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Zusammenfassung

Die Darstellungstheorie hyperbolischer Gruppen in Lie-Gruppen höheren Ranges ist
in den letzten Jahren ein aktives Forschungsthema gewesen. Insbesondere die Charak-
tervarietät, die mit einer Flächengruppe für einige halbeinfache Lie-Gruppen nicht-
kompakten Typs assoziiert ist, weist bemerkenswerte Zusammenhängskomponenten
auf, die nur diskrete und treue Darstellungen enthalten. Eine Vereinigung solcher
zusammenhängender Komponenten wird als Teichmüller-Raum höheren Rangs beze-
ichnet. In allen bekannten Fällen erfüllen die Darstellungen in diesen Komponenten
alle eine Anosov-Eigenschaft, welche eine dynamische Eigenschaft ist, die stärker als
diskret und treu ist. Einige dieser Räume können als Räume geometrischer Strukturen
interpretiert werden: beispielsweise als konvexe projektive Strukturen auf Flächen oder
als gefaserte Photonstrukturen.

In dieser Dissertation leisten wir originelle Beiträge zu diesem Bereich, wobei wir
uns insbesondere auf den lokal symmetrischen Raum und parabolische Strukturen
konzentrieren, die mit Anosov-Darstellungen zusammenhängen sind. Der erste Teil
dieser Dissertation ist eher allgemein und diskutiert parabolische Strukturen, die unter
Verwendung eines Diskontinuitätsbereichs konstruiert wurden, sowie deren Beziehung
zum lokal symmetrischen Raum für bestimmte Anosov-Darstellungen. Wir unter-
suchen genauer die Diskontinuitätsbereiche, die als Bereiche geeigneter Busemann-
Funktionen interpretiert werden können.

Der zweite Teil konzentriert sich auf maximale Darstellungen in Spp2n,Rq, eine
besondere Klasse von Teichmüller-Räumen höheren Ranges. Wir charakterisieren
maximale Darstellungen, im Hinblick auf geometrische Strukturen, die eine spezielle
Faserung zulassen. Schließlich untersuchen wir maximale Darstellungen, die auch Borel
Anosov sind, und zeigen insbesondere, dass in Spp4,Rq diese Darstellungen Hitchin
sind, was eine Frage von Canary beantwortet.

Diese Dissertation umfasst die Ergebnisse der Arxiv-Preprints Nearly geodesic im-
mersions and domains of discontinuity [Dav23] und Finite-sided Dirichlet domains
for Anosov subgroups [DR24] , eines zukünftigen Preprints Geometric structures for
maximal representations and pencils , und schließlich des Artikels Maximal und Borel
Anosov Darstellungen in Spp2n,Rq [Dav24]. Der Preprint [DR24] ist eine gemeinsame
Arbeit mit Max Riestenberg.
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Abstract

Representations of hyperbolic groups into higher rank Lie groups has been an
active topic of study in recent years. In particular the character variety associ-
ated with a surface group for some semi-simple Lie group of non-compact type
admits remarkable connected components containing only discrete and faithful
representations. A union of such connected components is called a higher rank
Teichmüller space. In all the known cases, the representations in these compo-
nents all satisfy an Anosov property, which is a dynamical property stronger
than being discrete and faithful. Some of these spaces can be interpreted as
spaces of geometric structures: as for instance convex projective structures on
surfaces, or fibered photon structures.

In this thesis, we bring original contributions to this area, focusing in par-
ticular on the locally symmetric space and parabolic structures associated to
Anosov representations. The first part of this thesis is rather general, and dis-
cuss parabolic structures constructed using a domain of discontinuity as well
as their relation with the locally symmetric space for certain Anosov repre-
sentations. We study more precisely the domains of discontinuity that can be
interpreted as domains of proper Busemann functions.

The second part focuses on maximal representations in Spp2n,Rq, a particu-
lar class of higher rank Teichmüller spaces. We characterize maximal represen-
tations in terms of geometric structures that admit a special fibration. Finally
we study maximal representations that are also Borel Anosov, and show in par-
ticular that in Spp4,Rq these representations are Hitchin, answering a question
from Canary.

This thesis encompasses the results of the arxiv preprints Nearly geodesic
immersions and domains of discontinuity [Dav23] and Finite-sided Dirichlet
domains for Anosov subgroups [DR24] , a future preprint Geometric structures
for maximal representations and pencils , and finally the article Maximal and
Borel Anosov representations in Spp2n,Rq [Dav24]. The preprint [DR24] is joint
work with Max Riestenberg
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Chapter 1

Introduction

We begin this introduction with a section that reviews the notions of Fuchsian
representations, Higher rank Teichmüller spaces and Anosov representations,
with some historical background.

We then consider geometric structures for Anosov representations. We first
discuss Klein geometries in some generality and in particular locally symmet-
ric spaces. We then discuss parabolic structures and how Guichard-Wienhard
[GW12] and Kapovich-Leeb-Porti [KLP17] construct such structures using do-
mains of discontinuity for Anosov representations.

We then begin to introduce the results of the thesis. We introduce the
notion of ω-undistorded subgroups and their associated domain of proper Buse-
mann functions. We then present the results from Chapter 2 on nearly geodesic
immersions and their application to construct fibrations of domains of discon-
tinuity, and more precisely of domains of proper Busemann functions. Finally
we present the results form Chapter 3, a joint work with Max Riestenberg, on
the finite-sidedness of Dirichlet domains for Anosov representations, and more
precisely for ω-undistorded representations.

The last part of this introduction focuses on maximal representations in
Spp2n,Rq. We first present the results of Chapter 4 which characterize maximal
representations by the existence of an equivariant surface of pencils of quadrics
fibering the domain of discontinuity in projective space. Finally we present
the results from Chapter 5 on Borel Anosov and maximal representations into
Spp2n,Rq.

1.1 Fuchsian representations and beyond
In recent years, a lot of focus have been put on the study of spaces of repre-
sentations that generalize Fuchsian representations for higher rank Lie groups.
These spaces are called higher rank Teichmüller spaces.
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1.1.1 Fuchsian representations
Let Sg be a closed oriented surface of genus at least 2. Let Γg be the fundamental
group of Sg. A Fuchsian representation ρ : Γg Ñ PSLp2,Rq is a representation
that is discrete and faithful, i.e. a group homomorphism that is injective and
whose image is a discrete subgroup.

The space of Fuchsian representations has the remarkable property that it
forms a union of connected components for the compact-open topology of the
representation variety Hom pΓg,PSLp2,Rqq, which are in turn path connected
components since the representation variety is locally an algebraic variety. In
other words no deformation of a Fuchsian representation can degenerate to a
non-discrete or non-faithful representation. Goldman [Gol80] showed that the
connected components of HompΓg,PSLp2,Rqq are completely determined by an
invariant called the Euler number :

e : HompΓg,PSLp2,Rqq Ñ J�2g � 2, 2g � 2K.

The union of the two connected components corresponding to the extremal
values of the Euler number e�1pt�2g� 2, 2g� 2uq is exactly the set of Fuchsian
representations. Representations with even Euler number are exactly the rep-
resentations that can be lifted to representations ρ : Γg Ñ SLp2,Rq, therefore
Fuchsian representations can be lifted.

The character variety of representations of a surface group Γg into a Lie
group G is the quotient of the representation variety by the action of G by
conjugation. The two connected components of the character variety associated
with the space of Fuchsian representations are smooth manifolds, that are dif-
feomorphic to R6g�6. Each of these components of the character variety can be
identified with the Fricke space and the Teichmüller space. The Fricke space
is the space of marked hyperbolic structures on Sg, and the Teichmüller space
is the space of marked Riemann surface structures on Sg, in both cases the
structures are considered up to isotopy.

These identifications are obtained the following way. Let ρ : Γg Ñ PSLp2,Rq.
Since it is discrete, faithful, and since Γg is torsion free the action of ρpΓgq on H2

is properly discontinuous and free. The classification of surfaces implies that the
quotient H2{ρpΓgq is diffeomorphic to Sg. Moreover there exits a unique such
diffeomorphism up to isotopy that preserves the marking on the fundamental
group of Sg. This quotient is naturally endowed with an oriented hyperbolic
structure, and a Riemann surface structure.

Conversely given an oriented hyperbolic structure on a surface or a Riemann
surface structure the universal cover is naturally diffeomorphic to a disk by the
Cartan-Hadamard theorem or respectively is biholomorphic to the unit disk H2

by the uniformization theorem. To these structures one can therefore associate a
holonomy which is a repesentation of Γg into the group PSLp2,Rq of orientation
preserving isometries of H2 which is also the group of biholomorphism of H2.
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Fuchsian representation ρ satisfy a strong dynamical property: they are
quasi-isometric embeddings which mean that for every base point o in the hy-
perbolic plane, the orbit map γ P Γ ÞÑ γ �o P H2 is a quasi isometric embedding.
This means that for one and hence any finite generating system F of Γg, if dΓ
denotes the induced word distance on Γg, there exist constants C,D ¡ 0 such
that for all γ1, γ2 P Γg one has:

C�1dΓpγ1, γ2q �D ¤ dpγ1 � o, γ2 � oq ¤ CdΓpγ1, γ2q �D.

This property also implies that ρ admits a boundary map ξρ : BΓg Ñ BH2

that is a ρ-equivariant map from the Gromov boundary of Γg into the visual
boundary of H2, which can be identified with RP1. This map is characterized
by the property of being dynamics preserving, i.e. the image of the attracting
fixed point x P BΓg of an element γ P Γ is mapped to the attracting fixed point
of ρpγq in BH2.

An important feature of H2, and more generally of Gromov hyperbolic spaces
and in particular rank one symmetric spaces is that the space of quasi-isometric
embedding is open in the space of representations Hom pΓg,PSLp2,Rqq. This
does not hold for higher rank symmetric spaces.

1.1.2 Higher rank Teichmüller spaces
A way to construct interesting representations of a surface group into a more
general Lie group G is to compose Fuchsian representations by a Lie group
embedding of PSLp2,Rq or SLp2,Rq into G.

For instance if we compose a Fuchsian representation with the natural in-
clusion PSLp2,Rq � PSLp2,Cq we get a discrete and faithful representation
ρ0 : Γg Ñ SLp2,Cq that admits a totally geodesic equivariant map h : �Sg Ñ H3.
A representation ρ : Γg Ñ PSLp2,Cq is called quasi-Fuchsian if it is a quasi-
isometric embedding, or equivalently if it is convex cocompact. The space of
quasi-Fuchsian representations is not a connected component of the representa-
tion variety: it is open but not closed. The representations in the boundary of
the quasi-Fuchsian locus are still discrete and faithful, but they can be contin-
uously deformed into non-discrete representations.

An interesting phenomenon arises in higher rank Lie groups. For some simple
Lie groups G one can find a union of connected components of representations
of Γg into G that contains only discrete and faithful representations. A union
of such connected connected components is called a Higher rank Teichmüller
space [Wie18], as it generalizes one of the remarkable properties of the space of
Fuchsian representations.

Hitchin [Hit92] discovered an exceptional component in the representation
variety HompΓg, Gq for any split simple Lie group G. He noticed in particular
that the corresponding connected component of the character variety was diffeo-
morphic to RdimpGqp2g�2q. He noticed that this property was a generalization of
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a property of Teichmüller space. He asked if one can understand the geometric
significance of such representations.

Labourie showed that Hitchin representations are all discrete and faithful
[Lab06]. He introduced the notion of Anosov representations, which is a gen-
eralization to higher rank Lie groups of the property of being a quasi-isometric
embedding. He showed that Hitchin representations are all Borel Anosov. In
particular these representations admit a boundary curve in the space of full
flags. Later Guichard-Wienhard defined the notion of Θ-Anosov representation
of word hyperbolic groups, where Θ is a set of simple roots [GW12]. Anosov
representations can be characterized as uniformly regular undistorted represen-
tations, due to a result of Kapovich-Leeb-Porti [KLP18b] and Bochi-Potrie-
Sambarino [BPS19]. To a Θ-Anosov representation one can associate a bound-
ary map ξΘ

ρ : BΓ Ñ FΘ into the flag manifold of G associated with Θ. Such
boundary maps can be characterized as in the Fuchsian case by the property of
being dynamics preserving.

Other higher rank Teichmüller spaces can be constructed for Lie groups G
of Hermitian type and tube type. To a representation ρ : Γg Ñ G one can
associate an invariant T pρq called the Toledo number that generalizes the Euler
number. This invariant satisfies a generalization of the Milnor-Wood inequality
[Mil58],[Woo71]:

|T pρq| ¤ rankpGqp2g � 2q.
Representations with maximal Toledo number are called maximal representation
they form a union of connected components of the space of representations.
Maximal representation can be characterized by the existaence of a maximal
equivariant map from the circle BΓg into the Shilov boundary [BIW03]. Burger-
Iozzi-Labourie-Wienhard showed that maximal representations are Anosov with
respect to the longest simple root [BILW05]. In particular these representations
are all discrete and faithful and therefore form higher rank Teichmüller spaces.

Guichard-Wienhard introduced the notion of Θ-positive representation for
some pairs pG,Θq of a simple Lie group together with a set of simple roots
[GW22]. For each such pair they construct a special union of connected com-
ponent of the space of triples of transverse flags in the flag manifold FΘ. These
triples are called positive triples. A representation is called Θ-positive if it ad-
mits a continuous and equivaraint map ξΘ : BΓ Ñ FΘ such that for all distinct
x, y, z P BΓ, the triple

�
ξΘpxq, ξΘpyq, ξΘpzq� forms a positive triple. Hitchin rep-

resentations, as well are representation with maximal or minimal Toledo number
can be characterized as Θ-positive representations for a suitable choice of Θ.

Guichard-Labourie-Wienhard showed that Θ-positive representations are al-
ways Θ-Anosov and that for every notion of Θ-positivity there is at least one
connected component consisting only of Θ-positive representations [GLW21].

One can generalise Hitchin’s question as follows:
Question 1.1.1. Can the spaces of Hitchin representations, maximal represen-
tations, or even more generally Θ-positive representations be characterized as a
space of geometric structures ?
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1.2 Geometric structures
In this section we discuss geometric structures in the sense of Klein, or pG,Xq-
structures. To a discrete representation into a higher rank Lie group one can
associate a locally symmetric space on a manifold M , but this manifold will not
be compact in general. One can also associate to some discrete representations
a parabolic structure on a compact manifold, i.e. a geometric structure modeled
on a flag manifold.

1.2.1 Geometric structures in the sense of Klein
There are several notions of geometric structures. Klein introduced a general
notion of pG,Xq structures, which are in some sense rigid geometries, modeled
on a space with a finite dimensional space of symmetries [Kle93]. A modern
overview of this notion can be found in [Gol22].

Let G be a Lie group acting analytically, transitively and faithfully on a space
X. Let M be a manifold of the same dimensions as X. A pG,Xq-structure on
M describes a way to model M on X with transitions in G, i.e. it is the data of
a maximal atlas of charts between open sets of M into X such that the domains
of definition of the charts cover M and the transition between any two charts is
locally equal to the action of some element on G.

The manifold X admits a natural pG,Xq-structure. We say that a map
between manifolds equipped with pG,Xq-structures is a local isomorphism if
locally in the charts it is equal to the action of an element of G.

Given such a structure on M , one can define a pair pdev,holq where hol :
π1pMq Ñ G is th holonomy representation and dev : �M Ñ X is the developing
map which is a hol-equivariant local diffeomorphism that preserves the pG,Xq-
structure. This pair is unique up to the action of G, acting by conjugation on
the holonomy and acting on the left on the developing map.

A particularly nice situation is when the developing map is a covering map.
However this is not always the case, as for instance it can fail to be surjective.
When G preserves a Riemannian metric on X, one can define the notion of
a complete pG,Xq structure on M . Indeed such a pG,Xq-structure induces a
Riemannian metric on M and we say that the structure is complete if this metric
is complete. Any such pG,Xq-structure on a closed manifold M is complete.
The developing map of such a complete pG,Xq-structure is a covering map.

If G is a semi-simple Lie group of non-compact type, every manifold X that
admits a transitive action of G preserving a Riemannian metric fibers equivari-
antly over the symmetric space X associated to G, which is a simply connected
non-positively curved Riemannian manifold on which G acts transitively.

Discrete subgroups Γ � G up to conjugation correspond exactly to manifolds
with a complete locally symmetric structure modeled on X, i.e. a complete
pG,Xq structure, up to isometry.
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However if one is interested in the case when Γ is a surface subgroup and G
is not locally isomorphic to PSLp2,Rq, then the locally symmetric space cannot
be compact. One can study compactifications of this locally symmetric space.
These compactifications can be related in some cases to a parabolic structure
on a compact manifold with the same holonomy.

1.2.2 Parabolic structures
A pG,Xq structure is parabolic if X is a flag manifold associated to G with its
standard action, i.e. if X � G{P where P is a parabolic subgroup of G. If G
is a semi-simple Lie group of non-compact type, then the flag manifolds never
admit an invariant Riemannian metric.

Every flag manifold can be interpreted geometrically as the G-orbits of a
point in the visual boundary of the symmetric space associated to X. One
can also interpret each flag manifold as special points of some horofunction
compactification of the symmetric space.

In the following two examples of rank 2 Lie groups, one can identify a higher
rank Teichmüller space with a space of parabolic structures.

Choi-Goldman [CG05] showed that the component of the character variety
corresponding to Hitchin representations into PSLp3,Rq can be identified with
the space of convex projective structures on the associated surface up to isotopy,
i.e. pPSLp2,Rq,RP2q-structures such that the image of the developing map is a
properly convex set.

Collier-Tholozan-Toulisse [CTT19] showed that every maximal representa-
tion in the Hermitian Lie group of tube type SOop2, n� 1q is the holonomy of a
photon structure on a fiber bundle M over the surface Sg. A photon structure
is a pSOop2, n � 1q,PhopR2,n�1qq structure where PhopR2,n�1q is the space of
isotropic planes in R2,n�1 � Rn�3 equipped with a bilinear form of signature
p2, n�1q. The structures arising this way are exactly the structures that admit a
fibration over Sg whose fiber are mapped via the developing map into a translate
by SOop2, n� 1q of the codimension 2 subset PhopR2,nq � PhopR2,n�1q.

In both of these cases, the structures are obtained by taking the quotient of
a domain Ω in the flag manifold and taking its quotient by the action of ρpΓgq.
We say that a domain Ω with an action of a discrete group Γ is a cocompact
domain of discontinuity if Γ acts properly discontinuously and with compact
quotient on Ω.

Guichard-Wienhard and Kapovitch-Leeb-Porti constructed cocompact do-
mains of discontinuity in flag manifolds for Anosov representations [GW12],
[KLP18a]. Guichard-Wienhard used these domain to show in particular that
the space of Hitchin representations ρ : Γg Ñ PSLp2n,Rq can be identified with
a connected component of the space of projective structures on a fiber bun-
dle M over Sg. The fiber of this bundle is diffeomorphic to a Stiefel manifold
[ADL21], which is diffeomorphic to the projective tangent bundle of the projec-
tive space RPn�1. In general, for representations that can be deformed in the
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space of Anosov representations from a Fuchsian representation in a subgroup
of G locally isomorphic to PSLp2,Rq, the quotient of any of the domains of
discontinuity constructed by Kapovich-Leeb-Porti is a fiber bundle M over Sg,
which was showed by Alessandrini-Maloni-Tholozan-Wienhard [AMTW23].

These results leave two questions open, which are the main focus our work:

• How can one describe the fiber bundle M?

• How can one characterize the geometric structures that are obtained by
this procedure for representations in a higher rank Teichmüller space?

1.3 Fibered geometric structures
We now introduce the results of the thesis. We begin by discussing the notions
of domains of proper Busemann functions and ω-undistorted representations.
These are the domains of discontinuity and Anosov representations for which
we will apply geometric methods to describe the associated geometric structures.

1.3.1 Domains of proper Busemann functions
Our construction depends on the choice of a linear form ω P a� on the restricted
Cartan subalgebra of the semi-simple Lie group G, up to the action of the Weyl
group and up to multiplication by a positive scalar. We fix such a choice of ω
throughout the section.

We denote by τ P a the element corresponding to ω via the Killing bilinear
form, and up to acting by the Weyl group we assume that its belongs to the
positive Weyl chamber. A G-orbit in the visual boundary of the symmetric
space X is naturally associated with τ . We denote it by Fω, and it consists of
the classes of geodesic rays such that the Cartan projection of their derivative is
equal to τ . This G-orbit is diffeomorphic to a flag manifold whose type depends
on the set of walls of the Weyl chamber containing τ .

We consider representations satisfying the following condition, that we intro-
duce with Max Riestenberg, and which is closely related to the Anosov property.

Definition 1.3.1. A representation of a finitely generated group Γ into G is
ω-undistorted if for some A,B ¥ 0 and some word metric on Γ, the Cartan
projection µpγq P a of any γ P Γ satisfies for all w in the Weyl group:

| ωpw � µpγqq |¥ A|γ| �B.

In other words Γ is ω-undistorded if it is a quasi isometric embedding and
its limit cone (Definition 2.2.1) avoids the hyperplane w � Kerpωq � a for all w
in the Weyl group.

Representations that are ω-undistorted and are not virtually infinite cyclic
always satisfy some Anosov condition, see Lemma 3.2.5. When ω is in the
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Weyl group orbit of a positive multiple of a root α, then a representation is
ω-undistorted if and only if it is Θ-Anosov where Θ is the set of simple roots
in the Weyl group orbit of α. For each simple Lie group, the set of simple
roots intersects one or two Weyl group orbits, see Figure 2.4. Coincidentally,
every notion of Θ-positivity corresponds to a set of simple roots Θ that inter-
sects a single Weyl group orbit, or intersects two orbits and Θ � ∆. Since
Θ-positive representations are Θ-Anosov [GLW21], Θ-positive representations
are ω-undistorted for one or two Weyl group orbit of roots ω P a�.

An ω-undistorted representation ρ : Γ Ñ G always admit a cocompact
domain of discontinuity in the flag manifold Fω, that is a domain of proper
Busemann functions. More precisely, to a point in the visual boundary of X
and in particular to a point a P Fω and a basepoint o P X one can associate a
Busemann function ba,o : XÑ R based at o as the limit of dp�, xq � dp�, oq for x
in a geodesic ray converging to the point a P BvisX. A change of the basepoint
only changes the Busemann function by an additive constant.

Theorem 1.3.2 (Proposition 3.4.8). Let ρ be an ω-undiostorded representation.
The domain Ωωflag � Fω of flags whose associated Busemann functions are
bounded from below on one and hence any ρpΓq-orbit in X is a cocompact domain
of discontinuity for the action of ρpΓq.

Moreover in this case all the Busemann functions corresponding to points
outside of the domain are not bounded from below on any ρpΓq-orbit in X.

Remark 1.3.3. This domain always coincide with some domain constructed by
Kapovich-Leeb-Porti in [KLP18a] using Tits-Bruuhat ideal, and in particular
associated to an ideal constructed as a metric thickening. This domain is still
defined and is still a cocompact domain of discontinuity if we deform ρ so that
it is no longer ω-undistorted as long as it still satisfies the adequate Anosov
property. However the domain cannot always be characterized as the domain
of Busemann functions that are proper and bounded from below in this case.

Flag manifolds appear in other compactifications of the symmetric space. If
G is not simple, we require from now on that the Weyl groups orbit of ω spans
a�, and we make this assumption from now on. To ω P a� we can associate the
Finsler distance dω on the symmetric space X whose unit ball in the model flat
identified with a is a polygon whose sides are described by the equation w �ω � 1
for w in the Weyl group. Figure 1.1 illustrates in a few rank 2 examples the
unit ball for the distance dω in the model flat identified with a. Note that in
general the associated Finsler distance fails to be symmetric.

Using this metric one can embed X in the space of convex and 1-Lipshitz
functions defined up to an additive constant on X. The closure of the image of
this embedding is called the horofunction compactification of X with respect to
dω. The flag manifold Fω can be viewed as a subset of this compactification,
since the associated Busemann functions are horofunction for dω. In general
horofunctions for the Finsler distance dω were described by Kapovich-Leeb-
Porti [KL18].
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Figure 1.1: The unit ball in a of the metric dω in 3 examples.

Theorem 1.3.4 (Proposition 3.5.5). For an ω-undistorted representation ρ, the
domain Ωωhoro of horofunctions that are proper and bounded from below is a
cocompact domain of discontinuity.

Note that the domain of proper Busemann functions Ωωflag correspond to
the intersection of the domain of proper horofunctions with the image of the
embedding of Fω.
Remark 1.3.5. Kapovich-Leeb-Porti [KLP18a] constructed cocompact domains
of discontinuity in this horofunction compactification for Anosov representa-
tions. The domain Ωωhoro for an ω-undistorted representation is a special in-
stance of their construction. The fact that for ω-undistorted the domain can be
characterized as a domain of proper horofunctions makes it easier to prove the
properness and compactness of the action.

Let us assume now that ω is the highest restricted weight of an irreducible
linear representations V of G. The horofunction compactification associated
with the distance dω can be identified with a generalized Satake compactifi-
cation, due to a work of Haettel-Schilling-Walsh-Wienhard [HSWW18]. The
symmetric space X can be embedded in the symmetric space of SLpV q which
itself can be embedded as a properly convex domain in PpS2V q, where S2 is the
space of symmetric tensors in V b V . The Satake compactification of X is the
closure in PpS2V q of the image of this embedding.

In this case we define an invariant on pairs of points X that is at bounded
distance from the Finsler distance dω: the restricted Selberg invariant, see Sec-
tion 3.6. The horofunction compactification of X obtained using invariant can
naturally be identified with the horofunction compactification for the Finsler
metric. Moreover we show the following.

Theorem 1.3.6 (Theorem 3.6.3). Let ρ : Γ Ñ G be an ω-undistorted represen-
tation of a torsion-free group Γ. The horofunction compactification of X{ρpΓq
for the restricted Selberg invariant is naturally identifed with the quotient of the
domain XY Ωωhoro.

In particular for ω-undistorted representations the associated parabolic struc-
ture and locally symmetric structure are related as follows: the compact man-
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ifold with a parabolic structure Ωωflag{ρpΓq can naturally be identified with a
subset of the horofunction compactification of the associated locally symmetric
space X{ρpΓq for the restricted Selberg invariant.

1.3.2 Nearly geodesic immersions
We now introduce the results from Chapter 2, which is an adaptation of [Dav23].
We once again fix some non-zero linear form ω P a� on the model restricted
Cartan subalgebra of a semi-simple Lie group G. In order to study the topology
of the quotient of the domains of discontinuity Ωωρ of proper Busemann functions,
or the locally symmetric space X{ρpΓq, we construct for some representations a
fibration of these quotients onto a compact manifold N such that π1pNq � Γ.

We introduce and study a generalization of the condition of having principal
curvature in p�1, 1q for an embedding in Hn in the setting of symmetric spaces
X associated to higher rank semi-simple Lie groups of non-compact type G.

Definition 1.3.7 (Definition 2.4.1). Let ω P a� be a non-zero linear form. An
immersion u : M Ñ X is called ω-nearly geodesic if for all a P Fω Y F�ω the
function ba,o �u : M Ñ R has positive Hessian in any critical direction v P TM ,
for the metric on M induced by the immersion.

This notion depends on ω only up to the action of the Weyl group and up
to scaling by a positive number.
Remark 1.3.8. In Chapter 2 we consider the element τ P a corresponding to ω
via the Killing pairing, and we write Fτ for Fω and τ -nearly geodesic immersion
for ω-nearly geodesic immersion. Up to scaling by a positive number and acting
by the Weyl group we assume that this element has norm one and is in the
positive Weyl chamber, i.e. τ P Sa�.

This property is satisfied for totally geodesic immersions whose tangent vec-
tors are ω-regular, namely whose Cartan projection does not lie in w � Kerpωq
for any w in the Weyl group. It is equivalent to an open bound on the second
fundamental form that depends on the Cartan projection of the image of the
differential of the immersion (see Proposition 2.4.3). When G � PSLp2,Cq an
ω-nearly geodesic immersion for the only ω P Sa� is exactly an immersion with
principal curvature in p�1, 1q in X � H3 (see Proposition 2.4.6).

If the immersion is complete and uniformly ω-nearly geodesic, namely if the
Hessian of Busemann functions in critical directions are uniformly bounded from
below, we show moreover that it is an ω-regular embedding, a quasi isometric
embedding (see Proposition 2.4.17) and that the nearest point projection is well
defined for the Finsler distance dω (see Proposition 2.4.18).

When ω is a root, we also prove a sufficient condition for a surface to be
ω-nearly geodesic. Let Θ be the set of simple roots in the Weyl group orbit of
ω.
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Theorem 1.3.9 (Theorem 2.4.24). Let u : S Ñ X be an immersion that satisfies
for all v P TS and α P Θ:

∥IIupv, vq∥   cΘα pµ pdupvqqq2 . (1.1)

Then u is an ω-nearly geodesic immersion.

Here µ : TXÑ a� denotes the Cartan projection. The constant cΘ depends
on the scaling of the metric chosen on X, and on Θ.

In Section 2.5 we introduce and study pencils of tangent vectors, or d-pencils,
which are vector subspaces P � TxX of dimension d for some x P X. When
G � PSLpn,Rq these can be thought of as pencils of quadrics with zero trace
with respect to some scalar product (see Proposition 2.5.5). To a pencil we
associate a subset of the flag manifold Fω that we call its base, which is a
smooth submanifold if the pencil is ω-regular, i.e. if all non-zero vectors v P P
are ω-regular, see Lemma 2.5.7. When G � PSLpn,Rq and Fω � RPn�1 the
base of the pencil corresponds to the intersection of all the quadric hypersurfaces
defined by the elements of the corresponding pencil of quadrics.

To a complete and uniformly ω-nearly geodesic immersion u : M Ñ X,
we associate an open domain Ωωu � Fω of proper Busemann functions, i.e.
consisting of points a P Fω for which ba,o � u is proper and bounded from below
for one and hence any base-point o P X. We define a projection πu : Ωωu Ñ M
that associates to a P Ωωu the point in M at which ba,o � u is minimal. This
point will be unique because ba,o � u is convex and strictly convex in critical
directions.

Theorem 1.3.10 (Theorem 2.6.3). Let u : M Ñ X be a complete and uniformly
ω-nearly geodesic immersion. The map πu : Ωωu Ñ M is a fibration. The fiber
π�1
u pxq at a point x P M is the base BωpPxq of the ω-regular pencil of tangent

vectors Px � dupTxMq.
Let N be a compact manifold with fundamental group Γ, and let us consider

immersions from rN that are equivariant with respect to some representation
ρ : Γ Ñ G.

Theorem 1.3.11 (Theorem 2.4.23). If a representation ρ : Γ Ñ G is equiv-
ariant with respect to an ω-nearly geodesic immersion u : rN Ñ X, then ρ is
ω-undistorded.

In this case the domain Ωωρ :� Ωωu is the domain of proper Busemann func-
tions. The fibration πu from Theorem 1.3.10 is ρ-equivariant so the quotient of
Ωωρ fibers over N .

We prove in Section 2.6.4 that the diffeomorphism type of the domains of dis-
continuity obtained by Tits-Bruhat ideals is invariant under deformation in the
space of Anosov representations. We therefore understand the topology of some
domains of discontinuity for all representations in some connected component
of Θ-Anosov representation.
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As an application for instance let G Lie group with a notion of Θ-positivity.
Let ω P a� be an element in the Weyl group orbit of a root in Θ.

We say that a representation is generalized Fuchsian if it stabilizes and acts
cocompactly on a totally geodesic copy of H2 in the symmetric space X. For
every notion of Θ-positivity there exist Θ-positive representations that are gen-
eralized Fuchsian [GW22].

Corollary 1.3.12 (Corollary 2.7.11). If ρ : Γ Ñ G is in a connected component of
Θ-positive representations that contains a generalized Fuchsian representation,
the quotient Ωωρ is a non-empty fiber bundle over Sg whose fiber is the base in
Fω of a pencil of tangent vectors in TX.

1.3.3 Finite-sided Dirichlet domains.
We now introduce the results from Chapter 3, which is a joint work with Max
Riestenberg.

To any group Γ acting properly on a metric space pX, dq by isometries one
can associate a fundamental domain for the action called the Dirichlet domain
for each base point o P X defined as :£

γPΓ
Hpo, γ � oq �

£
γPΓ

tx P X | dpx, oq ¤ dpx, γ � oqu.

If X � Hn, these domains are hyperbolic polyhedra which are finite sided for
geometrically finite subgroups of the isometry groups. Moreover if the subgroup
is convex-cocompact these polyhedra are finite sided in a stronger sense, which
we call properly finite-sided: there exist a neighborhood U of the closure DΓpoq
of this domain in the compactification Hn of Hn such that for all but finitely
many γ P Γ one has U � Hpo, γ � oq.

For semi-simple Lie groups of non-compact type G one can still consider
Dirichlet domains for any G-invariant metrics on the corresponding symmetric
space X. For instance given ω P a� one can use the previously defined metric
dω and consider the following domain:£

γPΓ
Hωpo, γ � oq �

£
γPΓ

tx P X | dωpx, oq ¤ dωpx, γ � oqu.

This domain can be naturally extended to a domain Dω
Γpoq in the horofunc-

tion compactification of X for the metric dω containing the horofunctions rhs
such that for all γ P Γ, hpoq ¤ hpγ � oq. The closure of the Dirichlet domain in
the horofunction compactification is equal to this domain Dω

Γpoq.
Theorem 1.3.13 (Theorem 3.5.2). Let ω P a� and let ρ : Γ Ñ G be an ω-
undistorted representation. For any point o P X, the Dirichlet-Selberg domain
DΓpoq for the Finsler metric dω is properly finite-sided.
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o y � o

x � o

Figure 1.2: Illustration of the disjoint half space property.

The compact set DΓpoq is a compact fundamental domain for the action of
ρpΓq on the union XY Ωωhoro, where Ωωhoro is the domain of discontinuity in the
horofunction compactification of X defined previously

Representation that are ω-undistorted can be characterized by a property
that is more restrictive than having a properly finite-sided Dirichlet domain: one
can check the ω-undistorted condition by verifying that finitely many half-spaces
in Fω are disjoint.

Given o1, o2 P X we define Hωpo1, o2q to be the set of elements a P Fω such
that the associated Busemann function satisfy ba,opo1q ¤ ba,opo2q for one and
hence any o P X.

We fix a point o P X and a word metric on Γ. We say that a representation
ρ : Γ Ñ G satisfies the disjoint half space property for ω if and only if for some
integer D for every pair px, yq at distance D from the identity e and such that
px, e, yq lie in a geodesic in this order, Hpx � o, oq and Hpy � o, oq are disjoint, as
in Figure 1.2.

Theorem 1.3.14 (Theorem 3.5.12 and 3.5.11). A representation ρ : Γ Ñ G is
ω-undistorted if and only if is satisfies the disjoint half space property for ω and
�ω.

This result is a discrete analog of Theorem 1.3.11. As a corollary, the space
of ω-undistorted representations is open.

In general the bisectors for these metrics, i.e. the set of points x P X for given
points o1, o2 P X such that dpo1, xq � dpo2, xq , are not totally geodesic, nor are
they linear hyperplane in some suitable projective model for the symmetric space
PpS2V ¡0q. For G � SLpn,Rq Selberg introduced a Dirichlet-Selberg domain,
which is a polyhedral fundamental domain on X for a discrete and faithful
representation ρ : Γ Ñ G.

In order to define these domain one needs to introduce the Selberg invariant
s : PpS2V ¡0q2 Ñ R where S2V is the space of positive symmetric tensors in
V bV . For a pair po, xq P PpS2V ¡0q2 with representatives O,X : V � Ñ V such
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that detpO�1Xq � 1:

spo, xq � log 1
dimpV q TrpO�1Xq.

This invariant is linear in the second argument, hence for o1, o2 P PpS2V ¡0q the
bisector tx P PpS2V ¡0q|spo1, xq � spo2, xqu is the intersection of PpS2V ¡0q with
a linear hyperplane.

When o, x are close, this distance is close to the Riemannian distance. When
they are far, this distance has a bounded difference with the Finsler distance dω1 ,
where ω1 P a� is the first fundamental weight, which is the highest restricted
weight of the standard representation on SLpV q.

Let ρ : Γ Ñ G be a discrete and faithful representation. The Dirichlet-
Selberg domain associated to a basepoint o P PpS2V ¡0q is the domain : 

x P PpS2V ¡0q | @γ P Γ, spo, xq ¤ spγ � o, xq( .
We denote by DSΓpoq the closure of this domain in PpS2V ¥0q.

Theorem 1.3.15 (Corollary 3.5.4). If ρ : Γ Ñ SLpV q is ω1-undistorted, then for
all o P PpS2V ¡0q the Dirichlet-Selberg domain DSΓpoq is properly finite sided.

It turns out that ω1-undistorted representations exist only in even dimen-
sion,except if Γ is virtually cyclic. Actually we show :

Theorem 1.3.16 (Theorem 3.1.5). There exist Borel Anosov subgroups of SLp3,Rq
that admit infinite-sided Dirichlet-Selberg domains.

For subgroups of SLpV q that are not ω1-undistorted, we can sometimes prove
that the intersection of the domain DSΓpoq with a Γ-invariant convex set in
PpS2V q is properly finite sided. In particular we consider a representation with
finite kernel GÑ SLpV q of a semi-simple Lie group G, whose highest restricted
weight is ω. We consider representations ρ that factor through this representa-
tion.

Theorem 1.3.17 (Theorem 3.7.14). There exist a non-empty G-invariant com-
pact convex subset C � PpS2V ¥0q such that the intersection of the Dirichlet-
Selberg domain and C is properly finite-sided in C for all ω-undistorted repre-
sentations ρ : Γ Ñ G.

We describe explicitly the set C as the convex hull of a set of rank one points.
One can apply this for instance to non-elementary ∆-Anosov subgroups Γ � G
for the adjoint representation V � g. Let n � Ppgq be the space of nilpotent
elements in the Lie algebra g of G and let S2n � P

�
S2g

�
be the corresponding

space of rank one tensors.

Theorem 1.3.18 (Corollary 3.7.16). Suppose that Γ � G is ∆-Anosov. Then
every Dirichlet-Selberg domain DSn

Γpoq in PpS2gq obtained via the adjoint rep-
resentation of G intersected with HullpS2nq � PpS2V ¡0q is properly finite sided
in HullpS2nq.
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1.4 Maximal representations in Spp2n,Rq

We now turn our attention to maximal representations into Spp2n,Rq.
We first study the projective structures associated with maximal represen-

tations, which is an instance of a domain of proper Busemann functions, and
characterize these structures by the existence of a fibration described by pencils
of quadrics.

We then study a different question: we consider Borel Anosov representa-
tions in Spp2n,Rq that are also maximal, and prove in particular that for n � 2
these representations are necessarily Hitchin.

1.4.1 Fibration by pencils of quadrics
We characterize maximal representations by describing the associated projective
structure using pencils of quadrics. This characterization builds on the notion
of fitting maps of pencils, which are maps that define locally a fibration of
projective space, as well as the symmetric space of SLp2n,Rq.

We begin by a digression on quasi-Fuchsian representations in SLp2,Cq to
illustrate the notion of fitting maps.

Let ρ : Γg Ñ SLp2,Cq be the composition of a Fuchsian representation and
the inclusion SLp2,Rq � SLp2,Cq. The locally symmetric space H3{ρpΓgq is a
fiber bundle over Sg with geodesics fibers. One can construct such a fibration
by taking the geodesics orthogonal to the totally geodesic copy of H2 in H3

preserved by the action of SLp2,Rq. This fibration extends to a fibration of an
open domain in H3 Y BH3.

Such a fibration is described by ρ-equivariant map u : �Sg Ñ G where G is
the space of geodesics in H3. We say that an immersion u : �Sg Ñ G is fitting if
the corresponding geodesics locally define a smooth fibration of H3 Y BH3.

If ρ : Γg Ñ SLp2,Cq is nearly Fuchsian, i.e. if it admits an equivariant im-
mersion h : �Sg Ñ H3 with principal curvature in p�1, 1q, the locally symmetric
space H3{ρpΓgq admits a fibration described by the fitting immersion Gh that
associates to x P �Sg the geodesic orthogonal to hp�Sgq at hpxq. This was shown
by Epstein [Eps86]. We say that Gh is the Gauss map of h.

Nearly Fuchsian representations are quasi Fuchsian, i.e. are quasi-isometric
embeddings [Eps86]. We generalize it to any representation that admits an
equivariant fitting immersion.

Theorem 1.4.1. Let ρ : Γg Ñ SLp2,Cq be a representation that admits an equiv-
ariant fitting immersion u : �Sg Ñ G. The representation ρ is quasi-Fuchsian.

This theorem is a consequence of Theorem 4.4.4. There may a priori exist
representations with equivariant fitting maps that are not nearly Fuchsian, see
Remark 4.2.12. However Theorem 1.4.1 does not provide a characterization of
quasi Fuchsian representations in general because of the following result.
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Theorem 1.4.2 (Theorem 4.4.6). For a genus g large enough, there exist quasi
Fuchsian representations ρ : Γg Ñ Sg that admit no equivariant fitting immer-
sions u : �Sg Ñ G.

Maximal representations in Spp2n,Rq satisfy a property that is not satisfied
by quasi-Fuchsian representations : they form connected components of discrete
and faithful representations. This raises the following question:
Question 1.4.3. Can maximal representations can be characterized by the exis-
tence of some fibration of the associated locally symmetric space?

We provide some affirmative answer to this question. In order to study the
symmetric space for Spp2n,Rq we embed it into some projective space.

Let V � R2n. The symmetric space X associated to Spp2n,Rq can be iden-
tified with a submanifold of the projectivization PpS2V ¡0q of the space S2V of
symmetric tensors on V that are positive, i.e. that define a positive bilinear
forms on V �.

A codimension 2 subspace of S2V corresponds to a dimension 2 subspace
of its dual Q � S2V �, the space of quadrics on V . A plane in Q is a pen-
cil of quadrics. We denote by Gr2pQq the space of such planes. We denote by
Grmix

2 pQq the set of pencils P that do not contain any positive element, or equiv-
alently such that the corresponding codimension 2 subset P � � S2V intersects
S2V ¡0.

In this setting we say that an immersion u : �Sg Ñ Grmix
2 pQq is fitting is the

corresponding codimension two subsets define locally a smooth fibration of the
convex set PpS2V ¥0q.

Let Grω2 pQq be the set of pencils P such that every non-zero q P P is positive
on some Lagrangian and negative on some Lagrangian of R2n. We show that
the projectivization of the corresponding codimension 2 subspace P � of S2V in-
tersects transversely the symmetric space X associated to Spp2n,Rq (see Lemma
4.7.4). The set Grω2 pQq is open in Gr2pQq , but we show that it is disconnected.
We select a special union of connected components that we denote by Grmax

2 pQq
and we show the following:

Theorem 1.4.4 (Theorem 4.5.5). Let ρ : Γg Ñ G be a representation. If it admits
a ρ-equivariant fitting immersion u : �Sg Ñ Grmax

2 pQq it is maximal for some
orientation of Sg.

For n � 2 using results of [CTT19] we show that this is a characterization of
maximal representations. For n ¥ 3 we prove a weaker converse to this theorem.
We construct equivariant maps u : �Sg Ñ Grmax

2 pQq for maximal representations
that locally define a fibration of PpS2V ¥0q but are only continuous.

These continuous maps of pencils admit a flow on an associated circle bundle
over the surface with additional properties, that we call a fitting flow.

Let E be the tautological rank 2 vector bundle over Gr2pQq, with a projection
π : E Ñ Q. Given u : �Sg Ñ Gr2pQq we consider the induced circle bundle u�SE
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over �Sg which is the quotient of u�E by the action of positive scalars. A fitting
flow is a flow Φ on u�SE such that for all rqs P u�SE and all t ¡ 0 one can find
a representative of rq1s � Φtprqsq such that πpq1q � πpqq is positive.

Equivariant continuous maps u : �Sg Ñ Grmix
2 pQq that admits an equivariant

fitting flow also define locally a continuous fibration of PpS2V ¥0q. Equivariant
fitting immersions u : �Sg Ñ Gr2pQq always admit a fitting flow (see Proposition
4.3.8).

We obtain the following characterization of maximal representations of closed
surface groups in Spp2n,Rq.
Theorem 1.4.5 (Theorem 4.5.5). A representation ρ : Γg Ñ Spp2n,Rq is max-
imal if and only if it admits a ρ-equivariant continuous map of pencils that
admits an equivariant fitting flow:

u : �Sg Ñ Grmax
2 pQq.

We also show that the quasi-Fuchsian representations from Theorem 1.4.2
do not admit continuous maps with an equivariant fitting flow.

A continuous map equivariant map u : �Sg Ñ Grmax
2 pQq for a representation

ρ : Γg Ñ Spp2n,Rq with a fitting flow defines a fibration of the symmetric
space X � PpS2V ¡0q as X intersects the fibers transversely. Thus it defines a
fibration of the locally symmetric space X{ρpΓgq. Moreover the intersection of
the quadrics in a pencil of in Grmax

2 pQq defines a codimension 2 subset of PpV q
that is the intersection all the of the corresponding quadric hypersurfaces. A
continuous map of pencils with a fitting flow defines a fibration of a domain in
projective space, that is equal to the domain of discontinuity in projective space
constructed by Guichard-Wienhard [GW12] when the map and the flow are
equivariant with respect to a n-Anosov representation. Theorem 1.4.5 implies
the following characterization of the contact projective structures corresponding
to maximal representations.

Corollary 1.4.6. A contact projective structure on a fiber bundle M with fiber
F over Sg corresponds to a maximal representations by the construction of
Guichard-Wienhard if and only if, up to homeomorphisms of M that stabilize
π1pF q and act trivially on π1pMq{π1pF q � Γg, the fibers are mapped via the
developing map onto the bases of maximal pencils of quadrics parametrized by a
continuous map that admits an equivariant fitting flow.

More generally we define fitting immersions and continous maps with fit-
ting flows for representations of the fundamental groups of closed d-manifolds
in SLp2n,Rq. We show that the existance of such a map implies that the repre-
sentation is n-Anosov property, see Theorem 4.4.4.

In Section 4.6 we discuss the case of Spp4,Rq and construct fitting immersions
by using the maximal spacelike immersions from [CTT19]. Finally in Section
4.8 we briefly discuss how to decompose these projective structures into smaller
pieces which are polygons of quadric hypersurfaces.
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Figure 1.3: The second boundary map for a Hitchin representation, and the
main argument of the proof of Theorem 5.6.5.

1.4.2 Maximal and Borel Anosov representations
Maximal representations ρ : Γ Ñ Spp2n,Rq are always Anosov with respect
to the longest root. The space of maximal representations ρ : Γ Ñ Spp2n,Rq
contains several connected components. One of them is the Hitchin component,
whose existence is due to the fact that Spp2n,Rq is split. Representations in
the Hitchin component are Borel Anosov, i.e. Anosov with respect to all roots,
which is stronger than being Anosov with respect to a single root. In general
Hitchin representations are the only known representations of a closed surface
group in SLp2n,Rq that are Borel Anosov.

We prove that among representation into Spp2n,Rq that are tn � 1, nu-
Anosov, the ones that are maximal can be characterized by hyperconvexity.

Theorem 1.4.7. Let ρ : Γg Ñ Spp2n,Rq be a tn � 1, nu-Anosov representation.
It is maximal if and only if it satisfies the hyperconvexisty condition Hn, i.e. if
for all distinct x, y, z P BΓ the following sum is direct:�

ξnρ pxq X ξn�1
ρ pzq�` �

ξnρ pyq X ξn�1
ρ pzq�` ξn�1

ρ pzq.
This result is a new link between positivity for maximal representations and

hyperconvexity of boundary maps, for tn � 1, nu-Anosov representations. On
the one hand we see that maximality forces property Hn. On the other hand we
show that property Hn implies positivity of the n-th boundary map combining
the characterization of the tangents to the boundary maps [PSW21] together
with the observation that a C1 curve whose derivative stays in a cone must also
lie in a the cone.

Hyperconvexity conditions were studied extensively by Pozzetti-Sambarino-
Wienhard [PSW21] and they showed in particular that hyperconvexity Hn im-
plies that the ξnρ has C1-image with derivative given by ξn�1

ρ and ξn�1
ρ . Using

this we show the following in the case n � 2.
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Theorem 1.4.8. Representations ρ : Γg : Spp4,Rq that are maximal and Borel
Anosov are Hitchin.

In order to prove Theorem 1.4.8 we use Theorem 1.4.7 and prove in Section
5.5 that Borel Anosov representations ρ : Γg Ñ Spp4,Rq which satisfy property
H2 also satisfy property H1.

For that we project the boundary map onto the parallel tube in the symmet-
ric space between two Lagrangians in the boundary curve. Concretely given 3
points px, y, zq in the Gromov boundary of Γg we consider their full flags asso-
ciated via the boundary map px1

ρ, x
2
ρ, x

3
ρq, py1

ρ, y
2
ρ, y

3
ρq, pz1

ρ, z
2
ρ, z

3
ρq and construct

4 points in the circle Ppx2
ρq by projecting the lines x1

ρ, y1
ρ and intersecting the

hyperplanes z3
ρ and y3

ρ, yielding 4 points on the boundary of a copy of the hyper-
bolic plane. The Lagrangian y2

ρ defines a point in the interior of this hyperbolic
plane, see Figure 1.3.

We distinguish two possible configurations of these projections, one of which
implies property H1. To rule out the other configuration, we use again that the
second boundary map has C1 image to show that the projection of the second
boundary map must stay in a smaller convex cone, colored in the picture.

This leads to a contradiction as the point corresponding to y2
ρ must lie in the

geodesic joining the ideal points corresponding to y1
ρ and y3

ρ, since y1
ρ � y2

ρ � y3
ρ.

This geodesic is disjoint from the convex if the four points are ordered as in the
picture.

In Section 5.6 we recall results from Labourie and Guichard to prove that
a Borel Anosov representation in Spp4,Rq that satisfies property H1 and H2 is
Hitchin.

We hope that such geometric argument will be useful to rule out the existence
of other kinds of Anosov representations.

Let us say that a representation ρ : Γg Ñ G into a split lie group G is
homotopy Hitchin if it is Borel Anosov and if its boundary map in G{B where
B is the Borel subgroup is freely homotopic to the boundary map of a fixed
Hitchin representation, up to an orientation reversing homeomorphism of BΓ.

A consequence of Theorem 1.4.8 is that a representation ρ : Γg Ñ Spp4,Rq is
Hitchin if and only if it is homotopy Hitchin. Indeed, because of Theorem 4.1.5
a homotopy Hitchin representation in Spp4,Rq is maximal for some orientation
of BΓg.

One could therefore ask the following :
Question 1.4.9. Are all homotopy Hitchin representations ρ : Γg Ñ G Hitchin?

A Borel-Anosov representation in SLp3,Rq having a trivial boundary map
in RP2 must preserve a properly convex domain, and hence be Hitchin due to
[CG05]. Therefore the answer to this question is affirmative for G � SLp3,Rq.

1.5 Organisation of the thesis
This document is divided into 4 chapters that are mostly independent.
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In Chapter 2 we introduce and discuss the notion of nearly geodesic im-
mersions. Section 2.1, 2.2 and 2.3 review some definitions and properties of
symmetric spaces, Anosov representations, and Busemann functions. In Sec-
tion 2.4 we define and study the properties of nearly geodesic immersions. In
Section 2.5 we study pencils of tangent vectors in the symmetric space, which
determine the fibers of the fibrations associated to nearly geodesic immersions.
In Section 2.6 we construct these fibrations. Finally we apply these results to
construct fibration of parabolic structures associated to some representations in
Section 2.7. This chapter is an adaptation of the preprint [Dav23].

In Chapter 3 we consider Dirichlet domains for Anosov subgroups of a semi-
simple Lie group. In Section 3.1 we explain Selberg’s construction of a fun-
damental domain of discrete subgroups of SLpn,Rq, and discuss an example
of such a domain that is infinite sided. In Section 3.2 we recall the necessary
background on Anosov representations and symmetric spaces and we define the
notion of ω-undistorted subgroup. In Section 3.3 we define the Finsler metric dω
and the horofunction compactification of the symmetric space. In Section 3.4
we describe the domains of proper horofunctions for ω-undistorted subgroups.
In Section 3.5 we discuss the finite-sidedness of Dirichlet-Finsler domains. In
Section 3.7 we consider the restriction of Selberg’s domain to smaller invariant
convex sets, and provide a sufficient condition for the Dirichlet-Selberg domain
to be finite sided in this convex set. In Section 3.6 we compare the horofunction
compactification of the locally symmetric space for an ω-undistorted subgroup
with the compactification of the symmetric space. Finally in Section 3.4.4 we
show that the limit cone of any discrete subgroup of G that is not virtually
cyclic is connected. This chapter is an adaptation of the preprint [DR24], which
is a joint work with Max Riestenberg.

In Chapter 4 we study fitting maps of pencils of quadrics in order to char-
acterize maximal representations by their geometric structures. In Section 4.1
we recall the definition of maximal and Anosov representations. In Section 4.2
we define pencils of quadrics, fitting pairs and directions, and finally fitting im-
mersions of pencils of quadrics, that define fibrations of a convex domain in the
symmetric power of R2n. In Section 4.3 we define fitting flows. In Section 4.4
we show that the existence of an equivariant map of pencils with a fitting flow
implies the Anosov property. In Section 4.5 we show that maximal representa-
tions can be characterized by the existence of such a fibration. In Section 4.6 we
show that photon structures provide such fibrations for maximal representations
in Spp4,Rq. Finally in Section 4.8 we briefly describe how one can decompose
the projective structure associated to maximal representations into polygons of
quadric hypersurfaces.

In Chapter 5 we study maximal representations in Spp2n,Rq that satisfy
additional Anosov properties. We first recall in Section 5.1 the definition of
Anosov representations in Spp2n,Rq and fix some notations. In Section 5.2 we
describe a special chart of the space of Lagrangians. In Section 5.3 we discuss
the link between hyperconvexity and smooth properties of the boundary maps.
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In Section 5.4 we characterize maximal representations among tn�1, nu-Anosov
representations by the hyperconvexity property Hn. In Section 5.5 and 5.6 we
prove that maximal and Borel Anosov representations are Hitchin. This chapter
is an adaptation of [Dav24].
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Chapter 2

Nearly geodesic immersions

In this chapter we introduce and discuss the notion of nearly geodesic immer-
sions, and apply it to construct fibrations of certain domains of discontinuity,
that can be interpreted as domains of proper Busemann functions, for some
Anosov representations.

Section 2.1, 2.2 and 2.3 review some definitions and properties of symmetric
spaces, Anosov representations, and Busemann functions. In Section 2.4 we
define and study the properties of nearly geodesic immersions.

In Section 2.5 we study pencils of tangent vectors in the symmetric space,
which determine the fibers of the fibrations associated to nearly geodesic immer-
sions. In Section 2.6 we construct these fibrations. Finally we apply these results
to construct fibration of parabolic structures associated to some representations
in Section 2.7.

This chapter is an adaptation of the preprint [Dav23].

2.1 Symmetric spaces of non-compact type.
In this section we recall the general theory of symmetric spaces of non compact
type and fix some notations. References for the results mentioned can be found
in [Hel78] and [Ebe96]. We then illustrate some of these notions for some families
of Lie groups. Finally we introduce the notion of Weyl orbit of simple roots.

2.1.1 Symmetric space associated to a semi-simple Lie group.
Let G be a connected, semi-simple Lie group with finite center and no compact
factors, i.e. of non-compact type.

Let g be the Lie algebra of G, and let B be the Killing form on g. Since
g is semi-simple it admits a Cartan involution i.e. an involutive automorphism
θ : g Ñ g such that pv,wq ÞÑ �Bpv, θpwqq is a scalar product on g. Any two
Cartan involutions are conjugated by Adg for some g P G.

29



Let X be the space of Cartan involutions of g. For any x P X we will write
the corresponding Cartan involution θx : g Ñ g. This involution determines a
B-orthogonal decomposition g � tx ` px, where tx is the �1 eigenspace of θ,
and by px the �1 eigenspace.

For x P X, define Kx to be the group of elements k P G such that Adk
commutes with θx. This subgroup is a maximal compact subgroup of G. Given
any x P X, one can identify X with the homogeneous space G{Kx. The Lie
subalgebra tx is the Lie algebra of the compact Kx, and thus the space px is
naturally identified with TxX.

Let x�, �yx be the scalar product defined for v,w P g as :

xv,wyx � B pv, θxpwqq . (2.1)

This scalar product restricted to px � TxX defines a Riemannian metric gX
on X. We will denote by dX the induced Riemannian distance on X. With this
metric the space X is a symmetric space in the sense that for all x P X there is
an isometry σx of X such that dxσ � �Id.

The symmetric space X is of non-compact type. It is simply connected and
has non-positive sectional curvature. In particular it is a Hadamard manifold.
Remark 2.1.1. We only consider symmetric spaces X associated to semi-simple
Lie groups G, having their Riemannian metric defined via the Killing form.

2.1.2 Reduced root systems.
Fix a base point o P X. Let a be a choice of a maximal abelian subalgebra of po.
These maximal abelian subalgebras are all conjugated by elements of Kx. The
dimension rankpXq of a will be called the rank of X.
Remark 2.1.2. In general rankpXq ¤ rankpGq, where rankpGq is the dimension
of any Cartan subalgebra in g.

Let α P a� be a linear form. Let gα be the set of elements v P g such that
for all τ P a:

adτ pvq � αpτqv.
The reduced root system Σ is the set of linear forms α P a� such that gα � t0u.

An element τ P a is regular if for all α P Σzt0u, αpτq � 0.

Let us choose a regular element τ0 P a. Let Σ� be the associated set positive
roots, i.e. the set of α P Σ such that αpτ0q ¡ 0. There exists a unique set ∆ of
linearly independent roots in Σ� such that any root if Σ� can be written as a
linear combination of roots in ∆. The roots in ∆ are called simple roots.

Let the Weyl group W be quotient of the subgroup of elements in Kx whose
adjoint action stabilizes a by the subgroup of elements who fix a point-wise.

For any root α P Σzt0u there is an element σα PW such that its action on a
is the orthogonal symmetry with respect to Kerpαq in a. The Weyl group acts
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linearly on a, and it is generated by the elements pσαqαP∆. The model Weyl
chamber a� is the cone tτ P a|@α P ∆, αpτq ¥ 0u. For any τ0 P a there is a
unique τ P a� such that for some w P W , w � τ0 � τ . An element τ P a� is
Θ-regular for Θ � ∆ if for all α P Θ, αpτq � 0.

We denote by Sa and Sa� reprectively the unit sphere in a and the unit
sphere intersected with the model Weyl chamber a�, for the metric (2.1).

Let w0 P W be the only element such that w0 � a� � �a�. This element is
called the longest element of the Weyl group. Let ι : a� Ñ a� be the involution
such that for τ P Sa�, ιpτq � �w0 � τ . An element τ P Sa� is called symmetric
if ιpτq � τ .

Given a set of simple roots Θ � ∆, we say that the model Θ-facet is the
set of elements τ P Sa� such that for all α P ∆zΘ, αpτq � 0. The open model
Θ-facet is the set of elements τ P Sa� such that for all α P ∆zΘ, αpτq � 0, and
for all α P Θ, αpτq ¡ 0. For an element τ P Sa� we will write Θpτq the unique
set of simple roots such that α lies in the open model Θpτq-facet.

2.1.3 Maximal Flats, visual boundary and parabolic subgroups.
A flat in X is a complete totally geodesic subspace of X on which the sectional
curvature completely vanishes. A flat F is maximal if dimpF q � rankpXq. Flats
passing through a point x P X are in one to one correspondence with abelian
subalgebras of px, and maximal flats correspond to maximal subalgebras. As
a consequence the action of G on the space of maximal flats is transitive. The
maximal flat corresponding to a will be called the model flat. Moreover for any
x P X and v P TxX, there is a maximal flat F such that x P F and v P TxF .

We say that two geodesic rays parametrized with unit length η1, η2 : R¥0 Ñ
X are asymptotic if there exist a positive constant C such that for all t ¡ 0,
dXpγ1ptq, γ2ptqq ¤ C. This defines an equivalence relation on the space of rays.

The visual boundary BvisX of the symmetric space X is the space of classes
of asymptotic geodesic rays parametrized with unit speed. The group G acts
by isometries on X, hence it acts on BvisX.

A unit vector v P TxX at a point x P X points towards a P BvisX if the
geodesic ray γ such that γp0q � x, γ1p0q � v is in the class corresponding to a.
Since X is a Hadamard manifold, for any x P X and a P BvisX there is a unique
unit vector that points towards a. We will denote this vector by va,x throughout
the paper. There exist a unique topology on BvisX such that for any x P X the
map ϕx : a ÞÑ va,x is an homeomorphism between BvisX and T 1

xX.

The visual boundary of the model flat can be identified with Sa, and is
included in the visual boundary of X. The G-orbit of a point τ P Sa� will be
denoted by Fτ . A Θ-facet is a subset of BvisX that is the image of the model
Θ-facet by the action of an element of G. We define similarly the notion of open
Θ-facet. The stabilizer of the open model Θ-facet will be denoted by PΘ, and we
will denote by FΘ the associated flag manifolds, i.e. the quotient G{PΘ. Since
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PΘ is also the stabilizer of any point in the open Θ-facet, there exist a natural
G-equivariant diffeomorphism between the G-homogeneous spaces FΘ and Fτ
for any τ in the open model Θ-facet.
Example 2.1.3. Let us consider the case when G � PSLpn,Rq to illustrate these
notions. A parabolic subgroup is this case is the stabilizer of a partial flag
f . Any point in BvisX belongs to a unique open facet, which corresponds to a
partial flag. The type of the partial flag, i.e. the dimensions of the subspaces
that form the flag, determine a set of roots Θf . The points in BvisX are in 1 to 1
correspondence with partial flags decorated with a point in the open Θf -model
facet. This decoration can be interpreted as a collection of weights associated
to the subspaces of the partial flag.

Given any two points a, a1 P BvisX, one can define their Tits angle =Titspa, a1q
as the minimum of =pva,x, va1,xq for x P X. This minimum is obtained when
x P X lies in a common flat with a and a1.

2.1.4 Cartan and Iwasawa decomposition.
The Cartan projection µ : TX Ñ a� is the function that maps any vector
w P TxX to the unique element µpwq P a� of the model Weyl Chamber such
that for some g P G, g � w � µpwq.

The generalised distance dapx, yq based at x P X of a point y P X is the
Cartan projection µpwq of the unique vector w P TxX � px such that exppwq�x �
y. This generalized distance is 1-Lipshitz in the following sense:
Lemma 2.1.4. Let x, y, z P X:

|dapx, zq � dapx, yq| ¤ dXpy, zq.
A proof of this lemma can be found for instance in [Rie21], Corollary 3.8.

Here | � | means the norm induced by the metric (2.1).
We say that a vector v P TX is Θ-regular for a set of simple root Θ if it’s

Cartan projection is Θ-regular, i.e. it avoids the walls of the Weyl chamber
associated with elements of Θ. We will later introduce a similar notion of a
τ -regular vector in Definition 2.4.7.

Let Ta,x : Pa Ñ G be the map that associates to g P Ga the limit :

lim
tÑ�8 expp�tvaqg expptvaq

It is a well defined continuous morphism. Let Na,x be the kernel of Ta,x,
and na,x its Lie algebra. The generalised Iwasawa decomposition is useful to
compute Busemann functions.
Theorem 2.1.5 (Generalized Iwasawa decomposition). Let x P X and a P BvisX.
then the following map:

Na,x � exppaa,xq �Kx ÝÑ G

pn, exppvq, kq ÞÝÑ n exppvqk

32



is a diffeomorphism. In particular for every x P X and a P BvisX there is a
splitting :

g � na,x ` aa,x ` kx.

The sum na,x ` aa,x is orthogonal with respect to x�, �yx.

In this Theorem, aa,x � px is the centralizer of va,x.

2.1.5 Examples.
In this subsection we consider the case when the semi-simple Lie groupG is equal
to PSLpn,Rq, PSLpn,Cq, PSpp2n,Rq or PSOpp, qq. The notations introduced
here will be used in the examples throughout the paper.

Let G � PSLpn,Rq and let us fix a volume form on Rn. Let Sn for n ¥ 2 be
the space of all scalar products on Rn having volume one. The group PSLpn,Rq
acts transitively on Sn by changing the basis, i.e for g P PSLpn,Rq, q P X and
v, w P Rn: g � qpv, wq � qpg�1pvq, g�1pwqq. For any q P Sn the space Sn can be
identified with the quotient PSLpn,Rq{PSOpqq � PSLpn,Rq{PSOpn,Rq.

Let θq at a point q P X be the involutive automorphism of slpn,Rq defined
by u ÞÑ �uT where uT is the transpose of u with respect to the scalar product
q. This is a Cartan involution. The space Sn is the symmetric space of non-
compact type associated to G � PSLpn,Rq.

The space pq is the space of symmetric endomorphsisms with respect to q,
and tq is the space of antisymmetric endomorphsisms with respect to q. The
scalar product x�, �yq at a point q P Sn is equal to xu, vyq � 2nTrpuTvq for
u, v P slpn,Rq.

We choose the standard scalar product q P Sn on Rn to be our base point of
Sn. A maximal abelian subalgebra a � pq � slpn,Rq is equal to the algrbra of
diagonal matrices:

a �
#

Diagpσ1, � � � , σnq|σ1, � � � , σn P Rn,
ņ

i�1
σi � 0

+
.

A choice of simple root is ∆ � tα1, � � � , αn�1u where for any 1 ¤ i ¤ n� 1
and any τ � Diagpσ1, � � � , σnq P a, αipτq � σi � σi�1.

The Weyl chamber associated to this choice is :

a� �
#

Diagpσ1, � � � , σnq|σ1 ¥ � � � ¥ σn P Rn,
ņ

i�1
σi � 0

+
.

The Weyl group W is isomorphic to Sn. It acts on a by permuting the
entries.
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τ∆

τ1
a�

Sa

Figure 2.1: The model restricted Cartan algebra a and its Weyl chamber a� for
PSLp3,Rq.

τ∆

Kerpα1q Kerpα3q

Kerpα2q

Sa�

Figure 2.2: The projectivization of the Weyl chamber Sa� for G � PSLp4,Rq
in an affine chart.

Let G � PSLpn,Cq The space Hn of all definite positive Hermitian bilinear
forms of Cn having volume one can identified with PSLpn,Cq{PSUpn,Cq. It
can be given in a similar way a Riemannian metric that makes it a symmetric
space of non-compact type associated to G � PSLpn,Cq.

The subalgebra a � slpn,Rq � slpn,Cq defined previously is still a maximal
abelian subalgebra of pq. One has rankpSnq � rankpHnq � rankpPSLpn,Rqq �
n� 1, but rankpPSLpn,Cqq � 2n� 2.

Let G � PSpp2n,Rq Let ω be a symplectic form on R2n. Let Xn be the space
of endomorphisms J on R2n such that J2 � �Id and pv,wq ÞÑ ωpv, Jpwqq is a
scalar product on R2n. The semi-simple Lie group PSpp2n,Rq acts on Xn by
conjugation. The space Xn can be identified with PSpp2n,Rq{PSUpn,Rq. This
is one of the models for the Siegel space, see for instance [BP17].
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For J P Xn, let us write θJ � AdJ . This is Cartan involution of spp2n,Rq.
The Siegel space is the symmetric space of non-compact type associated with
G � PSpp2n,Rq.

Let ω and J P Xn be such that for x � px1, � � � , x2nq and y � py1, � � � , y2nq :

ωpx, yq �
ņ

i�1
xiy2n�i �

2ņ

i�n�1
xiy2n�i,

Jpxq � p�x2n, � � � ,�xn�1, xn, � � � , x1q.
A maximal abelian subalgebra a � pq � spp2n,Rq is:

a � tDiagpσ1, � � � , σn,�σn, � � � ,�σ1q|σ1, � � � , σn P Rnu .

A choice of simple roots is ∆ � tα1, � � � , αnu where αipτq � σi � σi�1 for
1 ¤ i ¤ n� 1 and αnpτq � 2σn.

The Weyl chamber associated to this choice is :

a� � tDiagpσ1, � � � , σn,�σn, � � � ,�σ1q|σ1 ¥ � � � ¥ σn ¥ 0 P Rnu .

The Weyl group W is isomorphic to the subgroup of elements in S2n that
commutes with the involution ι : i ÞÑ 2n� 1� i. It acts on a by permuting the
entries.

τtα1u

τtα2u

Sa

Figure 2.3: The model restricted Cartan algebra a and its Weyl chamber a� for
PSpp4,Rq.

Let G � SOpp, qq with p   q. Let Rp,q be the vector space Rp�q equipped
with a symmetric bilinear form x�, �y of signature pp, qq defined in the standard
basis by:

xx, yy �
p̧

i�i
pxiyp�q�i � xp�q�iyiq �

p�q̧

i�1
xp�iyp�i.
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A model for the associated symmetric space X is the space of spacelike
subspaces U � Rp,q, i.e. subspaces on which x�, �y is definite positive.

A maximal abelian subalgebra a � pU � sopp, qq is the algebra :

a � tDiagpσ1, � � � , σp, 0, � � � , 0,�σp, � � � ,�σ1q|σ1, � � � , σpu .
A choice of simple roots is ∆ � tα1, � � � , αpu where αipτq � σi � σi�1 for

1 ¤ i ¤ p� 1, and αppτq � σp.
The Weyl chamber associated to this choice is :

a� � tDiagpσ1, � � � , σp, 0, � � � , 0,�σp, � � � ,�σ1q|σ1 ¥ � � � ¥ σp ¥ 0u .
The Weyl group W is isomorphic to the subgroup of elements in S2p that

commutes with the involution ι : i ÞÑ 2p� 1� i. It acts on a by permuting the
first and last p entries.

2.1.6 Weyl orbits of simple roots.
In this subsection we introduce Weyl orbits of simple roots, which are special
sets of simple roots. To a Weyl orbits of simple roots Θ one can associate a unit
vector in the Weyl chamber τΘ P Sa� which is colinear to a coroot.

We consider the restricted root system Σ associated with the semi-simple
Lie group G, with a choice of a set of positive roots Σ� and of simple roots ∆.
Two simple roots α and β are conjugates if there is an element w in the Weyl
group W such that α � w � β � β � w�1.

Definition 2.1.6. A set of simple roots Θ � ∆ is called a Weyl orbit of simple
roots if it is an equivalence class for the conjugation relation on the set of simple
roots ∆.

Proposition 2.1.7. Let Θ be a Weyl orbit of simple roots. There exists a unique
unit vector τΘ P Sa� such that for any α P Θ there is some w P W such that
w �τΘ is orthogonal to kerpαq. The vector τΘ P Sa� will be called the normalized
coroot associated to Θ.

The normalized coroot associated to Θ is colinear to a coroot which is itself
conjugate via the Weyl group to the corroot associated to any α P Θ.

Proof. Let α P Θ. Let τ0 P Sa be a unit vector orthogonal to kerpαq. Since
every orbit for the action of the Weyl group on Sa� intersects exactly once the
model Weyl chamber, there exist a unique vector τΘ P Sa� such that τΘ � w �τ0
for some w PW .

This definition does not depend of the choice of α P Θ, because if β P Θ then
for some w0 P W , w0 � β � α and hence any vector τ 10 orthogonal to kerpβq can
be written τ 10 � w0 � τ0 or τ 10 � pw0σβq � τ0, and hence W � τ0 �W � τ 10. Therefore
W � τ0 X Sa� �W � τ 10 X Sa� � tτΘu.

Note that in particular τΘ is symmetric.
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Remark 2.1.8. If Θ is a Weyl orbit of simple roots, FτΘ is not in general the
same flag manifold as FΘ � G{PΘ.

The Dynkin diagram associated to the restricted root system Σ is the graph
with vertex set ∆ such that for all α, β P ∆ distinct roots there is a link between
α and β of multiplicity depending of the order k of σασβ or σβσα, where σα, σβ P
W are the symmetries associated with the roots α, β. If k � 2 we consider that
there is no link, there is a simple link if k � 3, a double link if k � 4 and a
triple link if k � 6. These are the only cases that occur for spherical Dynkin
diagrams. If two roots have different norms, we orient the edge towards the root
with largest norm.
Proposition 2.1.9. Consider the Dynkin diagram associated with the reduced root
system Σ, and remove all the double or triple edges. A set Θ � ∆ is a Weyl
orbit of simple roots if and only if it is a connected component of this graph.

Proof. Let α, β be two simple roots such that σα � wσβw
�1 for some w P W .

Then the simple root α and w �β are proportional, hence α � w �β or α � �w �β.
In any case α and β are conjugated. Reciprocally if α and β are conjugates,
then σα and σβ are conjugated.

The system pW, pσαqαP∆q is a Coxeter system. Generators of a Coxeter sys-
tem are conjugated to one another if and only if there is a path of single edges
between the corresponding vertices in the Dynkin diagram ([Gal05] Proposi-
tion 2.1). Hence Weyl orbits of simple roots correspond exactly to connected
components for the modified Dynkin diagram.

We can now describe the Weyl orbits of simple roots in ∆ for the restricted
system of roots associated to a simple group G. For this we use the classification
of the Dynkin diagrams that occur as reduced root system for a symmetric space
X associated to G.
Corollary 2.1.10. If the restricted root system Σ is of type An, Dn for n ¥ 2 or
E6, E7, E8, then the only Weyl orbit of simple roots in ∆ is ∆.

If the root system Σ is of type Bn, Cn for n ¥ 2 or F4, G2, then ∆ can be
partitioned into its only two Weyl orbits of simple roots .

Example 2.1.11. We keep notations from Section 2.1.5. If G � PSLpn,Rq, with
previous notations ∆ is the only Weyl orbit of simple roots and:

τ∆ � 1
2
?
n

Diagp1, 0, � � � , 0,�1q.

The flag manifold Fp∆ can be identified with :

F1,n�1 � tpℓ,Hq|ℓ � H � Rn,dimpℓq � 1,dimpHq � n� 1u.

If G � Spp2n,Rq, with previous notations Θ1 � tα1, α2, � � � , αn�1u and
Θ � tαnu are the two Weyl orbits of simple roots of ∆. One has :

τΘ � 1
2
?
n

Diagp1, 0, � � � , 0,�1q.
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∆ Θ τΘ ΘpτΘq
An

1?
2 pe1 � en�1q

B2 e1
1?
2 pe1 � e2q

Bn e1
1?
2 pe1 � e2q

Cn e1
1?
2 pe1 � e2q

Dn
1?
2 pe1 � en�1q

E6
?

2e

E7
1?
2 pe8 � e7q

E8
1?
2 pe1 � e9q

F4
1?
2 pe1 � e2q

e1
G2

1?
2 pe1 � e3q

1?
6 p2e1 � e2 � e3q

Figure 2.4: Weyl orbits of simple roots, and their associated normalized coroots.

τΘ1 � 1
2
?
n

Diagp1, 1, 0, � � � , 0,�1,�1q.

The flag manifold FτΘ can be identified with RP2n�1 and FτΘ1 can be iden-
tified with the Grassmannian of planes P in R2n that are isotropic for ω, i.e.
such that ω|P � 0.

In general, the Weyl orbits of simple roots for any root system are summa-
rized in Figure 2.4. The table also includes an illustration of the set of roots
ΘpτΘq such that FΘpτΘq � FτΘ . The sets of roots are illustrated in the diagram
as the set of filled vertices. Using notations from [OV90, Table 1, page 293], the
basis peiq is an orthonormal basis such that e_i � ϵi for Bn, Cn, Dn, F4 and
e_i � 1

n�1
°n�1
k�1 e

_
k � ϵi for An, E7, E8 and G2. For E6, we write e � ϵ_.

The table can be checked as follows: for each Weyl orbit of simple root one
can check that the vector τΘ is orthogonal to the kernel of a root conjugate
to a root in Θ, and lies in the model Weyl chamber. Then one an check that
the simple roots that do not vanish on τΘ are the one in ΘpτΘq, as depicted in
Figure 2.4.
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2.2 Representations of hyperbolic groups.
2.2.1 Gromov hyperbolic groups.
Let Γ be a finitely generated group. Let F be any finite generating system for
Γg that is symmetric, i.e. such that s�1 P F for all s P F . We can define the
norm of an element γ P Γg as:

|γ|F � min tn|n � s1s2 � � � sn, si P Su .

This norm defines the word distance on Γg by taking dF pγ1, γ2q � |γ�1
1 γ2|F

for γ1, γ2 P Γg.

A map f : Y Ñ X between two metric spaces X,Y is called a quasi-isometric
embedding if there exist C,D such that for all x1, x2 P X:

1
C
dY px1, x2q �D ¤ dXpfpx1q, fpx2qq ¤ CdY px1, x2q �D.

By extension, we say that a representation ρ is a quasi-isometric embedding
if some and hence any ρ-equivariant map u0 : Γ Ñ X is a quasi-isometry, where
Γ acts on itself by left multiplication.

This notion does not depend on the choice of F : indeed if F 1 is an other
finite generating system, the identity map pΓ, dF q Ñ pΓ, dF 1q is a quasi-isometric
embedding.

The group Γ is called hyperbolic if as a metric space it is hyperbolic in the
sense of Gromov. We denote by BΓ the Gromov boundary of an hyperbolic
group Γ, that we equip with the usual topology [Gro81].

Given a discrete representation, we will need to consider the limit cone of
the Cartan projections of elements of the group.

Definition 2.2.1. The limit cone of a discrete representation ρ : Γ Ñ G is the
closed subset

Cρ �
£
nPN

trdapo, ρpγq � oqs , |γ|w ¥ nu �
£
nPN

"
dapo, ρpγq � oq
dXpo, ρpγq � oq , |γ|w ¥ n

*
� Sa�.

Recall that the generalized distance da was defined in Section 2.1. This
definition does not depend on the choice of the base point o P X.

2.2.2 Anosov representations.
The Anosov properties are more restrictive for a representation than the prop-
erty of being a quasi-isometric embedding. These notions are interesting in high
rank because the Anosov properties hold for an open set of representations,
whereas the property of being a quasi-isometric embedding is not necessarily
open in HompΓg, Gq when the rank of X is at least 2.
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Definition 2.2.2 ([BPS19], Section 4). Let Θ � ∆ be a non-empty set of simple
roots. A representation ρ : Γ Ñ G is Θ-Anosov if for every root α P Θ there
exists some constants b, c ¡ 0 such that for every γ P Γ:

α pdapo, ρpγq � oqq ¥ b|γ|F � c.

This definition does not depend on the choice of the generating set F and
the base-point o.

A ∆-Anosov representation in the case when G is a split real simple Lie
group is be called a Borel-Anosov representation.

Remark 2.2.3. A representation is P -Anosov for a parabolic subgroup P if it is
Θ-Anosov for the corresponding set of simple roots Θ � ∆.

Let α P ∆ and τ0 P Sa be orthogonal to Kerpαq. The evaluation of α to
dapx, yq satisfies:

αpdapx, yqq � αpτ0qdXpx, yq cos p=pdapx, yq, τ0qq .
Anosov representations are necessarily quasi-isometric embeddings. Recip-

rocally a quasi-isometric embedding is tαu-Anosov if and only if the angle
xdapo, ρpγq � oq, τ0y is not too small in absolute value for γ P Γg large enough.

In particular we have the following characterization of Anosov representa-
tions:

Theorem 2.2.4 ([KLP17]). A representation ρ : Γg Ñ G is Θ-Anosov for Θ � ∆
if and only if it is a quasi-isometric embedding and if Kerpαq X Cρ � H for all
α P Θ.

Representations that are Θ-Anosov admit a natural continuous and equiv-
ariant map ξΘ

ρ : BΓg Ñ FΘ � G{PτΘ , where BΓg is the Gromov boundary of
Γg.

In the proof of Theorem 2.6.11 we will use the following results about the
boundary maps of Anosov representations. For two points o, x P X let ℓpo, xq P
BvisX be the class of the unique geodesic ray with unit speed starting from o
and passing through x.

Theorem 2.2.5 ([BPS19], Section 4). Let ρ : Γg Ñ G be a Θ-Anosov representa-
tion for a non-empty set Θ � ∆. There exist a unique ρ-equivariant continuous
and dynamic preserving map ξΘ

ρ : BΓg Ñ FΘ. This map is such that for any
o P X and any sequence pγnqnPN of elements of Γg converging to ζ P BΓg, the ∆-
facet containing any limit point of the sequence pℓpo, ρpγnq � oqqnPN also contains
the Θ-facet ξΘ

ρ pζq.
For instance, when G � PSLpn,Rq and if Θ � tαku, one can associate a

partial flag to any point in BvisX. If the the representation ρ is tαku-Anosov,
the partial flag associated to any limit point of pℓpo, ρpγnq � oqqnPN contains the
same k-dimensional plane, that will be denoted by ξkρ pζq.
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Kapovich, Leeb and Porti also proved a generalization of the Morse lemma.
Here is a version of this result. Let us fix any metric on Γ quasi-isometric to a
word metric.

Theorem 2.2.6 ([KLP18b], Theorem 1.3). Let ρ : Γ Ñ G be a Θ-Anosov repre-
sentation. Let o P X be a base-point. There exist a constant D ¡ 0 such that
for every γ P Γ, there exist a geodesic ray η : R¡0 Ñ X at distance at most D
from ρpγq � o with ηp0q � o, whose class rηs P BvisX lies in a common ∆-facet
with ξΘ

ρ pζγq. Here ζγ P BΓ is the endpoint of any geodesicray in Γ starting at
the identity and going through γ.

2.3 Busemann functions on symmetric spaces.
Busemann functions are natural functions on Hadamard manifolds associated
to points in the visual boundary. These functions will play a key role in the
definition of τ -nearly geodesic immersions, and in the fibration of domains of dis-
continuity. In this section we prove the main properties of Busemann functions
and compute their Hessian.

2.3.1 Main properties of Busemann functions.
Busemann functions can be interpreted as the distance of a point x P X to a
point a in the visual boundary relative to a base-point o P X.

Definition 2.3.1. The Busemann function associated to a P BvisX and based at
o P X is the map ba,o : X Ñ R that associates to x P X the limit :

lim
tÑ�8 dXpx, γptqq � dXpo, γptqq,

for any geodesic ray γ : R� Ñ X in the class of a.

This definition makes sense because X is a Hadamard manifold [Ebe96]. The
definition implies that for any x, o, o1 P X and a P BvisX, the Busemann cocycle
holds:

ba,o1pxq � ba,opxq � ba,o1poq. (2.2)

For symmetric spaces, this function can be computed using the generalized
Iwasawa decomposition. First we prove that unipotent elements preserve the
level lines of Busemann functions.

Lemma 2.3.2. Let x, o P X and a P BvisX be two points. Let n be an element of
the unipotent subgroup Na,o of G:

ba,opn � xq � ba,opxq.
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Proof. The Busemann cocycle implies that ba,opn � xq � ba,opxq � ba,xpn � xq.
This is by definition the limit when tÑ8 of the difference:

dX pn � x, expptva,xq � xq � dX px, expptva,xq � xq
� dX

�
x, n�1 expptva,xq � x

�� dX px, expptva,xq � xq
¤ dX

�
n�1 expptva,xq � x, expptva,xq � x

�
.

But since n P Na,x, expp�tva,xqn expptva,xq converges to the identity when
tÑ �8, so this distance converges to 0. Hence ba,xpn � xq � 0.

Recall that va,o is the unit vector in ToX pointing towards a P BvisX. To
compute a Busemann function one needs to understand it on maximal flats. Let
x � exppwq � o for w P po. Suppose that a, o, x lie in the same flat subspace, i.e.
rw, va,os � 0. The Busemann function on this Euclidean space is equal to:

ba,opxq � �dXpx, oq cosp=opa, xqq � x�va,x,wyx.

Using these facts we can write Busemann functions in the symmetric space
X explicitely. Let o, x P X be a base point and a P BvisX.

Corollary 2.3.3. Let o, x P X and a P BvisX. The Busemann function can be
computed as :

ba,opxq � x�va,o,wyo.
Where w P aa,o is given by the generalized Iwasawa decomposition, i.e. is

the unique element such that one can write x � n exppwqk � o with n P Na,o and
k P Ko.

Since G acts by isometries on X, Busemann functions are G-equivariant in
the following sense.

Corollary 2.3.4. Let o P X and a P BvisX. For any g P G, and any x P X,
bg�a,g�opg � xq � ba,opxq.

The gradient of Busemann functions is characterized as follows.

Proposition 2.3.5. The gradient of the Busemann function based at any point
o P X associated to a P BvisX is the vector field p�va,xqxPX of unit vectors
pointing towards a.

Proof. The differential dxba,o of ba,x at x associates to an element w P px the
value xw1,�va,xyx where w1 is the projection of w to aa,x with respect to the
decomposition g � na,x ` aa,x ` kx. Note that na,x and k are orthogonal to
va,o P aa,x with respect to x�, �yx. Hence w � w1 so the gradient of ba,o at x is
�va,x.

Busemann functions vary smoothly when the base flag varies in a flag man-
ifold.
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Lemma 2.3.6. For any o P X, and τ P Sa�. The map Fτ � X Ñ R, pa, xq ÞÑ
ba,opxq is smooth.

Proof. Let P be the stabilizer of an element a P Fτ . By Corollary 2.3.4, for
g P G and x, y P X, bg�a0,opyq � ba0,opg�1 � yq � ba0,opg�1 � oq.

Hence the map G � X Ñ R, pg, xq ÞÑ bg�a0,opxq is smooth, and defines a
smooth map from the quotient G{P �X � Fτ � X.

Example 2.3.7. Let X � Sn or Hn the symmetric space associated with PSLnpKq
with K � R or C, as in Section 2.1.5. Let pe1, � � � , enq be a basis of Kn.
The projective space PpKnq can be identified with the G-orbit Fτ1 of the point
a P BvisX corresponding to the limit point where t goes to �8 of the geodesic
ray:

t ÞÑ

����
e�tpn�1q 0 � � � 0

0 et 0
� � � � � �
0 0 et

���
The point a P Fτ � RPn�1 is identified with the first basis vector since the

stabilizer of both points by the respective actions of PSLnpKq on are equal.

The Busemann function brvs,q0 where q0 P X and rvs P PpKnq associates to
q P X the value

b
n�1
n logpqpv, vqq where v is a representative of rvs such that

q0pv, vq � 1.

The asymptotic behavior of Busemann functions along geodesic rays is de-
termined by the Tits angle between the endpoints.

Lemma 2.3.8. Let a P BvisX and x P X. Let η be a geodesic ray converging to
b P BvisX. Then there exists a constant C ¡ 0 such that for all t P R :

|ba,x0pηptqq � t cosp=Titspa, bqq| ¤ C

Proof. There exist some element g P G such that g � a and g � b belong to BvisF
with F the model flat in X. Moreover there exist a geodesic ray η1 at bounded
distance from g � η that belongs to the flat F . On the flat subspace F , the
Busemann function can be computed:

ba,η1p0qpη1ptqq � �t cosp=Titspg � a, g � bqq.

This proves the lemma.
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2.3.2 Computation of the Hessian.
We compute here the Hessian of Busemann functions in the symmetric space
X. This computation will be used in the proof of Theorem 2.4.24.

Lemma 2.3.9. Let a P BvisX, and x, o P X. The Hessian of the Busemann
function ba,o at a point x P X is given by the following quadratic form on TxX:

v ÞÑ
Ab

ad2
va,x

pvq, v
E
x
. (2.3)

Here
b

ad2
va,x

is the only root of the endomorphism adva,x
� adva,x |px

: px Ñ
px that is symmetric and semi-positive for the scalar product x�, �yx.

This quadratic form is semi-positive, and vanishes exactly on zpva,xq X px.
For v P pzpva,xq X pxqK, it satisfies:

Hessxpv, vq ¥ ∥v∥2 min
αPΣ,αpµpaqq�0

|αpµpva,xqq|. (2.4)

Recall that zpvq for v P g is the centralizer in g of v.
Remark 2.3.10. The Hessian of a Busemann function is related to the sec-
tional curvature of the symmetric space. When measured along a tangent plane
spanned by two orthogonal unit vectors v,w P ToX � po � g the sectional
curvature of X is equal to:

κv,w � �xrv, rv,wss,wyo � �xad2
vpwq,wyo.

This Lemma implies that Busemann functions are strictly convex except on
flats. This is a more general fact about Hadamard manifolds, see [Ebe96].

Proof. The Busemann function with respect to two different base points differ
only by a constant. Hence we can assume here without any loss of generality
that x � o.

Let v P ToX be a vector. The generalized Iwasawa decomposition, and the
fact that the exponential map is a local diffeomorphism on Lie group implies
that there exists a neighborhood I of 0 in R such that for all t P I:

expptvq � exppntq exppwtq exppktq. (2.5)

Here nt P na,o, wt P aa,x and kt P tx, and so that the map t ÞÑ pnt,wt, ktq is
smooth. Let us denote by p 9n, 9w, 9kq and p:n, :w, :kq the first and second derivative
of this map at t � 0.

The limited development at order 2 at t � 0 of (2.5) yields:

expptvq � exp
�
9nt� :n

2 t
2



exp
�

9wt� :w
2 t

2



exp
�

9kt�
:k
2 t

2

�
� opt2q.
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But the Baker–Campbell–Hausdorff formula [Hel78] implies that the right
hand of this equality is equal to the exponential of:

9nt� 9wt� 9kt� :n
2 t

2 � :w
2 t

2 �
:k
2 t

2 � 1
2

�
r 9n, 9ws � r 9n, 9ks � r 9w, 9ks

	
t2 � opt2q.

Hence we get the following two equalities:

v � 9n� 9w � 9k,

0 � :n
2 �

:w
2 �

:k
2 �

1
2

�
r 9n, 9ws � r 9n, 9ks � r 9w, 9ks

	
.

However since v, 9w P px, then θxp 9n � 9kq � � 9n � 9k. Hence 9k � � 9n�θxp 9nq
2 .

This let us simplify the last part of the previous equation :

r 9n, 9ws � r 9n, 9ks � r 9w, 9ks � r 9n, 9ws � 1
2 r 9n, θxp 9nqs �

1
2 r 9w, 9n� θxp 9nqs

The metric on X can be written x�, �yx � Bp�, θxp�qq on px with B the Killing
form, defined on g.

Since va,x is orthogonal to na,o and tx then Bpva,x, :nq � Bpva,x, :kq � 0.
Moreover r 9n, 9ws P na,o so:

Bpva,x, r 9w, 9n� θxp 9nqsq � Bpva,x, r 9n, 9wsq � 0.

In particular one gets:

Hessxpba,oqpv, vq � x�va,x, :wyx � 1
2B p�va,x, r 9n, θxp 9nqsq ,

Hessxpba,oqpv, vq � 1
2B pr�va,x, 9ns, θxp 9nqq .

Let Σa � Σ be the set of roots α such that αpµpaqq � 0. The Lie algebra
decomposes into root spaces:

g � zpva,xq `
à
αPΣa

gαa,x,

where Adgpgαa,xq � gα the model root spaces with g P G any element such
that g � va,x � µpva,xq.

The restriction of adva,x
on gαa,x is an homothety of ratio αpµpva,xqq. The

vector v can be decomposed in this direct sum.

v � v0 �
¸
αPΣa

vα.

The endomorphism
b

ad2
va,x

associates to v the vector :¸
αPΣa

|αpµpva,xqq|vα P px.
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Let Σ�
a be the set of roots α such that αpµpva,xqq ¡ 0. The vector 9n can be

expressed as :

9n � 2
¸
αPΣ�

a

vα.

Hence, we get as desired:

1
2Bpr�va,x, 9ns, θxp 9nqq � �2

¸
αPΣ�

α

αpµpva,xqqBpvα, θxpvαqq

�
¸
αPΣα

|αpµpva,xqq|xvα, vαyx �
Ab

ad2
va,x

pvq, v
E
x
.

(2.6)

This is equal to zero if and only if v � v0.

2.4 Nearly geodesic immersions.
In this section we introduce a local condition for an immersion into the sym-
metric space of non-compact type X that generalizes the notion an immersion
with principal curvature in p�1, 1q inside Hn.

2.4.1 Curvature bound and Busemann functions.
We introduce the key definition of a nearly geodesic immersion, which relies on
Busemann functions (see Section 2.3). Let M be a smooth connected manifold,
u : M Ñ X be an immersion, o P X a base point and let τ P Sa� be a unit
vector in the model Weyl chamber.

Definition 2.4.1. An immersion u : M Ñ X is called τ -nearly geodesic if for all
a P Fτ Y Fιpτq and v P TM such that dpba,o � uqpvq � 0, the function ba,o � u
has positive Hessian in the direction v.

Remark 2.4.2. To a τ P a we can associate its dual ω P a�. We say that an
imemrsion is ω-nearly geodesic if it is τ -nearly geodesic.

The Hessian considered in this definition is computed with the induced met-
ric u�gX on M . Recall that Fιpτq is the opposite flag manifold to Fτ for τ P Sa�.

We will first show that the nearly geodesic condition can be written as a
bound on the fundamental form IIu, depending on the Cartan projection of the
surface tangent vectors.

Since the Hessian of a Busemann function ba,o on X does not depend on o,
we will denote it by Hessba

. Recall that va,o is the unit vector in ToX pointing
towards a P BvisX. The second fundamental form IIu for x PM of the immersion
u is the difference u�∇X � ∇M where ∇X is the Levi-Civita connection on
TX associated to gX and ∇M is the Levi-Civita connection on TM � u�TX
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associated to the metric u�gX. The second fundamental form is a symmetric
2-tensor with values in u�N when N � TX is the normal tangent bundle to
upMq.
Proposition 2.4.3. An immersion u : M Ñ X is τ -nearly geodesic if and only if
for all y PM , for all a P FτYFιpτq and v P TyM such that xdupvq, va,upyqyupyq �
0:

Hessbapdupvq,dupvqq � xIIupv, vq, va,upyqyupyq ¡ 0. (2.7)

We will prove a sufficient condition that has a simpler form in Theorem
2.4.24 when τ � τΘ for a Weyl orbit of simple roots Θ.

Proof. Let y P M and a P Fτ Y Fιpτq. The function ba,o � u is critical at y in
the direction v P TyM if and only if xdupvq, va,upyqyupyq � 0.

Let γ : R Ñ M be a geodesic for the metric u�gX on M such that γp0q � y
and γ1p0q � v. The Hessian of ba,o � u on M is equal to the derivative at t � 0
of the differential of the Busemann function, i.e. :

t ÞÑ xva,upγptqq,dupγ1ptqqyupyq
The first term, x∇X

dupvqva,upγptqq,dupγ1ptqqyupyq, is equal to Hessbapdupvq,dupvqq.
The second term can be written:

∇X
dupvqdupγ1q � u�∇M

v dupγ1q � IIupv, vq

But γ is a geodesic so ∇M
v dupγ1q � 0, therefore the Hessian of ba,o � u on M in

the direction v is equal to :

Hessbapdupvq,dupvqq � xIIupv, vq, va,upyqyupyq ¡ 0.

A consequence of Proposition 2.4.3 is that the property of being τ -nearly
geodesic is locally an open property for the C2-topology, which is the topology
associated with the uniform convergence over any compact set of the first two
differentials.

Corollary 2.4.4. Let u0 : M Ñ X be a τ -nearly geodesic map for some τ P Sa�.
For all compact K �M , there exists a neighborhood U of u0 for the C2-topology
in the space of C2 maps from M to X and a neighborhood V of τ in Sa� such that
for all τ 1 P V and u P U , u satisfies the τ 1-nearly geodesic immersion condition
on K.

Let G be the isometry group of the n-dimensional hyperbolic space Hn for
some n P N with its usual metric with sectional curvature equal to �1. We
prove that the notion of τ -nearly geodesic immersion generalizes the notion of
immersion with principal curvatures in p�1, 1q in Hn. Principal curvatures are
only defined for hypersurfaces, but the following definition allows to generalize
the notion of having bounded principal curvature.
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Definition 2.4.5. An immersion u : M Ñ Hn has principal curvature in p�1, 1q
if and only if for all v P TM , ∥dupvq∥2 ¡ ∥IIupv, vq∥.

Since Hn is a rank one symmetric space, Sa� contains a single element.

Proposition 2.4.6. An immersion u : M Ñ Hn is nearly geodesic for the only
element τ P Sa� if and only u has principal curvature in p�1, 1q.
Proof. Let x P X � Hn and a P Fτ � Fιpτq � CP1 � BHn. For any w P TxX,
Hessba

pw,wq � λ∥wK∥2 where wK is the orthogonal projection of w onto the
orthogonal in TxX of va,x by Proposition 2.3.9, with some constant λ which is
equal to 1 for the metric of sectional curvature equal to �1 on Hn (see Remark
2.3.10).

If u is τ -nearly geodesic, then it is an immersion and for every y P M
and v P TyM there exist a P BHn such that va,upyq is positively collinear with
�IIu pdupvq,dupvqq. By Proposition 2.4.3, and since v K va,upyq one has:

∥dupvq∥2 � ∥IIupv, vq∥ ¡ 0.

Therefore the principal curvature of u is in p�1, 1q.
Conversely if u is an immersion with principal curvatures in p�1, 1q, let

a P BHn, y P M and v P TyM be such that ba,o � u is critical in the direction
v. Hence va,upyq is perpendicular to dupvq so Hessba

pdupv,dupvqq � ∥dupvq∥2.
Therefore the fact that u has principal curvature in p�1, 1q implies that the
hypothesis of Proposition 2.4.3 hold, so u is τ -nearly geodesic.

In general, the property of being τ -nearly geodesic implies that the surface
is regular in the following sense.

Definition 2.4.7. A tangent vector v P TX is called τ -regular if its Cartan
projection µpvq does not belong to

�
wPW pw � τqK.

We say that an immersion u : M Ñ X is τ regular if for all v P TM , dupvq
is τ -regular.

Being regular, namely having the Cartan projection in the interior of a�,
and being τ -regular is in general unrelated. However when τ � τΘ for a Weyl
orbit of simple roots Θ, a τ -regular vector v P TX is exactly a Θ-regular vector,
namely such that for all α P Θ, α pµpvqq � 0.

Proposition 2.4.8. Let τ P Sa�. If u is a τ -nearly geodesic immersion, the
tangent vectors dupvq for v P TM are τ -regular.

Proof. Let v P TyM for some y PM . Assume that dupvq is not τ -regular, so its
Cartan projection is orthogonal to w � τ for some w P W . Therefore there is a
unit vector which lies in a common maximal flat with dupvq, and whose Cartan
projection is equal to τ . This vector is equal to va,upyq for some a P Fτ YFιpτq.

Since va,upyq and dupvq are in a common flat, Hessba
pdupvq,dupvqq � 0.

One can assume that xIIupv, vq, va,upyqyupyq ¤ 0 up to exchanging a with its
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symmetric with respect to upyq which is still in Fτ Y Fιpτq. Moreover since
xva,upyq,dupvqyupyq � 0, this is a contradiction with the criterion from Proposi-
tion 2.4.3, so the immersion u cannot be τ -nearly geodesic.

The property of being τ -nearly geodesic is not necessarily satisfied for totally
geodesic immersions, but it is satisfied for τ -regular totally geodesic immersions.

Proposition 2.4.9. A totally geodesic immersion is τ -nearly geodesic if and only
if it is τ -regular.

Proof. An immersion u is totally geodesic if and only if IIu � 0. If u is a τ -nearly
geodesic immersion that is totally geodesic, for every y PM , v P TyM and every
a P Fτ , y PM and v P TyM Proposition 2.4.3 implies that :

Hessbapdupvq,dupvqq ¡ 0.

The implies that for no a P Fτ the vector va,upyq lies in a common flat with
dupvq by Lemma 2.3.9. Hence the Cartan projection of dupvq is not orthogonal
to w P τ for any w PW .

Conversely if the totally geodesic immersion is τ -regular, the following Hes-
sian Hessbapdupvq,dupvqq is never equal to 0 for any y PM , v P TyM and a P Fτ
such that va,upyq is orthogonal to v. Since Hessba

is non-negative, Proposition
2.4.3 implies that u is τ -nearly geodesic.

Proof. Consider y0 P M . The function y P M ÞÑ exp pλdτXpupyq, upy0qqq is
strictly convex for some λ ¡ 0 and admits a minimum at y � y0. The com-
pleteness of the metric u�pgXq implies that there is a geodesic joining any two
points. Hence the minimum of any strictly convex function is unique, so u is
injective: it is an embedding.

2.4.2 Uniformly nearly geodesic immersions.
If the nearly geodesic condition for an immersion is satisfied uniformly, one can
prove that the exponential of some multiple of Busemann functions are strictly
convex on the image of the immersion.

Definition 2.4.10. Let τ P Sa�. An immersion u : M Ñ X is uniformly τ -nearly
geodesic if there exist ϵ ¡ 0 such that for all v P TM such that ∥dupvq∥ � 1 one
has for all a P Fτ satisfying va,o K v:

Hessba
pdupvq,dupvqq � xIIupv, vq, va,oyo ¥ ϵ.

Remark 2.4.11. When X � Hn being uniformly nearly geodesic is equivalent to
having principal curvature in p�λ, λq for some λ   1.

Suppose that M � rN is the universal cover of a compact smooth manifold N .
Let Γ be the fundamental group of N . A ρ-equivariant immersion u : M Ñ X
for some representation ρ : Γ Ñ G which is τ -nearly geodesic is necessarily
uniformly τ -nearly geodesic since T 1N is compact.
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If we consider a uniformly τ -nearly geodesic immersion u, not only are Buse-
mann functions convex in critical directions, but for some λ ¡ 0, eλba,o�u is
strictly convex on M .

Lemma 2.4.12. Let τ P Sa�. Let u : M Ñ X be a uniformly τ -nearly geodesic im-
mersion. For some λ ¡ 0, for all a P Fτ the function exp pλba,o � uq has positive
Hessian for the metric u�pgXq. Moreover there exists some ϵ ¡ 0 such that for
any a P Fτ and any geodesic η : R Ñ M the functions fη � exp pλba,o � u � ηq
satisfy f2 ¥ ϵf .

Recall that the metric on M that we consider to define geodesics is the
induced metric u�pgXq.

Proof. Let o P X and let U ϵτ be the compact set of pairs pv, IIq P T 1Xo � ToX
such that for all a P Fτ satisfying va,o K v:

Hessbapv, vq � xII, va,oyo ¥ ϵ.

Let us consider :

C � inf
aPFτ ,pv,IIqPUϵ

τ

Hessba
pv, vq � xII, va,xyo
xva,o, vy2

o

.

This infimum is the infimum of a continuous function taking values in R Y
t�8u on a compact set. Indeed the numerator must be strictly positive when-
ever the denominator vanishes, and the denominator is always positive. Hence
C P RY t�8u.

Let λ be any real number greater than maxp1�C, 0q. Let η be any geodesic
in M . Let us write g � ba,o � u � η. Note that g2 ¥ Cpg1q2 by definition of C.
Therefore:�

eλg
�2 {eλg � λg2 � λ2 �g1�2 ¥ pCλ� λ2q �g1�2 � pλ� Cqg2 ¥ λ

�
g1
�2 ¥ 0.

Note also that
�
eλg

�2 {eλg ¥ λg2. Consider the following quantity:

M � inf
aPFτ ,pv,IIqPUϵ

τ

max
�
Hessbapv, vq � xII, va,xyo, xva,o, vy2

o

�
.

Note that M ¤ max
�
g2, pg1q2

	
. Since K � Uτ , this quantity is strictly

positive as it is an infimum taken on a compact set of a positive function.
Hence the function f � eλg is strictly convex and satisfies f2 ¡ λMf .

2.4.3 Convexity of a Finsler distance.
When X � Hn, and given y P Hn, for any nearly geodesic immersion u : M Ñ
Hn the function x ÞÑ exp pdHnpupxq, yqq is strictly convex. However for a general
symmetric space of higher rank the τ -nearly geodesic condition doesn’t imply
the convexity for the Riemannian metric at critical points.
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τ∆
τ1

τtα2u

Figure 2.5: The unit ball in a of | � |τ∆ and | � |τ1 for G � SLp3,Rq and | � |τtα2u

for G � Spp4,Rq.

This leads us to consider a Finsler pseudo distance dτX on X associated to an
element τ P Sa�. We show in this section that this pseudo distance satisfies a
similar convexity property for any τ -nearly geodesic immersion. This pseudo-
distance is symmetric when τ is symmetric and it is equal to the Riemannian
distance when rankpXq � 1. The convexity of this distance allows us to prove
the injectivity and properness of complete τ -nearly geodesic immersions. This
Finsler pseudo distance is studied in [KL18, Section 5].

Let us define for τ0 P a:

|τ0|τ � max
wPW

xw � τ, τ0y.

The map τ0 ÞÑ |τ0|τ is non-negative, homogeneous and subadditive, thus we
call it in general a pseudo-norm.

This pseudo-norm is not necessarily symmetric: |τ0|τ � | � τ0|ιpτq. In par-
ticular it is symmetric if and only if τ is symmetric. Figure 2.5 illustrates the
unit ball of this norm in a for two examples of semi-simple Lie groups whose
associated symmetric space has rank 2: on the left G � SLp3,Rq and τ � τ∆,
in the middle G � SLp3,Rq and τ � τ1 (such that Fτ1 � RP2) and on the right
G � Spp4,Rq and τ � τtαnu with the notations from Section 2.1.5.

This pseudo-norm isn’t necessarily positive on non-zero vectors. However if
a non-zero vector v P a has zero norm, the Weyl group does not act irreducibly
on a since the W -orbit of τ is orthogonal to v, which means that the underlying
Lie group G is not simple.
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Example 2.4.13. Let n ¥ 2 be an integer and G � PSLp2,Rqn, X � �
H2�n. A

model flat in X is the product of a geodesic in each of the n copies of H2. Let
τk be the tangent vector to the geodesic on the k-th copy of H2, the pseudo-
distance on X defined by the pseudo-norm | � |τk

is the distance in H2 of the k-th
components, which is not a distance on X.

However if G is simple and τ is symmetric | � |τ is a norm. This norm is W -
invariant and hence it defines a G-invariant not necessarily symmetric Finsler
metric on X such that for v P TX, ∥v∥τ � |µpvq|τ , where µ is the Cartan
projection ([Pla95] Theorem 6.2.1).

For any semi-simple Lie group G, we denote by dτX : X � X Ñ R¥0 the
corresponding pseudo-distance on X, i.e. dXpx, yq is the infimum for all piece-
wise C1-path η from x to y of:»

∥η1∥τ �
»
|µpη1q|τ .

This distance can be characterized in terms of Busemann functions.

Proposition 2.4.14. Let x, y P X be two points. The pseudo distance dτX between
these two points satisfies:

dτXpx, yq � max
aPFτ

ba,xpyq.

Proof. Let o P X, v P ToX and a P Fτ . As usual va,o is the unit vector based at
o pointing towards a. The maximum for a P Fτ of xv, va,oy is reached when v
and va,o are in a common flat ([Ebe96] Proposition 24).

If we assume that v and va,o are in a common flat, the maximum is equal
to |µpvq|τ . Given two points x, y P X, any piece-wise C1 curve η such that
ηp0q � x, ηp1q � y satisfies for all a P Fτ :

pba � ηq1 � xva,ηptq, η1ptqyηptq ¤ ∥η1∥τ .

Hence:
ba,xpyq ¤

»
∥η1∥τ .

Moreover equality is reached for the Riemannian geodesic such that ηp0q �
x, ηp1q � y. Indeed there is a point a P Fτ that lies in a common flat with x and y
such that |η1ptq|τ � xη1ptq, va,ηptqyηptq for all t P r0, 1s. Hence ba,xpyq � dτXpx, yq.
Note that the curve reaching this minimum is not unique in general.

This pseudo distance satisfies the desired convexity condition.

Proposition 2.4.15. Let u : M Ñ X be a uniformly τ -nearly geodesic immersion.
There exist λ ¡ 0 such that for all x P X the following function is strictly convex
for the metric u�gX:

f : y PM ÞÑ exp pλdτXpx, upyqqq .
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A continuous function is strictly convex on the manifold M for the metric
u�pgXq if it is strictly convex on any geodesic.

Proof. By the Lemma 2.4.12 there exist λ ¡ 0 such that for any a P Fτ , the
function exp pλba,o � uq is strictly convex on M . One can then write f as :

fpyq � exp pλdτXpx, upyqqq � sup
aPFτ

exp pba,x � upyqq .

Hence f is the supremum of a family of convex functions, so it is convex.
Moreover the supremum is taken over a compact family of strictly convex func-
tions, so it is strictly convex.

A consequence of the convexity of this Finsler distance is that the immersion
u is injective, which is an interesting property of τ -nearly geodesic surface. We
say that u is complete if M is complete for the induced metric u�pgXq.
Proposition 2.4.16. Let u : M Ñ X be a complete uniformly τ -nearly geodesic
immersion. Then u is an embedding.

Proof. Consider y0 P M . The function y P M ÞÑ exp pλdτXpupyq, upy0qqq is
strictly convex for some λ ¡ 0 and admits a minimum at y � y0. The com-
pleteness of the metric u�pgXq implies that there is a geodesic joining any two
points. Hence the minimum of any strictly convex function is unique, so u is
injective: it is an embedding.

Moreover the immersion u cannot be too distorded: the metric induced by
u is quasi-isometric to the ambient metric on X. The notion of quasi-isometric
embedding was recalled in Section 2.2.

Proposition 2.4.17. Let u : M Ñ X be a complete uniformly τ -nearly geodesic
immersion. Then u is a quasi-isometric embedding for the induced metric u�gX
on M . In particular u is proper.

Proof. Let y0 P M and let o � upy0q. Let ϵ ¡ 0 and λ ¡ 0 be the constants
provided by Lemma 2.4.12. Let γ : R¥0 Ñ M be a geodesic ray parametrized
with unit speed in M for the metric u�gX with γp0q � y0.

Let a P Fτ be such that ba,o pu � γp1qq � dτX po, u � γp1qq. Consider the
function:

f : t P R¥0 ÞÑ exp
�
λba,u�γptq pu � γptqq

�
.

It is strictly convex and satisfies fp1q ¥ fp0q so f 1p1q ¥ 0. Moreover f2 ¡ ϵf

so fptq ¥ cosh pϵpt� 1qq ¡ eϵpt�1q

2 . In particular:

dτX po, u � γptqq ¥ ba,o pu � γptqq ¥ ϵ

λ
pt� 1q � logp2q

λ
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For all y P M there exist a geodesic ray γ passing through y. If du is the
Riemannian distance on M induced by u�gX:

dτX pupx0q, upxqq ¥ ϵ

λ
pdu px, yq � 1q logp2q

λ
.

This Finsler metric is equivalent to the Riemannian metric gX if G is simple,
and in general it is dominated by the Riemannian metric. Moreover u is 1-
Lipshitz with respect to the induced metric, so u is a quasi-isometric embedding.

Using the convexity of this Finsler pseudo-distance one can define a contin-
uous projection from the whole symmetric X to M . This projection will not
be used in what follows, but the fibration of the domains in Fτ constructed in
Section 2.6 is an extension of it.

Proposition 2.4.18. Let u : M Ñ X be a complete uniformly τ -nearly geodesic
immersion. For every x P X, there exist a unique point πτupxq P M that mini-
mizes:

y PM ÞÑ dτXpx, upyqq.
The function πτu : XÑM is continuous, and πτupupyqq � y for y PM .

Proof. Let λ, ϵ be the two constants provided by the Lemma 2.4.12 and let
x P X. The following function is strictly convex on M :

y ÞÑ exp pλdτXpx, upyqqq .

It is moreover proper since u is proper by Proposition 2.4.17. Hence it has
a unique minimum, so πτu is well defined.

If we consider a sequence pxnq P X of points that converge to x P X, then
the sequence pπτupxnqq is bounded since ρ is discrete. Moreover any of its limit
points is a minimum of dτXpx, upyqq, so the sequence converges to πτupxq. The
function πτu is hence continuous.

2.4.4 Anosov property for nearly Fuchsian representations.
Let N be a compact manifold with fundamental group Γ. We call a repre-
sentation ρ : Γ Ñ G that admits a τ -nearly geodesic equivariant immersion
u : rN Ñ X a τ -nearly Fuchsian representation.

Proposition 2.4.19. The set of τ -nearly Fuchsian representations is open in the
space of representations ρ : Γ Ñ G, for the compact-open topology.

Proof. One can continuously deform any ρ-equivariant immersion u : rN Ñ X
to a ρ1-equivariant smooth map u1 : rN Ñ X for ρ1 close to ρ. Indeed fix a
Riemannian metric on N let η : R� Ñ R� be a smooth function that is positive
on r0, Rs for R large enough and vanishes on rR1,�8q for some R1 ¡ R. One
can define u1pyq for y P rN as the barycenter of the points xyγ � ρ1pγ�1q � upγ � yq
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with weight λyγ � ηpdpy, γ �yqq for γ P Γ. Concretely this means that we consider
the unique local minimum of the convex function :

D : x P X ÞÑ
¸
γPΓ

λyγdpx, xyγq2.

Note that ρ1pγ0q � xyγ � xγ0�y
γγ�1

0
and λyγ � λγ0�y

γγ�1
0

for γ0 P Γ. Therefore u1 is
ρ1-equivariant. Since X is a Hadamard manifold D is strictly convex so the
barycenter map is well-defined and smooth. Therefore for ρ1 close enough to
ρ, u1 is an immersion which is close to u for the C2-topology on any compact
fundamental domain of the action of Γ on rN . In particular u1 is a τ -nearly
geodesic immersion for ρ close enough to ρ1.

The condition that u is τ -nearly geodesic is local, but it will imply some
coarse property on u and therefore on ρ. Recall that the limit cone Cρ was
defined in Section 2.2 (Definition 2.2.1). Due to flats Busemann functions are
not strictly convex in critical directions on X. However Busemann functions are
strictly convex in critical directions on up rNq. We deduce that τ -nearly geodesic
surfaces must coarsely avoid these flats, which in turn can be interpreted as a
property of the limit cone Cρ (see Definition 2.2.1).

Proposition 2.4.20. Let ρ : Γ Ñ G be a τ -nearly Fuchsian representation :

Cρ X
¤
wPW

pw � τqK � H. (2.8)

In other words ρ is ω-undistorded for the linear form ω P a� associated to
τ P a, see Definition 1.3.1.

Recall that W is the Weyl group associated to G.

Proof. Let x0, x P rN and o � upx0q. Let w P W , there exist two points a P Fτ
and a1 P Fιpτq that are opposite from o, i.e. va,o � �va1,o, and such that :

ba,opupxqq � xdapo, upxqq, w � τy,
ba1,opupxqq � xdapo, upxqq,�w � τy.

This holds for a, a1 that lie in a maximal flat containing o and upxq.
Let η be a geodesic parametrized with unit length in rN for u�pgXq such that

γp0q � x0 and γpdupx0, xqq � x. Let λ, ϵ ¡ 0 be the constants given by Lemma
2.4.12. Consider the function:

f : t ÞÑ exp pλba,o � u � γptqq .
Since va,o � �va1,o, up to exchanging a and a1 we can assume that f 1p0q ¥ 0.

By Lemma 2.4.12, one has f2 ¡ ϵf . Together with the fact that fp0q � 1, this
implies that for all t P r0, dupx0, xqs:

fptq ¥ coshpϵtq.
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Hence xdapo, upxqq, w � py ¥ ϵ
λdupx0, xq � logp2q

λ . Since u is a quasi-isometric
embedding, there exist c,D ¡ 0 such that for all x P rN the distance for the
induced metric u�pgXq between x and x0 is at least:

cdXpo, upxqq �D.

In conclusion:

xdapo, upxqq
dXpo, upxqq , w � py ¥

cϵ

λ
� logp2q � ϵD

λdXpo, upxqq .

Any element of Cρ has therefore a scalar product at least cϵ
λ ¡ 0 with w �τ , for

any w PW . This implies that the limit cone cannot intersect
�
wPW pw �τqK.

The set Sa�z�wPW pw � τqK contains a single connected component if and
only if pw � τqK is always a wall of the Weyl chamber decomposition of a, i.e.
when τ � τΘ for a Weyl orbit of simple roots Θ � ∆ (this notion was defined
Section 2.1.6). In this case:

Sa�z
¤
wPW

pw � τΘqK � Sa�z
¤
αPΘ

Kerpαq.

Hence we get the following.

Theorem 2.4.21. Let Θ � ∆ be a Weyl orbit of simple roots. A τΘ-nearly
Fuchsian representation ρ : Γg Ñ G is Θ-Anosov.

If τ P Sa� does not correspond to a Weyl orbit of simple roots, let us assume
that Γ is a finitely generated group that is not virtually cyclic, so that the limit
cone of Γ is connected, (see Proposition 3.8.2).

To a τ -nearly Fuchsian representation ρ : Γ Ñ G one can associate the
connected component στρ in which Cρ lies inside:

Sa�z
¤
wPW

pw � τqK.

To a connected component of this space one can associate a non-empty set
Θpστρ q of simple roots. Recall that for τ0 P Sa�, Θpτ0q � ∆ is the set of simple
roots α such that αpτ0q � 0.

Lemma 2.4.22. Let τ P Sa� and let σ � Sa� be a connected component of :

Sa�z
¤
wPW

pw � τqK. (2.9)

Let Θpσq � ∆ be the set of simple roots α such that σ XKerpαq � H. This
set is non-empty, and there exist some τ0 P σ such that Θpτ0q � Θpσq.
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τ

σ

τ0

Figure 2.6: Illustration for G � PSLp4,Rq of a connected component σ of
Sa�z�wPW pw � τqK in an affine chart.

In other words there is τ0 P σ such that for any simple root α P ∆, αpτ0q � 0
if and only if for all τ0

1 P σ, αpτ0
1q � 0. Figure 2.6 illustrates the lines in Sa�

corresponding to
�
wPW pw � τqK for some τ P Sa�, as well as some connected

component of the complement σ. In this example Θpσq contains only one root.

Proof. Let W0 �W be the subgroup of the Weyl group generated by symmetries
associated to α P ∆zΘpσq. Let σ̂ � Sa be the connected component of σ in:

Saz
¤
wPW

pw � τqK.

This connected component σ̂ is stabilized by W0. Indeed let α be in ∆zΘpσq.
By definition there is some v P σ such that αpvq � 0, and hence that is fixed
by the symmetry associated to α. Thus the connected component of v in Sa is
stabilized by this symmetry, and hence by the group W0.

Let τ0 P σ be any element and let τ0
1 P Sa� be the element that up to the

action of W is positively colinear to:¸
wPW0

w � τ0.

This sum does not vanish since xτ, w � τ0y has constant sign for w P W0. This
element τ0

1 is W0-invariant, hence for all α P ∆zΘpσq, αpτ0
1q � 0.

Moreover, since the Lie group considered G is semi-simple, the action of
W has no global fixed point on Sa, and hence W0 � W , which proves that
Θpσq � H.

If Γ is a finitely generated group that is not virtually infinite cyclic the limit
cone of any discrete representation ρ : Γ Ñ G is connected by Proposition 3.8.2.
If ρ is τ -nearly Fuchsian then this limit cones lies to a connected component στρ
of:

Saz
¤
wPW

pw � τqK.
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Theorem 2.4.23. A τ -nearly Fuchsian representation ρ : Γg Ñ G from a finitely
generated group Γ that is not virtually cyclic is Θpστρ q-Anosov.

In particular only hyperbolic groups admit τ -nearly Fuchsian representations
(see [BPS19, Theorem 3.2]).

Note that Θpστρ q � H, because of Lemma 2.4.22.

Proof. We use the characterization of Anosov representations from Theorem
2.2.4. We already proved that τ -nearly Fuchsian representations are quasi-
isometric embeddings in Proposition 2.4.17.

Moreover the limit cone Cρ lies inside στρ , which avoids Kerpαq for α P Θpστρ q.
Hence ρ is Θpστρ q-Anosov.

The assumption that γ is not virtually cyclic is necessary: indeed the fol-
lowing representation ρ : ZÑ SLp3,Rq is not Anosov for any set of roots:

n ÞÑ
��4n 0 0

0 2�n 0
0 0 2�n

�.
However this representation preserves a geodesic which is τ -regular for al-

most every τ P Sa�.

2.4.5 A sufficient bound for an immersion to be nearly geodesic.
Let Θ be a Weyl orbit of simple roots as in Section 2.1.6. Let α P Θ be any
root. We define the following constant:

cΘ � min
βPΣ,βpτΘq�0

|βpτΘq|
∥α∥2 . (2.10)

Here ∥α∥ for α P Θ denotes the maximum of |αpτq| for τ P Sa a unit vector.
This quantity is the same for any α P Θ, since Θ is a Weyl orbit of simple roots.

A sufficient condition for the immersion u to be a τΘ-nearly geodesic surface
is the following.

Theorem 2.4.24. Let u : S Ñ X be an immersion that satisfies for all v P TS
and α P Θ:

∥IIupv, vq∥τΘ   cΘα pµ pdupvqqq2 . (2.11)
Then u is a τΘ-nearly geodesic immersion.

Note that ∥�∥τΘ   ∥�∥ so having Inequality (2.11) with the Riemannian
metric in the left hand side instead of the Finsler pseudo-distance from Section
2.4.5 is also a sufficient condition.

This property is a generalization of the property of having principal cur-
vature in p�1, 1q, where the norm of the tangent vector is replaced by the
evaluation of roots of the Cartan projection.
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Proof. Let us show that (2.11) implies the condition of Proposition 2.4.3:

Hessba
pdupvq,dupvqq � xIIupv, vq, va,upyqyupyq ¡ 0.

Let x � upyq. Let us write dupvq � w0 � wK where w0 P zpva,xq X px and
wK P pzpva,xq X pxqK. Because of Lemma 2.3.9, one has :

Hessba
pdupvq,dupvqq ¥ ∥wK∥2 min

βPΣ,βpτΘq�0
|βpτΘq|. (2.12)

Lemma 2.1.4 implies that for any α P Σ:

αpµpw0qq � ∥α∥� ∥wK∥ ¥ αpµpdupvqqq.

We assumed that xva,x,dupvqyx � 0. Since va,x P zpva,xq X px, one has
therefore xva,x,wKyx � 0 and hence xva,x,w0yx � 0. Moreover va,x and w0 are
in a common flat. Since µpva,xq � τΘ, this implies that αpµpw0qq � 0 for some
root α P Θ. Therefore for this root α:

∥wK∥ ¥ ∥α∥�1αpµpdupvqqq. (2.13)

Recall that for any w P TxX and a P FτΘ , xw, va,xyx ¤ ∥w∥τΘ , as a conse-
quence of [Ebe96, Proposition 24].

Equation (2.12) and (2.13) imply together the following inequality, with cΘ
defined in (2.10):

Hessba
pdupvq,dupvqq � xIIupv, vq, va,upyqyupyq ¥ cΘαpµpdupvqqq2 � ∥IIupv, vq∥τΘ .

The rightmost term is strictly positive because of the condition (2.11). This
concludes the proof.

Example 2.4.25. Let G � PSLpn,Rq. We chose the standard metric on X that
comes from the Killing form. In particular the Euclidean metric on a is given
by:

xDiagpλ1, � � � , λnq,Diagpµ1, � � � , µnqy � 2n
ņ

i�1
λiµi.

In this case τ∆ � Diagp 1
2
?
n
, 0, � � � , 0,� 1

2
?
n
q. The minimum non-zero value

of βpτΘq for β P Σ is reached for the root α1 : Diagpλ1, � � � , λnq ÞÑ λ1 � λ2, and
is equal to 1

2
?
n

if n ¥ 3 and 1?
n

if n � 2.

The norm of any root α is equal to the norm of α1. But |α1pτq| ¤ |λ1|�|λ2| ¤?
2
a
λ2

1 � λ2
2 ¤ 1?

n
∥τ∥ with equality for some τ P Sa. Hence ∥α1∥ � 1?

n
, so if

n ¥ 3:
c∆ � 2

?
n.

And c∆ � ?
2 if n � 2. Note that if we rescale the metric on X � H2 so that

the sectional curvature is equal to �1, Equation (2.11) is exactly the condition
of having principal curvature in p�1, 1q.
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2.5 Pencils of tangent vectors.
In this section we recall the classical notion of a pencil of quadrics, then we
generalize it to the notion of a pencil of tangent vectors in a symmetric space
of non compact type and its base in a flag manifold. Bases of pencils appear as
the fibers of the fibration that will be constructed in Section 2.6.

2.5.1 Pencils of quadrics.
Some references for the notion of pencil of quadrics can be found in [FMS21].
Let V be a finite dimensional vector space over K � R or C.

Definition 2.5.1. A pencil of quadrics, or more precisely a d-pencil of quadrics1

on V is a linear subspace P of dimension d in the space SpV q of symmetric
bilinear forms on V if K � R, or in the space HpV q of Hermitian forms on V if
K � C.

The base bpPq of a d-pencil P is the set of points rvs P PpV q such that for
all q P P, qpv, vq � 0.

The following is a criterion for a pencil of quadrics to have a smooth base.

Lemma 2.5.2. Let P be a pencil of quadrics such that all non-zero q P P are
non-degenerate bilinear forms. The map p : V Ñ P�, v ÞÑ pq ÞÑ qpv, vqq is a
submersion at every v P V zt0u such that rvs P bpPq. In particular bpPq is a
smooth manifold of codimension d.

Proof. Let pq1, � � � , qdq be a basis of P. Let us consider some v P V zt0u such that
q1pv, vq � � � � � qdpv, vq � 0. The kernel of the differential of p is the intersection
of the orthogonal spaces rvsKqi with respect to qi of the line generated by v for
1 ¤ i ¤ d. Since the forms qi are non-degenerate, these are hyperplanes.

Suppose that their intersection has not codimension d. In particular the
linear forms qipv, �q for 1 ¤ i ¤ d are not linearly independent, so there exist
a linear combination of the bilinear forms that is degenerate, but is a non-zero
element of P, contadicting our assumption.

Hence the the kernel of p has codimension d, so p is a submersion at v.

The base of a pencil of quadric is smooth and has codimension d around
each of it’s points which are non-singular, meaning that they are not degenerate
points for any quadric in the pencil. We generalize this notion of singular points
in the next section.

1In the literature, for instance in [FMS21], the term pencil of quadrics is often used only
for 2-pencils of quadrics.
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2.5.2 Pencils of tangent vectors in symmetric spaces.
In this subsection we consider pencils of tangent vectors in a symmetric space
X of non compact type, which are related to pencils of quadrics when G �
PSLpn,Rq.
Definition 2.5.3. A pencil of tangent vectors at x P X, or more precisely a d-
pencil, is a vector subspace P � TxX of dimension d for some point x P X.

To a pencil one can associate some subsets of any G-orbit in the visual
boundary. Recall that for a P BvisX and x P X, the unit vector va,x P TxX is the
unit vector pointing towards a. Let τ P Sa�.

Definition 2.5.4. The τ -base of the pencil P, whose base-point is x P X, is the
set Bτ pPq of elements a P Fτ such that va,x is orthogonal to P.

When G � PSLpn,Rq and X � Sn, a pencil at q P Sn corresponds to a
subspace P 1 of symmetric bilinear forms on Rn, i.e. a pencil of quadrics, that
is compatible with q in the sense that the trace of the associated q-symmetric
matrices vanishes.

Proposition 2.5.5. Let τ P Sa� be such that Fτ � RPn�1. The τ -base of the
pencil P is identified via this identification with the base of the pencil of quadrics
P 1.

Proof. The τ -base of P is the space of lines rCs where C P Rn is a column
vector satisfying TrpCCKqMq � 0 for all M P P 1, since CCKq is colinear to
vrCs,q. Hence the τ -base of the pencil is also the set of lines rCs such that
CKqMC � 0, i.e. the base of the pencil of quadrics P 1.

We now generalize Lemma 2.5.2 to general pencils of tangent vectors.

Definition 2.5.6. A point a P Fτ in the base Bτ pPq of a pencil P at x P X is
called singular if for some w P P one has rw, va,xs � 0.

We denote by B�
τ pPq � Bτ pPq the set of non-singular points, that we will

also call the regular base.

Lemma 2.5.7. Let P be a pencil of tangent vectors at x in X. The function
which associates to a P Fτ the linear form v ÞÑ xva,x, vyx on P is a submersion
at a P Bτ pPq if and only if a P B�

τ pPq. In particular B�
τ pPq is always a smooth

codimention d submanifold of Fτ .

Proof. Let ϕ : Fτ Ñ P� be the map that associates to a P Fτ the linear form
v ÞÑ xva,x, vyx.

Suppose that a P Bτ pPqzB�
τ pPq. Then there exist some w P P such that

rw, va,xs � 0. The map ψ : k P Kx ÞÑ k � a P Fτ is a submersion, so for every
tangent vector in TaFτ the differential of a ÞÑ va,x in this direction is adkpva,xq
for some k P kx. The differential of a ÞÑ xva,x,wyx in this direction is equal to
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xadkpva,xq,wyx � �Bpadkpva,xq,wq � �Bpk, rva,x,wsq � 0. Hence the image of
the differential of ϕ is not surjective: it is not a submersion.

Suppose that a P B�
τ pPq. Let v P P be any non-zero vector and con-

sider rva,x, vs � k P kx. The differential of a ÞÑ xva,x, vyx in the corre-
sponding tangent direction is equal to xadkpva,xq, vyx � �Bpadkpva,xq, vq �
�Bprva,x, vs, rva,x, vsq � 0. Since for all v P P there is a direction in which
the differential of a ÞÑ xva,x, vyx does not vanish, the map ϕ is therefore a
submersion at a.

A pencil of tangent vectors P at x P X is called τ -regular if all its non-zero
vectors are τ -regular as in Definition 2.4.7. In particular a τ -regular pencil satis-
fies B�

τ pPq � Bτ pPq, so the τ -base of a τ -regular vector is a smooth codimension
d submanifold of Fτ .

Because of Lemma 2.5.7, the topology of the base of a regular pencil is not
varying if the pencil is deformed continuously.

Corollary 2.5.8. Let P0 and P1 be two pencils at x P X in the same connected
component of the space of τ -regular pencils at x. Then Bτ pP1q and Bτ pP2q are
diffeomorphic.

Proof. Since the space of regular pencils is open is the Grassmanian of planes
in TxX, there exist a smooth path pPtqtPr0,1s of regular pencils between P0 and
P1. Because of Lemma 2.5.7 the set tpa, tq|a P Fτ , t P r0, 1su is a submanifold
with boundary of Fτ � r0, 1s that comes with a natural submersion pa, tq ÞÑ t.
Since this manifold is compact all the fibers are diffeomorphic by the Ehresmann
fibration theorem.

Example 2.5.9. Let G � PSLp3,Rq, X � S3. We identify the tangent space
Tq0S3 at the point q0 corresponding to the standard scalar product on R3 with
the space of 3 by 3 symmetric matrices with real coefficients and zero trace.
Consider the following two pencils:

Pirr � x
��0 1 0

1 0 1
0 1 0

�,
��2 0 0

0 0 0
0 0 �2

�y, Pred � x
��0 0 1

0 0 0
1 0 0

�,
��1 0 0

0 0 0
0 0 �1

�y.
Let τ1 P Sa� be such that Fp1 is diffeomorphic in a PSLp3,Rq-equivariant

way to RPn�1, and let τ∆ be the normalized coroot associated to the Weyl orbit
of simple roots ∆. It satisfies Fτ∆ � F1,2 the space of complete flags in R3.

The pencils Pirr and Pred are not τ1-regular: Bτ1pPirrq is the disjoint union
of a point and a line where B�

τ1
pPirrq contains only the point. In this particular

case the regular base is a connected component of the base, so it is a smooth
compact codimension 2 submanifold. The set Bτ1pPredq is a single point that is
singular for the pencil. Here we see that a singular point can still be a point
around which the base is a smooth codimension 2 submanifold.

Both pencils are τ∆-regular, but their τ∆-bases are different.
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A flag pℓ,Hq � prxs, rysKq with x � px1, x2, x3q and y � py1, y2, y3q non-zero
vectors such that x2

1�x2
2�x2

3 � y2
1�y2

2�y2
3 and x1y1�x2y2�x3y3 � 0 belongs

to Bτ∆pPredq if and only if:

x2
1 � x2

3 � y2
1 � y2

3 ,

2x1x3 � 2y1y3.

Up to replacing y by �y, these equations are equivalent to x1 � y1, x2 � �y2,
x3 � y3, x2

1 � x2
3 � x2

2. The corresponding flags pℓ,Hq in the affine chart
px, yq ÞÑ rx, 1, ys of RP2 are the tangent point and tangent lines to the the circle
of radius 1 centered at the origin.

A flag pℓ,Hq � prxs, rysKq with x � px1, x2, x3q and y � py1, y2, y3q non-zero
vectors such that x2

1�x2
2�x2

3 � y2
1�y2

2�y2
3 and x1y1�x2y2�x3y3 � 0 belongs

to Bτ∆pPirrq if and only if:

2x2
1 � 2x2

3 � 2y2
1 � 2y2

3 ,

2x1x2 � 2x2x3 � 2y1y2 � 2y2y3.

Let ℓ0 � xp1, 0, 1qy and H0 � xp1, 0,�1q, p0, 1, 0qy. The corresponding flags
pℓ,Hq belong to one of the three circles in F1,2 defined by :

- ℓ � ℓ0, H any plane through ℓ,

- H � H0, ℓ any line in H,

- ℓ � H0, ℓ0 � H.

Indeed one can check that these flags satisfy the equations. In order to
check that these are the only solutions, one can see that these are the fibers of
a fibration over the surface with 3 connected components, see Section 2.7.3.2.

The τ∆-base Bτ∆pPredq is a circle whereas Bτ∆pPirrq is the union of 3 cir-
cles. Hence Corollary 2.5.8 implies that they must lie in different connected
components of the space of τ∆-regular pencils.

Since the pencils will be the fibers of the domains of discontinuity that we will
construct, proving that the domain is non-empty will be equivalent to having
non-empty pencils. We present here a topological argument to prove that some
pencils are non-empty.

Proposition 2.5.10. Let τ P Sa� and P be a τ -regular pencil of tangent vectors
based at x P X of dimension d. If the τ -base of P is empty, then Fτ fibers over
the sphere Sd�1.

If moreover d � 2 it implies that the fundamental group of Fτ is infinite.

Proof. To a P Fτ we associate π0paq P P the orthogonal projection of va,x P TxX
onto P � TxX. Since the τ -base of P is empty, one can define a map π : Fτ Ñ
SP into the unit sphere of P where πpaq � π0paq

∥π0paq∥ . This map is a submersion.
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Indeed let a P Fτ , let P0 � P be the orthogonal to πpaq in P. Lemma 2.5.7
applied to P0 implies that π is a submersion at a.

This submersion is proper since Fτ is compact, hence it is a fibration. If
d � 2, this fibration induces a long exact sequence, where F is the fiber.

� � � Ñ π1 pFτ q Ñ π1 pSPq Ñ π0 pF q Ñ � � � .

Since F is compact, π0 pF q is finite and π1 pSPq � Z, so π1 pFτ q is infinite.

We conclude this section by the following remark that regular pencils cannot
be tangent to flats.

Proposition 2.5.11. If a 2-pencil is tangent to a flat, then it is not τ -regular for
any τ P Sa�.

Proof. Up to the action of G one can identify P with a plane in a. But for any
τ P Sa�, the orthogonal of τ intersects this plane. Hence there is an element
of P whose Cartan projection is orthogonal to w � τ for some w in the Weyl
group.

2.6 Fibered domains in flag manifolds.
In this section we associate an open domain Ωτu � Fτ to any complete uniformly
τ -nearly geodesic immersion u : M Ñ X with τ P Sa�, and show that this
domain is a smooth fiber bundle over M where the fibers are τ -bases of the
pencils that are the tangent planes to the surface. This is the construction is
the analog of the Gauss map for hypersurfaces in Hn. We also mention what
happens with our construction for totally geodesic immersions that are not τ -
regular.

If M � Ñ for some compact manifold N with torsion-free fundamental group
Γ, and if u is equivariant with respect to a representation ρ, we show that the
domain Ωτu is a co-compact domain of discontinuity for the action of ρ and its
quotient fibers over N . This domain always coincides with some domain of
discontinuity associated to Tits Bruhat ideals constructed by Kapovich-Leeb-
Porti [KLP18a]. Finally we prove the invariance of the topology of the quotients
of these domains of discontinuity.

2.6.1 A domain associated to a nearly geodesic immersion.
Let τ P Sa� be any unit vector and u : M Ñ X be a complete uniformly τ -nearly
geodesic immersion.

We consider a particular domain of the flag manifold Fτ , defined for any
nearly geodesic immersion u : M Ñ X using Busemann functions. For this we
fix a base-point o P X, but the definition will dot depend on this choice.
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Definition 2.6.1. Let Ωτu be the set of elements a P Fτ such that the function
ba,o � u is proper and bounded from below.

We have additional properties if u is a complete uniformly τ -nearly geodesic
immersion.

Lemma 2.6.2. Let a P Fτ . There exist a critical point x P M for the function
ba,o � u if and only if a P Ωτu. In this case this point is unique, and the Hessian
of ba,o � u at this point is positive. The domain Ωτu is open.

Proof. Let a P Fτ . Suppose that ba,o �u is critical at y PM . Since u is τ -nearly
geodesic the Hessian of ba,o �u at y is positive. Moreover, due to Lemma 2.4.12
there exist λ ¡ 0 such that exp pλba,o � uq has positive Hessian everywhere on
M .

A convex function with positive Hessian on a complete connected Rieman-
nian manifold has a unique minimum, and is proper. In particular the function
exp pλba,o � uq, and hence the function ba,o � u are hence proper and have a
unique minimum. In particular a P Ωτρ .

Conversely if a P Ωτρ , ba,o �u is proper so it admits a global minimum, which
is a critical point.

If a function has a critical point with positive Hessian, every small deforma-
tion of the function for the C0-topology still admits a local minimum, and hence
a critical point. Therefore Ωτρ is open.

We thus can define the projection πu : Ωτu ÑM associated to u as the map
that associates to a P Ωτu the unique critical point πupaq PM of ba,o � u. This is
an extension at infinity of the nearest point projection from Proposition 2.4.18.

Theorem 2.6.3. Let u : M Ñ X be a complete and uniformly τ -nearly geodesic
immersion. The map πu : Ωτu Ñ M is a fibration. The fiber π�1

u pxq at a point
x PM is the base Bτ pPxq of the τ -regular pencil Px � dupTxMq.

Figure 2.7 illustrates this construction in the rank one case G � PSLp2,Cq,
for a totally geodesic immersion u. The associated symmetric space H3 is de-
picted with Poincaré’s ball model. Since H3 has rank 1, its visual boundary
contains a single orbit Fτ � CP1. The image of u is the disk bounded by the
equator. The pencil P is depicted as a parallelogram. its τ -base is a fiber of the
fibration, and is the co-dimension 2 submanifold Bτ pPq � ta, a1u.
Remark 2.6.4. Note that if some element g P G preserves upMq, then the map
πu � u commutes with the action of g. In particular if M � Ñ for a compact
manifold N with fundamental group Γ and if u is ρ-equivariant for some ρ : Γ Ñ
G, then πu is ρ-equivariant, and hence defines a fibration πu : Ωτu{ρpΓq Ñ N .

The two important steps in the proof of Theorem 2.6.3 are to check that
the fibers are distinct and far enough from one another using Lemma 2.6.2, and
that these fibers are smooth manifolds using Lemma 2.5.7.
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a

a1

X � H3

Fτ � CP1

P
πupaq

Figure 2.7: Fibration of the domain Ωτu in the rank one case, G � PSLp2,Cq.

Proof of Theorem 2.6.3. Consider the set:

E � tpa, xq P Ωτu �M |dxpba,o � uq � 0u.

Because of Proposition 2.6.2 the Hessian of ba,o �u is non-degenerate at crit-
ical points, hence E is locally the zero set of a submersion so it is a codimension
2 submanifold of Ωτu �M .

Let π1 : Ωτu�M Ñ Ωτu and π2 : Ωτu�M ÑM be respectively the projections
onto the first and second factor.

Lemma 2.6.2 implies that π1 restricted to E is a bijection. Moreover, again
because of the non-degeneracy of the Hessian of ba,o � u, the tangent space
Tpa,xqE at pa, xq P E intersects trivially TxM � Tpa,xq pΩτu �Mq. Hence π1
restricted to E is a local diffeomorphism, and therefore a diffeomorphism.

Let pa, xq P E. By definition dapba,o � uq : v ÞÑ xdupvq, va,upxqyupxq vanishes,
so va,upxq K dupTxMq � Px. Hence a belongs to the τ -base of Px. Because
of Proposition 2.4.8, this pencil is τ -regular and hence its τ -base contains no
singular points. Lemma 2.5.7 implies that the tangent space Tpa,xqE at pa, xq P
E intersects trivially TaΩτu � Tpa,xq pΩτu �Mq. The map π2 restricted to E is
therefore a submersion at pa, xq.

As a conclusion, πu � π2 � π�1
1 is a smooth submersion. The τ -base of the

pencil Px is compact in Fτ , and it is included in Ωτu because of Lemma 2.6.2.
Hence πu is a proper submersion over a connected manifold: by the Ehresmann
fibration theorem it is a fibration.
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2.6.2 Totally geodesic immersions that are not nearly geodesic.
In this subsection, let u : M Ñ X be a complete totally geodesic immersion.
Let τ P Sa�. We don’t assume in this subsection that u is τ -regular, and hence
τ -nearly geodesic.

One can still define Ωτu as the set of a P Fτ such that ba,o � u is proper and
bounded from below, but we can’t always expect the domain to have compact
fibers in this case. Lemma 2.6.2 can be adapted as follows:

Lemma 2.6.5. A point a P Fτ belongs to Ωτu if and only if the function ba,o � u
admits a critical point πupaq PM at which the Hessian is positive. In this case
the critical point is unique and is a global minimum of ba,o � u. The domain Ωτu
is open.

Proof. Let a P Ωτρ , and let y PM a point at which ba,o�u has a global minimum.
The function ba,o �u is convex, but not necessarily strictly convex. Assume that
the Hessian of ba,o in the direction dupvq vanishes for some v P TyM .

There must exist a flat that contains a and dupvq by Lemma 2.3.9. Let η be
the geodesic ray starting at dupvq in X. The function ba,o is linear on η since a
and η belong to a common flat. However the derivative of ba,o along η vanishes
at upyq, so ba,o is constant along η. Moreover u is totally geodesic and the whole
geodesic ray starting at dupvq in X belongs to the image of u, so ba,o � u is not
proper.

For all a P Ωτρ the functions ba,o � u are convex and strictly convex at the
critical point, which is therefore unique. The rest of the proof goes as in Lemma
2.6.2.

We define a map πu : Ωτu ÑM , using Lemma 2.6.5. We show that this map
is a fibration. Recall that the regular base B�

τ pPq defined in Section 2.5 is a
subset of the base Bτ pPq that is always a smooth codimension d submanifold.

Theorem 2.6.6. Let a P Ωτu, the function ba,o � u admits a unique critical point
denoted by πupaq P M . The map πu : Ωτu Ñ M is a smooth fibration, and the
fiber of this map at y PM is the regular base B�

τ pTupTyMqq.
Proof. By the same argument as for Theorem 2.6.3, πu is a smooth submersion.

However we need to proceed differently to prove that this map is a fibration,
since the fiber is not necessarily compact. Let g P G be an element that stabilizes
upMq � X. The map πu is equivariant with respect to g, i.e. for all a P Ωτρ :

πupg � aq � g � πupaq.

Let y P M . Recall that the exponential map for the Lie group G defines a
map exp : TupyqX � pupyq � g Ñ G. Moreover since upMq is totally geodesic
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any element of exp pdupTyMqq is a transvection on this totally geodesic subspace
hence it stabilizes upMq. We consider the following map :

ϕ : TyM � B�
τ pTupTyMqq ÝÑ Ωτu

pv, aq ÞÝÑ exp pdupvqq � a
This map is an immersion, between spaces of equal dimension. Moreover it

is a bijection, hence it is a diffeomorphism. Through the identification exp :
TyM ÑM , this gives Ωτu the structure of a fibration with projection πu.

Since the regular base is open, it is compact if and only if the regular points
form a union of connected component of Bτ pPq. This is for instance the case if
G � PSLp3,Rq and P � Pirr as in Example 2.5.9.

Example 2.6.7. Let G � SLp3,Rq, and ρ be a representation of the form ρ �
ιirr � ρ0 for some Fuchsian representation ρ0 : Γg Ñ SOp1, 2q � PSLp2,Rq of
a surface group and the natural inclusion ιirr : SOp1, 2q Ñ SLp3,Rq. This
representation admits a ρ-equivariant totally geodesic map u : �Sg Ñ X (see
Section 2.7.1 for more details). The pencil P � TupTy�Sgq for any y P �Sg is up
to the action of G equal to the pencil Pirr defined in Example 2.5.9.

This pencil is not τ1 regular, so u is not τ1-nearly geodesic. However because
of Theorem 2.6.6 the domain Ωτ1

u fibers over �Sg with base B�
τ1
pPirrq, which is a

point in Fτ1 � RP2. This domain is the disk of positive vectors for the chosen
bilinear form of signature p1, 2q on R3. In this example the regular points of
Bτ1pPirrq form a connected component so the fibration is proper. If we consider
a point ℓ P RP2 outside of the closure of this disk, the associated Busemann
function is minimal in upS̃gq on a full geodesic line. If ℓ is in the boundary of the
disk, the associated Busemann function is not bounded from below on upS̃gq.

2.6.3 Comparison with metric thickenings.
In this section we consider the case when M � rN for some compact manifold N
with fundamental group Γ and u is equivariant with respect to a representation
ρ : Γ Ñ G. In other words ρ is a τ -nearly Fuchsian representation, as we defined
in Section 2.4.4.

We show that if we have a τ -nearly Fuchsian ρ-equivariant map u : rN Ñ X
for a representation ρ : Γ Ñ G the domain Ωτu coincides with a domain of
discontinuity associated to Anosov representations constructed by Kapovich,
Leeb, Porti [KLP18a].

The domain Ωτρ :� Ωτu depends on τ and ρ but not on u. Indeed a 1-Lipshitz
function on X is proper on the image of u if and only if it is proper on any ρpΓq
orbit in X.

Even though this will be a consequence of Theorem 2.6.11, one can easily
check that the existence of the fibration of Ωτρ implies that it is a cocompact
domain of discontinuity.
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Theorem 2.6.8. Let ρ : Γ Ñ G be a representation that admits an equivariant τ -
nearly geodesic immersion u : rN Ñ X. The action of Γg on Ωτρ via ρ is properly
discontinuous and co-compact.

Proof. Let πu be the fibration from Theorem 2.6.3. Let A be a compact subset
of Ωτρ . Its image πupAq � rN is compact on rN . Since Γ acts properly on rN , all
but finitely many γ P Γ satisfy πupAq X γπupAq � H. Hence for all but finitely
many γ P Γ : A X ρpγqA � H. The action of Γ via ρ is therefore properly
discontinuous.

Let D be a compact fundamental domain for the action of Γ on rN , i.e. a
compact set that satisfies: ¤

γPΓ
D � rN.

The set π�1
u pDq is a fundamental domain for the action of Γ on Ωτρ by ρ by

the equivariance of πu. It is closed in Ωτρ . Moreover π�1
u pDq is closed in Fτ .

Indeed if we consider a sequence panq of elements of Ωτρ that converge to a P Fτ
such that πupanq always belong to D, one can assume that πupanq converges to
y0 P D up to taking a subsequence. In the limit, one has ba,o �upy0q ¤ ba,o �upyq
for all y P rN . Hence y0 is a critical point for ba,o � u so by Lemma 2.6.2 a P Ωτρ .

Hence Ωτρ admits a compact fundamental domain for the action of Γ via ρ,
therefore this action is co-compact.

We consider the domains of discontinuity constructed by metric thickenings,
which are particular instances of the domains of discontinuity associated with
a Tits-Bruhat ideal defined in [KLP18a].

Let pτ, τ0q be a pair of elements in Sa�. This pair will be called balanced if
τ0 is τ -regular i.e. :

τ0 R
¤
wPW

pw � τqK.

Note that this is equivalent to τ being τ0-regular. Using the Tits angle
=Tits : BvisX2 Ñ r0, πs, see Section 2.1, we associate to any b P BvisX a thickening
Kb � Fτ defined as:

Kb �
!
a P Fτ |=Titspa, bq ¤ π

2

)
.

Recall that the Tits angle was defined in Section 2.1, and is defined for points
in BvisX.

Lemma 2.6.9. Let b1, b2 belong to a common maximal facet in BvisX, and suppose
that their Cartan projections lie in the same connected component of:

Sa�z
¤
wPW

pw � τqK.

Then Kb1 � Kb2 .
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Proof. Let f P F∆ be a maximal facet that contains b1 and b2. Let a P Fτ ,
there exist a maximal flat of X such that f and a belong to its visual boundary.
This flat can be identified with a so that f corresponds to Bvisa

�.

Hence as long as b lies in the visual boundary of this flat, =Titspa, bq is equal
to the Euclidean angle in the flat, so the sign of its cosine does not vary as long
as the Cartan projection of b does not lie in pw � τqK for any w PW . Therefore
if the Cartan projections of b1 and b2 are in the same connected component of
the complement, Kb1 � Kb2 .

Recall that the manifold Fτ0 is G-equivariantly diffeomorphic to the flag
manifold FΘpτ0q � G{PΘpτ0q where Θpτ0q is the set of simple root that do not
vanish on τ0. Hence given a flag f P FΘpτ0q one can define Kτ0

f � Kb � Fτ for
the unique b P Fτ0 corresponding to f .

Given a pair pτ, τ0q and a Θpτ0q-Anosov representation (see Definition 2.2.2),
Kapovich, Leeb and Porti define a domain of discontinuity in Fτ .

Theorem 2.6.10 ([KLP18a], Theorem 1.10). Let pτ, τ0q be a pair of elements of
Sa�. Let ρ : Γg Ñ G be a Θpτ0q-Anosov representation. The following is a
domain of discontinuity for ρ:

Ωpτ,τ0q
ρ � Fτ z

¤
ζPBΓg

Kτ0
ξΘ

ρ pζq.

Moreover if pτ, τ0q is balanced, then the action of Γg via ρ on Ωpτ,τ0q
ρ is

co-compact.

This theorem is a particular case of their result concerning Tits-Bruhat ide-
als. In [KLP18a] it is explained how a pair pτ, τ0q yields a Tits-Bruhat ideal,
defined via a metric thickening. This ideal is balanced if and only if the pair is
balanced in our sense.

For a τ -nearly Fuchsian representation, the domain Ωτρ is always equal to
some domain obtained by metric thickening. More precisely:

Theorem 2.6.11. Let ρ be a τ -nearly Fuchsian representation of a hyperbolic
group that is non-elementary. Recall that στρ and Θpστρ q were defined in Section
2.4.4. Let τ0 P στρ be any element such that Θpτ0q � Θpστρ q, whose existence is
provided by Lemma 2.4.22.

Ωτρ � Ωpτ,τ0q
ρ .

The Theorem 2.6.10 from [KLP18a] is a domain of discontinuity since ρ is
Θpστρ q-Anosov by Theorem 2.4.23, and this domain is cocompact since the pair
pτ, τ0q is balanced.

Proof. Let us write Θ � Θpστρ q � Θpτ0q. Let a P Fτ zΩτρ and let pynqnPN be a
diverging sequence of points in M such that pba,opupynqqqnPN is bounded from
above. Up to taking a subsequence let us assume that it converges to a point
ζ P BΓ � B rN . We consider the geodesic segments ro, upynqs � X for n P N.
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Since ρ is τ -nearly Fuchsian it is a quasi isometric embedding by Proposition
2.4.17 so in particular the length of these segments goes to �8. Up to taking a
subsequence, we can assume that these geodesic segments converge to a geodesic
ray η : R¥0 Ñ X with ηp0q � o. Let rηs P BvisX be the point corresponding to
the class of η.

Busemann functions are convex so the function ba,o is bounded from above
on all the geodesic segments ro, upynqs for n P N and hence ba,o � η is bounded
from above. Therefore =Titspa, bq ¤ π

2 by Lemma 2.3.8, so a P Krηs. Let b P Fτ0

be an element such that b and rηs belong to a common maximal facet and whose
Cartan projection lies in στρ . Lemma 2.6.9 implies that Krηs � Kb. Theorem
2.2.5 implies that Kb � Kτ0

ξΘ
ρ pζq. Therefore if a P Fτ zΩτρ then a P Fτ zΩpτ,τ0q

ρ .

Conversely let a P Ωτρ and let ζ P BΓ. Consider a geodesic ray η : R¡0 Ñ rN
for the metric u�pgXq converging to ζ. Theorem 2.2.6 implies that there exist
D ¡ 0 such that for all t ¡ 0, there exist a geodesic ray ηt : R¡0 Ñ X such
that ηtp0q � u � ηp0q, ηtptq is at distance at most D of u � ηptq and rηts P BvisX
belongs to a common maximal facet with ξΘ

ρ pζq. Since Cρ � στρ , for all t large
enough, Krηts � Kτ0

ξΘ
ρ pζq.

The Busemann function ba,o is proper on η hence for t large enough ba,o �
ηtptq ¡ ba,o � ηtp0q. Since ba,o is convex, this implies that ba,o is growing at
least linearly on ηt, so a R Krηts by Lemma 2.3.8. Therefore a P Ωpτ,τ0q

ρ : this
concludes the proof.

2.6.4 Invariance of the topology.
In this section we prove that the topology of the quotient of the domains of
discontinuity considered by Kapovith-Leeb-Porti is not varying when the repre-
sentation is deformed continuously. Guichard and Wienhard proved this already
for the domains of discontinuity that they consider in [GW12].

Let Γ be a torsion-free finitely generated group and F a G-homogeneous
space. Let pρtqtPr0,1s a smooth family of representations from Γ to G. Consider
for every t P r0, 1s an open ρtpΓq-invariant domain Ωt � F .

Lemma 2.6.12. Suppose that these domains are uniformly co-compact domains
of discontinuity for pρtq, i.e. the domain Ω � tpt, aq|a P Ωtu � r0, 1s � F is
open and the action of Γ via ρ is properly discontinuous and co-compact where
ρpγq � pt, aq � pt, ρtpγq � aq. The quotient Ω0{ρ0pΓq is diffeomorphic to Ω1{ρ1pΓq.
Proof. The projection onto the first factor in r0, 1s�F descends to a submersion
p : Ω{ρpΓq Ñ R. Since Ω{ρpΓq is compact and the base is connected, Ehres-
mann’s fibration theorem implies that the proper submersion p is a fibration.
Hence p�1p0q and p�1p1q are diffeomorphic.

Remarks 2.6.13. A concrete way to construct this diffeomorphism is to pick a
Riemannian metric on Ω{ρpΓq, and consider the flow of the gradient of p. If we
consider two different Riemannian metrics, the diffeomorphisms obtained are
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isotopic, since the space of Riemannian metrics is path connected. Hence this
operation constructs a unique diffeomorphism up to isotopy.

Note that a family of cocomact domains of discontinuity could be non-
uniformly cocompact, for instance a family of representations so that ρt : Z Ñ
PSLp2,Rq is hyperbolic for 0 ¤ t   1 and parabolic for t � 1. These represen-
tations admit a unique maximal domain of discontinuity in RP1 with two con-
nected components for t   1 and one for t � 1. The quotient of the correspond-
ing domain Ω is homeomorphic to the non compact space S1�r0, 1s\S1�r0, 1q.

In order to apply Lemma 2.6.12, we need a slight adaptation of Theorem
2.6.10 from [KLP18a]. Let Γ be any Gromov-hyperbolic group. We check that
the domains constructed by Kapovich, Leeb and Porti are uniformly cocompact
domains of discontinuiy for any smooth path of Anosov representations.

Proposition 2.6.14 (Adaptation of [KLP18a], Theorem 1.10). Let pτ, τ0q be a
balanced pair as in Section 2.6.3. Let ρ : r0, 1s Ñ HompΓ, Gq, t ÞÑ ρt be a
continuous path such that the family pρtqtPr0,1s consists only of Θpτ0q-Anosov
representations.

The family of domains Ωt � Ωpτ,τ0q
ρt for t P r0, 1s are uniformly co-compact

domains of discontinuity for the family of representations ρ.

We check that the arguments from Kapovich, Leeb and Porti are uniform on
neighborhoods of Anosov representations. The same proof holds if one considers
more generally domains of discontinuity constructed with balanced Tits-Bruhat
ideals as in [KLP18a].

Proof. The domain Ω is the complement in r0, 1s � Fτ of:

Kρ �
¤

tPr0,1s
ttu �Kρ,t,

Kρ,t �
¤
xPBΓ

Kτ0
ξΘ

ρt
pxq.

Since the boundary maps ξΘ
ρ are continuous and vary continuously when

ρ varies continuously in the space of Θ-Anosov representations (see [BPS19,
Section 6]), and since K

pτ,τ0q
ξΘ

ρ pxq is compact, Kρ is compact so Ω � tpt, aq|a P
Ωtu � r0, 1s � F is open.

Let us fix a Riemannian distance d on Fτ . Let A � tpt, aq|t P r0, 1s, a P
At � Ωu be a compact set and let pγnq P Γ be a diverging sequence. [KLP18a,
Corollary 6.8] implies that given t P r0, 1s, for any ϵ ¡ 0 for all n large enough if
dpa,Kρ,tq ¥ ϵ, then dpρtpγnq � a,Kρ,tq ¤ ϵ, where the minimal value of n needed
depends on the constants b, c that come into play in the definition of Anosov
representations (Definition 2.2.2).

Since we consider a compact set of Anosov representations, and since these
constants can be chosen locally uniformly around a given Anosov representation
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(see [KLP17, Theorem 7.18]), these constants can be chosen uniformly for all
representations pρtqtPr0,1s. Moreover the compact sets At are at uniform distance
from Kρ,t Therefore, for all n P N large enough, for all t P R ρtpγnq�AtXAt � H,
so for all n large enough ρpγnq �AXA � H. We have proven that the action of
ρ on Ω is properly discontinuous.

In order to prove the cocompactness of the action on Ω, we will check that
the transverse expansion holds uniformly. It follows from [KLP18a, Proposition
7.7] that for every t P r0, 1s, the action of ρt is transversely expanding at the
limit set of ρt as in [KLP18a, Definition 5.21], i.e. for all x P BΓ, there exist
γ P Γ, an open neighborhood U of Kτ0

ξΘ
ρt
pxq in Fτ and a constant λ ¡ 1 such that

for all a P U and y P BvisΓ that satisfy Kτ0
ξΘ

ρt
pyq � U one has:

d
�
ρtpγq � a, ρtpγq �Kτ0

ξΘ
ρt
pyq

	
¥ λd

�
a,Kτ0

ξΘ
ρt
pyq

	
.

Let g P G, f P FΘ λ ¡ 1 and U � Fτ be an open set. We say that g is
exapnding at Kτ0

f over U with factor λ if for all a P U :

d
�
g � a, g �Kτ0

f

	
¥ µd

�
a,Kτ0

f

	
.

This property is open in the following sense: if g is expanding at Kτ0
f over U

with factor λ, then for any 1   λ1   λ and any open subset E such that E � U
there exist a neighborhood Ug of g in G and Uf of f in FΘ such that for all
g1 P Ug and f 1 P Uf , g1 is is expanding at Kτ0

f 1 over E with factor λ1.
This implies that the action of ρ on Fτ � r0, 1s satisfies the transverse ex-

pansion property where Kρ is considered as a bundle over r0, 1s � K, i.e. for
all t P r0, 1s, x P BΓ, there exist γ P Γ, an open neighborhood U0 of Kτ0

ξΘ
ρt
pxq in

Fτ � r0, 1s and a constant λ1 ¡ 1 such that for all a P U and y P BΓ that satisfy
Kτ0
ξΘ

ρt
pyq � ttu � U0 one has:

d
�
ρpγq � a, ρpγq �Kτ0

ξΘ
ρt
pyq � ttu

	
¥ λ1d

�
a,Kτ0

ξΘ
ρt
pyq � ttu

	
.

Therefore by [KLP18a, Proposition 5.26] the action of ρ is cocompact on
Ω.

From Proposition 2.6.14 and Lemma 2.6.12 we get the following corollary.
Corollary 2.6.15. Assume that Γ is torsion-free. Let C � HompΓ, Gq be an
open and connected set consisting only of Θ-Anosov representations for some
Θ � ∆. Let pτ, τ0q be a balanced pair such that @α P ∆zΘ, αpτ0q � 0. The
diffeomorphism type of Ωpτ,τ0q

ρ {ρpΓq is independent of ρ P C
If moreover C is simply connected, the diffeomorphism provided by Lemma

2.6.12 between Ωpτ,τ0q
ρ1 {ρ1pΓq and Ωpτ,τ0q

ρ2 {ρ2pΓq for ρ1, ρ2 P C is uniquely deter-
mined up to isotopy.

An open set in HompΓ, Gq is connected by paths that are piece-wise smooth
if and only if it is connected since HompΓ, Gq is locally a real algebraic variety.
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2.7 Applications.
In this section we apply our results to prove that all representations in some
connected components of Anosov representations are the restricted holonomy
of a geometric structure on a fiber bundle over a manifold. For these applica-
tions we only consider nearly geodesic surfaces that are totally geodesic. We
will mostly focus on surface groups, but in Section 2.7.5 we also describe two
applications for representations of fundamental groups of higher dimensional
compact hyperbolic manifolds.

2.7.1 Totally geodesic immersions.
Totally geodesic surfaces provide examples of τ -nearly geodesic surfaces if these
surfaces are τ -regular (Proposition 2.4.9). The study of totally geodesic surfaces
in X is related to the study of representation of semi-simple Lie algebras in g.
We recall here a classical fact.

Proposition 2.7.1. Let h � g be a semi-simple Lie subalgebra of non-compact
type. Let H be the closed Lie subgroup of G with Lie algebra h and Y it’s
associated symmetric space of non-compact type. There exist a H-equivariant
and totally geodesic embedding uh : Y Ñ X. The image of this embedding is
unique up to the action of the centralizer:

CGphq � tg P G|@h P h, Adgphq � hu.
If y P Y, let K � G be the stabilizer of uhpyq in G. Every element in

CK phq of h in G fixes uhpYq pointwise. If the centralizer CGphq in G is compact,
then CK phq � CGphq so the totally geodesic submanifold uhpYq � X is uniquely
determined.

Proof. Let h � t�p be a Cartan decomposition of h associated with the Cartan
involution θy for y P Y. Let ph � t � ip be the associated compact real form of
h b C. Since ph is the Lie algebra of a semi-simple compact Lie group, it is the
Lie algebra of a compact Lie subgroup of GC. In particular there exist a Cartan
involution θC of gb C. such that θCpvq � v for all v P ph.

Let θC be the Cartan involution conjugate to θC in g b C. Let θ be the
Cartan involution of g b C corresponding to the midpoint in the symmetric
space associated with g b C of θC and θC. It is invariant by conjugation, so
it descends to a Cartan involution on g, associated with a point x P X. There
exist a transvection along the geodesic between θC and θC in the symmetric space
associated to gb C that induces a unique inner automorphism ϕ of gb C such
that ϕθCϕ�1 � θ, ϕ2θCϕ�2 � θC. Moreover ϕ is symmetric positive with respect
to BC ��, θCp�q�, where BC is the Killing form on gbC and the transvection ϕ4

is equal to a composition of symmetries θCθC. The transvection ϕ4 stabilizes
hbC, so ϕ also stabilizes hbC. Therefore θ � ϕθCϕ�1 stabilizes hbC. But θ
is a real Cartan involution as it is preserved by conjugation, so it stabilizes h.
Let x P X be the point corresponding to θ in X.
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The map uh : YÑ X such that for all h P H, uhph � yq � h � x is well defined
since t � tx so the image of the stabilizer of y P Y by H lies in the stabilizer of
x P X. Moreover it is totally geodesic, since ηppq � px (see [Hel78] Ch 4, Section
7). This map is by definition H-equivariant.

Suppose that there is an other H-equivaiant and totally geodesic embedding
u1h such that u1hpyq � x1. Let θ1 be the corresponding Cartan involution of g,
then θ1�θ is the identity on h and is equal to the adjoint action of exppzq for some
z P px. Therefore z is in the centralizer of h in g. Hence g � expp z

2 q P CGphq
satisfies Adg �u1h � uh. Conversely let g1 P CK phq, then g1 fixes uhpyq P X and it
fixes h so it fixes duhpTyYq. Therefore it preserves and acts trivially on uhpYq.

Now assume that CGphq is compact: there cannot be any element z P px in
the centralizer of h in g, so the totally geodesic and H-equivariant embedding
uh is unique and CK phq � CGphq.
Remark 2.7.2. A totally geodesic embedding u : YÑ X can only be a τ -nearly
geodesic immersions if rankpYq � 1, because otherwise it cannot be τ -regular
for any τ P Sa� (see Proposition 2.5.11). When rankpYq � 1, all the unit
tangent vectors to this embedded surface have the same Cartan projection,
so the embedding is τ -regular for all τ in the complement in Sa� of a finite
collection of hyperplanes.

We illustrate Proposition 2.7.1 in the following example for some special sl2
Lie subalgebras in slnpRq.
Example 2.7.3. In this example we construct representations ι from SLp2,Rq
into SLpn,Kq that stabilize some totally geodesic hyperbolic planes inside the
symmetric space X � Sn associated with G � SLpn,Kq for K � R or C.

Let K � R or C. Let VnpKq be the space of homogeneous polynomial with
coefficients in K of degree n � 1 in two variables X and Y . To an element
g P SL2pRq one can associate an element ιirrpgq P SL pVnpKqq that acts by a
change of variable on VnpKq i.e that associates to P P VnpKq the polynomial
P � g�1. Let h be the corresponding sl2-Lie subalgebra of slnpRq, note that
ιirr � ιh.

Let q the Euclidean or Hermitian metric on VnpKq such that for all 0 ¤
a, b ¤ n� 1:

q
�
XaY n�1�a, XbY n�1�b� � #�

n�1
a

��1 if a � b,

0 otherwise.

Consider the following basis of the lie algebra sl2pRq :

h �
�

1 0
0 �1



, f �

�
0 1
1 0



,g �

�
0 1
�1 0



which satisfies rg,hs � �2f , rh, f s � 2g, rf ,gs � 2h. Fix the following

orthonormal basis for q :
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peaq0¤a¤n�1 �
�
XaY n�1�a

�
n� 1
a


 1
2
�

0¤a¤n�1
.

For 0 ¤ a ¤ n� 1 one has :

dιirrpfqpeaq � p2a� n� 1qea

dιirrpeqpeaq � aXa�1Y n�a
�
n� 1
a


 1
2

� pn� 1� aqXa�1Y n�2�a
�
n� 1
a


 1
2

dιirrpeqpeaq �
a
apn� aqqea�1 �

a
pa� 1qpn� 1� aqea�1

and moreover g � 1
2 rf ,hs. In particular dιirrpfq and dιirrpgq are symmetric

or Hermitian and dιirrphq is anti-symmetric or anti-Hermitian with respect to
q.

Hence as in the proof of Propostion 2.7.1, there is a totally geodesic map
uh : H2 Ñ Sn such that the image of the Cartan involution M ÞÑ �M t is equal
to the point in Sn corresponding to q.

This representation ιirr is the unique irreducible representation of SLp2,Rq
into SLpn,Rq up to conjugation by elements of GLpn,Rq. The image of ιirr lies
in the subgroup Spp2k,Rq for some symplectic form on R2k when n � 2k is
even, and in SOpk, k� 1q for some quadratic form on R2k�1 when n � 2k� 1 is
odd.

One can construct other totally geodesic hyperbolic planes in Sn by con-
sidering representations of SLp2,Rq that can be decomposed into a direct sum
of irreducible representations. Equivalently one can consider other reducible
sl2-subalgebras of slnpRq.

For instance one can define ιred : SLp2,Rq Ñ SLp2n,Rq that associates to a
matrix M P SLp2,Rq the block diagonal matrix:

ιredpMq �

���M . . .
M

��.
The image of ιred lies in Spp2n,Rq for some symplectic form ω on R2n.

2.7.2 Geometric structures on fiber bundles.
Using the projection defined by Busemann functions from Theorem 2.6.3, one
can show that Anosov deformations of representation that admit an equivariant
nearly geodesic immersion are holonomies of pG,Xq structures on a fiber bundle
over Sg.

76



A pG,Xq-structure on a manifold N , for a Lie group G and a G-homogeneous
space X on which G acts faithfully, is a maximal atlas of charts of M valued in
X whose transition functions are the restriction of the action of some elements
in G. A more developed introduction to this notion can be found in [Ale19].

To a pG,Xq-structure, one can associate a developing map dev : rN Ñ X,
that is a local diffeomorphism compatible with the atlas defining the pG,Xq-
structure on N , and a holonomy hol : π1pNq Ñ G so that dev is hol-equivariant.
This pair is unique up to the action of G by conjugation of the holonomy and
post-composition of the developing map.

Let N be a manifold and Γ its fundamental group. In what follows, we say
that a pG,Xq-structure on a fiber bundle F over N is a pG,Xq-structure on F
for which the fundamental group of the fibers is included in the kernel of the
holonomy. Hence one can define the restricted holonomy of the structure as the
quotient map ρ : π1pNq Ñ G induced by the holonomy.

Constructing domains of discontinuity allows us to construct geometric struc-
tures.

Proposition 2.7.4. Let ρ : Γ Ñ G be a representation and Ω � X a co-compact
non-empty domain of discontinuity which fibers ρ-equivariantly over rN . Any
connected component of the quotient Ω{ρpΓq inherits a pG,Xq-structure on a
fiber bundle, with restricted holonomy ρ.

Note that even if Ω is disconnected, the quotient Ω{ρpΓq can be connected.
From now on, we assume that G is center-free, so it acts faithfully on its

flag manifolds. Let N be a compact manifold whose fundamental group Γ is
Gromov hyperbolic and torsion-free. Let τ P Sa�.

Theorem 2.7.5. Let ρ0 : Γ Ñ G be a representation that admits an equivariant
τ -nearly geodesic surface u : rN Ñ X such that Ωτu � H. Let C be the con-
nected component of the space of Θpστρ0

q-Anosov representations in HompΓ, Gq
containing ρ0. Every representation in C is the restricted holonomy of a pG,Fτ q-
structure on a fiber bundle F over N .

Proof. Theorem 2.6.8 implies that the domains Ωτu admits a ρ0-equivariant fi-
bration over rN . The domain Ωτρ0

coincides with a domain obtained as a metric
thickening Ωpτ,τ0q

ρ1 for some τ0 P Sa� such that Θpτ0q � Θpστρ0
q. Let F be a

connected component of Ωτρ0
{ρ0pΓq, Corollary 2.6.15 implies that for every rep-

resentation ρ P C, a connected component Fρ of Ωpτ,τ0q
ρ {ρpΓq is diffeomorphic to

F , which is a fiber bundle over M . The covering map Ωpτ,τ0q
ρ Ñ Ωpτ,τ0q

ρ {ρpΓq in-
duces the covering xFρ Ñ Fρ � F associated to the subgroup of the fundamental
group of F corresponding to the fundamental group of the fiber of F over M .

Note that F is assumed to be non-empty. The pG,Fτ q-structure on Fρ � F
is such that the holonomy of the fundamental group of each fiber is trivial.
Indeed the developing map dev : �Fρ Ñ Fτ descends to the inclusion xFρ Ñ Fτ ,
so the fundamental group of the fiber belongs to the kernel of the holonomy.
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Let M � Sg be a closed orientable surface of genus g and Γ � Γg be its
fundamental group. We apply Theorem 2.7.5 in cases when the nearly geodesic
surface is totally geodesic and we describe the fibration that is obtained.

Let h � g be a sl2 Lie subalgebra, i.e. a Lie subalgebra isomorphic to sl2pRq.
Note that if G is a quotient of its adjoint form, which is the case since we
assumed that G is center-free, the corresponding Lie group H is isomorphic to
SLp2,Rq or PSLp2,Rq. We write ιh : SLp2,Rq Ñ G the corresponding Lie group
representation, and uh : H2 Ñ X a corresponding equivariant totally geodesic
embedding.

Definition 2.7.6. We say that a representation ρ : Γg Ñ G is h-generalized
Fuchsian if it preserves and acts cocompactly on uh

�
H2�.

IfG is center-free and, a h-generalized Fuchsian representation can be written
γ ÞÑ ιhpρ0pγqq � χpγq for some Fuchsian representation ρ0 : Γg Ñ SLp2,Rq and
some associated character χ : Γg Ñ CKphq.

Let y P H2 be a base-point, and let K be the stabilizer in G of uhpyq. We
write Bτ phq for the τ -base of the pencil of tangent vectors duhpTyH2q. Note
that this pencil is stabilized by ιh pSOp2,Rqq � CKphq.

The quotient map SLp2,Rq Ñ SLp2,Rq{SOp2,Rq � H2 defines a princi-
pal SOp2,Rq-bundle rP over H2. Let PSg

be its quotient via some Fuchsian
representation. Given a character χ : Γg Ñ CKphq, let PSg,χ Ñ Sg be the
SOp2,Rq � CKphq-principal bundle obtained as the product of PSg and the flat
CKphq-bundle associated to χ.

Theorem 2.7.7. Suppose that h is τ -regular, i.e. uh is τ -regular, and that Ωτuh
�

H. Let ρ : Γg Ñ G be a h-generalized Fuchsian representation with associated
character χ and let τ P Sa�.

Let C be the connected component of the space of Θpστρ q-Anosov representa-
tions that contains ρ. Every representations in C is the restricted holonomy of
a pG,Fτ q-structure on a fiber bundle F over Sg.

The fiber bundle F is a connected component of the reduction of the principal
bundle PSg,χ with structure group SOp2,Rq � CKphq over Sg via the action of
ιh pSOp2,Rqq � CKphq on Bτ phq.

Note that when Θ � ∆ is a Weyl orbit of simple roots and τ � τΘ, a
τΘ-regular immersion is just a Θ-regular immersion and Θpστρ q � Θ.

Remark 2.7.8. If we replace G and Fτ by finite covers pG and xFτ so that pG acts
faithfully on xFτ , Theorem 2.7.7 still applies. In this case one should replace
Bτ phq by its pre-image {Bτ phq by the covering map xFτ Ñ Fτ .

The only part of Theorem 2.7.7 that is not already contained in 2.7.5 is the
description of the fibration.
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Proof. The embedding uh is totally geodesic. Moreover it is assumed to be τ -
regular. Hence uh is τ -nearly geodesic, so one can apply Theorem 2.7.5. It only
remains to describe the fibration.

The fibration π : Ωτuh
Ñ H2 is ιh pSLp2,Rqq-equivariant. The corresponding

fiber bundle can be identified in a SLp2,Rq-equivariant way as the reduction
of the SOp2,Rq-principal bundle rP by the action of ιh pSOp2,Rqq on the fiber
Bτ phq. The quotient of this fiber bundle by any Fuchsian representation ρ0 :
Γg Ñ SLp2,Rq is hence the bundle induced by the principal bundle PSg . Once
we quotient Ωτuh

by ρ � ιh�ρ0�χ the quotient becomes the twisted fiber bundle
induced by PSg,χ.

2.7.3 Higher rank Teichmüller spaces.
In this section we apply Theorem 2.7.7 to Hitchin representations in PSLpn,Rq
and to maximal representations in Spp2n,Rq. Then we explain how in general
one can apply it to the connected components of Θ-positive representations
containing at least one generalized Fuchsian representation associated to a Θ-
principal sl2-Lie subalgebra.

2.7.3.1 Positive representations.

Let G be a connected simple Lie group of non-compact type with trivial center
and Θ a set of its simple roots such that the pair pG,Θq admits a notion of
Θ-positivity in the sense of [GW22]. We moreover assume that G is not locally
isomorphic to PSLp2,Rq. This means that either :

(i) G is split real and Θ � ∆,

(ii) G is Hermitian of tube type,

(iii) G is locally isomorphic to SOpp, qq and Θ � tα1, � � � , αpu
(iv) G is a real form of the complex Lie group with Dynkin diagram F4, E6,

E7 or E8 with restricted Dynkin diagram F4 and Θ consists of the 2 larger
roots.

For any of these pairs, Guichard and Wienhard [GW22] constructed a con-
nected component U in the space and transverse triples of elements in G{PΘ.
They call such triples positive triples, and a representation ρ : Γg Ñ G is called
Θ-positive if it admits a continuous and ρ-equivariant map ξ : BΓ Ñ G{PΘ so
that for all distinct triple of points px, y, zq P BΓp3q, pξpxq, ξpyq, ξpzqq P U . They
prove in particular that such representations are Θ-Anosov. Moreover the space
of Θ-positive representation is closed in the space of representation that do not
virtually factor through a parabolic subgroup, by a work of Guichard, Labourie
and Wienhard [GLW21].

A Θ-principal Lie subalgebra hΘ for a pair pG,Θq that admits a notion of
Θ-positivity is a principal subalgebra of the split Lie subalgebra gΘ � g gener-
ated by all the rootspaces associated to Θ, see [GW22]. These Lie subalgebra
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were introduced by Bradlow, Collier Gothen and Garci-Prada as magical triples
in [BCGP�21]. They proved the following. Let hΘ be a Θ-principal sl2 Lie
subalgebra of g.

Theorem 2.7.9. [BCGP�21, Theorem 8.8] The exist a union of connected com-
ponents of ρ : Γ Ñ G, the Cayley components, consisting only of representations
that do not factor through any parabolic subgroup. All hΘ-generalized Fuchsian
representations with respect to the principal sl2 Lie subalgebra hΘ lie in some
Cayley component.

Cayley components are conjectured to be all the connected components of
Θ-positive representations [BCGP�21], but there exist components consisting
of positive representations that do not contain hΘ-generalized representations,
for instance the Gothen components for G � Spp4,Rq. The results of Guichard,
Labourie implies the following [GLW21].

Corollary 2.7.10. Every connected component of representations ρ : Γg Ñ G
containing a hΘ-generalized Fuchsian representation consist only of Θ-positive
representations.

The sets of simple roots Θ � ∆ that admit a notion of Θ-positivity aways
admit one or two subset which are Weyl orbits of simple roots, see Figure 2.4.
Let Θ1 � Θ be a Weyl orbit of simple roots. Let G � PSLp2,Rq, Theorem 2.7.7
implies:

Corollary 2.7.11. Let ρ : Γg Ñ G be a representation in a connected component
of Θ-positive representations containing a hΘ-generalized Fuchsian representa-
tion. It is the restricted holonomy of a pG,FτΘ1 q-structure on a fiber bundle F
over Sg.

Let χ be the character associated to one of the hΘ-generalized Fuchsian rep-
resentations in the Cayley component. This fiber bundle is diffeomorphic to the
reduction of the SOp2,Rq� CKphq-bundle PSg,χ via its action on the base Bτ phq
of the pencil of tangent vectors associated to h.

The proof of the fact that the associated domains are non empty as soon as
G is not isomorphic to PSLp2,Rq is delayed to Section 2.7.4.

2.7.3.2 Hitchin representations in PSLpn,Rq.
Let h be a principal sl2 Lie sugalgebra in slnpRq. The associated representation
ιh is the representation ιirr from Example 2.7.3.

Definition 2.7.12. A representation ρ : Γg Ñ PSLpn,Rq is Hitchin if it is a
deformation in HompΓg, Gq of a h-generalized Fuchsian representaton.

The centralizer of h in PSLpn,Rq is trivial, so h-generalized Fuchsian repre-
sentations can be written ιirr � ρ0.
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Hitchin proved that the quotient of the space of Hitchin representations by
conjugation in PGLpn,Rq is a ball of dimention p2g�2qpn2�1q [Hit92]. Labourie
proved that Hitchin representations are Borel Anosov, i.e. ∆-Anosov [Lab06].

The unique Weyl orbit of simple roots for G � PSLpn,Rq is ∆. The flag
manifold Fτ∆ can be identified with the flag manifold F1,n�1 consisting of pairs
of subspaces pℓ,Hq where ℓ � H � R2, dimpℓ � 1q, dimpHq � n � 1. The sl2
Lie subalgebra h is ∆-regular. Theorem 2.7.7 implies the following:

Corollary 2.7.13. Let n ¥ 3, every Hitchin representation ρ : Γg Ñ PSLpn,Rq
is the restricted holonomy of a pPSLpn,Rq,F1,n�1q-structure on a fiber bundle
over Sg.

When n � 3, the boundary map of any h-generalized Fuhsian representation
is an ellipsoid E � RP2. The domain Ωτ∆

ρ � F1,2 admits 3 connected compo-
nents: the set of pℓ,Hq P F1,2 with ℓ in the inside of the ellipsoid E , with H
completely outside of the ellipsoid, and finally with ℓ outside the ellipsoid and
H crossing the ellipsoid in two points. One can see that the quotient of this
domain is the union of three copies of the projectivization of the tangent bundle
of Sg. If we apply Theorem 2.6.3 to uh, we obtain a fibration where the model
fiber Bτ phq is the union of 3 circles described in Example 2.5.9. Also when n � 3
one can get a domain in projective space, as described in Example 2.6.7 that is
the interior of an ellipse.

When n is even, Hitchin representations arTe also the holonomy of projective
structures. his domain was shown in [ADL21] to fiber over �Sg, and Theorem
2.7.7 gives a new proof of this Fact.

In general for any split simple Lie group G, Fock and Goncharov proved that
all ∆-positive representations can be deformed into a h∆-generalized Fuchsian
representation [FG06], i.e. lie in a Hitchin component, so our method always
applies.

2.7.3.3 Maximal representations in PSpp2n,Rq.
Given an orientation of the surface Sg, one can define the Toledo invariant
Tol : HompΓg,PSpp2n,Rqq Ñ Z. This continuous map can de defined as the
pullback by ρ of an element of the continous group cohomology H2pG,Zq of G
by ρ [BIW03]. Reversing the orientation of Sg reverses the sign of the Toledo
invariant.

A representation ρ : Γg Ñ PSpp2n,Rq is called maximal if its Toledo invari-
ant is maximal among all representations, i.e. if Tolpρq � np2g � 2q. A way to
construct maximal representation is to use the representation ιred : PSLp2,Rq Ñ
PSpp2n,Rq. Burger, Iozzi, Labourie and Wienhard proved that maximal repre-
sentations are tαnu-Anosov [BILW05].

Let h be the sl2 Lie subalgebra of sp2npRq which is the image of dιh. Every
h-generalized representation is maximal for one of the two orientations of the
surface Sg.
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Theorem 2.7.14 ([GW10]). If n ¥ 3, every maximal representation ρ : Γg Ñ
PSpp2n,Rq can be deformed into a htαnu-generalized Fuchsian representation in
the sense of Definition 2.7.6.

Theorem 2.7.7 implies :
Corollary 2.7.15. Let n ¥ 2, every maximal representation ρ : Γg Ñ PSpp2n,Rq
is the holonomy of a contact projective structure i.e. a

�
PSpp2n,Rq,RP2n�1�-

structure on a fiber bundle .
Indeed one can consider the Weyl orbit of simple roots Θ � tαnu. The

corresponding flag manifold Fτtαnu
can be identified with RP2n�1. The Lie

subalgebra h is tαnu-regular, so one can apply Theorem 2.7.7.
It is not clear if our method applies to the Gothen components of repre-

sentations ρ : Γg Ñ PSpp4,Rq that contain only Zariski-dense representations
[BGPG12]. However since PSpp4,Rq � SOop2, 3q, the case n � 2 of Corollary
2.7.15 is a consequence of the work of Collier, Tholozan, Toulisse [CTT19].

The fiber obtained for Hitchin representations, that are also tαnu-positive,
is a union of connected components of Bτtαnuph∆q and for maximal represen-
tations one gets a union of connected components of BτtαnuphΘq. These two
submanifolds of RP2n�1 are diffeomorphic to the same Stiefel manifold, which
is connected if n ¥ 3.

2.7.3.4 Positive representations in PSOpp, qq.
Let G � PSOpp, qq with q ¡ p and Θ � ∆ztαpu. This pair admits a notion of
Θ-positivity. The corresponding flag manifold FτΘ can be identified with the
Grassmanian of isotropic planes in Rp,q.

Representations satisfying the Θ-positive property were studied by Beyer
and Pozzetti [BP21]. In particular they show that all Θ-positive representations
ρ : Γg Ñ PSOpp, qq can be deformed to a hΘ-generalized Fuchsian representa-
tion when q ¡ p � 1, so in this case Corollary 2.7.11 applies to all Θ-positive
representations. However when q � p � 1, there are connected components of
Θ-positive representations that are conjectured to contain only Zariski-dense
representations, it is not clear if our techniques can be applied to these compo-
nents.

2.7.4 Non-empty domains.
In order to get a geometric structure associated to a domain of discontinuity, one
need to ensure that the domain is non-empty. Kapovich, Leeb and Porti have a
condition that ensures that there exist a thickening such that the domain is not
empty [KLP18a], and Guichard and Wienhard proved that the domains they
considered were not empty by computing the dimension of their complement.

We will use the following criterion to prove that some domains of disconti-
nuity for surface groups are non-empty. Remember that the groups Γg that we
consider here are surface groups.
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Lemma 2.7.16. Let ρ : Γg Ñ G be a Θ-Anosov representation and pτ, τ0q be a
balanced type pair of elements in Sa�, i.e. such that τ0 is τ -regular, satisfying
Θpτ0q � Θ. Suppose that Fτ has finite fundamental group. The domain of
discontinuity Ωpτ,τ0q

ρ is non-empty.

Note that it is however not a necessary condition to have a non-empty do-
main, as we see later for SOp2, 3q. This lemma is very similar to Proposition
2.5.10.

Proof. If the domain is empty, it means that the flag manifold Fτ can be written
as the union for x P BΓg of the thickenings Kτ0

ξΘ
ρ pxq. This uniojn is disjoint

since the limit map is transverse. Moreover the limit map ξΘ
ρ is continuous, see

[BPS19] for instance, which implies that Fτ fibers over the circle with a compact
base. As in Proposition 2.5.10, this implies that Fτ has infinite fundamental
group.

We prove that some domains of discontinuity are non-empty for represen-
tations of a surface group Γg. Let pG,Θq be a pair that admits a notion of
positivity and let Θ1 � Θ be a Weyl orbit of simple roots.

Proposition 2.7.17. The flag manifold FτΘ1 has finite fundamental group, except
if G is locally isomorphic to PSLp2,Rq or if G is locally isomorphic to SOop2, 3q,
Θ � ∆, and Θ1 � tα2u.

If G is locally isomorphic to SOop2, 3q, Θ � ∆, and Θ1 � tα2u we work
by hand using the notations from Section 2.1.5. The domain of discontinuity
associated to a tα2u-Anosov representation ρ : Γg Ñ SOop2, 3q obtained by
metric thickening for any tα2u-regular τ0 P Sa� is:

Ωpτtα2u,τ0q
ρ � EinpR2,3qz

¤
xPBΓg

P
�
ξ2
ρpxqK

�.
For any x P BΓg, The submanifold P

�
ξ2
ρpxqK

�
has dimension 1 in EinpR2,3q

which has dimension 3. Therefore the domain Ωpτtα2u,τ0q
ρ is non-empty.

Lemma 2.7.16 together with Proposition 2.7.17 implies the following.

Corollary 2.7.18. If G is not locally isomorphic to PSLp2,Rq, the domain of
discontinuity obtained by metric thickening ΩpτΘ1 ,τ0q

ρ � FτΘ1 for any Θ1-regular
vector τ0 P Sa� and any Θ-Anosov representation ρ : Γg Ñ G is non-empty.

The proof of Proposition 2.7.17 relies on a description of the fundamental
groups of flag manifolds associated to real Lie groups.

Let us write ∆0 � ∆ the set of roots whose associated root-space is a line.
Let α, β P ∆. We define ϵpα, βq � p�1qpα,β_q i.e. ϵpα, βq � 1 if α and β are
linked by no edge or if they are liked by two edges and α is the longest root,
and else ϵpα, βq � �1.
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Theorem 2.7.19. [Wig98, Theorem 1.1] Let A � ∆ be a set of simple roots. The
fundamental group of FA � G{PA is the group generated by ptαqαP∆0 , defined
by the relations tβtα � tα ptβqϵpα,βq for α, β P ∆0 and α � β, and tα � e if
α P ∆0zA.

The following lemma will deal with most cases.

Lemma 2.7.20. If the Dynkin Diagram restricted to ∆0 of the restricted root
system of G has no connected component of type Cn or A1, every flag manifold
of G has finite fundamental group.

Proof. Let A � ∆. Using the relations, one write any element of π1pFAq as a
product of powers of generators so that each generator appears at most once.
Therefore π1pFAq is a finite group if and only if for every α P A, tα has finite
order.

If no connected component of the Dynkin Diagram restricted to ∆0 is of
type Cn or A1, then every α P ∆0 belongs to a sub-diagram inside the Dynkin
diagram of ∆0 of type A2, G2 or B3. In each of this cases the relations between
the generators imply that they have finite order: indeed the flag manifold asso-
ciated to the Borel subgroup of SLp2,Rq, SOp3, 4q and the real split Lie group
associated to G2 have finite fundamental group, see [Wig98].

We now prove Proposition 2.7.17.

Proof. If G is a split Lie group ∆0 � ∆. If G is locally isomorphic to SOpp, qq
with p ¥ 3 and q ¡ p� 1, the Dynkin diagram restricted to ∆0 is of type Ap�1.
Finally if G is the real forms of the complex Lie group associated to E6, E7 or
E8 whose restricted root system is of type F4, the Dynkin diagram restricted to
∆0 is of type A2. This follows from [OV90, Table 9].

Therefore if pG,Θq is a pair that admits a notion of Θ-positivity Lemma
2.7.20 applies and every flag manifold associated to G has finite fundamental
group except in the following two cases: if G is of Hermitian type and of tube
type with Θ consisting of only the longest simple root, or if G is split of type
A1 or Cn and Θ � ∆.

If G is of Hermitian type the Dynkin diagram of the associated root system is
Cn, n ¥ 2. Suppose that Θ1 � tβnu, then FτΘ1 � Ftβ1u as in Figure 2.4. Either
β1 R ∆0 in which case Ftβ1u is trivial, or G is split, by [OV90, Table 9]. If G
is split, β1, β2 P ∆0, so the generator tβ1 of π1pFq satisfies the relation tβ1tβ2 �
tβ2 ptβ1q�1, and tβ2 � e so t2β1

� e. Therefore FτΘ1 has finite fundamental group.

β1 β2 βn�2 βn�1 βn

It remains to consider the case where G is split with root system Cn for
n ¥ 3, Θ � ∆ and Θ1 � tα1, � � � , αnu. But in this case FτΘ1 is the flag manifold
associated to the root β2, as shown in Figure 2.4. The root β2 belongs to a
subdiagram of type A2, so the fundamental group of FΘ1 is finite.
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2.7.5 Other applications.
Theorem 2.7.5 can also be applied to Gromov hyperbolic groups that are not
surface groups. In this subsection we consider representations of fundamental
groups of hyperbolic manifolds.

For instance one can consider a compact hyperbolic 3-manifold M with fun-
damental group Γ and holonomy ρ0 : Γ Ñ PSLp2,Cq. Let n ¥ 3 and let
ιirr : PSLp2,Cq Ñ PSLpn,Cq be the irreducible representation as in Example
2.7.3 and let h � dιirrpsl2pCqq. As for the real case, h is ∆-regular, so in partic-
ular ιirr � ρ0 is ∆-Anosov. Here ∆ is the only Weyl orbit of simple roots, and
the corresponding flag manifold Fτ∆ can be identified with the space FC

1,n�1 of
pairs pℓ,Hq where ℓ � H � Cn, ℓ is a line and H a hyperplane.

The domain of discontinuity associated to a ∆-Anosov representation ρ for
one and hence any balanced pair of the form pτ∆, τ0q is the following, where the
limit map of ρ decomposes as ξΘ

ρ � �
ξ1
ρ, � � � , ξn�1

ρ

�
:

FC
1,n�1z

¤
xPBΓ

tpℓ,Hq|D1 ¤ k ¤ n� 1 s.t. ℓ � ξkρ � Hu.

The topological dimension of the thickening Kτ
f � FC

1,n�1 for any flag f P
G{P∆ is the maximum for 1 ¤ k ¤ n � 1 of the real dimension of tpℓ,Hq P
FC

1,n�1|ℓ � E � Hu for some E � Cn of dimension k. The dimension of the
thickening equals 2n � 4 and the dimension of the flag manifold equals 4n � 6
so for n ¥ 3 the domain is non-empty. Theorem 2.7.5 implies therefore the
following:

Corollary 2.7.21. The representation ιirr � ρ0 : Γ Ñ PSLpn,Cq is the restricted
holonomy of a pPSLpn,Cq,FC

1,n�1q-structure on a fiber bundle over M .

One can also consider a hyperbolic n-manifold M for n ¥ 2 with fundamental
group Γ and holonomy ρ0 : Γ Ñ SOop1, nq. Let ι : SOp1, nq Ñ SOpp, npq be
the diagonal representation for n ¥ 1 and let h be the image of dι. Here h
is tαpu-regular, so in particular ιirr � ρ0 is tαpu-Anosov. Note that tαpu is a
Weyl orbit of simple roots, and the corresponding flag manifold Fτtαpu

can be
identified with the set of isotropic lines I � P pRp,npq.

The domain of discontinuity associated to a tαpu-Anosov representation ρ
for one and hence any balanced pair of the form pτtαpu, τ0q is the following:

Iz
¤
xPBΓ

tℓ|ℓ � ξtαpu
ρ pxqu.

The dimension of the complement equals pp� 1q � n� 1 and the dimension
of the flag manifold equals npp � 1q � 2 so for n ¥ 2 and p ¥ 2 the domain is
non-empty. Theorem 2.7.5 implies therefore the following:

Corollary 2.7.22. Let C be the connected component of ι � ρ0 in the space of
tαpu-Anosov representations ρ : Γ Ñ PSLpn,Cq. Every representation in C is
the restricted holonomy of a pSOpp, pnq, Iq-structure on a fiber bundle over M .
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The fibers of this fiber bundle can be described as the set of isotropic lines
in the intersection of p quadrics in Rp,pn.

The centralizer of ι pSOp1, n� 1qq in SOpp, pnq has a larger dimension than
the centralizer of ι pSOp1, nqq. Indeed let E � Rp,np be the p-dimensional sub-
space preserved by ι pSOp1, n� 1qq. Any element g P SOpp, pnq acting trivially
on EK centralizes ι pSOp1, n� 1qq but only finitely many such elements central-
ize ι pSOp1, nqq. Hence if the hyperbolic manifold contains a totally geodesic
embedded hypersurface, there exist non-trivial deformations of ι � ρ that one
can construct using bending.
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Chapter 3

Dirichlet-Selberg and Finsler
fundamental domains

In this chapter we consider Dirichlet domains for Anosov subgroups of a semi-
simple Lie group. In Section 3.1 we explain Selberg’s construction of a fun-
damental domain of discrete subgroups of SLpn,Rq, and discuss an example of
such a domain that is infinite sided.

In Section 3.2 we recall the necessary background on Anosov representations
and symmetric spaces and we define the notion of ω-undistorted subgroup. In
Section 3.3 we define the Finsler metric dω and the horofunction compactifica-
tion of the symmetric space. In Section 3.4 we describe the domains of proper
horofunctions for ω-undistorted subgroups.

In Section 3.5 we discuss the finite-sidedness of Dirichlet-Finsler domains. In
Section 3.7 we consider the restriction of Selberg’s domain to smaller invariant
convex sets, and provide a sufficient condition for the Dirichlet-Selberg domain
to be finite sided in this convex set.

In Section 3.6 we compare the horofunction compactification of the locally
symmetric space for an ω-undistorted subgroup with the compactification of the
symmetric space. Finally in Section 3.4.4 we show that the limit cone of any
discrete subgroup of G that is not virtually cyclic is connected.

This chapter is an adaptation of the preprint [DR24], and is a joint work
with Max Riestenberg.

3.1 Dirichlet-Selberg domains
3.1.1 Selberg’s construction
Let V be a d-dimensional real vector space. Let S2V be the space of symmetric
bilinear tensors Q : V � Ñ V . We consider the subspace X � X pV q � PpS2V ¡0q
of PpS2V q consisting of positive symmetric 2-tensors, i.e. positive definite sym-
metric bilinear forms on V �. The Lie group SLpV q � SLpd,Rq acts naturally
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on S2V so that for Q P S2V and g P SLpV q:

g �Q � g �Q � g�.

Hence PSLpV q acts on PpS2V q, and preserves X . This action is moreover tran-
sitive on X , and the stabilizer of an element rQs P X is equal to the subgroup
PSOpQq � PSOpd,Rq of PSLpV q � PSLpd,Rq. Hence X can be identified with
the symmetric space X � PSLpd,Rq{PSOpd,Rq associated to PSLpd,Rq. The
space X is called the projective model for this symmetric space.

Given x1, x2 P X , we choose any representatives Q1, Q2 P S2V of the corre-
sponding lines so that detpQ�1

1 Q2q � 1. The Selberg invariant is given by:

spx1, x2q :� log
�

1
d

TrpQ�1
1 Q2q



.

It is asymmetric and fails the triangle inequality, but has other good prop-
erties in common with metrics.

Proposition 3.1.1. Let x1, x2 P X and g P PSLpV q:
- spx1, x2q � 0 if and only if x1 � x2.

- spx1, x2q ¥ 0.

- spgx1, gx2q � spx1, x2q.

- spx1, x2q � log
�

1
d

°d
i�1 e

λi

	
, where Q�1

1 Q2 : V Ñ V is conjugate to:���e
λ1

. . .
eλd

��.
The closure of the properly convex domain X in PpS2V q is called the Satake

compactification of X , denoted by X with boundary BX . For h P X � BX Y X
and o, x P X one can not always define spx, hq but one can make sense of
the difference spx, hq � spo, hq. Indeed let S,Q0, Q be representatives of h, o, x
respectively such that detpQ�1

o Qq � 1:

sopx, hq :� log
�

1
d

TrpQ�1Sq


� log

�
1
d

TrpQ�1
0 Sq



.

Note that this definition does not depend on the chosen representatives, and
that it satisfies the cocycle condition sopx, hq � so1px, hq � sopo1, hq for o1 P X.

The main advantage of the Selberg invariant over the invariant Riemannian
metric of X is that the bisectors (resp. half-spaces) of s are projective hyper-
planes (resp. half-spaces) intersected with X .
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For x1 � x2 be in X , we let Hpx1, x2q denote the closed half-space in X ,
defined as the set of y P X such that:

Tr
�pX�1

1 �X�1
2 qY � ¥ 0

where X1 and X2 are positive definite representatives of x1 and x2 respectively
such that detpX1X

�1
2 q � 1 and Y is a positive semidefinite representative of y.

It is easy to check that the half-space is also given by

Hpx1, x2q � tx P X | sopx1, xq ¤ sopx2, xqu,

and note that this is independent of the basepoint o P X . For x, y P X , the
Selberg bisector is the set

Bispx, yq :� tz P X | sopx, zq � sopy, zqu,

and can also be written as the subset consisting of all z P X satisfying

TrpX�1Zq � TrpY �1Zq

where X,Y, Z are representatives of x, y, z respectively with detpX�1Y q � 1.

Given a discrete subgroup Γ of PSLpV q we may consider a variation of the
Dirichlet domain associated to the Selberg invariant. Let o P X , and define the
Dirichlet-Selberg domain based at o by:

DSΓpoq :� tx P X | @γ P Γ, sopo, xq ¤ sopγ � o, xqu �
£

γPΓzΓo

Hpo, γ � oq.

This domain is in general a compact convex subset of X � PpS2V q.

Definition 3.1.2. We call a Dirichlet-Selberg domain DSΓpoq properly finite-sided
if there exists a neighborhood U of DSΓpoq in X and a finite set F � Γ such
that for all γ P ΓzF , U � Hpo, γ � oq.

In particular if a Dirichlet-Selberg domain is properly finite-sided then there
exists a finite set F � Γ such that

DSΓpoq �
£
γPF

Hpo, γ � oq.

These definitions can be related to purely geometric notions of convex subsets
of X . We adapt the definitions of Ratcliffe [Rat19] for real hyperbolic space to
X . A side of a convex subset C of X is a nonempty maximal convex subset of
BC � X . A convex polyhedron in X is a nonempty closed convex subset of X
such that the collection of its sides is locally finite in X .

Proposition 3.1.3 ([Kap23]). For any discrete Γ   PSLpV q, the Dirichlet-Selberg
domain DSΓpoq X X is a convex polyhedron in X .
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The proof follows from the fact that the Selberg invariant is comparable with
the Riemannian metric or any G-invariant Finsler metric on the symmetric space
X , see Lemma 3.5.3. Proposition 3.1.3 may also be deduced from a result of
Jaejeong Lee [Lee08] which applies to more general properly convex domains,
see also [Mar09, Section 2.5].

Proposition 3.1.4. The domain DSΓpoq XX has finitely many sides if and only
if there exists a finite subset F � Γ such that:

DSΓpoq �
£
γPF

Hpo, γ � oq.

Proof. A convex polyhedron in X has finitely many sides if and only if it is
the intersection of X with finitely many closed half-spaces. This is proved by
Ratcliffe for hyperbolic space, see [Rat19, Theorems 6.3.2], but the proof goes
through for properly convex domains in general. In particular if a Dirichlet-
Selberg domain may be represented as a finite intersection of closed half-spaces,
then its intersection with X has finitely many sides.

On the other hand, suppose that DSΓpoq XX has finitely many sides. Each
of its sides spans a bisector Bispo, γ � oq, by the same proof as [Rat19, Theorem
6.7.4(1)]. Moreover, distinct sides span distinct bisectors by convexity. It follows
that there is a finite set F � Γ such that

DSΓpoq X X �
£
γPF

Hpo, γ � oq X X . (3.1)

In general, if Y is a closed convex subset of X and Y contains a point in X ,
then Y � Y X X . So by taking closures in (3.1) we can conclude the proof.

3.1.2 Infinitely-sided Dirichlet Selberg domains.
In this subsection we study Dirichlet-Selberg domains for lattices Γ in the sub-
group SOp1, nq   SLpn � 1,Rq of elements that preserve a symmetric bilinear
form x�, �y of signature p1, nq. We show that the Dirichlet-Selberg domain is
infinitely-sided for some specific basepoints o P X .

Let q be the symmetric bilinear form of signature p1, nq preserved by SOp1, nq.
The subgroup SOp1, nq � SLpn � 1,Rq preserves a totally geodesic copy H �
Xn�1 � X pRn�1q of the hyperbolic space Hn. Indeed Hn can be seen as the
space of lines on which the symmetric bilinear form q is positive. To such a line
ℓ whose orthogonal for q is ℓK, we associate the inverse xℓ � q�1

ℓ : V � Ñ V of
the symmetric bilinear form qℓ : V Ñ V � for which ℓ and ℓK are orthogonal,
and such that qℓ � q on ℓ and qℓ � �q on ℓK.

Theorem 3.1.5. Let Γ be a lattice in SOp1, nq and let o P H. The Dirichlet-
Selberg domain DSΓpoq X X has infinitely many sides.
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In particular, uniform lattices in SOp1, nq are projective Anosov subgroups
of SLpn � 1,Rq, and these admit Dirichlet-Selberg domains in Xn�1 � SLpn �
1,Rq{SOpn � 1q with infinitely many sides. When n � 2, a uniform lattice in
SOp1, 2q includes as a Borel Anosov subgroup of SLp3,Rq.

The main ingredient of the proof is to understand the intersection of RPn
with the Selberg bisector between xℓ and xℓ1 for ℓ � ℓ1 P Hn. Recall that
the subset consisting of rank one symmetric tensors in Xn�1 is in one-to-one
correspondence with RPn. We identify these two spaces in all this subsection.
When x, y P S2pRn�1q are positive of the same determinant, the intersection of
the Selberg bisector Bisprxs, rysq with RPn is the zero set of the quadratic form
x�1 � y�1.

We can make the following two observations:

Lemma 3.1.6. For every ℓ � ℓ1 P Hn, the intersection of the half-space Hpxℓ1 , xℓq
and PpℓKq � RPn is the hyperplane P

�
ℓK X pℓ1qK�.

If ℓ is fixed and ℓ1 converges to u P BHn � RPn, the bisectors Bispxℓ, xℓ1q X
RPn converge for the Hausdorff topology to PpuKq.
Proof. In the present case, the intersection of Bispqℓ, qℓ1q and RPn is equal to
the quadratic form qℓ � qℓ1 . This bilinear form vanishes on ℓK X pℓ1qK but
restricts to a form of signature p1, 1q on ℓ ` ℓ1. Hence this symmetric bilinear
form has signature p1, 1, n� 1q, and the zero locus of the corresponding quadric
is the intersection of two distinct projective hyperplanes whose intersection is
ℓK X pℓ1qK. Moreover neither ℓ nor ℓ1 belongs to the intersection of Bispqℓ, qℓ1q
and RPn.

The intersection of the half-space Hpxℓ1 , xℓq and PpℓKq � RPn is therefore
the set of lines on which qℓ1 ¥ qℓ, but qℓ � �q on ℓK. Since qℓ1 ¥ �q, it means
that PpℓKq only intersects this half-space for lines on which qℓ1 � �q, i.e. on
P
�
ℓK X pℓ1qK�.
The two hyperplanes that form Bispqℓ, qℓ1q are the hyperplanes H� and H�

which are generated by ℓK X ℓ1K and respectively v � w and v � w where v P ℓ
and w P ℓ1 satisfy qpv, vq � qpw,wq � 1. When ℓ1 converges to u P BHn, the
intersection ℓKX ℓ1K converges to ℓKX uK and the lines generated by v�w and
v�w both converge to u � uKzℓK. Hence H� and H� both converge to uK, so
Bispqℓ, qℓ1q converges for the Hausdorff topology to PpuKq.

Figure 3.1 illustrates the intersection of Bispqℓ, qℓ1q and RPn for n � 2. The
circle represents the isotropic lines for q. The two projective lines represent the
intersection with Bispqℓ, qℓ1q. They intersect the line at infinity ℓK at ℓKXpℓ1qK.
If ℓ1 converges to u on the circle, then Lemma 3.1.6 tells us that the two blue
lines converge to the tangent of the circle at u.

We can now prove Theorem 3.1.5.
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ℓ ℓ1

Figure 3.1: Illustration of the intersection of a Selberg bisector and RP2.

Proof. Suppose for the sake of contradiction that the Dirichlet-Selberg domain
has finitely many sides. By Proposition 3.1.4 there is a finite set F � Γ such
that

DSΓpoq �
£
γPF

Hpo, γ � oq.

The interior of DSΓpoq intersected with PpℓKq � RPn is the complement in PpℓKq
of the union of Hpxγ�ℓ, xℓq for all γ P F . This is a finite union of hyperplanes
by Lemma 3.1.6, hence this intersection is non-empty.

Choose a line w � ℓK in this intersection. Let u P BHn be an isotropic line
such that w � uK. Since the limit set of Γ is all of BHn, there exist a sequence
pγnq in Γ such that pγn � ℓq converges to u. The bisectors Bispo, γnoq converge to
uK by Lemma 3.1.6. In particular, these bisectors eventually meet the interior
of the Dirichlet-Selberg domain. Then, since the bisectors have empty interior
in RPn, the complements of Hpo, γn �oq eventually intersect the Dirichlet-Selberg
domain, yielding a contradiction.

Remark 3.1.7. It is not clear if such groups admit finite-sided Dirichlet-Selberg
domains for other basepoints o P X .

3.2 Background on symmetric spaces and Anosov sub-
groups

In this section we introduce the notion of an ω-undistorted subgroup of G. First
we review some important properties of the visual boundary of a symmetric
space of non-compact type, and fix some notation. We then recall the relevant
properties of Anosov subgroups.
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3.2.1 The visual boundary of a symmetric space of non-compact
type

Let G be a connected semisimple Lie group with finite center and let X be
the associated symmetric space of non-compact type. The symmetric space
X is a Hadamard manifold. Its visual boundary, denoted BvisX, is the set of
asymptote classes of geodesic rays. The visual boundary of a symmetric space
has the structure of a thick spherical building, see [KLP17, Eps86] for further
discussion.

Let a be a maximal abelian subspace of p where g � k ` p is a Cartan de-
composition of the Lie algebra g of G. Let Σ � a� be the associated (restricted)
root system, and ∆ be a choice of simple roots. This choice defines a positive
(Euclidean) Weyl chamber a� :� tv P a | @α P ∆, αpvq ¥ 0u.

For x, y P X, there is an isometry g P G conjugating the transvection from
x to y into exppa�q. The corresponding element of a� is called the the vector-
valued distance, and denoted by d⃗px, yq.

The projecitivization Sa� is naturally identified with a subset of BvisX called
a (spherical) Weyl chamber. It is a fundamental domain for the natural action
of G on BvisX. In particular, BvisX is a union of Weyl chambers σ, and each
is naturally identified with a model Weyl chamber σmod. Every element of the
visual boundary has a type in the model Weyl chamber:

τ : BvisXÑ σmod.

Non-empty faces τmod of σmod are in one-to one correspondence with non-
empty subsets Θ of ∆. To such a face/subset of simple roots one can associate
a flag manifold FΘ � Flagpτmodq defined as the set of faces τ � BvisX of type
τmod. It can also be written as FΘ � G{PΘ where PΘ is the standard parabolic
subgroup associated to Θ. The star of a simplex τ in BvisX is the union of
chambers containing τ , and denoted stpτq � BvisX.

We often fix a subset C of σmod; which can be for instance the limit cone of
some discrete subgroup, see below.1 The C-star of τ is the subset of the star of
τ with types in C:

stCpτq :� stpτq X τ�1pCq.
We further consider certain subsets of X which appear as cones on subsets

of BvisX. For x P X and A � BvisX, we let Vpx,Aq denote the union of points on
geodesic rays from x to A. In particular, we will consider later the Weyl cone
Vpx, stCpτqq of a simplex τ in BvisX.

To ω P a�, one can associate its orthogonal vector ωK P a for the Killing
form. Up to the action of the Weyl group W , we may assume that ωK P a�.
We let Fω denote the flag manifold

Fω :� τ�1pωKq � G � rcωKs � BvisX (3.2)
1In [KLP17], C would be denoted Θ, but we reserve that notation for a collection of simple

roots.
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where cωK is a geodesic ray determined by ωK. The flag manifold Fω is naturally
identified with FΞ for the subset of simple roots Ξ � tα P ∆ | αpωKq � 0u.
Remark 3.2.1. In the following sections, we will consider Θ-Anosov subgroups
which have limit maps with values in FΘ and domains of discontinuity in the
flag manifold Fω � FΞ. We emphasize that Ξ is typically not equal to Θ in this
setup.

3.2.2 The ω-undistorted condition.
Let Γ be a discrete subgroup of G. The limit cone CΓ of Γ is given by:

CΓ :�
£
nPN

#
d⃗po, γ � oq
dpo, γ � oq |γ P Γ, dpo, γ � oq ¥ n

+
� σmod. (3.3)

This definition does not depend of the base-point o P X. The limit cone is non-
empty when Γ is unbounded and is compact in general. Note that for a fixed
o P X, the map µ : GÑ a� given by µpgq :� d⃗po, g � oq is often called the Cartan
projection.

Before introducing the ω-undistorted notion, we recall a similar condition
that characterizes the Anosov property.

Definition 3.2.2 ([KLP17, Definition 5.17]). Let Θ � ∆ be a set of simple roots.
A finitely generated subgroup Γ is Θ-Anosov if and only if for one (and hence
any) word metric | � | on Γ, there exist ϵ, C ¡ 0 such that for all α P Θ and γ P Γ:

α
�
d⃗po, γ � oq

	
¥ ϵ|γ| � C.

Equivalently, Γ is Θ-Anosov if it is quasi-isometrically embedded and the
limit cone CΓ avoids Kerpαq for all α P Θ.

We introduce a similar notion.

Definition 3.2.3. Let ω P a� be nonzero. We say that a finitely generated
subgroup Γ   G is ω-undistorted if for one (and hence any) word metric | � | on
Γ, there exist ϵ, C ¡ 0 such that for all w in the Weyl group and γ P Γ:∣∣∣ω �

w � d⃗po, γ � oq
	∣∣∣ ¥ ϵ|γ| � C. (3.4)

Equivalently Γ is ω-undistorted if and only if it is quasi-isometrically em-
bedded in G and if its limit cone CΓ avoids w � Kerpωq for all w in the Weyl
group.

Remark 3.2.4. Note that if G � SLpn,Rq, the logarithm of each singular value
σi of γ for 1 ¤ i ¤ n is equal to ω1

�
w � d⃗po, γ � oq

	
for some w P W . It follows

that an ω1-undistorted subgroup of G is exactly a subgroup which is |log σi|-
undistorted for all i.
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If ω is a simple root this exactly means that Γ is Anosov with respect to the
set of simple roots Θ � tω �w|w PW uX∆. Recall that an elementary subgroup
is a subgroup that is virtually cyclic.

Proposition 3.2.5. Let Γ be a non-elementary ω-undistorted subgroup of G, and
let σΓ be the connected component of σmodz

�
wPW w �Kerpωq containing CΓ. Let

ΘpσΓq P ∆ be the set of simple roots whose associated walls do not intersect σΓ.
The set ΘpσΓq is nonempty and Γ is ΘpσΓq-Anosov.

Proof. The limit cone CΓ is connected, see Proposition 3.8.2. The fact that
ΘpσΓq � H is exactly [Dav23, Lemma 5.20]. Finally, since CΓ � σΓ, the limit
cone CΓ avoids the walls associated to the simple roots in ΘpσΓq, and Γ is quasi-
isometrically embedded, so Γ is ΘpσΓq-Anosov.

Note that the connected component σΓ must be invariant by the opposition
involution ι : σmod Ñ σmod, since the limit cone is itself invariant. Hence for
ω � ω1 and G � SLpd,Rq:
Proposition 3.2.6. If d � 2n, then any non-elementary ω1-undistorted sub-
group of SLpd,Rq is n-Anosov. If d is odd, there exist no non-elementary ω1-
undistorted subgroups of SLpd,Rq.
Proof. For 1 ¤ k   d, let ck denote the set of tuples pλ1, λ2, � � � , λdq such that
λ1 ¥ λ2 ¥ � � � ¥ λk ¡ 0 ¡ λk�1 ¥ � � � ¥ λd. These are exactly the connected
components of a�z�wPW w � Kerpω1q. The opposition involution maps ck to
cd�k.

For d odd there are no invariant connected components. For d � 2n there is
only one invariant component, and this component avoids the wall λn � λn�1.
Hence ΘpσΓq � tλn � λn�1u.
Remark 3.2.7. One could define and study other conditions for a subgroup by
requiring for some fixed finite set of functionals ω P a� the inequality:∣∣∣ω �

d⃗po, γ � oq
	∣∣∣ ¥ ϵ|γ|� C

In this framework one could view the Anosov condition as the special case where
one considers a collection of simple roots. In the present paper, we are mainly
interested in the case where that set is a Weyl group orbit.

3.2.3 Illustration of the ω-undistorted condition.
In this subsection we consider a few examples to illustrate the ω-undistorted
condition, and its relation to the Anosov properties.

3.2.3.1 Let G � PSLpd,Rq.
Consider the following:

ω1 : Diagpσ1, � � � , σdq ÞÑ σ1.
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If Γ   PSLpd,Rq is a subgroup |log σi|-undistorted for all i, or ω1-undistorted.
Figure 3.2 illustrates the intersection of the model Weyl chamber σmod with the
hyperplanes w � Kerpω1q as dotted lines. Since the limit cone CΓ is connected
and invariant by the opposition involution, it is contained in the gray region.

Now consider the following:

ω∆ : Diagpσ1, � � � , σdq ÞÑ σ1 � σd.

An ω∆-undistorted subroup Γ   PSLpd,Rq is exactly a ∆-Anosov subgroup of
PSLpd,Rq, also called Borel Anosov.

τ1 τ3

τ2

Figure 3.2: An illustration of ω1 for SLp4,Rq.

3.2.3.2 Let G � Spp6,Rq.
We consider representations of convex cocompact subgroups Γ � SLp2,Rq that
factor through a representation f : SLp2,Rq Ñ Spp6,Rq. Given a partition
τ � tτ1, τ2, � � � τku with repetition such that τ1�� � ��τk � 6 and each odd integer
appears an even number of times, we can define a representation fτ : SLp2,Rq Ñ
Spp6,Rq as the direct sum of irreducible representations SLp2,Rq Ñ SLpτi,Rq.
Let j : Γ Ñ SLp2,Rq be a Fuchsian representation of the fundamental group of
a closed surface. The representations ρτ � fτ � j are discrete and faithful for
τ � t1, 1, 1, 1, 1, 1u and their limit cone is a single point tvτu.

The positive Weyl chamber a� can be identified as the space of triples
pλ1, λ2, λ3q with λ1 ¥ λ2 ¥ λ3 ¥ 0. The generators of the Weyl group are
the involutions σ1 : pλ1, λ2, λ3q ÞÑ pλ2, λ1, λ3q, σ2 : pλ1, λ2, λ3q ÞÑ pλ1, λ3, λ2q
and σ3 : pλ1, λ2, λ3q ÞÑ pλ1, λ2,�λ3q.

Let ω1 � λ1 denote the first fundamental weight, which is an element of
a� in the same Weyl group orbit as half of the root α3 � 2λ3. The second
fundamental weight is ω2 � λ1 � λ2, which is in the same Weyl group orbit
as the roots α1 � λ1 � λ2 and α2 � λ2 � λ3. The third fundamental weight
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ω3 � λ1 � λ2 � λ3 is not in the Weyl group orbit of a simple root, even up to
rescaling.

We illustrate some of these points in Figure 3.3, in the projective chart
defined by λ1 � 1. In this picture, the red line correspond to the union of
Kerpw � ω1q for w PW , the blue lines show the same union for ω2 and the gray
line shows this union for ω3.

λ1 � λ2
λ2 � λ3

λ3 � 0

vt2,2,2u

vt2,2,1,1u � vt3,3uvt2,1,1,1,1u

vt6uvt4,2u

vt4,1,1u

Figure 3.3: An illustration of the positive Weyl chamber Ppa�q � σmod for
Spp6,Rq.

In this picture, we see that the following are ω1-undistorted, which is equiv-
alent to being tα3u-Anosov:

ρt6u, ρt2,2,2u, ρt4,1,1u.

We also see that ρt6u and ρt4,1,1u are ω2- An ω∆-undistorted, which is equivalent
to being tα1, α2u-Anosov. Finally we see that teh representations ρt6u, ρt4,2u,
ρt2,1,1,1,1u, ρt4,1,1u and ρt2,2,2u are ω3-undistorted. There are two connected
components of a� minus the gray line. The first one contains vt2,2,2u, and having
a limit cone in this component implies being tα3u-Anosov. Representations
whose limit cone lies in the other component are all tα1u-Anosov.

3.2.4 Boundary maps and the Morse property.
An important feature of Anosov subgroups is the existence of a boundary map,
which can be characterized in the following way. Let Θ be a non-empty set of
simple roots.
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Theorem 3.2.8 ([KLP17, BPS19]). Let Γ be Θ-Anosov subgroup of G. The group
Γ is hyperbolic, with Gromov boundary BΓ. There exist a unique continuous Γ-
equivariant map ξΘ : BΓ Ñ FΘ such that for all o P X and every geodesic ray
pγnq in Γ converging to ζ P BΓ, every limit point of pγn � oq belongs to a Weyl
chamber that contains ξΘpζq, i.e. every limit point belongs to st pξΘpζqq � BvisX.

The map ξΘ : BΓ Ñ FΘ is called the boundary map of Γ.

Symmetric spaces of rank one satisfy the Morse Lemma: quasi-geodesics
stay close to geodesics. That property fails in higher rank, but a suitable gen-
eralization holds: uniformly regular quasigeodesics stay close to Weyl cones.

Theorem 3.2.9 ([KLP17, KLP18b, BPS19]). Let Γ be Θ-Anosov subgroup of G.
Let o P X, and let us a fix a word metric | � | on Γ. There exist D ¥ 0 such that
if γ P Γ lies on a geodesic ray from e P Γ to ζ P BΓ then the distance from γ � o
to the Weyl cone V po, stpξΘpζqqq is at most D.

We observe that the orbit also stays close to Weyl cones on C-stars. This
has important consequences throughout the paper.

Lemma 3.2.10. Let Γ be a Θ-Anosov subgroup of G. Let C be any compact
neighborhood of the limit cone CΓ, let o P X and fix some word metric | � | on Γ.
There exists D ¥ 0 such that:

1. If pγnqnPN is a geodesic ray in Γ converging to ζ P BΓ with γ0 � e, then
for all n P N, the distance from γn � o to the Weyl cone V po, stC pξΘpζqqq
is at most D,

2. For all γ P Γ, there exists ζ P BΓ such that the distance from γ � o to the
Weyl cone V po, stC pξΘpζqqq is at most D.

Proof. We first remark that since Γ is hyperbolic, there exist D1 ¥ 0 such that
every γ P Γ is at distance at most D1 from some element γ1 that belongs to an
infinite geodesic ray starting from e P Γ. Hence, since Anosov subgroups are
quasi-isometrically embedded, (2) follows from (1).

Now let γ lie on a geodesic ray pγnq in Γ with γ0 � e. By Theorem 3.2.9
we know that there exist a point x P V po, st pξΘpζqqq for some ζ P BΓ that is
at distance at most D from γ � o. Since C contains a neighborhood of CΓ, it
contains d⃗po, γ � oq for all γ large enough. Moreover since dpo, γ � oq goes to �8,
C must contain d⃗po, xq if γ is large enough. Hence there exist D2 such that
either dpo, γ � oq ¤ D2 or x P V po, stC pξΘpζqqq. This concludes the proof.

Example 3.2.11 (Taking a neighborhood of CΓ is necessary). We discuss an
example where Γ orbits fail to stay at uniform distance from Weyl cones on CΓ.
Indeed, let γ be an isometry of H2 �H2 which is hyperbolic on the first factor
and unipotent on the second. Then Γ � xγy is Anosov with respect to the first
factor. Let o � po1, o2q be a basepoint in H2 � H2. The fixed points of γ on
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BH2 � BH2 are pξ�1 , ξ2q; let τ be the simplex in BvispH2 �H2q corresponding to
ξ�1 . While the (forward) orbits of γ uniformly fellow travel the Weyl cone

Vpo, stpτqq � tpp, qq P H2 �H2 | o1pp�8q � ξ�1 u,
they drift logarithmically away from

Vpo, stCΓpτqq � Vpo, τq � tpp, o2q P H2 �H2 | o1pp�8q � ξ�1 u.
On the other hand, for any neighborhood C of CΓ, the orbits of γ uniformly
fellow travel

Vpo, stCpτqq � tpp, qq P H2 �H2 | o1pp�8q � ξ�1 , dpo2, qq ¤ Cdpo1, pqu
where C is a constant depending on C.

3.3 Finsler metrics and horofunction compactifications
In this section we review a class of G-invariant Finsler metrics on the symmet-
ric space X as well as their horofunction compactifications, which were previ-
ously studied by Kapovich-Leeb [KL18]. In the sequel we will study Dirichlet
domains for these Finsler metrics by considering their closure in the horofunc-
tion compactification, which are closely related to Satake compactifications, see
[HSWW18].

3.3.1 A family of Finsler metrics on the symmetric space
To a non-zero element ω P a� one can associate a seminorm ∥�∥ω on the model
Cartan subalgebra for v P a by:

∥v∥ω � max
wPW

ωpw � vq.

The seminorm only depends on the Weyl group orbit W � ω, and is symmetric
if and only if W � ω �W � p�ωq.

When W � ω spans a�, ∥�∥ω is moreover definite. This is always the case
when G is simple. We will assume from now on that ω is chosen in such a way.

The seminorm on a defines a G-invariant Finsler metric ∥�∥ω on X, that can
be characterized for v P ToX by:

∥v∥ω � max
aPFω

�dba,opvq.

Here for o, x, y P X and a P Fω, ba,o : X Ñ R is the Busemann function
associated to a and based at o and Fω denotes the G orbit of an ideal point
dual to ω, see (3.2).

This defines a Finsler distance on X, characterized for x, y P X by:

dωpx, yq � ∥d⃗px, yq∥ω � max
aPFω

ba,ypxq.
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Remark 3.3.1. Let G � PSLp2,Rqn, and let ω : aÑ R be the linear form coming
from the projection onto the first factor. For this functional W �ω does not span
a� and the seminorm ∥�∥ω is not definite. Indeed, the degenerate pseudo-metric
dω on

�
H2�n is the composition of projection onto the first coordinate with the

distance in H2. In general, we only consider those functionals ω which lead to
nondegenerate metrics, so this example is ruled out.

3.3.2 Horofunction compactification
We review the construction of a horofunction compactification for an asymmetric
metric, see [Wal14, KL18, HSWW18] for further details. Let Y be the space
of 1-Lipschitz functions f : X Ñ R for a G-invariant Riemannian metric on X,
modding out the line of constant functions. This space is endowed with the
compact open topology: a basis of neighborhoods of rf s P Y is defined by the
open sets of the form:

UK,ϵ � trgs | @x P K, pg � fqpxq   ϵu,

for K � X compact and ϵ ¡ 0.

One can define a topological embedding ι : X Ñ Y by setting ιpx0q : x P
X ÞÑ dωpx, x0q for x0 P X. Since Y is compact Hausdorff, the closure of ιpXq in
Y is compact Hausdorff and we denote it by BωX � ιpXqzιpXq. The functions
representing points in BωX are called horofunctions.

3.3.3 Satake compactification
Let G be a semisimple real Lie group and V an irreducible real representation
of G with finite kernel, and let ρ : g Ñ glpV q be the induced Lie algebra
representation.

We define as previously the space S2V of symmetric bilinear tensors Q :
V � Ñ V , and the subset X � X pV q � PpS2V q of projectivizations of positive
definite elements, see Section 3.1. The space X is the projective model for the
symmetric space of SLpV q. The symmetric space X associated to G can be
identified with a unique totally geodesic submanifold of the symmetric space of
SLpV q, hence it can be seen as a subset X � X [Kar53, Mos55]. Note that this
subspace is not in general a linear subspace.

Definition 3.3.2. The Satake compactification of X associated to ρ is the closure
of X � X inside the compact space PpS2V q.

Let a � p be a maximal abelian subspace of p where g � k ` p is a Cartan
decomposition. Given λ P a�, let Vλ � tx | @h P a, ρphq � x � λphqxu. The
restricted weight system associated to ρ is the set Φρ � a� of elements λ such
that Vλ � t0u. We have the following weight space decomposition:

V � à
λPΦρ

Vλ.
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The highest weight ω P Φρ of the representation ρ is the unique element such
that for any λ P Φρ, ω � λ ¥ 0 on a�.

Since ρ : gÑ slpV q is injective, the kernel of ω cannot contain a simple factor
of g, so the Finsler metric dω on X is nondegenerate. In this case the Satake com-
pactification associated to ρ coincides with the horofunction compactification of
X with respect to dω.

Theorem 3.3.3 ([HSWW18, Theorem 5.5]). The Satake compactification of X
associated to the representation ρ is G-equivariantly homeomorphic to the horo-
function compactification XY BωX.

See also [HSWW18, Remark 5.6]. Note that [HSWW18, Theorem 5.5] also
applies in the more general case of generalized Satake compactifications of re-
ducible representations. In the present paper we restrict attention to the ir-
reducible case, since the Finsler metrics we want to consider are defined by a
single weight.

3.3.4 Description of horofunctions
Horofunctions for the polygonal Finsler metric dω can be constructed from Buse-
mann functions associated to elements in Fω.

Recall that a flag of ν of any type corresponds to a simplex in the visual
boundary.

Definition 3.3.4 (Incidence). We say that ζ P BvisX and a simplex ν � BvisX are
incident, denoted ζ � ν, if there exists a chamber σ � BvisX such that ζ P σ
and ν � σ. We let Iων � Fω denote the set of ζ P Fω incident to ν.

Note that Iων can also be written as stpνq X Fω.

Proposition 3.3.5 ([KL18, Section 5]). Every horofunction of pX, dωq is of the
form bων,o for some flag ν of any type and some point o P X:

bων,o :� max tbζ,o | ζ P Iων u .

Example 3.3.6. Let G � PSLpd,Rq and ω � ω1, so that Fω1 � RPd�1. A flag τ
of any type corresponds to a tuple pEi1 , Ei2 , � � � , Eikq of subspaces of Rd such
that Ei1 ⊊ Ei2 ⊊ � � � ⊊ Eik and dimpEiℓq � iℓ for all 1 ¤ ℓ ¤ k. A line
ℓ P Fω1 � BvisX satisfies ℓ � τ if and only if ℓ � Ei1 . Indeed this is equivalent
to the existence of a full flag pF 1, F 2, � � � , F d�1q in Rd such that F 1 � ℓ and
F iℓ � Eiℓ for all 1 ¤ ℓ ¤ k.

Let G � PSLpd,Rq and ω � ω∆, so that Fω � F1,d�1. A flag τ of any type
as before and a pair pℓ,Hq P Fω∆ � BvisX satisfies pℓ,Hq � τ if and only if
ℓ � Ei1 and Eik � H. Indeed this is equivalent to the existence of a full flag
pF 1, F 2, � � � , F d�1q in Rd such that F 1 � ℓ, F d�1 � H and F iℓ � Eiℓ for all
1 ¤ ℓ ¤ k.
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3.4 Domain of proper horofunctions
In this section we consider an ω-undistorted subgroup Γ of G and study two
related domains of discontinuity: Ωωflag in the flag manifold Fω and Ωωhoro in the
horoboundary BωX. We show that when Γ is ω-undistorted, these are cocom-
pact domains of proper discontinuity for Γ. In fact, the domains are constructed
from a balanced metric thickening naturally associated to ω and the limit cone
CΓ. The proper discontinuity and cocompactness of the domains can be de-
duced from [KLP18a, KL18], but we give a simpler proof in the present case.
For ω-undistorted subgroups, the domains can be characterized as a space of
horofunctions which are proper and bounded below on Γ-orbits, see Proposition
3.4.8.

3.4.1 Thickenings in flag manifolds and horoboundaries
Recall that we have fixed an ω P a�, which defines a flag manifold Fω � BvisX
and a definite Finsler metric dω on X.

Definition 3.4.1 ([KLM09, KL06]). The asymptotic slope of a convex Lipschitz
function f is

slopef : BvisXÑ R, slopef pηq :� lim
tÑ8

f � cηptq
t

.

This limit always exists for convex Lipschitz functions and is independent of the
basepoint of the geodesic ray cη.

For a Riemannian Busemann function associated to ξ P BvisX, the asymptotic
slope is given by the Tits angle:

slopebo,ξ
pηq � � cos=Titspξ, ηq.

Lemma 3.4.2. The slope of a mixed Busemann function bων,o is given by

slopebω
ν,o
pηq � max t� cos=Titspξ, ηq | ξ P Iων u .

Here Iων � Fω refers to the set of ξ P Fω incident to ν, see Definition 3.3.4.

Proof. Since bων,o and bξ,o for ξ P Fω are convex, we can replace the limits by a
supremum in the definition of the slope. Therefore:

slopebω
ν,o
pηq � sup

t¥0

bων,o � co,η
t

� sup
t¥0

max
ξPIω

ν

bo,ξ � co,η
t

� max
ξPIω

ν

sup
t¥0

bo,ξ � co,η
t

,

sup
t¥0

bo,ξ � co,η
t

� slopebω
ν,o
pηq � � cos=Titspξ, ηq.
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To a point ξ P BvisX such that ω pw � τpξqq � 0 for all w P W , one can
associate its thickening in Fω:

Thωpξq :� ta | =Titspa, ξq   π{2u � Fω.

Similarly we can define a thickening in the horoboundary:

Thωhoropξq :� trhs | slopehpξq   0qu � BωhoroX.

Note that the intersection of Thωhoropξq with Fω in BωX coincides with Thωpξq.
Lemma 3.4.3. Let ξ1, ξ2 P σ be two points in an ideal Weyl chamber whose
types belong to the same connected component of σmodz

�
wPW w � Kerpωq. The

associated thickenings coincide:

Thωpξ1q � Thωpξ2q,

Thωhoropξ1q � Thωhoropξ2q.
Proof. The fact that τpξ1q and τpξ2q lie in the same connected component of
σmodz

�
wPW w � Kerpωq implies that the segment c between ξ1 and ξ2 in σ

contains only elements whose types do not belong to w �Kerpωq for any w PW .

The Tits angle with a point a P BvisX is a function on BvisX that is continuous
on any ideal Weyl chamber: indeed given a Weyl chamber of BvisX, there exist
a flat containing it as well as a in its boundary. On this flat the Tits angle is
just the standard Euclidean angle.

Now let a P Thωpξ1q: on the segment c the Tits angle =Titspa, ξq is never
equal to π

2 , and it varies continuously, so a P Thωpξ2q, and vice versa. Hence
Thωpξ1q � Thωpξ2q. The set Thωhoropξiq can be characterized as the set of
mixed Busemann functions bων,o such that Iων � Thωpξiq for i � 1, 2. Hence also
Thωhoropξ1q � Thωhoropξ2q.

Let C be a subset of a connected component of σmodz
�
wPW w �Kerpωq, and

let Θ � ∆ be the set of roots which do not vanish on C. Given a flag τ P FΘ
we define therefore its thickenings:

Thωpτ, Cq :� tη | =Titspη, ζq   π{2u � Fω.

Thωhoropτ, Cq :� trhs | slopehpζq   0qu � BωhoroX.

For this definition we chose some ζ P stCpτq P BvisX. The definition does not
depend of this choice because of Lemma 3.4.3. In particular one has the follow-
ing:

Thωpτ,Cq � tη | @ξ P stCpτq, =Titspξ, ηq   π{2u � Fω
Thωhoropτ,Cq �

 rbων,xs | Iων � Thωpτ,Cq( � BωhoroX.

These thickenings are closely related to the metric thickenings considered by
Kapovich-Leeb-Porti, see [KL18, Section 8.3] and Remark 3.4.4.
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Note that the thickenings Thωpτ, Cq and Thωhoropτ, Cq depend only on τ and
on the connected component of σmodz

�
wPW w � Kerpωq in which C lies. In

practice we will apply this to the case when Γ is ω-undistorted and C is an
auxiliary neighborhood of the limit cone CΓ in the same connected component.
Remark 3.4.4. In the present paper we directly define thickenings as subsets
of flag manifolds and horoboundaries. Kapovich-Leeb-Porti [KLP18a] define
thickenings to be subsets of the Weyl group W and use such subsets to con-
struct thickenings in flag manifolds and horoboundaries. When ω � ω1 and
G � SLp2n,Rq, we have W � S2n and the thickening is the subset of S2n taking
1 P t1, . . . , 2nu into t1, . . . nu. This thickening is balanced, left-invariant for the
subgroup of W stabilizing the subset t1, . . . , nu (equivalently, the vertex of σmod
corresponding to Grpn, 2nq), and right-invariant for the subgroup of W stabiliz-
ing t1u (equivalently, the vertex of σmod corresponding to Grp1, 2nq � RP2n�1).
In general, the thickening is the metric thickening Thζ,w,π{2 of [KLP18a] where
w is the W -translate of the dual to ω in σmod and ζ is a point in the simplex
τmod corresponding to ΘpσΓq, see Proposition 3.2.5.

3.4.2 Behaviour of horofunctions along geodesic rays
For a semi-simple Lie groups of real rank at least 2, for every geodesic in the sym-
metric space there exist a Busemann function that is constant on this geodesic.
However if we restrict to some types of geodesics and if we consider only Buse-
mann functions associated to points in Fω we can rule out this phenomenon. In
this section we prove that the behavior of a Busemann function associated to a
point a P Fω, and more generally the behavior of a horofunction in BωX along
the orbits of Γ are subject to a dichotomy.

Let C � a� be a closed subset that avoids w �Kerpωq for all w PW . Let

CC,ω � inf
"

|ωpw � vq|
∥v∥∥ω∥

| v P C, w PW
*
,

which is a positive constant.
For o P X and η P BvisX we let co,η : r0,8q Ñ X denote the geodesic ray

emanating from o asymptotic to η.

Lemma 3.4.5. Let rhs P BωX be a horofunction, let o P X be a basepoint and let
f P FΘ. Exactly one of the following holds:

(i) rhs P Thωhoropf, Cq and for every η P stCpfq the geodesic ray co,η satisfies

hpco,ηptqq � hpoq ¤ �CC,ωt.

(ii) rhs R Thωhoropf, Cq and for all ϵ ¡ 0 there exist A ¡ 0 such that for every
η P stCpfq the geodesic ray co,η satisfies

hpco,ηptqq � hpoq ¥ pCC,ω � ϵqt�A.
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We emphasize that A depends on o, rhs, and f .

Proof. By Proposition 3.3.5 we may write h � bων,x for some simplex ν, i.e. some
flag of any type, and some x P X. Let c � co,η : R¥0 Ñ X be a geodesic ray
based at o, corresponding to a point η P BvisX.

Suppose that rhs P Thωhoropf, Cq and η P stCpfq, i.e. Iων � Thωpf, Cq by the
discussion after Lemma 3.4.3. This means that every ξ P Fω incident to ν
satisfies =Titspξ, ηq   π{2. The slope of bx,ξ along η is then � cos=Titspξ, ηq,
which is at most �CC,ω. So each bx,ξ � cη is bounded above by �CC,ωt, and the
same applies to their maximum, h � bων,x.

Suppose now that rhs R Thωhoropf, Cq , i.e. there exists some ξ P Fω incident
to ν and η P stCpfq such that =Titspξ, ηq ¡ π

2 . The asymptotic slope of the
convex function h � co,η is greater than or equal to CC,ω; in particular there
exist E ¡ 0 such that hpcpEqq � hpcp0qq ¥ pCC,ω � ϵqE. The constant E can
be chosen uniformly for all geodesic rays co,η since h is continuous and the set
of geodesic rays based at o with η P stCpfq is compact. Since h � c is convex,
hpcptqq�hpoq ¥ pCC,ω�ϵqt for t ¡ E. Since h is 1-Lipshitz one has in particular
hpcptqq � hpoq ¥ pCC,ω � ϵqt� E for all t ¥ 0, which concludes the proof.

Example 3.4.6. For G � SLpd,Rq, the Busemann functions bo,ζ with ζ � Rw P
Fω1 � RPd�1 are given by

bo,ζpqq � log
� |w|q

|w|o



.

A maximal flat containing o corresponds to a line decomposition which is or-
thogonal with respect to o. Rw is in the boundary of this flat if and only if it is
one of these lines. If it is, then the Busemann function along a ray in this flat
is linear.

3.4.3 Characterization of the domain of discontinuity
In this section we consider a non-elementary ω-undistorted subgroup Γ of G. In
particular Γ is Anosov for a set of roots Θ � ΘpσΓq by Proposition 3.2.5.

The limit map ξ : BΓ Ñ FΘ and the thickenings from the previous section
provide the data to define domains in Fω and BωX, following [KLP18a, KL18].

Recall that Θ � ∆ is the set of simple roots determined by ω and CΓ such
that Γ is Θ-Anosov, and that C � a� is a compact neighborhood of CΓ that
avoids w �Kerpωq for all w PW .

Definition 3.4.7. Let us define the following domains:

Ωωflag :� Fωz
¤
xPBΓ

ThωpξΘpxq, Cq,

Ωωhoro :� BωhoroXz
¤
xPBΓ

ThωhoropξΘpxq, Cq.
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They can be characterized as domains of Busemann (resp. horofunctions)
that are proper bounded from below on any/every Γ-orbit.

Proposition 3.4.8. A point η P Fω belongs to Ωωflag if and only if the associated
Busemann function bη,o restricted to the Γ-orbit of o is bounded from below.

An element rhs P BωhoroX belongs to Ωωhoro if and only if h restricted to the
Γ-orbit of o is bounded from below. In this case, the horofunction is proper on
any Γ-orbit.

Proof. Since Fω includes into BωhoroX, the first statement follows from the sec-
ond.

Let rhs P BωhoroX be a horofunction. If rhs P BωhoroX is not in Ωωhoro, then
it belongs to ThωhoropξΘpzq, Cq for some z P BΓ. If pγnq is a geodesic ray in
Γ converging to z, Lemma 3.2.10 implies that there exist a constant D ¥ 0
such that for all n ¥ 0, γn � o is at distance at most D from a point xn P
Vpo, stCpξΘpzqqq.

Lemma 3.4.5 implies that hpxnq � hpoq ¤ �CC,ωdpo, xnq. Since h is 1-
Lipshitz, this implies that hpγn � oq goes to �8, so h is unbounded from below.

To conclude the proof, we need to show that if h is unbounded from below
or fails to be proper on a Γ-orbit, then h does not belong to Ωωhoro. In either
case, there is a diverging sequence of elements pγnqnPN of Γ such that hpγn � oq
is bounded from above by a constant D ¥ hpoq. The sequence of geodesic
segments pro, γn � osq converges up to subsequence to a geodesic ray ro, ηq with
η P BvisX. Since Γ is Θ-Anosov with limit cone inside C one has η P stCpξΘpzqq
for some z P BΓ by Lemma 3.2.10.

Note that since h is convex, it is bounded from above by D on all the geodesic
segments pro, γn � osq and hence also on the geodesic ray ro, ηq. Lemma 3.4.5
therefore implies that h P ThωhoropξΘpζq, Cq, so rhs does not belong to Ωωhoro.

We show that the horofunctions belonging to XYΩωhoro are not only proper
and bounded from below on Γ-orbits, but are moreover locally uniformly proper.
More precisely, the constant A from Lemma 3.4.5 can be chosen to be uniform
on a neighborhood of rhs.
Lemma 3.4.9. Let rh0s P XY Ωωhoro, and let o P X. There exists a neighborhood
U � XY BωhoroX of rh0s and a constant A ¡ 0 such that for rhs P U and γ P Γ:

hpγ � oq � hpoq ¥ CC,ωdpo, γ � oq �A.

We check that this result still holds for elementary groups Γ in 3.4.4.

Proof. Let C1 be a compact neighborhood of CΓ that lies in the interior of C. Note
that CC1,ω ¡ CC,ω. We consider the following subset of the visual boundary:

E �
¤
ζPBΓ

stC1pξΘpζqq.
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Applying Lemma 3.4.5 for the subset C1 implies that for every ξ P E there
exist t0 ¡ 0 large enough that any point x on the geodesic ray ro, ξq at distance
t ¥ t0 from o satisfies:

h0pxq � h0poq
t

¡ CC,ω.

Moreover the same property holds for every ξ1 close enough to ξ and for rhs
close enough to rh0s. Since E is compact, there exist a real number t1 and a
neighborhood U of rh0s such that for all rhs P U and ξ P E the point x on the
geodesic ray ro, ξq at distance t1 from 0 satisfies:

hpxq � hpoq
t1

¡ CC,ω.

Lemma 3.2.10 implies that for some D ¡ 0, for every γ P Γ, γ �o is at distance
at most D from some point y P ro, ξq for some ξ P E. Let rhs P U ; the function
h�hpoq is convex on the geodesic ray ro, ξq and greater than CC,ωt1 at the point
x P ro, ξq such that dpo, xq � t1. Moreover it is 1-Lipshitz, which implies that
for all y P ro, ξq, hpyq � hpoq ¥ dpo, yqCC,ω � t1CC,ω � t1. Using again the fact
that h is 1-Lipshitz we get:

hpγ � oq � hpoq ¥ CC,ωdpo, γ � oq � pt1CC,ω � t1 �Dq.

3.4.4 Elementary subgroups.
In the previous subsection we required the group Γ to be non-elementary, i.e. not
virtually cyclic. The fact that nonelementary ω-undistorted groups are Anosov,
Proposition 3.2.5, relies on proving that the limit cone CΓ is connected, which
often fails for virtually cyclic groups. For instance the following subgroup of
SLp3,Rq has disconnected limit cone and is not Anosov, but is ω1-undistorted:$&%

��4n
2�n

2�n

�| n P Z

,.-
In this subsection we adapt the previous results for elementary subgroups.

Note that the only non-trivial case is the case of infinite virtually cyclic groups.

Let Γ � G be an infinite virtually cyclic group that is quasi-isometrically
embedded, and xγy � Γ be a finite index infinite cyclic subgroup. The element
γ P G admits a Jordan decomposition into γtγeγu where γt is a transvection, γe
is elliptic, and γu is unipotent, and the factors commute [Ebe96].

The element γt is nontrivial since Γ is quasi-isometrically embedded, so
γt is the transvection corresponding to an oriented geodesic axis c : R Ñ X
parametrized with speed one with endpoints η� P BvisX. Let mg denote the
translation length of g P G.
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Lemma 3.4.10. Let o P X and γ P G with γt non-trivial. There exists a constant
C depending on o, γ such that: For all n P Z

dpγn � o, cpnmγqq ¤ 2 logpnq � C.

Proof. Let γ � γtγuγe be the Jordan decomposition. Let p be a fixed point of
γe. Then

dpγn � o, cpnmγqq ¤ dpo, pq � dpγnu � p, pq � dpp, cp0qq.
By the proof of [GGKW17a, Claim 2.28], there exists C 1 depending only on γu
and p such that dpγnu � p, pq ¤ 2 logpnq � C 1. We may set C � C 1 � dpo, pq �
dpp, cp0qq to see the desired result.

Lemma 3.4.10 is weaker than the Morse Lemma, but it will be sufficient to
generalize our results to cyclic groups.

Now let ω P a�, and let us assume that for all w P W , τpη�q and τpη�q do
not belong to Kerpw � ωq. This property is the equivalent to the ω-undistorted
condition, since the limit cone CΓ consist of the two points τpη�q and τpη�q.

In the virtually cyclic case we adapt our definitions as follows:

Ωωflag � Fωz
!
ξ P Fω | =Titspξ, η�q   π

2 or =Titspξ, η�q   π

2

)
,

Ωωhoro � BωhoroXz trhs P Fω | slopehpη�q   0 or slopehpη�q   0u .
We now adapt the following results.

Proposition 3.4.11 (Analog of Proposition 3.4.8). An element rhs P BωhoroX be-
longs to Ωωhoro if and only if h restricted to the Γ-orbit of o is bounded from
below. In this case, the horofunction is proper on any Γ-orbit.

Proof. Let rhs P BωhoroX be a horofunction. Let pγnqnPN be a diverging sequence
of elements of Γ such that hpγn � oq is bounded from above. In our case one
can assume that γn � γn, or γ�n. We consider the first case, as the other one
is identical. By Lemma 3.4.10, γn � o is at logarithmic distance from cpnmgq.
Hence h grows t most logarithmically on c, but then Lemma 3.4.5 implies that
h has non-positive slope, and hence negative slope on c, hence h does not belong
to Ωωhoro.

The other part of the proof works as in Proposition 3.4.8.

Lemma 3.4.12 (Analog of Lemma 3.4.9). Let rh0s P X Y Ωωhoro, and let o P X.
There exists a neighborhood U � XY BωhoroX of rh0s and a constant A ¡ 0 such
that for rhs P U and n P Z:

hpγn � oq � hpoq ¥ CCΓ,ωdpo, γn � oq �A.

Proof. Here again we replace the Morse property by Lemma 3.4.10. Let C be
a neighborhood of CΓ avoiding w � kerpωq for all w P W . We obtain for some
D,E, t0 ¡ 0:

hpγn � oq � hpoq ¥ CC,ωdpo, γn � oq � pt0CC,ω �D logpnq � Eq.
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This is still enough to get the desired result for A large enough since CC,ω ¡
CCΓ,ω and dpo, γn � oq grows linearly in n.

Remark 3.4.13. Du proves in [Du23] that the group generated by

γ �
��λ 1

λ�1

�
has a finite-sided Dirichlet-Selberg domain at o P X3 if and only if o is in the
axis of γ, i.e. is diagonal. But even for such points o P X , the domain is not
properly finite-sided. One can deduce from this that an elementary subgroup
of SLp3,Rq admits a properly finite-sided Dirichlet-Selberg domain if and only
if it is ω1-undistorted, in which case every Dirichlet-Selberg domain is properly
finite-sided.

3.5 Dirichlet domains for Finsler metrics
In this section, we consider Dirichlet domains associated to Finsler metrics.
Using the results of the previous section, we show in Theorem 3.5.2 that such
Dirichlet domains with respect to dω are properly finite-sided for ω-undistorted
subgroups. Moreover we deduce Theorem 1.3.15 in Corollary 3.5.4. In the rest
of the section we demonstrate some partial converse results. In Theorem 3.5.7
we show that any discrete group admitting a properly finite-sided Dirichlet
domain is quasi-isometrically embedded in X. In Section 3.5.3 we show that
the ω-undistorted condition is equivalent to the disjoint half-space property, see
Definition 3.5.9.

Recall that we assume throughout the paper that ω P a� defines a definite
Finsler metric dω on X.

3.5.1 ω-undistorted implies properly finite-sided
For x, y P X, the Finsler half-space is

Hωpx, yq :� trhs P XY BωhoroX | hpxq ¤ hpyqu.

It is the closure in X Y BωhoroX of the set of points z P X satisfying dωpx, zq ¤
dωpy, zq.

Let Γ be a discrete subgroup of G.

Definition 3.5.1. The Dirichlet domain associated to Γ based at o with respect
to the Finsler distance dω is given by:

Dω
Γpoq :� trhs | @γ P Γ, hpoq ¤ hpγ � oqu �

£
γPΓzΓo

Hωpo, γ � oq � XY BωhoroX.
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We call a Dirichlet domain Dω
Γpoq properly finite-sided if there exists a neigh-

borhood U of Dω
Γpoq in X Y BωhoroX and a finite set F � Γ such that for all

γ P ΓzF , U � Hωpo, γ � oq.
Theorem 3.5.2. If Γ is ω-undistorted then for all o P X, the Dirichlet domain
Dω

Γpoq is properly finite-sided.

Moreover for any A ¡ 0 one can find a finite set S � Γ and a neighborhood
U of Dω

Γpoq such that for all rhs P U and γ P ΓzS, hpγ � oq ¡ hpoq �A.

Proof. Every horofunction in Dω
Γpoq is bounded from below on the Γ-orbit of o.

Hence if Γ is ω-undistorted one has Dω
Γpoq � XYΩωhoro by Proposition 3.4.8 (or

Proposition 3.4.11 in the elementary case). Let K � X Y Ωωhoro be a compact
neighborhood of Dω

Γpoq. By considering an open cover of K, Lemma 3.4.9 (or
Lemma 3.4.12) implies the existence of constants B,C ¡ 0 such that for rhs P K
and γ P Γ:

hpγ � oq � hpγq ¥ Cdpo, γ � oq �B.

Hence for all γ P Γ such that dpo, γ � oq ¡ A�B
C , one has hpγ � oq � hpγq ¡ A.

In particular the half-space Hωpo, γ � oq contains K for all but finitely many
γ P Γ, so Dω

Γpoq is properly finite-sided.

When G � SLpd,Rq, the Selberg invariant is close to the Riemannian metric
for points that are close, but it also always stays at bounded distance from the
Finsler distance dω1 . The identification X � X induces a continuous identifica-
tion XY BωhoroX � X Y BX , see Theorem 3.3.3.

Lemma 3.5.3. Let x1, x2 P X � X :

dω1px1, x2q � logpdq ¤ spx1, x2q ¤ dω1px1, x2q.

Moreover for rhs P XY BωhoroX � X Y BX and o, x P X � X :

hpxq � hpoq � logpdq ¤ sopx, rhsq ¤ hpxq � hpoq � logpdq.

Proof. Let λ1, � � � , λd be the eigenvalues of x�1
1 x2. Applying Proposition 3.1.1

we see that:

dω1px1, x2q � log
�

max
1¤i¤d

|λi|


¤ log

� ¸
1¤i¤d

|λi|
�
� spx1, x2q � logpdq.

dω1px1, x2q � log
�

max
1¤i¤d

|λi|


¥ log

�
1
d

¸
1¤i¤d

|λi|
�
� spx1, x2q.

In particular one gets for x, y, o P X � X:

dω1px, yq � dω1po, yq � logpdq ¤ sopx, yq ¤ dω1px, yq � dω1po, yq � logpdq.

By passing to the limit as y goes to rhs, we get the desired result.
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We may now deduce Theorem 1.3.15 from Theorem 3.5.2.

Corollary 3.5.4. Let Γ   SLp2n,Rq be an ω1-undistorted subgroup. The Dirichlet-
Selberg domain DSΓpoq is properly finite-sided.

Proof. Let o P X be any basepoint. Let U be a neighborhood of Dω
Γpoq in

X Y BωhoroX provided by Theorem 3.5.2 for A � logpdq. There exists a finite
set F � Γ such that for all rhs P U and γ P ΓzF , hpγ � oq � hpoq ¡ A. Hence
sopo, γ � oq ¡ 0 by Lemma 3.5.3, so U is contained in each of the projective half-
spaces Hpo, γ � oq with γ P ΓzF . Therefore DSΓpoq is properly finite-sided.

We will give a second proof of Theorem 1.3.15 using Theorem 3.7.3 in Section
3.7

For ω-undistorted subgroups, we can also give a direct proof that the domains
Ωωflag and Ωωhoro are properly discontinuous and cocompact.

Proposition 3.5.5. The action of an ω-undistorted subgroup Γ on Ωωflag and Ωωhoro
is properly discontinuous and cocompact.

The idea is that these domain coarsely fiber over Γ, via the map that asso-
ciates to a horofunction its minimum on the Γ-orbit of o P X.

Proof. To a horofunction rhs P Ωωhoro we associate the non-empty finite set of
minima Mrhs � Γ of elements γ0 such that hpγ0 �oq � minγPΓ hpγ �oq. This set is
well defined and finite since h is proper and bounded from below by Proposition
3.4.8. Moreover this association is equivariant, i.e. Mγ�rhs � γMrhs for all γ P Γ.

Let K � Ωωhoro be a compact set. For each rh0s P K, by Lemma 3.4.9
there is a neighborhood U of rh0s and a finite set M � Γ such that for all
rhs P U , Mrhs � M . Since K is compact, one can therefore find a finite set
MK such that for all rhs P K, Mrhs � MK . All but finitely many γ P Γ satisfy
γ �MK XMK � H. Therefore for all such γ P Γ, γ �K XK � H. Hence Γ acts
properly on Ωωhoro.

A horofunction rhs P Ωωhoro belongs to the Dirichlet domain Dω
Γpoq if (and

only if) the neutral element e P Γ belongs to Mrhs. For every rh1s P Ωωhoro,
there exists some γ1 P Mrh1s, and one has pγ1q�1 � rh1s P Dω

Γpoq. Therefore
Dω

Γpoq X Ωωhoro � Dω
Γpoq X BωhoroX is a fundamental domain for the action of Γ.

Moreover it is closed in the metrizable compact BωhoroX, hence it is compact. So
this is a compact fundamental domain for the action of Γ on Ωωhoro, and the
action is cocompact.

Remark 3.5.6. The fact that Ωωflag is a cocompact domain of proper disconti-
nuity is a special case of a result due to Kapovich-Leeb-Porti [KLP18a], and
Guichard-Wienhard [GW12] for ω1-undistorted subgroups of PSLp2n,Rq. The
construction of Ωωhoro from a thickening is similar to a construction due to
Kapovich-Leeb [KL18], where they consider the case when ω is dual to a regular
point of σmod. They prove proper discontinuity and cocompactness when Γ is an
arbitrary Anosov subgroup. Since their Finsler compactification is the maximal
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Satake compactification, it dominates the compactification we consider here,
and the proper discontinuity and cocompactness follows. In fact, it follows from
Proposition 3.4.8 and their Theorem that the Dirichlet domains we consider are
properly finite-sided for ω-undistorted subgroups, without the use of Lemma
3.4.9.

3.5.2 Properly finite-sided implies undistorted
We now prove the following necessary condition for a group to admit a properly
finite-sided Dirichlet domain.

Theorem 3.5.7. Let Γ be a discrete subgroup of G and suppose that a Dirichlet
domain Dω

Γpoq is properly finite-sided. The orbit map Γ Ñ X is a quasi-isometric
embedding.

This result is an adaptation of the Milnor-Schwarz Lemma, replacing the
cocompactness of the action by the fact that the Dirichlet domain is tame at
infinity.

Lemma 3.5.8. Let Γ be a group acting by isometries on a geodesic metric space
X. Suppose that there exists a subset D � X such that:

X �
¤
γPΓ

γ �D.

Suppose moreover that there exist a finite subset F � Γ and ϵ ¡ 0 such that the
ϵ-neighborhood Dϵ of D satisfies for all Γ P ΓzF :

γ �D XDϵ � H.
For any o P X the orbit map γ P Γ ÞÑ γ � o P X is a quasi-isometric embedding.

Proof. We consider the word metric on Γ defined for γ P Γ by:

|γ| � mintn|γ � s1s2 � � � sn, si P F u.
Any other word metric with respect to a finite generating set is quasi-isometric
to this one. Let o P X. Let A � maxsPF dpo, s � oq.

Let γ P Γ be any element. First note that dpo, γ � oq ¤ A|γ|. Now let
n � rdpo,γ�oqϵ s. We consider a sequence x0, x1, � � � , xn of points on a geodesic in
X between o and γ � o with x0 � o, xn � γ � o and such that dpxi, xi�1q ¤ ϵ for
0 ¤ i   n. Since X � �

γPΓ γ �D, there exist for all 1 ¤ i   n an element γi P Γ
such that xi P γi �D. We set γ0 � e and γn � γ.

By the definition of F we know that for all 1 ¤ i   n, γ�1
i γi�1 P F . Indeed

xi�1 P γi�1 �D X γi �Dϵ and hence γ�1
i � xi�1 P γ�1

i γi�1 �D XDϵ. Therefore γ
can be written as the product of n elements of F , so |γ| ¤ n. Hence:

ϵ|γ| � ϵ ¤ dpo, γ � oq ¤ A|γ|.
This concludes the proof.
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y � o z � o

x � o

Figure 3.4: Illustration of the disjoint half-space property.

Proof of Theorem 3.5.7. Let U be an open neighborhood of Dω
Γpoq � X Y BωX

such that there exist only finitely many γ P Γ such that γ � Dω
Γpoq X U � H.

In order to apply Lemma 3.5.8, it suffices to prove that for some ϵ ¡ 0, the
intersection U X X contains the ϵ-neighborhood of Dω

Γpoq X X. Let U c be the
complement of U in XY BωX, which is a compact set.

Suppose the contrary; then there exists a sequence pxnq of points in Dω
ΓpoqXX

and a sequence pynq of points in U c X X such that dpxn, ynq converges to zero
(note that we consider here the Riemannian metric). Up to taking a sub-
sequence, one can assume that the sequences converge to x8 in Dω

Γpoq and
to y8 in U c respectively. But since dpxn, ynq converges to zero, the function
x P X ÞÑ dωpx, xnq�dωpx, ynq also converges to zero, uniformly on X. Therefore
x8 � y8, which is not possible since Dω

Γpoq � U .

3.5.3 Disjoint half-spaces and the ω-undistorted condition
In this section, we show that ω-undistorted subgroups can be characterized by
having sufficiently disjoint half-spaces for the Finsler distance dω.

Definition 3.5.9. We say that a finitely generated subgroup Γ satisfies the ω-
disjoint half-space property if for some o P X, some word metric on Γ and some
integer D ¡ 0, for all triples px, y, zq in Γ that lie in this order on a geodesic
such that dΓpx, yq � dΓpy, zq � D, the half-space Hωpx � o, y � oq is disjoint from
Hωpz � o, y � oq.

We say that Γ satisfies the ω-flag disjoint half-space property if for some
o P X, some word metric on Γ and some integer D ¡ 0, for all triples px, y, zq
in Γ that lie in this order on a geodesic such that dΓpx, yq � dΓpy, zq � D, the
intersection of Fω with the half-space Hωpx�o, y �oq is disjoint from Hωpz �o, y �oq.

Recall that the half-spaces are closed subsets of X Y BωX. A priori the flag
property is weaker, but we see later that when ω is symmetric, the two are
equivalent.
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Remark 3.5.10. If the (flag) disjoint half-space property holds for all triples
px, id, zq in Γ with x, z of word length D then it holds for all triples in Γ. Hence
the (flag) disjoint half-space property can be verified on a finite subset of triples
in Γ.

When G � SLpd,Rq, and ω � ω1, the (flag) disjoint half-space property can
be rephrased in terms of Selberg bisectors and yields another characterization
of subgroups |log σi|-undistorted for all i. Indeed, the intersection of a Selberg
bisector with Fω1 � RPd�1 equals the intersection of the corresponding Finsler
bisector with Fω1 , and two Selberg bisectors are disjoint if and only if their in-
tersection with Fω1 are disjoint. Note that the intersection of a Selberg bisector
with RPd�1 is the zero set of a quadratic form.
Theorem 3.5.11. Let Γ be an ω-undistorted subgroup. It satisfies the ω-disjoint
half-space property and the p�ωq-disjoint half-space property.
Proof. Let G be the space of bi-infinite geodesic η : Z Ñ Γ such that ηp0q � e.
This is a compact set for the standard compact-open topology.

Let η P G. We denote by η� and η� respectively the endpoints in BΓ of
the geodesic ray when n goes respectively to �8 and �8. The thickenings
ThωhoropξΘpη�q, CΓq and ThωhoropξΘpη�q, CΓq are disjoint since the flags ξΘpη�q
and ξΘpη�q are transverse.

Let U � X Y BωhoroX be an open set containing ThωhoropξΘpη�q, CΓq whose
closure is disjoint from ThωhoropξΘpη�q, CΓq. Lemma 3.4.9 implies that all rhs
in the complement of U go to �8 locally uniformly along ηpnq, and all rhs in
U go to �8 locally uniformly along ηp�nq. If Γ is elementary we can apply
Lemma 3.4.12 instead. Since U and U c are compact, the local uniform behavior
is global. Hence there exists n0 P N such that for all n ¥ n0, Hωpηpnq �o, oq � U
and U is contained in the complement of Hωpηp�nq � o, oq.

We write Vη,m � G for the open and closed set of geodesics η1 : Z Ñ Γ
such that η1|r�m,ms � η|r�m,ms, for the compact open topology. The collection
of neighborhoods tVη,n0 | η P Gu covers G, so it admits a finite subcover. Hence
there exists m0 P N such that for all η P G, the half-spaces Hωpηpm0q � o, oq and
Hωpηp�m0q � o, oq are disjoint. Therefore Γ satisfies the ω-disjoint half-space
property. Since Γ is also p�ωq-undistorted, Γ also satisfies the p�ωq-disjoint
half-space property.

The following result can be seen as a coarse analogue of Proposition 2.4.20,
and has a similar proof.
Theorem 3.5.12. Let Γ be a finitely generated subgroup of G. If Γ satisfies the
ω-flag disjoint half-space property and the p�ωq-flag disjoint half-space property,
it is ω-undistorted.

To prove this theorem, we first relate the disjoint half-space property to the
convexity of Busemann functions. Let ϵ ¡ 0. We say that a sequence psnqnPZ
is ϵ-convex at critical points if for all n P Z such that sn�1 � sn ¥ �ϵ one has
sn�2 � sn�1 ¥ ϵ. If for such a sequence one has s�1 ¤ s0, then for all n P N:

sn ¥ ϵn� s0.
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Lemma 3.5.13. Suppose that for some o P X, Γ satisfies the flag disjoint half-
space property. Then there exist D P N and ϵ ¡ 0 such that for every geodesic
sequence pγnqnPZ in Γ and every rbξs P Fω � BωhoroX, the sequence pbξpγDn � oqq
is ϵ-convex at critical points.

Proof. We assume that Dω
Γpoq satisfies the flag disjoint half-space property and

let D be the constant from the definition. Suppose to the contrary that there
exist sequences pxnq, pynq and pznq in Γ and a sequence rbns P Fω � BωhoroX
such that for all n P N, dpxn, ynq � dpyn, znq � D while also lim inf bnpyn � oq �
bnpxn � oq ¥ 0 and lim sup bnpzn � oq � bnpyn � oq ¤ 0.

Up to acting by Γ, one can assume that the sequence pynq is constant and
equal to the identity element of Γ. Up to taking a subsequence one can assume
that the sequences pxnq and pznq are constant and equal to x and z respectively.

By the flag disjoint half-space property, Fω XHωpx � o, oq is disjoint from

Hωpz � o, oq � trhs | hpz � oq � hpoq ¤ 0u.
In particular, the function rbs ÞÑ bpoq� bpz � oq is continuous and positive on the
compact set Fω XHωpx � o, oq, so has a positive minimum η. Hence if any rbs in
Fω satisfies bpoq � bpx � oq ¤ 0, then bpz � oq � bpoq ¤ �η. This contradicts the
assumptions on pxnq, pynq and pznq.

In order to handle the disjoint half-space property at two different base-
points, we need to improve the constant ϵ by coarsifying the sequence.

Lemma 3.5.14. Suppose the sequence pxnq is ϵ-convex at critical points. For any
positive integer N , the sequence pxnN q is pNϵq-convex at critical points.

Proof. If xpn�1qN�xnN ¥ �Nϵ then there exists an integer nN ¤ k   pn�1qN
such that xk�1 � xk ¥ �ϵ. For an ϵ-convex sequence, if there exists k such that
xk�1 � xk ¥ �ϵ, then for all k2 ¡ k1 ¡ k, it holds that xk2 � xk1 ¥ pk2 � k1qϵ.
In particular, xpn�2qN � xpn�1qN ¥ Nϵ.

Proof of Theorem 3.5.12. Let Γ be a finitely generated subgroup of G satisfying
the ω-flag disjoint half-space property for the basepoint o and the p�ωq-flag
disjoint half-space property for another basepoint o1.

We first show that one can assume o1 � o, up to replacing D by some D1 ¡ 0.
By Lemma 3.5.13, there exists D such that for every rbs P F�ω, and geodesic
pγnq the sequence pbpγnD � o1qq is ϵ-convex at critical points. By Lemma 3.5.14,
for any positive integer N , the sequence pbpγnDN � o1qq is ϵN -convex at critical
points. If ϵN � 2dpo, o1q ¥ ϵ, then the sequence pbpγnDN � oqq is also ϵ-convex at
critical points, since Busemann functions are 1-Lipschitz. We set D1 � DN .

Now let γ P Γ and let e � γ0, γ1, � � � , γN � γ be a geodesic sequence. We
consider a maximal flat passing through o and γ � o. In the visual boundary of
this flat there exist ξ1 P Fω and ξ2 P F�ω such that the associated Busemann
functions rbξ1s and rbξ2s satisfy:

ωpd⃗po, γ � oq � bξ1pγ � oq � bξ1poq,
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�ωpd⃗po, γ � oq � bξ2pγ � oq � bξ2poq.
Note also that x ÞÑ bξ1pxq � bξ1poq � bξ2pxq � bξ2poq is nonnegative on X, since
it is a convex function that vanishes at o and whose gradient also vanishes at o.
Hence up to exchanging ω and �ω, one can assume that:

bξ1pγD1 � oq � bξ1poq ¥ 0.

Letting n be the integer part of N
D1 , we have that

bξ1pγD1n � oq � bξ1poq ¥ ϵpn� 1q.
Let E ¡ 0 be the maximum distance between o and γ0 � o for γ0 P Γ at distance
at most D1 from the identity. Then:

ω
�
d⃗po, γ � oq

	
� bξ1pγ � oq � bξ1poq ¥ bξ1pγnD1 � oq � bξ1poq � E ¥ ϵn� E � ϵ.

Hence Γ is ω-undistorted.

3.6 Locally symmetric spaces
In this section we consider any locally symmetric space X{Γ where Γ is an ω-
undistorted subgroup of G. The Finsler distance dω on X descends to a natural
metric on the quotient. We show that the horofunction compactification agrees
with the quotient pXYBωhoroXq{Γ. As a consequence, we recover that such locally
symmetric spaces are topologically tame, a special case of [GKW15, Theorem
1.4].

Recall that the symmetric space of SLpV q embeds in PpS2V q as the space
X of positive tensors. The embedding G � SLpV q induces a totally geodesic
embedding between the corresponding symmetric spaces, X � X � PpS2V q.

Given any x, y P X � X one can define the restricted Selberg invariant. For
this we chose representatives X,Y : V � Ñ V of x, y such that detpX�1Y q � 1,
and we set:

sV px, yq � log TrpX�1Y q.
This restricted Selberg invariant has the following formula:

Proposition 3.6.1. Let x, y P X, the restricted Selberg invariant is equal to:

sV px, yq � log
¸
αPΞ

npαqeαpd⃗px,yqq.

In this expression, Ξ � a� is the weight system associated to the representation
V , and for α P Ξ, npαq is the dimension of the associated weight space.

Proof. The restricted Selberg invariant sV is the restriction to the totally geodesic
symmetric space X of the Selberg invariant defined for the symmetric space of
SLpV q. The eigenvalues of the element of SLpV q corresponding to exppvq for
v P a are equal to eαpvq for α P Ξ. Hence this formula follows from 3.1.1.
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This definition can be extended for any semi-positive y P PpS2V q. If y P
PpS2V q is semi-positive and if o P X one can extend the Selberg invariant by
taking representatives O,X, Y of o, x, y such that detpX�1Oq � 1:

sVo px, yq � log TrpX�1Y q � log TrpO�1Y q.

Proposition 3.6.2. The embedding y P X ÞÑ rsV p�, yqs P YpXq induces a horo-
function compactification of X, which is naturally identified with the generalized
Satake compactification X of X � X .

Proof. Indeed the map y P X ÞÑ rsVo p�, yqs P YpXq is an embedding from a com-
pact space with dense image, hence it is a homeomorphism onto the horofunction
compactification of X.

If Γ � G is a discrete subgroup, one can define the Selberg invariant on X{Γ
to be:

sV pΓ � x,Γ � yq � min
γPΓ

sV px, γ � yq.

Note that this minimum is reached because the action of Γ on X is proper.
This maps also defines an embedding y P X{Γ ÞÑ sV p�, yq P YpX{Γq, from which
one can define a horofunction compactification of X{Γ.

Theorem 3.6.3. Let V be an irreducible representation of G with highest re-
stricted weight ω. Let Γ be a torsion-free ω-undistorted subgroup of G. The
horofunction compactification X{Γ of X{Γ for the restricted Selberg invariant is
naturally identified with pXY Ωωhoroq {Γ.

In other words the compactification of X{Γ is equal to the quotient by Γ of
a domain of discontinuity in the compactification of X.

Proof. Let rϕ : X Y Ωωhoro Ñ YpX{Γq be the map that associates to a class of
functions rh : X Ñ Rs the class of functions rminγPΓ γ � hs, where γ � hpxq �
hpγ�1 � xq. Since every horofunction in X Y Ωωhoro is proper and bounded from
below on one and hence any Γ-orbit, rϕ is well defined. Moreover on every open
set U � X Y Ωωhoro, there exist a finite set S � Γ such that on U one has
minγPΓ γ � h � minγPS γ � h, see Lemma 3.4.9. Hence rϕ is continuous. Moreover
the image of X by ϕ̃ lies in X{Γ, so the image of ϕ̃ lies in X{Γ.

The map rϕ is also Γ-invariant by definition, so it induces a map:

ϕ : pXY Ωωhoroq {Γ Ñ X{Γ.

The restriction of this map to X{Γ is the identity: indeed the restricted Selberg
invariant between Γ�x and Γ�y is equal to minγPΓ spx, γ�yq. Since rϕ is continuous,
so is ϕ and because pXY Ωq {Γ is compact, its image is compact. Hence ϕ is
surjective.

It remains to show that ϕ is injective. Let rh1s, rh2s P X Y Ωωhoro be such
that rϕprh1sq � rϕprh2sq. Since h1 and h2 are proper and bounded from below,
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given any compact set K there exist a finite set SK � Γ such that for i � 1, 2,
minγPΓ γ � hi � minγPSK

γ � hi on K.

This implies that K is covered by the closed sets Kγ1,γ2 � tx P K | γ1 �
h1pxq � γ2 �h2pxqu for γ1, γ2 P SK . If we take a compact set K with non-empty
interior, then one of these sets Kγ1,γ2 must have non-empty interior for some
γ1, γ2 P SK . Hence γ1 �h1 � γ2 �h2 on an open set on X. Note that h1 and h2 are
analytic as the restriction of the log of a linear map to an analytic submanifold.
This implies that rh1s � rγ�1

1 γ2 � h2s and hence the two points must correspond
to the same element in pXY Ωωhoroq {Γ.

In conclusion ϕ is injective, so we have proven that it induces an homeomor-
phism.

Remark 3.6.4. If we try to apply the same argument for the horofunction com-
patification of X{Γ using the Finsler distance, the proof of the injectivity does
not immediately apply since horofunctions are not analytic. However the map
ϕ is still well-defined and surjective.

A consequence of this result is that the locally symmetric space X{Γ is topo-
logically tame. A manifold is topologically tame if it is the interior of a compact
manifold with boundary.

Proposition 3.6.5 ([GGKW17b, Proposition 6.1]). Let X be a real semi-algebraic
set and Γ a torsion-free discrete group acting on X by real algebraic homeomor-
phisms. Suppose Γ acts properly discontinuously and cocompactly on some open
subset Ω of X. Let U be a Γ-invariant real semi-algebraic subset of X contained
in Ω. If U is a manifold and U � Ω, then U{Γ is topologically tame.

We can apply this to semi-algebraic compactifications of X. Note that the
Tarski principle implies that semi-algebraic set are closed under projection.
Hence any orbit of the algebraic action of an algebraic group on a finite di-
mensional vector space is semi-algebraic. For instance, given an irreducible
representation V of the semi-simple group G with highest restricted weight ω,
the totally geodesic embedding X � X is algebraic. Note also that the closure
of a semi-algebraic set is semi-algebraic.

In particular we get the following result for every ω that is the highest
restricted weight of a representation:

Corollary 3.6.6. Let Γ be a torsion-free ω-undistorted subgroup of G. The locally
symmetric space X{Γ is topologically tame.

This recovers a particular case of [GKW15, Theorem 1.4] since ω-undistorted
representations are Anosov. Note that the set of ω P a up to positive scalar
and the action of the Weyl group that are the highest restricted wieght of a
representation is dense. Therefore any ω-undistorted representation for ω P a is
ω1-undistorted for such an ω1, and hence the Theorem applies.
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3.7 Restriction of Selberg’s construction.
In this section we consider a discrete subgroup Γ � SLpV q that is not necessarily
|log σi|-undistorted for all i, and we try to find a smaller domain of X on which
the Dirichlet-Selberg domain is properly finite-sided.

3.7.1 The general statement
We first introduce a general but technical statement that we will then apply to
more specific situations.

Let G be a semisimple real Lie group and V a finite-dimensional linear real
representation of G. Recall from Section 3.3.3 the associated restricted weight
space decomposition:

V � à
λPΦ

Vλ

with Φ denoting the set of restricted weights.

More precisely for every pair of transverse full flags f, g P F∆ for G, one has
an identification of the model maximal abelian subspace a � p with another
af,g � g. For each such choice we get a restricted weight decomposition:

V � à
λPΦ

V f,gλ .

Given a closed subset C � σmod � Sa�, and a subset Θ � ∆ of simple roots
of G, we define the following subsets of the space of restricted weights:

Φ�
C,Θ � tλ P Φ | λ ¡ 0 on WΘ � Cu,

Φ�
C,Θ � tλ P Φ | λ   0 on WΘ � Cu,

Φ0
C,Θ � Φz

�
Φ�

C,Θ Y Φ�
C,Θ

	
.

Here WΘ is the subgroup of the Weyl group generated by the involutions sα
associated to the simple roots α P ∆zΘ and WΘ � C � Sa.

Lemma 3.7.1. Let us fix some C � σmod and Θ � ∆, and let ξ P FΘ. The
following subspaces are independent of the choice of transverse flags f, g P F∆
such that the simplex corresponding to ξ is included in the simplex corresponding
to f :

V ξ� :� à
λPΦ�

C,Θ

V f,gλ , V ξ¥ :� à
λPΦ�

C,ΘYΦ0
C,Θ

V f,gλ .

Proof. Note that A � Φ�
C,Θ or Φ�

C,Θ Y Φ0
C,Θ are ideals for the order relation of

Φ: for all λ P A, if λ1 P Φ satisfies λ1 � λ ¥ 0 on a� then λ1 P A.

If g1 is an other full flag transverse to f , then g1 � u � g for some unipotent
element of G fixing f , which in turn is the exponential of an element u P g

119



that belongs to the sum u∆ of all positive root spaces gf,gα for α a positive root.
However if u P gf,gα and v P V f,gλ in the root space associated to the root α
satisfies ru, vs P V f,gλ�α. Since A is an ideal, λ P A implies that λ� α P A.

The fact that this is independent of the choice of f is due to the fact that A
is WΘ-invariant.

Let F � PpV q be a compact Γ-invariant subset. We define S2F � PpS2V q
to be the corresponding set of rank one tensors. We call HullpS2Fq � X pV q �
PpS2V ¥0q the convex hull of these points. We denote by HullpS2Fq� the open
dual convex domain, i.e. the set of linear form that do not vanish on S2F . This
space contains the space X pV q� of projectivizations of positive definite bilinear
forms on V . We note that there is a natural identification of X with X � given
by rX : V � Ñ V s ÞÑ rX�1 : V Ñ V �s.

Given rOs � o P HullpS2Fq�, we define DSF
Γ poq to be the set of elements

rXs P HullpS2Fq such that for all γ P Γ:

Tr pXpO � γ �Oqq ¥ 0.

Here we chose the signs of the representatives of X and O so that TrpXOq ¡
0. When o P X � � X , this domain coincides with DSΓpo�1q XHullpS2Fq.

Definition 3.7.2. Let rOs � o P HullpS2Fq�. We say that DSF
Γ poq is prop-

erly finite-sided in HullpS2Fq if there exists a neighborhood U of DSF
Γ poq in

HullpS2Fq and a finite set F � Γ such that for all γ not in F , U is contained in
the set

HF po, γ � oq :� trXs P HullpS2Fq | Tr pXpO � γ �Oqq ¥ 0u,

with representatives of X and O chosen so that TrpXOq ¡ 0.

Theorem 3.7.3. Let Γ be a Θ-Anosov subgroup of G, and let C � CΓ. Let V be a
representation of G, and let F � PpV q be a Γ-invariant compact subset. Suppose
that F is disjoint from V ξ¥zV ξ� for all ξ � ξΘpxq for x P BΓ (see Lemma 3.7.1).
Then DSF

Γ poq is properly finite-sided in HullpS2Fq for all o P HullpS2Fq�.

Remark 3.7.4. One can consider Fmax the largest subset of PpV q that avoids
V ξ¥zV ξ� for all ξ � ξΘpxq for x P BΓ. This subset is not always closed, so one can
only apply our result to compact Γ-invariant subsets F � Fmax.

The proof of Theorem 3.7.3 will be done in Section 3.7.2.

3.7.2 The general argument.
Throughout Section 3.7.2 we assume that Γ and F satisfy the assumptions of
Theorem 3.7.3. Namely, we assume that Γ is Θ-Anosov and take F to be a
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compact Γ-invariant subset of PpV q disjoint from V ξ¥zV ξ� for all ξ � ξΘpxq for
x P BΓ with respect to CΓ.

For every closed subset C � σmod � Sa we define CC,Φ to be the infimum
of |λpvq|

∥v∥ for v P a such that rvs P C and λ P Φ�
C,Θ Y Φ�

C,Θ. We will consider
sufficiently small neighborhoods C of CΓ so that the sets of weights Φ�

C,Θ etc. are
unchanged.

We will first focus on the case when the basepoint o�1 belongs to a totally
geodesic X � X corresponding to the symmetric space of G, and then we will
see that the result still holds for other basepoints.

Each line ℓ P X pV q defines a function hℓ : X Ñ R, up to an additive constant,
by setting:

hrLsprXsq :� log
�

1
d

TrpX�1Lq


,

for representatives X satisfying detpX�1Oq � 1 where O is a positive definite
representative of a basepoint o P X . Here d is the dimension of V . Each such
line is a convex combination of some rank 1 lines in S2V ; i.e. for each L there
exists vi P V, i P I such that L � °

vi b vi. The corresponding functions are
then related by

hrLspxq � logp1
d

¸
iPI
ehvi

pxq�hvi
poqq. (3.5)

At rank 1 points, these functions are exactly the Busemann functions on X
centered at the minimal flag manifold PpV q. The rest of the projective boundary
BX can be interpreted as a sort of horoboundary with respect to the Selberg
invariant. Note that these horofunctions are hence equal to, for some functions
fi that are convex and 1-Lipshitz with respect to the Riemannian metric on X :

h � log
�

1
d

ḑ

i�1
efi

�
Therefore these functions are also 1-Lipschitz and convex.

If we fix ξ P FΘ, and we take a line ℓ P PpS2V q exactly one of the three
possibilities occur:

(a) ℓ P Hull
�
S2PpV ξ�q

	
(b) ℓ P Hull

�
S2PpV ξ¥q

	
and ℓ R Hull

�
S2PpV ξ�q

	
,

(c) ℓ R Hull
�
S2PpV ξ¥q

	
.

The hypothesis that we put on F in the statement of Theorem 3.7.3 implies
that case (b) never occurs for rvs P S2F . The subset that will play the role of
the thickening here will be

Thpξq :� Hull
�
S2PpV ξ�q

	
XHullpS2Fq.
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We obtain the following dichotomy:

Lemma 3.7.5. Let ℓ P HullpS2Fq � PpS2V q, with F as in Theorem 3.7.3. Let
o P X be a basepoint and let τ P FΘ. Exactly one of the following holds:

(i) ℓ P Thpτq and for every η P stCpτq the geodesic ray co,η satisfies

hℓpco,ηptqq � hpoq ¤ �CC,ωt.

(ii) ℓ R Thpτq and for all ϵ ¡ 0 there exist A ¡ 0 such that for every η P stCpτq
the geodesic ray co,η satisfies

hℓpco,ηptqq � hpoq ¥ pCC,ω � ϵqt�A.

Proof. We first consider the case when ℓ P S2F . We want to compute the
asymptotic slope for hℓ and η P stCpτq, as defined in Section 3.4.1. Let us fix
two opposite full flags f, g P F∆ such that such that η belongs to the ideal Weyl
chamber associated to f ; note that τ belongs to this chamber as well. Let ζ be
the projection of η to σmod � Sa�. Let vbv P ℓ be non-zero, we can decompose
v for some vλ P V f,gλ as:

v �
¸
λPΦ

vλ.

The basepoint o P X � X determines a norm ∥�∥ on Rn, and one has:

hℓpco,ηptqq � hpoq � 1
d

log
�∥∥∥∥∥¸

λPΦ
eλpζqtvλ

∥∥∥∥∥
�
� 1
d

log p∥v∥q .

Since ζ P C, the behavior of this quantity depends on the same case distinc-
tion as before:

(a) if v P Hull
�
S2PpV ξ�q

	
, for all t ¥ 0, hℓpco,ηptqq � hpoq ¤ �CC,ωt ,

(b) if v P Hull
�
S2PpV ξ¥q

	
but v R Hull

�
S2PpV ξ�q

	
, the situation is unclear,

(c) if v R Hull
�
S2PpV ξ¥q

	
, for all ϵ ¡ 0 there exist A ¡ 0 such that for all

t ¡ 0
hℓpco,ηptqq � hpoq ¥ pCC,ω � ϵqt�A.

Here case (b) cannot occur by the hypothesis that was put on F . Note that
case (a) means exactly that ℓ P Thpτq. Hence we got the desired result for
ℓ P HullpS2Fq.

We now consider an arbitrary ℓ � rvs P HullpS2Fq. Then v can be written
as a convex combination of extremal points of HullpS2Fq. The way we defined
the associated function on X was taking the log of a linear expression, so the
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associated function can be written for some pi P F , λi ¡ 0 and oi P X for i P I
as:

hℓpxq � 1
d

logp
¸
iPI
λie

hpi
pxq�hpi

poqq � 1
d

logp
¸
iPI
ehpi

pxq�hpi
poiqq.

If ℓ P Thpτq, one can choose ppiqiPI such that for all i P I one has pi P V τ� .
Therefore for all t ¥ 0, bpi,opco,ηptqq � bpi,opoq ¤ �CC,Φt. Hence hℓpco,ηptqq �
hpoq ¤ �CC,Φt.

Suppose now that ℓ R Thpτq, then one can choose ppiqiPI such that pi0 R V τ�
for some i0 P I, and hence pi0 R V τ¥ . Therefore there exists A ¡ 0 such that the
geodesic ray co,η satisfies hpi0

pco,ηptqq � hpi0
poq ¥ pCC,Φ � ϵqt�A. Hence:

hℓpco,ηptqq � hpoq ¥ pCC,Φ � ϵqt�A� logpλi0q.

Remark 3.7.6. A consequence of this argument is that the thickening can also
be described as follows: let p P HullpS2Fq, we consider the exposed face Fp of
the compact HullpS2Fq containing p, i.e. the intersection of HullpS2Fq with all
support hyperplanes passing through p. The point p belongs to Thpτq if and
only if the extremal points of Fp are all in V τ� .

Definition 3.7.7. Let us define the following domain:

Ω :� HullpS2Fqz
¤
xPBΓ

ThpξΘpxqq.

The following statements are the analog in this setting of Proposition 3.4.8,
Lemma 3.4.9, Proposition 3.5.5 and Theorem 3.5.2 respectively. The exact same
proofs apply, by replacing X Y BωhoroX by HullpS2Fq, Thωhoro by Th, Dω

Γpoq by
DSF

Γ poq and Ωωhoro Y X by Ω.

Proposition 3.7.8 (Analog of Proposition 3.4.8). An element ℓ P HullpS2Fq
belongs to Ω if and only if hℓ restricted to the Γ-orbit of o P X is bounded from
below. In this case, hℓ is proper on any Γ-orbit. In particular DSF

Γ poq � Ω for
all o P X.

Lemma 3.7.9 (Analog of Lemma 3.4.9). Let ℓ0 P Ω, and let o P X. There exists
a neighborhood U � Ω of ℓ0 and a constant A ¡ 0 such that for ℓ P U and γ P Γ:

hℓpγ � oq � hℓpoq ¥ CC,Φdpo, γ � oq �A.

Theorem 3.7.10 (Analog of Theorem 3.5.2). For all o P X and for any A ¡ 0
one can find a finite set S � Γ and a neighborhood U of DSF

Γ poq such that for
all ℓ P U and γ P ΓzS, hℓpγ � oq ¡ hℓpoq �A.

Note that in this theorem we use the fact that DSF
Γ poq is compact as the

intersection of closed spaces in a compact space. Hence we need here to have F
closed.

We can now prove Theorem 3.7.3.
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Proof of Theorem 3.7.3. Let o P X and o1 P HullpFq�, and fix two representa-
tives O�1 and O1 : V Ñ V � of o�1 and o1. The following quantity is well-defined
and continuous in x � rXs on the compact set HullpFq � PpS2V ¥0q, since
o�1, o1 P HullpFq�: ∣∣log

∣∣TrpXO�1q∣∣� log
∣∣TrpXO1q∣∣∣∣.

We denote by B the supremum of this quantity.
Now we apply Theorem 3.7.10 for o P X and A � 2B, and we get that there

exist a finite set S � Γ and a neighborhood U of DSF
Γ poq such that for all

ℓ P U and γ P ΓzS, hℓpγ � oq ¡ hℓpoq � 2B. This implies that the half-space
HF po1, γ � o1q contains U for all but finitely many γ P Γ, so DSF

Γ po1q is properly
finite-sided.

3.7.3 Dirichlet-Selberg domains.
In the remainder of Section 3.7 we present applications of Theorem 3.7.3. We
first deduce Theorem 1.3.15 for a second time.

Corollary 3.7.11. Let Γ be a subgroup of SLp2n,Rq which is |log σi|-undistorted
for all i. Then for any o P X , the Dirichlet-Selberg domain DSΓpoq is properly
finite-sided.

Proof. As observed in Proposition 3.2.6, Γ is n-Anosov. We set F � PpV q, which
is clearly compact and Γ-invariant. The condition of being |log σi|-undistorted
for all i guarantees that Φ0 is empty. Therefore we may apply Theorem 3.7.3.
Since X � HullpS2Fq, DSΓpoq � DSF

Γ po�1q.

3.7.4 Projective Anosov subgroups.
We give two applications of the previous theorem for projective Anosov repre-
sentations. In these examples the set F will depend on the representation.

Theorem 3.7.12. Let Γ be a projective Anosov subgroup of SLpd,Rq. Let Λ be
the projective limit set, i.e., Λ � tξ1

Γpxq|x P BΓu � PpRdq. The domain DSΛ
Γpoq

is properly finite-sided in HullpS2Λq � PpS2Rdq for all o P HullpS2Λq�.

Proof. We apply Theorem 3.7.3. Given a partial flag ξ � pξ1, ξn�1q in Rn

consisting of a line and a hyperplane, the corresponding set V ξ� is equal to ξ1

and V ξ¥ is equal to ξn�1. The transversality of the boundary map ξΓ implies
that Λ satisfies the hypothesis of Theorem 3.7.3.

If Γ is convex-cocompact in the sense of [DGK18] or [Zim21], we can choose
F to be larger.

Theorem 3.7.13. Let Γ � SLpd,Rq be a projective Anosov subgroup that is convex
cocompact, i.e. that preserves a properly convex domain Ω and acts cocompactly
on a convex set C � Ω. Let Λ � tξ1

Γpxq|x P BΓu. The domain DSCYΛ
Γ poq is

properly finite-sided in Hull
�
S2 pC Y Λq� � PpS2Rdq for all o P HullpS2Λq�.
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Note that following from [DGK18, Zim21], every projective Anosov subgroup
that preserves a convex domain admits such a non-empty convex set C.

Proof. We can again apply Theorem 3.7.3. As previously it suffices to verify
that if x P BΓ, then CYΛ does not intersect ξn�1

Γ pxqzξ1
Γpxq. Since Ω is a proper

convex domain preserved by the projective Anosov subgroup Γ, the hyperplane
ξn�1

Γ pxq is disjoint from Ω for all x P BΓ. Moreover since Γ acts cocompactly on
C � Ω, one has C � C Y Λ. Complete details for the proofs of the previous two
sentences can be found in [DGK18, Section 8].

3.7.5 ω-undistorted subgroups through a representation.
We consider a semisimple Lie group G and an irreducible finite dimensional
representation V . We construct a subset F that satisfies the hypothesis of
Theorem 3.7.3 for ω-undistorted subgroups.

Let I � Φ be an ideal and write V fI �À
λPI V

f
λ for f P F∆. Set

FI :�
!
rvs | v P V fI zt0u, f P F∆

)
� PpV q.

Theorem 3.7.14. Let Γ � G be an ω-undistorted subgroup for all ω P I. The
domain DSFI

Γ poq is properly finite-sided in HullpS2FIq for all o P HullpS2FIq�.

An example of an ideal can always be obtained by taking the highest re-
stricted weight tωu � Φ. In this case, for G � SLpd,Rq with the standard
representation on Rd, we recover Theorem 1.3.15.

Proof. Note that F is closed. For each λ P I, we get a set Θλ � ∆ such that Γ
is Θ-Anosov. We fix Θ to be the union of all these sets.

Let rvs P F and let x P BΓ. For some full flag f P F∆, one has v P V fI .
One can find an opposite full flag g P F∆ such that the flat determined by f, g
contains ξΓpxq. For all w PW , either w �ω ¡ 0 on WΘ �C or w �ω   0 on WΘ �C.
Hence v does not belong to V ξ¥zV ξ�, so F satisfies the hypothesis of Theorem
3.7.3.

One can apply Proposition 3.6.5 to the quotient of this convex hull.

Corollary 3.7.15. Let Γ be a torsion-free subgroup of G that is ω-undistorted for
all ω P I. The quotient by Γ of the relative interior of HullpS2FIq is topologically
tame.

Indeed S2FI is the orbit of an algebraic set by an algebraic group and
hence it is semi-algebraic. Moreover the convex hull in a finite dimensional vec-
tor space of a semi-algebraic set is also semi-algebraic: given a semi-algebraic
set A � Rn we consider the subset B � pRnqn�1 � Rn�1 � Rn of elements
ppx0, . . . , xnq, pλ0, . . . , λnq, xq such that x0, . . . , xn P A, λ0, . . . , λn ¥ 0, λ0 �
� � �λn � 1 and x � λ0x0 � � � � � λnxn. By Carathéodory’s theorem, projecting
B to the last copy of Rn yields the convex hull.
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Let Γ now be an ω∆-undistorted subgroup of G � SLpd,Rq, equivalently
a ∆-Anosov subgroup, or sometimes called a Borel Anosov subgroup. Recall
that ω∆ is the highest root, i.e. the highest weight of the adjoint representation
V � slpd,Rq. The highest weight space is given by the span of the unit matrix
E1,d. The set Ftω∆u can be identified with the flag manifold Fω∆ which is the
partial flag manifold of lines in hyperplanes in Rd. The identification is given
by prvs, rαsq ÞÑ rv b αs P Ppslpd,Rqq.

Therefore Theorem 3.7.14 implies that one can obtain a properly finite sided
domain in the convex hull of S2Ftω∆u � PpS2slpn,Rqq for every Borel Anosov
subgroup of SLpd,Rq.

However one can apply this theorem to a larger ideal, and for any semi-
simple Lie group G with its adjoint representation V � g. We consider I � Σ�

the set of positive roots. The set n � FI � Ppgq is the closed set of nilpotent
elements in the Lie algebra g of G.

Corollary 3.7.16. If Γ � G is ∆-Anosov, the Dirichlet-Selberg domain DSn
Γpoq

is properly finite-sided in HullpS2nq � PpS2gq for all o P HullpS2nq�.

3.8 Connected limit cone.
We show that the limit cone of a discrete finitely generated subgroup of G that
is not virtually cyclic is connected. When Γ is a Zariski dense subgroup of G,
Benoist proved that its limit cone is convex [Ben97], hence connected.

To deal with the general case we use the fact that Γ acts topologically tran-
sitively on its space of ends. First we recall the definition of the space of ends
and its topology.

Let Γ be a finitely generated group with finite symmetric generating system
S, and let CpΓq be the associated Cayley graph. Let Kn � CpΓq be the ball
of radius n around the identity e P Γ for the word metric associated to S. The
space of ends E is the space of senquences pUiqiPN such that for i P N, Ui � Ui�1
and Ui is a connected component of CpΓqzKi, where two such sequences are
considered equal if they are eventually equal.

The space CpΓq Y E is equipped with the topology generated by the open
sets VnV � V Y trpUiqs | Un � V u for open sets V � CpΓqzKn. This topology
makes it a compact space.

Proposition 3.8.1. Let Γ be a torsion free finitely generated group that is not
virtually cyclic. Then the action of Γ on the space of ends admits a dense orbit.

Proof. Stalling’s theorem implies that such a group has either one end or in-
finitely many ends. If there are infinitely many ends the group can be written
as a non-trivial free product of infinite groups A �B [Löh17, Theorem 8.2.14].

We fix some symmetric generating sets SA and SB for respectively A and
B. Fix a P SA and b P Sb and consider the diverging sequence x2n � pabqn and
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x2n�1 � pabqna. This sequence is a path in the Cayley graph of A � B that is
diverging. Therefore it determines an end of A �B and we show that the orbit
of this end is dense.

Let V be an infinite connected component of CpΓqzKn for some n P N.
We want to prove that for some γ P Γ the end associated with the sequence
pγ � xnqnPN is included in V . Let w � a1b1a2b2 � � � akbk be a reduced expression
for some element v P V where ai P A and bi P B are non-trivial, except maybe
a1 and bk.

We consider γ � w if bk is not the trivial element and γ � wb otherwise.
Then the words representating γxn obtained by concatenating the words defin-
ing γ and xn are reduced. Therefore for all n P N, γxn does not belong to Kn.
This implies that the left action of γ on the end determined by pxnq belongs
to the open set determined by V . We have therefore proven that there exist a
dense orbit in the boundary.

Proposition 3.8.2. Let G be a connected semisimple Lie group with finite center
and let Γ   G be a finitely generated, discrete, and not virtually cyclic subgroup.
Then its limit cone CΓ is connected.

Proof. Since G is connected and semisimple with finite center, the adjoint rep-
resentation has finite kernel. The image of Γ under the adjoint representation
admits a finite index torsion-free subgroup Γ1 by Selberg’s Lemma. The limit
cone of Γ1 is the same as the limit cone of Γ, so without loss of generality we
may assume that Γ is torsion-free.

Let n P N. We say that two elements γ1, γ2 in ΓzKn are Kn-connected if
one can construct a finite sequence pγiq of elements of ΓzKn such that for all
1 ¤ i   N ,γi�1 � aiγibi for some ai, bi P S Y teu, with γ1 � γ0 and γ2 � γN .

Let rpUiqs in E . Using only right translations, i.e. ai � e, any two points
in Un are Kn-connected, since by definition Un is a connected component of
CpΓqzKn.

Using left translations, we see that for all ends rpUiqs and γ P Γ, there is a
point in Un and a point in γ � Un that are Kn-connected. Hence for any end
rpUiqs, any two points in the following union are Kn-connected:

X �
¤
γPΓ

γ � Un.

Since Γ admits a dense orbit in E , up to choosing a specific point rpUiqs one
can assume that XYE is a neighborhood of E in CpΓqYE . Hence its complement
is a closed subset of the Hausdorff space CpΓq, hence it is compact. Therefore
there exist a cobounded subset of CpΓq such that every pair of elements in this
set is Kn-connected.

We define the distance d on Sa, as dprxs, rysq � | x
|x| � y

|y| | for x, y P a.

Assume that there exists a partition A Y B of Cρ into two open and closed
sets. These sets are compact and hence are at uniform distance ϵ ¡ 0. Let F
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be a finite symmetric generating set for Γ. Let M be the maximum for γ P F
of dXpo, ρpγq � oq. For some integer n P N, the ball Kn in CpΓq contains all the
elements γ P Γ such that either dXpo, ρpγq � oq ¤ 12M

ϵ or:

dprdapo, ρpγq � oqs , Cρq ¥ ϵ

3 .

Indeed since ρ is discrete and by the definition of Cρ, the set of such elements
is finite.

Since A,B � H, the definition of the limit cone allows us to pick two large
enough elements γ1, γ2 P ΓzKn such that :

dp�dapo, ρpγ1q � oq
�
, Aq ¤ ϵ

3 ,

dp�dapo, ρpγ2q � oq
�
, Bq ¤ ϵ

3 .

One can assume that γ1, γ2 are Kn-connected by taking them large enough.
Therefore there exist γ P ΓzKn and a, b P F such that:

dprdapo, ρpγq � oqs , Aq ¤ ϵ

3 ,

dprdapo, ρpaγbq � oqs , Bq ¤ ϵ

3 .

Using Lemma 2.1.4 one gets that :

|dapo, ρpγq�oq�dapo, ρpaγbq�oq| ¤ |dapo, ρpγq�oq�dapo, ρpaγq�oq|�dXpo, ρpbq�oq.

|dapρpγq�1 � o, oq � dapρpγq�1ρpaq�1 � o, oq| ¤ dXpρpaq�1 � o, oq.
And therefore: ����dapo, ρpγq � oq

dXpo, ρpγq � oq �
dapo, ρpaγbq � oq
dXpo, ρpaγbq � oq

����   ϵ

3 .

This contradicts the fact that A and B are at distance ϵ, so Cρ is connected.
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Chapter 4

Fibration by pencils of quadrics

This chapter begins with a recall of some facts about maximal and Anosov
representations in Section 4.1.

The main definitions of the chapter are introduced in Section 4.2 where
fibrations of a projective convex set by projective subspaces are discussed, more
precisely fibrations of the projective model for the symmetric space of SLp2n,Rq.
In Section 4.3 we introduce the notion of fitting flows. Section 4.4 discusses how
the existence of an equivariant continuous map with a fitting flow implies the
Anosov property and a fibration of a domain of discontinuity in projective space.

In Section 4.5 we focus on representations into Spp2n,Rq and prove our
main result, which is the characterization of maximal representations by the
existence of a locally fitting map of maximal pencils of quadrics that admits a
fitting flow. In section 4.6 we show how spacelike surfaces in H2,2 with a bound
on their principal curvatures define a fitting immersion of pencils. In Section
4.7 we prove two independent propositions. Finally in Section 4.8 we briefly
discuss a decomposition of the projective structure associated to a maximal
representation into hexagons of quadric hypersurfaces.

4.1 Maximal and Anosov representations.
4.1.1 Maximal representations.
Let us fix a symplectic from ω on R2n, i.e. a non-degenerated bilinear antisym-
metric pairing. A symplectic basis of R2n is a basis px1, � � � , xn, y1, � � � , ynq in
which :

ω �
ņ

i�1
x�i ^ y�i .

We define GrnpR2nq as the space of n-dimensional subspaces of R2n A La-
grangian in pR2n, ωq is an element ℓ P GrnpR2nq such that ω restricted to ℓ is
equal to zero. We denote by Ln the space of Lagrangians in pR2n, ωq. We say
that two Lagrangians are transverse if their intersection is trivial.
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Let Spp2n,Rq be the subgroup of elements in SLp2n,Rq that preserves ω.
This groups acts transitively on Ln, as well as on the space of pairs of transverse
Lagrangians. Given a triple pℓ1, ℓ2, ℓ3q of transverse Lagrangians, one can find
a symplectic basis such that for some pϵiq P t1,�1u:

ℓ1 � xx1, x2, � � �xny,
ℓ2 � xx1 � ϵ1y1, x2 � ϵ2y2, � � �xn � ϵnyny,

ℓ3 � xy1, y2, � � � yny.
The sum of the pϵiq is an invariant of the triple of flags that is called the

Maslov index Mpℓ1, ℓ2, ℓ3q. The group Spp2n,Rq acts transitively on the space
of triples of transverse Lagrangians with a given Maslov index. We say that
pℓ1, ℓ2, ℓ3q is maximal if the Maslov index of the triple in equal to n.

The Lie group Spp2n,Rq is of Hermitian type and tube type. Hence it admits
a special class in its continuous cohomology group rτ s P H2

c pSpp2n,Rq,Zq. Let
Sg be a closed oriented surface of genus g ¥ 2. The fundamental class of Sg
defines a cohomology class rSgs P H2pπ1pSgq,Zq � Z. Given a representation
ρ : π1pSgq Ñ Spp2n,Rq one can consider the pullback of this class ρ�rτ s �
T pρqrSgs. the integer T pρq is called the Toledo number of ρ.

The Toledo number can take only finitely many values as the space of repre-
sentations can only have finitely many connected components. More precisely:

Lemma 4.1.1 ([BIW11]). Let ρ : π1pSgq Ñ Spp2n,Rq, the Toledo number satis-
fies :

p�2g � 2qn ¤ T pρq ¤ p2g � 2qn.
Such a representation is called maximal if its Toledo number is equal to

p2g � 2qn.

4.1.2 Anosov representations.
Let Γ be a finitely generated group. Anosov representations are representations
with some exponential gaps between singular values.

Fix a word metric | � | on Γ and a scalar product on R2n allowing us to
define the singular values pσ1pgq ¥ σ2pgq ¥ � � � ¥ σ2npgq of g P SLp2n,Rq as the
eigenvalues of

a
gtg. The following definition is independent of these choices.

Definition 4.1.2 ([BPS19]). We say that a representation ρ : Γ Ñ SLp2n,Rq is
tnu-Anosov if there exist A,B ¡ 0 such that for all γ P Γ:

σnpρpγqq
σn�1pρpγqq ¥ eA|γ|�B .

If a group admits an Anosov representation, it must be Gromov hyperbolic
[BPS19]. We denote by BΓ its Gromov boundary. Anosov representations come
with boundary maps.
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Theorem 4.1.3. Let ρ : Γ Ñ SLp2n,Rq be tnu-Anosov. There exist a unique
ρ-equivariant continuous map ξnρ : BΓ Ñ GrnpR2nq such that:

• for all distinct x, y P BΓ, ξnρ pxq ` ξnρ pyq � R2n ( transverse),

• for all γ P Γ that admit an attracting fixed point γ� P BΓ, ξnρ pγ�q is the
attracting fixed of the action of ρpγq on GrnpR2nq (dynamic preserving),

If moreover ρpΓq � Spp2n,Rq, then ξnρ pxq is a Lagrangian for all x P BΓ.

Maximal representations have been characterized in [BILW05], [BIW03]:

Theorem 4.1.4. A representation ρ : π1pSgq Ñ PSpp2n,Rq is maximal if and
only if it is tnu-Anosov and for one and hence any positively oriented triple
px, y, zq P Bπ1pSq the triple pξnρ pxq, ξnρ pyq, ξnρ pzqq is a maximal triple of Lagra-
gians.

One can also characterize maximal representations among tnu-Anosov rep-
resentations by looking at the homotopy type of their boundary map. The
fundamental group of the space of Lagrangians Ln is isomorphic to Z [Wig98]
where a generator is :

τ : θ P S1 ÞÑ xcos
�
θ

2



x1 � sin

�
θ

2



y1, x2, � � � , xny P Ln.

Theorem 4.1.5. A representation ρ : π1pSgq Ñ Spp2n,Rq is maximal if and only
if it is tnu-Anosov and the free homotopy type of the curve ξnρ is equal to nrτ s.
Proof. Let ρ : π1pSgq Ñ PSpp2n,Rq be tnu-Anosov. Let px, y, zq be a positively
oriented triple in Bπ1pSgq. Up to changing the symplectic basis, we can assume
that for some pϵiq P t�1, 1u:

ξnρ pxq � xx1, x2, � � �xny,
ξnρ pyq � xx1 � ϵ1y1, x2 � ϵ2y2, � � �xn � ϵnyny,

ξnρ pzq � xy1, y2, � � � yny.
Here the Maslov index of the triple pξnρ pxq, ξnρ pyq, ξnρ pzqq is equal to the sum

of the pϵiq.
Consider the following curve:

τ0 : θ ÞÑ xcos
�
θ

2



x1 � ϵ1 sin

�
θ

2



y1, � � � , cos

�
θ

2



xn � ϵn sin

�
θ

2



yny.

This loop is homotopic to the concatenation of the loops τi for 1 ¤ i ¤ n:

τi : θ ÞÑ xx1, x2, � � � , cos
�
θ

2



xi � ϵi sin

�
θ

2



yi, � � � , xny.

These loops are homotopic to τ or its inverse depending on the sign of ϵi.
The homotopy type of τ0 is hence equal to pϵ1 � ϵ2 � � � � � ϵnqrτ s. Moreover
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the set of Lagrangians tranverse to a given Lagrangian is contractible, so one
can homotope τ0 on the intervals r0, π2 s, rπ2 , πs and rπ, 2πs to coincide with ξnρ .
Hence the free homotopy class of ξnρ is equal to the one of τ0, which is equal to
Mpξnρ pxq, ξnρ pyq, ξnρ pzqqrτ s. We therefore deduce that ρ is maximal if and only if
it is n-Anosov and rξnρ s � nrτ s.

4.2 An invariant convex domain and its fibrations
In this section we define globally fitting maps and fitting immersions, which
are maps that parametrize fibrations of the projective model for the symmetric
space of SLp2n,Rq by projective subspaces of codimension d.

4.2.1 Pencils of quadrics
Let V be a finite even-dimensional vector space. Let S2V be the space of
symmetric bilinear tensors on V , which we interpret as maps V � Ñ V . The
dual space Q � S2V � is the space of symmetric bilinear forms on V , or the
space of quadrics on V , that we interpret as maps V Ñ V �.

We denote by S2V ¥0 and S2V ¡0 respectively the space of semi-positive and
positive symmetric tensors, i.e. elements p P S2V such that p�1 is respectively
a semi-positive and positive bilinear form. The Lie group SLpV q acts on S2V ,
and preserves the properly convex set PpS2V ¥0q. The convex domain PpS2V ¡0q
is a projective model for the symmetric space associated to SLpV q.

The Grassmanian of d-dimensional linear subspaces of Q will be denoted by
GrdpQq. An element of Gr2pQq is usually called a pencil of quadrics on V . We
will here also call elements of GrdpQq pencils of quadrics.

To an element P P GrdpQq one can associate its annihilator codimension d
subspace P � � S2V . This dual space can be described as the space of symmetric
tensors p on which one has qppq � Trpq � pq � 0 for all q P P . Note that the
projectivization PpP �q also has codimension d in PpS2V q.

This subspace does not necessarily intersect the convex PpS2V ¡0q.
Definition 4.2.1. We say that a pencil P P GrdpQq is mixed if P � contains a
positive element, i.e. if P � X S2V ¡0 � t0u. We call the set of mixed pencils
Grmix

d pQq.
Equivalently P is mixed if and only if it does not contain any semi-positive

quadric 0 � q P P . Indeed the dual of the cone of positive elements S2V ¡0 is
the cone of semi-positive bilinear forms in Q.

4.2.2 Fitting pairs.
To a pencil P P GrdpQq we associate the codimension d subspace PpP �XS2V ¥0q
in the convex set PpS2V ¥0q.
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We say that two elements P1, P2 P GrdpQq form a fitting pair if the associated
subspaces PpP �

1 X S2V ¥0q and PpP �
2 X S2V ¥0q are disjoint.

The structure of the convex set PpS2V ¥0q is involved, but the set of its
extremal points S2PpV q is the projectivization of the set of rank one tensors
S2PpV q, which is in one-to-one correspondence with PpV q. We show that the
condition of being a fitting pair can be checked by looking only at PpV q.

Given a symmetric bilinear form q P Q, we will write respectively tq � 0u,
tq ¡ 0u and tq ¥ 0u � PpV q the set of lines that are respectively null, positive
and non-negative for q.

Proposition 4.2.2. Let u : M Ñ Grmix
d pQq be continuous, the following are

equivalent:

(i) pP1, P2q form a fitting pair,

(ii) there exist q1 P P1 and q2 P P2 such that q2 � q1 is positive,

(iii) there exist q1 P P1 and q2 P P2 such that tq1 ¥ 0u � tq2 ¡ 0u.
In order to prove this, note that the convex set PpS2V ¥0q does not have

any segment as a facet, i.e. the intersection of the convex with a supporting
hyperplane. Hence it satisfies the following lemma.

The set tq � 0u is identified via the identification PpV q � S2PpV q � PpS2V q
with the intersection xqy� X S2PpV q.
Lemma 4.2.3. For all linear hyperplane H in S2V the extremal points of PpHX
S2V ¥0q are also extremal points of PpS2V ¥0q. In particular:

PpH X S2V ¥0q � Hull
�
H X S2PpV q� .

Furthermore if H � xqy� for q P Q, H X S2V � S2tq � 0u.
Proof. Let f be a facet of PpS2V ¥0q. It is the intersection of this convex with
a projective hyperplane corresponding to rqs P PpS2V �q � PpQq. The fact that
this is a supporting hyperplanes implies that q P Q is a semi-positive element.
Let W � V be the vector subspace of isotropic vectors for q. The corresponding
facet is equal to PpS2W¥0q.

Hence facets of PpS2V ¥0q are of the form PpS2W¥0q for W � V a linear
subspace. This has dimension 0 or at least 2, and therefore no facet is a segment.

Suppose that for some general projective hyperplane, some extremal point
p of PpH X S2V ¥0q is not an extremal point of PpS2V ¥0q, then it belongs to
the interior of a facet of PpS2V ¥0q, that has dimension at least 2 as stated
previously. The intersection of this face with H contains therefore a segment,
so p is not an extremal point of H X PpS2V ¥0q.
Proof of Proposition 4.2.2. Let us prove that piq implies piiq. The set P �

1 X P �
2

is disjoint from PpS2V ¥0q if and only if there exist an element in P1 � P2 that
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belongs to the dual of PpS2V ¥0q, i.e. if there exist a positive bilinear form
q P P1 � P2. This form can be written as q � q1 � q2 with q1 P P1 and q2 P P2,
therefore piq implies piiq.

Moreover piiq implies piiiq. Indeed, if q2 � q1 is positive then tq1 ¥ 0u �
tq2 ¡ 0u.

It only remains to show that piiiq implies piq. Lemma 4.2.3 implies that:

Ppxq1y� X S2V ¥0q � HullpS2tq1 � 0uq.

Hence q2 P P2 � Q � S2V � is positive on the cone xq1y� X S2V ¥0 � S2V
and therefore PpP �

2 q does not intersect Ppxq1y� X S2V ¥0q.

4.2.3 Fitting directions.
The space GrdpQq inherits the structure of a smooth manifold. A chart around a
point P P GrdpQq can be constructed given a subspace Q such that P `Q � V .
We denote by UQ � GrdpQq the open set of elements transverse to Q. Every
element of UQ can be written uniquely as the graph tx� upxq|x P P u for some
linear map u : P Ñ Q. Hence UQ can be identified with the vector space
HompP,Qq.

The tangent space TP GrdpQq can be naturally identified with HompP,Q{P q,
so that for each chart UQ containing P , the tangent space identifies with the
tangent space in the chart via the identification HompP,Qq � HompP,Q{P q.

Let v P TP GrdpQq, that we see as an element of HompP,Q{P q. One can
interpret Kerpvq as the set of vectors in P which remains at first order in the
dimension d linear subspace when the subspace moves in the direction v. More
precisely the lines ℓ in the kernel are exactly the one such that for any Rie-
mannian metric on PpV q and every curve γ in GrP pV q with γp0q � P and
γ1p0q � v one has d pP pγptqq , ℓq � optq at t � 0. Because of the identifica-
tion TP GrdpQq � TP � GrN�dpQ�q where N � dimpQq, to such an element v
corresponds an element:

v� P Hom
�
P �, S2V {P �� .

We will call fitting directions in the Grassmanian GrdpQq the tangent di-
rections such that if pPtq P GrdpQq moves in this direction, the corresponding
codimension d subspaces P

�
P �
t X S2V ¥0� are disjoint from P

�
P �

0 X S2V ¥0�, at
order one, see Proposition 4.2.5.

Definition 4.2.4. We say that a vector v P TP GrdpQq is fitting if one of the
following equivalent statements holds:

• Kerpv�q � P � intersects trivially S2V ¥0,

• Impvq � Q{P contains rqs where q is a positive element.
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Proof. We check that these two statements are indeed equivalent. We first show
that Kerpv�q � Impvq�, where we use the natural identification pQ{P q� � P �.

We prove this by writing an equation that relates v and v�. By definition,
Trpqpq � 0 for q P P and p P P �. Let us choose some representatives vppq P S2V
and v�pqq P Q for vppq P S2V {P � and v�pqq P Q{P . Let us fix q P P and
p P P �. If pPtq is a smooth curve with P0 � P and with derivative v at t � 0,
p� tv�ppq � opt2q P Pt and q � tvpqq � opt2q P P �

t . Hence we get:

Tr
�
qv�ppq � vpqqp

	
� 0.

An element p P P � satisfies p P Kerpv�q if and only if Trpvpqqpq � 0 for all
q P Q, hence if and only if the corresponding linear form on Q{P belongs to
Impvq�.

Now we prove the equivalence of the two definitions. If there exist rqs P Impvq
with q positive, then for any p P Kerpv�q, Trppqq � 0. Hence p is not a positive
tensor. Therefore Kerpv�q � P � intersects trivially S2V ¥0.

Conversely if Kerpv�q intersects trivially S2V ¥0, there exist q P Q that do
not vanish on S2V ¥0, i.e. q is positive. The class rqs P Q{P belongs to Impvq.

Fitting directions are related to fitting pairs. More precisely:

Proposition 4.2.5. A vector v P TP GrdpQq is fitting if and only if for every C1

curve γ : r0, 1s Ñ GrdpQq with γ0 � P and γ10 � v, pγt, γ0q is a fitting pair for
all t ¡ 0 small enough.

Moreover in this case for any Riemannian metric on PpS2V q there exists an
ϵ ¡ 0 such that for any t ¡ 0 small enough the Riemannian distance between
Ppγ�0 X S2V ¥0q and Ppγ�t X S2V ¥0q is greater that ϵt.

Proof. Let us fix a complement H of P � in S2V . Let N � dimpQq � npn�1q
2 .

We identify a neighborhood of P � � GrN�dpQq with HompP �, Hq. If there exist
a non-zero element p P Kerpv�q X S2V ¥0, one can consider the curve where γt
corresponds to

q P P � ÞÑ tvpqq.
The non-zero element p P S2V ¥0 belongs to P � � γ�0 and γ�t hence the pair

pγ0, γtq is not fitting for any t ¡ 0.
In general the element corresponding to γt is equal for t close to 0 to the

element of GrN�dpQq which is the graph of the map P � Ñ H:

q ÞÑ tvpqq � optq.
The pair pγo, γtq is fitting if and only if Kerpvq X S2V ¥0 � t0u, hence if v is

fitting.
In this case the distance between Ppγ�0 X S2V ¥0q and Ppγ�t X S2V ¥0q grows

at least linearly in t for t close to 0.
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Fitting vectors can be thought of analogs of spacelike vectors in a pseudo-
Riemannian manifold of signature pd,Nq for some N ¡ 0. For instance the
set of spacelike vectors is the union of a family of cones parametrized by Sd�1,
and so is the set of fitting vectors, as shown in the following proposition. This
analogy is also emphasized by Remark 4.2.8 and Theorem 4.6.1.

For a vector space W we write SW � pW zt0uq{R¡0

Proposition 4.2.6. The set of fitting vectors in TP GrdpQq is equal to the union:¤
rqsPSEP

Crqs.

Here Crqs is the convex open cone of elements v P TP GrdpQq such that there
exist a positive element in the class vpqq P Q{P .

Recall that we use the identification v P TP GrdpQq � HompP,Q{P q.
Proof. As in the third item of Proposition 4.2.11 a vector is well-fitting if and
only if it belongs to Crqs for some rqs P SEP . We just check that the sets Crqs
are indeed open convex cones.

Let us fix a complement H of P in Q to identify TP GrdpQq with HompP,Hq.
If v1, v2 lie in Crqs and if λ, µ P R¡0, then for some q1, q2 P P one has v1pqq� q1
and v2pqq � q2 positive. Therefore pλv1 � µv2qpqq � λq1 � µq2 is positive so
λv1 � µv2 belongs to Crqs.

4.2.4 The space of geodesics in H3.
In this section we fix V � C2 and restrict ourselves to pencils of Hermitian
quadrics. The result and notations of this Section are only used again in Remark
4.2.12 and Section 4.4.3, but they serve as an illustration of the previously
introduced notions of fitting pairs and fitting directions.

Let H � Q be the subset of Hermitian bilinear forms on V � C2. A
Hermitian form q P H that is not semi-positive or semi-negative is of Hermitian
signature p1, 1q, and hence its zero set in CP1 is a circle.

Let S2V � S2
hV ` S2

aV be the eigenspace decomposition for the operator
J b J where J is the complex conjugation. Here S2

hV is the 4-dimensional
eigenspace associated to 1 and S2

aV � H�, the 6-dimensional space associated
to �1. The intersection of PpS2

hV q with the space of positive tensors is the
projective Klein model for H3.

The annihilator of a pencil P P Grmix
2 pHq is equal to P � � H� ` H where

H is a plane in S2
hV , which in turns corresponds to a geodesic in H3 in the

projective Klein model.

A pencil of quadrics P P Grmix
2 pHq vanishes completely on two points in

CP1, as in Figure 4.1 where the zero set of three elements of the pencil are
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Figure 4.1: Three Hermitian quadrics in a pencil and the corresponding geodesic
in H3.

depicted. The space of mixed pencils in H can be identified with the space G of
unoriented geodesics in H3.

Two pencils in H form a fitting pair if and only if we can find a circle in
each of the pencils that are disjoint. This is possible if and only if the two
corresponding geodesics in H3 are disjoint, with disjoint endpoints. A fitting
pair of pencils is illustrated in Figure 4.2.

The space G of unoriented geodesics in H3 admits a pseudo-Riemannian
metric of signature p2, 2q : we now compare the notion of fitting vectors with
the notion of spacelike vectors. The tangent space at a geodesic with endpoints
px, yq P CP1 can be identified with TxCP1 � TyCP1. The choice of a point in
the geodesic provides an identification ϕ : TxCP1 Ñ TyCP1 and a metric q0 on
TyCP1. Taking a different point in the geodesic means replacing ϕ by λϕ and
q0 by λ�1q0 for some λ P R¡0.

Hence we can consider the pseudo Riemannian metric that is invariant by
the action of the isometry group of H3:

q : pTxCP1 � TyCP1q2 Ñ R

pv1, w1q, pv2, w2q ÞÑ q0pϕpv1q, w2q � q0pϕpv2q, w1q.
For this metric a vector pv, wq P TxCP1 � TyCP1 is spacelike if and only if

q0pϕpvq, wq ¡ 0.

Proposition 4.2.7. A pair of geodesics is a fitting pair if and only if the corre-
sponding geodesics are disjoint.

A tangent vector pv, wq to G � Gr2pHq is fitting if and only if ϕpvq and w are
not positively anti-colinear, i.e there are no λ, µ P R¥0 such that λϕpvq � �µw.
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Figure 4.2: Two disjoint geodesics in H3 and disjoint circles in CP1 between
their endpoints.

Remark 4.2.8. In particular spacelike vectors are fitting, but not all fitting vec-
tors are spacelike.

Proof. Let P1, P2 P Grmix
2 pHq. One has PpS2

aV q X PpS2V ¥0q � H. Hence the
subsets PpP �

1 X S2V ¥0q and PpP �
2 X S2V ¥0q for P1, P2 P Grmix

2 pHq are disjoint
if and only if the corresponding geodesics are disjoint.

Let pv, wq be a tangent vector to γ P G and let γt be a curve in G with this
derivative at t � 0. If ϕpvq and w are not non-positively colinear, the distance
between γ � γ0 and γt is greater that ϵt for some ϵ ¡ 0 and t small enough.
Indeed there exist z P TxCP1 such that q0pϕpzq, ϕpxqq, q0pϕpzq, wq ¥ 0, and the
totally geodesic disk in H3 through x, y normal to z at x contains γ0 while being
at distance ϵt to γt.

Hence the distance between the subsets PpP �
0 XS2V ¥0q and PpP �

t XS2V ¥0q
is also greater than ϵ1t for some ϵ1 ¡ 0 and all t small enough. Therefore by
Proposition 4.2.5 this direction is fitting.

Conversely if If ϕpvq and w are non-positively colinear, then there is such
a curve γt such that the corresponding geodesics all have a common point.
Therefore by Proposition 4.2.5 this direction is not fitting.

4.2.5 Fibration of a convex set and globally fitting maps.
We consider continuous and smooth fibrations of the SLpV q-invariant convex
set PpS2V ¥0q by projective codimension d subspaces. Let M be a connected
manifold of dimension d. We are interested in continuous injective maps, or
smooth immersions u : M Ñ GrdpQq.
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We write u�pxq � pupxqq�. The map u determines a collection of projective
subsets of codimension d: �

P
�
u�pxq X S2V ¥0��

xPM . (4.1)

If the image of u contains only mixed elements, then all the submanifolds in
(4.1) are non-empty.

Definition 4.2.9. We call a continuous map u : M Ñ Grmix
d pQq a globally fitting

map if the subsets in the collection (4.1) are disjoint.
A continuous map u : M Ñ Grmix

d pQq is a locally fitting map if for all x PM
there is a neighborhood U �M of x such that u|U is a globally fitting map.

Since dimpMq � d, the invariance of domain implies that the sets (4.1)
for a globally fitting map form a fibration for all x P M of a neighborhood in
PpS2V ¥0q of P

�
u�pxq X S2V ¥0�.

We now consider immersions from a manifold M of dimension d whose tan-
gent directions are all fitting.

Definition 4.2.10. A smooth immersion u : M Ñ Grmix
d pQq is a fitting immersion

if dupvq is fitting for all v P TM .

Because of proposition 4.2.5, fitting immersions are locally fitting maps.
The following proposition is the infinitesimal equivalent of Proposition 4.2.2.

We write the statement in a way to emphasize this analogy.
Consider the tautological rank d vector bundle p : E Ñ GrdpQq, which

admits a tautological projection π : E Ñ Q.

Proposition 4.2.11. Given an immersion u : M Ñ Grmix
d pQq, let x0 P M . The

following are equivalent:

(i) the manifolds pPpu�pxqqqxPM define locally a smooth fibration of an open
neighborhood of P

�
u�px0q X S2V ¥0�,

(ii) for all v P Tx0M , dupvq is fitting,

(iii) for all v P Tx0M there exist w P TE such that dppwq � dupvq and dπpwq P
TQ is positive.

Note that that an element in TQ is a pair pq, 9qq and we say that it is positive
if the tangent vector 9q P Q is positive.

Proof. Note that since M has dimension d and u�px0q has codimension d, the
statement piq is equivalent to having for any Riemannian distance dR on PpS2V q
and dM on M , for some ϵ ¡ 0 when x is close to x0:

dR
�
P
�
u�pxq X S2V ¥0� ,P �u�px0q X S2V ¥0�� ¥ ϵdM px, x0q.

Proposition 4.2.5 shows that the fitting condition is equivalent to having this
distance growing linearly, hence the statements piq and piiq are equivalent.
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A pair pP, q0q P GrdpQq � Q correspond to an element in E if and only if
p P P . A pair pv, 9qq P TP Gr2pQq � TqQ can be written as pdppwq,dπpwqq for
some w P TE if and only if 9q belongs to the class defined by vpq0q.

Let us show this last claim. Let H be a complement of P in Q let u : r0, 1s Ñ
HompP,Hq and q : r0, 1s Ñ Q be smooth curves with derivative v and 9q at q � 0
and such that qptq belongs the the graph of uptq for t P r0, 1s. For some smooth
curve q̃ : r0, 1s Ñ P with q̃p0q � q0 and all t P r0, 1s:

qptq � q̃ptq � uptqpq̃ptqq.

Differentiating this at t � 0 and we get exactly vpq0q � q̃1p0q � 9q, so 9q belongs
to the class defined by vpq0q, since q̃1p0q P P . Reciprocally if this holds, one can
construct such a curve q̃, so the pair corresponds to an element of TE .

We conclude that piiiq is equivalent to the second characterization of fitting
vectors in Definition 4.2.4: one can find such a positive lift w if and only if one
can find a class in Impvq that contains a positive element.

In Proposition 4.7.1 we show how to construct some examples of fitting maps
from a totally geodesic immersion in the symmetric space.
Remark 4.2.12. If S is a surface in H3 with principal curvature in p�1, 1q, then
the set of normal geodesics forms spacelike surface, for the pseudo-Riemannian
structure on the space of geodesics described in Section 4.2.4. The correspond-
ing map Gu : S Ñ G is called the Gauss map. Nearly Fuchsian representations
are representations of a closed surface group Γg admitting an equivariant surface
with principal curvature in p�1, 1q. They are a priori a larger class of represen-
tations than almost Fuchsian representations, for which the equivariant surface
with principal curvature in p�1, 1q is required to be minimal.

The space G also admits a special SL2pCq-invariant symplectic structure.
An immersion in G is locally the Gauss map of an immersion with principal
curvature in p�1, 1q if and only if it is spacelike and Lagrangian for this sym-
plectic structure [ES22]. Therefore if the fitting immersion is not Lagrangian,
it does not come as the Gauss map of a surface in H3. Hence there could be
representations admitting fitting immersions that are not nearly Fuchsian.
Remark 4.2.13. The definition of a fitting immersion and the previous two
propositions can be generalized to the more general setup when S2V is replaced
by a vector space W and S2V ¥0 is replaced by a closed proper convex cone C
in W . In this setup positive quadrics should be replaced by elements in the dual
cone of C in W�.

4.3 Fitting flows.
In this section we define the notion of a fitting flow, and study the consequence
of the existence of such a flow. We show next that such flows always exist for
fitting immersions. In this section let us fix a map u : M Ñ GrdpQq.
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4.3.1 Definition and application of fitting flows.
The pullback u�E of the tautological bundle p : E Ñ GrdpQq defines a rank d
vector bundle over M . We define the sphere bundle Su�E as the quotient of the
vector bundle u�E by the action of positive scalars.

Recall that M has dimension d. We consider flows on Su�E so that some
form of contraction occurs along the flow lines. We denote also by p the bundle
maps u�E ÑM , Su�E ÑM , with a slight abuse of notations.

The fiber at P P GrdpQq of the bundle E is identified with the vector subspace
P � Q. Since all the fibers are naturally identified with subsets of Q, there is a
natural projection π : E Ñ Q. We still denote by π : u�E Ñ Q the corresponding
projection with a slight abuse of notations.

Definition 4.3.1. A fitting flow for a continuous map u : M Ñ GrdpQq is a
continuous flow pΦtqtPR on Su�E such that one can choose a representative q1 of
rq1s � Φtpqq such that πpq1q � πpqq P Q is positive.

Note that the last condition is equivalent to asking that tπpqq ¥ 0u �
tπpq1q ¡ 0u in RP2n�1. Along such flows, the associated quadric hypersur-
faces are nested into one another. In particular if u admits a fitting flow it is
locally a fitting map.

Lemma 4.3.2. Let u : M Ñ Grmix
d pQq be a continuous map that admits a fit-

ting flow. The projection to Grmix
d pQq of the flow lines of the fitting flow are

embedded.

Proof. Assume by contradiction that for some t0 ¡ 0 and q P Su�E one has
upxq � ppqq � ppΦt0pqqq. The fact that the flow is fitting implies that for some
λ ¡ 0, λπpΦt0pqqq � πpqq P Q is positive. This positive quadric belongs to upxq,
contradicting the fact that upxq P Grmix

d pQq.

Some fitting flows can be constructed by taking a geodesic flow on M for
some Riemannian metric and identifying u�E with the tangent bundle to M .
In general the projections of the flow lines of a fitting flow satisfy the following
topological property, which is clearly satisfied for geodesic flows.

Lemma 4.3.3. Let u : M Ñ Grmix
d pQq be a continuous map equipped with a

fitting flow Φ in a neighborhood of x P M . For t small enough the sphere
St : rqs P Su�E|x ÞÑ p �Φtprqsq PM is homotopic to a generator of the homology
of Uztxu for any open neighborhood U of x in M that is diffeomorphic to Rd.

The proof relies on the fact the dimension of M is equal to d, and hence the
manifolds Ppu�pxq X S2V ¥0q locally define a fibration of PpS2V ¥0q.
Proof. Let P � upxq. Let p0 P P � � S2V be a positive tensor, which exists since
the pencil P is assumed to be in Grmix

d pQq. Let P 1 P GrdpS2V q be a supplement
of P �. Since u is continuous for all y close enough to x the vector subspace

141



u�pyq is transverse to P 1, therefore there exist a unique vector ϕpyq P P 1 such
that:

p0 � ϕpyq P pp0 � P 1q X u�pyq � S2V ¡0.

This defines a continuous map ϕ from a neighborhood U of x PM to P 1.

Let rqs P Su�Ex. For all t such that p�Φtpqq P U , the linear form π pΦtpqqq P
Q � S2V � vanishes on ϕ pp � Φtpqqq P S2V since this point belongs to u�pp �
Φtpqqq. Moreover π pΦtpqqq � πpqq is a positive bilinear form since Φ is a fitting
flow.

In particular πpqq P Q � S2V � is always negative on ϕ pp � Φtpqqq P S2V .
Hence for t small enough rϕ � Sts : Su�Ex Ñ SP 1 has the same degree as rπs :
Su�Ex Ñ SP 1� � SP which associates to rqs P Su�Ex the class rπpqqs P SP . The
map rπs is a diffeomorphism, so in particular 1 � |degprπsq| � |degpϕqdegpStq|.
Hence St is a generator of the homotopy group of Uztxu.

Remark 4.3.4. In particular for an immersion u : M Ñ Grmix
d pQq that admits a

fitting flow, choosing continuously an orientation of the pencils upxq for x PM
is equivalent to choosing an orientation of M .

When M � rN where N is compact and Γ � π1pMq, the quotient Su�E{ρpΓq
is compact. Hence any Riemannian metric on Su�E{ρpΓq is quasi-isometric
to Γ via any orbit map. When a fitting flow exists, the flow lines project to
quasi-geodesics in rN .

Proposition 4.3.5. Let u : rN Ñ Grmix
d pQq be a ρ-equivariant continuous map

that admits a ρ-equivariant fitting flow Φ. There exist C,D ¡ 0 such that the
projection to rN of the flow lines of Φ are pC,Dq-quasi geodesics. Moreover for
every px, yq P rN2 there exist a flow line whose projection to rN starts at x and
ends at y.

Remark 4.3.6. Note that since there exist a flow line between any pair of points
in rN , the map u is necessarily a globally fitting map.

In this proof we will use the Hilbert distance dH on the properly convex
domain PpS2V ¡0q. It is defined which is defined using the cross ratio as
dHprp1s, rp2sq � log pcr prp�s, rp1s, rp2s, rp�sqq where rp1s, rp2s P PpS2V ¡0q and
rp�s, rp�s are the intersection of the projective line through rp1s and rp2s with
the boundary of the domain PpS2V ¡0q. If the closure in PpS2V q of two sets
A,B � PpS2V ¡0q are disjoint, then the two sets are at positive distance for
the Hilbert distance. Indeed for every Riemannian metric dS on the compact
manifold PpS2V q, the Hilbert distance between any two points in PpS2V ¡0q is
bounded from below by some uniform multiple of dS.

Proof. For all rqs P Su�E we consider the convex Ppxπpqqy� X S2V ¡0q.
We choose a continuous and ρ-equivariant map s : Su�E Ñ PpS2V ¡0q with

the property that srqs P Ppxπpqqy� X S2V ¡0q for all rqs P Su�E .
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We fix a Γ-invariant Riemannian metric g on Su�E with associated distance
dg. We set C1 to be the supremum of dH psprq1sq, sprq2sqq for all rq1s, rq2s P
Su�E such that dgprq1s, rq2sq ¤ 1, which exists since Γ acts cocompactly onrN . The following inequality follows for all rq1s, rq2s P Su�E from the triangular
inequality:

dH psprq1sq, sprq2sqq ¤ C1dgprq1s, rq2sq � C1.

Indeed for some integer n ¤ dgprq1s, rq2sq � 1 one can find elements x0 �
rq1s, x1, � � � , xn � rq2s in Su�E such that for all 1 ¤ i ¤ n one has dgpxi�1, xiq ¤
1. The triangular inequality for the Hilbert distance implies that:

dH psprq1sq, sprq2sqq ¤ nC1.

We now set C2 to be the supremum of dg psprq1sq, spΦtprqsqqq for all rq1s P
Su�E and 0 ¤ t ¤ 1. Similarly we get the following inequality for all rqs P Su�E
and t ¥ 0:

dg psprqsq, spΦtprqsqqq ¤ C2t� C2.

Let K be a compact fundamental domain for the action of Γ on Su�E
and let ϵ be the infimum of the Hilbert distance for any rqs P K between
P
�xπpqqy� X S2V ¡0� and P

�xπpΦ1pqqqy� X S2V ¡0�. Since the flow is fitting,
the closures of these two sets in PpS2V q are disjoint for any rqs, and hence their
Hilbert distance is positive. Since K is compact, the infimum ϵ is also positive.

The Hilbert distance between spqq and spΦtpqqq for t ¡ 0 and q P Su�E is
greater than ϵpt � 1q. Indeed for all integer 0 ¤ n ¤ t the projective segment
between spqq and spΦtpqqq, which is a geodesic for the Hilbert distance, intersects
PpxπpΦnpqqqy�XS2V ¡0 in exactly one point xn. Moreover the Hilbert distance
between xn and xn�1 for 0 ¤ n ¤ t� 1 is at least ϵ.

Putting all of these inequalities together we get that for all t ¥ 0 and rqs P
Su�E :

ϵ

C1
pt� 1q � 1 ¤ dg psprqsq, spΦtprqsqqq ¤ C2pt� 1q

Hence the flow lines are quasi-isometric embeddings.

We now check that flow lines exist between any pair of points. Let x P M .
Given t P R we consider the d-sphere St : q P Su�E|x ÞÑ Φtpqq P u�E . Suppose
that some y PM , avoids the sphere St for all t ¡ 0. Consider a curve η between
x and y. The homological intersection between this segment and the spheres St
in Mztx, yu is constant, and is equal to zero for t large enough since the spheres
St are then uniformly far from x. However for t small enough, the homotopy
class of St is the one of any small sphere encircling x by Lemma 4.3.3. This
leads to a contradiction since such a sphere will have homological intersection
equal to 1 or �1 with the curve η. Hence there exists a flow line joining any
pair of points.
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As a consequence, we get the following.

Corollary 4.3.7. Let u : rN Ñ Grmix
d pQq be a ρ-equivariant continuous map that

admits an equivariant fitting flow, then it is an embedding. In particular it is a
globally fitting map. Moreover ρ : Γ Ñ G is a quasi-isometric embedding.

Proof. Since there are flow lines between any pair of points in rN , for every
x � y PM one can find q P upxq and q1 P upyq such that q� q1 is positive. Since
the pencils upxq and upyq are mixed, one cannot have q � q1 P upxq � upyq so
upxq � upyq. Furthermore the pair pupxq, upyqq is a fitting pair for all x � y PM ,
hence u is a globally fitting map by Proposition 4.2.2.

For any Γ-invariant Riemannian metric g on SE , the map s from the proof of
Proposition 4.3.5 is a quasi-isometric embedding. Indeed let δ be the maximum
of dgpx, x1q or dHpspxq, spx1qq for any x, x1 in the same fiber of p : SE Ñ rN . For
every x, y P SE one can find x1, y1 in the same fibers respectively as x, y and in
the same flow line for Φ. Hence for the constants C,D from Proposition 4.3.5:

1
C
dgpx, yq �D � p 2

C
� 2qδ ¤ dHpspxq, spyqq ¤ Cdgpx, yq �D � p2C � 2qδ.

Hence ρ is a quasi-isometric embedding.

4.3.2 Existence of fitting flows
We now prove that the existence of a fitting flow is guaranteed on compacts for
fitting immersions. It is not clear if it is the case in general for locally fitting
maps.

Proposition 4.3.8. Let M be a manifold of dimension d.

piq A fitting immersion u : M Ñ GrdpQq admits a fitting flow.

piiq An equivariant fitting immersion u : M Ñ GrdpQq for a representation
ρ : Γ Ñ SLpV q, and a proper action of Γ on M admits a ρ-equivariant
fitting flow.

Recall that p : E Ñ GrdpQq is the bundle map and π : E Ñ Q is the
tautological map.

In order to construct the fitting flow we construct the vector field W on Su�E
that generates the flow. This first step of the proof uses crucially the hypothesis
that dimpMq � d.

Lemma 4.3.9. Let u : M Ñ GrdpQq be a fitting immersion with dimpMq � d.
For every x PM and any q P upxq, there exists a lift w P Tpupxq,qqu�E such that
dπpwq P TQ is positive.
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We say that an element pq, 9qq P TQ is positive if 9q P Q is positive. Given any
quadric in the pencil upxq, we want to find an infinitesimal direction in which
to move this quadric as well as the pencil containing it inside the image of u so
that the derivative of the quadrics is positive.

This lemma is an inverse of point piiiq of Proposition 4.2.11: here we fix an
element q P upxq whereas before we were fixing a v P TM . In order to construct
this inverse we will use the fact that a continuous odd map between spheres of
equal dimensions is surjective.

Proof. Let us fix x PM . We construct a continuous map :

ϕ : TxMzt0u Ñ u�Exzt0u.

We require that this map satisfies λϕpvq � ϕpλvq for all v P TxMzt0u and
λ P R. Note that in particular ϕ defines an odd map:

ϕ : STxM Ñ Su�Ex.

We furthermore construct a lift:

ψ : TxMzt0u Ñ Tu�E.

In other words we assume that ψpvq P Tϕpvqpu�Eq for v P TxMzt0u. We
require that ψpλvq � λpdmλqpψpvqq for all v P TxMzt0u and λ P R where
mλ : u�E Ñ u�E is the multiplication by λ. We require dπpψpvqq P TQ to be
positive for all v P TxMzt0u.

Finally we will make this construction so that in addition dp pψpvqq � v for
v P TxMzt0u, but this property will be only used during the construction.

The following diagram illustrates the situation.

Tu�E TQ

TM u�E Q

M

dmλ

dπ

dp ψ

ϕ

mλ

π

p

If we can construct such continuous maps, the fact that ϕ is an odd map
between two spheres of the same dimension implies that it is homotopically
non-trivial and therefore surjective. In particular for all rqs P SEupxq � Supxq
there exist a v P TxM such that ϕpvq � q. The element w � ψpvq then satisfies
the required conditions, so this finishes the proof.
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Now let us construct the maps ϕ and ψ. We first show that for all v P
TxMzt0u we can define ϕpvq and ψpvq, and then we explain how to glue these
maps together to get a continuous map.

Since u is a fitting immersion, the point piiiq of Proposition 4.2.11 implies
that given v0 P TxM one can find ϕpv0q P u�Ex an ψpv0q P Tϕpv0qu

�E such that
dπpψpv0qq is positive and dp pψpv0qq � v0.

Note that the condition that dπpψpvqq is positive is an open condition and
the condition that dp pψpvqq � v requires that ψ is a section of an affine sub-
bundle. Hence for every v P TxMzt0u we can find a small neighborhood S in a
sphere in TxM containing v0 on which we can define ϕ and a lift ψ such that
dπpψpvqq is positive and dp pψpvqq � v for all v P S. We take S small enough so
that it does not contain any antipodal pair of points.

We define U to be the set of non-zero elements λw for all λ P R and w P S,
and we extend ϕ and ψ to U in a homogeneous way. We define ϕ on U so that
ϕipλvq � λϕipvq for all λ P R non-zero and v P S. We set ψpλvq � λpdmλqψipvq
for λ P R, where mλ is the multiplication by λ on u�Ex. Note that dπ pψipλvqq �
λ2dπ pψipvqq is positive and dp pψipλvqq � λv for all λv P U . Indeed π�mλ � λπ
so dπ � dmλ � λdπ and p �mλ � p so dp � dmλ � dp.

We therefore can construct an open cover tUiuiPI of TxM and continuous
maps ϕi : Ui Ñ Su�E � u�E , and lifts ψi : Ui Ñ Tu�E such that dπpψipvqq is
positive and dp pψipvqq � v for any i P I and v P Ui. The Ui can be assumed
invariant by scalar multiplication, and ϕ and ψ satisfy the aforementioned ho-
mogeneity conditions.

We now glue these maps together. Let χi : Ui Ñ r0, 1s for i P I be a family
of functions that forms a locally finite partition of the unit. We define :

ϕ : v P STxM ÞÑ
¸
iPI
χipvqϕipvq P pu�Eqx .

Let us check that ϕpvq is always non-zero. This is where we use that
dp pψipvqq � v for i P I, and we also use that the fitting immersion u is defining
a smooth fibration of the cone S2V ¡0. Let γ : R Ñ M be a curve such that
γp0q � x and γ1p0q � v. For all t P R the intersection u�pγptqq X S2V ¡0 is a
non-empty convex set, so we can construct a section s : t P R ÞÑ S2V ¡0 of the
fibration, i.e. such that for all t P R, sptq P u�pγptqq.

Let us fix i P I. Let q : R Ñ Su�E be such that q1p0q � ψpvq, which
implies that p � qptq is equal to γptq at the first order around t � 0 since γ1p0q �
dp pψpvqq � v. Since sptq P u�pγptqq, one has πpqptqq � sptq � 0 at the first order
around t � 0. Taking the first derivative at t � 0 of this equation we get:

πpϕipvqq � s1p0q � dπpψipvqq � sp0q � 0.

Since dπpψipvqq is positive and sp0q is a positive tensor:

dπpψipvqq � sp0q ¡ 0.
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Hence for all i P I, πpϕipvqq � s1p0q   0 and therefore πpϕpvqq � s1p0q   0. In
particular ϕpvq does not vanish.

In order to glue the ψi we need to be careful since the vectors ψipvq do not
belong to the same fiber of the tangent bundle Tu�E . Let Σ be the following
map:

Σ : pqiqiPI P pu�EqIx ÞÑ
¸
iPI
qi P pu�Eqx .

Given v P STxM we set:

ψpvq � dΣ ppχipvqψipvqqiPIq .
This combination still satisfies that dπpψq is positive, indeed:

dπpψpvqq �
¸
iPI
χipvqdπpψipvqq.

Note that we also get the following:

dppψpvqq �
¸
iPI
χipvqdppψipvqq �

�¸
iPI
χipvq

�
v � v.

This concludes the construction of ϕ and ψ, and hence this concludes the
proof.

To prove Proposition 4.3.8 we use the directions w from Lemma 4.3.9 and we
glue these vectors into a vector field using a partition of the unit. We construct
the vector field W : Su�E Ñ TSu�E in a similar manner as ψ : STM Ñ TSu�E .
Morally "W � ψ � ϕ�1", but the map ϕ constructed previously is not a priori
bijective.

Proof of Proposition 4.3.8. We construct a continuous vector field W over u�E ,
except the zero section, such that for all x P M and non zero q P upxq, Wλq �
dpmλqWq for λ P R¡0, where mλ is the multiplication by λ on E . Such a vector
field defines a vector field W on Su�E . We require moreover that dπpW q is
always positive.

Given any non-zero q0 P u�E , Lemma 4.3.9 provides the existence of some
w P Tpupxq,qqE such that dppwq P dupTxMq and dπpwq is positive. The first
properties implies that w defines a vector in Tx,q0u

�E . For each such q0 one can
find a neighborhood U of q in u�E that is invariant by the R¡0-action, and on
which one can define a map W satisfiying the required properties.

Using a partition of the unit as in Lemma 4.3.9 we construct the desired
vector field on u�E . This vector field generates a flow that is a fitting flow.

Finally note that the collection Ui as well as the partition of the unity can
be chosen to be ρ-equivariant, so that the vector field W is also ρ-equivariant,
and hence also the fitting flow Φ.
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4.4 The Anosov property and fibrations.
In this section we show that the existence of an equivariant map of pencils that
admits a fitting flow implies that the representation is Anosov. Moreover we
describe the domain that is fibered in RP2n�1. Finally we apply this to show
that some quasi-Fuchsian representations do not admit equivariant maps that
admit a fitting flow.

4.4.1 The Anosov property
In order to show that a uniform contraction is taking place along the flow
lines of the fitting flow, we define a way to measure the distance between two
quadric hypersurfaces nested into one another. The characterization of Anosov
representations that we use is similar to the characterization in terms of inclusion
of multicones from [BPS19].

Let SQmix be the set of quadrics that are not semi-positive or semi-negative
up to a positive scalar.

Definition 4.4.1. Let q1, q2 P SQmix be such that for some choice of represen-
tatives, the difference q2 � q1 is positive. We define the cross ratio distance
crprq2s, rq1sq between rq2s and rq1s as the minimum of rℓ1, ℓ2, ℓ

1
2, ℓ

1
1s P r1,8s for

every quadruple ℓ1, ℓ2, ℓ
1
2, ℓ

1
1 P PpV q of points in this order on a projective line

L such that the zeros of q1 on L with multiplicity are ℓ1 and ℓ11 and the zeros
of q2 on L are ℓ2 and ℓ12.

If we fix an affine chart of L so that ℓ1, ℓ2, ℓ
1
2, ℓ

1
1 correspond to the real

numbers x12   x11 ¤ x1   x2, the cross ratio rℓ1, ℓ2, ℓ
1
2, ℓ

1
1s is defined as:

rℓ1, ℓ2, ℓ
1
2, ℓ

1
1s �

x2 � x11
x2 � x12

� x1 � x12
x1 � x11

.

Note that this quantity is greater than 1, and is infinite if and only if ℓ1 � ℓ11
or ℓ2 � ℓ12. However if q1 and q2 are not mixed, there exist a projective line
L between a point on which q2 is positive and a point on which q1 is negative.
Therefore on this line ℓ1 � ℓ11 and ℓ2 � ℓ12, so crprq2s, rq1sq is finite.

The logarithm of this quantity satisfies a triangular inequality.

Proposition 4.4.2. Let rq1s, rq2s, rq3s P SQmix be such that q3 � q2 and q2 � q1
are positive. Then :

crprq3s, rq1sq ¥ crprq3s, rq2sqcrprq2s, rq1sq.

We illustrate this proposition and its proof in Figure 4.4.1. This figure
illustrates 3 quadrics of signature p1, 2q in RP2. In these pictures the quadrics
are positive on the inside of the ellipse they define.
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q1 � 0
q2 � 0
q3 � 0

ℓ1 ℓ2 ℓ3ℓ11ℓ12ℓ13

Figure 4.3: Illustration of Proposition 4.4.2

Proof. Pick any projective line that crosses the zeroes of the quadric q1 and q3.
Let pℓ1, ℓ2, ℓ3, ℓ

1
3, ℓ

1
2, ℓ

1
1q be the intersections of L with the zeroes of q1, q2 and q3

respectively, counted with multiplicity and cyclically ordered. We fix an affine
chart for L such that this tuple corresponds to the tuple x13   x12   x11 ¤ x1  
x2   x3 of real numbers. This yields the following :

rℓ1, ℓ3, ℓ
1
3, ℓ

1
1s �

x3 � x11
x3 � x13

� x1 � x13
x1 � x11

.

rℓ1, ℓ3, ℓ
1
3, ℓ

1
1s �

�
x3 � x11
x3 � x12

� x1 � x12
x1 � x11



�
�
x3 � x12
x3 � x13

� x1 � x13
x1 � x12



.

Moreover one has:

crprq2s, rq1sq ¤ rℓ1, ℓ2, ℓ
1
2, ℓ

1
1s �

x2 � x11
x2 � x12

� x1 � x12
x1 � x11

¤ x3 � x11
x3 � x12

� x1 � x12
x1 � x11

.

crprq3s, rq2sq ¤ rℓ2, ℓ3, ℓ
1
3, ℓ

1
2s �

x3 � x12
x3 � x13

� x3 � x12
x3 � x12

¤ x3 � x12
x3 � x13

� x1 � x13
x1 � x12

.

Hence one has rℓ1, ℓ3, ℓ
1
3, ℓ

1
1s ¥ crprq2s, rq1sqcrprq3s, rq2sq for every such pro-

jective line L.
Therefore crprq3s, rq1sq ¥ crprq3s, rq2sqcrprq2s, rq1sq.
A sequence of quadrics such that the cross ratio distance between the first

and last quadric goes to �8 satisfies that the intersection of all half-spaces
determined by the quadrics is a projective subspace.

Proposition 4.4.3. Let pqnqnPN be a sequence of quadrics such that qn�1 � qn is
positive for all n P N and crprqns, rq0sq goes to �8. Then

�
nPNtqn ¤ 0u � PpV q

is a projective subspace.

This proposition is proven in [BG09]. We write a version of the argument
here for the sake of completeness. We illustrate this proposition with quadrics
of signature p1, 2q in RP2 in Figure 4.4.1.
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qn0 � 0

qn � 0

yx
z�nz�n z�n0

z�n0
z

Figure 4.4: Illustration of Proposition 4.4.3

Proof. The intersection I � �
nPNtqn ¤ 0u is a compact non-empty subset. Let

x � y P I and let L be the projective line from x to y. Suppose that there
exist z P L such that z R I. Without any loss of generality one can assume that
the open interval S � L bounded by x, y and containing z does not intersect
I. Indeed one can otherwise replace x, y by the points on LX I closest to z on
both sides.

Since z R I there exist n0 P N such that qn0 is positive on z. For n ¥
n0, let z1, z2 be the two intersections of L with the zeroes of qn so that the
points px, z�n , z, z�n , yq are cyclically ordered. The sequences pz�n q and pz�n q are
monotonic in S and must converge to x and y since S X I � H. The value of
crprqn0s, rqnsq is bounded from above by the cross ratio rz�n0

, z�n , z
�
n , z

�
n0
s, which

is turns converges to the cross ratio rz�n0
, x, y, z�n0

s   8 when n goes to �8.
This contradicts the fact that crprqns, rq0sq goes to �8. Hence for every pair of
points in I, the associated projective line is contained in I. In particular I is a
vector subspace.

We now apply these results to prove that representations that admit an
equivariant fitting immersion, and more generally a fitting map with a fitting
flow, are Anosov.

Theorem 4.4.4. Let u : rN Ñ Grpn,nqd pQq be a continuous ρ-equivariant map that
admits an equivariant fitting flow. The representation ρ is tnu-Anosov, and for
any q P Su�E, the limit map at the limit ζ P BΓ of the the flow line pΦtpqqq can
be characterized as:

P
�
ξnρ pζq

� � £
t¥0

tπpΦtpqqq ¤ 0u.

Note that the flow lines of an equivariant fitting flow are quasi-geodesics by
Proposition 4.3.5, hence the limit point ζ is well-defined.

Proof. The flat V -bundle over Su�E associated with ρ admits a continuous split-
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h1q � 0πpqq � 0

h1Φtpqq � 0πpΦtpqqq � 0

e
L

ℓ11 ℓ1ℓ12 ℓ2ℓ13 ℓ3ℓ14 ℓ4

f at 8 on L Ñ

Figure 4.5: Illustration of the proof of Theorem 4.4.4.

ting E ` F where for q P Su�E :

P pEqq �
£
t¥0

tπpΦ�tpqqq ¥ 0u,

P pFqq �
£
t¥0

tπpΦtpqqq ¤ 0u.

This defines transverse vector subspaces by Proposition 4.4.3 since crpΦtpqq, qq
and crp�Φ�tpqq,�qq go to �8 when t goes to �8. Moreover the quadrics in
the pencils in the image of u are of signature pn, nq, one must have dimpEqq �
dimpFqq � n so this splitting is well-defined. This splitting is preserved by Φ.

We now construct a metric h on this flat V -bundle over Su�E . Given q P
Su�E we define the symmetric bilinear form hq on V � Eq`Fq so that this sum
is orthogonal and hq is equal to πpqq P Q on Eq and �πpqq P Q on Fq. Note
that by definition of Eq and Fq, hq is positive.

We also introduce an auxiliary symmetric bilinear form h1 of signature pn, nq
on this flat V -bundle over Su�E so that the sum Eq ` Fq is orthogonal and h1q
is equal to πpqq P Q on Eq and on Fq.

Our first step is to compare the quadric h1q with πpqq. Let L be a projective
line intersecting PpEqq at some e and PpFqq at some f . In Figure 4.4.1, we
illustrate some RP2 � RP2n�1 containing the projective line L. Let ℓ1, ℓ

1
1 be

the zeroes of πpqq on L and ℓ2, ℓ
1
2 be the zeroes of h1q on L, so that ℓ1, ℓ2 lie in

the same connected component of Lzte, fu. Since N is compact, there exist a
maximum δ   8 for all q P Su�E and all such projective line L of the following
quantity:

| log pre, ℓ1, ℓ2, f sq |.
Now we turn our attention to the contraction properties of Φ. Let t ¡ 0 be

a real number and let q P Su�E . Let v P Eq and w P Fq. We are interested in
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the following ratio :

R � hΦtpqqpvqhqpwq
hΦtpqqpwqhqpvq

.

Let e, f be the lines generated by v, w and L be the projective line joining them.
Let ℓ1, ℓ

1
1 be the zeroes of πpqq on L, ℓ2, ℓ

1
2 the zeroes of h1q on L, ℓ3, ℓ

1
3 be the

zeroes of πpΦtpqqq on L and finally ℓ4, ℓ
1
4 the zeroes of hΦtpqq on L. We assume

that ℓ1, ℓ2, ℓ3, ℓ4 all lie on the same component of Lzte, fu.
The cross ratio re, ℓ2, ℓ4, f s is equal to R

1
2 . Indeed ℓ2 is generated by

h
1
2
q pwqv�h

1
2
q pvqw and ℓ4 is generated by h

1
2
Φtpqqpwqv�h

1
2
Φtpqqpvqw, up to changing

ℓi by ℓ1i for 1 ¤ i ¤ 4. Hence:

re, ℓ2, ℓ4, f s �

�
h

1
2
Φtpqqpwqv � h

1
2
Φtpqqpvqw

	
^ v�

h
1
2
Φtpqqpwqv � h

1
2
Φtpqqpvqw

	
^ w

�

�
h

1
2
q pwqv � h

1
2
q pvqw

	
^ w�

h
1
2
q pwqv � h

1
2
q pvqw

	
^ v

� R
1
2 .

However due to our comparison of πpqq and h1q one has:

e�δ ¤ re, ℓ1, ℓ2, f s, re, ℓ3, ℓ4, f s ¤ eδ.

Therefore re, ℓ2, ℓ4, f s{re, ℓ1, ℓ3, f s ¥ e�2δ. Hence R 1
2 ¡ e�2δre, ℓ1, ℓ3, f s. This

last cross ratio is larger than:

rℓ11, ℓ1, ℓ3, ℓ
1
3s ¥ cr pπpΦtpqqq, πpqq, q .

Since Φ is a fitting flow and since N is compact, there exist α ¡ 0 such that
cr pπpΦ1pqqq, πpqq, q ¥ eα for all q P Su�E . Hence by the triangular inequality
from Proposition 4.4.2, for all t ¡ 0:

cr pπpΦtpqqq, πpqq, q ¥ eαpt�1q.

Hence we get the following estimate:

hΦtpqqpvqhqpwq
hΦtpqqpwqhqpvq

¥ e2αt�4δ�2α.

This implies that the splitting V � Eq ` Fq is tnu-contracting in the sense
of [BPS19] with respect to the flow Φ for the metric h. Moreover Γ acts co-
compactly on Su�E and every geodesic in Γ is at uniform distance from a flow
line of Φ. The domination of this splitting implies an exponential gap for the
singular values [BPS19, Theorem 2.2], which implies that ρ is tnu-Anosov. The
vector subspace ξnρ pζq is the contracted subspace Fq.

4.4.2 Fibered domain of discontinuity
Such an equivariant map into the space of pencils that admits a fitting flow
induces a fibration of the Guichard-Wienhard domain of discontinuity.
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Proposition 4.4.5. Let N be a compact manifold of dimension d with fundamen-
tal group Γ. Let ρ : Γ Ñ SLpV q and u : rN Ñ Grpn,nqd pQq be a ρ-equivariant
continuous map that admits an equivariant fitting flow Φ on Su�E. The union
of Ppu�pxq X S2V ¡0q for x P rN cover all of PpS2V ¡0q, and the closure of this
union intersects the space of rank one points PpV q � S2PpV q � PpS2V ¥0q ex-
actly at the domain of discontinuity for tnu-Anosov representations considered
by Guichard-Wienhard [GW12]:

Ω � PpV qz
¤
ζPBΓ

Ppξnρ pζqq. (4.2)

The intersection of Ppu�pxq X S2V ¡0q with the set of rank one points for
x P rN defines a fibration over rN of Ω.

In this argument we will use the Hilbert distance on PpS2V ¡0q already in-
troduced for the proof of Proposition 4.3.5. For a subset A � PpV q we write
S2A � PpS2V q the corresponding set of rank one lines.

Proving first that PpS2V ¡0q is fully covered first helps us proving that the
Guichard -Wienhard domain is also fully covered.

Proof. Let us fist prove that all of PpS2V ¡0q is covered by the union of Ppu�pxqX
S2V ¡0q for x P rN . We fix a Riemanian metric on N that defines a Riemannian
metric g on rN , with associated distance dg. Since u is globally fitting, see
Remark 4.3.6, for all x P rN there exist a neighborhood U of Ppu�pxq X S2V ¥0q
in PpS2V ¥0q that is covered by the manifolds Ppu�pyqXS2V ¥0q for y in the ball
for dg of radius 1 centered at 0. This neighborhood contains an ϵ-neighborhood
of Ppu�pxq X S2V ¡0q for the Hilbert metric on PpS2V ¡0q for some ϵ ¡ 0. Since
N is compact, this ϵ ¡ 0 can be chosen independently of x.

Now let us fix some x0 P rN and some rp0s P Ppu�px0q X S2V ¡0q. Given
any rp1s P PpS2V ¡0q one can find a finite sequence p0, p1, � � � , pk � p1 in S2V ¡0

so that the Hilbert distance between rpis and rpi�1s is less than ϵ for all 0 ¤
i   k. By induction, and since the Riemannian metric dg is complete, one can
construct for all 1 ¤ i ¤ k a point xi P rN such that rpis P Ppu�pxiq X S2V ¡0q
and dHpxi�1, xiq ¤ 1. Therefore the manifolds Ppu�pxq X S2V ¡0q cover all of
PpS2V ¡0q.

Now let us consider the fibered domain in projective space. Consider a rank
one line rps P S2Ppξnρ pxqq for some ζ P BΓ. Suppose that p belongs to u�pζq
for some x P rN . There exist a flow line pΦtprqsqqt¥0 starting at pprqsq � x and
converging to ζ P BΓ � B rN by Proposition 4.3.5. Theorem 4.4.4 implies that
πpqq P Q must be negative on ξ2

ρpζq and hence p cannot belong to u�pxq.
Conversely fix a point x P rN and take any rank one point rps P S2Ω in the

Guichard-Wienhard domain of discontinuity. There exist a sequence pxnq such
that rps belongs to the limit of Ppu�pxnq X S2V ¥0q, since these manifolds cover
PpS2V ¡0q. We consider some rqns P SEx such that Φtprqnsq P SExn

for some
tn ¡ 0, which exist by Proposition 4.3.5. If tn diverges when n varies, then
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the set Ppu�pxnq X S2PpV qq becomes arbitrarily close to S2Ppξ2
ρpζnqq where ζn

is the limit when t goes to �8 of Φtprqnsq. This would contradict the fact
that rps P S2Ω, as in this case rps P Ppξnρ pζqq where ζ is a limit point of pζnq.
Hence the sequence pxnq is bounded and therefore converges up to subsequence
to some x8 P rN , and rps P Ppu�px8qq.

4.4.3 A quasi-Fuchsian representation with no fitting immersions.
Having a representation that is Anosov is not sufficient to ensure that there
exist an equivariant fitting immersion. We show that there are quasi-Fuchsian
representations that admit no such immersions of Hermitian pencils of quadrics.
We use here the notations from Section 4.2.4.

Theorem 4.4.6. There exist a quasi-Fuchsian representation ρ : Γg Ñ SLp2,Cq
for some genus g large enough that admits no ρ-equivariant fitting immersion
u : �Sg Ñ Grmix

2 pHq � G.
Moreover it also admits no continuous map u : �Sg Ñ Grmix

2 pHq � G that
admits a ρ-equivariant fitting flow.

Here V � C2 and if ρ : Γg Ñ SLp2,Cq � Spp4,Rq, the Guichard-Wienhard
domain of discontinuity corresponds to the pullback in RP3 of the complement
in CP1 of the limit set of ρ. Since Γg is a surface group, this domain in CP1

is the union of two topological disks, and hence for each x P �Sg the geodesic
corresponding to upxq has one endpoint in each of these discs.

An other ingredient of the proof of Theorem 4.4.6 is the following.

Proposition 4.4.7 ([HW15, Corollary 3.5]). Given any C1 embedded circle γ in
CP1, and any ϵ ¡ 0, there exist a quasi-Fuchsian representation ρ : Γg Ñ
SLp2,Cq for some genus g large enough whose limit set has Haussdorf distance
at most ϵ with γ.

Proof of Theorem 4.4.6. We consider the Jordan curve γ from Figure 4.6. Let
x, y, z be as in the figure. We consider a quasi-Fuchsian representation of Γg for
a genus large enough such that its limit set Λ contains x, z and is close enough
to γ using Proposition 4.4.7. More precisely let sx and sz be the open arcs of
the circle of CP1 passing through x, y, z respectively between x, y and y, z and
let I be the interior of the Jordan curve Λ. We require that the union Ux of
all the connected component of Izsz whose closure contain x is disjoint from
the union Uz of all the connected component of Izsx whose closure contain z.
These two disjoint sets are illustrated for the curve γ as the two gray regions.

Let ρ : Γg Ñ SLp2,Cq then be such a quasi-Fuchsian representation. Suppose
that it admits an equivariant continuous map u : �Sg Ñ Grmix

2 pHq with an
equivariant fitting flow Φ on Su�E . By Proposition 4.3.5 there exist a flow line
pΦtpqqqtPR such that its projection γ : R Ñ �Sg is a quasi-geodesic between the
points of BΓ corresponding to x and z in the limit set.
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For all t P R, let xt P CP1 be the endpoint of the geodesic corresponding to
upγptqq that belongs to the interior of the Jordan curve Λ. When t goes to �8,
xt converges to z and it converges to x for t going to �8. Moreover xt always
belong to the circle determined by Φtpqq.

There exist a t0 P R such that y belongs to the circle Φt0pqq. Note that this
great circle splits CP1 in two parts, one containing x and sx and one containing
z and sz. In particular pxtqt¥t0 must lie in Uz and pxtqt¤t0 must lie in Ux,
leading to a contradiction. Hence no such map u can exist.

x
sx

sz
z

y

Figure 4.6: A Jordan curve in CP1

4.5 Fitting maps and maximal representations.
Let us consider representations ρ : Γ Ñ Spp2n,Rq. We prove our main result,
which is the characterization of maximal representations in terms of maps of
pencils. The first part introduces ω-regular pencils, as well as a connected
component of the space of ω-regular pencils. We then state the characterization,
and then present the construction of a map of pencils with a fitting flow for any
maximal representation. This construction relies to a map from the space of
pairs of Lagragians to the space of quadrics. We briefly discuss how one can
also use this map to decompose the projective structure into polygons of quadric
hypersurfaces in Section 4.8.

Throughout this section we set d � 2, and consider the case when N � Sg
is a surface.
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4.5.1 Definition of maximal pencils.
We say that a quadric q in

�
R2n, ω

�
is ω-regular if it is positive on some La-

grangian ℓ1 and negative on some Lagrangian ℓ2. We call Grω2 pQq the space
of ω-regular pencils. These pencils have in particular the property that the
corresponding subsets of PpS2V q intersect transversely the symmetric space of
Spp2n,Rq, see Lemma 4.7.4.

Remark 4.5.1. If a locally fitting map u : �Sg Ñ Grpn,nq2 pQq admits a fitting flow
which is equivariant with respect to a representation ρ : Γ Ñ Spp2n,Rq, the
image of u must lie in Grω2 pQq as ρ is tnu-Anosov and its limit map takes values
in the space of Lagrangians.

There are non-maximal representations admitting equivariant fitting immer-
sions, for instance almost-Fuchsian representations in SLp2,Cq � Spp4,Rq. In
order to obtain the maximality property, we need to restrict ourselves to the
correct union of connected component of Grω2 pQq.

Let P P Grω2 pQq be a pencil, and fix an orientation for P . Recall that Ln
in the space of Lagrangians in R2n. We construct a "boundary map" for an
ω-regular pencil of quadrics, defined up to homotopy. Before defining this map,
note the following:

Lemma 4.5.2. Let q P Q be an ω-regular element. The set of Lagrangians ℓ such
that q is positive on ℓ is an open ball.

Proof. There exist some ℓ� P Ln on which q is positive. Moreover there exist
some ℓ� P Ln on which q is negative.

Every Lagrangian ℓ on which q is positive must be transverse to ℓ�, hence it
can be written as the graph tx�upxq | x P ℓ�u of some linear map u : ℓ� Ñ ℓ�,
and one has for all v P ℓ�:

qpv, vq � qpupvq, upvqq � 2qpv, upvqq � qpv � upvq, v � upvqq ¡ 0.

Since qpv, vq ¡ 0 and qpupvq, upvqq   0, for all 0   λ   1:

qpv � λupvq, v � λupvqq � qpv, vq � λqpupvq, upvqq � 2λqpv, upvqq ¡ 0.

We can identify the elements of Ln transverse to ℓ� as the vector subspace
of the space of maps u : ℓ� Ñ ℓ�. We just proved that in this chart the set
of elements on which q is positive is open and star-shaped, hence it is a open
ball.

We now define the "boundary map" of the pencil.

Proposition 4.5.3. Let P P Grω2 pQq. There exist a continuous map ξP : SP Ñ Ln
such that for all rqs P SP , q ¡ 0 on ξP prqsq. Moreover any two such maps are
homotopic, so the free homotopy type rξP s is well defined.
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Proof. A map ξP is exactly a section of the bundle tprqs, ℓq | q|ℓ ¡ 0u Ñ SP ,
which is a fiber bundle whose fibers are open balls. Such sections always exist
and are unique up to homotopy.

We say that a pencil is maximal for some orientation if rξP s � nrτ s, where rτ s
is the generator of π1pLnq introduced in Section 4.1.2. We denote by Grmax

2 pQq
the space of pencils that are maximal for some orientation. This is a union of
connected components of Grω2 pQq as the homotopy type rξP s is locally invariant
for P P Grω2 pQq.
Remark 4.5.4. The previous discussion allow us to distinguish several connected
components of the open subspace Grω2 pQq by looking at the homotopy type of
the boundary map ξP .

As a recal we have the following inclusions:

Grmax
2 pQq � Grω2 pQq � Grpn,nq2 pQq � Grmix

2 pQq � Gr2pQq.
All these inclusions are open, and the inclusion Grmax

2 pQq � Grω2 pQq is a
union of connected components.

4.5.2 Statement of the characterization.
We obtain the following characterization of maximal representations in terms
of the existence of locally fitting maps that admit a fitting flow.

Theorem 4.5.5. A representation ρ : Γg Ñ Spp2n,Rq admits a ρ-equivariant
locally fitting map u : �Sg Ñ Grmax

2 pQq that admits a ρ-invariant fitting flow if
and only if it is maximal for some orientation of Sg.

In this case the orientation of Sg for which ρ is maximal is induced by the
orientation of the maximal pencils upxq for x P �Sg and Lemma 4.3.3.

In particular if a representation ρ admits an equivariant fitting immersion
u : �Sg Ñ Grmax

2 pQq then it is maximal because of Proposition 4.3.8. This
theorem leaves the following question open:
Question 4.5.6. Given a maximal representation ρ : Γg Ñ Spp2n,Rq, is there
always an equivariant fitting immersion u : �Sg Ñ Grmax

2 pQq ?
We show in Section 4.6 that this is true for Spp4,Rq, and in this case there

exist a fitting immersion whose image lies in a single special Spp4,Rq-orbit of
Grmax

2 pQq.
The following Lemma shows one direction of Theorem 4.5.5, the other di-

rection is proven by Lemma 4.5.13.

Lemma 4.5.7. Let ρ : Γg Ñ Spp2n,Rq be a representation that admits an equiv-
ariant continuous map u : �Sg Ñ Grmax

2 pQq that admits an equivariant fitting
flow. Then ρ is maximal for some orientation of Sg.
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Proof. We first apply Theorem 4.4.4 which shows that ρ is tnu-Anosov. Let
x P �Sg, we prove that the homotopy type of the boundary curve ξnρ is the same
as the homotopy type rξupxqs from Proposition 4.5.3. We consider the map ζ8
that associates to rqs P Su�Ex the limit of Φtprqsq in BΓ. This map is homotopic
in �Sg Y BΓztxu to the map ζ1 that associates the projection ppΦ1q. Hence by
Lemma 4.3.3, ζ1 defines a diffeomorphism of degree 1 between the circle Supxq
with its maximal orientation and the boundary BΓ for the induced orientation.

The map ξnρ �ζ8 has the homotopy type rξupxqs associated to upxq: it defines
a boundary map as in Proposition 4.5.3. The fact that ρ is maximal is then a
consequence of the characterization of maximal representations from Theorem
4.1.5. Indeed upxq P Grmax

2 pQq implies that rξupxqs � nrτ s, and we already know
that the degree of ζ8 is equal to the degree of ζ1 which is equal to 1.

4.5.3 Construction of a fitting flow
In this section we study special quadrics in R2n associated to pairs of trans-
verse Lagrangians. These objects will allow us to construct fitting continuous
embeddings of pencils.
Definition 4.5.8. Let ℓ1, ℓ2 be two transverse Lagrangians in R2n. We define
qℓ1,ℓ2 to be the symmetric bilinear form on R2n such that if π1, π2 are the
projections on ℓ1, ℓ2 associated to the direct sum ℓ1 ` ℓ2 � V :

qℓ1,ℓ2pv, vq � ωpπ1pvq, π2pvqq.
Note that qℓ2,ℓ1 � �qℓ1,ℓ2 .

Remark 4.5.9. In particular qℓ1,ℓ2 is characterized by the fact that ℓ1 and ℓ2 are
isotropic and for all v P ℓ1, w P ℓ2:

qℓ1,ℓ2pv, wq � ωpv, wq.
Maximal triples of Lagrangians can be characterized as follows:

Lemma 4.5.10. A triple of Lagrangians pℓ1, ℓ2, ℓ3q is maximal if and only if qℓ1,ℓ3

is positive on ℓ2.
Proof. Let us write ℓ1, ℓ2, ℓ3 as in Section 4.1.1 for some symplectic basis :

ℓ1 � xx1, x2, � � �xny,
ℓ2 � xx1 � ϵ1y1, x2 � ϵ2y2, � � �xn � ϵnyny,

ℓ3 � xy1, y2, � � � yny.
The form qℓ1,ℓ3 can be written in this basis as:

qℓ1,ℓ3 �
1
2

ņ

i�1
x�i b y�i � y�i b x�i .

This form is positive on ℓ2 if and only if all of the ϵi are positive, and hence
if the triple is maximal.
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These quadrics have also the following remarkable properties for maximal
quadruples of Lagrangians.

Lemma 4.5.11. Let pℓ1, ℓ2, ℓ3, ℓ4q be a maximal quadruple of Lagrangians, i.e.
such that each cyclic oriented subtriple is maximal. The bilinear form qℓ4,ℓ3 �
qℓ1,ℓ2 is positive. In particular the zero set of these quadrics define two disjoint
quadric hypersurfaces in PpR2nq.

Note that a triple of Lagrangians pℓ1, ℓ2, ℓ3q is maximal if and only if cor-
responding linear map u P Hompℓ1, ℓ3q whose graph is equal to ℓ2 is such that
ωp�, up�qq is positive on ℓ1.

Proof. Let us prove the first part of the statement. Since pℓ4, ℓ1, ℓ3q is a maximal
triple of Lagrangians, ℓ1 can be written as the graph of some linear map u1 :
ℓ4 Ñ ℓ3 such that ω p�, u1p�qq is a positive bilinear form on ℓ4. Similarly since
pℓ4, ℓ2, ℓ3q is a maximal triple of Lagrangians, ℓ2 can be written as the graph of
some linear map u2 : ℓ4 Ñ ℓ3 such that ω p�, u2p�qq is a positive bilinear form on
ℓ4.

Let v P R2n, it can be decomposed uniquely as v � v1 � v2 with v1 P ℓ1 and
v2 P ℓ2. Moreover there exist some unique x, y P ℓ4 such that v1 � x�u1pxq and
v2 � y�u2pyq. The vector v decomposes therefore as v � x�y�u1pxq�u2pyq.
One computes that :

qℓ4,ℓ3pv, vq � qℓ1,ℓ2pv, vq � ω px� y, u1pxq � u2pyqq � ω px� u1pxq, y � u2pyqq ,
� ω px, u1pxqq � ω py, u2pyqq � 2ω py, u1pxqq .

Finally the fact that pℓ1, ℓ2, ℓ3q forms a maximal triple implies that the bilin-
ear form ω p�, pu2 � u1qp�qq is positive. Therefore the previous expression, for y �
0, is strictly greater than ω px, u1pxqq�ω py, u1pyqq�2ω py, u1pxqq, which is non-
negative since ω p�, u1p�qq is positive. In the case when y � 0, this last inequality
is strict for x � 0. Otherwise the previous inequality ω py, pu2 � u1qpyqq ¡ 0 is
strict. Therefore for v � 0, qℓ4,ℓ3pv, vq � qℓ1,ℓ2pv, vq ¡ 0.

We now state an infinitesimal version of Lemma 4.5.11 that we will use in
Section 4.6.

Lemma 4.5.12. Let ℓ�, ℓ� : r0, 1s Ñ Ln be smooth and such that ℓ�0 � ℓ�p0q
and ℓ�0 � ℓ�p0q are transverse and the linear maps 9u� P Hompℓ�0 , ℓ�0 q and 9u� P
Hompℓ�0 , ℓ�0 q corresponding to pℓ�q1p0q and pℓ�q1p0q are such that ωp�, 9u�p�qq and
ωp 9u�p�q, �q are positive respectively on ℓ�0 and ℓ�0 . The derivative at t � 0 of
qℓ�ptq,ℓ�ptq is positive.

Proof. The proof is similar to the previous one. Let u�ptq P Hompℓ�0 , ℓ�0 q and
u�ptq P Hompℓ�0 , ℓ�0 q be the linear maps whose graph is equal to ℓ�ptq and ℓ�ptq
respectively. Let v P R2n. The derivative of the evaluation of qt � qℓ�ptq,ℓ�ptq
to v can be written in term of the derivative 9v�t , 9v�t of the vectors v�t P ℓ�ptq,
v�t P ℓ�ptq such that v � v�t � v�t :

9q0pv, vq � ωpv�0 , 9v�0 q � ωp 9v�0 , v�0 q.
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One has 9v�0 � � 9v�0 since v � v�t � v�t does not vary with t. The fact that
v�t P ℓ�ptq for all t implies that 9v�0 can be written w� � 9u�pv�0 q with w� P ℓ�0 .
Similarly 9v�0 can be written w�� 9u�pv�0 q with w� P ℓ�0 . Note that ωpv�0 , w�q �
0 as they belong to the same Lagrangian ℓ�0 . Similarly ωpv�0 , w�q � 0 and hence:

9q0 � 2ωpv�0 , 9u�pv�0 qq � 2ωp 9u�pv�0 q, v�0 q.

This is positive by our assumption.

We now construct an equivariant continuous map that admits a well-fitting
flow.

Proposition 4.5.13. Let ρ : Γg Ñ Spp2n,Rq be a maximal representation. There
exist a continuous map u : �Sg Ñ Grmax

2 pQq that admits a fitting flow.

We prove this lemma using some averaging argument, where the basic build-
ing blocks are the quadrics associated to pairs of Lagrangians in the limit curve.
This construction is not unique, as we start by fixing a hyperbolic metric.

Proof. Fix a hyperbolic metric on Sg. Since Sg is oriented it admits an associ-
ated complex structure J . For v P T 1

x
�Sg write ℓv � ξnρ pζvq where ζv P BΓ is the

limit point of the geodesic with initial derivative v. We furthermore define:

q�v � qℓJv,ℓ�Jv
.

These quadrics for a fixed x P �Sg do not in general define a pencil of quadrics.
We therefore define the following quadric associated to v P Tx�Sg :

qv �
»
wPT 1

x
rS

xv, wyq�wdλ.

Here we take the integral for the measure λ on T 1
x
rS induced by the hyperbolic

metric. For each x P rS, we consider the pencil upxq � tqv|v P T�Sgu P Gr2pQq
which is well defined since qv depends linearly on v P TxS.

First we check that these pencils are in Grpn,nq2 pQq, by proving that they are
actually ω-regular.

Let v P T 1
x
�Sg be non-zero for some x P rX. For all w P Tx�Sg if xw, vy ¡ 0, the

triple pζ�Jw, ζv, ζJwq is positively oriented and hence pℓ�Jw, ℓv, ℓJwq is maximal
and hence q�w is negative on ℓv. If xw, vy   0, the triple pℓJw, ℓv, ℓ�Jwq is
maximal and hence q�w is positive on ℓv. Hence qv is negative on ℓv, and by a
similar argument qv is positive on ℓ�v, which are Lagrangians. In particular qv
is ω-regular for all v P T 1

x
�Sg, and so upxq is ω-regular.

We consider the geodesic flow on uSE � T 1�Sg, and we prove that this flow
is fitting. Let t ¡ 0, x P �Sg and v P T 1

x
�Sg. Let py, v1q be the image of px, vq by
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Figure 4.7: Proof of Lemma 4.5.13.

the geodesic flow at time t, and let ϕ : T 1
x
�Sg Ñ T 1

y
�Sg be the identification given

by the parallel transport along the geodesic between x and y.

Let w P T 1
x
rS be such that xw, vy ¡ 0. The following quadruple is positive

pζ�Jw, ζ�Jϕpwq, ζJϕpwq, ζJwq due to the negative curvature of the metric we put
on �Sg, see Figure 4.7. Hence the corresponding quadruple of Lagrangians is
maximal. Therefore q�ϕpwq � q�w is positive by Lemma 4.5.11. When xw, vy   0,
the following quadruple is positive pζ�Jϕpwq, ζ�Jw, ζJw, ζJϕpwqq and therefore
q�ϕpwq � q�w is negative. Hence :

qv1 � qv �
»
wPT 1

x
rS

xv, wy
�
q�ϕpwq � q�w

	
dλ ¡ 0.

We therefore have proven that the geodesic flow for the fixed hyperbolic
metric is a fitting flow on T 1�Sg � SuE .

Finally as in the proof of Lemma 4.5.7 the homotopy type of ξnρ is equal to
the homotopy type of ξupxq for all x P �Sg. Hence these pencils are in Grmax

2 pQq.

Remark 4.5.14. These pencils always lie in the same connected component of
Grω2 pQq. Indeed on can construct such a pencil upxq P Grω2 pQq given any max-
imal continuous map ξ from B�Sg into the space of Lagrangians. The space of
such maximal continuous maps being path connected, any two such pencils can
be joined by a path in Grω2 pQq. It is not clear if Grmax

2 pQq only contains this
connected component.
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4.6 Fitting immersions and spacelike immersions for
PSpp4,Rq

In this section we explain how the data of a maximal immersion into the Pseudo-
Riemannian space H2,2 with principal curvature in p�1, 1q induces a fitting
immersion. Combining this with a result from Collier-Tholozan-Toulisse we
show that our characterization of maximal representations can be improved in
Spp4,Rq.

Note first that one has the following exceptional isomorphism:

PSpp4,Rq � SOop2, 3q.

This isomorphism comes form the fact that PSpp4,Rq preserves a subspace
of dimension 5 of Λ2R4, as well as a symmetric bilinear form of signature p2, 3q
on this subspace. Hence PSpp4,Rq acts naturally on the pseudo-Riemannian
symmetric space with constant negative sectional curvature H2,2, which consists
of vectors of norm �1 in R2,3. The space of Lagrangians L in R4 is naturally
identified with the space of isotropic lines BH2,2 in R2,3.

To a pointed totally geodesic spacelike plane pp, P q in H2,2 one can associate
an element in a special G-orbit of Grmax

2 pQq. For every geodesic in this plane
passing though the base point, we consider the endpoints ℓ1, ℓ2 P L � BH2,2,
and the space generated by all such quadrics qℓ1,ℓ2 forms a plane which is a
an element of Grω2 pQq. Indeed for some symplectic basis px1, x2, y1, y2q the
Lagrangians corresponding to the boundary of the spacelike plane P are for
θ P r0, 2πs:

ℓpθq � xcos
�
θ

2



x1 � sin

�
θ

2



y1, cos

�
θ

2



x2 � sin

�
θ

2



y2y.

The corresponding quadric qℓp0q,ℓpπq for θ � 0 in the basis px1, y1, x2, y2q is
equal to: ����

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

���.
Let Rθ be the following rotation matrix:�

cospθq sinpθq
� sinpθq cospθq



.

The corresponding quadric qℓpθq,ℓpθ�πq in the basis px1, y1, x2, y2q is equal to:�
R θ

2
0

0 R θ
2

�
qℓp0q,ℓpπq

�
R� θ

2
0

0 R� θ
2

�
.
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Hence qℓpθq,ℓpθ�πq is equal to:����
sinpθq cospθq 0 0
cospθq � sinpθq 0 0

0 0 sinpθq cospθq
0 0 cospθq � sinpθq

���.
These quadrics span a plane in Q when θ varies, and these quadrics are

ω-regular so this plane is in Grω2 pQq.
We define the Gauss map Gu : S Ñ Grmax

2 pQq of a spacelike immersion
u : S Ñ H2,2 the map that associates to x P S the pencils corresponding to the
pointed totally geodesic spacelike plane pupxq, P q where TupxqP � dupTxSq.
Theorem 4.6.1. Let u : S Ñ H2,2 be a spacelike immersion such that for all
v P TS, ∥IIupv, vq∥   ∥v∥. The Gauss map Gu : S Ñ Grmax

2 pQq is a fitting
immersion.

Let S be a spacelike surface in H2,n. Let γ : r0, 1s Ñ S be a geodesic for the
induced metric on S parametrized with unit speed an let V : r0, 1s Ñ TS be the
unit orthogonal vector field to γ1 in S along γ. We denote by V �, V � : r0, 1s Ñ
BH2,2 the endpoints of the geodesic rays starting respectively at V and �V . Up
to changing the sign of V one can assume that pV �, γ�, V �q is a maximal triple
where γ� is the endpoint of the geodesic ray srarting at γ1.

Lemma 4.6.2. Suppose that ∥IIupV, γ1q∥ ¤ 1, then the curves V �, V � : r0, 1s Ñ
BH2,n are spacelike.

Note that in this lemma IIupV, γ1q is timelike, so its norm is the timelike
norm that we see as a positive number.

Proof. We fix a orthogonal basis peiq of R2,n such that e1 and e2 have norm 1
and ei for i ¥ 3 have norm �1. Without any loss of generality we suppose that
γp0q � e3, γ1p0q � e1 and V p0q � e2. Let d be the flat connection on R2,n and
let ∇ be the Levi-civita connection on upSq for the induced spacelike metric. For
t close to 0, V ptq � V p0q�tdV p0q and dV � ∇V �IIH2,npV, γ1q�IIupV, γ1q. Here
the second fundamental form of H2,n inside R2,n�1 is equal to IIH2,npv1, v2q �
xv1, v2yv0 for v1, v2 P Tv0H2,n. Note also that since γ is a geodesic and V a
orthogonal unit vector field along γ, ∇V � 0.

Hence V ptq � V p0q � tIIupV, γ1q � optq. Since V has norm 1, we can write a
representative of the isotropic line V �ptq as v�ptq � V ptq � γptq. Therefore:

v�ptq � v�p0q � t
�
IIupV, γ1q � e2

�� optq.

This curve is spacelike since e2 is spacelike of norm 1 and the (timelike) norm
of IIupV, γ1q is strictly less than 1. The same holds for V �.
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Proof of Theorem 4.6.1. The Gauss map Gu : S Ñ Grmax
2 pQq comes with an

identification between u�E and TS. We consider the geodesic flow Φ on STS for
the metric induced by u. Lemma 4.6.2 implies that the Lagrangians ℓ�, ℓ� in R4

corresponding to the isotropic lines V � and V � in R2,3 satisfy the hypothesis
of the second part of Lemma 4.5.12. Hence the derivative of the associated
quadrics along this flow is positive so Φ is a fitting flow. Since u admits a fitting
flow it is in particular a well-fitting immersion.

The existence of a maximal spacelike immersion was proven by Collier-
Tholozan-Toulisse and a bound of its second fundamental form is a consequence
of a result from Cheng.

Theorem 4.6.3 ([CTT19],[Che93]). Every maximal representation ρ : Γg Ñ
SOop2, 3q admits a unique ρ-equivariant maximal spacelike immersion u : �Sg Ñ
H2,2. Moreover it is an embedding and for all v P TS, ∥IIupv, vq∥   ∥v∥.

The bound on the second fundamental from is a consequence of a maximal
principle, see [LT22, Corollary 5.2]. Note that this reference it is written that
the square norm of IIu is at most 2, but since u is maximal it implies that the
principal values are at most equal to 1.

Putting together Theorem 4.6.1, Theorem 4.6.3 and Theorem 4.5.5 we ob-
tain:

Corollary 4.6.4. Every maximal representation ρ : Γg Ñ Spp4,Rq admits a
ρ-equivariant fitting immersion u : �Sg Ñ Grmax

2 pQq. This characterizes repre-
sentations which are maximal for some orientation of Sg.

4.7 Geometry of the symmetric space.
In this section we prove Proposition 4.7.1 and Lemma 4.7.4 which are two facts
independent from the main results of the chapter. We show how to construct
fitting immersions of pencils using totally geodesic surfaces in the symmetric
space PpS2V ¡0q. Then we prove that the codimension d submanifolds corre-
sponding to pencils in Grωd pQq intersect transversely the symmetric space of
Spp2n,Rq embedded in PpS2V ¡0q.

Given an immersion h : M Ñ PpS2V ¡0q from a manifold M of dimension d
we define its Gauss map Gh : M Ñ GrdpQq, that associates to x PM the pencil
P associated with the codimension d projective subspace of GrdpQq orthogonal
to uphq at hpxq, for the SLpV q-invariant Riemannian metric on PpS2V q.

The invariant Riemannian metric of the symmetric space associated to SLpV q
can be described by a natural identification between PpS2V ¡0q and its dual cone
PpS2pV �q¡0q. We therefore reformulate the definition of Gh as follows.

We first identify PpS2V ¡0q with PpS2pV �q¡0q via the map rXs ÞÑ rX�1s.
Note as once again we view elements of S2V and S2pV �q � Q respectively
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as maps V � Ñ V and V Ñ V �. An immersion h : M Ñ PpS2V ¡0q hence
defines a dual immersion h� : M Ñ PpS2pV �q¡0q. Fixing a volume form on
V and V � allows us to lift this map to a map h

� into the space of elements
in S2pV �q¡0 whose corresponding map V Ñ V � has determinant 1. We define
Ghpxq � dh�pTxMq � S2V � � Q.

Proposition 4.7.1. Let h : M Ñ PpS2V ¡0q be a totally geodesic immersion. Sup-
pose that the image of the Gauss map Gh : M Ñ GrdpQq contains only regular
pencils, i.e. pencils containing only non-degenerate quadrics. The immersion
Gh is then a fitting immersion. If h is complete it is a globally fitting map.

Remark 4.7.2. The fibration of a domain of PpV q induced by the fitting map in
this proposition is a particular case of Theorem 2.6.3 from Chapter 2.

Note that if d ¥ 2, the signature pa, bq of the quadrics of a regular pencil
must satisfy a � b since Sd�1 is connected. Hence a regular pencil for d ¥ 2 is
just an element of Grpn,nqd pQq where dimpV q � 2n.

As a corollary on can construct fitting immersions for some representations
that factor through SLp2,Rq. Indeed if one has a representation ι : SLp2,Rq Ñ
SLpV q there exist a ι-equivariant totally geodesic map h : H2 Ñ SLpV q, see
Section 2.7.1.

Proof. Let γ : R Ñ M be a geodesic for the metric induced by h. We write
the representative of hpγpoqq with determinant 1 in a basis peiqiPI such that for
some λi P R, for all t P R:

hpγptqq �
¸
iPI
etλiei b ei.

The dual immersion can be written as:

h
�pγptqq �

¸
iPI
e�tλie�i b e�i .

The element qt P Q corresponding to ph� � γq1ptq is the symmetric bilinear
form:

qt �
¸
iPI
�λie�tλie�i b e�i .

The derivative of pqtq at t � 0 equals:¸
iPI
λ2
i e
�tλie�i b e�i .

This is a positive bilinear form if and only if all the λi are non-zero, which is
the case if and only if the bilinear forms qt are non-degenerate, i.e. if the image
of Gh contains only regular pencils. In this case, the positivity of the derivative
of pqtq implies that the geodesic flow on STM induces a fitting flow on Gh�SE ,
so Gh is a fitting immersion.
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If moreover h is complete, it is ρ-equivariant for the discrete and faithful
action of some closed surface group Γ. Hence Corollary 4.3.7 implies that h is
a globally fitting map.

Let us fix a symplectic form ω on V � R2n. Let XSp be the subset of
PpS2V ¡0q consisting of tensors rq�1s that are compatible with ω, i.e. such that
for some complex structure J on R2n, q� iω is a hermitian metric on V . Recall
that q : V Ñ V � is a bilinear form, and q�1 : V � Ñ V is a tensor.

The space XSp is a copy of the symmetric space associated to Spp2n,Rq,
which is a totally geodesic subspace of the symmetric space associated to the
Lie group SLp2n,Rq whose model is PpS2V ¡0q. However it is not a projective
subset : the closure of the projective convex hull of XSp in PpS2V ¡0q is equal to
PpS2V ¥0q since it contains all the extremal points of PpS2V ¥0q, i.e. the rank
one elements S2PpR2nq.

The intersection of XSp with a general linear subspace is not necessarily
transverse. However it is the case for some special subspaces.

Definition 4.7.3. We say that an element q P Q is ω-regular if for some La-
grangians ℓ�, ℓ� the bilinear form q is positive on ℓ� and negative on ℓ�.

We denote by Grωd pQq the set of pencils whose non-zero elements are ω-
regular.

In particular an ω-regular pencil q has signature pn, nq.
Lemma 4.7.4. Let P P Grω2 pQq be an ω-regular pencil, i.e. such that all its
non-zero elements are ω-regular. The space PpP �q intersects transversely the
manifold XSp in a codimension 2 submanifold.

Proof. Let q P Q be ω-regular, and let x P XSp X Ppxqy�q be an intersection
point. Up to acting by Spp2n,Rq, one can assume that x � rX�1s P PpS2V q
where X is the bilinear form whose associated matrix in some symplectic basis
is: �

In 0
0 In



.

The annihilator of the tangent space to XSp at this point can be identified
with the space of following symmetric matrices where A is symmetric and B is
antisymmetric: �

A B
�B A



.

Suppose that the intersection is not transverse, i.e. that q can be written
in this form. Let ℓ� and ℓ� be Lagrangians on which q is respectively positive
and negative. Since the maximal compact Upnq acts transitively on the space
of Lagrangians one can assume that ℓ� � xx1, � � � , xny. Let ℓ� � xx1, � � � , xny.
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The Lagrangian ℓ� is transverse to ℓ� so for some symmetric matrix U , one can
write this Lagrangian as the image of :�

U
In



.

The fact that q is positive on ℓ� implies that A is positive. The fact that q
is negative on ℓ� implies that the following is negative:

UAU �A�BU � UB.

But A and UAU are both positive and the bracket rB,U s has trace zero so it
cannot be negative. Hence the intersection must be transverse.

Proposition 4.7.5. A tangent vector in TXSp � TPpS2pV �q¡0q is ω-regular if
and only if the corresponding element of Q is non-degenerate.

Proof. Given v P TXSp one can write the corresponding element q P Q for some
symplectic basis px1, � � �xn, y1, � � � ynq as:

ņ

i�1
λipx�i b x�i � y�i b y�i q.

This bilinear form is regular if and only if all the λi are non-zero. If this is
the case that it is positive on the Lagrangians xx1, � � � , xny and negative on the
Lagrangian xy1, � � � , yny.

4.8 Polygons of quadric hypersurfaces
We briefly discuss in this section how the quadrics associated to pairs of La-
grangians defined previously can be used in an other way to decompose the
geometric structures associated to maximal representations into hexagons of
quadric hypersurfaces. This decomposition is a generalisation of the work
Burelle-Treib for Schotty subgroups [BT17].

Let us cut the surface Sg by closed curves that intersect transversely so that
no three curves intersect at a single point and all the complementary regions
are hexagons.

Once such a topological decomposition is fixed, one can put a hyperbolic
metric Sg so that the curves are geodesics, by making all complementary regions
regular right-angled hexagons. Conversely by gluing right-angled hyperbolic
hexagons one can construct such a decomposition. This defines a tiling of �Sg
into hexagons indexed by a set I.

Each hexagon h P I is described by its cyclically ordered oriented sides
pγ1, γ2, γ3, γ4, γ5, γ6q. Note that non-adjacent sides are parallel for any hyper-
bolic metric on Sg.

Let ρ : Γg Ñ Spp2n,Rq be a maximal representation, and let ξnρ be the
associated limit map. Let h � pγ1, γ2, γ3, γ4, γ5, γ6q be the positively ordered
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Figure 4.8: An hexagon in �Sg and its oriented sides.

sides of an hexagon in the decomposition of �Sg that we fixed. To each of these
oriented geodesic γ with ordered endpoints pγ�, γ�q we associate the quadric
qγ � qℓ�,ℓ� where ℓ� � ξnρ pγ�q, ℓ� � ξnρ pγ�q. The intersection of the sets
tqγi

¥ 0u defines a compact set that we call a hexagon of quadric hypersurfaces.

Proposition 4.8.1. The hexagons of quadric hypersurfaces associated to all of the
hexagons h P I define a tiling of the Guichard-Wienhard domain of disontinuity
(4.2).

Proof. We first see that the hexagons of quadric hypersurfaces have disjoint
interior. Indeed, given two distinct hexagons h1, h2 P I, there exist a side γ1
of h1 that separates h1 and h2. Every side of h2 is either parallel (or equal) to
γ1, or is orthogonal to γ1. In the first case there are one or two sides γ2 that
separate γ1 and h2. In the second case let γ12 be the side of h2 intersecting γ1,
one of its two adjacent sides γ2 of h2 separates h2 from γ1.

The fact that γ1 and γ2 are parallel or equal with opposite orientations and
the fact that ξnρ is maximal implies that tqγ1 ¥ 0u is disjoint from tqγ2 ¥ 0u,
see Lemma 4.5.11. Hence h1 and h2 have disjoint interior.

We now show that every hexagon in I of quadric hypersurfaces lies in the
Guichard-Wienhard domain of discontinuity. Let us fix ζ P BΓg. For every
hexagon h P I there is a side γ of h separating h from ζ. The maximality of the
boundary map ξnρ implies that P

�
ξnρ pζq

�
is disjoint from tqγ ¥ 0u by Lemma

lem:Triples of Lagrangians quadric. Hence the union of all the hexagons of
quadric hypersurfaces do not intersect P

�
ξnρ pζq

�
for any ζ.

Finally note that ρpΓgq preserves and acts cocompactly on the union of
all the hexagons of quadric hypersurfaces as there are finitely such hexagons
and they are compact. Moreover this union is open: indeed if x is a point in
projective space in the boundary of the hexagon of quadrics associated to h P I,
there is exactly one or two adjacent sides γ of h such that qγ vanishes on x. In
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Figure 4.9: A hexagon in �Sg and two views on the corresponding hexagon of
quadric hypersurfaces in RP3.

this case x belongs to the interior of the union of the respectively two or four
hexagon of quadrics corresponding to h1 and its neighbors for the sides γ such
that qγ vanishes on x

The Guichard-Wienhard cocompact domain of discontinuity contains this
non-empty cocompact domain of discontinuity, Therefore this this domain must
be equal to a union of connected components of the Guichard-Wienhard domain.
For n ¥ 3 this domain is connected [GW12]. For n � 2 the domain has two
connected components, but so does also the hexagons of quadric hypersurfaces
as illustrated in Figure 4.9. Hence the hexagons of quadric hypersurfaces form
a tiling of the Guichard-Wienhard domain of discontinuity.

Figure 4.9 illustrates a hyperbolic hexagon and the corresponding hexagon
of quadric hypersurfaces in the case n � 2 for a maximal representation con-
structed as the composition of a Fuchsian representation and the diagonal em-
bedding of SLp2,Rq into Spp2n,Rq. The hexagon is the complement of the inside
of the six ruled hyperboloids in the picture.

This hexagon of quadric hypersurfaces is a fiber bundle over an hyperbolic
hexagon with fiber the union of two cricles. It is disconnected and the two views
in Figure 4.9 put an emphasis on the two connected components.

In this Figure, Lemma 4.5.11 is illustrated by the fact that the quadric
hypersurfaces corresponding to non-intersecting geodesics in H2 do not intersect
in RP3.
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Remark 4.8.2. To a hexagon h P I with sides pγiq1¤i¤6 we can associate a
subset of the convex set PpS2V ¡0q and in the symmetric space XSp � PpS2V ¡0q
associated wit Spp4,Rq as the set of classes rps such that p P S2V ¡0 and qγi

�p �
Trpqγi

� pq ¥ 0. The hexagon of quadric hypersurfaces arises as the intersection
of the closure of this set of the set of rank one points PpV q � S2PpV q � PpS2V q.
One can similarly show that these subsets for h P I define a tiling of PpS2V ¡0q,
which restricts to a tiling of XSp.
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Chapter 5

Maximal and Borel Anosov
representations

In this chapter we study maximal representations in Spp2n,Rq that satisfy ad-
ditional Anosov properties.

We first recall in Section 5.1 the definition of Anosov representations in
Spp2n,Rq and fix some notations. In Section 5.2 we describe a special chart of
the space of Lagrangians. In Section 5.3 we discuss the link between hypercon-
vexity and smooth properties of the boundary maps.

In Section 5.4 we characterize maximal representations among tn � 1, nu-
Anosov representations by the hyperconvexity property Hn. In Section 5.5
and 5.6 we prove that maximal and Borel Anosov representations are Hitchin.

This chapter is an adaptation of the article [Dav24].

5.1 Anosov representations.
Let Γg denote the fundamental group of a closed orientable surface of genus
g ¥ 2. This is an hyperbolic group in the sense of Gromov, and we will denote
by BΓg its Gromov boundary, which is a topological circle.

Let N ¥ 2 be an integer. Let us fix some Euclidean structure on RN , and
for every element M P SLpN,Rq denote by σ1pMq ¥ σ2pMq ¥ � � � ¥ σN pMq the
singular values of M in non-decreasing order. Given γ P Γg we will denote by
|γ|w the word length of γ with respect to some fixed finite generating set of Γg.

The following definition is not the original one, but a characterization due
to Kapovich-Leeb-Porti [KLP17]:
Definition 5.1.1 ([BPS19, Section 4]). A representation ρ of Γg into SLpN,Rq
is Θ-Anosov with Θ � t1, � � � , Nu if there exists some constants C,α ¡ 0 such
that for all γ P Γg and k P Θ :

σk�1 pρpγqq
σk pρpγqq ¤ Ce�α|γ|w .
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If a representation is Anosov with respect to ∆ � t1, � � � , Nu, then it is
called Borel Anosov.

Remark 5.1.2. If a representation is Θ-Anosov then it is automatically Θ1-
Anosov for all Θ1 � Θ.

For a general semi-simple Lie group G, the Anosov property depends on a
subset of the set of simple roots, or equivalently of a conjugacy class of parabolic
subgroups. Here we identified the set ∆ of simple roots of the simple Lie group
SLpN,Rq with the set t1, � � � , N � 1u.

Boundary maps are important objects naturally associated to an Anosov
representation.

Theorem 5.1.3 ([GW12],[BPS19]). Let ρ : Γg Ñ SLpN,Rq be a tku-Anosov rep-
resentation. Let Grpk,Nq be the Grassmannian of k-dimensional subspaces in
RN . There exists a unique continuous ρ-equivariant map ξkρ : BΓg Ñ Grpk,Nq
that is dynamic preserving, i.e for all element γ P Γg if γ� is the unique at-
tracting fixed point of γ in BΓg then ξkρ pγ�q is the unique attracting fixed point
of ρpγq in Grpk,Nq.

The property of being dynamic preserving determines ξkρ , since the set of
attracting fixed point of elements of Γg is dense in BΓg.
Notation 5.1.4. For any tku-Anosov representation and any x P BΓg we will
write xkρ :� ξkρ pxq as in [PSW21] to make expressions involving boundary maps
lighter. We will still keep the notation ξkρ to denote the boundary map itself.
As a convention x0

ρ � t0u and xNρ � RN for any x P BΓg.
Boundary maps satisfy additional properties: they are transverse and com-

patible.

Proposition 5.1.5 ([GW12],[BPS19]). Let ρ : Γg Ñ SLpN,Rq be a tku-Anosov
representation. The representation ρ is also tN �ku-Anosov, and for every pair
x, y P BΓg of distinct points, xkρ and yN�kρ are transverse (transversality). If ρ
is tk, ℓu-Anosov with k ¤ ℓ then xkρ � xℓρ for all x P BΓg (compatibility).

As a consequence the image of boundary maps at two different point are in
general position.

Corollary 5.1.6. Let k, ℓ ¥ 1. Let x, y P BΓg be distinct points :

dim
�
xkρ X yℓρ

� � maxpk � ℓ�N, 0q.

Let us assume now that N � 2n is even and let us fix a symplectic form ω on
R2n. Consider the subgroup Spp2n,Rq � SLp2n,Rq consisting of elements which
preserve ω: representations into Spp2n,Rq can be seen as particular examples of
representations into SLp2n,Rq. The boundary maps of Anosov representations
whose images lie in Spp2n,Rq have some additional properties.
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Lemma 5.1.7. Let ρ : Γg Ñ Spp2n,Rq be a tku-Anosov representation. For any
x P BΓg,

�
xkρ

�K � x2n�k
ρ , where

�
xkρ

�K is the orthogonal of xkρ with respect to ω.
In particular if k ¤ n the space xkρ is isotropic.

Proof. The orthogonality condition holds for a closed Γg-equivariant subset of
BΓg. Since the action of Γg is minimal on BΓg ([KB02] Proposition 4.2), it is
sufficient to check it for a single point. Let x be the attracting fixed point of
an element γ P Γg, so xkρ is the unique attracting fixed k-dimensional subspace
of ρpγq and xn�kρ the unique attracting fixed p2n� kq-dimensional subspace of
ρpγq.

Since γ P Spp2n,Rq, it maps any subspace V K for V � R2n to pγ � V qK.
Hence

�
xkρ

�K is an attracting fixed point for the action of γ on the space of
p2n � kq-dimensional subspaces. Therefore

�
xkρ

�K � x2n�k
ρ . If k ¤ n, then

x2n�k
ρ � �

xkρ
�K and hence xkρ is isotropic.

5.2 Charts of the space of Lagrangians and maximal-
ity.

Recall that we fixed a symplectic structure ω on R2n. Let Ln be the space of
Lagrangians in R2n, i.e. the space of n-dimensional subspaces of R2n on which
ω vanishes. Let P,Q P Ln be two transverse Lagrangians, i.e. with trivial
intersection.

Definition 5.2.1. A linear map u between P and Q is symmetric (with respect
to ωq if for all v,w P P :

ω pv, upwqq � ω pw, upvqq .
The space of symmetric linear maps u from P to Q will be denoted by

SymP,Q.

For Q P Ln let UQ be the set of Lagrangians transverse to Q. The open sets
pUQqQPLn form an open covering of Ln. Given a Lagrangian P transverse to
the Lagrangian Q, we get an identification of UQ with the vector space SymP,Q.
This provides a family of linear charts of Ln.

Proposition 5.2.2. The graph of an element u P SymP,Q is an element of UQ.
This defines an identification of SymP,Q with UQ � Ln.

Proof. Recall that the graph of a linear map u : P Ñ Q is the vector subspace
of elements v� upvq for v P P . It is a Lagrangian if and only if for all v,w P P :

ω pv� upvq,w � upwqq � 0.

Since P,Q are Lagrangians this is equivalent to having for all v,w P P :

ω pv, upwqq � ω pw, upvqq � 0.
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Hence the graph of u is a Lagrangian if and only if u P SymP,Q.

Notation 5.2.3. Let P,Q be transverse Lagrangians and R be a Lagrangian
transverse to Q, i.e. in UQ. We denote by uRP,Q the corresponding element in
SymP,Q.

Bilinear symmetric forms can be degenerate: they can have singular spaces.
For any vector space V let QpV q be the space of symmetric bilinear forms on
V .

Definition 5.2.4. A subspace U of a vector space V is singular for a symmetric
bilinear form q in QpV q if for all v P V,w P U , on has qpv,wq � 0.

Let P,Q be two transverse Lagrangians in Ln.

Proposition 5.2.5. An element u P SymP,Q determines a symmetric bilinear
form q P QpP q defined for v,w P P as:

qpv,wq � ω pv, upwqq .

This defines an identification of SymP,Q and QpP q. Moreover Kerpuq is
singular for q.

This identification also defines linear charts UQ � QpP q.
Definition 5.2.6. For R P UQ, define qRP,Q P QpP q as the following symmetric
bilinear form on P :

qRP,Qpv,wq � ω
�
v, uRP,Qpwq

�
.

An invariant that classifies orbit of triples of pairwise transverse Lagrangians
up to the action of Spp2n,Rq is called the Maslov index [BILW05]. We will be
only interested by triples with maximal Maslov index, so we will only define
the notion of maximal triples of Lagrangians. For a vector space V , let Q�pV q
denote the open cone of scalar products in the space of symmetric bilinear forms
QpV q.
Definition 5.2.7. Let pP,R,Qq be three pairwise transverse Lagrangians in R2n.
This triple is called maximal if the symmetric bilinear form qRP,Q is in QpP q�,
i.e. is a scalar product.

A triple pP,R,Qq is maximal in this sense if and only if its Maslov index is
maximal, i.e. if its Maslov index is equal to n (see for instance [BP17, Lemma
2.10]).
Remark 5.2.8. The signature of qRP,Q is locally constant on the space of triples
of pairwise transverse Lagrangians in R2n. Hence the space of maximal triples
of Lagrangians pP,R,Qq forms a connected component of this space.

174



Let us fix an orientation of BΓg, i.e. a connected component of the space
of distinct triples in BΓg that we will call positive triples. The Toledo invariant
of a representation ρ : Γg Ñ Spp2n,Rq of a surface group Γg is an integer Tρ
that depends only on the connected component of HompΓg,Spp2n,Rqq in which
ρ lies. This invariant satisfies |Tρ| ¤ np2g � 2q. A representation has maximal
Toledo invariant when Tρ � np2g�2q [BILW05]. The following characterization
will be taken as a definition for the rest of the paper.
Definition 5.2.9. Given an orientation of BΓg, we say that a representation ρ :
Γg Ñ Spp2n,Rq is maximal if it is tnu-Anosov and for every positive triple of
distinct points x, y, z in BΓg, the triple pxnρ , ynρ , znρ q is maximal, in the sense of
Definition 5.2.7.

Maximal representations in this sense are exactly representations with max-
imal Toledo invariant: any representation ρ with maximal Toledo invariant is
tnu-Anosov ([BILW05], Theorem 6.1), and its boundary map sends positive
triples to maximal triples ([BILW05], Theorem 7.6). Conversely any represen-
tation that admits a continuous equivariant map from BΓg to Ln which sends
positive triples to maximal triples has maximal Toledo invariant ([BIW03], The-
orem 8) and in particular is tnu-Anosov.

An example of the boundary curve ξ2
ρ0

of a maximal representation ρ0 :
Γg Ñ Spp4,Rq is given Figure 5.1. The boundary curve which is represented
is a part of the Veronese curve, which is the boundary curve of a 4-Fuchsian
representation ρ0, i.e. the composition of a fuchsian representation and the irre-
ducible representation SLp2,Rq Ñ Spp4,Rq. The triple px, y, zq for this picture
is a positive triple in BΓg. In the picture the point z2

ρ0
is "at infinity".

5.3 Differentiability properties of the boundary maps.
The k-th boundary map of an Anosov representation ρ of a surface group Γg
has smooth image if ρ satisfies the hyperconvexity property Hk, which we now
define. Recall that we use Notation 5.1.4 for the boundary maps of an Anosov
representation.
Definition 5.3.1. Let N ¥ 2 and 1 ¤ k ¤ N � 1 be integers. Let ρ : Γg Ñ
SLpN,Rq be a tk � 1, k, k � 1u-Anosov representation. We say that ρ satisfies
property Hk if for all triples of distinct points x, y, z P BΓg, the following sum
is direct : �

xkρ X zN�1�k
ρ

�� �
ykρ X zN�1�k

ρ

�� zN�1�k
ρ . (5.1)

If ρ satisfies property Hk for all 1 ¤ k ¤ N � 1, we say that ρ satisfies
property H.

These properties can be also written as follows.
Lemma 5.3.2. For a triple of distinct points x, y, z P BΓg, the sum (5.1) defining
property Hk is direct if and only if the following sum is direct:

xkρ �
�
ykρ X zN�1�k

ρ

�� zN�1�k
ρ . (5.2)
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y2
ρ0

x2
ρ0

Figure 5.1: The Veronese curve ξ2
ρ0
pBΓgq in the chart Qpx2

ρ0
q � Uz2

ρ0
� L2 with

the cone Q�px2
ρ0
q.
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Proof. The transversality of the boundary maps stated in Proposition 5.1.5
implies that the sum

�
ykρ X zN�1�k

ρ

�` zN�1�k
ρ is necessarily direct. If a vector

in xkρ belongs to this sum, it also belongs to xkρXzN�1�k
ρ . Hence if (5.1) is direct

then (5.2) is direct. The converse is immediate since xkρ X zN�1�k
ρ � xkρ.

For a tk � 1, k, k � 1u-Anosov representation ρ : Γg Ñ Spp2n,Rq, some of
these properties are equivalent.

Proposition 5.3.3. Let ρ : Γg Ñ Spp2n,Rq be a tk � 1, k, k � 1u-Anosov repre-
sentation. It satisfies property Hk if and only if it satisfies property H2n�k.

Proof. Let x, y, z P BΓg be distinct points. Let us assume that the sum (5.2) is
direct. Hence :

xkρ X
��
ykρ X z2n�1�k

ρ

�` z2n�1�k
ρ

� � t0u.

By considering the orthogonal of this set with respect to the bilinear form ω,
and because of Lemma 5.1.7, one has:

x2n�k
ρ � ��

y2n�k
ρ ` zk�1

ρ

�X zk�1
ρ

� � R2n.

Since zk�1
ρ � zk�1

ρ , then
�
y2n�k
ρ ` zk�1

ρ

� X zk�1
ρ � �

y2n�k
ρ X zk�1

ρ

� ` zk�1
ρ .

The following sum is equal to R2n and the sum of the dimensions on the sum-
mands is equal to 2n, so it is direct:

x2n�k
ρ � ��

y2n�k
ρ X zk�1

ρ

�` zk�1
ρ

� � R2n.

This means that this sum is direct for all distinct x, y, z, and hence property
H2n�k is satisfied. The converse implication is immediate by setting k1 � 2n�
k.

For any x, y, z P BΓg distinct and any tn, n � 1u-Anosov representation ρ :
Γg Ñ Spp2n,Rq, the following subspace is a hyperplane in xnρ :

pyn�1
ρ ` znρ q X xnρ .

Indeed yn�1
ρ `znρ is an hyperplane of R2n that cannot contain xnρ since xnρ`znρ �

R2n. This hyperplane can be seen as the image of yn�1
ρ by the linear projection

onto xnρ in R2n associated with the direct sum R2n � xnρ ` znρ .

The transversality of boundary maps and property Hn imply the following
transversality properties. These properties will be used in the case n � 2 to
prove Lemma 5.5.4 and Theorem 5.5.5.

Lemma 5.3.4. Let ρ : Γg Ñ Spp2n,Rq be a tn � 1, nu-Anosov representation.
Let x, y, z P BΓg be three distinct points. Then :

(i) xn�1
ρ and zn�1

ρ X xnρ are transverse;

(ii) xn�1
ρ and yn�1

ρ X xnρ are transverse;
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(iii) pyn�1
ρ ` znρ q X xnρ and zn�1

ρ X xnρ are transverse;

(iv) if moreover ρ satisfies property Hn, then pyn�1
ρ ` znρ q X xnρ and yn�1

ρ X xnρ
are transverse.

Proof. The transversality of the boundary maps between x and z implies that
xn�1
ρ and zn�1

ρ have trivial intersection so xn�1
ρ and zn�1

ρ X xn�1
ρ intersect triv-

ially. The same argument shows that, xn�1
ρ and yn�1

ρ X xnρ are disjoint.

The transversality of the boundary maps between y and z implies that yn�1
ρ

and zn�1
ρ have trivial intersection. In particular let v P pyn�1

ρ ` znρ q X xnρ and
w P znρ be such that v � w P yn�1

ρ . Suppose that moreover v P zn�1
ρ . Then

v � w P yn�1
ρ X zn�1

ρ since znρ � zn�1
ρ . Hence v � w � 0, so v P xnρ X znρ .

Therefore v � 0. As a conclusion pyn�1
ρ ` znρ q X xnρ and zn�1

ρ X xnρ are disjoint.

Finally property Hn implies that if we replace px, y, zq by pz, x, yq in (5.2),
the sum is direct, and hence xnρ X yn�1

ρ intersects trivially znρ ` yn�1
ρ . Therefore

pyn�1
ρ ` znρ q X xnρ and yn�1

ρ X xnρ are disjoint.

The main tool that we are going to use in Sections 5.4 and 5.5 is the following
result from Pozzetti, Sambarino and Wienhard [PSW21].

Theorem 5.3.5 ([PSW21], Theorem 4.2). Let ρ : Γg Ñ SLpN,Rq be a tk�1, k, k�
1u-Anosov representation. If ρ satisfies property Hk then the map ξkρ : x ÞÑ xkρ
has C1 image, i.e. ξkρ pBΓgq � Grpk,Nq is a 1-dimensional C1 submanifold.

At the point xkρ this 1-dimensional submanifold of Grpk,Nq is tangent to the
curve consisting of spaces containing xk�1

ρ and contained in xk�1
ρ .

We will be interested in the regularity of the boundary curve ξnρ , whose
image lies in the space of Lagrangians Ln when ρpΓgq � Spp2n,Rq. Once an
tnu-Anosov representation ρ has been fixed, given 3 points x, y, z P BΓg with
x, y � z we will write for simplicity :

Symx,z :� Symxn
ρ ,z

n
ρ
, uyx,z :� u

yn
ρ

xn
ρ ,z

n
ρ
P Symx,y , qyx,z � q

yn
ρ

xn
ρ ,z

n
ρ
P Qpxnρ q.

Let us rephrase Theorem 5.3.5 in the charts UQ � Symx,z of the space of
Lagrangians Ln.

Lemma 5.3.6. Let ρ : Γg Ñ Spp2n,Rq be an tn � 1, nu-Anosov representation
that satisfies property Hn. Let x, z P BΓg be distinct points. For y � z, the
tangent space at uyx,z to the image of the map:

w P BΓgztzu ÞÑ uwx,z

is the affine line of Symx,z passing through uyx,z and directed by the vector line of
elements 9u P Symx,y such that one of the following equivalent statements holds:

(i)
�
yn�1
ρ ` znρ

�X xnρ � Kerp 9uq,
(ii) Imp 9uq � yn�1

ρ X znρ .
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In particular such an element 9u P Symx,z must have rank 1.

Proof. Because of Theorem 5.3.5, the image of the boundary map ξnρ is C1,
and tangent at ynρ to the one dimensional submanifold ℓ of Ln consisting of
Lagrangians P satisfying the condition :

yn�1
ρ � P � yn�1

ρ .

Since yn�1
ρ is orthogonal to yn�1

ρ with respect to ω, and since P is a Lagrangian,
this is equivalent to yn�1

ρ � P which is equivalent to P � yn�1
ρ .

An element u1 P Symx,z corresponds to a Lagrangian P satisfying yn�1
ρ � P

if and only if for all v P xnρ such that v � uyx,zpvq P yn�1
ρ one has w � u1pwq �

v� uyx,zpvq for some w P xnρ that must be equal to v since v�w P xnρ X znρ . But
v � uyx,zpvq P yn�1

ρ if and only if v P pyn�1
ρ ` znρ q X xnρ . Hence yn�1

ρ � P if and
only if : �

yn�1
ρ ` znρ

�X xnρ � Kerpu1 � uyx,zq.
Similarly an element u1 P Symx,z corresponds to a Lagrangian P satisfying

P � yn�1 if and only if for all v P xnρ , v � u1pvq P yn�1
ρ . However v � uyx,zpvq P

ynρ � yn�1
ρ . Hence P � yn�1

ρ if and only if for all v P xnρ , u1pvq � uyx,zpvq P yn�1
ρ ,

or in other words:
Impu1 � uyx,zq � yn�1

ρ X znρ .

Therefore the image ℓ1 of the submanifold ℓ in the chart SymP,Q is the affine
line directed by symmetric endomorphisms 9u satisfying

�
yn�1
ρ ` znρ

� X xnρ �
Kerp 9uq, or equivalently Imp 9uq � yn�1

ρ X znρ . Such a non-zero element must have
rank 1.

Theorem 5.3.5 can be also rephrased in the chart UQ � Qpxnρ q of Ln. Recall
that singular subspaces for a symmetic bilinear form were defined in Definition
5.2.4.

Lemma 5.3.7. Let ρ : Γg Ñ Spp2n,Rq be a tn�1, nu-Anosov representation that
satisfies property Hn. Let x, z P BΓg be distinct points. For y � z, the tangent
space at qyx,z to the image of the map

w P BΓgztzu ÞÑ qwx,z

is the affine line of Qpxnρ q passing through qyx,z and directed by the vector line of
elements 9q P Symx,z such that the hyperplane

�
yn�1
ρ ` znρ

� X xnρ is singular for
9q. In particular such an element 9q P Qpxnρ q must have signature p1, 0q or p0, 1q.
Proof. Let ℓ1 be the affine line in Symx,z defined in the proof of Lemma 5.3.6 part
(i). The affine line ℓ̃ in Qpxnρ q corresponding to ℓ1 via the linear identification
Symx,z � Qpxnρ q is directed by the elements 9q P Qpxnρ q such that for some
9u P SymP,Q satisfying (i), and for all v P xnρ and w P pyn�1

ρ ` znρ q X xnρ , one has
9qpv,wq � ωpv, 9upwqq � 0.
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In other words ℓ̃ is directed by the non-zero elements 9q P Qpxnρ q such that
9qpv,wq � 0 for all v P znρ and w P �yn�1

ρ ` xnρ
�Xznρ , i.e. such that

�
yn�1
ρ ` znρ

�X
xnρ is singular for 9q.

Since 9q is non-zero but admits a singular hyperplane, its signature is equal
to p1, 0q or p0, 1q

A first application of this result is the following lemma, which will be used
in the proof of Lemma 5.5.1.

Lemma 5.3.8. Let ρ be a tn�1, nu-Anosov representation that satisfies property
Hn. Let z P BΓg. The map that associates to y P BΓgztzu the hyperplane
yn�1
ρ ` zn � R2n is constant on no open interval.

Proof. Let x P BΓg be any point distinct from z. Let ψ be the map that
associates to an element y P BΓgztzu the following hyperplane of xnρ :

ψpyq � �
yn�1
ρ ` znρ

�X xnρ .

If this map was constant on some open interval I, Lemma 5.3.6 would imply
that the image by y ÞÑ uyx,z P Symx,z restricted to I has a tangent direction
which is always a rank one symmetric element with constant kernel ψpxq.

However in this case uyx,z would be the integral of some elements 9u P Symx,z

whose kernel always contains ψpxq. In particular uyx,z would have rank at most
1. However this would imply that this element has a kernel, and hence ynρ has
a non-trivial intersection with xnρ . This would contradict the transversality of
the boundary maps (Proposition 5.1.5).

Hence the map ψ cannot be constant on any open interval.

5.4 Relation between maximality and property Hn.
Our goal will be to prove that a tn� 1, nu-Anosov representation ρ is maximal
if and only if it satisfies property Hn. In order to prove property Hn implies
maximality we will use the smoothness of the n-th boundary curve and the
following simple geometric fact.

A closed cone of a vector space is a closed subset that is stable by addition
and multiplication by positive scalars.

Lemma 5.4.1. Let V be a real vector space and S be a closed cone in V , Let
η : R Ñ V be a C1 curve such that for all t P R, η1ptq P S and ηp0q P S. Then,
for all t ¥ 0, ηptq P S.

In other words, if the derivative of a curve stays in a closed cone and if the
curve is in the closed cone initially, then the curve stays in this closed cone. We
will use this fact again to prove Lemma 5.5.4.
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Proof. Let t ¥ 0 be a real number, the we can write ηptq as :

ηptq � ηp0q �
» t

0
η1psqds.

Hence ηptq can be approximated by finite sums of elements in S, which are
also in S since S is a cone. Moreover S is closed so ηptq P S.

Now we prove the following characterization of maximal representations that
are tn� 1, nu-Anosov.

Theorem 5.4.2. Let 1 ¤ k ¤ n. Let ρ : Γg Ñ Spp2n,Rq be a tn � 1, nu-Anosov
representation. The representation ρ satisfies property Hn if and only if it is
maximal for some orientation of BΓg.

Proof. Suppose first that ρ is maximal for some orientation of Γg. Let px, y, zq
be a positive triple of distinct points in BΓg. Suppose that the sum (5.1) is not
direct, i.e. that there is a vector h belonging to the intersection:��

xnρ X zn�1
ρ

�` zn�1
ρ

�X �
ynρ X zn�1

ρ

�
.

Note that in this expression,
�
xnρ X zn�1

ρ

�` zn�1
ρ is direct since xnρ X zn�1

ρ �
t0u. In particular h � v�w for some v P xnρ X zn�1

ρ , w P zn�1
ρ . Moreover h P ynρ

so uyx,zpvq � w with uyx,z P Symx,z the element corresponding to ynρ .
Lemma 5.1.7 implies that zn�1

ρ and zn�1
ρ are orthogonal with respect to ω, so

ωpv,wq � 0. Thus the symmetric bilinear form qyx,z associated to uyx,z satisfies
qyx,zpv, vq � ω

�
v, uyx,zpvq

� � 0. However qyx,z is positive since ρ is maximal and
px, y, zq is positive. Hence v � w � 0 and the desired sum of spaces is direct.
This means that the sum is direct for all positive triples px, y, zq, but since (5.1)
stays invariant when x and y are exchanged, this sum is direct for all triples.
Therefore if ρ is maximal, then property Hn holds.

Conversely, let us suppose that ρ satisfies Hn. Let x, z P BΓg be distinct
points. Lemma 5.3.7 implies that there exists a parametrization ϕ : R Ñ
BΓgztzu which is a homeomorphism such that f : R Ñ Qpxnρ q, t ÞÑ q

ϕptq
x,z is

a C1 embedding.
The derivative of f at all times is non-zero and has signature p1, 0q or p0, 1q.

Up to considering t ÞÑ ϕp�tq, we can assume that at some point the derivative
of f has signature p1, 0q, and hence it has signature p1, 0q for all points t P R.

Let us assume that ϕp0q � x. The derivative of t ÞÑ q
ϕptq
x,z has signature p1, 0q,

hence it belongs to the closed cone Q�pxnρ q of semi-positive elements. Moreover
qxx,z � 0 is also in this closed cone. Hence by Lemma 5.4.1 the image of R¥0
consists only of semi-positive elements.

For t ¡ 0, the transversality of boundary maps implies that:

xnρ X ξnρ � ϕptq � t0u.
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Hence qϕptqx,z is a non-degenerate symmetric bilinear form. Since it belongs to
Q�pxnρ q, it is positive. Therefore the triple of Lagrangians pxnρ , ξnρ � ϕptq, znρ q is
maximal for all t ¡ 0.

Hence for at least one triple of distinct points x, y, z P BΓg , the triple
pxnρ , ynρ , znρ q is maximal. Because of Remark 5.2.8, this holds for all triple of
distinct points px1, y1, z1q ordered as px, y, zq in BΓg. Therefore for the orientation
of BΓg such that px, y, zq is positive, the representation ρ is maximal.

5.5 From property H2 to H1 for Spp4,Rq.
We proved in Section 5.4 that any maximal and tn�1, nu-Anosov representation
satisfies property Hn. This means that we can use Theorem 5.3.5 to get more
information on the boundary curve. In this section we prove that if additionally
n � 2, such a representation must also satisfy property H1.

For a triple px, y, zq of distinct points in the circle BΓg, let px, yqz and rx, ysz
be respectively the open and closed arc in the circle BΓg between x and y not
containing z.

Before we prove the key result of this section in Lemma 5.5.4, we need to
find a positive triple of points in BΓg that satisfies the following lemma. Given
a triple px,w, zq in BΓg such that x,w � z we define:

ψpwq � �
w1
ρ ` z2

ρ

�X x2
ρ P Ppx2

ρq.

Lemma 5.5.1. Let ρ : Γg Ñ Spp4,Rq be a t1, 2u-Anosov representation that is
maximal for some orientation of BΓg. There exists a positive triple px, y, zq in
BΓg such that ψpxq � ψpyq and for all w P px, yqz and ψpwq � ψpxq, ψpyq.
Proof. Let z P BΓg be any point. Let ψ0 be the map that associates to an
element w P BΓgztzu the hyperplane w1

ρ ` z2
ρ � R4. Theorem 5.4.2 implies that

ρ satisfies property Hn, and because of Lemma 5.3.8 the map ψ0 is not constant.

In particular we can find some distinct x0, y0 P BΓgztzu such that ψ0px0q �
ψ0py0q. Let x P rx0, y0sz be the unique point such that ψ0pxq � ψ0px0q and for
all w P px, y0qz, ψ0pwq � ψ0pxq. Then define similarly y P rx, y0sz as the unique
point such that ψ0pyq � ψ0py0q and for all w P px, yqz, ψ0pwq � ψ0pyq.

Hence ψ0pxq � ψ0pyq, and for all w P px, yqz, ψ0pwq � ψ0pxq, ψ0pyq. Up to
exchanging x and y we can assume that px, y, zq is a positive triple.

Now that we fixed a triple px, y, zq, the map ψ is defined. For all w � z,
ψ0pwq � ψpwq ` z2

ρ. Hence ψpxq � ψpyq and for all w P px, yqz, ψpwq �
ψpxq, ψpyq. The triple px, y, zq satisfies the desired condition.

Let P,Q be two Lagrangians in R4. The space PpQ�pP qq of positive sym-
metric bilinear forms on P up to a scalar is a projective model of the hyperbolic
plane H2. There is a natural identification ι : PpP q Ñ PpBQ�pP qq. To a line
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ℓ P PpP q we can associate the line ιpℓq of symmetric bilinear elements q P QpP q
for which ℓ is singular (see Definition 5.2.4).

Recall that we use Notation 5.1.4 for the boundary maps of an Anosov
representation. Given a t1, 2u-Anosov representation ρ that satisfies property
H2, the fact that y1

ρ � y2
ρ � y3

ρ implies the following result.

Lemma 5.5.2. Let ρ : Γg Ñ Spp4,Rq be a t1, 2u-Anosov representation that
satisfies property H2. Let px, y, zq P BΓg be distinct points. The point

�
qyx,z

� P
PpQ�px2

ρqq lies in the projective line between the two elements of PpBQ�px2
ρqq:

ιpy3
ρ X x2

ρq , ι
�py1

ρ ` z2
ρq X x2

ρ

�
.

This projective line is illustrated as a dotted line in Figure 5.2. Through the
identification PpQ�px2

ρqq � H2, this line corresponds to a geodesic.

Proof. Let v P y3
ρ X x2

ρ be a non-zero vector. One has uyx,zpvq � v P y2
ρ � y3

ρ and
hence uyx,zpvq P y3

ρ X z2
ρ.

Let u0 P Symx,y be such that Kerpu0q � py1
ρ ` z2

ρq X x2
ρ. Since u0 is sym-

metric, Impu0q is orthogonal with respect to ω to Kerpu0q. Since y1
ρ and y3

ρ are
orthogonal with respect to ω, then Impu0q � y3

ρ X z2
ρ. Hence u0pvq P y3

ρ X z2
ρ,

therefore u0pvq and uyx,zpvq are collinear.
By the part (iv) of Lemma 5.3.4 and since ρ satisfies property H2, y3

ρXx2
ρX

Kerpu0q � t0u, and hence u0pvq � 0. Therefore, for some λ P R, u1pvq � 0
with u1 � uyx,z � λu0. In particular qyx,z � q1 � λq0 where q0, q1 P QpP q are
such that py1

ρ ` z2
ρq X x2

ρ is singular for q0 and y3
ρ X x2

ρ is singular for q1. Hence
q1 P ιpy3

ρ X x2
ρq and q2 P ι

�py1
ρ ` z2

ρq X x2
ρ

�
, which concludes the proof.

�
qyx,z

�

ιpx1
ρq

ιpz3
ρ X x2

ρq

ιpy3
ρ X x2

ρq

ιppy1
ρ ` z2

ρq X x2
ρq

�
qyx,z

�

ιpx1
ρq

ιpz3
ρ X x2

ρq
ιppy1

ρ ` z2
ρq X x2

ρq

ιpy3
ρ X x2

ρq

Figure 5.2: Two possible configurations of the image by ι of the points in (5.4)
in PpQpx2

ρqq.

In order to state Lemma 5.5.4, we need to define a notion of cyclically ori-
ented quadruple on a topological circle.
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Definition 5.5.3. Let V be a vector space of dimension 2. A quadruple pa, b, c, dq
of points in PpV q is cyclically ordered if b and d are in different components of
PpV qzta, cu, or equivalently if the following cross ratio is negative:

crpa, b; c, dq :� a^ b

c^ b
� c^ d

a^ d
. (5.3)

Here a, b, c, d are any non-zero vectors representing the lines a, b, c, d.

The key argument of the proof of Theorem 5.5.5 is the Lemma 5.5.4. We
will use the geometric fact from Lemma 5.4.1 that a curve whose derivative lies
in a cone must remain in that cone.

Lemma 5.5.4. Let ρ : Γg Ñ Spp4,Rq be a t1, 2u-Anosov representation that
satisfies property H2. There exists some triple of distinct points x, y, z P BΓg
such that the quadruple

p z3
ρ X x2

ρ, py1
ρ ` z2

ρq X x2
ρ, y3

ρ X x2
ρ, x1

ρ q (5.4)

is cyclically ordered in Ppx2
ρq.

Figure 5.2 illustrates this Lemma. The depicted filled points are distinct
from the unfilled ones because of Lemma 5.3.4. The 4 points depicted are
cyclically ordered as in (5.4) on the right picture, but not on the left.

Proof. Our goal is to find x, y, z P BΓg such that the 4 points in (5.4) are
cyclically ordered, i.e. are not ordered as in the left part of Figure 5.2. Because
of Theorem 5.4.2, we can choose an orientation of BΓg such that ρ is maximal.
Let px, y, zq be a positive triple in BΓg that satisfies the properties from Lemma
5.5.1. Let ψpwq � �

w1
ρ ` z2

ρ

� X x2
ρ for w � z as defined in Lemma 5.5.1. Note

that ψpxq � x1
ρ.

Let us assume that the four points in (5.4) are not cyclically ordered for the
triple px, y, zq. This means that y3

ρ X x2
ρ and z3

ρ X x2
ρ are in the same connected

component of Ppx2
ρqztψpxq, ψpyqu.

The linear plane in Qpx2
ρq passing through ιpψpxqq and ιpψpyqq cuts the

closure Q�px2
ρq of the cone of scalar products into two closed cones. Let C be

the closure of the one whose projectivization satisfies ιpy3
ρXx2

ρq, ιpz3
ρXx2

ρq R PpCq.
The convex set PpCq is illustrated as the colored region in Figure 5.3. One

has ιpψpxqq, ιpψpyqq P BPpCq. Moreover Lemma 5.5.2 implies that rqyx,zs lies in
the segment between ιpψpyqq and ιpy3

ρ X x2
ρq. As a consequence rqyx,zs R PpCq.

Because of Lemma 5.3.7, there exists a parametrization ϕ : R Ñ BΓgztzu,
such that ϕp0q � x, ϕp1q � y and ξ2

ρ � ϕ is a C1 embedding. Let 9qpt0q be the
derivative at t � t0 of the map:

t ÞÑ qϕptqx,z .

Since px, y, zq is positive, for any t0 P R, 9qpt0q is an element of Q�px2
ρq, whose

projectivization is ιpψpϕpt0qqq.
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�
qyx,z

�

ιpψpxqq

ιpz3
ρ X x2

ρq

ιpy3
ρ X x2

ρq

ιpψpwqq

ιpψpyqq

Figure 5.3: PpQpx2
ρqq and the convex PpCq from the proof of Lemma 5.5.4.

The map g : t ÞÑ ιpψpϕptqqq is continuous from r0, 1s to the circle Ppx2
ρq.

Because px, y, zq was chosen as in Lemma 5.5.2, one has gp0q � gp1q and for
t P p0, 1q, gptq � gp0q, gp1q. Hence gpr0, 1sq is equal to one of the two arcs
joining gp0q and gp1q. Because of Lemma 5.3.4, ιpz3

ρ X x2
ρq is not in the image

of this map.
Therefore gpr0, 1sq � ιpψprx, yszqq is equal to the closed arc in ιpPpx2

ρqq be-
tween ιpψpxqq and ιpψpyqq not containing ιpz3

ρ X x2
ρq. In particular ιpψpwqq P

PpCq for w P rx, ysz. Hence for all t P r0, 1s, 9qptq P C.

Moreover 0 � qxx,z � q
ϕp0q
x,z P C. Hence, since C is a closed cone, by Lemma

5.4.1 qϕptqx,z P C for all t P r0, 1s. But this would imply that qyx,z P C. We proved
already that rqyx,zs R PpCq, so this is a contradiction.

Hence the four points (5.4) are cyclically ordered for this choice of a triple
px, y, zq.

Theorem 5.5.5. Let ρ : Γg Ñ Spp4,Rq be a t1, 2u-Anosov representation that
satisfies property H2. The representation ρ must satisfy property H1.

Proof. Let ρ be a t1, 2u-Anosov representation that satisfies property H2. By
Theorem 5.4.2, ρ is maximal. Because of Lemma 5.5.4, there exist a triple of
distinct points px, y, zq in BΓg such that the quadruple (5.4) is cyclically ordered.
This is for instance the case in the right part of Figure 5.2.

Let pu, v, wq be a triple of distinct points on BΓg that is oriented as px, y, zq.
These two triples are joined by a continuous path in the space of disjoint triples
in BΓg. Along this path, the cross ratio of the points (5.4) is defined and
cannot vanish, because of Lemma 5.3.4. Hence the cross ratio of these points
stays negative. In particular for every triple of distinct points pu, v, wq that
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are oriented in the circle BΓg as px, y, zq, the following 4 points are cyclically
ordered:

p w3
ρ X u2

ρ, pv1
ρ ` w2

ρq X u2
ρ, v3

ρ X u2
ρ, u1

ρ q
In particular w3

ρ X u2
ρ � v3

ρ X u2
ρ, therefore the following sum is direct :

w3
ρ X u2

ρ � v3
ρ X u2

ρ � u0
ρ.

Since this expression is invariant if one exchanges v and w, this holds for
all triple pu, v, wq of distinct points in BΓg. Therefore property H3 holds for ρ.
Finally, because of Proposition 5.3.3, property H1 holds for ρ.

We end this section by presenting a Proposition that describes the behavior
of y ÞÑ rqyx,zs. This proposition is not used in the proof of the main theorem but
it helps to understand Figure 5.2.
Proposition 5.5.6. Let ρ : Γg Ñ Spp4,Rq be a t1, 2u-Anosov representation that
satisfies property H2. Let x, z P BΓg be two distinct points.

(i) The limit in PpQpx2
ρqq of

�
qyx,z

�
is ιpx1

ρq P BPpQ�px2
ρqq when y converges

to x.

(ii) If moreover ρ satisfies property H1, the limit in PpQpx2
ρqq of

�
qyx,z

�
when

y converges to z is ιpz3
ρ X x2

ρq P BPpQ�px2
ρqq.

Because of Theorem 5.5.5, it is actually not necessary to require property
H1 for part (ii).

Proof. Because of Lemma 5.3.7, there is a parametrization ϕ : R Ñ BΓgztzu
such that t ÞÑ q

ϕptq
x,z is a C1 embedding. Let us assume that ϕp0q � x and let

9qpt0q be the derivative of t ÞÑ q
ϕptq
x,z at t � t0. Since qxx,z � 0, one can write for t

close to 0:

qϕptqx,z � t 9qp0q � tϵptq,
with ϵptq Ñ 0 when tÑ 0.
This implies that the limit of Ppqϕptqx,z q when t goes to 0 is equal to Pp 9qq �

ι
�px1

ρ ` z2
ρq X x2

ρ

� � ιpx1
ρq, which proves (i).

Let’s now prove (ii). A representation ρ satisfies property H1, if and only
if it is p1, 2, 3q-hyperconvex in the sense of ([PSW21] Definition 6.1). Hence
([PSW21], Theorem 7.1) implies that the hyperplane y1

ρ ` z2
ρ converges to z3

ρ

when y converges to z.
Therefore r 9qptqs P PpQpx2

ρqq converges to ιpz3
ρ X x2

ρq. Hence for any small
closed cone C in Q�px2

ρq containing ιpz3
ρ X x2

ρq in its interior, there is an affine
cone C0 directed by C such that for any t big enough q

ϕptq
x,z P C0.

Since qyx,z diverges when y Ñ z, then any subsequence of rqyx,zs converges
to a point in PpCq. Hence for t Ñ �8, rqyx,zs converges to ιpz3

ρ X x2
ρq. When

tÑ �8, a similar argument holds.
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5.6 Hyperconvex representations.
Let N ¥ 2 be an integer. Labourie introduced the notion of an hyperconvex
representation.

Definition 5.6.1. A Borel Anosov representation ρ is hyperconvex if for all dis-
tinct x1, � � � , xN P BΓg, the N lines px1q1ρ, px2q1ρ, � � � , pxN q1ρ span the whole vec-
tor space RN .

A Borel Anosov representation ρ is ta, b, cu-hyperconvex if for all x, z, y P BΓg
distinct, then the following sum is direct :

xaρ � ybρ � zcρ.

If ρ is ta, b, cu-hyperconvex for all 1 ¤ a ¤ b ¤ c such that a � b � c ¤ 2n,
then we say that it is 3-hyperconvex.

Remark 5.6.2. A representation is ta, b, cu-hyperconvex in this sense if and only
if it is pa, b,N � cq-hyperconvex in the sense of [PSW21] .

The following theorem of Labourie [Lab06] will enable us to show hypercon-
vexity using property H for any maximal and Borel Anosov representation in
Spp4,Rq.
Theorem 5.6.3 ([Lab06, Lemma 7.1]). Every Borel Anosov representation that
satisfies property H and that is 3-hyperconvex is hyperconvex.

Then the following theorem of Guichard [Gui08] will enable us to show that
hyperconvex representation are Hitchin. This theorem is one part of the char-
acterization of Hitchin representations by the hyperconvexity condition. The
other part was proved by Labourie [Lab06].

Theorem 5.6.4 ([Gui08, Theorem 1]). Any Borel Anosov and hyperconvex rep-
resentation ρ : Γg Ñ SLpN,Rq is Hitchin.

Finally we can prove our main Theorem.

Theorem 5.6.5. Every representation ρ : Γg Ñ Spp4,Rq that is maximal and
Borel Anosov is Hitchin.

Proof. Because of Theorem 5.4.2 and Theorem 5.5.5, the representation ρ must
satisfy property H2, H1, and therefore H3 by Proposition 5.3.3. Hence ρ satisfies
property H.

When n � 2, property H1 is equivalent to t1, 1, 2u-hyperconvexity for a
representation ρ. Moreover if a� b� c � 4 with a, b, c ¥ 1 then ta, b, cu is equal
to t1, 1, 2u. Therefore the representation ρ is 3-hyperconvex. By Theorem 5.6.3,
the representation ρ is hyperconvex, and by Theorem 5.6.4 it is Hitchin.

187



Bibliography

[ADL21] Daniele Alessandrini, Colin Davalo, and Qiongling Li, Projective
structures with (quasi-)hitchin holonomy, 2021.

[Ale19] Daniele Alessandrini, Higgs bundles and geometric structures on
manifolds, SIGMA Symmetry Integrability Geom. Methods Appl.
15 (2019), Paper 039, 32.

[AMTW23] Daniele Alessandrini, Sara Maloni, Nicolas Tholozan, and Anna
Wienhard, Fiber bundles associated with anosov representations.,
2023.

[BCGP�21] Steven B. Bradlow, Brian Collier, Oscar Garcia-Prada, Peter
Gothen, and André Oliveira, A general cayley correspondence and
higher teichmüller spaces, 2021.

[Ben97] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom.
Funct. Anal. 7 (1997), no. 1, 1–47.

[BG09] Jairo Bochi and Nicolas Gourmelon, Some characterizations of
domination, Math. Z. 263 (2009), no. 1, 221–231.

[BGPG12] Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen,
Deformations of maximal representations in Spp4,Rq, Q. J. Math.
63 (2012), no. 4, 795–843.

[BILW05] Marc Burger, Alessandra Iozzi, François Labourie, and Anna
Wienhard, Maximal representations of surface groups: symplectic
Anosov structures, Pure Appl. Math. Q. 1 (2005), no. 3, Special
Issue: In memory of Armand Borel. Part 2, 543–590.

[BIW03] Marc Burger, Alessandra Iozzi, and Anna Wienhard, Surface
group representations with maximal Toledo invariant, Comptes
Rendus Mathematique 336 (2003), no. 5, 387–390.

[BIW11] Marc Burger, Alessandra Iozzi, and Anna Wienhard, Higher te-
ichmüller spaces: from sl(2,r) to other lie groups, 2011, 1004.2894.

188



[BP17] Marc Burger and Maria Beatrice Pozzetti, Maximal represen-
tations, non-Archimedean Siegel spaces, and buildings, Geom.
Topol. 21 (2017), no. 6, 3539–3599.

[BP21] Jonas Beyrer and Beatrice Pozzetti, Positive surface group repre-
sentations in po(p,q), 2021.

[BPS19] Jairo Bochi, Rafael Potrie, and Andrés Sambarino, Anosov repre-
sentations and dominated splittings, J. Eur. Math. Soc. (JEMS)
21 (2019), no. 11, 3343–3414.

[BT17] Jean-Philippe Burelle and Nicolaus Treib, Schottky groups and
maximal representations, Geometriae Dedicata 195 (2017), no. 1,
215–239.

[CG05] Suhyoung Choi and William M. Goldman, The deformation spaces
of convex RP2-structures on 2-orbifolds, Amer. J. Math. 127
(2005), no. 5, 1019–1102.

[Che93] Qing Cheng, Space-like surfaces in an anti-de sitter space, Collo-
quium Mathematicum 66 (1993), 201–208.

[CTT19] Brian Collier, Nicolas Tholozan, and Jérémy Toulisse, The geom-
etry of maximal representations of surface groups into SO0p2, nq,
Duke Math. J. 168 (2019), no. 15, 2873–2949.

[Dav23] Colin Davalo, Nearly geodesic immersions and domains of discon-
tinuity, 2023, 2303.11260.

[Dav24] , Maximal and borel anosov representations into sp(4,r),
Advances in Mathematics 442 (2024), 109578.

[DGK18] Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Convex
cocompact actions in real projective geometry, 2018, 1704.08711.

[DR24] Colin Davalo and Max Riestenberg, Finite-sided dirichlet domains
for anosov representations, 2024.

[Du23] Yukun Du, Geometry of selberg’s bisectors in the symmetric space
slpn,Rq{sopn,Rq, 2023, 2302.00643.

[Ebe96] Patrick B. Eberlein, Geometry of nonpositively curved manifolds,
Chicago Lectures in Mathematics, University of Chicago Press,
Chicago, IL, 1996.

[Eps86] Charles L. Epstein, The hyperbolic Gauss map and quasiconformal
reflections, J. Reine Angew. Math. 372 (1986), 96–135.

[ES22] Christian El Emam and Andrea Seppi, On the gauss map of equiv-
ariant immersions in hyperbolic space, 2022, 2008.07390.

189



[FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of local
systems and higher Teichmüller theory, Publ. Math. Inst. Hautes
Études Sci. (2006), no. 103, 1–211.

[FMS21] C. Fevola, Y. Mandelshtam, and B. Sturmfels, Pencils of quadrics:
old and new, Matematiche (Catania) 76 (2021), no. 2, 319–335.

[Gal05] Światosław R. Gal, On normal subgroups of Coxeter groups gener-
ated by standard parabolic subgroups, Geom. Dedicata 115 (2005),
65–78.

[GGKW17a] François Guéritaud, Olivier Guichard, Fanny Kassel, and Anna
Wienhard, Anosov representations and proper actions, Geom.
Topol. 21 (2017), no. 1, 485–584.

[GGKW17b] , Compactification of certain Clifford-Klein forms of re-
ductive homogeneous spaces, Michigan Math. J. 66 (2017), no. 1,
49–84.

[GKW15] Olivier Guichard, Fanny Kassel, and Anna Wienhard, Tameness
of riemannian locally symmetric spaces arising from anosov rep-
resentations, 2015, 1508.04759.

[GLW21] Olivier Guichard, François Labourie, and Anna Wienhard, Posi-
tivity and representations of surface groups, 2021, 2106.14584.

[Gol80] William Goldman, Discontinuous groups and the euler class.

[Gol22] William M. Goldman, Geometric structures on manifolds, Grad-
uate Studies in Mathematics, vol. 227, American Mathematical
Society, Providence, RI, [2022] ©2022.

[Gro81] M. Gromov, Hyperbolic manifolds, groups and actions, Riemann
surfaces and related topics: Proceedings of the 1978 Stony Brook
Conference (State Univ. New York, Stony Brook, N.Y., 1978),
Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton,
N.J., 1981, pp. 183–213.

[Gui08] Olivier Guichard, Composantes de Hitchin et représentations hy-
perconvexes de groupes de surface, J. Differential Geom. 80 (2008),
no. 3, 391–431.

[GW10] Olivier Guichard and Anna Wienhard, Topological invariants of
Anosov representations, J. Topol. 3 (2010), no. 3, 578–642.

[GW12] , Anosov representations: domains of discontinuity and ap-
plications, Invent. Math. 190 (2012), no. 2, 357–438.

[GW22] , Generalizing Lusztig’s total positivity, preprint, August
2022.

190



[Hel78] Sigurdur Helgason, Differential geometry, Lie groups, and sym-
metric spaces, Pure and Applied Mathematics, vol. 80, Academic
Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-
London, 1978.

[Hit92] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31
(1992), no. 3, 449–473.

[HSWW18] Thomas Haettel, Anna-Sofie Schilling, Cormac Walsh, and Anna
Wienhard, Horofunction compactifications of symmetric spaces,
2018, 1705.05026.

[HW15] Zheng Huang and Biao Wang, Counting minimal surfaces in
quasi-fuchsian three-manifolds, Transactions of the American
Mathematical Society 367 (2015), no. 9, 6063–6083.

[Kap23] Michael Kapovich, Geometric algorithms for discreteness and
faithfulness, Computational aspects of discrete subgroups of lie
groups, Contemp. Math., vol. 783, Amer. Math. Soc., [Provi-
dence], RI, [2023] ©2023, pp. 87–112.

[Kar53] F. I. Karpelevič, Surfaces of transitivity of a semisimple subgroup
of the group of motions of a symmetric space, Doklady Akad. Nauk
SSSR (N.S.) 93 (1953), 401–404.

[KB02] Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic
groups, Combinatorial and geometric group theory (New York,
2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer.
Math. Soc., Providence, RI, 2002, pp. 39–93.

[KL06] Bruce Kleiner and Bernhard Leeb, Rigidity of invariant convex
sets in symmetric spaces, Invent. Math. 163 (2006), no. 3, 657–
676.

[KL18] Michael Kapovich and Bernhard Leeb, Finsler bordifications of
symmetric and certain locally symmetric spaces, Geometry and
Topology 22 (2018), no. 5, 2533–2646.

[Kle93] Felix Klein, Vergleichende Betrachtungen über neuere ge-
ometrische Forschungen, Mathematische Annalen 43 (1893), no. 1,
63–100.

[KLM09] Michael Kapovich, Bernhard Leeb, and John Millson, Convex
functions on symmetric spaces, side lengths of polygons, and the
stability inequalities for weighted configurations at infinity, J. Dif-
ferential Geom 81 (2009), 297–354.

[KLP17] Michael Kapovich, Bernhard Leeb, and Joan Porti, Anosov sub-
groups: dynamical and geometric characterizations, European
Journal of Mathematics 3 (2017), no. 4, 808–898.

191



[KLP18a] , Dynamics on flag manifolds: domains of proper disconti-
nuity and cocompactness, Geom. Topol. 22 (2018), no. 1, 157–234.

[KLP18b] , A Morse lemma for quasigeodesics in symmetric spaces
and Euclidean buildings, Geom. Topol. 22 (2018), no. 7, 3827–
3923.

[Lab06] François Labourie, Anosov flows, surface groups and curves in
projective space, Invent. Math. 165 (2006), no. 1, 51–114.

[Lee08] Jaejeong Lee, Convex fundamental domains for properly convex
real projective structures, 2008.

[Löh17] C. Löh, Geometric group theory: An introduction, Universitext,
Springer International Publishing, 2017.

[LT22] François Labourie and Jérémy Toulisse, Quasicircles and
quasiperiodic surfaces in pseudo-hyperbolic spaces, 2022, 2010.
05704.

[Mar09] Ludovic Marquis, Les pavages en géométrie projective de dimen-
sion 2 et 3, Theses, Université Paris Sud - Paris XI, May 2009.

[Mil58] John Milnor, On the existence of a connection with curvature zero,
Commentarii Mathematici Helvetici 32 (1958), no. 1, 215–223.

[Mos55] G. D. Mostow, Some new decomposition theorems for semi-simple
groups, Mem. Amer. Math. Soc. 14 (1955), 31–54.

[OV90] A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic
groups, Springer Series in Soviet Mathematics, Springer-Verlag,
Berlin, 1990, Translated from the Russian and with a preface by
D. A. Leites.

[Pla95] Pierre Planche, Géométrie de finsler sur les espaces symétriques,
PhD thesis (1995).

[PSW21] Maria Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard,
Conformality for a robust class of non-conformal attractors, J.
Reine Angew. Math. 774 (2021), 1–51.

[Rat19] John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate
Texts in Mathematics, vol. 149, Springer, Cham, [2019] ©2019,
Third edition [of 1299730].

[Rie21] J. Maxwell Riestenberg, A quantified local-to-global principle for
morse quasigeodesics.

[Wal14] Cormac Walsh, The horoboundary and isometry group of
Thurston’s Lipschitz metric, Handbook of Teichmüller theory. Vol.
IV, IRMA Lect. Math. Theor. Phys., vol. 19, Eur. Math. Soc.,
Zürich, 2014, pp. 327–353.

192



[Wie18] Anna Wienhard, An invitation to higher Teichmüller theory, Pro-
ceedings of the International Congress of Mathematicians—Rio de
Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hacken-
sack, NJ, 2018, pp. 1013–1039.

[Wig98] Mark Wiggerman, The fundamental group of a real flag manifold,
Indag. Math. (N.S.) 9 (1998), no. 1, 141–153.

[Woo71] John W. Wood, Bundles with totally disconnected structure group,
Comment. Math. Helv. 46 (1971), 257–273.

[Zim21] Andrew Zimmer, Projective Anosov representations, convex co-
compact actions, and rigidity, J. Differential Geom. 119 (2021),
no. 3, 513–586.

193


	Introduction
	Fuchsian representations and beyond
	Fuchsian representations
	Higher rank Teichmüller spaces

	Geometric structures
	Geometric structures in the sense of Klein
	Parabolic structures

	Fibered geometric structures
	Domains of proper Busemann functions
	Nearly geodesic immersions
	Finite-sided Dirichlet domains

	Maximal representations in Sp(2n,R)
	Fibration by pencils of quadrics
	Maximal and Borel Anosov representations

	Organisation of the thesis

	Nearly geodesic immersions
	Symmetric spaces of non-compact type.
	Symmetric space associated to a semi-simple Lie group.
	Reduced root systems.
	Maximal Flats, visual boundary and parabolic subgroups.
	Cartan and Iwasawa decomposition.
	Examples.
	Weyl orbits of simple roots.

	Representations of hyperbolic groups.
	Gromov hyperbolic groups.
	Anosov representations.

	Busemann functions on symmetric spaces.
	Main properties of Busemann functions.
	Computation of the Hessian.

	Nearly geodesic immersions.
	Curvature bound and Busemann functions.
	Uniformly nearly geodesic immersions.
	Convexity of a Finsler distance.
	Anosov property for nearly Fuchsian representations.
	A sufficient bound for an immersion to be nearly geodesic.

	Pencils of tangent vectors.
	Pencils of quadrics.
	Pencils of tangent vectors in symmetric spaces.

	Fibered domains in flag manifolds.
	A domain associated to a nearly geodesic immersion.
	Totally geodesic immersions that are not nearly geodesic.
	Comparison with metric thickenings.
	Invariance of the topology.

	Applications.
	Totally geodesic immersions.
	Geometric structures on fiber bundles.
	Higher rank Teichmüller spaces.
	Positive representations.
	Hitchin representations in PSL(n,R).
	Maximal representations in PSp(2n,R).
	Positive representations in PSO(p,q).

	Non-empty domains.
	Other applications.


	Dirichlet-Selberg and Finsler fundamental domains
	Dirichlet-Selberg domains
	Selberg's construction
	Infinitely-sided Dirichlet Selberg domains.

	Background on symmetric spaces and Anosov subgroups
	The visual boundary of a symmetric space of non-compact type
	The omega-undistorted condition.
	Illustration of the omega-undistorted condition.
	Let G=PSL(d,R).
	Let G=Sp(6,R).

	Boundary maps and the Morse property.

	Finsler metrics and horofunction compactifications
	A family of Finsler metrics on the symmetric space
	Horofunction compactification
	Satake compactification
	Description of horofunctions

	Domain of proper horofunctions
	Thickenings in flag manifolds and horoboundaries
	Behaviour of horofunctions along geodesic rays
	Characterization of the domain of discontinuity
	Elementary subgroups.

	Dirichlet domains for Finsler metrics
	omega-undistorted implies properly finite-sided
	Properly finite-sided implies undistorted
	Disjoint half-spaces and the omega-undistorted condition

	Locally symmetric spaces
	Restriction of Selberg's construction.
	The general statement
	The general argument.
	Dirichlet-Selberg domains.
	Projective Anosov subgroups.
	omega-undistorted subgroups through a representation.

	Connected limit cone.

	Fibration by pencils of quadrics
	Maximal and Anosov representations.
	Maximal representations.
	Anosov representations.

	An invariant convex domain and its fibrations
	Pencils of quadrics
	Fitting pairs.
	Fitting directions.
	The space of geodesics in H3.
	Fibration of a convex set and globally fitting maps.

	Fitting flows.
	Definition and application of fitting flows.
	Existence of fitting flows

	The Anosov property and fibrations.
	The Anosov property
	Fibered domain of discontinuity
	A quasi-Fuchsian representation with no fitting immersions.

	Fitting maps and maximal representations.
	Definition of maximal pencils.
	Statement of the characterization.
	Construction of a fitting flow

	Fitting immersions and spacelike immersions for PSp(4,R)
	Geometry of the symmetric space.
	Polygons of quadric hypersurfaces

	Maximal and Borel Anosov representations
	Anosov representations.
	Charts of the space of Lagrangians and maximality.
	Differentiability properties of the boundary maps.
	Relation between maximality and property Hn.
	From property H2 to H1 for Sp(4,R).
	Hyperconvex representations.


