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1I N T R O D U C T I O N

Accounting for approximately 10 million deaths in the year 2020, cancer -
the multi-stage process that alters normal cells into tumorous cells based on
the interaction of genetic factors and physical, chemical, and biological car-
cinogens - is nowadays the second leading cause of death globally (WHO,
2022). Typically, treatment follows three main approaches: surgery, radiother-
apy (RT), systemic therapy, e.g., chemotherapy, or immunotherapy, or a com-
bination thereof. In this context, more than half of cancer patients receive RT
for curative or palliative purposes (Atun et al., 2015). While ionising radia-
tion targets tumour tissue, healthy tissue is inevitably affected due to dose
deposition along the irradiated path. A precise RT treatment plan is thus nec-
essary to spare injuries to the organs at risk around the tumour and destroy
malignant cells simultaneously (Joiner and Kogel, 2018). Even if modern RT
techniques can minimise or prevent toxicity and improve tumour coverage,
several patients still face secondary effects of irradiation or tumour recur-
rence. Therefore, the determination of factors affecting normal tissue compli-
cation probability (NTCP) and tumour control probability (TCP) is an active
area of research, especially for tumours with a high risk of recurrence (Reda
et al., 2020). Traditional TCP/NTCP modelling focused exclusively on dosi-
metric predictors (Burman et al., 1991; Seppenwoolde et al., 2003). With the
increased medical data availability, such as imaging data in RT planning and
follow-up, molecular data for tumour classification or derived RT physical in-
formation for treatment delivery, the need to process it to render it useful for
patient benefit has also grown (Kang et al., 2015). To this end, machine learn-
ing methods have been increasingly adapted for TCP/NTCP modelling, with
recent studies focusing on the use of either clinical, dosimetric, radiomics data
or combinations of these (Gulliford, 2015; Lambin et al., 2012). Still, there has
been little focus on spatial analysis of dose distribution (DD) - dosiomics -
and its impact on prediction modelling (Placidi et al., 2021b).

This work aims to incorporate multiple layers of information from medical
data, emphasising features extracted from the 3D DD that could potentially
improve patient stratification and prognostication. Furthermore, the added
benefit for TCP/NTCP modelling of a combined modelling approach, i.e.,
the use of radiomics, dosiomics, and clinical features, is evaluated in three
retrospectively collected patient cohorts treated with either carbon ions or
standard RT, each corresponding to a different entity. The curation, prepro-
cessing, and analysis pipeline built with this purpose demonstrated its suit-
ability in different modalities, specifically DD, computer tomography (CT),
and multi-parametric magnetic resonance imaging (MRI) for three entities -

1



1.1 radiotherapy 2

brain, head and neck, and lung and different aspects - NTCP and TCP esti-
mations.

1.1 radiotherapy

Radiation therapy plays a significant role in treating and potentially curing
most tumour entities. It is prescribed in more than half of the patients with
cancer, either alone or in combination with systemic treatment or surgery
(Atun et al., 2015). Over the last decades, how RT is delivered has changed to
reduce the dose reaching the organs at risk (OAR) and improve the dose to
the tumour tissue (Joiner and Kogel, 2018). A high-quality RT treatment plan
is of utmost importance to optimise the delivery. In recent times, external
beam RT mostly uses high-energy photons or particles like protons or carbon
ions, allowing for good target coverage (Laskar and Kakoti, 2022).

1.1.1 High-energy photons radiotherapy

Electron linear accelerators are used to generate radiation for high-energy
photon RT. A beam of MeV photons delivers the dose to the tissue at an
exponential absorption rate after the initial increase. This renders the maxi-
mum delivered dose at around 2-3cm deep in soft tissue. Photons do not de-
posit significant energy themselves but rather through the ionisation of atoms.
Photons transfer their energy to positrons and electrons, which ionise atoms
along particle tracks until their energy is lost. Since photons are massless and
chargeless, they penetrate deeply into the body while sparing the skin (Bhide
and Nutting, 2010). Modern techniques include intensity modulation radia-
tion therapy (IMRT) and volumetric modulated arc therapy (VMAT), which,
in comparison to conformational radiotherapy (CRT), improve target volume
conformity and reduce radiation-induced toxicities (Nutting, Dearnaley, and
Webb, 2000; Teoh et al., 2011; Webb, 1993).

1.1.2 Hadron therapy

Hadron therapy includes carbon and proton ions radiation. Producing these
ion beams and targeting the tumour requires a dedicated centre, where the
therapy process starts from the accelerator complex, i.e., a synchrotron or cy-
clotron. Due to their increased penetration depth and distinct dose fall-off,
carbon ions have been used in clinical settings since 1946 (Rackwitz and De-
bus, 2019). The depth profiles of carbon ions show a significant but narrow
increase in dose at the end of the range - the Bragg peak. Additionally, a mo-
noenergetic proton beam has a defined range in a specific medium. Therefore
the Bragg peak has to be extended to cover the extended target volume (TV),
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introducing the spread-out Bragg peak (SOBP), which can be achieved by su-
perimposing monoenergetic Bragg curves in the desired range (Bortfeld and
Schlegel, 1996). The radiobiological effective dose (RBE) delivered by carbon
ions radiotherapy (CIRT) proves to be favourable, with low RBE values at the
beginning of the path and at higher depths, with the RBE range depending on
the tumour (Amaldi and Kraft, 2005). Currently, CIRT doses are prescribed
as RBE-weighted quantities according to Gy(RBE) scales, which until now are
not categorically resolved (Molinelli et al., 2016).

1.1.3 Personalised radiotherapy

With different RT treatment options available, the selection criteria currently
depend mainly on clinical and pathological features, e.g., tumour stage, pri-
mary site, or histology (Glatzer et al., 2020; Panje et al., 2018). In recent years,
studies started investigating the integration of patient-specific information
such as disease subtype or molecular properties of tumours into the RT treat-
ment decision, i.e., going towards personalised treatment planning explicitly
tailored to the patient (Fröhlich et al., 2018; Schork, 2015). This is important
to improve therapy outcomes and reduce the possibility of RT mistreatment,
which can lead to significant side effects impacting the quality and quantity
of life (Ford and Terezakis, 2010). In this context, predicting the effectiveness
of a treatment for a specific patient would be highly desirable.

1.1.4 Treatment planning

RT treatment planning is a time and effort-intensive process that can take
days to complete. By starting with a list of target coverage and OAR con-
straints, a medical physicist has to decide about beam energy, number, angles,
etc. After the initial planning and iterative optimisation, the RT treatment
plan is available as a Digital Imaging Communication in Medicine (DICOM)
object (Mildenberger, Eichelberg, and Martin, 2002). DICOM was developed
as a generalised medical image object format to manage medical image acqui-
sition and storage. It enables different imaging devices to communicate with
each other and facilitates the export of data from PACS, the Picture Archiv-
ing and Communication System (Gudivada and Raghavan, 1995). The treat-
ment plan typically contains the planning imaging data, DD, RT plan, and
RT Structure Set (SS). RT plan contains geometric and dosimetric data that
summarises the RT treatment delivered. This includes all information about
the irradiation based on the beam setup parameters (gantry angle, couch
angle, beam modifiers, etc.). RT DD contains the DDs generated by a Treat-
ment Planning System (TPS). Typically, several DD files would be present,
each representing a specific format, i.e., the physical or RBE DD, each per
beam, per RT fraction, or the entire RT plan. An RT SS includes contoured
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structures of the patient’s anatomy. The different structures can be split into
OAR and the TV, i.e., the gross tumour volume (GTV), clinical target volume
(CTV), internal target volume (ITV), and planning target volume (PTV). The
different entities are usually identified on TPS or simulation workstations.
The contouring and planning are typically performed on CT or MRI-CT co-
registered images (Rai et al., 2017). For certain entities, most modern clinics
use both MRI and CT for treatment planning to take advantage of the su-
perior soft tissue and tumour contrast of the MRI, mainly for a better GTV
delineation, while still using the electron density values provided by the CT,
which is necessary for the dose calculation (Rai et al., 2017). The relationship
between the different RT-objects is identified by several DICOM Unique Iden-
tifiers (UID)s (Newhauser et al., 2014), with each object having a file-specific
instance UID and series and study UID unique to the delivered treatment
plan. Reference UID tags describe which files are meant to be associated with
a particular tag so that they can be retrieved and used by different DICOM
files.

1.2 ntcp/tcp modelling

The main goal of RT is to deliver an optimal dose to control the tumour tissue
while avoiding excessive healthy tissue toxicity. Predictive models have been
developed to calculate tumour control and normal tissue complication prob-
abilities. The difference between TCP and NTCP defines the therapeutic win-
dow in RT. In this context, current research aims to increase the therapeutic
window by improving the efficacy of RT, enhancing the tumour response to
irradiation, or decreasing normal tissue toxicity. Radiobiological studies have
shown that the dose response follows a sigmoidal curve, suggesting that the
dose which induces complication is based on a probability distribution. In
general, NTCP can be defined as

NTCP(d) =

∫d
−∞ p(x)dx (1)

where d is the irradiation dose, and p(x) is the probability of the dose-inducing
complication to be x. The shape of the NTCP function has been modelled over
time with various representations such as probit model (Holthusen, 1936) or
logistic or log-logistic distribution (Suit, 1965). Lyman (Lyman, 1985) devel-
oped a model to consider situations when only part of the organ is irradi-
ated. Later, Kutcher and Burman (Burman et al., 1991) extended the Lyman
model into a dose-volume histogram (DVH) reduction scheme, followed by
Mohan, who allowed the bypassing of the DVHs (Mohan et al., 1992). As the
Lyman model does not include risk factors as comorbidities and does not
consider that patients reported without toxicity might have developed it after
the follow-up period, Tucker et al. (Tucker et al., 2008) developed the gener-
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alised Lyman model which attempts to accounts for these issues. While in
the standard Lyman model, the probability of observing a complication after
irradiation with dose D of subvolume V is defined as

NTCP(D,V) =
1√
2π

∫ t
−∞ eu

2/2 du (2)

where
t =

D− TD50/V
n

m · TD50/Vn
(3)

where n is the volume parameter, m is a dimensionless parameter, and TD50

is the subvolume dose resulting in a 50% probability of developing an event
after irradiation. If the whole volume is exposed to dose, so that.

Deff = (
∑
i

vi ·D
1/n
i )n (4)

To incorporate covariates, the quantity in equation (3) can be replaced as

t =
Deff − TD50 · exp(δ1 · Y1) · ... · exp(δk · Yk)
m · TD50 · exp(δ1 · Y1) · ... · exp(δk · Yk)

(5)

where the variables Y1toYk are the nondosimetric risk factors, and the term
exp(δiYi) is the dose-modifying factor (DMF) for TD50 in the presence of risk
factor Yi. To model the times to toxicity at time τ, a log-normal distribution
is commonly assumed and is defined as

f(τ) =
1

στ
√
2π

· e−(lnτ−µ)2/2σ2 (6)

with µ and σ as latency parameters. The generalised Lyman model is a mix-
ture of the incidence component, NTCP, and the latency component, f(τ).
Therefore, the contribution to the likelihood of a patient experiencing toxicity
at time τ is

NTCP(Deff, Y1, ...,Yk) · f(τ) (7)

and for a patient without experiencing toxicity is

1−NTCP(Deff, Y1, ...,Yk) · F(τ) (8)

with F(τ) being the cumulative distribution function corresponding to f(τ).
Another category of modelling is the use of tissue architecture models,

which propose that assumptions about the structure of a tissue and its re-
sponse to radiation can successfully model NTCP and TCP. The most com-
mon tissue-architecture models are the Poisson model, proposed by Munro
and Gilbert, which assumes that the cell survival curve takes a log-linear form
(Munro and Gilbert, 1961). Another tissue-architecture model is the relative
seriality model introduced by Kallman, where the organ at risk is divided
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into functional subunits (Källman, Ågren, and Brahme, 1992). Data-driven ap-
proaches take a new direction and aim to find patterns in high-dimensional
data sets to make predictions. In place of hand-crafted features, the models
extract informative features from data to predict probabilities of events. The
process of extracting insights from data is a topic belonging to machine learn-
ing.

1.3 machine learning and deep learning

Briefly, machine learning can be described as the ability of computers to make
predictions based on previous experiences (Baştanlar and Özuysal, 2014).
Due to the increased storage capacity and the development of more powerful
computers, machine learning has been employed in many disciplines, includ-
ing bioinformatics. Machine learning works by processing the available data
and building a computational model of its intrinsic complex relationships,
which are usually hard to be observed by humans. The process of building
the model is named training, and a trained model can predict outputs for
previously unseen input values.

To accurately train a machine learning model, the data must be completely
relevant to the problem, since the algorithm maps the extracted features only
from the input data to the output values. If the output values exist, the tech-
nique is called supervised machine learning. In the absence of output values
- and hence the algorithm is to find patterns automatically - it is called un-
supervised machine learning (Baştanlar and Özuysal, 2014). A drawback of
machine learning models is the need for careful feature engineering and field
experts to transform the raw data into feature vectors suitable for the algo-
rithm.

On the other hand, deep learning - a branch of machine learning - is a
technique that can automatically discover the optimal data representations
for the algorithm. It uses simple (usually non-linear) modules combined into
multiple representation layers, which, in a high enough number, can describe
very complex problems (LeCun, Bengio, and Hinton, 2015). Commonly, deep
learning algorithms are employed for segmentation and classification tasks.
A widely used architecture in classification tasks is the residual network
(ResNet), introduced in 2015 to deal with the degradation problem, i.e., the
degradation of the network accuracy as the depth of the network increases
(He et al., 2016). Besides the usual deep convolution neural network architec-
ture for classification purposes, ResNet introduces skip-connections that skip
one or more layers, an important concept in medical image segmentation for
increasing the speed of convergence and allowing the training of very deep
networks (Drozdzal et al., 2016).
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1.4 radiomics

The extraction of features from medical images using data characterisation
algorithms i.e. radiomics is an upcoming field of research expected to yield
(non-invasive) surrogates for important (molecular) characteristics, e.g., in tu-
mours (similar to biomarkers) to predict recurrence patterns or to gain insight
about potential adverse effects such as normal tissue toxicity after irradiation
(Lambin et al., 2012). Those approaches have the potential to yield detailed
information about longitudinal disease development as well as information
about tissue or tumour heterogeneity, which is not routinely assessed by biop-
sies (Sforazzini et al., 2021). Correlation studies quantify features from medi-
cal imaging data (e.g., shape or texture features) and compare them to impor-
tant clinical and molecular covariates, to develop prognostic and predictive
models. The potential causal inference of these models can be addressed by
evaluating longitudinal alterations (e.g., for normal tissue toxicity) (Scapic-
chio et al., 2021). Together with RT data, radiomics can build so-called RT
predictive models. To this date, radiomics has been successfully applied in
various cancer studies for TCP and NTCP modelling after RT (Ding et al.,
2021).

1.5 dosiomics

Dosiomics can be regarded as an extension of radiomics - the same concept
applied to three-dimensional DD rather than imaging data - to obtain spa-
tial and statistical information. Through dosiomics analysis, the DD can be
parametrised into regions of interest (ROIs) by extracting, e.g., textural or
shape-based features. The DD can thus be described at a higher complexity
level. Currently, dose information is obtained from dose-volume histograms
(DVHs) since optimisation and evaluation are based on DVH endpoints, met-
rics based on DVH, and visual inspection (Placidi et al., 2021b). A disad-
vantage of solely using DVH is the loss of valuable information on spatial
and statistical distribution. Integrating DVH with dosiomics analysis has the
potential to reveal new metrics suitable for the evaluation of radiotherapy
treatment plans. Furthermore, low or high dose-level value areas in target
volumes or organs at risk can be quantified, deriving more information about
infiltrative zones, which can be integrated into the RT plan optimisation. Ini-
tial studies using dosiomics in survival and radiation-induced toxicity pre-
diction modelling have already been published (a summary is presented in
Table 1.1). Interest in evaluating dosiomics features reproducibility and sta-
bility has also been seen recently (Adachi et al., 2022; Placidi et al., 2021a;
Placidi et al., 2021b; Puttanawarut et al., 2022).

Since spatial information is contained in the DVH plots only in a sum-
marised manner, different dose distributions could have the same DVH curve.
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Table 1.1: Summary of published dosiomics studies

Studies Aim

(Buizza et al., 2021) local control prediction in skull-base chor-
doma patients (TCP)

(Gabrys, 2020) prediction of radiation-induced Xerostomia in
head and neck cancer patients (NTCP)

(Wu et al., 2020) predicting the locoregional recurrences in
head and neck cancer patients (TCP)

(Adachi et al., 2021;
Liang et al., 2019)

prediction of radiation pneumonitis in lung
cancer patients (NTCP)

(Lee et al., 2020) predicting acute-phase weight loss in lung can-
cer patients (TCP/NTCP)

(Murakami et al., 2022) correlation between planned dose distribution
and biochemical failure in prostate cancer pa-
tients (TCP)

(Rossi et al., 2018) predicting gastrointestinal and genitourinary
toxicities in prostate cancer (NTCP)

Extracting features from the DD regarded as an image can thus reveal pat-
terns of variations in the DD and contribute to the prediction of therapy
response, as well as provide additional insights regarding uncertain infiltra-
tive zones or organs at risk. Murakami et al., 2022 found that the dosiomics
features were significantly correlated to biochemical recurrence in prostate
cancer patients, suggesting a need for new ways of evaluating TP quality.
Adachi et al., 2021 were able to improve the prediction of radiation pneu-
monitis incidence by using dosiomics. Similarly, Liang et al., 2019 found that
dosiomics features can predict response, but the explainability of the features
is not straightforward and needs further targeted studies.

1.6 typical radiomics and dosiomics workflow

A radiomics workflow consists of data preparation (export and curation), ROI
delineation, data preprocessing, feature extraction and selection, and mod-
elling. An overview is presented in Fig. 1.1
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Figure 1.1: Overview of the radiomics and dosiomics workflow

1.6.1 Cohort preparation

In a radiomics and dosiomics workflow, since the analysis uses imaging and
RT data, it is of utmost importance to have clean and organised data to be
processed correctly and meaningfully. In medical studies, data is usually col-
lected from one or more clinical institutions. With different clinics using dif-
ferent imaging devices, i.e., from different vendors, with different protocols,
etc., the collected data is not structured similarly across the incoming sources
and is thus difficult to use by a machine. The different abbreviations can re-
sult in being confounding variables, i.e. variables that would influence both
the dependent and independent variables, resulting in spurious correlations.
This renders the curation and sorting step extremely important in a radiomics
and dosiomics workflow (Lambin et al., 2017). In the curation step, multiple
elements of interest are extracted from the DICOM header to be later used in
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the analysis. Sorting the data, on the other hand, means structuring the data
according to the desired application to be subsequently fed into a computa-
tion model.

1.6.2 ROI delineation and data preprocessing

After structuring the datasets, the goal is to limit the image variations so
that the images can be directly and correctly comparable inside the compu-
tational model. To this end, multiple steps are usually employed, depending
on the imaging modality and anatomical region. A common step is segment-
ing the desired structure out of the original image - this reduces the overall
data size and the irrelevant information that could be useless to analyse and
would increase computation time for no added value. Registration of mul-
tiple modalities, e.g., MRI, and CT data, can also be necessary to use the
TV already segmented following institutional guidelines included in the RT
SS. Automatic segmentation solutions can be employed in the absence of RT
SS. In MRI studies, another crucial step is intensity normalisation. Since MR
intensities are acquired in arbitrary units, they are not directly comparable,
especially when coming from various scanners (Alam and Rahman, 2018;
Collewet, Strzelecki, and Mariette, 2004), influencing the analysis and thus
have to be normalised. Grey-level discretisation, i.e. the clustering of pixels
based on intensity values to reduce feature calculation time and noise, is also
an essential step before feature extraction. Many other imaging preprocessing
methods exist; their use depends on the application, and the clinical question
addressed.

1.6.3 Feature extraction and selection

The process of obtaining meaningful information from data is called feature
extraction. Typical features extracted in radiomics and dosiomics studies are
presented in Table 1.2. A derived image is an image on which a filter, e.g.,
wavelet, square root, or Laplacian of Gaussian (LoG), was applied.

Since multiple definitions for calculating features can be used, the Imaging
Biomarker Standardization Initiative (IBSI) aims to standardise the process
(Zwanenburg et al., 2020). Extracting features using the mentioned methods
can yield a rather large number of features, out of which not all will prove
relevant for further analysis. To remove redundant features non-informative
to the model, feature selection methods such as filter, wrapper, or embed-
ded methods are usually employed (Jović, Brkić, and Bogunović, 2015). The
choice of method depends on whether the number of observations is bigger
or smaller than the number of variables.
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Table 1.2: Typical features extracted in radiomics and dosiomics studies

Feature type Description Image type on which
features are applied

first order distribution of voxel in-
tensities within ROI

original, derived

shape 3D size and shape of
ROI

original

texture variation of intensities
inside ROI

original, derived

Filter methods

Filter methods are chosen depending on the task, e.g., regression, classifica-
tion, or clustering. These methods use a performance measure to select fea-
tures. Univariate - methods which evaluate a single feature - as well as multi-
variate - methods which evaluate a whole feature subset - filter methods are
common approaches whose choice depends on the number of observations
and predictors. Univariate analysis is commonly implemented in the medical
field.

Wrapper methods

Wrapper methods evaluate the performance of feature subsets on a modelling
algorithm chosen according to the task, e.g., classification or clustering algo-
rithms. These methods are typically slower than filter methods but return
feature subsets with improved performance because of using real evaluation
models.

Embedded methods

Embedded methods - as the name suggests - are embedded in the algorithm
and thus select features during the execution of the model. They typically
introduce penalties to the features that do not bring a contribution to the
model.

Common feature selection methods for each type are presented in Table
1.3.

1.6.4 Modelling

Variables are entities that vary in value and are essential components of mod-
elling. On the one hand, they can be classified into quantitative and qualita-
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Table 1.3: Typical feature selection methods

Type Methods

filter information gain, correlation, chi-
square, fisher score, spectral feature se-
lection

wrapper based on modelling algorithm, e.g., K-
means, support vector machines

embedded Lasso, Boruta

tive variables. That is, quantitative for variables that differ in quantity, e.g.,
weight and qualitative for variables that vary in quality, e.g., skin type. Quan-
titative variables can be further classified into discrete or continuous variables.
Discrete variables take no values between two given values, while continuous
variables can take any value between two given values. Qualitative variables
contain categorical variables, e.g., gender, and ordinal variables are similar to
categorical but can be put in a specific order, e.g., the scale for severity of an
effect. On the other hand, variables can be classified into dependent and inde-
pendent variables - dependent variables are directly connected to the study’s
outcome. In contrast, independent variables are not affected by the outcome
of the study but can affect the dependent variables if manipulated correctly
(Kaliyadan and Kulkarni, 2019).

Linear regression

Linear regression is a method used to find linear relationships between one or
multiple variables, applied in forecasting and prediction (Maulud, 2020). The
types of linear regression are either simple regression, multivariate regression,
or polynomial regression.

Classification

Classification methods try to predict the class of a categorical variable by find-
ing the relationships between input and output. They can be used to predict
one or multiple classes. Commonly applied methods for classification are ran-
dom forests, support vector machines, and k-nearest neighbours (Choubey et
al., 2020).

Survival analysis

Survival analysis is a broad modelling topic and has been dedicated to an
entire section (1.7).
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1.7 survival analysis : time to event modelling

Usually, in cancer treatment therapy assessment studies, the time to death
and the time between response to treatment and recurrence are interesting to
monitor. The event and observation period must be clearly defined in these
cases. Typically, in the course of cancer studies, a percentage of individuals
have experienced the event. In contrast, the rest have not, making the problem
of survival analysis difficult as the survival times will be unknown for a sub-
set of patients. This behaviour is called censoring and it happens either by a
patient not reaching the studied event by the end of the study, the patient not
being able to be followed up during the study period, or the patient experi-
encing another event that makes follow-up unsuitable anymore (Clark et al.,
2003). The existence of censored data means that specific analysis methods
are needed.

1.8 bottlenecks in using clinical cohorts

Data curation is a critical aspect of a radiomics and dosiomics workflow.
Nonetheless, to this date, the organisation of clinical cohorts is not standard-
ised, rendering proper data curation a current bottleneck when using clinical
cohorts (Lambin et al., 2017). Additionally, when analysing multi-modality
data, cohorts are often incomplete, missing certain modalities due to techni-
cal or practical reasons, thus introducing the problem of data completion (Cai
et al., 2018). Deep learning is a tool that can be successfully used in aiding
with both data curation and completion.

1.8.1 Deep learning for data curation

Deep learning has been employed in various research areas for data curation
purposes, such as medical document triage (Lee et al., 2018) or annotation
tool (Demirer et al., 2019). Nonetheless, data curation is a continuous prob-
lem needing innovative solutions where deep learning can prove extremely
helpful (Thirumuruganathan et al., 2020).

1.8.2 Deep learning for data completion

In literature, deep learning has been used to complete multi-modality data
by employing deep adversarial learning (Cai et al., 2018), generative networks
(Chen et al., 2019), and deep multimodal learning (Li et al., 2020). A successful
method used for automatic segmentation is nnU-Net (Isensee et al., 2019a).



2A I M S

This thesis aims to incorporate multiple medical information layers into a
combined modelling approach to improve patient stratification and prognos-
tication while building a data curation, preprocessing, and analysis pipeline
for faster deployment of artificial intelligence applications. The combined
modelling approach includes using radiomics, dosiomics, and clinical fea-
tures with the survival and radiation-induced toxicity outcomes in three ret-
rospectively collected cohorts treated with either standard radiotherapy or
carbon ions radiotherapy, each corresponding to a different entity, i.e. brain,
head and neck, and lung. A schematic overview of the thesis aims is shown
in Figure 2.1.

The contributions made by this work w.r.t. the aims are:

• For allowing the analysis of large, heterogeneous cohorts:

1. Data curation tool for MR images

2. Data completion approach for missing data points

3. Study of the impact of MR intensity normalization methods on
further analysis. This study was applied for:

a) the development of a methodology for assessing the impact of
normalization methods during preprocessing

b) the evaluation of the need to report the used normalization
method

• For model development with the aim of improving NTCP/TCP predic-
tion:

1. Development of a combined modelling approach, integrating ra-
diomics, dosiomics, and clinical data. This framework was applied
for:

a) the prediction of overall survival, progression-free survival,
and radiation-induced toxicity in recurrent high-grade glioma,
non-small cell lung cancer, and head and neck cancer patients

b) the stratification of patients into different risk groups

c) the visualization of the different models and the impact of the
different modalities on the overall prediction

14
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Figure 2.1: Schematic overview of the aims tackled in this work



3M AT E R I A L S A N D M E T H O D S

3.1 cohorts

Survival and radiation-induced toxicity prediction modelling were performed
on three cohorts with three different entities, i.e., recurrent high-grade glioma
treated with CIRT, referenced as rHGG, early-stage non-small cell lung cancer
treated with external beam stereotactic body radiation therapy (SBRT), refer-
enced as NSCLC and head and neck tumour patients treated with intensity-
modulated radiotherapy (IMRT) and helical tomotherapy referenced as HNC.
The aim is to assess whether TCP and NTCP predictions can be improved
through a multimodality approach incorporating clinical/histological, mor-
phological information through the RT planning medical images, i.e. CT or
MR and physical information through the RT DD in the different considered
entities. Additionally, it is aimed to understand what are the determinants
thereof, e.g. the biology (through radiomics), dose delivered or linear energy
transfer (through dosiomics) in the target volumes or organs at risk.

Table 3.1: An overview of the studies conducted on each cohort assessed in this work.
pHGG: Primary high-grade glioma, rHGG: Recurrent high-grade glioma,
TCGA-GBM: The Cancer Genome Atlas - Glioblastoma, NSCLC: non-small
lung cancer, HNC: head and neck

AI workflow applications
Data curation
MR-Class (4.1)

Data completion
nn-Unet (4.2)

Intensity normalization
study (4.3)

pHGG x - x
rHGG x - x

TCGA-GBM x - -
NSCLC - x -

HNC - - -

TCP/NTCP modeling

Cohort
Overall

survival prediction (4.4)
Progression-free

survival prediction (4.4)
Fibrosis

prediction (4.4)
Xerostomia

prediction (4.4)

pHGG - - - -
rHGG x x - -

TCGA-GBM - - - -
NSCLC x x x -

HNC - - - x

16
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The three cohorts, together with two additional cohorts, were used to train
and test the different AI-based workflow applications. The additional cohorts
are a primary high-grade glioma treated with photon RT referenced as pHGG
and a public GBM cohort retrieved from the Cancer Imaging Archive (TCIA)
referenced as TCGA-GBM (Scarpace et al., 2016). They were used to train
the DCNNs for the data curation of MR images. Furthermore, a subset of
the pHGG cohort including patients with at least two MR sequences taken
no longer than 30 days before RT was used in the computational experiment
that evaluated the impact of MR normalization methods on different MR se-
quences. An overview of the analyses performed on each cohort can be seen
in Table 3.1. In the following sections, summaries of the considered cohorts
are given, starting with the discovery, and test sets (80%/20% split) of the
three main cohorts where NTCP/TCP modelling was performed, followed
by the extra cohorts used to train and validate the built deep learning appli-
cations (Summaries of the extra cohorts as well as cohort specifications are
shown in Appendix A).

3.1.1 Recurrent high-grade glioma

Despite therapy, recurrence of high-grade glioma is extremely common, even-
tually occurring in most patients (Hervey-Jumper and Berger, 2014). The
dataset contained 197 patients with a median of 7 time points (corresponding
to a median of 4 months), resulting in 11333 images acquired between 2009

and 2018, retrospectively collected from 15 different scanners at UKHD. The
patients were treated with CIRT at the Heidelberg Ion-Beam Therapy Center
(HIT), according to the CINDERELLA trial (Combs et al., 2010a). The me-
dian dose was 42GyRBE in 14 fractions. The cohort included 71 patients with
grade III and 126 with grade IV (GBM) with a median follow-up time point
of 34.2 months, median OS of 9 months [3-87], and PFS of 5 months [3-80] at
reRT. OS was calculated as the number of days between the start of the reRT
and death. PFS was calculated as the number of months between the begin-
ning of the reRT and progression or death. Progression events were derived
from the clinical follow-ups’ reports. A summary of patient demographics
(discovery and test sets with an 80%/20% split) is presented in Table 3.2.
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Table 3.2: Recurrent high-grade glioma cohort overview. RRRS: reirradiation risk
score developed by (Niyazi et al., 2018). P-value calculated by chi-squared
or Fishers’ tests

Characteristics Discovery set (n=157) Test set (n=40) P-val

Age at reRT (years) 0.18

Median [range] 51 [16-79] 55 [32-71]
⩾65 19 (12%) 6 (15%)
65 138 (88%) 34 (85%)

Gender 0.28

Male 93 (59%) 28 (70%)
Female 64 (41%) 12 (30%)

Karnofsky performance score (KPS) 0.68

⩾ 70 137 (87%) 35 (87.5%)
<70 20 (13%) 5 (12.5%)

RRRS* 0.66

Median [range] -0.01 [-0.62-1.21] -0.04 [-0.48-1.13]
Good 47 (29.9%) 14 (35%)

Intermediate 93 (59.2%) 24 (60%)
Poor 17 (10.9%) 2 (5%)

WHO grade, reRT 0.97

III 56 (36%) 15 (37.5%)
IV 101 (64%) 25 (62.5%)

MGMT promoter 0.85

Hypermethylated 19 (12%) 10 (25%)
Not hypermethylated 17 (11%) 8 (20%)

Unsure 1 (0.6%) 0 (0%)
Missing 120 (76.4%) 22 (55%)
IDH1 0.71

Mutant 33 (21%) 8 (24%)
Wildtype 23 (15%) 14 (31%)
Missing 101 (64%) 18 (45%)

1p/19q Codeletion 0.44

Yes 12 (7.6%) 4 (10%)
No 11 (7.4%) 2 (5%)

Missing 134 (85%) 34 (85%)
Reresection 0.84

Yes 21 (13%) 18 (18%)
No 136 (87%) 32 (82%)

Temozolomide 0.57

Yes 139 (88.5%) 37 (92.5%)
Total dose [GyRBE] 0.85

30 8 (5%) 2 (5%)
33 12 (8%) 3 (7%)
36 18 (11%) 4 (10%)
39 17 (11%) 4 (10%)
42 22 (14%) 6 (15%)
45 70 (45%) 19 (48%)
48 10 (6%) 2 (5%)
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3.1.2 Head and neck cancer

Head and neck carcinomas form in the linings of the upper respiratory tract
and represent the sixth most common cause of cancer. The cohort contained
153 head-and-neck cancer patients treated between 2010– 2015 at UKHD.
A summary of the patient demographics (discovery and test sets with an
80%/20% split) is presented in Table 3.3. More details about the dataset are
available in (Gabryś et al., 2018).

Table 3.3: Head and neck cancer cohort overview. P-value calculated by chi-squared
or Fishers’ tests

Characteristics Discovery set (n=123) Test set (n=30) P-val

Patient characteristics
Age at RT (years)

<65 83 (67%) 17 (57%)
65-80 35 (28%) 11 (37%)
>=80 5 (5%) 2 (6%)

Gender 0.88

Male 93 (76%) 23 (77%)
Female 30 (24%) 7 (23%)

Tumor characteristics
Tumor site 0.55

hypopharynx 16 (13%) 5 (17%)
larynx 12 (10%) 4 (13%)

nasopharynx 8 (2%) 4 (13%)
oropharynx 83 (67%) 16 (53%)

other 4 (8%) 1 (4%)
Treatment characteristics

Modality 0.96

IMRT 29 (26%) 8 (27%)
Tomotherapy 94 (74%) 22 (73%)

Median dose [range] 0.57

ipsilateral 24.12 [0.35, 63.37] 23.41 [0.41, 61.2]
contralateral 19.87 [0.33, 30.92] 18.9 [0.6, 28.7]
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3.1.3 Non-small cell lung cancer

The cohort consisted of 180 non-small cell lung carcinoma (NSCLC) patients,
from which a subset of 106 patients had a stage I or II NSCLC. The early-stage
NSCLC patients were treated with stereotactic body radiotherapy (SBRT)
with a median dose of 60 Gy in 8 fractions between 2008-2019. The staging
was derived based on the tumour, node, metastasis (TNM) staging system by
the International Association for the Study of Lung Cancer (IASLC) and the
American Joint Committee on Cancer (AJCC), lastly revised in 2017 (Detter-
beck et al., 2017). The TCP/NTCP modelling was only performed on the 106

early-stage NSCLC patients. No staging was possible for the remaining 74

NSCLC patients due to missing clinical information. They were treated with
RT at UKHD between 2008-2019. They were selected solely to increase the
accuracy of the segmentation networks (Section 4.2). All patients were added
to the training set of the automatic segmentation DCNN to segment the ROI
for patients with either a missing or corrupt RT SS in the early-stage NSCLC
cohort. A summary of the early-stage NSCLC patient demographics (discov-
ery and test sets with an 80%/20% split) is presented in Table 3.4. Table A.4
summarises the patient demographics of the remaining NSCLC patients.

3.1.4 Primary high-grade glioma

High-grade glioma is the primary tumour occurring most often in the central
nervous system (Jovčevska, Kočevar, and Komel, 2013; Louis et al., 2007). The
cohort consists of 320 patients treated with photons RT with a median of 9

image acquisition time points (corresponding to a median of 4 months), re-
sulting in 20101 MR images acquired between 2006 and 2018. The dataset was
collected retrospectively from 23 different scanners at UKHD. The in-plane
resolution ranged from 0.45 x 0.45 to 1.40 x 1.40 mm, while the slice thick-
ness ranged from 0.9 to 5 mm in all MR scans. A subset of 141 patients with
available RT DICOM data and pre-irradiation planning MR time-points with
at least 2 MR sequenced were further selected for the MR intensity normal-
ization impact study (Section 4.3). A summary of the patient demographics
can be seen in Table A.2.

3.1.5 TCGA-GBM

The TCGA-GBM cohort is a public cohort retrieved from the Cancer Genome
Atlas Glioblastoma Multiforme, (Scarpace et al., 2016) including scans from
256 GBM patients with a median of 3 time points (corresponding to a median
of 7 months), resulting in 3522 MR images acquired between 1986 and 2019,
collected from 17 different scanners. A summary of the patient demographics
can be seen in Table A.3.
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Table 3.4: Early stage NSCLC cohort overview. FEV1: Volume exhaled at the end of
the first second of forced expiration, FVC: Forced vital capacity. P-value
calculated by chi-squared or Fishers’ tests

Characteristics Discovery set (n=70) Test set (n=36) P-val

Patient characteristics
Age at RT (years) 0.10

<60 3 (4%) 6 (17%)
60-74 40 (57%) 20 (56%)
⩾75 27 (41%) 10 (27%)

Gender 0.41

Male 46 (66%) 20 (56%)
Female 24 (34%) 16 (44%)

Karnofsky performance score (KPS) 0.87

⩾70 43 (62%) 29 (81%)
<70 8 (11%) 7 (19%)

Unknown 19 (27%) -
FEV1/FVC(%) at RT 0.07

⩾70 40 (57%) 26 (72%)
<70 18 (26%) 10 (28%)

Unknown 12 (17%) -
Cigarettes pack/year 0.31

0 17 (24%) 12 (33%)
<40 14 (20%) 11 (31%)
>40 21 (30%) 13 (36%)

Smoker but unknown 18 (26%) -
Tumor characteristics

NSCLC subtype 0.27

adenocarcinoma 27 (39%) 24 (67%)
Squamous cell carcinoma 21 (30%) 12 (33%)

Unknown 22 (31%) -
Tumor site
Upper lobe 39 (56%) 20 (56%) 0.73

Middle lobe 7 (10%) 5 (14%) 0.71

Lower lobe 24 (35%) 11 (30%) 0.85

Treatment characteristics
Total dose [Gy] 0.55

30 6 (8%) 2 (6%)
45 22 (31%) 11 (30%)
48 2 (3%) 0 (0%)
50 4 (6%) 2 (6%)
54 3 (5%) 3 (8%)
60 33 (47%) 18 (50%)
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3.2 deep learning for data curation

An essential step in the data preparation phase of AI applications and studies
is accurately classifying the medical image modalities present in the cohort
since each image communicates specific anatomical or physiological infor-
mation. However, assuring that the right modalities are used for analysis
(classification of sequences) might be a tedious and time-consuming task,
especially when dealing with a large amount of data from various sources
(multiple scanners, multiple treatment centres) due to possible inconsistent
naming schemes. In particular, retrospective data collection yields additional
challenges as they usually include non-prespecified protocols and sequences.
A previous study demonstrated that classifying medical images based on
image metadata (i.e., based on information stored in the DICOM header) is
often unreliable (Gueld et al., 2002). DICOM tags and the actual examina-
tion protocols applied are not always consistently matched. This is mainly
done to improve imaging quality, for example, the implementation of differ-
ent body region imaging protocols due to variabilities and differences among
patients’ anatomies (Gueld et al., 2002). Therefore, automatizing medical im-
age retrieval and classification based on the content data would be benefi-
cial in terms of time efficiency, accuracy, and, ultimately, reproducibility. In
the context of medical image retrieval and classification using DCNNs, four
studies have been identified for the classification of body organs and MR
images (Accuracy >90%) (Ayyachamy et al., 2019; Qayyum et al., 2017; Reme-
dios et al., 2018; Voort, Smits, and Klein, 2021). A limitation of these methods
is the inability to deal with the open-set recognition problem, i.e., the fail-
ure of a classifier trained to classify between a specific number of classes
to handle unknown classes (Scheirer et al., 2012). The open-set recognition
problem is a common issue when dealing with clinical cohorts since datasets
exported from the hospitals’ Picture archiving and communication system
(PACS) usually include all available medical images and data, resulting in
various medical image modalities and sequences. In this section, the open-set
recognition problem in automatized medical image classifiers is tackled by
training a DCNN-based MR image classifier (MR-Class) using a one-vs-all
approach. One-vs-all classification is implemented to deal with the open-set
recognition problem and thus would enable the handling of unknown classes.
A comparison study of the published DCNNs (mentioned above) for medi-
cal image classification was first performed to determine the adopted DCNN
model. Then, one-vs-all binary class-specific DCNN classifiers were trained
to recognize a particular MR image, thus forming MR-Class. MR-Class con-
sists of multiple one-vs-all binary classifiers rather than a single multiclass
classifier, i.e., a classifier trained to classify all classes. The intuition behind
training multiple one-vs-all DCNN is the open set recognition problem and
that training a DCNN image classifier on every possible MR image is cumber-
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some. The training was performed twice using scans from pHGG. The first
training included all MR images available in the dataset. The second had only
the image volumes of the six considered classes (the same images included in
the comparison study during training). The latter was performed to compare
the one-vs-all dual-class classifiers (MR-Class) performance against a multi-
class DCNN classifier, both trained on the same number of images. Classes
for each binary classifier were defined as follows: class 1 included all images
corresponding to the targeted class, whereas class 0 contained all remaining
images in the dataset. A stratified (by class) 80%-20% dataset split was used
for training and validation (Table 3.5).

Table 3.5: Number (%) of MR images from the training cohort pHGG considered for
each one-vs-all DCNN classifier. T2w-FL: T2-FLAIR

Training Validation

DCNN classifier
Targeted

class
Remaining

images
Targeted

class
Remaining

images

T1w vs all 3152 (15.7) 12929 (64.3) 788 (3.9) 3232 (16.1)
T2w vs all 1576 (7.9) 14505 (72.1) 394 (2.0) 3626 (18.0)

T2w-FL vs all 1535 (7.6) 14546 (72.4) 384 (1.9) 3636 (18.1)
ADC vs all 1550 (7.7) 14530 (72.3) 388 (1.9) 3633 (18.1)
SWI vs all 1183 (5.9) 14898 (74.1) 296 (1.5) 3724 (18.5)

3.2.1 MR scans

Multiparametric MRIs (mpMRI) were collected from multiple scanners from
the pHGG, rHGG, and TCGA-GBM cohorts, resulting in heterogeneous modal-
ities and MR sequence protocols (Appendix A). Conventional multislice (2D)
acquired in the axial, sagittal, or coronal plane, as well as 3D scans, are
present. The MR sequences found in the cohorts are the widely used se-
quences for brain tumour imaging (Ellingson et al., 2015) in clinical routines
and trials (Combs et al., 2010b; Niyazi et al., 2018). All MR images found in
the training cohort were included in the training. However, one-vs-all DCNN
classifiers were only trained for T1w, contrast-enhanced T1w (T1wce), T2w,
T2w fluid-attenuated inversion recovery (FLAIR), apparent diffusion coeffi-
cient (ADC), and susceptibility-weighted imaging (SWI). No SWI scans were
found in TCGA-GBM. The in-plane resolution ranged from 0.33 x 0.33 to 2

x 2 mm for pHGG, 0.45 x 0.45 to 1.40 x 1.40 mm for rHGG, and 0.45 x 0.45

to 1.14 x 1.14 mm for TCGA-GBM. Slice thickness ranged from 0.9 to 7.5 mm
in all MR scans. Human experts manually labelled each MR image through
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an in-house interactive labelling tool. The DICOM attributes "Series Descrip-
tion" (SD) and "Contrast/Bolus Agent" DICOM attribute were then extracted
and compared to the derived labels to evaluate the metadata’s consistency.
Sample images of the classifiable sequences are shown in Figure 3.1.

Figure 3.1: Sample images of the different classifiable MR sequences

3.2.2 MR-Class: Training and preprocessing

The DCNN architecture chosen for MR-Class is the ResNet-18. Residual Net-
works (ResNet) were introduced in 2015 to deal with the degradation prob-
lem, i.e., the degradation of the network accuracy as the depth of the network
increases (He et al., 2016). Besides the usual DCNN architecture for classifica-
tion purposes (alternating stack of convolutional, activations, and pooling lay-
ers), ResNet introduces skip-connections that skip one or more layers. These
skip connections fit the unmodified input from the previous layer to the next
layer, preserving the original image signal by performing identity mapping.
This results in maintaining the norm of the gradient and solving the degra-
dation problem. A softmax layer is appended to the end layer to produce
probabilistic predictions of the classes. Schematics of the ResNet architecture
is shown in Figure 3.2.
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Figure 3.2: The one-vs-all ResNet-18 architecture - An alternating stack of convolu-
tional activations and pooling layers. The skip connections (arrows) fit
the unmodified input from the previous to the next layer, preserving the
original image signal. FC (2) is a fully connected layer with two neurons
as output, representing the sequence and the other possible sequences.

The preprocessing and training approach implemented for the 2D ResNet-
18 are likewise applied for the one-vs-all DCNNs; however, further steps were
taken to address the imbalanced classes arising from the one-vs-all classifica-
tion design. First, data augmentation was implemented using the TorchIO
python library (Pérez-García, Sparks, and Ourselin, 2021). Specifically, the
transformations implemented included adding random Gaussian noise, blur-
ring, performing random affine or elastic deformations, and adding random
MR motion artefacts like motion, ghosting, or spikes. Second a weighted bi-
nary categorical cross-entropy loss was used, where the weights of a class
were equal to the size of the largest class divided by the size of that spe-
cific class. For example, for the T2w-vs-all DCNN, if class T2w has 1970 and
class all has 18131 MR images, the weights would be 9.2 and 1.0, respectively.
Finally, the learning rate scheduler was adjusted to decay based on the tar-
geted class training loss instead of the loss of both classes. A summary of the
training workflow can be seen in Figure 3.3.

3.2.3 MR-Class: Inference and testing

The cohorts rHGG and TCGA-GBM were used to perform independent test-
ing of MR-Class. In inference mode, the MR images were preprocessed (same
as in training) and fed to each DCNN classifier to infer the correspond-
ing class. A classification probability threshold of 0.95 was used. The cutoff
threshold value was determined based on the distribution of the probabili-
ties of correct and wrong labelled images when pHGG was inferred back to
MR-Class (Figure 4.2). If an image is labelled by more than one classifier, the
classifier with the highest probability determines the class. If none of the clas-
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Figure 3.3: MR-Class training workflow - MR-Class comprises five one-vs-all DC-
NNs, one for each class, and the T1w-vs-T1wce binary DCNN. C1: pHGG

sifiers label an image (i.e., assigned to class 0 by each classifier), it is unclassi-
fiable. The 2D DCNNs classify an MR scan as a class using a majority vote of
10 inferred slices extracted around the middle slice of the corresponding MR
acquisition plane. Figure 3.4 shows a summary of the inference workflow.

Classifications were compared to ground truth labels, where the number of
correct predictions divided by the total number of images derived the accu-
racy. The 95% confidence interval (CI) was calculated as the Wilson interval
(WS) (Wallis, 2013). Classification sensitivity and specificity were calculated
to evaluate the performance of each classifier. Lastly, the misclassified images
were analyzed to identify the causes of misclassifications.
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Figure 3.4: MR-Class inference workflow - rHGG and TCGA-GBM were used to test
MR-Class. After preprocessing, MR images are passed to the five one-vs-
all DCNN classifiers. A classification probability threshold of 0.95 was
used. If none of the classifiers label an image, it is rendered as other. If
more than one classifier labels a specific image, then the image is labelled
by the classifier with the highest probability. C2: rHGG, C3: TCGA-GBM

3.3 deep learning for data completion

During analysis, 16% of RT SS were observed as missing from cohorts NSCLC
and Un-NSCLC, which might affect the overall analysis w.r.t NTCP/TCP pre-
diction performance. To complete the missing data, a deep learning frame-
work - nnU-Net (Isensee et al., 2019a) - was employed. nnU-Net is based on
a U-Net structure, allowing for accurate, fast biomedical image segmentation.
The preprocessing steps are automated, as well as the tuning of network pa-
rameters. 136 images from cohorts NSCLC and Un-NSCLC were used for
training, while 15 images were kept for testing. Both 2D and 3D segmenta-
tion networks were trained for the automatic segmentation of GTV and the
heart.

3.4 preprocessing workflow

After DICOM dataset curation and MR image classification using pyCURT
and MR-Class (Sforazzini et al., 2020), a sequence of different preprocessing
steps was applied to the different modalities, i.e., MR, CT, and DD. The im-
age processing diagram is shown in Figure 3.5. After reorienting all images
to a common orientation, signal inhomogeneities in T1w images were cor-
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rected using the N4 bias field correction algorithm (Tustison et al., 2010). The
HD-BET brain extraction tool was next applied to eliminate the skull and
background and generate the brain mask (Isensee et al., 2019b). Noting that
not all patients had 3D MR sequences available, the 2D transversal, sagittal,
and coronal MR scans were corrected for motion and 3D reconstructed to a
high-resolution 3D MR scan through NiftyMic (Ebner et al., 2020).

Next, cross-sectional linear co-registrations with 6 degrees of freedom (DOF)
of the present MR sequences were performed on the T1wce using advanced
normalization tools (ANTs) (Avants, Tustison, Song, et al., 2009). An addi-
tional cross-sectional linear co-registration of the T1wce with 6 DOF was
performed on the RT planning CT to transform the target volume (TV) seg-
mentations - extracted from the DICOM structure set (SS) objects - to the
MR space. Large MR intensity inter-patient variations are present in this co-
hort since data were collected from multiple scanners (data not shown). The
methods applied to the different sequences were derived based on the results
obtained by the MR intensity normalization impact study presented in the
subsection 3.4.1. With the help of the intensity normalization package (Rein-
hold et al., 2019) and FAST (FMRIB’s Automated Segmentation Tool) (Zhang,
Brady, and Smith, 2001), multiple different intensity normalization methods
were applied to the cohort, each resulting in a specific intensity normalized
dataset, to check and eliminate radiomics features impacted by the choice
of the normalization algorithm. The signature and model building were per-
formed on the top-performing identified methods’ corresponding normalized
dataset - however, after the elimination of the radiomics feature, that showed
a low correlation between the different normalization methods (see section
4.3). A Spearman rank-order correlation coefficient rs cutoff of 0.80 was used
to eensure a strong correlation.

CT image intensities were clipped to the 5th and 95th percentiles. When
single fields or fraction (fx) DD were only present, individual beam dose ac-
cumulation and fx-weighted dose conversion were performed to derive the
plan RT DD. All DD were next re-calculated using FRoG (Fast Recalculation
on GPU), a dose engine benchmarked against the gold standard Monte Carlo
(MC) simulation (Mein et al., 2018). All voxel intensities were transformed
to the equivalent dose in 2 Gy per fraction (EQD2) using an α/β of 10 Gy.
Resampling of the images and TVs to a matrix size of 2x2 mm and a slice
thickness of 2 mm were next performed using a cubic spline and linear inter-
polation, respectively. Finally, image discretization was performed. Five bin
counts (16-32-48-64-128) and five bin widths around the interquartile range
(IQR) of the intensity range of the cohort in the study were applied to each
of the 14 MR intensity normalized discovery datasets. A fixed bin count of 32

was used on the test set for all MR sequences. A fixed bin width of 25 and 0.1
was used for CT and DD, respectively.
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Figure 3.5: MR, CT, and DD preprocessing diagram used on the discovery and test
sets. RT SS target volumes represent the target volume segmentation ex-
tracted from the DICOM RT structure set. T2w-FL: T2w-FLAIR. ROI: re-
gion of interest; black: both sets, green: discovery set, red: test set; DD:
dose distribution
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3.4.1 Impact of intensity normalization methods

Intensity normalization was performed with the help of the intensity normal-
ization package (Reinhold et al., 2019) and the FMRIB’s Automated Segmenta-
tion Tool (FAST) (Zhang, Brady, and Smith, 2001). The intensity-normalization
methods considered are Fuzzy C-Means (FCM) (Bezdek, Ehrlich, and Full,
1984) (9 different masks combinations), kernel density estimation (KDE), Gaus-
sian mixture models (GMM) (Reynolds, 2009), the Nyul’s and Udupa’s his-
togram matching-based abbreviated in this study as HM (Nyúl and Udupa,
1999), white-strips (WS) (Shinohara et al., 2014), z-score normalization, and
the feature-based batch adjustment method, i.e., Combat (Johnson, Li, and
Rabinovic, 2007), resulting in 15 different MRI normalized datasets. A brief
description of the methods is given in this section. For a broader definition,
the original normalization method papers and the manuscript are referred
(Reinhold et al., 2019).

3.4.1.1 Standard score

The standard score, also known as the z-score, represents the distance of a
raw score from the mean measured in standard deviations. In the context of
MR brain image normalization, given that B is the brain mask in the image
I, the z-score calculates the mean and standard deviation of the intensities
inside the brain image (excluding the background) as follows:

µ = 1
|B|

∗
∑

b∈B I(b), σ =

√∑
b∈B(I(b)−µ)2

|B|−1
with the normalized image

being Inorm(x) =
I(x)−µ

σ

This method’s downfall is that the images’ high intensities will be wrongly
diminished.

3.4.1.2 Fuzzy clustering

Clustering is a method for analyzing data that aims to discover structures
or groups in a data set. Fuzzy clustering (Bezdek, Ehrlich, and Full, 1984)
allows a piece of data to be part of more than one cluster. In a fuzzy c-means
algorithm, a data point is assigned a membership function, with 0 being the
farthest from a cluster’s centre and one being the closest to a cluster’s centre,
with the data point theoretically being able to belong to all clusters. Used as
a normalization technique, the fuzzy c-means algorithm uses a specific tissue
mask to normalize the image to the mean intensity of that mask. In brain MRI,
the main different tissue types are white matter (wm), grey matter (gm), and
cerebrospinal fluid (csf) (Figure 3.6).

If the mean of the tissue is: µ = 1
|T |

∗
∑

t∈T I (t), then the normalized image

would be Inorm(x) =
I(x)
µ , with T as the tissue mask.
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Figure 3.6: Segmentation of the different brain tissue using the segmentation tool
FAST. White matter is in yellow, grey matter in red, and the cerebrospinal
fluid in green

The brain tissue masks, i.e., white matter (wm), grey matter (gm), and cere-
brospinal fluid (csf), segmentations were performed using FSL’s FAST (Zhang,
Brady, and Smith, 2001). In conjunction with the most common intensity
value (mode) in a particular image, nine different mask combinations were
implemented to generate nine fuzzy c-means normalized datasets. The masks
are csf, gm, wm, csf-gm, wm-csf, wm-gm, csf-mode, wm-mode, and gm-
mode.
The normalization with two brain tissue masks is performed as follows: with
µ1 = 1

|T1|
∗
∑

t∈T I (t) and µ2 = 1
|T2|

∗
∑

t∈T I (t), the normalized image would

be Inorm(x) =
I(x)−a
b−a with a = min(µ1,µ2) and b = max(µ1,µ2).

The normalization with a brain tissue mask and the mode is performed as:
as Inorm(x) =

I(x)
diff with diff = µT −mode(B) with T as the tissue mask and B

as the brain mask.

3.4.1.3 Kernel Density Estimation

A density estimator aims to find a function for the probability distribution
that a dataset was generated from. The kernel density estimation (KDE) is an
empirical calculation in a parametrized form. The formula for calculating the
KDE for the probability distribution function is:

p (x) =
1

N ∗M ∗ L ∗ h
∗
N∗M∗L∑
i=1

K

(
x− xi
h

)
where N, M, and L are the sizes of the images, K is the kernel (normalized to
one), and h is the bandwidth parameter that scales the kernel. This method
provides a smoother version of the histogram, making it easier to find the
maxima. This is then used to normalize the entire image as Inorm(x) = c ∗
I(x)
π , where c is a positive, real constant. In this study, the KED finds the peak

for the white matter histogram and translates it to a standard value.
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3.4.1.4 Gaussian Mixture Models

A mixture model assumes that a data set comprises subsets whose individual
distributions are the respective probability distributions in the overall data set.
A specific mixture model is the Gaussian mixture model, where the subsets
are considered to be generated from a finite number of Gaussian distribu-
tions with undefined parameters. The method used here fits three Gaussian
distributions to the histogram of the brain without a skull and normalizes the
white matter mean to an expected value (Reinhold et al., 2019).

3.4.1.5 Landmark-based histogram matching

The landmark-based histogram matching method (Nyúl and Udupa, 1999)
tries to deform the input image intensity histogram to match a reference his-
togram. Most commonly, the reference histogram is obtained by averaging
histograms in a data set and setting the landmarks of interest. Each input
image histogram is then matched to the reference one through linear interpo-
lation based on the defined landmarks, usually quantiles.

3.4.1.6 White Stripe normalization

The WhiteStripe normalization approach is presented by (Shah et al., 2011).
Its main idea is to choose a reference brain tissue, in this case, normal-appearing
white matter (NAWM). The NAWM values are obtained by smoothening the
image histogram and selecting the largest peak. The so-called white stripe
contains intensity values up to 10% around. The white stripe can be defined
as

ΩT =
{
I(x) | F−1(F(µ) − τ) < I(x) < F−1(F(µ) + τ)

}
where F(x) is the cumulative distribution function of the image I and τ =

5% is the standard deviation in the white stripe. The normalized image is
Inorm(x) =

I(x)−µ
σ .

3.5 radiomics and dosiomics feature extraction

After all considered image modalities have been curated and prepossessed,
the next step is to extract the radiomics and dosiomics features on which the
NTCP/TCP modelling was performed. Radiomics and dosiomics features
were extracted from the original image and transformed images using the
PyRadiomics (v 3.0) library in Python and the DicomToolboxMatlab (Gabryś
et al., 2018; Van Griethuysen et al., 2017). The regions of interest (ROIs) con-
sidered for the rHGG cohort are the gross (GTV), clinical (CTV), and plan-
ning (PTV) target volumes. For the NSCLC cohort, the ROIs are the GTV,
PTV, heart, ipsilateral lung, and contralateral lung. As for the HNC cohort,
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the ROIs are the PTV, ipsilateral, and contralateral parotid glands. The de-
rived radiomics images were retrieved from Wavelet filtering, which yielded
eight decompositions per level, each representing a combination of either a
high or a low pass filter in each of the three dimensions, a Laplacian of Gaus-
sian filter with spatial scaling factors (SSFs) of 2, 3 and 4 mm, and linear
binary patterns. Additional transformations were applied on DD, i.e., loga-
rithm, square, gradient, square root, and exponential. The number of shape,
first and second-order statistics derived per modality and calculated on both
the original and derived images can be seen in Table 3.6. The total yielded
1200 radiomics feature per image modality per ROI, and 1500 dosiomics fea-
ture per ROI. Calculations were performed on a Linux workstation (Intel
Xeon W-2145 CPU, 16 GB memory).

Table 3.6: Number of shape, first and second-order statistics derived per sequence
and calculated on both the original and derived images.

Class No. features

First-order statistics 19

Shape-based (3D) 16

Second-order statistics
Grey Level Co-occurrence Matrix 24

Grey Level Run Length Matrix 16

Grey Level Size Zone Matrix 16

Neighbouring grey Tone Difference Matrix 5

Grey Level Dependence Matrix 14

3.6 statistical analysis

After all considered image modalities have been curated, prepossessed, and
the radiomics and dosiomics features have been extracted, the statistical anal-
ysis was performed. Statistical modelling was performed in R (version 3.3.1,2016

28) with the “rms”, “mlr” (Lang et al., 2019), "Hmisc", "PerformanceAnalyt-
ics", "Hmisc", "data.table", "doParallel", "foreach", "glmnet", "boruta, "lsmeans",
"pheatmap", "plyr" and "dataAnalysisMisc" (Knoll et al., 2020) packages. Plots
were generated using the "ggplot2" package. Continuous variables were com-
pared using the Mann-Whitney U test. Testing of differences between two
groups was performed using Chi-squared or Fisher’s exact tests. Significance
level (p-value) was set at 5% (two-sided). The three datasets used in the
NTCP/TCP modelling, i.e. rHGG (Table ,3.2, NSCLC (Table 3.4 and HNC
(Table 3.3) were split into discovery and test sets with an 80%/20% split. In
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the rHGG cohort, patients with at least a missing or corrupted T1w, T2w,
T2w-FLAIR, SWI, or ADC were all assigned to the discovery set. In the HNC
cohort, 12 patients had a corrupted CT DICOM image, which were assigned
to the discovery set. The same was performed in the NSCLC cohort, where
patients with missing RT SS were assigned to the discovery set. All patients
in the test sets had all modalities considered in this study, as well as the ROIs
present in the RT SS.

3.6.1 The unimodality and multimodality signature derivation

After feature extraction, different prepossessing steps were applied to the ra-
diomics and dosiomics feature sets, as well as different tests to check which
combination of features is most significantly correlated to the different out-
comes modelled in this work. This was performed on the individual con-
sidered modalities feature sets to derive the unimodality signatures as well
as on the multimodality combined feature sets to derive the multimodality
signatures.

The different prepossessing steps and tests were applied as follows. First,
z-score normalization was performed, where each feature was normalized as
z = x−y

s , where x is the feature, y is the mean, and s is the standard deviation.
Pairwise correlational tests were next applied between the different intensity
normalized and discretized datasets, where features that showed a low cor-
relation in at least 20% of the preprocessing methods’ respective processed
datasets were eliminated. Low variance and high correlation filters were fur-
ther implemented on the remaining feature set to drop features with low
variance and high correlation. Correlation-based feature elimination was per-
formed using the Spearman correlation formula with a rank-order correlation
coefficient (rs) threshold of 0.80 (Wissler, 1905).

OS and PFS correlated features were then derived separately from the clin-
ical (demographics) features and the remaining radiomics and dosiomics
features. A combination of three feature selection methods was then used,
including a univariate analysis under Cox proportional hazard (CPH) mod-
els (Lin and Wei, 1989), a random forest (RF) -based method, i.e., Boruta
(Kursa and Rudnicki, 2010), and lasso regression (Muthukrishnan and Ro-
hini, 2016) were applied on 1000 random subsamples (10% left out) of the
discovery dataset. Modality-specific significant features identified at least 950

times were further selected. A multi-modality imputation pipeline was then
applied using the MICE R package (Van Buuren and Groothuis-Oudshoorn,
2011). The missing significant features observations were imputed using all
significant features derived from the other modalities. Finally, a forward-
backwards stepwise variable selection procedure using CPH models was ap-
plied to the significant features to obtain the unimodality-specific imputed
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signatures. Complete signatures, i.e., excluding imputed data, were also de-
rived for performance comparison.

To derive the radiomics signature (RS), all MR modalities and CT sig-
nificant features were combined into one feature set on which a forward-
backwards stepwise variable selection procedure using CPH models (P-val<
0.05) was applied. Similarly, the combined signature (RDCS) was derived,
however, with the inclusion of the clinical and dosiomics significant features.
Complete signatures with non-imputed data were also derived for perfor-
mance comparison.

An overview of the unimodality and multimodality signature building is
presented in Figure 3.7.

3.6.2 Model building, evaluation, and comparison

Time to event information for OS, PFS (i.e. survival in the absence of tumour
progression or metastasis) as well as for the radiation-induced toxicities in
the NSCLC, i.e. radiation-induced lung fibrosis, and the HNC, i.e. radiation-
induced xerostomia were available. For those, multivariate CPH and random
survival forest (RSF) models were trained to derive the NTCP and TCP mod-
els with the derived signatures. The performance of the unimodality and mul-
timodality models were then evaluated and compared. Model performance
comparison was performed in two folds. First, using the CPH models and
the discovery set, the resampled concordance index (C-I) was computed for
each model and used for performance evaluation. C-I is an established means
that quantifies the quality of rankings and evaluate the predictions made by a
model and is defined as the proportion of concordant pairs divided by the to-
tal number of possible evaluation pairs (Steck et al., 2007). Three different re-
sampling approaches, i.e., a 5-fold cross-validation, bootstrapping with 1000

iterations, and Monte-Carlo cross-validation with 1000 iterations. Second, all
CPH and RSF models were applied to the test set, and the C-I was computed.
Confidence intervals were derived through bootstrapping (n=1000). X-means
clustering, an extension of k-means with efficient estimation of the number
of clusters through Bayesian Information Criterion (BIC) to approximate the
correct number of clusters (Pelleg, Moore, et al., 2000), was next performed
separately on the corresponding radiomics and dosiomics features and the
multimodality combined signatures and patients were assigned to the de-
rived clusters. A low-dimensional representation of the data was then derived
using a t-distributed stochastic neighbour embedding method (t-sne) to vi-
sualize the clusters (Maaten and Hinton, 2008). X-means was not performed
when single radiomics or dosiomics features formed the corresponding signa-
ture, and patients were stratified into two groups based on the median value
of the identified feature. Survival and freedom from toxicity curves were then
described using Kaplan–Meier (KM) analysis (log-rank test). Effects of the dif-
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Figure 3.7: Unimodality and multimodality signature building - Following image
preprocessing on both discovery and test sets, features were extracted
from each set for each modality, and several feature reduction and se-
lection methods were applied through resampling; after identifying the
unimodality significant features, the unimodality, and multimodality sig-
natures were built through a forward-backwards feature selection scheme;
GTV: gross tumour volume, CTV: clinical target volume; PTV: planning
target volume
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ferent modalities (clinical, radiomics, and dosiomics) significant features on
the prediction and prognostic separation were also assessed. Furthermore,
model performances after the derivation of patient subsets based on the clin-
ical features and known biomarkers such as MGMT methylation, IDH1/2

mutation, and 1p/19q codeletion in the rHGG cohort, or the tumour location
and site in the NSCLC cohort were analyzed.

3.6.2.1 Survival function

Using the Kaplan-Meier method (Kaplan and Meier, 1958), the survival prob-
ability can be estimated from observed survival times - either censored or
uncensored. The probability of being alive at tj−1,S(tj) is calculated using
S(tj−1),nj - the number of alive patients before tj and dj - the number of
events at tj, as

S(tj) = S(tj−1)(1−
dj

nj
) (9)

with t0 = 0 and S(0) = 1. S(t) does not change between times of events, which
renders a step function whose value changes only at the time of each event
(Clark et al., 2003). By plotting the Kaplan-Meier survival curve - survival
probability against time - one can estimate, e.g., median survival time.

3.6.2.2 Hazard function

The relationship between S(t) and h(t) is given by the formula

h(t) = −
d

dt
[logS(t)] (10)

therefore if one of the functions is known, the other can be calculated. Nonethe-
less, h(t) cannot be easily estimated. The area under the hazard function -
H(t) - between times 0 and t is commonly used to calculate it. H(t) is an
intermediate step in estimating h(t) and serves as a tool for checking model
validity. Over time, many methods of estimating H(t) have been developed;
because of its applicability to a wide array of clinical applications, the Cox
proportional hazards model (Cox, 1979), based on order statistics, is the most
commonly used one, mainly due to the measure of association, i.e. though
the assumption of proportionality of the hazard ratios (Breslow, 1975).
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This work aimed to incorporate multiple medical information layers into
a combined modelling approach to improve patient stratification and
prognostication while building a data curation, preprocessing, and anal-
ysis pipeline for faster deployment of artificial intelligence applications.
This chapter presents:

1. the tools developed to address the issue of analyzing large, hetero-
geneous cohorts

2. the models developed to improve NTCP/TCP prediction

4.1 deep learning for data curation

When working with large, heterogeneous datasets, bottlenecks such as
DICOM metadata inconsistencies can slow down the data preprocessing
and thus the overall analysis. With the data curation tool, this work aimed
to facilitate data preprocessing in projects using large clinical cohorts.

While preparing the different datasets included in this work, several prob-
lems were observed. These included DICOM metadata inconsistencies which
did not allow for the proper curation of the image modalities. Therefore a
one-vs-all DCNN automatic classification pipeline was built to enable fast
and accurate image modality classifications based on the image content. The
pipeline serviceability is shown in this work through the automatic classifi-
cation of MR sequences, i.e., MR-Class. Before presenting MR-Class’s clas-
sification performance, the experiments’ results to assess the validity of a
one-vs-all DCNN classification pipeline for MR sequences are first reported.

4.1.1 Metadata consistency

When analyzing the DICOM series descriptions (SD) of the different MR se-
quences observed in cohorts pHGG, rHGG, and TCGA-GBM, 2074 SDs were
identified. 11.4%, 10.6%, and 10.7% of the SDs for pHGG, rHGG, and TCGA-
GBM, respectively, had misleading or inconsistent entries, not allowing for
the proper identification of the MR image class (Table 4.1).

38
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Table 4.1: Percentage of DICOM metadata-based labelling errors for each class con-
sidered in all three cohorts. T2w-FL: T2w-FLAIR

pHGG rHGG TCGA-GBM

n % error n % error n % error
T1w 2023 15.1 1189 11.2 433 13.4
T1wce 1917 13.9 4315 13.4 1096 9.9
T2w 1970 9.3 630 11.7 347 10.3
T2w-FL 1919 7.2 811 10.5 389 8.2
ADC 1938 7.6 895 8.4 122 5.5
SWI 1479 6.3 486 6.6 - -
Other 8855 13.1 3007 7.3 1135 12.1
All 20101 11.4 11333 10.6 3522 10.7

4.1.2 Multiclass vs one-vs-all classifications

As for the multiclass vs multiple binary one-vs-all classification experiment,
where only the image volumes of the six considered MR sequences were
regarded, the validation accuracy was comparable, with 98.6% and 98.1%,
respectively. The outputs of an image when inputted into the different con-
volutional layers (for feature extraction) are the so-called "feature maps". Fig-
ure 4.1 illustrates feature maps of different layers for both classification ap-
proaches. Only the middle slice of the last map of each convolutional block is
shown. They are generated for the positive classification of the six sequences
of a single patient to highlight the features learned for an MR sequence clas-
sification.

4.1.3 MR-Class: MR image classification utilizing one-vs-all DCNNs

In this section, the classification performance of the one-vs-all MR sequence-
specific DCNN, as well as the performance of MR-Class, is reported. An eval-
uation of the misclassified images is also performed.

4.1.4 Classification performance: One-vs-all DCNNs

Table 4.2 summarizes the classification accuracies in the validation sets of all
six DCNN classifiers on pHGG.

All six classifiers have high validation accuracies, with the lowest at 97.7%
for the T1w-vs-T1wce and the highest at 99.7% for the SWI-vs-all and 99.6%
for the ADC-vs-all tasks. Passing back the training set pHGG to MR-Class in
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Figure 4.1: Visual inspection of feature maps for multiclass CNN and one-vs-all
CNNs. Upper panel: Multiclass CNN, lower panel: multiple binary one-
vs-all CNNs - Visual inspection of feature maps for different layers of the
true positive sequence classification of a single patient with all 6 MR se-
quences. Layers 1,7, and 13 are shown in succession in each row (Figure
3.2). The last layer of each convolutional block is shown. Similar feature
maps evolution behaviour is observed between the different classification
approaches and the different CNNs, as an image propagates throughout
the layers
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Table 4.2: Validation classification accuracies of all six binary DCNN classifiers on
pHGG. T2w-FL: T2w-FLAIR

Classifier Val Acc (%) Classifier Val Acc (%)

T1w-vs-all 99.1 T2w-FL-vs-all 99.4
T1w-vs-T1wce 97.7 ADC-vs-all 99.6

T2w-vs-all 99.3 SWI-vs-all 99.7

inference mode, an accuracy of 97.4% [95% WS CI: 96.2, 98.4] is obtained, i.e.,
out of 20101 MR scans, MR-Class could not learn 519. As for the multiclass
vs multiple binary one-vs-all classification experiment, where only the image
volumes of the six considered MR sequences were regarded, the validation ac-
curacy was comparable with 98.6% and 98.1%, respectively. The distribution
of the classification probabilities derived by MR-Class for all three cohorts is
shown in Figure 4.2. Based on pHGG, a probability cutoff threshold of 0.95

was set for testing MR-Class on rHGG and TCGA-GBM.

4.1.5 Classification performance: MR-Class

MR-Class’s accuracy against the independent cohort rHGG was 96.7% [95%
CI: 95.8, 97.3], i.e., 424 out of 11333 images were misclassified. All DCNNs
had a specificity ranging between 93.5% (T2w-vs-all) and 99.6% (SWI-vs-all).
The T1w-vs-T1wce and T1w-vs-all had the lowest sensitivity with 91.9% and
96.6%, while all remaining DCNNs had a high sensitivity (>99%) (Figure
4.3-upper, rHGG). In the multiclass normalized confusion matrix (Figure 4.3-
lower, rHGG), it is seen that the classification of T1w is the least reliable,
with an accuracy of 91.17%. Against the independent TCGA-GBM, MR-Class
achieved an accuracy of 94.4% [95% CI: 93.6, 96.1] with 196 misclassified
scans out of 3522. The T1w-vs-T1wce had the lowest sensitivity with 97.4%,
while all remaining DCNNs had a sensitivity larger than 98%. Specificity
ranged between 91.3% (T2w-vs-all) and 98.8% (T1w-vs-T1wce) (Figure 4.3-
upper, TCGA-GBM). In the multi-class confusion matrix (Figure 4.3-lower,
TCGA-GBM), it is seen that the classification of T2w is the least reliable, with
an accuracy of 91.35%, with 8.65% classified as "other". Investigations on the
misclassified images were performed in the next section.

4.1.5.1 Analyses of misclassified images.

In this section, misclassified images were analyzed to identify the causes of
misclassifications. Out of the 14855 inferred images from rHGG and TCGA-
GBM, MR-Class classified 620 images incorrectly. The misclassifications can
be sorted into different categories: MR artefact-middle slice blurring, MR
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Figure 4.2: Distribution of the probabilities of correct and wrong labelled images for
all three cohorts when inferred to MR-Class. Based on the distributions of
pHGG (C1), a cutoff classification threshold probability of 0.95 was used.
Histogram bin width = 0.01. C2: rhGG, C3: TCGA-GBM

artifacts-other, similar image content for different MR sequences (e.g., a T1w-
FLAIR sequence instead of T2w), misclassified diffusion-weighted imaging
(DWI) as T2w, and DICOM corrupted scans (sample images shown in Figure
4.4). A manual evaluation revealed frequent misclassification (n=122, 19.68

%) if the architecture of the ventricles was altered, e.g., displaced by large
tumours. This was assessed in detail: 122 random, correctly labelled images
were used as a reference group. After manual segmentation of the tumour
volume and brain, the Euclidean distance between the brain’s centre of mass
(CoM) and the CoM of the tumour volume was calculated. A t-test was then
performed between the reference and misclassified CoM distributions. The t-
test returned a p-value of 0.04, with a median CoMs distance of 46.15 voxels
for the correctly labelled images and 66.31 for the misclassified images. This
result shows a statistical difference between the groups, i.e., the further the
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Figure 4.3: Confusion matrices for rHGG and TCGA-GBM. Upper panel: Confusion
matrices of the 6 DCNNs. Lower panel: MR-Class normalized confusion
matrix(%). ’Other’: image not labelled by the DCNNs; n: number of scans
per class. C2: rHGG cohort, C3: TCGA-GBM cohort
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Figure 4.4: Examples of misclassified images. The first image is an example of a mis-
classified MR due to blurriness. The following two misclassifications are
due to alterations in expected anatomy, e.g., displaced ventricles (in light
blue) from overlapping tumours (red). The next two MR images show in-
correct predictions due to different MR artefacts (Shading, motion, alias-
ing). All of these images are falsely classified as "other". The last image is
a DWI, specifically, a Trace-DWI misclassified as T2w

.

tumour is from the ventricles, the less likely the image is misclassified. The
frequencies of the misclassification categories are shown in Table 4.3.

Table 4.3: Frequency of the misclassified images. n represents the number of images
per category, % is the percentage of images out of the total misclassified
images

Category n %

MR artifact-other 146 26.84

MR artifact-middle slice blurring 127 23.35

Tumor displacing ventricles 122 22.43

Similar content- different sequence 80 14.71

DWI as T2w 76 13.97

DICOM corrupted images 69 12.68

4.2 deep learning for data completion

When analyzing multimodality data, cohorts are often missing certain
modalities due to technical or practical reasons, thus introducing the
problem of data completion. This work employed deep learning to com-
plete missing data points and thus enabled accurate modelling.

16% of the RT SS in cohort NSCLC are missing or corrupted. No missing
RT SS were identified in the rHGG and HNC cohorts; thus, this section only
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focuses on the NSCLC cohort Parameters and test results of the 2D and 3D nn-
Unet automatic ROI segmentation used to deal with the missing structures
from the DICOM RT SS are reported in Table4.4. The 2D network yielded the
best performance for heart segmentation, while the 3D network for the GTV
segmentation. ROI segmentation of the patient with the worst and best dice
received in the test set is shown in Figure 4.5.

Table 4.4: Summary statistics and performance of the 2D and 3D nn-unet segmen-
tation for GTV and heart segmentation. The best-performing network for
each ROI is highlighted in grey

Type Nr. images training/validation Training time Epochs Validation dice score

GTV 2D 108/33 3.5 days 544 0.78 [0.72 -0.83]
3D 108/33 5 days 641 0.83 [0.77-0.86]

Heart 2D 103/31 1.5 days 367 0.94 [0.90 -0.96]
3D 103/31 3 days 272 0.92 [0.88 -0.94]

Figure 4.5: GTV and heart segmentation results on the test set. Reference ROI in
black, segmentation from the 2D network in red, and 3D network in green

4.3 impact of mr intensity normalization methods

In MR studies, a crucial step is the normalization of the image intensi-
ties since MR intensities are acquired in arbitrary units and are thus not
directly comparable. This work aimed to develop a methodology for as-
sessing the impact of the used normalization method on the performance
of radiomics models and choosing the most appropriate method for a
certain entity.

This section reports the results of the intensity normalization computation
experiment.
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4.3.1 Performance assessment

Scatter plots of the CPH averaged (over the five bin counts investigated) C-I
and POI averaged mse, plotted against the respective AIC, for the 15 different
intensity normalization specific OS models derived from cohort pHGG and
rHGG are shown in figure 4.6, and 4.7. The OS model derived from the non-
normalized (nn) dataset is also plotted. The hard endpoint OS was used in
this study as a possible appropriate surrogate since multiple MR scanners
were found in both cohorts, where some have been withdrawn from clinical
practice. Therefore, the application of phantoms to assess the actual impact
of the IN methods could not be performed.

Table 4.5 summarizes and ranks the performance scores of the intensity nor-
malization methods for each of the four MR sequences considered in cohorts
pHGG and rHGG.

The white stripe method is ranked first for T1wce in both cohorts (pHG-
G/rHGG 10-fold CV C-I: 0.71/0.65, AIC: 1033/547, 10-CV mse: 0.21/0.14,
AIC: 410/252). For T1w, the feature-based batch adjustment method, i.e. Com-
bat had the best performance in pHGG (0.68, 964, 0.22), while z-score trans-
formation in rHGG (0.65, 494, 0.15, 239). Nevertheless, the HM method was
ranked second for both cohorts (pHGG/rHGG, 0.66/0.64, 970/494, 0.21/0.15,
389/2371). Furthermore, the top two ranked methods for T2w in both cohorts
were Combat (pHGG/rHGG 0.62/0.67, 661/417, 0.22/0.13, 292/199) and the
HM method (pHGG/rHGG 0.65/0.67, 667/415, 0.22/0.13, 294/200). As for
T2w-FLAIR, the Fuzzy C-Means algorithm showed the best performance in
pHGG and rHGG, however, with different masks. For pHGG, the mask com-
bination of wm and mode (0.67, 907, 0.21, 366) had the best performance,
while the mask combination of wm and csf (0.72, 508, 0.15, 230) showed the
best results for rHGG. Nevertheless, the former was ranked second in rHGG
(0.72, 517, 0.18, 235). Performance metrics of the remaining models in both
cohorts are summarized in Table 4.6.
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Figure 4.6: Scatter plots of the averaged (over the five bin counts considered) C-I vs
AIC were obtained by the CPH models for all four sequences. The best-
performing method is circled. Variability in the different MR sequences
results was observed, i.e., the intensity normalization algorithm perfor-
mance is correlated with the MR sequence. Upper panel: cohort pHGG,
lower panel: cohort rHGG. C-I: Concordance-index, AIC: Akaike Informa-
tion Criterion, CPH: Cox Proportional Hazard
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Figure 4.7: Scatter plots of the averaged (over the five bin counts considered) mse vs
AIC were obtained by the POI models for all four sequences. The best-
performing method is circled. Variability in the different MR sequences
results was observed, i.e., the intensity normalization algorithm perfor-
mance is correlated with the MR sequence. Upper panel: cohort pHGG,
Lowe panel: cohort rHGG. POI: Poisson, mse: mean squared error, AIC:
Akaike Information Criterion
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Table 4.5: Ranking with scores of the intensity normalization method for each MR
sequence in cohorts pHGG and rHGG. Methods that showed good perfor-
mance in both cohorts are highlighted in grey. T2w-FL: T2w-FLAIR. Norm.
method: Intensity normalization method

pHGG T1wce T1w T2w T2w-FL

Norm. method Score Norm. method Score Norm. method Score Norm. method Score
1 ws 0.71 combat 0.13 hm 0.27 wm-md 0.02

2 kde -0.13 hm -0.28 combat -0.03 wm-gm -0.11

3 csf-gm -0.20 csf-md -0.90 z-score -0.28 kde -0.13

4 z-score -0.48 nn -1.00 gmm -0.38 gm-md -0.23

5 wm-gm -0.85 z-score -1.14 csf-gm -0.61 gm -0.24

6 csf -0.97 csf-gm -1.58 kde -0.71 wm -0.42

7 hm -1.04 wm-csf -1.65 nn -0.76 csf-gm -0.46

8 gmm -1.11 wm -1.85 csf -0.78 combat -0.77

9 gm -1.13 kde -1.88 wm-md -0.80 csf-md -0.77

10 wm -1.24 wm-md -1.95 gm-md -0.96 hm -0.80

11 wm-md -1.67 gm-md -2.05 csf-md -1.09 wm-csf -1.01

12 csf-md -1.71 ws -2.15 ws -1.18 gmm -1.02

13 gm-md -1.72 csf -2.16 wm -1.22 ws -1.29

14 wm-csf -2.16 gm -2.23 wm-gm -1.72 csf -1.75

15 combat -2.25 wm-gm -2.37 gm -1.79 z-score -2.21

16 nn -2.27 gmm -2.48 wm-csf -2.01 nn -2.65

rHGG

1 ws 1.00 z-score 0.64 combat 0.07 wm-csf 0.66

2 csf -0.54 hm -0.11 hm -0.09 wm-md -0.32

3 hm -0.73 csf -0.34 gm-md -0.21 gmm -0.56

4 z-score -0.76 gmm -0.35 wm-csf -0.24 kde -0.63

5 gm -0.77 csf-md -0.81 gmm -0.41 csf-gm -0.71

6 wm -0.87 kde -0.93 wm-md -0.78 wm -0.72

7 wm-gm -0.87 gm-md -0.97 gm -1.00 gm -0.76

8 csf-gm -0.96 csf-gm -0.97 csf-md -1.12 hm -0.81

9 kde -0.98 ws -1.04 ws -1.13 gm-md -0.90

10 wm-csf -1.07 gm -1.18 z-score -1.21 csf-md -1.05

11 gmm -1.10 combat -1.20 csf -1.31 nn -1.25

12 wm-md -1.13 nn -1.41 kde -1.36 csf -1.35

13 combat -1.19 wm-csf -1.43 wm -1.52 combat -1.42

14 gm-md -1.28 wm-md -1.64 nn -1.60 ws -1.50

15 csf-md -1.39 wm-gm -2.01 wm-gm -1.69 wm-gm -1.59

16 nn -1.82 wm -2.11 csf-gm -1.81 z-score -2.11
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4.3.2 Significant feature correlation between the normalized datasets

To assess which features are affected by the intensity normalization meth-
ods so that they can be further eliminated before moving forward to the
modelling, pairwise correlation tests were performed. Spearman correlation
heatmaps between the different normalization methods of the significant fea-
tures identified for each of the bin counts considered were plotted. Even
though they are significantly correlated to OS, it was observed that certain
features had different distributions when different intensity normalization
methods were applied. An example of T1wce significant features from pHGG
and bin count 64 is shown in Figure 4.8.

The 10-CV C-I and mse of the CPH and POI models with only the stable
features with a high correlation (rs >0.8) between at least 12 methods are
reported in Table 4.7. Box plots of the difference for each modality in both
cohorts are shown in Figure 4.9.

Table 4.7: Performance of the top-ranked image normalization method before and
after the elimination of the intensity normalization impacted significant
features for cohorts pHGG and rHGG for each MR sequence. The average
(across all bin counts) 10-CV C-I/MSE with the 95% confidence intervals
is reported. Performance of both models was similarly affected after the
elimination of the intensity normalization impacted significant features,
with a mean decrease in the 10-CV C-I and 10-CV MSE of 0.05 and 0.03 in
all four sequences across both cohorts

.
pHGG rHGG

Before After Before After

T1wce
0.71 [0.69 0.74] /
0.21 [0.19 0.23]

0.65 [0.63 0.69] /
0.23 [0.21 0.25]

0.65 [0.62 0.67] /
0.15 [0.13 0.17]

0.62 [0.60 0.65] /
0.19 [0.17 0.21]

T1w
0.68 [0.64 0.70] /
0.22 [0.20 0.25]

0.63 [0.61 0.67] /
0.24 [0.22 0.26]

0.65 [0.61 0.69] /
0.15 [0.12 0.18]

0.62 [0.58 0.65] /
0.18 [0.15 0.20]

T2w
0.65 [0.62 0.67] /
0.22 [0.19 0.25]

0.63 [0.60 0.67] /
0.25 [0.22 0.28]

0.67 [0.64 0.69] /
0.13 [0.11 0.17]

0.60 [0.58 0.65] /
0.16 [0.14 0.20]

T2w-FL
0.67 [0.64 0.69] /
0.20 [0.18 0.23]

0.62 [0.59 0.67] /
0.23 [0.21 0.25]

0.72 [0.65 0.76] /
0.18 [0.15 0.21]

0.66 [0.64 0.69] /
0.20 [0.17 0.22]

4.3.3 Performance comparison of the feature-based and top-ranked image-based nor-
malization methods

Table 4.8 summarizes the performance of the top-ranked image normalization
method separate and in combination with the feature-based method Combat
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for cohorts pHGG and rHGG. Since Combat ranked first for the T1w models
from pHGG and T2w models from rHGG, the second-ranked method, i.e.,
the HM method, was the image-based intensity normalization method for
these two datasets.

Table 4.8: Performance of the top-ranked image normalization method separate and
in combination with the feature-based method Combat for cohorts pHGG
and rHGG for each MR sequence. The average (across all bin counts) 10-
CV C-I/MSE with the 95% confidence intervals is reported

.

pHGG

Combat I. norm. Combined

T1wce
0.68 [0.66 0.70] /
0.21 [0.19 0.23]

0.71 [0.690.74] /
0.21 [0.19 0.23]

0.68 [0.66 0.69] /
0.21 [0.19 0.23]

T1w
0.68 [0.64 0.70] /
0.22 [0.20 0.24]

0.66 [0.64 0.68] /
0.22 [0.19 0.24]

0.62 [0.59 0.64] /
0.23 [0.20 0.26]

T2w
0.62 [0.59 0.64] /
0.23 [0.21 0.23]

0.65 [0.62 0.67] /
0.22 [0.19 0.25]

0.61 [0.58 0.63] /
0.25 [0.23 0.27]

T2w-FL
0.67 [0.64 0.69]/
0.21 [0.19 0.24]

0.67 [0.64 0.69] /
0.20 [0.18 0.23]

0.64 [0.61 0.66] /
0.24 [0.22 0.26]

rHGG

Combat I. norm. Combined

T1wce
0.64 [0.62 0.68] /
0.15 [0.13 0.17]

0.65 [0.62 0.67] /
0.15 [0.13 0.17]

0.63 [0.61 0.66] /
0.17 [0.15 0.19]

T1w
0.62 [0.60 0.66] /
0.15 [0.12 0.17]

0.65 [0.61 0.69] /
0.15 [0.12 0.18]

0.62 [0.59 0.65] /
0.15 [0.11 0.16]

T2w
0.67 [0.64 0.69] /
0.13 [0.11 0.17]

0.67 [0.64 0.69] /
0.13 [0.11 0.15]

0.62 [0.59 0.65] /
0.15 [0.13 0.19]

T2w-FL
0.70 [0.67 0.72] /
0.16 [ 0.14 0.19]

0.72 [0.65 0.76] /
0.14 [0.12 0.17]

0.68 [0.65 0.70] /
0.17 [0.15 0.21]
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Figure 4.8: Correlation heatmaps between the 15 different normalization methods
considered and the reference non-normalized dataset for T1wce images
from cohort pHGG discretized with a bin count of 64. Features with a
high correlation (rs>0.8) between at least 12 methods were selected as
robust features in subsequent feature selection steps



4.3 impact of mr intensity normalization methods 54

Figure 4.9: Box plots of the top-ranked image normalization method evaluation met-
rics C-I and MSE before and after the elimination of the intensity nor-
malization impacted significant features for cohorts pHGG and rHGG for
each MR sequence. The average (across all bin counts) 10-CV C-I/MSE
with the 95% confidence intervals are plotted. Performance of both mod-
els was similarly affected after the elimination of the intensity normaliza-
tion impacted significant features, with a mean decrease in the 10-CV C-I
and 10-CV MSE of 0.05 and 0.03 in all four sequences across both cohorts
C-I: Concordance-index, mse: mean squared error
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4.4 data-based driven tcp and ntcp modelling

This work incorporated multiple layers of information from medical data,
placing emphasis on features extracted from the 3D dose distributions
to evaluate the potential improvement of patient stratification and prog-
nostication and assess the added benefit for TCP/NTCP modelling of a
combined modelling approach, i.e., the use of radiomics, dosiomics, and
clinical features, and the survival and radiation-induced toxicity predic-
tions in recurrent high-grade glioma, early-stage non-small cell lung can-
cer and head and neck cancer patients treated with CIRT, SBRT and IMRT
or helical tomotherapy respectively.

4.4.1 The unimodality and multimodality signatures

After having curated, prepared, and completed missing data, and the ap-
plication of the preprocessing pipeline, the rejection of features impacted
by preprocessing steps to increase reproducibility, and the identification of
significantly outcome-correlated features, the uni- and multimodality signa-
tures were built to predict overall and progression-free survival and radiation-
induced toxicity in the rHGG, NSCLC and HNC cohorts. The identifiable ra-
diomics and dosiomics features for all considered cohorts and endpoints are
summarized in Table B.1 (Appendix B)

OS and PFS TCP models

Figures 4.10 and 4.11 show the box plots of the 1st - 99th discovery set C-Is re-
sulting from the three resampling approaches following the fitting of the OS
and PFS CPH models by the complete and imputed unimodality and multi-
modality signatures, i.e., the radiomics signature (RS), and the combined RS,
dosiomics (DS) and clinical signature (CS) (RDCS) in the rHGG and NSCLC
cohorts. The number of features per modality/signature is also shown in
panels B and C. The average CPH discovery set C-Is, with the minimum and
maximum C-I achieved, across the three different resampling approaches for
all outcomes considered is summarised in Tables C.3, and C.1 (Appendix C).

The top-ranked rHGG OS models achieved on the DS are from the DD
(C-I 0.69 [0.66 0.70]) and T1wce (0.68 [0.66 0.70]). The worst ranked model is
from the SWI (complete 0.64 [0.61 0.66], imputed 0.61 [0.59 0.64]). The mul-
timodality radiomics, dosiomics and clinical (RDCS) models improved pre-
diction compared to the top-ranked unimodality and clinical models in both
the complete (0.79 [0.76 0.81]) and imputed (0.77 [0.75 0.78]) datasets. The
top-ranked NSCLC PFS models achieved on the DS is from the T1wce (0.68

[0.66 0.70]). The worst ranked model is from the T2w-FLAIR model (Com-
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plete 0.57 [0.55 0.59], Imputed 0.59 [0.57 0.60]). The multimodality radiomics,
dosiomics and clinical (RDCS) models improved prediction compared to the
top-ranked unimodality and clinical models in both the complete (0.74 [0.70

0.77]) and imputed (0.72 [0.71 0.74]) datasets. No significant difference was
observed between the three different resampling approaches.

As for the NSCLC cohort, the top-ranked OS model is from the SH-CT
(complete 0.70 [0.65 0.72]), imputed 0.69 [0.68 0.71] and the CS (0.70 [0.69

0.72]). The worst-ranked model is from the SM-CT (0.68 [0.65 0.71]). The mul-
timodality radiomics, dosiomics and clinical (RDCS) models improved pre-
diction compared to the top-ranked unimodality and clinical models in both
the complete (0.74 [0.69 0.78]) and imputed (0.78 [0.76 0.80]) datasets. Wider
CI (except for the CS and SM-CT models) were observed by the bootstrapping
method. No significant difference was observed between the remaining two
resampling approaches. The top-ranked NSCLC PFS models achieved on the
DS is from the DD (0.69 [0.68 0.71]). The worst-ranked model is from the SM-
CT model (0.61 [0.59 0.63]). The radiomics model (complete 0.62 [0.61 0.64]),
imputed 0.62 [0.60 0.64]), combining both the SM-CT and SH-CT, had a worst
performance than the individual unimodality models. The multimodality ra-
diomics, dosiomics, and clinical (RDCS) model derived from the imputed
dataset (0.66 [0.64 0.68]) did not have a better prediction than the SH-CT
model. The RDCS model derived from the complete dataset improved predic-
tion compared to the top-ranked unimodality and clinical models in both the
complete (0.72 [0.69 0.74]). No significant difference was observed between
the three different resampling approaches.

Table 4.10, and 4.12 summarise the test set C-Is of the unimodality and mul-
timodality CPH and RSF fitted by the DS. The 95% CI was derived through
bootstrapping (n=1000). Similar to the results obtained by the DSs, the RDCS
models yielded the best prediction performance in the TSs for all models
considered.
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Figure 4.10: Box plots of the 1st - 99th rHGG C-Is achieved by the unimodality and
multimodality models fitted by the imputed and complete signatures
after three resampling approaches in the prediction of OS and PFS.A)
Overall survival (OS) prediction unimodality and single sequence ra-
diomics features (upper row), and multimodality models, B) number
of features per OS signature, C) number of features per PFS signature,
and D) Progression-free survival (PFS) prediction models prediction uni-
modality and single sequence radiomics features (upper row), and mul-
timodality models
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Figure 4.11: Box plots of the 1st - 99th C-Is achieved by the unimodality and mul-
timodality models fitted by the imputed and complete signatures after
three resampling approaches for cohort NSCLC. A) Overall survival (OS)
prediction unimodality and single sequence radiomics features (upper
row), and multimodality models, B) number of features per OS signa-
ture, C) number of features per PFS signature, and D) Progression-free
survival (PFS) prediction models prediction unimodality and single se-
quence radiomics features (upper row), and multimodality models
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Table 4.9: OS/PFS test set C-Is for the different unimodality and single sequence ra-
diomics features (upper row) and multimodality CPH and RSF models
fitted using both the imputed and complete signatures in NSCLC. Range
showing the minimum and maximum C-I achieved across the three dif-
ferent resampling approaches. SM-CT: smooth-kernel CT, SH-CT: sharp-
kernel CT, CS: clinical signature, DD: dosiomics signature, RS: radiomics
signature, RDCS: combined radiomics, dosiomics and clinical signature,
CPH: Cox Proportional Hazard Model, RSF: Random Survival Forest

CPH

Complete Imputed
CS 0.67 [0.66 0.69]/0.63 [0.61 0.66]

SM-CT 0.69 [0.67 0.72]/0.66 [0.64 0.69]
SH-CT 0.66 [0.64 0.68]/0.61 [0.58 0.63]

DD 0.68 [0.67 0.71]/0.67 [0.65 0.71]/ 0.68 [0.65 0.70]/0.66 [0.64 0.68]
RS 0.71 [0.68 0.73]/0.69 [0.67 0.72] 0.70 [0.68 0.72]/0.67 [0.65 0.70]

RDCS 0.75 [0.72 0.77]/0.73 [0.71 0.75] 0.73 [0.70 0.75]/0.72 [0.70 0.73]

RSF

CS 0.67 [0.66 0.69]/0.63 [0.60 0.65]
SM-CT 0.67 [0.65 0.70] / 0.62 [0.59 0.64]
SH-CT 0.69 [0.68 0.70]/0.57 [0.55 0.60]

DD 0.68 [0.66 0.70]/0.66 [0.64 0.68] 0.66 [0.64 0.69]/0.63 [0.61 0.66]
RS 0.70 [0.69 0.71]/0.68 [0.66 0.70] 0.71 [0.70-0.73]/0.66 [0.64 0.68]

RDCS 0.72 [0.70 0.74]/0.70 [0.68 0.71] 0.73 [0.71-0.77]/0.70 [0.69 0.72]
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Table 4.10: OS/PFS test set C-Is for the different unimodality and single sequence
radiomics features (upper row) and multimodality CPH and RSF models
fitted using both the imputed and complete signatures in rHGG. Range
showing the minimum and maximum C-I achieved across the three dif-
ferent resampling approaches. T2w-FL: T2w- FLAIR.

CPH

Complete Imputed
CS 0.66 [0.66 0.68] / 0.61 [0.60 0.62]
CT 0.67 [0.66 0.67] / 0.67 [0.66 0.68]
DD 0.72 [0.71 0.72] / 0.66 [0.65 0.66]

T1wce 0.73 [0.72 0.73] / 0.66 [0.66 0.67]
T1w 0.74 [0.74 0.75]/0.66 [0.65 0.66] 0.73 [0.73 0.74]/0.70 [0.68 0.70]
T2w 0.66 [0.66 0.67]/0.65 [0.64 0.66] 0.66 [0.65 0.67]/0.62 [0.62 0.63]

T2w-FL 0.63 [0.63 0.64]/0.53 [0.52 0.54] 0.62 [0.62 0.63] /0.53 [0.52 0.54]
ADC 0.63 [0.63 0.64]/0.61 [0.61 0.62] 0.60 [0.56 0.61]/0.60 [0.59 0.60]
SWI 0.68 [0.68 0.69]/0.69 [0.69 0.70] 0.60 [0.59 0.60]/0.64 [0.63 0.64]
RS 0.79 [0.79 0.80]/0.74 [0.72 0.77] 0.72 [0.72 0.73]/0.68 [0.68-0.69]

RDCS 0.81 [0.78 0.84]/0.80 [0.78 0.83] 0.79 [0.78 0.82]/0.77 [0.75 0.79]

RSF

Complete Imputed
CS 0.64 [0.63 0.65] / 0.62 [0.61 0.63]
CT 0.56 [0.55 0.56] / 0.67 [0.66 0.69]
DD 0.69 [0.68 0.70] / 0.66 [0.65 0.67]

T1wce 0.68 [0.68 0.69] / 0.61 [0.59 0.64]
T1w 0.74 [0.73 0.74]/0.65 [0.65 0.66] 0.71 [0.70-0.72]/0.65 [0.65-0.66]
T2w 0.68 [0.67 0.69]/0.55 [0.54 0.56] 0.67 [0.66-0.68]/0.54 [0.53-0.55]

T2w-FL 0.59 [0.58 0.59]/0.42 [0.41 0.43] 0.60 [0.59-0.60]/0.47 [0.46-0.49]
ADC 0.57 [0.56 0.58]/0.58 [0.57 0.59] 0.58 [0.57-0.58]/0.61 [0.60-0.62]
SWI 0.58 [0.57 0.58]/0.65 [0.65 0.66] 0.59 [0.58-0.60]/0.62 [0.61-0.62]
RS 0.78 [0.77 0.78] /0.74 [0.73 0.75] 0.71 [0.70-0.73]/0.71 [0.69-0.73]

RDCS 0.80 [0.78 0.81]/0.75 [0.73 0.77] 0.77 [0.76-0.78] /0.76 [0.75 0.78]
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RILF and XT NTCP models

Figures 4.12 and 4.13 show the box plots of the 1st - 99th discovery set C-Is re-
sulting from the three resampling approaches following the fitting of the XT
and RILF CPH models by the complete and imputed unimodality and multi-
modality signatures, i.e., the radiomics signature (RS), and the combined RS,
dosiomics (DS) and clinical signature (CS) (RDCS). The number of features
per modality/signature is also shown in panels B and C.

Figure 4.12: Box plots of the 1st - 99th NSCLC C-Is achieved by the unimodality
and single sequence radiomics features (upper row) and multimodality
models fitted by the imputed and complete signatures after three resam-
pling approaches in the prediction of RILF. A) Radiation-induced lung
fibrosis (RILF) prediction unimodality and single sequence radiomics
features (upper row), and multimodality models, B) number of features
per RILF signature. SM-CT: smooth-kernel CT, SH-CT: sharp-kernel CT,
CS: clinical signature, DS: dosiomics signature, RS: radiomics signature,
RDCS: combined RS, DS and CS signature, 5-CV: 5-fold cross-validation,
BStrap: bootstrap, MCCV: Monte Carlo cross-validation

The top-ranked NSCLC RILF model achieved on the DS are from the DD
(complete C-I 0.68 [0.64 0.71, imputed 0.70 [0.68 0.73]) and SH-CT (complete
0.69 [0.67 0.71], imputed 0.69 [0.68 0.70]). The worst-ranked model is from
the CS (0.59 [0.56 0.63]). The multimodality radiomics, dosiomics and clinical
(RDCS) models improved prediction compared to the top-ranked unimodal-
ity and clinical models in both the complete (0.72 [0.69 0.72]) and imputed
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(0.75 [0.73 0.77]) datasets. No significant difference was observed between the
three different resampling approaches.

Figure 4.13: Box plots of the 1st - 99th HNC C-Is achieved by the unimodality and
multimodality models fitted by the imputed and complete signatures
after three resampling approaches in the prediction of XT. A) Xerosto-
mia (XT) prediction unimodality and single sequence radiomics features
(upper row), and multimodality models, B) number of features per XT
signature

The top-ranked HNC XT model achieved on the DS is from the DD (0.72

[0.70 0.74]). The worst-ranked model is from the CS (0.51 [0.50 0.53]). The
multimodality radiomics, dosiomics and clinical (RDCS) models improved
prediction compared to the top-ranked unimodality and clinical models in
both the complete (0.75 [0.73 0.77]) and imputed (0.76 [0.74 0.78]) datasets.
No significant difference was observed between the three different resam-
pling approaches. Table 4.10, 4.12, and 4.11 summarise the test set C-Is of the
unimodality and multimodality CPH and RSF fitted by the DS. The 95% CI
was derived through bootstrapping (n=1000). Similar to the results obtained
by the DSs, the RDCS models yielded the best prediction performance in the
TSs for all models considered.
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Table 4.11: XT test set C-Is for the different unimodality and multimodality CPH and
RSF models fitted using both the imputed and complete signatures in
HNC. Range showing the minimum and maximum C-I achieved across
the three different resampling approaches. XT: xerostomia, C-I: Concor-
dance index, CS: clinical signature, DD: dosiomics signature, RS: ra-
diomics signature, RDCS: combined radiomics, dosiomics and clinical
signature, CPH: Cox Proportional Hazard Model, RSF: Random Survival
Forest

CPH RSF

Complete Imputed Complete Imputed
CS 0.55 [0.53 0.58] 0.50 [0.48 0.54]
DD 0.75 [0.72 0.77] 0.72 [0.70 0.74]
RS 0.69 [0.67-0.71] 0.68 [0.67 0.69] 0.65 [0.64 0.67] 0.67 [0.65 0.68]

RDCS 0.78 [0.75 0.80] 0.77 [0.74 0.80] 0.73 [0.71-0.75] 0.72 [0.70-0.74]

Table 4.12: RILF test set C-Is for the different unimodality and multimodality CPH
and RSF models fitted using both the imputed and complete signatures in
NSCLC. Range showing the minimum and maximum C-I achieved across
the three different resampling approaches. SM-CT: smooth-kernel CT, SH-
CT: sharp-kernel CT, CS: clinical signature, DD: dosiomics signature, RS:
radiomics signature, RDCS: combined radiomics, dosiomics and clinical
signature, CPH: Cox Proportional Hazard Model, RSF: Random Survival
Forest

CPH RSF

Complete Imputed Complete Imputed
CS 0.67 [0.66 0.70] 0.64 [0.62 0.65]

SM-CT 0.68 [0.65 0.71] 0.65 [0.63 0.68]
SH-CT 0.65 [0.60 0.66] 0.63 [0.60 0.66]

DD 0.72 [0.70 0.74] 0.71 [0.68 0.73] 0.70 [0.68 0.72] 0.67 [0.65 0.70]
RS 0.72 [0.70 0.74] 0.71 [0.68 0.73] 0.70 [0.68 0.71] 0.69 [0.67 0.70]

RDCS 0.77 [0.73 0.79] 0.74 [0.72 0.76] 0.71 [0.70-0.73] 0.71 [0.69-0.74]
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4.4.2 The clinical, radiomics and dosiomics feature forming the RDCS signature

In the following sections, the imputed dataset models are further considered
for analysis, where a multivariate Cox regression analysis incorporating the
different multimodality factors, i.e., clinical, radiomics and dosiomics, form-
ing the cohort-specific signatures was used to calculate the corrected HR and
95% CI. Forest plots were created with the multivariate regression models
to show the correlation of each feature to the modelled outcomes. Further-
more, X-means clustering was performed separately on the corresponding
radiomics and dosiomics features and on the multimodality combined signa-
tures, and patients were assigned to the derived clusters. A low-dimensional
representation of the data was derived using t-sne (Appendix D). X-means
was not performed when single radiomics or dosiomics features formed the
corresponding signature and patients were stratified into two groups based
on the median value of the identified feature.

OS and PFS TCP models

Figure 4.14, 4.15, 4.16, and 4.17 show the forest plots of the OS and PFS CPH
RDCS models and the origin of the different features forming the signatures
in the rHGG and the NSCLC cohorts. Furthermore, the rs with the prescribed
dose and the ROI volume are also reported.

Figure 4.14: Forest plot to show the results of the multivariate CPH OS RDCS model
for cohort rHGG with the origin summary of the corresponding features.
The forest plot of the hazard ratio of each feature in the RDCS models
are derived from the discovery set. P-value is calculated through the
likelihood ratio test. RDCS: radiomics dosiomics clinical signature, OS:
overall survival

Considering the rHGG cohort, the multimodality rHGG RDCS OS signa-
ture includes the two clinical features, i.e., the tumour grade and RRRS, the
square-root of the mean (RMS) of all T1wce squared intensity values in the
CTV, two PTV texture features from the DD, and seven texture radiomics fea-
tures, specifically one from the modality-ROI T1w-PTV, one T2w-CTV, one
ADC-PTV, one CT-GTV, and one CT-PTV. As for the multimodality rHGG
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RDCS PFS signature, it includes the two clinical features, i.e., the tumour
grade and RRRS, one PTV texture feature from the DD, and eight texture
radiomics features, specifically one from the modality-ROI, one T1wce-GTV,
one T1w-PTV, one SWI-CTV, one ADC-CTV, one ADC-PTV, one CT-GTV, and
one CT-CTV. Other than SWI in the RDCS OS models, all modalities con-
tributed to the signatures. The RRRS has the highest hazard ratio in the OS
model (HR: 3.87), while the tumour grade in the PFS model (HR:2.03). X-
means yielded two clusters from the radiomics and dosiomics features in the
OS RDCS model and the radiomics features from the PFS RDCS model (Fig-
ure D.1). Since a single dosiomics feature is identified in the PFS RDCS model,
patient stratification into two subgroups was performed using the dosiomics
feature median value.

Figure 4.15: Forest plot to show the results of the multivariate CPH PFS RDCS model
for cohort rHGG with the origin summary of the corresponding features.
The forest plot of the hazard ratio of each feature in the RDCS models
are derived from the discovery set. P-value is calculated through the
likelihood ratio test. RDCS: radiomics dosiomics clinical signature, PFS:
progression-free survival

As for the NSCLC cohort, the RDCS OS signature includes the tumour
location (central versus peripheral), one texture feature from the DD in the
ipsilateral lung, and two texture radiomics, specifically one from the SH-CT-
GTV and one from the SH-CT-heart. X-means yielded two clusters from the
radiomics features (Figure D.2). Since a single dosiomics feature is identified,
patient stratification into two subgroups was performed using the dosiomics
feature median value.

The NSCLC RDCS PFS signature includes the tumour location (central ver-
sus peripheral), a texture feature from the DD and the ipsilateral lung, and a
radiomics texture feature from the SH-CT-GTV. The tumour location has the
highest HR for both the OS (4.37) and PFS (2.51) models. As single radiomics
and dosiomics features were derived for all three models, X-means was not
performed, and the median feature value was used for clustering.
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Figure 4.16: Forest plot to show the results of the multivariate CPH OS RDCS model
for cohort NSCLC with the origin summary of the corresponding fea-
tures. The forest plot of the hazard ratio of each feature in the RDCS
models are derived from the discovery set. P-value calculated through
the likelihood ratio test

Figure 4.17: Forest plot to show the results of the multivariate CPH PFS RDCS model
for cohort NSCLC with the origin summary of the corresponding fea-
tures. The forest plot of the hazard ratio of each feature in the RDCS
models are derived from the discovery set. P-value calculated through
the likelihood ratio test
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RILF and XT NTCP models

Figure 4.18, and 4.19 show the forest plots of the RILF and XT CPH RDCS
models and the origin of the different features forming the signatures. Fur-
thermore, the rs with the prescribed dose and the ROI volume are also re-
ported.

Figure 4.18: Forest plot to show the results of the multivariate CPH RILF RDCS mod-
els for cohort NSCLC with the origin summary of the corresponding
features. The forest plot of the hazard ratio of each feature in the RDCS
models are derived from the discovery set. P-value calculated through
the likelihood ratio test

Considering the NSCLC cohort, the RDCS RILF signature includes the tu-
mour site, one texture feature from the DD and the PTV, and three texture
radiomics features, specifically one from the SH-CT and the contralateral
lung, one SH-CT-GTV, and one SM-CT-PTV. The radiomics texture feature,
the GLsZM-DE calculated from the CT wavelet transformation (LHH) and
the PTV, had the highest significant HR (1.41). X-means yielded two clusters
from the radiomics features (Figure D.2). Since a single dosiomics feature is
identified, patient stratification into two subgroups was performed using the
dosiomics feature median value.

As for the HNC cohort, the RDCS signature includes three dosiomics tex-
ture features (one from the PTV, one from the ipsilateral, and one from the
contralateral parotid gland) and four radiomics texture features (one from the
PTV, one from the ipsilateral, and two from the contralateral parotid gland).
The dosiomics texture feature, specifically the GLDM-DE calculated from the
wavelet transformation (LHL) of the DD and the contra-lung, had the highest
significant HR (2.16). X-means yielded two clusters from the radiomics and
dosiomics features in the XT RDCS models (Figure D.3).
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Figure 4.19: Forest plot to show the results of the multivariate CPH XT RDCS model
for cohort HNC with the origin summary of the corresponding features.
The forest plot of the hazard ratio of each feature in the RDCS models are
derived from the discovery set. P-value calculated through the likelihood
ratio test
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4.5 kaplan-meier analysis : risk stratification and prognosis

comparison

Curves for survival and toxicity were described using Kaplan-Meier anal-
ysis, with the aim of assessing and discovering prognostic subgroups us-
ing the multimodality signature. Effects of the different modalities’ sig-
nificant features on the prediction and prognostic separation were also
evaluated.

In this section, Kaplan-Meier (KM) analysis was used to stratify patients
based on the risk of events by associating the survival and radiation-induced
toxicity information with the clusters derived by the multimodality signature
as well as the individually-identified features from each considered modality.
Significant stratification was concluded when a P-value < 0.05 (log-rank test)
was obtained by the KM analysis.

OS and PFS TCP models

The KM plots for the rHGG and NSCLC OS models are shown in this sec-
tion. The remaining plots are summarized in Appendix E. Figure 4.21, E.1,
4.20, and E.6, show that the KM analysis of the RDCS-derived clusters sig-
nificantly discriminated the patients into high and low risk of survival and
progression in both the discovery and test sets (P-value<0.05) in all TCP mod-
els considered.

For cohorts rHGG, Figures 4.21-B, C, and E.1-B, C show significant stratifi-
cation between the radiomics (R0, R1) and dosiomics (D0, D1) clusters (Fig-
ure D.1). When all 4 clusters were analyzed, it was observed that the cluster
combination of D0-R0 and D1-R0 showed a similar risk for OS (Figure 4.21-
D) and thus was combined into one group for further feature effect analy-
sis (Figure 4.21-E). KM analysis of the three clustering combination groups,
i.e., D0-R0 & D1-R0, D0-R1, and D1-R1, showed significant stratification (Fig-
ure 4.21-E). As for the PFS model, all clustering combinations except for the
D1-R1 group showed similar risk (Figure E.1-D), where KM analysis of the
newly derived groups showed significant stratification (Figure E.1-E). Figure
E.2 (OS) and E.3 (PFS) show the KM curves of the combination clusters when
patients were subsetted based on the RRRS (Figures E.2-A, and E.3-A: good;
E.2-B, and E.3-B: intermediate; E.2-C, and E.3-C: poor) and the tumour his-
tology (grade III, Figure E.2-D, and E.3-D: grade III; E.2-E, and E.3-E: grade
IV, GBM). Finally, KM analysis on patient subset based on validated biomark-
ers, i.e., MGMT methylation, IDH1/2 mutation, and p/19q codeletion, were
analyzed (Figure E.4, and E.5).

As for the NSCLC cohort, Figures 4.20-B, C, and E.6-B, C show that non-
significant patient stratification was observed between the radiomics (R0, R1)
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Figure 4.20: Kaplan-Meier OS curves for the NSCLC cohort. A) RDCS clusters, B) RS
clusters, and C) DS clusters. Non-significant patient stratification was
observed between the unimodality clusters, i.e. only the multimodality
RDCS-derived clusters showed different prognoses
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and dosiomics (D0, D1) clusters (Figure D.2), i.e. only the multimodality
RDCS-derived clusters showed different prognosis.

Figure 4.21: Kaplan-Meier overall survival curves for the rHGG cohort of the A)
RDCS clusters for grade III (left) and IV (right) patients, B) RS clusters
and C) DS cluster. Significant stratification into two risks groups was
observed in all clusters considered in both the discovery set and the test
set

RILF and XT NTCP models

The KM analysis of the NSCLC and HNC RILF, and XT models are shown
in this section. Figure 4.23, and 4.22 show that the KM analysis of the RDCS-
derived clusters significantly discriminated the patients into high and low
risk of radiation-induced toxicity in both the discovery and test sets in both
NTCP models considered. For cohort HNC, X-means yielded two clusters
from both the radiomics (R0, R1) and dosiomics (D0, D1) features in the XT
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RDCS models, and patients were assigned to the respective clusters (Figure
D.3). Figure 4.22-B, C show significant stratification between the clusters. All
4 cluster combinations showed different risk predictions for XT and thus were
treated separately.

Figure 4.22: Kaplan-Meier XT curves for the HNC cohort of the A) RDCS clusters, B)
RS cluster, and C) DS cluster

As for the NSCLC cohort, Figure 4.23 show significant patient stratification
between the dosiomics clusters (D0, D1) and non-significant patient stratifica-
tion between the radiomics clusters (R0, R1) (Figure D.2).
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Figure 4.23: Kaplan-Meier RILF curves for the NSCLC cohort of the A) RDCS clus-
ters, B) RS cluster and C) DS cluster
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4.6 interpretation of dosiomics features : correlation with

drbe and let

While textural dosiomics features have demonstrated good predictions,
the interpretation of these features is still challenging. Therefore, correla-
tions test with first-order DRBE and LET statistics and shape feature were
performed to determine understandable features.

The different dosiomics features have demonstrated good prediction abili-
ties, however, a challenge still occurs in explaining these features since they
are not clearly understood as e.g. DVH and dose metrics, nor easily visu-
ally interpreted. With the aim of getting closer to understanding them, the
DD after wavelet transformation was examined for both the high and low-
risk groups. Image representation examples of the DD after wavelet trans-
formations based on the wavelet decomposition that yielded the significant
dosiomics features, subsetted based on tumour histology and patient risk
group in the rHGG cohort, are shown in Figure 4.24. A clear difference is
observed between high and low-risk groups’ wavelet transformations of the
dose distributions.

To identify a possible explanation as to why these specific features have
shown to be predictive, correlations test (Spearman correlation, coefficients
rs >0.80) with first order DRBE and LET statistics and shape feature were per-
formed. The shape features, LET and DRBE first-order statistics, and DVH
points that highly correlate with the significant dosiomics features are sum-
marised in Tables 4.15, 4.14 and 4.13. Dose-averaged LET was derived using
FRoG (Mein et al., 2018).

For the HNC cohort (Table 4.13), one feature of the wavelet decomposition
- the Skewness (PTV) - was found to correlate with the significant dosiomics
features F2, two features - gradient (ant-post)(ipsi-lung) and variance (ipsi-
lung) - were found to correlate with the F5 feature and two features - gradi-
ent (right-left) and volume (contra-lung) were found to correlate with the F6

feature. F2, F5 and F6 features are presented in Figure 4.19.
For the NSCLC cohort (Table 4.14), two features - mean (ipsi-lung) and

entropy (ipsi-lung) - were found to correlate with the F4 OS feature (Figure
4.16), one feature - variance (ipsi-lung) - was correlated with the F2 PFS fea-
ture (Figure 4.17) and one feature - range (PTV) - was correlated with F2 RILF
(Figure 4.18).

In the rHGG cohort (Table 4.15), two features - LET D1 (PTV periphery)
and LET variance x (PTV periphery) - were found to correlate with F5 OS
(Figure 4.14), two features - compactness (CTV) and DVH skewness (GTV)
- were found to correlate with F8 OS (Figure 4.14), and one feature - DRBE
kurtosis (GTV) - was correlated with F6 PFS (Figure 4.15).
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Figure 4.24: Visualization of the dosiomics significant features for the high (upper
panel) and low (lower panel) risk group for the OS and PFS model for
rHGG

Table 4.13: Shape and first-order statistics dosiomics correlated features with Spear-
man correlation coefficients rs >0.80 in HNC; ant-post: anterior-posterior;
ipsi: ipsilateral; contra: contralateral

Feature Dosiomics feature rs

DD Skewness (PTV) F2-XT 0.90

DD Gradient (ant-post) (Ipsi-lung) F5-XT 0.85

DD Variance (Ipsi-lung) F5-XT 0.89

DD Gradient (right-left) F6-XT 0.91

Volume (Contra-lung) F6-XT 0.91
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Table 4.14: Shape and first-order statistics dosiomics correlated features with Spear-
man correlation coefficients rs >0.80 in NSCLC; ipsi: ipsilateral

Feature Dosiomics feature rs

DD Mean (Ipsi-lung) F4-OS 0.87

DD Entropy (Ipsi-lung) F4-OS 0.85

DD Variance (Ipsi-lung) F2-PFS 0.89

DD Range (PTV) F2-RILF 0.91

Table 4.15: Shape, DRBE, and LET dosiomics correlated features with Spearman cor-
relation coefficients rs >0.80 in rHGG. Correlation checked for grade III
and grade IV separately

Feature Dosiomics feature Tumor histology rs

LET D1 (PTV periphery) F5-OS III, IV 0.92

LET variance x (PTV periphery) F5-OS III, IV 0.96

Compactness (CTV) F8-OS IV 0.95

DVH skewness (GTV) F8-OS IV 0.91

DRBE kurtosis (GTV) F6-PFS III 0.98
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Currently, approximately half of cancer patients require radiotherapy (RT)
throughout the course of disease. However, the main challenge remains, i.e.
how can dose be optimally delivered to eradicate tumour cells while sparing
normal healthy tissue. Based on cancer histology and organ type, different RT
treatment plans are usually prescribed to destroy malignant cells. Noting that
radiation-induced cell killing follows a deterministic and stochastic element
(Wursthorn et al., 2022), statistical distribution models have been developed
to model cell biological and fractionation effects in healthy and tumour cells.
Specifically, taking into consideration mainly the dose delivered, fractiona-
tion schemes and volume effect, tumour control probability (TCP) models
have been designed to measure the success rate of a given RT treatment,
while normal tissue complication probability (NTCP) models have been de-
veloped to assess the risk of radiation-induced toxicity on normal healthy
tissue (Bentzen et al., 2010; Emami et al., 1991). Nevertheless, different prog-
nosis is still observed in patients receiving the same treatment.

Ever since the first therapeutic application of radiation by Dr Leopold Fre-
und in 1896, the dose prescribed to the region of interest has been of homoge-
neous nature (Freund, 1897). However, as inter- and intra-tumour heterogene-
ity are present, e.g. arising from different tumour oxygenation status, cell-
cycle state and overall tumour biology, large spatial differences in response to
the same RT treatment could be observed. Therefore, personalised radiother-
apy became a matter of interest where treatments are tailored anatomically to
patients, e.g. by using radiomics, which provides valuable information about
the inter- and intra-tumour heterogeneity. Therefore, more interest has been
seen in data-based NTCP/TCP modelling, where different layers of infor-
mation can be analysed and integrated into the modelling process and thus
might lead to an improved outcome because of the infinite complexity of
the underlying biology. Data-based modelling currently mainly makes use of
clinical/demographic data, radiomics data, and dosimetric information such
as dose metrics and DVH points. A drawback of solely using the latter is the
partial loss of spatial information from the 3D dose distribution (DD), which
could contain valuable insights. In literature, there has been an exponential
increase in recent years in the number of works that focused on applying ra-
diomics to various clinical problems. Dosiomics is still at an early stage but
has great potential to be adopted in modelling. Therefore, the first question
addressed in this work is the assessment of the improvement of survival and
radiation-induced toxicity prediction modelling through spatially analysing
DD, i.e. dosiomics. Combined models, i.e. comprising all available informa-
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tion from different modalities (clinical, radiomics, and dosiomics), were next
built, and their performance was compared to single modality models.

While preparing the different datasets included in this work, DICOM meta-
data inconsistencies in the exported clinical cohorts were observed, which did
not allow the proper curation of the image modalities. To quantify this incon-
sistency, a computational experiment was performed using the two internal
cohorts, pHGG and rHGG, and the public cohort TCGA-GBM, where the
MR image DICOM series description (SD) entries were used to classify the
MR sequences. The results showed that around 10% discrepancies in each co-
hort existed when the SD was compared to the manually derived labels. MR
image DICOM series description (SD) entries usually represent the MR se-
quence protocol applied, however, they are sometimes edited by clinical staff
or missing. Therefore, going towards a content-based rather than a text-based
classification would be beneficial. Since exported clinical cohorts usually in-
clude all sorts of available data, the open set recognition problem arises, i.e. if
a classifier is trained to distinguish between a lung and a brain image, given
either a lung or brain, the classifier should be able to classify the images cor-
rectly. However, if an unseen image is inferred to the classifier, e.g., a heart,
then the classifier will have to assign the image to one of the known classes.
To tackle this issue, a tool was developed where one-vs-all deep convolutional
neural networks were employed to automatically learn the image modalities’
intrinsic characteristics and enable automatic classification and curation. The
tool was tested on multiple MR sequences leading to the development of
MR-Class, a python-based tool for brain MR image classification.

Compared to metadata text-based image classification, the use of MR-Class
for image classification is independent of inconsistencies between different
image sources, not affected by human error, and less labour-intensive. Tra-
ditional machine learning techniques such as K-nearest Neighbor (kNN) or
support vector machine have also been used in medical image classification;
however, the design of a deep learning network, i.e. the use of cascading
multiple layers, enables it to learn both simple and complex features thus
forming a hierarchical feature representation which is useful when infor-
mation needs to be extracted from a large amount of data collected from
different sources (Zhang, Wang, and Liu, 2018). MR-Class can differentiate
between T1w, T1wce, T2w, T2w-FLAIR, ADC, and SWI while handling un-
known classes, with classification accuracies of 96.7% [95.8, 97.3, and 94.4%
[95% CI: 93.6, 96.1] on two independent cohorts (rHGG, and TCGA-GBM).
MR-Class consists of 5 one-vs-all DCNNs (one for each class), followed by a
binary classifier for T1w images to determine whether a contrast agent was
administered. This design enables MR-Class to handle unknown classes since
each DCNN only classifies an image if it belongs to its respective class, and
thus an image not labelled by any of the DCNNs is rendered as unknown. The
multiclass vs multiple dual-class classification experiment was performed to



discussion 79

compare the performance of such a design to the basic multiclass classifica-
tion approach. Both methods were observed to have comparable classifica-
tion results (multiclass: 98.6% multiple one-vs-all: 98.1%) in the context of
MR brain image classification. However, the latter can deal with the open-
set recognition problem frequently encountered when handling data from
clinical cohorts and thus can help reduce data-based driven TCP and NTCP
modelling study designs, which include MRI.

Most of the incorrectly classified images by MR-Class had severe blurring
or had different types of MR artefacts. These were observed in a higher preva-
lence in TCGA-GBM than in the rHGG cohort. A reason could be the time
interval in which the cohort was collected, as the images from the TCGA co-
hort were acquired up to 15 years earlier. Most of these classifications were
false negatives, i.e. they were labelled as unclassifiable by MR-Class. This
can benefit radiomics modelling since any corrupted image would be auto-
matically disregarded, and all images labelled as a specific class would have
similar content. Another subset of the misclassified images showed brain tu-
mour volumes overlapping the ventricles. Statistical analysis was performed
between these misclassified images and a subset of the correctly labelled im-
ages, confirming altered anatomy as a possible reason for misclassification.
More detailed studies are warranted to assess further the impact of surgery
on alterations of overall anatomy (i.e. biopsy, partial resection, total resection),
as well as on tumours (chemo/radiotherapy), as the latter might, e.g., change
the pattern of contrast enhancement.

MR-Class is a helpful, ready-to-use python tool for the data preparation of
MR-based research studies in brain MRI. It eliminates the need to manually
sort out the images, a tedious task due to large amounts of data and differ-
ent naming schemes. Furthermore, since MR-Class classifies images based
on the content rather than the metadata, any corrupted image would be au-
tomatically disregarded, and all images labelled as a specific class would
have related content. MR-Class is a useful and time-efficient tool for big data
MR radiomics-based studies and has been integrated into PyCURT, a python-
based curation tool for radiotherapy (Sforazzini et al., 2020). Future work
includes the addition of modalities and sequences to MR-class for different
anatomy sites, enabling fast deployment of data-based driven TCP and NTCP
modelling studies, an important step in the gradual transition towards preci-
sion RT.

Another issue encountered while preparing the cohorts for TCP and NTCP
modelling was the absence or corruption of certain DICOM RT data, which
occurs due to the deployment of new RT systems or simply the loss of data
during transfer. As ROIs were extracted in this work from the RT SS, a deep
learning segmentation framework - nnU-Net was trained to learn the segmen-
tations performed based on the institutional guidelines for RT treatment and
was applied to the patient data with missing RT SS to complete the dataset.
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Noting that around 16% of the RT SS in cohort NSCLC are missing or cor-
rupted, nn-Unet was used to train GTV and heart segmentation DCNNs with
the available structures while leaving 10% out for testing. While building the
different TCP and NTCP models, it is important to have a dataset as clean
and homogeneous as possible, therefore, only patients with non-missing data,
i.e. a subset of 106 patients from the NSCLC cohort, were only included in
the modelling. However, for training the different segmentation networks, all
patients from the NSCLC cohort were used, as the performance of neural net-
works can continually improve as more data is provided. Noting that both
2D and 3D DCNNs were trained, the best performing DCNN for GTV seg-
mentation is the 3D DCNN with a test dice score of 0.83 [0.77-0.86], while the
2D DCNN with a test dice score of 0.92 [0.88 -0.94] has the best performance
for the 2D heart segmentation. Thus, a 2D approach yielded better results
for larger ROIs. The most probable reason for the performance differences
could be the volume difference between the two ROIs. Early-stage NSCLC
GTVs do not provide many 2D training slices due to the tumour’s small vol-
ume, which might result in the 3D approach yielding better results. As for
the heart, since it is a relatively large organ which appears in multiple 2D
slices, the network has more data in 2D and thus learns the 2D segmentation
better. Similar results have been observed in different studies (Zettler and
Mastmeyer, 2021). All patient CTs in the NSCLC cohort with a missing RT
SS were inferred into the segmentation networks to automatically segmented
the GTV and the heart. Manual checks and corrections of the ROI were next
performed. After obtaining all NSCLC patient ROI segmentations, all auto-
matically segmented ROI patient data were only included in the DS, while
the TS only included patients with manually segmented structures following
institutional guidelines for RT treatment. MR-class and nn-Unet are easy-to-
use helpful tools that could facilitate data preparation and aid in dealing with
missing and corrupted data in preparation for radiomics studies.

Robust radiomics models often require large amounts of data; therefore,
medical images are usually collected from multiple centres, sites, and scan-
ners. This leads to the need to implement different preprocessing methods
to standardise all images and remove the effects arising from the different
scanners and centres. Specifically in MR images, since MR intensities are ac-
quired in scanner-dependent arbitrary units, scans from different scanners
and subjects are not directly comparable, even when the same scanning proto-
col is implemented. While this intensity variation has no major effects on the
clinical diagnosis, it drastically impacts the performance of subsequent MRI
preprocessing, such as image registration, segmentation and, consequently,
radiomics features calculation (Alam and Rahman, 2018; Collewet, Strzelecki,
and Mariette, 2004). Multiple intensity normalisation algorithms have been
developed over time; however, even though the image biomarker standard-
isation initiative (IBSI) has defined a more general standardised radiomics
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image processing workflow, no specific guidelines on the proper choice of
intensity normalisation methods are currently present (Zwanenburg et al.,
2020). Therefore a computational experiment was conducted to determine
the impact of MRI intensity normalisation algorithms on MR-based radiomics
survival prediction models in the pHGG and rHGG cohorts.

Since multiple MR scanners were found in both cohorts, where some have
been withdrawn from clinical practice, phantoms could not be applied to as-
sess the impact of the intensity normalisation methods. Therefore, the hard
endpoint OS was used in this study as a robust outcome surrogate. However,
to standardise and generate reproducible radiomics models, specific phan-
toms and radiomics-specific tools need to be designed to quantify the impact
of the different scanners, protocols and preprocessing steps since radiomics
features are sensitive to all of these factors. Therefore, the documentation
of the adopted normalisation approach and all implemented preprocessing
steps are necessary to enable the reproducibility of radiomics models. With-
out proper image protocol harmonisation strategies across different centres
and scanners, the field of quantitative image analysis will find little progress
in the near future.

Performance assessment of the intensity normalisation method-specific CPH
and POI survival prediction models showed an impact on the survival predic-
tions between the different intensity normalisation methods and the different
MR sequences. Therefore, it can be concluded that the MR intensity normal-
isation approach directly impacts the overall power of the radiomics-based
MR predictive models. Moreover, considering the variability of the acquired
results for the different MR sequences, it can be seen that the intensity nor-
malisation algorithm performance is correlated with the MR sequence and
that the problem cannot be simplified to one intensity normalisation method.

Due to these variations and for a better interpretation of the results, a rank-
ing score was developed. The WS method showed promising results in T1wce
models as it was ranked first in two independent multi-scanner datasets.
Combat and the HM method showed consistent prediction results between
the two cohorts for T2w models. These two methods were the top-performing
methods for T1w in pHGG, however, only HM achieved high predictions in
rHGG and not Combat. This might be due to the higher number of batches
and the number of images per batch, as 22% of T1w images in rHGG were
missing, making batch effect removal more challenging. As for T2w-FLAIR,
the FCM showed favourable results in both cohorts; however, with different
mask combinations, including the wm and csf or wm and mode. A narrower
intensity range is observed in T2w-FLAIR than the other sequences, as csf
signals are attenuated. These results might indicate that a mask-based nor-
malisation approach might be more favourable when dealing with images
with narrower intensity ranges. The application of both an image-based and
feature-based normalisation method had little impact on the performance of
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the CPH and POI models. Exceptions were observed in the dataset where
combat was ranked first, i.e. T1w in pHGG and T2w in rHGG.

As CPH models were already part of the radiomics signature building
pipeline, POI models were also trained to assess whether model performances
were biased to CPH models. Compared to survival analysis using CPH, where
time-to-event data is used for modelling, Poisson regression models consider
the rate at which an event occurs. Comparably to CPH models, the impact
of the intensity normalisation methods was also observed in the POI models.
Furthermore, the performance of both models was similarly affected after
the elimination of the intensity normalisation impacted significant features.
A mean increase in the 10-CV C-I and a decrease in 10-CV MSE of 0.05 and
0.03, respectively, were observed in all four sequences across both cohorts.

This experiment included two independent HGG cohorts collected from a
single university hospital, UKHD. However, since the data cohorts included
data between 2008 and 2019, 19 different scanners from 3 vendors with a 0.5
to 3.0-Tesla range were identified. Noting that the OS models derived from
the non-normalised datasets generally ranked low in both cohorts across the
sequences, the application of intensity normalisation has indeed improved
the OS prediction in radiomics survival models, demonstrating that the need
for intensity normalisation is based on the number of scanners and image
protocols identified in the cohorts and not necessarily only the number of
centres. However, an exception is seen in the T1w dataset in pHGG. This
might be because a high number of images in the T1w dataset from pHGG
were reconstructed using NiftyMic (as mostly 2D MR scans were present) and
therefore preprocessed before applying the intensity normalisation methods
(Ebner et al., 2020).

Differences in the performance of the different IN methods across both
cohorts can be due to the differences between tumour entities, or the struc-
ture of intratumoral heterogeneity, which differs between pHGG and rHGG,
as well as the difference in the treatment of rHGG in comparison to pHGG
since the therapy of rHGG is not standardised as for pHGG, i.e. incorporat-
ing surgery, postoperative adjuvant RT and adjuvant chemotherapy (Campos
et al., 2016). In addition, validated HGG biomarkers, such as MGMT methyla-
tion, IDH1/2 mutation, and 1p/19q deletion, can lead to survival prediction
differences (Boots-Sprenger et al., 2013).

Different preprocessing methods make it generally hard to seamlessly as-
sess the impact of different normalisation methods. The changes in the ra-
diomics values are as much affected by other preprocessing methods as im-
age discretisation or delineating the region of interest. This suggests that the
application of intensity normalisation alone may not be enough. This work
aimed to limit the effect of intensity discretisation by applying five different
bin counts and reporting the average score. Nevertheless, as demonstrated by
several radiomics robustness studies, the discretisation approach affects the
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overall performance and reproducibility of the radiomics models (Bologna,
Corino, and Mainardi, 2019; Duron et al., 2019; Molina et al., 2016). Neverthe-
less, similarly to using correlation coefficient heatmaps between the different
normalisation methods to determine stable radiomics features, the same can
be implemented across different bin counts or widths.

In literature, multiple intensity normalisation methods have been reported
in HGG radiomics studies, where all implemented the same method across all
MR sequences (Fatania et al., 2022). However, as demonstrated in this work,
the performance of different methods varies. The study showed that the vari-
ations are big and that if the radiomics model reproducibility is possible, the
intensity normalisation method should be reported. Another way is to elimi-
nate features impacted by the different normalisation methods. When unsta-
ble features are eliminated, the performance of the individual MR sequence
prediction models is reduced, a necessary tradeoff for stable radiomics mod-
els. However, combining stable radiomics signatures from multiple MR se-
quences or modalities might mitigate that reduction and improve survival
prediction models.

After completion of the radiomics and dosiomics preprocessing workflow,
the second part of this thesis focused on the building of the different data-
based driven TCP and NTCP models while analysing the improvement of
patient prognostic stratification and survival and radiation-induced toxicity
predictions through a multimodality approach that incorporates preRT ra-
diomics features, dosiomics features from DD, and clinical features in three
cohorts (rHGG, NSCLC, and HNC) with different entities, i.e. brain, HNC
and lung, and outcomes. Across the three cohorts, a C-I increase of 10-20%
in the DS across three resampling approaches and the TS in both the CPH
and RSF models was observed when radiomics and dosiomics significant fea-
tures were combined with the CS, i.e. improvements in OS, PFS, RILF, and
XT prediction were observed when multiple modalities were integrated into
the survival models. Furthermore, the combined signature achieved a high vs
low risk significant prognostic separation on the TSs. These results indicate
that certain interactions are present between the different modalities and that
using a multimodality approach can improve patient risk stratification, lead-
ing to better treatment decisions. This agrees with other studies on various
entities where combined models have been shown to have higher predictive
power (Chopra et al., 2020; Gabryś et al., 2018; Lee et al., 2020; Murakami
et al., 2022).

A bottleneck in multimodality prediction studies is that if a single modality
is missing for a certain patient, the individual patient data can usually not
be included in the modelling. 56, 24, and 12 patients from the DSs of rHGG,
NSCLC, and HNC, respectively, had at least one modality missing. There-
fore, a multimodality imputation pipeline was applied where the observa-
tions missing significant features were imputed using all significant features
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derived from the other modalities. Compared to the complete models, i.e. ex-
cluding imputed data resulting in fewer observations, a narrower DS CI was
observed, indicating that the performance is more analogous across the differ-
ent resampling approaches. Furthermore, the imputed models have smaller
variations between the CPH and RSF TS performance. Therefore, the respec-
tive imputed signature was used for further analysis. Another approach could
aim to create missing sequences from one another, as in (Conte et al., 2021).
Nonetheless, the generalizability of the methods is still an issue.

To assess whether the different unimodality and multimodality signatures
are only suitable for the semi-parametric CPH models, non-parametric RSF
models were evaluated on the TS. Between all three cohorts, the largest C-I
variation was observed in rHGG by the CT OS model (C-I CPH-RSF: 0.11) and
the T2w PFS model (C-I CPH-RSF: 0.008), and the T2w-FLAIR PFS model (C-
I CPH-RSF: 0.06). All remaining unimodality models had a C-I difference less
than or equal to 0.05. Noting that a C-I below 0.5 indicates a very poor model,
above 0.6 an average model, and above 0.7 a good model, the RSF T2w-FLAIR
PFS model from rHGG had poor prediction performance with a C-I of 0.47

[0.46 0.49]. Performance of the CPH T2w-FLAIR PFS model was similarly
poor, with a C-I of 0.53 [0.52 0.54] from rHGG, indicating that the model is
slightly better at predicting an outcome than random chance. Similar observa-
tions were made in HNC by the CS models for both CPH: 0.55 [0.53 0.58] and
RSF: 0.50 [0.48 0.54]. The variation between the CPH-RSF models fitted by
the multimodality signatures, i.e. the RS and the RDCS, are very small, with
a C-I CPH-RSF < 0.03 for all models. The CPH models were considered for
further analysis since they had higher and more stable performance, which
might be due to the study sample size since non-parametric models require
more data due to the larger number of parameters.

The rHGG CS model comprised of the recurrent tumour histology and the
reRT risk score (RRRS), previously reported by (Niyazi et al., 2018), achieved
an OS C-I of 0.67 [0.65 0.68] and a PFS C-I of 0.60 [0.58 0.62] across all
three resampling approaches on the DS. Similar results were observed on
TS, where an OS C-Is of 0.66 [0.66 0.68]/0.64 [0.63 0.65] and PFS C-Is of 0.61

[0.60 0.62]/0.62 [0.61 0.63] were achieved by the CPH/RFS models. This result
validates the RRRS score, comprised of the initial tumour histology, clinical
performance status, and age, for rHGG patients treated with pHGG2. The
NSCLC OS CS model includes the tumour location, with a C-I of 0.70 [0.69

0.72] on the DS and 0.67 [0.66 0.69] on the TS. The NSCLC PFS and RILF CS
model include the tumour site with a CI 0.56 [0.55 0.58] and 0.59 [0.56 0.63]
on the DS and 0.63 [0.61 0.66] and 0.67 [0.66 0.70] on the TS respectively. The
HNC XT CS model includes the tumour site with a C-I of 0.51 [0.50 0.53] on
the DS and 0.55 [0.53 0.58] on the TS. All clinical features were included in the
RDCS multimodality signatures for rHGG and NSCLC. However, the HNC
multimodality signature only includes radiomics and dosiomics features.
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All nine rHGG unimodality models, i.e. from T1w, T1wce, T2w, T2w-Flair,
ADC maps, SWI, CT, DD, and clinical demographic, had an average per-
formance for OS and PFS prediction on the DS after resampling. Good OS
predictions by the T1wce, T1w, and DD models and good PFS prediction by
the T1w were observed on the TS. Considering the CPH models, T1w (mean
discovery C-I across the three resampling approaches: 0.64 [0.63 0.66], test
C-I: 0.73 [0.73 0.74]), T1wce (0.68 [0.66 0.70], 0.73 [0.72 0.73]), and DD (0.69

[0.67 0.70], 0.72 [0.71 0.72]) had the best overall performance for OS while
T1w (0.63 [0.61 0.66], 0.70 [0.68 0.70]), T1wce (0.67 [0.64 0.69], 0.66 [0.66 0.67])
and CT (0.64 [0.62 0.66], 0.67 [0.66 0.68]) for PFS. The highest number of
OS significant features identified by the feature significance search pipeline
were from T1wce (n=4), while the lowest number was from SWI (n=1). As
for PFS significant features, the CT signature included the highest number of
features (n=5), while T2w-FLAIR and SWI had the lowest (n=1). As for the
unimodality models in NSCLC, good OS prediction was achieved by the CS
model (0.70 [0.69 0.72], 0.67 [0.66 0.69]). The DD model has good RILF pre-
diction (0.70 [0.68 0.73], 0.71 [0.68 0.73]), which also had the highest number
of features, together with the SM-CT signature (n=3). Similar performance
was observed for HNC, where the DD model had a good XT prediction (0.70

[0.68 0.73], 0.71 [0.68 0.73]) and the highest number of significant features
(n=5). DD showed a better prediction than CT in radiation-induced toxicity
prediction, i.e. RILF and XT prediction in NSCLC and HNC. All remaining
NSCLC and HNC models had an average performance.

The multimodality rHGG RDCS OS signature includes the two clinical fea-
tures from the CS, the square root of the mean (RMS) of all T1wce squared
intensity values in the CTV, 2 PTV texture features from the DD, and seven
texture radiomics features, specifically one from the modality-ROI T1w-PTV,
1 T2w-CTV, 1 ADC-PTV, 1 CT-GTV, and 1 CT-PTV. As for the multimodal-
ity rHGG RDCS PFS signature, it includes the two clinical features from the
CS, 1 PTV texture feature from the DD, and eight texture radiomics features,
specifically one from the modality-ROI, 1 T1wce-GTV, 1 T1w-PTV, 1 SWI-
CTV, 1 ADC-CTV, 1 ADC-PTV, 1 CT-GTV, and 1 CT-CTV. Other than SWI
in the RDCS OS models, all modalities contributed to the signatures. The
NSCLC RDCS OS signature includes the tumour location, one texture feature
from the DD in the ipsilateral lung, and two texture radiomics, specifically
one from the SH-CT-GTV and one from the SH-CT-heart muscle. The NSCLC
RDCS PFS signature includes the tumour location, a texture feature from the
DD and the ipsilateral lung, and a radiomics texture feature from the SH-
CT-GTV. As for the radiation-induced toxicity signatures, the NSCLC RDCS
RILF signature includes the tumour site, one texture feature from the DD and
the PTV, and three texture radiomics features, specifically one from the SH-
CT and the contralateral lung, 1 SH-CT-GTV, and 1 SM-CT-PTV. Lastly, the
HNC RDCS signature includes three dosiomics texture features (1 from the
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PTV, one from the ipsilateral, and one from the contralateral parotid gland)
and four radiomics texture features (1 from the PTV, one from the ipsilateral,
and two from the contralateral parotid gland). There was no significant cor-
relation between the textural features and the prescribed dose and volume,
with Spearman’s correlation coefficient ranging between -0.68 to 0.51. Texture
features are 3D spatial features that describe statistical relationships and in-
teractions between voxels with similar or dissimilar contrast values, which
can reflect the structure of intra-tumour heterogeneity. The texture descrip-
tors are based on the Laplacian of Gaussian and wavelet transformations.
Variability in these features can be attributed to the tumour response to RT,
tumour aggressiveness, and extent of infiltration. The prediction capabilities
of radiomics in the prediction of OS, PFS, XT, and RILF seen in this work
approved with previous work for lung and HNC outcome prediction mod-
elling following RT (Carbonara et al., 2021; Desideri et al., 2020). As T1wce
extracted features were found significant in most analyses performed in this
study, it can be recommended to use T1wce MR sequences in OS and PFS
studies.

To assess the effect of radiomics and dosiomics features, patients’ risk strat-
ification, unsupervised clusters of radiomics, and dosiomics features were
calculated, and KM analysis was performed on these clusters. The KM plots
show that the radiomics features can generally better stratify patients in the
DS and TS than the dosiomics features. However, combined, they provide
a higher stratification power. It has been demonstrated that certain clinical
features, e.g., the RRRS and tumour histology in rHGG or tumour location
and site in NSCLC, are predictors and prognosticators. By performing KM
analysis on subgroups of patients based on the significant clinical features, it
was observed that combining radiomics and dosiomics features could further
stratify patients, suggesting that when used together, they can hold valuable
information on the outcomes considered. Furthermore, combined clinical, ra-
diomics, and dosiomics nomograms, i.e. graphical representations of the built
models, can be constructed, facilitating an individualised preRT identification
of a higher risk of radiation-induced toxicity or lower chance of survival.

Dose-volume histogram (DVH) has been shown to have important insight
into outcomes in multiple previous studies. However, the number of do-
siomics features is significantly larger and thus leads to better chances of
correlations. The dosiomics texture features identified in the three cohorts
are features calculated from the DD wavelet transformation that mainly point
to the heterogeneity of the dose distribution and the low dose level concen-
tration areas. The wavelet filter can provide low and high-frequency signals
in the spatial distributions of the dose, suggesting again that the dose inho-
mogeneities in target volumes and dose variation in organs at risk play an
important role in local recurrences and radiation-induced toxicity outcomes.
This agrees with other works finding (Buizza et al., 2021; Liang et al., 2019;
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Wu et al., 2020). The different dosiomics features have demonstrated good
prediction abilities, however, a challenge still occurs in interpreting these fea-
tures, as they are not clearly understood as DVH and dose metrics. The pro-
cess of transforming the different DD into quantitive texture features cannot
be accurately described with analytic functions; thus, to identify a possible
explanation for why these specific features have shown to be predictive, cor-
relation tests with first-order DRBE and LET statistics and shape features
were performed. Correlation of the identified significant dosiomics features
with first-order statistics and shape features allowed for the identification of
understandable features in contrast to dosiomics features which are usually
hard to be observed by humans. This allows for treatment adjustment, e.g.,
by adjustment of TVs or inclusion of objectives constraints during treatment
planning optimisation. However, the dosiomics features still have better pre-
diction capabilities in all three cohorts.

Improvement in prediction accuracy could be performed with the addition
of more patient data, more feature candidates, or other omics layers such as
genomics - e.g. Bøvelstad, Nygård, and Borgan, 2009 combined genomics and
clinical information and found that the combination outperforms genomic-
only models - transcriptomics - e.g. Tang et al., 2022 discovered a gene sig-
nature associated invasion through transcriptome analysis - or proteomics,
as each layer provides different information. Thus, complex interactions be-
tween the different layers could be learned, potentially representing informa-
tion underlying various diseases. All these layers could be integrated into the
model to improve prediction accuracy and model robustness.

The following limitations exist in this work. All TVs were segmented fol-
lowing institutional guidelines for RT treatment. Nonetheless, delineation
variabilities impact radiomics and dosiomics features and, thus, model per-
formances. However, as automatic tumour segmentation networks become
more robust and popular, these inter-observer variabilities will be reduced,
thus reducing another layer of uncertainty. Furthermore, external validation
was not possible due to a lack of cohort availability, so prospective valida-
tion of the proposed models is warranted. However, the main purpose of this
work was first to evaluate dosiomics and second, to a combined-modality ap-
proach to prediction power. My work proves that these approaches may im-
prove radiation-induced toxicity and survival prediction models in the three
cohorts considered. As discussed earlier, another limitation was the impact
of different preprocessing steps on the different features, which was assessed
partially in this work, however, not fully. An example of dosiomics features
would be the dose calculation algorithms’ impact and the choice of dose grid
or RT modalities.

Compared to classical TCP and NTCP models, multimodality radiomics
and dosiomics models could lead to advanced and complicated optimisation
problems since objective functions are not as intuitive. Therefore, these mod-
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els’ behaviours during optimisation also need to be studied. Future work will
focus on integrating the multimodality models into the RT chain to be able
to make use of these models during treatment planning.



6S U M M A RY

Cancer is today the second leading cause of death worldwide. Surgery, ra-
diotherapy, systemic therapy, e.g. chemotherapy, immunotherapy, or combi-
nations thereof, are cornerstones of current cancer therapy. In the course of
their treatment, more than half of cancer patients receive radiotherapy, ei-
ther for curative or palliative purposes, providing it with a significant role
in cancer treatment. Over the years, the delivery of radiotherapy has im-
proved to optimize the radiation dose delivered to the tumour and spare
as much healthy tissue as possible. Identifying factors affecting normal tis-
sue complication and tumour control probabilities is highly important for
improving treatment planning and, consequently, outcomes. This work incor-
porated the analysis of dose distribution - dosiomics - with imaging features
- radiomics - and clinical information, and integrated the multiple medical
information layers to identify relevant features associated with therapy out-
come. To this end, an artificial intelligence-based workflow for data curation,
preprocessing, and analysis has been developed. To enable accurate mod-
elling, the datasets used must be adequately curated, complete, and struc-
tured in a standardized manner. Therefore, the first step was to implement a
deep learning-based data curation tool that organizes medical imaging data
from retrospectively assembled clinical cohorts into the desired structures,
saving time in the data preparation step. The developed tool brought the su-
perior performance of content-based brain MRI sequence classification com-
pared to traditional text-based classification. The approach can be adapted
to other image analysis studies with similar classification tasks. During mag-
netic resonance image preprocessing, an important step is image intensity
normalization since magnetic resonance images are measured in arbitrary
units and should have similar scales for adequate computer analysis. While
attempting to find a suitable normalization method, it was observed that the
intensity normalization directly impacted the overall power of the radiomics
models. Furthermore, varying performance was observed between the dif-
ferent sequences. Therefore, no one-fits-all method can be advised as the in-
tensity normalization algorithm’s performance correlates with the magnetic
resonance sequence. Consequently, a methodology was developed that can
be employed for any magnetic resonance image dataset that requires inten-
sity normalization, facilitating the method search and highlighting the need
to report the applied normalization method in future studies. After comple-
tion of the radiomics and dosiomics workflow, the second part of this work
focused on the improvement of tumour control and normal tissue compli-
cation probability estimations, and patient prognostic stratification through
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a multimodality approach that incorporates pre-radiotherapy radiomics fea-
tures, dosiomics features from dose distributions, clinical features, and treat-
ment outcomes in three cohorts with different entities, i.e., brain, head and
neck, and lung. Across the three considered cohorts, i.e., recurrent high-grade
glioma, early-stage non-small cell lung cancer, and head and neck cancer, a
concordance-index increase of 10-20% was observed for tumour control and
normal tissue control probability endpoints when radiomics and dosiomics
significant features were combined with the clinical signature, suggesting that
multimodality models can lead to advanced and complex treatment response
estimations. Dose distribution spatial features showed to be associated with
the development of normal tissue complications (xerostomia and fibrosis) and
might serve as means to optimize treatment plans. Similarly, the evaluation of
tumour control probability endpoints as progression-free survival and over-
all survival showed associations with different sources of medical informa-
tion, highlighting the high degree of inter- and intra-tumoral heterogeneity
and the need to adapt treatment regimens. The combined signature identi-
fied high versus low-risk prognostic groups for endpoints’ overall survival,
progression-free survival, and radiation-induced toxicity. These results indi-
cate that certain interactions are present between the different modalities and
that the integration of multimodal information outperforms the unimodal
prognostic separation. Therefore, multimodal prognosticators may improve
treatment decision support and highlight the relevance of considering bi-
ological, physical and morphological data for patient stratification. As the
proposed models showed promising performance for both tumour control
and normal tissue complication probability estimations, prospective studies
of the proposed multimodality models are warranted. Furthermore, future
work could focus on integrating and comparing deep learning with the exist-
ing machine learning models developed in this work, as deep learning mod-
els can uncover hidden features. For this purpose, a large amount of data is
required, therefore, additional studies for collecting new datasets are neces-
sary. In conclusion, this work presented a complete multimodality prediction
modelling methodology and could pave the way to integrating complex tu-
mour control and normal tissue complication probability estimations models
into the treatment planning chain, bringing personalized radiotherapy one
step closer.



7Z U S A M M E N FA S S U N G

Krebs ist heute die zweithäufigste Todesursache weltweit. Chirurgischen Ein-
griff, einer Strahlentherapie, einer systemischen Therapie (z.B. Chemothera-
pie bzw. Immuntherapie) oder aus deren Kombination sind Eckpfeiler der
derzeitigen Krebstherapie. Mehr als die Hälfte der Krebspatienten erhält im
Laufe ihrer Behandlung eine Strahlentherapie, entweder zu kurativen oder
palliativen Zwecken, wodurch sie eine wichtige Rolle in der Krebsbehand-
lung spielt. Im Laufe der Jahre wurde die Durchführung der Strahlenthera-
pie verbessert, um die auf den Tumor abgegebene Strahlendosis zu optimie-
ren und möglichst viel gesundes Gewebe zu schonen. Die Ermittlung von
Faktoren, die sich auf die Wahrscheinlichkeit von Komplikationen im Nor-
malgewebe und die Tumorkontrolle auswirken, ist für die Verbesserung der
Behandlungsplanung und folglich des Behandlungsergebnisses von großer
Bedeutung. In dieser Arbeit wurde die Analyse der Dosisverteilung (Dosio-
mics), mit Bildgebungsmerkmalen (Radiomics) und klinischen Informationen
kombiniert. Die medizinischen Informationsschichten wurden integriert, um
relevante Merkmale zu identifizieren, welche das Therapieergebnis beeinflus-
sen. Zu diesem Zweck wurde ein auf künstlicher Intelligenz basierender Ar-
beitsablauf für die Datenkuration, Datenvorverarbeitung und Datenanalyse
entwickelt. Um eine genaue Modellierung zu ermöglichen, müssen die ver-
wendeten Datensätze adäquat kuratiert sowie vollständig und standardisiert
strukturiert sein. Daher wurde im ersten Schritt ein auf Deep Learning ba-
sierendes Tool zur Datenkuratierung implementiert. Dieses organisiert medi-
zinische Bildgebungsdaten aus retrospektiv zusammengestellten klinischen
Kohorten in die gewünschten Strukturen und spart somit Zeit bei der Da-
tenaufbereitung. Das entwickelte Tool erbrachte eine überlegene Leistung bei
der inhaltsbasierten Klassifizierung von MRT-Sequenzen des Gehirns im Ver-
gleich zur herkömmlichen textbasierten Klassifizierung. Ein Ansatz, welcher
auch bei anderen Studien zur Bildanalyse mit Klassifizierungsaufgaben einge-
setzt werden kann, die diesem ähnlich sind. Ein wichtiger Schritt bei der Vor-
verarbeitung von Magnetresonanzbildern ist die Normalisierung der Bildin-
tensität, da Magnetresonanzbilder in willkürlichen Einheiten gemessen wer-
den, jedoch für eine angemessene Computeranalyse ähnliche Skalen haben
sollten. Bei der Suche nach einer geeigneten Normalisierungsmethode wur-
de festgestellt, dass sich die Intensitätsnormalisierung direkt auf die Gesamt-
leistung der radiometrischen Modelle auswirkt. Zudem wurden zwischen
den verschiedenen Sequenzen unterschiedliche Leistungen festgestellt. Da-
her empfiehlt sich ein differenzierter Ansatz, denn die Leistung des Intensi-
tätsnormalisierungsalgorithmus hängt von der jeweiligen Magnetresonanzse-
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quenz ab. Folglich wurde eine Methodik entwickelt, die für jeden beliebigen
Magnetresonanzbilddatensatz, der eine Intensitätsnormalisierung erfordert,
eingesetzt werden kann. Dies erleichtert die Suche nach einer Methode und
unterstreicht die Notwendigkeit, die angewandte Normalisierungsmethode
in zukünftigen Studien anzugeben. Nach der Fertigstellung des Radiomics-
und Dosiomics-Arbeitsablaufs konzentrierte sich der zweite Teil dieser Ar-
beit auf die Verbesserung der Schätzung der Tumorkontroll- und Normal-
gewebskomplikationswahrscheinlichkeit sowie auf die prognostische Strati-
fizierung von Patienten durch einen multimodalen Ansatz. Dieser beinhal-
tet Radiomics-Merkmale basierend auf Bilddaten, die vor der Strahlenthe-
rapie erhoben wurden, Dosiomics-Merkmale aus der Dosisverteilung selbst,
klinische Parameter und Behandlungsergebnisse für drei Kohorten. Die Ko-
horten beinhalten jeweils das rezidivierende hochgradige Gliom, das nicht-
kleinzellige Lungenkarzinom im Frühstadium und Kopf-Hals-Tumoren mit
den entsprechenden organischen Entitäten, d. h., Gehirn, Lunge sowie Kopf
und Hals. In allen drei Kohorten wurde ein Anstieg des Konkordanzinde-
xes von 10-20% für die Wahrscheinlichkeitsendpunkte Tumorkontrolle und
Normalgewebskontrolle beobachtet, wenn signifikante radiomische und do-
siomische Merkmale mit der klinischen Signatur kombiniert wurden. Dies
deutet darauf hin, dass multimodale Modelle zu fortschrittlichen und kom-
plexen Schätzungen des Behandlungsansprechens führen können. Es zeigte
sich, dass die räumlichen Merkmale der Dosisverteilung mit der Entwick-
lung von Komplikationen im Normalgewebe (Xeroistomie und Fibrose) in
Zusammenhang stehen und als Mittel zur Optimierung der Behandlungsplä-
ne dienen könnten. Auch bei der Bewertung der Tumorkontrollwahrschein-
lichkeit (progressionsfreies Überleben und Gesamtüberleben) zeigten sich Zu-
sammenhänge mit die medizinischen Informationsquellen, die das hohe Maß
an inter- und intratumoraler Heterogenität und die Notwendigkeit der An-
passung von Behandlungsschemata unterstreichen. Durch die kombinierte
Signatur konnten prognostische Gruppen mit hohem bzw. niedrigem Risiko
für die Endpunkte Gesamtüberleben, progressionsfreies Überleben und strah-
leninduzierte Toxizität ermittelt. Diese Ergebnisse deuten darauf hin, dass
es gewisse Wechselwirkungen zwischen den verschiedenen Modalitäten gibt
und dass die Integration multimodaler Informationen gegenüber der unimo-
dalen prognostischen Trennung überlegen ist. Daher können multimodale
Prognostikatoren die Entscheidungsfindung bei der Behandlung verbessern
und unterstreichen die Bedeutung der Berücksichtigung biologischer, phy-
sikalischer und morphologischer Daten für die Patientenstratifizierung. Da
die vorgeschlagenen Modelle eine vielversprechende Leistung sowohl für die
Schätzung der Tumorkontrolle als auch der Wahrscheinlichkeit von Kompli-
kationen im Normalgewebe zeigten, sind prospektive Studien zu den vorge-
schlagenen multimodalen Modellen angezeigt. Da haben sie das Potential die
personalisierte Strahlentherapie weiter voranzubringen.
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Table A.1: MR scanner models found in the cohorts

Dataset Manufacturer Tesla Model

pHGG

Siemens

0.35 Open
1 Allegra, Harmony

1.5 Aera, Amira, Avanto, Espree, Sonata Symphony, Vision
3 Prisma fit, Skyra, Trio, TrioTim,Verio

Philips
1 Panorama

1.5 Achieva, Ingenia, Intera,
3 NT

GE 1.5 Signa, Signa Excite-HDxt

rHGG
Siemens

1 Harmony
1.5 Avanto, Aera, Espree, Sonata, Symphony
3 Prisma fit, Skyra, TrioTim,Verio

Philips 1.5 Achieva, Ingenia, Intera
GE 1.5 Optima MR450w, Signa HDxt

TCGA-GBM

Siemens
1.5 Avanto, Espree, Sonata, Symphony
3 Verio, Trio, TrioTrim

Philips
0.5 T5

1.5 Achieva, Intera
GE 1.5 Signa, Signa Excite-HDx-HDxt

Hitachi 0.3 Airis II
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Table A.2: Primary high-grade glioma cohort overview. RT TP: planning RT time-
point with MR

pHGG (n=320) subset-pHGG (n=141)

Age at RT
<50 104 (31%) 47 (33%)

50-69 167 (52%) 73 (52%)
⩾ 70 49 (17%) 21(15%)

Gender
Male 196 (61%) 86 (61%)

Female 124 (39%) 55 (39%)
Tumor grade

III 73 (36%) 34(24%)
IV 247 (64%) 65 (46%)

MR sequence at RT TP
T1wce 309 (100%) 141 (100%)
T1w 285 (94%) 110 (78%)

T2w-FLAIR 272 (85%) 128 (91%)
T2w 205(71%) 112 (80%)

Table A.3: TCGA-GBM cohort overview

TCGA-GBM (n=256)

Gender
Male 155 (60%)

Female 101 (40%)
Age
<50 50 (20%)

50-69 145 (57%)
⩾ 70 61 (23%)

Tumor grade
III 0 (0%)
IV 256 (100%)

Radiation therapy
No 113 (44%)
Yes 143 (64%)
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Table A.4: NSCLC with missing information cohort overview

NSCLC (n=74)

Age at RT
<60 10 (14%)

60-74 40 (54%)
⩾75 22 (32%)

Gender
Male 46 (62%)

Female 28 (36%)
Karnofsky performance score (KPS)

⩾70 51 (69%)
<70 9 (12%)

unknown 14 (19%)
Cigarettes pack/year

0 40 (54%)
<40 9 (12%)

>=40 15 (20%)
Smoker but unknown 10 (14%)

Tumor site
upper lobe 40 (54%)
middle lobe 5 (7%)
lower lobe 23 (31%)
unknown 4 (8%)

Total dose [Gy]
30 14 (19%)
45 31 (42%)
50 2 (3%)
54 3 (4%)
60 24 (32%)



appendix a 108

Ta
bl

e
A

.5
:M

R
im

ag
e

pr
ot

oc
ol

s
fo

un
d

in
th

e
co

ho
rt

s.
TI

:I
nv

er
si

on
ti

m
e,

TE
:E

ch
o

ti
m

e,
TR

:R
ep

et
it

io
n

ti
m

e,
FA

:F
lip

an
gl

e
Pr

ot
oc

ol
%

T1
w

Sa
g

T1
w

3
D

M
PR

A
G

E-
w

it
h

tr
a

re
co

ns
tr

uc
ti

on
4
8

TI
:8

0
0

-1
0
0
0

m
s,

TE
:2

.2
7
-3

.7
m

s,
TR

:1
,7

4
0

-2
2
0
0

m
s,

an
d

FA
:8

-1
5
°

In
-p

la
ne

re
so

lu
ti

on
:0

.4
2

x
0
.4

2
–

1
x

1
m

m
,S

lic
e

th
ic

kn
es

s:
0
.9

-1
.3

m
m

T
1
w

3
D

M
PR

A
G

E
2
5

TI
:1

1
0
0

m
s,

TE
:2

.4
4
-4

m
s,

TR
:1

,6
8
0

-2
,0

0
0

m
s,

an
d

FA
:7

-1
5

°
In

-p
la

ne
re

so
lu

ti
on

:0
.5

x
0

.5
-

1
x1

m
m

,S
lic

e
th

ic
kn

es
s:

1
.3

m
m

T1
w

Sp
in

Ec
ho

1
2

TE
:8

-1
7

m
s,

TR
:3

5
0
-7

4
4

m
s,

an
d

FA
:7

0
-9

0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.4
5

x
0

.4
5

–
1

.0
5

x
1
.0

5
m

m
,S

lic
e

th
ic

kn
es

s:
3

-6
m

m

T
1
w

3
D

Tu
rb

o
Fi

el
d

Ec
ho

4

TE
:3

.1
7
-4

.7
m

s,
TR

:6
.5

-8
.2

m
s,

an
d

FA
:8

°
In

-p
la

ne
re

so
lu

ti
on

:0
.5

x
0

.5
–

0
.9

3
x

0
.9

3
m

m
,S

lic
e

th
ic

kn
es

s:
0
.9

-2
m

m

T
1

w
3

D
FL

A
SH

4

TE
:3

.5
6

-.9
m

s,
TR

:7
.3

-1
5

m
s,

an
d

FA
:1

0
-3

0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.9
3
x

0
.9

3
m

m
,S

lic
e

th
ic

kn
es

s:
1

.2
m

m

T1
w

Tu
rb

o
Sp

in
Ec

ho
2

TE
:1

1
m

s,
TR

:4
0
0
-4

3
9

m
s,

an
d

FA
:1

5
0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.4
5

x
0

.4
5

–
0

.7
5

x
.7

8
m

m
,S

lic
e

th
ic

kn
es

s:
3

-6
m

m

T
1
w

FL
A

SH
2

TE
:2

.4
8

-4
m

s,
TR

:2
2
0
-3

5
5

m
s,

an
d

FA
:7

0
-9

0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.4
x

0
.4

-
0
.6

x
0

.6
m

m
,S

lic
e

th
ic

kn
es

s:
4

-5
m

m

T1
w

Fa
st

Fi
el

d
Ec

ho
1

TE
:1

.6
9
-2

.4
1

m
s,

TR
:1

4
3
-1

8
7

m
s,

an
d

FA
:8

0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.3
6

x
0
.3

6
-

0
.9

x
0

.9
m

m
,S

lic
e

th
ic

kn
es

s:
5

-6
m

m

T1
w

3
D

sp
oi

le
d

gr
ad

ie
nt

ec
ho

(S
PG

R
)

1

TE
:3

.4
7

m
s,

TR
:8

.8
m

s,
an

d
FA

:1
2
°

In
-p

la
ne

re
so

lu
ti

on
:0

.4
7

x
0

.4
7

m
m

,S
lic

e
th

ic
kn

es
s:

1
.2

m
m

T1
w

3
D

SP
G

R
BR

A
V

O
1

TI
:3

0
0

m
s,

TE
:5

.2
m

s,
TR

:1
2
.3

8
m

s,
an

d
FA

:2
0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.9
4

x
0

.9
4

m
m

,S
lic

e
th

ic
kn

es
s:

1
.2

m
m

T
2
w

Tu
rb

o
Sp

in
Ec

ho
8
6

TE
:6

4
-1

2
5

m
s,

TR
:2

4
8
8
-6

6
8
0

m
s,

an
d

FA
:9

0
-1

8
0

°
In

-p
la

ne
re

so
lu

ti
on

:0
.2

2
x

0
.2

2
–

0
.9

7
x

0
.9

7
m

m
,S

lic
e

th
ic

kn
es

s:
3

-6
m

m

M
ul

ti
pl

e
Sp

in
Ec

ho
7

TE
:1

0
m

s,
T

R
:3

0
0
0

m
s,

an
d

FA
:1

4
0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.8
8

x
0
.8

8
m

m
,S

lic
e

th
ic

kn
es

s:
5

m
m

Fa
st

Sp
in

Ec
ho

3

TE
:1

0
m

s,
TR

:3
0
0
0

m
s,

an
d

FA
:1

4
0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.8
8

x
0
.8

8
m

m
,S

lic
e

th
ic

kn
es

s:
5

m
m

Tu
rb

o
Sp

in
Ec

ho
/P

ro
pe

lle
r

2

TE
:1

0
0

m
s,

TR
:5

1
5
0
-6

1
0
0

m
s,

an
d

FA
:1

6
0

°
In

-p
la

ne
re

so
lu

ti
on

:0
.4

6
x

0
.4

6
m

m
,S

lic
e

th
ic

kn
es

s:
5

.m
m

Tu
rb

o
Sp

in
Ec

ho
/B

la
de

2

TE
:1

0
0

m
s,

TR
:4

0
0
0

m
s,

an
d

FA
:1

5
0

°
In

-p
la

ne
re

so
lu

ti
on

:0
.7

1
x

0
.7

1
m

m
,S

lic
e

th
ic

kn
es

s:
5

.5
m

m

T2
w

-F
LA

IR
T

2
w

3
D

Fa
st

Fl
ai

r
6
9

TI
:1

7
0
0

m
s,

TE
:9

5
m

s,
TR

:8
0
0
0

m
s,

an
d

FA
:9

0
°

In
-p

la
ne

re
so

lu
ti

on
:0

.3
5

x
0
.3

5
m

m
,S

lic
e

th
ic

kn
es

s:
3

m
m

Tu
rb

o
D

ar
k

Fl
ui

d
1
7

TI
:1

9
5
0

m
s,

TE
:1

1
0

m
s,

TR
:9

0
0
0

m
s,

an
d

FA
:1

5
0
0

°
In

-p
la

ne
re

so
lu

ti
on

:0
.9

4
x

0
.9

4
m

m
,S

lic
e

th
ic

kn
es

s:
5

m
m

Tr
a

T2
w

FL
A

IR
Fs

1
4

TI
:2

5
0
0

m
s,

TE
:1

3
5

m
s,

TR
:1

0
0
0
0

m
s,

an
d

FA
:1

8
0
0

°
In

-p
la

ne
re

so
lu

ti
on

:1
.0

5
x

1
.0

5
m

m
,S

lic
e

th
ic

kn
es

s:
6

m
m

A
D

C
m

ap
s

-
1
0
0

TE
:5

5
-1

3
7

m
s,

TR
:2

4
4
0
-8

1
0
0
m

s,
FA

:9
0
°

an
d

1
8
0

°,
In

-p
la

ne
re

so
lu

ti
on

:0
.7

1
x

0
.7

1
–

1
.9

5
x

1
.9

5
m

m
,S

lic
e

th
ic

kn
es

s:
4
-6

m
m

.b
-v

al
ue

0
an

d
1
0
0
0

-1
2
0
0

s/
m

m

SW
I

SW
I

im
ag

es
1
0
0

TE
:1

9
.7

m
s,

TR
:2

7
m

s,
an

d
FA

:1
5
°

In
-p

la
ne

re
so

lu
ti

on
:0

.7
1

x
0
.7

1
m

m
,S

lic
e

th
ic

kn
es

s:
2

.5
-

m
m



BR A D I O M I C S A N D D O S I O M I C S F E AT U R E S S U M M A RY

Table B.1: The identifiable radiomics and dosiomics features for all considered
cohorts and endpoints represented as image modality/ROI/image
transformation-parameter/feature name

R
ad

io
m

ic
s

Feature Cohort Endpoint
CT/GTV/Wavelet-LHL/Glszm-SAE

rHGG OS

ADC/PTV/Log-3mm/Glrlm-LGLRE
CT/PTV/Wavelet-LLL/Glcm-ldmn

T1wce/CTV/Original/Firstorder-RMS
T1w/PTV/Wavelet-LLL/Glcm-lmc1

T2w/CTV/Wavelet-LHL/Glszm-SZNU
ADC/CTV/Log-2mm/Firstorder-Skewness

rHGG PFS

SWI/CTV/Wavelet-LHL/Glszm-ZoneEntropy
T1w/PTV/Wavelet-HLL/Glrlm-LRLGLE

CT/GTV/Wavelet-LHL/Firstorder-Skewness
T1wce/GTV/Logarithm/Firstorder-RMS
CT/CTV/Wavelet-HHL/Glszm-SZNUN

ADC/PTV/Wavelet-LHL/Glrlm-SRLGLE
SH-CT/GTV/Log-3mm/Glszm-SAE

NSCLC OS
SH-CT/Heart/Log-3mm/Glszm-LRHGLE
SH-CT/Ipsi/Original/Glszm-ZoneEntropy NSCLC PFS
SH-CT/Contra/Log-4mm/Glszm-SAHGLE

NSCLC RILFSH-CT/GTV/Wavelet-HLH/Glszm-SZNUN
SM-CT/PTV/Wavelet-LHH/Glszm-SZNUN
CT/Contra/Wavelet-HHL/Glszm-LRHGLE

HNC XT
CT/Ipsi Wavelet-LHL/Glszm-ZoneEntropy

CT/Contra/Log-3mm/Glrlm-LGLZE
CT/PTV/Wavelet-LHL/Firstorder-Median

D
os

io
m

ic
s

Feature Cohort Endpoint
DD/PTV/Wavelet-HLH/Firstorder-Maximum

rHGG OS
DD/PTV/Wavelet-LHL/Glrlm-SRLGLE

DD/PTV/Wavelet-HHL/Firstorder-Median rHGG PFS
DD/Ipsi/wavelet-LHL/Firstorder-Median NSCLC OS

DD/Ipsi/Wavelet-LLL/Gldm-DV NSCLC PFS
DD/PTV/Wavelet-HLH/Glszm-SAE NSCLC RILF

DD/PTV/Wavelet-HHH/Firstorder-Mean
HNC XTDD/Contra/Wavelet-LHL/Gldm-DE

DD/Ipsi/Wavelet-LHH/Glcm-ClusterShade
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CD I S C O V E RY S E T AV E R A G E C O N C O R D A N C E I N D E X

Table C.1: Summary of the NSCLC average discovery set C-Is across the three differ-
ent resampling approaches in the prediction of OS and PFS. Confidence
interval (CI) represents the minimum and maximum C-I achieved. C-I:
Concordance index, SM-CT: smooth-kernel CT, SH-CT: sharp-kernel CT,
CS: clinical signature, DD: dosiomics signature, RS: radiomics signature,
RDCS: combined radiomics, dosiomics and clinical signature

OS PFS

Complete Imputed Complete Imputed

CS 0.70 [0.69 0.72] 0.56 [0.55 0.58]

SM-CT 0.68 [0.65 0.71] 0.61 [0.59 0.63]

SH-CT 0.70 [0.65 0.72] 0.69 [0.68 0.71] 0.67 [0.65 0.68] 0.66 [0.65-0.68]

DD 0.73 [0.69 0.76] 0.66 [0.63 0.68] 0.69 [0.68 0.71] 0.64 [0.62-0.66]

RS 0.70 [0.66 0.73] 0.71 [0.69 0.73]] 0.62 [0.61 0.64] 0.62 [0.60-0.64]

RDCS 0.74 [0.69 0.78] 0.78 [0.76 0.80] 0.72 [0.69 0.74] 0.66 [0.64-0.68]

Table C.2: Summary of the NSCLC average discovery set C-Is across the three differ-
ent resampling approaches in the prediction of RILF. Confidence interval
(CI) represents the minimum and maximum C-I achieved. C-I: Concor-
dance index, SM-CT: smooth-kernel CT, SH-CT: sharp-kernel CT, CS: clin-
ical signature, DD: dosiomics signature, RS: radiomics signature, RDCS:
combined radiomics, dosiomics and clinical signature

RILF

Complete Imputed

CS 0.59 [0.56 0.63]

SM-CT 0.66 [0.65 0.68]

SH-CT 0.69 [0.67 0.71] 0.69 [0.68 0.70]

DD 0.68 [0.64 0.72] 0.70 [0.68 0.73]

RS 0.70 [0.68 0.73] 0.70 [0.68 0.73]

RDCS 0.72 [0.69 0.72] 0.75 [0.73 0.77]
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Table C.3: Summary of the rHGG average discovery set C-Is across the three differ-
ent resampling approaches in the prediction of OS and PFS. Confidence
interval (CI) represents the minimum and maximum C-I achieved. C-I:
Concordance index, CS: clinical signature, DD: dosiomics signature, RS:
radiomics signature, RDCS: combined radiomics, dosiomics and clinical
signature

OS PFS

Complete Imputed Complete Imputed
CS 0.67 [0.65 0.68] 0.60 [0.58 0.62]
CT 0.65 [0.63 0.67] 0.64 [0.62 0.66]
DD 0.69 [0.67 0.70] 0.63 [0.61 0.66]

T1wce 0.68 [0.66 0.70] 0.67 [0.64 0.69]
T1w 0.64 [0.63 0.66] 0.64 [0.63 0.66] 0.65 [0.63 0.67] 0.63 [0.61 0.66]
T2w 0.65 [0.62 0.67] 0.65 [0.63 0.67] 0.62 [0.60 0.65] 0.62 [0.60 0.64]

T2w-FL 0.65 [0.63 0.66] 0.66 [0.64 0.67] 0.57 [0.55 0.59] 0.59 [0.57 0.60]
ADC 0.64 [0.63 0.66] 0.63 [0.61 0.65] 0.64 [0.62 0.66] 0.61 [0.59 0.63]
SWI 0.64 [0.61 0.66] 0.61 [0.59 0.64] 0.63 [0.60 0.66] 0.62 [0.60 0.63]
RS 0.74 [0.70 0.76] 0.73 [0.70 0.75] 0.71 [0.68 0.74] 0.69 [0.67 0.72]

RDCS 0.79 [0.76 0.81] 0.77 [0.75 0.78] 0.74 [0.70 0.77] 0.72 [0.71 0.74]

Table C.4: Summary of the HNC average discovery set C-Is across the three different
resampling approaches in the prediction of XT. Confidence interval (CI)
represents the minimum and maximum C-I achieved. CS: clinical signa-
ture, DD: dosiomics signature, RS: radiomics signature, RDCS: combined
radiomics, dosiomics and clinical signature

XT

Complete Imputed
CS 0.51 [0.50 0.53]
DD 0.72 [0.70 0.74]
RS 0.69 [0.67 0.71] 0.70 [0.68 0.72]

RDCS 0.75 [0.73 0.77] 0.76 [0.74 0.78]



DC L U S T E R V I S U A L I Z AT I O N

Figure D.1: t-SNE plots of the derived clusters from the radiomics, dosiomics and
RDCS signatures in the rhGG cohort
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Figure D.2: t-SNE plots of the derived clusters from the radiomics, dosiomics and
RDCS signatures in the NSCLC cohort

Figure D.3: t-SNE plots of the derived clusters from the radiomics, dosiomics and
RDCS signatures in the HNC cohort



EK A P L A N - M E I E R P L O T S

Figure E.1: Kaplan-Meier overall survival curves for rHGG of the A) signature clus-
ters for grade III (left) and IV (right) patients, B) radiomics clusters and
C) Dosiomics cluster. Significant stratification into 2 risks groups was ob-
served in all clusters considered in both the discovery set (DS) and the
test set (TS)
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Figure E.2: Kaplan-Meier overall survival curves for combination of clusters for
rHGG that showed similar risk. A) subsetted on RRRS=good; B) subset-
ted on RRRS=intermediate; C) subsetted on RRRS=poor; D) subsetted on
tumor histology: grade III; E) subsetted on tumor histology: grade IV,
GBM
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Figure E.3: Kaplan-Meier progression-free survival curves for combination of
clusters for rHGG. A) subsetted on RRRS=good; B) subsetted on
RRRS=intermediate; C) subsetted on RRRS=poor; D) subsetted on tumor
histology: grade III; E) subsetted on tumor histology: grade IV, GBM
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Figure E.4: Kaplan-Meier overall survival curves for patient subsets based on vali-
dated biomarkers in rHGG. A) MGMT Hypermethylated, B) MGMT Not
hypermethylated, C) IDH1 Mutant, D) IDH1 Wildtype, E) 1p/19q Codele-
tion, and F) no 1p/19q Codeletion
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Figure E.5: Kaplan-Meier progression-free survival curves for patient subsets based
on validated biomarkers in rHGG. A) MGMT Hypermethylated, B)
MGMT Not hypermethylated, C) IDH1 Mutant, D) IDH1 Wildtype, E)
1p/19q Codeletion, and F) no 1p/19q Codeletion
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Figure E.6: Kaplan-Meier progression-free survival curves for NSCLC. A) of the
hazard ratios stratified risk groups; B) of the Rad.cluster; C) of the
Dos.cluster;
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