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Abstract

During this work, microwave spectroscopy of the Zeeman and hyperfine structure of
9
Be

3+

was performed to measure its magnetic moments and zero-field splitting. To this end, the

experimental Penning-trap setup, previously used for spectroscopy on
3
He

+
, was upgraded,

and the measurement techniques were improved. Most significantly, the implementation of

phase-sensitive methods served a twofold improvement. Firstly, the statistical measurement

uncertainty was reduced by a factor of 20. Secondly, they enabled the development of robust

methods to characterize the fields and motion inside the trap, resulting in relative systematic

uncertainties due to field imperfections well below 10−11. By measurement of nuclear-spin

transitions in
9
Be

3+
, its nuclear magnetic moment and zero-field splitting were determined

with relative uncertainties of 0.6x10−9 and 4x10−12, respectively. Compared to previous deter-

minations, the uncertainty of the nuclear magnetic moment of
9
Be was improved by a factor

30 with only the magnetic moment of the proton being more precise. Further, a comparison

with established measurements on
9
Be

+
enabled a crucial test of diamagnetic shielding pa-

rameters essential for transferring nuclear magnetic moments across different charge states.

Additionally, electron-spin transitions were measured using the phase-sensitive measurement

technique. The resonance centers could be determined with relative statistical uncertainties of

2x10−11 improving on state-of-the-art bound-electron 𝑔-factor measurements. These measure-

ments pave the way towards a determination of the electron mass in atomic mass units with

relative uncertainties below 10−11.

Zusammenfassung

In der vorliegenden Arbeit wurde Mikrowellenspektroskopie an der Zeeman und Hyperfein-

struktur von
9
Be

3+
durchgeführt, um dessen magnetischen Momente und Nullfeldaufspaltung

zu messen. Dafür wurden der experimentelle Penningfallenaufbau, welcher zuvor für Spek-

troskopie an
3
He

+
benutzt wurde, überarbeitet und die Messmethoden verbessert. Am bedeu-

tendsten war dabei die Implementierung von phasensensitiven Methoden, die eine Verbesserung

in zwei Aspekten ermöglichte. Zum einen konnte damit die statistische Messunsicherheit um

einen Faktor 20 reduziert werden. Zum anderen ermöglichte sie die Entwicklung von robusten

Methoden zur Charakterisierung der Felder und Bewegung in der Falle, womit relative sys-

tematische Unsicherheiten durch Feldfehler kleiner als 10−11 erreicht werden konnten. Durch

die Messung von Kernspinübergängen in
9
Be

3+
wurden das Kernmoment und die Nullfeldauf-

spaltung mit relativen Unsicherheiten von 0.6x10−9 beziehungsweise 4x10−12 bestimmt. Ver-

glichen mit vorherigen Messungens wurde die Unsicherheit des Kernmoments von
9
Be um

einen Faktor 30 verbessert, wobei nun nur das Kernmoment des Protons genauer bekannt

ist. Desweiteren hat der Vergleich mit fundierten Messsungen an
9
Be

+
einen wichtigen Test

von diamagnetischen Abschirmkonstanten ermöglicht. Dieser ist essentiell um Kernmomente

zwischen verschiedenen Ladungszuständen zu übertragen. Desweiteren wurden mithilfe der

phasensensitiven Methoden Elektronspinübergängen gemessen. Die Zentren der Resonanzen

konnten mit relativen statistischen Unsicherheit von 2x10−11 bestimmt werden, was einer

Verbesserung von state of the art Messungen des Elektron 𝑔-Faktors im gebundenen Zustand

gleich kommt. Diese Messungen schaffen die Vorrausetzung für eine Bestimmung der Masse

des Elektrons in atomaren Masseneinheiten mit einer relativen Unsicherheit niedriger als 10−11.
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Chapter 1.

Introduction

Though the Standard Model of particle physics has proven to successfully explain many

observable phenomena in physics, it is known to be incomplete [1]. More thorough tests and

searches for physics beyond the Standard Model are thus being carried out by various means,

including astronomical observations [2], large-scale experiments with particle accelerators [3],

and precision atomic physics measurements in laboratory experiments [4]. Within the latter,

theoretical predictions of the Standard Model or proposed theory models are benchmarked

against the precise measurement of fundamental particle properties.

In single-ion Penning-trap experiments, properties such as ion masses and magnetic mo-

ments can be measured with the highest achievable precision, allowing various fundamental

physics tests, see e.g. refs. [5–11]. Within this work, microwave spectroscopy on the Zeeman

and hyperfine structure in hydrogen-like beryllium-9 (
9
Be

3+
) was conducted in a Penning-

trap experiment previously used to perform spectroscopy on
3
He

+
. Besides determining the

magnetic moments and hyperfine splitting with high precision, this enabled testing several

state-of-the-art theoretical calculations.

In the following chapter, the three main motivations are outlined and the structure of the

thesis is presented.

The electron magnetic moment

The significance of the spin of the electron, and with it its intrinsic magnetic moment, to mod-

ern physics cannot be overstated. Beginning with its discovery [12] and the initial theoretical

predictions by relativistic quantum mechanics [13], measurements of the electron magnetic

moment now serve as a high-precision probe of quantum electrodynamics (QED). The gyro-

magnetic ratio, short 𝑔-factor, is the dimensionless proportionality of the magnetic moment

to the magneton and can be calculated for both the free electron and for electrons bound to

nuclei.

For the free electron, its value 𝑔𝑠 −2 = 2𝛼/𝜋 + . . . slightly deviates from 2 due to QED correc-

tions evaluated in a series expansion

∑
𝑛 𝑎𝑛𝛼

𝑛
of the fine-structure constant 𝛼 [14]. Presently,

using an independent value of 𝛼 , the QED calculations of the 𝑔-factor reach relative uncer-

1



Chapter 1. Introduction

tainties better than one part-per-trillion (ppt), limited by the uncertainty of the fine-structure

constant. This precision is matched by the experimental Penning-trap measurements, ref. [15],

and used to rigorously test QED. In turn, by using the QED theory as input, the measurement

can provide a competitive value for the fine-structure constant [15].

In ions, the electron is bound to a nucleus of charge 𝑍 which alters the 𝑔-factor of the free

electron - thus termed bound-electron 𝑔-factor. Specifically, in hydrogen-like ions in the 1𝑠
orbital, a first-order fractional change of the free electron 𝑔-factor by −(𝛼𝑍 )2/3 occurs due to

special relativity [16]. Besides the QED corrections of the free electron 𝑔-factor, bound-state

QED corrections, which scale in powers of (𝑍𝛼), must be included in the calculations. Stringent

tests of bound-state 𝑔-factors of hydrogen-like ions have been performed in Penning traps

with e.g.
28

Si
13+

[17], and more recently with
20,22

Ne
9+

[18, 19] and
118

Sn
49+

[5]. For bound-

electron 𝑔-factor measurements in Penning traps, the measured ratio of the electron’s spin-

precession frequency to the ion’s cyclotron frequency depends on the product of the 𝑔-factor

and the ion-to-electron mass ratio. Thus, the QED tests depend in equal measure on accurate

values of the ion masses, determined typically by (the combination of) mass ratios measured

in other Penning-trap experiments, and the electron mass in atomic mass units. For low-𝑍
hydrogen-like ions, the precision of the theoretical 𝑔-factors allows inverting the measured

frequency ratio for the ion-to-electron mass ratio [20]. Given an independent and similarly

precise measurement of the ion mass in atomic mass units, the electron mass can be determined.

Thus, the accuracy of the atomic mass of the electron, as provided in the CODATA evaluations

of 1998 and 2018, has steadily improved by nearly two orders of magnitude, largely due to

several Penning-trap bound-electron 𝑔-factor measurements [21, 22].

The last improvement of the electron mass with a Penning-trap measurement to a relative

precision of 30 ppt was limited by the statistical measurement uncertainty and a systematic

effect called the image charge shift [23]. While solutions exist to improve on the latter [24,

25], the statistical uncertainties of bound-electron 𝑔-factor measurements have not improved

since [5, 18, 26]. Within this work, it is demonstrated that this limit can be surpassed, paving

the way toward a measurement of the electron mass in atomic mass units with a relative un-

certainty below 10 ppt.

Nuclear magnetic moments and diamagnetic shielding

While the 𝑔-factor of the electron can be calculated from QED and 𝛼 to one ppt [15], state-of-

the-art quantum chromodynamics (QCD) calculations of magnetic moments of even the sim-

plest nuclei, the proton and neutron, only reach about three significant digits [27]. Achieving

the latter uncertainties in measurements typically poses no significant challenges, rendering

stringency tests of QCD with magnetic moments experimentally uninteresting. However, a

more fundamental test of charge-parity-time symmetry in the baryonic section is conducted

via the comparison of the magnetic moments of the proton and antiproton [6, 28].

In the context of this thesis, two additional and important applications for precise values of

nuclear magnetic moments will be discussed.

The first concerns QED tests via the (magnetic dipole) hyperfine splitting (HFS), see also

the next section. As the HFS arises due to the interaction of the nuclear magnetic moment

2



with the magnetic moment of the orbiting electrons, its value directly depends on the nuclear

𝑔-factor [29]. Again, as noted above, calculations of nuclear magnetic moments from theory

models are not precise enough, and rather experimental values have to be used.

Another application is their use in absolute magnetometry with nuclear magnetic resonance

(NMR). Specifically,
3
He is an ideal candidate due to its simple atomic structure, large magnetic

moment, and ability to hyperpolarize it using optical pumping techniques [30]. Being used at

the muon 𝑔−2 experiment, hyperpolarized
3
He NMR cells already find application in precision

physics [31]. In an effort to determine the magnetic moment of
3
He independently of NMR

references, its measurement via the Zeeman and hyperfine structure of hydrogen-like
3
He

+

was recently performed at this experiment, additionally achieving a tenfold improvement of

its relative uncertainty to 0.7 parts-per-billion [11].

However, the experiment probed the magnetic moment in the hydrogen-like ion, and the-

oretical calculations are required to transfer it to the value of the atom. This is because the

presence of the orbiting electron(s) induces a shift of the magnetic field at the nucleus, dif-

ferent for the hydrogen-like ion and the atom, known as diamagnetic shielding [32]. More

broadly, these shielding effects manifest in any bound state of the nucleus, including atoms,

molecular gases, and solids, and typically adjust the nuclear magnetic moment from 10−5 to a

few percent [33]. Since most measurements with nuclear magnetic moments are conducted in

some form of bound state, except e.g. those of the proton and antiproton performed in Pen-

ning traps
1
, the calculation of shielding parameters holds significant importance. In the past,

tabulations of bare-nuclear magnetic moments revealed significant discrepancies among sev-

eral values, largely attributed to underestimated or omitted uncertainties of the diamagnetic

shielding parameters [33, 34]. Moreover, underestimated uncertainties of shielding calculations

directly resulted in major disparities within HFS tests, such as
165

Ho
66+

[35],
207

Pb
81+

[36], and

the recent 7-𝜎 deviation in the specific difference of
209

Bi
82+,80+

[37, 38].

For
3
He, such issues are remedied by using advanced calculations employing non-relativistic

QED (NRQED) methods to evaluate the diamagnetic shielding. Within the NRQED calculations,

uncertainties are explicitly evaluated and amount to only a fraction of the experimental un-

certainty for both the shielding of the hydrogen-like ion and two-electron atom [39]. Though

recently, adjustments to the NRQED shielding of
3
He on par with the experimental value of

the nuclear magnetic moment of
3
He

+
have been performed [40]. This further motivates an ex-

perimental verification of these calculations at the parts-per-billion precision level using other

systems, which is a goal pursued with the measurements performed in this work.

The hyperfine splitting and nuclear structure

In this work, specifically, the HFS in 𝑠-states caused by the interaction of the spin-magnetic

moments of the nucleus with the valence shell electron is investigated.

Since the potential of the magnetic dipole-dipole interaction scales with the inverse cube of

the separation of the dipoles [29], it is strongly influenced by the structure of the nucleus due

to the non-vanishing wave function of the electron inside the nucleus. This leads to a nuclear

1
Here, they are bound in the trap potentials, which is, however, a much weaker binding compared to the previously

mentioned ones.
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Chapter 1. Introduction

structure dependence of the HFS which scales as 𝑟𝑍/𝑎0 [41], where 𝑎0 is the Bohr radius and

𝑟𝑍 is the so-called Zemach radius. The latter is related to both electric and magnetic form

factors of the nucleus and in a simple approximation slightly larger than the root-mean-square

charge radius 𝑟0, 𝑟𝑍 ≈ 1.3 𝑟0 [42]. In comparison, the corrections to binding energies [43] or

electron𝑔-factors [44] from the Coulomb interaction have the weaker dependency (𝑟0/𝑎0)2. For

example, in hydrogen, the relative nuclear structure contribution to the 1𝑠 HFS is 3x10−5 [45],

while the contributions to optical transitions are in the range of 10−10 [46]. Paired with the

limitations of nuclear structure theory to predict 𝑟𝑍 , this strong dependence makes precise

theoretical predictions of hyperfine splittings very challenging. However, tests of the HFS are

very intriguing because the scaling of the interaction also increases the sensitivity of the HFS

to the stronger fields near the nucleus. Consequently, the bound-state QED contributions of

the HFS are larger than e.g. for the 𝑔-factor in the same system [47]. For example in the
3
He

+

ion, the fractional bound-state contribution to the 1𝑠 HFS is of the order of 100x10−6 while for

its electron 𝑔-factor it is only ∼ 40x10−9 [11].

To circumvent the nuclear structure limitations, comparisons between different hyperfine

intervals in the same atom or ion, with one serving as a reference to the nuclear structure con-

tributions, can be performed [37, 45]. Since the theoretical calculations, apart from the nuclear

structure, can be performed most accurately in single-electron, hydrogen-like atoms, measure-

ments of their ground-state 1𝑠 HFS serve as an ideal reference [45]. For low 𝑍 , such measure-

ments exist only for the hydrogen-isotopes, refs. [48–50], and
3
He

+
[11, 51] and QED has been

tested by comparison to measurements of the 2𝑠 HFS in the hydrogen-like systems [45]. In

contrast, for high 𝑍 , several measurements exist but the HFS tests are limited by the precision

of the magnetic moment [38, 47]. Additionally, as pointed out in the previous paragraph, quite

a number of these tests have significant discrepancies due to underestimated uncertainties of

the nuclear magnetic moment.

Recently, tests of the 2𝑠 HFS by comparison of helium-like and atomic (lithium-like) charge

states in
6,7

Li have been investigated [52–55]. Additional to
6,7

Li, the 2𝑠 HFS of the lithium-like

9
Be

+
ion has been measured with very high precision in a Penning trap [56]. While a hyperfine

structure measurement in the helium-like
9
Be

2+
as well, ref. [57], its large uncertainty does not

allow for a precise test and new measurements are planned by the same group that performed

the
6,7

Li
+

spectroscopy [58]. Meanwhile, the comparison between helium-like and lithium-like

systems, due to the increased complexity, mainly serves to benchmark the calculations of the

lithium-like system and the more advanced calculations of the two-electron systems have only

been tested using
3
He [54, 59].

With the measurement of the 1𝑠 HFS of
9
Be

3+
in this work, an additional high-precision

reference for the hyperfine interaction is introduced. It is directly compared to
9
Be

+
to test the

QED calculation of the lithium-like 2𝑠 HFS. Further, it serves as the ideal reference for future

tests of the helium-like HFS of
9
Be

2+
or other HFS intervals.

4



Structure of this thesis

I will start with Chapter 2 which focuses on the physics of the Penning trap. The primary

objective of this chapter is to introduce the means for the high-precision measurement of the

free cyclotron frequency, which includes a discussion of the trap geometry, systematic shifts,

and detection techniques.

Moving on, I will discuss the specifics of the spectroscopy of the Zeeman and hyperfine

splitting in Chapter 3. Here, calculations of the energy levels, transition probabilities, the rel-

ativistic shift of the transition frequencies, and the employed Penning-trap detection will be

outlined.

In Chapter 4 and Chapter 5, I will give an overview of the experimental apparatus, and a

detailed account of the implementation of the Penning trap methods. Additionally, using new

methods developed in this thesis, I will perform a precise characterization of the trapping fields

and the ion motion.

The spectroscopy of Zeeman and hyperfine transitions of
9
Be

3+
is split into two chapters.

In Chapter 6, I will present the measurement of transitions sensitive to the properties of the

nucleus. As a major result, a comparison to
9
Be

+
enables the first high-precision test of multi-

electron diamagnetic shielding parameters. In Chapter 7, I will present bound-electron𝑔-factor

measurements with statistical uncertainties surpassing the current state-of-the-art. These pave

the way toward measurements at the 10 ppt level, allowing, among others, for an improvement

of the atomic mass of the electron by at least a factor of 3.

Lastly, in Chapter 8, I will give an outlook on ongoing efforts at our experiment, including a

new Penning-trap design for sympathetic laser cooling, and conclude with a summary of this

thesis.
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Chapter 2.

The Penning trap

A Penning trap provides spatial confinement of particles through a strong magnetic field

and an electrostatic field [60]. The static fields of the trap can be tuned to make the parti-

cles’s motion harmonic to a very high degree, providing a well-understood environment for

high-precision spectroscopy. It allows the precise measurement of the magnetic field that a

single particle experiences and the non-destructive detection of spin states. Therefore, it is an

ideal tool to perform measurements of the particle’s magnetic properties via the Zeeman and

hyperfine splitting.

In this chapter, I will introduce the basic concepts of a Penning trap as a tool for precision

spectroscopy. This includes a description of the ideal motion, typical deviations from it, the

trap geometry, and the employed detection techniques. I also give a probabilistic description

of the motion of ions coupled to a heat bath in Section A.

2.1. Basic particle motion

A charged particle of mass𝑚 and charge 𝑞 inside a homogeneous magnetic field 𝐵0 is forced

on a helical motion around the field lines with angular frequency

𝜔𝑐 =
𝑞

𝑚
𝐵0. (2.1)

This frequency is called the free cyclotron frequency. Given the charge and mass of a particle,

its determination constitutes a measurement of the magnetic field at the ion’s position. As

the magnetic field directly determines the transition frequencies in the Zeeman and hyperfine

splitting, outlining the means for its high-precision measurement will be one of the main goals

of this chapter.

Containing the particle in the direction of the field lines, which define the 𝑧-axis, can be

achieved with a quadratic electric potential Φ. As this potential needs to fulfill the Laplace

equation ∇2Φ = 0, it also requires radial components. The choice of a quadrupolar electrostatic

field

Φ(®𝑟 ) = 𝐶2
(
𝑧2 − (𝑥2 + 𝑦2)/2) , (2.2)

7



Chapter 2. The Penning trap

with ®𝑟 = (𝑥,𝑦, 𝑧) being the coordinate vector and𝐶2 a tunable free parameter, forces the particle

on a harmonic oscillation on the 𝑧-axis with eigenfrequency

𝜔𝑧 =

√︂
2
𝑞

𝑚
𝐶2. (2.3)

For positively charged particles this requires𝐶2 > 0. The radial components act on the particle

with an outward force in the 𝑥𝑦-plane and split the free cyclotron motion into two eigenmo-

tions with frequencies

𝜔± =
1
2

(
𝜔𝑐 ±

√︃
𝜔2
𝑐 − 2𝜔2

𝑧

)
(2.4)

called modified cyclotron and magnetron motion respectively. The condition 𝜔2
𝑐 > 2𝜔2

𝑧 is a

stability criterion for the particle’s radial orbit. Additionally, to determine the magnetic field

𝐵0 via 𝜔𝑐 , the measurement of at least two of the three eigenfrequencies is needed. Typically,

either the sideband relation

𝜔𝑐 = 𝜔+ + 𝜔− (2.5)

or the quadratic addition of frequencies

𝜔2
𝑐 = 𝜔

2
+ + 𝜔2

𝑧 + 𝜔2
− (2.6)

is used. The latter is known as the Brown-Gabrielse invariance theorem and is also valid for

slight electric field misalignment and ellipticity [61].

Now that all motional frequencies are defined, it is helpful to mention some typical values.

In this experiment, which uses light ions, 10 MHz <
𝜔𝑐
2𝜋 < 80 MHz, 300 kHz <

𝜔𝑧
2𝜋 < 800 kHz,

3 kHz <
𝜔−
2𝜋 < 20 kHz and 𝜔+ = 𝜔𝑐 − 𝜔− . This reflects the typical hierarchy of frequencies in

a Penning trap

𝜔𝑐 > 𝜔+ ≫ 𝜔𝑧 ≫ 𝜔− . (2.7)

Instead of the angular velocities 𝜔𝑖 in units of radians, the frequencies 𝜈𝑖 in units of Hz may

also be used throughout this thesis.

In the following, a more detailed description of the equations of motions (eom) in phase

space and their integration with respect to time 𝑡 is given. To this end, the eom are solved in

the form
d
d𝑡 ®𝑎 = 𝐴®𝑎, which requires computing the eigenvalues and eigenvectors of the matrix

𝐴. This allows writing the solution as a superposition of eigenmotions. The components of

the phase space vector ®𝑎 are the coordinates and the respective velocities. The velocities are

termed 𝑣𝑖 = ¤𝑟𝑖 for the respective coordinate 𝑟𝑖 . Additionally, the velocities are scaled by a

suitable frequency to transform them into coordinate units.

The eom decouple for the 𝑧-coordinate and the 𝑥𝑦-plane, so they can be handled separately.

For the 𝑧-coordinate this gives

d
d𝑡

(
𝑧
𝑧

)
=

(
0 𝜔𝑧

−𝜔𝑧 0

) (
𝑧
𝑧

)
, (2.8)

where 𝑧 = 𝑣𝑧/𝜔𝑧 . The eigenvalues are just {𝑖𝜔𝑧,−𝑖𝜔𝑧} and the general solution is simply a

harmonic oscillation of both the coordinate and the velocity with a 90◦ phase shift between

8



2.1. Basic particle motion

them (
𝑧 (𝑡)
𝑧 (𝑡)

)
= 𝜌𝑧

(
cos(𝜔𝑧𝑡 + 𝜑𝑧)
sin(𝜔𝑧𝑡 + 𝜑𝑧)

)
, (2.9)

where 𝜌𝑧 is the amplitude and 𝜑𝑧 is the phase of the axial oscillation. Similarly, this can be

expressed given a valid point in phase space (𝑧0, 𝑧0). The future evolution of the oscillation is

given by the evolution matrix(
𝑧 (𝑡)
𝑧 (𝑡)

)
=

(
cos(𝜔𝑧𝑡) sin(𝜔𝑧𝑡)
− sin(𝜔𝑧𝑡) cos(𝜔𝑧𝑡)

) (
𝑧0
𝑧0

)
≡ 𝐸𝑧

(
𝑧0
𝑧0

)
. (2.10)

In the radial plane, the Lorentz force ®𝐹 = 𝑞®𝑣 x ®𝐵 couples the 𝑥 and 𝑦 motion. Using the

substitution 𝑢 = 𝑥 + 𝑖𝑦 and scaling 𝑢̃ = 𝑣𝑢
√
2/𝜔𝑧 = 𝑣𝑢/√𝜔+𝜔− the eom are

d
d𝑡

(
𝑢
𝑢̃

)
=

(
0

√
𝜔+𝜔−√

𝜔+𝜔− −𝑖 (𝜔+ + 𝜔−)
) (
𝑢
𝑢̃

)
. (2.11)

The eigenvalues of the matrix are {−𝑖𝜔+,−𝑖𝜔−} and the general solution is a superposition of

the eigenvector solutions(
𝑢 (𝑡)
𝑢̃ (𝑡)

)
=

(
1 1

−𝑖
√︃
𝜔+
𝜔− −𝑖

√︃
𝜔−
𝜔+

) (
𝜌+𝑒−𝑖𝜔+𝑡+𝑖𝜑+
𝜌−𝑒−𝑖𝜔−𝑡+𝑖𝜑−

)
(2.12)

where 𝜌± and 𝜑± are the amplitudes and phases, respectively. Here, the representation given a

valid phase space point (𝑢0, 𝑢̃0) is(
𝑢 (𝑡)
𝑢̃ (𝑡)

)
=

1
𝜔+ − 𝜔−

(
𝜔+𝑒−𝑖𝜔−𝑡 − 𝜔−𝑒−𝑖𝜔+𝑡 𝑖

√
𝜔+𝜔−

(
𝑒−𝑖𝜔+𝑡 − 𝑒−𝑖𝜔−𝑡

)
𝑖
√
𝜔+𝜔−

(
𝑒−𝑖𝜔+𝑡 − 𝑒−𝑖𝜔−𝑡

)
𝜔+𝑒−𝑖𝜔+𝑡 − 𝜔−𝑒−𝑖𝜔−𝑡

) (
𝑢0
𝑢̃0

)
≡ 𝐸𝑢

(
𝑢0
𝑢̃0

)
.

(2.13)

It is more concise to express the motion through 𝑥 and 𝑦 components 𝑥 (0) = 𝑥+0 + 𝑥−0 , 𝑦 (0) =
𝑦+0 +𝑦−0 of the modified cyclotron and magnetron motion, respectively. This gives the solution

in the 𝑥𝑦-plane in a very similar fashion as for the axial motion:(
𝑥 (𝑡)
𝑦 (𝑡)

)
=

(
cos(𝜔+𝑡) sin(𝜔+𝑡)
− sin(𝜔+𝑡) cos(𝜔+𝑡)

) (
𝑥+0
𝑦+0

)
+

(
cos(𝜔−𝑡) sin(𝜔−𝑡)
− sin(𝜔−𝑡) cos(𝜔−𝑡)

) (
𝑥−0
𝑦−0

)
≡ 𝐸+

(
𝑥+0
𝑦+0

)
+ 𝐸−

(
𝑥−0
𝑦−0

)
.

(2.14)

In summary, the full solution of the motion is a superposition of three undamped harmonic

motions, see Figure 2.1. While that is clear from the eom in the axial motion, the radial mo-

tion also decouples into two harmonic motions, allowing for all three modes to be treated as

independent harmonic oscillator modes.

The (non-relativistic) energy of the particle inside the electromagnetic field is 𝐸 = 1
2𝑚

∑
𝑖 𝑣

2
𝑖 +

𝑞Φ. This result can be calculated starting from the Lagrange function 𝐿 = 1
2𝑚

∑
𝑖 𝑣

2
𝑖 +𝑞

∑
𝑖 𝐴𝑖𝑣𝑖−

𝑞Φ, where ®𝐴 is the vector potential of the static field. As the Lagrange function is not explicitly

time dependent, the energy is 𝐸 =
∑
𝑖 𝑣𝑖

𝜕𝐿
𝜕𝑣𝑖

− 𝐿. Inserting the general solutions Eq. (2.9) and

9



Chapter 2. The Penning trap

x y

z

Full trajectory
Radial motion
Axial motion

Figure 2.1: Particle motion inside a Penning trap. The blue, orange and green curve show

the superposition of all three eigenmotion, the motion in the plane and the axial oscillation,

respectively.

Eq. (2.12), defines the individual energies of the eigenmotions in dependence on their respective

amplitudes

𝐸 =
1
2
𝑚

[(𝜔2
+ − 𝜔2

𝑧/2)𝜌2+ + (𝜔2
− − 𝜔2

𝑧/2)𝜌2− + 𝜔2
𝑧𝜌

2
𝑧

]
≡ 𝐸+ + 𝐸− + 𝐸𝑧 ≈ 1

2
𝑚𝜔2

+𝜌
2
+ −

1
4
𝑚𝜔2

𝑧𝜌
2
− + 1

2
𝑚𝜔2

𝑧𝜌
2
𝑧 ,

(2.15)

where the last approximation holds for the typical frequency hierarchy Eq. (2.7).

2.2. Cylindrical Penning traps

The large magnetic field of the Penning trap is commonly generated by superconducting mag-

net coils far away from the ion’s position. When talking about the physical trap itself, what

is typically meant is the set of electrodes that generate the electrostatic field, which are in

comparison to the coils much smaller and very close to the charged particle. To create the

best approximation of an ideal quadrupolar electrostatic field, two major Penning-trap designs

exist. The classical Penning trap uses hyperbolically shaped electrodes whose surfaces match

the equipotential surfaces of a quadrupolar field [62]. This design has been and is still used

in several successful experiments [15, 63]. The open-endcap cylindrical Penning trap, see Fig-

ure 2.2, has the advantage of a much simpler geometry and intrinsic axial access of the trapping

region [64].

10



2.2. Cylindrical Penning traps

l1

z1 z2 z3 …

del

ael

z
l2

…

U1 U2
…

Figure 2.2: Cyclindrical Penning trap. This schematic resembles the precision trap of this

experiment. The trap consists of electrodes with individual lengths 𝑙𝑖 and applied voltages

𝑈𝑖 and common spacing 𝑑𝑒𝑙 and radius 𝑎𝑒𝑙 . The coordinates 𝑧𝑖 represent the extent of each

electrode on the 𝑧-axis.

As this experiment uses a stack of cylindrical electrodes, consisting of four traps and adjacent

transport electrodes, an overview of this configuration is now given. On the axis of symmetry,

a general electrostatic potential may be written as

Φ(𝑧) =
∑︁
𝑘

𝐶𝑘 (𝑧0)𝑧𝑘 , (2.16)

where 𝐶𝑘 are the expansion coefficients around a position 𝑧0. Given the axial symmetry of

the potential, the radial dependencies have a fixed relation to the axial dependencies, see e.g.

ref. [65]. The design goals for a Penning trap for precision measurements are a 𝐶2 value that

gives a reasonable 𝜔𝑧 , compare Eq. (2.3), and small higher order anharmonic terms that lead

only to negligible or correctable systematic shifts, see the next Section.

The potential for a stack of 𝑝 cylindrical electrodes, with a geometry as shown in Figure 2.2

and assuming a vanishing potential at the boundaries of the trap, can be calculated analytically.

Here, only the result is quoted, for a full derivation see e.g. refs. [64, 66]. Setting the voltage

at the outer electrodes to zero, 𝑈1 = 𝑈𝑝 = 0, to ensure the vanishing potential at the trap

boundaries, gives

Φ(𝑧) =
∞∑︁
𝑛=1

2
𝐼0(𝑘𝑛𝑎𝑒𝑙 )

sin(𝑘𝑛𝑧)
𝑘2𝑛𝐿𝑑𝑒𝑙

𝑝∑︁
𝑖=2

(𝑈𝑖 −𝑈𝑖−1) (sin(𝑘𝑛𝑧2𝑖−1) − sin(𝑘𝑛𝑧2𝑖−2)), (2.17)

where 𝑘𝑛 = 𝑛𝜋/𝐿, with 𝐿 = 𝑧2𝑝 − 𝑧1 being the trap’s total length and 𝐼0 is the modified Bessel

function of zeroth order. For actual computations, the sum has to be truncated at a sufficiently

large order 𝑛 = 𝑛0, where typically 𝑛0 ≈ 1000 to ensure convergence. Given a trap geometry

11



Chapter 2. The Penning trap

defined by the parameters, {𝑎𝑒𝑙 , 𝑑𝑒𝑙 , 𝑧𝑖} it is convenient to write the potential as a linear equation

in the applied voltages ®𝑈 = (𝑈2, . . . ,𝑈𝑝−1)𝑇

Φ(𝑧) = ®𝑔𝑇0 (𝑧)𝑊 ®𝑈 , (2.18)

where the 𝑛0x (𝑝 − 2) matrix𝑊 depends only on the geometry

𝑊𝑛𝑖 =
1

𝐼0(𝑘𝑛𝑎𝑒𝑙 )
1

𝑘2𝑛𝑑𝑒𝑙
(sin(𝑘𝑛𝑧2𝑖−1) − sin(𝑘𝑛𝑧2𝑖−2) − sin(𝑘𝑛𝑧2𝑖+1) + sin(𝑘𝑛𝑧2𝑖)) (2.19)

and (𝑔0)𝑛 (𝑧) = 2/𝐿 sin(𝑘𝑛𝑧) only on the position and total length 𝐿. As the position 𝑧 occurs

only in (𝑔0)𝑛 (𝑧), the expansion coefficients 𝐶𝑘 (𝑧0) can be easily expressed as

𝐶𝑘 (𝑧0) =
1
𝑘!

®𝑔𝑇𝑘 (𝑧0)𝑊 ®𝑈 , (2.20)

where

(𝑔𝑘 )𝑛 (𝑧0) =
2𝑘𝑘𝑛
𝐿

sin
(𝜋
2
𝑘 + 𝑘𝑛𝑧0

)
. (2.21)

The most commonly used cylindrical Penning trap uses 5 electrodes. This configuration has

grounded endcaps of length 𝑙1 = 𝑙5 = 𝑙𝑒𝑐 , correction electrodes of length 𝑙2 = 𝑙4 = 𝑙𝑐𝑒 and a cen-

tral ring electrode with length 𝑙3 = 𝑙𝑟 . Voltages are applied symmetrically ®𝑈 = 𝑈0 (TR, 1,TR)𝑇 .

Because of the mirror symmetry around 𝑧0 = 𝑧1 + 𝐿/2 the odd order coefficients 𝐶1 = 𝐶3 =
. . . = 0. The tuning ratio TR is chosen such that the first anharmonicity 𝐶4(𝑧0) = 0, which

consequently requires

®𝑔4(𝑧0)𝑇𝑊 ®𝑈 = 0

⇒ 2( ®𝑔4(𝑧0)𝑇𝑊 )2TR + ( ®𝑔4(𝑧0)𝑇𝑊 )3 = 0

⇒ TR = −1
2

( ®𝑔4(𝑧0)𝑇𝑊 )3
( ®𝑔4(𝑧0)𝑇𝑊 )2

.

(2.22)

By further utilizing the freedom of choosing the lengths 𝑙𝑐𝑒 and 𝑙𝑟 , the 5-pole Penning trap

can be optimized such that 𝐶4 = 𝐶6 = 0 and 𝐶2 can be made first order independent of the

tuning ratio
𝜕𝐶2
𝜕TR

= 0 around the above calculated optimal TR. These two conditions make the

trap a so called compensated and orthogonal Penning trap, respectively [64]. In practice, the

electrodes have slight deviations from their ideal, optimized lengths, which always leads to a

slight breaking of the compensation, i.e. 𝐶6 is not zero at the tuning ratio where𝐶4 = 0. Mirror

symmetry-breaking deviations lead to odd-order𝐶𝑘 terms. These can be corrected in first order

by applying asymmetric voltages on the correction electrodes.

The experiment’s 7-pole precision trap, see Figure 2.2, with applied voltages

®𝑈 = 𝑈0 (TR𝐶TR2,TR𝐶TR1, 1,TR𝐶TR1,TR𝐶TR2)𝑇 (2.23)

is optimized with the conditions 𝐶4 = 𝐶6 = 𝐶8 = 𝐶10 = 0 and the combined orthogonality

𝜕𝐶2
𝜕TR𝐶

= 0, compare ref. [66] and the upcoming thesis of Marius Müller. Due to the additional

set of correction electrodes, this configuration allows to have𝐶4 = 𝐶6 = 0 at a set of {TR1,TR2},
even with deviations of the electrode lengths.

12



2.3. Systematic shifts from field imperfections

2.3. Systematic shifts from field imperfections

Deviations from the ideal trapping fields, if not sufficiently suppressed or corrected for, alter the

observed motional frequencies and lead to incorrectly determined free cyclotron frequencies

Eq. (2.1). Both anharmonicities of the electrostatic field, given by the terms 𝐶𝑘>2 introduced

in Eq. (2.16) and inhomogeneities added to the homogeneous 𝐵0

𝐵 = 𝐵0 +
∑︁
𝑘>0

𝐵𝑘𝑧
𝑘

(2.24)

contribute. In ref. [65], all shifts due to even-order imperfections of the fields are calculated via

classical first-order perturbation theory. The odd-order imperfections only start to contribute

in second-order, as their first-order effect averages to zero over a full orbit of the particle’s

motion. To gauge the contribution of the imperfections, they must be compared to the perfect

field together with the amplitudes of the eigenmotions 𝜌𝑖 , i.e. 𝜌𝑘−2𝑖 𝐶𝑘/𝐶2, 𝜌
𝑘
𝑖 𝐵𝑘/𝐵0 for even

𝑘 and 𝜌2𝑘−4𝑖 𝐶2
𝑘
/𝐶2, 𝜌

2𝑘
𝑖 𝐵

2
𝑘
/𝐵0 for odd 𝑘 . In this experiment, the amplitudes and higher-order

imperfections are sufficiently small to justify only the treatment of shifts quadratic in the am-

plitudes.

In this and the following section, all shifts should be considered approximate, as they typ-

ically include some (justified) simplifications or are evaluated through perturbation theory.

Shifts are expressed with the sign convention 𝜔 → 𝜔 + 𝛿𝜔 , which typically means that the

measured quantity needs to be corrected by subtracting 𝛿𝜔 .

2.3.1. Electrostatic imperfections

The most important electrostatic field imperfection is due to the quartic potential term𝐶4. The

corresponding frequency shifts to the eigenmotions are [65]

𝛿𝜔𝑧
𝜔𝑧

=
3𝐶4

4𝐶2

(
𝜌2𝑧 − 2𝜌2+ − 2𝜌2−

)
,

𝛿𝜔±
𝜔±

= ∓ 𝜔∓
𝜔+ − 𝜔−

3𝐶4

2𝐶2

(
2𝜌2𝑧 − 𝜌2± − 2𝜌2∓

)
.

(2.25)

The first odd-order term 𝐶1 adds a constant force term in the axial equations of motion

Eq. (2.8)

d
d𝑡

(
𝑧
𝑧

)
=

(
0 𝜔𝑧

−𝜔𝑧 0

) (
𝑧
𝑧

)
−

(
0

𝑞
𝑚
𝐶1
𝜔𝑧

)
=

(
0 𝜔𝑧

−𝜔𝑧 0

) (
𝑧 + 𝐶1

2𝐶2

𝑧

)
.

(2.26)

It is clear that this is easily solved by substituting 𝑧 → 𝑧 − 𝐶1
2𝐶2

, which does not change 𝑧. A 𝐶1

thus only leads to a constant offset of the equilibrium position of the axial oscillation

Δ𝑧 = − 𝐶1

2𝐶2
(2.27)
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Chapter 2. The Penning trap

and no frequency shift occurs.

In the case of 𝐶3, the potential term also includes radial dependencies and the potential is

modified to

Φ = 𝐶2
(
𝑧2 − (𝑥2 + 𝑦2)/2) +𝐶3

(
𝑧3 − 3𝑧 (𝑥2 + 𝑦2)/2) . (2.28)

The force components for the radial eigenmotions are proportional to 𝑧𝑥 and 𝑧𝑦 which would

only lead to frequency shifts for resonant interaction between the axial and radial modes. As all

frequencies are separated quite well this is not the case and the effects of these terms average

to zero. For the axial motion, it can be shown that a shift of the equilibrium position occurs,

but depending on the mode amplitudes [19]

Δ𝑧 =
3𝐶3

4𝐶2

(−𝜌2𝑧 + 𝜌2+ + 𝜌2− ) . (2.29)

Considering the radial mode amplitudes this can be argued by fixing the 𝑥2+𝑦2 term in Eq. (2.28)

to the respective amplitude and treating it as an effective 𝐶1 term. Performing a series expan-

sion of Eq. (2.28) around the shifted equilibrium positions for the respective amplitudes the

frequency shift gives

𝛿𝜔𝑧
𝜔𝑧

=
𝐶2
3

16𝐶2
2

(−15𝜌2𝑧 + 18(𝜌2+ + 𝜌2−)
)
. (2.30)

2.3.2. Magnetostatic imperfections

While the electrostatic shifts can always be treated as actual changes to the free cyclotron

frequency, for the magnetostatic shifts some intricacies, especially for the Zeeman splitting

and hyperfine structure measurements, need to be considered.

The charged particle moving on circular orbits in the radial plane has magnetic moments in

the 𝑧-direction associated with the two eigenmotions. Given the angular momentum ®𝐿 = ®𝑟 x®𝑣
the mean magnetic moments of the individual eigenmotions can be derived from the solutions

Eq. (2.9) and Eq. (2.12)

𝜇𝑧,± = −𝑞
2
𝐿𝑧,± = −𝑞

2
𝜔±𝜌2±. (2.31)

Note that the 𝑥 and 𝑦 components of the magnetic moment average to zero [67]. In inhomo-

geneus magnetic fields, particles with magnetic moments 𝜇𝑧 are subject to the axial force

𝐹𝑧 = 𝜇𝑧
𝜕𝐵𝑧
𝜕𝑧
, (2.32)

which can shift 𝜔𝑧 . Shifts of the radial eigenmotions can occur due to actual mean shifts of the

magnetic field at the finite orbit of the particle. In the case of the latter shifts, the measured

cyclotron frequency still reflects the magnetic field at the ion’s position, while the shifts due to

magnetic moments on 𝜔𝑧 and their inclusion with the invariance theorem Eq. (2.6) may not.

A quadratic inhomogeneity 𝐵2 adds the following vector term to the homogeneous field [67]

®𝐵 = 𝐵2
©­«

−𝑥𝑧
−𝑦𝑧

𝑧2 − 1
2 (𝑥2 + 𝑦2)

ª®¬ . (2.33)
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2.3. Systematic shifts from field imperfections

Here the force 𝐹𝑧 = 2𝐵2𝜇𝑧𝑧 is of particular importance as it alters 𝜔𝑧 proportional to the mag-

netic moment

𝛿𝜔𝑧 =

√︂
𝜔2
𝑧 −

2𝐵2𝜇𝑧
𝑚

− 𝜔𝑧 ≈ −𝐵2𝜇𝑧
𝑚𝜔𝑧

. (2.34)

This particular shift is used together with a strong 𝐵2 in the analysis trap to detect spin states

via their respective magnetic moments. The full first-order shifts calculated in ref. [65] are

𝛿𝜔𝑧
𝜔𝑧

=
𝐵2
2𝐵0

𝜔+ + 𝜔−
𝜔2
𝑧

(
𝜔−𝜌2− + 𝜔+𝜌2+

)
,

𝛿𝜔±
𝜔±

= ± 𝐵2
2𝐵0

𝜔+ + 𝜔−
𝜔+ − 𝜔−

(
𝜌2𝑧 − 𝜌2± −

(
𝜔∓
𝜔±

+ 1

)
𝜌2∓

)
.

(2.35)

It can be checked, that Eq. (2.34) with 𝜇𝑧 from Eq. (2.33) reproduces the axial frequency shift

above.

The first asymmetric term 𝐵1 produces a constant force 𝐹𝑧 = 𝜇𝑧,±𝐵1, which, similar to the

discussion of 𝐶1 and 𝐶3, shifts the center of the axial oscillation by

Δ𝑧 = − 𝐵1
2𝐵0

𝜔𝑐
𝜔2
𝑧
(𝜔+𝜌2+ + 𝜔−𝜌2−) . (2.36)

At this position, the magnetic field has changed by 𝐵1Δ𝑧 which leads to the frequency shifts

𝛿𝜔±
𝜔±

= ∓𝐵
2
1

𝐵20

𝜔𝑐
2𝜔2

𝑧
(𝜔+𝜌2+ + 𝜔−𝜌2−) . (2.37)

Even though this shift happens due to the magnetic moments, it is directly due to second order

effect of the shifted magnetic field at the new equilibrium position. Therefore, the shifted

cyclotron frequency still reflects the 𝐵-field scanned by the particle.

2.3.3. Combined effects

Combined effects of the magnetic and electrostatic fields are second order in nature. The first

shift is the combination of 𝐶1 and 𝐵1. Here, the shift of the zero position through 𝐶1 gives

a magnetic field change 𝛿𝐵 = −𝐵1𝐶1
2𝐶2

. If different voltages need to be applied to the trap the

fraction
𝐶1
𝐶2

may change and the shift needs to be considered. This may be the case for ion mass

comparisons in a Penning trap, as there different voltages may be necessary to bring the ion’s

axial frequency into resonance with the detection system. Here, this shift is not relevant.

One order higher, the 𝐶3 combination with 𝐵1 has to be treated carefully. In the case of the

axial oscillation, the shift of the zero position through the magnetic moments and 𝐵1 gives a

change of 𝐶2 through the series expansion of Eq. (2.28), resulting in [19]

𝛿𝜔𝑧
𝜔𝑧

= −3𝐶3𝐵1
4𝐶2𝐵0

𝜔𝑐
𝜔2
𝑧
(𝜔+𝜌2+ + 𝜔−𝜌2−) . (2.38)

Similarly, the shift of the axial zero position through 𝐶3, Eq. (2.29) leads to a change of the

magnetic field, which changes the radial eigenfrequencies by

𝛿𝜔±
𝜔±

= ±3𝐶3𝐵1
4𝐶2𝐵0

(−𝜌2𝑧 + 𝜌2+ + 𝜌2−) . (2.39)

15



Chapter 2. The Penning trap

The latter shifts 𝜔𝑐 due to a mean change of the magnetic field at the ion’s position, while the

former does not.

The other shift at that order, 𝐶1𝐵3, can be ignored, as positional shifts due to the magnetic

moments lead only to constant offsets of𝐶0 and shifts on the radial mode again occur only via

changing the voltages.

2.4. Other systematic shifts

2.4.1. Relativistic shift

It is possible to calculate first-order corrections to the eigenfrequencies due to special rela-

tivity [67]. As these scale with the velocity of the modes, the most important contribution is

typically due to the velocity 𝜔+𝜌+ of the modified cyclotron motion. Here, only the shift in the

modified cyclotron frequency

𝛿𝜔+
𝜔+

= − 𝜔+
𝜔+ − 𝜔−

𝜔2+𝜌2+
2𝑐2

≈ −𝜔
2+𝜌2+
2𝑐2

, (2.40)

where 𝑐 is the speed of light, is relevant. The shift can be understood as a relativistic mass

increase that reduces 𝜔𝑐 by division with the Lorentz factor

𝛾 =
1√︃

1 − 𝜔2+𝜌2+
𝑐2

≈ 1 + 1
2

𝜔2+𝜌2+
𝑐2

. (2.41)

The influence of relativistic shifts will be discussed in more detail for the transition frequencies

of the hyperfine and Zeeman splitting.

2.4.2. Image charge shift

The Coulomb field of the charged particle induces image charges on the trap surfaces which

have a backaction on it. An analytical solution of this shift can be found for the approximation

of the trap as an infinitely long cylinder [67, 68]. For the radial modes, it is

𝛿𝜔± = ∓ 𝑞

4𝜋𝜖0𝑎3𝑒𝑙𝐵0
, (2.42)

where 𝜖0 is the vacuum permittivity. The shift of 𝜔± cancels for the sideband relation 𝜔𝑐 =
𝜔+ +𝜔− , but not for the invariance theorem. Here the shift is mostly identical to the shift of 𝜔+

𝛿𝜔𝑐
𝜔𝑐

= − 𝑚

4𝜋𝜖0𝑎3𝑒𝑙𝐵
2
0

. (2.43)

The invariance theorem typically has several advantages over the sideband relation that are

hard to give up on, but the image charge shift is often the largest systematic shift and has to be

correctly compensated. The measurements, done by comparing 𝜔𝑐 obtained by the sideband

and invariance theorem, and simulations in ref. [69] have found that for typical Penning traps

the approximate formula holds to better than 5 %. For measurements with large mass ions, the

current approach is to rather use bigger traps to reduce the image charge shift by utilizing the

strong dependence on 𝑎𝑒𝑙 [66].
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2.5. Image current detection and thermalization

2.5. Image current detection and thermalization

The detection of the motional frequencies of a single particle with often only a few elementary

charges is a challenging task. In Penning-trap experiments that investigate stable particles

with sufficient trapping lifetimes, the non-destructive detection via induced image currents is

possible. In the case of the axial motion, the particle’s charge induces a charge on the trap’s

electrodes that depends on its relative position to it. For small amplitudes, this can be treated

as a charge moving between a parallel plate capacitor with plate separation 𝑑eff. The induced

current 𝐼1 is proportional to the velocity of the particle

𝐼1 =
𝑞

𝑑eff

𝑣𝑧 . (2.44)

The equivalent length 𝑑eff can be calculated or simulated for a Penning trap, see ref. [70] and

typically has a value similar to the geometrical lengths of the electrodes. For a small, millimeter-

sized, trap that has 𝑑eff = 10 mm and the typical frequencies and amplitudes, the currents are

a few femtoamperes per elementary charge.

To sufficiently amplify these tiny currents over the background noise, the voltage drop

over a tuned parallel RLC circuit, called resonator, is measured. At its resonant frequency

𝜔𝑅 = 1/√𝐿𝐶 , where 𝐿 and 𝐶 are its inductance and capacitance, respectively, the impedance

𝑍 (𝜔 = 𝜔𝑅) equals the large effective parallel resistance 𝑅. By tuning the axial frequency 𝜔𝑧
to the resonator’s frequency this leads to a voltage drop 𝑈 = 𝑅𝐼1 that is further increased by

a transistor amplifier. The voltage drop 𝑈1 in turn leads to a damping force on the particle

through the electric field generated by the trap’s offset voltage

𝐹1 =
𝑞2𝑅

𝑑2
eff

𝑣𝑧 ≡𝑚𝛾𝑧𝑣𝑧, (2.45)

where 𝛾𝑧 is a damping rate. This effectively leads to cooling of the particle’s axial motion.

Figure 2.3 shows a sketch of the electrical circuit for the detection of the axial motion.

A more complete description needs to include the full dynamics of the RLC circuit and its

thermal Johnson-Nyquist noise 𝐼𝑡ℎ . By employing Kirchhoff’s law on the circuit shown in Fig-

ure 2.3 and using the voltage-current relations for the resistance, inductance and capacitance,

respectively, the relations of the currents are

𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 = 0

𝐼1 =
𝑞

𝑑eff

𝑣𝑧, 𝐼2 =
d
d𝑡
𝑞𝑅 − 𝐼𝑡ℎ, 𝐼3 =

𝑅

𝐿
𝑞𝑅, 𝐼4 = 𝑅𝐶

d
d𝑡
𝐼𝑅,

(2.46)

with 𝐼𝑅 = 𝑈 /𝑅 the current over the resistor and 𝑞𝑅 = 1
𝑅 ∫d𝑡𝑈 the integrated charge. The

combined eom of the axial motion and the resonator can be summarized as

d
d𝑡

©­­­«
𝑧
𝑧
𝜁

𝜁

ª®®®¬ =

©­­­­«
0 𝜔𝑧 0 0

−𝜔𝑧 0 0 𝑒𝜔𝑅
𝑞𝜔𝑧

𝛾𝑧
0 0 0 𝜔𝑅
0 −𝑞𝜔𝑧

𝑒𝜔𝑅
Γ𝑅 −𝜔𝑅 −Γ𝑅

ª®®®®¬
©­­­«
𝑧
𝑧
𝜁

𝜁

ª®®®¬ +
©­­­«

0
0
0

Γ𝑅𝜁𝑡ℎ (𝑡)

ª®®®¬ , (2.47)
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Figure 2.3: Sketch of the image current detection. In blue, the charged particle’s axial motion

is indicated. The induced current 𝐼1 is routed with wires to the cryogenic tank circuit which is

connected to a small signal amplifier.

with the definition of the resonator coordinates 𝜁 = 𝑑
eff

𝑒 𝑞𝑅 and 𝜁 = 𝑑
eff

𝑒𝜔𝑅
𝐼𝑅 . The oscillation

of the resonator’s coordinates is damped via the resistance with the decay constant Γ𝑅 = 1
𝑅𝐶

and driven by the noise term 𝜁𝑡ℎ = 𝑑
eff

𝑒𝜔𝑅
𝐼𝑡ℎ . The coupling of the particle’s axial motion to the

thermally driven resonator in turn leads to thermalization of this mode. This is illustratively

clear, as the resonator constitutes a heat bath at temperature𝑇 to which the particle is coupled

via the connected electrode. At thermal equilibrium, the particle’s mean amplitude 𝜌𝑧,𝑡ℎ is

related to the temperature of the axial detection system 𝑇𝑧 via

1
2
𝑚𝜔2

𝑧𝜌
2
𝑧,𝑡ℎ = 𝑘𝐵𝑇𝑧 ≡ 𝐸𝑧,𝑡ℎ, (2.48)

where 𝑘𝐵 is the Boltzmann constant and 𝐸𝑧,𝑡ℎ is the thermal axial energy, compare Eq. (2.15).

For a derivation of this, see Section A.4.2. It is also critical to note that, due to the coupling,

the free axial motion is not an eigenmotion of the full system, which may lead to a frequency

shift. A more complete discussion and a probabilistic solution of the thermal motion and its

implications can be found in Section A.

The detection signal𝑈 (𝑡) of a particle tuned close to resonance𝜔𝑧 ≈ 𝜔𝑅 and at an amplitude

larger than the thermal amplitude resembles a noisy sine wave and allows inferring the axial

frequency. At the lower, thermal, axial amplitudes, which are preferable due to lower system-

atic shifts, it does not easily yield any information on the particle’s motion. By converting𝑈 (𝑡)
to a power spectrum in the frequency domain, a thermal detection of the ion’s axial frequency

is possible. To perform the transformation of Eq. (2.47) to Fourier space
1

with frequency coor-

dinate 𝜔 , the dimension of the linear equation can directly be reduced to 2x2 by substituting

𝑧 (𝜔) = 𝑖𝜔
𝜔𝑧
𝑧 (𝜔) and 𝜁 (𝜔) = 𝑖𝜔

𝜔𝑅
𝜁 (𝜔)(

𝜔2
𝑧 − 𝜔2 −𝑖 𝑒𝑞𝛾𝑧𝜔
𝑖 𝑞𝑒 Γ𝑅𝜔 𝜔2

𝑅 − 𝜔2 + 𝑖Γ𝑅𝜔

) (
𝑧 (𝜔)
𝜁 (𝜔)

)
=

(
0

Γ𝑅𝜔𝑅𝜁𝑡ℎ (𝜔)
)
. (2.49)

1
Due to the damping of all modes, any terms from non-thermal initial amplitudes in the Fourier transform go to

zero in the integral over infinite time.
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2.5. Image current detection and thermalization

The detection signal is𝑈 = 𝐼𝑅/𝑅, and solving the above system for the resonator coordinate to

extract the frequency domain solution is straight forward

𝑈 (𝜔) = 𝑈𝑡ℎ (𝜔)
1

1 + 𝑖
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧
𝜔2
𝑧−𝜔2

) , (2.50)

where 𝑈𝑡ℎ = 𝐼𝑡ℎ/𝑅. In order to remove the complex parts of the detection signal, the square of

the norm is used

|𝑈 (𝜔) |2 = |𝑈𝑡ℎ (𝜔) |2
1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧
𝜔2
𝑧−𝜔2

)2 . (2.51)

The thermal Johnson-Nyquist noise [71]

𝑈𝑡ℎ =

√︂
4𝑘𝐵𝑇𝑧𝑅

Δ𝜔

2𝜋
(2.52)

is simply flat in frequency space and experimentally depends on the detection bandwidth Δ𝜔 .

Without an ion, the signal is just the thermal noise of the RLC circuit and described by setting

𝛾𝑧 = 0 in Eq. (2.51):

|𝑈 (𝜔) |2 = |𝑈𝑡ℎ (𝜔) |2
1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅

)2 . (2.53)

Figure 2.4 shows the expected detection signal for typical experimental parameters. At 𝜔 ≈

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
l−l'
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0.00

0.25

0.50

0.75
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|*
(l
)|2

*
2 Cℎ

Figure 2.4: Detection signal in the frequency domain. In blue, the detection signal without a

particle is shown. In green, the axial frequency is tuned to resonance 𝜔𝑧 = 𝜔𝑅 . In orange, the

axial frequency is detuned by 𝜔𝑧 = 𝜔𝑅 + Γ𝑅/4.

𝜔𝑅 ± Γ𝑅/2 the resonator signal reaches half its amplitude, which defines the 3 dB width of the
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resonator. With a particle, the signal vanishes at𝜔 = 𝜔𝑧 . This is typically phrased as the particle

motion shorting the resonator’s thermal noise to ground. The 3 dB width of this so-called ‘dip‘
signal is approximately equal to the cooling time constant 𝛾 for 𝜔𝑧 = 𝜔𝑅 . For a particle tuned

off-resonance, 𝜔𝑧 ≠ 𝜔𝑅 , the dip signal becomes highly asymmetrical. The theoretical detection

signal is in a few ways an idealized version of the real signal. Most importantly, the theoretical

line resembles the mean detected signal, while in reality an averaging of the spectrum is done

only for a finite time. See Section A.5 for a theoretical derivation of a numerical generation

of time domain and frequency domain detection signal. The consequences of this will also be

discussed later in the investigation of systematic effects.

To gauge the scaling of the resolution 𝜎 (𝜔𝑧) with measurement time 𝑇 it is important to

note the incoherent nature of this detection method. The detected noise signal over arbitrary

time intervals 𝜏 gives uncorrelated Fourier spectra. The independent fit values of 𝜔𝑧 with

uncertainty 𝜎 (𝜔𝑧) thus average via the square root of the number of measurements, assuming

no other sources that change 𝜔𝑧 . Therefore the uncertainty of the dip method scales as

𝜎 (𝜔𝑧) (𝑇 ) ∝ 1√
𝑇
. (2.54)

2.6. Excitations and mode coupling

Excitations and couplings of the motional modes are used for non-thermal detection meth-

ods and thermalization of modes that are not directly cooled. In the case of ions and typical

Penning-trap parameters, all excitations and couplings are achieved by radio frequency (RF)

signals. The corresponding wavelengths are much larger than any structure of the trap or

motional amplitude, so they may be treated as constant in space.

2.6.1. Dipolar excitation

The simplest excitations of the harmonic motional modes correspond to applying sinusoidal

driving forces close to the mode frequencies and in direction of the respective oscillations. For

example, the eom of the driven and undamped oscillation of the axial mode are

d
d𝑡

(
𝑧
𝑧

)
=

(
0 𝜔𝑧

−𝜔𝑧 0

) (
𝑧
𝑧

)
+

(
0

𝐶 sin(𝜔RF𝑡 + 𝜙)
)
, (2.55)

with 𝐶 defining the strength of the exciting force and 𝜔RF, 𝜙 the frequency and phase of the

excitation, respectively. On resonance, 𝜔RF = 𝜔𝑧 , the solution can be derived with the ansatz

𝑧 (𝑡) = 𝑎 sin(𝜔𝑧𝑡) +𝑏 cos(𝜔𝑧𝑡) +𝐴𝑡 sin(𝜔𝑧𝑡) +𝐵𝑡 cos(𝜔𝑧𝑡). The evolution, given an initial phase

space point (𝑧0, 𝑧0), is(
𝑧 (𝑡)
𝑧 (𝑡)

)
= 𝐸𝑧

(
𝑧0
𝑧0

)
+ 𝐶

2𝜔𝑧
sin(𝜔𝑧𝑡)

(
cos(𝜙)
sin(𝜙)

)
+ 𝐶
2
𝑡

(− cos(𝜔𝑧𝑡 + 𝜙)
sin(𝜔𝑧𝑡 + 𝜙)

)
, (2.56)

where 𝐸𝑧 is the free evolution, Eq. (2.10). In order to investigate the change of the initial ampli-

tude 𝜌2𝑧,0 = 𝑧
2
0 + 𝑧20 after a time 𝑡 = 𝑇 , it can be assumed that 𝜔𝑧𝑇 = 2𝑛𝜋 by arbitrarily changing
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2.6. Excitations and mode coupling

the zero time of (𝑧0, 𝑧0). This simplifies the above equation to(
𝑧 (𝑇 )
𝑧 (𝑇 )

)
=

(
𝑧0
𝑧0

)
+ 𝐶
2
𝑇

(− cos(𝜙)
sin(𝜙)

)
≡

(
𝑧0
𝑧0

)
+ ®𝐵𝑧 (𝐶,𝑇 , 𝜙), (2.57)

where ®𝐵𝑧 has units of amplitude and corresponds to a linear displacement in the phase space

coordinates. The increase in amplitude is given by

𝜌2𝑧 (𝑇 ) = 𝜌2𝑧,0 + 𝜌𝑧,0𝐶𝑇 cos(𝜑𝑧 − 𝜙) + 𝐶
2𝑇 2

4
, (2.58)

where the phase 𝜑𝑧 of the initial point is defined through (𝑧0, 𝑧0) = 𝜌𝑧,0(cos(𝜑𝑧), sin(𝜑𝑧)). For

the random initial (thermal) value of 𝜌𝑧,0 and 𝜑𝑧 , the final amplitudes and phases will have

a smaller relative distribution for larger excitations |𝐵𝑧 | = 𝐶𝑇
2 . On average, the square of

the amplitude, or equivalently its energy, increases linearly with the square of the excitation

amplitude and excitation time.

In the case of the radial modes, the same derivation holds for dipolar excitations with forces

in the radial plane and frequencies at their respective eigenfrequencies. The off-resonant terms

in the dipolar excitation at the non-targeted mode can be safely neglected due to the high

frequency difference. Similar to the above, the displacement will be called ®𝐵± for the modified

cyclotron and magnetron mode, respectively.

In practice, dipolar excitation signals are applied via RF excitations on the trap electrodes.

For the axial mode, it is sufficient to apply the signal between any off-center electrode and

ground to get an electric potential that has the desired linear dependence in the 𝑧-coordinate.

In the case of the radial modes, electrodes split along the 𝑧-axis are used to generate electric

potentials depending on the radial coordinates.

2.6.2. Quadrupolar excitation

Couplings between the three motional modes inside the Penning trap are typically achieved via

quadrupolar excitations. Depending on the mode structure, couplings between the two radial

modes or the radial modes and the axial mode are possible. Here, the quadrupolar excitation is

used for thermalization and detection of the radial motion via the axial motion and resonator

and no radial-to-radial coupling is required. The excitation field necessary for coupling the

radial modes to the axial mode requires a quadrupole configuration orthogonal to the trap’s

static field. The force on the particle due to a particular such field may be written as

®𝐹 =𝑚 Re(𝐶𝑒𝑖𝜔RF𝑡 ) ©­«
𝑧
0
𝑥

ª®¬ , (2.59)

where 𝐶 is a complex amplitude of the excitation that incorporates its phase and 𝜔RF its fre-

quency. To generate such a field, off-center split electrodes, as sketched in Figure 2.2, can be

used.
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Chapter 2. The Penning trap

It can be shown that for a particular choice of the real coordinates 𝑟±(𝑡) that describe the

modified cyclotron and magnetron motion, the coupling is described by the following eom [72]

d
d𝑡

©­­­­­­­«

𝑧
𝑧
𝑟+
𝑟+
𝑟−
𝑟−

ª®®®®®®®¬
=

©­­­­­­­«

0 𝜔𝑧 0 0 0 0
−𝜔𝑧 0 0 0 0 0
0 0 0 𝜔+ 0 0
0 0 −𝜔+ 0 0 0
0 0 0 0 0 𝜔−
0 0 0 0 −𝜔− 0

ª®®®®®®®¬

©­­­­­­­«

𝑧
𝑧
𝑟+
𝑟+
𝑟−
𝑟−

ª®®®®®®®¬
+ Re(𝐶𝑒𝑖𝜔RF𝑡 )

©­­­­­­­­«

0
𝑟++𝑟−
𝜔𝑧

0
𝑧
𝜔+
0

− 𝑧
𝜔−

ª®®®®®®®®¬
, (2.60)

where 𝑟± = 𝑣𝑟±/𝜔±. The general ansatz

𝑧 (𝑡) = Re(𝑃𝑧 (𝑡)𝑒𝑖𝜔𝑧𝑡 ),
𝑟±(𝑡) = Re(𝑃±(𝑡)𝑒𝑖𝜔±𝑡 ), (2.61)

where 𝑃𝑖 are complex amplitudes, is inserted into the eom to yield

Re
[( ¥𝑃𝑧 + 𝑖2 ¤𝑃𝑧𝜔𝑧)𝑒𝑖𝜔𝑧𝑡

]
= Re(𝐶𝑒𝑖𝜔RF𝑡 ) Re(𝑃+(𝑡)𝑒𝑖𝜔+𝑡 + 𝑃− (𝑡)𝑒𝑖𝜔−𝑡 ),

Re
[( ¥𝑃± + 𝑖2 ¤𝑃±𝜔±)𝑒𝑖𝜔±𝑡

]
= ±Re(𝐶𝑒𝑖𝜔RF𝑡 ) Re(𝑃𝑧 (𝑡)𝑒𝑖𝜔𝑧𝑡 ) . (2.62)

Inspecting the right-hand side of these equations shows that oscillating terms at the sum and

difference frequencies of the eigenmotion frequencies and the excitation frequency occur. For

the four combinations 𝜔RF ∈ {𝜔+ − 𝜔𝑧, 𝜔𝑧 + 𝜔−, 𝜔+ + 𝜔𝑧, 𝜔𝑧 − 𝜔−}, a resonant oscillation

with (one of) the terms on the left-hand side occurs. The non-resonant terms are dropped,

which constitutes a classical rotating wave approximation. Further, it will be assumed that the

amplitudes change slowly compared to the eigenmotions such that 𝜔𝑖 ¤𝑃𝑖 ≫ ¥𝑃𝑖 and ¥𝑃𝑖 can be

dropped.

In the case of the two sideband excitations with the modified cyclotron motion𝜔RF = 𝜔+±𝜔𝑧 ,
a comparison of coefficients before the sine and cosine parts yields

d
d𝑡

©­­­«
𝑍
𝑍
𝑋 +

𝑌 +

ª®®®¬ =
1
4

©­­­­­«
0 0 ± Im(𝐶 )

𝜔𝑧
∓Re(𝐶 )

𝜔𝑧

0 0 −Re(𝐶 )
𝜔𝑧

− Im(𝐶 )
𝜔𝑧

Im(𝐶 )
𝜔+ ∓Re(𝐶 )

𝜔+ 0 0

−Re(𝐶 )
𝜔+ ∓ Im(𝐶 )

𝜔+ 0 0

ª®®®®®¬
©­­­«
𝑍
𝑍
𝑋 +

𝑌 +

ª®®®¬ , (2.63)

where the amplitudes have been redefined in terms of their real and imaginary parts as 𝑃𝑧 =
𝑍 + 𝑖𝑍 , 𝑃+ = 𝑋+ + 𝑖𝑌+, compared with the original solutions of the Penning trap Eq. (2.10) and

Eq. (2.14). This differential equation can be nicely integrated
2

©­­­«
𝑍
𝑍
𝑋 +

𝑌 +

ª®®®¬ =

©­­­­­­­«

𝑐±(𝑡) 0
√︃
𝜔+
𝜔𝑧

sin(Φ)𝑠±(𝑡) ∓
√︃
𝜔+
𝜔𝑧

cos(Φ)𝑠±(𝑡)
0 𝑐±(𝑡) ∓

√︃
𝜔+
𝜔𝑧

cos(Φ)𝑠±(𝑡) ∓
√︃
𝜔+
𝜔𝑧

sin(Φ)𝑠±(𝑡)√︃
𝜔𝑧
𝜔+ sin(Φ)𝑠±(𝑡) ∓

√︃
𝜔𝑧
𝜔+ cos(Φ)𝑠±(𝑡) 𝑐±(𝑡) 0

∓
√︃
𝜔𝑧
𝜔+ cos(Φ)𝑠±(𝑡) ∓

√︃
𝜔𝑧
𝜔+ sin(Φ)𝑠±(𝑡) 0 𝑐±(𝑡)

ª®®®®®®®¬
©­­­«
𝑍0

𝑍0

𝑋 +
0
𝑌 +
0

ª®®®¬ ,
(2.64)

2
At this point the help of Mathematica [73] to symbolically exponentiate the matrix was appreciated.
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2.6. Excitations and mode coupling

where 𝑐+(𝑡) = cosh(Ω𝑡), 𝑠+(𝑡) = sinh(Ω𝑡), 𝑐− (𝑡) = cos(Ω𝑡), 𝑠− (𝑡) = sin(Ω𝑡), Φ is the phase

of the excitation, and (𝑍0, 𝑍0, 𝑋
+
0 , 𝑌

+
0 ) is the initial point in phase space. The so-called Rabi

frequency

Ω =
|𝐶 |

4
√
𝜔+𝜔𝑧

(2.65)

defines the strength of the coupling of the modified cyclotron to the axial mode. This rather

complicated looking matrix signifies the full mixing of the initial phase space point of the two

modes with the quadrupolar sideband drive.
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Figure 2.5: Quadrupole coupling of the modified cyclotron mode to the axial mode. The left

and right hand side show the coupling with the sidebands 𝜔RF = 𝜔+ − 𝜔𝑧 and 𝜔RF = 𝜔+ + 𝜔𝑧 ,
respectively. The phases are defined as 𝜑𝑧 = arctan

(
𝑍/𝑍

)
and 𝜑+ = arctan(𝑌 +/𝑋 +).

Figure 2.5 shows the coupling for both the lower and upper sideband for an exemplary initial

point and a drive with phase Φ = 𝜋/2. The lower sideband solution has only oscillating terms

and shows an exchange of amplitude and phase between the two modes. The square of the

amplitudes oscillates at twice the Rabi frequency Ω and after a full cycle, the initial phases are

restored. No additional energy is supplied to the modes with this coupling, as the sum of the

square amplitudes is constant. In contrast, the upper sideband leads to an exponential increase

in both mode amplitudes and both phases converge.
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Chapter 2. The Penning trap

In the case of quadrupolar excitations at sidebands with the magnetron mode, the derivation

follows identically. The solution differs by the change of hyperbolic and sinusoidal functions

with the sign of the sideband. The hyperbolic functions appear with the negative sideband

𝜔RF = 𝜔𝑧 − 𝜔− and the sine functions at the positive sideband 𝜔RF = 𝜔𝑧 + 𝜔− .

Applications of the sideband drives will be discussed in the following two sections.

2.7. Cooling and thermal detection of the radial modes

The axial mode is cooled to the ambient temperature of the detection system, as expressed by

the thermal amplitude Eq. (2.48). To thermalize the radial modes to this bath as well, they are

coupled to the axial mode via the quadrupolar excitation at the energy exchanging sidebands

𝜔+ − 𝜔𝑧 and 𝜔𝑧 + 𝜔− respectively. The energy that is transferred from the radial mode to the

axial mode is then dissipated in the axial resonator. From the exemplary coupling in Figure 2.5

it can already be seen that the exchange of energy does not happen one-to-one but with a

scaling factor. Indeed, both from quantum mechanical, see ref. [62] and classical derivations,

see Section A.4.3, it can be shown that the couplings result in thermal amplitudes

𝐸+,𝑡ℎ =
1
2
𝑚𝜔2

+𝜌
2
+,𝑡ℎ =

𝜔+
𝜔𝑧
𝐸𝑧,𝑡ℎ =

1
2
𝑚𝜔2

+

(√︂
𝜔𝑧
𝜔+
𝜌𝑧,𝑡ℎ

)2
𝐸−,𝑡ℎ = −1

4
𝑚𝜔2

𝑧𝜌
2
−,𝑡ℎ = −𝜔−

𝜔𝑧
𝐸𝑧,𝑡ℎ = −1

4
𝑚𝜔2

𝑧

(√︂
𝜔𝑧
𝜔+
𝜌𝑧,𝑡ℎ

)2
,

(2.66)

where both the thermal magnetron and modified cyclotron amplitude are identical provided

the same approximation as in Eq. (2.15) is made. Cooling the radial modes via the sidebands is

referred to as cyclotron and magnetron cooling, respectively.

If the amplitude evolution of the negative sideband, 𝜔RF = 𝜔+ − 𝜔𝑧 , Eq. (2.64), is combined

with the fast evolution at the eigenfrequency Eq. (2.61), it becomes clear that the eigenfre-

quencies of the axial and cyclotron motion are split into two sidebands at 𝜔𝑧,1,2 = 𝜔𝑧 ± Ω. By

allowing for a detuning of the sideband drive 𝜔RF = 𝜔+ − 𝜔𝑧 + 𝛿 , a more general calculation

shows that the two axial frequency components are [74]

𝜔𝑧,1,2 = 𝜔𝑧 − 1
2

(
𝛿 ±

√
4Ω2 + 𝛿2

)
. (2.67)

This allows to reproduce the modified cyclotron frequency via the relation

𝜔+ = 𝜔𝑧,1 + 𝜔𝑧,2 − 𝜔𝑧 + 𝜔RF, (2.68)

and similarly for quadrupole drives close to the positive magnetron sideband

𝜔− = −𝜔𝑧,1 − 𝜔𝑧,2 + 𝜔𝑧 + 𝜔RF. (2.69)

The splitting of the frequencies has a minimum at 𝛿 = 0 and follows the shape of an avoided

crossing often encountered in coupled quantum mechanical two-level systems [75].

During thermal equilibrium, i.e. after a sufficiently long cooling and coupling time, the two

axial eigenmotions produce individual dip signals at their respective frequencies [70]. The two
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2.8. Phase-sensitive detection of the modified cyclotron mode

dip signals (‘double dip‘ ) superimposed on the thermal noise of the resonator are expressed

through

|𝑈 (𝜔) |2 = |𝑈𝑡ℎ (𝜔) |2
1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧,1
𝜔2
𝑧,1−𝜔2 − 𝜔𝛾𝑧,2

𝜔2
𝑧,2−𝜔2

)2 , (2.70)

compare with Eq. (2.51) and see Figure 2.6. Here, the two dips may have different widths 𝛾𝑧,1,2
which depend on the detuning of the quadrupolar drive 𝛿 . For the extraction of the frequencies

via a fit to the measured spectrum, this is of no concern, as the widths 𝛾𝑧,1,2 are fit separately.

In Section B.3, a first-principle derivation of the double dip lineshape is done, which differs
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Figure 2.6: Double dip detection signal. Here 𝜔𝑧 = 𝜔𝑅 and the detuning 𝛿 = 0. The dips are

thus split by the rabi frequency Ω and centered around the resonator.

slightly in its mathematical form, but does not, at least for the experiments performed here,

lead to measurable consequences.

The detection of the modified cyclotron frequency via the double dip technique requires

only the addition of the continuous quadrupolar drive and is thus fairly straightforward to

implement. As the detection is done at thermal equilibrium, systematic shifts, as described in

Section 2.3 and Eq. (2.40), are smaller than techniques using excited motions. The resolution of

this technique is typically limited via the same effects as the measurement of the axial frequency

through the single dip and scales only with the inverse of the square root of measurement time.

While the uncertainty of the measured𝜔𝑧 is suppressed in the determination of𝜔𝑐 through the

invariance theorem Eq. (2.6), compare Eq. (2.7), the modified cyclotron frequencies uncertainty

contributes essentially one-to-one.

2.8. Phase-sensitive detection of the modified cyclotron mode

To improve on the double-dip technique, coherent detection techniques of the modified cy-

clotron frequency can be employed. The coherent detection relies on measuring the phase 𝜑+
of the motion at an initial time 𝑇1 and at a final time 𝑇2 = 𝑇1 + 𝑇evol separated by a coherent
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Chapter 2. The Penning trap

evolution of the oscillation. The acquired phase difference

Δ𝜑+ = 𝜔+𝑇evol − 2𝜋𝑁+ (2.71)

depends on the free evolution time𝑇evol and number of full evolutions 𝑁+. Assuming no uncer-

tainty of 𝑁+, the uncertainty of the determined cyclotron frequency then scales directly with

time

𝜎 (𝜔+) = 𝜎 (Δ𝜑+)
𝑇evol

. (2.72)

2.8.1. Phase measurement sequences

First, a dipolar excitation pulse ®𝐵+ is used to excite the modified cyclotron motion to a high am-

plitude and set the initial phase of the motion, compare Eq. (2.57). Opposed to the axial motion,

the modified cyclotron motion is not coupled to a detector, meaning it evolves coherently. After

the evolution time𝑇evol, a coupling pulse, using the quadrupolar excitation, transfers the phase

information into the axial mode, where it can be read out using the axial detection system.

Both the lower and the upper sideband can be used to transfer the phase.

Utilizing the lower sideband to transfer the phase is termed the Pulse and Phase (PnP) method

and was first introduced in ref. [74]. Here a pulse of length 𝑇couple = 𝜋
2

1
Ω is used, which gives

the following coupling matrix (for Φ = 𝜋/2), compare Eq. (2.64):

𝐶PnP =

©­­­­­­­«

0 0
√︃
𝜔𝑧
𝜔+ 0

0 0 0
√︃
𝜔𝑧
𝜔+√︃

𝜔+
𝜔𝑧

0 0 0

0
√︃
𝜔+
𝜔𝑧

0 0

ª®®®®®®®¬
. (2.73)

The final phase space point of the axial motions amplitude depends only on the initial point of

the modified cyclotron motion and has an identical phase, compare also the point of 𝑡 = 1
4
2𝜋
Ω

in Figure 2.5.

Employing the upper sideband for the coupling is termed Pulse and Amplify (PnA) and was

introduced in ref. [76]. Here, also for Φ = 𝜋/2, the coupling matrix for a coupling time 𝑇couple

is

𝐶PnA =

©­­­­­­­«

𝑐+(𝑇couple) 0
√︃
𝜔+
𝜔𝑧
𝑠+(𝑇couple) 0

0 𝑐+(𝑇couple) 0 −
√︃
𝜔+
𝜔𝑧
𝑠+(𝑇couple)√︃

𝜔𝑧
𝜔+ 𝑠+(𝑇couple) 0 𝑐+(𝑇couple) 0

0 −
√︃
𝜔𝑧
𝜔+ 𝑠+(𝑇couple) 0 𝑐+(𝑇couple)

ª®®®®®®®¬
. (2.74)

It is not directly obvious that this transfers the phase information. The final phase is given via

the fraction

𝑍

𝑍
=
𝑐+𝑍0 −

√︃
𝜔+
𝜔𝑧
𝑠+𝑌 +

0

𝑐+𝑍0 +
√︃
𝜔+
𝜔𝑧
𝑠+𝑋 +

0

=
𝜂 sin

(
𝜑𝑧,0

) − sin
(
𝜑+,0

)
𝜂 cos

(
𝜑𝑧,0

) + cos
(
𝜑+,0

) , (2.75)
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2.8. Phase-sensitive detection of the modified cyclotron mode

where the parameter 𝜂 = |𝑃𝑧,0 |√︃
𝜔+
𝜔𝑧

|𝑃+,0 |
coth

(
Ω𝑇couple

)
is introduced and coth is the hyperbolic

cotangent. Keeping in mind that |𝑃𝑧,0 | and |𝑃+,0 | are the amplitudes of the axial and modi-

fied cyclotron motion before the coupling pulse, the axial motion is thermal |𝑃𝑧,0 | = 𝜌𝑧,𝑡ℎ and

using Eq. (2.66), the expansion parameter can be rewritten as

𝜂 =
𝜌+,𝑡ℎ
𝜌+,exc

coth
(
Ω𝑇couple

)
, (2.76)

where 𝜌+,exc = |𝑃+,0 | is the amplitude of the modified cyclotron motion after the dipole exci-

tation
3
. A series expansion of the phase 𝜑𝑧 = arctan

(
𝑍/𝑍

)
around the parameter 𝜂 < 1 gives

(Mathematica)

𝜑𝑧 = −𝜑+,0 +
∞∑︁
𝑘=1

(−1)𝑘+1𝜂𝑘
𝑘

sin
[
𝑘 (𝜑+,0 + 𝜑𝑧,0)

]
= −𝜑+,0 + 𝜂 sin[𝜑+,0 + 𝜑𝑧,0] − 1

2
𝜂2 sin

[
2(𝜑+,0 + 𝜑𝑧,0)

] + O(𝜂3) .
(2.77)

While the final phase depends𝜑𝑧 also on the axial phase before the coupling pulse𝜑𝑧,0, the latter

is randomly distributed over the full 2𝜋 range for individual PnA trials due to the coupling to

the detection system. Therefore, the sin terms average to zero and the mean detected phase〈
𝜑𝑧

〉
= −〈

𝜑+,0
〉
. However, the additional terms in Eq. (2.77) introduce a technical jitter for the

PnA method, which scales with the parameter 𝜂, see also ref. [76] and the next section.

A single phase measurement is a chain of excitation ®𝐵+ Eq. (2.57), free evolution 𝐸+𝑇evol

Eq. (2.14) with evolution time 𝑇evol and coupling 𝐶PnA/P that transforms the initial (and ther-

mally distributed) phase space point ®𝑋0 = (𝑍, 𝑍, 𝑥+0 , 𝑦+0 ) to the final point

®𝑋𝑓 (𝑇evol) = 𝐶PnA/P𝐸+(𝑇evol) ( ®𝑋0 + ®𝐵+) . (2.78)

In this notation, the matrices and vectors need to be appropriately expanded to the 4-D phase

space. The free evolution of the phase during the excitation and coupling pulses was omitted,

as it is common for each choice of 𝑇evol.

For a better understanding, the PnA and PnP sequences are additionally visualized in Fig-

ure 2.7 and Figure 2.8. Initially, following a coupling of the cyclotron mode to the axial mode

via the lower sideband, the amplitude and phase of both the axial and modified cyclotron mode

are thermally distributed, compare Section A.4.3. The excitation pulse brings the modified

cyclotron motion to a non-thermal amplitude and defines the starting phase with a phase un-

certainty depending on the ratio of excitation to thermal amplitude. After a free evolution time,

the modified cyclotron motion has phase𝜑+. In the case of PnA, the coupling pulse excites both

motions and after the pulse, the axial motion’s phase is the negative of 𝜑+. In the case of PnP,

the coupling pulse fully exchanges the phase space coordinates, thus giving the axial motion

the defined phase 𝜑+ and leaving the modified cyclotron motion thermally distributed. The

final amplitude and phase of the axial motion after the coupling pulse evolve according to the

thermally driven detection system Eq. (2.47). Therefore, the phase uncertainty increases due

to the thermalization of the axial mode.

3
When using different heatbaths for the axial and modified cyclotron motion, i.e. a cyclotron resonator, the thermal

amplitude 𝜌+,𝑡ℎ in this formula always corresponds to the one from thermalization with the axial heatbath!
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Initial Post excitation Post evolution Post coupling

Excitation Free evolution Coupling Readout

-

Figure 2.7: Visualization of an exemplary PnA sequence. The top row of plots shows the

phase space of the axial(blue) and modified cyclotron(green) motion at different times of the

sequence. In the second row, the amplitudes and their corresponding distribution, indicated by

the 1− 𝜎 uncertainty bands, are shown. The lowest plot shows the phase uncertainties, where

180◦ corresponds to a fully random phase. Note that the phase uncertainties never fully go to

zero and are a couple of degrees for the example here. For details on the generation of the data

for this plot see Section A.5.2.

2.8.2. Phase uncertainty

After the coupling pulse, the non-thermal axial mode drives and transfers its energy to the

resonator at frequency 𝜔𝑧 . Thus, the phase 𝜑det(𝜔𝑧) ≡ 𝜑det in the Fourier spectrum calculated

from the detected resonator signal 𝜁 depends on the phase of the axial mode after the coupling

pulse, which in turn depends on the phase of the modified cyclotron mode 𝜑+. Generally, the

detected phase 𝜑det in the Fourier spectrum of the detection signal may be expressed as

𝜑det = (±𝜔+𝑇evol + 𝛿𝜑off) mod 2𝜋 (2.79)

28
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Initial Post excitation Post evolution Post coupling

Excitation Free evolution Coupling Readout

Figure 2.8: Visualization of an exemplary PnP sequence. For details see text and Figure 2.7.

where the mod 2𝜋 operation is meant to symbolically subtract 2𝜋𝑁 , where 𝑁 is integer, such

that a number between 0 and 2𝜋 is left. For PnP, the positive sign is used, while for PnA

the negative sign is used. The uncertainty of the determined 𝜔+ is proportional to the phase

uncertainty, often called ‘phase jitter‘, 𝜎 (𝜑det). In the following, common sources for the phase

jitter are summarized.

Phase imprint jitter

The phase of the cyclotron motion imprinted by the dipolar excitation pulse ®𝐵+ depends on

the initial thermal phase, compare Eq. (2.57). The higher the excitation amplitude, the lower

this dependence. The jitter is visualized through the finite size of the phase space circles in

Figure 2.7 and 2.8. The expected phase-imprint jitter, given the thermal amplitude 𝜌+,𝑡ℎ and ex-

citation amplitude | ®𝐵+ |, can be easily numerically estimated. Adding the excitation ®𝐵+ to phase

space samples {(𝑋 +
𝑖 , 𝑌

+
𝑖 )} taken from the thermal distribution, Eq. (A.38), allows to calculate
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the phases via 𝜑+,𝑖 = arctan
(
𝑋 +
𝑖 , 𝑌

+
𝑖

)
. The jitter is then simply the (circular) standard devia-

tion of these values. Figure 2.9 shows the phase-imprint jitter as a function of
| ®𝐵+ |
𝜌+,𝑡ℎ

. Clearly,
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Figure 2.9: The jitter due to phase imprint. For details see text.

by increasing the excitation amplitude, the effect of the phase-imprint jitter can be minimized

arbitrarily.

Field imperfection and relativistic jitter

As described in the previous sections, field imperfections and the relativistic shift of the cy-

clotron motion, in first-order, shift 𝜔+ depending on the square of the finite amplitude 𝜌+. As

the excited amplitude in the free evolution period is distributed due to the initial thermal am-

plitude, the modified cyclotron frequency will be slightly different in every run of the phase

detection sequence. Using the formula for the amplitude after the dipolar excitation, compare

Eq. (2.58), the frequency shift can be written as

𝛿𝜔+ = 𝐷 (𝜌2+ + 2𝜌+𝐵+ cos(𝜑+) + 𝐵2+), (2.80)

where 𝐷 is a constant depending on the field imperfections and the relativistic shift and 𝐵+ =
| ®𝐵+ | is the excitation amplitude. Using the distribution of the amplitude and angle

𝑝 (𝜌+, 𝜑+) = 𝜌+
𝜋𝜌2+,𝑡ℎ

exp

(
− 𝜌2+
𝜌2+,𝑡ℎ

)
, (2.81)

compare Eq. (A.39) and Eq. (A.40), the mean and standard deviation can be calculated as
4〈

𝛿𝜔+
〉
= 𝐷

(
𝐵2+ + 𝜌2+,𝑡ℎ

)
,

𝜎 (𝛿𝜔+) = 𝐷𝜌+,𝑡ℎ
√︃
2𝐵2+ + 𝜌2+,𝑡ℎ .

(2.82)

4
Using the same approximation 𝜌+,𝑡ℎ ≪ 𝐵+ as done in ref. [77] Eq. (4.11)., the jitter derived here is smaller by a

factor 1/
√︁
2(1 − 𝜋/8) ≈ 0.91.
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2.8. Phase-sensitive detection of the modified cyclotron mode

The jitter of the cyclotron phase (and thus the detected phase) scales with the evolution time

𝑇evol as

𝜎 (𝜑+) = 𝑇evol𝜎 (𝛿𝜔+) = 𝑇evol𝐷𝜌+,𝑡ℎ
√︃
2𝐵2+ + 𝜌2+,𝑡ℎ, (2.83)

where a jitter larger than 𝜋 is to be interpreted as a fully random phase. Though field imper-

fections contributing to |𝐷 | can be minimized experimentally, the relativistic jitter, compare

Eq. (2.40),

𝜎 (𝛿𝜔+)
𝜔+

=
𝜔2+
2𝑐2

𝜌+,𝑡ℎ
√︃
2𝐵2+ + 𝜌2+,𝑡ℎ, (2.84)

can only be reduced by decreasing the cyclotron excitation radius 𝐵+ or the thermal amplitude

𝜌+,𝑡ℎ . Due to the finite thermal amplitudes, the combined relativistic and phase-imprint jitter

thus has an optimum and can not be tuned arbitrarily small. Figure 2.10 shows an exemplary

Figure 2.10: Exemplary jitter and phase space illustration due to field imperfections and the

relativistic shift (𝐷 > 0). On the left-hand side, the jitter as a function of evolution time is

plotted. The phase space sampled curve in blue, necessarily also includes the phase-imprint

jitter. The green curve shows the jitter according to Eq. (2.83). To also include the phase imprint

in the analytical solution it is added under the square root, see the orange curve. The orange and

sampled curves coincide perfectly. The right-hand side shows the phase space for increasing

evolution time, in the order (blue, green, orange, purple). For the upper plot, the systematic

shifts of𝜔+ were added only with the mean excited amplitude, resulting in a constant shift, but

no additional jitter. For the lower plot, each phase space point evolves according to 𝜔+ + 𝛿𝜔+,

with 𝛿𝜔+ from Eq. (2.80), which results in the deformation of the phase space volume and the

increased jitter.

plot of the jitter due to field imperfections and the relativistic shift and their effect on the phase

space coordinates. As 𝐷 > 0 was chosen here, the phase space points with higher amplitude,

i.e. the ones further away from the center, experience a larger positive systematic shift and are

thus faster, and the ones with lower amplitude lack behind.
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Chapter 2. The Penning trap

Readout jitter

In addition to the axial oscillation signal which incorporates the phase information, the de-

tection signal includes the full thermal noise spectrum of the resonator and the input noise

of the cryogenic amplifier. The noise in a single Fourier frequency bin can be reduced by de-

creasing the bandwidth, compare Eq. (2.52), which requires increasing the measurement time

of the detection signal. As the detection signal decays with the time constant
2𝜋
𝛾𝑧

, there is a limit

to this. This additional jitter thus scales with the signal-to-noise ratio (SNR) in the detected

Fourier spectrum. For the PnP method, the final amplitude in the axial mode depends only on

the initial amplitude of the modified cyclotron motion and thus on the excitation pulse |𝐵+ |. In

contrast, the PnA method allows to arbitrarily increase the amplitude of the axial motion af-

ter the coupling pulse, compare Figure 2.5, thus eliminating the SNR-dependent jitter and also

removing the need to fine-tune the detection time. For PnA, the coupling itself adds another

jitter as seen in Eq. (2.77), which can be evaluated (Mathematica) for the limiting case of large

coupling pulses, coth
(
Ω𝑇couple

) → 1, to be

𝜎 (𝜑𝑧)PnA =

√√√√√
0.5 Li2


(
𝐵2+
𝜌2+,𝑡ℎ

+ 1.0

)−1, (2.85)

where Li2 is the Dilogarithm. This similarly depends on the ratio of amplitude of the cyclotron

motion to the amplitude of the axial motion, which is thermally distributed, before the coupling

pulse. In practice, the jitter of PnA and PnP are then mostly identical, see also Section A.5.2.

Here, PnA is used over PnP primarily due to the ability to not have to tune the detection time.

Figure 2.11 shows the PnA specific jitter Eq. (2.85) and the full thermal jitter of the PnA method,

i.e. the phase imprint and readout jitter, calculated as explained in Section A.5.2.
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Figure 2.11: Exemplary jitter due to phase imprint and readout for PnA. The blue curve data

is calculated from fully generated data of PnA cycles and has a small error bar due to the finite

number of generated cycles. For PnA, the coupling time was chosen large enough to make

the jitter for the different excitation amplitudes not limited by the detection time. Though

the generation of the data relies on experimental parameters such as 𝜔𝑅 , Γ𝑅 , 𝛾𝑧 etc., the full

thermal jitter mostly only depends on the ratio
| ®𝐵+ |
𝜌+,𝑡ℎ

. The orange line is the technical PnA jitter

as calculated from Eq. (2.85) and the purple line is the squared sum under the square root of

the phase imprint and technical jitter. The small difference of the blue to the purple line may

be due to the definition of the circular standard deviation used to compute the jitter from the

sampled data.
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Chapter 3.

The Zeeman and hyperfine splitting

Due to its simplicity, a spin inside a magnetic field is often used as a model system for quan-

tum mechanics [78]. In particular, spin-1/2 systems in magnetic fields, as described by the

Zeeman effect, are ideal two-state quantum systems and their description is as fundamentally

relevant for understanding basic quantum mechanics, as it is for state-of-the-art research. A

typical next step in complexity concerns the description of interacting two-state systems. An

ideal example of this is the Zeeman and hyperfine structure of the ground-state of hydro-

gen [79]. Any hydrogen-like atom in the ground state has a very similar and simple structure

and Penning traps allow probing it in an ideal environment.

In the previous chapter, I introduced the theoretical groundwork and the experimental tech-

niques of the Penning trap as a tool to measure the cyclotron frequency 𝜔𝑐 . Here, I will out-

line the quantum mechanical description of the combined Zeeman and hyperfine splitting in

hydrogen-like ground-state systems and the intricacies of their spectroscopy in Penning traps.

This includes the calculation of the transition frequencies, the transition rates, and a theoret-

ical description of the transition probability lineshape. Following that, I discuss the influence

of special relativity on the transition frequencies and the detection of spin states in Penning

traps.

3.1. The Breit-Rabi equation

In the systems investigated here, only a single s-shell valence-electron with spin 𝑆 = 1/2 is

bound to the nucleus. In the case of a nuclear spin 𝐼 ≠ 0, there is a direct interaction be-

tween the nucleus and the electron due to their respective magnetic moments. Pictorially, the

nucleus feels the strong magnetic field originating from the closely bound orbiting electron,

which interacts with its magnetic moment. This leads to the system having two energy states,

depending on the relative orientation of the electron and nucleus magnetic moments. If in

addition, an external magnetic field is present, a Zeeman splitting of these two energy states

depending on the orientation of the spins with respect to the magnetic field occurs. The initial

two states are split into 4𝐼 + 2 states.

The combined Zeeman and hyperfine splitting can be expressed through the non-relativistic
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Chapter 3. The Zeeman and hyperfine splitting

Hamiltonian in the dipole approximation [80]

𝐻̂ = 𝐴 ®̂𝑆 · ®̂𝐼 − 𝜇𝐵𝑔𝑒 ®𝐵 · ®̂𝑆 − 𝜇𝑁𝑔𝐼 ®𝐵 · ®̂𝐼 . (3.1)

The hyperfine constant 𝐴 is a measure of the strength of the coupling of the electron and

nucleus spin which are incorporated as the dimensionless spin operators ®̂𝑆 = (𝑆𝑥 , 𝑆𝑦, 𝑆𝑧) and

®̂𝐼 = (𝐼𝑥 , 𝐼𝑦, 𝐼𝑧), respectively. The Bohr and nuclear magneton 𝜇𝐵 and 𝜇𝑁 quantify the magnetic

moment of an electron or proton for single angular momentum quantum numbers, respectively.

The relation of the respective magneton to the charge 𝑒 and masses𝑚𝑒 and𝑚𝑝 of the electron

and proton are

𝜇𝐵 =
𝑒ℏ
2𝑚𝑒

, 𝜇𝑁 =
𝑒ℏ
2𝑚𝑝

, (3.2)

where ℏ is the reduced Planck constant. In the case of spin angular momenta, an additional

factor, called the 𝑔-factor needs to be introduced. For the electron it is 𝑔𝑒 ≈ −2 and for nuclei

it is typically of O(1), e.g. for the proton 𝑔𝐼 ≈ 5.6. Due to the lower mass of the electron, its

magnetic moment per quantum is much larger, e.g. 𝜇𝐵/𝜇𝑁 =𝑚𝑝/𝑚𝑒 ≈ 1800 [22].

In the following, a static field ®𝐵 = (0, 0, 𝐵0) is chosen. The quantum eigenstates |𝑚𝑠 ,𝑚𝐼 ⟩ =
|𝑚𝑠⟩ ⊗ |𝑚𝐼 ⟩, where ⊗ is the tensor product, of the uncoupled 𝐴 = 0 system are expressed via

the 𝑧-components 𝑚𝑠 and 𝑚𝐼 of their respective spins. The 𝑧-component quantum numbers

range from𝑚𝑠 = ±1/2 and𝑚𝐼 = {−𝐼 ,−𝐼 + 1, . . . , 𝐼 }. The operators are defined via their action

on the full basis set of the states |𝑚𝑠 ,𝑚𝐼 ⟩. Similar to ref. [80] the ladder operators

𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦, 𝐼± = 𝐼𝑥 ± 𝑖 𝐼𝑦 (3.3)

are defined. Using the angular momentum commutation relations [𝑆𝑖 , 𝑆 𝑗 ] = 𝑖
∑
𝑘 𝜖𝑖 𝑗𝑘𝑆𝑘 , where

𝜖𝑖 𝑗𝑘 is the Levi-Civita symbol, it can be shown that

𝑆± |𝑚𝑠⟩ =
√︁
𝑆 (𝑆 + 1) −𝑚𝑠 (𝑚𝑠 ± 1) |𝑚𝑠 ± 1⟩ , (3.4)

where 𝑆 is the total spin. Applying 𝑆± on states that have no higher/lower state annihilates

the state, i.e. gives a zero for the prefactor. The same formula and argument holds for 𝐼± by

replacing 𝑆 with 𝐼 and𝑚𝑠 with𝑚𝐼 . Substituting Eq. (3.3) into Eq. (3.1) results in

𝐻̂ = 𝐴𝐼𝑧𝑆𝑧 + 𝐴2 (𝐼+𝑆− + 𝐼−𝑆+) − (𝜇𝐵𝑔𝑒𝑆𝑧 + 𝜇𝑛𝑔𝐼 𝐼𝑧)𝐵0. (3.5)

While the first and last terms do not change the 𝑧-projection quantum numbers, the second

term leaves only their sum 𝑚𝐹 = 𝑚𝑠 +𝑚𝐼 equal. Therefore, states with equal 𝑚𝐹 quantum

number form a submanifold of 𝐻̂𝑚𝐹 with eigenstates only composed of superpositions of them.

As the electron spin has only two possible values, it is sensible to form the states

|±⟩𝑚𝐹
= |𝑚𝑠 = ±1/2,𝑚𝐼 =𝑚𝐹 ∓ 1/2⟩ , (3.6)

which build the basis state of the submanifold. For the cases of 𝑚𝐹 = ±(𝐼 + 1/2), only the

|−⟩𝐼+1/2 and |+⟩−𝐼−1/2 exist, respectively, and they are eigenstates of the full Hamiltonian. Tak-

ing |+⟩𝑚𝐹
= (1, 0)𝑇 and |−⟩𝑚𝐹

= (0, 1)𝑇 allows expressing

𝐻̂𝑚𝐹 = ©­«
𝐴
2 (𝑚𝐹 − 1

2 ) − 1
2𝐸𝑠 + 1

2𝐸𝐼 (1 − 2𝑚𝐹 ) 𝐴
2

√︃
(𝐼 + 1/2)2 −𝑚2

𝐹

𝐴
2

√︃
(𝐼 + 1/2)2 −𝑚2

𝐹
𝐴
2 (−𝑚𝐹 − 1

2 ) + 1
2𝐸𝑠 + 1

2𝐸𝐼 (−1 − 2𝑚𝐹 )
ª®¬ , (3.7)
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3.1. The Breit-Rabi equation

where

𝐸𝑠 = 𝜇𝐵𝑔𝑒𝐵0 and 𝐸𝐼 = 𝜇𝑁𝑔𝐼𝐵0 (3.8)

are the energy of the individual magnetic moments. The solution of the time-independent

Schrödinger equation is given via the diagonalization of this matrix which yields the energies

𝐸1,2𝑚𝐹
= 𝐸0 ± 𝐴

2

√︃
(𝐼 + 1/2)2 −𝑚2

𝐹 cosh(𝜃 ),

𝐸1𝐼+1/2 = 𝐸0 +
𝐴

2

(
𝐼 + 1

2

)
+ 𝐸𝐼 − 𝐸𝑠 ,

𝐸2−𝐼−1/2 = 𝐸0 +
𝐴

2

(
𝐼 + 1

2

)
− 𝐸𝐼 + 𝐸𝑠 ,

𝐸0 = −𝐴
4
−𝑚𝐹𝐸𝐼 ,

(3.9)

and normalized eigenstates

|1, 2⟩𝑚𝐹
=

1√
2

(√︁
1 ± tanh(𝜃 ) |+⟩𝑚𝐹

∓
√︁
1 ∓ tanh(𝜃 ) |−⟩𝑚𝐹

)
,

|1⟩𝐼+1/2 = |𝑚𝑠 = 1/2,𝑚𝐼 = 𝐼 ⟩ ,
|2⟩−𝐼−1/2 = |𝑚𝑠 = −1/2,𝑚𝐼 = −𝐼 ⟩ ,

(3.10)

where the mixing of states is quantified by

sinh(𝜃 ) = 𝐴𝑚𝐹 + 𝐸𝐼 − 𝐸𝑠
𝐴
√︃
(𝐼 + 1/2)2 −𝑚2

𝐹

. (3.11)

The above equations of the energies of the combined Zeeman and hyperfine splitting are called

the Breit-Rabi equation [81]. At zero magnetic field, 𝐵0 = 0, the terms 𝐸𝑠 = 𝐸𝐼 = 0 and the

energies are 𝐸1,2𝑚𝐹
= 𝐴/2(−1/2 ± 1/2 ± 𝐼 ) and 𝐸1

𝐼+1/2 = 𝐸2−𝐼−1/2 = 𝐼𝐴/2. Therefore, only two

different energy states exist at 𝐵0 = 0 and they are spaced by the zero-field hyperfine splitting

𝐸HFS = 𝐴

(
𝐼 + 1

2

)
. (3.12)

In the literature, typically approximations based on the field strength 𝐵0 are made to dis-

tinguish between the weak field and the strong field, the latter also called the Paschen–Back

regime [82]. In the weak-field regime, the quantum number 𝐹 of the approximately conserved

total angular momentum ®𝐹 = ®𝑆 + ®𝐼 is introduced and the mixing of the states is large. In the

strong field regime, the mixing due to the hyperfine splitting can be neglected and the eigen-

states are equal to the ones at 𝐴 = 0 i.e. |𝑚𝑠 ,𝑚𝐼 ⟩. In the case of the measurements performed

here, the mixing is typically small, as | sinh(𝜃 ) | > 1 ⇒ | tanh(𝜃 ) | ⪆ 1, but not negligible, so

the full results derived above need to be used.
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3.2. Transition rates and selection rules

Transitions between the states are driven with microwave radiation at frequencies correspond-

ing to the energy difference between the states. Given a sinusoidal magnetic excitation, a term

𝐻̂MW = −(𝜇𝐵𝑔𝑒 ®̂𝑆 + 𝜇𝑁𝑔𝐼 ®̂𝐼 ) · ®𝐵MW cos(𝜔MW𝑡), (3.13)

is added to the Hamiltonian Eq. (3.1). Here, ®𝐵MW contains the direction and strength and 𝜔MW

is the frequency of the exciting microwave field. Any spatial component of the exciting field is

neglected, as the wavelength of the transitions in the Zeeman and hyperfine splitting for light

ions at our magnetic fields is much larger, 𝜆 ⪆ 1.5 mm, than the ion’s motional amplitudes,

𝜌𝑖 ≪ 1 mm.

In the following, the eigenstates, Eq. (3.10), are written as |Ψ𝑘⟩ and the associated energies,

Eq. (3.9), as 𝐸𝑘 . The time-dependent Schrödinger equation of the general state |Ψ⟩ is [83]

𝑖ℏ
d
d𝑡

|Ψ⟩ = (𝐻̂ + 𝐻̂MW) |Ψ⟩ . (3.14)

Plugging in the Ansatz

|Ψ⟩ =
∑︁
𝑘

𝑐𝑘 (𝑡) |Ψ𝑘⟩ 𝑒−𝑖
𝐸𝑘
ℏ 𝑡 (3.15)

yields the following differential equation for the amplitudes 𝑐𝑚 (𝑡):

¤𝑐𝑚 = 𝑖
∑︁
𝑘

1
ℏ
⟨Ψ𝑚 | (𝜇𝐵𝑔𝑒 ®̂𝑆 + 𝜇𝑁𝑔𝐼 ®̂𝐼 ) · ®𝐵MW |Ψ𝑘⟩︸                                         ︷︷                                         ︸

=:Ω𝑚𝑘

𝑒𝑖
𝐸𝑚−𝐸𝑘

ℏ 𝑡 1
2
(𝑒𝑖𝜔MW𝑡 + 𝑒−𝑖𝜔MW𝑡 )𝑐𝑘 (𝑡), (3.16)

where the Rabi frequency Ω𝑚𝑘 was defined. If the excitation frequency 𝜔MW is close to a dif-

ference
𝐸𝑚−𝐸𝑛

ℏ =: 𝜔𝑚𝑛 , a rotating wave approximation can be made to drop all terms with large

frequencies
1
. This effectively reduces the system to a two-level system, which is described by

a coupled differential equation

¤𝑐𝑚 =
𝑖

2
Ω𝑚𝑛𝑒

−𝑖Δ𝑚𝑛𝑡𝑐𝑛 (𝑡)

¤𝑐𝑛 =
𝑖

2
Ω∗
𝑚𝑛𝑒

𝑖Δ𝑚𝑛𝑡𝑐𝑚 (𝑡),
(3.17)

where Δ𝑚𝑛 = 𝜔RF − 𝐸𝑚−𝐸𝑛
ℏ . Solving for the probabilities reproduces the well-known Rabi

cycle [84]

𝑃𝑛 (Δ, 𝑡 | Ω) = 𝑐𝑛 (𝑡)𝑐∗𝑛 (𝑡) =
|Ω𝑚𝑛 |2

|Ω𝑚𝑛 |2 + Δ2
𝑚𝑛

sin2
(
1
2

√︃
|Ω𝑚𝑛 |2 + Δ2

𝑚𝑛𝑡

)
, 𝑃𝑚 = 1 − 𝑃𝑛, (3.18)

where the initial condition of being in the state 𝑚 was taken. On resonance, Δ𝑚𝑛 = 0, the

probabilities evolve with the rate |Ω𝑚𝑛 |/2 and have full contrast, i.e. range from zero to one.

1
Note that this step is crucial. If the difference of some transition frequencies is of the order of the Rabi frequency,

the rotating wave approximation may fail. This may introduce asymmetries in the observed resonance and lead

to significant shifts.
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3.3. Transition probabilities

Off resonance, the probabilities evolve faster and at a reduced contrast. The rate at which the

transition is driven, given by the Rabi frequency, scales with the strength of the exciting field

®𝐵MW and can thus be experimentally tuned.

To calculate the matrix element of the Rabi frequency Eq. (3.16) in the case of 𝑥 and 𝑦 com-

ponents of the field ®𝐵MW, the 𝑥 and 𝑦 spin operators can be expressed via the ladder operators

Eq. (3.3). As the ladder operators change the𝑚𝐹 quantum number by 1, the 𝑥 and𝑦 components

of ®𝐵MW can only induce transitions between states with 𝛿𝑚𝐹 = 1. In the strong field limit, this

selection rule becomes the stronger condition that either 𝛿𝑚𝑠 = 1 or 𝛿𝑚𝐼 = 0. For intermediate

fields, couplings between states with high field quantum number differences of 𝛿𝑚𝐼 = 2 and

𝛿𝑚𝑠 = 1 are possible.

A 𝑧-component in ®𝐵MW results in a coupling between states of equal𝑚𝐹 , as both 𝑆𝑧 and 𝐼𝑧 do

not change𝑚𝐹 . In the strong field limit, this coupling vanishes as the states |1, 2⟩𝑚𝐹
, compare

Eq. (3.10), are orthogonal eigenstates of 𝑆𝑧 and 𝐼𝑧 .

3.3. Transition probabilities

The goal of the experiment is to measure a set of transition frequencies 𝜔𝑖 corresponding to

the energy differences in Eq. (3.9). To this end, the probability to drive the transition with

irradiated microwaves at frequency 𝜔RF is measured. In principle, the Rabi cycle, Eq. (3.18),

could be observed for varying 𝜔RF to fit the value of 𝜔𝑖 . Here, several effects that will alter the

observed probability and a discussion of these follows.

3.3.1. Including the measurement uncertainty of the magnetic field
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Figure 3.1: The probability to change the state for different Rabi frequencies is shown. The

Rabi frequency Ω is Ω0 for the blue line, 2Ω0 for the green line, 4Ω0 for the orange line. The

time 𝑡 = 𝜋/Ω is chosen such that a maximum at 0 occurs.

Figure 3.1 shows the Rabi cycle for different Rabi frequencies. In order to maximize the pre-

cision for the same number of recorded data points, the Rabi frequency should be reduced as far

as possible. That, however, leads to a complication. The value of the real transition frequency
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Chapter 3. The Zeeman and hyperfine splitting

𝜔𝑖 included in Δ𝑖 = 𝜔MW − 𝜔𝑖 (𝐵0) depends on the current magnetic field inside the Penning

trap. As the magnetic field may drift and is only measured with a finite uncertainty during

each excitation try, Δ𝑖 is statistically distributed. If the width of this distribution approaches

the Rabi frequency, the Rabi cycle’s probability will be altered significantly.

Assuming normal distributed values of the measured magnetic field 𝐵0 with standard devi-

ation 𝜎𝐵 , the standard deviation of Δ for a particular transition with frequency 𝜔 (𝐵) is to first

order

𝜎𝜔 (𝐵0 | 𝜎𝐵) =
���� 𝜕𝜔 (𝐵)𝜕𝐵

(𝐵0)
����𝜎𝐵 . (3.19)

Given a single measured value of the magnetic field, the experimentally chosen detuning Δ is

statistically distributed around the real value by Δ𝐵 with a probability

𝑃𝐵 (Δ𝐵 | 𝜎𝜔 ) = 1√︁
2𝜋𝜎2𝜔

𝑒−
1
2Δ

2
𝐵/𝜎2

𝜔 . (3.20)

The observed probability after many experimental tries is thus the convolution

𝑃𝐵 (Δ, 𝑡 | 𝜎𝜔 ,Ω) = 𝑃𝐵 (Δ | 𝜎𝜔 ) ∗ 𝑃 (Δ, 𝑡 | Ω)

=
∫ ∞

−∞
dΔ𝐵𝑃 (Δ𝐵) Ω2

Ω2 + (Δ − Δ𝐵)2 sin
2
(
1
2

√︁
Ω2 + (Δ − Δ𝐵)2𝑡

)
(3.21)

where Ω is the Rabi frequency of the transition.

Two cases need to be considered here. In the case of 𝑡 ≫ 𝜋/𝜎𝜔 and 𝜎𝜔 ≈ Ω, the sinusoidal

term may be taken as the average value of 1/2. The resulting probability lineshape is just the

convolution of a normal distribution with width 𝜎𝜔 and a Lorentzian function with width Ω
and height 0.5. Such a lineshape is also known as a Voigt profile [85]. In the second case, 𝜎𝜔
is significantly smaller, such that 𝑡 ⪆ 𝜋/𝜎𝜔 and 𝜎𝜔 ≈ Ω. Here, the time dependence does not

drop out, but for a fixed time, the oscillating variations with Δ are still smoothed out via the

convolution. Figure 3.2 shows the probability lineshape for both cases.

3.3.2. Decoherence effects

Choosing the probability Eq. (3.18) for a single try assumes that, during the excitation time 𝑡 ,
the magnetic field does not significantly change. If this were the case, the derivation of the

transition probability done in the previous chapter would have to include the dynamics of the

field resulting in the emergence of decoherence effects.

In the simplest case, noise in the magnetic field value will lead to decoherence. To include

decoherence in the calculation of the transition probability, a pure wavefunction approach

cannot be used. Instead, the quantum state is represented via a density matrix. It has been ar-

gued above, that the hyperfine structure can be reduced to two-level systems with ground and

excited states when driving a specific transition. For a driven two-level system, the time evolu-

tion of the density matrix including decoherence can be rephrased as the time evolution of the

so-called Bloch-vector ®𝑀 via the Bloch-equations [86]. The Bloch-equations for an excitation
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Figure 3.2: Rabi resonance with included 𝐵 measurement uncertainty. For both plots Ω = 𝜎𝜔 .

On the left, the difference between the full probability at 𝑡 = 1000 𝜋Ω and the Voigt profile has

nearly vanished. On the right, a clear dependence on irradiation time 𝑡 is still visible. Note that

in the experiment, the irradiation time 𝑡 between both cases are kept similar and Ω = 𝜎𝜔 are

vastly different.

®𝐵MW = (𝐵MW, 0, 0) in the frame co-rotating with the excitation are

d
d𝑡

©­«
𝑀𝑥

𝑀𝑦

𝑀𝑧

ª®¬ =
©­«
−𝛾 Δ 0
−Δ −𝛾 Ω
0 −Ω 0

ª®¬︸                ︷︷                ︸
Θ

©­«
𝑀𝑥

𝑀𝑦

𝑀𝑧

ª®¬ , (3.22)

where 𝛾 is a relaxation rate of 𝑥 and 𝑦-components. The 𝑥 and 𝑦-components of ®𝑀 are con-

nected to the coherence of the superposition of excited and ground state, and the 𝑧-component,

𝑀𝑧 = 2𝑃 − 1, reflects the probability 𝑃 to be in the excited state. Certain types of magnetic field

noise can be modelled via a dephasing rate 𝛾 of the superposition [86]. A direct relaxation

rate of the 𝑧-component is ignored, as it is typically associated with spontaneous emission and

physically not motivated here. Assuming to be in the ground state initially ®𝑀0 = (0, 0,−1), the

probability is written via the matrix exponential

𝑃 (Δ, 𝑡 | Ω, 𝛾) = −
(
𝑒Θ(Δ,Ω,𝛾 )𝑡

)
33
. (3.23)

The measurement uncertainty of the magnetic field over several attempts of the drive has to

be included here as well, which again gives the final probability as the convolution

𝑃 (Δ, 𝑡 | 𝜎𝜔 ,Ω, 𝛾) = 𝑃𝐵 (Δ | 𝜎𝜔 ) ∗ 𝑃 (Δ, 𝑡 | Ω, 𝛾). (3.24)

The case of 𝛾 = 0 reproduces the probability Eq. (3.21).

41



Chapter 3. The Zeeman and hyperfine splitting

−20 −10 0 10 20
Δ/Ω

0

20

40

60

80

%
(%
)

−20 −10 0 10 20
Δ/Ω

C = 1/W
C = 5/W
C = 10/W

Figure 3.3: Rabi resonance with dephasing. The left-hand side shows the probability according

to Eq. (3.23) and the right-hand side includes the convolution with the distribution due to

measurement uncertainty Eq. (3.24). Here Ω = 𝜎𝜔 = 10𝛾 .

Figure 3.3 shows the resonance curves for the decoherent evolution with and without the

measurement uncertainty. It is assumed that the dephasing rate due to field noise during a sin-

gle attempt is much smaller than the measurement uncertainty over several attempts 𝛾 ≪ 𝜎𝜔 .

The plot shows a saturation effect due to the irradiation time 𝑡 , while the previous consider-

ation only showed saturation due to the power. For the probability Eq. (3.23), an oscillating

structure still exists at times close to the dephasing timescale, but this structure is lost for large

times. For large times, the probability further converges to 𝑃sat = 0.5. The convolution with

the measurement uncertainty removes the structure even for the smaller times, but still shows

the saturation broadening effect and a lineshape reminiscent of a Voigt profile. The saturation

effect with larger times leads to a worse statistical uncertainty on the determined frequency

center. For the case of a fixed time 𝑡 , the saturation broadening can be decreased by lowering

Ω relative to 𝜎𝜔 .

3.3.3. Asymmetry effects

The effects described above should be considered when choosing optimal experimental param-

eters, but the probability lineshapes are still symmetric and simply taking a Gaussian to fit the

center would not lead to any systematic shifts. Previously, only the idealized effect of magnetic

field fluctuations as a dephasing was discussed. If the fluctuations of the magnetic field were

not symmetrically distributed, the resulting probability lineshape would inherit some of this

asymmetry.

For non-perfect homogeneity of the magnetic field 𝐵 = 𝐵0 + 𝐵(𝑧), the thermal axial motion

leads to a coupling of the particles observed magnetic field to the thermal heat bath of the

detection system. The first inhomogeneity 𝐵1𝑧 couples the symmetric normal distribution of

the thermal variable 𝑧, compare Section A.4.2, to the magnetic field, so it does not lead to
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asymmetry. In contrast, the square of the coordinate 𝑧 appearing in the second inhomogeneity

𝐵2𝑧
2
, is distributed according to the asymmetric Maxwell distribution.

In ref. [87] the asymmetric lineshape due to 𝐵2 has been derived for a spin-1/2 system by

including the thermal motion in the transition frequency

𝜔 (𝑡) = 𝜔0 + 2Δ𝜔
𝑧2

𝜌2
𝑧,𝑡ℎ

, (3.25)

where the linewidth parameter is defined as Δ𝜔 = 𝜔0
𝐵2
𝐵0

𝜌2𝑧,𝑡ℎ
2 . This can be adapted for the

combined Zeeman and hyperfine splitting by defining it via

Δ𝜔 =
d𝜔 (𝐵0)
d𝐵0

𝐵2
𝜌2
𝑧,𝑡ℎ

2
, (3.26)

which is valid, because Δ𝜔 ≪ 𝜔0. With these definitions, the mean ⟨𝜔 (𝑡)⟩ = 𝜔0 + Δ𝜔 . A sta-

tistical solution of the probability is derived via the evaluation of 𝑛-time correlation functions

of the axial coordinate, which introduce the coupling time 𝛾𝑧 of the axial motion to the heat

bath. The probability

𝑃 (Δ, 𝑡 | Ω,Δ𝜔,𝛾𝑧) = 0.5
[
1 − exp

(−𝜋Ω2𝑡 𝜒 (Δ,Δ𝜔,𝛾𝑧))
) ]
, (3.27)

is expressed via the lineshape function 𝜒 . This function will be called the Brown-Gabrielse line.

The general lineshape function derived in ref. [87] is

𝜒 (Δ,Δ𝜔,𝛾𝑧) = 4
𝜋
Re

[
𝛾
′
𝑧𝛾𝑧

(𝛾 ′
𝑧 + 𝛾𝑧)2

∞∑︁
𝑛=0

(
𝛾
′
𝑧 − 𝛾𝑧
𝛾
′
𝑧 + 𝛾𝑧

)2𝑛
1

(𝑛 + 1
2 )𝛾

′
𝑧 − 1

2𝛾𝑧 − 𝑖Δ

]
,

𝛾
′
𝑧 =

√︃
𝛾2𝑧 + 4𝑖𝛾Δ𝜔.

(3.28)

The derivation relies on the assumptions

𝑡 ≫ 2𝜋/𝛾𝑧, 𝑡 ≫ 2𝜋/Δ𝜔, Ω ≪ Δ𝜔 and Ω ≪ 𝛾𝑧 . (3.29)

As will be discussed later, for a set of transitions these assumptions are more or less fulfilled.

The numerical studies performed in this work, see Section A.6, confirm the full probability

Eq. (3.27) for the above assumptions and can even extend the calculations outside of them.

The lineshape function approaches a symmetric Lorentzian profile for the strong coupling

case, 𝛾𝑧 ≫ Δ𝜔 , as the frequency 𝜔 (𝑡) follows its average value very fast. In the case of weak

coupling, 𝛾𝑧 ≪ Δ𝜔 , the oscillation frequency of the Bloch vector changes only over several

cycles and the lineshape function reproduces the thermal Boltzmann distribution of the square

axial amplitude. Figure 3.4 shows the different coupling regimes and the saturation effect of

the Brown-Gabrielse line. Without saturation, the weighted centers of the probability

Δ0 =
〈
Δ
〉
=

1∫
dΔ𝑃 (Δ)

∫
dΔ𝑃 (Δ)Δ, (3.30)
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Figure 3.4: Brown-Gabrielse line. The left-hand side shows the unsaturated case of Eq. (3.27)

for different ratios of
Δ𝜔
𝛾𝑧

to illustrate the weak (blue), intermediate (green) and strong (or-

ange) coupling. The right-hand side shows the saturation behaviour with increasing times for

Δ𝜔/𝛾𝑧 = 1.0. Equivalently the Rabi frequency could have been increased by the square roots

of the factors to achieve the same effect.

even for the very asymmetric case at Δ𝜔/𝛾𝑧 = 0.1, have a value very close to the average value

in time Δ0 ≈
〈
Δ(𝑡)〉 = Δ𝜔 . The saturation for large 𝑡 or Ω not only leads to a broadening of the

line but in the case of not too large Δ𝜔/𝛾𝑧 , a shift of Δ0 occurs due to asymmetric broadening.

In principle, the saturation and the associated shifts should become obvious due to the asym-

metry in the recorded resonance. Including the shot-to-shot magnetic field uncertainty via the

convolution

𝑃 (Δ, 𝑡 | 𝜎𝜔 ,Ω,Δ𝜔,𝛾𝑧) = 𝑃𝐵 (Δ | 𝜎𝜔 ) ∗ 𝑃 (Δ, 𝑡 | Ω,Δ𝜔,𝛾𝑧) (3.31)

can cover up the asymmetry in the lineshape for𝜎𝜔 similar toΔ𝜔 , but keep the mean shift due to

the saturation, see Figure 3.5. This saturation shift due to the underlying asymmetric line has to

be treated with care and can be minimized by reducing the saturation with the Rabi frequency

as much as possible. The decrease of Rabi frequency leads to a worse statistic uncertainty on

the determined center in this case, as the width of the resonance does not decrease with the

maximum amplitude.

3.4. Relativistic shift of the levels

Treating the hyperfine and Zeeman splitting fully relativistic would need a relativistic quantum

mechanical solution of the ion inside the magnetic field, compare the calculations for a simple

spin-1/2 system in ref. [62]. Here, the spin of the nucleus may be larger than 1/2, and thus not

even the Dirac equation would be sufficient to do these calculations. The two most important

shifts, the Doppler shift and the shift due to the Thomas precession can be derived more easily.

Similar to the shift of the free cyclotron frequency, compare Eq. (2.40), the transitions of the
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Figure 3.5: Brown-Gabrielse line with measurement uncertainty. Here 𝜎𝜔 = 2Δ𝜔 and Δ𝜔 = 𝛾𝑧 .
The asymmetric broadening of the underlying line is covered up by the measurement uncer-

tainty, but the weighted center Δ0, indicated by the dashed line, shifts with increasing satura-

tion.

Zeeman and hyperfine splitting are Doppler shifted due to the fast cyclotron motion. Here, the

shift of the relevant measurement quantity in the lab frame

Δ(𝜔MW, 𝜔𝑐) = 𝜔MW − 𝜔 (𝜔𝑐), (3.32)

where the transition frequency 𝜔 is computed from the lab frame free cyclotron frequency 𝜔𝑐 ,
will be derived. The transition is resonantly driven, if the microwave irradiation frequency is

equal to the transition frequency in the ion’s rotating frame of reference, which will be denoted

with primed quantities. In the ion frame, the lab frame magnetic field 𝐵0 is boosted to

𝐵
′
0 = 𝛾𝐵0, (3.33)

where 𝛾 is calculated via Eq. (2.41). As the lab frame free cyclotron frequency also includes the

factor 𝛾 via 𝜔𝑐 =
𝑞
𝛾𝑚𝐵0, the transition frequency in the ion frame is

𝜔
′
= 𝜔 (𝐵′

0) = 𝜔 (𝛾2
𝑚

𝑞
𝜔𝑐) ≈ 𝜔 (𝜔𝑐) + 𝜔𝑐 (𝛾2 − 1) d𝜔

d𝜔𝑐
(𝜔𝑐)

≈ 𝜔 (𝜔𝑐) + 2𝜔𝑐 (𝛾 − 1) d𝜔
d𝜔𝑐

(𝜔𝑐),
(3.34)

where 𝛾 − 1 ≪ 1 was used. The magnetic field component which drives the transition is

transversal to the direction of the ion’s cyclotron motion thus giving a transversal Doppler

shift 𝜔
′
MW

= 𝛾𝜔MW. Therefore

Δ
′
= 𝜔

′
MW

− 𝜔 ′
= Δ(𝜔MW, 𝜔𝑐) + (𝛾 − 1)

(
𝜔 − 2𝜔𝑐

𝜕𝜔

𝜕𝜔𝑐
(𝜔𝑐)

)
, (3.35)
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where 𝜔MW ≈ 𝜔 was used in the correction term.

The Thomas precession is a relativistic effect that leads to an additional precession frequency

that has to be added to the classical Larmor precession of a spin in a magnetic field [88]. To

include the Thomas precession, the time evolution of the vector quantities ®̂𝑆 and ®̂𝐼 can be

derived from the initial Hamiltonian, Eq. (3.1). In the Heisenberg picture this yields

𝑑

𝑑𝑡
®̂𝑆 =

1
ℏ
(𝐴®̂𝐼 − 𝜇𝐵𝑔𝑒 ®𝐵)x ®̂𝑆,

𝑑

𝑑𝑡
®̂𝐼 = 1

ℏ
(𝐴 ®̂𝑆 − 𝜇𝑁𝑔𝐼 ®𝐵)x ®̂𝐼 ,

(3.36)

where x is the cross product. In ref. [89], leading to Eq. (11.107), it is explained that for the

time evolution of any vector quantity ®𝐺 , the Thomas precision has to be included to the time

derivative via the addition of the term ®𝜔𝑇 x ®𝐺 . The precession vector is given by

®𝜔𝑇 =
𝛾2

𝛾 + 1
®𝑎x®𝑣
𝑐2

, (3.37)

where ®𝑎 and ®𝑣 are the acceleration and velocity of the ion, respectively. By adding these terms

to the above equation, they can be reabsorbed into the initial Hamiltonian

𝐻̂ = 𝐴 ®̂𝑆 · ®̂𝐼 − (𝜇𝐵𝑔𝑒 ®𝐵 − ℏ ®𝜔𝑇 ) · ®̂𝑆 − (𝜇𝑁𝑔𝐼 ®𝐵 − ℏ ®𝜔𝑇 ) · ®̂𝐼 . (3.38)

This reproduces the Ansatz used in ref. [90] for the Thomas precession of the hyperfine struc-

ture in a storage ring. For ®𝐵 = (0, 0, 𝐵0) and a pure cyclotron motion with velocity 𝛽 = 𝑣𝑐/𝑐 ,
the Thomas precession frequency can be simplified to

®𝜔𝑇 =
𝛾2𝛽2

𝛾 + 1

𝑞

𝑚
®𝐵 = (𝛾 − 1) 𝑞

𝑚
®𝐵. (3.39)

Due to the factoring with ®𝐵, the Thomas precession can be integrated into the Breit-Rabi equa-

tion Eq. (3.9) by replacing the energy terms 𝐸𝑠 and 𝐸𝐼 with

𝐸
′
𝑠 = 𝐸𝑠 − ℏ(𝛾 − 1)𝜔𝑐 ,
𝐸

′
𝐼 = 𝐸𝐼 − ℏ(𝛾 − 1)𝜔𝑐 .

(3.40)

As a comparison, the correction term is equal to the correction of the cyclotron frequency, see

Eq. (2.40), but 𝐸𝑠 ≫ ℏ𝜔𝑐 . In contrast, typically 𝐸𝐼 is a lot smaller compared to 𝐸𝑠 and of similar

magnitude compared to ℏ𝜔𝑐 . The result derived here is also applicable to bound-electron 𝑔-

factor measurements, where it reproduces the result given in ref. [91], and to bare nuclear

magnetic moment measurements.

3.5. Detection of Zeeman states and the double-trap technique

The detection of the Zeeman eigenstates in the Penning trap can be achieved via the continuous

Stern-Gerlach effect [92]. To this end, a large 𝐵2 is intentionally introduced to couple the
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Zeeman eigenstate of the particle to the axial motion. The energies of an eigenstate 𝐸𝑚 (𝐵),
compare Eq. (3.9), then depend on the square of the position 𝑧. This leads to the additional

axial force

𝐹𝑚 = − 𝜕𝐸𝑚 (𝐵0 + 𝐵2𝑧2)
𝜕𝑧

= −2𝑧𝐵2 𝜕𝐸𝑚 (𝐵)
𝜕𝐵

, (3.41)

where the magnetic field derivative
𝜕𝐸𝑚 (𝐵)
𝜕𝐵 ≈ 𝜕𝐸𝑚

𝜕𝐵 (𝐵0) can typically be assumed to be constant

as |𝐵2𝑧2 | ≪ |𝐵0 | and 𝐸𝑚 (𝐵) does not change fast. The state dependent axial force alters the

axial oscillation frequency 𝜔𝑧 , compare Eq. (2.3), to

𝜔𝑧,𝑚 =

√︂
𝜔2
𝑧 + 2

𝐵2
𝑚

𝜕𝐸𝑚
𝜕𝐵

≈ 𝜔2
𝑧 +

𝐵2
𝑚𝜔𝑧

𝜕𝐸𝑚
𝜕𝐵

. (3.42)

A successfully driven transition from state𝑚 to 𝑛 leads to a frequency shift

𝛿𝜔𝑧,𝑚𝑛 =
𝐵2
𝑚𝜔𝑧

ℏ𝜕𝜔𝑚𝑛
𝜕𝐵

, (3.43)

where the sign of ℏ𝜔𝑚𝑛 = 𝐸𝑚 − 𝐸𝑛 may be positive or negative. The size of the frequency shift

depends not only on the size of 𝐵2 and the mass of the ion 𝑚 but also on the magnetic field

dependence of the chosen transition 𝜔𝑚𝑛 . The magnetic field dependence can vary by orders

of magnitude for the different transitions, making some transitions impossible to use for the

detection, as the axial frequency shift is below the detection limit.

The detection of the spin state through the continuous Stern-Gerlach effect requires large

values of 𝐵2, e.g. in our experiment 𝐵2 ≈ 282 kT/m
2
. This couples the axial to the cyclotron

mode, compare Eq. (2.35), to such a degree that the sideband coupling is neigh impossible

and a precision measurement of 𝜔𝑐 is very difficult. Additionally, the transition resonance

is significantly broadened by the linewidth parameter Eq. (3.26), which limits the statistical

accuracy of the determination of the center frequency.

To overcome these limitations, the double-trap technique, first introduced in ref. [68], is

used. In a precision trap (PT) with optimized electric harmonicity and magnetic homogeneity

the high-precision measurement of the cyclotron frequency 𝜔𝑐 and the probe of the transition

frequency is performed. The ion is then adiabatically transported to a trap with a large 𝐵2
value, called the analysis trap (AT), where the spin state is determined. Afterwards, the ion is

transported back to the PT to start a new measurement cycle.
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Chapter 4.

The experimental setup

Parts of our experimental setup at the MPIK were originally based in large parts on the

design of the Mainz proton 𝑔-factor experiment, see e.g. refs. [70, 93]. Construction of the

setup started in 2018 at the MPIK and the original team consisted of group leader Andreas

Mooser, who was previously part of the Mainz proton as well as the BASE antiproton 𝑔-factor

experiments, Antonia Schneider as a Master student, and Alexander Rischka who helped as a

post-doc. Initial efforts were focused on the in-trap production of
3
He and the design of a new

analysis trap for the detection of spin-flips of
3
He

2+
, see refs. [94, 95]. I started one year later in

early 2019 and worked on the millimeter microwave transmission required for the hyperfine

structure measurement of
3
He

+
, see ref. [96]. The setup was ready to assemble at the start

of 2020, with a few delays caused by the start of the pandemic. The commissioning of the

experiment started in the late spring and the first measurements on
3
He

+
quickly thereafter.

After the successful measurement of the hyperfine structure of
3
He

+
outlined in the Ph.D.

thesis of Antonia Schneider, see ref. [97], several upgrades to the experiment were imple-

mented. Mainly, these upgrades were meant to advance our aims for future measurements

with ions sympathetically cooled via coupling to
9
Be

+
and improve our measurement preci-

sion. To this end, a laser alignment system for both an ablation and cooling laser for
9
Be

+

was installed and the Penning-trap setup was changed significantly. After some initial, only

in parts successful, efforts towards the measurement of the Zeeman splitting of
3
He

2+
, which

included the commissioning of the new analysis trap and sympathetic laser cooling, it was de-

cided to measure the hyperfine structure of
9
Be

3+
. In this chapter, I will give an overview of

the experimental setup used for this measurement.

4.1. The superconducting magnet and (some of) its history

The perhaps most vital and unchanging part of many Penning-trap experiments is the super-

conducting magnet system inside which the experiments are performed. The 5.7 T magnet

system used in this experiment has a long history in precision Penning-trap measurements. It

was designed by R.S. Van Dyck in conjunction with the manufacturer Nalorac Cryogenic Cor-

poration (NCC) with the aim of the highest possible temporal stability and spatial uniformity

49



Chapter 4. The experimental setup

of the field. In first measurements in 1998, see ref. [98], it was shown that the magnet performs

exceptionally well, having unprecedented temporal stability of 17 parts per trillion (ppt) per

hour. Later, mass measurements using this magnet were performed at the UW-PTMS
1

experi-

ment in Seattle, where the stability was further improved to 2 ppt per hour [99]. The magnet

was shipped to the MPIK in Heidelberg in 2008, where the Tritium-Helium Trap (THe-Trap)

experiment was established with the goal to measure the mass difference of
3
H to

3
He. Several

Ph.D. theses describe the magnet system and some of its history at the MPIK in detail, see for

example refs. [100–103]. Since 2018, the magnet has been used for experiments investigating

the Zeeman and hyperfine splittings of light ions.

LN
2

LN
2

LHe

magnet coils

bore tube

LHe fill stack

LN2 fill stack

reservoir

Figure 4.1: The superconducting magnet. Figure adapted from ref. [102].

Figure 4.1 shows a sketch of the superconducting magnet system. The magnet has a so-

called cold bore, i.e. the bore is cooled to ∼ 4.2 K by liquid helium (LHe) and serves directly as

the cryostat for the inserted experiment. The reservoir, which is connected to the bore tube at

the bottom of the magnet, is filled with LHe from the LHe fill stacks at the top. The reservoir

and bore take approximately 160 l and 14 l of LHe, respectively. Both the bore tube and the

reservoir have individual return lines connected at the top, which are merged on the outside in

1
University of Washington Penning Trap Mass Spectrometer
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the normal operation of the experiment. The reservoir is surrounded by an insulating vacuum

and an outer liquid nitrogen (LN2) reservoir. Without an experiment inserted, the LN2 reservoir

is refilled once per week and the LHe reservoir once every six weeks. The additional heat load

of the inserted experiment roughly doubles the LHe usage.

4.2. The vacuum setup

The experimental setup is shown in Figure 4.2. The top, room temperature section is assem-

bled from commercial, mostly CF100, vacuum parts, which include DC feedthrough flanges for

biasing and coaxial feedthrough flanges for the detection- and excitation lines. The CF flanges

are sealed via either copper gaskets or Viton seals. A CF60 turbopump is used to achieve a

pressure of ∼ 10−7 mbar inside the prevacuum. At the top, a viewport for the microwave and

laser transmission is installed, while the outward-facing sides feature viewports for the laser

alignment. The room temperature section is mounted on top of the magnet and can be tilted via

an adjustment CF-100 piece. The boiled-off LHe from the bore exits at the side of the adapter

separating the bore volume from the experiment prevacuum.

The long section connecting the room temperature part of the experiment to the cryogenic

part of the experiment serves to reduce the heat load and efficiently use the cooling poten-

tial of the LHe cryostat. To this end, four thin-walled tubes instead of a single big tube are

used, and aluminum heat shields are attached to them. It is further of utmost importance to

not only use the evaporation heat of the boiled-off LHe but also cool the experiment with the

cold evaporated gas. Indeed, the energy needed for vaporizing helium is actually negligibly

small compared to the energy needed to increase its temperature from 4.2 K to room tempera-

ture [104]. Cotton is wound around the connecting section such that the gaseous helium flow

through the bore tube is restricted and cools the experiment efficiently.

All vacuum connections in the cryogenic part are sealed using custom indium gaskets. In

the cryogenic prevacuum chamber, the Penning traps are placed in a separate copper vac-

uum chamber, called the trap chamber. At the bottom of the trap chamber, custom electrical

feedthroughs manufactured by Kyocera (57 in total) and a central 1 mm diameter quartz glass

window are soldered into a copper flange. Another set of windows for microwave and laser

access is soldered into the top flange. With the experiment still outside the magnet, the trap

chamber is pumped through a thin copper tube to a pressure of ∼ 10−6 mbar and subsequently

pinched off to seal it. In the cryogenic environment, all residual gases freeze, or in the case

of helium, build a monolayer on the surfaces. This gives essentially ideal vacuum conditions

inside the trap chamber and ion storage times exceed the time needed to perform all measure-

ments. For example, in the experiments with
9
Be

3+
, only a single ion was used in the whole

one-year measurement campaign.

4.3. The trap tower

The trap tower, see Figure 4.3, is the cylindrical stack of electrodes inside the trap chamber. The

electrodes are CNC turned from oxygen-free high thermal conductivity (OHFC) copper at the

MPIK workshop to tolerances of a few µm and subsequently gold plated by Drollinger GmbH.
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Figure 4.2: The vacuum setup. For details see text.
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Figure 4.3: The trap tower. For details see text.

The machining tolerances of the sapphire spacers manufactured by Saphirwerk AG and used

for isolating the electrodes at a distance of 0.14 mm are also specified at the µm regime. The

gold-plated electrodes and sapphire spacers are typically so close to the specification dimen-

sions, that individual pairs of fitting parts have to be chosen during the assembly. Starting at

the bottom of the trap tower, the individual parts are discussed in more detail.

Electron gun

The electron gun emits electrons via field emission from a small tungsten tip, which is fabri-

cated as explained in ref. [105]. The tungsten tip is placed on the axis of symmetry of the trap

tower and connected to an electrode called the FEP (field emission point) electrode, which is

the leftmost electrode in Figure 4.3. Ideally, the tungsten tip reaches just into the next electrode,

called the HV (high voltage) electrode. To extract electrons with kinetic energy 𝐸kin, the FEP

electrode is biased to 𝑉FEP = 𝐸kin/𝑒 and an extraction voltage on the HV electrode of typically

up to 2 kV is needed. For details on the ion production, see the next chapter.

Analysis trap

The analysis trap (AT) is a 5-pole Penning trap with a small radius of 1.8mm based on the design

and optimizations performed in ref. [106]. The design of the AT ring electrode is optimized for

a large value of 𝐵2, which is achieved via optimizing the flare angle. This angle in conjunction

with the comparably small radius and the 0.14 mm gaps leads to deviations from the idealized

calculations outlined in Eq. (2.20). Therefore, the inner lengths, compare 𝑧𝑖 in the calculations

leading to Eq. (2.20), and the tuning ratio TR is optimized via finite element methods. While

previously a Ni ring electrode with 𝐵2 ≈ 110 kT/m
2

was used, a stronger CoFe (Vacuflux 50)

ring electrode to generate 𝐵2 ≈ 282 kT/m
2

was installed in this measurement campaign. The

CoFe ring additionally decreases the magnetic field by about 0.7 T to around 5 T in the AT.

An axial excitation line is connected to the lower endcap and the resonator is connected to the

lower correction electrode. Excitations of spin transitions in the low GHz regime are possible

with a so-called spin-flip coil fixated next to the trap, which consists of a few windings of

copper wire terminated to ground [70]. The spin-flip coil is also used for excitations of and
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couplings to the radial modes. The relevant trap parameters are listed in Table 4.1.

Transport section

To decrease the magnet field inhomogeneity in the PT, it has to be spatially separated from the

AT. Next to the AT, three conical electrodes increase the radius to the 3.5 mm radius of the PT

and, subsequently, a number of identical transport electrodes lead to the PT. The length of the

transport electrodes should not be chosen too long, as this may lead to problems with the ion

transport. The center of the PT is at a distance of about 6 cm from the PT, which decreases the

inhomogeneities to 𝐵1 ≈ 30 mT/m and 𝐵2 ≈ 1 T/m
2
.

Precision trap

During the measurement campaign of the
3
He

+
hyperfine structure, some first attempts toward

the phase-sensitive cyclotron measurements were unsuccessful. At the time, it was believed

that this may have been due to frequency jitter from a too large uncompensated𝐶6 coefficient of

the 3.5 mm 5-pole trap. As was argued in Section 2.2, a 7-pole trap always allows compensating

𝐶4 and 𝐶6 simultaneously, which triggered us to develop such a trap for the upgrade. For the

optimization criteria of the 7-pole trap see Section 2.2. The combined orthogonality comes with

some challenges, which will be discussed in the Section 5. An axial excitation line is connected

to the uppermost correction electrode. The correction electrode above the ring electrode is

split to allow for quadrupolar excitations. A spin-flip coil identical to the one in the AT is

fixated next to the trap. In order to decrease 𝑑deff, compare Eq. (2.44), and therefore increase

the detection signal amplitude, the resonator is connected to two electrodes, e.g. the two lower

correction electrodes. The PT is located at the center of the superconducting magnet, where

the magnetic field homogeneity is ideal. The measured homogeneity around the central 10 mm

of the magnet is about 1 µT [107]. The theoretical parameters of the new 7-pole PT are listed

in Table 4.1.

Coupling traps

This pair of traps was originally designed to be used for the common endcap coupling tech-

nique, originally proposed in ref. [108], at the Mainz proton 𝑔-factor experiment, see ref. [109,

110]. In the top of the two traps, a cloud of laser-cooled beryllium ions would be stored, while

the bottom trap stores the single target ion. Through the interaction of the induced image cur-

rents in the common endcap
2

the target ion’s axial mode is sympathetically cooled to below

the ambient 4 K. This required optimizing the traps for minimal capacitance from the com-

mon endcap to ground, which explains the larger sapphire spacers used here. Additionally, the

upper trap has a ring electrode which is split into six parts, which serves a twofold function.

By applying appropriately phase shifted RF signals, a rotating wall excitation can stabilize the

beryllium clouds magnetron motion [111]. The split electrode has small gaps through which

fluorescence electrodes hit silicon photomultipliers mounted around it, which can be used for

2
As shown in Figure 4.3, the two traps have individual endcaps. The two endcaps are connected via capacitances

to be common in their AC signal while allowing for individual DC biasing.
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4.3. The trap tower

e.g. temperature measurements of the beryllium cloud [112]. The identical theoretical param-

eters of the two traps are listed in Table 4.1.

Table 4.1: Theoretical trap parameters. The two values of 𝑙𝑐 and TR for the PT are the lengths

and tuning ratios of the two correction electrode pairs of the 7-pole trap. For definitions of the

variables see Section 2.2.

AT PT CT

𝑎𝑒𝑙 /mm 1.8 3.5 2.0
𝑙𝑟 /mm 0.386 0.691 0.502
𝑙𝑐 /mm 1.359 (1.359, 2.307) 1.501
𝐶2/𝑈0 m

2 −114310 −23257 −93494
TR 0.879 (0.964, 0.815) 0.881
𝑑eff/mm 2.995 7.1 4.625

Sources

For production of
3
He, we use a gas-filled glass sphere, as described in ref. [94, 97]. The sphere

is made from SO2, has 1 cm diameter, 1 mm wall thickness and is filled with 5 mbar of
3
He gas.

The sphere is mounted at the side opening of an electrode at the top of the trap tower. The
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Figure 4.4: Left: Permeation rate of helium through the glass sphere. Right: Photograph of the

glass sphere with the attached heating resistors. The heating resistors where actually changed

from the
3
He

+
measurement, as the specific type used proved to be very ferromagnetic and

lead to additional 𝐵2 in the PT.

strong temperature dependence of the permeation can be used to produce
3
He gas via heating

of the glass sphere with the attached resistors while simultaneously having no effect on the
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vacuum conditions in normal operation, see Figure 4.4. For a theoretical description of the

permeation rate see refs. [94, 113].

To estimate the required permeation rate and thus the temperature, the ionization rate in the

trap volume needs to be calculated. Given the electron-impact cross-section 𝜎EI, see ref. [114]

for a compilation of values, the rate of ionization is

𝑅ion =
𝜌𝐴,He𝜎EI𝐼

𝑒
, (4.1)

where 𝜌𝐴,He is the
3
He atom area density in units Number/Area and 𝐼 the electron beam current

inside the ionization volume and 𝑒 is the elementary charge. In an equilibrium of production of

3
He via the permeation with rate 𝑅He and loss of atoms via a loss rate 𝑅loss inside the ionization

volume, the area density is calculated as

𝜌𝐴,He =
𝑅He

𝑅loss

1
𝐴
, (4.2)

where 𝐴 is the area of the ionization volume, i.e. the trap’s cross-sectional area 𝐴 = 𝜋𝑎2
𝑒𝑙

. An

upper bound for the loss rate is found by assuming a single horizontal crossing of the thermal

atoms through the trap tower which gives 𝑅loss = 𝑣𝑡ℎ/𝑎𝑒𝑙 , where 𝑣𝑡ℎ =
√︁
𝑘𝐵𝑇 /𝑚 is the thermal

velocity of the atoms with temperature 𝑇 and mass𝑚. In total, this gives an ionization rate of

𝑅ion =
𝑅He√︁
𝑘𝐵𝑇 /𝑚

1
𝜋𝑎𝑒𝑙

𝜎EI𝐼

𝑒
. (4.3)

For electron beam currents of around 10 nA and a desired ionization rate of one ion per minute,

the indicated permeation rate in Figure 4.4 of 𝑅He = 109 is estimated. This rate corresponds to

a temperature of about 260 K.

While this source design can be applied identically to
4
He and maybe the neon isotopes, it

would be harder to implement for nearly all other elements as they have much larger atomic

(or molecular) size and thus much smaller permeation
3
.

The production of beryllium ions is achieved via laser ablation from a solid target, which is

mounted on another electrode with openings on the side. For details on the alignment of the

laser, see the next Section. Inside the trap chamber, the laser pulse from the frequency-doubled

Nd:YAG laser (Litron Nano 60-30) is first focused by a lens with a focal length of 25 mm and

deflected by a mirror onto the
9
Be target. Above a threshold energy density on the surface of

the material, atoms are evaporated and a plasma is formed [115]. In an appropriately biased

trap, only the positively charged ions are then captured.

The experimental steps used for preparing ions are discussed in more detail in Section 5.

4.4. Laser and microwave access

The design of the millimeter microwave and the laser access to the trap chamber are described

in detail in ref. [96] and ref. [116], respectively. Here, I will only give a short overview.

3
They are also solid at 4 K, which might make things more difficult.
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The millimeter microwaves needed for hydrogen- and lithium-like Zeeman splittings of light

ions at the 5.7 T in the PT and 5 T in the AT span quite a large range. As a reference, the val-

ues for the bare electron spin-precession frequencies are ∼ 160 GHz and ∼ 140 GHz, in the

AT and PT, respectively [22]. The additional hyperfine splitting further broadens the required

frequency span. Microwave frequencies are classified by certain bands, in the case of the fre-

quencies here, they fall into the D band, which spans 110-170 GHz, or in terms of wavelength

2.73 - 1.76 mm. For the transmission of these microwaves, the most important parameter is

the required power in the AT, which is vastly higher than in the PT due to the broadening of

the transition line profile from the high 𝐵2. With the old Ni ring electrode, a required power of

15 nW at the ions position was estimated, which increases with the new CoFe ring by about a

factor of 3 [96]. In this experiment, the D band microwaves are produced via frequency multi-

plication of an input 9.17-14.17 GHz signal by a factor of 12. The signal generator is a Rohde

& Schwarz, model SMB100A, and it is connected via a coaxial cable to a two-state frequency

multiplier/amplifier from Virginia Diodes, model WR6.5SGX, which outputs the D band mi-

crowaves with a typical output power of 8 dBm at a WR6 rectangular waveguide connector.

The multiplier output signal is guided with a section of WR6 waveguides to a microwave an-

tenna horn at the top viewport of the experiment stack, compare Figure 4.2. The microwaves

travel a distance of about 3 cm through the window and free space and are picked up by a

stainless steel pipe with 8 mm diameter acting as an oversized waveguide. The advantages

of the oversized waveguide are the reduced losses compared to the WR6 waveguide and the

ability to also guide the cooling laser through it. The disadvantages of oversized waveguides

are mostly reflections and mode conversion at non-uniformities of the waveguide. The mi-

crowaves are guided through a uniform 1.5 m long oversized waveguide section to the top of

the trap chamber, where they are picked up with a horn antenna electrode at the top of the

trap tower, compare Figure 4.3.

9
Be

+
can be laser (Doppler) cooled via the transition

2𝑆1/2 → 2𝑃3/2 at ∼ 313 nm [117]. Here,

the ultraviolet (UV) 313 nm beam is produced by a Toptica TA-FHG pro frequency quadrupled

diode laser and needs to be guided centrally through the oversized waveguide. Additionally,

the green Nd:YAG laser at 532 nm needs to be guided off-center into the trap chamber. As this

experiment has access only from the top, compare Figure 4.1, the alignment of the lasers is

challenging. As explained in ref. [116], the alignment of the UV beam is done via a first rough
alignment to the experiment axis by use of a beam splitter and fluorescence plates inside the

top of the experiment. A silicon photomultiplier (SiPM) is mounted below the 1 mm diameter

window of the trap chamber and its signal is subsequently maximized for a more fine-tuned

alignment. The green laser is aligned relative to the UV laser on the outside of the experiment

on a long beam path. In practice, the alignment worked quite well but needed a couple of hours

of trial and error until the UV laser was aligned properly. The alignment of the green laser was

then typically no issue and laser ablation worked right away.

4.5. Detection systems

The detection technique for the ion motion described in Section 2.5 requires high-𝑄 resonators

that pick up the image current signal. The 𝑄-value is defined via the 3 dB width Γ𝑅 of the
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resonator

𝑄 ≡ 𝜔𝑅
Γ𝑅

=
𝑅

𝜔𝑅𝐿
= 𝜔𝑅𝑅𝐶. (4.4)

The dimensionless𝑄-value in an RLC parallel circuit is the fraction of total energy to the energy

lost per oscillation period of the electric signal in the resonator [118]. Through the parallel

resistance 𝑅, it is directly connected to the width of the detected dip, which is the cooling time

constant 𝛾 defined in Eq. (2.45). To be able to detect the axial frequency via the dip technique

in a reasonable time, compare Eq. (2.51), the dip width 𝛾 should be 𝛾/2/𝜋 ⪆ 0.5 Hz. For the

typically low charge states and axial frequencies in the hundred of kHz regime, large𝑄-values

above 1000 are required.

To this end, superconducting niob-titanium (Nb-Ti) coils are connected to the trap electrodes.

The effective parallel capacitance comes mostly from the self-capacitance of the coil, the trap

electrodes capacitance to ground, and the trap chamber feedthrough, compare ref. [119]. Un-

derstanding sources that influence the 𝑄-value of the resonator is challenging, as effectively

any kind of losses in the resonator will lower this value. Important effects include losses in the

non-superconducting parts of the resonator, dielectric losses in the coil core, the non-ideal AC

superconductivity, and flux creep leading to finite resistance in magnetic fields [120–122].

Here, the resonators are wound with 0.075 mm formvar-insulated Nb-Ti wire around a

toroidal PTFE core. The superconducting coils are placed below the trap chamber inside a

separate housing called the resonator chamber. There, one end of the resonator is connected

to ground, while the other end is connected to the electrode. The connections to the electrodes

are made with copper wire and a special, low dielectric loss sapphire feedthrough on the trap

chamber feedthrough flange. For detection of the resonator signal, a connecting wire that leads

to a cryogenic amplifier is soldered to the coil after a number of turns as seen from the elec-

trode. The fraction of turns after the connection to the total windings of the coil defines a

coupling factor. Typically, the amplifier will have a negative influence on the 𝑄-value of the

resonator. At the expense of detection signal amplitude, a lower coupling factor can be chosen

to reduce this influence [123]. The relevant measured parameters of the three resonators are

listed in Table 4.2.

For more details on the design of the detection electronics of this experiment, see refs. [11,

119].

Table 4.2: Approximate measured parameters of the resonators for the individual traps.

AT PT CT

𝜔𝑅/2𝜋/kHz 798 484 470
𝑄 3000 6600 2700
𝐿/mH 1.5 3.5 3.5
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4.6. Wiring, filtering, and devices

The wiring, filtering, and the devices did not significantly change from the experimental setup

described in ref. [97]. A short overview is given here, for more details and a wiring diagram

see ref. [97].

Electrode biasing

To bias the electrodes, ultra-stable low-noise Stahl electronics UM-14-LN voltage supplies are

used. They have three main channels labeled (A, B, C) and three primed main channels labeled

(A’, B’, C’). Here, the ultra-stable main channels of the UM-14-LN are used for biasing the

ring and correction electrodes, while the less stable and precise add-on channels are used for

endcaps and transport electrodes. While the ion is in one of the traps, all electrodes connected

to the add-on channels are switched to ground with relay switches in the room temperature

section of the experiment
4
.

A major source of fluctuations in the output voltage of the UM-14-LN can be ambient tem-

perature fluctuations. To reduce these dependencies, the UM-14-LN should in principle be

operated at a temperature around 25 ◦
C, where the temperature coefficient of the output volt-

age is minimal [124]. Here, we place the three UM-14-LN inside a copper housing on top of the

experiment to reduce the temperature fluctuations.

The electrode bias lines are filtered at three stages via RC low-pass filters. For the add-on

channels, 4.7 nF capacitors and 820 kΩ resistors are used, while for the main channels 22 nF

and the same resistors are used. This leads to time constants of about 3 ms and 18 ms of the

filter, respectively. The first filter stage is directly below the voltage supply housing at room

temperature. From there, the bias lines are connected to the experiment via a flange with three

Sub-D 37 pins connectors. Three multi-wire cables (Manganin Cryoloom from CMR-Direct),

connect the bias to the second filter stage, compare Figure 4.2, where identical parts are used.

Another identical filtering occurs at the last filter stage, called the 4 K board, below the trap

chamber. Inside the trap chamber, the DC connections are made with isolated copper cables.

Excitation lines

The motional excitations and coupling of the ion are produced with Agilent/Keysight 33600A

Series Trueform Waveform Generators. Flexible coaxial cables at room temperature connect

to coaxial feedthroughs into the experiment. Inside the experiment, cryo-optimized coaxial

cables from GVL Cryoengeneering (GVLZ189) are used. These lead all the way to the 4 K

board, where capacitive voltage dividers with 18 pF and 180 pF divide the amplitudes by a

factor of 10 in order to suppress noise components.

For the low-frequency spin-transitions, the signal is generated with the Rohde & Schwarz

SMB100A. To efficiently transmit the few GHz signals to the spin-flip coils, thin semirigid

coaxial cables are used inside the experiment (CryoCoax 0.86mm Beryllium Copper), as the

flexible cryo-coaxial cables have quite high losses at these frequencies. These signals are not

filtered at the 4 K board.

4
In fact, this is crucial for the endcaps, as the add-on channels seem to fluctuate even if set to zero volts.
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All excitation lines are referenced to a GPS locked SRS FS725 rubidium standard.

Detection lines

The cryogenic axial resonator amplifiers each need four DC connections, i.e. for three tran-

sistor gates and one transistor drain. The bias lines for the gates are filtered identically to the

electrode bias lines, while the biasing lines of the drains are filtered with 50 Ω resistors instead

of the 820 kΩ ones. From the cryogenic axial resonator amplifiers, coaxial cables lead to the

room-temperature coaxial flange. At room temperature, the signals are again amplified via

Minicircuits ZFL low-noise amplifiers. The detection signals are then downmixed by several

hundred kHz to frequencies in the audio regime. This is advantageous as the signal-to-noise

ratio of the available analog to digital converters in the audio regime is typically superior. Here,

the downmixed signals are detected with a National Instruments CompactDAQ (cDAQ) system

with two NI-9250 modules. The NI-9250 modules have a 24 bit resolution and a sampling rate

of 102400 Hz. The downmixers and the NI-9250 are locked to the rubidium standard as well.
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Methods

With the introduction of phase-sensitive detection methods at our experiment during the

course of my Ph.D. work, the statistical precision of the cyclotron frequency measurements was

improved drastically compared to ref. [97]. In addition to the improved statistical precision,

systematic effects needed to be understood better. To this end, new and robust methods to

optimize and characterize the new 7-pole trap were implemented.

In this chapter, the experimental realization and evaluations of most of the general Penning-

trap methods will be discussed. I will first give an overview of the processing of the detection

signal in conjunction with the experimental control and basic ion work and loading and prepa-

ration of single ions. This is followed by an introduction to several statistical methods neces-

sary to analyze the acquired experimental data. The dip and phase-sensitive detection methods

are discussed next. Thereafter, the characterization and optimization of the analysis and pre-

cision trap are explained in detail. It must be noted that these methods were not developed in

the order presented here, but rather developed and improved as the measurement campaign

progressed. Here, I will give example evaluations of the methods used for different parts of the

measurement. In the subsequent chapters, I will point out the methods and optimizations used

for the individual measurements and discuss additional specific methods for the Zeeman and

hyperfine splitting measurements.

5.1. Detection signal, experimental control and basic ion work

For the purpose of dip and non-thermal ion peak detection, the downmixed axial resonator

signal needs to be Fourier transformed to a frequency spectrum, compare Section 2.5. To effi-

ciently observe the ion’s response to experimental changes, a computer program which contin-

uously performs Fast Fourier transforms (FFT) of the signal was written in C++. It uses Welch’s

method to average the data and overlapping to increase the update rate [125]. The time signal

length used for a single Fourier transform 𝑇FFT defines the frequency bin width Δ𝑓 = 1/𝑇FFT

and the sampling rate 𝑓𝑠 the maximum frequency 𝑓max = 𝑓𝑠/2 of the FFT. When recording dip

signals, Δ𝑓 is chosen to be at least a factor of 5 smaller than the dip width𝛾𝑧/2𝜋 . The averaging

of the spectrum with a total time 𝑇avg is typically done to increase the signal-to-noise ratio of
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the detected ion signal.

The experiment is operated via a control system written in Python code. The Python code

abstracts the individual traps as objects and the laboratory devices are accessed via high-level

methods on these objects. A graphical user interface (GUI) displays the FFTs, all applied elec-

trode voltages and the currently running signal generators. The direct control of the devices

and running of measurement routines is done from the command line. For an example view of

the GUI, see Figure 5.1.

During the first steps of commissioning the experiment, or working with a new ion species,

the experimental work is a back-and-forth of user commands to the control system and direct

user analysis of the detection signal. We call this part ion work.

Setting the trap potential

The trapping potential is set via the ring voltage 𝑈0 and the tuning ratio TR, or in the case

of the 7-pole trap, the two tuning ratios TR1 and TR2. The first starting point for setting the

potential is to calculate the required 𝑈0 to bring the ion into resonance with the resonator,

compare Table 4.2, via Eq. (2.3) and the nominal 𝐶2/𝑈0 value of the trap from Table 4.1. For

example, using 𝑞/𝑚 = 1/3 𝑒/𝑚𝑢 and the PT’s 𝐶2/𝑈0 = −23257 and 𝜔𝑅/2𝜋 = 484 kHz, the

required voltage is 𝑈0 ≈ −6.182 V. Setting the PT potential with the Python control system is

done via the command pt.set trap(-6.182, (0.964, 0.815)).

Using excitations and couplings

The rough knowledge of the magnetic field inside the traps also allows to calculate the mag-

netron frequency, compare Eq. (2.4), sufficiently precise to do magnetron cooling via the upper

sideband 𝜔𝑧 + 𝜔− . For a magnetic field of 𝐵0,PT = 5.72 T and 𝑞/𝑚 = 1/3 𝑒/𝑚𝑢 , the mag-

netron frequency is 𝜔−/2𝜋 ≈ 4001.0 Hz. The command to turn on the coupling continuously

is e.g. pt.exc on(”QUAD”, -30, 484e3 + 4001.0). The first argument is an identifier for the

quadrupolar excitation via the split electrode and the second argument is the excitation power

in units of dBm.

For the purpose of dipolar excitations of the motional modes, typically fixed pulses and not

continuous excitations are used. This is done e.g. by the command pt.sinus burst(”QUAD”,
-30, 4001.0, 1000), where the last argument is the number of cycles.

Other typical ion work examples include the use of parametric excitation, compare ref. [76].

The parametric excitation at frequency 𝜔RF ≈ 2𝜔𝑧 locks the ion’s axial frequency to half the

excitation frequency. Compared to direct axial excitation at 𝜔𝑧 this has the advantage that the

excitation signal itself is not present on the detection signal. If this excitation is turned on close

to twice the resonator frequency and a peak signal is observed, it is thus a clear indicator that

ions are present. Figure 5.2 shows an example signal obtained with parametric excitation.
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Figure 5.2: A parametric excitation peak. The 𝑥-axis is the downmixed frequency. The peak

appears exactly at 𝜔RF/2 indicating that the ion’s natural axial frequency is close.
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5.2. Ion loading and preparation

As the loading of
3
He ions had already been done and worked reliably, as described in ref. [97],

the very initial characterizations of the new traps in this campaign were also performed with

3
He

+
. Loading of

3
He

+
directly into the PT worked with the following steps:

1. The PT is set to the theoretical tuning ratio and expected voltage to bring
3
He

+
into (or

close to) resonance.

2. The
3
He glass sphere is heated with ∼ 1 W of power.

3. Simultaneously, an electron beam is produced with the FEP by applying −100 volt at the

FEP electrode and 1.7 kV on the HV electrode.

4. Both the heating and the beam are turned on for a maximum of 60 s.

5. Ideally, a hot (axial) ion signal can be observed in this timeframe and the FEP and heater

are turned off before a second atom is ionized.

The hot ion signal stems from the axial energy deposited onto the resonator, but it typically

chirps over the resonator and quickly disappears. In the still inhomogeneous trap, 𝜔𝑧 depends

strongly on the motional radii and after the ion deposits energy into the resonator its frequency

changes. The magnetron cooling sideband is turned on at 𝜔𝑅 +𝜔− and the voltage is varied in

order to change to ion’s axial frequency. If the ion’s axial frequency is brought into resonance,

𝜔𝑧 ≈ 𝜔𝑅 , the typically large magnetron energy is transferred to the axial mode and a cooling
peak appears on the resonator. As 𝜌− decreases, the axial frequency has to be adjusted until

the magnetron mode is fully thermalized. In the case of
3
He

+
, this approach was sufficient to

produce a dip signal of a single ion thereafter, see Figure 5.3.

Loading
9
Be

3+
proved to be more challenging. The process started with loading

9
Be

+
into

the trap via laser ablation. First, the lasers were adjusted into the trap, see the previous chapter.

While gradually increasing the power of the Nd:YAG pulses, the resonator detection signal was

observed after every single pulse. Ion signals were observed abruptly at a large enough pulse

power. This happens because the laser ablation requires a certain threshold power [115], and it

seems that after this threshold is crossed, the number of trapped ions in this experiment is very

large. The ablation produced
9
Be

+
and

9
Be

2+
, but no

9
Be

3+
was observed. This may simply be

due to the much higher ionization energy of
9
Be

3+
and no

9
Be

3+
being produced in the ablation.

Another possibility might be that the produced
9
Be

3+
recombining with

9
Be

+
inside the plasma

to form two
9
Be

2+
ions, as this is energetically more favorable. First attempts to subsequently

ionize the trapped lower charge states with the FEP were not successful. It was suspected

that either the maximally produced electron current of ∼ 100 nA was too small in combination

with the lower ionization cross-section for
9
Be

3+
or the trapped

9
Be ions’ orbits and the electron

beam simply had no overlap. To increase both the electron current and the overlap with the

ions’ orbits, the electron beam was reflected by applying a voltage equal to the FEP voltage

to an electrode at the top of the trap tower. Reflecting the electron beam directly increases

the current density and also leads to the build up of space charge which further broadens the

beam [126]. Production of
9
Be

3+
then followed these steps
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Figure 5.3: Dip signals after ion loading and initial preparation. The left-hand side shows a

3
He

+
and the right-hand side a

9
Be

3+
dip in the PT. The slightly different looking resonator

background signal stem from changes to the downmix frequency and cryogenic amplifiers.

1. The PT was set as low as possible, i.e. −14 V on the ring electrode.

2. A cloud of
9
Be

+
ions is produced via laser ablation.

3. The PT is set to the same parameters previously found for
3
He

+
as it has the same 𝑞/𝑚

as
9
Be

3+
.

4. The FEP electrode is set to −250 V and the HV electrode to 1.8 kV.

5. The reflection electrode is set to −250 V for a couple of seconds.

6. A huge ion signal is observed.

This immediately produced a huge signal, which turned out to not only include
9
Be

3+
, but also

12
C
4+

ions. Other charge states and protons were also observed at the respective ring voltages.

Potentially, the widened electron beam removed and ionized contaminants from the surfaces

inside the trap tower to produce these ions. Contaminant ions at different 𝑞/𝑚 were removed

by keeping
9
Be

3+
resonant and applying direct excitations at the predicted axial frequency of

the other observed 𝑞/𝑚 ion species. Subsequently, the potential is made shallow for a short

amount of time by putting 𝑈0 close to zero. We call this a ‘drop‘ and typically do it for a few

seconds to potentials of up to a few tens of negative mV. To remove the
12

C
4+

ions, which

are at the same 𝑞/𝑚 ratio, the method of SWIFT clean was used, see ref. [127]. A broadband

excitation with a narrow notch directly around the resonator separately excites the just off-

resonant
12

C
4+

ions while excluding the
9
Be

3+
. Another subsequent drop removes some or all

the ions. Removing the
12

C
4+

required high amplitudes of the SWIFT and very shallow drops.

Several attempts were needed, as the last step led to complete loss of all ions for the first few

tries. Getting rid of all the contaminant ions and having only a single
9
Be

3+
left was done only

once, as the single prepared
9
Be

3+
was actually stored for the whole measurement campaign.
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5.3. Statistical methods

Often, the main goal of measurements in experimental physics is to infer the parameters of

underlying theories. Specifically, in this experiment, the measurement of transitions of the

Zeeman and hyperfine structure is used to infer the three independent parameters in the Breit-

Rabi equation, compare Eq. (3.9). To give accurate values and meaningful uncertainties of these

parameters, robust statistical methods are needed.

In this section, I will introduce a number of statistical methods needed for the evaluation of

the optimization and characterization measurements, as well as the final resonance measure-

ment.

5.3.1. Parameter inference

In statistics and probability theory, the most crucial part is, in my experience, asking the right

questions. In the case of inferring the parameters of a model describing a set of measurements,

the question is: Given the model, which set of its parameters would lead to observations most

closely resembling the measurements? To answer this question, the model probability 𝑃 ( ®𝑦 | ®𝑝)
to observe a single measurement of a vector ®𝑦 given the set of parameters ®𝑝 needs to be cal-

culated for the whole set of measurements {®𝑦𝑖}. Assuming that individual measurements ®𝑦𝑖
are independent, the total probability of observing the measurements given the model and its

parameters can be calculated via

L(®𝑝) ≡ 𝑃 ({®𝑦𝑖} | ®𝑝) =
∏
𝑖

𝑃 ( ®𝑦𝑖 | ®𝑝) . (5.1)

The function L(®𝑝) is called the likelihood function. The question is then answered by max-

imizing the likelihood, i.e. finding the set of parameters ®𝑝0, which makes the measured data

most likely to be observed given the model. This method is called maximum likelihood estima-

tion (MLE). Equivalently to maximizing the likelihood, typically the negative log-likelihood is

minimized.

The likelihood is related to the probability of the parameters via Bayes theorem [128]

𝑃 ( ®𝑝 | {®𝑦𝑖}) = L(®𝑝)𝑃 ( ®𝑝)
𝑃 ({®𝑦𝑖})

. (5.2)

In the context of Bayesian statistics, the left-hand side is called the posterior probability, 𝑃 ( ®𝑝)
the prior probability, and 𝑃 ({®𝑦𝑖}) the evidence. The probability density of the evidence 𝑃 ({®𝑦𝑖})
can typically not be calculated, but as it does not depend on the sought-after parameters ®𝑝 it is

constant. For MLE, the prior distribution of the parameter is typically assumed to be uniform

and is thus also constant. The 1−𝜎 confidences of the parameters can be calculated by finding

equipotential surfaces where L(®𝑝) = 0.5L(®𝑝0), see e.g. the ROOT MINUIT library [129]. A

computationally much cheaper approach is to assume asymptotic normality of the likelihood

and compute the covariance via the inverse Hessian matrix 𝐻 of the log-likelihood [130]

cov( ®𝑝0) = (−𝐻 (logL))−1, 𝐻𝑖 𝑗 (logL) = 𝜕2 logL
𝜕𝑝𝑖𝜕𝑝 𝑗

( ®𝑝0) . (5.3)
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Maximum likelihood estimation and the calculation of the covariance matrix are typically done

via numerical minimization and differentiation techniques.

Another approach to parameter inference is to directly sample from the unknown distribu-

tion of the parameters described by the unknown probability 𝑃 ( ®𝑝 | {®𝑦𝑖}), e.g.

{®𝑝 𝑗 } ∼ Ω, (5.4)

where Ω is the posterior probability distribution and the tilde (∼) denotes is sampled from.

Markov chain Monte Carlo (MCMC) methods can sample from the posterior distribution given

a function proportional to the posterior probability density 𝑃 ( ®𝑝 | {®𝑦𝑖}) [131], e.g. the likelihood,

compare Eq. (5.2). Given that the MCMC sampler has converged to the target distribution, it is

straightforward to form mean values

〈
𝑝𝑖

〉
, variances and covariances cov( ®𝑝0) from a sufficient

number of 𝑁 produced samples:

〈
𝑝𝑖

〉
=

1
𝑁

𝑁∑︁
𝑘=1

𝑝𝑖,𝑘

cov( ®𝑝)𝑖, 𝑗 =
〈
𝑝𝑖𝑝 𝑗

〉 − 〈
𝑝𝑖

〉〈
𝑝 𝑗

〉 (5.5)

To account for asymmetric error intervals due to asymmetric posterior distributions, quantiles

𝑝𝑖,𝑞 can be calculated from the samples. The quantile 𝑝𝑖,𝑞 is the first sample value which is larger

than 𝑁 ·𝑞 of the 𝑁 parameter samples {𝑝𝑖, 𝑗 }. Confidence bands are calculated via the quantiles

of the function values, i.e. for a function 𝑓 ( ®𝑥, ®𝑝) quantiles of the set {𝑓 ( ®𝑥, ®𝑝𝑖)} are used. Here,

the 0.16, 0.5 and 0.84 quantiles corresponding to a 1 − 𝜎 interval of a normal distribution are

used for all plotted confidence bands.

For low statistics measurements, the likelihood can be quite noisy. In this case, the statis-

tic nature of the MCMC sampling can work much more robustly than the deterministic MLE

approach. Additionally, while the use of a uniform prior probability 𝑃 ( ®𝑝) in an MLE approach

to define broad parameter bounds works, bounds very close to the best fit parameters can lead

to problems with the confidences, see e.g. the ion temperature measurement method in this

chapter.

5.3.2. Probabilistic programming model

In this work, an analysis toolkit written in the Julia programming language and based on the

probabilistic programming framework Turing.jl, see ref. [132], is used to solve many of the

inference problems. Given a description of the model involving the computation of the prob-

ability 𝑃 ( ®𝑦𝑖 | ®𝑝) for the measurement data, it can infer best-fit parameters and covariances by

both MLE and MCMC sampling.

In the following, the framework is explained using the example of linear extrapolation of

data. Consider a varied parameter 𝑥 and measured parameter 𝑦 with uncertainty 𝜎𝑦 . The

data is described by the relation 𝑦 = 𝑎𝑥 + 𝑦0 and the objective is to find 𝑦0, which is not

measurable because 𝑥 = 0 can experimentally not be chosen. The model definition is done

with the following code:

@model function extrapolation(®𝑥, ®𝑦, ®𝜎𝑦, bounds)
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5.4. Dip detection

𝑎 ∼ Uniform(bounds[1][1], bounds[1][2])
𝑦0 ∼ Uniform(bounds[2][1], bounds[2][2])

®𝑦predict = 𝑎®𝑥 .+ 𝑦0
@. ®𝑦 ∼ Normal(®𝑦predict, ®𝜎𝑦)

end

The first two lines in the model definition are the prior distributions of the model parameters

𝑎 and 𝑦0. For this problem they are assumed to be uniform distributions to account for fit

bounds. Next, the predictions given the two model parameters and the 𝑥-values are computed.

The measured values𝑦 are assumed to be normally distributed around the prediction
1
. The last

line in the model defines the likelihood of the problem. Figure 5.4 shows an example dataset
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Figure 5.4: Example use of MCMC for linear extrapolation. The left-hand side shows his-

tograms of the sampled parameters 𝑎 and 𝑦0 of the model. The 1 − 𝜎 intervals of 𝑎 and 𝑦0 are

indicated by the orange line and band, respectively. The right-hand side shows the data, the

mean, and confidences of the fit.

that has truth values of 𝑎 = 0.5 and𝑦0 = 2.0 and is fit with the above extrapolation model using

MCMC sampling of the posterior distribution. The 0.5 quantile is used as the best fit value

and the 0.18 and 0.84 quantile are used to give confidence intervals of the parameters. The 2-d

histogram nicely shows the correlation between the two fit parameters 𝑎 and 𝑦0.

5.4. Dip detection

For the thermal dip detection technique, the detection signal is recorded after a sufficiently

long cooling time of the ion in resonance with the detector. The sought-after axial frequency

1
Here, the @. macro is used for element wise computation of the code.
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𝜔𝑧 , or in the case of a double dip𝜔𝑧,1 and𝜔𝑧,2, of the ion are determined from a non-linear least

squares fit of the theoretical lineshape to the calculated spectrum. Generally, the fit function

may be written as

𝑓fit(𝜔 | ®𝑝tf, ®𝑝dip) = 𝑓tf(𝑓dip(𝜔 | ®𝑝dip), 𝜔 | ®𝑝tf), (5.6)

where 𝑓tf together with ®𝑝tf transforms the detection signal described by the dip lineshape 𝑓dip

with parameters ®𝑝dip.

The transfer function 𝑓tf, in the simplest case, adds the white noise background of the input

noise of the cryogenic amplifier, compare Section A.5.1, and transforms the signal to decibel

units. Additionally, the amplification of the signal may include a non-uniform, in first-order

linear dependence on the frequency. In total, this gives

𝑓tf(𝑦 (𝜔), 𝜔 | 𝑎0, 𝑎1, 𝑎2) = 10 log10(𝑎0 + 𝑎1𝑦 (𝜔) + 𝑎2𝜔𝑦 (𝜔)) . (5.7)

For the fit of the axial frequency𝜔𝑧 , the parameters in ®𝑝dip and ®𝑝tf need to be either included

in the fit or fixed beforehand. Here, the final fit of𝜔𝑧 is performed after a number of preparatory

steps.

1. First, a fit of the detection signal with the resonator lineshape, Eq. (2.53), is performed

which gives first values for 𝜔𝑅 , Γ𝑅 and ®𝑝tf

2. Using the resonator lineshape and the previously determined parameters, a residual with

the spectrum is calculated. From the residual, a rough dip location is determined simply

by peak detection.

3. A span of a couple of dip widths 𝛾𝑧 is cut out around the rough dip location and a second

fit of the resonator lineshape is performed to get better values for 𝜔𝑅 , Γ𝑅 and ®𝑝tf. This fit

is performed inside a frequency span a couple of multiples of Γ𝑅 .

4. Lastly, the dip parameters are fit with the dip lineshape while leaving the previously fit

parameters fixed. This fit is performed inside a frequency span a couple of multiples of

𝛾𝑧 around the dip.

Figure 5.5 visualizes the steps. The procedure for fitting a double dip spectrum is very similar

and only differs in that the two dips are cut out of the spectrum in the third step.

For the characterization of field imperfections or the detection of spin state changes in the

AT via the continuous Stern-Gerlach effect, the measurement of the dip frequencies does not

need to be highly accurate. In this case, it is sufficient to use the ideal dip or double dip sig-

nal, Eq. (2.51) and Eq. (2.70), and the transfer function Eq. (5.7) for fitting the frequencies. In

contrast, for the high-precision measurements of the axial frequency 𝜔𝑧 and 𝜔+ via the double

dip in the PT, the correct description of the detected dip signal is crucial. As the estimation of

systematic shifts and uncertainties due to the dip signal lineshape is different for the double dip

and phase-sensitive cyclotron frequency measurements, they will be discussed individually in

the next chapters.
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Figure 5.5: Dip fitting procedure. The top graph shows the various fits performed on the

spectrum. Below the difference of the first resonator fit and the experimental data is plotted.

The bottom shows the difference of the final dip fit and the experimental data. For details see

text.

5.5. Phase methods

The phase-sensitive detection sequences are summarized in Eq. (2.78) and Figures 2.7 and 2.8.

Experimentally, the sequences are implemented with the setup shown in Figure 5.6. All in-

volved devices are frequency-locked via the 10 MHz outputs of the rubidium clock (SRS FS725).

The trigger generator (SRS DG645) generates two TTL trigger pulses. First, one pulse triggers

the signal generator (Agilent/Keysight 33600A) which generates the excitation and coupling

pulse. The signal generator’s first output directly generates the excitation pulse. Via an inter-

nal delay, the second output generates the coupling pulse after a time 𝑇couple = Δ𝑇exc + 𝑇evol,

where Δ𝑇exc is the length of the excitation pulse and𝑇evol the free evolution time. Both outputs

of the signal generator are connected via a signal combiner. In this run of the experiment, the

excitation line to the split electrode of the PT was broken and instead the PT spin-flip coil is

used for driving radial dipole and radial quadrupole excitations. The second pulse from the

DG645 at time𝑇Readout = Δ𝑇exc +𝑇evol +Δ𝑇couple +Δ𝑇off, where Δ𝑇Couple is the length of the cou-
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Figure 5.6: Setup used for the phase sensitive measurements. The straight lines represent

the signal paths. Outputs are located at the bottom and inputs at the sides of the respective

square symbols. The blue and green signal in the pulsed and triggered generator represent

the excitation and coupling pulse, respectively. The blue and green signal in the triggered FFT

represent the amplitude and phase of the spectrum, respectively. For details see text.

pling pulse and Δ𝑇off an additional offset, triggers the data acquisition of the FFT analyzer (SRS

SR1). The offset Δ𝑇off is tuned to compensate for internal trigger delays of the FFT analyzer

relative to the signal generator. The FFT phase and amplitude spectra of the hot ion signal mea-

sured by the SR1 are computed without averaging and a typical acquisition time𝑇FFT ≈ 2𝜋/𝛾𝑧 .
Because the detection signal needs to be down-mixed for the detection and thus depends on

the relative phase of the local oscillator (LO), the LO would need to be triggered as well. Here,

this additional trigger is circumvented by using integer Hz down-mix frequencies at the LO

and starting the trigger sequence on the pulse per second (PPS) of the rubidium clock [77].

The constant phase offset 𝛿𝜑off in Eq. (2.79) is a sum of different components that occur

due to several experimental reasons. For example, during the coupling pulse a free evolution

phase is also acquired, compare Eq. (2.62), and due to the different internal trigger delays of the

signal generator and the FFT analyzer, another offset is produced. The important requirement

for 𝛿𝜑off is its independence of 𝑇evol and of the final phase of the modified cyclotron motion.

This independence can be experimentally verified, see the next chapters. To subtract the offset

phase, a reference phase 𝜑ref with a short evolution time 𝑇ref, here 0.1 s, is measured. With

the definitions Δ𝜑 = ±(𝜑det − 𝜑ref), Δ𝑇evol = 𝑇evol − 𝑇ref and Δ𝑁 = 𝑁 − 𝑁ref, where 𝑁ref is
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equivalently defined to bring 𝜑ref to the 2𝜋 range, the relation

Δ𝜑 = 𝜔+Δ𝑇evol − 2𝜋Δ𝑁 (5.8)

can be used to infer the cyclotron frequency, if the integer number Δ𝑁 is known.

The determination of the 𝜔+, including the full number of revolutions Δ𝑁 , is performed

by measurement of phases {Δ𝜑𝑖} for a number of evolution times {Δ𝑇evol,𝑖}. Due to the phase

measurement uncertainty𝜎 (Δ𝜑), care has to be taken to not make an error in the determination

of the full number of cycles. One method is to sequentially increase the precision of 𝜔+ at a

higher evolution time by using the previously less precise value to estimate and keep track of

the full number of revolutions Δ𝑁 , see ref. [133]. Similar to ref. [134], the modified cyclotron

frequency can also be calculated via a regression through the measured phases at the different

evolution times. To this end, the loss function

𝑓 (𝜔+ | {𝛿𝜑𝑖}, {Δ𝑇evol,𝑖}) =
∑︁
𝑖

[(𝜔+Δ𝑇evol,𝑖 − Δ𝜑𝑖)/(2𝜋) − ⌊(𝜔+Δ𝑇evol,𝑖 − Δ𝜑𝑖)/(2𝜋)⌉
]2
, (5.9)

is minimized, where ⌊⌉ rounds to the nearest integer, resulting in the terms in the sum to be

in the range (−0.5, 0.5). Here, the idea is to bring the predicted phases 𝜔+Δ𝑇evol,𝑖 as close to

the measured phases Δ𝜑𝑖 modulo 2𝜋 , compare Eq. (5.8). Figure 5.7 illustrates the absolute 𝜔+

Figure 5.7: Exemplary determination of the absolute value 𝜔+ via regression. The left plot

shows the value of the loss function around and in the range of an initial guess 𝜔+,0 and its

uncertainty which can be taken from e.g. a double dip measurement. A clear global minimum

exists. The right plot shows polar plots of the difference of predicted absolute phase 𝜔+Δ𝑇evol,𝑖

to the measured phase Δ𝜑𝑖 for all individual evolution times and values of 𝜔+ (each 𝜔+ on

an individual diameter) nearing the optimum value from the left plot. At the optimum, the

differences between the predicted to the measured phases are clustered closely around zero.

determination through regression. The polar plot shows that the terms with higher evolution
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time change to loss function more rapidly and thus have the most influence on the final 𝜔+,opt

value. In the sequential method, only the phase measured with the highest evolution time value

contributes directly to 𝜔+ and its uncertainty, and all others just serve to determine Δ𝑁 . Here,

the regression method is used in the same way
2
. From 𝜔+,opt the final Δ𝑁 is determined and

only the phases from the highest evolution time are used to calculate 𝜔+ from Eq. (5.8).

5.6. AT characterization

For the characterization of the AT, it is important to keep its purpose in mind. In the AT, the

repeatable and unambiguous spin-state detection needs to be performed via the continuous

Stern-Gerlach effect, compare Section 3.5. Therefore, only the detection of 𝜔𝑧 and resolving

the changes 𝛿𝜔𝑧,𝑚𝑛 due to a spin-state change, compare Eq. (3.43), are necessary, while the

radial frequencies do not need to be detected precisely.

The main difficulties in working with the AT are due to its small size, 𝑟AT = 1.8 mm, and

large nominal 𝐵2 ≈ 282 kT. The small size leads to large expansion coefficients 𝐶𝑘 , compare

Eq. (2.20), which in turn requires high voltage stability and very sensitive fine-tuning of the

voltages to make the trap harmonic enough to detect ion signals. The large𝐵2 strongly shifts the

ion’s axial frequency depending even on thermally distributed cyclotron amplitudes, compare

Eq. (2.35). The large 𝐵2 also makes the detection and coupling to 𝜔+ via quadrupolar coupling

impossible, as both axial and cyclotron frequency are coupled too strongly to the amplitudes.

Additionally, the ferromagnetic ring electrode produces a large 𝐵4 value. The 𝐵4 leads to a shift

𝛿𝜔𝑧 ∝ 𝐵4𝜌
2+𝜌2𝑧 , which compares to the shift due to 𝐶4, 𝛿𝜔𝑧 ∝ 𝐶4𝜌

2
𝑧 [67]. The ideal tuning ratio

which compensates the combined 𝐵4𝜌
2+ and 𝐶4 shift depends then on 𝜌+ which is thermally

distributed after a PT measurement [97].

Table 5.1: Experimentally determined parameters of
9
Be

3+
in the AT. The values of𝜔𝑅 , Γ𝑅 and

𝛾𝑧 are formed via the mean over a dataset with 142 dip spectra. The range in 𝑈0 corresponds

to the typical spread of the ring voltage due to the thermal distribution of 𝜌+ after coupling in

the PT. For details see text.

𝜔𝑅/2𝜋 Γ𝑅/2𝜋 𝑈0 TR 𝛿𝜈𝑧/𝛿𝑈0 𝛾𝑧/2𝜋
795.6406(6) kHz 235.6(6) Hz (−3.398,−3.368) V 0.8885 113.8(2) Hz/mV 3.96(3) Hz

𝜔𝑐/2𝜋 𝜔+/2𝜋 𝜔−/2𝜋 𝐵0 𝐵2
25.427(2) MHz 25.414(2) MHz 12.46(1) kHz 4.9732(4) T 282.4(1) kT/m

2

Table 5.1 lists experimentally determined parameters of
9
Be

3+
in the AT. The first row is

determined via axial spectra, compare Figure 5.8. Additionally, the scheme to reproducibly

center the ion’s axial frequency on the resonator is illustrated in Figure 5.8.

2
This helps to make both methods comparable. Additionally, having all phase values from the different evolution

times contribute to𝜔+ makes it much harder to argue that the magnetic field during the irradiation of the Zeeman

transition is identical to the one that determines 𝜔+.
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Figure 5.8: 9Be
3+

signal in the AT for different ring voltages. To bring the ion into resonance,

the ring voltage is decreased in 1 mV steps. The ion signal is unambiguously identified if

subsequently two peaks separated by 𝛿𝜈𝑧/𝛿𝑈0 ≈ 114 Hz/mV appear. This allows to center the

ion onto resonance 𝜈𝑧 ≈ 𝜈𝑅 .
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Figure 5.9: Determination of 𝜔+ in the AT with
9
Be

3+
. The data shows the change of the axial

frequency after a weak dipolar excitation at frequency 𝜈RF. Close to resonance, the amplitude

𝜌+ changes depending on the phase difference of excitation and motion, compare Eq. (2.58),

which can lead to both positive and negative shifts of 𝜈𝑧 .

In order to calculate the spin transition frequencies in the AT, the magnetic field needs to

be measured to a relative precision comparable to the linewidth parameter, compare Eq. (3.26).

Here, this requires a precision 𝜎 (𝐵)/𝐵 ≈ 10−4. While the magnetron frequency can be deter-

mined via a double-dip measurement, as described above, this is not possible for the modified

cyclotron frequency. To determine 𝜔+, a weak direct dipolar excitation is used to excite the
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motion and the shift Eq. (2.35) is detected afterwards, compare ref. [97]. Only close to reso-

nance, 𝜔RF ≈ 𝜔+, a change of the amplitude occurs, see Figure 5.9. Using this measurement

allows calculating 𝜔𝑐 and the magnetic field, see Table 5.1.

An experimental value of 𝐵2 can be determined via the axial frequency changes due to the

continuous Stern-Gerlach effect, compare Eq. (3.43). Using successive measurements of 𝜔𝑧
after changing the spin-state yields 𝐵2 = 282.4(1) kT/m

2
, which is about 5 % lower than the

calculated 𝐵2 = 298(5) kT/m
2

of the trap [28]. The calculated 𝐵2 relies on the material’s

magnetic saturation, for which no data at 4 K exists, and a temperature dependence of 5 %
seems reasonable.

5.7. PT optimization and characterization

The optimization and characterization of the PT is crucial for the high-precision measurement

of the Zeeman and HFS transitions, as any errors in the determination of 𝜔𝑐 will propagate to

the extracted parameters. In this section, the methods used to minimize or at least characterize

the shifts discussed in Section 2.3 will be presented. For reference, Table 5.2 summarizes the ex-

perimental parameters of
9
Be

3+
in the PT. In this section, any measurement of 𝜔𝑧 is performed

Table 5.2: Experimentally determined parameters of
9
Be

3+
in the PT. The values of𝜔𝑅 , Γ𝑅 and

𝛾𝑧 are formed via the mean over a dataset with 142 dip spectra. The values for𝜔𝑐 ,𝜔+ and 𝐵0 are

given without an error and 7 digits precision, as magnetic field drifts of this order of magnitude

occur during the measurement campaign.

𝜔𝑅/2𝜋 Γ𝑅/2𝜋 𝑈0 (TR1,TR2) 𝛿𝜈𝑧/𝛿𝑈0 𝛾𝑧/2𝜋
484.14549(5) kHz 78.6(9) Hz −6.37 V (0.95996, 0.80632) 37.8(1) Hz/mV 2.52(5) Hz

𝜔𝑐/2𝜋 𝜔+/2𝜋 𝜔−/2𝜋 𝐵0
29.254040 MHz 29.250034 MHz 4.0074(2) kHz 5.7218158 T

via a dip measurement with typically 𝑇FFT = 6 s and 𝑇avg = 20 − 40 s. This leads to a typical

statistical uncertainty of less than 𝜎 (𝜔𝑧)/2𝜋 ≈ 100 mHz.

5.7.1. Trap symmetrization

The fields of the trap may be asymmetric due to e.g. machining tolerances of the electrodes and

the sapphire spacers or surface contamination and patch potentials [91]. These asymmetries

lead to large odd-order 𝐶𝑘 coefficients, of which 𝐶3 is the most problematic. In the 7-pole PT,

the potential of the inner correction electrodes, being the closest to the ion, contributes the

most to the symmetry of the field. Any effective (and unknown) offset 𝛿𝑈 on either the upper

or lower correction electrode leads to a linear change 𝛿𝐶2 = 𝐸1,2𝛿𝑈 , compare Eq. (2.20), where

𝐸1,2 is a parameter which is specific to the electrode, but equal for both the upper and lower,

inner (1) correction electrode. Additionally, the first odd-order coefficients lead to the shift of
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the zero position, compare Eq. (2.27), and an associated shift due to 𝐶3

𝛿𝐶2 = 3𝛿𝐶3Δ𝑧 = −3𝛿𝐶1𝛿𝐶3

2𝐶2
= −3𝐸1,1𝐸1,3𝛿𝑈

2

2𝐶2
, (5.10)

where 𝐸1,1 and 𝐸1,3 are defined similar to 𝐸1,2. Obviously, the asymmetric components have

opposite sign for the upper and lower correction electrodes, but as they appear only as their

product, the sign of the shift is equal for both cases. By asymmetrically applying an additional

offset ±𝛿𝑈𝑎 on the upper and lower correction electrode, respectively, such that the voltages

of the trap are
3

®𝑈 = (0,TR2𝑈0,TR1𝑈0 − 𝛿𝑈𝑎,𝑈0,TR1𝑈0 + 𝛿𝑈𝑎 + 𝛿𝑈 ,TR2𝑈0, 0) (5.11)

this gives in total

𝛿𝐶2(𝛿𝑈𝑎) = 𝐸1,2(𝛿𝑈 + 𝛿𝑈𝑎 − 𝛿𝑈𝑎) −
3𝐸1,1𝐸1,3
2𝐶2

(𝛿𝑈 + 2𝛿𝑈𝑎)2. (5.12)

This function is extremal at 𝛿𝑈𝑎 = − 1
2𝛿𝑈 , which makes the compensation of the offset via

measurement of the axial frequency shifts

𝛿𝜔𝑧 (𝑈𝑎) = 𝜔𝑧 𝛿𝐶2(𝛿𝑈𝑎)
2𝐶2

= −𝜔𝑧
3𝐸1,1𝐸1,3
4𝐶2

2

(𝛿𝑈 + 2𝛿𝑈𝑎)2, (5.13)

where the constant term 𝐸1,2𝛿𝑈 was dropped, possible.

Figure 5.10 shows the result of the symmetrization in the PT and the fit of the above model.

From the fit, the offset 𝛿𝑈 = 86.35(8) mV and the product 𝐸1,1𝐸1,3 = −727(9)x106 V
−2

m
−4
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Figure 5.10: Symmetrization of the PT. The axial frequency values are taken via single axial

dip measurements. For details see text.

are determined. The latter can be cross-checked with the value from trap theory 𝐸1,1𝐸1,3 =

3
Assuming a single offset 𝛿𝑈 on either the upper or lower correction is indeed enough. Only the difference of their

potential matters here, as the identical part is tuned with the tuning ratio optimization.
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−696x106 V
−2

m
−4

. Though the value shows disagreement with the experimental value, having

a 5 % deviation for a geometrical trap parameter is not uncommon. In contrast, the measured

offset is quite large and if not corrected, the resulting𝐶3 contributions are significant (see later),

i.e. given the measured offset, the theoretical 𝐶3/𝐶2 is

𝐶3/𝐶2 = −6.0(3) m
−1, (5.14)

where the 5 % deviation of 𝐸1,1𝐸1,3 was applied as an error on𝐶3. Finally, for the compensation

only a single correction offset of −𝛿𝑈 is applied to the upper correction electrode.

5.7.2. 𝐵1 measurement

Though there are no direct systematic shifts due to 𝐵1 on the determined spin transition fre-

quencies, it is important to measure 𝐵1 for the correct determination of other field imperfec-

tions. The measurement of 𝐵1 is done by shifting the ion axially via an offset applied to a

correction electrode and measuring the magnetic field via 𝜔𝑐 [135]. Offsets on a correction

electrode lead to a𝐶1, which in turn shifts the position, compare Eq. (2.27). The magnetic field

is then measured using the double-dip method.
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Figure 5.11: Measurement of 𝐵1. The left plot shows the 𝐵1 measurement exemplary using

offsets on the outer upper correction electrode. The right-hand side shows the 4 individual

results of 𝐵1 measured via offsets on the individual correction electrodes. The weighted mean

and its uncertainty band are plotted in green.

Figure 5.11 shows the results of the 𝐵1 measurements. The 4 values measured by individually

using all correction electrodes to shift the ion are consistent, and a weighted mean can be

calculated to give

𝐵1 = −29(2) mT/m. (5.15)

Similar to the above arguments, additional to the statistical uncertainty, a 5 % uncertainty due

to the dependence on the theoretical 𝐶1 coefficients was included. The measured 𝐵1 is vastly
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larger than could be attributed to the superconducting magnet’s inhomogeneity, which should

be better than |𝐵1 | < 0.1mT/m, compare ref. [107]. A finite element calculation of the magnetic

field change due to the ferromagnetic ring of the AT performed with COMSOL Multiphysics

yields 𝐵1 = and fits quite well.

5.7.3. Tuning ratio optimization

The PT potential needs to be tuned to be as harmonic as possible. In particular, the first even

anharmonicities 𝐶4 and 𝐶6 must be tuned as close to zero as possible. During the
3
He

+
mea-

surement, a 5-pole PT was used and only 𝐶4 could be actively optimized [97]. For a small 𝐶6,

the design criterion 𝐶4(TRopt) = 𝐶6(TRopt) = 0 (compensated) of the trap needs to be fulfilled,

which in practice is always broken to some degree. With the two tuning ratios of the new 7-

pole PT, both 𝐶4 and 𝐶6 can be actively minimized, but the optimization is also more complex

compared to the 5-pole trap.

The voltages of the 7 electrodes are expressed as

®𝑈 = (0,𝑈2,𝑈1,𝑈0,𝑈1,𝑈2, 0) (5.16)

As given in Eq. (2.20), the 𝐶𝑘 coefficients are linear in the voltages. It is helpful to write

𝐶𝑘 = 𝐸0,𝑘𝑈0 + 𝐸1,𝑘𝑈1 + 𝐸2,𝑘𝑈2, 𝐸𝑖,𝑘 =
𝜕𝐶𝑘
𝜕𝑈𝑖

. (5.17)

The axial frequency requirement 𝜔𝑧 ≈ 𝜔𝑅 fixes𝐶2 =
𝜔2
𝑧
2
𝑚
𝑞 and the optimization requirement is

summarized by ©­«
𝐶2

𝐶4

𝐶6

ª®¬ = ©­«
𝐸0,2 𝐸1,2 𝐸2,2
𝐸0,4 𝐸1,4 𝐸2,4
𝐸0,6 𝐸1,6 𝐸2,6

ª®¬ ©­«
𝑈0

𝑈1

𝑈2

ª®¬ !
=

©­­«
𝜔2
𝑧
2
𝑚
𝑞

0
0

ª®®¬ . (5.18)

If for some set of {𝑈0,𝑈1,𝑈2} the condition is fulfilled and a different ion species with another

𝑞
′/𝑚′

is to be brought into resonance, only the𝐶2 needs to be actively adjusted. By just scaling

all voltages with a factor 𝑞
′/𝑚′ ·𝑚/𝑞, this can be achieved while keeping 𝐶4 = 𝐶6 = 0. This

motivates the use of ratios, e.g. setting 𝑈1 = TR1𝑈0 and 𝑈2 = TR2𝑈0. The theoretical values of

these coefficients for the 7-pole PT are summarized in Table 5.3.

Table 5.3: Theoretical contributions of the individual voltages/electrodes to the𝐶-coeffecients.

While 𝐸𝑖,2 is similar in magnitude for all electrodes, the contribution to 𝐶4 and 𝐶6 are much

reduced for the second and first pair of correction electrodes, respectively.

𝐸𝑖,2/104 (m−2
V
−1) 𝐸𝑖,4/108 (m−4

V
−1) 𝐸𝑖,6/1012 (m−6

V
−1)

𝑖 = 0 −2.3257 24.414 −224.42
𝑖 = 1 −3.1231 −3.6527 242.65
𝑖 = 2 3.6903 −25.624 −11.491
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While 𝐶2 is effectively measured via 𝜔𝑧 , 𝐶4 and 𝐶6 are measured via the systematic shift of

the axial frequency 𝛿𝜔𝑧 (𝜌−) after an excitation of the magnetron amplitude 𝜌− . While for 𝐶4

the shift is 𝛿𝜔𝑧 ∝ 𝐶4𝜌
2− , compare Eq. (2.25), for𝐶6 a shift 𝛿𝜔𝑧 ∝ 𝐶6𝜌

4− occurs [67]. By measuring

the shift for different excitation amplitudes 𝜌− , shifts from𝐶4 and𝐶6 can be discriminated. The

final amplitude can be either tuned via the dipole pulse excitation strength, or its time, compare

Eq. (2.58). Here, the excitation time in units of cycles 𝑁 is used, as it is experimentally more

robust compared to the excitation strength, which relies on a proper calibration of the function

generator used for the dipole excitation. The polynomial

𝛿𝜔𝑧 = 𝑎𝑁
2 + 𝑏𝑁 4

(5.19)

is fit to the measured data. In order to optimize the trap, the measurement and fit of 𝛿𝜔𝑧 (𝜌−)
are performed for different tuning ratios.

For
9
Be

3+
, the tuning ratios found while previously working with

3
He

+
in the same trap

were used. For
3
He

+
, in turn, the initial tuning ratios were taken from theory, compare Ta-

ble 4.1. The symmetrization explained in the previous section had not been performed yet.

First, the combined tuning ratio TR𝐶 was optimized. The combined tuning ratio changes

both correction electrode pairs via (TR
′
1,TR

′
2) = (TR𝐶TR1,TR𝐶TR2). The trap was designed

so that TR𝐶 does not change 𝐶2, i.e. TR1𝐸1,2 + TR2𝐸2,2 = 0 at the optimal set of (TR1,TR2),

which is the equivalent of the orthogonality condition of the 5-pole trap
4
. Experimentally,

to keep the axial frequency centered on the resonator, the ring voltage had to be readjusted

by 𝛿𝑈0(TR𝐶 ) = 0.19(1.0 − TR𝐶 ) V, showing that the orthogonality is experimentally not

quite given. Figure 5.12 shows the optimization of TR𝐶 . From this optimization, the intercept

TR𝐶,4 = 1.0006(1), where 𝛿𝜔𝑧 (TR𝐶,4)/𝑁 2 = 0, was fit using a linear regression. No statistically

significant 𝐶6 shifts were observed.

Around the new tuning ratios (TR
′
1,TR

′
2) = (TR𝐶,0TR1,TR𝐶,0TR2), the dependence of the

𝐶-coefficients from changes of TR2 was measured in the same way, see Figure 5.13. By only

changing 𝑈2, a very large shift of the axial frequency occurs and the retuning was done with

the function 𝛿𝑈0(𝛿TR2) = +10.4(𝛿TR2) V. Again, the intercept TR2,4 = 0.8061(1), where

𝛿𝜔𝑧 (TR2,4)/𝑁 2 = 0, was fit and no 𝐶6 shifts could be observed at this level.

For TR1, where the contribution to 𝐶4 is much smaller, compare Table 5.3, it was decided

to increase the dipole excitation pulse length to excite to higher radii. Here the readjustment

of the ring voltage was performed with 𝛿𝑈0(𝛿TR1) = −8.54𝛿TR1 V. As seen in Figure 5.14, 𝐶6

contributions could be resolved for this correction electrode pair. The intercept of the 𝐶4 shift

is at TR1,4 = 0.96013(1) and the intercept of the 𝐶6 shift is at TR1,6 = 0.96001(5). Including

shifts of order 𝑁 6
in the evaluation of the optimization of TR1 significantly shifts the intercept

of𝐶6 to TR1,6 = 0.9591(5). In order to adjust both𝐶4 and𝐶6 closer to zero, TR2 was readjusted

slightly to compensate for𝐶4 close to TR1,6. The final values for the tuning ratios used in (most)

of the measurements are

(TR1,TR2) = (0.95996, 0.80632) . (5.20)

In the case of the initial optimization of the tuning ratios done with
3
He

+
, TR1,4 and TR1,6

were found to be a lot more different. Here, the measurement of both dependencies of 𝐶4 on

4
The orthogonality of the 5-pole trap is expressed as 𝐸1,2 = 0 for the single pair of correction electrodes.
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Figure 5.12: Optimization of TR𝐶 . The left-hand side shows the individually measured curves

𝜔𝑧 (𝜌−) and the fit Eq. (5.19) for each of the applied values of TR𝐶 . The right-hand side displays

the quadratic (bottom) and quartic (top) coefficients of the polynomial fit against the tuning

ratio and a linear fit through them. It is important to note that not only the tuning ratio changes,

but also a readjustment of the ring voltage is done in order to keep the ion centered on the

resonator.
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Figure 5.13: Optimization of TR2. For details see Figure 5.12 and text.

the tuning ratios could be used to move on a line of 𝐶4 = 0 by adjusting both TR1 and TR2

simultaneously. On this line𝐶6 can then be tuned to zero independent of𝐶4. In retrospect, the

optimization of the tuning ratios would have profited from higher excitation radii (i.e. more

cycles 𝑁 ), as especially for the optimization of TR𝐶 and TR2 the 𝐶6 contributions were not
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Figure 5.14: Optimization of TR1. For details see Figure 5.12 and text.

resolved.

As a cross-check, a simultaneous evaluation of the three optimizations can be done by fitting

the 𝐸-parameters, compare Eq. (5.18). From the measurements, the dataset 𝜔𝑧 ( ®𝑈 ), 𝛿𝜔𝑧 ( ®𝑈 , 𝑁 )
can be formed. The data is fit to

𝜔𝑧 ( ®𝑈 ) =
√√√
2

3∑︁
𝑖=1

𝐸𝑖,2𝑈𝑖𝑞/𝑚

𝛿𝜔𝑧 ( ®𝑈 , 𝑁 ) =
3∑︁
𝑖=1

(𝐹𝑖,4𝑈𝑖𝑁 2 + 𝐹𝑖,6𝑈𝑖𝑁 4 + 𝐹𝑖,8𝑈𝑖𝑁 6),
(5.21)

where 𝐸𝑖,2 can be used directly, but the higher order terms would require the knowledge of 𝜌−
in absolute units, which at this point is unknown. Therefore, the generic expansion coefficients

𝐹𝑖,4/6 where introduced. Table 5.4 shows the result of this fit performed with the MCMC meth-

Table 5.4: Experimental determination of the parameters defined in Eq. (5.21). The coefficients

of order 𝑁 6
for 𝑖 = 0 and 𝑖 = 2 were highly correlated and not statistically different from zero.

𝐸𝑖,2/104 (m−2
V
−1) 𝐹𝑖,4/2𝜋/108 (HzV

−1) 𝐹𝑖,6/2𝜋/1014 (HzV
−1)

𝑖 = 0 −2.3311(1) −60(5) −
𝑖 = 1 −3.0278(1) 9.1(2) 2.5(8)
𝑖 = 2 3.6935(1) 64(6) −

ods introduced in Section 5.3.2. For 𝐸𝑖,2, the deviations to the theoretical parameters in Table 5.3

are of the order of a few percent and thus similar to the deviations found for the symmetriza-

tion. While no direct comparison of the 𝐹𝑖,4/6 parameters can be made with theoretical values,
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the two fractions 𝐹0,4/𝐹1,4 = 𝐸0,4/𝐸1,4 = −6.6(5) and 𝐹0,4/𝐹2,4 = 𝐸0,4/𝐸2,4 = −0.95(1) can be

compared with the theoretical values of 𝐸0,4/𝐸1,4 = −6.68 and 𝐸0,4/𝐸2,4 = −0.953, respectively
5
.

These values agree quite well.

This evaluation also presents an alternative way to directly derive optimal tuning ratios.

For each MCMC sample of the expansion coefficients, Eq. (5.21) can be inverted for optimal

voltages, i.e. 𝜔𝑧 ( ®𝑈 ) = 𝜔𝑅 ,

∑
𝑖 𝐹𝑖,4𝑈𝑖 = 0 and

∑
𝑖 𝐹𝑖,6𝑈𝑖 = 0. The distributions of the voltages

yield the tuning ratios with uncertainties

(TR1,TR2) = (0.96014(3), 0.806283(1)) . (5.22)

The uncertainties of the tuning ratios obtained in this way only reflect the uncertainty of the

optimum, but not the uncertainty of 𝐶4 or 𝐶6. This more mathematical way of optimizing

tuning ratios of 7-pole Penning traps was not used during this measurement campaign but

could be used in future measurements.

5.7.4. Field imperfections and amplitude calibrations

Here, a method to explicitly characterize the field imperfections will be presented in order to

evaluate the systematic shifts and uncertainties of the final fit parameters. This also includes

the calibration of the cyclotron amplitude 𝜌+, which is needed for the PnA method.

The principle to determine the excited amplitude 𝜌+ and the magnetic inhomogeneity 𝐵2 is

outlined in ref. [77]. In a trap with small field imperfections, the shift 𝛿𝜔+(𝜌+) is dominated

by the relativistic shift, Eq. (2.40). By varying the number of cycles of the dipole pulse 𝑁+, and

measuring 𝛿𝜔+(𝑁+) a calibration 𝜌+ = 𝐾+𝑁+ can be extracted as the relativistic shift only has

the amplitude as a possibly unknown parameter. In turn, the axial frequency shift 𝛿𝜔𝑧 (𝑁+) ∝
𝐵2𝜌

2+ measures 𝐵2, compare Eq. (2.35).

More generally, residual 𝐶4, 𝐶3 and 𝐵1 field imperfections will also contribute to both the

axial and modified cyclotron frequency shifts. In total, the theoretical systematic shifts of

quadratic order in the amplitudes of the axial and modified cyclotron frequency can be sum-

marized as

𝛿𝜔𝑧 (𝜌+, 𝜌−, 𝜌𝑧 | 𝐶4,𝐶3, 𝐵2, 𝐵1) =∑︁
𝜌𝑖={𝜌+,𝜌−,𝜌𝑧 }

𝛿𝑧,𝜌𝑖𝜌
2
𝑖 =

∑︁
𝜌𝑖={𝜌+,𝜌−,𝜌𝑧 }

[
𝛿𝑧,𝐶4,𝜌𝑖 + 𝛿𝑧,𝐶2

3 ,𝜌𝑖
+ 𝛿𝑧,𝐵2,𝜌𝑖 + 𝛿𝑧,𝐵2

1,𝜌𝑖
+ 𝛿𝑧,𝐶3𝐵1,𝜌𝑖

]
𝜌2𝑖 ,

𝛿𝜔+(𝜌+, 𝜌−, 𝜌𝑧 | 𝐶4,𝐶3, 𝐵2, 𝐵1) =∑︁
𝜌𝑖={𝜌+,𝜌−,𝜌𝑧 }

𝛿+,𝜌𝑖𝜌
2
𝑖 =

∑︁
𝜌𝑖={𝜌+,𝜌−,𝜌𝑧 }

[
𝛿+,𝐶4,𝜌𝑖 + 𝛿+,𝐶2

3 ,𝜌𝑖
+ 𝛿+,𝐵2,𝜌𝑖 + 𝛿+,𝐵2

1,𝜌𝑖
+ 𝛿+,𝐶3𝐵1,𝜌𝑖

]
𝜌2𝑖 −

𝜔3+𝜌2+
2𝑐2

,

(5.23)

where the terms 𝛿𝑧/+,𝑋,𝜌𝑖 are the prefactors of the systematic shift due to the field imperfec-

tion(s) 𝑋 and amplitude 𝜌𝑖 and the last term for 𝜔+ accounts for the relativistic shift, compare

5
It might seem that the experimental error of the fraction 𝐹0,4/𝐹2,4 = −0.95(1) are small compared to the values in

Table 5.4. The reason for this is that the errors on the individual 𝐹0,4 and 𝐹2,4 are highly correlated and cancel to

a large extend in the fraction.
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Eqs.(2.25,2.30, 2.35, 2.37, 2.38, 2.39, 2.40). Not all systematic shifts𝑋 contribute, i.e. 𝛿𝑧/+,𝑋,𝜌𝑖 can

be zero. Experimentally, the shift of the frequencies 𝜔𝑧 and 𝜔+ due to the different radii can be

observed individually by measurement of the shift of the frequency at reference amplitudes to

the shift at an excited amplitude in one of the modes, e.g. for shifts due to 𝜌+

𝜔𝑧 (𝜌+, 𝜌−, 𝜌𝑧) − 𝜔𝑧 (𝜌+,ref, 𝜌−, 𝜌𝑧) = 𝑎𝑧,𝜌+ (𝑥2+ − 𝑥2+,ref
) + O(𝑥4) = 𝛿𝑧,𝜌+ (𝜌2+ − 𝜌2+,ref

) + O(𝜌4+),
𝜔+(𝜌+, 𝜌−, 𝜌𝑧) − 𝜔+(𝜌+,ref, 𝜌−, 𝜌𝑧) = 𝑎+,𝜌+ (𝑥2+ − 𝑥2+,ref

) + O(𝑥4) = 𝛿+,𝜌+ (𝜌2+ − 𝜌2+,ref
) + O(𝜌4+),

(5.24)

where 𝑎𝑧/+,𝜌+ is the fit quadratic order dependence of the axial/modified cyclotron frequency

on the experimental parameter 𝑥+ which is proportional to 𝜌+ = 𝐾+𝑥+. Similar definitions for

the magnetron and axial motion give the system of 6 equations

𝑎𝑧,𝜌𝑖 = 𝐾
2
𝑖 𝛿𝑧,𝜌𝑖 (𝐶4,𝐶3, 𝐵2, 𝐵1),

𝑎+,𝜌𝑖 = 𝐾
2
𝑖 𝛿+,𝜌𝑖 (𝐶4,𝐶3, 𝐵2, 𝐵1),

(5.25)

for 𝑖 = {+,−, 𝑧}. As 𝐵1 can be measured directly and independently from the systematic shifts,

see Section 5.7.2, this leaves the 6 unknowns ®𝑝 = {𝐶4,𝐶3, 𝐵2, 𝐾+, 𝐾−, 𝐾𝑧}. While the shifts due

to field imperfections always appear as a product of the imperfection parameter 𝑋 with an

amplitude calibration 𝐾𝑖 , the relativistic shift of the cyclotron motion allows to remove this

correlation.

For the modified cyclotron and magnetron motion, the number of cycles of a dipolar exci-

tation 𝑥± is proportional to the final amplitude, assuming that 𝐾±𝑥± ≫ 𝜌±,𝑡ℎ , and the mea-

surement of 𝜔𝑧 via the dip technique and 𝜔+ via phase sensitive methods is possible. The

axial amplitude can not be changed easily, as the axial motion is coupled to the detector and

thus constantly thermalized. Rather, the thermal amplitude 𝜌𝑧,𝑡ℎ is changed by using elec-

tronic feedback, see Section 5.8.2. With electronic feedback, the 𝑄-value of the resonator

is proportional to its temperature and the measure 𝑥𝑧 =
√︁
𝑄/𝑄0 gives the proportionality

𝜌𝑧,𝑡ℎ = 𝜌𝑧,𝑡ℎ,0𝑥𝑧 = 𝐾𝑧
√︁
𝑄/𝑄0, where𝑄0 and 𝜌𝑧,𝑡ℎ,0 are the𝑄-value and thermal amplitude with-

out feedback, respectively. The shifts of the axial frequency due to thermal axial amplitudes

in a detected dip signal may increase by up to a factor of 2, depending on some experimental

parameters, see ref. [136]. Therefore

𝑎𝑧,𝜌𝑧 = 𝐶𝑧𝐾
2
𝑧𝛿𝑧,𝜌𝑧 (𝐶4,𝐶3, 𝐵2, 𝐵1), (5.26)

with 𝐶𝑧 between 1 and 2.

The individual measurements were performed in the following way:

for each amplitude
𝑁 times

With reference amplitude: measure 𝜔𝑧 with dip and 𝛿𝜑 with PnA
With excited amplitude: measure 𝜔𝑧 with dip and 𝛿𝜑 with PnA

end
end

Measuring at the same amplitude 𝑁 times increases the statistical precision and further allows

to fit the thermal radii from the distribution, see the next subsection. Performing the reference
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5.7. PT optimization and characterization

measurement 𝑁 times is used to compensate for drifts of 𝜔𝑧 , due to e.g. voltage drifts, and

drifts of 𝜔+ due to magnetic field drifts. The model

𝛿𝜔𝑧/+(𝑥𝑖 | 𝑎𝑧/+,𝜌𝑖 ) = 𝑎𝑧/+,𝜌𝑖𝑥2𝑖 (5.27)

is fit to the experimentally determined frequency shifts 𝛿𝜔𝑧/+(𝑥𝑖) = 𝜔𝑧/+(𝑥𝑖) − 𝜔𝑧/+(𝑥ref).
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Figure 5.15: Measurement of the systematic shifts of the axial and modified cyclotron fre-

quency for the three amplitudes 𝜌+ (top), 𝜌− (middle) and 𝜌𝑧,𝑡ℎ (bottom). For 𝜌+ and 𝜌− , this

corresponds to the dipolar excitation amplitude, and the mean amplitude after excitation must

additionally include the thermal amplitude, compare Eq. (2.58). The axial frequency is mea-

sured via an axial dip and the modified cyclotron frequency via PnA. The 𝑥-axis of the plots

was scaled with the amplitude calibrations determined from the subsequent fit, see text and

Table 5.5.

Figure 5.15 shows the measurements of the systematic shifts and the fits to extract 𝑎𝑧,𝜌𝑖
and 𝑎+,𝜌𝑖 . While the shifts due to 𝜌+ and 𝜌𝑧 only have significant quadratic components, the
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magnetron motion was also fit with quartic 𝑏𝑧,𝜌−𝑥
4− and 𝑏+,𝜌−𝑥

4− components. Using the fit

values of 𝑎𝑧/+,𝜌𝑖 and their uncertainties, the inhomogeneities and amplitude calibrations are

fit according to Eq. (5.25) and Eq. (5.33), see Table 5.5. In the MCMC fit, the parameter 𝐶𝑧 ,

Table 5.5: The determined field imperfections and amplitude calibrations from the measure-

ment of systematic shifts to the axial and cyclotron frequency. The values of the amplitude

calibrations 𝐾+ and 𝐾− depend on the used excitation power and the used excitation line. The

lower table shows the Pearson correlation coefficient for the imperfections and the relevant

coefficient for 𝐾+. For details see text.

𝐶4/𝐶2 (m−2) 𝐶3/𝐶2 (m−1) 𝐵2 (Tm
−2) 𝐾+ (µm/MCy) 𝐾− (µm/Cy) 𝐾𝑧 (µm)

27(6) −6.2(6) 1.04(5) 40.8(7) 0.39(1) 36(1)
𝜌 (𝐶4/𝐶2,𝐶3/𝐶2) 𝜌 (𝐵2,𝐶4/𝐶2) 𝜌 (𝐵2,𝐶3/𝐶2) 𝜌 (𝐾+, 𝐵2)

−0.998 −0.577 0.586 −0.781

compare Eq. (5.26), was left as a free parameter between 1 and 2 by sampling it from the prior

distribution 𝐶𝑧 ∼ Uniform(1, 2). Similarly, the uncertainty of 𝐵1 is included in the MCMC fit

by sampling it from the prior probability distribution 𝐵1xm/mT ∼ Normal(𝜇 = 29, 𝜎 = 2),
compare Eq. (5.15). To signify the correlation between the determined parameters, the Pearson

correlation coefficient

𝜌 (𝑋,𝑌 ) = cov(𝑋,𝑌 )
𝜎 (𝑋 )𝜎 (𝑌 ) (5.28)

is given for a choice of relevant combinations, see Table 5.5. As will be explained in the next

chapters, the full covariance matrix of the fit is used for the error and uncertainty propagation

to the cyclotron frequency.

The values of 𝐶3/𝐶2 and 𝐶4/𝐶2 turned out to be rather large, as no symmetrization had

been performed at the time. This consequently also leads to a large 𝐶4/𝐶2, as the tuning ratio

optimization alone can not discriminate between 𝐶3 and 𝐶4 and optimizes to

𝐶4

𝐶2
= −3

4

(
𝐶3

𝐶2

)2
, (5.29)

compare Eq. (2.25) and Eq. (2.30). This is nicely reflected in Table 5.5
6
. In this method, the differ-

ent dependencies of𝐶3 and𝐶4 shifts on the axial and magnetron radii allow to decorrelate their

effects to a certain degree, as signified via the Pearson correlation coefficient |𝜌 (𝐶4/𝐶2,𝐶3/𝐶2) | <
1 and both values being significantly different from zero. Additionally, the estimate of 𝐶3/𝐶2

obtained via the symmetrization shows perfect agreement, compare Eq. (5.14).

From the COMSOL calculation of the magnetic field change due to the AT ferromagnetic

ring, the 𝐵2 in the PT is expected to be 𝐵2 = 1.14. Similar to 𝐵1, this value fits relatively well

with the measured value.

6
Although the middle plot in Figure 5.15 clearly shows that the tuning ratio optimization is not ideal, 𝛿𝜔𝑧/𝜌2− ≠ 0,

the shifts measured here would actually not be significant in the tuning ratio optimization. This is because the

tuning ratio optimization does not use averaged values of 𝜔𝑧 and the amplitudes are significantly larger here.
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Lastly, from the quartic components 𝑏𝑧,𝜌−𝑥
4− and 𝑏+,𝜌−𝑥

4− and the determined 𝐾− , 𝐶6 can be

estimated from the shifts [67]

𝛿𝜔𝑧 =
45
16
𝐶6

𝐶2
𝜔𝑧𝜌

4
−, 𝛿𝜔+ = −45

8
𝐶6

𝐶2
𝜔−𝜌4− (5.30)

This evaluates to the consistent values 𝐶6/𝐶2 = 1.2(5)x106 m
−4

and 𝐶6/𝐶2 = 0(20)x106 m
−4

,

from 𝑏𝑧,𝜌−𝑥
4− and 𝑏+,𝜌−𝑥

4− , respectively. As the shifts due to 𝐶6 scale relative to 𝐶4 as

𝛿𝜈𝑖 (𝐶6)
𝛿𝜈𝑖 (𝐶4) ∼ 𝐶6

𝐶4
𝜌2𝑗 < 10−4 (5.31)

they are fully negligible at the amplitudes of the modes, 𝜌 𝑗 < 40 µm, during the measurements.

5.7.5. Measurement of the thermal amplitudes

The determination of the thermal amplitude of the axial motion is critical for the evaluation

of the systematic shifts depending on the amplitudes. As the thermal amplitude of the axial

motion is given via the temperature of the detection system, compare Eq. (2.48), it could ideally

be calculated by assuming a temperature equal to that of the LHe cryostat at 4.2 K. The heat

load at the detection system and possible noise or feedback characteristics of the cryogenic

amplifiers typically lead to a slight increase of up to several K [91]. Therefore, the thermal

amplitude needs to be explicitly measured and a couple of methods exist to do so.

Via the amplitude calibration

The previously described method already evaluates the thermal amplitude via the amplitude

calibration using electronic feedback 𝐾𝑧 = 𝜌𝑧,𝑡ℎ = 36(1) µm. Comparing with Eq. (2.48) the

temperature of the detection system is evaluated to 𝑇𝑧 = 6.5(4) K. Here, this method works

essentially via measuring the 𝐵2𝜌
2
𝑧 associated shifts to 𝜔+ to determine 𝑟𝑧,𝑡ℎ together with the

independently determined 𝐵2. In a trap with lower 𝐵2, explicitly detuning the trap to 𝐶4 ≠ 0
should enable the determination of 𝜌𝑧,𝑡ℎ via this method as well.

Via the distribution of frequency shifts after dipolar excitations

Similar to Eq. (2.82), the standard deviation of the shifts of the axial frequency after a dipolar

excitation depend on the thermal amplitudes, and they can be fit as

𝜎 (𝛿𝜔𝑧) (𝑥𝑖 | 𝜎𝑖 , 𝜎0,𝑖) =
√︃
𝜎2𝑖 𝑥

2
𝑖 + 𝜎20,𝑖 , (5.32)

assuming a constant 𝜎0,𝑖 which accounts for the measurement uncertainty. The fitted 𝜎𝑖 is

connected to the thermal radius via

𝜎𝑖 =
√
2𝐾𝑖𝛿𝑧,𝜌𝑖𝜌𝑖,𝑡ℎ, (5.33)

compare Eq. (2.82) and ref. [77].
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Figure 5.16: The standard deviation of the axial frequency following a dipole excitation of the

modified cyclotron motion. The data is fit using Eq. (5.32).

Typically, this measurement is done by explicitly detuning the trap to𝐶4 ≠ 0 and measuring

𝛿𝜔𝑧 (𝜌+). Here, no explicit measurement with this technique was performed, but again the

previous measurement can be used due to the large 𝐵2 shift. Figure 5.16 shows to fit of 𝜌+,𝑡ℎ ,

which uses the same data as the middle plot in Figure 5.15. Clearly, the statistical significance of

this measurement is not great. The extracted value, 𝜌+,𝑡ℎ = 3.0(9) µm, reflects that. Calculating

the corresponding axial amplitude via Eq. (2.66) gives 𝜌𝑧,𝑡ℎ = 24(7) µm and𝑇𝑧 = 3(2) K, with a

small tension to the previously determined value.

Via the distribution of ring voltages in the AT

The strong𝐵2 in the analysis trap leads to large axial frequency shifts𝛿𝜔𝑧 (𝜌+), compare Eq. (2.35),

which allows to measure the thermal distribution of the modified cyclotron amplitude. After a

thermalization of the modified cyclotron motion via the cooling sideband in the precision trap,

the amplitude 𝜌+,PT is distributed according to Eq. (A.39). The adiabatic transport from the PT

to the AT conserves the angular momentum, i.e. the magnetic moment, compare Eq. (2.31),

𝜌2+,PT
𝜔+,PT = 𝜌2+,AT

𝜔+,AT. (5.34)

Using Eq. (2.35) the corresponding shift in the AT is

𝛿𝜔𝑧,AT =
𝜔+,PT

𝜔𝑧,AT

𝑞𝐵2,AT

2𝑚
𝜌2+,PT

. (5.35)

Even for thermally distributed 𝜌+,PT, the corresponding shifts are of the order of hundreds of

Hz and the detection of the axial frequency would need to be performed far off-resonant the

AT’s axial detection system. Rather, the ring voltage in the AT is adjusted to center the ion

𝜔𝑧,AT(𝑈0) = 𝜔𝑅,AT and the distribution of required ring voltages 𝑈0 is measured. Using the

experimental value 𝛿𝜔𝑧,AT/𝛿𝑈0 = 2𝜋 · 113.8(2) Hz/mV, compare Table 5.1, the voltage shift
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can be rewritten as 𝛿𝑈0 = (𝛿𝜔𝑧,AT/𝛿𝑈0)−1𝛿𝜔𝑧,AT. Comparing to Eq. (A.39), 𝑈0 is distributed

according to

𝑝 (𝑈0 | 𝛽 (𝑈0), 𝜎 (𝑈0)) = Θ(𝑈0 − 𝛽 (𝑈0))
𝜎 (𝑈0) exp

(
−𝑈0 − 𝛽 (𝑈0)

𝜎 (𝑈0)

)
, (5.36)

where 𝛽 (𝑈0) is the voltage at zero amplitude and Θ is the Heaviside theta function. The pa-

rameter 𝜎 (𝑈0) is connected to the thermal amplitude via

𝜎 (𝑈0) = (𝛿𝜔𝑧,AT/𝛿𝑈0)−1
𝜔+,PT

𝜔𝑧,AT

𝑞𝐵2,AT

2𝑚
𝜌2+,𝑡ℎ,PT

,

⇔ 𝜌2+,𝑡ℎ,PT
= 4.288(8) µm

2

mV

𝜎 (𝑈0),
(5.37)

where the systematic uncertainty is from the determination of measured AT quantities as given

in Table 5.1.

The measurement is performed simply by repeating the sequence of cooling in the PT, trans-

port to the AT and measurement of𝑈0. Figure 5.17 shows the binned data and a fit via MCMC
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Figure 5.17: Fit of the distribution of voltages in the AT after thermalization of the modified

cyclotron motion in the PT. The unbinned MCMC fit is performed with the model probability

Eq. (5.36). For the visual representation of the fit, the probability needs to be adjusted by

integrating over the bin width 𝐵, e.g. 𝑝 (𝑈0) →
∫ 𝑈0+𝐵/2
𝑈0−𝐵/2 𝑝 (𝑈

′
0) d𝑈

′
0 .

inference of the unbinned data and the probability Eq. (5.36). The extracted parameters are

𝜎 (𝑈0) = 4.8(2) mV and 𝛽 (𝑈0) = −3.39751(1) V. Calculating the thermal radius via Eq. (5.37)

gives 𝜌+,𝑡ℎ,PT = 4.5(1) µm. As above, Eq. (2.66) is used to convert to 𝜌𝑧,𝑡ℎ,PT = 35.2(9) µm and

𝑇𝑧 = 6.2(3) K.

The double-trap technique, see Section 3.5, directly provides the data needed to evaluate the

thermal amplitudes via this method, making it the preferable method regarding the systematic

shift and uncertainty propagation. The comparison with the values from the two independent

methods presented above serves as a cross-check.
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5.8. Other experimental techniques

5.8.1. Ion transport

Transporting the ion from the PT to the AT and vice-versa is a crucial part of the measurement

sequence. The transport routine utilizes the voltage ramping capabilities of the UM-14 voltage

supply to continuously shift the potential well minimum from the center of one trap to the

center of the other trap. First, in order to maximize the trapping depth, all electrodes of the trap

tower (see Figure 4.3) excluding the ring and (inner) correction electrodes of the trap in which

the ion resides are set to +14 V. For transports to the right, the initial trap potential is ramped

to a configuration of {𝑈1 = 14 V,𝑈2 = −14 V,𝑈3 = −14 V,𝑈4 = 14 V}, where 𝑈2 corresponds

to the initial center electrode. Next,𝑈2 is ramped to +14 V, while𝑈4 is simultaneously ramped

to −14 V. These steps then continue to the destination trap center, where in the last step the

electrodes are ramped to the required voltage for a harmonic potential.

Typical difficulties of the transport are heating of the magnetron mode or even ion loss. A

specific problem that occurred here and led to magnetron heating and sometimes ion loss was

due to a large voltage settling time constant on one of the two lower correction electrodes of

the PT. The large settling time was due to the cabling of the detection system to both lower

correction electrodes which requires a large blocking resistor on one of them. To compen-

sate, the ramping time constant had to be increased to be larger than the settling time while

transporting through this electrode.

5.8.2. Electronic feedback

In Penning traps, feeding back the detection signal into the detection circuit has several ap-

plications [91, 137, 138]. Here, it is used to change the effective temperature of the detection

system. To this end, the amplified detection signal is phase-shifted at room temperature, atten-

uated by a variable factor, and connected to an excitation line, which is coupled capacitively

to the resonator coil. If there is no effective phase shift of the fed-back signal with respect to

the resonator signal, the effective temperature is increased. For a shift of 180◦ the tempera-

ture is decreased. The magnitude of the increase or decrease depends on the amplitude of the

fed-back signal. Phase shift values in between these two can be used to tune the resonator’s

frequency [139]. The correct applied phase shift for the two cases of 0◦ and 180◦ can be exper-

imentally found by the two values where the resonance frequency is unchanged.

Ideally, the product of damping time constant 1/Γ𝑅 (or equivalently the 𝑄-value) and tem-

perature 𝑇𝑧 of the detector is constant and relates the feedback factor 𝑔 via [91]

𝑇𝑧/𝑇𝑧,0 = 𝑄/𝑄0 = 𝑔, (5.38)

where 𝑇𝑧,0 and 𝑄0 are the temperature and 𝑄-value without feedback. Negative feedback is

achieved with 𝑔 < 1 and positive feedback for 𝑔 > 1. Due to noise of the cryogenic amplifiers,

the relation for the temperature is practically limited to be

𝑇𝑧 = 𝑇𝑧,0

(
𝑔 + (𝑔 − 1)2

𝑔
𝐾𝑔

)
, (5.39)
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where 𝐾𝑔 is related to the input noise of the resonator, while the relation for the𝑄-value is still

valid, compare ref. [91].

Figure 5.19 shows dip spectra in the PT with applied positive and negative feedback. As
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Figure 5.18: Dip spectra for different feedback factors 𝑔. The feedback factors are calculated

via the ratio of the 𝑄-value to the 𝑄-value without feedback.

the𝑄-value change affects the effective parallel resistance, the cooling rate of the ion 𝛾𝑧 scales

identically, compare Eq. (2.45) and see the plot. Figure 5.19 shows temperature measurements

for the three different cases and a fit to the model Eq. (5.39). The fit returns𝑇𝑧,0 = 5.8(4) K and

𝐾𝑔 = 0.5(4), so it is not quite able to resolve 𝐾𝑔 sufficiently and more data points at lower 𝑔
would have been helpful.

5.8.3. Magnetron frequency determination

When using the invariance theorem, Eq. (2.6), to determine the free cyclotron frequency, the

magnetron frequency’s accuracy is vastly less important than the axial frequency’s and modi-

fied cyclotron frequency’s. For the values of the eigenfrequencies for
9
Be

3+
, compare Table 5.2,

an uncertainty of 𝛿𝜔+ = 2𝜋 x1 Hz corresponds to a fractional uncertainty of 𝛿𝜔𝑐/𝜔𝑐 ≈ 5x10−12.
The determination via the magnetron double dip, compare Eq. (2.67), is in principle more than

sufficient to get an uncertainty well below 100 mHz. Experimentally, an issue is that the side-

band for the coupling𝜔𝑧+𝜔− is very close to the ion’s axial frequency𝜔𝑧 . Here, it was observed,

that the determined magnetron frequency from the double dip depends on the amplitude of the

coupling signal, which may be due to part of the coupling signal directly exciting the axial mo-

tion.

Figure 5.20 shows the magnetron frequency as a function of the coupling sideband’s signal

amplitude. A polynomial up to quadratic order in the amplitude is fit to the data to extrapolate

to zero amplitude. The fit value of 𝜔−/2𝜋 = 4007.4(2) Hz is sufficiently accurate given the
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Figure 5.19: Temperature control via electronic feedback. The left-hand side shows the tem-

perature measurements performed with the AT 𝐵2 method, see the previous section. The right-

hand side plots the temperature values𝑇𝑧 from the fits against the feedback factor𝑔. The model

Eq. (5.39) is fit to the data.

0.00 0.05 0.10 0.15 0.20 0.25
Amplitude (a.u.)

4005

4006

4007

a
−
(H

z)

Figure 5.20: The magnetron frequency is determined by extrapolation to zero coupling

strength of the quadrupole sideband. For details see text.

resulting uncertainty of 𝛿𝜔𝑐/𝜔𝑐 ≈ 1x10−12.
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Measurement of nuclear properties

The measurement of the Zeeman and hyperfine splitting of the ground-state of
9
Be

+
has been

performed in a Penning trap using a cloud of ions and laser-fluorescence detection techniques

as part of the earliest laser cooling experiments performed by Wineland et al. at the National

Institute of Standards and Technology (NIST) [117, 140]. Additional to the ability to laser cool

9
Be

+
, the Zeeman structure of

9
Be

+
includes two transitions which are first-order magnetic field

independent at 𝐵-fields of 0.68 T and 0.82 T, respectively. This allowed measuring them with

high resolution and extracting the nuclear to electron𝑔-factor ratio and the zero-field hyperfine

splitting with high accuracy [140]. Further, measuring the cyclotron frequency of the ion cloud

and additional transition frequencies of the Zeeman structure, enabled the determination of

mass ratios with high resolution via the electron 𝑔-factor [56]. More recently and also at NIST,

the Zeeman and hyperfine splitting was remeasured at ∼ 4.5 T and confirmed a quadratic

dependence of the zero-field splitting on the magnetic field [141].

For
9
Be

3+
, direct laser cooling is not possible which leads to a couple of key differences com-

pared to the measurements performed on
9
Be

+
. Laser-cooled

9
Be

+
close to the Doppler limit of

0.5 mK has very small motional amplitudes. In contrast, the motional modes of
9
Be

3+
are only

cooled resistively close to 4.2 K and are thus much larger. Therefore, any field imperfections

will have a much larger impact on the systematics evaluation. Additionally, the relativistic

shift will prove to be more significant. The spin-state detection also has to rely on the continu-

ous Stern-Gerlach effect using single ions instead of fluorescence detection of many ions used,

which dramatically increases the measurement time.

In this chapter, I will outline the measurement of transitions of the Zeeman and hyperfine

splitting which are sensitive to the magnetic properties of the nucleus. A publication presenting

the results of this measurement is in preparation [142]. To set the foundation for the following

experimental work, the theory outlined in Section 3 is applied to hydrogen-like
9
Be

3+
. Prepara-

tory steps necessary for the measurement of the Zeeman transitions, like the characterization

of the double-dip magnetic field measurement and the spin-state preparation, are discussed

next. The measurement sequence used for acquiring the transition resonances is discussed be-

fore moving along to the results. The determination of the results from the measurement of

the frequencies of the Zeeman and hyperfine structure is complex and requires a careful prop-
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agation of uncertainties. Here, I introduce a general approach to error propagation for Zeeman

and hyperfine structure measurements in Penning traps which uses the full propagation of co-

variances. Lastly, I will present the results and discuss their relevance in the context of tests of

the calculation of hyperfine splittings and diamagnetic shielding parameters.

6.1. The Zeeman and hyperfine splitting of 9Be3+

The goal of the measurement is to fit the three independent parameters of the Zeeman and

hyperfine splitting which are connected to the nuclear 𝑔-factor 𝑔𝐼 , the electron 𝑔-factor 𝑔𝑠 , and

the zero-field splitting 𝐴. From here on, instead of 𝑔𝑒 and 𝑔𝐼 , the bound-electron 𝑔-factor 𝑔𝑠
and shielded nuclear 𝑔-factor 𝑔′𝐼 are used. These account for changes of the free parameters

due to the binding Coulomb potential and their theory description is discussed in Section 6.6.

The three independent parameters, compare Eq. (3.1), are defined via

Γ𝑒 =
𝑔𝑠
2
𝑒

𝑞

𝑚

𝑚𝑒
, Γ𝐼 =

𝑔′𝐼
𝑔𝑠

𝑚𝑒

𝑚𝑝
, 𝜈HFS = 𝐴/ℎ, (6.1)

where𝑚 is the mass of the
9
Be

3+
ion andℎ is Planck’s constant. Γ𝑒 is defined in conjunction with

bound-electron 𝑔-factor measurements, where Γ𝑒 = 𝜈𝐿/𝜈𝑐 , with 𝜈𝐿 being the Larmor frequency

of the bound electron [76]. Γ𝐼 is defined as the scaled 𝑔-factor ratio, in the same way as in the

publication for
9
Be

+
, ref. [141]. The definition ®𝑝 = (Γ𝑒 , Γ𝐼 , 𝜈HFS) allows calculating 𝜈𝑖 (𝜈𝑐 | ®𝑝)

without use of any additional (external) parameters. For reference, the Hamiltonian, Eq. (3.1),

as a function of these parameters and 𝜈𝑐 , and in units of frequency is

𝐻 = 𝜈HFS
®̂𝑆 · ®̂𝐼 − Γ𝑒𝜈𝑐𝑆𝑧 − Γ𝑒Γ𝐼𝜈𝑐𝐼𝑧 . (6.2)

Like
3
He,

9
Be has a negative nuclear spin 𝑔𝐼 and thus also a negative hyperfine splitting

constant𝐴 [34]. Though the nuclear magnetic moment of
9
Be is quite a bit smaller than that of

3
He, 𝑔𝐼 (9Be)/𝑔𝐼 (3He) ≈ −0.785/−4.255 ≈ 0.184, the zero-field splitting 𝜈HFS in

9
Be

3+
is larger

due to the higher charge. In ref. [143], the value 𝜈HFS(9Be
3+) ≈ −12.800 GHz is given with 5

significant digits. For comparison, 𝜈HFS(3He
+)/≈ −8.6656 GHz.

9
Be has nuclear spin 𝐼 = 3/2

which leads to 8 states in the Zeeman and hyperfine structure. The energies of the states are

calculated via Eq. (3.9) and visualized in a so-called Breit-Rabi diagram in Figure 6.1. At the

magnetic field of 𝐵0 ≈ 5.72 T, the mixing of the𝑚𝐹 substates, compare Eq. (3.10), is only ∼ 0.5%.

While using the high-field quantum numbers for referring to the states is thus justified, it must

be noted that the finite mixing is still highly relevant, as will be discussed further.

Table 6.1 lists the transitions possible with a magnetic radial dipole field, compare Section 3.2.

In the following, the six low-frequency transitions are termed nuclear transitions, as only the

nuclear spin changes in the high-field quantum numbers. Similarly, the four high-frequency

transitions that only change the electron spin will be called electron transitions. Additionally,

two transitions that change both the nuclear and electron spin are possible and will be called

double spin transitions. For determining the three parameters independently, the measurement

of three independent transitions is necessary. In the case of
3
He

+
, which has nuclear spin

𝐼 = 1/2, only four dipole transitions are possible, compare ref. [97], and only any choice of
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νa

ν3
ν1

ν2

νb14125.6

Figure 6.1: Breit-Rabi diagramm of
9
Be

3+
. The magnetic field in the PT at 𝐵0 ≈ 5.72 T is

indicated by the green dashed line. The states are given via the same notation as in Eq. (3.9) and

via the high-field limit quantum numbers𝑚𝑠 and𝑚𝐼 . The three measured nuclear transitions

are marked in blue. The two measured electron spin transitions relevant to the next chapter are

marked in green. Note that the order of the nuclear spin quantum number is reversed between

positive and negative energy states due to the negative 𝜈HFS(9Be
3+).

three is independent. Here, a larger choice of transitions exists. To find optimal transitions,

which enable the highest resolution for these parameters, the sensitivities

𝜅 (𝑝) =
�����𝑝 𝜕𝜈𝜕𝑝 (

𝜈𝑐
𝜕𝜈

𝜕𝜈𝑐

)−1����� (6.3)

are calculated for Γ𝑒 , Γ𝐼 and 𝜈HFS. In Section 3.3, it was shown that the reached precision to de-

termine the center frequency of a transition 𝜈 via a resonance is directly related to the magnetic

field measurement precision 𝜎 (𝐵) ∼ 𝜎 (𝜈𝑐). A sensitivity of 1 is a one-to-one correspondence of

magnetic field uncertainty to the (statistical) uncertainty of the determination of the parameter.

This is the case for bound-electron or the proton and antiproton 𝑔-factor measurements, as the

Larmor frequency is just proportional to both the 𝑔-factor and the magnetic field. Γ𝑒 behaves

identically here, compare Table 6.1. In contrast, the two transitions |−1
2 , + 1

2 ⟩ → |−1
2 , + 3

2 ⟩ and

|+ 1
2 ,−1

2 ⟩ → |+ 1
2 , + 1

2 ⟩, which in the following will be called 𝜈1 and 𝜈2, respectively, are preferred

for determining the nuclear term Γ𝐼 and the zero-field splitting 𝜈HFS. They are marked in Fig-

ure 6.1 and Table 6.1. Additional to the two transitions 𝜈1 and 𝜈2, being the most sensitive to

the nuclear parameters, a third transition 𝜈3 is measured to independently determine Γ𝑒 .

6.2. Preparatory steps

In this section, the specifics of the magnetic field measurement used for measuring the nuclear

transitions, initial spin flips with
9
Be

3+
in the AT, and a method to vastly decrease the state
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Chapter 6. Measurement of nuclear properties

Table 6.1: Radial dipole transitions of the hyperfine and Zeeman splitting of
9
Be

3+
in the PT.

The Rabi frequency Ω is given relative to the driving field amplitude 𝐵𝑥 . The nuclear transitions

measured with high precision and relevant to this chapter are marked in blue (correspondingly

marked 𝜈1, 𝜈2, 𝜈3 in Figure 6.1). The electron transitions relevant to the next chapter are marked

in green (correspondingly marked 𝜈𝑎 , 𝜈𝑏 in Figure 6.1). The two transitions marked in orange,

change both the nuclear and electron spin. For details see text.

Transition 𝜈 (GHz) 𝜕𝜈
𝜕𝐵 (GHz/T) 𝜅 (Γ𝑒) 𝜅 (Γ𝐼 ) 𝜅 (𝜈HFS) Ω/𝐵𝑥 (Hz/nT)

|−1
2 ,−3

2 ⟩ → |−1
2 ,−1

2 ⟩ 5.7270 0.1195 1.0 0.050 7.38 5.64
|+ 1

2 ,−3
2 ⟩ → |+ 1

2 ,−1
2 ⟩ 6.0569 0.0558 1.0 0.107 18.0 5.55

|−1
2 ,−1

2 ⟩ → |−1
2 , + 1

2 ⟩ 6.1254 0.0678 1.0 0.088 14.8 6.99
|+ 1

2 ,−1
2 ⟩ → |+ 1

2 , + 1
2 ⟩ 6.5528 −0.0257 1.0 0.233 45.6 6.90

|−1
2 , + 1

2 ⟩ → |−1
2 , + 3

2 ⟩ 6.6213 −0.0137 1.0 0.437 85.5 6.57
|+ 1

2 , + 3
2 ⟩ → |+ 1

2 , + 1
2 ⟩ 7.1941 −0.1616 1.0 0.037 8.78 6.53

|−1
2 , + 3

2 ⟩ → |+ 1
2 , + 3

2 ⟩ 141.94 27.86 1.0 1x10−6 0.11 87.8
|+ 1

2 ,−1
2 ⟩ → |−1

2 , + 3
2 ⟩ 155.68 27.67 1.0 4x10−4 0.02 0.52

|−1
2 , + 1

2 ⟩ → |+ 1
2 ,−1

2 ⟩ 155.75 27.69 1.0 3x10−6 0.02 87.5
|+ 1

2 ,−3
2 ⟩ → |−1

2 , + 1
2 ⟩ 168.36 27.72 1.0 4x10−4 0.06 0.44

|−1
2 ,−1

2 ⟩ → |+ 1
2 ,−1

2 ⟩ 168.43 27.73 1.0 2x10−6 0.06 87.6
|−1

2 ,−3
2 ⟩ → |+ 1

2 ,−3
2 ⟩ 180.21 27.90 1.0 1x10−6 0.13 87.8

preparation as well as the transition center search time are discussed.

6.2.1. Double-dip measurement

Even though the superior 𝜈+ measurement via the phase-sensitive methods was already work-

ing at the time, the nuclear transition measurements were performed with the double-dip

method. The nuclear transitions 𝜈1 and 𝜈2 feature a vastly reduced relative magnetic field

dependence compared to the electron transitions, compare Table 6.1. E.g., for 𝜈1 the relative

dependence is reduced by a factor of about 100 compared to the electron transitions, which is

directly reflected in the sensitivity to the zero-field splitting 𝜅 (𝜈HFS). The double-dip technique

reaches 𝜎 (𝐵)/𝐵 ≈ 10−9 (ppb) uncertainty via a single measurement [28, 97]. This gives an

expected statistical uncertainty of 𝜈1 and 𝜈2 within the single-digit parts per trillion range. In

comparison, the relativistic Doppler shift of 𝜈1 and 𝜈2, compare Eq. (3.35), at thermal modified

cyclotron amplitude, 𝜌+ = 4.5(1) µm, is ∼ 4 ppt. Choosing the coherent methods to measure

𝜈+ would lead to even smaller statistical uncertainties but a larger relativistic shift due to the

required non-thermal amplitudes. The uncertainty of the relativistic shift would also grow and

thus limit the determination of 𝜈1 and 𝜈2 via the systematic uncertainty. Measuring frequencies

at relative precision at or below 10−12 is also not possible with the current frequency standard,

as the Rubidium standard’s long-term stability is limited at 10−12 relative precision, even locked

via GPS [144].
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Figure 6.2: Cyclotron double-dip measurement with
9
Be

3+
in the PT. The top graph shows a

typical cyclotron double-dip signal and the fit to extract the two frequency components 𝜈𝑧,1 and

𝜈𝑧,2. The fit model is described in Section B.2. The bottom graph shows successive cyclotron

frequency measurements.

Figure 6.2 shows a typical cyclotron double-dip spectrum with a Rabi frequency splitting

of about 5 Hz. The continuous measurement of 𝜈𝑐 is achieved by alternating the modified

cyclotron and axial frequency dip measurement and calculating 𝜈𝑐 via the invariance theorem,

Eq. (2.6) (the magnetron frequency is taken from Section 5.8.3). The averaging time for the

double dip is 60 s compared to the 40 s for the axial dip. The achieved single shot precision

𝜎 (Δ𝜈𝑐)/
√
2 ≈ 38 mHz, where Δ𝜈𝑐 is the difference of successive measurements, corresponds to

1.3 ppb.
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6.2.2. Detection of nuclear transitions and spin flips in the AT

Due to the much-reduced dependence of the nuclear transitions on the magnetic field, their

direct detection via the continuous Stern-Gerlach effect, Eq. (3.43), is much more challenging

compared to the electronic transitions. Similarly, in measurements of the proton and antiproton

𝑔-factor [28, 70, 145], the small derivative 𝜕𝜈/𝜕𝐵 ≈ 42.6 MHz/T requires a large 𝐵2 to resolve

the change 𝛿𝜈𝑧 against e.g. voltage fluctuations during the axial detection time. The large 𝐵2
not only increases 𝛿𝜈𝑧 due to a spin-state change but also increases the change of the axial

frequency due to the change of a single quantum of the modified cyclotron motion [70]. These

single quantum jumps of the modified cyclotron motion occur at a rate that is proportional to

the energy of the mode [146]. To be able to resolve spin flips, the modified cyclotron motion

needs to be cooled stochastically [93] which takes a long time.

Here, the 𝜈1 transition, which has the smallest dependence on magnetic field of the nu-

clear transitions, would result in a tiny axial frequency change of 𝛿𝜈𝑧 ≈ 6 mHz. Compared
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Figure 6.3: Axial frequency stability in the AT for different thermal amplitudes of the modified

cyclotron motion. The different temperatures are expressed via the required ring voltages 𝑈0,

compare Section 5.7.5. The Allan deviation adev is the frequency stability for different averag-

ing times [147]. The axial frequency shift due to transition 𝜈1 is shown by the dotted line.

to the achieved axial frequency stability in the AT, see Figure 6.3, this can not be resolved

with the thermal distribution of modified cyclotron amplitudes in this experiment. In con-

trast, the change 𝛿𝜈𝑧 ≈ 11 Hz for electron spin transitions can be resolved in a few seconds

of averaging via the dip detection. To bypass the challenging direct detection of nuclear tran-

sitions, instead, the electron-spin transitions can be used for their detection [11]. For a nu-

clear transition |𝑚𝑠 ,𝑚𝐼 ⟩ → |𝑚𝑠 ,𝑚
′
𝐼 ⟩, the two detection transitions |𝑚𝑠 ,𝑚𝐼 ⟩ → |𝑚′

𝑠 ,𝑚𝐼 ⟩ and
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|𝑚𝑠 ,𝑚
′
𝐼 ⟩ → |𝑚′

𝑠 ,𝑚
′
𝐼 ⟩ are used. These two transitions are cycled until one of them produces a

detectable spin-state change. This fully identifies the state as either𝑚𝐼 or𝑚′
𝐼 . The scheme is

visualized in Figure 6.4.

|-1/2, mI〉

|-1/2, m'I〉

|1/2, mI〉

|1/2, m'I〉

Probe
(PT)

Detection
(AT)

11 Hz

Figure 6.4: Detection of the spin state in the AT after probing an exemplary nuclear transition

in the PT. Left-hand side: The nuclear probe transition driven in the PT is indicated in blue.

The two electron transitions (green) are cycled in the AT until either produces a detectable

electron spin-state change via the change of the axial frequency (right-hand side).

After the initial preparation of the
9
Be

3+
ion, its spin state was unknown. In the AT, the elec-

tron transitions are broadened due to the large 𝐵2, Eq. (3.26), to about Δ𝜈 ≈ 1.5 MHz, assuming

a 4.2 K resonator. The magnetic field was determined as explained in Section 5.6, and the ini-

tial ∼ 1 MHz uncertainties due to the value of 𝐴(9Be
3+) were not critical. While alternating all

four electron transitions, a spin flip was first detected via the |−1
2 , + 3

2 ⟩ → |+ 1
2 , + 3

2 ⟩ transition.

A resonance of this transition was taken in the AT, see Figure 6.5. To this end, the frequency

of the millimeter microwaves irradiated via the waveguide was varied over the calculated cen-

ter frequency 𝜈 (𝐵0,AT = 4.9732(4)) = 121.11(1) GHz, where the uncertainty is dominated by

the magnetic field measurement in the AT. After irradiating at a frequency 𝜈MW for 20 s, an

axial frequency spectrum was taken and compared to the previous spectrum to check whether

a spin-state change occurred. The unbinned data was fit with the lineshape Eq. (3.27), which

closely resembles the saturated Boltzmann distribution due to the large linewidth parameter.

For details of the fit procedure see Section 6.4. The free parameters of the fit are the center of

the resonance Δ0, the linewidth parameter Δ𝜈 (see above), and the squared Rabi frequency Ω2
.

From Δ𝜈 = 3.6(5) MHz, the thermal amplitude 𝜌𝑧,𝑡ℎ,AT = 30(2) µm and the temperature of the

detection system 𝑇𝑧,AT = 12(2) K were determined, compare Eqs. (3.26, 2.48). The temperature

is significantly larger than the ambient 4.2 K, which could be due to feedback of the amplifier.

The resonance frequencies of the other electron transitions in the AT were found by manual

searches around the predicted frequencies.
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Figure 6.5: Resonance of the |−1
2 , + 3

2 ⟩ → |+ 1
2 , + 3

2 ⟩ transition in the AT. The unbinned data was

fit with the lineshape Eq. (3.27). The fit curve and confidence band include the binwidth via

averaging over the lineshape.

6.2.3. Adiabatic fast passage

Initially, the limited precision of the value 𝜈HFS(9Be
3+) from ref. [143] corresponded to MHz

uncertainties on the transition frequencies. In contrast, the expected unsaturated widths of the

resonances in the PT, as calculated via Eq. (3.19), are all below 1 kHz. To triangulate a precise

transition center, saturated measurements with decreasingly smaller saturation widths could

be used. However, this approach would be rather time-consuming, as even a partial resonance

measurement requires at least a day of measurement time.

Adiabatic fast passage (AFP) is a method that can achieve 100 % spin-flip probability without

precise knowledge of the transition center [148]. AFP is achieved by sweeping the excitation

over the resonance center, which allows to adiabatically change the spin state. The requirement

for AFP reads [149]

𝛾 ≪ 1
Ω

���� dd𝑡 Δ���� ≪ Ω, (6.4)

where 𝛾 , Ω and Δ, defined identically for the Bloch equation Eq. (3.22), are the dephasing rate,

Rabi frequency and Δ = (𝜈MW − 𝜈) in Hz. The sweep of Δ over Δ = 0 relative to the Rabi

frequency needs to be faster than the dephasing time, while at the same time, the strength of

the coupling (expressed via the Rabi frequency) needs to be strong enough to keep up with

the sweep. AFP has been done in a Penning trap via a sweep of the magnetic field with the

use of large external magnetic field coils to change the resonance frequency 𝜈 (𝐵) [150]. Here,

instead, a linear sweep of the microwave frequency, which is possible with the frequency mod-

ulation capabilities of the SMB100A generator, was used. The dephasing rate, following similar

arguments as in ref. [87], can be taken as the 𝐵2 linewidth parameter Δ𝜈 . As Δ𝜈 ∝ 𝜕𝜈/𝜕𝐵, the
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condition Eq. (6.4) can be met much easier with the nuclear transitions.

AFP was investigated first on the 𝜈1 transition, which has an expected width of below 1 Hz.

The microwave frequency was swept in the PT and subsequently, the spin state was detected

in the AT. To characterize AFP, initially, the frequency was swept over a span of 20 kHz in

400 s to produce 8 spin-state changes out of 8 tries. Another characterization measurement

produced 60 spin-state changes out of 61 tries with a sweep span of 400 Hz and 14 s of sweep

time. This corresponds to a spin-flip probability of 98+1−4%. Subsequently, a single cycle was

typically enough to determine whether the transition center was inside the sweep span, which

allowed a fast triangulation of the transition center. AFP was also successively used for the 𝜈2
transition.

Before taking the final resonances, the microwave amplitude had to be reduced to decrease

the resonance width via the Rabi frequency, compare Section 3.3. To this end, partial resonances

had to be taken in order to find a rough calibration of the Rabi frequency in dependence of the

microwave amplitude. The final amplitude was chosen, such that Rabi frequency is roughly

equal to the magnetic field measurement width 𝜎𝜈 ≈ Ω.

6.3. Measurement sequence

Here, the measurement scheme used for the nuclear transitions 𝜈𝑖 , 𝑖 = {1, 2, 3} is outlined.

The first and all subsequent cycles started in the AT. While the ion is in the AT, a resonator

spectrum of the PT was taken. The free resonator spectrum without a dip can be used to

better understand systematic effects related to the axial frequency determination. Due to the

finite cyclotron temperature, the AT dip signal needed to be centered, compare Figure 5.8.

Following, the spin state |𝑚𝑠 ,𝑚𝐼 ⟩ was determined, compare Figure 6.4. After the detection of

the nuclear spin state via the electron transition, the electron spin was reverted to its original

orientation by another successful electron transition. The ion was then transported to the

PT, compare Section 5.8.1. After the transport, the voltages were allowed to settle with a first

waiting time of 100 s. An initial dip spectrum was taken, after which the ion was centered

on the resonator 𝜈𝑧 = 𝜈𝑅 , where 𝜈𝑅 was taken from the fit of the resonator from the free

resonator spectrum taken previously. This step required only tiny voltage adjustments, and

an additional wait time of 60 s was done. Following, the magnetron mode was cooled via the

upper sideband. Next, the precision measurement of the cyclotron frequency with the double-

dip method was performed. Starting with an axial dip, a total of five axial frequency spectra,

each taking 40 s, and three double-dip spectra, each taking 60 s, were taken alternately. After

each double dip, an additional cooling of the magnetron mode was done. The axial dip prior

and after a double dip were averaged and used to calculate a single 𝜈𝑧 , which in first-order

accounts for axial frequency drifts, i.e. the time average of the axial frequency coincided with

the time average of 𝜈+ as measured from the double dip. Therefore, a first cyclotron frequency

measurement 𝜈𝑐,1 was finished after the second axial dip. This frequency was used to calculate

the instantaneous transition frequency 𝜈𝑖 (𝜈𝑐,1). During the double-dip measurement of the

second cyclotron frequency determination 𝜈𝑐,2, microwaves at 𝜈MW = 𝜈𝑖 (𝜈𝑐,1) + Δ𝑥 , where the

random number Δ𝑥 ∼ Uniform(±supp(Δ𝑖)/2) was drawn from the uniform distribution with a

span supp(Δ𝑖), were irradiated. After the third cyclotron frequency measurement 𝜈𝑐,3, the ion
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Chapter 6. Measurement of nuclear properties

was transported back to the AT. The total time for a single cycle was on average 18 minutes.

6.4. Statistical and systematic evaluation

To summarize, the relevant data taken during the measurements are the spin state |𝑚𝑠 ,𝑚𝐼 ⟩
determined in the AT, the three individual cyclotron frequencies {𝜈𝑐,1, 𝜈𝑐,2, 𝜈𝑐,3}, and the irra-

diated microwave frequency 𝜈MW. From the individual spin states, the spin state changes to

the following cycle Δ𝑚𝐼 , where either Δ𝑚𝐼 = 1 or Δ𝑚𝐼 = 0 are calculated
1
. Additionally, all

measured FFT spectra of the resonator are saved for further analysis. In total, each resonance

includes several hundred cycles.

In the following, the steps of the statistical and systematic analysis of the fit parameters ®𝑝 ,

compare Eq. (6.1), are outlined.

6.4.1. Statistical analysis

Let Δ𝑖,𝑘 ( ®𝑝) = 𝜈MW,𝑖,𝑘 −𝜈𝑖 (𝜈𝑐,𝑖,𝑘 | ®𝑝), be defined as the difference of the irradiated microwave and

predicted transition frequency for each transition measurement 𝑖 and cycle 𝑘 . The cyclotron

frequency 𝜈𝑐,𝑖,𝑘 is taken as the mean value of the three individually measured values in each

cycle. The spin-state change Δ𝑚𝐼 for each transition 𝑖 and cycle 𝑘 is labelled 𝐹𝑖,𝑘 . The transition

probabilities 𝑃 (Δ𝑖,𝑘 | ®𝑝ls,𝑖), additional to the parameters ®𝑝 of the Zeeman and hyperfine splitting,

depend on the parameters of the probability lineshape ®𝑝ls,𝑖 . Here, a Voigt lineshape is used,

compare Eq. (3.21), and the discussion in the systematics section. Therefore, ®𝑝ls,𝑖 = (𝐴𝑖 , 𝜎𝑖 ,Ω𝑖),
where 𝐴𝑖 is an amplitude, 𝜎𝑖 the Gaussian and Ω𝑖 the Lorentzian width. As a single spin-state

change is either 0 or 1, it is Bernoulli distributed

𝐹𝑖,𝑘 ∼ Bernoulli[𝑃 (𝜈MW,𝑖,𝑘 , 𝜈𝑐,𝑖,𝑘 | ®𝑝, ®𝑝ls,𝑖)], (6.5)

where the dependence of Δ𝑖,𝑘 ( ®𝑝) in 𝑃 was rewritten to better discriminate between measured

values (𝜈MW,𝑖,𝑘 , 𝜈𝑐,𝑖,𝑘 ) and fit values (®𝑝, ®𝑝ls,𝑖 ). The above statement, Eq. (6.5), allows calculat-

ing the full likelihood of the measurement and thus to fit the 3 parameters of the Zeeman

any hyperfine splitting ®𝑝 simultaneously with the 9 parameters of the lineshape ®𝑝ls,𝑖 , compare

Section 5.3. As the likelihood does not factorize for the three measurements, having to simul-

taneously fit the 3 resonance measurements and their 12 free parameters is a complex task and

obscures how the individual resonance measurements contribute.

To remedy this, instead an approach similar to non-linear least squares can be taken. Given

an initial guess ®𝑝0, the resonances are fit individually via

𝐹𝑖,𝑘 ∼ Bernoulli[𝑃 (𝜈MW,𝑖,𝑘 − 𝜈𝑖 (𝜈𝑐,𝑖,𝑘 | ®𝑝0) − Δ0,𝑖 | ®𝑝ls,𝑖)], (6.6)

where ®𝑝0 is fixed and additional to ®𝑝ls,𝑖 the center of the resonance Δ0,𝑖 is fit. Given the three

fit values of Δ0,𝑖 , fitting ®𝑝 is possible by solving the system of equations

0
!
= Δ0,𝑖 + 𝜈𝑖 (𝜈𝑐,0, ®𝑝0) − 𝜈𝑖 (𝜈𝑐,0, ®𝑝) ≈ Δ0,𝑖 −

(
𝐽𝜈 (𝜈𝑐,0, ®𝑝0)

(®𝑝 − ®𝑝0
) )
𝑖 , (6.7)

1
In order to answer the question: Did irradiating microwaves 𝜈

MW,𝑘 in cycle 𝑘 change the spin state? Δ𝑚𝐼 ,𝑘 = 1:

Yes. Δ𝑚𝐼 ,𝑘 = 0: No.
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where 𝜈𝑐,0 can be taken as the mean cyclotron frequency and

𝐽𝜈 (𝜈𝑐,0, ®𝑝0)𝑖 𝑗 =
𝜕𝜈𝑖 (𝜈𝑐,0)
𝜕𝑝 𝑗

( ®𝑝0) (6.8)

is the Jacobian matrix of the transitions. These steps require two conditions. First, the range

of cyclotron frequencies 𝜈𝑐 from all measurements may only result in small changes of the

Jacobian matrix, such that 𝐽𝜈 (𝜈𝑐 , ®𝑝0)
(®𝑝 − ®𝑝0

)
does not significantly vary. Secondly, the initial

guess ®𝑝0 must be close enough to justify the linearized approximation performed in Eq. (6.7).

The linear system of equations Eq. (6.7) is solved by inversion of the Jacobian

®𝑝 = ®𝑝0 + 𝐽 −1𝜈 ®Δ0, (6.9)

where ®Δ0 = (Δ0,1,Δ0,2,Δ0,3). Given an (approximate) normality of the distribution of Δ0,𝑖 , the

propagation of uncertainties via the covariance matrices can be performed [151],

cov( ®𝑝) = 𝐽 −1𝜈 cov( ®Δ0)
(
𝐽 −1𝜈

)𝑇
. (6.10)

The statistical uncertainties of the individually fit centers Δ0,𝑖 are not correlated, therefore the

covariance matrix is cov( ®Δ0) = diag(𝜎2(Δ0,1), 𝜎2(Δ0,2), 𝜎2(Δ0,3)). Thus, this treatment allows

to directly connect the statistical precision of each measurement 𝜎 (Δ0,𝑖) with the precision of

the extracted parameters and give the correlation of the extracted parameters via the covari-

ances. Additionally, the steps taken here are easily adopted for the propagation of systematic

shifts and uncertainties, see the next section.

6.4.2. Systematic analysis

The goal is to fully propagate the systematic effects and their covariances to the fit parameters,

i.e.

®𝑝 ′
= ®𝑝 + 𝛿 ®𝑝. (6.11)

Here, the real parameters ®𝑝 are shifted due to systematic shifts 𝛿 ®𝑝 to the observed fit parameters

®𝑝 ′
. Similar to the arguments from the previous chapter, considering the systematic shifts on

the determined center frequency of the fit Eq. (6.6)

Δ
′
0,𝑖 − Δ0,𝑖 = 𝜈𝑖 (𝜈𝑐,0, ®𝑝 ′) − 𝜈𝑖 (𝜈𝑐,0, ®𝑝)

=
(
𝐽𝜈𝛿 ®𝑝

)
𝑖

(6.12)

greatly simplifies their treatment. Again, inversion of the Jacobian yields

𝛿 ®𝑝 = 𝐽 −1𝜈 𝛿 ®Δ0, (6.13)

where 𝛿 ®Δ0 = ®Δ0

′
− ®Δ0. The first order treatment allows to evaluate the Jacobian 𝐽𝜈 at the initial

parameters ®𝑝0 and 𝜈𝑐,0. As in Eq. (6.10), the covariance is propagated by

cov( ®𝑝) = 𝐽 −1𝜈 cov(𝛿 ®Δ0)
(
𝐽 −1𝜈

)𝑇
. (6.14)
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While the relativistic shift was already given via the shift of the resonance center, Eq. (3.35),

all shifts related only to the determination of the magnetic field and thus the cyclotron fre-

quency are not. Given the shifted, observed, cyclotron frequency 𝜈
′
𝑐 = 𝜈𝑐 + 𝛿𝜈𝑐 from which

the transition frequency is calculated as 𝜈𝑖
′(𝜈 ′

𝑐) = 𝜈𝑖 (𝜈𝑐) + (𝜕𝜈𝑖/𝜕𝜈𝑐)𝛿𝜈𝑐 , a shift of the observed

resonance occurs to

𝛿Δ0,𝑖 = − 𝜕𝜈𝑖
𝜕𝜈𝑐

𝛿𝜈𝑐 . (6.15)

For the covariances cov(𝛿 ®Δ0), common and individually evaluated systematic effects need to

be differentiated. For example, the image charge shift, Eq. (2.43), can be assumed identical for

each resonance 𝛿𝜈𝑐,𝑖 = 𝛿𝜈𝑐 . In this case, the covariance simplifies to

cov(𝛿Δ0,𝑖)𝑖, 𝑗 = 𝜎 (𝛿𝜈𝑐)2 𝜕𝜈𝑖
𝜕𝜈𝑐

𝜕𝜈 𝑗

𝜕𝜈𝑐
. (6.16)

Interestingly, in this case and for the choice of parameters ®𝑝 used here, the propagated shift

Eq. (6.13) and covariance Eq. (6.14), are non-zero only for Γ𝑒 . This is clear from the definition

of the Hamiltonian as a function of 𝜈𝑐 and the parameters ®𝑝 in Eq. (6.2), as any systematic shift

of 𝜈𝑐 may be directly integrated into Γ𝑒 . Thus, common shifts of the cyclotron frequency just

contribute one-to-one to Γ𝑒 .
In the more general cases, the approaches as for example given in ref. [151] must be applied.

6.5. Evaluation of results

First, the three resonance measurements corresponding to the transitions with frequencies 𝜈1,
𝜈2 and 𝜈3 used for the final analysis will be presented. Additional resonances were recorded for

the systematics investigations and will be presented there.

6.5.1. Resonances

The final resonances were taken back-to-back, in the order 𝜈2, 𝜈1, 𝜈3, from the 1st to the 19th

of December 2022. Each resonance consisted of roughly 400 cycles and took around 5 to 6 days

to measure. Details of the three measurements and the fit results are tabulated in Table 6.2

and the resonances are visualized via binned data and the fit confidences in Figure 6.6. The

fits are performed via the model Eq. (6.5) and a Voigt lineshape profile. For fitting, the prob-

abilistic programming model, compare Section 5.3.2, is used together with the emcee MCMC

sampler [153]. For comparison, the fits were also performed with another MCMC sampler,

called NUTS (No-U-Turn Sampler, ref. [154]) and simply via MLE. All approaches produced

consistent results, with deviations between the determined center frequencies at least an order

of magnitude lower than the uncertainties. The uncertainties on the center frequencies 𝜎 (Δ0,𝑖)
are identical for both MCMC samplers and a few percent smaller for MLE. The uncertainties

for 𝜈1, 𝜈2, and 𝜈3, as well as the fit Gaussian widths follow their dependence on the magnetic

field, compare Table 6.1.

From the statistical result, the parameters ®𝑝 = (Γ𝑒 , Γ𝐼 , 𝜈HFS) and covariances are calculated

according to Eq. (6.9) and Eq. (6.10), respectively. The required Jacobian matrix is calculated
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Table 6.2: Data of the nuclear-spin transition resonances and fit results. The fit center Δ0

depends on the initial guess ®𝑝0. The full width at half maximum (FWHM) and its uncertainty

is directly calculated from the MCMC samples of 𝜎 and Ω according to ref. [152]. The second

number for 𝜎 (Δ0) is the fractional uncertainty to the average, absolute, transition frequency.

Transition 𝝂1 𝝂2 𝝂3

Number of cycles 381 404 374

Number of spin flips 48 41 43

Range of 𝜈𝑐/ Hz 29254040.2 ± 0.4 29254040.3 ± 0.2 29254040.4 ± 0.5

Range of 𝜈MW/ Hz 6619883119 ± 2 6551416300 ± 2 6124160824 ± 9

Δ0/Hz 0.593 1.132 −0.711
𝜎 (Δ0)/mHz 17 \ (2.6 ppt) 26 \ (4.0 ppt) 88 \ (14 ppt)
Gaussian width 𝜎/Hz 0.06(3) 0.11(4) 0.5(2)
Lorentzian width Ω/Hz 0.08(3) 0.07(4) 0.2(2)
FWHM/Hz 0.26(5) 0.35(6) 1.3(2)
Amplitude 0.7(1) 0.47(8) 0.43(8)

accurately by use of forward-mode automatic differentiation, ref. [155]. The approach is justi-

fied, as both conditions explained in Section 6.4.1 are met. As shown in Table 6.2, the cyclotron

frequency spread is below 1 Hz, resulting in insignificant changes to the product 𝐽 −1𝜈 (𝜈𝑐) ®Δ0.

Additionally, the initial parameter guess ®𝑝0 resulted only in small |Δ0,𝑖 | < 1.2 Hz compared to

the absolute frequencies 𝜈𝑖 > 6 GHz and a closer initial guess does not significantly alter the

results. The statistical results are (for the final analysis two significant digits are given for the

uncertainties)

Γ𝑒,stat = −5479.8633446(11) \ (0.2 ppb), Γ𝐼 ,stat = 2.1354753839(11)x10−4 \ (0.5 ppb),
𝜈HFS,stat = −12796971342.569(49) Hz \ (4 ppt),

𝜌 (Γ𝑒 , Γ𝐼 )stat = 0.48, 𝜌 (Γ𝑒 , 𝜈HFS)stat = 0.80, 𝜌 (Γ𝐼 , 𝜈HFS)stat = 0.60,

(6.17)

where the number behind the backslash gives the fractional uncertainty of the result. The rel-

ative fractional uncertainties of Γ𝐼 , Γ𝑒 , and 𝜈HFS are in agreement with the expectation from the

sensitivities, compare Table 6.1. The Pearson coefficients 𝜌 (𝑋,𝑌 ) as defined in Eq. (5.28) show

that the results are quite correlated which justifies the rigorous treatment of the propagation

of the covariances.
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Figure 6.6: Nuclear-spin transition resonances. The frequencies 𝜈𝑖 (𝜈𝑐 | ®𝑝) are calculated with

the statistical fit result of ®𝑝 . For details on the fit procedure see text. The plotted, binned, data

are the number of spin-state changes divided by the total number of tries in that bin, and the

error bars are the binomial confidences.

106



6.5. Evaluation of results

6.5.2. Systematics and error budget

Here, a full account of all relevant systematic shifts and uncertainties is given.

Probability lineshape

The probability lineshapes as discussed in Section 3.3 may influence the determined center fre-

quencies if they include any asymmetries. The 𝐵2 asymmetry, as described by the linewidth

parameter 𝛿𝜈 , Eq. (3.26), is very small for the nuclear transitions, due to their reduced depen-

dence on the magnetic field. The linewidths are 8.6, 16, and 43 mHz for 𝜈1, 𝜈2, and 𝜈3, respec-

tively, about a factor of two smaller than the achieved statistical uncertainties of the centers.

In the context of the Brown-Gabrielse treatment of the lineshape, see Section 3.3.3 and refs.[62,

87], 𝛿𝜈 needs to be compared to the axial resonator coupling constant (i.e. the dip width),

𝛾𝑧 = 2.52(5) Hz. This is firmly in the weak coupling regime, 𝛾𝑧 ≫ 𝛿𝜈 , where no asymmetry

is expected. Additionally, to further exclude such effects and as the asymmetry-induced shifts

of the center are expected to scale with the irradiated microwave amplitude, the 𝜈2 transition

was measured for three different microwave powers, see Figure 6.7. The fit value of the linear
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Figure 6.7: The fitted resonance center of the 𝜈2 transition for three different excitation am-

plitudes. The value with the lowest amplitude is the one used for the statistical analysis.

dependence is consistent with zero, indicating no scaling with the microwave amplitude.

Another indicator that the probability lineshape has no asymmetry rooted in any decoher-

ent saturation effect, compare Figure 3.5, is that the measurement is, in fact, not decoherent.

Already, the amplitude of the 𝜈1 transition is significantly above the decoherent saturation

probability 𝑃 = 0.5, see Table 6.2. To further investigate this, a Rabi flopping experiment

was performed. To this end, for several times 𝑡 of the microwave excitation at frequency

𝜈MW = 𝜈1(𝜈𝑐) a few cycles (∼ 18) were measured, see Figure 6.8. The lineshape Eq. (3.21)

describes the Rabi cycle together with the magnetic field measurement uncertainty 𝜎 (𝜈𝑐). It

fits the data well, indicating no saturation/decoherence effects and the reduction in contrast

is fully due to the magnetic field determination uncertainty. The extracted Rabi frequency is
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Figure 6.8: Time dependence of the transition probability. The 𝑦-data are the number of spin-

state changes divided by the total number of tries at the given excitation time 𝑡 . The fit uses

the lineshape Eq. (3.21), which is numerically integrated.

Ω = 0.436(4) Hz. Using the excitation amplitude for this measurement gives the calibration

Ω = 6.92(6) Hzx𝑈MW/VRMS, where𝑈MW is the voltage amplitude at the microwave generator.

No shift or uncertainty is thus assigned to any asymmetry of the lineshape and using the

Voigt lineshape as an approximation of Eq. (3.21) is sufficient.

Field imperfections and relativistic shift

The treatment of all shifts depending on the motional amplitudes is performed simultaneously

to account for all relevant correlations. All motional amplitudes are thermalized to the axial

resonator and thus related to the thermal axial amplitude 𝜌𝑧,𝑡ℎ via Eq. (2.66). For each individual

resonance measurement, 𝜌𝑧,𝑡ℎ is determined from the parameter 𝜎 (𝑈0), compare Eq. (5.37). The

determined values are 𝜎 (𝑈0,1) = 4.8(2) mV, 𝜎 (𝑈0,2) = 4.7(2) mV and 𝜎 (𝑈0,3) = 5.1(3) mV for

𝜈1, 𝜈2 and 𝜈3, respectively. For the evaluation of the shifts, a mean 𝜎 (𝑈0) value is taken and

assigned with a conservative, uncorrelated statistical uncertainty of the maximum deviation

of the three values. In addition to the uncorrelated uncertainty, the systematic uncertainty

of the prefactor in Eq. (5.37) may be taken as a fully correlated uncertainty. In total, 𝜌2
𝑧,𝑡ℎ,𝑖

=
1255(2)correlated(104)uncorrelated µm

2
, i.e. the correlated uncertainty is basically negligible.

The following shifts from field imperfections contribute to the cyclotron frequency as deter-

mined from the invariance theorem, Eq. (2.6),

𝛿𝜈𝑐,fields,𝑖 = 𝜌
2
𝑧,𝑡ℎ,𝑖

©­­­«
𝐶2
3/𝐶2

2
𝐶4/𝐶2

𝐵2/𝐵0
𝐵1/𝐵0 ·𝐶3/𝐶2

ª®®®¬ ·
©­­­«
− 15

8 𝜈−
− 3

2𝜈−
1
2𝜈𝑧
− 3

4𝜈𝑧

ª®®®¬ ≡ 𝜌2𝑧,𝑡ℎ,𝑖 ®𝐾 · ®𝐿, (6.18)

where some appropriate approximations were made and all shifts which stem from effective
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magnetic field shifts were excluded, compare Section 2.3. The vector ®𝐾 incorporates all field

imperfection parameters. These were measured explicitly and evaluated in a combined way to

yield all relevant covariances cov( ®𝐾), compare Section 5.7.4
2
. Numerically, this shift amounts

to 𝛿𝜈𝑐,fields,𝑖 = −0.5(1) mHz \ − 18(4) ppt for the cyclotron frequency.

The relativistic Doppler shift on the fitted center frequencies is

𝛿Δ0,rel,𝑖 = −𝜌2𝑧,𝑡ℎ,𝑖
2𝜋2𝜈+𝜈𝑧
𝑐2

(
𝜈𝑖 − 2𝜈𝑐

𝜕𝜈𝑖
𝜕𝜈𝑐

)
, (6.19)

where the opposite sign compared to Eq. (3.35) is due to the changed definition of the primed

quantities. The relative relativistic shift of the cyclotron frequency is just the prefactor in

front of the parentheses, compare Eq. (2.40), and amounts to −3.9(2) ppt. This is completely

insignificant for the double-dip measurements with its 1 ppb single-shot accuracy. For the

nuclear transitions, the second term in the parentheses is mostly negligible against the first

term, so the relative shift of the center is identical to the cyclotron frequency’s. However, as

the increased relative precision reached with the nuclear Zeeman and hyperfine transitions is

in the low ppt regime, compare Table 6.2, this a very significant systematic.

Using the methods from Section 6.4.2, the shifts on the fit parameters are evaluated as

𝛿Γ𝑒,amps/10−7 = −1.0(2)fields − 0.2(3)rel = −1.2(4) \ 22(7) ppt,

𝛿Γ𝐼 ,amps/10−14 = 0.0(1)fields + 0.0(1.1)rel = 0.0(1.1) \ 0(52) ppt,

𝛿𝜈HFS,amps/mHz = 0.0(4)fields + 50.0(2.6)rel = 50.0(2.7) \ − 3.9(2) ppt.

(6.20)

In total, the shifts and uncertainties due to the fields are basically negligible compared to the

statistical uncertainties. However, the fractional relativistic shift on 𝜈HFS is very significant

and equals exactly 1 − 𝛾 = −3.9(2) ppt. This was anticipated, as 𝜈HFS does not depend on

the magnetic field and 1 − 𝛾 is just the expected Doppler shift. Additionally, the systematic

uncertainty of the relativistic shift on Γ𝐼 is amplified to 52 ppt, solidifying the argument for

using the thermal double-dip method over the non-thermal phase-sensitive methods. With the

latter, assuming 𝜌+ ≈ 4𝜌+,𝑡ℎ , the uncertainty would increase by at least the same factor to 200
ppt, completely limiting the increased statistical precision which would be reached with the

phase sensitive methods.

Thomas precession

The shift due to the Thomas precession, Eq. (3.40), is evaluated directly as a shift on Γ𝑒 and Γ𝐼 .
For Γ𝑒 , the ratio of electron Larmor frequency to the ion’s cyclotron frequency greatly reduces

the shift to 𝛿Γ𝑒/Γ𝑒 ≈ (𝛾 −1)/Γ𝑒 ≈ 10−15. For Γ𝐼 , the ratio of the nucleus Larmor frequency to the

cyclotron frequency is of the order of 1, and the shift 𝛿Γ𝐼/Γ𝐼 ≈ 0.85 · (𝛾 − 1) ≈ 3.3 ppt is much

larger. Still, compared to the statistical precision of Γ𝐼 , this shift is negligibly small. However,

for future, more precise measurements of nuclear magnetic moments using the non-thermal,

phase-sensitive methods where 𝛾 is larger, this shift will have to be taken into account.

2
During this measurement, no trap symmetrization had yet been performed, and the trapping potential is identical

to the one in Section 5.7.4.
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Image charge shift

The image charge shift as given in Eq. (2.43) is common for all cyclotron frequency measure-

ments as it depends only on the trap geometry. The 5 % uncertainty is therefore fully correlated,

which makes Eq. (6.16) applicable, and the image charge shift only affects Γ𝑒

𝛿Γ𝑒,img/10−7 = −5.3(3) \ 96(5) ppt, (6.21)

while both Γ𝐼 and 𝜈HFS neither experience a shift nor a systematic uncertainty.

Dip lineshape

The discussion of the theory description of the observed, thermal, axial detection spectrum and

uncertainties of the extracted axial frequency associated with it has several important points.

Even for the phase-sensitive methods, where it only contributes via the axial frequency in the

invariance theorem, the typically conservative error estimates, see e.g. refs. [76, 156], can lead

to significantly large uncertainties. The dip lineshape used here, and the assigned systematic

uncertainty are discussed in Section B. In summary, the effective shifts of the determined cy-

clotron frequency depend on a systematic difference of the axial frequency to the measured

resonator frequency 𝜈𝑧 − 𝜈𝑅 . Here, the resonator frequency is determined with each spectrum,

compare Section 5.4, thus the statistical, uncorrelated, uncertainty of 𝜈𝑅 is included implicitly in

the data of 𝜈𝑐 . Systematic, correlated, shifts are evaluated conservatively to 𝜎 (𝛿𝜈𝑐) = 10 mHz,

see Section B. Similar to the image charge shift, this results only in a systematic effect for Γ𝑒 ,
compare Eq. (6.16),

𝛿Γ𝑒,dip/10−7 = 0(19) \ 0.0(3) ppb. (6.22)

The uncertainty of 0.3 ppb is larger than the statistical uncertainty of Γ𝑒 , highlighting the need

for a thorough understanding of the axial detection signal when using the thermal detection

techniques. However, as the results derived from Γ𝑒 play only a secondary role in this mea-

surement, the conservative uncertainty estimate is sufficient here.

Time reference

When measuring frequency ratios 𝜈1/𝜈2, systematic offsets of the time reference 𝛿𝜈ref cancel,

i.e.

𝜈1
(
1 + 𝛿𝜈

ref

𝜈
ref

)
𝜈2

(
1 + 𝛿𝜈

ref

𝜈
ref

) =
𝜈1
𝜈2
. (6.23)

This is the case for bound-electron 𝑔-factor measurements without nuclear spin, where 𝜈𝐿/𝜈𝑐
is measured, as well as mass ratio measurements, where 𝜈𝑐,1/𝜈𝑐,2 is measured

3
. Here, additional

care has to be taken due to the large contribution of the constant frequency𝜈HFS to the measured

transition frequencies. Generally, the shift of the center is evaluated as

Δ
′
0,rel,𝑖 =

(
1 + 𝛿𝜈ref

𝜈ref

)
𝜈MW − 𝜈𝑖

((
1 + 𝛿𝜈ref

𝜈ref

)
𝜈𝑐

)
= Δ0,𝑖 +

(
𝛿𝜈ref

𝜈ref

) (
𝜈𝑖 − 𝜕𝜈𝑖

𝜕𝜈𝑐
𝜈𝑐

)
. (6.24)

3
However, this may become relevant when large temporal drifts of the reference occur therefore leading to different

shifts for 𝜈1 and 𝜈2.
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6.5. Evaluation of results

The time reference used here is a GPS locked Rubidium standard (SRS FS725), which has a

long-term Allan deviation of just below ∼ 1 ppt for days to weeks of integration time, compare

ref. [144]. Therefore, a common systematic shift of the reference and a shift between the mea-

surements of the three resonances must be included at this level. Given a correlated as well as

uncorrelated uncertainty of 𝜎
(
𝛿𝜈

ref

𝜈
ref

)
= 10−12, yields the following uncertainties

𝛿Γ𝑒,ref/10−7 = 0.0(1.0) \ 0(19) ppt,

𝛿Γ𝐼 ,ref/10−14 = 0.0(3.2) \ 0(0.15) ppb,

𝛿𝜈HFS,ref/mHz = 0(15) \ 0.0(1.2) ppt.

(6.25)

The uncertainty on Γ𝐼 is quite significant and comes from the uncorrelated uncertainty of the

time reference, whereas the uncertainty on 𝜈HFS is mainly from the correlated uncertainty.

Corrections to the Breit-Rabi energies

Corrections in the form of quadratic Zeeman shifts [157] have been known for a long time and

lead to a quadratic 𝐵-field dependence in the Hamilton Eq. (3.1). However, the correction term

is zero for the angular momentum-free 𝑆-states. Nevertheless, for
9
Be

+
, a dependence of the

zero-field splitting 𝜈HFS(9Be
+) on the external magnetic field was found [141]. Additionally, in

systems like
85,87

Rb a dependence on the external magnetic field of the extracted 𝑔-factor ratio,

i.e. Γ𝐼 , has been observed [158] and attributed to shielding effects due to the nuclear quadrupole

moment 𝑄 present when 𝐼 > 1/2. In ref. [159], second-order effects in the Breit-Rabi energies

are evaluated explicitly for hydrogen-like 1𝑆 systems. Indeed, for
9
Be

3+
, using these formulas

with 𝑄 = 0 gives identical energies to Eq. (3.9), but a significant shift occurs when using the

quadrupole moment 𝑄 (9Be) = 0.0529(4)x10−28m−2
[160]. The corresponding shifts of the

frequencies are 𝜈𝑄,1−𝜈1 = −36.4(3) mHz, 𝜈𝑄,2−𝜈2 = 5.69(4) mHz and 𝜈𝑄,3−𝜈3 = 4.36(3) mHz,

where the 𝑄 subscript indicates the calculation via the formulas from ref. [159]. Propagating

to the parameters gives

𝛿Γ𝑒,Q/10−7 = −4.68(4) \ 85.5(6) ppt,

𝛿Γ𝐼 ,Q/10−14 = −14.94(11) \ − 0.700(5) ppb,

𝛿𝜈HFS,Q/mHz = 10.89(8) \ − 0.851(6) ppt.

(6.26)

Here, the significant and negative shift of Γ𝐼 is due to the aforementioned additional shielding

effect via the electric quadrupole moment
4
.

Summary

All systematic shifts are summarized and corrected for in Table 6.3. Due to the systematic

effects, the correlations as expressed by the Pearson correlation coefficients,

𝜌 (Γ𝑒 , Γ𝐼 ) = 0.24, 𝜌 (Γ𝑒 , 𝜈HFS) = 0.38, 𝜌 (Γ𝐼 , 𝜈HFS) = 0.56, (6.27)

4
Indeed, the correction depends on the magnetic field. For lower magnetic fields all corrections would be smaller

as well.
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Table 6.3: Statistical results and error budget. For details see text.

𝚪𝒆 𝚪𝑰 𝝂HFS
Statistical result −5479.8633446(11) 2.1354753839(11)x10−4 −12796971342.569(50) Hz

Systematic shifts /10−7 /10−14 /mHz

Field imperfections −1(< 1) 0(< 1) 0(< 1)
Relativistic 0(< 1) 0(1) 50(3)
Image charge −5(< 1) - -

Dip 0(19) - -

Time reference 0(1) 0(3) 0(15)
Quadrupole moment −5(< 1) −15(< 1) 11(< 1)
Total shifts −11(19) −15(3) 61(15)
Corrected result −5479.8633435(22) 2.1354753854(11)x10−4 −12796971342.630(52) Hz

Fractional uncertainty 0.39 ppb 0.54 ppb 4.0 ppt

are altered compared to the statistical result, Eq. (6.17). The individual systematic shifts and

uncertainties that are significant vary quite a bit over the three fit parameters. For Γ𝑒 , a couple

of systematics contribute as significant shifts, while only the dip increases the uncertainty.

In the case of Γ𝐼 , only the correction due to the quadrupole moment is significant and the

time reference uncertainty contributes slightly. For 𝜈HFS the largest contribution by far is the

relativistic shift, followed by a significant shift due to the quadrupole moment, while the time

reference uncertainty gives the largest systematic uncertainty.

6.6. The nuclear magnetic moment of 9Be and a first precision
test of multi-electron diamagnetic shielding calculations

Here, the measurement of Γ𝐼 is used together with the theory calculation of the bound-electron

𝑔-factor and the shielding of
9
Be

3+
to evaluate the bare-nuclear 𝑔-factor. The theory calcula-

tions of the hydrogen-like system have been performed in the division of Christoph Keitel at

the MPIK by Bastian Sikora et al. Subsequently, via comparison to
9
Be

+
, a first test of multi-

electron diamagnetic shielding calculations is performed.

The nuclear 𝑔-factor

The calculation of bound-electron 𝑔-factors of hydrogen-like ions in the light-𝑍 regime is per-

formed via a perturbative approach in both the fine structure constant 𝛼 , via the number of

loops in the Feynman diagram and the binding interaction with the parameter 𝑍𝛼 [45]. Here,

the calculations include corrections of the leading (relativistic) Dirac value by the finite mass

(recoil) term, 1-loop QED up to order (𝑍𝛼)5, 2-loop QED up to (𝑍𝛼)2 and the leading, (𝑍𝛼)0,
3-loop term. For the bound-electron 𝑔-factor, the finite size of the nucleus contributes only at

5x10−11. The corrections evaluate as [142]

𝑔𝑠 (9Be
3+) = 2.0017515747(5) . (6.28)
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6.6. The nuclear magnetic moment of 9Be and a first precision test of multi-electron diamagnetic shielding calculations

The diamagnetic shielding parameter 𝜎 5
incorporates the binding corrections to the bare

nuclear 𝑔-factor in the composite system,

𝑔′𝐼 = 𝑔𝐼 (1 − 𝜎) . (6.29)

The leading non-relativistic value 𝜎0 of the shielding in hydrogen-like ions scales with the

nuclear charge 𝑍 and is given by [40].

𝜎0 =
𝑍𝛼2

3
. (6.30)

For
9
Be

3+
, this evaluates to about 𝜎0 ≈ 71 ppm. Similar, to the electron 𝑔-factor, relativistic,

QED, recoil and finite size effects alter the result. The calculations performed in ref. [142] reveal

𝜎 (9Be
3+) = 71.15396(18) ppm. (6.31)

The uncertainty splits about evenly between the finite size and QED effects. Interestingly, for

9
Be

3+
, the QED correction, 𝜎QED(9Be

3+) = 0.23(13) ppb, is very small, owing to a cancellation

of different contributions, compare ref. [39]. Given these two theoretical values and the exper-

imental value of the proton-to-electron mass ratio [22],𝑚𝑝/𝑚𝑒 = 1836.15267343(11), the bare

nuclear 𝑔-factor can be evaluated

𝑔𝐼 =
𝑚𝑝

𝑚𝑒

𝑔𝑠 (9Be
3+)Γ𝐼 (9Be

3+)
1 − 𝜎 (9Be

3+) = −0.78495442295(42)exp(24)theo, (6.32)

where the theoretical uncertainty is in equal parts from 𝜎 (9Be
3+) and the 𝑔𝑠 (9Be

3+). The total

fractional uncertainty corresponds to 0.61 ppb, making this value the second most accurately

measured nuclear magnetic moment after the proton [28]. The value given here improves the

uncertainty of the previous best value, which was derived from the measurements on
9
Be

+
,

see refs. [117, 161], 𝑔𝐼 = 0.784954393(2), by a factor of 30. The two values have only a slight

tension of 1.5 𝜎 .

Testing diamagnetic shielding parameters

As was outlined in Chapter 1, an experimental verification of the calculation of diamagnetic

shielding parameters is necessary to establish their use in precision physics. Here, this is pos-

sible via the comparison of the bare-nuclear magnetic moments as extracted from the spec-

troscopy on
9
Be

3+
and

9
Be

+
. The experimental value of the scaled 𝑔-factor ratio from the low

𝐵-field measurements, ref. [117], is Γ𝐼 (9Be
+) = 2.134779853(2)x10−4. In the determination of

the bare-nuclear 𝑔-factor, this 1 ppb uncertainty is dominated by the 30 ppb uncertainty of the

calculated shielding parameter, compare ref. [161]. Using the two measurements, the compar-

ison

1 − 𝜎 (9Be
+) = (1 − 𝜎 (9Be

3+)) Γ𝐼 (
9
Be

+)
Γ𝐼 (9Be

3+)
𝑔𝑠 (9Be

+)
𝑔𝑠 (9Be

3+) (6.33)

5
Yes another 𝜎 . Please do not confuse it with an uncertainty or standard deviation.
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yields an experimental value of the shielding [142]

𝜎 (9Be
+) = 141.8821(11)exp(12)theo ppm, (6.34)

by use of the theoretical values of the bound-electron𝑔-factors and the shielding in the hydrogen-

like charge state. The theoretical uncertainty is limited by the bound-electron 𝑔-factor

𝑔𝑠 (9Be
+) = −2.0022621287(24), which is calculated identically to ref. [161], but includes the up-

dated nuclear recoil correction from ref. [162]. The shielding parameter determined here is a

factor of 25 more precise and agrees with the theory value, 𝜎 (9Be
+) = 141.85(3) ppm, ref. [161]

on the ppb level, making this a first high-precision test of the calculation of multi-electron dia-

magnetic shielding parameters.

Compared to calculations of shielding parameters in hydrogen-like systems, the calcula-

tion in multi-electron systems is more involved. A fully relativistic value of the hydrogen-like

shielding value can be calculated analytically from the single-electron wavefunction obtained

by solving the Dirac equation. This value can then be corrected for by binding-QED effects

similar to calculations of the bound-electron 𝑔-factor [163]. In contrast, for multi-electron

systems, approximate wavefunction solutions have to be used. For low-𝑍 lithium-like atoms,

fully correlated (Hylleraas) wavefunctions are used to calculate a non-relativistic leading value,

which is then corrected for by a relativistic estimate and a recoil term [161, 164]. For helium-

like atoms, the calculations are performed similarly by use of correlated wavefunction [165],

however, a lot more corrections have been evaluated, including first-order QED and finite size

effects [39, 40]. The latter calculations allow giving uncertainties for the
3
He atomic shielding

much lower than the 0.7 ppb fractional experimental uncertainty [11]. Recently, it was pointed

out, ref. [166], that these calculations can be extended to
9
Be

+
. The experimental value deter-

mined here would then serve as an ideal benchmark at the single-digit ppb level, reaching the

accuracy required for the
3
He atomic nuclear magnetic moment.

6.7. The HFS and effective Zemach radius

The hyperfine splitting 𝜈HFS, for zero angular momentum of the electron, arises from the mag-

netic dipole-dipole interaction of the nuclear and electron spin. This interaction scales as 1/𝑟 3,
where 𝑟 is the distance between the electron and nucleus [29]. As 𝑠-state electrons have a finite

probability density inside the nucleus, the hyperfine splitting is very sensitive to the magnetic

structure of the nucleus. It is reasonable to represent it as [52]

𝜈HFS =
𝐸𝐹

(𝐼 + 1/2)ℎ︸       ︷︷       ︸
≡ℎ𝜈HFS,0

(1 + 𝑎𝑒 + 𝛿pt −2𝑍𝑟𝑍/𝑎0︸      ︷︷      ︸
≡𝛿ns

), (6.35)

where 𝑎𝑒 is the electron’s magnetic moment anomaly and 𝑎0 the Bohr radius. The term 𝐸𝐹 ,

called the Fermi contact term [29], is the classically calculated zero-field splitting. The term

𝛿pt summarizes all binding corrections which can be calculated from a point-nucleus model.

The last term sums up all nuclear structure contributions 𝛿ns via the effective Zemach radius 𝑟𝑍 .

The effective Zemach radius derives from the most significant contribution of nuclear structure
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effects, called the Bohr-Weisskopf effect [167]. Here, the Zemach radius, which is defined by

the average length scale of the convolution of the charge 𝜌𝑒 (®𝑟 ) and magnetization distribution

𝜌𝑚 (®𝑟 ),
𝑟𝑍 =

∫
𝑟𝜌𝑒 (®𝑟 − ®𝑠)𝜌𝑚 (®𝑠) d®𝑠 d®𝑟 (6.36)

contributes as the shift −2𝑍𝑟𝑍/𝑎0 [41]. From a theoretical perspective, two difficulties arise.

Firstly, nuclear structure theory cannot predict the Zemach radius with sufficient accuracy,

e.g. the best values are currently available for the proton via lattice quantum chromodynamics

(QCD) and give a 1% fractional uncertainty [168]. Instead of calculating the Zemach radius

them from theory, accurate measurements of the formfactors of nuclei can be used to infer it,

e.g. for the proton, ref. [169]. However, the contribution of the polarization of the nucleus in

the presence of the orbiting electron is not negligible, e.g. for hydrogen, it contributes another

5% of the leading Bohr-Weisskopf effect [170]. These contributions are currently very hard

to evaluate and can instead be absorbed in the definition of the effective Zemach radius [171].

While not a pure property of the free nucleus anymore, this contribution can be assumed equal

for different hyperfine splittings with the same nucleus [54]. Therefore, a measurement of the

HFS in the hydrogen-like 1𝑠 system, which allows the best prediction of the point-nucleus

contributions, is ideally suited to extract the effective Zemach radius with the best accuracy

and use it as a reference to calculate the nuclear structure contributions to hyperfine splittings

in other electronic configurations.

The Fermi energy is directly proportional to the nuclear𝑔-factor [171] and for
9
Be

3+
evaluates

to

𝜈HFS,0 =
8
3
𝑍 3𝛼2𝑅

𝑚3
𝑟

𝑚3
𝑒

𝑚𝑒

𝑚𝑝
𝑔𝐼 = −12779407.7658(39)𝛼 (78)𝑔𝐼 kHz, (6.37)

where 𝑚𝑟 = 𝑚𝑒𝑚/(𝑚𝑒 +𝑚) is the reduced mass of the electron, and the Rydberg frequency

𝑅, all required masses and 𝛼 were taken from the latest CODATA evaluation [22]. Here, the

fine-structure constant 𝛼 , and the bare 𝑔𝐼 of
9
Be contribute on similar levels. For

9
Be

3+
, the

point-nucleus contribution is calculated with corrections due to QED, recoil effects, and also

significant hadronic and muonic vacuum polarization contributions. Similary, these calcula-

tions were performed by Bastian Sikora et al., and evaluate to [142]

𝛿pt = 826.65(28) ppm, 𝛿pt𝜈HFS,0 = −10564.1(3.5)theo kHz, (6.38)

where the uncertainty is limited by radiative recoil calculations. The nuclear structure contri-

bution is evaluated from Eq. (6.35),

𝛿ns =
𝜈HFS,exp

𝜈HFS,0
− (1 + 𝑎𝑒 + 𝛿pt) = −611.94(28)theo ppm,

𝛿ns𝜈HFS,0 = 7820.2(3.5)theo kHz,
(6.39)

using the experimental value of 𝜈HFS,exp, the experimental value of 𝑎𝑒 , ref. [22], and the cal-

culated 𝐸𝐹 and 𝛿pt. The experimental uncertainty due to 𝜈HFS,exp is more than four orders of

magnitude smaller than the theoretical uncertainty. The nuclear structure contribution itself is

nearly equal in magnitude to the binding corrections to the HFS, and a factor of 107 larger than
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the nuclear structure contributions to the bound-electron 𝑔-factor, highlighting the sensitivity

of the HFS to nuclear structure. Using the definition of the effective Zemach radius, compare

Eq. (6.35), gives

𝑟𝑍 = −𝛿ns

2𝑍
𝑎0 = 4.0423(18)theo fm. (6.40)

Compared to the value evaluated from the measurement on the lithium-like
9
Be

+
, refs.[117,

172], 𝑟𝑍 = 4.07(5)theo(2)𝑔𝐼 , this constitutes an improvement in accuracy by a factor of about

256
. The increased accuracy is made possible by the much better theory calculation of 𝛿pt

possible in
9
Be

3+
, where no multi-electron calculations need to be performed. The two values

are consistent, which indicates agreement of the multi-electron theory in
9
Be

+
.

Regarding future improvements of the hydrogen-like theory, the uncertainty of the bare-

nuclear 𝑔-factor may become relevant, compare Eqs. (6.37, 6.38). Here, the uncertainty of 𝑔𝐼
would limit only after a more than two orders of magnitude improvement. In contrast, for

6,7
Li the current fractional uncertainties on the nuclear magnetic moments of 460 and 170 ppb

are already close to limiting the extraction of the effective Zemach radius [54]. Similarly, the

current best test of the HFS at high 𝑍 with
209

Bi is strongly limited by the nuclear magnetic

moment which is only known with 500 ppm uncertainty.

HFS comparison

Similar to the comparison done for
209

Bi
80+,82+

[37, 38], forming a specific difference of the

lithium-like to the hydrogen-like HFS to test the lithium-like theory is now possible. In ref. [142],

the weighting factor 𝜉 = 𝜈HFS,0(9Be
+)/𝜈HFS,0(9Be

3+) = 0.04881891046 is derived which cancels

the nuclear structure contributions in the difference

Δ𝜈HFS = 𝜈HFS(9Be
+) − 𝜉𝜈HFS(9Be

3+), (6.41)

compare Eq. (6.35). This cancels the leading contributions, but also some bound-state correc-

tions such that the difference

Δ𝜈HFS,theo = −271.4(3.6) kHz (6.42)

is rather small. The remaining contributions are relativistic corrections of order 𝛼6 and QED

corrections of order 𝛼7 [172]. Using the experimental value from ref. [141], 𝜈HFS(9Be
+) =

−625008.837044(12) kHz, which accounts also for the 𝐵-field dependence of 𝜈HFS(9Be
+), the

experimental difference is

Δ𝜈HFS,exp = −274.638909(12) kHz, (6.43)

where the uncertainty is limited by 𝜈HFS(9Be
+). The experimental value has a vastly smaller

uncertainty compared to the theory value, highlighting the precision achievable in Penning-

trap measurements of hyperfine splittings. The experimental and theoretical values agree,

therefore confirming the calculations performed in ref. [172] and identical calculations used

for
6,7

Li [54].

6
The uncertainty of 𝑔𝐼 could in principle be removed by using the value of 𝑔𝐼 derived here.
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6.8. The atomic mass of 9Be

Lastly, the atomic mass of
9
Be may be derived from Γ𝑒 , compare Eq. (6.1),

𝑚(9Be) = 𝑞

𝑒

2
𝑔𝑠
𝑚𝑒Γ𝑒 + 3𝑚𝑒 − Δ𝑚binding = 9.0121830344(35) u, (6.44)

using the electron mass in atomic units [22], the mass equivalent of the ionization energies

Δ𝑚binding = 194.773164(44) pu, refs. [173–175], and the theory value of 𝑔𝑠 (9Be
3+), Eq. (6.28).

This value is in agreement with the accepted value,𝑚(9Be) = 9.01218306(8) [176] and improves

on its uncertainty by a factor of 20.
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Chapter 7.

Measurement of bound-electron
𝑔-factor resonances

In this chapter, the superior phase-sensitive detection of the modified cyclotron frequency

is used to determine

Γ𝑒 =
𝑔𝑠
2
𝑒

𝑞

𝑚

𝑚𝑒
(7.1)

with the highest possible precision. In the following, this type of measurement will also be

referred to as ‘bound-electron 𝑔-factor measurement‘. Such a determination has two promi-

nent applications. Given a similarly precise value of the ion-to-electron mass ratio, the bound-

state QED contributions to the bound-electron 𝑔-factor can be tested. Especially for medium

to high 𝑍 ions where the bound-state QED contributions are large, QED is tested with high

stringency [5, 17, 18]. For light hydrogen-like ions, 𝑍 ≤ 6, the calculation of bound-electron

𝑔-factors is believed to be correct with fractional uncertainties below 10 ppt and thus, in turn,

the ion-to-electron mass ratio can be determined with high precision [20]. For example, the

measurement of𝑔𝑠 (12C5+) allowed to directly determine the electron mass in atomic mass units

with an, at the time, more than one order of magnitude improved precision [23].

While in principle all transitions of the Zeeman and hyperfine splitting are equally sensitive

to Γ𝑒 , compare Table 6.1, the nuclear spin transitions have a similarly large sensitivity to Γ𝐼 and

increased sensitivity to 𝜈HFS. Therefore, an improved determination of Γ𝑒 from a nuclear-spin

transition would require an increased precision on Γ𝐼 and 𝜈HFS as well. That is not the case

for the electron spin transitions, where the precision of Γ𝐼 and 𝜈HFS as determined in the last

chapter, does not limit the extraction of Γ𝑒 .

First, I will discuss the characterization of the phase-sensitive detection of the modified cy-

clotron frequency including potential pitfalls which need to be accounted for. Next, several

measurements of electron-spin transition resonances that profit from a more than two times

improved resonance width when compared to any other bound-electron 𝑔-factor resonance to

date will be presented. Thereafter, systematic effects will be discussed. Lastly, the results will

be put into a broader perspective.
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Chapter 7. Measurement of bound-electron 𝑔-factor resonances

7.1. Characterization and optimization of the phase-sensitive
detection of 𝜈+

While the measurements of nuclear-spin transitions may currently not benefit from the phase-

sensitive detection of 𝜈+, measurements of electron spin transitions have no such limitations.

Both the Doppler shift and the time reference, in contrast to the nuclear-spin transitions, do

not contribute significantly to the uncertainty budget, as will be discussed in the systematics

section.

The theoretical description of the phase-sensitive detection of 𝜈+ and the associated statis-

tical precision due to various effects is given in Section 2.8. An overview of the experimental

setup and the determination of absolute frequencies is given in Section 5.5. Here, a number

of characterization measurements relevant to the phase-sensitive detection of 𝜈+ will be pre-

sented. At last, the phase-sensitive 𝜈+ detection will be compared to the double-dip measure-

ment, highlighting the vastly improved measurement precision.

7.1.1. Initial optimizations

Firstly, measuring stable phases for short evolution times is required, i.e. successive phase mea-

surements should be distributed around a center value and not uniformly distributed on the

circle. This indicates that both the phase imprint of the dipole excitation pulse is strong enough

and that the coupling pulse transfers the phase to the axial mode, compare Section 2.8.2. Op-

timizing the dipole excitation pulse separately is easier with PnP because the coupling pulse

parameter 𝑇couple = 𝜋
2

1
Ω can be directly calculated from the Rabi frequency Ω of the measured

splitting of the double dip. The dipole excitation pulse length or amplitude is then increased

while monitoring the detected Fourier transform signal after the PnP sequence. A clear peak

signal above the resonator’s noise signal indicates a sufficient excitation amplitude and a co-

herent, stable, phase. After optimizing the dipole pulse with PnP, similarly, the coupling pulse

amplitude or length can be optimized for PnA. In the next step, the amplitude calibration of

𝜌+ can be performed, compare Figure 5.15 and Table 5.5. With the knowledge of the excited

and thermal amplitudes, the phase uncertainty can be estimated, compare Section 2.8.2, and

optimal parameters can be chosen for the dipole excitation pulse.

The chosen dipole excitation pulse length of 𝑇exc = 0.3 MCyc gives an excitation amplitude

of 𝐵+ = 12.2(2) µm compared to the thermal amplitude 𝜌+,𝑡ℎ = 4.5(1) µm (Section 5.7.5). The

expected PnA phase jitter for a short evolution time, where no systematic frequency shifts

or magnetic field drifts contribute, can be calculated as shown in Figure 2.11 and amounts to

about 𝜎 (𝜑ref) ≈ 25◦. The measured reference phase jitter, chosen here with 𝑇ref = 0.1 s, is a bit

larger with 𝜎 (𝜑ref) = 29(1)◦. This difference may be due to a residual readout jitter from the

detection system, compare Section 2.8.2. While the reference phase measurement is needed

to account for the ab-initio unknown phase offset, compare Eq. (2.79), the phase measurement

with the longest possible evolution time𝑇evol, max defines the achievable precision to determine

𝜈+, compare Eq. (2.72). Here, it was possible to use a maximum evolution time𝑇evol, max = 45.1 s.

With this value, the measured phase jitter is consistently 𝜎 (𝜑max) < 50◦ ensuring a sufficiently

stable phase readout. However, the measured phase jitter was not constant. While it could be

as low as 𝜎 (𝜑max) = 32(1)◦ for a few days, it also increased to close to 𝜎 (𝜑max) ≈ 50◦ at other
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7.1. Characterization and optimization of the phase-sensitive detection of 𝜈+

times. To estimate the jitter contributions from systematic effects, the calculation Eq. (2.83) is

used. Using the field imperfections, Table 5.5, and the relativistic shift of 𝜈+, Eq. (2.40), the total

systematic contribution is 𝜎 (𝜑syst)/𝑇evol = 0.237(4)◦ 𝑠−1. For 𝑇evol, max = 45.1 s this evaluates

to 𝜎 (𝜑max, syst) = 10.7(2)◦. From the experimental measurements, the minimal increase in

jitter is

√︁
𝜎 (𝜑max)2 − 𝜎 (𝜑ref)2 =

√︁
(31(1)◦)2 − (29(1)◦)2 = 11(4)◦. Therefore, for the minimal

experimental jitter at the maximum evolution time, the expected increase is explained by the

jitter due to systematic effects. The additional increase at times with higher phase jitter is

thus possibly from real magnetic field fluctuations. Other Penning trap experiments also face

limitations of their measurement uncertainty which are not explainable by their systematic

effects, see for example Alphatrap [19] and the free electron 𝑔-factor experiment [177].

7.1.2. Non-zero phase residuals during N-determination

During the very first attempts with the phase-sensitive detection of 𝜈+, the residuals of the N-

determination scheme, compare Eq. (5.9), clearly deviated from zero, see Figure 7.1. This was
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Figure 7.1: The left plot shows the residuals 2𝜋𝜈+Δ𝑇evol − Δ𝜑 − 2𝜋𝑁 in the N-determination

scheme, compare Eq. (5.9). A simple model is shown alongside the data, for details see text.

The plot on the right-hand shows the difference of the measured phase for Δ𝑇evol = 30 s for

increasing power of the modified cyclotron cooling sideband Δ𝜑hp to a reference measurement

at low power Δ𝜑lp.

concerning, as it implied an evolution time dependence of the determined 𝜈+. Several effects

may cause this dependence. For example, a mismatch between the trigger pulses of the delay

generator and the programmed delay between the excitation and coupling pulse in the signal

generator could result in effectively slightly different values of 𝑇evol for both devices. As both

are locked to the same 10 MHz reference, this would require an unexplained hardware effect.

Precise oscilloscope measurements of the trigger and signal generator pulses could exclude this

effect. Another plausible effect would be an induced frequency drift due to the involved pulses.
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Chapter 7. Measurement of bound-electron 𝑔-factor resonances

Assuming a simple exponential response to 𝜈+

𝜈
′
+(𝜏) = 𝜈+ + 𝛿𝜈+𝑒−𝑡/𝜏 , (7.2)

with 𝜏 = 60 s and 𝛿𝜈+ = −60 mHz results in very similar shape of the residuals, see Figure 7.1
1
.

Here, after some investigations, the relatively large power of the cyclotron cooling sideband

was found to lead to heating of a few mK of our cryogenic setup, which was detected with a

temperature probe close to the trap chamber. This is most likely amplified by the use of the

spin-flip coil for the quadrupolar excitations (as pointed out before, the split electrode excitation

was broken). Compared to excitations over the split electrode, more power was needed for the

same coupling Rabi splittings. Cyclotron cooling is performed before each PnA cycle, and the

heating likely leads to a direct magnetic field response and thus the observed residuals. A direct

measurement of this effect as a function of the power of the cooling sideband confirmed this,

see the second plot of Figure 7.1.

To eliminate this effect, the power of the cooling sideband was reduced by 20 dB to −10 dBm,

and a 10 s delay after cooling and before starting the PnA sequence was introduced. From com-

bining the𝑁 -determination measurements of a number of electron-spin resonances, Figure 7.2,

the residual effect can be conservatively estimated to be smaller than 2◦. This corresponds to

a 4 ppt uncertainty.
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Figure 7.2: The phase residuals are greatly reduced compared to Figure 7.1 by lowering the

cooling sideband power and using a delay.

7.1.3. Non-linear phase transfer

Another possible systematic effects is explained in ref. [133] Section 5.2. A residual dipole con-

tribution at frequency 𝜈+ of the coupling pulse would lead to a non-linearity of the transferred

modified cyclotron to the axial phase. To exclude such an effect, the PnA cycle is performed

with short evolution times which scan the full 360◦ of 𝜑+. Here, 6 steps separated by 5 ms

starting from𝑇evol = 1.0 s were chosen. The phase residuals 𝜑 − 𝑎(𝑇evol −𝑏), where 𝑎 and 𝑏 are

1
A fit was not possible as it diverged for both 𝛿𝜈+ and 𝜏 . Very likely the response is more complex.
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Figure 7.3: Shown are the residuals of the detected phase to a linear fit. The residuals are

consistent with zero.

fit, are all consistent with zero and exclude non-linearities to below 3◦, compare Figure 7.3.

7.1.4. Pressure dependence of the magnetic field

Though the superconducting magnet system used in this experiment has been designed to

be largely unaffected by environmental influences [98], at the highest precision possible with

the phase-sensitive detection they may still play a major role. It is well known that the mag-

netic field in superconducting magnets depends on the pressure of the LHe reservoir, see e.g.

ref. [178]. This is explained by the induced changes to the boil-off temperature of the liquid

helium, which indirectly leads to magnetic field changes. In normal operation of the super-

conducting magnet used here, the boiled-off LHe just exits into the atmosphere, flowing only

through a passive check valve. The pressure inside the magnet reservoir thus directly follows

the ambient air pressure changes. Using the PnA method, the cyclotron frequency was mea-

sured continuously over many hours while monitoring the ambient pressure in the magnet

room, see Figure 7.4. Assuming a simple proportionality of the cyclotron frequency changes to

the changes of the ambient pressure Δ𝜈𝑐 = 𝑎Δ𝑃 fits the data perfectly, and only a comparably

small drift of 𝜈𝑐 remains in the residuals. The proportionality amounts to

𝑎 = 0.3967(3) mHz/pa =̂ 77.60(6) pT/pa, (7.3)

where the uncertainty is only statistical and systematic uncertainties of the pressure sensor

(BMP380) may be larger. Incidentally, this dependence has been measured with this magnet be-

fore, albeit with a completely different cryogenic insert, see ref. [101]. The value𝑎 = 92(14) pT/pa

is consistent with the one measured here.

Thus, by stabilizing the boil-off pressure of LHe in the magnet system the temporal stability

of the magnetic field would vastly increase. As part of the PhD thesis of Marius Müller, a
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Figure 7.4: Pressure dependence of the magnetic field. The top shows the measured changes

of the cyclotron frequency and the scaled changes of the ambient pressure. The scaling factor

is fit via least squares estimation. The bottom shows the residuals. In the residuals, the range

of the drift is reduced from 0.4 Hz to less than 10 mHz; a reduction by a factor of 40.

pressure stabilization system was developed, which is used for the measurements performed in

this chapter. In short, a PID controller calculates the error signal from the measured pressure

in the boil-off volume and then adjusts the pressure by regulating the flow of the boiled-off

helium with a digital flow controller.

The long-term stability of the magnetic field reached by accounting for the pressure’s in-

fluence is already at a level that will not influence the statistical precision, see also the next

section. Investigations of other environmental influences on the relative stability of the mag-

netic field would require more thorough systematic measurements. Potentially, the effect that

limits the jitter of the modified cyclotron frequency, compare Section 7.1.1, could be identified

and accounted for.

7.1.5. Comparison to double-dip and magnetic field stability

For comparing the performance of the double-dip to the PnA method and analyzing the mag-

netic field stability, the data taken during electron-spin transition resonances can be used. Here,

the cyclotron frequency is measured with the double-dip method and PnA method consecu-

tively every ∼ 30 minutes over the span of several days, see also the next section
2
. For the

double dip, the averaging time is 60 s, and for PnA the evolution time is Δ𝑇evol = 45.0 s. Fig-

2
For the comparison performed here, 𝜈𝑐 is calculated from a single double-dip and PnA measurement, respectively,

and not from the averages used for the resonance analysis.
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ure 7.5 shows such data for a resonance with 252 cycles. The shot-to-shot stability, which cor-
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Figure 7.5: Measured cyclotron frequency with the double-dip and PnA method with active

pressure stabilization. The data is taken from an electron-spin resonance measurement, where

𝜈𝑐 is measured with the double-dip and the PnA method consecutively every ∼ 30 minutes.

The top plot shows the cyclotron frequency changes to the mean value and the bottom plot

shows the Allan deviation. For details see text.

responds to the first data point in the Allan deviation, is improved by a factor of nearly 20 with

the phase-sensitive detection of 𝜈+. Expressed differently, about 400 double-dip measurements

would need to be averaged to match the single-shot precision of the phase-sensitive method.

From the last point of the Allan deviation, the long term drift of the cyclotron frequency can

be estimated as

𝜎 (𝜈𝑐)drift/𝜈𝑐 = 3(2) ppt/h. (7.4)

The small drift allows to average several measurements of 𝜈𝑐 in a single cycle of the transition

measurements to improve its precision and thus the width of the resonance, compare Sec-

tion 3.3. Therefore, three 𝜈𝑐 measurements with PnA are performed each cycle, see the Allan

deviation of the average in Figure 7.5.

As an interesting side note, the magnetic field trend features a distinctive, repeatable, kink

about 10 days after filling the magnet with LHe, see Figure 7.6. For future, further improved
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Figure 7.6: The cyclotron frequency (magnetic field) trend features a distinctive ‘kink‘ which

occurs repeatably about 10 days after filling the magnet with LHe, i.e. between the blue and

green curve the magnet was filled with LHe. After this kink occurs, the cyclotron frequency

features a small drift (only visible for the green curve here).

measurements, it might be advantageous to restrict data taking to the times before the kink

occurs, as also the shot-to-shot uncertainty seems to increase slightly afterwards.

7.2. Measurement sequence

The measurement sequence of a single cycle is similar to the nuclear spin transition measure-

ments, Section 6.3, and summarized in Figure 7.7. Some specifics to this sequence are summa-

rized below.

Spin-state detection

In contrast to the detection of the nuclear spin state, no double-resonance detection was nec-

essary. The same electron-spin transition driven in the PT was used in the AT for detection.

Here, the sign of the axial frequency jump identified the electron-spin orientation, compare

Eq. (3.43) and the right-hand plot in Figure 6.4, and only a single electron-spin flip needed to

be detected in the AT.

PnA measurements

Prior to triggering any PnA sequence, the modified cyclotron mode was cooled for 5 s which

was followed by a 10 s waiting time, compare Section 7.1.2. Additionally, as the double-dip

measurements use the same drive as the cyclotron cooling, 60 s of wait time were used to

settle any potential drifts. Before the 𝑁 -determination sequence and the three individual PnA

sequences with the longest evolution time, the magnetron mode was cooled for 10 s followed

by a 10 s waiting time. For the𝑁 -determination, first, the reference phase at 0.1 s was measured
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7.2. Measurement sequence

Transport ion to PT

Transport ion to AT

Figure 7.7: Measurement scheme for electron-spin transitions. The blue box indicates mea-

surements in the AT, the green box measurements in the PT, and the orange box the high-

precision frequency measurements. For details see text.

four times and averaged. A total of 10 increasing evolution times

𝑇evol = {1.1, 1.6, 2.3, 3.3, 4.9, 7.2, 10.6, 15.7, 23.1, 34.2} s, (7.5)

127



Chapter 7. Measurement of bound-electron 𝑔-factor resonances

were used to determine 𝑁 together with the double-dip measurement 𝜈+,1 performed after-

wards. During the free evolution of the phase-measurements with the longest evolution time,

𝑇evol = 45.1 s, 𝜈𝑧 measurements via an axial dip were performed.

Microwave excitation

Due to the vastly different power requirements to drive the electron-spin transition in the AT

and the PT, compare ref. [96], a programmable waveguide attenuator (Mi-Wave 511) was used.

In the AT the attenuation was set to 0 dB, while in the PT it was set to around 55 dB. Similar to

the nuclear-spin transition measurements, the attenuation value for the PT had to be optimized

with partial resonance measurements. Using the guess frequency 𝜈𝑖 (𝜈𝑐), where 𝜈𝑐 is calculated

from 𝜈+,2 and 𝜈𝑧,3, the microwave excitation of the transition in the PT was performed during

the free evolution time of the second PnA measurement 𝜈+,3.

Cycle time

The spin-state detection procedure in the AT required on average ∼ 3 minutes. The transport

to the PT, centering and voltage settling required 5 minutes. During the following precision

determinations of 𝜈𝑐 , 17 phases, 7 axial dips, and two double dips were measured, totaling close

to 20 minutes. The average time per cycle was just below 30 minutes.

7.3. Statistical and systematic evaluation

The statistical and systematic analysis uses the same concepts as outlined in Section 6.4. The

free cyclotron frequency used for the analysis is calculated from the average values

𝜈+ =
1
3
(𝜈+,2 + 𝜈+,3 + 𝜈+,4),

𝜈𝑧 =
1
4
(𝜈𝑧,1 + 𝜈𝑧,2 + 𝜈𝑧,6 + 𝜈𝑧,7),

(7.6)

compare Figure 7.7. The axial frequencies during the free evolution time, 𝜈𝑧,3, 𝜈𝑧,4, 𝜈𝑧,5, are

shifted by the increased cyclotron amplitude and were instead used to rule out any drifts of 𝜈𝑧 .
Similar to the nuclear-spin transitions, a Voigt lineshape is used for the statistical analysis

of the resonances. However, for the electron-spin transitions, the asymmetric lineshape due to

𝐵2, compare Section 3.3.3, is potentially relevant. Due to the relatively large 𝐵2 in the PT, the

linewidth parameter, Eq. (3.26), of the electron-spin resonances,

Δ𝜈𝑎,𝑏 = 18(1) Hz, (7.7)

is similar in magnitude to the expected Gaussian width 𝜎𝜈𝑎,𝑏 =
��� 𝜕𝜈𝑎,𝑏𝜕𝜈𝑐

���𝜎 (𝜈𝑐) ≈ 9 Hz, compare

Eq. (3.19), of the resonances. This leads to a broadening of the resonance. Additionally, the

relation Δ𝜈𝑎,𝑏/𝛾𝑧 ≈ 7 puts the resonances into the weak coupling regime, where the Brown-

Gabrielse line approaches the asymmetric Boltzmann distribution, compare Figure 3.4. As vi-

sualized in Figure 3.5, this may lead to significant shifts of the resonance center, when fitting
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with a symmetric lineshape (e.g. the Voigt-profile). Therefore, additional to the Voigt-profile,

the Brown-Gabrielse line is used for fitting the resonances.

For the electron-spin transitions it is sufficient to only fit 𝑝 = Γ𝑒 and use Γ𝐼 and 𝜈HFS from

the results of the previous chapter. The covariance of the determined center Δ0 of the electron

spin-resonances due to the covariance of ®𝑞0 = (Γ𝐼 , 𝜈HFS) is

cov(Δ0) 𝑗 =
(
∇®𝑞𝜈 𝑗 ( ®𝑞0)

)𝑇
cov( ®𝑞0)∇®𝑞𝜈 𝑗 ( ®𝑞0), (7.8)

where ∇®𝑞𝜈 𝑗 ( ®𝑞0) is the gradient of the two transitions 𝑗 = {𝑎, 𝑏} with respect to ®𝑞. Using the

covariance from the last chapter, this corresponds to 𝜎 (Δ0,𝑎) ≈ 39 mHz and 𝜎 (Δ0,𝑏) ≈ 71 mHz.

Propagating to Γ𝑒 gives systematic uncertainties of less than 0.5 ppt, which is fully negligible

compared to the statistical uncertainty, see the next section.

Therefore, the statistical fit, compare Eqs. (6.9, 6.10), is simply given by the scalar equation

Γ𝑒 = Γ𝑒,0 +
(
𝜕𝜈 𝑗

𝜕Γ𝑒

)−1
Δ0, 𝑗 , 𝜎 (Γ𝑒) =

(
𝜕𝜈 𝑗

𝜕Γ𝑒

)−1
𝜎 (Δ0, 𝑗 ) . (7.9)

Similarly, for the systematic shift propagation, compare Eqs. (6.13, 6.14),

𝛿Γ𝑒 =

(
𝜕𝜈 𝑗

𝜕Γ𝑒

)−1
𝛿Δ0, 𝑗 , 𝜎 (Γ𝑒) =

(
𝜕𝜈 𝑗

𝜕Γ𝑒

)−1
𝜎 (𝛿Δ0, 𝑗 ) . (7.10)

For reference, the fractional proportionalities(
𝜕𝜈𝑎
𝜕Γ𝑒

)−1
/Γ𝑒 ≈ 6.30 ppt/Hz,

(
𝜕𝜈𝑏
𝜕Γ𝑒

)−1
/Γ𝑒 ≈ 6.27 ppt/Hz, (7.11)

allow to easily map the result of the resonance center to Γ𝑒 . For systematic effects on 𝜈𝑐 , com-

pare Eq. (6.15), the correspondence

𝛿Γ𝑒
Γ𝑒

=

(
𝜕𝜈 𝑗

𝜕Γ𝑒

)−1 𝜕𝜈 𝑗
𝜕𝜈𝑐

𝜈𝑐
Γ𝑒

= −𝛿𝜈𝑐
𝜈𝑐

(7.12)

is exactly one-to-one.

7.4. Electron-spin transition measurements

In principle, the measurement of a single electron-spin resonance with the phase-sensitive de-

tection would enable a large statistical improvement in the determination of Γ𝑒 . Nevertheless,

to further investigate systematic effects influencing the determination of Γ𝑒 within this mostly

uncharted regime of 10−11 relative precision, additional transition measurements were carried

out. Compared to systems without nuclear spin, where only the transition with the Larmor

frequency of the bound-electron exists,
9
Be

3+
has 4 electron-spin transitions. Here, the two

transitions 𝜈𝑎 ≈ 168 GHz and 𝜈𝑏 ≈ 142 GHz, as indicated in Figure 6.1 and Table 6.1, were

probed
3
. Additionally, after performing the trap symmetrization, compare Section 5.7.1, an-

other 𝜈𝑏 resonance was taken. At last, after discarding the
9
Be

3+
ion which was used for nearly

one year of measurements, a Γ𝑒 resonance was taken with hydrogen-like
12

C
5+

.

3
The choice was made due to the maximally different absolute frequency. The ∼ 180 GHz transition could not be

addressed as it was outside our available range (110 − 170 GHz) of microwave frequencies.
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Chapter 7. Measurement of bound-electron 𝑔-factor resonances

7.4.1. 𝜈𝑎 and 𝜈𝑏 resonances

First, a double-dip resonance of the transition with the higher frequency, 𝜈𝑎 , was measured in

the last week of December 2022, just after finishing the nuclear-spin resonances. Resonances

with the phase-sensitive detection required further optimizations. A high-statistics measure-

ment of the 𝜈𝑎 transition was taken from the 30th of January to the 14th of February of 2023. A

𝜈𝑏 resonance was taken from the 11th to 16th of May. The resonances measurements and fits are

summarized in Table 7.1 and visualized in Figures 7.9 and 7.8. For calculating 𝜈MW−𝜈 𝑗 (𝜈𝑐 | ®𝑝0),

Table 7.1: Data of the electron-spin transition resonances and fit results. For definitions see

Table 6.2 and for details see text. The fit center depends on the initial guess ®𝑝0 = (Γ𝑒 , Γ𝐼 , 𝜈HFS)
from Table 6.3.

Transition 𝝂𝒂 (Double dip) 𝝂𝒂 𝝂𝒃

Number of cycles 363 672 251

Number of spin flips 39 56 32

Range of 𝜈𝑐/ Hz 29254040.1 ± 0.3 29254041.4 ± 0.1 29254041.22 ± 0.01

Range of 𝜈MW/ kHz 168428737 ± 3 168428744.7 ± 0.4 141940861.2 ± 0.1
Voigt lineshape

Δ0/Hz −63(42) −35.2(3.0) −34.9(3.6)
Gaussian width 𝜎/Hz 190(60) 12(5) 17(5)
Lorentzian width Ω/Hz 90(60) 12(5) 6(5)
FWHM/Hz 560(90) 43(7) 46(7)
Amplitude 0.42(7) 0.32(5) 0.43(5)

Brown/Gabrielse lineshape

Δ0/Hz − −36.5(3.0) −37.2(3.0)
Gaussian width 𝜎/Hz − 13(4) 6(4)
Rabi frequency Ω/Hz − 0.27(3) 0.36(6)

the initial parameters ®𝑝0 = (Γ𝑒 , Γ𝐼 , 𝜈HFS) from the previous chapter, see the corrected parameters

in Table 6.3, were used (compare also the discussion in the previous section).

The improvement due to the phase-sensitive technique is highlighted by the decrease of the

FWHM by a factor of more than 10 compared to the double-dip resonance. Using the corre-

spondence of 6.3 ppt/Hz, Eq. (7.11) and the value FWHM = 43 Hz for the PnA resonances gives

a relative width of 270 ppt. This is an improvement by a factor of 2.2 compared to the previ-

ously best bound-electron 𝑔-factor resonances [5, 23] and enables similar statistical precision

with a much lower amount of acquired data.

7.4.2. 𝜈𝑏 resonance with symmetrized trap potential

Before doing any of the resonance measurements, attempts to symmetrize the trapping po-

tential failed because it was not clear to me how to apply the scheme known for 5-pole Pen-

ning traps, see e.g. ref. [70], to a 7-pole trap. Olesia Bezrodnova from the LIONTRAP experi-
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Figure 7.8: Comparison of resonances taken with the double-dip and PnA technique. The

right-hand side shows a zoomed in view of the left-hand side, highlighting the much smaller

resonance width achieved with the phase-sensitive detection. The vertical bars are 1-𝜎 confi-

dences of the determined center frequencies Δ0.

ment pointed out to me that asymmetrically applied offsets make the symmetrization possible.

Thereafter, I applied this scheme, compare Section 5.7.1, at our experiment to exclude any (un-

explained) effects due to the relatively large 𝐶4 and 𝐶3 without the symmetrization.

Subsequently, the PT was optimized and the imperfections were measured according to Sec-

tion 5.7.4. The inhomogeneities 𝐶3/𝐶2 = 0(2) m
−1

and 𝐶4/𝐶2 = 3(2) m
−2

were significantly

reduced compared to the unsymmetrized case, Table 5.5. With the symmetrized fields, a res-

onance of 𝜈𝑏 was taken from the first to the 6th of June 2023, see Table 7.2 and Figure 7.10.

Table 7.2: Data and fit results of the 𝜈𝑏 transition resonances with symmetrized trapping fields.

Number of cycles 214

Number of spin flips 36

Range of 𝜈𝑐/ Hz 29254037.96 ± 0.02

Range of 𝜈MW/ kHz 141940843.4 ± 0.2
Voigt lineshape

Δ0/Hz −28.9(4.2)
Gaussian width 𝜎/Hz 12(7)
Lorentzian width Ω/Hz 19(7)
FWHM/Hz 57(10)
Amplitude 0.45(4)

Brown/Gabrielse lineshape

Δ0/Hz −36.4(4.2)
Gaussian width 𝜎/Hz 14(7)
Rabi frequency Ω/Hz 0.6(1)
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Figure 7.9: Electron-spin transition resonances. The frequencies in 𝜈MW−𝜈 𝑗 (𝜈𝑐 | ®𝑝0) are calcu-

lated with the corrected parameters from Table 6.3. The vertical bars show the 1-𝜎 confidence

of the transition center Δ0.
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Figure 7.10: Resonance of 𝜈𝑏 with a symmetrized trap.

7.4.3. 12C5+ resonance

A measurement of Γ𝑒 with
12

C
5+

is an ideal cross-check for any experiment-specific systematics,

as it has been measured before with a combined fractional uncertainty of 28 ppt. Also,
12

C
5+

has no nuclear spin and no hyperfine splitting, therefore only requiring the measurement of a
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7.4. Electron-spin transition measurements

single transition - the electron’s Larmor frequency. For calculating the Larmor frequency 𝜈 the

simple relation

𝜈 = −Γ𝑒𝜈𝑐 (7.13)

greatly simplifies the treatment of systematic effects.

After finishing with
9
Be

3+
, a

12
C
5+

ion was loaded into the trap with a scheme similar to

Section 5.2, but without using laser ablation. This works, because the surfaces inside the trap

chamber hit by the expanding electron beam may have contaminants which include carbon, e.g.

CO2. After initial preparation, the PT was symmetrized, optimized, and the field imperfections

were measured, compare Section 5.7. With the larger 𝑞2/𝑚, the dip width 𝛾𝑧 ≈ 5.4 Hz is

expectedly larger than for
9
Be

3+
. The magnetron frequency 𝜈− = 3200.92(7) Hz of

12
C
5+

was

determined via extrapolation, compare Section 5.8.3. The measured field imperfections are

𝐶3/𝐶2 = 0(2) m
−1

, 𝐶4/𝐶2 = 2(7) m
−2

and 𝐵2 = 1.0(1) m
−2

. The latter value is consistent with

the previous determination, 𝐵2 = 1.04(5) Tm
−2

. Further, the modified cyclotron amplitude

calibration 𝐾+ = 43(1) µm/Mcyc was determined. For the phase-sensitive detection, 𝑁+ =
0.278 MCyc was used, resulting in an excitation amplitude of 𝐵+ = 11.9(4) µm. The highest

evolution time with PnA during the resonance measurements was𝑇evol = 40.1 s, slightly smaller

than for
9
Be

3+
, however, due to the larger 𝜈𝑐 ≈ 36 MHz, the reached fractional precision was

similar.

A resonance was recorded from the 16th to 23rd of June 2023, see Table 7.3 and Figure 7.11.

For determining the resonance center, Γ𝑒,0 = −4376.210500872 from ref. [179] was used.

Table 7.3: Data and fit results of the
12

C
5+

resonance.

Number of cycles 273

Number of spin flips 33

Range of 𝜈𝑐/ Hz 36618730.44 ± 0.05

Range of 𝜈MW/ kHz 160251272.68 ± 0.3
Voigt lineshape

Δ0/Hz 7.4(3.8)
Gaussian width 𝜎/Hz 11(6)
Lorentzian width Ω/Hz 12(6)
FWHM/Hz 43(11)
Amplitude 0.33(7)

Brown/Gabrielse lineshape

Δ0/Hz 4.8(3.9)
Gaussian width 𝜎/Hz 14(5)
Rabi frequency Ω/Hz 0.33(6)

7.4.4. Summary of statistical results

The statistical results for Γ𝑒 are listed in Table 7.4.

7.4.5. Systematics and error budget

Here, a full account of all relevant systematic shifts and uncertainties is given. Some discussions

are shortened when the arguments for the nuclear-spin transition resonances are applicable,

see Section 6.5.2.
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Figure 7.11: Larmor frequency resonance of
12

C
5+

with a symmetrized trap. For details see

text.

Table 7.4: Statistical result of Γ𝑒 for the different resonances.

Γ𝑒 Voigt fit Brown-Gabrielse fit

𝜈𝑎 −5479.86334228(10) \ 19 ppt −5479.86334224(10) \ 19 ppt

𝜈𝑏 −5479.86334230(12) \ 23 ppt −5479.86334222(10) \ 19 ppt

𝜈𝑏 (sym) −5479.86334251(14) \ 26 ppt −5479.86334225(14) \ 26 ppt

12
C
5+ −4376.21050107(10) \ 24 ppt −4376.21050100(11) \ 24 ppt

Probability lineshape

The asymmetric lineshape, Eq. (3.31), is fit with three free parameters, the resonance center Δ0,

the Gaussian width 𝜎 and the Rabi frequency Ω, according to

𝑃 (𝜈MW − 𝜈 (𝜈𝑐) − Δ0 | 𝜎,Ω) = 𝑃 (𝜈MW − 𝜈 (𝜈𝑐) − Δ0 + Δ𝜈,𝑇MW | 𝜎,Ω,Δ𝜈,𝛾𝑧), (7.14)

where 𝑇MW is the length of the microwave excitation. The asymmetric lineshape accounts

directly for the shifted center of the resonance due to 𝐵2 by the linewidth parameter Δ𝜈 , see

Figure 3.4. However, as the measured 𝜈𝑐 is shifted in the same way and identically accounts for

this via 𝜈 (𝜈𝑐), the linewidth parameter Δ𝜈 is added in the transition probability. The linewidth

parameter 𝛿𝜈 is calculated with Eq. (3.26) using the experimental 𝐵2 value and the dip width is

taken as the axial cooling rate 𝛾𝑧 . The uncertainties of Δ𝜈 and 𝛾𝑧 are included in the fit model

via a Gaussian prior.

The extracted fit parameters, Table 7.1, are compatible with the requirements of the Brown-

Gabrielse line, compare Eq. (3.29). Furthermore, the numerical integration of the transition

probability using these parameters, see Section A.6, shows good agreement with the Brown-

Gabrielse line, solidifying its use. Ideally, an experimental verification of the probability line-

shape would be performed, but the acquired statistics of the resonances are too low to discrim-

inate between the two models and no significant asymmetry can be observed in the resonance

data. Moving forward, the resonance center values determined with the Brown-Gabrielse line
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7.4. Electron-spin transition measurements

will be used, but the difference to the value obtained with the Voigt profile will be included as

a systematic lineshape uncertainty.

The shifts between the resonance centers using the two models are below 1-𝜎 of the statistical

uncertainty for the two initial resonances and the
12

C
5+

resonance summarized in Table 7.1 and

Table 7.3, respectively. However, the 𝜈𝑏 resonance with symmetrized potential, see Table 7.2

and Figure 7.10, has a much larger shift, which is due to the higher saturation by the larger Rabi

frequency. While the output microwave power for this resonance was identical to the initial

𝜈𝑏 resonance, the effective power at the ion’s position may be different due to the ion’s slightly

shifted axial position in the symmetrized potential, resulting in the larger Rabi frequency.

Field imperfections and relativistic shift

The shifts of 𝜈𝑐 from field imperfections and the relativistic shift are slightly different from

the case of the nuclear-spin transitions due to the non-thermal modified cyclotron motion. In

addition to Eq. (6.18), a contribution from the excitation 𝐵+ = 𝐾+𝑁+, where 𝑁+ is the number

of cycles of the dipole excitation (for the resonances above, 𝑁+ = 0.3 MCyc) and 𝐾+ is taken

from Table 5.5, needs to be included. However, as the axial frequency 𝜈𝑧 is separately measured

with thermal amplitudes, only the shifts of 𝜈+ are relevant. For the fields, the only additional

contribution is due to 𝐶4,

𝛿𝜈𝑐,fields = 𝜌
2
𝑧,𝑡ℎ

©­­­«
𝐶2
3/𝐶2

2
𝐶4/𝐶2

𝐵2/𝐵0
𝐵1/𝐵0 ·𝐶3/𝐶2

ª®®®¬ ·
©­­­«
− 15

8 𝜈−
− 3

2𝜈−
1
2𝜈𝑧
− 3

4𝜈𝑧

ª®®®¬ +
3
2
𝐶4

𝐶2
𝜈−𝐵2+ ≡ 𝜌2𝑧,𝑡ℎ ®𝐾 · ®𝐿 + 3

2
𝐶4

𝐶2
𝜈−𝐵2+, (7.15)

as, again, no shifts that correspond to effective shifts of the magnetic field need to be included.

The additional relativistic shift of the resonance center is more significant, Eq. (3.35),

𝛿Δ0,rel = −
(
𝜈𝑧
𝜈+
𝜌2𝑧,𝑡ℎ + 𝐵2+

)
2𝜋2𝜈2+
𝑐2

(
𝜈 𝑗 − 2𝜈𝑐

𝜕𝜈 𝑗

𝜕𝜈𝑐

)
. (7.16)

Using 𝐾+ and 𝐶4/𝐶2 from Table 5.5, the predicted shifts due to the dipole excitation are

𝛿Δ0,𝑎/𝑁 2
+ = 45(2) Hz/MCyc

2, 𝛿Δ0,𝑏/𝑁 2
+ = 54(2) Hz/MCyc

2, (7.17)

for 𝜈𝑎 and 𝜈𝑏 , respectively. The included 𝐶4 contribution amounts to only −1.5(3) Hz/MCyc
2

and the difference of the two values is due to the larger relativistic shift of 𝜈𝑏 .

As a cross-check for potential unknown systematic effects at the non-thermal modified cy-

clotron amplitude, compare refs. [23, 91], resonances of the 𝜈𝑎 transition with additional excita-

tion amplitudes were recorded, see Figure 7.12. From the linear fit to the data, the extrapolated

resonance center at thermal modified cyclotron amplitude

Δ0,𝑎,th = −37.7(2.8) Hz (7.18)

and the scaling of the shift

𝛿Δ0,𝑎/𝑁 2
+ = 46(4) Hz/MCyc

2
(7.19)
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Figure 7.12: Extrapolation of the resonance center of 𝜈𝑎 to thermal modified cyclotron am-

plitude. Resonances of the transition are taken with larger modified cyclotron amplitude by

increasing the dipole excitation 𝐵+ = 𝐾+𝑁+. For the extrapolation all resonance fits are per-

formed with the Voigt profile.

are extracted. The scaling of the shift perfectly fits with the previously calculated expected

value, Eq. (7.17), from the amplitude calibration, indicating no further unknown effects.

For calculating the thermal contribution to the shifts, the thermal amplitudes are determined

via the AT method from each resonance measurement individually, see Section 5.7.5. They are

𝜈𝑎 𝜈𝑏 𝜈𝑏 (sym)
12

C
5+

𝜌2
𝑧,th

/µm
2 1233(47) 1142(73) 1306(91) 917(55)

In total, the shifts due to the fields are

𝜈𝑎 𝜈𝑏 𝜈𝑏 (sym)
12

C
5+

𝛿Γ𝑒,fields/10−8 −9(2) −8(2) 0(1) 0(1)
𝛿Γ𝑒,fields/Γ𝑒 (ppt) 17(4) 15(4) 0(2) 0(2)

The symmetrized potential used for the last two resonances reduces the shift below the sig-

nificant digit and the uncertainty is also decreased by a factor of 2. The relativistic shift of

the resonances requires the thermal amplitudes as well as the amplitude calibration 𝐾+, see

Table 5.5 for
9
Be

3+
and Section 7.4.3 for

12
C
5+

. The thermal (th), excited (exc), and total (tot)

contributions are

𝜈𝑎 𝜈𝑏 𝜈𝑏 (sym)
12

C
5+

𝛿Γ𝑒,rel, th/10−8 −1.97(8) −2.2(1) −2.5(2) −1.56(9)
𝛿Γ𝑒,rel, exc/10−8 −14.5(5) −17.1(6) −17.1(6) −18(1)
𝛿Γ𝑒,rel, tot/10−8 −16.5(5) −19.3(6) −19.6(6) −20(1)
𝛿Γ𝑒,rel, tot/Γ𝑒 (ppt) 30(1) 35(1) 36(1) 46(3)
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Thomas precession

The Thomas precession is negligible, compare the discussion in Section 6.5.2.

Image charge shift

The image charge shift amounts to the same value as for the nuclear-spin transition measure-

ments and a slightly larger value for
12

C
5+

,

9
Be

3+ : 𝛿Γ𝑒,img/10−8 = −53(3) \ 96(5) ppt,
12

C
5+ : 𝛿Γ𝑒,img/10−8 = −56(3) \ 128(6) ppt.

(7.20)

Dip lineshape

The influence of the dip lineshape is suppressed for the phase measurements compared to

the double-dip measurements, as it only affects the 𝜈𝑧 determination. Thus, the uncertainty

contribution to𝜈𝑐 via the invariance theorem Eq. (2.6), directly decreases by𝜎 (𝜈𝑐) = 𝜎 (𝜈𝑧)𝜈𝑧/𝜈𝑐 .
Assuming the estimate 𝜎 (𝜈𝑧) ≈ 23 mHz, see Section B.1, the systematic uncertainty due to the

axial dip is

9
Be

3+ : 𝜎 (Γ𝑒,dip)/10−8 = 7 \ 13 ppt,
12

C
5+ : 𝜎 (Γ𝑒,dip)/10−8 = 4 \ 8 ppt.

(7.21)

For
12

C
5+

, the larger cyclotron frequency further reduces the contribution of the axial fre-

quency.

Time reference

The influence of the time reference, Eq. (6.24) is greatly suppressed for the electron-spin tran-

sitions, because the transition frequencies are determined with less fractional precision. As-

suming 𝜎
(
𝛿𝜈

ref

𝜈
ref

)
= 10−12, the fractional uncertainty on 𝜎 (Γ𝑒)/Γ𝑒 < 0.2x10−13 calculated via

Eq. (6.24) is negligible. For
12

C
5+

, no uncertainty due to the time reference occurs.

Corrections to the Breit-Rabi energies

As the correction required for
9
Be

3+
from ref. [159] are effectively a shielding of the nuclear

magnetic moment, the influence on the electron-spin transitions is suppressed. The frequencies

are shifted by 𝜈𝑄,𝑎 − 𝜈𝑎 = −37.2(3) mHz, 𝜈𝑄,𝑏 − 𝜈𝑏 = 36.7(3) mHz, which results in negligible

shifts smaller than 1 ppt on Γ𝑒 .

Magnetron frequency

As pointed out before, Section 5.8.3, the uncertainty of the magnetron frequency of
9
Be

3+
, 𝜈− =

4007.4(2) Hz, contributes about 1 ppt to 𝜈𝑐 . For
12

C
5+

, the contribution of 𝜈− = 3200.92(7) Hz

is even smaller, amounting to less than 0.2 ppt. Because the magnetron frequency determined

by the extrapolation was done only once, this requires that it stays constant. From the relation
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𝜈− = 1
2𝜈

2
𝑧/𝜈+ an upper bound for the change 𝜈− over the whole

9
Be

3+
campaign gives Δ𝜈− <

0.2 Hz, which is estimated by the maximum deviation Δ𝜈𝑧 ≈ 20 Hz. This results in a combined

uncertainty of 𝜎 (𝜈−) = 0.3 Hz and only a slightly larger 1.4 ppt uncertainty for 𝜈𝑐 . For
12

C
5+

,

the measurement campaign was very short and no drift was observed.

Summary

All relevant systematic shifts are summarized and corrected for in Table 6.3.

Table 7.5: Statistical results and error budget for Γ𝑒 . For the statistical result, the Brown-

Gabrielse line is used. The difference of the results from the Brown-Gabrielse line to the Voigt

profile is given by 𝛿Γ𝑒,ls and taken as the lineshape uncertainty 𝜎ls for the end results.

𝝂𝒂 𝝂𝒃 𝝂𝒃 (sym) 12
C
5+

Statistic 𝚪𝒆 −5479.86334224(10) −5479.86334222(10) −5479.86334225(14) −4376.21050100(11)
𝛿Γ𝑒,ls/10−8 4 8 26 7

Systematic shifts/10−8
Fields −9(2) −8(2) 0(1) 0(1)
Relativistic −17(1) −19(1) −20(1) −20(1)
Image charge −53(3) −56(3)
Dip 0(7) 0(4)
𝜈− 0(1) −
Total shifts −79(8) −81(8) −72(8) −76(5)
Corrected 𝚪𝒆 −5479.86334145(13) −5479.86334141(13) −5479.86334153(16) −4376.21050024(12)
without 𝜎

ls
24 ppt 24 ppt 29 ppt 29 ppt

Corrected 𝚪𝒆 −5479.86334145(14) −5479.86334141(15) −5479.86334153(31) −4376.21050024(14)
with 𝜎

ls
26 ppt 27 ppt 57 ppt 32 ppt

As argued above, the statistical result is taken from the Brown-Gabrielse line fit of the res-

onances. A separate lineshape uncertainty 𝜎ls is introduced as the difference of the statistical

result from both methods and included in the last given total uncertainty. It is significant only

for the 𝜈𝑏 resonance measurement with symmetrized potentials, where a large difference be-

tween the fit resonance centers exists.

The most significant systematic shift is due to the image charge effect. Compared to ref. [23],

in this experiment it is reduced by about a factor of 2 due to the larger magnetic field, compare

Eq. (2.43). The uncertainty due to the dip contributes more than the uncertainty due to the

image charge shift. For any improved measurement with a larger trap to reduce the image

charge shift and with better statistics, understanding the dip lineshape will thus be crucial.

7.5. Evaluation of results and discussion

Summarizing, the statistical precision has been improved vastly by use of the phase-sensitive

detection techniques. In our experiment, this allowed measuring bound-electron 𝑔-factor res-

onances with a currently unmatched relative width of ∼ 270 ppt. A detailed evaluation of

systematic effects and several cross-checks have been performed showing no limiting factors
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7.5. Evaluation of results and discussion

at the 10−11 level. The three results of Γ𝑒 (9Be
3+) are internally consistent within their respec-

tive 1-𝜎 uncertainties. Additionally, they agree with the result Γ𝑒 (9Be
3+) = −5479.8633435(22)

from the previous chapter, but are more precise by a factor of up to 18. Expressed differently,

this constitutes a consistency check of the Breit-Rabi formula at the level of the uncertainties

of the five measured transition frequencies each of which is better than 30 ppt.

Following is a preliminary discussion of the results currently under ongoing investigation

in our group.

The value Γ𝑒 (12C5+) = −4376.21050024(14) can be directly compared to the experimental

result from ref. [179] Γ𝑒,0(12C5+) = −4376.21050087(12). Surprisingly, even though both values

were measured by nearly identical techniques at two different Penning trap experiments, a

fractional difference of

Γ𝑒 (12C5+) − Γ𝑒,0(12C5+)
Γ𝑒,0(12C5+) = −144(42) ppt, (7.22)

corresponding to nearly 3.5 combined standard deviations, was found.

To include the
9
Be

3+
measurements into this discussion, the values of Γ𝑒 (9Be

3+) can be linked

to Γ(12C5+) via a rescaling factor 𝑅,

Γ𝑒 (12C5+) = 𝑚(12C5+)
𝑚(9Be

3+)
𝑞(9Be

3+)
𝑞(12C5+)

𝑔𝑠 (12C5+)
𝑔𝑠 (9Be

3+)︸                                ︷︷                                ︸
𝑅

Γ𝑒 (9Be
3+), (7.23)

compare Eq. (7.1). This requires both precise values of the mass ratio𝑚(9Be
3+)/𝑚(12C5+) and

the bound-electron 𝑔-factors.

The former has been determined at the Penning-trap mass spectrometer PENTATRAP [180]

via the comparison𝑚(9Be
3+)/𝑚(12C4+). At PENTATRAP, mass-ratios of light and heavy ions

can be measured with an unparalleled fractional precision surpassing 5 ppt [18, 181]. The

preliminary value in atomic mass units,

𝑚(9Be
3+) = 9.010537487225(90) u, (7.24)

features a 10 ppt uncertainty [182]. It is important to emphasize that performing mass mea-

surements at this level of precision demands experimental efforts comparable to those of the

bound-electron 𝑔-factor measurements conducted here.

Extended, state-of-the-art, calculations of the bound-electron 𝑔-factor (preliminary)

𝑔𝑠 (9Be
3+) = −2.0017515746590(19) (7.25)

were performed in the Keitel division by Bastian Sikora et al. [183]. For
9
Be

3+
, the lower 𝑍

compared to
12

C
5+

allows an improved precision of the bound-electron 𝑔-factor. The mass

𝑚(12C5+) = 11.9972576802917(13) u and bound-electron𝑔-factor𝑔𝑠 (12C5+) = −2.0010415901798(47)
are taken from the publication of Γ𝑒,0(12C5+), ref. [179]. The rescaling factor

𝑅 = 0.7985984736590(82) (7.26)
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Figure 7.13: Comparison of bound-electron 𝑔-factor measurements. For details see text.

has a relative uncertainty of 10 ppt, which is smaller by a factor of about 2 compared to the

experimental uncertainty reached here.

Finally, the comparison of the bound-electron 𝑔-factor measurements is visualized in Fig-

ure 7.13. As a whole, all measurements performed here, the bound-electron 𝑔-factor calcula-

tions, and the mass𝑚(9Be
3+) from PENTATRAP, are internally consistent. Thus, most likely,

the discrepancy lies in either a common source of undiscovered systematic errors in the mea-

surements performed here or in the previous measurements of Γ𝑒 (12C5+). At the time of writing

this thesis, no conclusive explanation had been found. The discussion of possible explanations

and future prospects continues in the next chapter.
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Chapter 8.

Outlook and summary

In this chapter, I will give an overview of current and ongoing projects at our experiment,

which is now being called

Magnetic moment (µ)-Trap-Experiment: µTEx.

This includes a new coupling trap for sympathetic laser cooling, prospective measurements

of nuclear magnetic moments and hyperfine splittings, and ongoing bound-electron 𝑔-factor

measurements. Lastly, I will give a summary of the work performed throughout this thesis.

8.1. Sympathetic laser cooling via direct Coulomb coupling

In the case of
3
He, the main goal was the direct determination of its bare nuclear magnetic mo-

ment, which was determined at µTEx via spectroscopy of the combined hyperfine and Zeeman

splitting in
3
He

+
[11]. Choosing spectroscopy on

3
He

+
over spectroscopy on the bare helion

was a matter of the detection of the spin states, which is much more challenging for the bare

system and requires advanced techniques for cooling the ion’s trapping modes [184]. How-

ever, the direct measurement of bare nuclear magnetic moments or the magnetic moments in

helium-like systems such as
6,7

Li
2+

remain intriguing options for directly testing diamagnetic

shielding in two-electron systems [185]. Additionally, measurements of various other interest-

ing transitions would benefit from the reduced Doppler shift and broadening due to the smaller

amplitudes [186]. Therefore, the aim towards advanced cooling techniques is still highly rele-

vant.

One approach is to use sympathetic laser cooling, which has been shown to work to great

success in e.g. RF ion traps [187] or for neutral atoms [188]. To this end, an ion species that is

laser-addressable with available laser sources is used to sympathetically cool the ion of interest.

The laser cooling of
9
Be

+
ions with a 313 nm UV laser was already shown to work here, see

ref. [116]. For coupling the motional modes in Penning traps, several approaches were envis-

aged in ref. [108]. The initial approach to be used at µTEx, called the common-endcap coupling,

uses the interaction of image currents induced in a shared electrode. However, even with the

optimized trap geometry, see Figure 4.3, coupling rates are very small resulting in very diffi-

cult experimental constraints [109]. In another approach, the ions’ axial motions are coupled

141



Chapter 8. Outlook and summary

via their image currents over a common axial detection system, which enhances the coupling

rate. This coupling has been shown in ref. [186] for highly charged ions and has been used to

sympathetically cool a proton [189]. A limitation of this approach is, however, the necessary

coupling to the thermal heat bath of the resonator, which counteracts the laser cooling and

effectively limits the ion temperature.

8.1.1. Concept and trap optimization

At µTEx, a new Penning trap design was developed, which allows to use the direct Coulomb

interaction between laser-cooled ions and the ion of interest to mediate the cooling. The design

was initially developed in ref. [124], but partly changed afterwards.

A schematic of the design is shown in Figure 8.1. The general concept revolves around a

4 mm

Resonator
connection

6.45 mm

9Be+

cloud
ion of
interest

Compensation
electrode

Compensation
electrode

z - L/2 (mm)

Figure 8.1: Bottom: The two traps, indicated by the red and blue shading, share a common,

center endcap. Additional electrodes adjacent to the two trap compensate the potential of the

opposite trap. The top graph shows the potential for
9
Be

+
ions in the left trap and an

3
He

2+
ion

in the right trap at 𝜔𝑧/2𝜋 = 400 kHz.

compromise between coupling strength and ease of optimization of the traps. Therefore, two

close, but individually orthogonal and compensated 5-pole traps with a 2 mm radius are used to

store a cloud of
9
Be

+
and the ion of interest, respectively. Still, the distance of 6.45 mm between

the trap centers requires compensating the influence of one trap’s electrostatic potential on the

others. This compensation is (mostly) done by two additional compensation electrodes adjacent

to the traps. On both ends, additional endcap electrodes are set to ground potential.

A main challenge in optimizing the trap voltages is the large 𝑞/𝑚 mismatch between
9
Be

+

and most (hydrogen-like or bare) ions of interest. As the Coulomb coupling only works ef-
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8.1. Sympathetic laser cooling via direct Coulomb coupling

ficiently on resonance 𝜔𝑧 = 𝜔𝑙 = 𝜔𝑟 , where 𝜔𝑙 and 𝜔𝑟 indicate the axial frequencies in the

left and right trap, respectively, the deep confining potential for
9
Be

+
strongly influences the

shallow potential of the ion of interest. To outline the calculation of the ideal trap potential,

the applied voltages of the eleven electrodes (excepting the grounded endcaps) are defined as

®𝑈 = (𝑊𝐶 , 0,𝑉1,𝑉2,𝑉3, 0,𝑊1,𝑊2,𝑊3, 0,𝑉𝐶 )𝑇 , (8.1)

where𝑉𝑖 refers to voltages of the left trap and𝑊𝑖 of the right trap. For the compensation elec-

trodes, the applied voltage depends mostly on the opposite trap potential, justifying the choice

of the above notation. The primary influence of the other traps are the odd-order coefficients

𝐶1 and 𝐶3. Thus, the optimization criteria

𝐶1(𝑧0,𝑙 ) = 𝐶1(𝑧0,𝑟 ) = 𝐶3(𝑧0,𝑙 ) = 𝐶3(𝑧0,𝑟 ) = 𝐶4(𝑧0,𝑙 ) = 𝐶4(𝑧0,𝑟 ) = 0,

𝐶2(𝑧0,𝑙 ) =
𝜔2
𝑧

2
𝑚𝑙

𝑞𝑙
, 𝐶2(𝑧0,𝑟 ) =

𝜔2
𝑧

2
𝑚𝑟

𝑞𝑟
,

(8.2)

where 𝑧0,𝑙 and 𝑧0,𝑟 are the geometrical trap centers of the left and right trap and
𝑚𝑙,𝑟

𝑞𝑙,𝑟
are the

mass-to-charge ratios of the left and right ion species, were chosen
1
. Using the methods devel-

oped in Section 2.2, these 8 constraints yield a unique solution for the 8 voltages via inversion

of a linear system of equations. In Table 8.1, the computed voltages for 𝜔𝑧/2𝜋 = 400 kHz,
9
Be

+

in the left and
3
He

2+
in the right trap, are given. The axial potential in the trap given these volt-

Table 8.1: . Required voltages ®𝑈𝑓 for the coupling trap with 𝜔𝑧/2𝜋 = 400 kHz,
9
Be

+
in the left

and
3
He

2+
in the right trap. The voltages for using the traps individually, i.e. the other trap at

zero potential, are given by ®𝑈𝑖 .
𝑊𝐶 𝑉1 𝑉2 𝑉3 𝑊1 𝑊2 𝑊3 𝑉𝐶

®𝑈𝑓 /V −0.705 −2.819 −3.187 −2.819 −0.653 −0.682 −0.653 −3.055
®𝑈𝑖 /V - −2.764 −3.142 −2.764 −0.461 −0.524 −0.461 -

( ®𝑈𝑓 − ®𝑈𝑖)/V −0.705 −0.055 −0.045 −0.055 −0.193 −0.158 −0.193 −3.055

ages is shown in Figure 8.1. In this example, the differences between the correction electrodes

voltages,𝑉1 −𝑉3 and𝑊1 −𝑊3, are well below 1 mV. Therefore, working with tuning ratios, e.g.

𝑉1 = 𝑉3 = TR𝑉𝑉2, is still possible. Additionally, the voltages which need to be applied to the

compensation electrodes are close to the ring voltage of the opposite trap, i.e. 𝑊𝐶 ≈ 𝑊2 and

𝑉𝐶 ≈ 𝑉2. In total, this reduces the number of required voltages that need to be tuned separately

in the initial optimization.

8.1.2. Coulomb coupling

The Coulomb potential, see e.g. ref [89], between an ion in the left trap and the right trap is

Φ =
𝑞𝑙𝑞𝑟
4𝜋𝜖0

1

|®𝑟𝑙 − ®𝑟𝑟 |
≈ Φ0 + 𝑞𝑙𝑞𝑟

2𝜋𝜖0𝑑30︸  ︷︷  ︸
𝐾

(𝑧𝑙 − 𝑧𝑟 )2
2

, (8.3)

1
The𝐶1 condition ensures that the ions’ equilibrium positions are in the geometrical centers of the individual traps.
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where 𝑑0 = |𝑧0,𝑙 − 𝑧0,𝑟 |. For the approximation, the potential was expanded around the trap

equilibrium positions 𝑧0,𝑙 and 𝑧0,𝑟 with the displacements 𝑧1 and 𝑧2. This assumes that the

equilibrium positions are essentially unshifted by the weak Coulomb coupling and that the

radial components are negligible small compared to 𝑑0. The additional force on the ions is

given by

𝐹𝑙,𝑟 = − 𝜕Φ

𝜕𝑧𝑙,𝑟
= −𝐾 (𝑧𝑙,𝑟 − 𝑧𝑟,𝑙 ). (8.4)

Integrating this into a coupled differential equation of the axial motions 𝑧𝑙 and 𝑧𝑟 without a

connected resonator or laser cooling, compare Eq. (2.8), gives

d
d𝑡

©­­­«
𝑧𝑙
𝑧𝑙
𝑧𝑟
𝑧𝑟

ª®®®¬ =

©­­­­«
0 𝜔𝑙 0 0

−𝜔𝑙 − 𝐾
𝑚𝑙𝜔𝑙

0 𝐾
𝑚𝑙𝜔𝑙

0
0 0 0 𝜔𝑟
𝐾

𝑚𝑟𝜔𝑟
0 −𝜔𝑟 − 𝐾

𝑚𝑟𝜔𝑟
0

ª®®®®¬
©­­­«
𝑧𝑙
𝑧𝑙
𝑧𝑟
𝑧𝑟

ª®®®¬ . (8.5)

From the eigenvalues of the above matrix, the coupling rate on resonance 𝜔𝑙 = 𝜔𝑟 = 𝜔𝑧 is

calculated as

Ω𝐾 =

√︄
𝐾

(
1
𝑚𝑙

+ 1
𝑚𝑟

)
+ 𝜔2

𝑧 − 𝜔𝑧 ≈
𝐾

2𝜔𝑧

(
1
𝑚𝑙

+ 1
𝑚𝑟

)
, (8.6)

where the last step is possible for small coupling𝐾 ≪𝑚𝑙,𝑟𝜔
2
𝑧 . For the same example of coupling

3
He

2+
to

9
Be

+
, 𝑑0 = 6.45 and 𝜔𝑧/2𝜋 = 400 kHz, Ω/2𝜋 ≈ 30 mHz. While this is a small rate, it

is larger than the rates achieved with other sympathetic coupling schemes for Penning traps

(respectively for a single ion), refs. [109, 186, 190].

To increase the coupling rate, instead of a single ion, a cloud of 𝑛 9
Be

+
ions can be used.

Assuming a common motion of the cloud, this can be included by rescaling the mass and charge

𝑚𝑙 → 𝑛𝑚𝑙 and 𝑞𝑙 → 𝑛𝑞𝑙 , respectively. This modifies the coupling rate to

Ω𝐾 (𝑛) ≈ 𝐾

2𝜔𝑧

(
1
𝑚𝑙

+ 𝑛

𝑚𝑟

)
, (8.7)

giving a proportional increase for large 𝑛. For 𝑛 = 50, a coupling rate of Ω/2𝜋 ≈ 1.1 Hz is

reached.

8.1.3. Cooling

To couple the ions, the axial frequencies need to be resonantly matched. This requires con-

necting an axial detection system to the coupling trap, which acts as a heat bath at 4 K with a

time constant of 𝛾𝑧 , counteracting the sympathetic cooling. However, it is possible to switch

the detector’s resonance frequency, see e.g. ref. [191]. After matching the frequencies, it is

thus possible to significantly reduce the coupling to the resonator’s heat bath. Here, a single,

switchable, resonator is connected to the center endcap electrode, making the simultaneous

detection of the axial frequencies of the ions in both traps possible.
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A complete description of the two axial motions with 𝑛 on-axis laser-cooled
9
Be

+
ions, and

the resonator motion is given by

d
d𝑡

©­­­­­­­«

𝑧𝑙
𝑧𝑙
𝑧𝑟
𝑧𝑟
𝜁

𝜁

ª®®®®®®®¬
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©­­­­­­­­«
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𝛾𝑙

0 0 0 𝜔𝑟 0 0
𝑛𝐾
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𝑚𝑟𝜔𝑟

0 0 − 𝑒𝜔𝑅
𝑞𝑟𝜔𝑟

𝛾𝑟
0 0 0 0 0 𝜔𝑅
0 −𝑛𝑞𝑙𝜔𝑙

𝑒𝜔𝑅
Γ𝑅 0 𝑞𝑟𝜔𝑟
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Γ𝑅 −𝜔𝑅 −Γ𝑅
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𝐴

©­­­­­­­«
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𝑧𝑙
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+
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0
Γ𝐷𝑧𝐷,th(𝑡)

0
0
0

Γ𝑅𝜁th(𝑡)

ª®®®®®®®¬
,

(8.8)

where 𝛾𝑙,𝑟 =
𝑞2𝑙,𝑟𝑅

𝑚𝑙𝑑
2
eff

is defined for single ions for both
9
Be

+
and the ion of interest. The Doppler

laser cooling is included via the cooling rate Γ𝐷 and the thermal noise 𝑧𝐷,th(𝑡)2
, which is linked

to the minimum achievable temperature, called the Doppler temperature 𝑇𝐷 . For
9
Be

+
, 𝑇𝐷 ≈

0.5 mK, which can be converted to the thermal axial amplitude of the
9
Be

+
ions

𝜌2𝑧,𝑙,𝐷 =
1
𝑛

2𝑘𝐵𝑇𝐷
𝑚𝑙𝜔

2
𝑙

(8.9)

via Eq. (2.48). The factor 1/𝑛 is due to the uncorrelated Doppler cooling of the 𝑛 9
Be

+
ions. Fol-

lowing the formalism from Section A, the matrix 𝐵 has two non-zero entries 𝐵22 = Γ𝐷𝜌
2
𝑧,𝑙,𝐷

/2
and 𝐵66 = Γ𝑅𝜌

2
𝜁 ,th

/2. The matrices 𝐴 and 𝐵 allow to calculate the achievable equivalent tem-

perature

𝑇𝑟 =
𝑚𝑟𝜔

2
𝑟 ⟨𝑧2𝑙 (𝑡)⟩
2𝑘𝐵

(8.10)

of the ion of interest via the solution outlined in Section A.1.

Figure 8.2 shows the achieved temperature of the target ion after 100 s of sympathetic cool-

ing as a function of the detuning from the resonator and the detuning between the ions. Ad-

ditional parameters are found in the caption of the figure. The main takeaway from the figure

is, that sympathetically cooling the target ion’s axial motion to the Doppler temperature of

the laser-cooled
9
Be

+
ions is possible with reasonable experimental parameters. The further

the detection system’s resonance frequency is detuned from the ions’ axial frequencies, the

lower the achievable temperature, and a frequency switching of 30 kHz on top of 400 kHz is

possible. Ideally, the
9
Be

+
ions’ axial frequency needs to be detuned by the coupling frequency

𝜈𝑙 − 𝜈𝑟 = Ω𝐾 (𝑛 = 50)/2𝜋 ≈ 1.1 Hz and the matching of the frequencies should be better than

1 Hz. Both conditions pose no major challenge.

8.1.4. Status of the coupling trap

During the course of this work and in cooperation with the workshop at the MPIK, the elec-

trodes for this new Penning trap were designed and later manufactured. Figure 8.3 shows a

picture of the assembled trap. Now, it has replaced the old coupling trap in the trap tower,

compare Figure 4.3, and is ready for commissioning.

2
For Doppler cooling, this noise is the deflection of the ions due to the spontaneous emission.
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Figure 8.2: Achievable temperatures after 100 s of coupling
3
He

2+
to laser-cooled

9
Be

+
ions.

The lowest values of 𝑇𝑟 are only slightly larger than 𝑇𝐷 = 0.5 mK. For this plot, the resonator

𝑄-value 𝑄 = 10000, 𝑑eff = 13.45 mm, and 𝑛 = 50. The axial frequency of the target ion

𝜔𝑟/2𝜋 = 400 kHz is fixed. The laser cooling rate is set to the Rabi frequency Γ𝐷 = Ω𝐾 (higher

values will lead to overdamping).

Figure 8.3: Picture of the assembled Penning trap for sympathetic laser cooling via direct

Coulomb coupling.
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8.2. HFS and nuclear magnetic moment measurements

At µTEx, high-precision measurements of the combined Zeeman and hyperfine splitting have

now been performed for
3
He

+
, ref. [11] and

9
Be

3+
, see Chapter 6. These measurements en-

abled the determination of nuclear magnetic moments with relative precision below 1 ppb, and

measurements of the 1𝑠 HFS at the ppt level.
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Figure 8.4: Visualization of conceptual HFS and nuclear magnetic moment measurements of

light ions with nuclear charge 𝑍 (at the same 𝑍 , the isotopes are sorted left to right by mass).

The top graph shows the zero-field splitting in the 𝑠-state of hydrogen-like and lithium-like

systems [143]. For reference, the Larmor frequency of electrons at 𝐵 = 5.7 T is indicated by

the orange line. In the bottom plot, the fraction 𝛿𝜈𝑧/𝛿𝜈𝑧,p, where p is the proton, is shown for

bare nuclei. Here, 𝛿𝜈𝑧 is the axial frequency jump in the AT due to spin-flips of the nucleus

according to Eq. (3.43). Data for the required nuclear magnetic moments is taken from ref. [33].

In the top of Figure 8.4, the hyperfine splitting 𝜈HFS is plotted for light, 𝑍 ≤ 14, hydrogen-

and lithium-like ions. As 𝜈HFS scales with the third power of 𝑍 , compare Eq. (6.37), it quickly

rises to values similar to the electron Larmor frequency of 𝜈 ≈ 160 GHz at 5.7 T. In the past,

microwave equipment in the high GHz (mm-Wave) to the low THz regime was essentially

unavailable (called the terahertz gap [192]). Now, frequency multipliers with reasonably large

output power are commercially available [193] enabling the spectroscopy of the hydrogen-like
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Zeeman and hyperfine splitting up to the low THz regime. At these higher nuclear charges,

tests of the HFS via the specific difference method used in Section 6.7 would be much more

sensitive to bound-state QED contributions scaling with (𝛼𝑍 )𝑛 .

Concerning measurements of bare-nuclear magnetic moments, the bottom plot of Figure 8.4

shows the relative frequency jump

𝛿𝜈𝑧/𝛿𝜈𝑧,p =
𝑚

𝑚𝑝

𝑔𝐼
𝑔𝑝
, (8.11)

where 𝑔𝑝 ≈ 5.6 is the proton 𝑔-factor. With the parameters from this measurement campaign,

the frequency jump due to a spin-flip of a proton is

𝛿𝜈𝑧,p ≈ 150 mHz, (8.12)

much smaller than the frequency jumps of about 10 Hz which were required to be detected in

the measurements performed here. To be able to detect the even smaller frequency jumps of

heavier ions, many challenging steps need to be taken. One is the implementation of advanced

cooling techniques, see the previous section, to suppress frequency drifts due to cyclotron

quantum jumps, compare ref. [146] and see Figure 6.3. Another is the required stability 𝜎 (𝑈0)
of the ring voltage 𝑈0 which directly influences the axial frequency stability 𝜎 (𝜈𝑧) = 𝜎 (𝑈0)/2,

compare Eq. (2.3). Resolving e.g. 𝛿𝜈𝑧 = 10 mHz on top of 𝜈𝑧 ≈ 800 kHz would require voltage

stability of better than 25 ppb. To this end, a Josephson voltage standard has recently been used

to bias the ring electrode of the analysis trap at this experiment, and shown to improve on cur-

rent commercial state-of-the-art voltage supplies. A publication [194] of these results, which

are part of the PhD thesis of Annabelle Kaiser, is currently in the process of being published.

As an example, performing Zeeman and hyperfine spectroscopy on
6,7

Li in different charge

states presents an intriguing option. With the hydrogen-like system, comparisons to measure-

ments on the helium-like systems [52, 53] would enable tests of two-electron hyperfine split-

tings, where calculations have progressed further than for lithium-like systems [54, 59]. Addi-

tionally, measurements of the nuclear magnetic moments in the bare and helium-like system

could be used to directly test the calculation of diamagnetic shielding parameters of helium-

like systems, such as
3
He [185]. The development of an in-trap

6,7
Li target (amongst other

candidates) has been the topic of a recent Bachelor thesis at µTEx [195].

8.3. Bound-electron 𝑔-factor measurements

Following the measurements performed in Chapter 7 and the discrepancy within Γ𝑒 (12C5+),
continued efforts were taken towards minimizing systematic effects. Specifically, the mag-

netostatic imperfection 𝐵2 ≈ 1 Tm
−2

and the associated linewidths Δ𝜈 (9Be
3+) ≈ 18 Hz and

Δ𝜈 (12C5+) ≈ 13 Hz, corresponding to about 100 ppt relative to the transition frequencies, were

concerningly large. While the resulting asymmetric lineshape does not lead to significant con-

tributions and has been cross-checked in this work by numerical integration, see Section A.6,

the latter still shares some assumptions with the formal derivation from ref. [62].

To mitigate any potential asymmetry due to 𝐵2 and cross-check the results obtained in this

work, efforts towards reducing the 𝐵2 in the PT have been pursued. Now, measurements of
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the bound-electron 𝑔-factor of
4
He

+
with significantly reduced 𝐵2 (and 𝐵1) are currently be-

ing performed as part of the PhD thesis of Marius Müller. With
4
He

+
, the theory uncertainty

of the bound-electron 𝑔-factor is additionally suppressed [20], making it an ideal candidate to

determine the electron mass via the mass ratio𝑚(4He
+)/𝑚𝑒 , compare Eq. (7.1), and a comple-

mentary measurement of the mass of 𝑚(4He
+) in atomic mass units. The latter has recently

been performed in a Penning trap with 12 ppt relative uncertainty [196]. Here, with the already

shown improvement of the statistical precision, the goal is a measurement of𝑚(4He
+)/𝑚𝑒 with

a relative uncertainty of better than 10 ppt.

8.4. Summary

The beginning of my PhD work coincided with the start of the assembly of the initial setup used

for the following measurement of the
3
He

+
magnetic moments [11]. While contributing to the

assembly, commissioning, and spectroscopy measurements, with a focus on programming the

experimental control software and co-analyzing the data, I concentrated on efforts towards the

measurement of the bare nuclear magnetic moment of
3
He

2+
. For the latter, two major upgrades

were envisaged. Firstly, a new analysis trap with a larger 𝐵2 to increase the detection signal

for the small nuclear magnetic moment, designed by Antonia Schneider [95], was supposed

to replace the old AT design. Secondly, with the goal of eventually using sympathetic laser

cooling, I designed the laser alignment stages inside the vacuum apparatus for both the ablation

of
9
Be and the 313 nm cooling laser. After the measurements on

3
He

+
were finished, the setup

was thus modified to a large extent. In addition to the laser alignment stages, this included

a complete reassembly of the trap tower with the new AT, the new 7-pole PT, designed by

Marius Müller, and the first design of the coupling traps. Following, initial attempts at laser

ablation and Doppler cooling of
9
Be

+
were successful with the new setup, ref. [194]. However,

after performing laser cooling measurements for a while, complications arose due to large axial

frequency drifts, probably caused by induced surface charges from the UV laser. Additionally,

the strong experimental constraints required for the common-endcap coupling, which includes

frequency matching, made us abandon sympathetic laser cooling efforts with the current setup.

Measurements with 9Be3+

Nevertheless, the in-trap production of
9
Be ions presented the prospect of performing Zeeman

and hyperfine spectroscopy on hydrogen-like
9
Be

3+
. Here, by comparison to the measurements

performed on
9
Be

+
, ref [117, 141], the goal was to perform the first high-precision comparison

of such measurements across different charge states.

Towards performing and evaluating these measurements, I implemented and developed var-

ious improvements to the previously employed Penning-trap techniques. Here, the implemen-

tation of phase-sensitive detection of the modified cyclotron motion stands out. Directly, this

allowed to drastically improve the magnetic field measurement uncertainty by more than an

order of magnitude. Additionally, with the methods I developed to measure field imperfec-

tions and the motional amplitudes, the corresponding systematic shifts on 𝜈𝑐 could be robustly

evaluated with uncertainties well below 10 ppt.
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The measurement of nuclear-spin transition frequencies in
9
Be

3+
was evaluated to determine

nuclear properties. Specifically, the nuclear magnetic moment and the effective Zemach radius

were determined, improving on the uncertainty of previous determinations with
9
Be

+
by more

than one order of magnitude. Now, the nuclear magnetic moment of
9
Be, determined with

0.6 ppb uncertainty, is the second most precise such value after the proton’s [28]. Additionally,

the comparison to the measurements performed on
9
Be

+
serves as a crucial test of how nuclear

properties transfer across different charge states. As such, the first test of the calculation of

multi-electron diamagnetic shielding parameters was performed with 30 ppb precision, limited

by the current theoretical calculations. Given the experimental uncertainty, future improved

theoretical values can be tested with 1 ppb precision.

Using the phase-sensitive detection, I measured electron-spin resonances with full width at

half maximum below 0.3 ppb, better by a factor of two compared to any currently published

bound-electron 𝑔-factor measurement. Statistical uncertainties of around 20 ppt on Γ𝑒 could

be reached with relatively low statistics. Additionally, many cross-checks were performed to

check systematic effects at the 10 ppt level. While currently an unexplained discrepancy be-

tween our Γ𝑒 determinations exists to the previous determination, the measurements performed

here pave the way towards a determination of the electron mass in atomic units with better

than 10 ppt uncertainty.
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charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 90,
045005 (2018).

5. Morgner, J. et al. Stringent test of QED with hydrogen-like tin. Nature 622, 53–57 (2023).

6. Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Na-
ture 550, 371–374 (2017).

7. Smorra, C. et al. Direct limits on the interaction of antiprotons with axion-like dark matter.
Nature 575, 310–314 (2019).

8. Borchert, M. J. et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge–
mass ratio. Nature 601, 53–57 (2022).

9. Sailer, T. et al. Measurement of the bound-electron g-factor difference in coupled ions. Nature
606, 479–483 (2022).

10. Door, M. et al. Search for new bosons with ytterbium isotope shifts. 2024.

11. Schneider, A. et al. Direct measurement of the 3He+ magnetic moments. Nature 606, 878–

883 (2022).

12. Gerlach, W. & Stern, O. Der experimentelle Nachweis der Richtungsquantelung im Mag-
netfeld. Zeitschrift für Physik 9, 349–352 (1922).

13. Dirac, P. A. M. & Fowler, R. H. The quantum theory of the electron. Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical Character
117, 610–624 (1928).

14. Aoyama, T., Kinoshita, T. & Nio, M. Theory of the Anomalous Magnetic Moment of the
Electron. Atoms 7 (2019).

15. Fan, X., Myers, T. G., Sukra, B. A. D. & Gabrielse, G. Measurement of the Electron Magnetic
Moment. Phys. Rev. Lett. 130, 071801 (2023).

16. Breit, G. The Magnetic Moment of the Electron. Nature 122, 649–649 (1928).

17. Sturm, S. et al. 𝑔-factor measurement of hydrogenlike 28Si13+ as a challenge to QED calcu-
lations. Phys. Rev. A 87, 030501 (2013).

153

http://dx.doi.org/10.1103/RevModPhys.71.S96
http://dx.doi.org/https://doi.org/10.1146/annurev.nucl.012809.104433
http://dx.doi.org/10.1088/1361-6471/ab4cd2
http://dx.doi.org/10.1088/1361-6471/ab4cd2
http://dx.doi.org/10.1103/RevModPhys.90.045005
http://dx.doi.org/10.1103/RevModPhys.90.045005
http://dx.doi.org/10.1038/s41586-023-06453-2
http://dx.doi.org/10.1038/nature24048
http://dx.doi.org/10.1038/s41586-019-1727-9
http://dx.doi.org/10.1038/s41586-021-04203-w
http://dx.doi.org/10.1038/s41586-021-04203-w
http://dx.doi.org/10.1038/s41586-022-04807-w
http://dx.doi.org/10.1038/s41586-022-04761-7
http://dx.doi.org/10.1098/rspa.1928.0023
http://dx.doi.org/10.3390/atoms7010028
http://dx.doi.org/10.3390/atoms7010028
http://dx.doi.org/10.1103/PhysRevLett.130.071801
http://dx.doi.org/10.1103/PhysRevLett.130.071801
http://dx.doi.org/10.1038/122649a0
http://dx.doi.org/10.1103/PhysRevA.87.030501
http://dx.doi.org/10.1103/PhysRevA.87.030501


Bibliography

18. Heiße, F. et al. High-Precision Determination of 𝑔 Factors and Masses of 20Ne9+ and 22Ne9+.
Phys. Rev. Lett. 131, 253002 (2023).

19. Sailer, T. Direct Bound-Electron g-Factor Difference Measurement of Coupled Ions at Alpha-
trap. PhD thesis (Universität Heidelberg, 2022).

20. Zatorski, J. et al. Extraction of the electron mass from 𝑔-factor measurements on light hy-
drogenlike ions. Phys. Rev. A 96, 012502 (2017).

21. Mohr, P. J. & Taylor, B. N. CODATA recommended values of the fundamental physical
constants: 1998. Rev. Mod. Phys. 72, 351–495 (2000).

22. Tiesinga, E., Mohr, P., Newell, D. & Taylor, B. CODATA Recommended Values of the Fun-
damental Physical Constants: 2018. en (2021).

23. Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506,
467–470 (2014).

24. Heiße, F. et al. High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518

(2019).

25. Sturm, S. et al. The ALPHATRAP experiment. The European Physical Journal Special Topics
227, 1425–1491 (2019).
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tion“ [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530-533 (1908)].
American Journal of Physics 65, 1079–1081 (1997).

199. Fokker, A. D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. An-
nalen der Physik 348, 810–820 (1914).
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Appendix A.

Thermal motion

In Section 2.5, the detection and thermalization of the axial motion via the resonant RLC

circuit was described. The statistic nature of the added noise term in Eq. (2.47) makes a full

deterministic solution of the differential equation impossible.

In this chapter, I will outline a statistical solution of the particles motion inside the Penning

trap. Initially, the main goal was the prediction of the achievable cooling capabilities of the

new coupling trap design, but the general framework developed here showed to have further

applications. This includes sampling of time series detection data, sampling of cycles of the

phase-sensitive detection method and the numerical integration of the asymmetric spin-flip

probability lineshape.

A.1. Statistical solutions of the Langevin equation

The system of particle and noise driven resonator, Eq. (2.47), is a particular case of a general

white noise driven linear state-space system. It may be written as

d
d𝑡

®𝑥 = 𝐴®𝑥 + 𝛿 ®𝐹 (𝑡), (A.1)

where ®𝑥 are the phase space coordinates, 𝐴 is the matrix describing the drift components and

𝛿 ®𝐹 (𝑡) is a white noise force that leads to diffusion. Such systems are called Ornstein-Uhlenbeck

processes and their statistical solutions have been thoroughly investigated [197]. The above

equation is called the Langevin equation of the process [198]. Alternatively, the process may

be expressed by the Fokker-Planck equation which describes the evolution of the probability

in phase space [199, 200].

It can be checked that the formal solution

®𝑥 (𝑡) = 𝑒𝐴𝑡 ®𝑥0 +
∫ 𝑡

0
d𝑡 ′𝑒𝐴(𝑡−𝑡 ′ )𝛿 ®𝐹 (𝑡 ′), (A.2)

where 𝑒𝐴𝑡 is a matrix exponential, solves the Langevin equation. As prior knowledge of the

noise term 𝛿 ®𝐹 (𝑡 ′) is not given this can not be computed analytically.
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Appendix A. Thermal motion

The statistical quantities that can be solved for in this type of equation are the mean ®𝑀 (𝑡)
and covariance matrix Σ(𝑡) of the phase space coordinates. The only knowledge available of

the white noise 𝛿 ®𝐹 (𝑡) is that its mean is zero〈
𝛿 ®𝐹 (𝑡)〉 = 0 (A.3)

and it is fully uncorrelated between times 𝑡 and 𝑡 ′〈
𝛿𝐹𝑖 (𝑡)𝛿𝐹 𝑗 (𝑡 ′)

〉
= 2𝐵𝑖 𝑗𝛿 (𝑡 − 𝑡 ′) . (A.4)

Here 𝛿 (𝑡 − 𝑡 ′) is the Dirac delta function and the matrix 𝐵𝑖 𝑗 the correlation matrix. This allows

to compute the mean value of Eq. (A.2)

®𝑀 (𝑡) = 〈®𝑥 (𝑡)〉 = 〈
𝑒𝐴𝑡 ®𝑥0

〉 + 〈∫ 𝑡

0
d𝑡 ′𝑒𝐴(𝑡−𝑡 ′ )𝛿 ®𝐹 (𝑡 ′)〉 = 𝑒𝐴𝑡 ®𝑥0 + ∫ 𝑡

0
d𝑡 ′𝑒𝐴(𝑡−𝑡 ′ ) 〈𝛿 ®𝐹 (𝑡 ′)〉

= 𝑒𝐴𝑡 ®𝑥0,
(A.5)

where

〈· · ·〉 is an average over the all the possible implementations of the statistical variables.

Similarly the covariance matrix can be computed, again utilizing the vanishing of the mean of

the noise:

Σ𝑖 𝑗 (𝑡) =
〈
𝑥𝑖 (𝑡)𝑥 𝑗 (𝑡) −𝑀𝑖 (𝑡)𝑀 𝑗 (𝑡)

〉
=

〈∫ 𝑡

0
d𝑡

′
∫ 𝑡

0
d𝑡

′′ (𝑒𝐴(𝑡−𝑡 ′ ) )𝑖𝑘𝛿𝐹𝑘 (𝑡
′) (𝑒𝐴(𝑡−𝑡 ′′ ) ) 𝑗𝑙𝛿𝐹𝑙 (𝑡

′′)〉
=

∫ 𝑡

0
d𝑡

′
∫ 𝑡

0
d𝑡

′′ (𝑒𝐴(𝑡−𝑡 ′ ) )𝑖𝑘 (𝑒𝐴(𝑡−𝑡 ′′ ) ) 𝑗𝑙
〈
𝛿𝐹𝑘 (𝑡

′)𝛿𝐹𝑙 (𝑡
′′)〉

=
∫ 𝑡

0
d𝑡

′
∫ 𝑡

0
d𝑡

′′ (𝑒𝐴(𝑡−𝑡 ′ ) )𝑖𝑘 (𝑒𝐴(𝑡−𝑡 ′′ ) ) 𝑗𝑙2𝐵𝑘𝑙𝛿 (𝑡
′ − 𝑡 ′′)

=
∫ 𝑡

0
d𝑡

′ (𝑒𝐴(𝑡−𝑡 ′ ) )𝑖𝑘 (𝑒𝐴(𝑡−𝑡 ′ ) ) 𝑗𝑙2𝐵𝑘𝑙

=

(∫ 𝑡

0
d𝑡

′
𝑒𝐴(𝑡−𝑡 ′ )2𝐵𝑒𝐴

𝑇 (𝑡−𝑡 ′ )
)
𝑖 𝑗

,

(A.6)

where in the second to last step the Dirac delta of the noise covariance Eq. (A.4) was evaluated
1

and the Einstein summing convention is used throughout. It’s now advantageous to express

the matrix exponential in the eigenbasis of 𝐴, where it is diagonal. Let 𝑄 be the matrix which

diagonalizes 𝐴 to

Λ = 𝑄−1𝐴𝑄 = diag(𝜆𝑖), (A.7)

where 𝜆𝑖 are the eigenvalues of 𝐴 corresponding to the eigenvectors in 𝑄 . This simplifies the

matrix exponential to

𝑒𝐴𝑡 = 𝑄𝑒Λ𝑡𝑄−1 = 𝑄 diag(𝑒𝜆𝑖𝑡 )𝑄−1. (A.8)

1
Typically, the evaluation would require an integral over the whole real axis. As the surface of integration always

contains the line 𝑡
′
= 𝑡

′′
, where the covariance of the noise is non-zero this is not a problem.
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This allows to further evaluate Eq. (A.6) to

Σ𝑖 𝑗 (𝑡) =
(∫ 𝑡

0
d𝑡

′
𝑄𝑒Λ(𝑡−𝑡

′ )𝑄−12𝐵(𝑄−1)𝑇𝑒Λ(𝑡−𝑡
′ )𝑄𝑇

)
𝑖 𝑗

= 𝑄𝑖𝑘

(∫ 𝑡

0
d𝑡

′
𝑒Λ(𝑡−𝑡

′ )2𝐵
′
𝑒Λ(𝑡−𝑡

′ )
)
𝑘𝑙

𝑄𝑇𝑙 𝑗 = 𝑄𝑖𝑘Σ
′
𝑘𝑙𝑄

𝑇
𝑙 𝑗 .

(A.9)

For the transformed Σ
′
𝑘𝑙

the integral may be evaluated to give

Σ
′
𝑘𝑙 (𝑡) =

∫ 𝑡

0
d𝑡

′
𝑒 (Λ𝑘𝑚+Λ𝑛𝑙 ) (𝑡−𝑡 ′ )2𝐵

′
𝑚𝑛 =

{
2𝐵

′
𝑘𝑙
𝑡, if 𝜆𝑘 + 𝜆𝑙 = 0,

2
𝐵
′
𝑘𝑙

𝜆𝑘+𝜆𝑙
(
𝑒 (𝜆𝑘+𝜆𝑙 )𝑡 − 1

)
, otherwise,

(A.10)

For a wide range of problems, including the damped axial motion, all modes are coupled

to the dissipative component and their eigenvalues thus have negative real part. Then the

exponential goes to zero in the above equation and also in the equation for the mean value 𝑀 .

Therefore,

Σ
′∞
𝑘𝑙 = Σ

′
𝑘𝑙 (𝑡 → ∞) = −2 𝐵

′
𝑘𝑙

𝜆𝑘 + 𝜆𝑙
, (A.11)

and the backtransformed value

Σ∞
𝑘𝑙 =

〈
𝑥𝑘 (𝑡 → ∞)𝑥𝑙 (𝑡 → ∞)〉 = (𝑄Σ′∞𝑄𝑇 )𝑘𝑙 (A.12)

in the original phase space coordinates converges to a value independent of the initial phase

space point. This signifies a reached thermal equilibrium of the phase space. Furthermore, the

diagonal entries of this equilibrium phase space covariance matrix are equal to the square of

the thermal amplitudes or equivalently proportional to the thermal energy of the modes. The

problem of calculating the mean drift of the phase space vector and the covariance matrix Σ(𝑡)
is now translated to a problem of linear algebra. Only the eigendecomposition of the matrix 𝐴
expressed through 𝑄 and Λ is needed, then all other quantities may be calculated via simple

sums and matrix multiplications.

While this derivation is somewhat straight forward to follow and does not need a very big

background knowledge, there is a significantly easier to use result for Σ(𝑡) given in ref. [201]:

vec(Σ(𝑡)) = 2

(∫ 𝑡

0
𝑒 (𝐴⊗𝟙𝑁 +𝟙𝑁 ⊗𝐴) (𝑡−𝑡 ′ )

)
vec(𝐵)

= 2(𝐴 ⊗ 𝟙𝑁 + 𝟙𝑁 ⊗ 𝐴)−1
(
𝑒 (𝐴⊗𝟙𝑁 +𝟙𝑁 ⊗𝐴)𝑡 − 𝟙2𝑁

)
vec(𝐵),

(A.13)

where ⊗ is the Kronecker Product, 𝟙𝑘 is the unity matrix of dimension 𝑘 x𝑘 , 𝑁 x𝑁 is the di-

mension of the square matrix 𝐴 and vec(· · · ) is called the stack operator and transforms the

matrix to a column vector by stacking its columns. The last step is only possible if the matrix

in the exponential is invertable. For the case of Σ∞
the exponential again goes to zero and what

is left is

vec(Σ∞) = −2(𝐴 ⊗ 𝟙𝑁 + 𝟙𝑁 ⊗ 𝐴)−1vec(𝐵) . (A.14)
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A.2. Solution of the Fokker-Planck equation

The Fokker-Planck equation is a differential equation for the probability density function𝑝 ( ®𝑥, 𝑡)
of the state-space vector ®𝑥 . Having solved the Langevin equation of the Ornstein-Uhlenbeck

for the mean ®𝑀 (𝑡) and covariance matrix Σ(𝑡) enables directly to write down the solution of

the Fokker-Planck equation [202]

𝑝 ( ®𝑥, 𝑡) = 1√︁
|2𝜋Σ(𝑡) |

exp

(
−1
2
( ®𝑥 − ®𝑀 (𝑡))𝑇 Σ−1(𝑡) ( ®𝑥 − ®𝑀 (𝑡))

)
, (A.15)

where |2𝜋Σ(𝑡) | is the determinant of the matrix 2𝜋Σ(𝑡). The state-space vector ®𝑥 is distributed

according to a multivariate normal distribution with mean ®𝑀 (𝑡) and covariance Σ(𝑡). This dis-

tribution has a maximum for values ®𝑥 = ®𝑀 (𝑡) that follow the deterministic trajectory without

noise.

For the steady-state or thermal distribution the mean ®𝑀 (𝑡) goes to zero and the covariance

will be replaced by Σ∞
.

𝑝 ( ®𝑥) = 1√︁
|2𝜋Σ∞ |

exp

(
−1
2
®𝑥𝑇 (Σ∞)−1®𝑥

)
. (A.16)

This is the probability to observe a point ®𝑥 at time 𝑡 at equilibrium without having prior knowl-

edge about the previous phase space history.

The probability Eq. (A.15) is implicitly the probability to observe ®𝑥 given the initial point ®𝑥0
at time 𝑡 = 0, as given in ®𝑀 (𝑡). The transition probability density to observe the point ( ®𝑥, 𝑡)
after having observed ( ®𝑥 ′

, 𝑡
′) is thus

𝑝 ( ®𝑥, 𝑡 | ®𝑥 ′
, 𝑡

′) = 1√︁
|2𝜋Σ(𝑡 − 𝑡 ′) |

exp

(
−1
2
( ®𝑥 − 𝑒𝐴(𝑡−𝑡 ′ ) ®𝑥 ′)𝑇 Σ−1(𝑡 − 𝑡 ′) ( ®𝑥 − 𝑒𝐴(𝑡−𝑡 ′ ) ®𝑥 ′)

)
. (A.17)

Even at thermal equilibrium, observing two points consecutively is most likely if the second

point lies on the deterministic path given by 𝑒𝐴(𝑡−𝑡 ′ )
. This can be expressed also as the proba-

bility distribution around the mean path taken with timesteps 𝜏 . The probability to transition

from ®𝑥𝑡 to ®𝑥𝑡+𝜏 = 𝑒𝐴𝜏 ®𝑥𝑡 + 𝛿 ®𝑥 is

𝑝 (𝛿 ®𝑥, 𝜏) = 1√︁
|2𝜋Σ(𝜏) |

exp

(
−1
2
𝛿 ®𝑥𝑇 Σ−1(𝜏)𝛿 ®𝑥

)
, (A.18)

which depends only on the step size 𝜏 [201]. The probability 𝑝 (𝛿 ®𝑥, 𝜏) is the probability density

of the multivariate normal distribution 𝑁 (0, Σ(𝜏)) with zero mean and covariance Σ(𝜏).

A.2.1. Generation of time domain data

Particular solutions of the trajectory ®𝑥 (𝑡) of Eq. (A.1) can be sampled similar to probability

distribution, the difference being that successively sampled points are correlated to the previous

point. Given an initial point ®𝑥𝑛 the next point after a timestep 𝜏 can be taken as

®𝑥𝑛+1 = 𝑒𝐴𝜏 ®𝑥𝑛 + 𝛿 ®𝑥, 𝛿 ®𝑥 ∼ 𝑁 (0, Σ(𝜏)) (A.19)
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where 𝛿 ®𝑥 ∼ 𝑁 (0, Σ(𝜏)) means that 𝛿 ®𝑥 is sampled from the multivariate normal distribution

with density given in Eq. (A.18).

This kind of sampling is very easy to implement, as it requires only to calculate the ma-

trix exponential 𝑒𝐴𝜏 and covariance matrix Σ(𝜏). Sampling of the multivariate distribution

𝑁 (0, Σ(𝜏)) is also straightforward and can be translated to sampling from one dimensional

normal distributions [203].

A.3. Power spectral density

In practice, the power spectral density may reveal more readily observable information as the

directly detected noise signal in the time domain. This is especially true for detected thermal

noise, as is the case for the dip detection employed in Penning trap experiments. The power

spectral density matrix of the solution Eq. (A.2) is defined as

Σ𝑖, 𝑗 (𝜔)𝑇 =
〈
𝑥∗𝑖 (𝜔)𝑥 𝑗 (𝜔)

〉
𝑇
=

1
𝑇

〈∫ 𝑇

0
d𝑡1𝑒

𝑖𝜔𝑡1𝑥𝑖 (𝑡1)
∫ 𝑇

0
d𝑡2𝑒

−𝑖𝜔𝑡2𝑥 𝑗 (𝑡2)
〉
, (A.20)

compare ref. [204] Section 1.4.2. On the diagonal, 𝑖 = 𝑗 , this formula is the continuous time ver-

sion, 𝑓𝑠 → ∞, of the average computed Welch periodogram without overlapping and Fourier

window of 𝑇FFT = 𝑇 seconds, compare Section 5.1. The detection time 𝑇 is typically taken

to infinity for the theoretical derivation, but practically it is off course finite. The finiteness

of the experimental detection signal leads to what is called spectral leakage which may lead

to undesired consequences. For the evaluation, the stationary case is assumed, such that the

deterministic term in Eq. (A.2) can be dropped. Similar to the derivation in Eq. (A.10), the aver-

aging is pulled into the integral to simplify them via the Dirac delta. With a similar definition

of the primed values in the eigenbasis of 𝐴, the autocovariance

Σ′
𝑘,𝑙 (𝑡1, 𝑡2) = 2

𝐵′
𝑘,𝑙

𝜆𝑘 + 𝜆𝑙
[
𝑒𝜆𝑘𝑡1+𝜆𝑙 𝑡2 − 𝑒𝜆𝑙 |𝑡2−𝑡1 |

]
(A.21)

can be used to calculate
2

Σ′
𝑘,𝑙 (𝜔)𝑇 =

∫ 𝑇

0
d𝑡1𝑒

𝑖𝜔𝑡1

∫ 𝑇

0
d𝑡2𝑒

−𝑖𝜔𝑡2Σ′(𝑡1, 𝑡2). (A.22)

Evaluating this intermediate result involves only integration of exponentials but turns out

rather lengthy to yield

Σ′
𝑘,𝑙 (𝜔)𝑇 =

1
𝑇

2𝐵′
𝑘,𝑙

𝜆𝑘 + 𝜆𝑙

[
1

𝜆𝑘 + 𝑖𝜔
1

𝜆𝑙 − 𝑖𝜔
(
𝑒 (𝜆𝑘+𝑖𝜔 )𝑇 − 1

) (
𝑒 (𝜆𝑙−𝑖𝜔 )𝑇 − 1

)
+ 1
(𝜆𝑙 − 𝑖𝜔)2

(
𝑒 (𝜆𝑙−𝑖𝜔 )𝑇 − 1

)
− 𝑇

𝜆𝑙 − 𝑖𝜔
+ 1
(𝜆𝑙 + 𝑖𝜔)2

(
𝑒 (𝜆𝑙+𝑖𝜔 )𝑇 − 1

)
− 𝑇

𝜆𝑙 + 𝑖𝜔

]
.

(A.23)

2
This result can also be found in ref. [204] Eq.(4.4.47). The result of the autocovariance reduces to the covariance

Eq. (A.10) for 𝑡1 = 𝑡2 = 𝑡 .
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The power spectral density matrix in the unprimed basis is (the subscript 𝑇 is the time and

the superscript is for transposing)

Σ(𝜔)𝑇 = 𝑄Σ′(𝜔)𝑇𝑄𝑇 . (A.24)

For the limiting case, a simpler result can be derived, see ref. [204] Eq. (4.4.58)

Σ(𝜔)∞ =
1
2𝜋

(𝐴 − 𝑖𝜔𝟙𝑁 )−1𝐵(𝐴𝑇 + 𝑖𝜔𝟙𝑁 )−1. (A.25)

Later, the calculations of this section will be used for the axial frequency detection to cal-

culate the dip lineshape directly from the matrices 𝐴 and 𝐵. Similarly, they can be applied

also to interacting systems, such as the coupling trap, Eq. (8.8) and other sympathetic cooling

schemes, to calculate the theoretical detection lineshapes in the frequency domain.

A.4. Thermal amplitudes

The thermal amplitudes can by calculated via the equilibrium value of the covariance matrix

Σ∞ =
〈®𝑥 (∞)𝑇 ®𝑥 (∞)〉 derived above.

A.4.1. Resonator

As a first example, this framework is applied to the thermally driven resonator. The eom, in

analogy to Eq. (2.47), may be written as

d
d𝑡

(
𝜁

𝜁

)
=

(
0 𝜔𝑅

−𝜔𝑅 −Γ𝑅

)
︸          ︷︷          ︸

𝐴

(
𝜁

𝜁

)
︸︷︷︸

®𝜁

+
(

0
Γ𝑅𝜁𝑡ℎ (𝑡)

)
︸      ︷︷      ︸

𝛿 ®𝐹 (𝑡 )

. (A.26)

The matrix 𝐵, defined through Eq. (A.4), has only a single component at 𝐵22 = 𝑏. In this exam-

ple, the longer path of utilizing the eigendecomposition of 𝐴 is still feasible. The eigenvalues

and diagonalization matrix are

𝜆1,2 = −Γ𝑅
2

± 𝑖𝜔 ′
𝑅, 𝑄 =

(
𝜆2/𝜔𝑅 𝜆1/𝜔𝑅

1 1

)
, 𝑄−1 = 𝑖

𝜔𝑅

2𝜔
′
𝑅

(
1 −𝜆1/𝜔𝑅
−1 𝜆2/𝜔𝑅

)
(A.27)

where 𝜔
′
𝑅 =

√︃
𝜔2
𝑅 − Γ2𝑅/4. Calculating

𝐵
′
= 𝑄−1𝐵(𝑄−1)𝑇 = − 𝑏

4𝜔
′2
𝑅

(
𝜆21 −𝜔2

𝑅
−𝜔2

𝑅 𝜆22

)
, (A.28)

gives

Σ
′∞ =

𝑏

2𝜔
′2
𝑅

(
2𝜆1 −𝜔2

𝑅/Γ𝑅
−𝜔2

𝑅/Γ𝑅 2𝜆2

)
(A.29)
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which finally yields the simple result

Σ∞ =
〈®𝜁𝑇 (∞) ®𝜁 (∞)〉 = 𝑄Σ′∞𝑄𝑇 =

𝑏

Γ𝑅

(
1 0
0 1

)
≡ 1

2
𝜌2𝜁 ,𝑡ℎ

(
1 0
0 1

)
, (A.30)

where 𝜌𝜁 ,𝑡ℎ is the thermal amplitude of the resonator phase space coordinates. The off-diagonal

entries being zero is a interpreted as fully uncorrelated position and velocity at thermal equi-

librium.

The value of 𝑏 = 1
2𝜌

2
𝜁 ,𝑡ℎ

Γ𝑅 can be reproduced via the definition of 𝜁𝑡ℎ = 𝑑
eff

𝑒𝜔𝑅
𝐼𝑡ℎ . The autocor-

relation function of the thermal Johnson-Nyquist noise 𝐼𝑡ℎ is related to the one-sided power

spectral density 𝑖2
𝑡ℎ

= 4𝑘𝐵𝑇𝑧/𝑅 via the Wiener–Khinchin theorem to yield [71, 205, 206]〈
𝐼𝑡ℎ (𝑡)𝐼𝑡ℎ (𝑡

′)〉 = 2
𝑘𝐵𝑇𝑧
𝑅

𝛿 (𝑡 − 𝑡 ′). (A.31)

Therefore

𝜌2𝜁 ,𝑡ℎ = 2
𝑏

Γ𝑅
= 2

𝑘𝐵𝑇𝑧
𝑅

𝑑2
eff
Γ𝑅

𝑒2𝜔2
𝑅

= 2
𝑘𝐵𝑇𝑧

𝑒2 𝑅
2

𝐿

𝑑2
eff

=
𝑞2

𝑒2
Γ𝑅
𝛾𝑧

𝜔2
𝑧

𝜔2
𝑅

𝜌2𝑧,𝑡ℎ, (A.32)

where the definition of the thermal radius Eq. (2.48) was used to express 𝜌2
𝜁 ,𝑡ℎ

via measurable

quantities only.

A.4.2. Axial motion

The axial motion coupled to the resonator is given by Eq. (2.47) and is quoted here

d
d𝑡

©­­­«
𝑧
𝑧
𝜁

𝜁

ª®®®¬ =

©­­­­«
0 𝜔𝑧 0 0

−𝜔𝑧 0 0 𝑒𝜔𝑅
𝑞𝜔𝑧

𝛾𝑧
0 0 0 𝜔𝑅
0 −𝑞𝜔𝑧

𝑒𝜔𝑅
Γ𝑅 −𝜔𝑅 −Γ𝑅

ª®®®®¬︸                                   ︷︷                                   ︸
𝐴

©­­­«
𝑧
𝑧
𝜁

𝜁

ª®®®¬︸︷︷︸
®𝑥

+
©­­­«

0
0
0

Γ𝑅𝜁𝑡ℎ (𝑡)

ª®®®¬︸      ︷︷      ︸
𝛿 ®𝐹 (𝑡 )

. (A.33)

The single entry of the matrix 𝐵44 = 𝑏 = 1
2𝜌

2
𝜁 ,𝑡ℎ

Γ𝑅 was derived in the previous example.

Here, using the eigendecomposition of 𝐴 to arrive at a symbolic result is not feasible. Solv-

ing Eq. (A.14) via symbolic calculations performed with Mathematica [73] gives the diagonal

matrix

Σ∞ =

©­­­­«
1
2𝜌

2
𝑧,𝑡ℎ

0 0 0
0 1

2𝜌
2
𝑧,𝑡ℎ

0 0
0 0 1

2𝜌
2
𝜁 ,𝑡ℎ

0

0 0 0 1
2𝜌

2
𝜁 ,𝑡ℎ

ª®®®®¬
. (A.34)

To arrive at this result, the various definitions 𝜔2
𝑅 = 1/(𝐿𝐶), Γ𝑅 = 1/(𝑅𝐶), 𝛾𝑧 = 𝑞2𝑅

𝑑2
eff
𝑚

and the

definition of the thermal radius
1
2𝑚𝜔

2
𝑧𝜌

2
𝑧,𝑡ℎ

= 𝑘𝐵𝑇𝑧 where used. This is in fact a derivation of

the thermal radius of the axial motion.

175



Appendix A. Thermal motion

Because Σ∞
is diagonal, the steady state probability density Eq. (A.16) factorizes for the four

components of the state-space vector. Because the 𝑧 and 𝑧-coordinate are normally distributed,

the amplitude 𝜌𝑧 is Maxwell distributed

𝑝 (𝜌𝑧) = 𝜌𝑧
1
2𝜌

2
𝑧,𝑡ℎ

exp

(
− 𝜌2𝑧
𝜌2
𝑧,𝑡ℎ

)
, (A.35)

and the phase 𝜑𝑧 is uniform distributed [207]

𝑝 (𝜑𝑧) = 1
2𝜋
. (A.36)

A.4.3. Cyclotron mode via quadrupolar coupling

To investigate the thermal amplitudes via the lower sideband quadrupole coupling of the cy-

clotron mode Eq. (2.63) a few simplification will be made. The resonator coordinates will be

omitted and rather the axial mode will be treated as directly coupled to the heat bath. As the

coupling in the eom is given in terms of amplitudes, a damping Γ𝑍 and random force on both

𝑍 and 𝑍 has to be introduced. For Φ = 𝜋/2 the eom with noise is
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The matrix 𝐵 for the uncorrelated noise terms 𝛿𝐹𝑍 (𝑡) and 𝛿𝐹𝑍̃ (𝑡) has entries 𝐵11 = 𝐵22 = 𝑏 and

the rest is zero. Using Eq. (A.14) gives

Σ∞ =
4𝑏
Γ𝑍

©­­­­«
1 0 0 0
0 1 0 0
0 0 𝜔𝑧

𝜔𝑝
0

0 0 0 𝜔𝑧
𝜔𝑝

ª®®®®¬
. (A.38)

The prefactor can now be identified with the thermal axial radius squared
4𝑏
Γ𝑍

= 1
2𝜌

2
𝑧,𝑡ℎ

. This re-

sult is a derivation of the ratio between the axial and cyclotron squared radii quoted in Eq. (2.66).

Here Σ∞
is diagonal, so the distributions of the axial and cyclotron thermal distributions

factorize. After a sufficient coupling time 𝑇couple > 1/𝛾𝑧 , the radius 𝜌+ is thus also Maxwell

distributed

𝑝 (𝜌+) = 𝜌+
1
2𝜌

2
+,𝑡ℎ

exp

(
− 𝜌2+
𝜌2+,𝑡ℎ

)
, (A.39)

and the phase 𝜑+ uniformly distributed

𝑝 (𝜑+) = 1
2𝜋
. (A.40)
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A.5. Sampling of the detection signal

As explained in Section A.2.1, time domain data can be generated straight forward. There are

several advantages compared to generating time domain data by differential equation solvers.

For one, the solution of the deterministic path through the exponential 𝑒𝐴𝜏 is valid for any 𝜏 ,

while for a differential equation the update rule must have step sizes typically much smaller

than the fastest oscillation frequency. Secondly, in differential equation solvers divergences

can occur after long integration time. These divergences may occur here as well, but can be

identified much more easily, as they would occur in the eigenvalues of 𝐴.

Due to the first reason, using this method, time domain data can be sampled with arbitrary

time steps, while still reflecting all the necessary physics.

A.5.1. Sampling downmixed time signal and generating spectra

As an example, time signal data can be generated directly at the sampling frequency of the

detection system. This time domain data can then be downmixed by multiplication with a

sinusoidal signal at frequency 𝜔DM reflecting the downmixer used in the experiment. Taking

the matrix and noise terms from Eq. (A.33) and the update rule from Eq. (A.19), the detection

signal 𝑦𝑛 is generated via

𝑦𝑛 = 𝜅 (𝜁𝑛 + 𝑐𝑛) cos(𝜔DM𝑛𝜏), 𝑐𝑛 ∼ 𝑁 (0, Σ𝑐), (A.41)

where 𝜏 = 1/𝑓𝑠 is the reciprocal of the sampling rate 𝑓𝑠 , 𝜅 accounts for amplification and unit

conversion of the signal and 𝑐𝑛 is an additional white noise. This white noise term experimen-

tally stems from the input noise of the cryogenic amplifier, compare ref. [76]. The initial point

®𝑥0 can be sampled from the thermal distribution 𝑁 (0, Σ∞) for a full thermal spectrum, or from

any initial non-thermal point, e.g. a point with axial coordinates after a PnA/PnP cycle.

The generated data can then be transformed into a spectrum via the same method as the

experimentally recorded spectrum, i.e. Welch’s method. Figure A.1 shows an experimentally

taken spectrum using
9
Be

3+
at 𝜈𝑧 ≈ 484 kHz with the parameters of the detection system

𝑓𝑠 = 102400 Hz, 𝑇FFT = 6 s, an averaging time of 60 s, downmix frequency 𝜔DM = 2𝜋 · 460 kHz

and a generated spectrum with the same parameters. For the generated spectrum, the resonator

and ion parameters for the matrix𝐴 are taken from a fit of the theoretical lineshape, Eq. (2.51).

The value of the amplification𝜅 and white noise variance Σ𝑐 are adjusted to match the observed

amplitude and noise background. The generated spectrum is virtually indistinguishable from

the real experimental data. This shows that the detection signal is well understood and that our

experimental detection signal has no additional unexplained components. Additionally, gener-

ating the 60 s of time signal takes only a couple of seconds with this method (implemented in

Julia), which is orders of magnitude faster than generating the data using differential equations

solvers.

A.5.2. Sampling cycles of the phase-sensitive detection

Cycles of the phase-sensitive detection techniques can be simulated by sampling of the thermal

phase space, the application of Eq. (2.78), and subsequent generation of the detection signal

using Eq. (A.41). The required steps are outlined in more detail below:
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Figure A.1: Generated dip signal compared to real experimental data. The 𝑥-axis shows the

frequency relative to the downmixed axial frequency. For details see text.

1. Following cyclotron cooling, the modified cyclotron motion is normally distributed with

the thermal amplitude 𝜌+,th. Thus, initially, 𝑁 two-dimensional samples

(𝑥+, 𝑦+)𝑖 ∼ Normal(0, diag(𝜌+,th, 𝜌+,th))
are drawn.

2. The dipole excitation displaces the coordinates in phase space by

(𝑥+, 𝑦+)𝑖 → (𝑥+ + 𝐵+, 𝑦+)𝑖 ,
assuming a specific phase of the excitation.

3. During the free evolution, the modified cyclotron motion evolves according to the matrix

𝐸+, Eq. (2.14),

(𝑥+, 𝑦+)𝑖 → 𝐸+,𝑖 (𝑥+, 𝑦+)𝑖 .
To include systematic shifts effects to the finite amplitude, 𝐸+,𝑖 must be calculated with

the shifted cyclotron frequency 𝜔+(𝜌2+,𝑖), where 𝜌2+,𝑖 = (𝑥+,𝑖 + 𝐵+)2 + 𝑦2+,𝑖 .
4. For the coupling into the thermal axial motion, first 𝑁 samples

(𝑧, 𝑧)𝑖 ∼ Normal(0, diag(𝑧th, 𝑧th))
are drawn. Then the coupling is performed by

(𝑧, 𝑧, 𝑥+, 𝑦+) → 𝐶PnP/PnA(𝑧, 𝑧, 𝑥+, 𝑦+),

178



A.6. Asymmetric transition lineshape

compare Eq. (2.73) and Eq. (2.74). At this point, the standard deviation of the phases

𝜑𝑖 = arctan(𝑧𝑖 , 𝑧𝑖)

can be calculated. However, this neglects the readout jitter of the detection.

5. To simulate the detection signal, the thermal resonator coordinate samples

(𝜁 , 𝜁 )𝑖 ∼ Normal(0, diag(𝜁th, 𝜁th))

are drawn. Using ®𝑥0,𝑖 = (𝑧, 𝑧, 𝜁 , 𝜁 )𝑖 as a starting point, the detection signal for each sample

𝑖 is generated via the update rule Eq. (A.19) and converted to the detected down-mixed

signal with Eq. (A.41). Here, the detected phases are calculated from the FFT of the signal.

The last step is rather computationally expensive, as it requires generating the full several

thousand samples long detection signal for each sample of (𝑧, 𝑧, 𝜁 , 𝜁 )𝑖 . However, compared

to generating the detection signal by use of numerical differential equation integrators, the

computation time is vastly reduced.

A.6. Asymmetric transition lineshape

In Section 3.3, several additions to the simple Rabi flopping transition probability were dis-

cussed. The most troublesome, is the potential asymmetric lineshape due to 𝐵2 derived by

Brown, ref. [62], as it shifts the effective center of the resonance, see Figure 3.5. The deriva-

tion relies on the assumption Eq. (3.29). For the electron-spin resonance fits with this line-

shape, the assumptions can be verified, see Section 7.4.5. The weakest condition is given by

𝛾𝑧/2𝜋 = 2.52 Hz compared to the fit Rabi frequency which is up to Ω/2𝜋 ≈ 0.5 Hz and it is

not clear, to which level the above assumptions need to be fulfilled and if this would lead to

changes of the probability lineshape.

Here, an attempt is made to numerically integrate the transition probability directly from

the Bloch equations and the ion’s thermal motion. To this end, the Bloch equations, Eq. (3.22),

without explicit decoherence,

d
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ª®¬ , (A.42)

is used. The change of the transition frequency due to 𝐵2 and the thermal motion is included

by the additional term 2Δ𝜔𝑧2/𝜌2
𝑧,𝑡ℎ

. The dynamics of the Bloch equations, e.g. the rotation

of the spin vector in the rotating frame, for small detunings and Rabi frequencies, is much

slower than the axial oscillation 𝑧. The full integration of this formula for a single detuning

would require time stepping slower than a period of the axial oscillation 𝑇𝜈𝑧 ≈ 2 µs and up to

the typical excitation times of tens of seconds, making this very computationally expensive.

However, as the axial motion is independent of the spin motion, it can be integrated simply by

the update rule from above Eq. (A.19) for arbitrary time steps. Assuming that the fast oscillation
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of 𝑧 with 𝜈𝑧 do not influence the Bloch vector, and rather the thermal correlations of 𝑧 at the

much slower timescales of 𝛾𝑧 are relevant, the Bloch equations can be integrated with much

slower time stepping
3
.

The integration of the Bloch equation is performed with a 7th-order Runge-Kutta method

using the DifferentialEquations.jl Julia package [208]. Figure A.2 shows the lineshape Eq. (3.27)

and the simulated transition probability for the
9
Be

3+
parameters in this experiment (𝛿𝜔/2𝜋 =

18 Hz, other parameters from Table 5.2). The simulation of the transition probability replicates
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Figure A.2: Simulation of the asymmetric lineshape. The simulated lineshape fits the Brown-

Gabrielse solution Eq. (3.27) very well. The small error bar is due to the finite number of

simulation samples at each detuning.

the Brown-Gabrielse lineshape perfectly, solidifying its use for the measurements performed

here.

The case of a reduced linewidth parameter 𝛿𝜔/2𝜋 = 1 and increased Rabi frequency Ω/2𝜋 =
15 is shown in Figure A.3

4
. These values do not align with the assumptions, Eq. (3.29) and

indeed, the simulation and Brown-Gabrielse line do not fit in this case.

3
The same assumption is made in ref. [62]

4
The current linewidth parameter (via 𝐵2) already limits the resonance width and thus the statistical precision. A

reduction of 𝐵2 is thus intended.
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Figure A.3: Simulation of the asymmetric lineshape with a smaller linewidth parameter

𝛿𝜔/2𝜋 = 1 Hz and larger Rabi frequency Ω/2𝜋 = 15 Hz.
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Appendix B.

Dip lineshape

Here, a discussion of the dip lineshape and the error estimates associated with it are given.

The discussion here is data driven and uses dip and double-dip spectra from the nuclear-spin

transition measurements.

B.1. Dip axial frequency determination

Generally, the dip fits are performed as described in Section 5.4. This involves the definitions

of a transfer function, a resonator lineshape and a dip lineshape.

Following, three dip lineshape models will be introduced.

Simple model

In this model, the ideal resonator lineshape, Eq. (2.53), and dip lineshape, Eq. (2.51), are used:

𝑓res(𝜔 | 𝜔𝑅, Γ𝑅) = 1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅

)2 , 𝑓dip(𝜔 | 𝜔𝑧, 𝛾𝑧) = 1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧
𝜔2
𝑧−𝜔2

)2 . (B.1)

With FFT time

In Section A.3, the power spectral density given a fixed Fourier transform time windows was

derived. With the result, Eq. (A.24), and the matrices 𝐴 and 𝐵 defined for the resonator, Sec-

tion A.4.1, and the axial motion, Section A.4.2, respectively, the lineshapes

𝑓res(𝜔 | 𝜔𝑅, Γ𝑅) = Σ(𝜔 | 𝜔𝑅, Γ𝑅)𝑇,22, 𝑓dip(𝜔 | 𝜔𝑧, 𝛾𝑧) = Σ(𝜔 | 𝜔𝑅, Γ𝑅)𝑇,44 (B.2)

can be computed
1
.

1
For both cases, the matrix 𝐵 has only a single component. The resulting power spectral density will be proportional

to this value, and it can thus be absorbed in 𝑎1 by setting 𝐵22 = 1 and 𝐵44 = 1, for the thermal resonator and axial

motion, respectively.
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Appendix B. Dip lineshape

With Gaussian 𝜈𝑧

Here, white noise fluctuations of the axial frequency 𝜈𝑧 are incorporated into the dip lineshape

by weighting 𝜈𝑧 with a Gaussian:

𝑓dip(𝜔 | 𝜔𝑧, 𝛾𝑧, 𝜎𝜔𝑧 ) =
1√︃

2𝜋𝜎2𝜔𝑧

∫
d𝛿𝜔𝑧

𝑒−
1
2𝛿𝜔

2
𝑧/𝜎2

𝜔𝑧

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧

(𝜔𝑧+𝛿𝜔𝑧 )2−𝜔2

)2 . (B.3)

This integration is done numerically by quadrature and the resonator lineshape defined in the

simple model is used.

Depth of the dip

For this discussion, the transfer function is taken to be

𝑓tf(𝑦 (𝜔), 𝜔 | 𝑎0, 𝑎1) = 10 log10(𝑎0 + 𝑎1𝑦 (𝜔)), (B.4)

i.e. without a first-order frequency dependence of the detection system (i.e. 𝑎2 = 0 in Eq. (5.7)).

The three models are fit to a sample spectrum with the fit procedure outlined in Section 5.4,

compare Figure 5.5, and see Figure B.1 for the results.

In the simple model, the dip fit shorts the resonator all the way to its noise floor, which is

expected, as the ideal dip function is zero at 𝜔 = 𝜔𝑧 . However, in the data this is obviously

not the case. The calculation of the power spectral density takes into account spectral bleeding

due to the finite FFT acquisition time, here𝑇 = 𝑇FFT = 6 s. This model fits the data much better,

explaining the non-ideal shortening of the dip. Similarly, the integration over Gaussian noise

of 𝜈𝑧 fits the data well. Though in the latter, the fitted 𝜎𝜔𝑧 ≈ 2𝜋 · 160 mHz seems rather large

when compared to the shot-to-shot jitter of the axial frequency 𝜎 (𝜔𝑧) ≈ 2𝜋 · 30 mHz.

A problem of using the simple model is that the data points close to 𝜔𝑧 will disproportion-

ally contribute to the fit value of 𝜔𝑧 since they give rise to large variations in the chi-square

sum, effectively increasing the fit uncertainty. Additionally, if the dip is not centered on the

resonator, because the minimum will ‘pull‘ the fit. However, this leads only to significant shifts

far off center, where the dip is highly asymmetric.

Slope of the transfer function

A linear frequency response (slope), 𝑎2 ≠ 0, of the detection system is now included in the

transfer function. Directly, the slope leads to a shift of the fitted resonator frequency by ∼
1.5 Hz. A comparison of the determined axial frequency of the models and the influence of the

additional slope is shown in Figure B.2. While the models with FFT time and with Gaussian

𝜈𝑧 agree and shift in similarly by including the slope, this is not the case for the simple model.

However, with the slope parameter all three models agree. In the evaluation of all statistical

results, the model with Gaussian 𝜈𝑧 and a slope is used. This model is chosen over the one

derived via the power spectral density because the latter can not be used for double dips, see

the next section.
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Figure B.1: Dip lineshape comparison. The data is plotted in blue and the fits in green. For

details see text.

Axial frequency shifts due to resonator systematic

Here, the dip fits with the Gauss model are performed with a shifted input resonator frequency,

see Figure B.3. Also shown is the expected shift when the problem is turned around, i.e. the

resonator frequency is actually shifted, but the input value for the fit is fixed.

The determined dependency

𝛿𝜈𝑧/𝛿𝜈𝑅 ≈ −7.6 mHz/Hz (B.5)

agrees well with the previous plot, where a 1.5 Hz resonator shift due to the slope resulted in

around 10 mHz shifts.

While the resonator is determined from the fits with a shot-to-shot stability of around 0.5Hz,

a systematic shift in the measurements might occur. As shown above, a neglected slope pa-

rameter can lead to such a shift. Concluding, the shift due to the slope parameter is taken as
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Figure B.2: Comparison of fitted axial frequencies of the three models, with and without a

frequency slope of the detection system. A total of 140 axial dips are used for this comparison.
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Figure B.3: The fitted axial frequency when the resonator frequency is shifted by 𝛿𝜈𝑅 . The

green and orange curve overlap. For details see text.

an estimate for systematic uncertainties of the 𝜈𝑅 determination and a conservative value of

twice this shift, 𝛿𝜈𝑅 = 3.0 Hz, corresponding to about 4% of the 3dB width Γ𝑅/2𝜋 , see Table 5.2,

is chosen. This is comparable to uncertainties assigned at other experiments, see e.g. refs. [19,

77]. Using the above scaling, the final dip axial frequency uncertainty

𝜎 (𝜈𝑧)dip = 23 mHz (B.6)

is calculated. This uncertainty could likely be reduced by more systematic studies.

B.2. Double-dip cyclotron frequency determination

In the calculation, Eq. (2.68), of the modified cyclotron frequency using the double-dip tech-

nique, the three detected dip frequencies𝜔𝑧,1,𝜔𝑧,2 and𝜔𝑧 are required. Additional to the single
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B.2. Double-dip cyclotron frequency determination

axial dip, 𝜔𝑧 , for which the above discussion applies, the two frequencies 𝜔𝑧,1 and 𝜔𝑧,2 are fit

with a double-dip lineshape. The method to include spectral bleeding via the power spectral

density calculation from Section A.3 can, however, not be applied to the double-dip
2
, because

the differential equation including the sinusoidal excitation is non-linear. As the shortcomings

of the simple model also apply here, e.g. the finite dip depth increases the fit uncertainty, the

model with Gaussian distributed 𝜈𝑧 and a slope in the transfer function is used for all double-dip

fits. The double-dip lineshape is given by

𝑓dip(𝜔 | 𝜔𝑧,1, 𝛾𝑧,1, 𝜔𝑧,2, 𝛾𝑧,2, 𝜎𝜔𝑧 ) =
1√︃

2𝜋𝜎2𝜔𝑧

∫
d𝛿𝜔𝑧

𝑒−
1
2𝛿𝜔

2
𝑧/𝜎2

𝜔𝑧

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧,1
𝜔2
𝑧,1−𝜔2 − 𝜔𝛾𝑧,2

𝜔2
𝑧,2−𝜔2

)2 . (B.7)

Similar to before, from a dataset of 140 dips and double-dips, the dependence on the resonator

is estimated by varying the resonator frequency in the fit of double-dips and axial dips to

recalculate the modified cyclotron frequency, see Figure B.4. The determined dependency
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Figure B.4: During the fits of the axial and double-dip to determine the modified cyclotron

frequency, the resonator frequency is shifted by 𝛿𝜈𝑅 . For details see text.

𝛿𝜈+/𝛿𝜈𝑅 ≈ −3.4 mHz/Hz (B.8)

is slightly smaller than the one for the axial dip only, owing to a partial cancellation of the

shifts in Eq. (2.68). Using the same estimate as before, 𝛿𝜈𝑅 < 3 Hz, a systematic uncertainty on

𝜎 (𝜈+)dip = 10 mHz is calculated. The propagation to 𝜈𝑐 is one-to-one, as the axial frequency is

suppressed greatly in the invariance theorem, thus,

𝜎 (𝜈𝑐)dip = 10 mHz. (B.9)

2
At least not trivially.
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B.3. Double-dip lineshape derivation

The derivation of the lineshape of the double dip, Eq. (2.70), is based on a simple model of the

two axial eigenmodes, which form during the quadrupolar sideband drive, interacting with the

resonator as two independent particles would. At the time of writing this thesis, I could not

find a direct derivation of the double dip lineshape starting from the quadrupolar drive and

interaction with the resonator.

In the following, starting from the quadrupolar coupling, compare Eq. (2.60), and the cou-

pling to the resonator, Eq. (2.47), the lineshape of the double dip is derived. The coupled eom

of the axial 𝑧, resonator 𝜉 and radial modified cyclotron 𝑟+ coordindate are

d
d𝑡
𝑧 = −𝜔𝑧𝑧 +𝐶 cos(𝜔RF𝑡) 𝑟+

𝜔𝑧
+ 𝑒𝜔𝑅
𝑞𝜔𝑧

𝛾𝑧𝜉

d
d𝑡
𝑟+ = −𝜔+𝑟+ +𝐶 cos(𝜔RF𝑡) 𝑧

𝜔+
d
d𝑡
𝜉 = −𝑞𝜔𝑧

𝑒𝜔𝑅
Γ𝑅𝑧 − 𝜔𝑅𝜉 − Γ𝑅𝜉 + Γ𝑅𝜉𝑡ℎ,

(B.10)

where coupling𝐶 was taken as real. Similar to the derivation done for the single dip, Eq. (2.49),

the Fourier transform of the eom is taken. Using that cos(𝑎𝑡) 𝑓 (𝑡) transforms as
1
2 (𝑓 (𝜔 + 𝑎) +

𝑓 (𝜔 − 𝑎)) and the definition of the conjugate variables, the FT of the eom are

−𝜔
2

𝜔𝑧
𝑧 (𝜔) = −𝜔𝑧𝑧 (𝜔) + 𝐶

2𝜔𝑧
[𝑟+(𝜔 − 𝜔RF) + 𝑟+(𝜔 + 𝜔RF)] + 𝑖𝜔 𝑒𝜔𝑅

𝑞𝜔𝑧
𝛾𝑧𝜉

−𝜔
2

𝜔𝑧
𝑟+(𝜔) = −𝜔+𝑟+(𝜔) + 𝐶

2𝜔+
[𝑧 (𝜔 − 𝜔RF) + 𝑧 (𝜔 + 𝜔RF)]

−𝜔
2

𝜔𝑅
𝜉 (𝜔) = −𝑖 𝜔

𝜔𝑧

𝑞𝜔𝑧
𝑒𝜔𝑅

Γ𝑅𝑧 (𝜔) − 𝜔𝑅𝜉 (𝜔) − 𝑖 𝜔
𝜔𝑅

Γ𝑅𝜉 (𝜔) + Γ𝑅𝜉𝑡ℎ (𝜔)

(B.11)

Solving the second row for 𝑟+ and inserting into the first row gives terms

𝑟+(𝜔 ± 𝜔RF) = 𝐶

2(𝜔2+ − (𝜔 ± 𝜔RF)2)
[𝑧 (𝜔) + 𝑧 (𝜔 ± 2𝜔RF)] . (B.12)

Here, the assumption, that the eigenmodes are only slightly perturbed is made. From this fol-

lows that 𝑧 (𝜔 ± 2𝜔RF) ≪ 𝑧 (𝜔) for frequencies 𝜔 not to far away from 𝜔𝑧 , i.e. the frequency

components at the natural oscillation frequency are much larger than the far off-resonant sec-

ond term. Neglecting the second term allows to solve for

𝑧 (𝜔) = 𝑖𝜔 𝜔𝑧
𝜔𝑅

𝑒𝜔𝑅
𝑞𝜔𝑧

𝛾𝑧𝐾 (𝜔)𝜉 (𝜔), (B.13)

where 𝐾 (𝜔) is defined as

𝐾 (𝜔) =
(
𝜔2
𝑧 − 𝜔2 − 𝐶

2

4

[
1

𝜔2+ − (𝜔 − 𝜔RF)2
+ 1

𝜔2+ − (𝜔 + 𝜔RF)2
] )−1

. (B.14)
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The detection signal𝑈 (𝜔) ∝ 𝜉 (𝜔) = 𝑖𝜔𝜉 (𝜔), which can now be solved similar to the derivation

of the single dip

𝑈 (𝜔) = 𝑈𝑡ℎ (𝜔)
1

1 + 𝑖
(
𝜔2−𝜔2

𝑅
𝜔Γ𝑅

+ 𝜔𝛾𝑧𝐾 (𝜔)
) . (B.15)

Taking the complex norm gives

|𝑈 (𝜔) |2 = |𝑈𝑡ℎ (𝜔) |2
1

1 +
(
𝜔2
𝑅−𝜔2

𝜔Γ𝑅
− 𝜔𝛾𝑧𝐾 (𝜔)

)2 . (B.16)

Quite obviously, for no coupling, 𝐶 = 0, the single dip, Eq. (2.51), is reproduced.

In the case of the magnetron double dip, the derivation is identical and only the function

𝐾 (𝜔) needs to be adjusted. Summarizing both cases and also inserting the Rabi frequency Ω,

compare Eq. (2.65), 𝐶 = 4Ω
√
𝜔±𝜔𝑧 gives

𝐾±(𝜔) =
(
𝜔2
𝑧 − 𝜔2 ∓ 4Ω𝜔±𝜔𝑧

[
1

𝜔2± − (𝜔 − 𝜔RF)2
+ 1

𝜔2± − (𝜔 + 𝜔RF)2
] )−1

≈ 1

𝜔2
𝑧 − 𝜔2 ∓ 4Ω𝜔±𝜔𝑧

𝜔2±−(𝜔±𝜔RF )2
,

(B.17)

where in the last line the formula is approximated around the axial frequency𝜔 ≈ 𝜔𝑧 and close

to the sideband resonance 𝜔RF ≈ ∓𝜔𝑧 + 𝜔±.

In contrast to the double dip lineshape in Eq. (2.70), the axial eigenfrequencies of the coupled

axial plus radial system do not directly occur in the lineshape, but rather the radial frequencies

directly. Additionally, this lineshape implicitly includes the widths of the two dips due to non-

ideal, detuned, sideband coupling. At this point, further application of math might lead to a

solution more closely resembling the heuristically derived lineshape Eq. (2.70)
3
. In any case,

for the
9
Be

3+
double dips in this work, using the above lineshape leads to insignificant changes

|𝛿𝜈+ | < 0.1 mHz of the determined modified cyclotron frequency compared to using Eq. (2.70).

3
At this point I did try some more approximations, but the path was not obvious to me. Probably a partial fraction

decomposition of𝐾 (𝜔) will reveal𝜔𝑧,1,2 as the poles. The difficulty here lies therein that the solution needs further

approximations as the zeroes of the denominator are found by polynomials of quartic order and not second order

as opposed to the eigenfrequencies 𝜔𝑧,1,2, compare Eq. (2.67).
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im Labor und abseits bedanken. Mit euch hat sich die Zeit am Institut oft gar nicht nach Ar-
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an Sven für die vielen wichtigen Erklärungen und Diskussionen rund um Penningfallenmeth-

oden und ebenso an Fabian für seine Fülle an weitergebenem Literaturwissen. Euch beiden

wünsche ich ganz viel Erfolg bei euren zukünftigen Projekten an LSym und ALPHATRAP!

Bei der Theoretikergruppe von Christoph Keitel, insbesondere bei Bastian, Vladimir und

Zoltan bedanke ich mich für die produktive Kooperation die in einer (hoffentlich) erfolgre-

ichen Publikation endet.

Lieber Herr Jochim, vielen Dank, dass Sie das Zweitgutachten meiner Arbeit übernommen

haben. Ihre AMO Vorlesungen waren ein Highlight meines Studiums - Ihre Faszination der
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