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Suche nach Dijet-Resonanzen niedriger Masse mithilfe von
Jets auf Trigger-Level am ATLAS Detektor
Konventionelle Suchen nach Dijet-Resonanzen am Large Hadron Collider sind
für Resonanzmassen unterhalb von etwa 1TeV durch die Bandbreite der Daten-
erfassungssysteme statistisch limitiert. Die hier vorgestellte Suche erschließt
diesen Massenbereich mit noch nie erreichter statistischer Präzision durch die
Verwendung von Jets, die vom ATLAS High-Level Trigger aus Kalorimeter-
informationen rekonstruiert und aufgezeichnet wurden. Es werden Proton-
Proton-Kollisionen bei einer Schwerpunktsenergie von

√
s = 13TeV analysiert,

die einer integrierten Luminosität von bis zu 132 fb−1 entsprechen. Eine speziell
für diese Analyse konzipierte Kalibrierung für die Jets auf Trigger-Level wird
angewandt und zwei komplementäre, datengetriebene Untergrundabschätzungen
mit sehr hoher statistischer Genauigkeit werden vorgestellt. Keine signifikante
Abweichung vom erwarteten Untergrund wird beobachtet. Dementsprechend
werden Ausschlussgrenzen für Wirkungsquerschnitte von Dijet-Resonanzen
abgeleitet. Diese stellen die strengsten Grenzen für schmale, Gauß-förmige
Dijet-Resonanzen im Massenbereich von 375 – 1200GeV im Allgemeinen und
im Bereich von 375 – 1500GeV für einen Axialvektor-Mediator, der an Quarks
und Dunkle Materie koppelt, im Besonderen dar.

Search for Low-Mass Dijet Resonances Using Trigger-Level
Jets at the ATLAS Detector
Conventional dijet resonance searches at the Large Hadron Collider are stat-
istically limited for sub-TeV resonance masses by the bandwidth of the data
acquisition systems. The presented search explores this mass range at unpre-
cedented statistical precision by utilizing a partial event readout consisting of
jets reconstructed by the ATLAS High-Level Trigger using only calorimeter
information. Proton-proton collisions at a centre-of-mass energy of

√
s = 13TeV

corresponding to an integrated luminosity of up to 132 fb−1 are analyzed. A
dedicated calibration for the trigger-level jets is applied and two complementary,
data-driven background estimates with very high statistical precision are presen-
ted. No significant excess over the background expectation is observed and
exclusion limits on dijet resonance cross sections are derived. These represent
the most stringent constraints on narrow, Gaussian-shaped dijet resonances in
the mass range of 375–1200GeV in general and in the range of 375–1500GeV
for an axial-vector Dark Matter mediator coupling to quarks in particular.
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1 Introduction

The field of particle physics strives to establish a complete theory of the fundamental
interactions in nature. The best current understanding is encoded in the Standard Model
of particle physics (SM), which describes nature as a set of quantum fields that interact
with each other. Predictions of the SM have been confirmed at unparalleled precision in
many experiments at various energy scales.

Despite its considerable success, the SM is known to be incomplete, leaving several
fundamental questions unanswered. One of these is the nature of Dark Matter. Several
sources of complementary astrophysical evidence indicate the existence of a form of
matter that does not, or at most very weakly, interact electromagnetically. This Dark
Matter (DM) is expected to make up 84% of the matter content of the Universe. It is
likely to be a fundamental particle in nature, however, the SM does not provide a suitable
candidate to explain the observations. The existence of DM and other phenomena
unexplained by the SM, such as gravity or the observed matter-antimatter asymmetry
in the Universe, suggest the existence of new fundamental particles that have yet to be
discovered.

Searches at the Large Hadron Collider (LHC) play a crucial role in the pursuit of new
discoveries. The LHC produces proton-proton (pp) collisions at an unprecedented energy
and luminosity, enabling the exploration of physics beyond the Standard Model (BSM)
at both the energy and the precision frontiers.

If DM can be produced at the LHC, it is likely due to the existence of a new mediator
particle that couples both to DM and to quarks or gluons, either directly or via loop
interactions. Such a mediator, if accessible at LHC energies, could be discovered via
its decay back into quarks or gluons, producing two collimated jets of hadrons in the
final state – a so-called dijet event. This process would result in a resonance in the dijet
invariant mass spectrum at the mediator mass.

Dedicated searches for dijet resonances are sensitive to a wide range of potential DM
and other BSM models, as the observable signature is relatively independent of many
model parameters other than the mediator mass and its decay width. However, the
strong interaction of the SM produces a very large background to the dijet signature
that rises approximately exponentially towards low energies. In fact, jet production
constitutes the majority of the hard interaction cross section at the LHC.

The high rate at which dijet events occur poses a limitation to conventional dijet
resonance searches. At low energies, the dijet event rate exceeds the bandwidth of the
data acquisition systems of the LHC experiments. Therefore, the readout rate of events
with only low-energy jets is limited, which results in reduced statistical precision of the
recorded dijet invariant mass spectrum in the sub-TeV range.

In the ATLAS experiment at the LHC, this limitation is overcome with partial event
readouts. An approximate jet reconstruction is performed during data-taking to trigger a
full readout of the event if high-energy jets are identified. Additionally, partial information
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of the reconstructed trigger-level jets can be recorded regardless of their energy, since
this information constitutes a sufficiently small amount of data as to not exceed the
readout bandwidth at the full dijet event rate.

The dijet resonance search using trigger-level jets that is presented in this thesis
faces two key challenges. Firstly, a custom calibration for the trigger-level jets must
be derived for this analysis, since only full-readout jets are centrally calibrated by the
ATLAS Collaboration. It is crucial for this calibration to be a smooth function of the
jet energy to not induce any resonance-like structures in the observed dijet invariant
mass spectrum. Secondly, the very high statistical precision achieved with the dijet
signature must be matched with a background estimate of at least equal precision to
avoid a systematic limitation of the search sensitivity. This precision cannot be achieved
with typical Monte Carlo background estimates. Instead, two complementary fit-based
methods are employed.

Overcoming these challenges allows the constraint of a leptophobic Z ′ DM mediator
model in specific and, more generally, any BSM models that predict a new, narrow
dijet resonance. To the author’s knowledge, the presented dijet resonance search is
the first analysis to constrain the intermediate resonance mass range of 375–1800GeV
using the (almost) full LHC Run-2 data set of pp collisions at a centre-of-mass energy
of

√
s = 13TeV, which corresponds to an integrated luminosity of up to 132 fb−1. This

improves upon previous publications of trigger-level dijet resonant searches by the ATLAS
[1] and CMS Collaborations [2], which only considered approximately one quarter of
the Run-2 data set. At high resonance masses above 1.5TeV, conventional dijet (and
di-b-jet) resonance searches already provide the full Run-2 sensitivity [3, 4]. At very
low resonance masses in the range of 100–450GeV, alternative signatures with dijets in
addition to a photon from initial state radiation [5–8] provide the currently strongest
sensitivity. This is achieved by utilizing the low energy thresholds required to trigger
photons, although this comes at the cost of reduced signal cross sections due to the
enforced initial state radiation.

The presentation of the trigger-level dijet resonance search in this thesis is structured
as follows: Chapter 2 provides a theoretical introduction to the SM and BSM phenomena,
with an emphasis on DM and the leptophobic Z ′ model that is constrained in this
thesis. The application of the theory to simulate background and signal processes in pp
collisions is presented in Chapter 3. Chapter 4 summarizes the experimental setup of
the LHC and the ATLAS detector, linking to the special considerations for an analysis
at trigger level and the jet reconstruction in Chapter 5. Chapter 6 details the steps of
the custom jet calibration for this analysis as well as the constraints on its smoothness.
In Chapter 7, the event selection criteria for the signal region of this analysis are
outlined. Chapter 8 discusses the signal predictions and systematic uncertainties. The
two employed methods for the background estimate and their validation are presented
in Chapter 9. In Chapter 10, the compatibility of the observation with the background
hypothesis is investigated, and constraints on BSM physics are derived. Finally, the
presented work is summarized in Chapter 11.
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1.1 Author’s Contributions
The work presented in this thesis was performed as part of an analysis team within the
ATLAS Collaboration. The operation of the LHC and the ATLAS detector requires many
dedicated people to produce and record the proton collisions that are analyzed in this
thesis. Additionally, CERN and the ATLAS Collaboration provide central reconstruction
and analysis software tools that were used in the presented search. Without these large,
dedicated teams, experimental high-energy physics with a scope as presented in this
thesis would likely not be possible.

As part of the ATLAS Collaboration, the author contributed to the Level-1 Calorimeter
Trigger, specifically to the planned Phase-II Upgrade of the jet Feature EXtractor (jFEX)
that performs the jet reconstruction [9]. Significant improvements were made to the jFEX
simulation, and the prospects of more refined jet calibration methods were analyzed for
potential resolution improvements.

The author was also the (initially deputy) lead administrator of the Heidelberg ATLAS
computing cluster during the course of this thesis. Computations performed on this
cluster are a key contribution to the search presented in this thesis and to numerous
other analyses performed in the Heidelberg ATLAS group. During this period, a series
of enhancements were implemented, including significant performance upgrades and the
incorporation of new functionalities to meet current demands.

The author provided the daily supervision for, among others, two students working
on a Bachelor’s and an integrated Master’s thesis [10, 11]. These students assisted in
the optimization of the event selection criteria applied in the presented search. Their
contributions are cited in the relevant discussions.

For the presented dijet resonance search, the author developed the analysis framework
for performing the fits and validations for the background estimate as well as the statistical
analysis of the results. This framework has been adopted by other ATLAS analyses since,
with active support provided by the author. At the time of writing this thesis, two of
these analyses are published [5, 12], while multiple others are still in progress.

The author provided major contributions to almost all parts of the presented search.
The analysis of trigger-level jets requires a custom jet calibration specifically derived for
this analysis. The author validated the calibration smoothness (presented in Section 6.3)
and contributed to the development of strategies to ensure the smoothness of individual
calibration steps. The kinematic requirements of the event selection presented in Sec-
tion 7.2 were primarily derived by the author and partially by the supervised students
mentioned above. The work presented in Chapters 8 to 10 was performed solely by the
author. This includes the derivation of signal predictions, the implementation of two
independent background estimates (including the theoretical cross section calculations
presented in Section 3.3 for one of them), the application and validation of these back-
ground estimates with the analyzed data set, and the statistical interpretation of the
results to constrain BSM physics.

Finally, the author also serves as the analysis contact of the presented search within
the ATLAS Collaboration. This involves the general coordination of the group efforts as
well as regular exchange with the ATLAS physics groups. The analysis is expected to be
ready for the internal ATLAS review process soon.





2 Theoretical Background

Measurements and searches at the LHC rely on solid theoretical foundations to compare
observations to expectations. This foundation is provided by the SM, which contains the
best current knowledge of fundamental interactions.

Section 2.1 provides a summary of the SM with emphasis on the strong interaction,
which is crucial for the phenomenology of dijet signatures studied in this thesis. The
description is mainly based on Refs. [13–16].

However, the SM is known to be incomplete as it fails to explain multiple, mainly
astrophysical observations. One of them is DM, which is expected to make up 84%
of the matter content of the Universe [17]. Despite solid evidence for its existence
via gravitational interactions, its exact nature could not yet be identified. Section 2.2
presents a selection of the evidence for DM and current experimental efforts to determine
its nature.

2.1 The Standard Model of Particle Physics
The Standard Model of particle physics is a relativistic quantum field theory that
combines the electroweak theory developed by Glashow, Salam and Weinberg [18–20]
in the 1960s with quantum chromodynamics (QCD) describing the strong interaction
[21, 22] from the 1970s.

For each particle type, the SM contains one underlying quantum field of which indi-
vidual particles can be regarded as excitations. Figure 2.1 summarizes these fundamental
particles, their electrical charge, spin and the best current knowledge of their mass [17].
The particle content is categorized into two sectors based on the spin: the fermions with
half-integer spin and the bosons with integer spin.

The bosonic sector contains the interaction fields. The spin-1 gauge bosons mediate
the three fundamental forces: The electromagnetic force is mediated by the massless
photon (γ), the weak force by the massive W+, W−, and Z bosons, and the strong force
by the eight massless gluons (g). All massive particles also interact with the spin-0 Higgs
boson (H). The gravitational force could not yet be included in the SM, which remains
a process of active theoretical research. However, it is sufficiently weak compared to the
other fundamental forces to be negligible in most particle physics experiments.

The fermionic sector contains the matter fields. It consists of twelve fundamental
particles of spin 1/2 and their respective antiparticles with the same mass and spin but
otherwise opposite quantum numbers. They are grouped into three generations which
behave identically besides an increase in masses and different flavour states. The fermions
are divided into quarks, which are affected by the strong force, and leptons, which are
not.

Each of the three lepton generations consists of one charged lepton – the electron (e),
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Figure 2.1: Particle content of the SM. The electrical charge, spin and mass are indicated for
each particle. Each of the fermions also has an antiparticle with opposite charge that is not
shown. The lightly shaded regions indicate which gauge bosons each fermion interacts with.
Adapted from Ref. [23] to reflect the best current knowledge of the particle masses [17].

muon (µ), or tau (τ) – and an associated electrically neutral neutrino (ν{e,µ,τ}).1 All
leptons are subject to the weak interaction, while only the charged leptons interact
electromagnetically.

The six quarks are the up (u), down (d), charm (c), strange (s), top (t) and bottom (b)
quark. Each of the three generations contains an up-type quark with an electrical charge
of +2/3 and a down-type quark with an electrical charge of −1/3. They also carry a colour
charge and are therefore subject to the strong force in addition to the electromagnetic
and weak force. Quarks are never observed freely but only in colour-neutral bound
states due to the confinement of QCD. These bound states are called hadrons, which are
divided into mesons consisting of a quark-antiquark pair and baryons consisting of three
quarks or antiquarks.2

The description of the SM is based on a Lagrangian density L, from which equations
of motions are derived using the principle of minimal action.
1 While neutrinos were assumed massless in the original formulation of the SM, the observation of

neutrino oscillations [24–26] indicates non-vanishing masses. Accordingly, the SM was extended from
19 to 26 free parameters to include their masses, mixing angles and a CP -violating phase. However,
the exact nature of the neutrino mass term is still unknown [27].

2 Evidence for bound states of four or five quarks has been observed [28–31]. Tetraquarks are considered
mesons, as they consist of an equal number of valence quarks and antiquarks, while pentaquarks are
considered baryons, as they have an odd number of valence quarks.
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This Lagrangian density is required to obey global Poincaré symmetry to make the
SM a relativistic theory. Additionally, invariance under local SU(3)C ⊗ SU(2)L ⊗ U(1)Y
gauge transformations is required. This symmetry generates the three fundamental forces
described by the SM with gauge bosons mediating the interactions. Following Noether’s
theorem, energy, momentum, and angular momentum are conserved due to the Poincaré
invariance, while the gauge symmetries also necessitate conserved charges.

2.1.1 The Electroweak Sector
The electromagnetic and the weak interaction are unified in the Glashow-Salam-Weinberg
theory that imposes the local SU(2)L ⊗ U(1)Y gauge symmetry.

The U(1)Y group generates one gauge field, labelled Bµ, which couples to the weak
hypercharge Y . The SU(2)L group generates three fields W a

µ , a ∈ {1, 2, 3}, which couple
to the weak isospin T . Setting T = 0 for right-handed fermions encodes the behaviour
observed in nature that only left-handed fermions interact with these fields [32, 33].
Hence, the subscript L for the SU(2)L group. The non-abelian nature of SU(2)L leads to
self-interactions of the weak gauge bosons.

The Higgs doublet φ, consisting of two complex scalar fields, is introduced to allow
for massive gauge bosons without breaking SU(2)L gauge invariance. It is assigned a
potential of fourth order that has infinite global minima for φ ̸= 0. The specific choice of
one of those minima in nature leads to spontaneous symmetry breaking in which the
Higgs field acquires a vacuum expectation value. In this process, the massive Higgs
boson and three massless Goldstone bosons are generated.

The physically observable W± bosons can then be expressed as linear combinations
of the charged W (1)

µ and W (2)
µ fields, while the neutral Bµ and W (3)

µ fields mix to form
the photon and the Z boson. The W± and Z bosons absorb the massless Goldstone
bosons as longitudinal polarizations and thereby acquire their masses without violating
the gauge invariance.

Fermion masses are introduced in a SU(2)L gauge-invariant way by adding a Yukawa
coupling of the fermion to the Higgs field that is proportional to each fermion’s observed
mass.

2.1.2 The Strong Interaction
The strong interaction is described by the theory of QCD, which obeys the SU(3)C gauge
symmetry. This symmetry gives rise to eight gluon fields Ga

µ, a ∈ {1, ..., 8}, which couple
to the associated conserved colour charge carried by quarks and gluons.

Quarks are hence represented as colour triplets, whose three orthogonal states are
labelled red, green, and blue. Antiquarks are assigned the corresponding anti-colours.
All other fermions are treated as colour singlets as they do not participate in the strong
interaction.

To express the Lagrangian density of QCD, the gauge covariant derivative of a quark
triplet q is defined as

Dµ q =

(︃
∂µ + i

gS
2
λaGa

µ

)︃
q , (2.1)
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(a)

(b)

Figure 2.2: (a) Self-interaction of gluons mediating the strong interaction between two quarks,
leading to a flux tube. (b) The process of hadronization: The energy stored in the flux tube
increases as quarks separate from each other. At some point, the creation of a qq-pair from
the vacuum becomes energetically favourable over further increasing the tube’s length. A
repetition of this process dissipates the initial momentum difference into a shower of newly
formed colour-neutral hadrons. Adapted from Ref. [13].

where gS is the coupling strength3 and λa are the Gell-Mann matrices, to which the
SU(3)C generators are proportional. The gluon field strength tensor is given by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gSf

abcGb
µG

c
ν , (2.2)

where fabc are the structure constants arising due to SU(3)C being non-abelian. They
are defined in terms of the commutators of the Gell-Mann matrices:

[︁
λa, λb

]︁
= 2ifabcλc.

With these definitions, the QCD Lagrangian is:

LQCD = −1

4
Ga

µνG
µν
a +

∑︂
q ∈

{u,d,s,c,b,t}

iqγµDµ q . (2.3)

Quark mass terms are excluded here, although they would not break the SU(3)C symmetry.
In the full SM Lagrangian, they enter via the Yukawa coupling to the Higgs field to
preserve SU(2)L gauge invariance.

In Equation (2.3), q and q are colour triplets and, accordingly, Dµ is a 3×3 matrix. The
colour states are summed over to form the scalar Lagrangian density, which reduces the
appearance of the Gell-Mann matrices to scalar colour factors in QCD matrix elements.

The non-abelian nature of SU(3)C gives rise to a defining feature of QCD: Gluons
carry a colour charge and self-interact in three- and four-gluon vertices. In contrast to
the analogous self-interaction of the weak vector bosons, gluons are massless, such that
the strong interaction range is not limited and large numbers of gluon self-interactions

3 In the literature, both gS and αS = g2
S/4π are commonly referred to as the strong coupling constant.

In this thesis, that term is used for the latter.
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αS(Q
2)

αS(Q
2)

= + + + + ...

Figure 2.3: Renormalization of QCD. Next-to-leading order corrections to the tree-level gluon
propagator are shown, which are absorbed into the running coupling αS

(︁
Q2

)︁
. Adapted from

Ref. [13].

are not mass-suppressed at low energies. Phenomenologically, this leads to the concept
of colour confinement.

Gluons mediate an attractive force between quarks. As the gluons are also attracted
to one another, they form a flux tube [34], which is visualized in Figure 2.2a. Using the
analogy of electromagnetic field lines, this leads to the field lines of the strong interaction
being compressed into a tube. Consequently, the attractive force between the quarks
approaches a (very large) constant for large distances. Thus, the potential energy stored
in the gluon field between them rises linearly with their distance: V (r) ∝ r. At some
threshold, the formation of a qq-pair via vacuum polarization becomes energetically
favourable over further increasing the tube’s length. The creation of qq-pairs repeats
until the relative momenta between (anti-)quarks are sufficiently low to form colour-
neutral hadrons. This hadronization process is illustrated in Figure 2.2b. Since only
colour-neutral hadrons do not experience the strong attractive force at large distances,
solely they are observed freely in nature. Consequently, quarks or gluons produced in a
hard interaction will be observed as collimated sprays of hadrons – so-called jets.

Another defining aspect of QCD is the running of the strong coupling αS. When
perturbatively calculating cross sections of QCD processes, an infinite number of higher-
order corrections affect the quark and gluon propagators as well as the quark-gluon and
gluon-gluon vertices. An example of the next-to-leading order corrections to the gluon
propagator is shown in Figure 2.3. However, the contributions of the quark and gluon
loops can diverge towards infinitely small or large momenta of the virtual particles.

To restore finite observable cross sections, the process of renormalization isolates the
ultraviolet divergences and cancels them with an infinite counterterm derived at an
arbitrarily chosen renormalization scale µR. In this process, αS acquires a dependence
on the momentum transfer Q2:

Q2 dαS

dQ2
= β(αS) = −α2

S ·
(︁
β0 + β1αS + β2α

2
S + ...

)︁
, (2.4)

where β(αS) is the beta-function that can be expressed perturbatively and includes the
corrections of higher orders in αS. While the renormalization does not provide an absolute
value for αS, it allows it to be expressed relative to its value at the renormalization scale.
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At leading order, this is a logarithmic dependence:

αS

(︁
Q2

)︁
≈

αS

(︁
µ2
R

)︁
1 + β0 αS

(︁
µ2
R

)︁
ln
(︂

Q2

µ2
R

)︂ . (2.5)

The constant β0 depends on the number of colours Nc and contributing quark flavours
Nf :

β0 =
11Nc − 2Nf

12π
. (2.6)

In the SM, β0 is positive, such that αS

(︁
Q2

)︁
decreases with increasing momentum transfer.

This behaviour gives rise to a phenomenon referred to as asymptotic freedom: At the
high energy scales probed at colliders (|Q| ≳ 10GeV ), αS is of O(0.1). This means that
the strong interaction is sufficiently weak to be treated perturbatively.4 Conversely, at
|Q| ∼ 1GeV αS is of O(1). Therefore, QCD becomes non-perturbative at the low energy
scales relevant in the hadronization process. This regime is still experimentally driven,
although, more recently, numeric lattice QCD simulations have improved their predictive
power [17].

Details on the computation of QCD cross sections are presented in Section 3.1.

2.2 Physics Beyond the Standard Model
Although the SM is arguably the most precisely tested theory of modern physics5, it
must be embedded in a yet-to-be-found, more general theory. A variety of observed
phenomena indicate BSM physics – a selection of which is presented in this section.

Gravity. The SM does not provide a description of gravity. While general relativity
as a theory of gravity makes highly accurate predictions in accordance with observations,
it cannot be quantized in a renormalizable way without extensions [36]. Reconciling
quantum field theory and general relativity is an active field of theoretical research – for
example in the form of loop quantum gravity [37], string theory [38], or asymptotically
safe gravity [39]. However, these theories are still limited in their predictive power.
In experimental particle physics, collider searches for e.g. signatures of extra spatial
dimensions, quantum black holes, or gravitons are performed to guide this development
[40].

Matter-antimatter asymmetry. The Universe appears to be primarily composed
of matter rather than antimatter. Our local neighbourhood is known to be dominated
by matter. If other regions of the Universe were dominated by antimatter, gamma-ray
signatures would be expected to originate at the matter-antimatter boundaries. The
absence of such observations places strict constraints on the antimatter content of the
Universe [41, 42].

Generating the observed asymmetry from symmetric initial conditions necessitates,
among others, a violation of both baryon number conservation and CP symmetry [43].
4 However, αS is still so large that higher-order corrections are significant contributions, making precise

predictions challenging.
5 The most precise prediction of the SM – the electron’s magnetic moment – agrees with experiments

at a relative precision of 10−12 [35].
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The SM allows for baryon number violation in non-perturbative processes [44] and
includes CP violation in the electroweak Lagrangian density. The Cabibbo-Kobayashi-
Maskawa matrix [45, 46], which relates the quark flavour and mass eigenstates, contains
a CP -violating phase. The corresponding leptonic mixing matrix (Pontecorvo-Maki-
Nakagawa-Sakata matrix [47, 48]) is still associated with large experimental uncertainties,
but CP conservation is excluded at 95% confidence level from neutrino oscillations [49].6
While the mechanism of baryogenesis is still speculative, it is widely believed that the
sources of CP violation in the SM are insufficient to result in the observed matter-
antimatter asymmetry [44]. Experimentally, searches for signs of baryon or lepton
number violation as well as other CP -violating processes are conducted [52].

2.2.1 Dark Matter
The existence of DM is well-supported by a vast amount of independent astrophysical
evidence. It is based on the comparison of the gravitational potential as, for example,
deduced from stellar velocities or gravitational lensing [53, 54] to the density of non-dark
matter observable via electromagnetic radiation.

One of the most prominent pieces of evidence are the rotational velocities of stars and
gas in disc galaxies. In these galaxies, the visible mass is concentrated in the central
bulge of the galaxy. Outside of the bulge rotational symmetry can be assumed, such
that the velocity v of a star at radius r should be approximately given by equating its
centripetal acceleration and the gravitational force of the galaxy’s mass M(r) contained
within this radius:

v2 ≈ G

r
M(r) . (2.7)

Since the majority of the galaxy’s mass in the form of stars and gas is concentrated at
its centre, M(r) only rises slowly at large radii. Accordingly, v(r) should decrease with
an approximate 1/√r dependence.

Observations of the stellar velocities in a large number of galaxies do not match this
expectation [56, 57]. Figure 2.4 shows the galaxy M33 as an example. Here, v(r) is
increasing instead of decreasing towards large radii, with the expectation of the mass
from the stellar disc and interstellar gas shown as the short-dashed and long-dashed
lines. Additional non-luminous matter that is not concentrated at the centre of the
galaxy is required to describe the observation according to Equation (2.7) – a DM halo
surrounding the galaxy. This halo must amount to a majority of the galaxy’s mass. Its
contribution is shown as the dot-dashed line in Figure 2.4 and a good description of the
observation is achieved in a combined fit (solid line) with the luminous matter.

Further evidence is present on cosmological scales. The distribution of matter in the
early Universe at the time of the decoupling of matter and radiation is embedded in the
cosmic microwave background. This shows an almost isotropic distribution with local
fluctuations in the order of 10−5 [58]. The angular correlation of these anisotropies is

6 QCD also theoretically allows for a CP -violating phase. However, this is experimentally found to be⃓⃓
θQCD

⃓⃓
< 4 · 10−11 [50, 51]. Why this is the case is another unanswered question of particle physics

known as the strong CP problem.
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Figure 2.4: Rotational velocity of stars in the galaxy M33 as a function of their distance
from the centre. The points show the observation and the solid line shows a fit containing the
different components contributing to the galaxy’s mass: the stellar disc (short-dashed line),
interstellar gas (long-dashed line), and the DM halo (dot-dashed line). Taken from Ref. [55].

very sensitive to cosmological parameters that govern the large-scale structure formation
in the Universe. The ΛCDM model of cosmology provides an excellent description of
the observed power spectrum of the cosmic microwave background [59]. It assumes a
cosmological constant Λ, which is now associated with Dark Energy, and non-relativistic,
i.e. cold Dark Matter, which interacts at most weakly with itself and SM particles [54].

Alternative theories that alter the effect of gravity, like Modified Newtonian Dynamics
[60], have been proposed in an attempt to explain the observations without DM. How-
ever, they can only provide explanations at limited scales but not to all phenomena
simultaneously [17].

Despite the vast amount of evidence for the gravitational influence of DM in the
Universe, its nature remains yet unknown. For a long time, non-luminous macroscopic
objects (MACHOS) with masses in the order of several solar masses were considered
viable candidates. However, they have been excluded as the sole constituent of DM for
masses m ≳ 10−7M⊙ recently by microlensing observations and stability constraints on
dwarf galaxies [61, 62].

This suggests one or more fundamental particles as the most likely candidates for DM.
These must be stable over time scales of the age of the Universe and must not (or only
very weakly) interact electromagnetically. While neutrinos fulfil these requirements, they
are expected to contribute only between 0.5% and 1.6% to the DM mass in the Universe
[17]. This is deduced from them behaving relativistically in the early Universe due to their
low mass, which would inhibit the gravitational clustering of local density fluctuations
and thus delay structure formation [63, 64]. Additionally, the Pauli exclusion principle
places an upper limit on the fermionic density in a galaxy, known as the Tremaine-Gunn
limit [65]. This requires fermionic DM to have a mass m > 70 eV, which also excludes
neutrinos as the only source of DM [66].

Many DM models include a coupling between the DM and SM particles besides gravity
to achieve a thermal equilibrium between them in the early Universe. One class of
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these models are weakly interacting massive particles (WIMPs), which could explain the
observed DM relic density with new particles at the GeV–TeV scale. WIMP DM is the
focus of this analysis.

2.2.2 The Simplified Z′ Model
Fully self-consistent DM models, like the Minimal Supersymmetric Standard Model [67],
often contain a rich sector of new particles and interactions. The large number of viable
complete models and the number of free parameters in them impede the interpretation
of search results for all of them.

Simplified DM models are an approach to facilitate the interpretation and potential
combination of different experimental results. They can be understood as integrating out
the majority of the particle content of more complete theories, after which a phenomeno-
logical description via an s- or t-channel mediator exchange and a stable DM particle
remains [68].7 They can be constructed to be renormalizable, obey Lorentz invariance
and the SM gauge symmetries and not violate the accidental global symmetries of the
SM, e.g. the baryon and lepton number conservation.

In this thesis, a leptophobic axial-vector Z ′ model is considered [68, 69].8 It introduces
a new U(1) symmetry, under which the DM Dirac fermions χ and quarks are charged. A
charge for leptons is possible, but it would barely affect the dijet decay channel studied
in this analysis and is already strictly constrained by measurements of the Drell-Yan
process [69].

A spontaneous breaking of the U(1) symmetry gives rise to a massive Z ′ boson, which
serves as the mediator of the interaction between the quarks and DM fermions. This
interaction is described by the Lagrangian density

Lint ⊃ gq
∑︂
q ∈

{u,d,s,c,b,t}

Z ′
µqγ

µγ5q + gχZ
′
µχγ

µγ5χ , (2.8)

where gq is assumed to be a universal coupling to all quarks and gχ is the coupling to the
fermionic DM. It allows the Z ′ mediator to be produced in quark-antiquark annihilations
and to decay into χχ or qq as shown in the tree-level Feynman diagrams in Figure 2.5.

The potential existence of a portal between DM and the SM as shown in Figure 2.5a
is used in a multitude of DM searches using different detection strategies.

WIMP Detection Strategies

The process χ + χ → XSM + XSM, where XSM denotes any SM particle, is studied in
indirect detection experiments. They search for astrophysical evidence of DM annihilation

7 This is a less reductionist approach than effective field theories, which integrate out all mediators to
only leave contact interactions. These only provide a good approximation if the potential mediators
are beyond the energy scale probed in collider experiments, since otherwise the kinematics of the
resonance are disregarded.

8 In collider searches, the phenomenology of a vector and an axial-vector mediator are very similar
[69]. This analysis only considers the axial-vector model, but the constraints on vector mediators are
expected to be nearly identical.
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Figure 2.5: Feynman diagram for a hypothetical axial-vector Z ′ boson decaying into (a) a
DM χχ-pair or (b) a qq-pair, producing a dijet signature.

products or their secondary decays, for example in the form of gamma rays at the Fermi
Large Area Telescope [70], neutrinos at Super-Kamiokande [71] and IceCube [72], or
antiprotons and positrons in the AMS experiment [73].9 The different detection channels
provide sensitivity over many orders of magnitude of potential DM masses. However,
the small annihilation cross sections expected from cosmological models to explain the
observed relic density could not yet be excluded in a wide range of the parameter space.
One limiting factor in many searches is the large uncertainty on the propagation of cosmic
rays and potential background sources [74]. A detailed overview of current experimental
limits can be found in Ref. [75].

Alternatively, DM in our galaxy could be directly detected by scattering on nuclei of
ordinary matter in the process χ+q → χ+q (or on the electrons if the respective coupling
is non-zero). This process is searched for mostly in underground observatories with large
amounts of active material to detect nuclear or electron recoil. Many experiments, like
LUX-Zeplin [76] or XENONnT [77], use xenon as the active material for its large nucleon
number. The interaction cross section of vector mediators (in the context of direct
detection typically referred to as spin-independent interaction) scales with the nucleon
number, which results in an enhanced sensitivity. This is not the case for axial-vector
mediators (spin-dependent interaction) [78], where the cross section only scales with
the total nucleus spin. Therefore, direct detection experiments provide a sensitivity to
vector mediators 5-7 orders of magnitude higher than to axial-vector mediators. For
vector-mediators, direct detection experiments provide the currently strongest exclusion
limits for DM masses mχ ≳ 5GeV. A detailed comparison to collider searches is given
in Ref. [79].

In collider experiments, searches for the production of DM are performed. Since
the produced DM fermions are not expected to interact with the detectors, at least
one additional visible object X is required in the final state to observe the interaction,
typically originating as initial state radiation. In these qq → χχ+X processes, the DM
fermions escape the detector unseen, which leaves X unbalanced in the plane transverse
to the beam. Due to momentum conservation, the momenta of all final state particles
must add up to zero in this plane, where any deviation from zero is labelled missing

9 These processes can be realized via small couplings of XSM to the mediator itself or via loop corrections
involving, for example, a quark loop coupling to the mediator.
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transverse momentum Emiss
T .10 This type of collider search is hence typically referred to

as mono-X or Emiss
T +X search. Emiss

T +jet searches are often the most sensitive channel
due to the large probability of QCD initial state radiation, but Emiss

T + V (V = W,Z, γ)
searches can also provide complementary sensitivity [40].

Dijet searches are an alternative approach in collider experiments to observe a new
mediator. Any mediator that can be produced in pp collisions can also decay into partons,
resulting in a pair of jets in the final state – a dijet event. For the Z ′ model, this happens
at tree-level in the qq → Z ′ → q′q′ process shown in Figure 2.5b. Due to this being an
on-shell s-channel process, it is detectable as a resonance at mZ′ in the invariant mass of
dijet events.

The decay width of the leptophobic Z ′ resonance depends on the masses of and the
couplings to the fermions it can decay into:

ΓZ′ =
g2χmZ′

12π
β3
χ Θ

(︁
mZ′ − 2mχ

)︁
+

∑︂
q ∈

{u,d,s,c,b,t}

3g2q mZ′

12π
β3
q Θ

(︁
mZ′ − 2mq

)︁
, (2.9)

βf =

√︄
1−

4m2
f

m2
Z′
, (2.10)

where βf is the velocity of a fermion with mass mf in the mediator rest frame and the
Heaviside function Θ ensures an on-shell decay [69]. The additional factor 3 for the
quark decays is their colour factor.

This width is an important metric for resonance searches as a narrow resonance is more
easily distinguished from the QCD background than a wide resonance. If 2mχ > mZ′ ,
the decay into χχ is kinematically suppressed and the width only depends on gq. From
experimental constraints (shown below), gq ≲ O(0.1) is to be expected. This makes
ΓZ′/mZ′ small in comparison to the relative detector resolution, which is 4–7% as shown
in Section 6.5. If 2mχ ≤ mZ′ , the Z ′ width is increased by the possible decay into DM.
This can reduce the sensitivity of resonance searches, since for gχ ≳ 1 the intrinsic Z ′

width dominates the detector resolution. Additionally, the branching ratio B(Z ′ → qq)
will be decreased, further reducing the sensitivity.

The interpretation in this analysis assumes mχ ≫ mZ′ , such that decays into DM are
negligible. A reinterpretation for smaller mχ and arbitrary gχ is possible as long as the
width does not significantly surpass the detector resolution.

For the case of a narrow on-shell resonance, the total cross section of the qq → Z ′ → q′q′

process scales approximately like [69]:

σ ∝
g4q
Γ

∝

⎧⎨⎩
g4q

g2q+g2χ
if 2mχ ≤ mZ′ ,

g2q if 2mχ > mZ′ .
(2.11)

This relation is used to translate constraints on the total cross section into constraints
10 At collider experiments, the ultrarelativistic limit |p| ≈ E provides a good approximation for most final

state particles. Since momenta are only measured directly for charged particles, the determination
of Emiss

T depends strongly on the more inclusive energy measurement that captures most final state
particles.
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on gq in Chapter 10.
Figure 2.6 shows current experimental constraints on the parameter space of the

simplified Z ′ model for two different choices of the coupling parameters. The Emiss
T +X

searches shown in yellow are sensitive to the parameter space where 2mχ ≤ mZ′ , allowing
for on-shell DM production. In Figure 2.6a, a relatively large quark coupling of gq = 0.25
is assumed. In this case, resonance searches like the inclusive dijet resonance search or the
exclusive bb and tt resonance searches provide sensitivity approximately independent of
the DM mass. Figure 2.6b shows the constraints for a smaller quark coupling of gq = 0.1.
In this case, the decrease of B(Z ′ → qq) reduces the sensitivity to the parameter space
where 2mχ ≤ mZ′ . A small coupling gℓ = 0.01 to leptons is assumed in this figure as
well. This results in a high sensitivity of dilepton searches, which have a much lower SM
background compared to searches with hadronic final states. These constraints illustrate
the strong complementarity of Emiss

T +X searches and resonance searches as they provide
sensitivity to different regions of the possible parameter space.

One noteworthy benefit of dijet resonance searches, in particular, is the large variety of
BSM models they are sensitive to. While DM mediators are the primary motivation for
this search, a dijet resonance search can also constrain numerous other BSM models that
predict a new resonance coupling to quarks or gluons [3, 4]. For such an interpretation,
this analysis provides constraints on generic Gaussian-shaped resonances in the invariant
dijet mass spectrum. These provide a sufficient approximation for a variety of resonant
processes [80]. Relative Gaussian resonance widths between 5% and 15% are tested to
cover a wide range of BSM models.



2.2 Physics Beyond the Standard Model 17

        





























χ

 







χ































































































































γ


























χ











Ω











(a)

        





























χ

 







χ











































































γ


















χ












Ω











(b)

Figure 2.6: Constraints on the parameters of the Z ′ model obtained by various searches
performed by the ATLAS experiment. The coloured regions indicate areas in the (mχ,mZ′)
plane that are excluded at 95% confidence level. The couplings to SM and DM fermions are
assumed to be (a) gq = 0.25, gℓ = 0, gχ = 1 and (b) gq = 0.1, gℓ = 0.01, gχ = 1. In each
figure, the parameters which would explain the observed DM relic density are shown as the
long-dashed line. Taken from Ref. [79], where other coupling choices are shown as well.





3 Simulation of Proton-Proton Collisions

Simulations of pp collision events, the emergence of jets, and their interaction with the
detector are essential for multiple aspects of this analysis. They are used to calibrate the
observed jets, optimize the event selection criteria, simulate potential BSM signals, and
are employed in a novel background estimation method.

As Monte Carlo techniques are employed in calculating the high-dimensional phase
space integrals occurring in the scattering cross sections and in the simulation of particle
shower and hadronization processes, these simulations are referred to as Monte Carlo
(MC) simulations.

This chapter provides an overview of the full simulation chain from the scattering
process to the detector interaction for the MC samples used in this search, based
on Refs. [81–83]. Furthermore, the computation of parton-level dijet cross sections
specifically for the background estimate of this analysis is described. The emphasis is on
QCD calculations, as this analysis focuses solely on jet production processes.

3.1 Production of Dijet Monte Carlo Samples
Due to the non-perturbative nature of the strong interaction at energy scales below
1GeV, calculations involving pp collisions rely on factorization theorems. These separate
cross section calculations into a short-distance interaction, described by perturbative
parton-level matrix elements, and long-distance processes such as the parton composition
of the proton or final state fragmentation, which need to be described with heuristic
models tuned to data.

3.1.1 Hard Interaction
Factorized, the differential cross section of a pp interaction resulting in a final state
X can be expressed as a convolution of parton-level cross sections ˆ︁σab→X with parton
distribution functions (PDFs) fa(xa, µF ):

dσpp→X ≈
∑︂
a,b

∫︂ 1

0

dxa

∫︂ 1

0

dxb fa(xa, µF )fb(xb, µF ) dˆ︁σab→X(Φn, µF , µR) . (3.1)

The PDFs universally describe the probability of a parton a with momentum fraction xa
to interact in a proton hard scatter process. They depend on the factorization scale µF

at which the factorization into short-distance and long-distance interaction is performed.
They are obtained from global fits to a large number of measurements [84, 85] at various
momentum fractions and factorization scales. The Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations can be used to analytically transfer them between
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Figure 3.1: Selection of leading-order partonic subprocesses contributing to the dijet production
in pp collisions.

scales.
The parton-level cross section is obtained from the spin- and colour-averaged matrix

element Mab→X :

dˆ︁σab→X(Φn, µF , µR) =
1

2ˆ︁s ⃓⃓Mab→X(Φn, µF , µR)
⃓⃓2
dΦn , (3.2)

where ˆ︁s denotes the centre-of-mass energy between partons a and b, Φn the phase space
momenta of the n outgoing particles, and µR the renormalization scale.

The matrix element is calculated perturbatively at fixed order in αS. In this thesis,
leading order (LO) and next-to-leading order (NLO) matrix elements of the 2 → 2-jet
production process are considered.

Leading-Order Calculation

At LO, the dijet production corresponds to the sum of all 2 → 2-parton processes. This
already corresponds to a large number of diagrams, since all combinations of both initial
and final state partons being (anti-)quarks or gluons must be considered. Figure 3.1
shows a selection of LO Feynman diagrams to be computed.

In order of decreasing total contribution, these are gg → gg, qg → qg, qq → qq,
qq → qq, qq → gg, and qq → qq processes. This order is mainly driven by the dominance
of gluons and valence quarks in the proton PDF. All of these processes contain at least
one t-channel diagram that enhances the cross section at small deflection angles [15].
This angular behaviour is utilized in Section 7.2 to enhance the separation of the QCD
background from the s-channel resonances targeted by this search.

Next-to-Leading Order Calculation

The dijet production at NLO involves two types of corrections: The virtual correction
accounts for one-loop corrections to vertices and self-energy and includes box diagrams
in the 2 → 2-parton process. Some examples of this are shown in Figure 3.2a. The real
correction introduces a third parton in the final state in the form of gluon radiation or
splitting. Figure 3.2b shows exemplary Feynman diagrams of this.
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(a) (b)

Figure 3.2: Selection of next-to-leading-order Feynman diagrams contributing to the dijet
production in proton-proton collisions. (a) Virtual corrections to the 2 → 2-parton process and
(b) real corrections involving a third final state parton are shown.

When integrating these correction terms, divergences are encountered. The real
correction exhibits a divergence for the soft emission of a parton and for the collinear
splitting of a parton. These divergences are addressed by constructing infrared- and
collinear-safe observables, i.e. observables that are invariant under soft emission or
collinear splitting. Typically, this is achieved by defining observables not in terms of
individual final state particles, but by introducing an algorithm that clusters the final
state partons into jets and only considering observables as functions of jet properties. The
anti-kt jet clustering algorithm used in this analysis is described in detail in Section 5.2.

The virtual correction exhibits an infrared divergence when the loop propagator
becomes on-shell, which cancels exactly with the infrared divergence of the real correction
according to the Kinoshita-Lee-Nauenberg theorem [86, 87]. In numerical, differential
cross section calculations, this cancellation is achieved with a dipole subtraction method
[88].

To calculate cross sections differentially or in a limited phase space matching the
experimental event selection, dˆ︁σab→X needs to be integrated numerically and convolved
with the PDFs. As these integrals are high-dimensional, Monte Carlo integration
techniques are employed which scale favourably to higher dimensions in comparison
to alternative methods. Events are sampled throughout the available phase space and
assigned weights proportional to the squared matrix element for the specific configuration
of particle momenta.

Since real and virtual corrections can be large while cancelling each other out to a large
degree, numerical NLO calculations need to generate more events than LO calculations
to achieve the same statistical precision.

Cross sections computed with the factorized approach exhibit a residual dependence on
the artificially introduced scales µF and µR. This dependence is a remnant of truncating
the perturbation theory at a fixed order and decreases as higher orders are included.
There is no fundamentally best choice for these scales. They are typically set to a
representative momentum scale for a given interaction and the impact of a variation of
these scales is used as an estimate for the uncertainty of the calculation due to missing
higher orders [89].
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3.1.2 Parton Shower and Hadronization
The momenta of jets reconstructed from the two or three final state partons generated
in the hard interaction at (next-to-)leading order already provide a good approximation
of the leading jets that would be observed in a detector. This description, however, fails
to model events with higher jet multiplicities in the final state, as well as the complex
structure of a real jet composed of numerous hadrons.

Currently, it is not feasible to describe these phenomena in fixed-order perturbation
theory. Instead, probabilistic parton shower models are used to simulate the radiation
of gluons or the splitting of gluons into qq-pairs in the final state that are missed when
truncating at a fixed order.1 This is done in an evolution from the energy scale of the
partons in the hard interaction down to a scale of the order of 1GeV, where perturbation
theory breaks down. A matching and merging procedure is implemented to prevent
overlaps between splitting or radiation accounted for by NLO corrections and in the
parton shower simulation.

With two partons of the two incoming protons being part of the hard process, the
remnants of the protons are no longer colour-neutral and hence participate in additional
strong interactions. These multi-parton interactions are complex and are approximated
by empirical models as the so-called underlying event.

The partons generated in the parton shower are not free as they still carry colour charge.
The subsequent hadronization is an involved process that is described via phenomenolo-
gical models in which colour connections are identified and a clustering into colour-neutral
hadrons is performed. Heavy flavour decays are simulated phenomenologically until only
stable final state particles remain.

The models for the parton shower, the underlying event, and the hadronization process
involve sets of free parameters that are tuned to match measurements.

3.1.3 Detector Simulation
A detailed simulation of the used detector is necessary to compare MC samples directly
to real data. It enables the use of MC samples to predict event rates or for calibration
purposes.

For this analysis, a simulation of the complete ATLAS detector based on Geant4
[90, 91] is employed for which the stable final state particles2 generated as described
above are used as input. The simulation accounts for interactions of particles with both
active and inactive detector material and emulates readout electronics. The resulting
event format is identical to that of a real recorded event and can be analyzed using the
same reconstruction algorithms employed for data (see Section 5.2).

In addition to this reconstruction-level information, truth-level3 information about the
1 Gluons shower systematically more than quarks due to their larger average colour factors. These are

determined from averaging over the colour states of the initial state partons and summing over those
of the final state partons. For parton splitting, they are Cg→gg = 3, Cg→qq = 4/3, and Cq→qg = 1/2,
which is why gluons are more likely to split or emit radiation than quarks [15].

2 In ATLAS simulations, ‘stable’ refers to particles with a lifetime cτ > 10mm, as they could interact
with material.

3 Often also referred to as particle-level to distinguish it from the parton-level information before
hadronization.
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underlying generated particles is kept in every event.

3.2 Samples Used in this Analysis
This analysis uses two sets of MC samples: dijet QCD samples for the jet calibration
and signal samples simulating the leptophobic Z ′ simplified DM model introduced in
Section 2.2.

The inclusive dijet QCD samples are generated with Pythia 8.235 at LO [92].
Pythia computes both the hard scatter event and performs the consequent shower and
hadronization simulation. It is tuned with the A14 parameter set [93] and uses the
Nnpdf2.3lo PDF [84]. Heavy flavour decays are simulated with EvtGen 1.6.0 [94].

Alternative dijet QCD samples are produced with Sherpa 2.2.5, which simulates the
hard scatter event, the shower, the hadronization, and hadron decays [95]. To evaluate
the impact of the hadronization model, two different samples are generated using the
cluster fragmentation [96] and Lund string model [97]. The CT14nnlo PDF [85] and
the default CT10 tune are used.

For the Z ′ model, the hard interaction is generated with MadGraph5_aMC@NLO
2.2.3, with the coupling to SM quarks set to gq = 0.1. The mass of the fermionic dark
matter χ is set to 10TeV to have the mediator decay exclusively into quarks.4 With these
parameters, the width of the Z ′ resonance including the parton shower and the detector
resolution is approximately 9% at a mass of 350GeV, decreasing to 5% at 1800GeV.
The generator is interfaced to Pythia 8.210 for the parton shower and EvtGen 1.2.0
for heavy flavour decays. The A14 tune and the Nnpdf2.3lo PDF set are also used for
these samples.

3.3 Calculation of Parton-Level Cross Sections
For the NLOFit background estimate detailed in Section 9.2, the parton-level dijet
cross section is calculated with NLOJet++ 4.1.3 [98]. The aim is to generate a
nominal dijet mass spectrum prediction and its systematic theoretical variations (from
uncertainties of the PDF set, αS and the scale choices) to use as templates in a fit to the
observed data. To achieve a statistical precision better than that in data with available
computational resources, only the calculation of the hard parton interaction at NLO is
performed. Parton showering, hadronization, and detector simulation are omitted due to
their computational expense.

The up to three generated real partons are clustered into jets with the anti-kt algorithm
with radius parameter R = 0.4 using FastJet 3.2.2 [99] to avoid infrared divergences.
The two leading jets are required to pass the kinematic selection criteria on rapidity and
transverse momentum discussed in Chapter 7.

For a given number of generated events, the LO calculation has a higher statistical
precision than the NLO calculation due to cancelling corrections. Both are stored

4 See the discussion of Equations (2.9) and (2.11) regarding the reinterpretation for the parameter
space where a decay of the Z ′ into DM is possible.
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separately to make use of the LO calculation’s high statistical precision and the NLO
calculation’s more accurate description of the shape of the dijet mass spectrum.

The computationally intensive cross section calculation with NLOJet++ only
provides the nominal prediction for one chosen PDF set. To avoid repeating this
process for each systematic variation, it is interfaced to Applgrid 1.6.17 [100]. This
software enables the export of the weights calculated in NLOJet++ on a grid in
momentum fractions x1, x2, momentum transfer Q2, partonic subprocess (i.e. which
types of partons a and b interact), and order of αS in a specified binning of the chosen
observable (the invariant mass of the dijet system mjj). For this thesis, a grid consisting
of 40× 40× 25× 7× 2× 300 bins is selected. The binning in mjj is chosen specifically to
align with the bins used throughout this analysis, whereas the grid range in x and Q2 are
automatically determined by Applgrid in a first run with ≈1% of the final statistics.

The created grid is then convolved a posteriori with arbitrary PDF sets using Applgrid.
The PDFs are interpolated between their published discrete points in x using Lhapdf
6.2.3 and DGLAP-evolved to arbitrary Q2 with Hoppet 1.2.0.

For this thesis, the nominal PDF set CT14nnlo, along with its 56 eigenvector
variations, which parametrize the PDF uncertainties via the Hessian method [101], are
chosen. Additional varied templates are generated by changing αS within its uncertainty
and by rerunning the convolution with the factorization and renormalization scale shifted
up and down by a factor of two both individually and simultaneously.



4 The ATLAS Experiment
For the dijet resonance search presented in this thesis, pp collisions produced by the
LHC at a center-of-mass energy of

√
s = 13TeV are analyzed. The data were recorded

by the ATLAS detector between 2016 and 2018 during the LHC Run-2.
This chapter provides a description of the LHC and its pre-accelerator complex at

CERN1 in Section 4.1 and of the ATLAS detector and its subsystems in Section 4.2,
mainly based on Refs. [102, 103]. It covers the status of the experiment during Run-2
when the data for this analysis were collected. Several upgrades for the currently ongoing
Run-3 have been performed since, but these are not relevant to this thesis.

4.1 The Large Hadron Collider
The LHC is the largest and most powerful particle accelerator in the world, having recently
broken its own record with proton collisions at a centre-of-mass energy of

√
s = 13.6TeV

in Run-3 [104]. It is located in a 26.7 km long circular tunnel underground the Geneva area
in Switzerland and France at a depth between 45m and 170m. This tunnel previously
accommodated the Large Electron–Positron Collider (LEP) [105], the most powerful
lepton collider ever built, that reached a centre-of-mass energy of up to

√
s = 209GeV.

Since the energy loss via synchrotron radiation is strongly mass-suppressed for protons
in comparison to electrons,2 the LHC is capable of accelerating protons (as well as
heavy ions [107]) to much larger energies than LEP was previously able to achieve with
electrons.

The protons are sourced from hydrogen gas by stripping its electrons and are accelerated
in a first linear accelerator (Linac2) to 50MeV.3 Subsequently, the protons are successively
accelerated in the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS),
and the Super Proton Synchrotron (SPS), where they reach an energy of 450GeV before
being injected into the LHC. Figure 4.1 shows a schematic overview of the pre-accelerator
complex.

The protons are injected as bunches of O
(︁
1011

)︁
protons into the LHC with a spacing

of 25 ns (7.5m). These bunches are later brought to collision in so-called bunch crossings.
The filling scheme of the pre-accelerator chain, in combination with finite switching times
of the injection and dumping magnets, results in regular patterns of filled and empty
bunches. While the circumference of the LHC allows for 3564 bunches, at most 2556
were filled during Run-2 [110].

1 Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear Research)
2 The power P radiated off a charged particle bent on a circular trajectory scales like P ∝ E4

/m4 [106].
At the same beam energy, the synchrotron radiation of protons is thus O

(︁
1013

)︁
lower than that of

electrons.
3 In 2020, the Linac2 has been replaced by the Linac4 in preparation of future LHC runs with higher

luminosity [108]. It accelerates negative hydrogen ions whose electrons are now stripped after the
linear accelerator.
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Figure 4.1: Schematic overview of the CERN accelerator complex. The completion date,
circumference, and the maximum reached proton energy during Run-2 for each of the accelerators
and the four main interaction points of the LHC are shown. Adapted from Ref. [109].

Due to the limited space in the tunnel, the two counter-rotating beams of protons are
contained in two rings within the same twin-bore magnet. It consists of superconducting
dipole magnets, capable of reaching 8T at design energy, and quadrupole magnets to
focus the beam and thus increase the luminosity at the interaction points. The magnets
have not been ramped to their full potential yet to reduce the risk of quenching, limiting
the centre-of-mass energy to 13TeV in Run-2 instead of the design value of 14TeV [111].

The counter-rotating beams are crossed at four main interaction points to produce the
proton-proton or heavy-ion collisions. At these points, the four large LHC experiments
are located: ATLAS [103] and CMS [112] are both general-purpose detectors built with
the goal of detecting the Higgs boson – which was achieved in 2012 [113, 114] – as well
as searching for (hints of) BSM physics. The ALICE experiment [115] mainly studies the
deconfinement properties of quarks and gluons in a hot plasma produced in heavy-ion
collisions. LHCb [116] is a forward detector designed to study hadron decays involving
bottom or charm quarks with a focus on measurements of CP violation.

At the interaction points, the instantaneous luminosity L is a measure of the density
of the colliding beams. It determines the rate of collision events of a process with cross
section σ:

dN

dt
= σL . (4.1)

The expected total number of events in a given data-taking period is accordingly propor-
tional to the integrated luminosity L =

∫︁
L dt accumulated over this period.

For Gaussian beam profiles with standard deviations σx and σy in the transverse plane,
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the instantaneous luminosity is given by

L =
N2

p Nb f

4πσx σy
S , (4.2)

where Np is the number of protons per bunch, f is the LHC revolution frequency of
11.2 kHz, Nb is the number of filled bunches, and S is a geometric correction factor in the
order of 70% to account for the crossing angle between the colliding beams [117–119].
With the well-performing focussing optics, and hence small σx and σy, the LHC surpassed
its design luminosity of 1034 cm−2s−1 by a factor of 2 [118].

A high instantaneous luminosity comes with the challenge of pile-up, i.e. multiple pp
interactions per bunch crossing. During Run-2, the average number of simultaneous
interactions per bunch crossing (µ) varied between approximately 10 and 60, depending on
the run conditions, with an overall average of 34 [120]. Pile-up collisions pose challenges
to the trigger and event reconstruction to distinguish their effects from the interaction of
interest. Pile-up effects on the jets studied in this thesis are considered in Chapter 6.

4.2 The ATLAS Detector
The ATLAS detector is a general-purpose particle detector with high granularity. With a
diameter of 25m, a length of 46m, and a mass of 7000 t, it is the largest LHC experiment
as well as the largest general-purpose particle detector ever constructed. The ATLAS
detector covers the same physics goals as the CMS detector but relies on different
technical implementations to cross-verify discoveries. The design goal of discovering the
Higgs boson required an excellent photon, electron, and muon reconstruction for the
most sensitive Higgs decay channels. A good jet resolution and vertex reconstruction are
necessary for the efficient identification of potential BSM signatures involving (b-)jets or
Emiss

T .
The ATLAS detector offers an almost 4π solid angle coverage. It employs a layered

structure composed of the Inner Detector, electromagnetic and hadronic calorimeters
and the Muon Spectrometer as depicted in Figure 4.2. These subsystems are described
in the following sections with particular emphasis on the calorimeters as mainly their
information is used in the dijet resonance search presented in this thesis.

4.2.1 Coordinate System
A right-handed coordinate system originating from the interaction point is used for
the description of the detector. The z-axis aligns with the beam direction, the x-axis
points towards the centre of the LHC ring, and the y-axis points upwards. Transverse
quantities, such as the transverse momentum, are projections onto the (x, y) plane. The
azimuthal angle φ represents the angle in this plane relative to the positive x-axis, and
the polar angle θ describes the angle towards the positive z-axis. The polar angle is
typically expressed in terms of the pseudorapidity η = − ln

[︁
tan(θ/2)

]︁
, which approaches

the rapidity y = 1/2 ln
[︁
(E + pz)/(E − pz)

]︁
in the ultrarelativistic limit. This choice is

beneficial because rapidity differences are invariant under Lorentz boosts, which typically
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Figure 4.2: Schematic overview of the ATLAS detector. Taken from Ref. [121].

occur in hadron-hadron collisions due to the different momentum fractions x of the
interacting partons. Distances between two objects are measured in the (η, φ) plane as
∆R =

√︁
∆η2 +∆φ2.

4.2.2 Inner Detector
The Inner Detector (ID) is the central component of the ATLAS detector and is designed
to track the trajectory of charged particles to determine their charge and momentum. It
is immersed in a 2T magnetic field generated by the central ATLAS solenoid magnet
(see Figure 4.2) to bend the trajectories of charged particles due to the Lorentz force.
The curvature radius is proportional to the particle momentum and its direction distin-
guishes positive from negative charges [13]. The detected particle tracks allow for the
reconstruction of primary collision vertices, which is important to distinguish pile-up
collisions from the collision of interest, and of secondary decay vertices of longer-lived
particles, which is crucial for the identification of e.g. B mesons or τ leptons.

The ID covers the central detector region of |η| < 2.5. It consists of several layered
sub-detectors that are shown in Figure 4.3: the Silicon Pixel Detector, the Semiconductor
Tracker, and the Transition Radiation Tracker. Each sub-detector is composed of central
Barrel layers that surround the beam pipe and perpendicular, disc-shaped End-Caps to
cover the more forward |η| regions.

The Pixel Detector contains sensitive silicon pixels with sensor sizes down to 50 µm×
250 µm.4 Each layer of the Semiconductor Tracker consists of pairs of silicon microstrips
oriented at a small angle to each other to obtain two-dimensional information regarding
the hit position along the microstrips. The outermost part of the ID, the Transition
Radiation Tracker, is built of layers of gaseous drift tubes. It typically provides the largest

4 In 2014, the Pixel Detector was upgraded with a fourth Barrel layer closest to the beam pipe. This
Insertable B-Layer [123] offers the highest spatial resolution of the ATLAS ID.
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Figure 4.3: Schematic overview of the ATLAS Inner Detector. Taken from Ref. [122].

amount of hits of charged particles for the track reconstruction. The space between the
tubes is filled with polymers to induce transition radiation of traversing electrons to
assist the particle identification [124].

The material budget of the ID is kept low to minimize the energy loss of light particles
– mainly electrons and pions – traversing the ID and to reduce the probability of photons
converting into electron-positron pairs.

The ID achieves a primary vertex resolution of approximately 50–300 µm along the
beam-axis, depending on the pile-up conditions, and 10 µm in the transverse direction
[125]. The resolution of the momentum determination from the bending radius degrades
towards large momenta due to the particle trajectory approaching a straight line. The
ID is designed to achieve a relative transverse momentum resolution of:

σpT

pT
= 0.05% · pT [GeV]⊕ 1% , (4.3)

which was confirmed for the high-energy limit in cosmic ray measurements [124]. In this
description, ⊕ refers to the summation of uncertainties in quadrature.

4.2.3 Calorimeters
The ATLAS calorimeters surround the ID and the solenoid magnet. They are sampling
calorimeters, consisting of alternating layers of dense absorber material to stop the
majority of particles (with the exception of muons and neutrinos) and active material
to measure the energy deposited by the particle showers. A fine granularity allows for
the measurement of shower shapes, mainly to distinguish electromagnetic (narrow) from
hadronic (wide) showers, which is important for particle identification.

The ATLAS calorimeters consist of two main layers: The inner electromagnetic (EM)
layer, designed to detect electrons and photons, and the outer hadronic layer, designed
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Figure 4.4: Schematic overview of the different subsystems making up the ATLAS calorimeters.
The EM layer is shown in green, and the multiple systems of the hadronic layer are shown in
blue, orange, and red. The |η| values of relevant transition regions are indicated. Taken from
Ref. [126].

to detect hadrons. Both layers consist of a central Barrel surrounding the beam pipe and
perpendicular End-Caps covering the more forward regions. Figure 4.4 shows a cross
section of the calorimeters, indicating the individual subsystems and their relevant |η|
regions.

Electromagnetic Calorimeter

The EM layer specializes in the detection of electrons and photons, which deposit their
energy in a relatively dense shower. At energies above ≈10MeV, electrons mainly interact
with material via bremsstrahlung, and photons mainly interact via pair production of
electron-positron pairs. Both of these processes increase the number of electrons and
photons amongst which the incidental energy is distributed, resulting in a particle shower.
This shower dissipates the energy down to the MeV scale, at which the energy loss via
ionization of the detector material becomes dominant [127].

In the particle shower, the energy decreases exponentially with the depth, characterized
by the radiation length X0 as decay constant. Since the cross section of bremsstrahlung
and pair production scales quadratically with the atomic number Z, the radiation length
scales as [13]

X0 ∝
m2

e

Z2
. (4.4)

To achieve a high stopping power, lead is chosen as absorber material in the ATLAS EM
calorimeter. It is arranged in accordion-shaped strips longitudinally from the interaction
point. The gaps between the lead strips are filled with liquid argon (hence the name LAr
calorimeter) as an active material with a high voltage applied to detect the ionization
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in the argon due to traversing charged particles. Voltages of 1–2.5 kV result in ion
drift times of approximately 450 ns. To optimize the signal-to-noise ratio, the signal is
electronically modulated into a bipolar shape of a positive peak of approximately 100 ns
duration and a following negative valley of approximately 400 ns duration.5

The EM calorimeter consists of the EM Barrel covering |η| < 1.475 (shown as the
horizontal green areas in Figure 4.4) and the EM End-Caps covering 1.375 < |η| < 3.2
(shown as the vertical green areas in Figure 4.4). The latter are further divided into
the Outer Wheels in the region 1.375 < |η| < 2.5 and the Inner Wheels in the region
2.5 < |η| < 3.2 (inner, lightly green shaded areas in Figure 4.4). The EM Barrel and
the End-Cap Outer Wheels offer a granularity of three layers longitudinally and up to
0.025 × 0.025 in the (η, φ) plane, depending on the layer and |η|. The End-Cap Inner
Wheels have a reduced granularity of two layers and up to 0.05× 0.025 in (η, φ).

In total, the EM calorimeters amount to a material budget of 20 to 38 X0, depending
on |η|. This ensures complete confinement of most electromagnetic showers, such that
the total energy of the original particle can be measured. Muons only deposit a small
amount of energy in the EM calorimeters due to the inverse quadratic scaling of the
energy loss via bremsstrahlung.

Most hadrons start showering in the EM calorimeters but are not fully contained
due to the mass suppression of bremsstrahlung. They enter the hadronic layer that is
specialized for their detection.

Hadronic Calorimeter

High-energy hadrons primarily interact with material via inelastic nuclear scattering.
This develops a cascade that is much more complex than an electromagnetic shower. The
process is schematically illustrated in Figure 4.5a and described briefly in the following
paragraphs. Additional details are provided in Ref. [127].

Spallation. Predominantly, high-energy hadrons interact with a single nucleon in a
nucleus via the strong force. The produced hadrons can escape the nucleus or further
interact with other nucleons in an intranuclear cascade on timescales of 10−22 s. Ultimately,
nucleons or light fragments at energy scales in the order of 100MeV to few GeV escape
the nucleus (see Figure 4.5a). Charged spallation products mainly deposit their energy
via ionization of the surrounding material, while neutral spallation products can interact
with other nuclei.

Internuclear cascade. If the spallation products are of sufficiently high energy, they
can again inelastically interact with other nuclei. This leads to a cascade of new spallation
processes, increasing the number of particles participating in the hadronic shower.

Nucleus deactivation. The nucleus typically remains in a highly excited state
following spallation. After timescales in the order of 10−18 s, the energy is released by
evaporation of photons, nucleons, or nuclear fragments at energy scales in the order of a
few MeV. Sometimes, the energy is released via nuclear fission instead. Both processes
are illustrated in Figure 4.5b. The energy expended in breaking up the nuclear binding
energy is lost for the detection process and referred to as invisible energy. Additionally,
5 This pulse duration is long in comparison to the time of 25 ns between collisions. Consequently, the

effect of previous collisions distorts the energy measurements. The effect of this out-of-time pile-up
must be corrected for in the object reconstruction.
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(a)

(b)

Figure 4.5: Schematic depiction of the interaction of hadrons with material. (a) An incoming
hadron collides with a nucleus, causing spallation that emits multiple hadrons from the nucleus.
These can potentially collide with other nuclei, causing an internuclear cascade. A significant
amount of π0 mesons are created in a typical cascade, which predominantly decay into photon
pairs. These induce a separate, electromagnetic shower. (b) Nuclei are typically left in a highly
excited state following spallation. After timescales in the order of 10−18 s, this state decays
into a more stable state via evaporation of photons, nucleons, or light nuclear fragments, or
occasionally via nuclear fission. Taken from Ref. [127].

slow neutrons can be captured by other nuclei, which enter an excited state with a lifetime
in the order of 10−6 s. This is much longer than the LHC bunch crossing frequency and
calorimeter integration time. Therefore, this energy is also not detected for the collision
of interest.

Electromagnetic and weak processes. Short-lived hadrons produced in the processes
above can decay before interacting inelastically with other nuclei. This happens, for
example, for neutral pions that are created in a significant number in hadronic showers.
The dominant decay π0 → γγ produces photons that result in a separate, electromagnetic
shower as described above (illustrated in the upper part of Figure 4.5a). More rarely,
charged pions or kaons decay weakly, resulting in neutrinos and often muons, which both
contribute to the invisible energy.

The different mechanisms of energy deposition of a hadronic shower are summarized
in Figure 4.6 for the case of a proton interacting with iron. The fraction of energy
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Figure 4.6: Fraction of the energy of a proton showering in iron deposited via the different
interaction mechanisms as a function of proton energy. Shown are the fraction of electromagnetic
showers, hadronic showers, slow neutrons, and undetected (invisible) energy deposits. Taken
from Ref. [128].

deposited by each mechanism is shown as a function of the proton energy. The energy
fraction deposited by slow neutrons can be counted towards the invisible energy for
the time scales relevant to the ATLAS calorimeters. The electromagnetic and hadronic
showers produce different responses in the calorimeter. Their energy-dependent relative
contributions are accounted for in the calibration of the jet energy scale in Chapter 6.6

The hadronic shower also results in particle energies that exponentially decrease with
the shower depth. It is characterized by the nuclear absorption length λ. It scales with the
nucleon number A as 3

√
A, which leads to an approximate relation to the electromagnetic

radiation length in dense materials of

λ

X0

≈ 0.37Z . (4.5)

Due to the significantly longer nuclear absorption length, hadronic calorimeters are
designed with a larger absorber material budget. Since it does not scale as strongly with
Z, lower-Z materials like iron are suitable absorber choices as well.

The hadronic calorimeter in ATLAS is based on two different technologies. The Tile
Long Barrel covering |η| < 1.0 and the Tile Extended Barrels covering 0.8 < |η| < 1.7 em-
6 In principle, calorimeters can be designed to be compensating, i.e. to align their electromagnetic and

hadronic response. This mainly depends on the material choice for the absorber (uranium is suitable,
for example) and the relative thickness of absorber and active layers [127]. The ATLAS calorimeters
are under-compensating, i.e. they exhibit a lower hadronic than electromagnetic response.
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ploy alternating layers of more cost-effective steel absorbers and scintillating polystyrene
tiles as active material, equipped with wavelength-shifting fibres and photomultipliers for
the readout. They produce strictly positive signal pulses with a duration of approximately
150 ns. The Hadronic End-Cap Outer Wheels (1.5 < |η| < 2.5), Hadronic End-Cap Inner
Wheels (2.5 < |η| < 3.2), and the Forward Calorimeters (3.1 < |η| < 4.9) use liquid
argon as the active material like the EM layer, but use significantly thicker absorbers
made of copper and tungsten. The transition region from the Barrel to the End-Cap
region houses service and cryostat material that causes energy losses in the range of
approximately 1.0 < |η| < 1.6. This region is equipped with thin scintillators (TileGap3
scintillators, shown in pink in Figure 4.4) to sample the energy deposited in this area.

The Tile Barrel detectors and the Hadronic End-Cap Outer Wheel provide a granularity
of 0.1× 0.1 in the (η, φ) plane and longitudinally three and four layers, respectively. The
Hadronic End-Cap Outer Wheel has a coarser granularity of 0.2× 0.2 and four layers.
The Forward Calorimeters have geometrically irregular readout channels due to space
constraints very close to the beam pipe. They consist of three layers longitudinally and
offer very coarse resolution in the (η, φ) plane. The coarser spatial resolution of the
hadronic layer in comparison to the EM layer is sufficient to resolve the wider hadronic
showers.

The hadronic calorimeter layer amounts to a material budget of 6 to 14 λ, depending
on |η|, which contains most high-energy jets completely within the calorimeter.

Calorimeter Resolution

The energy resolution of the ATLAS calorimeters is well described by a noise term N ,
stochastic term S, and constant term C [129]:

σE
E

=
N

E
⊕ S√

E
⊕ C

=

√︄(︃
N

E

)︃2

+

(︃
S√
E

)︃2

+ C2 . (4.6)

The energy-independent noise term is mainly caused by electronics and pile-up noise.
It dominates at energies of a few GeV but becomes negligible at higher energies. The
stochastic term is a result of Poisson statistics of the inherent statistical nature of
the shower development and the interaction with the calorimeter. The constant term
refers to fluctuations that correspond to a constant fraction of the particle energy,
e.g. due to energy deposition in dead material, the depth at which the shower starts, and
non-uniformities of the response across the calorimeter [126].

The energy resolution in the EM layer was measured in electron test beams to be
approximately σE/E = 10%/

√︁
E [GeV]⊕ (0.2% to 0.5%), depending on |η| [130, 131].

The energy measurement of hadronic showers is inherently associated with larger
uncertainties, mainly due to the large effect of statistical fluctuations in the contribution
of the different energy deposition mechanisms. The energy resolution for hadrons
was measured to be approximately σE/E = 50%/

√︁
E [GeV] ⊕ 5% in the Tile Barrel

[132], σE/E = 70%/
√︁
E [GeV] ⊕ 6% in the Hadronic End-Caps [133], and σE/E =
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90%/
√︁
E [GeV]⊕ 8% in the Forward Calorimeters [134].

In contrast to momentum measurements from the track curvature, the relative energy
resolution of the ATLAS calorimeters improves with increasing energy. This makes them
the most precise way to determine the particle energy above a few tens of GeV.

4.2.4 Muon Spectrometer
Muons at energy scales in the order of GeV are minimally ionizing and therefore pass
through the ID and the calorimeters without large energy losses. These can be prompt
muons produced in the initial collisions or muons from decays in the hadronic shower
in the calorimeters. Occasionally, hadrons of high-energy jets can also escape the
calorimeters (as so-called punch-through).

The momenta of charged particles leaving the calorimeters are measured in the ATLAS
Muon Spectrometer by tracking their trajectories. These trajectories are bent by a
magnetic field of up to 4T produced by large air-core Barrel and End-Cap toroid
magnets (illustrated in Figure 4.2).

The Muon Spectrometer is designed to precisely measure muons within |η| < 2.7 and to
provide muon trigger information within |η| < 2.4. It consists of three layers of Monitored
Drift Tubes (MDTs) in the Barrel and up to four layers of MDTs in the End-Caps. These
offer high-precision tracking with small material budgets to minimize multiple scattering
that would degrade the momentum resolution. The innermost tracking layer of the
End-Caps is equipped with Cathode-Strip Chambers instead of MDTs close to the beam
pipe as they perform better at the high rates of the more forward regions.7

The Barrel layers are additionally equipped with Resistive Plate Chambers and the
End-Cap layers with Thin-Gap Chambers. These provide very fast response times for
the muon triggers and can measure the φ coordinate of hits which the MDTs can only
resolve poorly.

If hits in the ID and the Muon Spectrometer can be associated with a single muon, a
very good momentum resolution of up to

σpT

pT
= 0.02% · pT [GeV]⊕ 2% (4.7)

is achieved. The momentum resolution degrades accordingly if a track is identified in
only one of the two systems.

4.2.5 Trigger and Data Acquisition System
The high LHC bunch crossing frequency of 40MHz necessitates a trigger system for
ATLAS to accommodate limited data readout bandwidth and storage capacity. With
a typical event amounting to 1MB of data, a recorded event rate of 1.2 kHz can be
sustained [136]. The trigger system selects in real-time (from here on referred to as

7 The innermost End-Cap layer has been replaced with the ATLAS New Small Wheel after Run-2 [135].
It features MicroMegas as precision trackers as they provide better performance at the high rates
expected in future LHC operations.
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Figure 4.7: Schematic overview of the ATLAS trigger and data acquisition system during
Run-2. The trigger chain consisting of Level-1 and HLT can be seen on the left side, and the
data acquisition system on the right side. Note that the shown Fast TracKer was not used for
data taking. Taken from Ref. [137].

online) the interesting physics events for readout while rejecting events of low momentum
transfer that make up the majority of the total pp cross section.

In ATLAS, this is done in two consecutive stages: with the Level-1 (L1) trigger
implemented in custom hardware and the High-Level Trigger (HLT) running as software
on conventional computing clusters. The interaction of the trigger stages with the data
acquisition system is shown in Figure 4.7 and described in the following.

Level-1 Trigger

The L1 trigger is designed to reduce the 40MHz bunch crossing frequency down to a rate
of ≈100 kHz at which a readout of all detector systems is possible. It is implemented in
custom, pipelined hardware to arrive at a trigger decision within 2.5 µs after each bunch
crossing. The L1 trigger consists of three subsystems identifying potential physics signa-
tures: The Level-1 Calorimeter Trigger (L1Calo), the Level-1 Muon Trigger (L1Muon)
and the Level-1 Topological Processor (L1Topo). The final trigger decision is then taken
by the Central Trigger Processor evaluating the signatures.

L1Calo [138] identifies electron, photon, τ , and jet candidates from calorimeter infor-
mation. It uses reduced-granularity inputs consisting of 7168 Trigger Towers, facilitating
fast, parallel processing. These are formed by analogue sums of the calorimeter cells in a
0.1×0.1 region in (η, φ) in the Barrel up to 0.4×0.4 in the Forward Calorimeter, reflecting
the change in size and geometry of the calorimeter cells. The analogue signals from these
Trigger Towers are digitized and calibrated to transverse energy in the PreProcessor.
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Since the calorimeter response is slower than the bunch crossing spacing, the signals
need to be assigned to the correct bunch crossing in the PreProcessor as well.

Particle signatures are reconstructed from the energy deposits using fast sliding window
algorithms. The Cluster Processor identifies electron/photon candidates (which cannot
be distinguished with the available granularity and without track reconstruction) and
hadronic τ candidates. It uses the full trigger tower granularity due to the comparably
narrow width of electromagnetic showers and distinguishes them from hadronic showers
by the amount of energy deposited in either of the two calorimeter layers.

The candidates for the L1 jet triggers employed in this thesis are reconstructed by
the Jet/Energy-sum Processor. It uses reduced-granularity inputs of 0.2× 0.2 inclusive
in the calorimeter layers because jets are expected to produce much wider showers and
because they do not need to be distinguished from electromagnetic showers of much
lower rates. Only the Barrel and End-Cap regions (i.e. |η| < 3.2) are considered due to
the Trigger Towers in the Forward Calorimeter being too large in size and exhibiting
large occupancies. A sliding window algorithm identifies jet candidates as local maxima
in the energy sum in windows of 0.8× 0.8, which is large enough to capture the majority
of the energy of most jets. Note, that jet energy reconstructed on L1 is the sum of the
calorimeter inputs calibrated for electromagnetic showers. The sizable correction to the
hadronic energy scale (see Section 6.1.2) is not applied, such that the true jet energy
needs to be approximately 30–50% higher than L1 jet thresholds.

The Jet/Energy-sum Processor also reconstructs the global sum of energy in the
event and the missing transverse energy8. For this, the Trigger Towers of the Forward
Calorimeter are included as well to improve the missing transverse energy resolution.

L1Muon identifies muon candidates by finding coinciding hits in the muon trigger
chambers, estimating the muon momentum from the deviation of these hits from a
straight line. While muon triggers are crucial for many gauge boson or heavy flavour
analyses, they are not relevant in this thesis. More information is given in Ref. [139].

Interesting physics events are not only defined by the energies and multiplicities of
detected particle candidates but can also be identified by their geometric relation to each
other. The L1Topo system is designed to determine higher-level variables like angular
separation or invariant masses from the L1Calo and L1Muon candidates to select certain
event topologies. One such topology requires dijet events with an upper threshold on
the rapidity difference. The corresponding dijet trigger L1_J50_DETA20-J50J is used in
this thesis (see Sections 5.2 and 7.2) [140]. L1Topo was commissioned during Run-2 and
began operation in 2017.

The objects reconstructed by L1Calo and L1Muon, as well as the topologies identified
by L1Topo, are evaluated in the Central Trigger Processor. It is configured with a
set of trigger items, each containing requirements on energy thresholds or topological
requirements. If the conditions of a specific trigger item are met, the event is accepted for
readout and the positions of the identified object candidates are forwarded as Regions-
of-Interest to the HLT as seeds for its more sophisticated reconstruction algorithms.

Most trigger items are assigned a prescale factor to reconcile the demand for low-

8 For negligible particle mass, the missing transverse energy approaches the missing transverse mo-
mentum. The latter is defined as the negative sum of all momenta in the transverse plane. Any
deviation from 0 (barring resolution effects) indicates a particle leaving the detector unseen.
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threshold triggers of many analyses with the exponentially rising event rate as the final
state energy decreases. A prescale N is defined such that only 1 in N events for which the
trigger requirements are fulfilled is accepted. This allows providing triggers for objects
in a wide energy spectrum without exceeding the Level-1 rate limitation.

High-Level Trigger

At the second, software-based trigger stage, the entire detector can be read out, allow-
ing for object reconstruction using the full detector granularity. Following first, fast
rejection algorithms that reduce the number of events for most trigger items, more
compute-intensive reconstruction algorithms are run. These are typically similar to the
sophisticated algorithms employed for offline data analyses9 so that a high correlation
between events selected in offline analyses and those accepted by the trigger is achieved
[141].

Depending on the trigger item, different detector subsystem data are read out and
processed. Track reconstruction, for example, is computationally intensive and not
feasible to run at the total Level-1-Accept rate. Thus, only electron/photon-, muon-, τ -
and b-jet triggers employ tracking information as they run at a comparably lower rate
and benefit strongly from tracking. Standard jet triggers, on the other hand, amount to
a large fraction of the Level-1-Accept rate and rely on calorimeter information only. The
jet reconstruction algorithm is described in detail in Section 5.2. It offers close-to-offline
performance even without track reconstruction.

As on L1, low-threshold HLT items are assigned a prescale to ensure that their rates
remain within the bandwidth limitations. With the prescales applied, all trigger items
amount to a final rate of ≈1.2 kHz at which events are accepted. Their event data,
including the online reconstructed objects, are transmitted to the Tier-0 centre, where
the raw data are catalogued, permanently stored to tape and distributed to Tier-1 centres
for further processing.

9 The term offline refers to the conventional strategy of ATLAS analyses to reconstruct objects at an
arbitrary point in time from the recorded full detector readout.



5 The Trigger-Level Approach

Dijet resonance searches – like any other resonance search – face a central limitation due
to the trigger and data acquisition chain: The prescales applied to low-threshold triggers
both on Level-1 and in the HLT constrain the range of the invariant mass spectrum that
can be studied.

Figure 5.1 shows the number of offline recorded dijet events as a function of their
invariant dijet mass mjj in red. The spectrum is only recorded at full statistical power
above approximately mjj > 1TeV due to the lowest unprescaled HLT jet trigger during
Run-2 requiring pT > 420GeV. For lower masses, the event rate is reduced by increasingly
large prescales. While changing trigger prescales show up as rather steep turn-on curves
in jet pT, the effect is washed out in mjj due to the η-dependent relation between mjj and
pT being averaged over (see Section 7.2). This leads to the visible wave-like features in
the spectrum with each peak corresponding to a new prescaled, lower-threshold trigger.

The trigger-level analysis (TLA) presented in this thesis measures the dijet mass
spectrum well below 1TeV. It utilizes the fact that full detector information is not
obligatory for a dijet resonance search. To derive the invariant mass of dijet events,
only jet four-momenta are necessary – which are already reconstructed on the HLT with
close-to-offline precision. Recording these trigger-level jets allows performing a dijet
search that bypasses the HLT prescales.

The blue points in Figure 5.1 show the observed dijet mass spectrum using trigger-level
jets. It is now limited only by the significantly lower L1 trigger thresholds, allowing the
TLA to measure the unbiased dijet mass spectrum down to below 500GeV.

This chapter first discusses the special event readout of trigger-level objects for the
TLA, followed by a description of the HLT jet reconstruction in comparison to the offline
procedure.

5.1 Event Readout
In order to record events at the full L1 rate to permanent storage, the information per
event needs to be kept at a minimum. The readout is performed via the Data Scouting
stream [142], introduced in Run-2 specifically for a dijet TLA.1

For each event, the event header (which includes global event information, error
flags, and trigger decisions) and the up to 20 leading HLT jets with a transverse energy
ET > 20GeV are recorded. For each of them, the four-momentum, the jet timing,
quality variables, and structure variables like the energy by calorimeter layer or jet
1 The success of the trigger-level dijet resonance search in Run-2 [1] as well as lessons learned from it

lead to the extension of the Data Scouting stream to additional signatures for Run-3. A trigger for
photon+dijet events was added and the online jet reconstruction was improved by adding tracking.
Trigger items with enabled b-tagging were added to the Data Scouting stream as well to allow for
trigger-level di-b-jet resonance searches [143].



40 5 The Trigger-Level Approach

300 400 500 1000 2000

 [GeV]jjm

410

510

610

710

810

910

E
v
e

n
ts

 /
 B

in

-1Trigger-level jets, 132 fb
-1Offline jets, 140 fb

Run-2 dijet events

| < 2.4η|

 > 85 GeV
T

p

|y*| < 0.6

Figure 5.1: Number of dijet events recorded by the Data Scouting stream used in this thesis
(blue points) in comparison to offline events recorded by any single-jet trigger (red squares),
binned in the invariant dijet mass. The kinematic event selection criteria used throughout
this thesis are applied: the two jets leading in pT within |η| < 2.4 are selected and required to
fulfil pT > 85GeV and |y∗| < 0.6, where y∗ = (y1 − y2)/2 measures the difference in rapidity
between the leading jets. The offline data set corresponds to the full Run-2 luminosity [118],
while a slightly reduced luminosity is available for the trigger-level analysis.

width variables are saved. The latter are relevant for the jet calibration discussed in
Section 6.1.3.

With this readout content, the average Data Scouting event amounts to 6.5 kB in size,
compared to a standard event for offline analysis in the order of 1MB [136]. This way,
the Data Scouting stream consumes only a negligible part of the total ATLAS bandwidth
(shown as the dark blue contribution in Figure 5.2b) while recording at the full seeding
L1 rate and dominating the readout event rate (shown as the dark blue contribution in
Figure 5.2a).

Jumps in the rates occur when additional triggers are activated or prescales are relaxed.
During an LHC fill, the instantaneous luminosity slowly declines due to the depletion
of protons per bunch and beam degradation [102]. Since trigger rates scale at least
linearly with the instantaneous luminosity,2 the bandwidth consumed by a given trigger
configuration slowly declines during a fill as well. To make use of the freed bandwidth,
prescales are relaxed or additional, lower-threshold triggers are activated during a run.

Several L1 jet triggers seed the Data Scouting stream. L1_J100 requiring ET >
100GeV reconstructed on L1 is the main trigger used in this thesis as it ran unprescaled
during most of Run-2, recording 132 fb−1 of data.

L1_J50 was added to the Data Scouting stream in 2017 and activated at the end of

2 L1 single object trigger rates scale approximately linearly with the instantaneous luminosity. However,
triggers on missing transverse energy or multiple objects, for example, are affected stronger by pile-up
such that their false-positive rate increases [136, 144]
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Figure 5.2: (a) Example of the large event rate recorded by the Data Scouting stream for the
TLA in contrast to (b) the marginal bandwidth occupied by this stream in a run in September
2018. The jumps in both figures correspond to times when triggers are enabled or trigger
prescales relaxed to utilize the freed bandwidth when the instantaneous luminosity declines
during an LHC fill. Taken from Ref. [136].

LHC fills when bandwidth became available. Taking its prescale into account, it was
active for an integrated luminosity of 5.6 fb−1.

The L1Topo dijet trigger L1_J50_DETA20-J50J (from here on referred to as J50Topo)
selects events with a leading L1 jet with ET > 50GeV, a subleading jet with ET > 15GeV
and a rapidity difference |y∗| =

⃓⃓
(y1 − y2)/2

⃓⃓
< 1.0 between them. It became active in

2018 and was running at the end of fills as well. Only data taken after Technical Stop 1
(TS1) [145] are considered for this thesis due to an initial misconfiguration of the trigger
[146]. The data set corresponds to an integrated luminosity of 10.1 fb−1 with a small
overlap with the L1_J50 data set.

The Data Scouting stream contains additional, lower-threshold triggers that were
mostly active during special run conditions and are not considered in this thesis. A
detailed overview is given in Appendix A.

5.2 Jet Reconstruction

The hadrons emerging from a quark or gluon in the final state deposit their energy in the
EM and the hadronic calorimeters via hadronic showers. The charged jet constituents
also leave a track in the inner detector and some particles of the shower or muons from
heavy-flavour decays can escape into the muon spectrometers [147].

As discussed in Section 2.1.2, these hadronization products need to be clustered into a
jet in order to define infrared-safe and collinear-safe observables that can be linked to
the original partons produced in the hard interaction.

The EMTopo jets employed in this thesis are reconstructed primarily from the calori-
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meter information.3 This occurs in two steps: First, the energy deposits in the calorimeter
are clustered into topological clusters (topo-clusters) corresponding approximately to
single hadron showers or parts of these. Then, these topo-clusters are merged into jets
via a jet clustering algorithm.

Topological Clusters
Calorimeter cells are clustered into topo-clusters with the aim to identify showers of
individual particles among pile-up and other noise sources. A correspondence of one
topo-cluster to a single particle can typically be achieved for compact electromagnetic
showers. Hadronic showers with their large intrinsic fluctuations and long interaction
lengths, on the other hand, often split up into multiple sub-showers and hence multiple
topo-clusters, depending on the incoming particle type and energy and the calorimeter
region [149].

The topo-clustering algorithm identifies three-dimensional, contiguous regions of
calorimeter cells above a given noise threshold. It relies on the cell significances, which
are defined as the ratio of the measured energy deposited in a cell over its expected noise
level:

ςcell =
Ecell

σcell,noise
. (5.1)

Out of all calorimeter cells, those with a significance |ςcell| > 4 are selected as seeds of
topo-clusters. Next, adjacent cells with |ςcell| > 2 are added to the clusters iteratively
until no more adjacent cells fulfil this criterion. During this growth stage, clusters are
merged if they share cells. Finally, a last set of neighbours with a significance |ςcell| > 0
is added. This algorithm ensures keeping the fringe of the showers with deposited cell
energies close to the noise level contained in the topo-clusters while retaining the noise
suppression of the algorithm.

The expected noise level per cell σcell,noise is dominated by pile-up noise in most
calorimeter regions for Run-2 conditions. Thus, it must be tuned for a certain expected
average number of interactions ⟨µ⟩ to ensure optimal noise suppression.

For offline topo-cluster reconstruction, this noise level was retroactively set to an
optimal value corresponding to ⟨µ⟩ = 40 throughout Run-2. It also takes out-of-time pile-
up effects arising from varying LHC filling schemes into account. The online reconstructed
jets available in the Data Scouting stream, however, can not be retroactively reprocessed
as the underlying topo-cluster and calorimeter cell information are lost. They reflect the
cell noise levels set in the HLT during the corresponding run time. This leads to a source
of discrepancy of online jets with regard to offline: Out-of-time pile-up effects were only
taken into account from 2016 onwards and the noise levels were optimised for ⟨µ⟩ = 30
in 2015 and 2016. In 2015, with the most substantial mismatch in the algorithms, the
energy of online and offline reconstructed topo-clusters agreed within approximately 2%

3 EMTopo jet reconstruction was the default in ATLAS throughout most of Run-2. More recently,
particle flow jets are preferred in offline analyses due to their improved resolution and pile-up resilience
[148]. They do not rely only on calorimeter deposits but also take tracks of the charged constituents
into account. In Run-3, simplified track reconstruction is performed for events selected by the L1 jet
triggers so that particle flow jets can be reconstructed on the HLT and be used in future dijet TLAs
[143].
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[137].
For EMTopo jets, both online and offline, the topo-clusters remain at the electromag-

netic energy scale to which the calorimeter cells are calibrated. A correction for the
different hadronic response only happens on the fully reconstructed jets (detailed in the
following chapter).

Offline topo-clusters additionally receive an origin correction: Due to the finite length
of the colliding proton bunches, not all jets originate at z = 0 but in a region of ≈ 20 cm
around it. Offline jets are assumed to originate from the reconstructed primary vertex
with the largest sum of associated track momenta. All topo-clusters in an event receive
a small correction to their four-momenta to reflect that origin [126]. Since no track and
vertex reconstruction is performed for the Data Scouting stream, no origin correction
can be applied to online topo-clusters.

Jet Clustering
In the ATLAS experiment, the anti-kt algorithm [150] is used to reconstruct jets from the
topo-clusters. In comparison to other popular choices like the Cambridge-Aachen [151]
or kt algorithm [152], it has the benefit of reconstructing jets with a relatively constant
circular shape in the (η, φ) plane and of being less susceptible to pile-up [153].

The anti-kt algorithm sequentially merges topo-clusters into jets using two distance
variables:

dij = min
(︂
p−2

T,i, p
−2
T,j

)︂∆R2
ij

R2
, (5.2)

diB = p−2
T,i . (5.3)

Here, dij is considered to be the distance between two input ‘particles’ i and j given by
their distance ∆Rij in the (η, φ) plane, normalized by a configurable radius parameter R
and weighted by their momenta. The variable diB reflects the distance of particle i to
the beam in momentum space. The algorithm is initiated with all topo-clusters as input
particles and the minimum of all distances

{︁
dij, diB

}︁
is determined. If it is a distance dij ,

particles i and j are merged into a new particle by addition of their four-momenta, all
distances are recalculated, and the process is started over. If a distance diB is minimal,
particle i is considered to be a fully reconstructed jet and is removed from the set.

This algorithm terminates only when all topo-clusters in an event are clustered into
any jet. The exponent −2 ensures that this happens in descending order in pT, leading
to jets roughly circular in shape around their hardest constituents. In the ATLAS
experiment, the radius parameter R = 0.4 is chosen for online and offline standard
jet reconstruction, offering a good compromise between capturing the majority of the
jet constituents and avoiding contributions from pile-up or the underlying event [154].
The missed contribution due to true jet constituents not being clustered to the jet is
referred to as out-of-cone effect and, on average, corrected for in the jet calibration in
Section 6.1.2.

Up to this point in the reconstruction chain, Run-2 online and offline EMTopo jets are
almost identical, with the only differences being the topo-cluster noise thresholds before
2017 and the origin correction for offline topo-clusters. More substantial differences arise
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in the subsequent jet calibration and correction steps discussed in the following chapter.



6 Jet Calibration

Jets are constructed as the sum of four-momenta of topo-clusters and as such they inherit
the electromagnetic scale to which the calorimeters and, hence, the topo-clusters are
calibrated. However, hadrons – and consequently jets – exhibit a lower response in the
non-compensating ATLAS calorimeters. To match their particle-level energy, jets are
calibrated to the jet energy scale (JES) in a series of corrections.

The JES calibration and its associated uncertainties are derived centrally in ATLAS
for offline jets in an extensive procedure [126]. A coarse approximation of the offline
procedure is applied online in the HLT considering only calorimeter information [137],
which improves the correlation between offline jets used in analyses and online jets on
which the trigger decision is based. Still, the jet calibration applied online only reflects
the best knowledge available at the time of data-taking while refined procedures and
calibration factors have been derived since [126, 155].

Thus, a custom trigger-level jet calibration is derived for this analysis that is as close
as possible to the offline procedure, given the limited information available in the Data
Scouting stream. This results in a better resolution of the dijet invariant mass, improving
the ability to resolve narrow resonances in the spectrum and, thus, the sensitivity of this
search.

The TLA calibration chain is schematically shown in Figure 6.1 and discussed in the
following sections. It starts with a set of purely simulation-based calibration steps that
are applied to correct the reconstructed jet energy in simulation towards the particle
level. Afterwards, data-driven calibration steps are applied to align the response of
jets in data with the response in simulation. These steps are adopted from the offline
calibration, either following almost exactly the same procedure (green boxes) or being
modified due to missing information in the Data Scouting stream (blue boxes). Finally, a
custom online-to-offline correction step (yellow box) is applied to the trigger-level jets in
data to correct for residual differences of their mean response with respect to offline jets.
While the calibration steps are derived in terms of corrections to pT or E, the resulting
factors are used to scale the jet four-momenta.

An essential requirement for the jet calibration in a dijet resonance search is that
it is a smooth function of the dijet invariant mass, which is fulfilled if it is a smooth
function of pT for individual jets. Since the QCD background is ultimately estimated
by a fit of a smooth function or smooth templates to the data, any bumps, dips, or
kinks in the calibration factors would propagate these features into the calibrated dijet
mass spectrum and potentially show up as a false signal. With the very high statistical
precision achieved by this analysis, already 10−4-level features in the calibration could
induce significant features in the dijet mass spectrum. Thus, all calibration steps are
required to fulfil smoothness criteria in data and MC. These are discussed towards the
end of this chapter.

As the derivation of each calibration step relies on MC or the offline data set, which
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Figure 6.1: Calibration chain of the HLT jets used in this thesis. Steps directly adopted
from the offline calibration or closely following its procedure are marked in green, steps with
modifications from the offline procedure in blue, and steps without a counterpart in the offline
chain in yellow. Dashed outlines indicate steps that are not applied in this thesis due to not
fulfilling the required smoothness criteria discussed in Section 6.3.

both exhibit larger statistical uncertainties than the trigger-level data set to which the
calibration will be applied, a sufficient smoothing of the calibration factors in each step
is crucial.

6.1 Simulation-Based Calibration
All calibration steps described in the following are derived from the inclusive dijet Pythia
MC samples described in Section 3.2. Particle-level jets, reconstructed from stable final
state particles1 with the anti-kt algorithm with radius parameter R = 0.4, serve as the
reference for the calibration.

6.1.1 Pile-up Correction
Pile-up collisions are dominated by low-energy QCD jet production due to its large cross
section, leading to a large number of low-energy hadrons in the detector overlayed with
the hard dijet event of interest. This results in an underlying energy density in each
event that distorts the energy of reconstructed topo-clusters and jets.

This is accounted for in an area-based pile-up correction step. Each jet is assigned
an area A by adding infinitely low-momentum ghost particles distributed in the (η, φ)
plane to the anti-kt algorithm [156]. The jet area is then determined from the spread of
the ghost particles clustered into the jet. The average transverse momentum density ρ
of the event is determined from the median of the transverse momenta and areas of all
jets within |η| < 2. The jet pT is corrected by ∆pT = −A · ρ already online in the HLT
1 All stable final state particles except neutrinos and muons are considered, since those deposit no or

only a small amount of energy in the calorimeters.
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Figure 6.2: Dependence of the reconstructed trigger-level jet pT on the average number of
pile-up interactions µ at the individual steps of the pile-up correction in bins of |η|. Adapted
from Ref. [157].

and recorded to the Data Scouting stream afterwards. The online jets with area-based
pile-up correction applied are the baseline upon which the custom jet calibration in the
TLA is built.

Some dependence on the pile-up activity remains after this first step, especially for
large |η| where the energy density is lower. An additional residual pile-up correction is
therefore derived in MC: Reconstruction-level jets are geometrically matched to particle-
level jets within ∆Rmatch < 0.3 and are required to be isolated from other reconstruction-
level (particle-level) jets with pT > 7GeV by ∆Riso,reco > 0.6 (∆Riso,truth > 1). The
isolation ensures that no nearby jets distort the reconstructed four-momenta on either
reconstruction or particle level.

The deviation presidual
T = parea-corrected

T − ptruth
T is determined in bins of |η|, ptruth

T , and
the average number of interactions per bunch crossing µ. The deviation is approximately
linear in µ per bin such that a linear coefficient β

(︁
ptruth

T , |η|
)︁
can be determined from a fit.

For constant |η|, β is then found to have a weak, approximately logarithmic dependence
on ptruth

T . Again, a fit is performed and β is evaluated at ptruth
T = 25GeV as that is the

scale at which pile-up effects are most dominant.
In total, the pile-up correction thus takes the form:

pPU-corrected
T = preco

T − A · ρ− β · µ . (6.1)

The offline calibration applies an additional residual correction proportional to the
number of primary vertices as a proxy for the actual number of pile-up interactions in
a given event. Since tracks and primary vertices are not reconstructed for the Data
Scouting stream, that correction cannot be applied in this analysis. The effect of this
missing correction is found to be small for the relatively high jet energies relevant in this
analysis.
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Figure 6.2 shows the dependence of the reconstructed trigger-level jet pT on µ at the
individual steps of the pile-up correction. It can be seen that before any correction (blue
points) a significant correlation exists that strongly depends on |η|. This correlation
can be negative because it is dominated by the out-of-time pile-up effect of collisions in
previous bunch crossings and because the liquid argon calorimeter pulse shape becomes
negative after a signal peak. The area-based correction (violet squares) results in a flat
shift independent of |η| as the same energy density ρ is corrected for in the whole event.
This reduces the dependence for central jets but overcorrects for jets outside the central
region where the occupancy is lower. After the residual pile-up correction (red triangles),
the jet pT is mostly independent of the pile-up. A small residual dependence remains
due to the linear approximation of the correction and the evaluation at a fixed ptruth

T .

6.1.2 Absolute Monte Carlo-Based Calibration
In the non-compensating ATLAS calorimeter, hadronic showers exhibit a different
response than electromagnetic showers as detailed in Section 4.2.3. The effects of the
hadronic response, energy losses due to uninstrumented regions of the detector, punch-
through, and out-of-cone effects are corrected for with the absolute MC-based jet energy
scale calibration (MCJES). It transfers the jets from the electromagnetic scale of the
topo-clusters to the jet energy scale that matches the energy on particle level and is with
20–50% by far the largest correction applied in the jet calibration chain.

The same matching of reconstruction-level to particle-level jets and isolation criteria as
in the residual pile-up correction are applied. In bins of Etruth and ηreco, the average jet
energy response R is defined as the mean of a Gaussian fit to the core of the Ereco/Etruth

distribution. R is derived in bins of Etruth since it does not behave Gaussian if derived
in bins of Ereco.2

The determined response as a function of η is shown in Figure 6.3 for different values
(bin centres) of Etruth. The different calorimeter regions are visible in the η dependence
– most notably the End-Cap-Forward transition around |η| ≈ 3.1, the Barrel-End-Cap
transition around|η| ≈ 1.3 where the amount of inactive material is larger (see Figure 4.4),
and the transition from Outer Wheel to Inner Wheel within the End-Caps around|η| ≈ 2.5
where the calorimeter granularity changes. At the same time, the response is rising
with Etruth due to the increasing electromagnetic and decreasing invisible component of
hadronic showers with increasing energy as shown in Figure 4.6.

For a given η bin, R is well described by a polynomial in log(Etruth):

R(Etruth) =
Nmax∑︂
i=0

ai log
i(Etruth) , (6.2)

where ai are the free parameters and Nmax is chosen between 1 and 6 based on a χ2

goodness-of-fit test.
2 For any calibration step, it is beneficial to find an (approximately) independent variable to derive

the response in. Assuming that Ereco is Gaussian distributed around Etruth, then Ereco/Etruth will
be a Gaussian distribution if considered as a function of the independent variable Etruth, whereas it
will follow a reciprocal normal distribution [158] if considered as a function of the dependent variable
Ereco.
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Figure 6.3: Jet energy response as a function of η for different values (bin centres) of Etruth.
The different calorimeter regions result in the strong η dependence, most notably the End–Cap-
Forward transition around |η| ≈ 3.1, the Inner Wheel–Outer Wheel transition around |η| ≈ 2.5,
and the Barrel–End-Cap transition around |η| ≈ 1.3. Adapted from Ref. [157].

To correct reconstruction-level jets by R, its dependence on Etruth is translated to a
dependence on Ereco using a numerical inversion procedure detailed in Ref. [159]. Its
validity is verified in a second iteration of the response determination where a closure
better than 2h for jets with Etruth > 40GeV is observed. Lower-energy jets will be
rejected by the pT > 85GeV requirement placed in the event selection for this thesis
(detailed in Section 7.2).

The absolute MC-based calibration is the only step in which the jet four-momentum
is not only linearly scaled. Due to the strong dependence of the jet response on η, jets
close to detector transition regions have a bias of their measured direction towards the
detector region with the higher response. This bias is determined analogously to the jet
energy response in dependence of ηreco and Etruth. It is found to be small (∆η < 0.01 in
most detector regions) and corrected for.

The procedure described here for the absolute MC-based calibration of trigger-level
jets is identical to that applied to offline jets.

6.1.3 Global Sequential Calibration
Up to this point, the average jet response has been calibrated to the particle level in
dependence of pile-up conditions, the jet energy, and η. However, within a given (pT, η)
bin, the response can vary jet by jet, depending on the particle content of the hadronic
shower, its longitudinal and transverse shape, and fluctuations in the interaction with
the calorimeter. These properties correlate with the type of parton that the jet originates
from. Due to their different colour factors, quark-initiated jets often contain less, higher-
energy constituents that penetrate further into the calorimeter while gluon-initiated jets
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tend to have more, softer constituents – which have a lower calorimeter response and a
wider transverse profile.

The global sequential calibration (GSC) aims to improve the jet energy resolution
by correcting for the response dependence on certain jet structure variables – without
affecting the average jet response that was calibrated in the previous step already.

Analogously to the other simulation-based calibration steps, reconstruction-level and
particle-level jets are geometrically matched and the response preco

T /ptruth
T is derived in

bins of ptruth
T and |η| as a function of the jet structure variables under study.

For offline EMTopo jets, five variables are identified to have a significant impact on
the resolution and are corrected for:

• fTile0 , the fraction of energy measured in the first layer of the Tile calorimeter
(|η| < 1.7)

• fEM3 , the fraction of energy measured in the last layer of the EM liquid argon
calorimeter

• ntrk , the number of tracks with pT > 1GeV that are ghost-associated to the
jet

• wtrk , the track width: the average pT-weighted distance in (η, φ) of all tracks
with pT > 1GeV that are ghost-associated to the jet

• nsegments , the number of reconstructed muon segments ghost-associated to the jet

Especially the track-related variables give a strong handle for offline jets to correct for the
response difference between quark and gluon jets. Since tracking and muon spectrometer
information are not available for trigger-level jets, calorimeter-based proxies need to
be identified. In a study of different variables that can be reconstructed in the Data
Scouting stream, two variables in addition to fTile0 and fEM3 were identified to have a
significant impact on the jet energy resolution:

• N90Const , the minimal number of topo-clusters that make up 90% of the jet energy

• fTileGap3 , the fraction of energy measured in the scintillators in the Tile gap region
(1.0 < |η| < 1.6)

Since a large multiplicity of jet constituents tends to generate a large number of
topo-clusters, the N90Const variable exhibits a relatively strong correlation with ntrk and
is accordingly useful to correct for quark-gluon differences. fTileGap3 samples the energy
deposited in the Tile gap region where a relatively large amount of inactive detector
material is located (see Figure 4.4).

The dependence of the trigger-level jet response on the four chosen variables fTile0,
fEM3, N90Const, and fTileGap3 is determined and sequentially corrected for in this order.
Sequential in this context means, that when determining the response of any of the four
variables, the dependence on the previous variables has already been corrected for. This
sequential approach takes the correlation between the variables into account.

The average response in bins of ptruth
T , |η| and the jet structure variable in question is

again determined by a fit to the Gaussian core of the distribution. The average response
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Figure 6.4: Average jet response as a function of the different GSC variables in representative
|η| bins for different pT bins: (a) fTile0, (b) fEM3, (c) N90Const, and (d) fTileGap3. The binning
in pT and the GSC variable is chosen to have sufficient MC statistics for the response fits. In
each panel, the dependence on the previous variables has already been corrected for. Adapted
from Ref. [157].

as a function of the four variables is shown in Figure 6.4 for a representative |η| bin each.
Multiple pT bins are overlayed, illustrating that the pT dependence of the response is
low in most variables and |η| bins.

At each step of the GSC, the jet response as a function of the jet structure variable is
normalized to the response inclusive in this variable so that the average jet response in pT
and η is not altered by the GSC. Then, for any fixed |η| bin, a two-dimensional Gaussian
kernel smoothing in pT and the structure variable is applied to remove fluctuations from
the MC samples and the Gaussian response fits. The jet response is transferred from a
function of ptruth

T to a function of preco
T with the same numerical inversion technique as

used for the absolute MC-based calibration.
Applying the GSC to the same MC sample used to derive it validates that the residual

dependence of the responses on the jet structure variables remains below 1%, where
the smoothing step prevents perfect closure. The impact of the GSC on the jet energy
resolution σR can be determined from the standard deviation of the Gaussian fits to
the jet response. The resolution at each of the steps is shown in Figure 6.5 for one
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Figure 6.5: Relative jet resolution σR/R as a function of ptruth
T at the individual steps of the

GSC for an exemplary |η| bin where all GSC steps are applicable. Adapted from Ref. [157].

exemplary|η| bin in the Tile gap region. Over the most relevant pT range of 100–1500GeV,
the resolution before the application of the GSC shown in black is found to decrease
from approximately 12% at low pT to 4% at high pT. Mainly due to the calorimeter
granularity and the discrete nature of N90Const, the latter does not match the performance
of the track-based variables in the offline GSC (compare Ref. [126]). Nevertheless, a
sizable improvement of the jet energy resolution is achieved. Averaged over η, the
calorimeter-based GSC improves the relative jet energy resolution by approximately
1–3 percentage points. This improvement appears much smaller than the up to 20%
dependence of the jet energy response on the individual jet structure variables shown in
Figure 6.4. This seeming discrepancy is due to the majority of jets being distributed
in a small range of each variable for any given pT and η while the extreme ends of the
distributions correspond to a small fraction of jets. For low-energy jets with pT < 60GeV,
a degradation of the jet energy resolution at individual GSC steps is observed. This is,
however, well below the minimum jet pT requirement of 85GeV applied later on in this
analysis.

6.2 Data-Driven Calibration

At this stage of the calibration chain, jets in MC are ensured to be calibrated to particle
level. However, additional calibration steps are needed to account for differences between
the jet response in data and MC. These differences can arise from an imperfect simulation
of the detector or the underlying physics processes like the modelling of the hadron
shower, the underlying event, or the pile-up collisions.

Therefore, in the following η intercalibration and in-situ calibration steps, the response
of jets relative to other well-measured objects is determined separately in data and MC
and the difference is applied as a correction to the data. Finally, the online-to-offline
correction, which is unique to the trigger-level analysis, is used to correct any remaining
differences between trigger-level and offline jets.



6.2 Data-Driven Calibration 53

R
e
la

ti
v
e
 j
e
t 
re

s
p
o

n
s
e

0.95

1

1.05

1.1

1.15

 = 13 TeVsData 2015-2018, 

Pythia8 Sherpa

                 Anti-kt R = 0.4
avg

 < 220 GeV
T

∫ L dt = 136 fb-1

det
η

2− 1− 0 1 2

M
C

 /
 d

a
ta

0.9

0.95

1

1.05

175 ≤ p

Figure 6.6: Relative jet response as a function of η as determined in the η intercalibration
in data (black points) as well as in Pythia (red squares) and Sherpa (blue triangles) MC
samples. The 175 < pavg

T < 220 bin is shown as an example. Adapted from Ref. [157].

6.2.1 η Intercalibration
The η intercalibration corrects for the relatively strong η dependence of the difference in
the jet response between data and MC. Central jets in the region |η| < 0.8 are considered
well-calibrated, while the more forward jets are corrected relative to them. To construct
this relation, events with exactly two jets emerging in different η regions are selected.

Barring objects missed in the reconstruction, these two jets must be balanced in
their transverse momenta. The momentum asymmetry A is thus a good measure for
determining the η dependence of the jet response:

A =
pleft

T − pright
T

pavg
T

, (6.3)

where ‘left’ and ‘right’ denote the jet lower or higher in the order of their signed pseudo-
rapidity and pavg

T is the average of the transverse momenta of the two balancing jets. The
momentum asymmetry is determined as function of pavg

T , since it yields approximately
Gaussian distributions when binned in this variable.

Correction factors are derived in bins of pavg
T and η by solving a linear system of

equations that relates the means of the momentum asymmetry distributions ⟨A⟩ between
different η bins to each other and to the central reference region. The resulting trigger-
level jet response as a function of η is shown in Figure 6.6 for an exemplary pavg

T bin.
The response in the two MC samples studied – Pythia (red) and Sherpa (blue) – is
approximately flat due to the MC-based calibration already correctly calibrating the jet
response in simulation. The response in data (black) exhibits a discrepancy of up to
12% between the central and the forward region. The largest deviation is observed in
the 2.4 < |η| < 2.6 region, where the transition between the calorimeter End-Cap’s Inner
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Wheel and Outer Wheel enhances mismodelling in the detector simulation [149]. This
transition region is ultimately not part of the selected phase space for this analysis (see
Chapter 7).

One notable difference of the η intercalibration applied to the trigger-level jets in
this analysis in comparison to the procedure for offline jets occurs at the smoothing of
the correction factors. While a two-dimensional Gaussian kernel smoothing in pT and
η is applied in the offline calibration, the trigger-level calibration relies on a fit with a
polynomial in log(pT) per η bin analogous to Equation (6.2) with the exponents ranging
from −3 to 3. This ensures the smoothness of the calibration, which is the foremost
priority for this analysis.

6.2.2 In-Situ Calibration
The in-situ calibration is the final step to correct for differences in the jet response
between data and MC. It relies on a momentum balance technique, selecting events with
one or more jets recoiling against a well-calibrated photon, a Z boson decaying into
electrons or muons, or other, lower-momentum jets. The uncertainties on the electron,
photon and muon energy scales are small in comparison to jets, making them a suitable
choice for reference objects [160, 161]. Only events with a jet occurring in the central
|η| < 0.8 region are selected, as the more forward regions are calibrated relative to it in
the η intercalibration. The determined in-situ calibration factors are finally applied as a
function of jet pT but independent of jet η to maintain the uniform response achieved by
the η intercalibration.

The Z+jet balance covers the lowest jet pT range from 17GeV to 1TeV with increasing
uncertainties at higher momenta due to limited available statistics. This region is better
constrained by the γ+jet selection that covers a jet pT from 25GeV to 1.2TeV, offering
higher statistics overall while being limited by photon trigger prescales at low momenta.
Jets of even higher momenta are calibrated using a multijet balance, i.e. they are balanced
against jets of lower momenta that can be calibrated by the Z+jet or γ+jet balance.

The derivation of the in-situ calibration factors and especially the corresponding
uncertainties is an intricate process detailed in Ref. [126]. It is not rederived specifically
for this analysis; instead the calibration factors for offline jets are applied to trigger-level
jets as well. At this stage of the calibration chain, the trigger-level jets are sufficiently close
to the offline scale already to justify using the same in-situ calibration and uncertainties.
Any residual difference between the trigger-level and offline jet energy scale is corrected
for in the final calibration step, further supporting the choice of applying the offline
in-situ calibration.

The same approach was chosen in a previous publication of the trigger-level analysis [1].
One notable difference is that the in-situ calibration available at an earlier stage of Run-2
exhibited some tension between the results of the Z+jet and γ+jet balance, resulting in
calibration factors that were not sufficiently smooth as function of pT. Instead of the
offline spline-based interpolation and Gaussian kernel smoothing, a fit with a function
of constrained smoothness had to be used for the trigger-level analysis. In the in-situ
calibration derived from the full Run-2 data, this tension is gone. At the same time,
the interpolation with splines has been improved to be less susceptible to data points
causing tension [126]. Thus, no alteration of the offline calibration factors is necessary in
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this analysis.

6.2.3 Online-to-Offline Correction
The final step of the trigger-level jet calibration chain is the online-to-offline correction.
This correction is applied to account for any residual differences between trigger-level
and offline jets that remain at the end of the calibration chain. Ideally, it would be
applied before the in-situ calibration so that the trigger-level jets are already exactly at
the offline scale when applying the offline in-situ calibration. This is impeded by the
technical implementation of the jet calibration chain. But since the online-to-offline
correction is small, it is expected to approximately factorize and be applicable after the
in-situ calibration without a significant change of the result.

The correction is derived from the offline Run-2 data set3 by geometrically matching
offline jets to trigger-level jets with a distance in the (η, φ) plane of R < 0.2. The
kinematic selection utilized throughout this analysis (i.e. |η| < 2.4, pT > 85GeV, and
y∗ = (y1 − y2)/2 < 0.6 as discussed in Chapter 7) is applied and the leading and
subleading jets are considered. The response R = ponline

T /poffline
T is determined in bins of

offline pavg
T and η. The offline pavg

T is chosen as it yields the closest to Gaussian response
distributions.

With these responses, a procedure similar to the MCJES calibration is performed:
The mean response is determined by a Gaussian fit to the core of the distribution and a
numerical inversion transforms it from a function of offline pavg

T and η to a function of
trigger-level pavg

T and η. To reduce the effect of statistical fluctuations, a two-dimensional
Gaussian kernel smoothing is applied with the kernel width chosen such that a reduced
χ2 ≈ 1 is achieved.

Since the trigger-level jet reconstruction is year-dependent and the pile-up conditions
differ between the unprescaled J100 trigger and the end-of-fill J50 and J50Topo triggers,
the correction is derived separately for each year and trigger. The correction factors
are kept constant below the later applied minimum pT threshold for jets to avoid large
migrations from below this threshold. The same is done at high pT when the available
statistics in the offline jets drop below a required threshold and the response fits become
unstable.

Figure 6.7 shows the derived online-to-offline correction factors in the 12 η bins,
exemplary for 2017 data and the unprescaled J100 selection. They are found to be on
the order of 2% or below, which is small enough for the online-to-offline correction and
in-situ calibration to approximately factorize. A permille-level asymmetry between the
correction for positive η (solid lines) and negative η (dashed lines) is observed. Such an
asymmetry can, for example, arise due to a small number of Tile calorimeter modules
that were inactive during certain periods of Run-2 but are only partially disabled in
the MC simulations [162]. If the effect is not perfectly corrected for in the previous
calibration steps, a residual difference is expected here.

3 While the offline data set is smaller than the trigger-level data set analysed in this thesis, the statistical
precision of the determined responses is still sufficient to apply as a correction to all trigger-level jets
after smoothing.
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Figure 6.7: Online-to-offline correction factors applied to trigger-level jets recorded in 2017
with the unprescaled J100 trigger. The different colours correspond to the 12 η bins in which
the correction is derived, with the solid lines corresponding to positive η and the dashed lines
to negative η. Adapted from Ref. [157].

6.3 Calibration Smoothness

Given the large statistical power of this analysis, it is sensitive to very small signals with
an amplitude in the order O(10−4) relative to the QCD background. As any localized
structures in the calibration curves could induce an excess or deficit in the observed dijet
mass spectrum, the smoothness of the calibration is controlled carefully. This needs to
be done without directly testing the calibrated observed spectrum for excesses above
the background fit to not introduce a bias in the analysis strategy by potential BSM
signatures present in the data.

Instead, the correction factors applied to trigger-level jets, averaged over the full
trigger-level data set, are studied. While ultimately the smoothness in mjj is crucial, all
calibration steps are defined as functions of pT (or E), which is why potential localized
structures are more easily identified in pT.

Figure 6.8 shows the average correction factor applied at each of the calibration steps to
the subleading jet, determined in the J100 data set. The subleading jet is chosen, because
it is less biased towards a large correction by the trigger’s pT requirement. Still, this
bias is significant for jets with pT < 200GeV which is why only jets above this threshold
are considered here. The average correction factors shown in black are overlayed with
the statistical uncertainty of the observed pT spectrum to identify if structures in the
calibration could lead to significant features in the observed spectrum. This overlay only
serves as an approximate reference, as the size of structures in the jet response and in



6.3 Calibration Smoothness 57

200 300 400 500 600 1000 2000

 [GeV]
T

Subleading jet p

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

〉
E

M

T
/p

p
ile

-u
p

T
p〈

Avg. calibration factor

Rel. stat. unc.

-1J100 data, 132 fb

(a)

200 300 400 500 600 1000 2000

 [GeV]
T

Subleading jet p

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

〉
p
ile

-u
p

T
/p

M
C

J
E

S

T
p〈

Avg. calibration factor

Rel. stat. unc.

-1J100 data, 132 fb

(b)

200 300 400 500 600 1000 2000

 [GeV]
T

Subleading jet p

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006〉
M

C
J
E

S

T
/p

G
S

C

T
p〈

Avg. calibration factor

Rel. stat. unc.

-1J100 data, 132 fb

(c)

200 300 400 500 600 1000 2000

 [GeV]
T

Subleading jet p

1.008

1.01

1.012

1.014

1.016

1.018

1.02

〉
G

S
C

T
/p

in
-s

it
u

T
p〈

Avg. calibration factor

Rel. stat. unc.

-1J100 data, 132 fb

(d)

200 300 400 500 600 1000 2000

 [GeV]
T

Subleading jet p

1.0055

1.006

1.0065

1.007

1.0075

〉
in

-s
it
u

T
/p

o
n
-o

ff

T
p〈

Avg. calibration factor

Rel. stat. unc.

-1J100 data, 132 fb

(e)

Figure 6.8: Average correction factor applied to the subleading jet in each calibration step
as a function of pT, determined in the J100 data set: (a) Pile-up correction, (b) MCJES,
(c) GSC, (d) η intercalibration and in-situ calibration combined, and (e) online-to-offline
correction. Black bars correspond to the uncertainty of the mean of the factors. The relative
statistical uncertainty of the measured pT distribution is overlayed in blue to identify statistically
significant features in the calibration curves.
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the final pT or mjj spectrum cannot be directly compared.4 Structures in the response
must be unable to mimic potential resonance signals, meaning they must be wider than
the widest signals tested in this search: Gaussian resonances of 15% width.

The pile-up correction and MCJES (Figures 6.8a and 6.8b) are smooth functions over
the tested pT range and only exhibit a small curvature, making them suitable for this
analysis. The same is true for the η intercalibration and in-situ calibration which are
for technical reasons applied as a single step in the jet calibration chain (Figure 6.8d).
While the correction does exhibit a local minimum, the curvature is low enough to not
mimic a signal.

The GSC, however, introduces a kink in the average jet response at pT ≈ 400GeV
and a seemingly insignificant bump at 900GeV as shown in Figure 6.8c. While the
GSC is designed to not alter the average response, this only holds perfectly true in MC
and without the applied smoothing. Differences in the distribution of the jet structure
variables and their correlation to another between data and MC prevent perfect closure
in data. While this non-closure is well below the percent level, it can still induce features
in the observed dijet mass spectrum, as will be shown later in this section. The online-to-
offline correction fluctuates only at a permille level. Nevertheless, a narrow, statistically
significant dip around 400GeV and a small, seemingly insignificant dip around 800GeV
are observed. Both of these structures are potentially a result of the structures induced
by the GSC response at these positions.

Similar behaviour of the calibration response is observed in the J50 data set, which
corresponds to different pile-up conditions and extends to lower jet energies. The effect
of the individual calibration steps on the reconstructed invariant dijet mass is determined
as well. A propagation of the structures in the calibration response into mjj is observed,
albeit less pronounced due to the η-dependent relation betweenmjj and pT being averaged
over. The results are summarized in Appendix B.

To determine the impact of the structures in the GSC and online-to-offline correction,
the full calibration chain is applied to jets in the Pythia dijet MC sample and dijet
events are selected as described in Chapter 7. After each stage of the calibration chain,
the MC dijet mass spectrum is fitted with the background estimation technique described
in Section 9.1 – in this case with the 6-parameter functional form fit. The fit residuals
normalized by the statistical uncertainty in each bin, in the following labelled significances,
can be seen in Figure 6.9. Only the significances are shown because the permille-level
differences between the MC spectrum and fit are not visible when overlaying them. The
pile-up correction stage is omitted here, since only after the large MCJES correction are
the jets approximately at the true energy scale and correctly selected with the chosen
mjj range. Although the data-driven in-situ calibration and online-to-offline correction
should only be used to correct jets in data, they are also applied to MC here to assess
whether the correction behaves smoothly in mjj or potentially induces features. Also
note, that the MC sample is generated to offer approximately uniform statistical precision
throughout the mjj spectrum while the available trigger-level data set has a statistical
precision rising towards low mjj, exceeding that of the MC sample for mjj ≲ 1800GeV.
4 A small shift δ in the jet response at position pT will migrate jets from pT to p′T = pT · (1 + δ). Due

to the steeply falling cross section, this can migrate jets ‘down the slope’ to a less populated region of
the pT spectrum. Depending on the width and shape of such a feature in the response, the relative
change in the observed pT spectrum can be in the order of 1− 10 times δ as found in toy studies.
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Figure 6.9: Significance of the residuals of a fit with the 6-parameter dijet function to the
Pythia dijet mass spectrum at individual stages of the jet calibration. A significant excess at
2TeV is induced by the GSC.

Thus, potential features at lower masses could be statistically insignificant in MC but
significant in data. Nevertheless, the MC fits are a useful tool for assessing the overall
smoothness of the calibration chain.

It can be seen, that a good fit with a p-value of 0.16 based on the χ2-statistic5 is
achieved after the MCJES calibration (blue histogram). The GSC, however, induces
a significant, broad excess around a dijet mass of 2TeV and a single excessive bin at
900GeV as shown in green. Since mjj ≈ 2pT for back-to-back jets, these excesses are
potentially caused by the apparently small feature at pT ≈ 900GeV and the kink at
400GeV in the average jet response shown in Figure 6.8c. These GSC-induced features
remain or can only be partially resolved by the following in-situ calibration (yellow)
and online-to-offline correction (red). The partial recovery of the fit quality by the
online-to-offline correction reinforces the assumption that the structures observed in the
average response of the online-to-offline correction mirror those in the GSC – but they
cannot completely restore the smoothness.

With studies analogous to the ones shown in this section, it is found that the features
arise at the N90Const step of the GSC – potentially due to its discrete nature or its large
sensitivity to quark-gluon differences. While further studies concerning the smoothness
of the individual GSC steps are ongoing, results in this thesis are presented with the
GSC entirely disabled to ensure the smoothness of the calibration chain and allow for a
functioning background estimate.

The effect of disabling the GSC is, again, tested in fits of the invariant mass spectrum
of Pythia dijet events. The results are shown in Figure 6.10. The GSC scale is now
5 The determination of p-values from the χ2-statistic is discussed in Section 9.2.3, see Equations (9.15)

and (9.17).
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Figure 6.10: Significance of the residuals of a fit with the 6-parameter dijet function to the
Pythia dijet mass spectrum at individual stages of the jet calibration. The GSC has been
disabled here and the online-to-offline correction has been rederived with the GSC disabled.
No significant excesses are observed.

identical to the MCJES scale since no correction is applied. The fit at the in-situ scale
in yellow shows that the calibration, even though it was derived with the GSC active, is
still applicable without inducing significant features.

Any residual error due to disabling the GSC is evaluated by rederiving the last step
of the calibration chain, the online-to-offline calibration, with the GSC disabled for
the online jets. The online-to-offline responses behave less Gaussian this way due to
it being composed of multiple sub sets of slightly different responses. As a result, the
mean responses determined by Gaussian fits are more prone to fluctuations. Nonetheless,
updated online-to-offline correction factors are derived and tested on the Pythia MC,
resulting in the fit residuals shown in red in Figure 6.10.

Since the MC does not provide sufficient statistics to identify low-energy structures in
the calibration, the same tests are performed on a randomly selected partial data set
corresponding to approximately 20% of the full Run-2 J100 luminosity and 10% of the
J50 luminosity. These fractions were chosen to not exceed the sensitivity of the previous
trigger-level dijet search [1] to perform calibration studies on a data set that has already
been found to be signal-free with the given statistical precision.

In this partial data set, the rederived online-to-offline correction is found to induce
significant features in the fit residuals at low mjj, probably due to fit instabilities of the
non-Gaussian responses.

Due to this non-smoothness, the online-to-offline correction is also disabled in this
thesis.6 Instead, its correction is treated as an uncertainty as discussed in the next
6 At the time of writing this thesis, further studies on the interplay between GSC and online-to-offline

correction smoothness as well as the stability of Gaussian fits to non-Gaussian responses are ongoing.
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section.

6.4 Jet Energy Scale and Resolution Uncertainties
The calibration chain applied to trigger-level jets is associated with systematic uncer-
tainties, which can affect the jet energy scale (JES) and resolution (JER). While the
offline-derived uncertainties on the pile-up correction, in-situ calibration and JER are ad-
opted here, uncertainties on the flavour composition and response, the η intercalibration
and the online-to-offline difference are derived specifically for the TLA.

The uncertainties are parametrized in terms of nuisance parameters (NPs). They
allow the propagation of the effect of individual sources of uncertainty to higher-level
observables like the invariant mass spectrum of the considered signal models. This is
done by independently varying each of the NPs up or down by one standard deviation of
the uncertainty and repeating the calibration chain.

6.4.1 Offline-Derived Uncertainties
The pile-up uncertainties are adopted from the offline derivation. They are determined in
data using a Z+jet balance as well as tracking information associated with jets and are
expressed as 3 NPs influencing the energy density ρ, the µ-correction and the residual
pT dependence.

The in-situ measurements entail the largest number of individual uncertainty sources.
MC modelling, energy scale and resolution, and statistical uncertainties from the employed
electrons, muons, photons, and the multijet-balance technique are propagated to the
correction factors. Since this analysis is not sensitive to the correlations between the large
number of available NPs (see Section 8.3), an eigenvector decomposition is employed to
combine the different sources into eight effective NPs.

The jet energy resolution is determined via an in-situ multi-jet balance technique
and a noise measurement using randomly selected jet cones. A similar NP reduction
scheme is employed to parameterize its uncertainty as seven effective JER NPs. They
are not relevant for data but for the production of MC samples where jets are artificially
fluctuated according to the uncertainty on the jet energy resolution.

6.4.2 Trigger-Level Uncertainties
Due to the different response of gluon-initiated and quark-initiated jets – and to a lesser
degree also light-flavour and heavy-flavour quark-initiated jets – the calibration chain
only correctly calibrates the average response for the jet composition in the chosen
calibration processes. Since a potential signal is likely to entirely consist of either quark-
or gluon-initiated jets, its average jet response will be different. It is thus important to
determine the difference in response.

This is done by geometrically matching trigger-level jets in MC to truth jets containing
the information of the initiating parton. The quark response Rq and the gluon response
Rg are determined from Gaussian fits to the preco

T /ptruth
T ratios. For a given fraction fg of



62 6 Jet Calibration

gluon jets in a sample, the jet flavour composition and jet flavour response uncertainties
are determined as follows:

σcomposition = (Rg −Rq) · σfg , (6.4)
σresponse = fg · σRg . (6.5)

fg is set to 0.5 with an uncertainty σfg of ±100% to not make assumptions on the
composition of signal. This means that the flavour composition uncertainty is entirely
driven by the response difference (Rg − Rq), which is aimed to be reduced by the
GSC. The jet flavour response uncertainty is approximated by the difference between
the nominal gluon response determined in Pythia and alternative Sherpa samples
using different hadronization models. The uncertainty on the quark response is small in
comparison.

Both uncertainties have been derived specifically for the TLA, with the GSC enabled
[163].7 With the GSC disabled, the (Rg −Rq) term is expected to increase significantly
and the generator difference σRg may be affected as well. Hence, both flavour uncertainty
components are increased by a conservative factor of 100% for this thesis. Although the
flavour uncertainties are the dominant sources of systematic uncertainty for all considered
signal masses, their effect is small in comparison to the statistical uncertainties of the
data. This encourages the conservative approximation here.

Uncertainties on the η intercalibration are estimated from variations of the event
selection criteria, the MC generator differences, a small non-closure of the polynomial fit
in pT, and the propagation of the statistical uncertainty. These sources are combined
into six NPs.

Since the online-to-offline correction is not applied in this analysis due to its non-
smoothness, the residual difference between the trigger-level and offline jet energy scale is
treated as an uncertainty instead. The average correction applied by the online-to-offline
correction that was derived with the GSC disabled is applied as nuisance parameter to
the jet energy scale. The online-to-offline difference becomes the subdominant systematic
uncertainty throughout the considered dijet mass range.

The different uncertainty sources discussed above amount to in total 27 NPs which
are summarized in Table 6.1. The impact of each of these NPs on the different signal
models is determined and discussed in Chapter 8.

7 Since this uncertainty is determined purely in MC, it is not influenced by the data-driven calibration
steps that were derived afterwards.
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Derivation Uncertainty Group Nuisance Parameters

Offline
Pile-up correction 3
In-situ calibration 8

Jet energy resolution 7

Trigger level
Flavour uncertainties 2
η intercalibration 6

Online-to-offline difference 1

Table 6.1: Systematic uncertainties on the jet calibration considered in this analysis.

6.5 Calibration Performance
The performance of the calibration chain applied to trigger-level jets can be characterized
by the jet energy resolution and, more importantly, by the resolution of the reconstructed
invariant dijet mass. The latter is directly linked to the ability of this search to resolve
narrow resonances and, thus, the search sensitivity.

The resolution of the reconstructed jet pT and mjj is determined analogously to the
MC-based calibration steps by constructing the responses preco

T /ptruth
T and mreco

jj /mtruth
jj .

This is done in the Pythia MC sample with the kinematic event selection of this search
(detailed in the next chapter) applied. The resolution is then given by the standard
deviation of the Gaussian distribution fit to the core of the response.

Figure 6.11 shows the determined resolution of jet pT and mjj , where points represent
the trigger-level jets with the calibration chain applied in this thesis. A relative mjj

resolution between 7% and 4% is observed in the relevant mjj range above 300GeV.
For comparison, the trigger-level jet resolution with the GSC applied and the offline jet
resolution are shown as squares and triangles, respectively. The determined resolutions
of both variables are well described by a function composed of a noise term, stochastic
term, and constant term as given in Equation (4.6).

The mjj resolution achieved in this thesis is approximately 1–1.5 percentage points
worse than what could be achieved by applying the calorimeter-based GSC, which reduces
the search sensitivity as will be discussed in Section 10.2.4. The fluctuations of the
determined resolutions are also larger when the GSC is disabled because of a response
distribution that is less Gaussian in shape.

At high energies, the resolution of trigger-level jets with applied GSC approaches that
of offline jets, which validates the calorimeter-based GSC as a good approximation of the
GSC applied to offline jets. The additional tracking and muon-spectrometer information
available in offline jets only provide a significant resolution benefit at comparatively low
energies.

6.5.1 Binning of the Invariant Dijet Mass
When measuring the mjj spectrum for this search, a binning must be chosen. Narrow
bins are advantageous in resolving resonances, but a binning narrower than the detector
resolution does not provide any additional benefit. Therefore, the mjj binning is chosen



64 6 Jet Calibration

 100 200 300 400 1000 2000 3000

 [GeV]truth

T
p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
 r

e
s
o
lu

ti
o
n

T
 R

e
la

ti
v
e
 p

Online, GSC disabled

Online, GSC enabled

Offline

| < 2.4η|

|y*| < 0.6

Pythia MC

(a)

100 200 300 400 1000 2000 3000

 [GeV]truth
jj

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 r
e
s
o
lu

ti
o
n

jj
 R

e
la

ti
v
e
 m

Online, GSC disabled

Online, GSC enabled

Offline

| < 2.4η|

|y*| < 0.6

Pythia MC

(b)

Figure 6.11: Resolution of the reconstructed (a) jet pT and (b) mjj relative to the particle
level, determined in Pythia MC. The circular markers show the resolution of trigger-level jets
with the calibration chain of this thesis applied, i.e. with the GSC disabled. For comparison,
the resolution of trigger-level jets with the GSC enabled is shown as squares and the resolution
of offline reconstructed jets as triangles. The solid coloured lines each show a fit with the
function in Equation (4.6) to the respective resolution.

such that each bin width is equal to the mjj resolution at that specific value of mjj.
The binning used in this analysis was derived from the trigger-level mjj resolution

with the GSC enabled. The use of bins narrower than the true resolution in this analysis
is expected to have a negligible effect.
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For this analysis, collision events containing pairs of jets are selected from the Run-2 Data
Scouting stream. Events with known detector malfunctions or with falsely reconstructed
jets from noise sources are excluded. Selection criteria on the jet kinematics are applied to
optimize the sensitivity to BSM signatures. These criteria are discussed in the following
sections.

7.1 Data Quality Requirements

For standard ATLAS analyses, event selection criteria are centrally derived to select only
data-taking periods where all detector subsystems were working as intended [164]. Since
this analysis uses only calorimeter information, an adaptation of these criteria is applied.
Only events with global errors or calorimeter malfunctions are discarded, while periods
with tracking or toroid magnet failures are retained, as they are not expected to affect
trigger-level jets. In addition to these central criteria, a short data-taking period with a
malfunction in the online area-based jet pile-up correction was identified and discarded
for this analysis.

Energy deposits in the calorimeter arising from sources other than jets can be falsely
reconstructed as jets. This non-collision background includes calorimeter noise bursts,
cosmic rays, or beam-induced background, which consists mainly of high-energy muons
produced from interactions of the beam with residual gas or accelerator components far
away from the interaction point [165].

Jets reconstructed from these noise sources do not traverse the detector from the
interaction point outwards and are often asynchronous to the expected bunch crossings.
Thus, they can be efficiently distinguished from real jets by the fraction of energy deposited
in individual calorimeter layers and calorimeter pulse shapes. Another distinguishing
variable is the charged fraction fch, defined as the sum of the transverse momenta of
tracks originating from the primary vertex of the jet, relative to the transverse momentum
of the jet. However, fch is not available in the Data Scouting stream as it relies on track
reconstruction. The other calorimeter-based criteria derived for offline jets are applied
to the trigger-level jets in this analysis. If a jet is identified as BadLoose [164] according
to these criteria, the entire event is discarded.

The effectiveness of this calorimeter-based rejection method has been determined in
events with a similar dijet topology as selected in this analysis [166]. The remaining
fraction of dijet events potentially originating from noise sources has been found to be
below 0.3% and to not affect the shape of the invariant mass spectrum, which makes it
a negligible background contribution.
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7.2 Kinematic Selection
It is necessary to define a signal region in which the dijet topology can be measured
precisely. This definition is based on jet kinematic requirements, which are discussed in
this section.

7.2.1 Jet Selection
Events with at least two jets within |η| < 2.4 are selected. This excludes the Forward
Calorimeters and the transition region in the End-Caps where the jet energy resolution
decreases and the calibration uncertainties are largest, as discussed in Section 6.2.1.

The two jets leading in pT in this η range are required to have transverse momenta of
pT > 85GeV. This achieves a strong suppression of jets produced in pile-up collisions
and thus of the coincidental background of selecting pairs of jets originating from different
collisions [167].1 The pT requirement also ensures that only jets are selected for which
the trigger-level calibration chain is found to achieve good closure.

7.2.2 Selection Based on the Rapidity Difference
To reduce the dominant QCD background in this analysis, a selection based on half the
rapidity difference between the two leading jets, y∗ = (y1 − y2)/2, is applied. t-channel
processes, which make up a large fraction of the QCD background, are enhanced for small
deflections from the beam direction and accordingly large y∗, as discussed in Section 3.1.
Conversely, the resonant s-channel signal processes favour smaller |y∗| [3].

Therefore, the |y∗| requirement influences the signal-to-background ratio. This depend-
ence was determined in Ref. [10] for the case of Z ′ signals. Upper |y∗| thresholds between
0.6 and 0.8 were found to result in the highest expected sensitivity across a wide range of
Z ′ masses. To facilitate the comparison and combination with the offline dijet resonance
search [3], |y∗| < 0.6 is chosen for this analysis.

The y∗ selection has an additional benefit: For any given mjj, requiring small |y∗|
selects dijet events with higher jet pT. This can be seen by expressing the invariant mass
of two (massless) jets as

m2
jj = 2 pj1T pj2T (cosh∆y − cos∆φ) . (7.1)

For back-to-back dijet events (∆φ ≈ π, pj1T ≈ pj2T ), this means mjj ≈ 2 pT for small y∗,
but only mjj ≲ 2 pT for arbitrary y∗. The former behaviour is useful for this analysis
because it lowers the mjj threshold above which the recorded mass spectrum is unbiased
by the ET requirement of the L1 trigger and the pT requirement on the jets [10, 11].
This effect is discussed in the following section.

1 In offline analyses, the pile-up rejection of low-energy jets is achieved by jet vertex tagging, i.e. using
the reconstructed tracks associated with reconstructed jets to identify their primary vertex [168].
While this information is not available for the trigger-level jets considered in this thesis, vertex
reconstruction is implemented for the Data Scouting stream in Run-3, potentially allowing probing
lower-energy jets in future TLAs [143].
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7.2.3 Selection Based on the Invariant Dijet Mass
The observed mjj spectrum is influenced by the pT requirements on individual jets.
These stem either from the explicit pT > 85GeV selection placed in this analysis or
from the Level-1 trigger selection. Both selections primarily affect the lower part of the
mjj spectrum. Therefore, a minimal mjj threshold can be determined above which the
observed mjj spectrum is mostly unbiased by the requirements. Above this minimum
threshold, themjj spectrum is smoothly falling, which is a requirement for the background
fitting methods employed in this analysis. The optimization of this threshold is discussed
in this section.

Trigger Efficiency

The L1 trigger efficiency is measured in offline events recorded by HLT single-jet triggers.
These reference triggers are chosen to have a sufficiently low threshold to not bias the
measured efficiency.2 The same event selection criteria discussed above are applied to
determine the trigger efficiency for the phase space selected by this analysis. Especially
the |y∗| requirement has a significant impact on the efficiency as a function of mjj .3 Here,
mjj refers to the invariant mass determined from the trigger-level jets with the full TLA
calibration chain applied.

Figures 7.1a to 7.1c show the determined efficiencies of the J50, J50Topo, and J100
triggers used in this thesis. This considers data accumulated over the full Run-2 period
for the J50 and J100 triggers and over the period after TS1 in 2018 for the J50Topo
trigger. The J50 and J100 single-jet triggers are found to approach 100% efficiency for
large mjj.

The J50Topo dijet trigger plateaus at around 99.5% efficiency. The remaining ineffi-
ciency is due to the |y∗| < 1.0 requirement applied to the two leading L1 jet candidates.
Due to the coarse energy resolution of the L1 jet reconstruction, the two leading L1
jet candidates do not necessarily correspond to the two leading HLT jets considered in
this analysis. Consequently, the |y∗| requirement can be applied to a different jet pair,
resulting in proper dijet events being falsely discarded. This inefficiency is approximately
constant as a function of mjj at a level of 0.5%. As a result, it mainly scales the recorded
mjj spectrum, while a remaining small, linear slope is absorbed by the background fit.
Therefore, its effect is tolerable for this analysis.

The efficiency curves are fit with a logistic sigmoid function to smooth out statistical
fluctuations:

ε(mjj) =
a

1 + e−b(mjj−c)
. (7.2)

2 While the HLT trigger name, e.g. j85, suggests a higher transverse momentum threshold than
required on L1, e.g. by J50, these names are misleading. L1 jet candidates are reconstructed at the
electromagnetic scale, meaning that the large positive correction towards their true energy scale is
missing. Additionally, the L1 jet energy resolution is significantly lower, such that 99.9% efficiency is
only reached far above the required L1 threshold.

3 In the previous publication of the TLA, a minimal requirement on plead
T was placed to ensure full

trigger efficiency and then the threshold above which the mjj spectrum is unbiased by the plead
T

requirement was identified [1]. The selection applied in the presented analysis is more efficient, because
it allows both the leading and the subleading jet to have fulfilled the L1 trigger requirement. This
allows for lowering the minimal mjj requirement [11].
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Figure 7.1: Efficiency of the trigger selection of the individual L1 triggers used in this analysis:
(a) J50, (b) J50Topo, and (c) J100, as determined in the offline Run-2 data set recorded with
jet triggers of lower threshold than the trigger to be probed. (d) Efficiency of the pT > 85GeV
requirement for leading and subleading jets, relative to events selected with a pT > 75GeV
requirement. This is measured in the J50Topo triggered Data Scouting data set.

The parameter a, which corresponds to the plateau of the efficiency, is fixed to 1 for all
single-jet triggers since they reach full efficiency. However, a is left as a free parameter
for J50Topo since it does not reach full efficiency. For all triggers, b and c are free
parameters. The fit is performed in the mjj range corresponding to an efficiency in the
range 0.9 ≤ ε ≤ a− 10−4, which is determined iteratively from the fit. In this range, the
fit describes the measured efficiency well.

The point of 99.9% efficiency, denoted m99.9%
jj , is determined from these fits. This

efficiency point was chosen because previous studies showed that the remaining 0.1%
inefficiency behaves sufficiently smoothly in mjj to be absorbed by the background fit
[166]. This was again validated for this analysis using the partial data set.

The systematic uncertainty on m99.9%
jj determined with this method is estimated

by a 4-point variation of the fit range corresponding to lower (upper) ε thresholds of
0.85 or 0.95 (a − 5 · 10−4 or a − 2 · 10−5). The ±0.05 variation of the lower threshold
corresponds to the range over which the sigmoid can be considered a good description of
the trigger efficiency. The upper threshold has a smaller effect on the determined m99.9%

jj .
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L1 Trigger HLT Reference Year m99.9%
jj [GeV] Chosen Threshold [GeV]

J50 j85 2017 301.8± 5.6 3442018 291.8± 5.0

J50Topo j85 2018 post TS1 280.5± 8.4 344

J100 j110
2016 463.3± 1.7

4812017 467.8± 2.2
2018 463.4± 2.4

Table 7.1: Obtained 99.9% efficiency point for all used triggers year-by-year

The upwards and downwards variation of the distance to the plateau by a factor of 5
results in an approximately symmetric variation of the fit range in mjj and is considered
a conservative estimate of the fit uncertainty. The statistical uncertainty on m99.9%

jj

propagated from the covariance matrix of the fit parameters is small in comparison to
the range variation.

Since the trigger conditions change with the data-taking period, m99.9%
jj is determined

separately for each year and trigger. The results are presented in Table 7.1. The
systematic uncertainty for J50Topo is found to be larger than for the other triggers,
mainly due to the plateau parameter c being a free variable in the fit.

Efficiency of the pT Selection

To determine the minimal mjj thresholds for an unbiased spectrum, a second source of
selection inefficiency must be considered: the pT requirement on the (sub-)leading jet.
Its effect is not apparent in the trigger efficiencies determined above, because both the
reference and the probe selection apply the same pT > 85GeV selection.

The pT requirement on the leading jet does not cause inefficiency in the relevant mjj

range. This can be understood qualitatively: Following Equation (7.1), the invariant mass
of back-to-back dijet events with small y∗ is approximately given by m2

jj ≈ 4 plead
T psublead

T
and therefore mjj ≲ 2 plead

T . Accordingly, a leading jet pT cut of 85GeV only affects the
mjj spectrum below approximately 170GeV. While this threshold is increased by events
that are not pure back-to-back dijets, it does not extend to 280GeV and beyond, where
the considered triggers become efficient.

However, the same consideration does not hold true for the subleading jet. It can be
significantly lower in pT than the leading jet if additional objects (likely other jets) in the
final state influence the momentum balance. Therefore, the pT > 85GeV requirement
on the subleading jet has an effect up to higher mjj values.

The pT selection efficiency in the considered phase space is determined by selecting
reference events with a looser pT > 75GeV requirement and then probing the fraction
of events that meet the pT > 85GeV requirement. Figure 7.1d shows the result as a
function of mjj . Since this efficiency is a purely kinematic effect, it is independent of the
trigger used to select the events. The J50Topo-triggered events in the Data Scouting
stream are used here, as they offer a large statistical precision in the mjj range of interest.

As with the trigger efficiencies, m99.9%
jj is also determined from a fit with a logistic
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sigmoid function. The value obtained is 332.0 ± 2.1GeV, which is significantly higher
than the efficiency points of the J50 and J50Topo. Thus, for events selected with the J50
or J50Topo trigger, the pT selection efficiency is the relevant criterion for the minimal
mjj threshold, while for events selected with the J100 trigger, the trigger efficiency is
the relevant criterion.

Due to the limitation by the pT selection efficiency, even lower-threshold Data Scouting
triggers, such as J40, do not offer any additional benefit in probing lower masses and are
therefore not considered in this thesis.

Thresholds for mjj

The lower mjj threshold for each trigger is chosen to be m99.9%
jj + 2σrange, rounded up to

the next edge of the mjj resolution bins used in this analysis. This choice conservatively
limits the residual inefficiency to less than 0.1%. The thresholds are found to be 344GeV
for J50 and J50Topo and 481GeV for J100.

Due to their identical mjj threshold, J50- and J50Topo-triggered events are combined
into a single signal region (SR), hereafter referred to as J50 for simplicity. This J50 SR
provides sensitivity to lower-mass signals than the J100 SR but at a reduced integrated
luminosity.

In addition to a lower threshold for mjj , an upper threshold is introduced to limit the
fit range for the background estimate. While extending the fit range beyond the highest
mass signal of interest helps to constrain the fit and increases the signal sensitivity,
this improvement diminishes at some point. In a scan of possible fit ranges, the point
is identified at which extending the range further has only a negligible effect on the
expected limits. This point is found to be 1516GeV for the J50 SR and 2997GeV for
the J100 SR. Limiting the considered fit range with these upper thresholds facilitates
a good description of the observed mjj spectrum by a single function. Additionally, it
ensures large event counts per mjj bin, which is relevant for an analytic approximation
of the likelihood discussed in Section 9.1.1.

Table 7.2 summarizes the event selection criteria discussed in this section for both
signal regions.

J50 SR J100 SR

(sub-)leading jet |η| < 2.4
(sub-)leading jet pT > 85GeV

|y∗| < 0.6
mjj ∈ [344, 1516]GeV ∈ [481, 2997]GeV

Table 7.2: Requirements placed on the leading and subleading jet for the J50 and J100 signal
regions.



8 Parametrization of Signal Models and
Uncertainties

This search targets two different types of dijet resonance signals: the leptophobic Z ′ and
generic, Gaussian-shaped resonances. To perform hypothesis tests for these signals, their
expected mjj spectra must be known. These predicted signal shapes are parametrized as
functions depending on the signal mass to later include them in signal-plus-background
fits for arbitrary masses. The theoretical and experimental systematic uncertainties are
included in this parametrization to evaluate them at arbitrary signal masses as well.

8.1 Signal Parametrization
The Z ′ signal shape is determined from MadGraph5 MC samples (see Section 3.2),
applying all event selection criteria except the mjj requirement. The samples are
generated at Z ′ masses of 350GeV, 600GeV, 1TeV, and 2TeV with a nominal coupling
of gq = 0.1. These values are chosen as representative mass points within the sensitive
mass range for which the signal prediction is determined. For selected mass points,
alternative samples are generated with gq = 0.02 and gq = 0.2 to confirm that the gq
dependence of the mjj spectrum is negligible (see discussion in Section 2.2.2).

Interpolation between the generated mass points is required to test for arbitrary Z ′

masses. For this purpose, the mjj spectrum of a Z ′ resonance is parametrized as a
double-sided Crystal Ball (DSCB) function [169]. It consists of a Gaussian core with
parameters µ and σ, which smoothly transitions into power-law tails with the exponents
nL, nR and the transition points αL, αR being free parameters. Figure 8.1 shows the mjj

spectra, normalized to unity, for the four generated Z ′ masses overlaid with a DSCB fit.
The region around and above the peak is well described by a Gaussian distribution, as it is
dominated by the approximately Gaussian resolution of the invariant mass reconstruction.
The tail below the peak is elongated due to potential energy losses in the dijet selection,
e.g. due to jet splitting or the omission of jets outside the η acceptance. It is described
by the power-law part of the DSCB function with sufficient accuracy. A small deviation
from the power-law tail is observed around 0.7mZ′ for all four Z ′ masses. A similar
effect has been encountered in previous ATLAS dijet searches [170]. Since this does not
deteriorate the description of the resonance peak, which is the most relevant for the
sensitivity of this search, the effect is expected to be negligible.

The signal shape for arbitrary mZ′ is approximated by a linear interpolation of the
best-fit DSCB parameters of the four reference spectra.

For the normalization, the total cross section determined in the MC simulation is
interpolated using the function

f(x) = p1 · xp2 · (1− x)p3 , (8.1)
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Figure 8.1: The mjj distribution of the Z ′ signal samples and a double-sided Crystal Ball
fit to the line shape. The vertical solid line indicates the best-fit mean µ, while the dashed
lines indicate the transition from the Gaussian core to the power-law tails at µ− αL · σ and
µ+ αR · σ.

where x ≡ mZ′/
√
s . This function has been found to provide a good description of

the Z ′ total cross section for a large number of tested masses [166]. The parameter p2
encapsulates the expected m−4

Z′ dependence of the partonic cross section of the resonant
Z ′ production, combined with a potential correction from the PDFs. The parameter p3
accounts for an additional decrease at high mZ′ due to the PDFs decreasing towards
large momentum fractions. This function describes the determined total cross sections
well, as is shown in Figure 8.2 for the nominal coupling gq = 0.1.

The total Z ′ production cross section is corrected to the visible cross section by
multiplying it by A · ε, where A is the probability of the event selection criteria to accept
Z ′ signal events (the acceptance), and ε is the efficiency of the jet reconstruction. The
A · ε factor is determined for each of the four MC samples corresponding to different
mZ′ as the ratio of events entering the SR on reconstruction level to the total number of
generated events. The results are summarized in Table 8.1. The A · ε factor is dominated
by the acceptance since the reconstruction efficiency of trigger-level jets is above 99.9%
in the considered phase space [166]. The acceptance has a small dependence on mZ′

because the pT requirement on the subleading jet and, to a lesser extent, the |η| < 2.4
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Figure 8.2: Total cross section of the Z ′ signals tested in this analysis. The indicated
uncertainties include statistical and systematic uncertainties, where the latter are dominant.
An interpolation in mZ′ between the generated MC samples is provided by a fit with the
function in Equation (8.1).

selection reduce the acceptance of low-mass Z ′ signals. The A · ε factor without the mjj

requirement applied is linearly interpolated in mZ′ . The lower mjj threshold however has
a highly non-linear influence on the acceptance: For sufficiently large mZ′ , the fraction
of events with mjj below the lower threshold is negligible. As mZ′ approaches and falls
below the lower mjj threshold, a relatively steep transition towards an acceptance of zero
occurs due to the relatively narrow resonance width. The effect is thus not interpolated
linearly, but instead determined by integrating the (interpolated) DSCB function above
the applied mjj threshold – either 344GeV for signals tested with the J50 SR or 481GeV
for signals tested with the J100 SR.

A · ε
mZ′ [GeV] Excluding mjj Selection mjj > 344GeV mjj > 481GeV

350 36% 14%
600 46% 33%
1000 48% 46%
2000 48% 47%

Table 8.1: Acceptance of the event selection for different Z ′ masses. The efficiency ε of the jet
reconstruction is nearly 1, such that A · ε is dominated by the acceptance A. Separate values
for A · ε excluding the mjj requirement of the event selection are given to allow for a potential
reinterpretation with other signal models producing different mjj distributions. A different
mjj threshold is applied based on whether a resonance of a given mass is tested in the J50 or
J100 SR.
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8.2 Theoretical Uncertainties
The Z ′ cross sections determined from MC simulations are subject to theoretical uncertain-
ties. Three sources of uncertainty are evaluated following the PDF4LHC recommendations
[171].

The strong coupling constant αS is known to limited precision [17]. To cover its
uncertainty, the cross sections are calculated for a nominal value of αS(MZ2) = 0.118 and
for shifts of ±0.001. A symmetrized uncertainty is then constructed from these values:

δαS(σ) =
σ(αS = 0.119)− σ(αS = 0.117)

2
. (8.2)

The effect of missing higher orders in the calculation of the hard interaction is estimated
by varying the factorization and renormalization scales up and down by a factor of 2 in
a seven-point variation:

(µF , µR)×
{︁
(1/2, 1/2), (1, 1/2), (1/2, 1), (1, 1), (2, 1), (1, 2), (2, 2)

}︁
. (8.3)

The scale uncertainty is then approximated by the maximal envelope of the cross section
determined with each of these variations. This approach has been found to yield a
reasonable estimate for the effect of missing terms at NNLO and higher [89].

The PDF uncertainty is estimated using 100 alternative replicas of the PDF. These
are provided by the NNPDF group [84] and encode uncertainties on the measurements
entering the PDF fit and the fitting method. The root-mean-square of the cross sections
determined with each of those replicas is used as uncertainty.

The effect of these systematic uncertainties on the total Z ′ cross section is evaluated
with the parton-level MC generator MCFM 8.0 [172–174] at NLO.1 As only narrow
resonances are studied, the mjj dependence of these uncertainties is sufficiently weak for
the effect on the signal shape to be negligible.

Adding the individual theoretical uncertainties in quadrature amounts to a total
uncertainty on the Z ′ total cross sections between ±4% at mZ′ = 350GeV and ±15%
at mZ′ = 2000GeV.

8.3 Experimental Uncertainties
Systematic uncertainties on the jet energy scale and resolution affect the position and
shape of a potential resonance. Their effects on the signal templates are evaluated by
independently varying the NP for each source of uncertainty up or down by 1σ. For each
variation, the DSCB fit is repeated to quantify the dependence of the fit parameters
on the NP. The (symmetrized) difference of µ and σ of the Gaussian core from their
nominal values is treated as uncertainty. The parameters α{L,R} and n{L,R} describing
the power-law tails are kept at their nominal values, as the shape of the tails is less
1 MCFM does not provide an implementation of the process qq → Z ′ → qq. Instead, the process
qq → Z ′ → χχ+jet is calculated. This is expected to provide a sufficient (over-)estimate of the relative
effect of each of the systematic uncertainties on the total Z ′ production cross section. The effect of
this uncertainty on the search sensitivity is found to be small.
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Figure 8.3: Impact of the individual systematic uncertainties on (a) the mean µ and (b) the
width σ of the double-sided Crystal Ball fits to the Z ′ mjj spectrum for m′

Z = 600GeV.

significant for the sensitivity and their parameters are more susceptible to fluctuations
in the DSCB fits.

Figure 8.3 shows the obtained uncertainties on µ (panel (a)) and σ (panel (b)),
exemplarily for mZ′ = 600GeV. The results for the other processed Z ′ masses are given
in Appendix C. While the absolute size of each uncertainty increases with mZ′ , their
relative importance remains largely unchanged. The JES uncertainty is dominated by
the inflated flavour uncertainties and the residual online-offline jet differences – both
of which are large due to the deactivated GSC (see Section 6.4). While the flavour
uncertainties decrease from approximately 4.5% to 2% over the considered Z ′ mass
range, the uncertainty due to online-offline differences increases approximately linear
with mZ′ , with a relative uncertainty of 0.8–1.1%. The uncertainty on σ is small, below
1% for all tested resonance masses. It is also dominated by the flavour uncertainties,
followed by the in-situ JES and JER uncertainties. The latter correspond almost entirely
to shifts towards larger σ. This is due to the design of the JER NPs to apply additional
fluctuations to the jets in MC. Since they can only increase the resolution, the uncertainty
in the negative direction is assumed to be symmetric. The determined uncertainties for
the other Z ′ masses are shown in Appendix C, where similar relative compositions are
observed.

The correlations between the NPs are found to be below 4%, and thus negligible, in fits
to pseudo-data with injected signals. This means that the ranking of the uncertainties as
shown in Figure 8.3 directly corresponds to the ranking of their effect on the sensitivity
of this search. Overall, their effect on the search sensitivity is found to be small in
comparison to statistical uncertainties, as discussed in Section 10.2.4.
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The systematic uncertainties on µ and σ determined this way for Z ′ signals are applied
identically to the generic Gaussian resonances of the respective masses.



9 Background Estimate

The estimation of the QCD background at the very high statistical precision achieved in
the selected dijet phase space presents one of the main challenges of this analysis.

The QCD dijet background is a complex composition of many different processes
(compare Figures 3.1 and 3.2) whose relative contributions change as a function of mjj,
primarily due to the varying quark-gluon ratio in the PDF. The particle-level spectrum
is affected by the parton shower and hadronization processes and then additionally
convolved with the detector response and effects of the jet reconstruction and calibration.

Due to limited computational resources, it is currently not feasible to simulate these
complex processes to the very high statistical precision achieved in this analysis. Using
typical background estimation methods that rely on MC would thus introduce a significant
systematic limitation to the sensitivity of this search.

Instead, the smoothly falling QCD background is estimated by fitting the observed
mjj spectrum. The fit must be flexible enough to describe the QCD background but rigid
enough to avoid accommodating narrow resonances in the spectrum. This analysis uses
two complementary fit methods: a functional form fit and a novel, MC-based template
fit called NLOFit.

The development of two complementary methods has significant advantages:
Blinding resilience. This analysis is performed blinded to reduce experimenter’s bias

[175]. In this context, blinded means that the procedure for deriving the background
estimate is defined before testing the fit performance on the analyzed data set. The
availability of two methods reduces the risk of a failed background estimate at the
unblinding stage, as it cannot be guaranteed a priori whether an empirically developed
fit method also describes a data set of previously unachieved statistical precision.

Cross-validation. Since the fit methods are of empirical nature, a possible observation
of an excess could be interpreted as either a genuine BSM signal or a failure of the fit
to describe the QCD background. Achieving two consistent background estimates with
complementary methods reduces this ambiguity in favour of a true signal.

9.1 Functional Form Fit
The term functional form refers to the algebraic form of a relationship between a
dependent variable – in this case, the expected event density ν – and independent
variable(s) – in this case, mjj. For this analysis, the N -parameter dijet function fN is
used to describe this relationship:

ν
(︁
mjj

)︁
= fN(x) = p1(1− x)p2x

∑︁N
k=3 pk logk−3(x) , (9.1)

where x ≡ mjj/
√
s and p1, ..., pN are free parameters. While this functional form is loosely

inspired by terms with powers of x and (1 − x) appearing in PDF parameterizations
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[85, 176, 177], it is ultimately a heuristic description. With N = 4 or N = 5, it has been
empirically found to provide a good description of the dijet mass spectrum measured in
different phase spaces and/or at lower statistical precision – either in global fits to the
entire analyzed mjj spectrum [2, 4, 178] or in sliding-window fits, where only a limited
range of the mjj spectrum is fitted at a time [1, 3].

In this analysis, a global fit to themjj spectrum is performed in the range 344–1516GeV
for the J50 SR and 481–2997GeV for the J100 SR. While this method imposes stricter
requirements on the smoothness of the mjj spectrum compared to the sliding-window fit
used in the previous TLA publication [1], it enhances the sensitivity to wide resonances
for which previously the window width was a limiting factor [166, 167].

9.1.1 Likelihood Maximization

The fit is performed by maximizing the binned likelihood

Lfunc(n |p) =
∏︂
bins i

P
(︁
ni

⃓⃓
νi(p)

)︁
, (9.2)

νi(p) =

∫︂
bin i

fN(x;p) dx , (9.3)

where ni is the number of observed events in mjj bin i, p is the vector of the free
parameters of the dijet function fN(x;p), and P denotes the Poisson distribution. The
expected number of events νi in bin i is given by the integral of fN over the bin.

In this analysis, the RooFit framework [179] is used, which approximates the integral
of fN over a bin i by the value of fN at the bin centre multiplied by the bin width.
To minimize the error this approximation introduces, all functional form fits in this
thesis are performed in narrow mjj bins of 1GeV within which the function behaves
approximately linearly.

Computationally, it is advantageous to minimize the negative logarithm of the likelihood
rather than maximizing the likelihood directly. However, the evaluation of the logarithm of
the Poissonian distribution for the very high event counts present in this analysis is limited
by the numerical accuracy when summed over O(1000) bins.1 Therefore, the Poissonian
distribution P (ni | νi) is approximated by a Gaussian distribution G

(︁
ni

⃓⃓
νi,

√
νi
)︁
with

mean νi and standard deviation √
νi, where the difference is negligible for the large values

of νi in this analysis. With this approximation, minimizing the negative log-likelihood
is analytically identical to minimizing χ2, as constant terms can be omitted in the

1 Following the author’s initiative, recent versions of RooFit [180] introduce a numerically more
robust implementation of the log-likelihood evaluation. In future analyses, it is expected that the
approximation of the Poisson distribution as a Gaussian will no longer be necessary, allowing the fit
of spectra with both high and low event counts.
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minimization:

− logLfunc(n |p) = −
∑︂
bins i

logP
(︁
ni

⃓⃓
νi(p)

)︁
≈ 1

2

∑︂
i

(︁
ni − νi(p)

)︁2
νi(p)

+ const

=
1

2
χ2(n,p) + const . (9.4)

9.2 Monte Carlo-Based Fit

The MC-based NLOFit background estimate is developed as an alternative to the
functional form fit with a heuristic function. The underlying idea is to describe the
observed mjj spectrum by an MC prediction of the QCD background and its dependence
on uncertain simulation parameters. A constellation of these parameters that provides
a good description of the data is determined in a fit. Since the QCD prediction must
have a statistical precision better than the data, the computationally intensive step of
the parton showering, hadronization, and detector simulation are omitted. However,
their effects on the mjj spectrum can be absorbed into the freedom of the simulation
parameters and a good description of the data is still achieved.

Fit Method

The NLOFit considers a nominal differential cross section calculated at NLO parton-level
and a set of variations generated by changing αs, the renormalization and factorization
scales, and the PDF eigenvectors within their uncertainties. The QCD background
is estimated from these cross section templates in a procedure that is illustrated in
Figure 9.1. The nominal spectrum, shown in blue, is scaled with a free parameter
p0. Each variation’s deviation from the nominal prediction is considered a template,
shown in red. Each of these templates is scaled with a parameter pk>0 and added to the
estimate. While p0 is a truly free parameter in the fit, {pk>0} are constrained in the fit
and treated like nuisance parameters of systematic uncertainties. Ultimately, a binned
likelihood-based fit to the data optimizes the parameters {pk}.

ν
(︁
mjj

)︁
= p0× + p1× + p2× + p3× + ...

Figure 9.1: NLOFit method: The dijet invariant mass spectrum ν(mjj) is described by a
nominal template (blue) scaled by a free parameter p0 and a sum of relative variations (red) of
the nominal template, each scaled by a constrained nuisance parameter pk>0 (red).
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Figure 9.2: Effect of different choices of Nclean in the cleaning applied to the NLOJet++
results, determined in ≈1% of the final statistics at NLO. (a) Median of the differential cross
section per mjj bin and its statistical uncertainty, inflated by a factor of 100 for visibility. (b)
Relative statistical uncertainty of the differential cross section.

9.2.1 Template Generation
Parton-level dijet cross sections are calculated at LO and NLO with NLOJet++ as
detailed in Section 3.3. The kinematic selection of this search is applied to the two
leading jets: |η| < 2.4, pT > 85GeV and |y∗| < 0.6.

Event Generation

5.2 · 1013 events are generated to achieve the desired statistical precision, split into
individual runs of NLOJet++ with 2 · 107 events each. In any one of these runs, it can
rarely occur that an event with excessively large positive or negative weight is generated,
leading to a very large fluctuation in one or two bins of the resulting differential cross
section. This could cause a non-smoothness in the final templates that is too large given
the requirements of this search, even with the very large number of generated events.
Thus, a cleaning procedure described below is applied.

In a small-scale generation, the median and RMS99
2 of the cross section prediction from

individual runs of NLOJet++ are determined for each mjj bin. Both the median and
RMS99 are almost unaffected by potential large-weight outliers in this first, small-scale
generation. Subsequent runs are discarded if, in any of the 300 mjj bins, the calculated
cross section deviates from the predetermined median by more than Nclean · RMS99.
Figure 9.2 shows the effect of different choices for Nclean. Fluctuations induced by large
weights are significantly reduced already by a loose cleaning with Nclean = 100, and the
remaining non-smoothness is mostly removed at Nclean = 50. Stricter cleaning reduces
the RMS further by removing events from the tails of the weight distribution at the
expense of a larger fraction of discarded runs and a potentially stronger bias on the final
shape of the mjj spectrum. For the templates used in this thesis, Nclean = 50 is chosen
2 To not be affected by potential large-weight fluctuations in this bin, the RMS is evaluated only using

the central 99% of the distribution. This quantity is referred to as RMS99 from here on.
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Figure 9.3: Relative statistical uncertainty of the differential dijet cross section determined
with NLOJet++ at LO (solid yellow) and NLO (dashed green) accuracy. It is compared to
the statistical uncertainty of the observed dijet mass spectrum in the J50 SR (blue circles) and
J100 SR (red squares).

as the cleaning parameter to sufficiently remove large-weight fluctuations while keeping
the bias of the predicted cross section minimal. This cleaning leads to a rejection of
approximately 1.5% of the NLOJet++ runs.

The achieved relative statistical precision of the NLOJet++ cross section is shown in
Figure 9.3, where the solid yellow line depicts the LO precision and the dashed green line
the NLO precision. It is approximately constant in mjj due to the importance sampling
applied in NLOJet++. The NLO statistical precision of the NLO calculation is a factor
of 15− 20 lower than that of the LO calculation due to large opposite sign virtual and
real corrections cancelling each other out. The NLOJet++ precision is compared to
the statistical precision achieved in data in the J50 SR (blue) and J100 SR (red). This
shows that the choice of 5.2 · 1013 generated events achieves a statistical precision of the
NLO prediction at least as good as in data throughout the mjj spectrum.

NLO Reweighting

Templates with statistical fluctuations comparable to those of the analyzed data set
are not sufficiently smooth for a well-performing fit as they could still result in data-fit
deviations of a few standard deviations. A reweighting is applied to utilize the superior
statistical precision of the LO template and the more accurate shape of the stronger
fluctuating NLO template.

The ratio of the NLO and the LO cross section is fitted with a fifth-order polynomial
in the mjj range of interest. The fit describes this ratio well, as it is a smooth, monotonic
function of mjj that deviates from 1 by 30% at most. The fit is then used to reweight
the LO template bin-by-bin in mjj to the more accurate NLO shape, which ensures that



82 9 Background Estimate

the smoothness of the LO template is retained.
Additionally, the templates are scaled by the bin widths to transfer them from a

differential cross section dσ
dmjj

to the expected event count νi in an mjj bin i per unit
luminosity.

Systematic Variations

Systematic variations of the LO and NLO predictions are generated with Applgrid as
discussed in Section 3.3. The LO-to-NLO reweighting is applied individually to all of
the varied templates. Each source of theoretical uncertainty is considered as a nuisance
parameter with potentially asymmetric upward and downward variations δ±i . These are
expressed relative to the nominal LO-to-NLO reweighted prediction ν0i , where i iterates
over the mjj bins.

αS uncertainty. While the nominal prediction is calculated with αS = 0.118, varied
templates are produced for shifts of ±0.001 to αS:

δαS+
i = νi(αS = 0.119)− ν0i , (9.5)
δαS−
i = νi(αS = 0.117)− ν0i . (9.6)

To first order, αS linearly scales the total cross section according to Equation (2.11).
Consequently, the αS uncertainty is approximately constant in mjj with a magnitude of
±1%.

Scale uncertainty. In the nominal cross section calculation, the factorization and
renormalization scales are both set to µ = mjj on an event-by-event basis to reflect
the typical energy scale of each event. Alternative predictions are produced by varying
µF and µR by factors of 2 around this nominal scale according to the seven-point
variation in Equation (8.3). These seven predictions are merged into a single, symmetric
nuisance parameter by creating their envelope of the maximal deviation from the nominal
prediction:

δscalei = max
(µF ,µR)∈

7-point

{︂
νi(µF , µR)− ν0i

⃓⃓}︂
. (9.7)

The symmetric approach is chosen here to prevent a non-smoothness in the template
that could arise from using an asymmetric envelope. The scale variation is the largest of
the studied variations, reaching up to ±9% at high mjj.

PDF uncertainty. In this analysis, the CTEQ14nnlo PDF [85] is used for the
NLOJet++ cross section calculation. This PDF is derived from a fit with 28 free
parameters to a large number of fixed target, lepton-proton, and proton-(anti-)proton
measurements. Uncertainties both from the measurements and theory predictions entering
the PDF fit are propagated to correlated uncertainties on these 28 parameters. The
result is diagonalized using the Hessian method [101] so that the resulting 28 eigenvectors
can be varied independently and the total PDF uncertainty corresponds to the squared
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sum of these variations.3

A set of 56 alternatives to the nominal CTEQ14nnlo PDF is published, each
corresponding to an eigenvector’s upward or downward variation. The cross section
calculation is repeated for each of these alternative PDFs, resulting in 28 asymmetric
upwards and downwards varied templates:

δPDF,k+
i = νi(PDF EVk+)− ν0i , (9.8)
δPDF,k−
i = νi(PDF EVk−)− ν0i , (9.9)

where k ∈ {1..28} denotes the index of a PDF eigenvector EV.
The variation of the PDF parameters changes the parton luminosities [183] and,

accordingly, the contribution of the different partonic subprocesses to the dijet cross
section as a function of the momentum fraction x. This can be a non-linear effect,
translating into asymmetric upward and downward variations and a variety of different
shapes in mjj . Due to the diagonalization into eigenvectors, the individual variations no
longer correspond to physically meaningful parameters.

Overview. Ultimately, 30 mostly asymmetric upward and downward variations are
considered as templates in the NLOFit in addition to the nominal prediction. They are
summarized in Table 9.1. An examplary selection of four of these varied templates {δk}
is illustrated in Figure 9.4 relative to the nominal prediction ν0.

Uncertainty Group Nuisance Parameters

αS 1 asymmetric
scale 1 symmetric
PDF 28 asymmetric

Table 9.1: Overview of the asymmetric nuisance parameters considered for the different sources
of theoretical uncertainty in the NLOFit templates.

The magnitude of the variations is significantly larger than the statistical uncertainties.
However, these should not be compared directly, because the variations are not to be
understood as a systematic uncertainty envelope around the true prediction. Instead,
they serve as templates for a fit. As such, their absolute size is less important than their
smoothness, which means that their bin-to-bin fluctuations must be small in comparison
to the statistical uncertainty in data.

3 The ABMP16nnlo [181] and MMHT2014nlo [177] PDFs, which also provide Hessian eigenvector
variations, were tested as alternatives. The background estimate achieved with them is compatible.
PDFs that use a large number of toy replicas to parameterize their uncertainties, like NNPDF [182],
cannot be used for the NLOFit due to their lack of statistically independent fit parameters.
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Figure 9.4: Illustration of the systematically varied templates δ used in the NLOFit relative
to the nominal template ν0. The upward (solid) and downward (dashed) variation of αs and
the scale choice are shown in blue and red. Out of the 28 PDF variations, two eigenvectors are
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9.2.2 Likelihood Maximization

The NLOFit is performed by maximizing the binned likelihood, similar to the functional
form fit:

LNLOFit(n |p) =
∏︂
i

P
(︁
ni

⃓⃓
νi(p)

)︁∏︂
vars k>0

g(pk) , (9.10)

νi(p) = p0 · ν0i +
∑︂

vars k>0

pk · δki , (9.11)

where the expected event count νi in bin i is constructed from the nominal template
ν0i and the sum of all variations {δki }, as illustrated in Figure 9.1. These templates are
scaled by fit parameters {pk}, where the normalization p0 is a free parameter and the
nuisance parameters {pk>0} are constrained to be close to zero by a constraint term g.4

The likelihood LNLOFit is evaluated in the mjj resolution binning derived for this
analysis as no integration of a function is involved in its evaluation. The same Gaussian
approximation of the Poissonian distributions as used for the functional form fit in

4 The term pk · δki in Equation (9.11) refers to the simplest case of symmetric upwards and downwards
varied templates of a variation k. For asymmetric variations, an exponential extrapolation and
a polynomial interpolation between the three known points is applied to ensure continuous first
and second derivatives at pk = 0, facilitating the numerical maximization of the likelihood. The
extrapolation and interpolation are implemented with HistFactory [184].
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Equation (9.4) is applied to the negative log-likelihood of the NLOFit:

− logLNLOFit(n |p) = −
∑︂
bins i

logP
(︁
ni

⃓⃓
νi(p)

)︁
−

∑︂
vars k>0

log g(pk)

≈ 1

2
χ2(n,p)−

∑︂
vars k>0

log g(pk) + const (9.12)

9.2.3 Constraint Terms

In a likelihood, the constraint term g(pk) encodes the external knowledge about the
behaviour of a systematic uncertainty that is described by the nuisance parameter pk.
Typically, this knowledge stems from external measurements or theoretical considerations
that provide a nominal value and uncertainty for pk. The constraint term g is typically
assumed to be a Gaussian distribution for experimental uncertainties or a uniform
distribution for theoretical uncertainties.

In the NLOFit, external knowledge enters the generation of the varied templates in the
form of the uncertainties on αS and the PDF as well as the envelope of the scale choices,
which estimates the uncertainty from missing higher order terms. These correspond to
the uncertainties on the determined parton-level dijet cross section.

However, the NLOFit as a background estimate is not used to describe a parton-
level spectrum but to describe the observed dijet mass spectrum that includes parton
showering and detector effects. The nominal NLOFit prediction and its ±1σ bands are
not expected to describe the observed spectrum well. Instead, the generated variations
are merely understood as templates that have the potential to describe a smoothly falling
dijet mass spectrum. Additional freedom is granted to the considered parameter space
of the {pk} to compensate for the missing effects in the generation of the templates. The
NLOFit can be considered as a physically motivated background estimation technique
for QCD spectra, but it is not to be confused with PDF fits where the best-fit values
offer a physical interpretation.

In this thesis, uniform distributions are used for the constraint terms g(p) of the
NLOFit:

g(pk) =

{︄
1
2σ

if −σ ≤ pk ≤ σ ,
0 otherwise ,

(9.13)

where σ is a tunable parameter that describes the allowed parameter space for the {pk}
and thus determines the number of degrees of freedom (ndf) of the NLOFit.5 In this
way, it is analogous to the number of free parameters N of the functional form fit in its
ability to tune the flexibility of the fit.

With the choice of constant constraint terms, Equation (9.12) simplifies to:

− logLNLOFit(n |p) ≈ 1

2
χ2(n,p) + const

⃓⃓⃓
pk ∈ [−σ, σ] ∀ k > 0 . (9.14)

5 Gaussian constraint terms were tested as well, where σ could be tuned to produce fit results very
similar to those achieved with the uniform constraint terms. Uniform constraints are used in this
thesis as they produce a stronger dependence of ndf on σ (discussed in the following section).
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Degrees of Freedom

To evaluate the goodness of fit from χ2, ndf of the fit needs to be known. In general, it
is given by the difference between independent observations – in this case, the number
of mjj bins considered in the fit – and the number of free fit parameters. While this
relation is well defined for the functional form fit, the same does not hold true for the
NLOFit due to its fit parameters being constrained.

Instead, ndf of the NLOFit is determined from the distribution of χ2-values achieved
in toy experiments for different choices of the constraint strength σ. The following
procedure is used:

• An NLOFit with constraint σ is performed to the observed dijet mass spectrum
separately in each SR to obtain the best-fit description of the data. This step does
not introduce experimenter’s bias since the fit residuals and goodness of fit remain
blinded at this stage.

• 104 pseudo-data sets per SR are generated by drawing Poisson-fluctuated distribu-
tions from the best fit as the underlying true distribution.

• NLOFits with constraint σ are performed to all pseudo-data sets. The same choice
of σ in the generation of the reference distribution and in the fit to the fluctuated
pseudo-data set ensures that fit residuals are purely due to statistical fluctuations
and not due to an inability to describe the underlying shape of the mjj spectrum.

For both SRs and all tested values of σ, the distribution of the χ2-values determined
from the toy experiments is well described by the χ2-distribution, which describes the
probability density of observing a value of χ2 if only statistical fluctuations are present:

fχ2(χ2; ndf) = χndf−2 e−χ2/2

2ndf/2 Γ(ndf/2)
. (9.15)

Fitting fχ2(χ2; ndf) to the distribution allows for the extraction of ndf for the NLOFit.
Figure 9.5 shows the toy distributions corresponding to the J100 SR, with σ = 1 and
σ = 10 chosen as examples, and the fit of fχ2(χ2; ndf) to them.6

As expected, increasing σ, i.e. increasing the available parameter space for the NLOFit,
leads to a higher number of effective parameters of the NLOFit, which manifests as a
lower ndf = Nbins −Npars. The dependence of ndf extracted from the χ2-distribution fits
on σ is shown in Figure 9.6a for the toy experiments corresponding to the J50 SR and in
Figure 9.6b corresponding to the J100 SR. A similar behaviour is observed in both cases:
ndf decreases approximately logarithmically with σ. Fitting a logarithmic function

ndf(σ) = a · log(σ) + b (9.16)

reveals a similar scaling factor a for both SRs, while the offset b differs as expected
due to the different number of mjj bins considered in both SRs. Fluctuations of the

6 Following the same procedure with toy experiments for the functional form fit validates that its results
are well described by a χ2-distribution with ndf = Nbins −Npars.
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Figure 9.5: The distribution of NLOFit χ2-values in 104 toy experiments of the J100 SR for a
constraint of (a) σ = 1 and (b) σ = 10. A χ2-distribution with free parameter ndf is fitted to
the distributions.
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Figure 9.6: The NLOFit ndf as a function of the constraint σ for fits in the (a) J50 SR and
(b) J100 SR. An approximately logarithmic dependence is observed, which is described by a
logarithmic fit.

determined ndf around this logarithmic dependence could be attributed to instabilities
in the minimization of the high-dimensional negative log-likelihood of the NLOFit.

The determination of ndf for the NLOFit allows calculating p-values to evaluate the
goodness of fit by integrating the χ2-distribution:

p
(︁
χ2

)︁
=

∞∫︂
χ2

fχ2(z; ndf) dz , (9.17)

where for ndf the functional description in Equation (9.16) is used.
The relation ndf(σ) is also used to determine the values of σ that are considered

for the NLOFit. Since σ can be any positive rational number, arbitrarily small steps
could be considered as distinct fit strategies, which would be unfeasible for the valid-
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ation of each strategy. Instead, in analogy to the function form fit, values of σ are
chosen such that their spacing corresponds to a difference in ndf of approximately 1, i.e.
ndf(σ′)− ndf(σ) = a · log

(︁
σ′/σ

)︁
≈ −1. With the values of a obtained from the fits, this

would correspond to a spacing of σ′/σ ≈ 2.05 for the J50 SR and σ′/σ ≈ 1.91 for the
J100 SR. For simplicity, the same spacing of 2 is employed for both SRs. Consequently,
powers of 2 are selected as values for σ that are considered as possible fit strategies in
this thesis.

9.3 Signal-Plus-Background Fits
The previously described fit methods describe the case of fitting a background-only
description to data. In the following validation of the background estimate, fits under the
signal-plus-background (s+b) hypothesis are performed. The s+b hypothesis corresponds
to adding the number of signal events S in the spectrum as a free parameter to the
expected number of background events νb given in Equations (9.3) and (9.11):

νs+b
i (S,p,θ) = νb

i (p) + S

∫︂
bin i

s(x;θ) dx , (9.18)

where i is an mjj bin and s(mjj;θ) is the mjj distribution of the considered signal
normalized to unity. Thus, it is either a double-sided Crystal Ball or a Gaussian
distribution:

s(mjj;θ) = DSCB
(︁
mjj;µ(θ), σ(θ), αL, αR, nL, nR

)︁
(9.19)

or
s(mjj;θ) = G

(︁
mjj;µ(θ), σ(θ)

)︁
. (9.20)

The mean µ and width σ of either signal are subject to systematic uncertainties, para-
meterized by the vector of nuisance parameters θ:

µ(θ) = µ0 +
∑︂

systs l

θl · δlµ (9.21)

σ(θ) = σ0 +
∑︂

systs l

θl · δlσ , (9.22)

where µ0 and σ0 refer to the nominal mean and width of a resonance of a certain mass,
and δlµ and δlσ are the (symmetrized) effect of a systematic uncertainty l on the mean
and the width of the signal as determined in Chapter 8. The DSCB tail parameters
α{L,R} and n{L,R} are not systematically varied as their influence is small.

For each systematic l, a unit Gaussian distribution G(θl; 0, 1) is multiplied to the
likelihood to constrain its nuisance parameter θl. The negative log-likelihood for both
the functional form fit and the NLOFit then becomes:

− logL(n |S,p,θ) ≈ 1

2
χ2(n, S,p,θ) +

1

2

∑︂
systs l

θ2l + const , (9.23)
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where in the case of the NLOFit, the constrained parameter space on p still needs to be
considered as specified in Equation (9.12). With the signal prediction incorporated, the
likelihood and the χ2 statistic of s+b fits now also depend on the expected number of
signal events S and the NPs θ parametrizing the systematic uncertainties.

In this analysis – as in most other di-X resonance searches [3, 4, 185, 186] – systematic
uncertainties on the jet energy scale and resolution are only applied to the signal templates
and not to the background. As the jet calibration is required to be a smooth function, the
effect of all jet uncertainties on the mjj spectrum itself has to be a smooth modulation
as well. The background fit absorbs any such smooth modulation. Thus, the sensitivity
to resonances atop the QCD background is not impacted, provided the modulation is
small enough to not significantly alter the statistical uncertainty of the observed mjj

spectrum.

9.4 Unblinding Strategy
It cannot be guaranteed a priori whether either method of the background estimate
provides a good description of the observed dijet mass spectrum and, if so, which degree
of freedom is necessary for the fit. To a certain extent, fit strategies can be tested without
the use of the analyzed data set by applying them to MC samples or to a partial data set
corresponding to the sensitivity of the previous TLA publication – both of which were
done to study the smoothness of the jet calibration in Section 6.3. However, the mjj

spectra constructed from these MC samples or partial data sets have larger statistical
uncertainties than the spectrum analysed in this thesis. Successful fits to the former
do not guarantee that the N -parameter dijet function or the NLOFit templates also
describe the latter.

Ultimately, the background estimate must be validated using the observed mjj spec-
trum. The procedure to validate and decide on a fit strategy must be defined while the
analysis is still blinded to avoid introducing experimenter’s bias. The term fit strategy
here refers to a specific combination of either the functional form fit with a certain
number of free parameters N or the NLOFit with a certain constraint strength σ.

The decision on a fit strategy is a three-step procedure:

• The fit strategy must provide a good description of the observed mjj spectrum.
This is defined to be the case if the observed p

(︁
χ2

)︁
-value exceeds 0.01.

• Pseudo-data is generated from the observed mjj spectrum. The fit strategy must
pass a series of validation tests on the pseudo-data.

• If multiple fit strategies are validated, the one with the lowest number of (effective)
parameters is selected for the functional form fit and for the NLOFit.

This decision is performed independently for both SRs since their different mjj range
and statistical precision can result in different preferred fit strategies. This way, one
functional form fit and one NLOFit strategy for each SR will be chosen, which can then
be used for cross-validation.
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9.4.1 Application of the Fit Strategies
The first step of the unblinding procedure is to apply the different fit strategies to
the observed mjj spectrum in each SR. The p

(︁
χ2

)︁
-value (Equation (9.17)) is used as

metric for the goodness of fit, where a fit with p
(︁
χ2

)︁
> 0.01 is considered to be a good

description of the data.
The potential presence of a resonance in the dijet mass spectrum adds additional

complexity to this definition: If a resonance is present, the background fit is not expected
to provide a good description of the observed mjj spectrum but rather show an excess at
the resonance mass, leading to a low p

(︁
χ2

)︁
. This case needs to be distinguished from the

background fit not properly describing the QCD background, which will also result in a
significant disagreement between the fit and the data and, consequently, a low p

(︁
χ2

)︁
.

Such a distinction can be made under the assumption that a potential resonance
is a narrow feature in the mjj spectrum, whereas the inability to describe the QCD
background leads to significant deviations not only in a localized region in the spectrum.
The effect of a resonance can thus be mitigated by masking a region of the mjj spectrum
from the fit. The masking algorithm is illustrated schematically in Figure 9.7, where
panels (a) and (b) show the case of a resonance and panels (c) and (d) show the case of
a bad description of the QCD background.7 It is defined as follows:

• If p
(︁
χ2

)︁
> 0.01 is found in the initial fit, nothing needs to be done. The fit is valid.

• If p
(︁
χ2

)︁
< 0.01 is found in the initial fit, the mjj range corresponding to the most

significant excess is identified with the BumpHunter [187, 188] algorithm. This
range is masked for a subsequent fit.

– If p
(︁
χ2

)︁
> 0.01 is found in the masked fit, the masked region likely contains

a localized excess (Figure 9.7b). The masked fit is valid.
– If p

(︁
χ2

)︁
< 0.01 is found in the masked fit, the bad description of the data is

not due to a localized effect (Figure 9.7d). The fit strategy is invalid.

The masked region is not included in the χ2 evaluation and ndf is corrected by the
number of masked bins for the determination of p

(︁
χ2

)︁
.

The same masking algorithm will also be applied for s+b fits to ensure that if the
spectrum shows a true resonance, signal hypotheses at other masses can still be tested.

The chosen threshold of 0.01 for p
(︁
χ2

)︁
has been previously determined as a suitable

choice for the masking decision in toy studies with injected signals in the order of the
search sensitivity [166].

Fit Results

Performing the functional form fit to the observed mjj spectra results in a good fit with
p
(︁
χ2

)︁
> 0.01 without masking in both SRs for a number of parameters N ≥ 4. The

fit results for various choices of N ≥ 4 are shown in Figure 9.8a for the J50 SR and in
Figure 9.8b for the J100 SR. Only the significance of the fit residuals, i.e. the fit residuals
in units of the statistical uncertainty per bin, is shown since the residuals are too small to
7 This algorithm fails if more than one significant resonance is present in the observed mjj spectrum.
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Figure 9.7: Schematic depiction of the applied masking procedure to allow for a successful
background fit in the case of a resonance in the mjj spectrum. (a) A resonance is present,
such that the background fit cannot describe the data well and a low p

(︁
χ2

)︁
-value is observed.

(b) A resonance is present and the area of the resonance has been masked for the fit. In the
remaining spectrum, the description of the data is good and a higher p

(︁
χ2

)︁
-value is observed.

(c) No resonance is present, but the fit cannot describe the shape of the QCD background in
data. A low p

(︁
χ2

)︁
-value is observed. (d) No resonance is present and the area of the most

significant excess has been masked for the fit. The description of the remaining spectrum is
still poor, resulting in a low observed p

(︁
χ2

)︁
-value.

be visible when overlaying the observed mjj spectrum and the fit. p
(︁
χ2

)︁
-values between

0.62 and 0.93 are observed in the J50 SR, depending on the chosen number of parameters
with a notable improvement in the fit quality by introducing the p5 to the fit. In the
J100 SR, p

(︁
χ2

)︁
-values between 0.029 and 0.044 are observed, with a small improvement

by adding p5 and negligible effect of p6 and beyond.
The NLOFit in the J50 SR yields a similar result, with a constraint strength σ ≥ 2

achieving good fits, as shown in Figure 9.8c. p
(︁
χ2

)︁
-values between 0.91 and 0.98 are

observed, where loosening the constraint beyond σ = 4 has a negligible effect on the
fit result. In the J100 SR, a good fit is achieved for σ = 4 – but only after the most
significant excess in the bin 2403GeV < mjj < 2464GeV is masked according to the
algorithm discussed above. For σ ≥ 8, a p

(︁
χ2

)︁
> 0.01 is observed already in the initial

fit without a masking applied. Figure 9.8d shows the residuals of these different fits. The
NLOFit with σ = 8 and the same mjj bin masked is included for comparison despite not
being selected by the unblinding algorithm. For the unmasked strategies, a p

(︁
χ2

)︁
-value

of 0.010 or 0.013 is observed, while the masked σ = 4 strategy achieves 0.017. Ultimately,
the unmasked fits are chosen, as will be discussed in Section 9.5.5.

Table 9.2 summarizes the fit strategies that achieve a good fit according to the
unblinding algorithm.

9.5 Fit Strategy Validation
The functional form fit and the NLOFit can be performed with arbitrary flexibility
within the previously found constraints of providing a sufficiently good description of the
observed mjj spectra. While a method with a higher number of (effective) parameters
generally provides a better fit to data, a too-flexible method could lead to a (partial)
absorption of a genuine signal into the background estimate. Conversely, a too-rigid
method could provide a suboptimal description of the data and thus lead to a bias in



92 9 Background Estimate

500 1000 1500

 [GeV]jjm

4−

2−

0

2

4

6

S
ig

n
if
ic

a
n

c
e

) = 0.001 5 par→4 p(F ) = 0.266 6 par→5 p(F

) = 0.464 7 par→6 p(F -1J50 SR, 15.0 fb

/n = 29.9/33, p = 0.6212χ

4-par fit

/n = 21.1/32, p = 0.9302χ

5-par fit

/n = 20.2/31, p = 0.9312χ

6-par fit

/n = 19.9/30, p = 0.9202χ

7-par fit

(a)

1000 2000

 [GeV]jjm

4−

2−

0

2

4

6

S
ig

n
if
ic

a
n

c
e

) = 0.233 5 par→4 p(F ) = 0.845 6 par→5 p(F

) = 1.000 7 par→6 p(F -1J100 SR, 132 fb

/n = 72.6/53, p = 0.0382χ

4-par fit

/n = 70.6/52, p = 0.0442χ

5-par fit

/n = 70.5/51, p = 0.0362χ

6-par fit

/n = 70.6/50, p = 0.0292χ

7-par fit

(b)

500 1000 1500

 [GeV]jjm

4−

2−

0

2

4

6

S
ig

n
if
ic

a
n

c
e

) = 0.006 4→: 2 σp(F ) = 0.589 8→: 4 σp(F

) = 0.734 16→: 8 σp(F -1J50 SR, 15.0 fb

/n = 20.9/30.9, p = 0.9132χ

 = 2σNLOFit, 

/n = 16.2/30.0, p = 0.9812χ

 = 4σNLOFit, 

/n = 16.0/29.0, p = 0.9752χ

 = 8σNLOFit, 

/n = 16.0/28.0, p = 0.9672χ

 = 16σNLOFit, 

(c)

1000 2000

 [GeV]jjm

4−

2−

0

2

4

6

S
ig

n
if
ic

a
n

c
e

) = 0.029 8→: 4 σp(F  

) = 0.201 16→: 8 σp(F -1J100 SR, 132 fb

/n = 71.6/48.4, p = 0.0172χ

 = 4 (masked)σNLOFit, 

/n = 64.4/47.3, p = 0.0502χ

 = 8 (masked)σNLOFit, 

/n = 74.1/48.3, p = 0.0102χ

 = 8σNLOFit, 

/n = 71.4/47.3, p = 0.0132χ

 = 16σNLOFit, 

(d)

Figure 9.8: Significance of the fit residuals observed by applying various fit strategies to the
observed mjj spectra in both SRs. Shown are residuals of the functional form fit (a) in the J50
SR and (b) in the J100 SR for a number of parameters N between 4 and 7 in different colours
and of the NLOFit (c) in the J50 SR and (d) in the J100 SR for the constraint strength σ
between 2 and 16 in different colours. χ2/ndf and the p

(︁
χ2

)︁
-value are indicated for each fit.

The p(F )-values are discussed in Section 9.5.5.
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Fit Strategies with p
(︁
χ2

)︁
> 0.01

Signal Region Functional Form Fit NLOFit

J50 N ≥ 4 σ ≥ 2

J100 N ≥ 4
σ ≥ 4 (masked)
σ ≥ 8 (not masked)

Table 9.2: Fit strategies that achieve a good description of the observed mjj spectrum in each
signal region with p

(︁
χ2

)︁
> 0.01 achieved either in the initial fit or after masking a localized

excess. The number of parameters N is shown for the functional form fit and the constraint
strength σ for the NLOFit.

the amount of signal identified by a fit.
Therefore, the fit bias must be estimated to validate a certain fit strategy. The methods

applied in this thesis expand upon the central ATLAS recommendations [189].

9.5.1 Pseudo-Data Generation

The validation of a fit strategy requires a data set that fulfils the following criteria:

• Statistical precision: The statistical uncertainties of the validation data set must
not be larger than those of the true data set.

• Accurate mjj spectrum: The mjj spectrum of the validation data set must
accurately represent the shape of the spectrum in the true data set.

• Absence of signal: The validation data set must not contain a true dijet resonance
to estimate the bias of the fit strategy on a background-like data set.

These criteria can be met by generating pseudo-data (PD) based on a background-like
mjj template extracted from data.

To extract such a template, statistical fluctuations must be smoothed out while
retaining the underlying shape of the mjj spectrum. This smoothing is achieved by
performing a fit with the same method as the fit to be validated: A functional form
fit to the observed mjj spectrum serves as the PD template for the validation of the
functional form fit strategies. A PD template from an NLOFit is used for the NLOFit
validation, respectively. Using the background-only fit (with potential masking applied)
ensures that no significant signal contamination is present in the template.

The template must be extracted with a fit of a higher number of (effective) parameters
than the fit to be validated to prevent circular reasoning. In this analysis, an increase
of the (effective) number of parameters of 1 is chosen. For example, the 4-parameter
functional form fit is validated on PD generated from a 5-parameter template and the
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σ = 2 NLOFit is validated with a template from a σ = 4 NLOFit.8 If the strategy with
a lower number of (effective) parameters can be validated using PD generated from the
more flexible template, that means the additional (effective) parameter is not necessary
for a sufficient description of the data.

Toy experiments are generated by adding Poissonian fluctuations to the templates
extracted in both SRs so that the statistical uncertainties match those in the true data
set. From here on, these toys are referred to as PD.

9.5.2 Spurious Signal
The bias of the individual fit strategies is estimated using the background-like PD. s+b
fits9 are performed on the toy experiments to find the distribution of the amount of
signal Sfit determined in the fits.

The mean of that distribution is labelled spurious signal (Sspur) and is a direct measure
of the fit bias:

Sspur ≡ ⟨Sfit⟩toys . (9.24)

The standard deviation σfit of the distribution is an estimator for the uncertainty of the
s+b fit.

The fit is expected to perform nearly unbiased, i.e. the spurious signal is supposed to
be small compared to the fit uncertainty. The acceptable threshold is set to be⃓⃓

Sspur
⃓⃓
< 0.5σfit . (9.25)

This threshold ensures that the additional spurious signal uncertainty will be small in
comparison to the inherent fit uncertainty when added in quadrature (

√︁
σ2

fit + (0.5σfit)2 ≈
1.12σfit). Additionally, a larger fit bias could lead to a potential undercoverage of the
exclusion limits placed by this analysis due to the likelihood penalty introduced by the
Gaussian constraint term of the systematic uncertainty, as discussed in [189].

For each fit strategy, the spurious signal distributions are determined in 1000 toy
experiments for all signal hypotheses (Gaussian and Z ′ signals, all resonance masses and
Gaussian widths) considered in this analysis. Figure 9.9 shows the resulting distributions
for two exemplary signal models: (a) a narrow, 5%-width Gaussian resonance at 550GeV
in the J50 SR and (b) a wide, 15%-width Gaussian resonance at 1600GeV. The fit
results of the 5-parameter functional form fit (blue) and the σ = 8 NLOFit (red) are
included. Approximately Gaussian distributions are observed in these examples and for

8 Different smoothing methods, like a narrow sliding-window fit, were tested. Those provide additional
hyper-parameters, leading to an ambiguity between a validation of the fit strategy and the smoothing
method. Extracting the template from a partial data set was also tested to potentially validate the fit
methods before unblinding the analysis. However, this leads to the inflation of fluctuations of the
partial data set if the template is to have a higher number of (effective) parameters than the fit to be
validated.

9 These s+b fits include the systematic uncertainties on the signal as described in Section 9.3. Thus,
their effect is properly propagated in the evaluation of the fit bias. Additionally, the same masking
algorithm as described in Section 9.4 is applied in all toy fits here and in the following validations to
test the same fit conditions that are also applied to data.
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Figure 9.9: Exemplary distributions of the number of signal events determined by s+b fits in
background-only PD. Functional form fit results with a 5-parameter dijet function, performed
on PD from a 6-parameter template, are shown in blue and NLOFit results with σ = 8,
performed on PD from a σ = 16 template, are shown in red. The chosen signal hypotheses are:
(a) Gaussian resonance with mass 550GeV and 5% width and (b) Gaussian resonance with
mass 1600GeV and 15% width.

all other tested signal hypotheses, indicating good fit stability. The examples highlight a
case of good agreement between the functional form fit and the NLOFit with a small
bias in Figure 9.9a. However, Figure 9.9b shows a case of small bias for the functional
form fit but a significantly higher fit uncertainty and bias observed with the NLOFit,
where the requirement in Equation (9.25) is not met.

Figure 9.10 summarizes Sspur and σfit determined for the functional form fit with
various choices of the number of parameters N in the J50 SR (left column) and in
the J100 SR (right column). The bias and uncertainty in terms of absolute event
numbers decrease with the resonance mass due to the QCD background falling with mjj .
Simultaneously, narrower resonances exhibit smaller uncertainties than wider resonances.
This is primarily due to a resonance spreading across a wider mjj range, resulting in a
larger QCD background in the relevant signal window. To a lesser extent, the tendency
of background fit to adapt to wide resonances better than to narrow resonances leads to
an increased ambiguity between signal and background component for wide resonances
and, hence, an increased uncertainty.

The ratio Sspur/σfit is shown in each figure to judge the compliance with the spurious
signal criterion in Equation (9.25). Significant spurious signals that exceed the 50%
threshold are observed for the 4-parameter functional form fit in both SRs (top row of
Figure 9.10). The mass dependence of the fit bias corresponds to the difference between
the 4-parameter and 5-parameter fits to the observed mjj spectra, which is especially
large in the J50 SR (see Figures 9.8a and 9.8b). When generating the 5-parameter
PD template, this template is not entirely describable by a 4-parameter fit, with the
difference showing up as spurious signal. Although this difference is seemingly small in
the J100 SR, it can still result in a non-negligible spurious signal.

The 5- (middle row) and 6-parameter (bottom row) functional form fits fulfil the
spurious signal requirement, which is consistent with the negligible difference between the
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Figure 9.10: Summary of Sspur (points) and σfit (error bars) of the spurious signal tests for
the functional form fit (a,c,e) to J50 PD and (b,d,f) to J100 PD for different choices of the
number of parameters N . the results are shown as a function of resonance mass for resonance
widths of 5% (blue), 10% (yellow), and 15% (red). The bottom panel of each figure shows
the ratio Sspur/σfit with the dashed lines indicating the required threshold of

⃓⃓
Sspur

⃓⃓
< 0.5σfit.

Small horizontal shifts are added to improve the readability of the different signal widths.
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Figure 9.11: Summary of Sspur (points) and σfit (error bars) of the spurious signal tests for
the NLOFit (a,c,e) to J50 PD and (b,d,f) to J100 PD for different choices of the constraint
strength σ. the results are shown as a function of resonance mass for resonance widths of 5%
(blue), 10% (yellow), and 15% (red). The bottom panel of each figure shows the ratio Sspur/σfit
with the dashed lines indicating the required threshold of

⃓⃓
Sspur

⃓⃓
< 0.5σfit. Small horizontal

shifts are added to improve the readability of the different signal widths.
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corresponding fit results to the observed mjj spectrum shown in Figures 9.8a and 9.8b.
The spurious signal determination of the functional form fit with Z ′ signals is docu-

mented in Appendix D.1. The results are consistent with the Gaussian signals found
here: 5- and 6-parameter functional form fits fulfil the criterion for nearly unbiased fits.

Figure 9.11 summarizes the corresponding results of the NLOFit for both SRs. The
uncertainties σfit are significantly larger than those of the functional form fit for wide
signals of low masses in the J50 SR. The former indicates that the NLOFit flexibility
is so high that the sensitivity to wide signals is reduced. The latter is potentially a
result of multiple PDF variation templates having a zero-crossing at 400–500GeV, which
accordingly increases the fit flexibility in that region.

While the J50 SR fulfils the spurious signal requirement for constraints σ ≥ 4 within
the comparatively large fit uncertainties, the same does not hold true for the J100 SR. A
significant fit bias is observed for all tested values of the constraint strength. This fit bias
is also observed in a validation test where the PD is generated from a template with the
same flexibility as the NLOFit to be validated. This indicates that the observed fit bias
is not a result of the inability of the to-be-validated fit to describe the shape of the PD
template. Instead, the bias in s+b fits appears to be inherent to the fit method. This
bias is not expected to be a result of the constraint terms g(pk) for the fit parameters
introduced in the likelihood (Equation (9.10)), since uniform constraints should not bias
the fit parameters towards specific values. Instead, the bias is potentially a result of a
failure to identify the global minimum of the high-dimensional likelihood.

The NLOFit is accordingly not validated for s+b fits and instead only used for the
background-only interpretation in this analysis. While the NLOFit does fulfil the spurious
signal criterion in the J50 SR, its increased uncertainties at low masses make it non-
competitive with the sensitivity of the functional form fit in this SR. Hence, no s+b
interpretation is performed with the NLOFit in either SR.

Spurious Signal Uncertainty

To account for the bias observed in the functional form fit, a spurious signal uncertainty
is added to s+b fits. This uncertainty is set to a constant 0.5σfit for all signals as the fit
bias is ensured to be smaller than this upper limit. It is included in the likelihood of
s+b fits by identifying

Sfit = S + Sspur (9.26)

in Equation (9.18), where Sfit is the best-fit number of signal events, S is the number
of true signal events and Sspur is the number of spurious signal events. Sspur is then
constrained to stay within its uncertainty by an additional nuisance parameter and
Gaussian constraint term in the likelihood. Spurious signal is thus considered as a second
source of signal that is indistinguishable from a true signal.

The spurious signal uncertainty simultaneously accounts for the inherent fit bias and
the effect of not including one additional parameter in the N -parameter dijet function.

9.5.3 Signal Injections
A signal injection test probes the ability of a fit strategy to correctly determine the
amount of signal present in a data set. It is performed similarly to the spurious signal
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test, with the difference that a signal of the expected hypothesis is injected with a certain
amplitude on top of the background-only PD.

The amplitude of the injection is denoted in units of
√
B, which takes into account

the square root of the number of background events in the full-width-at-half-maximum
(FWHM) range of the signal in question:

√
B ≡

√︄ ∑︂
bins i in FWHM

νb
i∫︂

FWHM

s(x) dx
. (9.27)

It is corrected by the integral of the normalized signal distribution s
(︁
mjj

)︁
over this range

so that amplitudes expressed in units of
√
B always correspond to the signal-to-square-

root-of-background ratio in the signal’s FWHM window. This definition ensures that
signals at the sensitivity limit of this search correspond to an amplitude in the order of
3
√
B regardless of signal mass and width.10

With injected signal, the desired behaviour is a linear relationship between the ex-
pectation value of Sfit and the number of injected signal events Sinj. The definition of
spurious signal in Equation (9.24) is generalized accordingly such that Sspur is now the
deviation of the mean of distribution from Sinj:

Sspur ≡ ⟨Sfit⟩toys − Sinj . (9.28)

By requiring the same threshold for the spurious signal in Equation (9.25) regardless
of the amplitude of the injected signal, a good linearity between Sinj and ⟨Sfit⟩ is ensured.

For each signal hypothesis and injection amplitude, 100 toy experiments are performed.
This number of toys is sufficient as the Gaussian distribution of Sfit was already validated
in the spurious signal test without injection.

Figure 9.12 shows the validation of the 5-parameter functional form fit for Gaussian
resonances using PD generated from a 6-parameter template. Each row corresponds to
Gaussian widths of either 5%, 10%, or 15%. The left column shows the validation of the
J50 SR and the right column shows the J100 SR. The determined values of ⟨Sfit⟩ ± σfit
are shown as a function of the amount of injected signal for different tested signal masses.
In general, very good linearity and good agreement with the optimal behaviour indicated
by the dashed diagonal line are observed for each tested signal hypothesis.

Accordingly, the 5- and 6-parameter functional form fits pass the signal injection test
in both SRs. The injection of Z ′ signals is shown in Appendix D.2, where the same result
is found and both strategies are validated.

For completeness, these signal injection tests were also performed with the NLOFit
despite it not being validated for s+b fits. While the absolute amount of spurious signal
still exceeds the maximal allowed threshold, it is nearly independent of the amount of
injected signal. This indicates that the fit bias of the NLOFit method is most likely not
a result of a tendency to partially absorb signals.

10 An exception are wide signals towards the edge of the fit range where the search sensitivity is reduced.
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Figure 9.12: Number of signal events (⟨Sfit⟩ ± σfit) determined by a 5-parameter functional
form fit in PD as a function of the amount of injected signal under different signal hypotheses.
The absolute value of the spurious signal in units of the fit uncertainty is shown in the bottom
panels. The dashed lines at ±0.5 indicate the required maximal limit on the spurious signal.
Small horizontal shifts around the integer injection amplitudes are added to improve the
readability of the different signal masses.
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9.5.4 Background Stability
The reliable extraction of the number of signal events from (pseudo-)data necessitates
that the background component of an s+b fit is sufficiently robust to not be strongly
influenced by the presence of signal. If this were not the case, it would most likely result
in a non-linear relationship between ⟨Sfit⟩ and Sinj in the previous section.

Nonetheless, the stability of the background component of s+b fits is verified with
a dedicated test. For this, the same N -parameter s+b fits to 100 toys generated from
an (N + 1)-parameter template with injected signals are considered. The background
component of the s+b fits is compared to the background-like PD template. Any
difference between the two then arises due to

• a difference between the N - and (N + 1)-parameter function shapes,

• statistical fluctuations in the toys, or

• the adaptation of the background component of the s+b fit to the presence of
signal.

The latter case is expected to show as a distortion of the background component around
the mass of the injected signal.

For each considered signal hypothesis, an injection amplitude corresponding to the
expected sensitivity is chosen – for consistency 3

√
B in the definition of Equation (9.27).

The fit distortion is required to stay below three times the statistical uncertainty for any
individual toy experiment and the ensemble of toy fits is required to show no significant
systematic bias.

Figure 9.13 shows the toy fit results of the 5-parameter functional form fit relative to
the reference spectra for a few selected Gaussian signal hypotheses. These show that
the toy fit results exhibit a certain variance around the reference spectrum due to the
Poissonian fluctuations applied to the PD toys. This variance increases around the tested
resonance mass due to the ambiguity between the signal and background component in
this region of the mjj spectrum. The increase in variance is largest in the J50 SR and
towards the edge of the mjj fit range. This is potentially due to the J50 SR covering a
shorter mjj range, which provides a weaker constraint on the fit. The increased variance
towards the edge of the fit range is most likely due to fewer data points constraining the
fit in this region.

The mean of the ensemble of toy fits is consistent with the reference spectrum for all
tested signal hypotheses, validating the absence of a significant bias. This test is also
well suited to verify a continuous spread of the fit results arising from the statistical
fluctuations of the toys and to assure the absence of rare outliers.

The 5- and 6-parameter functional form fit are validated in both SRs for Gaussian
and Z ′ signals. The results of the latter are shown in Appendix D.2.
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Figure 9.13: Background stability test of a 5-parameter functional form fit (a,c) to J50 PD
and (b,d) to J100 PD for selected Gaussian signal hypotheses. The background component of
s+b fits to PD toys with injected signal is compared to the background-only component of the
PD (reference).
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9.5.5 Choice of the Fit Strategy
A final fit strategy to be used in this analysis must be chosen for each SR from the fit
strategies validated above. This choice is made separately per SR and for the functional
form fit and the NLOFit, where the latter is only considered for background-only fits. In
each case, the fit strategy with the lowest number of (practical) parameters is chosen if
increasing this number further does not significantly improve the fit result.

F -Test

When increasing the complexity of a fit model, its description of the data will in general
improve – barring instabilities of the fit in higher dimensions. This improvement of χ2

could result from a better modelling of the underlying physics or simply from a better
adaptation to statistical fluctuations.

The significance of the improvement due to an additional (effective) fit parameter can
be evaluated by an F -test. While this test is, in general, defined for the comparison of the
variance of two samples, it can be applied to compare the χ2 of two nested fit methods
performed on the same data set [189, 190]. Nested fit methods refer to a nominal and an
alternative fit strategy of different complexity where the nominal is a special case of the
alternative - e.g. the functional form fit with different choices of N or the NLOFit with
different choices of σ.

For this application, the F -test uses the test statistic

F =

(︁
χ2

nom − χ2
alt
)︁
/ (ndfnom − ndfalt)

χ2
alt / ndfalt

. (9.29)

If the alternative method does not provide a better description of the true behaviour,
such that the difference in χ2 is due to statistical fluctuations alone, the expected
probability density of F is given by the Fisher–Snedecor distribution fF , for which an
analytic expression exists [190].

Thus, a p-value can be determined by integrating the Fisher–Snedecor distribution:

p(F ) =

∞∫︂
F

fF (z; ndfnom − ndfalt, ndfalt) dz . (9.30)

A low p(F )-value indicates a significantly better description of the data by the altern-
ative (higher-complexity) model, while a high p(F )-value indicates that the difference is
compatible with statistical fluctuations alone.

For this analysis, an F -test is performed for each fit strategy relative to the one
with (approximately) one additional (effective) parameter. A value p(F ) > 0.05 is then
required to select the lower-complexity fit. The p(F )-values determined for the functional
form fit and the NLOFit are shown in Figure 9.8.

Functional Form Fit. For the functional form fit, N = 4 is not considered as it has
not passed the validation tests above. In both SRs, p

(︁
F5→6pars

)︁
> 0.05 is observed,

indicating that the 5-parameter function provides a sufficient description of the observed
data. Accordingly, the 5-parameter functional form fit is selected for both SRs.
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NLOFit. The NLOFit is not validated for s+b fits. Nonetheless, the F -test can be
used to find the proper degree of complexity for the background-only fits. In the J50 SR,
p(Fσ:2→4) = 0.006 is observed, indicating that the σ = 4 NLOFit provides a significantly
better description of the data. The difference with σ = 8 is then found to be insignificant.
Therefore, the σ = 4 NLOFit is selected for the J50 SR.

In the J100 SR, the applied masking must be taken into account. The test statistic F
in Equation (9.29) can only be meaningfully constructed if both fit models describe the
same data with the same binning. A fit with a masked excess can thus not be compared
to an unmasked fit. Instead, a comparison between σ = 4 and σ = 8 is performed where
both fits have the same mjj region masked. Here, p(Fσ:4→8) = 0.029 is observed, meaning
that the masked σ = 4 NLOFit provides a suboptimal description of the data. For σ ≥ 8,
the unblinding algorithm found no necessity for masking. Thus, the unmasked σ = 8
and σ = 16 NLOFit are compared, where p(Fσ:8→16) > 0.05. Therefore, the unmasked
σ = 8 NLOFit is selected for the J100 SR.

Summary of the Fit Strategies

For each SR, one fit strategy for the functional form fit and one for the NLOFit have
been selected with the tests and algorithms described in the previous sections. The final
choice for each is summarized in Table 9.3.

Selected Fit Strategy
Signal Region Functional Form Fit NLOFit

J50 N = 5 σ = 4
J100 N = 5 σ = 8

Table 9.3: Fit strategies selected for the background estimate in each SR. The number of
parameters N is shown for the functional form fit and the constraint strength σ for the NLOFit.
No masking of a localized mjj region is applied for any fit strategy.
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Having defined the fit strategies in the previous chapter, they are now applied to the
observed mjj spectra in both SRs to estimate the SM background. This allows searching
for BSM resonances in the observed spectra as excesses over the estimated background.
This chapter presents two interpretations of the search:

Background-only interpretation. A background-only fit is performed to test the
compatibility of the data with a smoothly falling spectrum. Potential excesses are
quantified with minimal assumptions on the resonance shape to search for BSM physics
in a nearly model-agnostic way.

Signal interpretation. The compatibility of the data with specifically selected Gaus-
sian or Z ′ resonances is tested. With these assumed signal shapes, s+b fits to the data
are performed to derive exclusion limits on the signal cross section. This interpretation
is more sensitive to the chosen signal models at the expense of having to assume a
resonance shape.

10.1 Background-Only Interpretation
The consistency of the observed dijet mass spectrum with a smoothly falling SM back-
ground can be quantified with the p

(︁
χ2

)︁
-value alone. However, this does not provide the

optimal sensitivity to a localized resonance since it considers all mjj bins simultaneously
and independently of each other. A true resonance, on the other hand, would likely
result in a correlated excess in one or several adjacent mjj bins.

10.1.1 The BumpHunter Algorithm
The BumpHunter algorithm [187, 188] is a suitable choice to identify such a localized
excess. It is designed to identify the window of adjacent bins in a spectrum, in which the
observed number of events most significantly deviates from the background expectation.
No assumption on the resonance width or shape is made.

The BumpHunter algorithm constitutes a hypertest that combines the result of
many individual hypothesis tests into a single test statistic. It iterates over all possible
windows of adjacent bins in the mjj spectrum, starting with windows one bin wide and
increasing in width up to a configurable upper threshold for the window size (typically
half of the fit range). In each of these windows, the observed number of events n and
the estimated background events ν are summed as if the window were a single bin:

n =
∑︂
bins i

in window

ni , ν =
∑︂
bins i

in window

νi . (10.1)
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Each of these windows is assigned a local p-value based on the Poissonian probability to
observe at least as many events1 as seen in data:

plocal(n, ν) =

{︄
Γ(n, ν) if n > ν ,
1 if n ≤ ν ,

(10.2)

where

Γ(n, ν) =
∞∑︂
k=n

νk

n!
e−ν (10.3)

is the lower incomplete gamma function.
Since many statistically independent windows are tested for excesses, the look-elsewhere

effect [191] must be accounted for. It describes that if e.g. 100 independent tests are
performed, on average one of them will find a p-value below 0.01 due to statistical
fluctuations alone. The local p-value for an excess in a specific window must hence be
translated into a global p-value to find an excess in any of the windows.

For that purpose, the BumpHunter algorithm defines the test statistic

t = min
windows

(− log plocal) , (10.4)

which identifies the most significant excess of all considered windows. The expected
distribution of t is determined numerically to high accuracy by drawing 104 Poissonian
fluctuated toy distributions from the background expectation and computing t for each
of these toys. The global BumpHunter p-value is then given by the probability for a
toy distribution to exhibit a more significant excess than the data. This corresponds to
the fraction of toys for which t exceeds the observed value tobs:

p(BH) = #toys with t > tobs

#toys
. (10.5)

This way, p(BH) by definition follows a uniform distribution between 0 and 1 if excesses
over the background estimate are due to statistical fluctuations alone. Observing, for
example, p(BH) < 0.05 then means that less than 5% of background-like toys exhibit
a larger excess than the most significant one in data. Such an observation can be
interpreted as evidence for a dijet resonance causing a deviation of the data from the
background expectation.

10.1.2 The Sensitivity of BumpHunter

The determination of p(BH) assumes the ideal case that the background estimate is fixed
and does not depend on the specific (toy) data set. In a realistic scenario, fluctuations
in the data will influence (pull) the background fit, such that large excesses are rarer
than estimated by the global BumpHunter p-value. The amount of pull depends on
the flexibility of the background fit.

1 An analogous p-value for deficits instead of excesses is also defined but not used in this search.
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Figure 10.1: Distribution of the global BumpHunter p-values as determined in functional
form fits (blue) or NLOFits (red) to 1000 PD toy data sets corresponding to the J100 SR. The
statistical fluctuations due to the limited number of toys are indicated as coloured error bars.
The PD is drawn from a template with one additional (effective) fit parameter. A bias towards
high p-values is visible which indicates an adaptation of the fit to statistically induced excesses.
This bias is stronger for the NLOFit.

This effect can be seen by performing background-only fits to PD.2 Figure 10.1 shows
the distribution of the global BumpHunter p-values as determined in background-only
fits to 1000 toy data sets representing the J100 SR.

A bias towards high p-values is observed for both the functional form fit (blue) and the
NLOFit (red), which indicates that both fit methods adapt to excesses that are caused
by statistical fluctuations. This effect is stronger for the NLOFit, which aligns with the
larger fit uncertainties observed for the NLOFit in Section 9.5.2. Such an over-flexibility
can result in a reduced sensitivity of the BumpHunter search to resonances as parts of
the signal are absorbed by the background-only fit.

In order to estimate the sensitivity to signals, Gaussian resonances are injected into
the PD. For each combination of resonance mass, width, and amplitude, the distribution
of the global BumpHunter p-values is determined in background-only fits to 200 toy
data sets. The features of those distributions are summarized in Figure 10.2 for the
functional form fit and in Figure 10.3 for the NLOFit. The coloured boxes represent the
median and the 16% and 84% quantiles such that 68% of the distribution is contained
within them. The coloured dashed lines represent the 5% and 95% quantiles. The
bottom panels show the ratio of toys for which a global BumpHunter p-value below
0.05 is found, which would indicate a significant excess.

Expectedly, a trend towards lower p(BH) with increasing amount of injected signal is
observed. This means that it becomes more likely for a toy data set to have a significant
excess identified by the BumpHunter algorithm. In units of

√
B, a signal is more

likely to be identified if it is higher in mass due to a larger number of data points below

2 The same method for the generation of the PD as outlined in the previous chapter is used, with the
template corresponding to a fit with (approximately) on additional (effective) fit parameter.
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Figure 10.2: Median and spread of the global BumpHunter p-value determined in background-
only functional form fits to 200 toys of (a,c,e) J50 PD and (b,d,f) J100 PD. Gaussian signal of
(a,b) 5%, (c,d) 10%, or (e,f) 15% width at various masses are injected. The coloured boxes
indicate the median and the central 68% of the distribution, while the coloured dashed lines
correspond to the central 90% of the distribution. The fraction of toys for which a p-value below
0.05 is found is indicated in the bottom panels as a function of the injected signal amplitude.
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Figure 10.3: Median and spread of the global BumpHunter p-value determined in background-
only NLOFits to 200 toys of (a,c,e) J50 PD and (b,d,f) J100 PD. Gaussian signal of (a,b) 5%,
(c,d) 10%, or (e,f) 15% width at various masses are injected. The coloured boxes indicate the
median and the central 68% of the distribution, while the coloured dashed lines correspond
to the central 90% of the distribution. The fraction of toys for which a p-value below 0.05 is
found is indicated in the bottom panels as a function of the injected signal amplitude.
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Figure 10.4: Amplitude of a Gaussian resonance that is necessary to reach a BumpHunter
p-value below 0.05 using (a) the functional form fit and (b) the NLOFit as background estimate.
The median and the ±1σ quantiles of the amplitudes determined in 200 toys are shown.
Gaussian resonances of 5% (blue), 10% (orange), and 15% width (red) are tested.

the signal that constrain the background-only fit, reducing its ability to absorb parts
of the signal. Simultaneously, narrow signals are much more likely to be identified by
BumpHunter since the background-only fit adapts less easily to narrow signals.

For an easier interpretation of the BumpHunter sensitivity in terms of resonance cross
sections, the determined p(BH)-values as a function of signal amplitude are interpolated
for each toy experiment to find the necessary signal amplitude to reach p(BH) = 0.05.3
Figure 10.4 shows the median and the uncertainty band corresponding to the 16% and
84% quantiles of the necessary Gaussian resonance amplitude, using the functional form
fit background estimate in panel (a) and the NLOFit in panel (b). The amplitudes are
expressed in terms of the visible signal cross section times the branching ratio into a dijet
signature in order to facilitate a comparison with the dedicated signal interpretation
discussed in Section 10.2.3.

The comparison of the functional form fit result shows, that the search sensitivity
of BumpHunter to signals is lower than that of a dedicated search for Gaussian
resonances by a factor of 1.5–2 for narrow resonances. This factor increases to 3 for wider
resonances, due to the stronger adaptation of the background-only fit to wide resonances.
The NLOFit provides comparable results for narrow resonances, but a stronger loss in
sensitivity to wide resonances – a factor of up to 5. This reflects the stronger adaptation
of the NLOFit to wide signals that was already observed in s+b fits in Section 9.5.2.

In general, the BumpHunter search provides lower sensitivity to potential resonances
than a dedicated s+b fit with the specific signal under test. In return, it is a relatively
model-agnostic search for which no assumption on the signal shape needs to be made,
other than it being a localized excess in the mjj spectrum.

3 Additional injection amplitudes are included to provide more points for the linear interpolation and
to reliably reach p(BH) < 0.05 for each toy experiment.
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Figure 10.5: Background-only fits to the observed mjj spectra in the J50 SR (red) and the
J100 SR (blue), using (a) the functional form fit and (b) the NLOFit as background estimate.
The significance of the fit residuals is shown in the bottom panels, where the region identified
as the most significant excess by the BumpHunter algorithm is shown as solid-filled bins.

10.1.3 Results
Figure 10.5a shows the results of the functional form fit to the observed mjj spectrum in
the J50 SR (red) and in the J100 SR (blue). The significance of the fit residuals is shown
in the bottom panel. The background-only fit describes the data well, achieving a p

(︁
χ2

)︁
-

value of 0.93 (0.04) in the J50 SR (J100 SR). The most significant excess is observed
in the J100 SR in the bin 2403GeV < mjj < 2464GeV with a global BumpHunter
p-value of 0.26. This corresponds to a global significance of 0.7σ.

Figure 10.5b shows the corresponding results with the NLOFit background estimate.
A similarly good description of the data is achieved, with an observed p

(︁
χ2

)︁
-value of

0.98 (0.01) in the J50 SR (J100 SR). The same mjj bin as for the functional form fit
corresponds to the most significant excess. It is assigned a global BumpHunter p-value
of 0.17, which corresponds to a global significance of 1σ.

In the J50 SR, different mjj regions are identified to be the most significant excess
with the two background estimates. This is the result of these two windows providing
similar local p-values, such that a small difference in the background estimate can result
in either of the two being the most significant excess. Global BumpHunter p-values
of 0.81 and 0.99 are observed for the functional form fit and the NLOFit, respectively,
which both correspond to a global significance of ∼0.

Overall, the functional form fit and the NLOFit provide compatible background
estimates, resulting in only minor differences in the fit residuals between them. This
serves as cross-validation that either method achieves a reliable background estimate.
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10.2 Signal Interpretation
No significant excess is observed in the dijet mass spectrum as it exhibits good compat-
ibility with a smoothly falling background. Therefore, signal models for which an excess
would be expected – generic Gaussian resonances and a Z ′ resonance in this thesis – can
be constrained. The goal here is to determine the maximal amount of potential signal for
which the signal-plus-background hypothesis H1 still provides an adequate description of
the data in comparison to the background-only hypothesis H0.

The signal interpretation is solely based on the functional form fit as background
estimate, since the NLOFit failed the validation for s+b fits.

10.2.1 Derivation of Limits
Signal models are constrained by deriving confidence intervals for model parameters.
This process is reduced to a one-dimensional problem by assuming fixed values for
model parameters like resonance mass and decay width and then constraining a model
parameter of interest under this assumption – typically the signal cross section or a
variable proportional to it. In the absence of an excess, the confidence interval for this
parameter of interest becomes an upper exclusion limit. The process is repeated for
all considered combinations of the other model parameters to constrain the model’s
parameter space.

In this thesis, the CLs method is used to derive frequentist-motivated exclusion limits
[192]. It provides a modified confidence level (CL) taking both hypotheses H0 and H1

into account. The following description is based on the CLs calculation typically used in
ATLAS [193].

The derivation of confidence levels relies on the likelihood of the observed data
under the hypothesis H1 with a number S of expected signal events, which is given
in Equation (9.23). The parameter S is considered as the parameter of interest under
which the hypothesis test is performed. The test statistic q̃S is based on the profile
likelihood ratio λ, which provides the most powerful hypothesis test according to the
Neyman-Pearson lemma [194]:

q̃S =

⎧⎪⎪⎨⎪⎪⎩
−2 log λ(S, 0) if ˆ︁S < 0 ,
−2 log λ(S, ˆ︁S) if 0 ≤ ˆ︁S ≤ S ,
0 if ˆ︁S > S ,

(10.6)

λ
(︁
S, ˆ︁S)︁ = L

(︂
n
⃓⃓⃓
S, ˆ︁pS, ˆ︁θS

)︂
L
(︂
n
⃓⃓⃓ ˆ︁S, ˆ︁pˆ︁S, ˆ︁θˆ︁S

)︂ , (10.7)

where ˆ︁pS and ˆ︁θS are the vectors of fit and nuisance parameters that maximize L(n |S,p,θ)
for a given S. ˆ︁S is the best-fit signal amplitude, which corresponds to the global
maximum of L

(︁
n|ˆ︁S, ˆ︁pˆ︁S, ˆ︁θˆ︁S)︁. The test statistic q̃S is thus always positive and, for a fixed

signal hypothesis, increases monotonically with increasingly background-like observations.ˆ︁S ≥ 0 is required to consider only positive signal cross sections as underlying truth.
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S ≥ ˆ︁S ensures that a one-sided confidence interval is derived, which prevents the exclusion
of a signal hypothesis if an upward fluctuation in the data causes the best-fit ˆ︁S to exceed
the tested S.

To derive a confidence level from an observed value q̃obs
S , the expected distribution

f(q̃S |S ′) for an assumed true value of the signal amplitude S ′ must be known. This
distribution can be estimated with toy experiments. However, this is computationally
intensive for high-dimensional likelihood fits as used in this analysis. Instead, the
asymptotic approximation with the Asimov approach detailed in Ref. [195] is used. It
provides an analytic description for f(q̃S |S ′) under the assumption of large event counts
and of the best-fit value ˆ︁S being Gaussian distributed around the true value S ′. Both
assumptions hold for this analysis: Large event counts of at least 100 are observed
even in the lowest-statistics mjj bins of 1GeV width, and the approximately Gaussian
distribution of ˆ︁S has been validated in Section 9.5.2.4

The confidence level CLs+b is defined as the probability of an experiment to find a
test statistic q̃S that is less signal-like than the observed value q̃obs

S if H1 with signal
amplitude S were true:

CLs+b(S) ≡ P
(︂
q̃S ≥ q̃obs

S

⃓⃓⃓
H1

)︂
=

∫︂ ∞

q̃obs
S

f
(︁
q̃S |S

)︁
dq̃S . (10.8)

This probability is translated into a confidence interval by defining a threshold α and
rejecting H1 for values of S for which CLs+b(S) < α. This confidence interval becomes
an upper limit on S with the chosen definition of the test statistic q̃S in Equation (10.6).
Signal amplitudes above this upper limit are then excluded at a 1− α confidence level.
Typically, α = 0.05 is chosen such that 95% CL limits are derived.

The use of CLs+b to derive exclusion limits has the unphysical feature that it can
potentially exclude signals it is not sensitive to. This can be seen for a hypothetical
experiment with low sensitivity, i.e. low power to distinguish H0 and H1. The latter is
the case if f(q̃S |S) and f(q̃S | 0) are similar distributions. If a downward fluctuation
in the data results in a value of q̃obs

S in the upper tail of the expected distribution, this
can result in H1 being rejected. This is unphysical since the data are (almost) equally
incompatible with H0 and no statement about a preferred hypothesis should be made.

This unphysical behaviour is addressed in the CLs method by penalizing CLs+b by the
incompatibility of the data with H0:

CLs(S) ≡
CLs+b(S)

1− CLb(S)
, (10.9)

1− CLb(S) ≡ P
(︂
q̃S ≥ q̃obs

S

⃓⃓⃓
H0

)︂
=

∫︂ ∞

q̃obs
S

f
(︁
q̃S | 0

)︁
dq̃S . (10.10)

While CLs(S) cannot be strictly interpreted as a probability or a p-value, it is used
analogously to derive confidence intervals by rejecting H1 if CLs(S) < α. If the observa-
tion is consistent with H0, the result is similar to a CLs+b confidence interval because
4 The assumption that the mean of that distribution is the true signal amplitude S′ is one of the

reasons that the spurious signal is required to be small in comparison to the standard deviation of
this distribution.
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1− CLb(S) is of order 1. Conversely, the unphysical rejection of H1 by an insensitive
experiment is suppressed because CLs+b(S) and 1− CLb(S) are of similar magnitude in
this case. Confidence intervals derived with the CLs method are always more conservative
than those derived with the CLs+b method because 0 ≤ CLb(S) < 1 and consequently
CLs(S) > CLs+b(S).

The procedure described above results in the observed limit on the signal amplitude
S. The expected limit is derived analogously by using the median value q̃AS of the test
statistic expected under H0 in place of q̃obs

S . Uncertainty bands of ±1, 2σ on the expected
limit are derived by using the corresponding quantiles of f(q̃S | 0).

10.2.2 Limit Coverage
In a frequentist interpretation, confidence intervals have an associated coverage. It
describes the expected fraction of experiments for which the derived confidence interval
contains the true value S ′ of the parameter of interest [196]. While CLs+b limits provide
perfect coverage, their use is discouraged due to the unphysical feature described above.

CLs exclusion limits are deliberately designed to overcover, i.e. strictly less than 5%
of experiments are expected to find 95% CLs limits that falsely exclude a true signal.
However, an improper propagation of fit uncertainties or free parameters within the
likelihood could potentially lead to undercoverage, i.e. more than 5% of experiments
excluding a true signal. This was observed for the implementation of uncertainties in the
previous TLA publication [1].5

A coverage test is performed to ensure the validity of the CLs limits derived in this
analysis. For this test, signals are injected into toy experiments and for each of them the
derived upper limit is compared to the true signal amplitude S ′. This is done for 200
toys and various signal amplitudes as discussed in Section 9.5.3.

Figure 10.6 shows the results of the coverage test for Gaussian signals as a function
of the signal amplitude. The top panels of each figure show the distribution of the CLs
upper limits derived in the toy experiments. The coloured boxes represent the median
and the 16% and 84% quantiles such that 68% of the distribution is contained within
them. The coloured dashed lines represent the 5% and 95% quantiles. The dashed grey
line in the top panels indicates the amount of injected signal below which at most 5% of
toy experiments should observe their upper limit. The bottom panels of each figure show
the false exclusion rate, i.e. the fraction of toys for which the 95% CLs upper exclusion
limit is below the true amplitude S ′.

In both SRs and for all signals under test, proper coverage is observed. The false
exclusion rate is expectedly at 0 for vanishing signal amplitude, as there is no true signal
to falsely exclude. The false exclusion rate then approaches 5% (within the statistical
uncertainty due to the limited number of toy experiments) with increasing amplitude.

5 In previous ATLAS dijet searches (trigger-level and offline), the fit parameters p were not considered
as free parameters when evaluating the s+b likelihood (compare Equation (9.23) for this analysis)
during the derivation of exclusion limits. Instead, a nominal background estimate and an uncertainty
envelope, parametrized by one nuisance parameter, were used. This way, the possibility of the
background component of the fit adapting its shape to the presence of signal was not completely
accounted for. This can result in too-strict limits for wide signals and signals of low masses by a
factor of up to 2 in the cross section [197, 198].
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Figure 10.6: Median and spread of the 95% CLs upper exclusion limits determined in 200
toys of (a,c,e) J50 PD and (b,d,f) J100 PD. Gaussian signal of 5%, 10%, or 15% width at
various masses are injected. The coloured boxes indicate the median and the central 68% of the
distribution, while the coloured dashed lines correspond to the central 90% of the distribution.
The dashed grey line in the top panels indicates the amount of injected signal below which
at most 5% of toy experiments should fall. The bottom panels of each figure show the false
exclusion rate, i.e. the fraction of toys for which the 95% CLs upper exclusion limit is below the
true amplitude S′. Small horizontal shifts around the integer injection amplitudes are added to
improve the readability of the different signal masses.
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This validates the proper coverage of the CLs method for this analysis. Consequently,
it is applied to derive exclusion limits on generic Gaussian resonances and Z ′ resonances
in the next sections.

10.2.3 Gaussian Resonances
In the derivation of exclusion limits on resonances, the two SRs in this analysis must be
accounted for. While the J50 SR provides sensitivity to resonances of lower mass than
the J100 SR, there is an overlap region in which both SRs are sensitive to signals. The
straight-forward approach of deriving the observed limits from both SRs and using the
stricter of the two results in the overlap region would be subject to the look-elsewhere
effect. This would need to be corrected for with a trials factor [187, 199] that takes into
account that two hypothesis tests for the same hypothesis were performed. Additionally,
the J50 SR mostly containing events that are also part of the J100 SR in the overlapping
mjj region would need to be accounted for.

To avoid such a trials factor, only one SR is used to derive limits for any given signal
hypothesis. The decision for a SR is based on the expected upper limit while the analysis
is still blinded to not introduce any bias.

In general, the sensitivity is expected to be greater in the J100 SR due to its larger
recorded luminosity, but at low masses, this could hypothetically be outweighed by the
loss of sensitivity towards the edge of the mjj fit range as observed in Section 9.5. A
comparison of the expected limits shows that the sensitivity in the J100 SR is stronger
than in the J50 SR already at the lowest signal mass of 550GeV for which the J100 SR
s+b fits are validated. Thus, the J100 SR is used to derive limits on resonances with a
mass of 550GeV or above and the J50 SR for masses below 550GeV.

Exclusion limits on the signal cross section σ instead of the number of reconstructed
signal events S are derived by identifying

S = σ · A · ε · B · L (10.11)

in Equation (9.18), where L is the integrated recorded luminosity of the respective SR.
The ATLAS Run-2 luminosity measurement is associated with a 0.8% uncertainty [118],
which has a negligible effect on the exclusion limits. B is the branching ratio of the
hypothetical resonance to decay as a dijet signature and A · ε describes the acceptance
times efficiency of the applied event selection for signal events. As this section presents
the search for a generic resonance instead of a specific model, limits are derived in terms
of σ · A · ε · B. The results can then be interpreted for arbitrary signal models if they
produce dijet resonances of approximately Gaussian shape in mjj . Exemplary values for
A · ε in Z ′ decays are given in Table 8.1.

Figure 10.7 shows the observed (solid lines) and expected (dashed lines) 95% CLs
exclusion limits on Gaussian dijet resonances of 5% width (blue), 10% width (orange),
and 15% width (red). While the uncertainty bands of the 10% width and 15% width
resonances are omitted for visibility, they are of similar relative size as the shown ±1, 2σ
bands of the 5% width resonance. The observed limits for all signal hypotheses are
in good agreement with the background-only expectation. This is consistent with the
absence of an observed excess in the background-only interpretation in Section 10.1.
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Figure 10.7: 95% CLs exclusion limits on Gaussian dijet resonances of 5% width (blue), 10%
width (orange), and 15% width (red). The observed limits are shown as solid lines and the
expected limits as dashed lines. The ±1, 2σ uncertainty bands on the expected limits are shown
as shaded bands for the 5% width resonances. The size of the uncertainty bands for the wider
signals is similar on the logarithmic scale.

Gaussian resonances of 5% width with σ · A · ε · B above 9 pb at mG = 375GeV
(decreasing to 35 fb at mG = 1800GeV) can be excluded at 95% CL. For resonances of
10% (15%) width, the exclusion limits are weaker by a factor 1.5–2 (2–4).

The sensitivity to narrow resonances is better than the sensitivity to wide resonances
for two reasons: For wide resonances, the same number of signal events is distributed
across a larger mjj range, which lowers the signal-to-background ratio in this range.
Additionally, the flexibility of the background fit allows it to better adapt to wide signals
than to narrow signals, resulting in a larger ambiguity between signal and background
events.

The observed limits exhibit plateau-like structures at the largest excesses around masses
of 500GeV and 1000GeV. These are a result of the relatively large JES uncertainty,
which is dominated by the flavour composition uncertainty of 15–40GeV (see Section 8.3).
As a result of the JES uncertainty, an upward fluctuation at any position in the mjj

spectrum could be caused by a resonance within a certain mass range around the excess.
This causes a plateau of similar likelihood for a signal around excesses.

Some mitigation of this behaviour is possible by the reduced flavour composition
uncertainty that is achievable with the GSC in the calibration chain. Alternatively or
additionally, exclusion limits could be derived separately for different assumed flavour
compositions of the resonance, as, for example, demonstrated in Ref. [4].

Figure 10.8 compares the exclusion limits on Gaussian resonances of 5% width achieved
in this analysis (blue) to the previous TLA publication [1] (grey) and to the ATLAS
offline dijet resonance search [3] (black).

The observed limits exhibit similar structures in the previous result and this analysis
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Figure 10.8: Comparison of the 95% CLs exclusion limits on Gaussian dijet resonances of 5%
width derived in this analysis (blue) to the previous TLA result [1] (grey) and the offline dijet
resonance search [3] (black). The observed limits are shown as solid lines and the expected
limits as dashed lines. The ±1, 2σ uncertainty bands on the expected limits of this analysis are
shown as shaded bands.

since the data used in the former are mostly a subset of the data used in the latter.
In the J100 SR, the limits of this analysis are stronger than the previous result by a

factor of approximately 2, which is compatible with a 1/
√
L scaling of the sensitivity

with the luminosity. Additionally, the J100 SR constrains resonances starting at a mass
of 550GeV, compared to 700GeV previously. This is achieved for mainly two reasons:
Firstly, the minimal mjj threshold of the fit range is lowered by ensuring full trigger
efficiency in terms of an mjj requirement instead of a pT requirement (see Section 7.2.3).
Secondly, a global fit is used for the background estimate instead of a sliding-window fit,
which has a stronger loss of sensitivity at the edges of the fit range due to fewer bins
constraining the fit. The J50 SR also reaches lower resonance masses than probed before,
due to using the lower-threshold trigger L1_J50 instead of the previously used L1_J75,
in addition to the other reasons listed for the J100 SR.

Another key advantage of the global fit in comparison to the previously used sliding-
window fit is the sensitivity to wide signals. Previously, the relatively narrow fit window
size reduced the constraint on the background estimate to prevent an adaptation to wide
signals [166, 167]. Thus, only Gaussian resonances up to widths of 10% in the low-mass
SR and 7% in the high-mass SR could be tested. In this analysis, exclusion limits on
Gaussian resonances up to a width of 15% are presented, regardless of their mass.

For the offline dijet resonance search, no expected limits on Gaussian resonances of 5%
width are published. However, the observed limits are compatible with the expectation
of this analysis within its uncertainties. They are not identical to the observed limits of
this search due to the difference between the trigger-level and offline jet reconstruction
and calibration and, accordingly, the difference between trigger-level and offline mjj.
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Although both analyses are likely to consider the same collision events in the overlapping
mass region, small differences in their reconstructed mjj result in these collision events
being mapped to different bins. This causes different statistical fluctuations in the
considered mjj spectra.

While the results for Gaussian resonances with a width of 5% are compatible, the
offline dijet resonance search exhibits a smaller loss in sensitivity to wide signals. This is
likely due to the different treatment of fit uncertainties in the sliding-window background
estimate, as discussed in the following section.

10.2.4 Z′ Resonances
Given the absence of an observed dijet excess, the parameter space of the leptophobic Z ′

DM model can be constrained. 95% CLs exclusion limits are derived analogously to the
Gaussian resonances.

Since A · ε was determined for this model (see Table 8.1), B and σ are the only free
parameters in Equation (10.11). Assuming a branching ratio of 100%, this can be
translated into the coupling gq as the free parameter using the quadratic scaling of the
cross section with gq (Equation (2.11)) and the predicted total cross section for the
nominal value of gq = 0.1. The uncertainty on the cross section calculation is added
as uncertainty on S in Equation (9.18). The derived cross section limits can easily be
interpreted for the parameter space where a decay of the Z ′ mediator into DM fermions
is kinematically accessible by correcting for the reduced branching ratio – as long as the
Z ′ decay width (see Equation (2.9)) does not increase significantly due to the additional
decay channel.

Figure 10.9 shows the obtained exclusion limits on Z ′ resonances in terms of the
coupling gq. The previous TLA publication (grey) and the offline dijet resonance search
(black) are included for comparison. The observed limits are compatible with the
expectation under the background-only hypothesis, as is the case for the Gaussian
resonance interpretation. A similar plateau effect around the most significant excesses is
observed as well.

The results improve on the previous TLA publication in a similar way as for the
Gaussian resonances: Lower masses are probed with both SRs and the increased lumin-
osity improves the sensitivity. However, this improvement is not uniform in mZ′ : At
high masses, the limits on gq obtained in this analysis are stricter by approximately
30–50%, which is consistent with the expected 1/ 4

√
L scaling.6 With decreasing mass, the

improvement in this analysis vanishes. This can be partially attributed to the omission
of the GSC in this thesis. As the previously used GSC was less performant at high jet
momenta [166], potentially due to not correcting for fTileGap3, the loss in sensitivity by
omitting the GSC in this thesis is lower at high masses. However, the probably more
dominant factor is the different treatment of fit uncertainties in this thesis (see the
discussion in Section 10.2.2). Previously, undercoverage was observed for wider signals
below 1.5TeV, probably due to not treating the fit parameters p as free parameters in
the likelihood [198]. The exclusion limits presented in this thesis provide proper coverage

6 An additional power of 1/2 needs to be considered when comparing limits on gq due to its quadratic
relation to the cross section.
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Figure 10.9: 95% CLs exclusion limits on the coupling gq of a potential leptophobic Z ′

resonance decaying exclusively into dijets. The results of this analysis (blue) are compared
to the previous TLA result [1] (grey) and the offline dijet resonance search [3] (black). The
observed limits are shown as solid lines and the expected limits as dashed lines. The ±1, 2σ
uncertainty bands on the expected limits of this analysis are shown as shaded bands.

and are thus not more stringent than the previous results for low masses.
The J50 SR exhibits a lower sensitivity penalty in comparison to the J100 SR than the

low-mass SR in the previous result. This is due to the higher acceptance with a uniform
requirement of |y∗| < 0.6 in both SRs for this analysis, while previously |y∗| < 0.3 was
used to reduce the minimal mjj threshold of the low-mass SR.

The comparison to the offline dijet resonance search shows approximately 25% weaker
limits obtained in this analysis, which corresponds approximately to a 1σ difference in
terms of the uncertainty on the expected limits. This can be attributed to the superior
mjj resolution of the offline jet reconstruction where a GSC is applied. Additionally, the
different treatment of fit uncertainties and, consequently, a potentially overestimated
sensitivity to wide signals also apply here. These two effects could be distinguished
in following studies by deriving Z ′ exclusion limits with the calorimeter-based GSC
enabled. The uncertainty treatment should then be the dominant difference between the
trigger-level and the offline dijet resonance search, such that its effect can be quantified.

Overall, this analysis presents a direct extension of the offline dijet resonance search to
significantly lower resonance masses. While reconstructed tracks enhance the resolution
for offline jets, a good approximation is achieved by the trigger-level jets using only
calorimeter information. With only little loss in sensitivity, the trigger-level dijet
resonance search explores an otherwise hardly accessible region of the parameter space
at very high statistical precision. The remaining gap to offline analyses can be further
reduced with future ATLAS Run-3 analyses, for which track reconstruction is included
on trigger level.



11 Conclusion and Outlook

Searches for dijet resonances are sensitive to a variety of models for physics beyond the
Standard Model, such as a new mediator coupling to both Dark Matter and Standard
Model particles. With conventional analysis approaches at the Large Hadron Collider,
these searches have reduced statistical power in the sub-TeV range due to limitations in
the trigger and readout bandwidth.

This thesis presents a search for dijet resonances of low mass in proton-proton collisions
at a centre-of-mass energy of

√
s = 13TeV corresponding to an integrated luminosity of

up to 132 fb−1. The bandwidth limitation is overcome by using a partial event readout
consisting solely of the jets reconstructed by the ATLAS High-Level Trigger.

The usage of trigger-level jets requires a custom jet calibration for this analysis to
achieve a resolution and uncertainties comparable to the conventional approach. This
calibration must be a smooth function of the jet energy to ensure that no resonance-
like structures are induced in the recorded dijet mass spectrum. The trigger-level jet
calibration chain consists of six steps, two of which are identified to not meet the required
smoothness constraints. With the omission of these steps, the dijet mass spectrum
resulting from Standard Model processes is smoothly falling. This allows for a search for
resonances indicating physics beyond the Standard Model atop the smooth background.

The large cross section of dijet production at low masses results in a very high statistical
precision of the recorded dijet mass spectrum. Two complementary methods for the
background estimate are presented that can match this level of precision: a fit with
a heuristic function and the novel Monte Carlo-based NLOFit. Both provide a good
description of the observed spectrum and are compatible with each other, which serves
as a cross-validation of the two methods.

Two signal regions, each covering different dijet mass ranges, are analyzed. Excesses
over the background are quantified with the BumpHunter algorithm, which yields
global p-values between 0.17 and 0.99. Given that no significant excess is observed,
the data set is used to constrain physics beyond the Standard Model by deriving 95%
confidence level exclusion limits on resonance cross sections. To the author’s knowledge,
this thesis presents the most stringent constraints on dijet resonances in the range
of 375–1200GeV for generic, Gaussian-shaped dijet resonances and in the range of
375–1500GeV specifically for a leptophobic axial-vector Z ′ Dark Matter mediator. It
improves on previous cross section exclusion limits by a factor of up to 2 and extends
the probed mass range by 75GeV towards lower masses.

This search is primarily limited by statistical uncertainties, although a better jet
resolution could enhance the sensitivity to narrow resonances. This is expected to be
achieved in the forthcoming ATLAS publication for this search, for which the two omitted
jet calibration steps have been revised. Further improvements are to be expected from
subsequent ATLAS trigger-level analyses performed with Run-3 data, which have been
expanded in scope following the success of the presented search. The reconstruction of



122 11 Conclusion and Outlook

tracks for trigger-level jets improves the jet resolution and allows for the identification of
jets containing b hadrons for which the Standard Model background is lower. Furthermore,
the inclusion of the signature of a dijet in association with a photon from initial state
radiation into the trigger-level readout allows for the probing of even lower resonance
masses.



A Data Scouting Triggers
Table A.1 lists the integrated luminosity recorded by each of the Data Scouting triggers
per year after applying standard data quality requirements. At the start of Run-2, in
2015, L1_J75 was the lowest unprescaled L1 single jet trigger. With increased pile-up
and accordingly larger trigger rates in 2016, L1_J75 received a prescale and L1_J100
became the new lowest unprescaled L1 single jet trigger. The L1_J75 dataset was already
fully analysed in a previous publication [1] and is thus not considered in this thesis.

Additional prescaled single jet L1 triggers were added to the Data Scouting stream
in 2017. L1_J50 was activated towards the end of LHC fills when bandwidth became
available. L1_J15, L1_J20, and L1_J30, on the other hand, were almost exclusively
active during special run conditions with lower trigger rates: dedicated low-⟨µ⟩ runs and
during

√
s = 5TeV collisions.

In 2018, L1_J40 was added as a second end-of-fill trigger to the Data Scouting stream.
But as discussed in Section 7.2, it does not offer additional mass range coverage in
comparison to L1_J50 due to the required minimum jet pT threshold and is thus not
analysed further. The same holds true for the lower-threshold triggers. The L1Topo
dijet trigger L1_J50_DETA20-J50J became active in 2018 as well. It selects events with
a leading Level-1 jet with ET > 50GeV and a subleading jet with ET > 15GeV and a
rapidity difference |y∗| < 1.0. An error in the jet ordering caused an inefficiency of this
trigger prior to the Technical Stop 1 (TS1) in 2018 [146]. Accordingly, only the data
taken after TS1 are used in this thesis and listed in Table A.1.

The total luminosity collected by the different triggers seeding the Data Scouting
stream is slightly lower than the full Run-2 luminosity available for offline analyses since
the stream was not active in the early stages of 2015 and 2016 data-taking.

Trigger Integrated Luminosity [pb−1]
2015 2016 2017 2018 Total

J100 - 29 378 44 307 58 450 132 135
J75* 3220 3580 - - 6800
J50 - - 4120 1515 5635

J50Topo - - - 10 142 10 142
J40* - - - 3175 3175
J30*† - - 263 275 538
J20*† - - 259 174 433
J15*† - - 140 - 140

Table A.1: Integrated luminosity (after applying the data quality selection) recorded by each
Data Scouting trigger in Run-2. Triggers not considered in this thesis are marked by asterisks.
† symbols mark triggers that were mainly active during special run conditions, i.e. low-µ runs
or

√
s = 5TeV collisions.





B Additional Calibration Smoothness Results

In addition to the results discussed in Section 6.3, Figure B.1 shows the smoothness of the
individual trigger-level calibration steps in the J50 data set as a function of subleading
jet pT. Similar behaviour of a smooth pile-up correction, MCJES and in-situ calibration
is observed, while the GSC response exhibits a sharp kink at 350GeV. Features in the
online-to-offline correction are visible, but less pronounced than in the J100 data set.

Figure B.2 shows the relative effect of each calibration step on the reconstructed dijet
invariant mass in the J100 data set. As a function of mjj , the calibration features of the
GSC and the online-to-offline correction are more washed out because their calibration
factors are defined as functions of pT. Due to the η-dependent relation between mjj

and pT being averaged over, this leads to a smoother response as a function of mjj.
Nonetheless, the features in the average responses of the GSC and the online-to-offline
correction are still visible.
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Figure B.1: Average correction factor applied to the subleading jet in each calibration step as a
function of pT, determined in the J50 data set: (a) Pile-up correction, (b) MCJES, (c) GSC, (d)
η intercalibration and in-situ calibration combined, and (e) online-to-offline correction. Black
bars correspond to the uncertainty of the mean of the factors. The relative statistical uncertainty
of the measured pT distribution is overlayed in blue to identify statistically significant features
in the calibration curves.
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Figure B.2: Average relative change of mjj at each calibration step as a function of mjj ,
determined in the J100 data set: (a) Pile-up correction, (b) MCJES, (c) GSC, (d) η inter-
calibration and in-situ calibration combined, and (e) online-to-offline correction. Black bars
correspond to the uncertainty of the mean of the factors. The relative statistical uncertainty of
the measured pT distribution is overlayed in blue to identify statistically significant features in
the calibration curves.





C Signal Uncertainties

The effect of the considered jet reconstruction uncertainties on the mjj distribution of
the Z ′ signals is summarized in this appendix, following the discussion in Section 8.3.

Figure C.1 shows the effect on the mean µ of the fitted DSCB distribution for the four
studied mediator masses. Throughout the mass range, the flavour uncertainties, which
are inflated due to the omitted GSC, dominate. The uncertainty due to the omission of
the online-to-offline correction is the subleading uncertainty throughout the mass range.

Figure C.2 shows the effect on the width σ of the fitted DSCB distribution, respectively.
Here, too, the flavour uncertainties dominate. The effect of the omitted online-to-offline
correction on the width is zero by the definition of its implementation as uncertainty on
the average jet scale only. Instead, the in-situ uncertainties of the jet energy scale and
resolution are the subdominant source of uncertainty on the signal width.
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Figure C.1: Effect of the individual systematic uncertainties on the mean µ of the DSCB fits
to the Z ′ signal templates for different values of m′

Z .
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Figure C.2: Effect of the individual systematic uncertainties on the width σ of the DSCB fits
to the Z ′ signal templates for different values of m′

Z .





D Additional Background Validation Results

D.1 Spurious Signal for Z′ Resonances
The results of the spurious signal test for the functional form fit with Z ′ signals are
very similar to those obtained for Gaussian resonances discussed in Section 9.5.2. The
distribution of Sfit is approximately Gaussian, as shown for two exemplary Z ′ masses in
Figure D.1 with 1000 toy experiments each. Figure D.1 shows that Sspur remains below
the required threshold of 0.5σfit for a 5- or 6-parameter functional form fit.
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Figure D.1: Exemplary distributions of the number of signal events determined by s+b fits in
background-only PD. Functional form fit results with a 5-parameter dijet function, performed
on PD from a 6-parameter template, are shown. The chosen signal hypotheses are: (a) a Z ′

resonance with a mass of 550GeV and (b) a Z ′ resonance with a mass of 1600GeV.
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Figure D.2: Summary of Sspur (points) and σfit (error bars) of the spurious signal tests for the
functional form fit (a,c,e) to J50 PD and (b,d,f) to J100 PD for different choices of the number
of parameters N . The results for Z ′ signals are shown as a function of Z ′ mass. The bottom
panel in each figure shows the ratio Sspur/σfit with the dashed lines indicating the required
threshold of

⃓⃓
Sspur

⃓⃓
< 0.5σfit.
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D.2 Injection of Z′ Resonances
The behaviour of Z ′ s+b functional form fits in the presence of signal exhibits good
linearity, just like for Gaussian signals. The 5- and 6-parameter fits meet the required
criterion Sspur < 0.5σfit, as is shown exemplary for the 5-parameter fit in Figure D.3.

The background component of the s+b fits exhibits a larger variance in the region
of the injected signal, especially at the edge of the mjj fit range, as shown for selected
examples in Figure D.4. This is likely to be caused by the elongated tails of the DSCB
distribution describing the Z ′ resonance shape (see Figure 8.1). These exponential tails
could increase the ambiguity with the background component of the s+b fit. Nonetheless,
no significant systematic bias of the ensemble is observed, validating the Z ′ s+b fits.
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Figure D.3: Number of signal events determined by a 5-parameter functional form fit ⟨Sfit⟩±σfit
in PD as a function of the amount of injected signal using the Z ′ signal hypothesis of different
masses. The absolute value of spurious signal in units of the fit uncertainty is shown in the
bottom panel. The dashed lines at ±0.5 indicate the required maximal limit on the spurious
signal. Small horizontal shifts around the integer injection amplitudes are added to improve
the readability of the different signal masses.
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Figure D.4: Background stability test of a 5-parameter functional form fit (a,c) to J50 PD
and (b,d) to J100 PD for selected signal Z ′ signal masses. The background component of
s+b fits to PD toys with injected signal is compared to the background component of the PD
(reference).



E Acronyms

BSM Beyond the Standard Model

CL Confidence level

DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

DSCB Double-sided Crystal Ball

DM Dark Matter

EM Electromagnetic

FWHM Full-width-at-half-maximum

GSC Global sequential calibration

HLT High-Level Trigger

ID Inner Detector

JER Jet energy resolution

JES Jet energy scale

jFEX jet Feature EXtractor

L1 Level-1

L1Calo Level-1 Calorimeter Trigger

L1Muon Level-1 Muon Trigger

L1Topo Level-1 Topological Processor

LEP Large Electron-Positron Collider

LHC Large Hadron Collider

Linac Linear accelerator

LO Leading order

MC Monte Carlo

MCJES Monte Carlo-based jet energy scale calibration

MDT Monitored Drift Tube

NLO Next-to-leading order

NP Nuisance parameter
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PD Pseudo-data

PDF Parton distribution function

PS Proton Synchrotron

PSB Proton Synchrotron Booster

QCD Quantum chromodynamics

s+b Signal-plus-background

SM Standard Model

SPS Super Proton Synchrotron

SR Signal region

TLA Trigger-Level Analysis

TS1 Technical Stop 1
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