1 = 0.2)
optimal states and controls of Bilevel Inverse OCP
simulated measurements

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

time t

u
j0

(t
)

Control Force

Figure 8.4: This figure depicts the optimal differential states and controls in the solution of Bilevel Inverse OCP
(8.4) for case 2 computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes in the first model
stage and 14 in the second. This result is compared to the corresponding OCP (8.3) solution and the single-stage
OCP (8.1) solution with PARDYNOPT by applying the Direct Multiple Shooting Method. Because the solutions
are very similar the lines mostly overlap in the illustration. With the OCP solution pseudo-measurements are
generated as described at the beginning of subsection 8.1.2. They are illustrated in the plots by dots.

122

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

Table 8.6: Computational result of Bilevel Inverse OCP (8.4) for case 2 with our DISIMFAS in PARDYNOPT with
settings summarized in Table 8.4 and comparison of the estimates α∗

1 and p∗
0 to the true values and the phase

durations d∗
1 and d∗

2 to the corresponding OCP (8.3) solution.

case 2 Bilevel Inverse OCP (8.4)

objectiveΨ∗ 8.6764
constraint violation 3.56 ·10−11

dual infeasibility 2.32 ·10−7

iterations 19

parameters estimate (rel. Err%) true value
α∗

1 1.9859 ·10−1 (0.71%) 0.2
p∗

0 9.1744 ·10−2 (8.26%) 0.1

stage durations OCP (8.3)
d∗

1 2.1839 2.1972
d∗

2 3.7759 3.8032

Three-Stage Bilevel Inverse OCP for Case 3

In case 3 the upper and lower bounds of the control function are active in the solution of (8.1). First, the upper

bound is active and after a phase where the control function lies between the bounds −1 and 1, the lower bound

is active for the last phase, see Figure 8.2. With this information the single-stage OCP (8.1) can be reformulated

into a three-stage OCP of the form

min
x ,u,d

Φ(·) =α1 · (d1 +d2 +d3)−x32(1) (8.5a)

s. t. ẋj0(t) = djxj1(t), t ∈ T j, j = 1,2,3, (8.5b)

ẋj1(t) = dj
(
uj0(t)−p0xj1

2(t)
)

/
(
xj2(t)+γ)

, t ∈ T j, j = 1,2,3, (8.5c)

ẋj2(t) =−dj%uj0
2(t), t ∈ T j, j = 1,2,3, (8.5d)

xj(1) = xj+1(0), j = 1,2 (8.5e)

x10(0) = 0, x11(0) = 0, x12(0) = 1, (8.5f)

x30(1) = 10, x31(1) = 1, (8.5g)

−10 ≤ xj0(t) ≤ 10, t ∈ T j, j = 1,2,3, (8.5h)

−10 ≤ xj1(t) ≤ 10, t ∈ T j, j = 1,2,3, (8.5i)

0 ≤ xj2(t) ≤ 10, t ∈ T j, j = 1,2,3, (8.5j)

u10(t) = 1, t ∈ T 1, (8.5k)

−1 ≤ u20(t) ≤ 1, t ∈ T 2, (8.5l)

u30(t) =−1, t ∈ T 3, (8.5m)

0 ≤ d , (8.5n)

with the quantities defined in Table 8.1 extended by a stage subscript, j = 1,2,3, for the differential states and

controls. Similar to OCPs (8.1) and (8.3) we perform a time transformation on all three stages onto fixed time

horizons T j = [0,1], j = 1,2,3, such that stage duration parameters d =
(
d1 d2 d3

)T
are added to the opti-

mization variables in OCP (8.5).

Analogous to the two cases before, with simulated measurements from the solution of (8.5) with the chosen

objective weightα1 and model parameter p0, we set up a three-stage Bilevel Inverse OCP, where the upper level

123

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

PE is constrained by the lower level OCP (8.5) for case 3 as follows

min
α1,p0,
x ,u,d

Ψ(·) = 1

2

3∑
j=1

n
j
m−1∑
n=0

2∑
k=0

(
xjk(t m

jn)−ηjnk

)2

σ2
k

(8.6a)

s. t. (x ,u,d) solve OCP (8.5), (8.6b)

0 ≤α1 ≤ 10, (8.6c)

−20 ≤ p0 ≤ 20. (8.6d)

Similar to the previous cases, in the resulting NLP (4.13) of the DISIMFAS all bounds on the NLP variables

related to the bound constraints (8.5h)-(8.5j) and (8.5l) are neglected. However, in the solution of Bilevel Inverse

OCP (8.6) these bound constraints are still satisfied. To incorporate the active upper and lower bounds of the

control function in the solution of OCP (8.1) for case 3, the control function is fixed to its upper bound 1 in

(8.5k) in the first model stage and fixed to its lower bound −1 in (8.5m) in the last model stage.

0 1 2 3 4 5

0

2

4

6

8

10

time t

x j
0

(t
)

Position

0 1 2 3 4 5

0

1

2

3

time t

x j
1

(t
)

Velocity

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

time t

x j
2

(t
)

Fuel Mass

optimal states and controls of one stage OCP (α1 = 0.5)
optimal states and controls of OCP (α1 = 0.5)
optimal states and controls of Bilevel Inverse OCP
simulated measurements

0 1 2 3 4 5

−1

−0.5

0

0.5

1

time t

u
j0

(t
)

Control Force

Figure 8.5: This figure depicts the optimal differential states and controls in the solution of Bilevel Inverse OCP
(8.6) for case 3 computed with the DISIMFAS in PARDYNOPT with 14 multiple shooting nodes in the first model
stage, 5 in the second and 3 in the last. This result is compared to the corresponding OCP (8.5) and the single-
stage OCP (8.1) solutions with PARDYNOPT by applying the Direct Multiple Shooting Method. Because the solu-
tions are very similar the lines mostly overlap in the illustration. With the OCP solution pseudo-measurements
are generated as described at the beginning of subsection 8.1.2. They are illustrated in the plots by dots.

124

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

The DISIMFAS converges after 11 iterations with an objective value of 8.6234 and stage durations d∗
1 = 4.0588,

d∗
2 = 8.6122 ·10−1 and d∗

3 = 5.9930·10−1. With a relative error of 1.48% for objective weightα∗
1 = 5.0738·10−1 and

3.87% for model parameter p∗
0 = 9.6128 ·10−2, both quantities are reproduced with a relative error of less than

5%. In Figure 8.5 the optimal differential states and control parameters in the solution of (8.6) calculated with

PARDYNOPT are illustrated and compared to the three-stage OCP (8.5) solution and the single-stage OCP (8.1)

for the third case. In Table 8.7 the results achieved with small constraint violation and infeasibility measure,

see IPOPT [169], are summarized.

Table 8.7: Computational result of Bilevel Inverse OCP (8.6) for case 3 with our DISIMFAS in PARDYNOPT with
settings summarized in Table 8.4 and comparison of the estimates α∗

1 and p∗
0 to the true values and the phase

durations d∗
1 ,d∗

2 and d∗
3 to the corresponding OCP (8.5) solution.

case 3 Bilevel Inverse OCP (8.6)

objectiveΨ∗ 8.6234
constraint violation 3.36 ·10−12

dual infeasibility 1.28 ·10−9

iterations 11

parameters estimate (rel. Err%) true value
α∗

1 5.0738 ·10−1 (1.48%) 0.5
p∗

0 9.6128 ·10−2 (3.87%) 0.1

stage durations OCP (8.5)
d∗

1 4.0588 4.0935
d∗

2 8.6122 ·10−1 8.7662 ·10−1

d∗
3 5.9930 ·10−1 5.7127 ·10−1

8.1.3 Summary

In this section we considered a case study on the rocket car example for assessing the applicability and per-

formance of our DISIMFAS. For this particular example, we exploited the structure of the control function and

integrated this information in different Bilevel Inverse OCP formulations. Hence, the DISIMFAS could be ap-

plied successfully without further estimation of the active set in the solution of the resulting NLP. For cases,

where the optimal active set is not known, it can be identified with our proposed squential solution approach

in section 4.4. In all three cases objective weight α1 and model parameter p0 are estimated with a relative error

of less than 10%, for the last case with even less than 5%. Summarized, all estimates, as well as all other un-

knowns including the state trajectories, are very close to the true values. With our DISIMFAS the results for all

Bilevel Inverse OCPs could be achieved within less than 20 iterations with a convergence tolerance set to 10−6

in IPOPT.

125

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

8.2 Case Study: Polar Robot and a Comparison of PARDYNOPT with PARAOCP

We consider a polar robot example modeled as a rigid multibody system with three DOFs. It consists of an

extendable gripper arm linked to a fixed tripod by a sleeve in such a way that the arm can rotate along vertical

and horizontal axes as illustrated in Figure 8.6. The gripper with its load at the tip of the robot arm is considered

as point mass. In total, the multibody system comprises three rigid bodies and one point mass.

Figure 8.6: Polar robot example with three DOFs, ©M. Steinbach, [164].

The dynamics of the polar robot are deduced in the diploma thesis of Steinbach in [164]. With the equations

(8.7) and the quantities defined in Table 8.8

a0(r) := I 23
1 − I 23

2 +mbr 2 +ml (`+ r)2 (8.7a)

s(r) := 2((mb +ml)r +ml`) (8.7b)

they can be formulated as follows:

θ̈1 =
τ1 − s(r)ṙ θ̇1 cos2θ2 +2a0(r)θ̇1θ̇2 sinθ2 cosθ2

I 1
3 + I 23

2 +a0(r)cos2θ2
(8.8a)

θ̈2 =
τ2 − s(r)ṙ θ̇2 −a0(r)θ̇2

1 sinθ2 cosθ2 −0.5s(r)g cosθ2

a0(r)
(8.8b)

r̈ =τ3 +0.5s(r)(θ̇2
1 cos2θ2 + θ̇2

2)− (mb +ml)g sinθ2

mb +ml
. (8.8c)

For a compact representation, the time dependence of the quantities is omitted in (8.8).

126

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

Table 8.8: Definition of quantities which appear in the equations of motion (8.12) for the polar robot example.

Symbol Description Value
θ1 angle around horizontal axis θ1(0) = 0, θ1(1) = 0
θ2 angle around vertical axis θ2(0) = 0, θ2(1) = 0
r distance robot arm center - rotation center r (0) = 0.7, r (1) =−0.1
θ̇1 horizontal angular velocity θ̇1(0) = 0, θ̇1(1) = 0
θ̇2 vertical angular velocity θ̇2(0) = 0, θ̇2(1) = 0
ṙ rotational velocity ṙ (0) = 0, ṙ (1) = 0
τ1 torque around horizontal axis
τ2 torque around vertical axis
τ3 force along robot arm
d1 duration of process
` half length of robot arm 0.75
mb mass of robot arm 40
ml mass of load 10
I 23

1 inertia of robot arm and sleeve around axis 1 18.5
I 23

2 inertia of robot arm and sleeve around axis 2 0.12
I 23

3 inertia of robot arm and sleeve around axis 3 18.5
I 1

3 inertia of tripod around axis 3 10
g gravitational acceleration 9.81

8.2.1 An OCP for the Polar Robot Example

We now consider an optimal movement of the robot arm from one position to another with initial and final

positions as listed in Table 8.8. We define 6 differential states and 3 controls as

x(t) :=



x0(t)

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


=



θ1(t)

θ2(t)

r (t)

θ̇1(t)

θ̇2(t)

ṙ (t)


and u(t) :=


u0(t)

u1(t)

u2(t)

=


τ1(t)

τ2(t)

τ3(t)

 . (8.9)

and choose the model parameter to be the half length of the robot arm, p0 = `. With the equations of motion

given by (8.8) and duration parameter, d1, which originates from a time transformation of the process onto a

fixed time horizon, T = [0,1], the differential equation can be summarized in

ẋ(t) = d1 · f (x(t),u(t), p0).

For finding trajectories which minimize a weighted sum of two selected criteria, the final time of the process,

d1, and the retraction energy,
∫ 1

0 u2(t)2dt , the following OCP for the polar robot example can be formulated

min
x ,u,d

Φ(·) =α1 ·d1 +α2 ·
∫ 1

0
u2(t)2dt (8.10a)

s. t. ẋ(t) = d1 · f (x(t),u(t), p0), t ∈ T , (8.10b)

x(0) =



0

0

0.7

0

0

0


, x(1) =



0

0

−0.1

0

0

0


, (8.10c)

127

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES



−1

−1

−0.5

−5

−5

−6


≤ x(t) ≤



1

1

0.7

5

5

6


, t ∈ T , (8.10d)


−1000

−1500

−1000

≤ u(t) ≤


1000

1500

1000

 , t ∈ T , (8.10e)

0 ≤ d1, (8.10f)

under consideration of initial and final conditions, (8.10c), and bounds for states, controls and duration pa-

rameter, (8.10d)-(8.10f). This OCP formulation is similar to the one stated in the work of Hatz [80] but with

slightly different dynamics for the polar robot. However, the derivation of the equations of motion used in [80]

are not revealed such that we decided to use the dynamics by Steinbach [164] in a first case study in subsec-

tion 8.2.3. Here, our goal is to investigate how structurally different initial guesses impact the performance of

our DISIMFAS implemented in PARDYNOPT.

For a direct comparison of our DISIMFAS to the Direct All-at-Once Approach implemented in PARAOCP,

we choose the identical setting as in section 14.5 in the thesis of Hatz [80] and treat the generation of mea-

surements and initial guesses in exactly the same way as described there. Hence, in our second case study in

subsection 8.2.3, the dynamics of the polar robot are used as introduced in the work of Hatz.

8.2.2 Numerical Set-Up for Case Studies A and B

For both case studies the arising OCPs (8.10) are solved with the software package PARDYNOPT and its imple-

mentation of the Direct Multiple Shooting Method [26] as described in subsection 2.2.1 with an equidistant

multiple shooting grid with 7 nodes and constant control approximations on each multiple shooting interval.

Furthermore, for the arising initial value problems SOLVIND is used with an adaptive BDF method DAESOL-

II [5] and its sensitivity and derivative generation with an interface to ADOL-C[171]. IPOPT [169] solves the

resulting NLPs with an exact Hessian approximation and a convergence tolerance set to 10−6 (defined in [169]

as error tolerance). Unless otherwise specified, the initial guesses for the state values are set to
(
0 0 0

)T
at

each multiple shooting node, the initial guesses for the values of all control parameters are set to 10 and the

duration parameter d1 to 1.

The Bilevel Inverse OCPs in both case studies are solved with our DISIMFAS implemented in PARDYNOPT.

Here, the same settings as above are chosen for solving the arising initial value problems, sensitivity and deriva-

tive generations on the multiple shooting grid. The resulting NLPs of the form (4.13) are then solved with IPOPT

[169] with a convergence tolerance set to 10−6. For the constraint Jacobian we choose the structure exploit-

ing implementation in PARDYNOPT and for the Hessian of the Lagrangian a limited-memory quasi-NEWTON

method (L-BFGS update formula) in IPOPT. The PARDYNOPT setting for solving OCPs and Bilevel Inverse OCPs

is summarized in Table 8.9.

Pseudo-measurements are generated from solutions x∗OCP of the corresponding lower level OCPs (8.10) by

adding normally distributed noise ε with zero mean and a standard deviation σ with values σk = 0.05 ·0.2,

k = 0, . . . ,2, for the angular and radial states and σk = 0.05 ·1,k = 3, . . . ,5, for the corresponding velocities:

ηnk = x∗OCP
k (t m

n)+εnk, n = 0, . . . ,nm −1, k = 0, . . . ,5.

The measurement times t m
n are chosen to be the same as the multiple shooting gid.

128

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

For solving the Bilevel Inverse OCPs in the two case studies the initial guesses are also solutions of OCPs

achieved with PARDYNOPT and the setting summarized in Table 8.9, but with varying objective weight α2 and

model parameter p0.

Table 8.9: Setting used in PARDYNOPT for the two case studies in subsection 8.2.3 and subsection 8.2.4 to solve
OCPs of the form (8.10) and Bilevel Inverse OCPs of the form (8.11).

OCP Bilevel Inverse OCP
solution method Direct Multiple Shooting Direct Simultaneous Approach

Method with Fixed Active Set
multiple shooting nodes (7) (7)
NLP solver IPOPT IPOPT

convergence tolerance 10−6 10−6

constraint Jacobian sparse sparse
Hessian exact BFGS update
integrator and derivatives SOLVIND SOLVIND

8.2.3 Case Study A: Performance of DiSimFAS with Structurally Different Initial Guesses

Although, in our first case study we use slightly different dynamics for the polar robot as in [80], the weights

and model parameters in OCP (8.10) are chosen to be the same as in section 13.4 in the thesis of Hatz for

the generation of measurements and initial guesses for solving a Bilevel Inverse OCP. This setting leads to

significant changes in the structure. In the work of Hatz the Lifting Approach has to be invoked because the

Direct All-at-Once Approach without an appropriate treatment of the complementarity constraints did not

converge.

Now we investigate the performance of our DISIMFAS described in chapter 4 with regard to structurally dif-

ferent initial guesses for solving Bilevel Inverse OCPs. We start by considering OCP (8.10) and set the objective

weights α1 and α2 to the fixed values 0.5 ·104 and 0.5, respectively, and the model parameter p0 to 0.75, which

describes the half length of the robot arm `. This OCP is now solved with the Direct Multiple Shooting Method

as described in the previous subsection and the PARDYNOPT settings summarized in Table 8.9. Its result is

labeled with OCP 1. By choosing different initial guesses for state and control parameter values, while con-

sidering the solution OCP 1, we find two more local solutions of the same OCP (8.10), labeled as OCP 2 and

OCP 3, respectively. The results of the three solutions achieved with small constraint violation and infeasibility

measure, see IPOPT [169], are summarized in Table 8.10 and illustrated in Figure 8.7 and Figure 8.8.

Table 8.10: Computational results of OCP (8.10) for the polar robot example with dynamics by Steinbach [164]
achieved with the Direct Multiple Shooting Method implemented in PARDYNOPT.

OCP 1 OCP 2 OCP 3

objectiveΦ∗ 6.3918 ·10−1 6.4228 ·10−1 6.3918 ·10−1

constraint violation 9.37 ·10−9 1.17 ·10−6 7.62 ·10−12

dual infeasibility 1.07 ·10−12 1.14 ·10−9 1.57 ·10−13

iterations 312 147 141
d∗

1 1.2234 1.2283 1.2234

The solution of OCP 3 is the symmetric counterpart of OCP 1 with the same objective valueΦ∗ = 6.3918 ·10−1

and duration parameter d∗
1 = 1.2234. The difference originates from the varying initial deflection of the robot

arm around the vertical axis, θ1. In contrast to this, in the solution of OCP 2, with slightly higher objective

129

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 0
(t

)

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 1
(t

)

0 0.4 0.8 1.2

0

0.2

0.4

0.6

time t

x 2
(t

)

0 0.4 0.8 1.2

−2

0

2

time t

x 3
(t

)

0 0.4 0.8 1.2

−4

−2

0

2

time t

x 4
(t

)

optimal states of OCP 1
optimal states of OCP 2
optimal states of OCP 3

0 0.4 0.8 1.2

−1.5

−1

−0.5

0

time t

x 5
(t

)

Figure 8.7: Optimal differential states in three local solutions of OCP (8.10) with dynamics by Steinbach [164].
All results are computed with PARDYNOPT by applying the Direct Multiple Shooting Method with 7 shooting
nodes.

130

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

0 0.4 0.8 1.2

−1,000

−500

0

500

1,000

time t

u
0

(t
)

0 0.4 0.8 1.2

−1,000

0

1,000

time t

u
1

(t
)

optimal controls of OCP 1
optimal controls of OCP 2
optimal controls of OCP 3

0 0.4 0.8 1.2
−40

−20

0

20

time t

u
2

(t
)

Figure 8.8: Optimal controls in three local solutions of OCP (8.10) with dynamics by Steinbach [164]. All results
are computed with PARDYNOPT by applying the Direct Multiple Shooting Method with 7 shooting nodes.

Φ∗ = 6.4228 ·10−1 and duration parameter d∗
1 = 1.2283 there is no such deflection at all. Hence, the final posi-

tion of the robot arm is achieved solely by moving the robot arm around the horizontal axis. As illustrated in

Figure 8.7 in all three solutions the lower bound of the NLP variable which corresponds to angular velocity θ̇1

at shooting node 5 is active. In addition to this, for OCP 1 the lower bound and for OCP 3 the upper bound of

the control parameter at shooting node 5 corresponding to torque τ0 is active, see Figure 8.8.

Because of symmetric solutions, in the following we only consider OCP 1 and OCP 2 and ignore OCP 3.

Hence, with the results OCP 1 and OCP 2, measurements are generated as described in subsection 8.2.2 and

with the Bilevel Inverse OCP stated as

min
α2,p0,
x ,u,d

Ψ(·) = 1

2

nm−1∑
n=0

2∑
k=0

(
xk(t m

n)−ηnk
)2

σ2
k

(8.11a)

s. t. (x ,u,d) solve OCP (8.10), (8.11b)

α1 =α
′
1 ·104, (8.11c)

0 ≤α2, (8.11d)

0 ≤ p0, (8.11e)

for both measurement sets, model parameter p0 and objective weight α2 are determined while α1 =α
′
1 ·104 is

fixed to its value with α
′
1 = 0.5.

To apply our DISIMFAS described in chapter 4, only equality constraints of the discretized lower level OCP

and bounds on the decision variables related to the fixed active set are considered in the resulting NLP (4.13).

This implicates the necessity to identify the bounds of the NLP variables related to the constraints (8.10d)-

(8.10f) that are active in the OCP solution. So far, in the software package PARDYNOPT the corresponding work-

ing set W as a guess of the active set A∗ has to be specified. In section 4.4 an outlook is given how the optimal

131

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

active set A∗ can be identified in the future. With a given active set all calculations with PARDYNOPT are per-

formed with the set-up as described in subsection 8.2.2 and summarized in Table 8.9. As initial guesses we

choose two different but again symmetrical solutions of an OCP with objective weights α1 = 0.5 ·104,α2 = 0.2

and model parameter p0 = 0.6. Both solutions have a significantly changed structure compared to the OCP

solutions in Figure 8.7 and Figure 8.8 and are labeled with OCPguess1 and OCPguess2. To investigate the perfor-

mance of our DISIMFAS with regard to structural different initial guesses, we analyze the solutions of Bilevel

Inverse OCP (8.11) for the two measurement sets related to the OCPs 1 and OCPs 2 together with the two OCPs

solutions for the initial guesses. In total, we end up with 4 cases as summarized in Table 8.11. In Figure 8.9 -

8.12 the optimal trajectories and controls of the solutions of the Bilevel Inverse OCPs (8.11) for each case are

illustrated. The results achieved with small constraint violation and infeasibility measure, see IPOPT [169], are

summarized in Table 8.12 and Table 8.13.

Table 8.11: Selected cases to solve Bilevel Inverse OCPs for the polar robot example with
dynamics by Steinbach [164].

Measurements Initial Guess Bilevel Inverse OCP
case 1 OCP 1 OCPguess1 Bilevel Inverse OCP 1
case 2 OCP 1 OCPguess2 Bilevel Inverse OCP 2

case 3 OCP 2 OCPguess1 Bilevel Inverse OCP 3
case 4 OCP 2 OCPguess2 Bilevel Inverse OCP 4

For case 1 the DISIMFAS converges after 15 iterations with an objective value of 3.4216 and a stage duration of

1.2259. For case 2 it converges after 18 iterations to the same solution. With a relative error of 2.36% for objec-

tive weightα∗
2 = 5.1182·10−1 and 2.59% for model parameter p∗

0 = 7.3058·10−1, both quantities are reproduced

with a relative error of less than 3%.

Table 8.12: Computational results of Bilevel Inverse OCPs (8.11) for case 1 and case 2 with dynamics by Stein-
bach [164] with our DISIMFAS in PARDYNOPT with settings summarized in Table 8.9 and comparison of the
estimates α∗

2 and p∗
0 to the true values and the phase duration d∗

1 to the corresponding OCP 1 solution.

case 1 case 2

objectiveΨ∗ 3.4216 3.4216
constraint violation 1.27 ·10−8 1.42 ·10−7

dual infeasibility 1.15 ·10−7 3.32 ·10−8

iterations 15 18

parameters estimate (rel. Err%) estimate (rel. Err%) true value initial guess
α∗

2 5.1182 ·10−1 (2.36%) 5.1182 ·10−1 (2.36%) 0.5 0.2
p∗

0 7.3058 ·10−1 (2.59%) 7.3058 ·10−1 (2.59%) 0.75 0.6

stage duration OCP 1
d∗

1 1.2259 1.2259 1.2234

For case 3 the DISIMFAS converges after 17 iterations with an objective value of 3.9488 and a stage duration of

1.2259. For case 4 it converges after 17 iterations to the same solution. With a relative error of 1.23% for objec-

tive weightα∗
2 = 5.0614·10−1 and 2.93% for model parameter p∗

0 = 7.2801·10−1, both quantities are reproduced

with a relative error of less than 3%.

132

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 0
(t

)

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 1
(t

)

0 0.4 0.8 1.2

0

0.2

0.4

0.6

time t

x 2
(t

)

0 0.4 0.8 1.2

−2

0

2

time t

x 3
(t

)

0 0.4 0.8 1.2

−4

−2

0

2

time t

x 4
(t

)

0 0.4 0.8 1.2

−1.5

−1

−0.5

0

time t

x 5
(t

)

optimal states of OCP 1
optimal states of Bilevel Inverse OCP 1
optimal states of OCPguess1
optimal states of Bilevel Inverse OCP 2
optimal states of OCPguess2
measurements

Figure 8.9: This figure depicts the optimal differential states in the solutions of Bilevel Inverse OCP (8.11) for
case 1 and case 2 computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. The results are
compared to the corresponding OCP 1 (8.10) solution. Generated pseudo-measurements and initial guesses
OCPguess1 and OCPguess2 are also illustrated. The dynamics by Steinbach [164] are used.

133

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 0.4 0.8 1.2

−1,000

−500

0

500

1,000

time t

u
0

(t
)

0 0.4 0.8 1.2

−1,000

0

1,000

time t

u
1

(t
)

0 0.4 0.8 1.2

−50

0

time t

u
2

(t
) optimal controls of OCP 1

optimal controls of Bilevel Inverse OCP 1
optimal controls of OCPguess1
optimal controls of Bilevel Inverse OCP 2
optimal controls of OCPguess2

Figure 8.10: This figure depicts the optimal controls in the solutions of Bilevel Inverse OCP (8.11) for case 1 and
case 2 computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. The results are compared
to the corresponding OCP 1 (8.10) solution. Initial guesses OCPguess1 and OCPguess2 are also illustrated. The
dynamics by Steinbach [164] are used.

Table 8.13: Computational results of Bilevel Inverse OCPs (8.11) for case 3 and case 4 with dynamics by Stein-
bach [164] with our DISIMFAS in PARDYNOPT with settings summarized in Table 8.9 and comparison of the
estimates α∗

2 and p∗
0 to the true values and the phase duration d∗

1 to the corresponding OCP 2 solution.

case 3 case 4

objectiveΨ∗ 3.9488 3.9488
constraint violation 7.86 ·10−7 9.64 ·10−9

dual infeasibility 6.90 ·10−5 6.47 ·10−8

iterations 17 17

parameters estimate (rel. Err%) estimate (rel. Err%) true value initial guess
α∗

2 5.0614 ·10−1 (1.23%) 5.0614 ·10−1 (1.23%) 0.5 0.2
p∗

0 7.2801 ·10−1 (2.93%) 7.2801 ·10−1 (2.93%) 0.75 0.6

stage duration OCP 2
d∗

1 1.2295 1.2295 1.2283

In sum, with our DISIMFAS, for all cases from Table 8.11, objective weightα2 and model parameter p0 could be

determined within less than 20 iterations and a relative error of less than 3% regardless of the distict structure

of the initial guesses. Additionally, all solutions of the Bilevel Inverse OCPs achieved by applying our DISIM-

FAS satisfy the bound constraints, although not considered during the solution procedure.

134

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 0
(t

)

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

time t

x 1
(t

)

0 0.4 0.8 1.2

0

0.2

0.4

0.6

time t

x 2
(t

)

0 0.4 0.8 1.2

−2

0

2

time t

x 3
(t

)

0 0.4 0.8 1.2

−4

−2

0

2

time t

x 4
(t

)

0 0.4 0.8 1.2

−1.5

−1

−0.5

0

time t

x 5
(t

)

optimal states of OCP 2
optimal states of Bilevel Inverse OCP 3
optimal states of OCPguess1
optimal states of Bilevel Inverse OCP 4
optimal states of OCPguess2
measurements

Figure 8.11: This figure depicts the optimal differential states in the solutions of Bilevel Inverse OCP (8.11) for
case 3 and case 4 computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. The results are
compared to the corresponding OCP 2 (8.10) solution. Generated pseudo-measurements and initial guesses
OCPguess1 and OCPguess2 are also illustrated. The dynamics by Steinbach [164] are used.

135

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 0.4 0.8 1.2

−1,000

−500

0

500

1,000

time t

u
0

(t
)

0 0.4 0.8 1.2

−1,000

0

1,000

time t

u
1

(t
)

0 0.4 0.8 1.2

−50

0

time t

u
2

(t
) optimal controls of OCP 2

optimal controls of Bilevel Inverse OCP 3
optimal controls of OCPguess1
optimal controls of Bilevel Inverse OCP 4
optimal controls of OCPguess2

Figure 8.12: This figure depicts the optimal controls in the solutions of Bilevel Inverse OCP (8.11) for case 3 and
case 4 computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. The results are compared
to the corresponding OCP 2 (8.10) solution. Initial guesses OCPguess1 and OCPguess2 are also illustrated. The
dynamics by Steinbach [164] are used.

8.2.4 Case Study B: Comparison of DiSimFAS in PARDYNOPT with Direct All-at-Once Approach in PARAOCP

For a comparison of our DISIMFAS with the Direct All-at-Once Approach described in the work of Hatz [80] we

start with a reformulation of the dynamics (8.8) deduced in the work of Steinbach [164] and get

θ̈1 =
τ1 + θ̇1 ·

(
sin(2θ2)θ̇2

(
I 23

1 − I 23
2 +mbr 2 +ml (`+ r)2

)−2
(
(mbr +ml (`+ r))ṙ cos2θ2

))
I 1

3 + I 23
2 sin2θ2 +cos2θ2

(
I 23

1 +mbr 2 +ml (`+ r)2
) , (8.12a)

θ̈2 =
1

I 23
1 − I 23

2 +D θ̈2

· (τ2 +0.5sin(2θ2)θ̇2
1

(
I 23

2 − I 23
1 −mbr 2 −ml (`+ r)2) (8.12b)

− (mbr +ml (`+ r))
(
g cosθ2 +2ṙ θ̇2

))
,

r̈ =τ3 + (mbr +ml (`+ r))
(
cos2θ2θ̇

2
1 + θ̇2

2

)− (mb +ml)g sinθ2

mb +ml
, (8.12c)

by defining

D θ̈2
:= mbr 2 +ml (`+ r)2.

In contrast to this, the dynamics of the polar robot as introduced in the work of Hatz [80] are formulated as

follows:

θ̈1 =
τ1 + θ̇1 ·

(
sin(2θ2)θ̇2

(
I 23

1 − I 23
2 +mbr 2 +ml (`+ r)2

)−2
(
mbr +ml (`+ r)ṙ cos2θ2

))
I 1

3 + I 23
2 sin2θ2 +cos2θ2

(
I 23

1 +mbr 2ml (`+ r)2
) , (8.13a)

θ̈2 =
1

I 23
3 +D θ̈2

· (τ2 +0.5sin(2θ2)θ̇2
1

(
I 23

2 − I 23
1 −mbr 2 −ml (`+ r)2) (8.13b)

136

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

− (mbr +ml (`+ r))
(
g cosθ2 +2ṙ θ̇2

))
,

r̈ =τ3 + (mbr +ml (`+ r))
(
cos2θ2θ̇

2
1 + θ̇2

2

)− (mb +ml)g sinθ2

mb +ml
, (8.13c)

and differ in (8.13a) in last term of the numerator and in the last term of the denominator, and in the denomi-

nator of (8.13b) compared to the equations (8.12a) and (8.12b) by Steinbach. However, in our second case study

for a direct comparison of our DISIMFAS to results achieved in [80, section 14.4] for a Bilevel Inverse OCP of the

form (8.11), we choose the dynamics from (8.13) and use the same settings as described in the work of Hatz.

We produce pseudo-measurements by solving OCP (8.10) with objective weights α1 = 1.0 · 104, α2 = 2.0 and

model parameter p0 = 0.75 as described in subsection 8.2.2. As initial guesses we use the solution of OCP (8.10)

achieved in the same way but with varying objective weight α2 = 2.3 and model parameter p0 = 1.5. Lagrange

multipliers are also a part of the decision variables of the resulting NLP when solving a Bilevel Inverse OCP with

the DISIMFAS and the Direct All-at-Once Approach. In [80] they are initialized with the solution of the OCP.

However, in calculations with our method it was sufficient to initialize them with 0.

To apply our DISIMFAS described in chapter 4 only equality constraints of the discretized lower level OCP

and bounds on the decision variables related to the fixed active set are considered in the resulting NLP (4.13).

This implicates the necessity to identify the bounds of the NLP variables related to the constraints (8.10d)-

(8.10f) that are active in the OCP solution. As illustrated in Figure 8.13 the lower bound of the NLP variable,

which corresponds to angular velocity θ̇1 at shooting node 5 is active. In addition to this, the lower bound of

the control parameter at shooting node 5, which corresponds to torque τ0 is active, see Figure 8.14. So far in

PARDYNOPT the working set W has to be specified by the user. In the solution of the Bilevel Inverse OCP all

bound constraints are satisfied.

With the simulated measurements and the initial guesses, the Bilevel Inverse OCP (8.11) is solved with our

DISIMFAS and the PARDYNOPT settings as summarized in Table 8.9. Model parameter p0 and objective weight

α2 are determined while α1 =α
′
1 ·104 is fixed to its value with α

′
1 = 1.0. The optimal differential states and con-

trols achieved by our DISIMFAS are illustrated in Figure 8.13 and Figure 8.14, respectively. The computational

results are summarized in Table 8.14 and compared to results with PARAOCP taken from [80].

Table 8.14: Computational results of Bilevel Inverse OCP (8.11) with dynamics by Hatz [80] with our DISIMFAS
in PARDYNOPT with settings summarized in Table 8.9 and its comparison to results achieved in [80] with the
Direct All-at-Once Approach in PARAOCP are summarized.

Bilevel Inverse OCP (8.11) PARDYNOPT PARAOCP

objectiveΨ∗ 3.4535 1.0522 ·101

constraint violation 6.67 ·10−8 (not specified in [80])
dual infeasibility 2.77 ·10−9 (not specified in [80])
iterations 29 649

parameters estimate (rel. Err%) estimate (rel. Err%) true value initial guess
α∗

2 2.1919 (9.60%) 2.2815 (14.1%) 2 2.3
p∗

0 7.3055 ·10−1 (2.59%) 7.3888 ·10−1 (1.48%) 0.75 0.6

stage duration
d∗

1 1.2797 1.2698

The DISIMFAS converges after 29 iterations with an objective value of 3.4535 and a stage duration of 1.2797,

whereas the Direct All-at-Once Approach takes 649 iterations to achieve a higher least-squares objective of

1.0522 ·101 with an estimated duration parameter of 1.2698. Hence, with the possibility to incorporate knowl-

137

CHAPTER 8 BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES

0 0.4 0.8 1.2

0

0.2

0.4

0.6

time t

x 0
(t

)

0 0.4 0.8 1.2

−0.4

−0.2

0

0.2

0.4

0.6

time t

x 1
(t

)

0 0.4 0.8 1.2

0

0.2

0.4

0.6

time t

x 2
(t

)

0 0.4 0.8 1.2

−4

−2

0

2

4

time t

x 3
(t

)

0 0.4 0.8 1.2

−4

−2

0

2

time t

x 4
(t

)

0 0.4 0.8 1.2
−2

−1.5

−1

−0.5

0

time t

x 5
(t

)

optimal states of OCP
optimal states of Bilevel Inverse OCP
initial states
measurements

Figure 8.13: This figure depicts the optimal differential states in the solution of Bilevel Inverse OCP (8.11) com-
puted with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. This result is compared to the corre-
sponding OCP (8.10) solution achieved with the Direct Multiple Shooting Method in PARDYNOPT. Generated
pseudo-measurements and initial guesses are also illustrated. The dynamics by Hatz [80] are used as described
in subsection 8.2.4.

138

BILEVEL INVERSE OPTIMAL CONTROL IN TWO CASE STUDIES CHAPTER 8

0 0.4 0.8 1.2

−1,000

−500

0

500

1,000

time t

u
0

(t
)

0 0.4 0.8 1.2

−1,000

0

1,000

time t

u
1

(t
)

0 0.4 0.8 1.2
−20

−10

0

10

time t

u
2

(t
)

optimal controls of OCP
optimal controls of Bilevel Inverse OCP
initial controls

Figure 8.14: This figure depicts the optimal differential states and controls in the solution of Bilevel Inverse OCP
(8.11) computed with the DISIMFAS in PARDYNOPT with 7 multiple shooting nodes. This result is compared
to the corresponding OCP (8.10) solution achieved with the Direct Multiple Shooting Method in PARDYNOPT.
Initial guesses are also illustrated. The dynamics by Hatz [80] are used as described in subsection 8.2.4.

edge of the active set in the solution of the corresponding OCP (8.10) the computation of the solution of Bilevel

Inverse OCP (8.11) can be accelerated significantly with our DISIMFAS.

With a relative error of 9.60% for objective weight α∗
2 = 2.1919 and 2.59% for model parameter p∗

0 = 7.3055 ·
10−1, both quantities are reproduced with a relative error of less than 10% with PARDYNOPT. With PARAOCP

the objective weightα∗
2 = 2.2815 can be approximated with a relative error of 14.1% and model parameter p∗

0 =
7.3888 ·10−1 with 1.48%. With both methods the objective weight and model parameter of the corresponding

OCP are estimated with an acceptable accuracy, but with much less computational effort with our DISIMFAS.

8.2.5 Summary

So far, to apply our DISIMFAS as described in chapter 4 the knowledge of the optimal active set A∗ is essential.

In some applications this is a huge drawback. However, if measurements are considered as in Bilevel Inverse

OCPs, where a PE Problem is constrained by an OCP, this structural information is often available in advance

and, hence, their numerical treatment can be accelerated significantly. This could be illustrated in the second

case study by comparison of results performed with our DISIMFAS and results achieved in the work of Hatz [80]

for a similar set-up. Furthermore, structurally different initial guesses do not have a considerable impact in the

calculations of the first case study. A comparable analysis in [80] required the use of the lifting approach by

Hatz to cope with the resulting MPCC, because the Direct All-at-Once Approach did not converge.

139

140

Chapter 9

Bilevel Inverse Optimal Control for a Basic Walker Gait Model

In this chapter we present numerical results for the basic walker gait model introduced in chapter 5 for assess-

ing the applicability and performance of our DISIMFAS implemented in the software package PARDYNOPT. It

serves as a basic rigid multibody system gait model for a human like locomotion.

9.1 Case Study: Basic Walker as Basic Model for Human Locomotion

In this case study we consider an optimal gait of the basic walker rigid multibody system and solve a Bilevel

Inverse OCP of the form (5.28) to identify individual objective weights and model parameters. The basic walker

model is chosen as a basic model to study our DISIMFAS and its application in the context of human loco-

motion, where we use simulated measurements for a better investigation of the performance of the developed

method. The multi-stage OCP (5.16), which describes two optimal steps, is described in detail in section 5.2. In

the solution of (5.16) the phasewise defined differential states and controls,

xj(t) =
(

qj(t)

q̇j(t)

)
=



x j
h(t)

y j
h(t)

ϕ
j
l (t)

ϕ
j
r (t)

ẋ j
h(t)

ẏ j
h(t)

ϕ̇
j
l (t)

ϕ̇
j
r (t)


and uj(t) =

(
τact

j0 (t)

τact
j1 (t)

)
=

(
τ

j
l (t)

τ
j
r (t)

)
,

respectively, are optimal with respect to a weighted sum of two selected optimization criteria - the final time of

the process and the effort to produce the steps. The OCP is defined for some chosen weights α =
(
α1 α2

)T

on fixed and normalized time horizons T j := [t j
s, t j

f] = [0,1] with stage duration parameters dj for each model

stage j = 1,2. Hence, the duration parameters are decision variables in (5.16) defining the final time. In

Table 9.1 these quantities are summarized together with model parameters p =
(
` M m

)T
, which de-

scribe the basic walker model. All other arising quantities in OCP (5.16) are defined and explained in de-

tail in section 5.2 including objective function, dynamics, jump conditions and other constraints. To simu-

late measurements and generate initial guesses for setting up a Bilevel Inverse OCP (9.1) as defined in sub-

section 9.1.1, the corresponding OCPs of the form (5.16) are solved with the software package PARDYNOPT

and its implementation of the Direct Multiple Shooting Method [26] as described in subsection 2.2.1 with an

equidistant multiple shooting grid with 11 nodes per model stage j = 1,2 and constant controls on each mul-

tiple shooting interval. Furthermore, for the arising initial value problems SOLVIND is used with an adap-

tive BDF method implemented in DAESOL-II [5] and its sensitivity and derivative generation with its in-

terface to ADOL-C[171]. IPOPT [169] solves the resulting NLP with an exact Hessian approximation and a

relative convergence tolerance of 10−6. The setting in PARDYNOPT is summarized in Table 9.3. The initial

guesses for the state values are set to
(
0 ` 0.2 −0.2 ` 0.2 ·` ` `

)T
at the first multiple shooting

node, to
(
0.45 ·` ` −0.2 0.2 ` 0.2 ·` ` `

)T
at the transition between model stage 1 and 2, and to(

0.9 ·` ` 0.2 −0.2 ` 0.2 ·` ` `
)T

at the final multiple shooting node. All other initial guesses for the

141

CHAPTER 9 BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL

Table 9.1: Definition of quantities which appear in the multi-stage OCP (5.16) for the basic walker example.

Symbol Description Value

x j
h horizontal position of head x1

h(t 1
s) = 0, x2

h(t 2
f) = 0.9`

y j
h vertical position of head y1

h(t 1
s) = y2

h(t 2
f)

ϕ
j
l rotation of left leg around head

ϕ
j
r rotation of right leg around head

ẋ j
h horizontal velocity of head ẋ1

h(t 1
s) = ẋ2

h(t 2
f)

ẏ j
h vertical velocity of head ẏ1

h(t 1
s) = ẏ2

h(t 2
f)

ϕ̇
j
l angular velocity of left leg ϕ̇1

l (t 1
s) = ϕ̇2

l (t 2
f)

ϕ̇
j
r angular velocity of right leg ϕ̇1

r (t 1
s) = ϕ̇2

r (t 2
f)

τ
j
l left torque around head

τ
j
r right torque around head

dj duration of single support phase
` length of legs
M point mass of base segment
m point mass of foot segment
g gravitational acceleration 9.81

state values are set to 0 at each multiple shooting node, the initial guesses for the values of all control param-

eters are set to 1, and the duration parameter d1 and d2 to 1. Furthermore, the bounds for all variables are

chosen as defined in subsection 5.2.3 such that they are not active in the solutions.

9.1.1 Bilevel Inverse OCP for a Basic Walker Example

For setting up a Bilevel Inverse OCP of the form (5.28) we consider objective weightsα=
(
α1 α2

)T
and model

parameters p =
(
` M m

)T
which enter the corresponding lower level OCP. These can be identified by solv-

ing the following Bilevel Inverse OCP

min
α1,p0,
x ,u,d

1

2

2∑
j=1

n
j
m−1∑
n=0

n
j
h−1∑

k=0

(
qjk(t m

jn)−ηjnk

)2

σ2
jnk

(9.1a)

s. t. (x ,u,d) solve OCP (5.16), (9.1b)

α1 ≥ 0,α2 = 1, (9.1c)

0.5 ≤ p0 ≤ 2, (9.1d)

p1 = 2, p2 = 1. (9.1e)

In this case study we fix weight α2 = 1 and determine α1 by solving (9.1). This can be done here because we

choose α2 6= 0 for the generation of measurements. Furthermore, we set p1 = M = 2 and p2 = m = 1 and

only use model parameter p0 = ` as decision variable. We find that α1 is correlated to M and m in the way

that for varying pairs of (α1, (M ,m)) we achieve the same optimal generalized coordinates x∗OCP
jk (t) = q∗OCP

jk (t),

j = 1,2, k = 0, . . . ,3 as solutions of the OCPs.

Similar to the previous chapter 8, we simulate measurements from a solution of (5.16) with objective weights

α=
(
1 1

)T
and model parameters p =

(
1 2 1

)T
for a better investigation of the proposed method. We add

normally distributed noise εwith zero mean and standard deviationσwith valuesσk = 0.05·1, for l = 0,2,3 and

σ1 = 0.05 ·0.04 to the generalized coordinates q∗OCP
j of solution x∗OCP of the corresponding lower level OCP.

ηjnk = q∗OCP
jk (t m

jn)+εjnk, j = 1,2, n = 0, . . . ,nj
m −1, k = 0, . . . ,3.

142

BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL CHAPTER 9

The measurement times coincide with the multiple shooting time grid chosen in the calculations. The initial-

ization for solving the Bilevel Inverse OCP is again performed by solving an OCP but for estimated weights and

model parameters which are set to α =
(
10 1

)T
and p =

(
1.2 2 1

)T
. The settings for the generations of

measurements and initial guesses are summarized in Table 9.2.

Table 9.2: Settings of objective weights α and model parameters p in OCPs of the basic walker example for
generations of measurements and initial guesses. Quantities in parentheses (·) are not determined in the Bilevel
Inverse OCP.

OCP for measurements initial guesses
α1 1 10
α2 (1) (1)
p0 1 1.2
p1 (2) (2)
p2 (1) (1)

The Bilevel Inverse OCP (9.1) is now solved with our DISIMFAS implemented in PARDYNOPT. The arising

initial value problems and the corresponding sensitivities as well as the derivative generations of all model

functions are calculated on the multiple shooting grid in the same way as described previously for the solu-

tion of OCP (5.16) using SOLVIND [5]. Furthermore, the bounds on the variables corresponding to the lower

level OCP are broadly formulated, and the arising decoupled inequality constraints are supposed to be always

> 0 during the single support phases. Hence, no active set has to be specified in PARDYNOPT. Usually, in PE

Problems constrained by OCPs which describe human gaits, very loose bounds on the differential states xj(t),

control functions uj(t), and duration parameters dj defined on each model stage j = 1,2 can be stated because

measurements are tracked and, hence, the corresponding decision variables typically do not exceed natural

bounds. In the basic gait model (9.1) this is also the case, such that in the solution of the Bilevel Inverse OCP

all inequality constraints of the lower level OCP are satisfied. In the DISIMFAS the resulting NLP of the form

(4.13) is then solved with IPOPT [169] with a relative convergence tolerance of 10−5 (defined in [169] as error

tolerance). For the arising gradient of the Lagrangian of the corresponding lower level OCP as constraint, an

efficient structure exploiting implementation in PARDYNOPT is used. For the constraint Jacobian we choose

the dense finite differences implementation in IPOPT and for the Hessian of the Lagrangian a limited-memory

quasi-NEWTON method (L-BFGS update formula) in IPOPT. The PARDYNOPT setting for solving OCP (5.16) and

Bilevel Inverse OCP (9.1) is summarized in Table 9.3.

Table 9.3: Setting used in PARDYNOPT to solve the multi-stage OCP (5.16) and the corresponding Bilevel Inverse
OCP (9.1).

OCP (5.16) Bilevel Inverse OCP (9.1)
solution method Direct Multiple Shooting Direct Simultaneous Approach

Method with Fixed Active Set
multiple shooting nodes (11,11) (11,11)
NLP solver IPOPT IPOPT

convergence tolerance 10−5 10−5

constraint Jacobian sparse dense
Hessian exact BFGS update
integrator and derivatives SOLVIND SOLVIND
initial guess α1 - 10
initial guess p0 - 1.2

143

CHAPTER 9 BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL

Table 9.4: Computational result of Bilevel Inverse OCP (9.1) with our DISIMFAS in PARDYNOPT with settings
summarized in Table 9.3 and comparison of weight α∗

1 to the true values and the phase durations d∗
1 and d∗

2 to
the corresponding OCP (5.16) solution.

Bilevel Inverse OCP (9.1)

objectiveΨ∗ 1.64212 ·101

constraint violation 6.42 ·10−11

dual infeasibility 3.60 ·10−5

iterations 33

weight estimate (rel. Err%) true value
α∗

1 1.2589 (25.89%) 1
p∗

0 1.00005 (0.005%) 1

stage durations OCP (5.16)
d∗

1 1.2325 1.2434
d∗

2 1.2325 1.2434

The DISIMFAS converges after 33 iterations with an objective value of 1.64212 · 101 and a stage duration of

1.2325 for both single support phases, which is similar to the duration 1.2434 of the corresponding OCP solu-

tion used for measurement generation. With a relative error of 0.005% for model parameter p∗
0 = 1.00005 this

quantity is reproduced within a very high accuracy by solving the Bilevel Inverse OCP (5.28) with our DISIMFAS.

The relative error for objective weight α∗
1 = 1.2589 is with 25.89% much higher. However, the generated mea-

surements are reproduced within an acceptable quality as illustrated in Figure 9.1 and, hence, the estimated

objective weight lies within an acceptable accuracy. In Table 9.4 the result achieved with small constraint viola-

tion and infeasibility measure, see IPOPT [169], is summarized, and in Figure 9.1, Figure 9.2, and Figure 9.3 the

optimal trajectories and approximations of the control functions are illustrated. In Figure 9.4 the visualization

of the basic walker gait as solution of the Bilevel Inverse OCP (5.28) is shown and compared to the solution of

the corresponding OCP (5.16) with true weights and parameters.

9.1.2 Summary

With the described case study for the basic walker gait model we could illustrate the successful applicability

of our DISIMFAS in the context of human locomotion. It serves as a first study of the proposed method with

promising results for future identification of unknowns in an OCP describing the gait of a CP patient and its

characterization by solving an appropriate Bilevel Inverse OCP as derived in chapter 6. Similar to the basic

walker example because of given measurements, the arising inequality constraints and bounds on the vari-

ables can usually be chosen very loosely on the lower level. A first investigation is described in the following

chapter 10.

144

BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL CHAPTER 9

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

time t

x 0
(t

)

optimal states of OCP
optimal states of Bilevel Inverse OCP
initial states
measurements

0 0.5 1 1.5 2 2.5

1

1.05

1.1

1.15

1.2

time t

x 1
(t

)

0 0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

time t

x 2
(t

)

0 0.5 1 1.5 2 2.5

−0.4

−0.2

0

0.2

time t

x 3
(t

)

Figure 9.1:This figure depicts the optimal differential states corresponding to the generalized coordinates in the
solution of Bilevel Inverse OCP (5.28) computed with the DISIMFAS in PARDYNOPT with 22 multiple shooting
nodes. This result is compared to the corresponding OCP (5.16) solution. Generated pseudo-measurements
and initial guesses are also illustrated.

145

CHAPTER 9 BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL

0 0.5 1 1.5 2 2.5

0

0.5

1

time t

x 4
(t

)

optimal states of OCP
optimal states of Bilevel Inverse OCP
initial states

0 0.5 1 1.5 2 2.5

−0.2

0

0.2

time t

x 5
(t

)

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

time t

x 6
(t

)

0 0.5 1 1.5 2 2.5

−1

0

1

time t

x 7
(t

)

Figure 9.2: This figure depicts the optimal differential states corresponding to the generalized velocities in the
solution of Bilevel Inverse OCP (5.28) computed with the DISIMFAS in PARDYNOPT with 22 multiple shooting
nodes. This result is compared to the corresponding OCP (5.16) solution. Initial guesses are also illustrated.

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

2

time t

u
0

(t
)

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

2

time t

u
1

(t
)

optimal controls of OCP
optimal controls of Bilevel Inverse OCP
initial controls

Figure 9.3: This figure depicts the optimal controls in the solution of Bilevel Inverse OCP (5.28) computed with
the DISIMFAS in PARDYNOPT with 22 multiple shooting nodes. This result is compared to the corresponding
OCP (5.16) solution. Initial guesses are also illustrated.

146

BILEVEL INVERSE OPTIMAL CONTROL FOR A BASIC WALKER GAIT MODEL CHAPTER 9

Figure 9.4: Visualization of basic walker gait as solution of Bilevel Inverse OCP (5.28) (colored multibody sys-
tem model) at various time points and comparison to the corresponding OCP (5.16) solution (blue multibody
system model). Snapshots are arranged in reading direction, with initial position at upper left corner, and final
position at lower right corner.

147

148

Chapter 10

Numerical Results for Cerebral Palsy Gait Model

In this chapter we present numerical results for the patient-specific CP walker gait model derived in chap-

ter 6 for reconstruction of the dynamics to given motion capture data provided by the HEIDELBERG MOTION-

LAB [173]. Furthermore, we analyze the proposed multi-stage OCP formulation to synthesize varying gaits of

a patient with CP for the chosen combination of optimization criteria with differently set weights. This OCP

formulation serves as a gait model of a CP patient at the lower level of the Bilevel Inverse OCP for the identi-

fication of objective weights and model parameters under consideration of given measurements. In the last

section 10.4 we give a case study for investigation of the derived supervised learning approach from section 6.7

for the identification of optimal weights via DNNs.

10.1 Solution Approaches, Initialization and Implementation Notes

Before we discuss the numerical results we give the solution approaches, initialization procedures and other

implementation notes needed in the next sections to solve the least-squares multi-stage OCP (6.18) and the

multi-stage OCPs (6.35) describing varying gaits of a CP patient. For the solution of both problems we follow

the Direct Multiple Shooting Method [26] introduced in subsection 2.2.1. For this purpose, we use the efficient

implementation of the proposed method together with a structure exploiting SQP method in the software pack-

age MUSCOD-II [108] and apply the setting summarized in Table 10.1.

Table 10.1: Setting used in MUSCOD-II to solve the multi-stage OCP (6.18) for reconstruction of the dynamics
and differently weighted OCPs (6.35) for gait synthesis for a patient with CP.

Setting in MUSCOD-II for sol. of OCP (6.18) and OCP(6.35)
solution method Direct Multiple Shooting Method
multiple shooting nodes (16,17)
NLP algorithm structure exploiting SQP
convergence tolerance 10−5

Hessian BFGS update
integrator DAESOL-II
derivatives VDE

Please note, that the transitions in MUSCOD-II can be modeled as extra model stages with 2 multiple shooting

nodes for each stage and time duration parameters fixed to 0. This is not listed in Table 10.1, to be aligned with

the OCP formulations, which consider only two model stages. Furthermore, the controls are approximated by

piecewise linear and continuous control functions at each model stage. As already discussed earlier, we use

the software tool RBDL [53] for all computations regarding the rigid multibody system model of a patient with

CP from section 6.1 and section 6.2. For initialization of the differential states we use processed measurements

and set the discretized control parameter values to 1 in the least-squares OCP. In the OCP describing CP gaits

we use the solution of this dynamics reconstruction and fix the model parameters to the estimated values. The

lower and upper bounds on the decision variables are set appropriately, such that they are not reached in the

solutions, see subsection 6.3.3. Appropriate scaling of the optimization criteria, the decision variables, as well

as of the constraints are performed to account for different orders of magnitudes. The diagonal entries in the

149

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

matrices W τ̇ and W τ, which appear in the least-squares objective (6.20) and in the optimization criteria of

the objective (6.36) in OCP (6.35), are calculated based on a first solution of a non-weighted least-squares OCP

(6.18) with regularization parameter γR set to zero. The results are listed in Table 10.2.

Table 10.2: Diagonal entries of the matrices W τ̇ and W τ, which correspond to the given joint and motion
around the given axis.

Joint Axis (w τ̇
k)−2 (wτ

k)−2

Hips y 5.8 ·105 1.2 ·103

Hips x 1.7 ·105 6.8 ·102

Hips z 4.3 ·105 2.6 ·102

Knees y 8.0 ·105 3.2 ·103

Ankle y 6.3 ·105 4.2 ·103

Ankle x 2.8 ·105 1.0 ·103

Ankle z 5.1 ·105 2.9 ·103

10.2 Reconstruction of Cerebral Palsy Gait Model using Motion Capture Data

In this section we present the numerical results for the dynamics reconstruction of the derived CP gait model

from chapter 6 achieved by solving the least-squares OCP (6.18). We use the setting and initialization described

in the previous section and incorporate motion capture data at given equidistant measurement times pro-

vided by the HEIDELBERG MOTIONLAB [173], which was processed as explained in subsection 6.2.6 and subsec-

tion 6.2.7. The measurement time grid is chosen to be the same as the multiple shooting grid, such that given

structures in the arising quantities of the Direct Multiple Shooting Method and the applied SQP algorithm can

be exploited efficiently. Within the reconstruction the duration parameters d1,d2, and the lower and upper

Table 10.3: Fixed values of fixed stage duration parameters and model parameters defining the lower and upper
bounds on the range of motion in both knees in the dynamics reconstruction of OCP (6.18).

fixed stage duration
d∗

1 0.500
d∗

2 0.533

fixed model parameters knee_r knee_l

βi 1.75 1.65
β

i
1.3 1.2

bounds on the range of motion in both knees β
i
,βi, i = {knee_r, knee_l} are set to fixed measured values, see

Table 10.3. The remaining model parameters p̂ , which include curvature parameters κi = κi = κi, i = {knee_r,

knee_l} and damping parameters δ, are estimated by solving the OCP (6.18). Its initial guesses are listed in

Table 10.5. As guesses for the damping parameters around the y-axis we choose values based on a reduced

muscle model of Millard et al. [126, 127]. For the other damping parameters we choose a small initial guess as

we expect them to be small, and for the curvature parameters we use the same values as in [151].

The solution of the dynamics reconstruction for the CP gait model is summarized in Table 10.4, and in Ta-

ble 10.5 the estimated model parameters are listed. According to the latter table, the damping parameters

around the x- and z- axes are relatively small. The damping parameters around the y- axes and the curvature

parameters stay close to the initial guesses. With Ψ∗ = 0.5 ·1.799625 ·10−1 the least-squares objective takes a

small value in the solution of OCP (6.18), such that the gait model of the patient with CP from chapter 6 can

be reproduced within an acceptable quality under consideration of given motion capture data performing a

150

NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL CHAPTER 10

Table 10.4: Computational result of least-squares OCP (6.18) with the Direct Multiple Shooting Method in
MUSCOD-II with settings summarized in Table 10.1.

OCP (6.18) Reconstruction (R)

objectiveΨ∗ 0.5 ·1.799625 ·10−1

constraint violation 1.07 ·10−6

kkt tol 9.03 ·10−6

full gait cycle. In appendix B.1 the corresponding optimal differential states and the optimal controls are illus-

Table 10.5: Estimated values of damping parameters δ and curvature parameters κi = κi = κi, i = {knee_r,
knee_l} in the dynamics reconstruction of OCP (6.18). The initial guesses are listed in brackets, where ∗∗ de-
notes values based on [126, 127].

y−component x−component z−component

damping
δhip_r 3.6476 (3.66)∗∗ 4.7835 ·10−2 (0.1) 6.5159 ·10−1 (0.1)
δknee_r 2.1527 (2.15)∗∗

δankle_r 1.1973 (1.18)∗∗ 4.9979 ·10−3 (0.1) 1.4597 ·10−1 (0.1)
δhip_l 3.6584 (3.66)∗∗ 4.9959 ·10−3 (0.1) 9.4413 ·10−2 (0.1)
δknee_l 2.1653 (2.15)∗∗

δankle_l 1.1982 (1.18)∗∗ 1.3234 ·10−1 (0.1) 8.4823 ·10−2 (0.1)

curvature
κknee_r 3.0626 ·101 (30.0)
κknee_l 3.0514 ·101 (30.0)

trated. In Figure B.5 one can see that the generalized positions in the solution of the dynamics reconstruction

reproduces the reference data very well. Because of the fact that in our gait model several constraints at the feet

have to be fulfilled, the biggest deviations can be noticed in the angles at the ankle joints. Furthermore, because

of enforcing periodicity constraints, there exist some variations. However, the gait of a patient with CP can still

be reproduced within an acceptable range. It should be noted, that the "measurements" shown in Figure B.5 are

not the measurements used in the least-squares OCP formulation, but provided Vicon angles and calculated

knee angles under consideration of (6.15). In OCP (6.18) we choose positions of selected points of the rigid

multibody system model in the global reference frame at each time frame of the gait cycle as measurements

ηP ∈Rnmeas . See subsection 6.2.6 and subsection 6.2.7 for a more detailed discussion.

Figure 10.1: Visualization of solution of the dynamics reconstruction (colored multibody system model) and
comparison with given motion capture data (grey multibody system model) at various time points.

151

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

10.3 Numerical Analysis of Gait Syntheses for CP Gait Model

In this section we analyze the multi-stage OCP (6.35) from section 6.4 in view of its application in the proposed

Bilevel Inverse OCP formulation (6.42). An important aspect is if the stated OCP formulation can cover the main

characteristics of the pathological gait of a patient with CP. We solve OCPs with differently weighted objective

functions and compare the results with the dynamics reconstruction. In subsection 6.4.1 the objective function

is defined in (6.36), where we choose a combination of four optimization criteria on each model stage. In the

following we summarize the contributions for each model stage j = 1,2 of every optimization criterion and

denote:

• φ1 as the stability criterion summarizingφL
11 (6.37) andφL

21 (6.38),

• φ2 as the criterion for minimization of the mechanical work summarizingφL
j2 (6.39) for j = 1,2,

• φ3 as the mechanical effort criterion summarizingφL
j3 (6.40) for j = 1,2, and

• φ4 as the criterion for minimization of the integrated squared torque derivatives summarizingφL
j4 (6.41)

for j = 1,2.

In total, we perform five gait syntheses for a CP patient. We use the setting and initialization described in

section 10.1, and fix the model parameters to the estimated values from Table 10.5 and to fixed bounds on the

range of motion in both knees from Table 10.3. In all calculation the duration of each single support phase is

optimized.

S denotes the solution of OCP (6.35), where only the corresponding weight α1 of the stability criterion φ1

is set to 103 with a regularization term α4 = 10−4 to avoid redundancies in the controls. With MW, E, and

TD we denote the solutions, where the weights of the corresponding criteria for minimization of mechanical

work α2, of mechanical effort α3, and of integrated squared torque derivatives α4, respectively, are set to 10−1

in each case. Apart from a small regularization in the solutions MW and E, all other weights are set to zero.

Furthermore, we perform one calculation denoted by C, where all four criteria contribute in OCP (6.35) with

the corresponding weights set to α1 = 103, α2 = 10−1, α3 = 10−1, and α4 = 10−1. The five different settings are

summarized in Table 10.6. Note, that we choose distinct values for the weights to compensate for the different

order of magnitudes in each optimization criterion.

Table 10.6: Five selected settings of the objective weights in the OCPs (6.35) denoted by S, MW, E, TD, and C.

OCP (6.35) S MW E TD C

α1 103 0.0 0.0 0.0 103

α2 0.0 10−1 0.0 0.0 10−1

α3 0.0 0.0 10−1 0.0 10−1

α4 10−4 10−4 10−4 10−1 10−1

In Table 10.7 the results of all five OCP solutions performed with MUSCOD-II [108] are summarized and in

appendix B.2 the optimal differential states and controls are illustrated and compared to the results of the dy-

namics reconstruction. Of course, so far the chosen values for the weights for the contributions of varying

optimization criteria are not optimal in the sense of a minimized deviation to given motion capture data. How-

ever, the results for the selected OCP solutions are already in a similar range as the reconstruction data and

motivate us to use the proposed OCP formulation in a Bilevel Inverse OCP framework as stated in section 6.6

for future investigations. For the solutions S, MW, and E the optimal duration parameters are comparable to

the measured and fixed duration parameters in R, see Table 10.7 and Table 10.3. In contrast to this, the phase

durations in E are very short. For the solution C with contributions of all criteria in a comparable order of

magnitude the duration of each phase is smaller than for the reconstructed data.

152

NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL CHAPTER 10

Table 10.7:Computational results of five solutions of selected OCPs (6.35) denoted by S, MW, E, TD, and C as de-
fined in Table 10.6. We applied the Direct Multiple Shooting Method in MUSCOD-II with settings summarized
in Table 10.1.

OCP (6.35) S MW E TD C

objectiveΦ∗ 5.8484 ·10−3 2.4106 ·10−1 1.7744 ·10−2 1.7409 ·10−2 7.9137 ·10−1

const. viol. 1.27 ·10−5 2.35 ·10−5 1.43 ·10−5 7.72 ·10−6 2.28 ·10−5

kkt tol 6.84 ·10−7 6.29 ·10−6 9.07 ·10−7 7.77 ·10−7 5.06 ·10−6

stage dur.
d∗

1 4.61 ·10−1 5.15 ·10−1 1.95 ·10−1 7.23 ·10−1 3.57 ·10−1

d∗
2 4.85 ·10−1 4.95 ·10−1 1.58 ·10−1 4.65 ·10−1 3.00 ·10−1

In Table 10.8 we furthermore evaluate each optimization criterion for all five OCPs solutions S, MW, E, TD,

and C, and compare it to the solution of the dynamics reconstruction R. As expected, the minimal values of

the optimization criteria φi, i = 2,3,4, are taken at the corresponding solutions MW, E, and TD, respectively.

Contrary to this, in the minimization of the stability criterion φ1, which is a distance measure and denoted by

S, the value is slightly bigger than in the result for the combined objective in C. However, both values are in

the range of 10−6, and, hence, comparable. In the solution MW the evaluated stability criterion φ1 is in the

same order of magnitude as for the reconstruction data in R. However, in sum the solution S shows a similar

distribution for all optimization criteria. Because both objectives – the stability criterion and the least-squares

objective in R – are distance measures, which are regularized with the same factor, the regularity might affect

this similarity. However, to obtain more information into what happens "inside" the patient it is desirable to

incorporate other measures and, therefore, varying criteria, such as the ones chosen here for minimization of

mechanical work, mechanical effort, and squared torque derivatives. In the minimization TD the values for

the mechanical work and mechanical effort are relatively high and comparable to the ones for the solution R.

Whereas, when each of the latter criteria φ2 and φ3 is minimized in MW and E, it also effects the optimization

criterionφ4, such that the value is higher as in the solutions S and R.

Table 10.8:Values of the contributions of each optimization criterionφi in the OCP solutions denoted by S, MW,
E, TD, and C as defined in Table 10.6. The results are compared to the values of the dynamics reconstruction
denoted by R.

S MW E TD C R

φ1 4.47 ·10−6 8.29 ·10−3 1.70 ·10−2 1.08 ·10−2 3.29 ·10−6 2.26 ·10−3

φ2 2.05 ·101 2.40 1.13 ·101 1.82 ·101 4.16 2.16 ·101

φ3 1.32 ·101 5.95 1.77 1.30 ·101 3.12 1.41 ·101

φ4 1.38 ·101 7.28 6.93 1.74 ·10−1 6.05 ·10−1 1.53 ·101

All synthesized CP gaits for solutions S, MW, E, TD, and C with settings listed in Table 10.6 are visualized in Fig-

ure 10.2, Figure 10.3, Figure 10.4, Figure 10.5, and Figure 10.6, respectively. With the introduced limited range of

motion in the knees and the patient-specific knee axes, the typical pathological gait, or so-called crouched gait,

can already be modeled sufficiently well with the multi-stage OCP formulation (6.35). If we take a look at the

optimal generalized positions as illustrated in Figure B.5, the optimal trajectories x9(t) and x16(t) of the knee

angles vary for all solutions. For the right knee angle x9(t) of OCP solutions S and E the values are close to the

dynamics reconstruction R. The trajectory of the left knee angle x16(t) is captured best for solution S. A further

interesting aspect is that the typical movement of the pelvis in direction of the y-axis (x1(t) in Figure B.5) with

its S-shape in the dynamics reconstuction R also appears for OCP solutions MW and TD. For the solution S,

where we minimize the stability criterion, this shifting of the pelvis is not observed. The other optimal trajec-

153

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

tories in S capture the reconstruction data reasonably well. Similarly to the solution S, in the solution C, which

minimizes a selected combination of weighted optimization criteria, the S-shape is not observed. In the OCP

solution E, where the mechanical effort is minimized, especially the movement of the pelvis in direction of the

z-axis differs to all other solutions. Almost no bouncing of the pelvis is observed and the corresponding opti-

mal trajectory denoted by x2(t) in Figure B.5 does not change much over time. On the contrary, for the solution

TD, a comparably large change can be observed. In the solution MW, where the mechanical work contributes

mainly to the objective function, this bouncing of the pelvis can be captured sufficiently well but lies slightly

higher as in the dynamics reconstruction R and OCP solution S. The optimal generalized active torques for the

dynamics reconstruction R and OCP solution S have a similar pattern. For all other solutions the appearing

generalized active torques show mostly smaller deflections. For a detailed comparison of the other optimal

differential states and controls we refer to Figure B.5 - Figure B.8 in appendix B.2. In sum, with the different

OCP solutions S, MW, E, TD, and C different aspects of the dynamics reconstruction are captured, such as the

S-shape in the movement of the pelvis or the typical crouched gait.

10.3.1 Summary and Outlook

The results in the reconstruction of given motion capture data in section 10.2 for the least-squares OC model as

derived in section 6.3 motivates us that the developed rigid multibody system model of the CP patient in chap-

ter 6 with the underlying dynamics can capture the main characteristic of the pathological gait. The analysis

of gait syntheses in section 10.3 by solving multi-stage OCPs with differently weighted optimization criteria,

show that a wide range of motion can be produced with various characteristics. Hence, we are optimistic that

with an optimal weighting of the objective function the gait pattern of a patient with CP can be captured within

an acceptable accuracy with more insight on what happens inside the patient. This optimal weighting can be

determined by solving the Bilevel Inverse OCP (6.42) from section 6.6, with given motion capture data, e.g.,

under consultation of the developed DISIMFAS from chapter 4. The choice can be underpinned by the fact,

that in the performed calculations on the lower level OCPs almost all inequality constraints as well as stated

bounds where inactive. Due to the reasons in section 6.6 the investigation of the DISIMFAS for solving the

Bilevel Inverse OCP (6.42) is left for future research.

154

NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL CHAPTER 10

Figure 10.2: Visualization of synthesized CP gait as solution of the multi-stage OCP (6.35) for setting denoted
by S from Table 10.6. Snapshots are arranged in reading direction, with initial position at upper left corner, and
final position at lower right corner.

Figure 10.3: Visualization of synthesized CP gait as solution of the multi-stage OCP (6.35) for setting denoted
by MW from Table 10.6. Snapshots are arranged in reading direction, with initial position at upper left corner,
and final position at lower right corner.

155

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

Figure 10.4: Visualization of synthesized CP gait as solution of the multi-stage OCP (6.35) for setting denoted
by E from Table 10.6. Snapshots are arranged in reading direction, with initial position at upper left corner, and
final position at lower right corner.

Figure 10.5: Visualization of synthesized CP gait as solution of the multi-stage OCP (6.35) for setting denoted by
TD from Table 10.6. Snapshots are arranged in reading direction, with initial position at upper left corner, and
final position at lower right corner.

156

NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL CHAPTER 10

Figure 10.6: Visualization of synthesized CP gait as solution of the multi-stage OCP (6.35) for setting denoted by
C from Table 10.6. Snapshots are arranged in reading direction, with initial position at upper left corner, and
final position at lower right corner.

157

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

10.4 Case Study: Identification of Weights for Optimal CP Gait by Deep Neural Networks

In the case study of this section, we investigate the proposed approach from section 6.7 for the special case

of varying only two instead of four objective weights when solving various OCPs (6.35). More specifically, the

weight α2 that corresponds to the optimization criterion (6.39) minimizing the absolute mechanical work, and

the weight α3 that corresponds to the criterion (6.40) minimizing the mechanical effort are considered. The

other objective weights are fixed to the values α1 = 103 and α4 = 10−1. In addition, for the varying objective

weights with αi =α
′
i ·10−1, i = 2,3 we ensure that

α
′
2 +α

′
3 = 1 and α

′
i ≥ 0, i = 2,3. (10.1)

In the following descriptions we mainly consider weight α
′
3 when solving various OCPs (6.35) to provide sim-

ulated training data for approximating the DNN (6.47). For varying values of objective weight α
′
3, weight α

′
2 is

defined by (10.1).

Before the trained DNN Φ̂DNN is used to obtain estimated objective weight α̂= α
′
3 for given measurements

η in the offline phase of algorithm 4, in the following we give a detailed description on the simulation of the

training data, and the DNN set-up and training in the online phase.

10.4.1 Simulation of Training Data

For training the approximated DNN, nS = 101 simulated data pairs (6.46) are generated by solving OCPs (6.35)

with varying weights α
′
3 with the software package MUSCOD-II in the setting as described in section 10.1. We

solve OCPs with

α
′
3 = (s−1)∆α, for s = 1, . . . ,nS, (10.2)

and grid width ∆α = 0.01. To apply the supervised learning approach of section 6.7, for each weight α∗
(s) =

(α
′
3)(s) ∈ [0,1] defined by (10.2) we consider q∗

(s) ∈Rnη with nη = 340 for s ∈ {1, . . . ,nS} and use both quantities for

constructing nS data pairs (6.46) for training. Therein, the vector q∗
(s) combines only a chosen subset of all gen-

eralized coordinates that are the solutions of OCPs (6.35) evaluated at given time points for varying objective

weight. We choose a subset, where the focus lies on the translation of the pelvis joint (in y- and z- direction) and

all rotations of the pelvis, the rotations in the hip joints (around x- and z- axes), and the rotations around the

patient-specific knee axes. The other generalized coordinates are not considered to reduce the dimension of

the simulated data without loosing too much information. In the future, the application of an attention mech-

anism within the approximated DNN can be included, such as, e.g., in the prominent publication "Attention is

All you Need" by Vaswani et al. [168].

10.4.2 DNN Set-Up and Training

The DNN set-up and training described in this section is performed within an own python implementation

using the KERAS library [35]. For the DNN approximation we choose a fully-connected feedforward network

Φ̂DNN : Rnη ×Rnθ → [0,1] with four layers, where the inputs are first normalized. The first three hidden layers

are all dense with node dimensions 3 ·nη,2 ·nη, and 1 ·nη. As activation, the ReLU function defined by (6.48)

is used. To prevent overfitting we use a so called dropout layer in KERAS with a rate of 0.1 that drops out some

inputs randomly during training. For the output layer we choose a sigmoid activation in KERAS without bias

term instead of a linear transformation, because the sigmoid function always returns a value between 0 and 1,

and, hence, the output lies in [0,1] as expected. The simulated data pairs generated as previously described in

subsection 10.4.1 are used to train, validate and test the DNN. The validation of the DNN model is performed

in each iteration of the optimization method applied on problem (6.47) on the actual estimated network pa-

rameter set to provide a performance indication during training. The test set is then used for investigating the

158

NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL CHAPTER 10

performance of the already trained DNN. For training we use 73 data pairs, for validation 18, and for testing

10, which are selected randomly. Note that the three chosen index sets, which correspond to the training, val-

idation, and testing sets are disjoint. As loss function (or objective function) the mean squared error option in

KERAS is chosen, such that problem (6.49) is minimized during training. As optimizer the ADAMmethod [101]

is set with a learning rate (or step size) of 0.001 and 100 epochs (or iterations).

If we denote a subset of the index set of all available simulated data pairs S = {1, . . . ,nS} with S ′ ⊆S , the mean

squared error on the given set is defined as

1

|S ′ |
∑

s∈S ′
‖Φ̂DNN(q∗

(s);θ)−α∗
(s)‖2

2. (10.3)

With randomly chosen training, validation and testing data out of all simulated data pairs, the solution of (6.49)

on the training set for the estimation of the DNN (6.47) resulted in a loss function of 2.2759·10−4 (mean squared

error (10.3)) for the determined network parameter vector θ̂. For the validation set a mean squared error (10.3)

of 2.9827·10−4 is achieved. This results indicate that an appropriate fit of the DNN model is accomplished, with

only a slightly higher value of (10.3) for the validation. This is confirmed by the testing of the estimated DNN.

Therein a small mean squared error (10.3) with a value of 7.1121 · 10−4 indicates that the estimated weights

α̂(s) = Φ̂DNN(q∗
(s); θ̂) are close to the true values α∗

(s), and suggests that our DNN model performs well on our

testing set of the simulated data pairs. Although only providing a relatively small number of simulated data

pairs compared to the dimension of the network parameters in the fully-connected feedforward network, the

estimated DNN model provides reasonable results for the simulated data pairs. Note, that so far no noise in the

simulated data is considered.

10.4.3 Identification of Weights via Trained DNN

In this section we synthesize measurements (η)(s) ∈ Rnη , s ∈ S ′
test from the testing set denoted by S ′

test ⊂ S with

independent, additive, and normally distributed errors ε(s) ∈ Rnη with zero mean and variances calculated for

each component of the vector separately under consideration of the standard deviations for each component

in the data set. The testing set is the same randomly selected set as previously used in subsection 10.4.2. But at

this point we investigate the performance of the previously estimated DNN on synthesized measurements with

added noise. We generate 10 distinct measurement vectors η(s) ∈Rnη for a subset of all generalized coordinates

evaluated at specific time points by applying

η(s) = q∗
(s) +ε(s), for s ∈S ′

test. (10.4)

To obtain the corresponding estimated weights α̂(s) we propagate each simulated measurement vector η(s) for

s ∈ S ′
test through the trained DNN. In Table 10.9 the results are summarized, where all weights are estimated

reasonably well by the DNN. The solution vector q∗
(s) of the OCP (6.35) computed for true weight α∗

(s) is then

compared to the solution vector denoted by q̂(s) ∈ Rnη comprising generalized coordinates of the solution of

the OCP (6.35) with estimated weight α̂(s) for each test data pair. This is evaluated by the relative error defined

as

q rel
(s) =

∥∥∥q̂(s) −q∗
(s)

∥∥∥
2

‖q∗
(s)‖2

, for s ∈S ′
test. (10.5)

This relative error for the reconstruction of the generalized coordinates is listed in Table 10.9. It can be observed

that the resulting DNN performs reasonably well on the testing set with added noise.

159

CHAPTER 10 NUMERICAL RESULTS FOR CEREBRAL PALSY GAIT MODEL

Table 10.9: Result of identification of weights α̂(s) in the CP gait model via DNN for one particular choice of the
testing data set with index s and comparison to true values denoted by α∗

(s). The discrepancy of both values is

listed, as well as the relative error q rel
(s) defined by (10.5) of the reconstruction of the generalized coordinates by

solving the OCPs (6.35) for the corresponding weights.

Index s True Valueα∗
(s) Estimated Value α̂(s) Discrepancy |α̂(s) −α∗

(s)| Rel. Error Reconstr. q rel
(s)

101 1.000 0.984 1.6 ·10−2 1.33%
82 0.810 0.814 4.0 ·10−3 0.68%
20 0.190 0.203 1.3 ·10−2 1.30%
17 0.160 0.157 3.0 ·10−3 0.84%
8 0.070 0.055 1.5 ·10−2 2.54%
35 0.340 0.350 1.0 ·10−2 3.20%
72 0.710 0.650 6.0 ·10−2 2.89%
41 0.400 0.428 2.8 ·10−2 2.19%
76 0.750 0.719 3.1 ·10−2 1.00%
9 0.080 0.073 7.0 ·10−3 2.51%

10.4.4 Summary and Outlook

In this section, we provide a first case study for the proposed supervised learning approach from section 6.7 for

the identification of objective weight α2 that corresponds to the optimization criterion (6.39) minimizing the

absolute mechanical work, and the weight α3 that corresponds to the criterion (6.40) minimizing the mechan-

ical effort. The other objective weights as well as the usually unknown model parameters in the OCP (6.35) are

fixed to specific values. Already for relatively small data sets for training, validation, and testing of the DNN

as described in subsection 10.4.2, we could achieve reasonable results in subsection 10.4.3 for the identifica-

tion of objective weights in the derived CP gait model from chapter 6, which is promising for future further

development of this approach. Some limitations of the DNN based supervised learning approach have to be

considered. For example, individual objective weights that correspond to the recorded gait of a CP patient

can only be estimated, if adequate simulated data for training is available. In our first case study, where we

exploited OCPs of the form (6.35) on a relatively small data set and for only two objective weights and their

relative impact on the simulated CP gaits, so far, the trained DNN cannot be used for the data provided by the

HEIDELBERG MOTIONLAB [173]. It should be considered that different combinations of objective weights may

lead to the same (or very similar) measurements – especially if the optimization criteria are not chosen well. In

the supervised learning approach we assumed that there exist a continuous function that maps measurements

onto objective weights, see section 6.7. This may lead to difficulties in the identification of weights via DNNs

and should be further investigated.

In future research the supervised learning approach from section 6.7 can be applied onto a broader range

of simulated data sets. Then it can be investigated in more detail, if the reconstructed CP gait from section 6.3

can be reproduced within this approach, and if the gait of a CP patient can be classified. Together with the

DISIMFAS for solving the Bilevel Inverse OCP (6.42) for a more detailed characterization of the CP gait model

of a patient including the identification of usually unknown model parameters, classification of the gait as well

as information for intervention planning for the physicians can be provided.

160

Conclusion and Outlook

We developed mathematical models and numerical methods for solving Bilevel Inverse OCPs of constrained

biomechanical multibody system models. With the results achieved in this thesis we can contribute to the

establishment of a classification and diagnosis scheme for the pathological gait of CP patients. For this purpose

we have developed a suitable biomechanical rigid multibody system for a patient with CP. We have shown that

the underlying dynamics can capture the main characteristics of the pathological gait. Because of the common

assumption that the human gait is a result of a person’s decision guided by certain optimization criteria and

constraints we have derived an OC model for the gait of a CP patient, where the dynamics serve as constraints.

A calibrated patient-specific gait model can be determined under consideration of given motion capture

data from the HEIDELBERG MOTIONLAB. To achieve this goal, we have formulated a Bilevel Inverse OCP: on

the upper level of this bilevel optimization problem we have a PE Problem, constrained by the lower level

parametrized OCP describing the gait of a patient with CP. However, Bilevel Inverse OCPs are challenging and

difficult to solve. We developed a new numerical method for solving these kinds of problems, where infor-

mation from given measurements can be integrated by retaining a fixed structure of the active inequality con-

straints. With the newly developed software package PARDYNOPT we created a highly efficient implementation

of the proposed DISIMFAS by exploiting given structures. The sustainable software establishment allows for

future extensions and implementations of other mathematical methods by reusing already available software

modules. The successful application of the DISIMFAS implemented in PARDYNOPT in selected case studies –

a basic human-like walking motion included – gives hope for future investigations for the new derived CP gait

model to provide a non-invasive tool for the physicians to see what happens inside the patient as our ultimate

goal. A first successful study of a supervised learning approach based on DNNs for the identification of opti-

mal weights in our developed CP gait model can support this intention. may also be an alternative, feasible

approach for this aim.

The pathological gait of CP patients is still an ongoing field of research. Because our derived CP gait model

is easily adjustable to other patients, as well as healthy subjects, with the derived mathematical method for

solving Bilevel Inverse OCPs, this will allow to draw conclusions on the locomotor system condition of patients

in the future by routinely obtainable motion capture data of their gait. Comparison of the optimization crite-

ria and other individual parameters of this model of healthy subjects and CP patients will allow investigating

the pathological condition and classify and stratify CP patients for surgery and alternative therapy manage-

ment according to yet to be identified criteria. This is especially important because the exact causalities of

the pathological gait of CP patients are still unknown and no general, factual approach to surgical intervention

exists.

161

162

Appendix A Software Package: PARDYNOPT

A.1 Selected Initialization Methods in PARDYNOPT

Listing A.1: Initialization methods in class ProblemMs

1 /**

2 * \brief Initialize bounds on differential states.

3 * \param xd_lb lower bounds

4 * \param xd_ub upper bounds

5 */

6 void ProblemMs::initialize_states_diff_bounds(dbl_t* xd_lb,

7 dbl_t* xd_ub);

8

9 /**

10 * \brief Initialize initial values of differential states.

11 * \param xd_s initial values

12 * \param xd_free_s boolean array, true indicates free variables

13 * \param idx_stage stage index

14 */

15 void ProblemMs::initialize_states_diff_initial_values(dbl_t* xd_s,

16 bool_t* xd_free_s,

17 Index idx_stage = 0);

18

19 /**

20 * \brief Initialize final conditions on differential states.

21 * \param xd_f final values

22 * \param xd_free_f boolean array, true indicates free variables

23 * \param idx_stage stage index

24 */

25 void ProblemMs::initialize_states_diff_final_condition(dbl_t* xd_f,

26 bool_t* xd_free_f,

27 Index idx_stage);

28

29 /**

30 * \brief Initialize control parameters with same values on all nodes.

31 * \param q_ini initial guesses

32 * \param q_lb lower bounds

33 * \param q_ub upper bounds

34 * \param q_free boolean array, true indicates free variables

35 */

36 void ProblemMs::initialize_control_parameters(dbl_t* q_ini,

37 dbl_t* q_lb,

38 dbl_t* q_ub,

39 bool_t* q_free = nullptr);

40

41 /**

42 * \brief Initialize model parameters.

43 * \param mp_ini initial guesses

44 * \param mp_lb lower bounds

45 * \param mp_ub upper bounds

46 * \param mp_free boolean array, true indicates free variables

47 */

48 void ProblemMs::initialize_model_parameters(dbl_t* mp_ini,

49 dbl_t* mp_lb,

163

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

50 dbl_t* mp_ub,

51 bool_t* mp_free = nullptr);

52

53 /**

54 * \brief Initialize duration parameters.

55 * \param dp_ini initial guesses

56 * \param dp_lb lower bounds

57 * \param dp_ub upper bounds

58 * \param dp_free boolean array, true indicates free variables

59 */

60 void ProblemMs::initialize_duration_parameters(dbl_t* dp_ini,

61 dbl_t* dp_lb,

62 dbl_t* dp_ub,

63 bool_t* dp_free = nullptr);

64

65 /**

66 * \brief Initialize all measurements related to one stage.

67 * \param idx_stage stage index

68 * \param meas measurements

69 * \param sigma standard deviation

70 */

71 void ProblemMsParaOcp::initialize_all_measurements_on_all_nodes_of_stage(Index idx_stage,

72 DMat* meas,

73 Vec* sigma = nullptr);

A.2 A Complete Example - The Rocket Car

In this section we give a complete example how to set up an OCP and a Bilevel Inverse OCP of the rocket car

example as described in more detail in chapter 8. For convenience, we restate both problem formulations and

start with the OCP as follows:

min
x ,u,d

Φ(·) =α1 ·d1 −x2(1) (A.1a)

s. t. ẋ0(t) = d1x1(t), t ∈ T , (A.1b)

ẋ1(t) = d1
(
u0(t)−p0x2

1(t)
)

/
(
x2(t)+γ)

, t ∈ T , (A.1c)

ẋ2(t) =−d1%u2
0(t), t ∈ T , (A.1d)

x0(0) = 0, x1(0) = 0, x2(0) = 1, (A.1e)

x0(1) = 10, x1(1) = 1, (A.1f)

−10 ≤ x0(t) ≤ 10, t ∈ T , (A.1g)

−10 ≤ x1(t) ≤ 10, t ∈ T , (A.1h)

0 ≤ x2(t) ≤ 10, t ∈ T , (A.1i)

−1 ≤ u0(t) ≤ 1, t ∈ T , (A.1j)

0 ≤ d1, (A.1k)

with the quantities defined in Table 8.1, the objective weightα1 set to 0.06, and the model parameters p0 to 0.1,

γ to 0.1, and % to 0.1. The corresponding Bilevel Inverse OCP can be formulated as

min
α1,p0,
x ,u,d

Ψ(·) = 1

2

nm−1∑
n=0

2∑
k=0

(
xk(t m

n)−ηnk
)2

σ2
k

s. t. (x ,u,d) solve OCP (A.1),

0 ≤α1 ≤ 10,

−20 ≤ p0 ≤ 20,

164

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

where the upper level PE is constrained by the lower level OCP (A.1) and the objective weight α1 and the model

parameter p0 have to be determined by fitting the model to given measurements. For both problems an object

of the ProblemDescription class has to be instantiated as described in Listing A.2.

Listing A.2: ProblemDescription for rocket car example

1

2 /***/

3 //****** Problem Description ******//

4 /***/

5

6 Dimension num_stages = 1;

7 Dimension* num_nodes = new Dimension[num_stages];

8 num_nodes[0] = 20;

9

10 Model** model_array = new Model*[num_stages];

11 Model* model = new ModelSolvInd("./librocket_car_dyn_model_para_ocp.so",

12 "rocket_car_para_ocp");

13 model_array[0] = model;

14

15 StageType* stage_type = new StageType[num_stages];

16 stage_type[0] = StageType::dynamic;

17

18 ProblemDescription* problem_desc = new ProblemDescription(model_array,

19 num_stages,

20 stage_type,

21 num_nodes);

22

23 problem_desc->finalize_problem_description();

Beside the number of model stages with its type and the number of nodes per stage, an array of dynamic

models for all stages have to be defined. In the actual implementation of PARDYNOPT dynamic models can

be described via SOLVIND dynamic model descriptions. The user has to implement a class which inher-

its from the parent class IDynamicModelDescription and provides a constructor as shown in Listing A.3.

In the constructor, the dimensions of differential states, controls, model parameters and duration parame-

ters are defined. Furthermore, all previously implemented model functions are set with the corresponding

output dimensions. Such a SOLVIND model can be enabled within the PARDYNOPT software package by

calling the constructor of the ModelSolvInd class and providing the corresponding shared library, here the

"./librocket_car_dyn_model_para_ocp.so" with its name "rocket_car_para_ocp" is used for the registra-

tion in SOLVIND.

Listing A.3: SOLVIND model for the rocket car example.

1 #include <cmath>

2 #include <cstdlib>

3 #include <sstream>

4

5 #include "sonic++.h"

6

7 #include "ind_compile_time_info.hpp"

8 #include "ind_dyn_model_description.hpp"

9

10 using namespace SolvInd;

11

12 template <typename T>

13 svLong rocket_car_rhs(TArgs_ffcn<T>& args, TDependency* depends)

14 {

15 T x, v, m;

16 T u;

165

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

17 T pfr;

18

19 double pcm = 0.1;

20 double pfc = 0.1;

21

22 // STATE: position

23 x = args.xd[0];

24 // STATE: speed

25 v = args.xd[1];

26 // STATE: fuel mass

27 m = args.xd[2];

28 // CONTROL: control force

29 u = args.u[0];

30 // PARAMETER: friction

31 pfr = args.p[0];

32

33 args.rhs[0] = v;

34 args.rhs[1] = u / (m + pcm) - pfr * v * v / (m + pcm);

35 args.rhs[2] = -pfc * u * u;

36

37 return 0;

38 }

39

40 /***/

41

42 template <typename T>

43 static svLong rocket_car_mfcn(SolvInd::TArgs_mfcn<T>& args, TDependency* depends)

44 {

45 args.mval[0] = args.p[1] * args.t[0] - args.xd[2];

46 return 0;

47 }

48

49 /***/

50

51 template <typename T>

52 static svLong rocket_car_lsq(SolvInd::TArgs_lsqfcn<T>& args, TDependency* depends)

53 {

54 args.res[0] = args.xd[0];

55 args.res[1] = args.xd[1];

56 args.res[2] = args.xd[2];

57 return 0;

58 }

59

60 /***/

61

62 class myDynModel : public IDynamicModelDescription

63 {

64 public:

65 myDynModel(const std::string& options = "");

66

67 private:

68 static FFactory createMe;

69 static IDynamicModelDescription::TRegisterTrigger myTrigger;

70 };

71

72 /***/

73

74 IDynamicModelDescription::TRegisterTrigger myDynModel::myTrigger(

75 std::string("rocket_car_para_ocp"),

76 &myDynModel::createMe);

166

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

77

78 /***/

79

80 IDynamicModelDescription* myDynModel::createMe(const std::string& options)

81 {

82 return new myDynModel(options);

83 }

84

85 /***/

86

87 myDynModel::myDynModel(const std::string& options)

88 : IDynamicModelDescription()

89 {

90 m_dims.dim[Component_XD] = 3;

91 m_dims.dim[Component_P] = 2;

92 m_dims.dim[Component_U] = 1;

93 m_dims.dim[Component_H] = 1;

94

95 m_dims.nTrajectories = 1;

96

97 m_functions.setFunction<Function_ffcn>(&rocket_car_rhs<double>);

98 m_functions.setFunction<Function_ffcn>(&rocket_car_rhs<adouble>);

99

100 m_functions.setFunction<Function_mfcn>(&rocket_car_mfcn<double>);

101 m_functions.setFunction<Function_mfcn>(&rocket_car_mfcn<adouble>);

102

103 m_functions.setFunction<Function_lsqfcn_s>(&rocket_car_lsq<double>);

104 m_functions.setFunction<Function_lsqfcn_s>(&rocket_car_lsq<adouble>);

105

106 m_functions.setFunction<Function_lsqfcn_i>(&rocket_car_lsq<double>);

107 m_functions.setFunction<Function_lsqfcn_i>(&rocket_car_lsq<adouble>);

108

109 m_functions.setFunction<Function_lsqfcn_e>(&rocket_car_lsq<double>);

110 m_functions.setFunction<Function_lsqfcn_e>(&rocket_car_lsq<adouble>);

111

112

113 m_fcnOutputDims.dim[Function_mfcn] = 1;

114 m_fcnOutputDims.dim[Function_ffcn] = m_dims.dim[Component_XD];

115

116 m_fcnOutputDims.dim[Function_lsqfcn_s] = m_dims.dim[Component_XD];

117 m_fcnOutputDims.dim[Function_lsqfcn_i] = m_dims.dim[Component_XD];

118 m_fcnOutputDims.dim[Function_lsqfcn_e] = m_dims.dim[Component_XD];

119

120 }

By default the Direct Multiple Shooting Method is implemented on a normalized equidistant multiple shoot-

ing grid defined by the given number of nodes with the SOLVIND interface for piecewise constant control dis-

cretization. Furthermore, the NodeEvaluatorSolvInd implementation for function evaluation and derivative

generation within the SOLVIND suite and the NlpSolverIpopt interface for IPOPT is enabled. After calling

finalize_problem_description(), a ProblemDescription object is initialized completely and can be used

to set up an OCP or a Bilevel Inverse OCP in PARDYNOPT for the rocket car example.

A.2.1 OCP for Rocket Car Example

In Listing A.4 we give an example how to set up a ProblemMsOcp object and start the solution process by calling

solve() after finalized initialization.

Listing A.4: ProblemMsOcp for rocket car example

167

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

1 #include "utils/types.hxx"

2 #include "model/model_solvind.hxx"

3 #include "problem/problem_ms_ocp.hxx"

4 using namespace pdo;

5

6 int main(void)

7 {

8 /***/

9 //****** Problem Description ******//

10 /***/

11

12 // include listing with problem description for rocket car example

13

14

15 /***/

16 //****** Problem OCP with Multiple Shooting ******//

17 /***/

18

19 Problem* problem = new ProblemMsOcp(problem_desc);

20

21 /***/

22 // initialize states xd - s, f, lb, ub, free_s, free_f

23 dbl_t xd_s[] = { 0.0, 0.0, 1.0};

24 dbl_t xd_f[] = {10.0, 1.0, 0.0};

25

26 dbl_t xd_lb[] = {-10.0, -10.0, 0.0};

27 dbl_t xd_ub[] = { 10.0, 10.0, 10.0};

28

29 bool_t xd_free_s[] = {false, false, false};

30 bool_t xd_free_f[] = {false, false, true};

31

32

33 problem->initialize_states_diff_bounds(xd_lb, xd_ub);

34 problem->initialize_states_diff_initial_values(xd_s, xd_free_s);

35 problem->initialize_states_diff_final_condition(xd_f, xd_free_f);

36 /***/

37 // initialize control parameters - ini, lb, ub, free

38 dbl_t q_ini[] = {1.0};

39 dbl_t q_lb[] = {-1.0};

40 dbl_t q_ub[] = { 1.0};

41

42 problem->initialize_control_parameters(q_ini, q_lb, q_ub);

43 /***/

44 // initialize model parameters - ini, lb, ub, free

45 dbl_t mp_ini[] = {0.1, 0.06};

46 dbl_t mp_lb[] = {-20.0, 0.};

47 dbl_t mp_ub[] = { 20.0, 10.};

48 bool_t mp_free[] = {false, false};

49

50 problem->initialize_model_parameters(mp_ini, mp_lb, mp_ub, mp_free);

51 /***/

52 // initialize duration parameters dp - ini, lb, ub, free

53 dbl_t dp_ini[] = {1.0};

54 dbl_t dp_lb[] = {0.02};

55 dbl_t dp_ub[] = {10.0};

56 bool_t dp_free[] = {true};

57

58 problem->initialize_duration_parameters(dp_ini, dp_lb, dp_ub, dp_free);

59 /***/

60

168

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

61 problem->finalize_initialization();

62

63 problem->solve();

64

65 /***/

66 }

In the OCP we consider the model parameter p0 set to 0.1 and the objective weight α1 to 0.06. They corre-

spond to mp_ini[] = 0.1, 0.06 in the PARDYNOPT framework and in the SOLVIND model to p[0] and p[1],

respectively. Note that the least-squares function as described in the SOLVIND model in Listing A.3 does not

enter the OCP, but is an integral part in the following section, where this function describes the objective of the

PE problem.

A.2.2 Bilevel Inverse OCP for Rocket Car Example

Similar to the previous OCP in Listing A.5, we give an example how to set up a ProblemMsParaOcpActiveSetFix

object to start the solution process for the Bilevel Inverse OCP with the DISIMFAS described in chapter 4 by

calling solve() after finalized initialization.

Listing A.5: Solve ProblemMsParaOcpActiveSetFix instance for rocket car example

1 #include "utils/types.hxx"

2 #include "model/model_solvind.hxx"

3 #include "problem/problem_ms_para_ocp_active_set_fix.hxx"

4 using namespace pdo;

5

6 int main(void)

7 {

8 /***/

9 //****** Problem Description ******//

10 /***/

11

12 // include listing with problem description for rocket car example

13

14

15 /***/

16 //****** Problem Bilevel Inverse OCP on Fixed Active Set with Multiple Shooting *******//

17 /***/

18

19 Problem* problem = new ProblemMsParaOcpActiveSetFix(problem_desc);

20

21 /***/

22 // initialize states xd - s, f, lb, ub, free_s, free_f

23 dbl_t xd_s[] = { 0.0, 0.0, 1.0};

24 dbl_t xd_f[] = {10.0, 1.0, 0.0};

25

26 dbl_t xd_lb[] = {-10.0, -10.0, 0.0};

27 dbl_t xd_ub[] = { 10.0, 10.0, 10.0};

28

29 bool_t xd_free_s[] = {false, false, false};

30 bool_t xd_free_f[] = {false, false, true};

31

32

33 problem->initialize_states_diff_bounds(xd_lb, xd_ub);

34 problem->initialize_states_diff_initial_values(xd_s, xd_free_s);

35 problem->initialize_states_diff_final_condition(xd_f, xd_free_f);

36 /***/

37 // initialize control parameters - ini, lb, ub, free

38 dbl_t q_ini[] = {1.0};

169

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

39 dbl_t q_lb[] = {-1.0};

40 dbl_t q_ub[] = { 1.0};

41

42 problem->initialize_control_parameters(q_ini, q_lb, q_ub);

43 /***/

44 // initialize model parameters - ini, lb, ub, free

45 dbl_t mp_ini[] = {0.1, 0.5};

46 dbl_t mp_lb[] = {-20.0, 0.};

47 dbl_t mp_ub[] = { 20.0, 10.};

48 bool_t mp_free[] = {false, false}; // parameters are fixed in the OCP model!!!

49

50 problem->initialize_model_parameters(mp_ini, mp_lb, mp_ub, mp_free);

51 /***/

52 // initialize duration parameters dp - ini, lb, ub, free

53 dbl_t dp_ini[] = {1.0};

54 dbl_t dp_lb[] = {0.02};

55 dbl_t dp_ub[] = {10.0};

56 bool_t dp_free[] = {true};

57

58 problem->initialize_duration_parameters(dp_ini, dp_lb, dp_ub, dp_free);

59 /***/

60 // initialize measurements

61 Dimension num_lsq = model->mModelDescription->get_out_dim_lsq();

62 DMat* meas = new DMat(num_lsq, num_nodes[0]);

63

64 // get measurements by user defined function

65 get_measurements(meas);

66

67 // states can also be initialized with measurements if preferred

68 // problem->initialize_states_diff_values_with_measurements_on_all_nodes_of_stage(0, meas);

69

70 Vec* sigma = new Vec(num_lsq);

71 (*sigma)(0) = 0.05 * 5.0;

72 (*sigma)(1) = 0.05 * 1.0;

73 (*sigma)(2) = 0.05 * 0.9;

74

75 problem->initialize_all_measurements_on_all_nodes_of_stage(0, meas, sigma);

76 /***/

77 /***/

78

79 problem->finalize_initialization();

80

81 problem->solve();

82

83 /***/

84 }

After instantiation of a ProblemMsParaOcpActiveSetFix object by calling its constructor and passing the pre-

viously defined ProblemDescription object, all quantities related to the lower level OCP are treated in the

same way as in the previous paragraph. In addition to this, given measurements have to be initialized in the

Bilevel Inverse OCP, which enter the least-squares objective. Note, that although the parameters that include

the objective weight α1 and the model parameter p0 are free variables in the upper level PE problem, these

are set to be fixed in the lower level OCP formulation of Listing A.5. In the Single-Stage Bilevel Inverse OCP in

subsection 8.1.2, where we choose generated pseudo-measurements from an OCP with the objective weightα1

set to 0.06 and the model parameter p0 set to 0.1, no active working set has to be specified by the user. In the

Two-Stage and Three-Stage formulations as described in section 8.1, the fixed working sets, which are defined

by the active lower or upper bounds of the dircretized control parameters, can be set in the WorkingSet of

the instantiated problem. With the method mFix->set_status_of_index(Index index, WorkingSetStatus

170

APPENDIX A SOFTWARE PACKAGE: PARDYNOPT

status) the user can choose between WorkingSetStatus::upper and WorkingSetStatus::lower, see List-

ing A.6, where index defines the index of the NLP variables vector related to the OCP. In the future a more user

friendly interface will be provided.

Listing A.6: Setting fixed working set.

1 #include "working_set/working_set_bounds.hxx"

2 using namespace pdo;

3

4 int main(void)

5 {

6 ...

7 // specify working set

8 WorkingSet* bounds =

9 dynamic_cast <ProblemMsParaOcpActiveSetFix*> (problem)->mWorkingSetModelBounds;

10 bounds->mFix->set_status_of_index(0, WorkingSetStatus::upper);

11 bounds->mFix->set_status_of_index(4, WorkingSetStatus::lower);

12

13 }

171

172

Appendix B CP Gait Model

B.1 Optimal Differential States and Controls of Dynamics Reconstruction

0 0.5 1

−0.2

0

0.2

0.4

0.6

time t

x 0
(t

)

opt. generalized positions of R
measurements

0 0.5 1

0.14

0.16

0.18

time t

x 1
(t

)

0 0.5 1

0.63

0.64

0.65

time t

x 2
(t

)

0 0.5 1

−0.1

0

time t

x 3
(t

)

0 0.5 1

2

4

6

·10−2

time t

x 4
(t

)

0 0.5 1

−0.1

0

time t

x 5
(t

)

0 0.5 1

−0.8

−0.6

−0.4

−0.2

time t

x 6
(t

)

0 0.5 1

0.1

0.2

0.3

time t

x 7
(t

)

0 0.5 1

0

0.1

0.2

time t

x 8
(t

)

0 0.5 1

1.4

1.5

1.6

time t

x 9
(t

)

0 0.5 1
−2.2

−2

−1.8

−1.6

−1.4

−1.2

time t

x 1
0
(t

)

0 0.5 1

−0.5

0

time t

x 1
1
(t

)

0 0.5 1

−0.4

−0.2

0

time t

x 1
2
(t

)

0 0.5 1

−0.8

−0.6

−0.4

−0.2

time t

x 1
3
(t

)

0 0.5 1

−0.1

0

0.1

time t

x 1
4
(t

)

0 0.5 1

−0.1

0

0.1

time t

x 1
5
(t

)

0 0.5 1
1.2

1.3

1.4

1.5

time t

x 1
6
(t

)

0 0.5 1

−2

−1.5

time t

x 1
7
(t

)

0 0.5 1

0.2

0.4

0.6

0.8

time t

x 1
8
(t

)

0 0.5 1

0.2

0.4

0.6

time t

x 1
9
(t

)

Figure B.1: This figure depicts the 20 optimal generalized positions x0(t)− x19(t) in the solution of the least-
squares OCP (6.18) denoted by R. This result is compared to some given measurements. These measurements
include the processed Vicon angles and calculated knee angles from given Euler angles as described in sec-
tion 10.2 and subsection 6.2.6.

173

APPENDIX B CP GAIT MODEL

0 0.5 1
0.7

0.8

0.9

1

time t

x 2
0
(t

)

opt. generalized velocities of R

0 0.5 1

−0.2

0

0.2

time t

x 2
1
(t

)

0 0.5 1

−0.1

0

0.1

0.2

time t

x 2
2
(t

)

0 0.5 1

−1

0

1

time t

x 2
3
(t

)

0 0.5 1

−0.5

0

0.5

1

time t

x 2
4
(t

)

0 0.5 1

−2

0

2

time t

x 2
5
(t

)

0 0.5 1

−4

−2

0

2

time t

x 2
6
(t

)
0 0.5 1

−2

0

time t

x 2
7
(t

)
0 0.5 1

−5

0

time t

x 2
8
(t

)

0 0.5 1

−2

−1

0

1

2

time t

x 2
9
(t

)

0 0.5 1

−10

0

10

time t

x 3
0
(t

)

0 0.5 1

−10

−5

0

5

time t
x 3

1
(t

)

0 0.5 1

0

10

20

time t

x 3
2
(t

)

0 0.5 1

−4

−2

0

2

time t

x 3
3
(t

)

0 0.5 1

0

2

4

time t

x 3
4
(t

)

0 0.5 1

0

2

time t

x 3
5
(t

)

0 0.5 1

−4

−2

0

2

time t

x 3
6
(t

)

0 0.5 1
−10

−5

0

5

10

time t

x 3
7
(t

)

0 0.5 1

−10

−5

0

5

time t

x 3
8
(t

)

0 0.5 1

−2

0

2

time t

x 3
9
(t

)

Figure B.2: This figure depicts the 20 optimal generalized velocities x20(t)− x39(t) in the solution of the least-
squares OCP (6.18) denoted by R.

174

APPENDIX B CP GAIT MODEL

0 0.5 1

0

50

100

time t

x 4
0
(t

)

opt. generalized active torques of R

0 0.5 1

−40

−20

0

20

time t

x 4
1
(t

)

0 0.5 1

−20

−10

0

10

20

time t

x 4
2
(t

)

0 0.5 1

−50

0

time t

x 4
3
(t

)

0 0.5 1

0

50

100

150

time t

x 4
4
(t

)

0 0.5 1

−80

−60

−40

−20

0

time t

x 4
5
(t

)

0 0.5 1

0

50

100

150

time t

x 4
6
(t

)

0 0.5 1

0

50

time t

x 4
7
(t

)

0 0.5 1

0

20

40

time t

x 4
8
(t

)

0 0.5 1

−20

0

time t

x 4
9
(t

)

0 0.5 1

−50

0

50

100

time t

x 5
0
(t

)

0 0.5 1

0

50

100

time t

x 5
1
(t

)

0 0.5 1

0

50

100

time t

x 5
2
(t

)

0 0.5 1

−100

−50

0

time t

x 5
3
(t

)

Figure B.3: This figure depicts the 14 optimal generalized active torques x40(t)− x53(t) in the solution of the
least-squares OCP (6.18) denoted by R.

175

APPENDIX B CP GAIT MODEL

0 0.5 1

−2

0

2
·103

time t

u
0
(t

)

opt. generalized controls of R

0 0.5 1

0

0.5

·103

time t

u
1
(t

)

0 0.5 1

−2

0

2

·103

time t

u
2
(t

)

0 0.5 1

0

1

·103

time t

u
3
(t

)

0 0.5 1

−2

0

·103

time t

u
4
(t

)

0 0.5 1
−1

0

1

·103

time t

u
5
(t

)

0 0.5 1
−2

−1

0

·103

time t

u
6
(t

)

0 0.5 1

0

2

4

·103

time t

u
7
(t

)

0 0.5 1

0

1

2

·103

time t

u
8
(t

)

0 0.5 1

−1

−0.5

0

0.5

·103

time t

u
9
(t

)

0 0.5 1

−4

−2

0

2

·103

time t

u
10

(t
)

0 0.5 1

0

2

4
·103

time t

u
11

(t
)

0 0.5 1

0

1

2
·103

time t

u
12

(t
)

0 0.5 1

−2

−1

0

·103

time t

u
13

(t
)

Figure B.4: This figure depicts the 14 optimal controls u0(t)−u13(t) in the solution of the least-squares OCP
(6.18) denoted by R.

176

APPENDIX B CP GAIT MODEL

B.2 Optimal Differential States and Controls of CP Gait Synthesis

0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

time t

x 0
(t

)

opt. generalized positions of R
opt. generalized positions of S
opt. generalized positions of MW
opt. generalized positions of E
opt. generalized positions of TD
opt. generalized positions of C

0 0.5 1 1.5 2

0.12

0.14

0.16

0.18

time t
x 1

(t
)

0 0.5 1 1.5 2

0.6

0.65

0.7

time t

x 2
(t

)

0 0.5 1 1.5 2

−0.2

−0.1

0

time t

x 3
(t

)

0 0.5 1 1.5 2
−0.1

0

0.1

time t

x 4
(t

)

0 0.5 1 1.5 2

−0.2

0

0.2

time t

x 5
(t

)

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

time t

x 6
(t

)

0 0.5 1 1.5 2

0

0.2

time t

x 7
(t

)

0 0.5 1 1.5 2

0

0.2

time t

x 8
(t

)

0 0.5 1 1.5 2

1.4

1.6

time t

x 9
(t

)

0 0.5 1 1.5 2

−2

−1.5

time t

x 1
0
(t

)

0 0.5 1 1.5 2

−0.4

−0.2

0

time t

x 1
1
(t

)

0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

time t

x 1
2
(t

)

0 0.5 1 1.5 2

−0.5

0

time t

x 1
3
(t

)

0 0.5 1 1.5 2

−0.2

0

0.2

0.4

time t

x 1
4
(t

)

0 0.5 1 1.5 2

−0.2

0

0.2

time t

x 1
5
(t

)

0 0.5 1 1.5 2

1.2

1.4

1.6

time t

x 1
6
(t

)

0 0.5 1 1.5 2

−2

−1.5

time t

x 1
7
(t

)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

time t

x 1
8
(t

)

0 0.5 1 1.5 2

0.2

0.4

0.6

time t

x 1
9
(t

)

Figure B.5: This figure depicts the 20 optimal generalized positions x0(t)− x19(t) of five solutions of OCP (6.35)
on normalized stage durations with differenty weighted objective denoted by S, MW, E, TD and C, as defined in
Table 10.6. This results are compared to the corresponding optimal states of the dynamics reconstruction (R)
(for a discussion, see section 10.3).

177

APPENDIX B CP GAIT MODEL

0 0.5 1 1.5 2

1

2

3

time t

x 2
0
(t

)

opt. generalized velocities of R
opt. generalized velocities of S
opt. generalized velocities of MW
opt. generalized velocities of E
opt. generalized velocities of TD
opt. generalized velocities of C

0 0.5 1 1.5 2

−0.2

0

0.2

time t
x 2

1
(t

)
0 0.5 1 1.5 2

−0.2

0

0.2

0.4

time t

x 2
2
(t

)

0 0.5 1 1.5 2

−1

0

1

time t

x 2
3
(t

)

0 0.5 1 1.5 2
−1

0

1

time t

x 2
4
(t

)

0 0.5 1 1.5 2

−2

0

2

time t

x 2
5
(t

)

0 0.5 1 1.5 2

−5

0

5

time t
x 2

6
(t

)

0 0.5 1 1.5 2
−4

−2

0

2

time t

x 2
7
(t

)

0 0.5 1 1.5 2

−5

0

5

time t

x 2
8
(t

)

0 0.5 1 1.5 2

−5

0

5

time t

x 2
9
(t

)

0 0.5 1 1.5 2

0

20

40

time t

x 3
0
(t

)

0 0.5 1 1.5 2
−20

−10

0

10

time t

x 3
1
(t

)

0 0.5 1 1.5 2

−10

0

10

20

time t

x 3
2
(t

)

0 0.5 1 1.5 2

−5

0

5

time t

x 3
3
(t

)

0 0.5 1 1.5 2
−2

0

2

4

time t

x 3
4
(t

)

0 0.5 1 1.5 2

−2

0

2

time t

x 3
5
(t

)

0 0.5 1 1.5 2

−10

−5

0

5

time t

x 3
6
(t

)

0 0.5 1 1.5 2

−10

0

10

20

30

time t

x 3
7
(t

)

0 0.5 1 1.5 2

−20

−10

0

10

time t

x 3
8
(t

)

0 0.5 1 1.5 2

0

5

time t

x 3
9
(t

)

Figure B.6: This figure depicts the 20 optimal generalized velocities x20(t)−x39(t) of five solutions of OCP (6.35)
on normalized stage durations with differenty weighted objective denoted by S, MW, E, TD and C, as defined in
Table 10.6. This results are compared to the corresponding optimal states of the dynamics reconstruction (R).

178

APPENDIX B CP GAIT MODEL

0 0.5 1 1.5 2
−50

0

50

100

time t

x 4
0
(t

)

opt. generalized active torques of R
opt. generalized active torques of S
opt. generalized active torques of MW
opt. generalized active torques of E
opt. generalized active torques of TD
opt. generalized active torques of C

0 0.5 1 1.5 2

−40

−20

0

20

time t

x 4
1
(t

)

0 0.5 1 1.5 2

−20

0

20

time t

x 4
2
(t

)

0 0.5 1 1.5 2

−100

−50

0

time t

x 4
3
(t

)

0 0.5 1 1.5 2

0

50

100

150

time t

x 4
4
(t

)

0 0.5 1 1.5 2

−50

0

time t

x 4
5
(t

)

0 0.5 1 1.5 2

0

100

time t

x 4
6
(t

)

0 0.5 1 1.5 2

−50

0

50

time t

x 4
7
(t

)

0 0.5 1 1.5 2

0

20

40

time t

x 4
8
(t

)

0 0.5 1 1.5 2

−20

0

time t

x 4
9
(t

)

0 0.5 1 1.5 2

−100

0

100

time t

x 5
0
(t

)

0 0.5 1 1.5 2

0

50

100

time t

x 5
1
(t

)

0 0.5 1 1.5 2

0

50

100

time t

x 5
2
(t

)

0 0.5 1 1.5 2

−100

−50

0

time t

x 5
3
(t

)

Figure B.7: This figure depicts the 14 optimal generalized active torques x40(t)− x53(t) of five solutions of OCP
(6.35) on normalized stage durations with differenty weighted objective denoted by S, MW, E, TD and C, as
defined in Table 10.6. This results are compared to the corresponding optimal states of the dynamics recon-
struction (R).

179

APPENDIX B CP GAIT MODEL

0 0.5 1 1.5 2

−6

−4

−2

0

2
·103

time t

u
0
(t

)

opt. controls of R
opt. controls of S
opt. controls of MW
opt. controls of E
opt. controls of TD
opt. controls of C

0 0.5 1 1.5 2

−0.5

0

0.5

·103

time t

u
1
(t

)

0 0.5 1 1.5 2

−2

0

2

·103

time t

u
2
(t

)

0 0.5 1 1.5 2
−1

0

1

·103

time t

u
3
(t

)

0 0.5 1 1.5 2

−4

−2

0

2
·103

time t

u
4
(t

)

0 0.5 1 1.5 2
−1

0

1

·103

time t

u
5
(t

)

0 0.5 1 1.5 2
−2

−1

0

1

·103

time t

u
6
(t

)

0 0.5 1 1.5 2
−2

0

2

4

·103

time t

u
7
(t

)

0 0.5 1 1.5 2

−1

0

1

2

·103

time t

u
8
(t

)

0 0.5 1 1.5 2

−1

−0.5

0

0.5

·103

time t

u
9
(t

)

0 0.5 1 1.5 2
−10

−5

0

·103

time t

u
10

(t
)

0 0.5 1 1.5 2

0

2

4

·103

time t

u
11

(t
)

0 0.5 1 1.5 2

−2

0

2
·103

time t

u
12

(t
)

0 0.5 1 1.5 2

−2

−1

0

1
·103

time t

u
13

(t
)

Figure B.8:This figure depicts the 14 optimal controls u0(t)−u13(t) of five solutions of OCP (6.35) on normalized
stage durations with differenty weighted objective denoted by S, MW, E, TD and C, as defined in Table 10.6. This
results are compared to the optimal controls of the dynamics reconstruction (R).

180

Bibliography

[1] Inria. humans toolbox. 2005. URL http://www.inrialpes.fr/bipop/software/humans/.

[2] Vicon motion systems. 2013. URL http://www.vicon.com.

[3] Btk. biomechanical toolkit. 2014. URL https://code.google.com/archive/p/b-tk/.

[4] B. M. Afkham, J. Chung, and M. Chung. Learning regularization parameters of inverse problems via deep

neural networks. Inverse Problems, 37(10):105017, 2021. DOI: 10.1088/1361-6420/ac245d.

[5] J. Albersmeyer. Adjoint based algorithms and numerical methods for sensitivity generation and opti-

mization of large scale dynamic systems. PhD thesis, University Heidelberg, 2010. URL http://www.

ub.uni-heidelberg.de/archiv/11651/.

[6] S. Albrecht. Modeling and Numerical Solution of Inverse Optimal Control Problems for the Analysis of

Human Motions. Dissertation, TU Munich, 2013.

[7] S. Albrecht and M. Ulbrich. Mathematical programs with complementarity constraints in the context of

inverse optimal control for locomotion. Optimization Methods and Software, 32(4):670–698, 2017. DOI:

10.1080/10556788.2016.1225212.

[8] S. Albrecht, C. Passenberg, M. Sabotka, A. Peer, M. Buss, and M. Ulbrich. Optimization Criteria for Hu-

man Trajectory Formation in Dynamic Virtual Environments, volume 6192, pages 257 – 262. Springer,

2010.

[9] S. Albrecht, M. Leibold, and M. Ulbrich. A bilevel optimization approach to obtain optimal cost functions

for human arm movements. Numerical Algebra, Control and Optimization, 2(1):105–127, 2012. DOI:

10.3934/naco.2012.2.105.

[10] R. M. Alexander. The gaits of bipedal and quadrupedal animals. The International J. of Robotics Research,

3(2):49–59, 1984.

[11] R. M. Alexander. Optima for animals. Princeton Univ. Press., 1996.

[12] F. Aller, M. Harant, and K. Mombaur. Optimization of dynamic sit-to-stand trajectories to assess whole-

body motion performance of the humanoid robot reem-c. Frontiers in Robotics and AI, 9:898696, 2022.

DOI: 10.3389/frobt.2022.898696.

[13] D. Anderson, M. Madigan, and M. Nussbaum. Maximum voluntary joint torque as a function of joint an-

gle and angular velocity: Model development and application to the lower limb. Journal of biomechanics,

40:3105–13, 2007. DOI: 10.1016/j.jbiomech.2007.03.022.

[14] R. Andreani, L. D. Secchin, and P. J. S. Silva. Convergence properties of a second order augmented la-

grangian method for mathematical programs with complementarity constraints. SIAM Journal on Opti-

mization, 28(3):2574–2600, 2018. DOI: 10.1137/17m1125698.

[15] M. Anitescu. Global convergence of an elastic mode approach for a class of mathematical pro-

grams with complementarity constraints. SIAM Journal on Optimization, 16(1):120–145, 2005. DOI:

10.1137/040606855.

181

http://www.inrialpes.fr/bipop/software/humans/
http://www.vicon.com
https://code.google.com/archive/p/b-tk/
http://dx.doi.org/10.1088/1361-6420/ac245d
http://www.ub.uni-heidelberg.de/archiv/11651/
http://www.ub.uni-heidelberg.de/archiv/11651/
http://dx.doi.org/10.1080/10556788.2016.1225212
http://dx.doi.org/10.1080/10556788.2016.1225212
http://dx.doi.org/10.3934/naco.2012.2.105
http://dx.doi.org/10.3934/naco.2012.2.105
http://dx.doi.org/10.3389/frobt.2022.898696
http://dx.doi.org/10.1016/j.jbiomech.2007.03.022
http://dx.doi.org/10.1137/17m1125698
http://dx.doi.org/10.1137/040606855
http://dx.doi.org/10.1137/040606855

Bibliography

[16] M. Anitescu. On using the elastic mode in nonlinear programming approaches to mathematical pro-

grams with complementarity constraints. SIAM Journal on Optimization, 15(4):1203–1236, 2005. DOI:

10.1137/s1052623402401221.

[17] M. Anitescu, P. Tseng, and S. J. Wright. Elastic-mode algorithms for mathematical programs with equilib-

rium constraints: global convergence and stationarity properties. Mathematical Programming, 110(2):

337–371, 2006. DOI: 10.1007/s10107-006-0005-4.

[18] S. Armand, G. Decoulon, and A. Bonnefoy-Mazure. Gait analysis in children with cerebral palsy. EFORT

Open Reviews, 1:448–460, 2016. DOI: 10.1302/2058-5241.1.000052.

[19] J. F. Bard. Practical Bilevel Optimization: Algorithms And Applications. Springer New York, NY, 2000.

ISBN 978-1-4419-4807-6. DOI: 10.1007/978-1-4757-2836-1.

[20] F. Benita and P. Mehlitz. Bilevel optimal control with final-state-dependent finite-dimensional lower

level. 26:718–752, 2016.

[21] M. Benko and H. Gfrerer. An SQP method for mathematical programs with complementarity constraints

with strong convergence properties. Kybernetika, pages 169–208, 2016. DOI: 10.14736/kyb-2016-2-0169.

[22] H. Y. Benson, A. Sen, D. F. Shanno, and R. J. Vanderbei. Interior-point algorithms, penalty methods

and equilibrium problems. Computational Optimization and Applications, 34(2):155–182, 2006. DOI:

10.1007/s10589-005-3908-8.

[23] H. G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics. In K. H. Ebert,

P. Deuflhard, and W. Jäger, editors, Modelling of Chemical Reaction Systems, pages 102–125. Springer

Berlin Heidelberg, 1981. ISBN 978-3-642-68220-9.

[24] H. G. Bock. Recent Advances in Parameteridentification Techniques for O.D.E., pages 95–121. Birkhäuser

Boston, Boston, MA, 1983. ISBN 978-1-4684-7324-7. DOI: 10.1007/978-1-4684-7324-7_7.

[25] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differ-

entialgleichungen. PhD thesis, University Bonn, 1987.

[26] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solution of optimal control problems.

IFAC Proceedings Volumes, 17(2):1603–1608, 1984. DOI: 10.1016/s1474-6670(17)61205-9.

[27] H. G. Bock, E. Kostina, M. Sauter, J. P. Schlöder, and M. Schlöder. Numerical methods for diagnosis

and therapy design of cerebral palsy by bilevel optimal control of constrained biomechanical multi-body

systems. In M. Hintermüller, R. Herzog, C. Kanzow, M. Ulbrich, and S. Ulbrich, editors, Non-Smooth

and Complementarity-Based Distributed Parameter Systems: Simulation and Hierarchical Optimization,

pages 21–41. Springer International Publishing, Cham, 2022. ISBN 978-3-030-79393-7. DOI: 10.1007/978-

3-030-79393-7_2.

[28] P. Brown and J. McPhee. A 3d ellipsoidal volumetric foot–ground contact model for forward dynamics.

Multibody System Dynamics, 42, 2018. DOI: 10.1007/s11044-017-9605-4.

[29] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Con-

siderations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970. ISSN 0272-4960. DOI: 10.1093/ima-

mat/6.1.76.

[30] R. H. Byrd, N. I. Gould, J. Nocedal, and R. A. Waltz. An algorithm for nonlinear optimization using linear

programming and equality constrained subproblems. Mathematical Programming, 100(1):27–48, 2003.

ISSN 1436-4646. DOI: 10.1007/s10107-003-0485-4.

182

http://dx.doi.org/10.1137/s1052623402401221
http://dx.doi.org/10.1137/s1052623402401221
http://dx.doi.org/10.1007/s10107-006-0005-4
http://dx.doi.org/10.1302/2058-5241.1.000052
http://dx.doi.org/10.1007/978-1-4757-2836-1
http://dx.doi.org/10.14736/kyb-2016-2-0169
http://dx.doi.org/10.1007/s10589-005-3908-8
http://dx.doi.org/10.1007/s10589-005-3908-8
http://dx.doi.org/10.1007/978-1-4684-7324-7_7
http://dx.doi.org/10.1016/s1474-6670(17)61205-9
http://dx.doi.org/10.1007/978-3-030-79393-7_2
http://dx.doi.org/10.1007/978-3-030-79393-7_2
http://dx.doi.org/10.1007/s11044-017-9605-4
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1007/s10107-003-0485-4

Bibliography

[31] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of successive linear-

quadratic programming algorithms. SIAM Journal on Optimization, 16(2):471–489, 2005. DOI:

10.1137/S1052623403426532.

[32] H. Chen, H. Kremling, and F. Allgöwer. Nonlinear predictive control of a benchmark cstr. Proceedings of

the 3rd European Control Conference, Rome-Italy., pages 3247–3252, 1995.

[33] Y. Chen and M. Florian. The nonlinear bilevel programming problem: Formulations, regularity and op-

timality conditions. Optimization, 32:193–209, 1995.

[34] Y. Chen and Z. Wan. A new smoothing method for mathematical programs with complementarity con-

straints based on logarithm-exponential function. Mathematical Problems in Engineering, 2018:1–11,

2018. DOI: 10.1155/2018/5056148.

[35] F. Chollet et al. Keras. https://keras.io, 2015.

[36] C. Clason, Y. Deng, P. Mehlitz, and U. Prüfert. optimal control problems with control complementarity

constraints. Preprint SPP1962-081, 2018.

[37] D. Clever and K. D. Mombaur. An inverse optimal control approach for the transfer of human walking

motions in constrained environment to humanoid robots. In Robotics: Science and Systems, 2016.

[38] D. Clever, R. M. Schemschat, M. L. Felis, and K. Mombaur. Inverse optimal control based identifica-

tion of optimality criteria in whole-body human walking on level ground. In 2016 6th IEEE Interna-

tional Conference on Biomedical Robotics and Biomechatronics (BioRob), pages 1192–1199, 2016. DOI:

10.1109/BIOROB.2016.7523793.

[39] J. J. Craig. Introduction to robotics. Pearson Education, Harlow, 3. new internat. edition, 2014. ISBN

1-292-04004-1 and 978-1-292-04004-2.

[40] P. de Leva. Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics,

29(9):1223–1230, 1996. ISSN 0021-9290. DOI: https://doi.org/10.1016/0021-9290(95)00178-6.

[41] S. Delp, F. Anderson, A. Arnold, P. Loan, A. Habib, C. John, E. Guendelman, and D. Thelen. Opensim:

Open-source software to create and analyze dynamic simulations of movement. Biomedical Engineering,

IEEE Transactions on, 54:1940 – 1950, 2007. DOI: 10.1109/TBME.2007.901024.

[42] V. DeMiguel, M. P. Friedlander, F. J. Nogales, and S. Scholtes. A two-sided relaxation scheme for mathe-

matical programs with equilibrium constraints. SIAM Journal on Optimization, 16(2):587–609, 2005. DOI:

10.1137/04060754x.

[43] S. Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, 2002.

[44] S. Dempe and J. Dutta. Is bilevel programming a special case of a mathematical program with comple-

mentarity constraints? Math. Program., 131:37–48, 2012. DOI: 10.1007/s10107-010-0342-1.

[45] S. Dempe and A. Zemkoho. The bilevel programming problem: reformulations, constraint qualifications

and optimality conditions. Math. Program., 138:447, 2013. DOI: 10.1007/s10107-011-0508-5.

[46] S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, and N. Kalashnykova. Theory, Algorithms and Applications

to Energy Networks. Springer-Verlag Berlin Heidelberg, 2015.

[47] F. Dobson, M. Morris, R. Baker, and K. Graham. Gait classification in children with cerebral palsy: A

systematic review. Gait & posture, 25:140–52, 2007. DOI: 10.1016/j.gaitpost.2006.01.003.

183

http://dx.doi.org/10.1137/S1052623403426532
http://dx.doi.org/10.1137/S1052623403426532
http://dx.doi.org/10.1155/2018/5056148
https://keras.io
http://dx.doi.org/10.1109/BIOROB.2016.7523793
http://dx.doi.org/10.1109/BIOROB.2016.7523793
http://dx.doi.org/https://doi.org/10.1016/0021-9290(95)00178-6
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1137/04060754x
http://dx.doi.org/10.1137/04060754x
http://dx.doi.org/10.1007/s10107-010-0342-1
http://dx.doi.org/10.1007/s10107-011-0508-5
http://dx.doi.org/10.1016/j.gaitpost.2006.01.003

Bibliography

[48] L. Döderlein. Die infantilen Zerebralparesen: Diagnostik, konservative und operative Therapie. Springer,

2nd edition, 2015. DOI: 10.1007/978-3-642-35319-2.

[49] A. L. Emonds. Towards a simulator tool for predicting sprinting and long jump motions with and without

running-specific prostheses. PhD thesis, University Heidelberg, 2023. URL http://nbn-resolving.de/

urn:nbn:de:bsz:16-heidok-328478.

[50] F. Facchinei, H. Jiang, and L. Qi. A smoothing method for mathematical programs with equilibrium

constraints. Mathematical Programming, 85:107–134, 1999. DOI: 10.1007/s10107990015a.

[51] R. Featherstone. Rigid Body Dynamics Algorithms. Springer New York, NY, 2008. ISBN 978-0-387-74314-

1. DOI: 10.1007/978-1-4899-7560-7.

[52] M. L. Felis. Modeling emotional aspects in human Locomotion. PhD thesis, University Heidelberg, 2015.

URL http://www.ub.uni-heidelberg.de/archiv/19319.

[53] M. L. Felis. Rbdl: an efficient rigid-body dynamics library using recursive algorithms. Autonomous

Robots, 41:495–511, 2017. DOI: 10.1007/s10514-016-9574-0.

[54] M. L. Felis and K. Mombaur. Synthesis of full-body 3-d human gait using optimal control methods. In

2016 IEEE International Conference on Robotics and Automation (ICRA), page 1560–1566. IEEE Press,

2016. DOI: 10.1109/ICRA.2016.7487294.

[55] M. Flegel. Constraint Qualifications and Stationarity Concepts for Mathematical Programs with Equilib-

rium Constraints. PhD thesis, University Würzburg, 2005. URL url:http://nbn-resolving.org/urn:

nbn:de:bvb:20-opus-12453.

[56] M. L. Flegel and C. Kanzow. A fritz john approach to first order optimality conditions for mathe-

matical programs with equilibrium constraints. Optimization, 52.3:277–286, 2003. DOI: 10.1080

/0233193031000120020.

[57] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):317–322, 1970.

ISSN 0010-4620. DOI: 10.1093/comjnl/13.3.317.

[58] R. Fletcher. Practical methods of optimization. A Wiley-Interscience Publication. Wiley, Chichester [u.a.],

2. edition, 2001. ISBN 0-471-49463-1 and 0-471-91547-5 and 978-0-471-91547-8 and 978-0-471-49463-8.

[59] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Program-

ming, 91(2):239–269, 2002. DOI: 10.1007/s101070100244.

[60] R. Fletcher and S. Leyffer. Solving mathematical programs with complementarity constraints as nonlin-

ear programs. Optimization Methods and Software, 19(1):15–40, 2004. ISSN 1055-6788 and 1029-4937.

[61] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes. Local convergence of sqp methods for mathema-

tical programs with equilibrium constraints. SIAM Journal on Optimization, 17(1):259–286, 2006. DOI:

10.1137/S1052623402407382.

[62] Freepik. 2023. URL https://www.freepik.com/.

[63] M. Fukushima and P. Tseng. An implementable active-set algorithm for computing a b-stationary point

of a mathematical program with linear complementarity constraints. SIAM Journal on Optimization, 12

(3):724–739, 2002. DOI: 10.1137/s1052623499363232.

[64] M. Fukushima, Z.-Q. Luo, and J.-S. Pang. A globally convergent sequential quadratic programming algo-

rithm for mathematical programs with linear complementarity constraints. Computational Optimiza-

tion and Applications, 10.1:5–34, 1998. ISSN 1573-2894. DOI: 10.1023/A:1018359900133.

184

http://dx.doi.org/10.1007/978-3-642-35319-2
http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-328478
http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-328478
http://dx.doi.org/10.1007/s10107990015a
http://dx.doi.org/10.1007/978-1-4899-7560-7
http://www.ub.uni-heidelberg.de/archiv/19319
http://dx.doi.org/10.1007/s10514-016-9574-0
http://dx.doi.org/10.1109/ICRA.2016.7487294
url: http://nbn-resolving.org/urn:nbn:de:bvb:20-opus-12453
url: http://nbn-resolving.org/urn:nbn:de:bvb:20-opus-12453
http://dx.doi.org/10.1080 /0233193031000120020
http://dx.doi.org/10.1080 /0233193031000120020
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1007/s101070100244
http://dx.doi.org/10.1137/S1052623402407382
http://dx.doi.org/10.1137/S1052623402407382
https://www.freepik.com/
http://dx.doi.org/10.1137/s1052623499363232
http://dx.doi.org/10.1023/A:1018359900133

Bibliography

[65] J. Gage and B. Russman. Gait Analysis in Cerebral Palsy. Clinics in Developmental Medicine (Mac Keith

Press). Cambridge University Press, 1991. ISBN 9780521412773.

[66] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman. The simplest walking model: Stability, complexity,

and scaling. Journal of biomechanical engineering, 120:281–8, 1998.

[67] C. Geiger and C. Kanzow. Theorie und Numerik Restringierter Optimierungsaufgaben. 2002. ISBN 978-3-

540-42790-2. DOI: 10.1007/978-3-642-56004-0.

[68] H. Gfrerer. Optimality conditions for disjunctive programs based on generalized differentiation with

application to mathematical programs with equilibrium constraints. SIAM Journal on Optimization,

24.2:898–931, 2014. DOI: 10.1137/130914449.

[69] H. Gfrerer and J. J. Ye. New constraint qualifications for mathematical programs with equilib-

rium constraints via variational analysis. SIAM Journal on Optimization, 27(2):842–865, 2017. DOI:

10.1137/16M1088752.

[70] G. Giallombardo and D. Ralph. Multiplier convergence in trust-region methods with application to con-

vergence of decomposition methods for MPECs. Mathematical Programming, 112(2):335–369, 2006. DOI:

10.1007/s10107-006-0020-5.

[71] P. E. Gill, W. Murray, and M. A. Saunders. Snopt: An sqp algorithm for large-scale constrained optimiza-

tion. SIAM Review, 47(1):99–131, 2005. DOI: 10.1137/S0036144504446096.

[72] P. E. Gill, W. Murray, and M. H. Wright. Practical optimization. Emerald, Bingley, 2008. ISBN 0-12-283952-

8 and 978-0-12-283952-8.

[73] D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of compu-

tation, 24(109):23–26, 1970. DOI: 10.1090/S0025-5718-1970-0258249-6.

[74] A. Griewank and A. Walther. Evaluating derivatives. SIAM, Philadelphia, 2. edition, 2008. ISBN 978-0-

898716-59-7.

[75] S. Gulati and V. Sondhi. Cerebral palsy: An overview. The Indian Journal of Pediatrics, 85:1–11, 2017. DOI:

10.1007/s12098-017-2475-1.

[76] L. Guo and J. J. Ye. Necessary optimality conditions for optimal control problems with equilibrium con-

straints. SIAM Journal on Control and Optimization, 54(5):2710–2733, 2016. DOI: 10.1137/15M1013493.

[77] E. Haber and L. Tenorio. Learning regularization functionals - a supervised training approach. Inverse

Problems, 19:611, 2003. DOI: 10.1088/0266-5611/19/3/309.

[78] J. P. Halloran, M. Ackermann, A. Erdemir, and A. J. van den Bogert. Concurrent musculoskeletal dy-

namics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Journal

of Biomechanics, 43(14):2810–2815, 2010. ISSN 0021-9290. DOI: 10.1016/j.jbiomech.2010.05.036. URL

https://www.sciencedirect.com/science/article/pii/S0021929010003234.

[79] M. Harant, M. Näf, and K. Mombaur. Multibody dynamics and optimal control for optimizing spinal

exoskeleton design and support. Multibody System Dynamics, 57:389–411, 2023. DOI: 10.1007/s11044-

023-09877-w.

[80] K. Hatz. Efficient numerical methods for hierarchical dynamic optimization with application to cerebral

palsy gait modeling. PhD thesis, University Heidelberg, 2014. URL http://www.ub.uni-heidelberg.

de/archiv/16803.

185

http://dx.doi.org/10.1007/978-3-642-56004-0
http://dx.doi.org/10.1137/130914449
http://dx.doi.org/10.1137/16M1088752
http://dx.doi.org/10.1137/16M1088752
http://dx.doi.org/10.1007/s10107-006-0020-5
http://dx.doi.org/10.1007/s10107-006-0020-5
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1007/s12098-017-2475-1
http://dx.doi.org/10.1007/s12098-017-2475-1
http://dx.doi.org/10.1137/15M1013493
http://dx.doi.org/10.1088/0266-5611/19/3/309
http://dx.doi.org/10.1016/j.jbiomech.2010.05.036
https://www.sciencedirect.com/science/article/pii/S0021929010003234
http://dx.doi.org/10.1007/s11044-023-09877-w
http://dx.doi.org/10.1007/s11044-023-09877-w
http://www.ub.uni-heidelberg.de/archiv/16803
http://www.ub.uni-heidelberg.de/archiv/16803

Bibliography

[81] K. Hatz, J. P. Schlöder, and H. G. Bock. Estimating parameters in optimal control problems. SIAM Journal

on Scientific Computing, 34(3):A1707–A1728, 2012. DOI: 10.1137/110823390.

[82] R. Herzog, C. Meyer, and G. Wachsmuth. B- and strong stationarity for optimal control of static plasticity

with hardening. SIAM Journal on Optimization, 23(1):321 – 352, 2013.

[83] M. R. Hestenes. Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York, 1966.

[84] M. Hintermüller and J. Kopacka. Mathematical programs with complementarity constraints in function

space: C- and strong stationarity and a path-following algorithm. SIAM Journal on Optimization, 20(2):

868 – 902, 2009.

[85] M. Hintermüller and T. Surowiec. First order optimality conditions for elliptic mathematical programs

with equilibrium constraints via variational analysis. SIAM Journal on Optimization, 21(4):1561–1593,

2011.

[86] M. Hintermüller, B. Mordukhovich, and T. Surowiec. Several approaches for the derivation of stationarity

conditions for elliptic mpecs with upper-level control constraints. Mathematical Programming, 146(1-2):

555 – 582, 2014.

[87] K.-L. Ho Hoang, S. Wolf, and K. Mombaur. Benchmarking stability of bipedal locomotion based on in-

dividual full body dynamics and foot placement strategies - application to impaired and unimpaired

walking. Frontiers in Robotics and AI, 5, 2018. DOI: 10.3389/frobt.2018.00117.

[88] T. Hoheisel, C. Kanzow, and A. Schwartz. Theoretical and numerical comparison of relaxation methods

for mathematical programs with complementarity constraints. Mathematical Programming Series A,

137.1–2:257–288, 2013. DOI: 10.1007/s10107-011-0488-5.

[89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.

Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. DOI: 10.1016/0893-6080(89)90020-8.

[90] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping and its

derivatives using multilayer feedforward networks. Neural Networks, 3(5):551–560, 1990. ISSN 0893-

6080. DOI: 10.1016/0893-6080(90)90005-6.

[91] X. Hu and D. Ralph. Convergence of a penalty method for mathematical programming with comple-

mentarity constraints. Journal of Optimization Theory and Applications, 123.2:365–290, 2004. DOI:

10.1007/s10957-004-5154-0.

[92] Y. Hu and K. Mombaur. Analysis of human leg joints compliance in different walking scenarios with an

optimal control approach**the research leading to these results has received funding from the european

union seventh framework programme (fp7/2007 - 2013) under grant agreement n. 611909 (koroibot),

www.koroibot.eu. IFAC-PapersOnLine, 49(14):99 – 106, 2016. DOI: 10.1016/j.ifacol.2016.07.992.

[93] A. F. Izmailov, M. V. Solodov, and E. I. Uskov. Global convergence of augmented lagrangian methods ap-

plied to optimization problems with degenerate constraints, including problems with complementarity

constraints. SIAM Journal on Optimization, 22(4):1579–1606, 2012. DOI: 10.1137/120868359.

[94] A. Jain. Robot and Multibody Dynamics: Analysis and Algorithms. 2012. ISBN 978-1-4419-7266-8. DOI:

10.1007/978-1-4419-7267-5.

[95] H. Jiang and D. Ralph. Smooth SQP methods for mathematical programs with nonlinear complementar-

ity constraints. SIAM Journal on Optimization, 10(3):779–808, 2000. DOI: 10.1137/s1052623497332329.

186

http://dx.doi.org/10.1137/110823390
http://dx.doi.org/10.3389/frobt.2018.00117
http://dx.doi.org/10.1007/s10107-011-0488-5
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1007/s10957-004-5154-0
http://dx.doi.org/10.1007/s10957-004-5154-0
http://dx.doi.org/10.1016/j.ifacol.2016.07.992
http://dx.doi.org/10.1137/120868359
http://dx.doi.org/10.1007/978-1-4419-7267-5
http://dx.doi.org/10.1007/978-1-4419-7267-5
http://dx.doi.org/10.1137/s1052623497332329

Bibliography

[96] A. Kadrani, J.-P. Dussault, and A. Benchakroun. A new regularization scheme for mathematical pro-

grams with complementarity constraints. SIAM Journal on Optimization, 20(1):78–103, 2009. DOI:

10.1137/070705490.

[97] C. Kanzow and A. Schwartz. Mathematical programs with equilibrium constraints: Enhanced fritz john-

conditions. SIAM Journal on Optimization, 20:2730–2753, 2010.

[98] C. Kanzow and A. Schwartz. A new regularization method for mathematical programs with complemen-

tarity constraints with strong convergence properties. SIAM Journal on Optimization, 23(2):770–798,

2013. DOI: 10.1137/100802487.

[99] W. Karush. Minima of functions of several variables with inequalities as side conditions. Master thesis,

Department of Mathematics, University of Chicago, 1939.

[100] W. Khalil. Modeling, identification & control of robots. Kogan Page Science paper edition. Kogan Page

Science, London, 2004. ISBN 1-281-98541-4.

[101] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning

Representations, 2014.

[102] C. Kirches, S. Sager, H. G. Bock, and J. P. Schlöder. Time-optimal control of automobile test drives with

gear shifts. Optimal Control Applications and Methods, 31(2):137–153, 2010. DOI: 10.1002/oca.892.

[103] C. Kirches, J. Larson, S. Leyffer, and P. Manns. Sequential linearization method for bound-constrained

mathematical programs with complementarity constraints. SIAM Journal on Optimization, 32(1):75–99,

2022. DOI: 10.1137/20M1370501.

[104] M. Knauer. Bilevel-Optimalsteuerung mittels hybrider Lösungsmethoden am Beispiel eines deckenge-

führten Regalbediengerätes in einem Hochregallager. Dissertation, Universität Bremen, 2009.

[105] M. Knauer and C. Büskens. Bilevel optimization of container cranes. In Progress in Industrial Mathemat-

ics at ECMI 2008, pages 913 – 918, 2010.

[106] K. Krigger. Cerebral palsy: An overview. American family physician, 73:91–100, 2006.

[107] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 481–492, Berkeley, 1951.

University of California Press.

[108] D. B. Leineweber. Efficient reduced SQP methods for the optimization of chemical processes described by

large sparse DAE models. PhD thesis, University Heidelberg, 1998.

[109] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient multiple shooting based reduced

SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects. Computers &

Chemical Engineering, 27(2):157–166, 2003. ISSN 0098-1354. DOI: 10.1016/S0098-1354(02)00158-8.

[110] D. B. Leineweber, A. Schäfer, H. G. Bock, and J. P. Schlöder. An efficient multiple shooting based re-

duced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applica-

tions. Computers & Chemical Engineering, 27(2):167–174, 2003. ISSN 0098-1354. DOI: 10.1016/S0098-

1354(02)00195-3.

[111] F. Lenders. Numerical Methods for Mixed-Integer Optimal Control with Combinatorial Constraints. PhD

thesis, University Heidelberg, 2018.

[112] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal Control. John Wiley and Sons, Hoboken, 2012.

187

http://dx.doi.org/10.1137/070705490
http://dx.doi.org/10.1137/070705490
http://dx.doi.org/10.1137/100802487
http://dx.doi.org/10.1002/oca.892
http://dx.doi.org/10.1137/20M1370501
http://dx.doi.org/10.1016/S0098-1354(02)00158-8
http://dx.doi.org/10.1016/S0098-1354(02)00195-3
http://dx.doi.org/10.1016/S0098-1354(02)00195-3

Bibliography

[113] S. Leyffer. Complementarity constraints as nonlinear equations: Theory and numerical experience, pages

169–208. Springer US, Boston, MA, 2006. ISBN 978-0-387-34221-4. DOI: 10.1007/0-387-34221-4_9.

[114] S. Leyffer and T. S. Munson. A globally convergent filter method for mpecs. Preprint ANL/MCS-P1457-

0907, Argonne National Laboratory, Mathematics and Computer Science Division, 2007.

[115] S. Leyffer, G. Lopez-Calva, and J. Nocedal. Interior methods for mathematical programs with comple-

mentarity constraints. SIAM JOURNAL ON OPTIMIZATION, 17(1):52–77, 2006. ISSN 1052-6234 and

1095-7189.

[116] G. Lin and M. Fukushima. New relaxation method for mathematical programs with complemen-

tarity constraints. Journal of Optimization Theory and Applications, 118(1):81–116, 2003. DOI:

10.1023/a:1024739508603.

[117] G.-H. Lin and M. Fukushima. A modified relaxation scheme for mathematical programs with comple-

mentarity constraints. Annals of Operations Research, 133(1-4):63–84, 2005. DOI: 10.1007/s10479-004-

5024-z.

[118] X. Liu and J. Sun. Generalized stationary points and an interior-point method for mathematical programs

with equilibrium constraints. Mathematical Programming, 101(1), 2004. DOI: 10.1007/s10107-004-0543-

6.

[119] Z. Luo, J. Pang, and D. Ralph. Mathematical Programs with Equlibrium Constraints. Cambridge Univer-

sity Press, 1996. DOI: 10.1017/CBO9780511983658.

[120] O. Mangasarian and S. Fromovitz. The fritz john necessary optimality conditions in the presence of

equality and inequality constraints. Journal of Mathematical Analysis and Applications, 17(1):37–47,

1967. ISSN 0022-247X. DOI: 10.1016/0022-247X(67)90163-1.

[121] P. Mehlitz. Necessary optimality conditions for a special class of bilevel programming

problems with unique lower level solution. Optimization, 66(10):1533–1562, 2017. DOI:

10.1080/02331934.2017.1349123.

[122] P. Mehlitz and G. Wachsmuth. Weak and strong stationarity in generalized bilevel programming and

bilevel optimal control. Optimization, 65(5):907–935, 2016. DOI: 10.1080/02331934.2015.1122007.

[123] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on Optimiza-

tion, 2(4):575–601, 1992. DOI: 10.1137/0802028.

[124] A. Meyer. Numerical Solution of Optimal Control Problems with Explicit and Implicit Switches. PhD

thesis, University Heidelberg, 2020. URL http://www.ub.uni-heidelberg.de/archiv/27701.

[125] M. Millard, T. Uchida, A. Seth, and S. Delp. Flexing computational muscle: Modeling and simu-

lation of musculotendon dynamics. Journal of Biomechanical Engineering, 135:021005, 2013. DOI:

10.1115/1.4023390.

[126] M. Millard, M. Sreenivasa, and K. Mombaur. Predicting the motions and forces of wearable robotic sys-

tems using optimal control. Frontiers in Robotics and AI, 4:41, 2017. DOI: 10.3389/frobt.2017.00041.

[127] M. Millard, A. L. Emonds, M. Harant, and K. Mombaur. A reduced muscle model and planar muscu-

loskeletal model fit for the simulation of whole-body movements. Journal of Biomechanics, 89:11–20,

2019. ISSN 0021-9290. DOI: 10.1016/j.jbiomech.2019.04.004. URL https://www.sciencedirect.com/

science/article/pii/S0021929019302568.

[128] K. Mombaur. Stability optimization of open-loop controlled walking robots. PhD thesis, University Hei-

delberg, 2001. URL http://www.ub.uni-heidelberg.de/archiv/1796.

188

http://dx.doi.org/10.1007/0-387-34221-4_9
http://dx.doi.org/10.1023/a:1024739508603
http://dx.doi.org/10.1023/a:1024739508603
http://dx.doi.org/10.1007/s10479-004-5024-z
http://dx.doi.org/10.1007/s10479-004-5024-z
http://dx.doi.org/10.1007/s10107-004-0543-6
http://dx.doi.org/10.1007/s10107-004-0543-6
http://dx.doi.org/10.1017/CBO9780511983658
http://dx.doi.org/10.1016/0022-247X(67)90163-1
http://dx.doi.org/10.1080/02331934.2017.1349123
http://dx.doi.org/10.1080/02331934.2017.1349123
http://dx.doi.org/10.1080/02331934.2015.1122007
http://dx.doi.org/10.1137/0802028
http://www.ub.uni-heidelberg.de/archiv/27701
http://dx.doi.org/10.1115/1.4023390
http://dx.doi.org/10.1115/1.4023390
http://dx.doi.org/10.3389/frobt.2017.00041
http://dx.doi.org/10.1016/j.jbiomech.2019.04.004
https://www.sciencedirect.com/science/article/pii/S0021929019302568
https://www.sciencedirect.com/science/article/pii/S0021929019302568
http://www.ub.uni-heidelberg.de/archiv/1796

Bibliography

[129] K. Mombaur and D. Clever. Inverse Optimal Control as a Tool to Understand Human Movement, pages

163–186. Springer International Publishing, Cham, 2017. ISBN 978-3-319-51547-2. DOI: 10.1007/978-3-

319-51547-2_8.

[130] K. Mombaur, A. Truong, and J.-P. Laumond. From human to humanoid locomotion—an inverse optimal

control approach. Autonomous Robots, 28(3):369–383, 2010. ISSN 1573-7527. DOI: 10.1007/s10514-009-

9170-7.

[131] K. Mombaur, H. Vallery, Y. Hu, J. Buchli, P. Bhounsule, T. Boaventura, P. M. Wensing, S. Revzen, A. D.

Ames, I. Poulakakis, and A. Ijspeert. Chapter 4 - control of motion and compliance. In M. A. Sharbafi

and A. Seyfarth, editors, Bioinspired Legged Locomotion, pages 135–346. Butterworth-Heinemann, 2017.

ISBN 978-0-12-803766-9. DOI: 10.1016/B978-0-12-803766-9.00006-3.

[132] J. Nocedal and S. J. Wright. Numerical optimization. Springer series in operation research and financial

engineering. Springer, New York, NY, second edition, 2006. ISBN 978-1-4939-3711-0 and 0-387-30303-0

and 978-0-387-30303-1.

[133] J. V. Outrata. Optimality conditions for a class of mathematical programs with equilibrium constraints.

Mathematics of Operations Research, 24(3):627–644, 1999. DOI: 10.1287/moor.24.3.627.

[134] J. V. Outrata. A generalized mathematical program with equilibrium constraints. SIAM Journal on Control

and Optimization, 38(5):1623–1638, 2000. DOI: 10.1137/S0363012999352911.

[135] R. Palisano, P. Rosenbaum, W. SD, D. Russell, W. EP, and B. Galuppi. Development and reliability of a

system to classify gross motor function in children with cerebral palsy. Developmental medicine and

child neurology, 39:214–23, 1997. DOI: 10.1111/dmcn.1997.39.issue-4.

[136] J.-S. Pang and M. Fukushima. Complementarity constraint qualifications and simplified b-stationarity

conditions for mathematical programs with equilibrium constraints. Computational Optimization and

Applications, 13.1:111–136, 1999. ISSN 1573-2894. DOI: 10.1023/A:1008656806889.

[137] C. Panteliadis and H. Strassburg. Cerebral Palsy: Principles and Management. Thieme Publishers Series.

Georg Thieme, 2004. ISBN 9783131400215.

[138] K. J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter opti-

maler Steuerungen. Diploma thesis, University of Bonn, 1981.

[139] L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Mischenko. The Mathematical Theory of Optimal

Processes. Wiley, Chichester, 1962.

[140] A. Potschka. Handling path constraints in a direct multiple shooting method for optimal control prob-

lems. Diploma thesis, University Heidelberg, 2006.

[141] A. Potschka, H. G. Bock, and J. P. Schlöder. A minima tracking variant of semi-infinite programming

for the treatment of path constraints within direct solution of optimal control problems. Optimization

Methods and Software, 24(2):237–252, 2009. DOI: 10.1080/10556780902753098.

[142] A. U. Raghunathan and L. T. Biegler. Mathematical programs with equilibrium constraints (MPECs) in

process engineering. Computers & Chemical Engineering, 27(10):1381–1392, 2003. DOI: 10.1016/s0098-

1354(03)00092-9.

[143] D. Ralph and S. J. Wright. Some properties of regularization and penalization schemes for mpecs. Opti-

mization Methods and Software, 19(5):527–556, 2004. DOI: 10.1080/10556780410001709439.

189

http://dx.doi.org/10.1007/978-3-319-51547-2_8
http://dx.doi.org/10.1007/978-3-319-51547-2_8
http://dx.doi.org/10.1007/s10514-009-9170-7
http://dx.doi.org/10.1007/s10514-009-9170-7
http://dx.doi.org/10.1016/B978-0-12-803766-9.00006-3
http://dx.doi.org/10.1287/moor.24.3.627
http://dx.doi.org/10.1137/S0363012999352911
http://dx.doi.org/10.1111/dmcn.1997.39.issue-4
http://dx.doi.org/10.1023/A:1008656806889
http://dx.doi.org/10.1080/10556780902753098
http://dx.doi.org/10.1016/s0098-1354(03)00092-9
http://dx.doi.org/10.1016/s0098-1354(03)00092-9
http://dx.doi.org/10.1080/10556780410001709439

Bibliography

[144] L. Ren, D. Howard, L. Ren, C. Nester, and L. Tian. A generic analytical foot rollover model for predicting

translational ankle kinematics in gait simulation studies. Journal of Biomechanics, 43(2):194–202, 2010.

ISSN 0021-9290. DOI: 10.1016/j.jbiomech.2009.09.027.

[145] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, 22

(3):400–407, 1951.

[146] J. Rodda and K. Graham. Classification of gait patterns in spastic hemiplegia and spastic diplegia: A

basis for a management algorithm. European journal of neurology : the official journal of the European

Federation of Neurological Societies, 8 Suppl 5:98–108, 2001. DOI: 10.1046/j.1468-1331.2001.00042.x.

[147] P. Rosenbaum. Erratum: A report: The definition and classification of cerebral palsy. Developmental

Medicine and Child Neurology, 49:8–14, 2007. DOI: 10.1111/j.1469-8749.2007.00480.x.

[148] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition, 2010.

[149] H. Scheel and S. Scholtes. Mathematical programs with complementarity constraints: Stationarity, opti-

mality, and sensitivity. Math. Oper. Res., 25:1–22, 2000. DOI: 10.1287/moor.25.1.1.15213.

[150] J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridenti-

fizierung. PhD thesis, University Bonn, 1988.

[151] M. Schlöder. Numerical methods for optimal control of constrained biomechanical multi-body systems

appearing in therapy design of cerebral palsy. PhD thesis, University Heidelberg, 2022. URL http://

nbn-resolving.de/urn:nbn:de:bsz:16-heidok-313074.

[152] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61, 2014. DOI:

10.1016/j.neunet.2014.09.003.

[153] S. Scholtes. Convergence properties of a regularization scheme for mathematical programs

with complementarity constraints. SIAM Journal on Optimization, 11:918–936, 2001. DOI:

10.1137/S1052623499361233.

[154] S. Scholtes. Combinatorial structures in nonlinear programming. Tech. rep. University of Cambridge,

2002. URL http://www.optimization-online.org/DB%5CHTML/2002/05/477.html.

[155] S. Scholtes. Nonconvex structures in nonlinear programming. Operations Research, 52.3:368–383, 2004.

DOI: 10.1287/opre.1030.0102.

[156] S. Scholtes and M. Stöhr. Exact penalization of mathematical programs with equilibrium constraints.

SIAM Journal on Control and Optimization, 37(2):617–652, 1999. DOI: 10.1137/s0363012996306121.

[157] A. A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, 4. edition, 2013. DOI:

10.1017/CBO9781107337213.

[158] D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of com-

putation, 24(111):647–656, 1970. DOI: 10.2307/2004840.

[159] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming. Modeling and theory.

2009. DOI: 10.1137/1.9780898718751.

[160] K. Shimizu, Y. Ishizuka, and J. F. Bard. Nondifferentiable and two-level mathematical programming.

Kluwer Academic, Dordrecht, 1997.

[161] A. Sommer. Numerical methods for parameter estimation in dynamical systems with noise. PhD thesis,

University Heidelberg, 2017. URL http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-225894.

190

http://dx.doi.org/10.1016/j.jbiomech.2009.09.027
http://dx.doi.org/10.1046/j.1468-1331.2001.00042.x
http://dx.doi.org/10.1111/j.1469-8749.2007.00480.x
http://dx.doi.org/10.1287/moor.25.1.1.15213
http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-313074
http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-313074
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1137/S1052623499361233
http://dx.doi.org/10.1137/S1052623499361233
http://www.optimization-online.org/DB%5C HTML/2002/05/477.html
http://dx.doi.org/10.1287/opre.1030.0102
http://dx.doi.org/10.1137/s0363012996306121
http://dx.doi.org/10.1017/CBO9781107337213
http://dx.doi.org/10.1017/CBO9781107337213
http://dx.doi.org/10.2307/2004840
http://dx.doi.org/10.1137/1.9780898718751
http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-225894

Bibliography

[162] S. Steffensen and M. Ulbrich. A new relaxation scheme for mathematical programs with equilibrium

constraints. SIAM Journal on Optimization, 20(5):2504–2539, 2010. DOI: 10.1137/090748883.

[163] O. Stein. Lifting mathematical programs with complementarity constraints. Mathematical Program-

ming, 131(1-2):71–94, 2010. DOI: 10.1007/s10107-010-0345-y.

[164] M. C. Steinbach. Numerische Berechnung optimaler Steuerungen für Industrieroboter. Diploma thesis,

University Heidelberg, 1987.

[165] M. Stöhr. Nonsmooth trust region methods and their applications to mathematical programs with equi-

librium constraints. Dissertation. University of Karlsruhe, 2000.

[166] S. Vajda and R. Isaacs. Differential games. a mathematical theory with applications to warfare and pur-

suit, control and optimization. The Mathematical Gazette, 51(375):80, 1967. DOI: 10.2307/3613661.

[167] M. van der Krogt, C. Doorenbosch, and J. Harlaar. The effect of walking speed on hamstrings length

and lengthening velocity in children with spastic cerebral palsy. Gait & posture, 29:640–4, 2009. DOI:

10.1016/j.gaitpost.2009.01.007.

[168] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.

Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-

ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[169] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Mathematical Programming, 106:25–57, 2006. DOI: 10.1007/s10107-

004-0559-y.

[170] A. Walther. Getting started with ADOL-C. Combinatorial Scientific Computing, 2009. DOI:

10.1201/b11644-8.

[171] A. Walther and A. Griewank. Getting started with adol-c. In U. Naumann and O. Schenk, editors, Com-

binatorial Scientific Computing, chapter 7, pages 181–202. Chapman-Hall CRC Computational Science,

2012.

[172] J. Winters, T F, J. R. Gage, and R. Hicks. Gait patterns in spastic hemiplegia in children and young adults.

J Bone Joint Surg Am, 69(3):437–41, 1987.

[173] S. Wolf. Heidelberg motionlab. Heidelberg University Hospital, Department Orthopedic Surgery, 2023.

URL http://www.heidel-motionlab.de/.

[174] J. Ye. Optimization conditions for bilevel programming problems. Optimization, 33:9 – 27, 1995.

[175] J. Ye. Constraint qualifications and necessary optimality conditions for optimization problems

with variational inequality constraints. SIAM Journal on Optimization, 10(4):943–962, 2000. DOI:

10.1137/S105262349834847X.

[176] J. Ye. Necessary and sufficient optimality conditions for mathematical programs with equilib-

rium constraints. Journal of Mathematical Analysis and Applications, 307:350–369, 2005. DOI:

10.1016/j.jmaa.2004.10.032.

191

http://dx.doi.org/10.1137/090748883
http://dx.doi.org/10.1007/s10107-010-0345-y
http://dx.doi.org/10.2307/3613661
http://dx.doi.org/10.1016/j.gaitpost.2009.01.007
http://dx.doi.org/10.1016/j.gaitpost.2009.01.007
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1201/b11644-8
http://dx.doi.org/10.1201/b11644-8
http://www.heidel-motionlab.de/
http://dx.doi.org/10.1137/S105262349834847X
http://dx.doi.org/10.1137/S105262349834847X
http://dx.doi.org/10.1016/j.jmaa.2004.10.032
http://dx.doi.org/10.1016/j.jmaa.2004.10.032

192

List of Figures

3.1 Posture of a patient with CP before and after interventions. 45

3.2 Posture of a patient with CP with attached Vicon motion capture marker. 46

5.1 Basic walker model. 68

6.1 Rigid multibody system model for CP patient with 20 DOFs. 80

6.2 Rigid multibody system model for CP patient with global and local coordinate frames. 81

6.3 Illustration of the gait cycle in the CP gait model. 84

6.4 Rigid multibody system model for CP patient with generalized coordinates. 85

6.5 Foot contact points with ground in CP gait model. 88

6.6 Rigid multibody system model for CP patient with attached points. 90

6.7 Schematic representation of a DNN. 103

7.1 PARDYNOPT: problem description module. 108

7.2 PARDYNOPT: problem module. 108

7.3 PARDYNOPT: NLP translator module. 109

7.4 PARDYNOPT: NLP solver module. 109

7.5 PARDYNOPT: internal structure and function evaluation/derivative generation

modules. 110

7.6 Total PARDYNOPT structure on a conceptual level. 112

8.1 Optimal differential states and controls in the solutions of OCPs for rocket car

example with differently weighted objective. 117

8.2 This figure depicts the structures of the approximation of the optimal

control function in the rocket car example for selected cases. 118

8.3 This figure depicts the optimal differential states and controls in the

solution of Bilevel Inverse OCP (8.2) for case 1. 119

8.4 This figure depicts the optimal differential states and controls in the

solution of Bilevel Inverse OCP (8.4) for case 2. 122

8.5 This figure depicts the optimal differential states and controls in the

solution of Bilevel Inverse OCP (8.6) for case 3. 124

8.6 Polar robot example with three DOFs, ©M. Steinbach, [164]. 126

8.7 Differential states in three local OCP solutions for the polar robot example. 130

8.8 Controls in three local OCP solutions for the polar robot example. 131

8.9 This figure depicts the optimal differential states in the solutions of Bilevel

Inverse OCP (8.11) for case 1 and case 2. 133

8.10 This figure depicts the optimal controls in the solutions of Bilevel Inverse

OCP (8.11) for case 1 and case 2. 134

8.11 This figure depicts the optimal differential states in the solutions of Bilevel

Inverse OCP (8.11) for case 3 and case 4. 135

8.12 This figure depicts the optimal controls in the solutions of Bilevel Inverse

OCP (8.11) for case 3 and case 4. 136

8.13 This figure depicts the optimal differential states in the solution of Bilevel

Inverse OCP (8.11) with dynamics by Hatz [80]. 138

8.14 This figure depicts the optimal controls in the solution of Bilevel Inverse

OCP (8.11) with dynamics by Hatz [80]. 139

193

List of Figures

9.1 Optimal differential states of Bilevel Inverse OCP which correspond to the

generalized coordinates of the basic walker example. 145

9.2 Optimal differential states of Bilevel Inverse OCP which correspond to the

generalized velocities of the basic walker example. 146

9.3 Optimal controls of Bilevel Inverse OCP for basic walker example. 146

9.4 Visualization of of basic walker gait as solution of Bilevel Inverse OCP. 147

10.1 Visualization of solution of the dynamics reconstruction and comparison with given

motion capture data. 151

10.2 Visualization of synthesized CP gait for setting denoted by S. 155

10.3 Visualization of synthesized CP gait for setting denoted by MW. 155

10.4 Visualization of synthesized CP gait for setting denoted by E. 156

10.5 Visualization of synthesized CP gait for setting denoted by TD. 156

10.6 Visualization of synthesized CP gait for setting denoted by C. 157

B.1 Optimal generalized positions of dynamics reconstruction for the CP gait model. 173

B.2 Optimal generalized velocities of dynamics reconstruction for the CP gait model. 174

B.3 Optimal generalized active torques of dynamics reconstruction for the CP gait model. 175

B.4 Optimal controls of dynamics reconstruction for the CP gait model. 176

B.5 Optimal generalized positions of synthesized CP gaits with differenty weighted objective. 177

B.6 Optimal generalized velocities of synthesized CP gaits with differenty weighted objective. 178

B.7 Optimal generalized active torques of synthesized CP gaits with differenty weighted objective. . . 179

B.8 Optimal controls of synthesized CP gaits with differenty weighted objective. 180

194

List of Tables

5.1 Definition of quantities for basic walker dynamics. 68

6.1 Individual segment masses and lengths used in CP model. 81

6.2 Location of relative CoM for individual segments and its relative radii of gyration

used in CP model. 82

6.3 Additional quantities to set up a CP model. 82

6.4 Total body mass and height of CP patient. 82

6.5 Calculated values of quantities for patient-specific knee axes of CP patient. 84

6.6 Definition of quantities for dynamics of rigid multibody system model for a CP patient. 87

6.7 Definition of model parameters in passive joint actuation of rigid multibody system model

for a CP patient. 87

6.8 Values of offsets added to measurement data in the CP gait model. 89

8.1 Definition of quantities which appear in the rocket car example. 116

8.2 Three cases with selected settings in the rocket car example. 116

8.3 Computational results of OCP (8.1) for the rocket car example

in three selected cases. 117

8.4 Setting used in PARDYNOPT to solve the OCPs and the corresponding

Bilevel Inverse OCPs for all three cases in the rocket car example. 118

8.5 Computational result of Bilevel Inverse OCP (8.2) for case 1 with our

DISIMFAS in PARDYNOPT. 120

8.6 Computational result of Bilevel Inverse OCP (8.4) for case 2 with our

DISIMFAS in PARDYNOPT. 123

8.7 Computational result of Bilevel Inverse OCP (8.6) for case 3 with our

DISIMFAS in PARDYNOPT. 125

8.8 Definition of quantities which appear in the polar robot example. 127

8.9 Setting used in PARDYNOPT for two case studies in the polar robot example. 129

8.10 Computational results of OCP (8.10) for the polar robot example with dynamics

by Steinbach [164]. 129

8.11 Selected cases to solve Bilevel Inverse OCPs for the polar robot example with

dynamics by Steinbach [164]. 132

8.12 Computational results of Bilevel Inverse OCP (8.11) for the polar robot

example for case 1 and case 2 with dynamics by Steinbach [164]

with our DISIMFAS in PARDYNOPT. 132

8.13 Computational results of Bilevel Inverse OCPs (8.11) for case 3 and case 4

with dynamics by Steinbach [164] with our

DISIMFAS in PARDYNOPT. 134

8.14 Computational results of Bilevel Inverse OCPs (8.11) with dynamics by Hatz [80]

with our DISIMFAS in PARDYNOPT. 137

9.1 Definition of quantities for basic walker example. 142

9.2 Settings of objective weights and model parameters in OCPs for the simplest

walker example. 143

9.3 Setting used in PARDYNOPT to solve the OCP and the corresponding Bilevel

Inverse OCPs for the basic walker example. 143

195

List of Tables

9.4 Computational result of Bilevel Inverse OCP (9.1) for the basic walker

example with our DISIMFAS

in PARDYNOPT. 144

10.1 Setting used in MUSCOD-II to solve OCPs

for the CP gait model. 149

10.2 Diagonal entries of the matrices W τ̇ and W τ in the CP gait model. 150

10.3 Fixed values of fixed stage duration parameters and model parameters in the

dynamics reconstruction in CP gait model. 150

10.4 Computational result of dynamics reconstruction of the CP gait model with MUSCOD-II. 151

10.5 Estimated values of model parameters in the dynamics reconstruction in CP gait model. 151

10.6 Five selected settings of the objective weights in the CP gait synthesis. 152

10.7 Computational result of gait synthesis for a CP model with MUSCOD-II. 153

10.8 Values of the contributions of each optimization criterion in the varying CP gait syntheses. 153

10.9 Result of identification of weights in the CP gait model via DNN. 160

196

List of Acronyms

AD Automatic Differentiation.

BDF Backward Differentiation Formulas.

BFGS BROYDEN–FLETCHER–GOLDFARB–SHANNO.

CoM Center of Mass.

CP Cerebral Palsy.

CQ Constraint Qualification.

DAE Differential Algebraic Equation.

DNN Deep Neural Network.

DOF Degree of Freedom.

END External Numerical Differentiation.

GMFCS Gross Motor Function Classification System.

IND Internal Numerical Differentiation.

IVP Initial Value Problem.

KKT Karush-Kuhn-Tucker.

LICQ Linear Independence Constraint Qualification.

MFCQ Mangasarian-Fromowitz Constraint Qualification.

MPCC Mathematical Program with Complementarity Constraints.

NLP Nonlinear Programming Problem.

OC Optimal Control.

OCP Optimal Control Problem.

ODE Ordinary Differential Equation.

PE Parameter Estimation.

QP Quadratic Program.

RNLP Relaxed Nonlinear Programming Problem.

SQP Sequential Quadratic Programming.

VDE Variational Differential Equation.

197

	Title Page - Submission
	Title Page - Publication
	Zusammenfassung
	Abstract
	Acknowledgements
	Acknowledgements
	Contents

	Introduction
	I Foundations
	1 Nonlinear Programming
	1.1 Basic Definitions
	1.1.1 First-Order Necessary Optimality Conditions

	1.2 Numerical Methods for Nonlinear Programming
	1.2.1 Interior-Point Methods
	1.2.2 Sequential Quadratic Programming
	1.2.3 The Generalized Gauß-Newton Method

	1.3 Mathematical Programs with Complementarity Constraints(MPCCs)
	1.3.1 Problem Formulation
	1.3.2 Towards Constraint Qualifications and Stationarity for MPCCs
	1.3.3 Numerical Methods for MPCCs

	2 Optimization of Dynamic Systems
	2.1 Optimal Control of Dynamic Systems
	2.1.1 General Problem Formulation
	2.1.2 Multi-Stage Problem Formulation with Discontinuities

	2.2 Numerical Methods for Optimal Control Problems(OCPs)
	2.2.1 The Direct Multiple Shooting Method
	2.2.2 Derivative Generation

	2.3 Parameter Estimation(PE) in Dynamic Systems
	2.3.1 Problem Formulation
	2.3.2 An Approach to Solve PE Problems in Dynamic Systems

	2.4 Bilevel Inverse Optimal Control Problems
	2.4.1 Problem Formulation
	2.4.2 Solution Approaches for Bilevel Inverse OCPs
	2.4.3 The Direct All-at-Once Approach

	3 Human Locomotion and Cerebral Palsy
	3.1 Human Locomotion as an OCP
	3.1.1 Dynamics of Rigid Multibody Systems
	3.1.2 A General Multi-Stage OCP Formulation

	3.2 Cerebral Palsy(CP)
	3.2.1 Introduction and Classification
	3.2.2 Characteristics of Cerebral Palsy Gait

	II Contributions
	4 An Efficient Direct Approach for Bilevel Inverse OCPs with Fixed Active Set
	4.1 Introduction and Motivation
	4.2 Numerical Solution Approach
	4.2.1 Step 1: Application of the Direct Multiple Shooting Method on the Lower Level
	4.2.2 Step 2: Reformulation of the Lower Level NLP on a Fixed Active Set
	4.2.3 Step 3: Replacement of the Lower Level NLP by its KKT Conditions
	4.2.4 Step 4: Solution of the One-Level NLP with Tailored Numerical Methods

	4.3 Structure Exploitation and Hessian Approximation
	4.3.1 Objective Gradients
	4.3.2 Constraint Vector and Gradient of Lower Level Lagrangian
	4.3.3 Constraint Jacobian of One-Level NLP
	4.3.4 Approximation of Hessian of Lagrangian
	4.3.5 Approximation of Hessian of Lagrangian in a Generalized Gauß-Newton Framework

	4.4 Outlook: Sequential Algorithm with Identification of Active Set
	4.4.1 Determination of Active Set
	4.4.2 A Sequential Algorithm for Active-Set Identification

	5 Bilevel Inverse OCP for Identification of Unknowns in a Basic Walker Gait Model
	5.1 Dynamics of a Basic Walker Model
	5.1.1 Equations of Motion for Single Support Phase Right
	5.1.2 Equations of Motion for Single Support Phase Left
	5.1.3 Collision Impacts after each Phase
	5.1.4 Explicit Formulation of the Equations of Motion

	5.2 A Multi-Stage OCP for the Gait of a Basic Walker
	5.2.1 Objective Function
	5.2.2 Dynamics and its Transitions
	5.2.3 Constraints

	5.3 Bilevel Inverse OCP of a Basic Walker Gait Model

	6 Modeling of Cerebral Palsy Patients' Gait
	6.1 Rigid Multibody System Model for a Patient with CP
	6.1.1 Segments, Joints and DOFs
	6.1.2 Implementation Notes

	6.2 Modeling of the Dynamics for a CP Patient
	6.2.1 Full Gait Cycle and Phasewise Dynamics
	6.2.2 Generalized Coordinates, Velocities, and Accelerations
	6.2.3 Active and Passive Joint Actuation
	6.2.4 Patient-Specific Model Parameters
	6.2.5 Foot Contact Model and Self-Penetration Constraints
	6.2.6 Accessing Motion Capture Data
	6.2.7 Creation of a Digital Twin
	6.2.8 Determination of Patient-Specific Knee Axes
	6.2.9 Implementation Notes

	6.3 Dynamics Reconstruction as a Least-Square Multi-Stage OCP
	6.3.1 Least-Squares Objective Function
	6.3.2 Dynamics and its Transitions
	6.3.3 Constraints

	6.4 A Multi-Stage OCP for the Gait of a Patient with CP
	6.4.1 Objective Function

	6.5 Comparison to CP Gait Model by hatzdiss2014 and other Existing Models
	6.6 Outlook: Bilevel Inverse OCP for Identification of Unknowns in CP Gait
	6.7 Pilot Study: Identification of Optimal Weights by Deep Neural Networks(DNNs)
	6.7.1 Basic Concept and Motivation
	6.7.2 Learning weights via DNNs

	III Implementations and Numerical Results
	7 The Software Package ParDynOpt
	7.1 Introduction and Software Structure
	7.2 Framework in ParDynOpt for OCPs and Bilevel Inverse OCPs
	7.2.1 Setting up Problems in ParDynOpt

	8 Bilevel Inverse Optimal Control in Two Case Studies
	8.1 Case Study: Rocket Car and Multi-Stage Formulations
	8.1.1 An OCP for the Rocket Car and its Solutions for Selected Settings
	8.1.2 Multi-Stage Bilevel Inverse OCPs for Selected Settings
	8.1.3 Summary

	8.2 Case Study: Polar Robot and a Comparison of ParDynOpt with ParaOCP
	8.2.1 An OCP for the Polar Robot Example
	8.2.2 Numerical Set-Up for Case Studies A and B
	8.2.3 Case Study A: Performance of ParDynOpt
	8.2.4 Case Study B: Comparison of ParDynOpt with ParaOCP
	8.2.5 Summary

	9 Bilevel Inverse Optimal Control for a Basic Walker Gait Model
	9.1 Case Study: Basic Walker as Basic Model for Human Locomotion
	9.1.1 Bilevel Inverse OCP for a Basic Walker Example
	9.1.2 Summary

	10 Numerical Results for Cerebral Palsy Gait Model
	10.1 Solution Approaches, Initialization and Implementation Notes
	10.2 Reconstruction of CP Gait Model using Motion Capture Data
	10.3 Numerical Analysis of Gait Syntheses for CP Gait Model
	10.3.1 Summary and Outlook

	10.4 Case Study: Identification of Weights for Optimal CP Gait by DNNs
	10.4.1 Simulation of Training Data
	10.4.2 DNN Set-Up and Training
	10.4.3 Identification of Weights via Trained DNN
	10.4.4 Summary and Outlook

	Conclusion and Outlook
	Appendix A Software Package: ParDynOpt
	A.1 Selected Initialization Methods in ParDynOpt
	A.2 A Complete Example - The Rocket Car
	A.2.1 OCP for Rocket Car Example
	A.2.2 Bilevel Inverse OCP for Rocket Car Example

	Appendix B CP Gait Model
	B.1 Optimal Differential States and Controls of Dynamics Reconstruction
	B.2 Optimal Differential States and Controls of CP Gait Synthesis

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms

