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Abstract

Recently, it has been identified that complications following surgery contribute to the
third leading cause of death globally. One of the significant challenges surgeons face is
the visual discrimination of tissue types. Automatic surgical scene segmentation with
hyperspectral imaging (HSI) could offer valuable assistance in this regard. However, the
current state-of-the-art in this field has primarily focused on conventional RGB videos
with limited spectral information, mostly from minimally invasive surgery, while HSI
data and data obtained during open surgery have received little attention. Moreover, work
in this area is constrained by small datasets, studies with only a few subjects or a limited
number of tissue types. While deep learning-based scene segmentation is promising, it
does not come without its own challenges. The generalizability of the models toward
unknown data distributions, the robustness to variations in the surgical scene and the
efficiency of the training process remain open questions. Consequently, the goal of this
thesis is to overcome the problems in this field.

Firstly, we analyze the high-dimensional spectral information to gain a deeper under-
standing of the spectral characteristics and variability of different groups for various
tissue types. Leveraging a tissue atlas of unprecedented size, which is comprised of 9057
images from 46 subjects annotated with 20 classes, we demonstrate that fully automatic
tissue discrimination using a deep neural network is feasible with high accuracy of 95.4 %
(standard deviation (SD) 3.6 %). We employ the principles of linear mixed model analysis
to reveal that the most significant source of variability in spectral data is the tissue under
observation rather than specific acquisition conditions. While recognizing the need
within the HSI community for large open datasets, we make a portion of our data publicly
available.

Secondly, it is necessary to train numerous networks during development to tackle a
segmentation task. However, networks trained on HSI data are slow due to the large
number of spectral channels which leads to data loading bottlenecks resulting in long
training runs, low utilization of the graphics processing unit (GPU) and delayed inference.
To address this, we are conducting a benchmark between various strategies to speed up
the data loading including the introduction of a new concept to optimize the transfer
from the random-access memory (RAM) to the GPU. By combining all strategies, we
achieve a speedup of up to 3.6 and nearly saturated GPU utilization.
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Thirdly, equipped with an optimized training pipeline, we are tackling the task of robust
surgical scene segmentation. Given the predominance of RGB data, we compare the
benefit of HSI data to RGB data and to processed HSI data (e.g., tissue parameters like
perfusion). The community has not converged to the optimal input representation of
HSI data for a neural network which is why we explore the best input representation
considering the spatial granularity of the input data (pixels vs. superpixels vs. patches
vs. images). Through a comprehensive validation study involving 506 images from
20 subjects fully semantically annotated with 19 classes, we discover that HSI data
outperforms RGB and processed HSI data across all spatial granularities. Moreover, the
advantage of HSI increases with decreased spatial granularity. Our image HSI model
consistently ranks first in our study achieving an average dice similarity coefficient (DSC)
of 0.90 (SD 0.04). This segmentation score is on par with the inter-rater variability with
an average DSC of 0.89 (SD 0.07).

Fourthly, even though machine learning models have proven to be powerful, they are also
known to face generalization issues if applied to out-of-distribution (OOD) data. There-
fore, we are conducting a generalizability assessment for the subject (variations induced
by individuals), context (variations due to geometrical changes in the neighborhood)
and species (variations when moving from one species to another) domain shifts. We
find that the subject domain has only a minor impact on both the spectra and the image
level. On the other hand, contextual changes significantly deteriorate the segmentation
performance with a drop of the DSC up to 0.48 (SD 0.38) revealing the struggles of neural
networks with geometrical OOD data. To address this important bottleneck, we propose
a simple, network-independent organ transplantation augmentation achieving a DSC of
up to 0.91 (SD 0.10) bringing the segmentation performance on par with in-distribution
data. This result is backed up through a validation study involving 600 fully semanti-
cally annotated images from 33 subjects and a comparison with other topology-aware
augmentations where our proposed augmentation always ranks first. For the species
domain, we utilize a large human dataset, comprising 777 images from 230 subjects fully
semantically annotated with 16 classes, to demonstrate that segmentation on human data
is more challenging than on porcine data and that the inclusion of porcine data in the
training process offers no direct benefit.

In conclusion, we are the first to present fully semantic scene segmentation networks
operating on HSI data that can differentiate between 19 classes occurring during open
surgery, can be trained efficiently and are robust against contextual domain shifts. Our
results are substantiated by extensive validation studies with several large datasets,
some of which are publicly available as part of our open data efforts. Thereby, we
made a valuable contribution to the broader goal of improving surgical interventions by
leveraging the potential of HSI data with the power of machine learning algorithms. The
code for all the experiments of this thesis as well as pretrained models are available at gi
thub.com/IMSY-DKFZ/htc.
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Zusammenfassung

Komplikationen, die nach chirurgischen Eingriffen auftreten, tragen zur dritthäufigsten
Todesursache weltweit bei. Eine der größten Herausforderungen der Chirurgen ist da-
bei die visuelle Unterscheidung von Gewebetypen. Die automatische Segmentierung
chirurgischer Bilder mittels hyperspektraler Bildgebung (HSI) könnte sich hier als Schlüs-
seltechnologie erweisen. Der aktuelle Stand der Technik konzentriert sich jedoch auf
RGB-Videos, welche nur über begrenzte Spektralinformationen verfügen und zudem
meist aus minimalinvasiven Eingriffen stammen. Dahingegen bekommen HSI-Daten und
Daten aus offenen Eingriffen bisher nur wenig Beachtung. Zudem sind diese Arbeiten
durch die Verwendung von kleinen Datensätzen, eine geringe Probandenzahl oder eine
begrenzte Anzahl von Gewebetypen charakterisiert. Die Segmentierung mit Hilfe von
neuronalen Netzwerken ist vielversprechend, bringt jedoch eigene Herausforderungen
mit sich. So sind die Generalisierbarkeit der Modelle bezüglich unbekannten Datenver-
teilungen, die Robustheit gegenüber Variationen in den Bildern und die Effizienz des
Trainingsprozesses offene Probleme. Ziel dieser Arbeit ist es, diese Probleme zu lösen.

Wir analysieren die hochdimensionalen Spektralinformationen, um ein tieferes Verständ-
nis der spektralen Eigenschaften und der Variabilität verschiedener Gruppen bezüglich
der Gewebetypen zu bekommen. Mit Hilfe eines großen Datensatzes bestehend aus 9057
Bildern (annotiert mit 20 Klassen) von 46 Individuen, zeigen wir, dass eine vollautoma-
tische Gewebeklassifizierung mit Hilfe eines neuronalen Netzwerkes eine Genauigkeit
von 95.4 % (Standardabweichung (SD) 3.6 %) erreicht. Wir nutzen ein lineares gemischtes
Modell, um aufzuzeigen, dass die wichtigste Quelle der Variabilität in den Spektraldaten
auf das Gewebe und nicht auf die Aufnahmebedingungen zurückzuführen ist. Um den
steigenden Bedarf an öffentlichen HSI-Datensätzen gerecht zu werden, machen wir einen
Teil unserer Daten öffentlich zugänglich.

Für die Entwicklung eines Segmentierungsalgorithmus ist es notwendig, zahlreiche Netz-
werke zu trainieren. Dabei sind Netzwerke, die auf HSI-Daten trainiert werden, aufgrund
der hohen Spektraldichte ineffizient, da es zu Engpässen beim Laden der Daten kommt.
Dies macht sich in langen Trainingszeiten, einer geringen Auslastung der Hardware
sowie langen Prediktionszeiten bemerkbar. Um diese Engpässe zu beheben, vergleichen
wir verschiedene Strategien zur Beschleunigung des Ladens der Daten und stellen dabei
auch ein neues Konzept zur Optimierung des Transfers vom Arbeitsspeicher zur Gra-
fikkarte (GPU) vor. Durch die Kombination aller Strategien erreichen wir eine 3.6-fache
Beschleunigung der Trainingszeiten und eine nahezu gesättigte GPU-Auslastung.
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Wir nutzen unsere optimierte Trainingspipeline, um eine robuste Segmentierung chirur-
gischer Szenen zu ermöglichen. Angesichts der Dominanz von RGB-Daten vergleichen
wir den Nutzen von HSI-Daten mit RGB-Daten sowie mit verarbeiteten HSI-Daten (z. B.
Gewebeparameter wie Perfusion). Da es noch unklar ist, wie HSI-Daten optimal von
neuronalen Netzwerken verarbeitet werden können, untersuchen wir verschiedene Einga-
bedarstellungen unter Berücksichtigung der räumlichen Granularität (Pixel vs. Superpixel
vs. Patches vs. Bilder). Im Rahmen einer umfassenden Validierungsstudie mit 506 Bildern
(vollständig semantisch annotiert mit 19 Klassen) von 20 Individuen stellen wir fest, dass
HSI-Daten RGB- und verarbeiteten HSI-Daten in allen räumlichen Granularitäten überle-
gen sind. Dabei vergrößert sich der Vorteil von HSI mit abnehmenden Kontext. Unser
Netzwerk, welches auf HSI-Bildern trainiert wurde, belegt in unserer Studie durchweg
den ersten Platz und erreicht einen durchschnittlichen Dice Ähnlichkeitskoeffizienten
(DSC) von 0.90 (SD 0.04). Dies liegt im Bereich der Variabilität zwischen verschiedenen
Annotatoren mit einem durchschnittlichen DSC von 0.89 (SD 0.07).

Obwohl neuronale Netzwerke sich im Allgemeinen als leistungsfähig erwiesen haben,
sind sie nicht dafür bekannt, gut auf Daten aus unbekannten Verteilungen zu genera-
lisieren. Daher analysieren wir die Einsatzfähigkeit unserer Netzwerke bezüglich drei
verschiedener Bereiche: Variationen durch Individuen, Variationen durch geometrische
Veränderungen und Variationen, die sich durch den Wechsel zwischen Spezien ergeben.
Verschiedene Individuen haben dabei nur einen geringen Einfluss auf die Ergebnisse.
Andererseits verschlechtert sich die Segmentierung erheblich, wenn Netzwerke mit geo-
metrischen Änderungen konfrontiert werden (Abfall des DSC auf bis zu 0.48 (SD 0.38)).
Wir lösen dieses Problem jedoch mit Hilfe einer einfachen und netzwerkunabhängigen
Augmentierung, welche den DSC zurück auf 0.91 (SD 0.10) bringt. Dieses Ergebnis wird
durch eine Validierungsstudie mit 600 vollständig semantisch annotierten Bildern von 33
Individuen untermauert. Dabei landet unsere Augmentierung im Vergleich mit anderen
geometrischen Augmentierungen stets an erster Stelle. Den Wechsel der Spezien analy-
sieren wir mit Hilfe eines großen menschlichen Datensatzes bestehend aus 777 Bildern
von 230 Individuen (vollständig semantisch annotiert mit 16 Klassen). Dabei zeigen wir,
dass die Segmentierung menschlicher Daten schwieriger ist und dass die Einbeziehung
von Tierdaten im Training keinen direkten Vorteil bietet.

Zusammenfassend lässt sich sagen, dass unsere Segmentierungsnetzwerke erfolgreich
mit HSI-Daten aus offenen Operationen umgehen und zwischen 19 Klassen unterscheiden
können. Dabei lassen sich die Netzwerke effizient trainieren und sind robust gegenüber
geometrischen Veränderungen. Unsere Ergebnisse werden dabei durch umfangreiche
Validierungsstudien mit mehreren großen Datensätzen untermauert. Einige Datensätze
haben wir auch der Öffentlichkeit zugänglich gemacht. Durch unsere Studien leisten wir
einen wertvollen Beitrag zu dem allgemeinen Ziel, chirurgische Eingriffe zu verbessern,
indem wir das Potenzial von HSI-Daten mit der Leistungsfähigkeit von neuronalen Netz-
werken verbinden. Der Code für alle Experimente dieser Arbeit sowie die vortrainierten
Modelle sind unter github.com/IMSY-DKFZ/htc frei verfügbar.

viii

https://github.com/IMSY-DKFZ/htc


Acknowledgments

The past years working in the Division of Intelligent Medical Systems (IMSY) have been
a challenging but also a very rewarding time. I am deeply grateful for the opportunity
to work on my Ph.D. thesis in such an environment where I have not only learned a
great deal and improved my skills but also met many wonderful people. I am a computer
scientist from heart to bone and particularly value the intriguing technical challenges
that I encountered while working on my projects. When implementing a solution, I do
not merely stop when something “just works”; my aim is always to write code that is
generalizable, maintainable and user-friendly. Furthermore, I consistently strive to find
the most efficient solution for a problem and I appreciate the freedom to work on these
optimizations and enhance my code quality. Some of these optimizations even made it as
contributions to this thesis.

Numerous people have contributed to my Ph.D. in various ways and I would like to
express my gratitude to all of them, even if they are not explicitly mentioned here.
However, there are three people I would like to particularly acknowledge with honor, as
without their support and contributions, there would be no thesis to read.

First and foremost, I would like to thank my supervisor, Lena Maier-Hein. I am extremely
grateful for your supervision and the opportunity to work on my Ph.D. thesis within your
group. The involvement and dedication you put into your projects, coupled with a close
feedback loop, are truly admirable. You have consistently shown great engagement in my
work while still giving me the freedom to explore my own ideas. Your enthusiasm and
passion for my work have rubbed off on me, particularly during times when I questioned
my own projects. Furthermore, I would like to extend my thanks for all the additional
support you have provided, ranging from our top-notch hardware equipment to the
numerous opportunities to attend international conferences. I did not take it for granted.

The second person I would like to express my gratitude to is Alexander Studier-Fischer,
our main clinical collaborator. For an interdisciplinary topic like mine, it is crucial to
have a strong partnership with the clinical side. You have been the driving force behind
this partnership and I firmly believe that it is only due to our fruitful discussions and
close collaboration that we achieved the results we did. It has always been a pleasure
to see your engagement with our ideas, your openness to new directions and your
willingness to include our feedback into your experiments. Particularly in our field, deep
learning algorithms can be as powerful as they want but without the appropriate data

ix



and annotations, they are useless. Therefore, I want to thank you for providing us with
the necessary foundation that enabled us to build so many projects on top of it (even
more than covered in this thesis).

Last but by no means least, I would like to extend my heartfelt thanks to my colleague
Silvia Seidlitz. We have worked closely together on numerous projects, dealing with many
ups and downs. You possess the strongest critical thinking skills I have ever encountered,
a skill that is of tremendous value in research. Whenever I had new ideas or results to
discuss, I first presented them to you and you consistently provided me with invaluable
feedback and always came up with ideas to make things better. If my Ph.D. journey had
been a computer game, you would have been the wise oracle having all the answers,
even to questions I did not realize I should be asking. Your knowledge and skills are
remarkable and offer unprecedented value to everyone who has the pleasure of working
with you. So, thank you for all the time you have invested; no other person has had a
greater influence on my work than you. I truly appreciate it.

Heidelberg, March 2024
Jan Sellner

x



Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RQ1: Do different organs feature unique spectral fingerprints? . . 6
1.2.2 RQ2: How can we train deep hyperspectral imaging networks

efficiently? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 RQ3: What is the optimal spatial and spectral granularity for

semantic scene segmentation in surgical hyperspectral imaging? 9
1.2.4 RQ4: Which are relevant domain shifts affecting the segmentation

performance and can we compensate for them? . . . . . . . . . . 10
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fundamentals 15
2.1 Medical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Visceral Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Surgical Scene Understanding for Computer- and Robot-Assisted

Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Physical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Light-Tissue Interaction . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Hyperspectral Imaging Hardware . . . . . . . . . . . . . . . . . . 19

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 27
2.3.2 Mixed Precision Training . . . . . . . . . . . . . . . . . . . . . . 33

3 Related Work 47
3.1 Spectral Organ Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Efficient Training of Hyperspectral Segmentation Networks . . . . . . . 50
3.3 Surgical Scene Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



Contents

3.4 Domain Shifts in Surgical Hyperspectral Imaging . . . . . . . . . . . . . 55
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Materials and Methods 59
4.1 Hyperspectral Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . 60
4.1.2 Tissue Atlas Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Semantic Porcine Dataset . . . . . . . . . . . . . . . . . . . . . . 63
4.1.4 Semantic Human Dataset . . . . . . . . . . . . . . . . . . . . . . 66
4.1.5 Dataset Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Spectral Organ Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Efficient Training of Hyperspectral Segmentation Networks . . . . . . . 76
4.4 Surgical Scene Segmentation of Hyperspectral Images . . . . . . . . . . . 81
4.5 Domain Shifts in Surgical Hyperspectral Imaging . . . . . . . . . . . . . 87

5 Experiments and Results 89
5.1 Spectral Organ Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 Analysis of Spectral Organ Fingerprints . . . . . . . . . . . . . . 90
5.1.3 HeiPorSPECTRAL: Open Dataset for Surgical Hyperspectral

Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Efficient Training of Hyperspectral Segmentation Networks . . . . . . . 100

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Benchmarking Data Loading Strategies . . . . . . . . . . . . . . . 102

5.3 Surgical Scene Segmentation of Hyperspectral Images . . . . . . . . . . . 102
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Analysis of Segmentation Networks . . . . . . . . . . . . . . . . 110

5.4 Domain Shifts in Surgical Hyperspectral Imaging . . . . . . . . . . . . . 127
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.2 Subject Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.3 Context Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.4 Species Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Discussion 147
6.1 Spectral Organ Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 Efficient Training of Hyperspectral Segmentation Networks . . . . . . . 148
6.3 Surgical Scene Segmentation of Hyperspectral Images . . . . . . . . . . . 151
6.4 Domain Shifts in Surgical Hyperspectral Imaging . . . . . . . . . . . . . 158
6.5 Technical and Clinical Challenges in Hyperspectral Imaging . . . . . . . 160

6.5.1 Hardware Limitations . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5.2 Minimally Invasive vs. Open Surgery . . . . . . . . . . . . . . . . 163
6.5.3 Pathologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xii



Contents

7 Conclusion 165
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Impact and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A Own Contributions and Publications 171
A.1 Own Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.2 Own Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B Additional Results 179

List of Acronyms 191

List of Figures 193

List of Tables 199

List of Algorithms 201

Bibliography 203

xiii



Contents

xiv



Introduction 1
1.1 Motivation

Recently, complications following surgery have been identified as the third leading cause
of death globally [163]. What is more, a lot of these deaths could have been avoided and are
due to human errors, such as misjudgment or incomplete understanding due to missing
information [67]. Surgeons face a significant challenge in visually differentiating tissues,
including distinguishing between pathologies or critical structures and healthy tissue
[34, 147]. Autonomous robotic surgery and robotic-guided surgery have the potential
to revolutionize the field by enabling safer and more effective surgeries with higher
precision, control and flexibility due to enhanced capabilities like augmented vision [24,
19]. However, for autonomous surgical robots to be successful, one prerequisite for them
is to perceive and understand the surgical scene [85, 140]. Therefore, this thesis represents
a step toward the direction of surgical scene understanding.

Human vision, which is one of the main sources of information for surgeons, has limita-
tions as we humans can only perceive a broad range of the red, green, and blue spectrum.
With this limited information, it can be challenging to distinguish between different tissue
types even for trained surgeons [34, 147]. Conventional camera systems, which are based
on the principle of human vision, also have these limitations. However, hyperspectral
imaging (HSI) is an evolving technology that overcomes these arbitrary restrictions by
capturing a fine-grained spectrum with more spectral channels (e.g., 100 instead of 3). HSI
can even extend the captured spectrum beyond the visible range, providing additional
information that can be exploited for various applications such as tumor detection. An
overview of the basic concept of HSI and some exemplary medical applications can be
seen in Figure 1.1.

The distinct absorbance spectra of Hb (deoxygenated hemoglobin), HbO2 (oxygenated
hemoglobin) and other chromophores enable the estimation of functional tissue parame-
ters, such as oxygenation or perfusion, based on the spectral information (see Section 2.2
for more details). Generally, different tissue types exhibit unique optical properties, pro-
viding additional spectral information. This supplementary information can be utilized

1
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Figure 1.1: Basic concept of hyperspectral imaging (HSI) and exemplary medical applications.
Due to the high dimensionality of the spectral data, machine learning is essential
for interpretation leading to a wide range of medical HSI applications like functional
imaging (e.g., oxygenation and perfusion estimation), tumor detection or surgical
scene segmentation. The latter is the main focus of this thesis. The depicted camera is
the clinically certified system Tivita® Tissue (Diaspective Vision GmbH, Am Salzhaff,
Germany)which can be used for acquiring hyperspectral images. The camera captures
images with a height of 480, a width of 640 and 100 spectral channels in the range from
500 nm to 1000 nm with an approximate spectral resolution of 5 nm. The example
images were taken and adapted from [76] (camera image), [132] (tongue tumor
image), [178] (brain tumor image) and [200] (logo designed by Silvia Seidlitz for the
hyperspectral tissue classification (HTC) framework [200]).

in a variety of applications like hemorrhagic shock diagnosis (e.g., [75, 30, 29]), detection
of pathologies (e.g., [171, 7, 234]) or surgical guidance (e.g., [255, 5, 168]). In this thesis,
we exploit the spectral information to differentiate between various healthy tissue types,
thereby segmenting the surgical scene. While this may not be the primary application of
HSI (compared to functional imaging), the technology’s availability allows for the use
of applications like ours as a byproduct with minimal additional cost if the camera is
already in place. [68, 251, 245]

A significant difference between RGB and HSI lies in our human ability to easily interpret
RGB images while we cannot do the same for HSI data due to the high dimensionality of
the latter. Consequently, it becomes essential to aggregate the spectral information in
such a way that the user can readily discern the relevant information.

2



1.2 Research Questions

Over the past decade, machine learning has made remarkable strides, becoming a ubiq-
uitous presence in many people’s lives due to its diverse applications in our everyday
activities (e.g., via applications like ChatGPT) [181]. It has also become an essential tool
in the medical research field due to its potential to revolutionize healthcare by enhancing
diagnostics and treatment methods [179]. Specifically, the field of surgical data science
has emerged with the goal of collecting, structuring and examining surgical data to
enhance the quality of interventional healthcare. Within this field, semantic scene seg-
mentation is of paramount importance since it plays a critical role in numerous tasks
such as context-aware assistance and surgical robotics. [140]

Machine learning algorithms can operate on high dimensional HSI data and hence serve as
a key enabling technology for the aggregation of spectral information. These algorithms
are universal and can be adapted to a wide range of downstream tasks. Hence, with the
aid of machine learning, we can process all available information while only presenting
surgeons with what they need in the current situation at the appropriate time.

Despite the power of machine learning algorithms, they are not without their challenges,
such as issues with generalization, robustness or efficiency, particularly in the field of
medical imaging [157, 160, 230, 183]. For example, this has become evident during the
COVID-19 pandemic where despite numerous attempts, machine learning algorithms
have not demonstrated substantial advantages [90, 188, 33]. Similar problems have
existed in surgical data science where these issues limit the applicability of machine
learning algorithms to real-world surgeries, for instance, if the training distribution
is not comprehensive enough and misses important aspects like unknown geometries,
surgery-related differences or pathologies present in real-world data [140].

In this thesis, we process HSI data cubes with deep neural networks to predict two-
dimensional segmentation maps of the surgical scene. The output is an image where each
pixel represents the predicted tissue class. Due to the generalization problems mentioned
above, we pay special attention to the generalization capabilities of our networks.

1.2 Research Questions

With the goal of fully automatic surgical scene segmentation with HSI for autonomous
robotic surgery in mind, we break down this complex problem into fundamental research
questions (RQs). As shown in the overview in Figure 1.2, we start with an analysis of
individual spectra and make our dataset publicly available to the HSI community. Then,
we optimize our data loading pipeline for shorter training times before we move on to
the task of semantic scene segmentation of entire HSI images. Further, we challenge
the generalizability capabilities of our networks against important domain shifts that
are dominant in the medical field and improve the performance of our networks on
geometrical out-of-distribution (OOD) scenes.
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Figure 1.2: Tackling research questions (RQs) toward the goal of autonomous robotic surgery.
RQ1: We start with a spectral analysis where we find unique organ fingerprints and
decompose the spectra revealing the proportion of explained variance by each shown
effect. Further, we make our spectral dataset of unprecedented size available to the
hyperspectral imaging (HSI) community. RQ2: For efficient training of our deep
neural networks onHSI data, we optimize our data loading pipeline for better graphics
processing unit (GPU) utilization and shorter training times. Figure continued on
the next page.
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Continued Figure 1.2: Tackling research questions (RQs) toward the goal of autonomous robotic
surgery (continued). RQ3: With the goal of automatic scene segmen-
tation in mind, we find the optimal spatial granularity and compare
different input modalities. RQ4: Heading toward generalizable neural
networks, we show the effect of different domain shifts and present a
solution for maintained segmentation performance against geometrical
out-of-distribution (OOD) data via a surgery-inspired augmentation
scheme. This figure is based on [198, 215, 201, 202, 214, 200]. Surgery
icons are designed by Silvia Seidlitz.
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In the following, we describe each research question which this thesis aims to answer in
detail. We motivate each question, highlight the used materials and give an overview of
the analyses conducted.

1.2.1 RQ1: Do different organs feature unique spectral
fingerprints?

For many applications, it is important to distinguish between different tissue types (e.g.,
detection of pathologies) [68]. While the literature provides initial evidence that certain
tissues exhibit unique spectral fingerprints, the analyses are restricted to a limited number
of classes or small datasets and it is also unknown whether the variability in the spectra
is due to the organ of interest or due to individual acquisition conditions like the camera
angle (cf. Section 3.1).

When a neural network tackles the task of semantic scene segmentation, it typically does
so by utilizing the color information (reflectance values in our case) and the neighboring
relationship of the pixels. The former comprises the spectral and the latter the spatial di-
mension. The spectral information encapsulates the biological tissue properties reflected
in the measured values while the spatial dimension describes the relationship between
neighboring organs. Even though both aspects are arguably crucial for semantic segmen-
tation, our initial focus is to gain a deeper understanding of the spectral characteristics of
various tissues. Therefore, before embarking on full scene segmentation, we concentrate
on the spectral dimension first. Further, we make our spectral dataset publicly available
to the HSI community.

Median Spectra Analysis
To accomplish this, we first take a look at median spectra which are calculated over a
region of pixels from the same tissue by computing themedian for each channel separately.
This process yields a representative spectrum of the tissue region. The use of the median
operation ensures that the resulting spectra are robust to outliers making them less
susceptible to noise in the data. This robustness enables us to compare the spectral
fingerprints of different tissues without too much distraction from spatial relationships.

In our initial analysis, we compare the spectral fingerprints of 20 organ classes, classify
them using a neural network, and decompose the fingerprints into various factors. An
overview of this research question is depicted in Figure 1.3. The first part of our research
question (descriptive analysis and classification) aims to determine whether the spectral
fingerprints are sufficiently unique to differentiate between various tissues. The second
part of our research question (factor decomposition) seeks to enhance our understanding
of the spectral variation present in our data. To achieve this, we examine the variation
explained by different effects in relation to the organ effect, such as the variation of the
camera angle compared to the variation due to different organs.
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Figure 1.3: Overview of our spectral analysis for tissue discrimination (RQ1). We compute
median spectra based on the polygon annotations of the hyperspectral imaging (HSI)
data to describe the spectral characteristics, classify spectra into one of 20 organ
classes and decompose factors of the hierarchical data structure with the help of a
linear mixed model (LMM).

Open Data Efforts
Public datasets hold significant importance for the scientific community. However, the
HSI community has been facing a shortage of large open datasets [66, 97]. For this research
question, we acquired a substantial dataset for our spectral analysis (cf. Section 5.1.2).
Recognizing the need within the community, we decided to make this dataset publicly
available. This allows other members of the community not only to reproduce our results
but also to leverage the data for their own research endeavors.

However, our dataset is of an unprecedented scale comprising 5756 images from 11 subjects
annotated with 20 classes. This presents a unique challenge as the navigation in such a
large dataset can be daunting. Consequently, our efforts center on how we can make our
dataset accessible to the community in a manner that is both easy to comprehend and to
use.

To facilitate this, we provide various visualizations and statistics to aid users in navi-
gating the dataset while offering insights into individual images as well as aggregated
information across the entire dataset. Additionally, we have developed a Python package
that allows users to easily load the HSI data, annotations as well as metadata and also
contains pretrained models from our segmentation work. Further, we conduct a technical
validation of the camera to ensure that our measured spectra are correct and of use to
the community. An overview is shown in Figure 1.4.
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Figure 1.4: Overview of our open data concept for the HeiPorSPECTRAL dataset (part of RQ1).
We release a dataset of unprecedented size comprising 5756 images from 11 subjects
annotated with 20 classes to the hyperspectral imaging (HSI) community. We re-
lease HSI data together with corresponding RGB and tissue parameter images (TPI).
What is more, we release additional materials to work with the data like interactive
visualizations of aggregated data, a Python framework to load and process the data
(github.com/IMSY-DKFZ/htc [200]) and a technical validation confirming the
validity of our used camera.

1.2.2 RQ2: How can we train deep hyperspectral imaging
networks efficiently?

Deep learning is a computationally intensive process making it crucial to optimize the use
of the available hardware resources. Improved graphics processing unit (GPU) utilization
can significantly reduce the cost of training as it necessitates a smaller training budget
in terms of GPU hours for the same task which can also reduce the carbon footprint.
Additionally, it results in shorter developer cycles due to the reduction in training time
which allows for faster responses to results. While numerous strategies exist to improve
the training efficiency of deep neural networks, they are neither designed nor sufficient
for spectral data (cf. Section 3.2).

Our HSI data is large due to the 100 spectral channels per pixel which is why we face
significant data loading challenges during training. This is because a large amount of
data needs to be loaded onto the GPU while the processing itself is relatively quick due
to the small networks. This situation results in suboptimal GPU utilization by default.
Therefore, in this research question, we ask how can we make the data loading pipeline
more efficient to improve the GPU utilization and consequently reduce the training time.
To address this, we conduct a study where we compare various data loading strategies,
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including a new concept to optimize the transfer from the random-access memory (RAM)
to the GPU, and measure the training time per epoch as well as the graphics processing
unit (GPU) utilization. An overview of this research question is shown in Figure 1.5.
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Figure 1.5: Overview of our data loading benchmark on segmentation networks for hyperspectral
imaging (HSI) data (RQ2). Based on the HSI data, we compare different data loading
strategies with respect to the time per training epoch and the graphics processing
unit (GPU) utilization.

1.2.3 RQ3: What is the optimal spatial and spectral granularity for
semantic scene segmentation in surgical hyperspectral
imaging?

The literature employs a variety of different input representations for HSI data in neural
networks and has not yet converged to the optimal input representation for semantic
scene segmentation and no previous work has demonstrated a clear advantage of HSI
data compared to RGB data (cf. Section 3.3).

Therefore, we take on the task of semantic scene segmentation while being equipped with
an optimized training pipeline (cf. Section 5.2) and motivated by our promising results
on the simplified task of median spectra classification (cf. Section 5.1.2). An overview of
this research question is shown in Figure 1.6.

The surgical field is predominantly characterized by the use of RGB images which is
largely due to the availability of RGB data from minimally invasive surgeries [187]. In
contrast, HSI is a relatively new modality with limited experience in the field. This
naturally leads to our first part of the research question: which modality is superior
for semantic scene segmentation and how large are the differences? Additionally, we
compare RGB and HSI data with processed HSI data such as tissue parameter images.
This comparison aims to determine the effectiveness of segmenting tissues based on
functional properties like oxygenation or perfusion.
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Figure 1.6: Overview of our analysis on segmentation networks for hyperspectral imaging (HSI)
data (RQ3). We assess the performance of different modalities (RGB, tissue parameter
images (TPI) and hyperspectral imaging (HSI) with 3, 4 and 100 channels, respec-
tively) and models with varying spatial context (spatial granularities) all to predict a
segmentation mask for each image. The TPI consists of four parameter maps: tissue
oxygen saturation (StO2), near-infrared perfusion index (NPI), tissue water index
(TWI) and tissue hemoglobin index (THI). This figure was adapted from [198].

ForHSI data, the relationship between the spatial and spectral dimensions ismore complex
than for RGB data since the spectra itself already contain rich information. This raises
the question of how much neighborhood should be included for optimal segmentation
performance. Consequently, this leads us to the second part of our research question
which is concerned with the optimal spatial granularity of the input data. For this, we
explore various levels of spatial granularities such as pixels, superpixels, patches, and
images with respect to the segmentation performance and analyze how the segmentation
performance changes under a varying number of training subjects. It is worth noting
that smaller spatial granularities naturally offer more training samples and we wanted
to explore whether this has an impact on the segmentation performance especially in
situations when limited training data is available.

1.2.4 RQ4: Which are relevant domain shifts affecting the
segmentation performance and can we compensate for
them?

Even though it is well-known that neural networks can fail when applied to OOD data
from domains different from the source (training) domain [157, 160], this aspect is largely
unexplored in the field of surgical scene segmentation (cf. Section 3.4). Therefore, the
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impact of important domain shifts for automated surgical scene segmentation with
HSI data is yet to be determined and solutions for relevant domain gaps remain to be
addressed.

In our previous research question about modalities and spatial granularities, we found
that an image HSI model exhibits segmentation performance approaching the level of
inter-rater variability (cf. Section 5.3). However, our dataset might be somewhat simplistic
as it only provides a perspective on specific types of surgeries and solely on porcine data.

Generalization Capabilities of Our Segmentation Networks
For real-world applications, it is crucial that segmentation networks are capable of
generalizing well across various domains. Therefore, this research question is concerned
with the impact of different domain shifts on our HSI data and on the segmentation
performance of our networks when they are evaluated on these new domains. An
overview of this assessment is presented in Figure 1.7.

Each subject introduces its own variation due to factors such as the inherent differences
in tissues, the type of surgery or the operating surgeons. These subject-related differences
may significantly influence the data. Therefore, we explicitly analyze the performance
differences between images of subjects known during training and images from entirely
new subjects. This analysis is conducted both at the spectra and the image level.

A segmentation network’s decision-making process is sensitive to the context of a pixel
since it relies on a series of convolutional operations that operate on the pixel and its
surroundings. The neighborhood of an organ is not static and can vary based on numerous
factors such as situs (organ composition) occlusions, the visibility of other organs or
variations in the surgical procedure. Given this, we apply our networks to datasets with
diverse contextual characteristics to evaluate their performance on geometrical OOD
data. This includes scenarios with missing organs, isolated organs or occlusions.

This thesis represents a preliminary step toward the goal of autonomous robotic surgery
with the task of semantic scene segmentation and we have gained important insights
from our work on animal data. However, the ultimate objective is to ensure that the
segmentation performs effectively on human data as this is the primary focus of any real-
world application. Hence, we present the first steps toward surgical scene segmentation
on human data by applying our networks on a human HSI dataset and evaluating the
performance. Furthermore, we compare several networks with varying inclusions of
porcine and human data during training to assess the impact of the species domain.
This analysis lays the foundation for future research aimed at achieving segmentation
performance on human data that is on par with the segmentation performance on porcine
data.
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Figure 1.7: Overview of our analysis on the effect of different domain shifts (RQ4). We assess our
segmentation networks against three different domain shifts: subject, context and
species domains. For the subject domain, we compare the performance of images of
subjects known during training against images from completely new subjects. For
the context domain, we look at the performance on geometrical out-of-distribution
(OOD) data, i.e., situations where the neighborhood of organs is different than during
training. For the species domain, we apply our segmentation networks on human
data and compare different strategies of including human and porcine data during
training.

Addressing the Geometrical OOD Problem
The context domain plays a significant role and has a substantial impact on the segmenta-
tion quality (cf. Section 5.4.3). Hence, the focus of this research question is also to explore
how we can enhance the performance on geometrical OOD scenes (which are common
in real-world surgeries) to match the performance on in-distribution scenes. To achieve
this, we propose an augmentation method inspired by surgery which forces the network
to learn to detect organs even under unusual neighborhood conditions. We conduct a
comparative study where we evaluate several topology-aware augmentation methods
and compare them to our proposed augmentation method. An overview of this part is
depicted in Figure 1.8.
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Figure 1.8: Overview of our assessment on segmentation networks for geometrical out-of-
distribution (OOD) hyperspectral imaging (HSI) data (part of RQ4). We assess the
generalizability under geometrical domain shifts of seven different context augmen-
tations for RGB and HSI networks. The dataset includes three geometrical OOD
scenarios (e.g., organs in isolation as shown in the example image).

1.3 Outline

This thesis consists of seven chapters. After the current introduction chapter (Chap-
ter 1), Chapter 2 provides the necessary background information on the medical site
for autonomous robotic surgery, our special image modality HSI and an introduction of
selected machine learning techniques used for the deep neural networks we are using in
this thesis for spectra classification and image segmentation.

In Chapter 3, we present the state of the art that is relevant for this thesis, discuss current
limitations and how this thesis fills the gaps. We introduce related work of spectral
organ fingerprints, highlight current approaches to speed up the training of deep neural
networks and discuss work for surgical scene segmentation with RGB and HSI data with
special consideration to the employed data augmentation methods in this field. Further,
we also explore the general, non-medial HSI field.

Our HSI datasets are introduced in Chapter 4 followed by a description of our classification
and segmentation networks. Further, we introduce the technical details of our neural
network optimizations and present our proposed solution to maintain segmentation
performance on geometrical OOD scenes.

In Chapter 5, we present the results of all our studies in the order of the research questions
introduced in Chapter 1. That is, the results for our classification network including
our approach of making our HSI dataset publicly available, the benefit of our training
optimizations, our segmentation results across modalities and spatial granularities, the
effect of different domain shifts including performance improvements on geometrical
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OOD scenes when using our proposed method. Each section includes details on how we
designed and evaluated our experiments.

We talk about specific aspects of our research questions in Chapter 6 and we discuss
the results of this thesis, their limitations and implications in a general context. The
latter includes limitations of our hardware, our surgical setting and an extended view on
non-healthy tissue types (pathologies).

Chapter 7 closes this work with a summary of our findings while referring to the research
questions and gives an outlook on future directions for works that continue the path of
automatic surgical scene segmentation set by this thesis.

The research questions are picked up on in several parts of this thesis. Table 1.1 provides
an overview of the corresponding sections for each research question.

Table 1.1: Outline and corresponding research questions (RQs) of this thesis.

RQ related work methods results discussion

RQ1 Section 3.1 Section 4.2 Section 5.1 Section 6.1
RQ2 Section 3.2 Section 4.3 Section 5.2 Section 6.2
RQ3 Section 3.3 Section 4.4 Section 5.3 Section 6.3
RQ4 Section 3.4 Section 4.5 Section 5.4 Section 6.4

Disclosure of Contributions

The research presented in this thesis is the product of interdisciplinary work
with contributions from various team members and collaborators through data
acquisition and annotation, discussions and analyses. While this thesis was written
independently by myself, it uses the “we” form rather than the “I” form to reflect the
collective efforts of everyone involved. For transparency reasons, Appendix A gives
an overview of my contributions to the research questions and the corresponding
publications.
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Fundamentals 2
This chapter introduces fundamental topics relevant to this thesis. We start with a
brief introduction to visceral surgery and the need for surgical scene understanding
in computer- and robot-assisted surgery in Section 2.1. In Section 2.2, we introduce
the basic concepts of HSI by describing the physical principles of HSI that make it a
valuable modality for medical applications and by providing technical details about the
HSI camera system. Finally, we introduce basic deep learning concepts relevant to this
thesis in Section 2.3, focusing on convolutional neural networks (CNNs) and mixed
precision training.

2.1 Medical Background

This section provides relevant medical background information for this thesis. Sec-
tion 2.1.1 introduces the field of visceral surgery including the associated challenges and
complications in this area. In Section 2.1.2, we discuss the importance of surgical scene
understanding in the context of computer- and robot-assisted surgery and the potential
of HSI in this regard.

2.1.1 Visceral Surgery

Visceral surgery, a specialized branch of general surgery, is concerned with the surgical
treatment of organs of the body’s major cavities, including the thoracic, abdominal and
pelvic cavities. Figure 2.1 illustrates the organs that are used in this thesis. The thoracic
cavity contains organs of the respiratory and cardiovascular system, composed of the
heart and lungs. The abdominal cavity houses organs of the digestive system, such as
stomach, liver, gallbladder, spleen, pancreas and intestines. It also contains the kidneys,
which are part of the urinary system. The pelvic cavity contains the bladder, which is
part of the urinary system, as well as reproductive organs (e.g., uterus) and the distal
portions of the large intestine. [212]

15



2 Fundamentals

lung

bladder

colon

pancreas

peritoneum

stomach

spleen

major vein

subcutaneous fat

omentum

skin

cartilage

bone

heart

small bowel

liver

kidney

kidney with
Gerota’s fascia

muscles

gallbladder

bile fluid

Figure 2.1: Internal organs of the human body. Highlighted organs correspond to the organs
used in this thesis. Image by Mikael Häggström via Wikimedia Commons, Public
Domain [84].

Connective tissues play a crucial role in visceral surgery with various functionality.
The peritoneum, a membrane that lines the abdominal cavity, is an example of such
a connective tissue. The peritoneum contains blood vessels, lymphatics, and nerves
that supply the abdominal organs. It supports and protects the organs and provides a
lubricating fluid to enable the mobility of visceral organs. The omentum, part of the
peritoneum, is a layer of fatty tissue that connects the stomach and duodenum to other
abdominal organs. It is involved in fat deposition, immune response, infection, wound
isolation and structural support. The omentum is often removed during cancer surgeries
to limit the spread of the disease. [130, 53, 20]

Despite significant advances in surgical techniques, complications following visceral
surgery remain a substantial concern, affecting nearly half of the patients who undergo
major abdominal procedures. These postoperative complications are associated with a
significant increase in patient morbidity and mortality [129]. In Germany, the in-hospital
mortality rate following visceral surgery is as high as 2 % [18].

Infections are the most common cause of these postoperative complications with anasto-
motic leakage in gastrointestinal anastomosis and surgical site infections being the most
prevalent. Generally, an increase in the complexity of the performed visceral surgery is
observed to correlate with a rise in the complication rate and mortality. [22]
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The surgeon’s experience and expertise play a crucial role in the surgical outcome [216].
Therefore, there is a pressing need for improved intraoperative guidance and decision-
making to mitigate the risk of complications and improve patient outcomes in visceral
surgery [34]. Ideally, surgeons should make intraoperative decisions based on evidence.
For instance, in the case of anastomotic leakage, it is critical to ensure adequate blood
supply to the anastomosis. However, this is challenging to assess visually and often relies
on the surgeon’s experience and intuition. HSI (introduced in Section 2.2) could bridge
this information gap and provide a more objective assessment of tissue perfusion. The
potential of HSI in intraoperative guidance and decision-making is further discussed in
Section 2.1.2. In this thesis, we address the potential of HSI for robust surgical scene
segmentation, which could significantly contribute to improving surgical outcomes.

2.1.2 Surgical Scene Understanding for Computer- and
Robot-Assisted Surgery

In the dynamic landscape of modern medicine, the convergence of cutting-edge technol-
ogy and surgical practice has led to remarkable advancements. Since their introduction
in the 1980s, minimally invasive surgeries have revolutionized the surgical field, offering
a viable alternative to traditional open surgeries. These procedures, performed through
small incisions or natural body openings, offer numerous benefits. By minimizing the
trauma to the body and lowering the risk of infections, they typically result in less pain, re-
duced patient recovery time, fewer post-operative complications, less visible scarring and
lower surgical costs [152]. As a consequence, minimally invasive surgery is progressively
replacing open surgeries in many fields, including visceral surgery [211, 195]. However,
minimally invasive surgeries also pose unique challenges. For instance, surgeons must
rely on indirect visualization of the surgical site through a camera, which limits depth
perception and eliminates haptic feedback. Moreover, they are tasked with performing
complex procedures in confined spaces with restricted dexterity and field of view [23].
These challenges have encouraged the development of computer- and robot-assisted
surgical systems and emphasize the need for advanced imaging modalities such as HSI
(introduced in Section 2.2).

In recent years, robot-assisted surgery, particularly using the da Vinci system® (Intuitive
Surgical, Inc., Sunnyvale, CA, USA), has emerged as the gold standard for minimally
invasive surgery in various disciplines, including prostatectomy, kidney surgery and
gynecological procedures [26]. Robotic surgery systems provide surgeons with a more
ergonomic workplace and enhanced visualization, dexterity and precision than conven-
tional laparoscopic surgery, ultimately leading to improved patient outcomes [158].

Within the context of laparoscopic and robot-assisted surgery, it is important to com-
prehend the dynamic environment within an operating room during surgery. Surgical
scene understanding addresses this need by providing a comprehensive understanding of
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the surgical scene, including the patient, the surgical instruments, and the surrounding
environment. This understanding is essential for the development of computer-assisted
robotic systems that can seamlessly integrate with the surgical scene while providing
real-time guidance to surgeons leading to enhanced precision and reduced errors. [54]

Surgical scene segmentation is an important part of surgical scene understanding and an
active area of research. It involves the partitioning of the surgical scene into meaningful
regions, such as organs, pathologies and surgical instruments. This segmentation is
essential for the development of intelligent surgical robots since a robot that can accurately
identify organs and pathologies in real-time can provide valuable guidance to the surgeon,
such as augmented reality overlays of critical structures or tracking of tumor resection
margins [119]. However, up to date, robot-assisted and laparoscopic surgeries rely on
conventional imaging modalities, such as RGB cameras, and in consequence, the majority
of research on surgical scene segmentation is focused on RGB video data. HSI holds
the potential to overcome these limitations by non-invasively and continuously offering
detailed spectral information about the tissue. This supplementary information could
be used to more accurately identify organs and pathologies in real-time. [39] A detailed
overview of the state of the art in surgical scene segmentation on both RGB and HSI data
is provided in Section 3.3.

2.2 Physical Background

HSI is an imaging technique that collects find-grained information about light in a dense
spectrum. This is in contrast to RGB cameras that only capture three broad channels: red,
green, and blue. Furthermore, spectral cameras are not limited to the visible spectrum
since they can also capture light in regions of the spectrum that are invisible to the human
eye, such as the near-infrared region. HSI has found applications in numerous fields,
including medical imaging [177]. This section will introduce the underlying principles of
the light-tissue interaction of HSI pertinent to the medical field (Section 2.2.1), as well as
the mechanics of the camera system utilized in this thesis (Section 2.2.2).

2.2.1 Light-Tissue Interaction

The underlying physical principle of HSI which makes it so valuable in the medical
field is the interaction of light with tissue as illustrated in Figure 2.2. Generally, light is
emitted from a source and penetrates the tissue with the penetration depth depending
on the wavelength. As it travels, the light primarily interacts with the tissue through
absorption and scattering. Absorption converts light into heat and reduces its intensity
while scattering alters its direction without modifying its intensity. Both of these effects
influence the path of the light. Ultimately, some light re-emerges at the surface and
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can be measured by the camera. The path taken by the light depends on the molecular
composition of the tissue so that the resulting measured spectrum conveys valuable
information.

For medical applications, the interaction of light with chromophores is of special interest
as it allows the extraction of functional parameters (e.g., oxygenation or perfusion) from
the tissue. This interaction is illustrated in Figure 2.3 using the protein hemoglobin as
an example. Hemoglobin, a primary absorber in organs, is responsible for the oxygen
transport throughout the body. It exists in two main forms: oxygenated (HbO2, oxy-
hemoglobin) and deoxygenated (Hb, deoxyhemoglobin), each with distinct absorbance
patterns. Depending on the wavelength, either oxyhemoglobin or deoxyhemoglobin
absorbs more light, enabling the estimation of tissue oxygenation levels through the
analysis of reflectance measurements. [232, 39]

2.2.2 Hyperspectral Imaging Hardware

Various approaches exist for capturing a full image with spectral information for each
pixel. Examples are point scanning, line scanning or snapshot devices [40, 241]. These
methods each have distinct characteristics, particularly in terms of spectral resolution
and the time required to capture an image [233]. For this thesis, the data was collected
using a line scanning device which will be explained in more detail in the following.

The concept of a line scanning device is depicted in Figure 2.4. It captures an image line
by line obtaining full spectral information for each line. Once a line is completed, the
camera’s motor shifts one position further along the width axis to record the next line.
For the Tivita® Tissue camera system, this process takes approximately seven seconds
for a single image. While the line scanning approach offers high spectral resolution, it
suffers from long acquisition times [233]. Any movement during this acquisition period
can result in motion artifacts in the image which can also be seen in the heart example
images of Figure 4.1 where the heartbeat causes such artifacts.

A spectral camera system is defined by several characteristics, including the sensitive
wavelength range, the number of bands and the width of each band. These details are
represented by the filter response functions which specify the spectral sensitivity (the
wavelengths to which each channel is sensitive) and consequently the amount of light
captured for each wavelength [133, 182]. An example of an RGB and HSI camera system,
featuring 100 channels ranging from 500 nm–1000 nm and a channel width of 5 nm, as
well as the spectral sensitivity of human cone cells is visualized in Figure 2.5. RGB cameras
mimic human vision while both are sensitive to three broad, overlapping wavelength
regions (red, green and blue) whereas the filters of the HSI camera are considerably
narrower and have less overlap. This level of granularity facilitates the capture of subtle
variations caused by chromophores thereby enabling the extraction of the underlying
tissue’s molecular properties.
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Figure 2.2: Simplified concept of the light-tissue interaction. Light is emitted from the light
sources, interacts with the tissue and is collected by a hyperspectral imaging (HSI)
camera. In this example, three photons are emitted per light source, in each case
one for 540 nm, 585 nm and 650 nm. Some photons reappear at the surface upon
multiple scattering events within the tissue and can be measured by the camera
(paths visualized as solid lines) while other photons get absorbed (dashed lines).
Absorption can occur when interacting with vessels while scattering can happen for
interactions with small particles like cells [239]. The probability for scattering and
absorption events and the resulting penetration depth is wavelength-dependent [232,
13, 77].
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(b) Blood vessel absorption example

500 600 700 800 900 1000

wavelength [nm]

0.0025

0.0050

0.0075

0.0100

0.0125

L1
 n

or
m

al
iz

ed
re

fl
ec

ta
nc

e 
[a

.u
.] stomach

(c) Example spectrum

Figure 2.3: Effect of hemoglobin on the spectra. Extinction coefficients for deoxyhemoglobin
(Hb) and oxyhemoglobin (HbO2) (a) affect through the absorption properties of blood
vessels (b) the example spectrum of stomach (c). The absorption of hemoglobin
(main factor of the extinction coefficient [232]) depends on the wavelength and is
either identical for oxygenated and deoxygenated (585 nm), higher for oxygenated
than deoxygenated (685 nm) or lower for oxygenated than deoxygenated (980 nm)
blood vessels. The median spectrum (solid line) and the standard deviation across
subjects (shaded area) for the stomach are similar to Figure 5.2. The data for (a) was
provided through [176].
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Figure 2.4: Line scanning approach for acquiring hyperspectral imaging data as utilized by the
Tivita® Tissue (Diaspective Vision GmbH, Am Salzhaff, Germany) camera [122]. This
is the same camera that was also used to acquire the datasets presented in Section 4.1.
The hyperspectral image is taken line-by-line along the width axis of the image over
acquisition time. For each line, all pixels along the height axis are recorded and
the light is captured for each pixel in 100 channels from 500 nm–1000 nm with an
approximate spectral resolution of 5 nm. After a line is finished, the motor in the
camera moves one position further along the width axis to record the next line until
all 640 lines are finished. This process takes approximately seven seconds for one
image.
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Figure 2.5: Exemplary filter response functions for an RGB (a) and hyperspectral imaging (HSI)
(b) camera system as well as human cone cells. Filter response functions characterize
for each wavelength the spectral sensitivity and hence the amount of captured light.
An RGB camera system has only three filter response functions each with a broad
range and overlapping regions (here from an Apple® iPhone® 12 ProMax camera with
data from [226]) whereas an HSI camera system may have 100 bands of narrow width
and minimal overlap allowing it to capture a much more detailed light spectrum. In
the figure, the filter response functions for an HSI camera system with 100 spectral
channels with a width of 5 nm within the range 500 nm–1000 nm is shown. The data
for the spectral sensitivities of the human cone cells was provided through [213].

23



2 Fundamentals

Several factors inherent in the hardware used can unintentionally influence the recorded
hyperspectral image making the comparison of different images or spectra challenging.
Examples of these factors include sensor noise, variations in sensitivity across different
sensor chips or the employed light source.

Sensor noise can be caused by dark current which refers to measured counts even in
the absence of light. This could occur due to thermal energy and becomes particularly
problematic if the sensor heats up over time, e.g., because multiple consecutive images
are taken.

Pixels located at different spatial locations may vary in their sensitivity to light. This could
potentially be caused by chip errors (stemming from manufacturing errors, impurities,
etc.) or dust and results in some pixels reporting higher intensity than others even if the
incoming light is the same.

The light source is one of the most significant factors since different light sources can have
entirely different spectral characteristics, i.e., the amount of light emitted per wavelength
varies. This is demonstrated in the example spectra for a halogen and light-emitting
diode (LED) light source in Figure 2.6. In this example, near 900 nm, the LED light source
emits significantly more light than the halogen source, leading to more measured counts
and a brighter image, even if the underlying tissue is identical. Furthermore, the light
source may also be spatially inhomogeneous which causes some parts of the image to be
brighter than others. This can be seen in the example white image shown in Figure 2.7.
[186]
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Figure 2.6: Exemplary spectra for an light-emitting diode (LED) and halogen light source. The
spectra were acquired by taking an image of a white surface with the Tivita® Tissue
(uses a halogen light source) and Tivita® 2.0 Surgery Edition (uses an LED light source)
camera (Diaspective Vision GmbH, Am Salzhaff, Germany). The corresponding white
images𝘞(𝘹, 𝘺, 𝜆) − 𝘋(𝘹, 𝘺, 𝜆) have the dark image already subtracted. For each light
source, the median spectrum (solid line) and the standard deviation across all pixels
in the image (shaded area) are shown.
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To mitigate some of these issues, a calibration of the camera system is typically performed
using a dark and a white image [68]. The dark image 𝐷 is captured while all light sources
are turned off so that no light reaches the sensor and we only get a measure of the
intrinsic responses of the sensor. Conversely, the white image 𝑊 is taken with a diffuse
reflecting white surface positioned in front of the camera so that most of the light is
reflected back to the sensor [62]. This white image 𝑊 essentially serves as a fingerprint
of the light source and represents its characteristics. Subsequently, the raw hyperspectral
image 𝐼 (𝑥, 𝑦 , 𝜆), defined by the horizontal position 𝑥, vertical position 𝑦, and wavelength𝜆, is calibrated via: 𝑅(𝑥, 𝑦 , 𝜆) = 𝐼 (𝑥, 𝑦 , 𝜆) − 𝐷(𝑥, 𝑦 , 𝜆)𝑊 (𝑥, 𝑦 , 𝜆) − 𝐷(𝑥, 𝑦 , 𝜆) (2.1)

This calibration step has multiple effects:

1. Since the dark image is subtracted from every image taken by the camera, we
reduce the effect of sensor noise.

2. Different sensitivities of pixels are less problematic because they are also measured
by the white image and normalized by the division.

3. Similarly, we are now less dependent on the lightning conditions since 𝑅(𝑥, 𝑦 , 𝜆)
is an image normalized by the current light source. Likewise, the problem of the
spatial inhomogeneity of the light source is also attenuated.

4. Finally, with this step, we transition from camera counts of the image 𝐼 (𝑥, 𝑦 , 𝜆)
to reflectances 𝑅(𝑥, 𝑦 , 𝜆) since reflectance is defined by the ratio of returned light
compared to all emitted light.

Given that light sources and other factors may vary over time, it is standard practice to
perform this calibration regularly, for instance, before every surgery [35]. An example of
a white and dark image is shown in Figure 2.7. The dark image displays only a few counts,
suggesting minimal sensor noise, although the higher channels in the near-infrared region
are more noise-affected. The white image reveals that the light source is not spatially
homogeneous with much higher intensities observed in the left part of the image.

Not every unintended effect can be mitigated by this calibration step. For instance,
variations in the distance between the light source and the tissue can still lead to different
image intensities with images appearing brighter if the camera is closer to the surface.
The pose of the camera and the light source also play a significant role, especially if the
light is not coming directly from above but from a different measurement angle [41].
Furthermore, the white object used to capture the white image may not be consistent
across measurements (e.g., if there is no agreement for standardized white objects) which
can also impact the reflectances. To account for these effects, additional normalization or
calibration steps, such as the L1 normalization of Equation 4.1 described in Section 4.1,
are necessary. This is also a topic of discussion in the literature. [89, 82, 145, 113]
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Figure 2.7: Exemplary white and darkmeasurements from the Tivita® Tissue camera (Diaspective
Vision GmbH, Am Salzhaff, Germany). The data cube for the dark measurement
has a shape of 480 × 100 (height, channels) since the camera already averages along
the width direction, i.e., 𝘋(𝘹, 𝘺, 𝜆) = 𝘋(𝘺, 𝜆) in this case. The data cube for the
white measurement has a shape of 480 × 640 × 100 (height, width and number of
channels) similar to the normal images and has the dark image already subtracted, i.e.,𝘞(𝘹, 𝘺, 𝜆) − 𝘋(𝘹, 𝘺, 𝜆) is shown. A halogen light source was used for the white image.
Here in the figure, an average of the spectral dimension is shown (see Figure 2.6 for
the corresponding median spectra).

2.3 Deep Learning

This thesis makes heavy use of deep-learning methods which have gained significant
popularity in recent years across various fields, including image recognition, natural
language processing or speech recognition [128]. It is an active research field abundant
with diverse techniques, tricks and concepts [80]. Generally, deep learning is a paradigm
where we train networks with numerous examples to enable them to identify patterns
and relationships within the data. The learned knowledge about the data can then be
used to make predictions (discriminative models) or generate new examples (generative
models). The focus of this thesis is on discriminative models.
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2.3 Deep Learning

There are numerous resources available that provide the necessary components for
training deep neural networks1. Here, we focus on two important aspects especially
relevant in the context of this thesis: CNNs and mixed precision training which are
presented in more detail in Section 2.3.1 and Section 2.3.2, respectively. The latter also
includes an introduction to how floating-point numbers are represented in computers.
Nearly every architecture of this thesis makes use of CNNs and every network trained
for this thesis employs mixed precision training. Further, float16 precision is particularly
relevant for RQ2.

2.3.1 Convolutional Neural Networks

CNNs are at the heart of many deep learning architectures. They are particularly well-
suited for image data and have been used to achieve state-of-the-art performance in
various image-related tasks such as image classification, object detection, or semantic
segmentation [128, 80]. This section provides an introduction to the basic concepts of
CNNs2. We start with the mathematical convolution operation, move on to learnable
weights and then present an example architecture suitable for semantic segmentation of
images.

Convolution Operation
In the computer vision and image processing community, convolutional operations have
been used for a long time [27]. These operations involve the manual definition of filters
(also known as kernels) which can be used for things like blurring an image or detecting
edges. A filter is a matrix that is typically very small (e.g., 3 × 3 or 5 × 5) and is applied to
every position in the image to calculate a weighted sum that constitutes the filter response
for that specific position. Mathematically, we convolve the image 𝐼 = (𝐼11, 𝐼12, …) with a
kernel 𝐾 = (𝐾11, 𝐾12, …) to obtain the response 𝑅 = 𝐼 ∗ 𝐾 at every location (𝑥, 𝑦) of the
image3: 𝑅𝑥,𝑦 = (𝐼 ∗ 𝐾)𝑥,𝑦 = 𝑊∑𝑖=−𝑊 𝐻∑𝑗=−𝐻 𝐼𝑥+𝑖,𝑦+𝑗 ⋅ 𝐾𝑊+𝑖+1,𝐻+𝑗+1 (2.2)

where ∗ denotes the convolution operator. The summation is constrained by 𝑊 ≥ 1 and𝐻 ≥ 1 which denote the half width and half height of the filter (e.g., for a 3 × 3 filter we
have 𝑊 = 𝐻 = ⌊32⌋ = 1)4. Effectively, the kernel is centered at every non-border location
of the image and the weighted sum is calculated for the patch of the image covered by

1For a general introduction, the book Neural Networks and Deep Learning by Nielsen is highly recom-
mended [164].

2This section is based on [199].
3Strictly speaking, this operation is rather a correlation than a convolution since the kernel is not flipped.
However, this distinction does not matter in the context of CNNs since, as we will learn later, the network
uses learnable weights and is free to change the sign of the weights.

4For simplicity, we only consider the case of odd kernel side lengths here.
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the kernel. The responses for the border values cannot be computed directly because the
kernel would be out of bounds on the image. In practice, this can be solved by expanding
the image borders (e.g., by reflecting the values) [27].

As example, consider the following simple image ̂𝐼 and generic 3 × 3 kernel 𝐾
̂𝐼 = (1 2 34 5 67 8 9) and 𝐾 = (𝐾11 𝐾12 𝐾13𝐾21 𝐾22 𝐾23𝐾31 𝐾32 𝐾33) . (2.3)

The response 𝑅̂2,2 for the highlighted center position in ̂𝐼 is then calculated as( ̂𝐼 ∗ 𝐾)2,2 = 1𝐾11 + 2𝐾12 + 3𝐾13 + 4𝐾21 + 5𝐾22 + 6𝐾23 + 7𝐾31 + 8𝐾32 + 9𝐾33.
Given that this operation is independent for each position, it is highly parallelizable
and is especially suited for GPUs. Modern GPUs even have specialized hardware for
convolutions and optimized algorithms for specific use cases [46].

As an example for a real-world kernel used in the wild, consider the following matrices

𝐺𝑥 = (1 0 −12 0 −21 0 −1) and 𝐺𝑦 = ( 1 2 10 0 0−1 −2 −1) (2.4)

which can be used to detect edges in an image. These filters are known as the Sobel
filters and compute finite differences of the image intensity values [209]. They can be
used to approximate the horizontal (𝐺𝑥) and vertical (𝐺𝑦) image gradients. For illustration
purposes, consider another simple image

̃𝐼 = ⎛⎜⎜⎝
0 0 1 30 1 0 00 2 1 00 1 0 3

⎞⎟⎟⎠ (2.5)

where we can calculate the filter response 𝑅̃2,2 = ( ̃𝐼 ∗ 𝐺𝑥)2,2 as(1) ⋅ 0 + (0) ⋅ 0 + (−1) ⋅ 1 +(2) ⋅ 0 + (0) ⋅ 1 + (−2) ⋅ 0 +(1) ⋅ 0 + (0) ⋅ 2 + (−1) ⋅ 1 = −2 = ( ̃𝐼 ∗ 𝐺𝑥)2,2.
Figure 2.8 visualizes 𝑅̃ = ̃𝐼 ∗ 𝐺𝑥 for every location in ̃𝐼 where the kernel can be centered.

An example of the kernels 𝐺𝑥 and 𝐺𝑦 (Equation 2.4) applied to an RGB image is shown
in Figure 2.9. High filter responses occur, for example, between organs, at specular
reflections or at visible vessels.
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Figure 2.8: Simple example of the convolution operation. The example matrix ̃𝘐 of Equation 2.5 is
convolved with the filter 𝘎𝘹 of Equation 2.4. The resulting matrix 𝘙̃ = ̃𝘐 ∗ 𝘎𝘹 is shown
on top and the calculation of the top left element is highlighted (kernel centered at
the white 1). This figure was adapted from [199].
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Figure 2.9: Example of a handcrafted convolution filter. The Sobel filter of Equation 2.4 can
be used to detect edges in an image (image gradients). Here, it is applied to the
example RGB image via Equation 2.2. The RGB image is converted to grayscale
before applying the filters and the image borders are reflected to maintain the image
size. The filter responses of 𝘎𝘹 and𝘎𝘺 are approximations for the horizontal and
vertical gradients.

Learning the Kernel
CNNs essentially adopt the concept of convolution fromEquation 2.2 but replacemanually
defined weights of the kernel with learnable ones. This enables the network to learn and
determine the most suitable filters for the specific task it is designed to perform. The
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filter response 𝑅𝑥,𝑦 for a specific position (𝑥, 𝑦) in the image 𝐼𝑥,𝑦 ,𝑐 is calculated by

𝑅𝑥,𝑦 = 𝑓 ( 𝑊∑𝑖=−𝑊 𝐻∑𝑗=−𝐻 𝐶∑𝑐=1 𝐼𝑥+𝑖,𝑦+𝑗,𝑐 ⋅ 𝛺𝑊+𝑖+1,𝐻+𝑗+1,𝑐 + 𝑏) . (2.6)

This filter multiplies the learnable weight matrix 𝛺 ∈ ℝ(2⋅𝑊+1)×(2⋅𝐻+1)×(𝐶) with the values
of the input image 𝐼. In addition to Equation 2.2, we also consider the channel dimension𝑐 of the input with corresponding weights (with 𝐶 denoting the total number of channels).
However, Equation 2.6 does not slide over the channel dimension but always consider
all channels at once56. Further, we apply an activation function 𝑓 (𝑥) to introduce non-
linearity (detailed below) and add a learnable bias 𝑏 ∈ ℝ to the weighted sum. The bias
allows the network to learn an offset of the features which effectively shifts the activation
function to the left or right. The principle of the convolution operation is visualized in
Figure 2.10.

channels

Figure 2.10: Example of the convolution operation for a convolutional neural network (CNN).
The convolution operation as defined by Equation 2.6 is applied to the weights and
the input image by sliding the weights over the image and computing a weighted
sum between the weights and the respective input (patch of the image) for each
location. Every time this operation is performed, one output value is created.
Sliding only happens along the height and width dimension of the image and in
each position, the values from all channels are used.

In a convolutional layer, multiple filters are used with the weights being initialized
randomly so that every filter can learn different features allowing the network to identify

5In this regard, the channel dimension is more similar to a fully connected layer where every input is
connected to its own weight.

6It is actually possible to also slide over the channel dimension. In this case, we would have a 3D instead
of a 2D convolution.
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various patterns in the data. In a deep neural network, we stack multiple of these
convolutional layers together, enabling the network to learn more and more abstract
features. Each filter always has access to all the channels of the previous layer. For
the first convolutional layer, this implies access to all channels of the input image. For
subsequent layers, this means access to all filter responses from the previous layer.

Activation Functions𝑓 (𝑥) of Equation 2.6 represents the activation function which transforms the learned
features in a non-linear manner. This function enables the network to learn non-linearly
separable target functions, thereby empowering the network to tackle complex tasks.
There exists a variety of different activation functions with a few examples being shown
in Figure 2.11 and listed below:

1. Tangens hyperbolicus: tanh(𝑥) is a popular choice if the output needs to be con-
strained to [−1; 1] but is a suboptimal choice for all layers as it can lead to vanishing
gradients during training [164].

2. (Leaky) rectified linear unit: ReLU(𝑥) [2] and LeakyReLU𝛼(𝑥) [137] are popular
choices because they are computationally efficient and are less prone to vanishing
gradients. The main advantage of LeakyReLU𝛼(𝑥) over ReLU(𝑥) is that the former
does not suffer from dying neurons (neurons which only output zero) [164].

3. Exponential linear unit: ELU𝛼 is a smooth version of LeakyReLU𝛼(𝑥) and has been
shown to perform better in certain cases [42].

Pooling Layers
CNNs often also incorporate pooling layers that do not contain learnable weights but
instead perform a predefined operation on the input. The primary objective of these
pooling layers is to reduce the spatial dimensions of the input. This reduction improves
computational efficiency, decreases the number of weights in the network and increases
the network’s robustness to minor translations in the input [164]. A common operation in
this context is max-pooling which selects the maximum value from a patch of the input,
thereby reducing the spatial dimensions. For instance, when we apply max-pooling via a2 × 2 patch on the example image ̂𝐼 from Equation 2.3, we obtain the pooled image

maxpool2×2( ̂𝐼 ) = (max(1, 2, 4, 5) max(2, 3, 5, 6)
max(4, 5, 7, 8) max(5, 6, 8, 9)) = (5 68 9) .

In this regard, we keep only the most significant feature within a specific region of the
input and the output value denotes whether this feature was present or not. As the precise
location of the feature is not of importance, we enhance the translational invariance of
the network. [164]
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tangens hyperbolicus (tanh) leaky rectified linear unit (LeakyReLU)

exponential linear unit (ELU)rectified linear unit (ReLU)

Figure 2.11: Example of activation functions. Four different activation functions, namely, tangens
hyperbolicus (tanh), leaky rectified linear unit (LeakyReLU) [137], rectified linear
unit (ReLU) [2] and exponential linear unit (ELU) [42] are shown as a function of
the input 𝘹. 𝛼 is a parameter to control the scaling for input 𝘹 < 0. In this example,𝛼 = 1 for ELU and 𝛼 = 0.1 for LeakyReLU.

Example Segmentation Architecture
CNNs serve as the foundational building blocks of several neural network architectures.
When combined in a specific manner, they can form powerful architectures tailored for
specific tasks. One such architecture is the U-Net which is particularly well-suited for
semantic segmentation tasks [189]. As depicted in Figure 2.12, the U-Net consists of a U-
shaped structure that condenses the input features toward a bottleneck and subsequently
expands it again to produce the target output (e.g., a segmentation mask). Given the
limited size of the bottleneck, the network has to learn abstract high-level features to
generate the output again. The U-Net is similar to an autoencoder [131] but uses skip
connections to ensure the network has access to the corresponding features from the
downward pass of the same hierarchical layer. This enables the network to reconstruct
the output with greater precision. The U-Net serves as the fundamental architecture for
the networks utilized in this thesis.

The U-Net employs upscaling layers to scale the bottleneck features (e.g., 15 × 20) back
to the original input size (e.g., 480 × 640). Within these layers, we also concatenate
the features from the downward pass at the same hierarchical level (skip connection).
Figure 2.13 shows how the upscaling layer works. Essentially, we interpolate (upsample)
the features from the previous layer to match the spatial shape of the features coming
from the skip connection. Subsequently, we concatenate these features and apply a
convolutional layer to learn how to effectively combine them [166].
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Figure 2.12: Overview of the U-Net architecture [189]. During the downward pass, the input is
downscaled by a series of convolutional and pooling layers toward the bottleneck
of the architecture. Then, the condensed feature representation of the bottleneck
is expanded again during the upward pass by a series of convolutional and upscal-
ing layers. At each level of the upward pass, the corresponding output from the
downward pass from the same hierarchical layer is combined with the upward
features (skip connections). The number of channels of the input usually depends
on the modality (e.g., 3 for RGB or 100 for hyperspectral imaging) and the number
of channels in the output depends usually on the number of classes.

2.3.2 Mixed Precision Training

Efficient training of neural networks is crucial for several reasons: it enables faster
developer cycles, optimizes hardware usage (smaller training budget and a reduced carbon
footprint) and accelerates the network’s response time which is particularly important
during inference. Per default, operations on the GPU are performed in float32 precision
but float16 precision offers advantages in terms of speed and memory usage. However,
some operations may necessitate higher precision to avoid numerical instabilities so that
training entirely with float16 could result in networks with significantly lower accuracy.

The basic idea of mixed precision training is to perform as many operations as possible
in float16 precision while resorting to float32 precision only for operations that require it
[150]. Mixed precision training is particularly beneficial for GPUs equipped with Tensor
Cores which are special units on the chip optimized to perform matrix multiplications
with built-in mixed-precision support [49].

This section introduces the basic principles of mixed precision training. We begin with
the fundamentals of how floating-point numbers are represented in computers, followed
by the concept of autocasting and the need for loss scaling. Finally, we conclude with a
comparison of networks trained under different precision settings.
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Figure 2.13: Functional principle of the upscaling layer. Input to the upscaling layer is the output
from the previous level and the skip connection, i.e., the features from the downward
pass on the same hierarchical level. Then, the features from the previous level are
interpolated (upsampled), concatenated with the skip features and then combined
in a convolutional layer before they are passed on to the next level. The shape
information [B,C,H,W] denotes the batch, channel, height and width dimensions,
respectively. The example numbers are from the first decoding step after the
bottleneck. The original image input shape to the U-Net was [5, 100, 480, 640] (100
spectral channels as input) and the target shape of the output is [5, 19, 480, 640]
(segmentation of 19 different classes).

Floating-Point Number Representation
The representation of floating-point numbers in the binary system is defined by the IEEE
754 standard [98]. The general idea is to represent these numbers in their normalized form
with only one integer in front of the comma, e.g., 1.625 ⋅ 101 instead of 16.25. Essentially,
every number can be represented in this form; we simply need to shift the comma either to
the left or the right so that only one integer remains in front of the comma. In the binary
system (the notation (𝑥)2 is used to refer to a number in the binary system instead of the
common decimal system), this would translate to (1.000001)2 ⋅ 24 instead of (10000.01)2
where (10000)2 represents 1 ⋅ 24 = 16 and (01)2 represents 0 ⋅ 2−1 + 1 ⋅ 2−2 = 0.25.
In total, a decimal number 𝑥 is represented as𝑥 = (−1)(𝑆)2 ⋅ 2(𝐸)2−𝑏 ⋅ (1.𝑀)2 (2.7)

with the sign 𝑆, the mantissa 𝑀 and the exponent 𝐸. Figure 2.14 (a) shows an example for
representations of approximations of the number 𝜋 with float16 and float32 precision.

34



2.3 Deep Learning

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1
2⁻¹2⁰2⁰ 2¹2²2³2⁴2⁵2⁶2⁷ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷ 2⁻⁸ 2⁻⁹ 2⁻¹⁰ 2⁻¹¹ 2⁻¹² 2⁻¹³ 2⁻¹⁴ 2⁻¹⁵ 2⁻¹⁶ 2⁻¹⁷ 2⁻¹⁸ 2⁻¹⁹ 2⁻²⁰ 2⁻²¹2⁻²² 2⁻²³

[2¹²⁸⁻¹²⁷ = 2¹] [1 + 2⁻¹ + 2⁻⁴ + 2⁻⁷ + 2⁻¹² + 2⁻¹³ + 2⁻¹⁴ + 2⁻¹⁵ + 2⁻¹⁶ + 2⁻¹⁷ + 2⁻¹⁹ + 2⁻²² + 2⁻²³ = 1.5707964][(-1)⁰ = 1] = 3.1415927⋅⋅

sign (S) exponent (E) mantissa (M)

0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0
2⁻⁴2⁻³2⁰ 2⁻²2⁻¹2⁰2¹2²2³2⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷ 2⁻⁸ 2⁻⁹ 2⁻¹⁰

[2¹⁶⁻¹⁵ = 2¹] [1 + 2⁻¹ + 2⁻⁴ + 2⁻⁷ = 1.571][(-1)⁰ = 1] = 3.141

b₀b₉b₁₀b₁₄b₁₅

b₀b₂₂b₂₃b₃₀b₃₁

⋅⋅

sign (S)exponent (E) mantissa (M)

float16

float32

(a) Normal number

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2⁻¹2⁰2⁰ 2¹2²2³2⁴2⁵2⁶2⁷ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷ 2⁻⁸ 2⁻⁹ 2⁻¹⁰ 2⁻¹¹ 2⁻¹² 2⁻¹³ 2⁻¹⁴ 2⁻¹⁵ 2⁻¹⁶ 2⁻¹⁷ 2⁻¹⁸ 2⁻¹⁹ 2⁻²⁰ 2⁻²¹2⁻²² 2⁻²³

[2⁻¹²⁶] [2⁻²³][(-1)⁰ = 1] = 1.40 ⋅ 10⁻⁴⁵

sign (S) exponent (E) mantissa (M)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2⁻⁴2⁻³2⁰ 2⁻²2⁻¹2⁰2¹2²2³2⁴ 2⁻⁵ 2⁻⁶ 2⁻⁷ 2⁻⁸ 2⁻⁹ 2⁻¹⁰

[2⁻¹⁴] [2⁻¹⁰][(-1)⁰ = 1] = 5.96 ⋅ 10⁻⁸⋅

⋅⋅

⋅

sign (S)exponent (E) mantissa (M)

float16

float32

b₀b₉b₁₀b₁₄b₁₅

b₀b₂₂b₂₃b₃₀b₃₁

(b) Subnormal number

Figure 2.14: Example of binary floating-point computer number formats for float16 and float32
precisions. Normal (a) and subnormal (b) numbers are represented by the cor-
responding bits 𝘣𝘪 for the sign 𝘚, exponent 𝘌 and mantissa 𝘔 (cf. Equation 2.11).
The sign defines whether the resulting number will be positive or negative. The
exponent spans a window between two exponential numbers (e.g., [23; 24[), is biased
to represent positive and negative ranges and can be thought of as shifting the
comma of the binary number either to the left or to the right. The mantissa defines
the offset inside the window and encodes the accuracy of the number. Subnormal
numbers (Equation 2.10) follow a special definition to represent small values close to
0.0 which are outside the range of normal numbers [192]. Floating-point numbers
are defined according to the IEEE 754 standard [98].
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Using float16 as example, the bits 𝑏14, 𝑏13, … , 𝑏10 of the exponent 𝐸 represent a positive
integer binary number (𝐸)2 = 𝑒−1∑𝑖=0 𝑏10+𝑖 ⋅ 2𝑖 (2.8)

with 𝑒 denoting the number of bits reserved for the exponent (𝑒 = 5 in case of float16). In
order to allow shifts of the comma to the left, a bias 𝑏 = 2𝑒−1 − 1 is subtracted from the
exponent in Equation 2.7.

Using again float16 as example, the bits 𝑏9, 𝑏8, … , 𝑏0 of the mantissa 𝑀 store the accuracy
of the number (𝑀)2 = 𝑚∑𝑖=1 𝑏𝑚−𝑖 ⋅ 2−𝑖 (2.9)

with 𝑚 denoting the number of bits reserved for the mantissa (𝑚 = 10 in case of float16).
Basically, every decimal number 𝑥 is an approximation determined by this sum. The
accuracy increases as more bits are being used so that (potentially) more summands can
be added. Please note that the integer number in front of the comma is not stored in the
mantissa but is implicitly assumed to be 1 because this bit would be set for every normal
number 𝑥 ≥ 1. Numbers 𝑥 < 1 can still be represented by shifting the comma to the left.

Equation 2.7 has the disadvantage that 0.0 cannot be represented exactly due to the
always present 1 in front of the comma. To address this issue, the IEEE 754 standard
introduced the concept of subnormal numbers:𝑥 = (−1)(𝑆)2 ⋅ 21−𝑏 ⋅ (0.𝑀)2. (2.10)

These numbers use a 0 instead of a 1 in front of the comma. Subnormal numbers are
specifically defined to have only zero bits in the exponent ((𝐸)2 = 0). This allows us to
represent (0.0) as a number with also only zero bits in the mantissa (or (-0.0) if the sign
bit is set). Subnormal numbers are always smaller than normal numbers7 and are useful
to represent small values close to 0.0 which are outside the range of normal numbers8.
Figure 2.14 (b) shows an example for the representation of subnormal numbers with
float16 and float32 precisions.

7The smallest normal number uses an exponent of (𝐸)2 = 1 so that we get:|(−1)(𝑆)2 ⋅ 21−𝑏 ⋅ (0.𝑀)2| < |(−1)(𝑆)2 ⋅ 2(𝐸)2−𝑏 ⋅ (1.𝑀)2|21−𝑏 ⋅ (0.𝑀)2 < 21−𝑏 ⋅ (1.𝑀)2(0.𝑀)2 < (1.𝑀)2
8For float16, the smallest normal number is(0000 0100 0000 0000)2 = 2−14 ⋅ 1 = 2−14.
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When working with floating-point numbers, it may happen that inf or nan values occur
and it is necessary to have a representation for these numbers. inf values are represented
by an exponent composed entirely of 1-bits and a mantissa composed entirely of 0-bits.
nan values are represented by an exponent with only 1-bits and a non-zero mantissa.

In total, we can represent a decimal number 𝑥 with the bits 𝑏0, 𝑏1, … , as
𝑥 = ⎧⎪⎨⎪⎩

(−1)(𝑆)2 ⋅ 2(𝐸)2−𝑏 ⋅ (1.0 + ∑𝑚𝑖=1 𝑏𝑚−𝑖 ⋅ 2−𝑖) for normal numbers(−1)(𝑆)2 ⋅ 21−𝑏 ⋅ ∑𝑚𝑖=1 𝑏𝑚−𝑖 ⋅ 2−𝑖 for (𝐸)2 = 0(−1)(𝑆)2 ⋅ ∞ for (𝐸)2 = 2𝘦 − 1 and (𝑀)2 = 0
nan for (𝐸)2 = 2𝘦 − 1 and (𝑀)2 ≠ 0 (2.11)

The number of bits allocated for the mantissa and the exponent as well as the bias
employed are dependent on the precision. Additionally to the examples of Figure 2.14,
Table 2.1 summarizes some basic information about these precisions.

Table 2.1: Basic information about binary floating-point numbers with float16 and float32 preci-
sions (see Figure 2.14 for an example). The number of significant digits denotes how
many decimal digits can be represented exactly and is based on the number of bits
in the mantissa 𝘮 via log10(2𝘮+1) [69]. The +1 originates from the implicit bit of the
mantissa which effectively increases the number of accuracy bits by 1. Significant
digits are not meant to be interpreted literally (it is hard to write a number with 3.31
digits) but are related to the relative error of the decimal number [36].

float16 float32

# exponent bits 𝘦 5 8
# mantissa bits 𝘮 10 23
bias 𝘣 15 127
# finite values 63 489 4 278 190 081
minimum −65 504 −3.40 ⋅ 1038
maximum 65 504 3.40 ⋅ 1038
smallest normal 2−14 = 6.10 ⋅ 10−05 2−126 = 1.18 ⋅ 10−38
smallest subnormal 2−24 = 5.96 ⋅ 10−08 2−149 = 1.40 ⋅ 10−45
significant digits 3.31 7.22

Due to the exponential nature of Equation 2.11, a broad range of numbers can be repre-
sented with the accuracy being constrained by the mantissa. Essentially, the exponent
defines a window between two consecutive exponential numbers (e.g., [23; 24[) and the
mantissa determines the offset within that window [191]. For the example of 16.25, where
we need only one bit in the mantissa to be set to 1 (because 0.25 = (0.01)2), we are in the
range [24; 25[ = [16; 32[ so we can set the exponent to 24 and get a number 24 ⋅(1.𝑀)2 ≥ 16.
Next, we need to identify which bit 𝑗 we need to set so that 24 ⋅ 2−𝑗 = 2−2 = 0.25. This
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leads us to the bit 𝑗 = 6 so that we need to set the 6th bit to 1, i.e., 𝑀 = (0.000001)2.
For other numbers that are not as easily represented in the binary system, the process
becomes more complex but the principle remains the same: first define a window with
the help of the exponent, then the offset via the mantissa.

It is also worth noting that not every decimal number can be represented exactly in the
binary system. For example, 0.1 can only be approximated as (using float16 precision)(0010 1110 0110 0110)2 = 2−4 ⋅ (1 + 2−1 + 2−4 + 2−5 + 2−8 + 2−9) = 8198192 ≈ 0.09998.

(2.12)
The precisions float16 and float32 primarily differ in two aspects: the range of numbers
that can be represented and the accuracy of these numbers. Figure 2.15 illustrates the
range as a histogram of every possible finite number for both precisions. Firstly, it is
evident that the range of float32 is significantly larger than that of float16. Secondly, the
distribution of values across the range of possible numbers is not uniform: there are more
numbers around 0.0 (the range that includes subnormal numbers) and fewer numbers
at the ends of the range spectrum. This is because for larger values of the exponent,
despite the increase in window size, we still have the same number of bits in the mantissa
to represent offsets within that window. As a result, the same number of offset values
are spread across a wider window range. For instance, with float16 precision, we can
represent 210 = 1024 values within the range [21; 22[ = [2; 4[ but also only 1024 values
within the range [215; 216[ = [32768; 65536[.
Figure 2.16 provides insights into the accuracy of float16 and float32 numbers in relation
to various decimal scale levels. For float16, we can see that the relative errors start to
increase at the 10−3 scale level and become even more pronounced at the 10−4 scale level.
A similar trend occurs for float32 at the 10−7 and 10−8 scale levels. This is effectively a
visualization of the number of significant digits per precision (see Table 2.1).

Autocasting
The float32 precision offers superior accuracy and can represent a wider range of values
compared to float16. However, float16 requires less memory storage to represent values,
demands less memory bandwidth to transfer values and operations with this data type
are faster to compute [51]. The basic idea of autocasting is to utilize float16 whenever
feasible and resort to float32 only if necessary. Ideally, this process occurs automatically,
eliminating the need for manual user interventions. This is achieved by defining for each
operation whether it is usually safe to execute it in float16 precision or not. This concept
is implemented through autocasting regions as depicted in Figure 2.17.

If the operation is considered to be safe in float16, the inputs are cast to float16 and the
result will also be in float16. Conversely, if the operation is not assumed to be numerically
stable in float16, the inputs are cast to float32 and the result will be in float32 as well.
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Figure 2.15: Range of float16 and float32 numbers. For each precision, a histogram based on
all finite values (i.e., excluding inf nor nan) which can be represented is shown
using 101 equally-sized bins (101 instead of 100 for symmetry of positive and
negative values). Please note the logarithmic scale on the 𝘺-axis. There are 63 489
(of 65 536 = 216 total values) and 4 278 190 081 (of 4 294 967 296 = 232 total values)
finite values for float16 and float32, respectively.

A prominent example of an operation that is generally safe to perform in float16 is matrix
multiplication which is particularly relevant for CNNs because they make heavy use of
this operation. On the other side, operations that pose a risk of propagating errors from
multiple values, such as summation, are typically not safe to perform in float16 precision
and are performed in float32 instead.

Loss Scaling
In principle, enabling autocasting is all that is required to train neural networks with
mixed precision. However, the gradients computed during backpropagation pose a
potential challenge because they may be small and either fall outside the representable
range of float16 or cannot be represented with sufficient accuracy. This problem is
illustrated in Figure 2.18 which displays a histogram of the gradients from a neural
network training with float32 precision. We can see that if we had opted for float16
precision instead, most of the gradients would have been reduced to zero as they are too
small to be represented with float16.
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Figure 2.16: Accuracy of float16 and float32 numbers. For each precision, the distribution of
relative errors from random numbers is shown against various scale levels. Using the
float16 precision as an example, the relative error |float16(𝘹) − 𝘹|/𝘴 is calculated for
each random number 𝘹 and scale level 𝘴, i.e., by casting the values to the respective
precision and comparing it with various scale levels (the random numbers 𝑥 and the
scale levels 𝑠 are represented as float64 values to serve as reference with sufficient
precision). Scale levels smaller than 10−4 are not shown for the float16 precision to
improve clarity because the relative errors would become too large. Each boxplot
shows the interquartile range (IQR) with the median (solid line) and mean (dotted
line). The whiskers extend up to 1.5 times of the IQR. Outliers are not shown for
brevity. For each boxplot, 1 000 000 random numbers from the range [0; 1[ were
generated (this includes the usage of subnormal numbers).

Keep in mind that the smallest representable number 𝑥 ≠ 0.0 in float16 is(0000 0000 0000 0001)2 = 2−14 ⋅ 2−10 = 2−24 (2.13)

and anything smaller than that will be rounded to 0.0. What is more, even for numbers|< 2−14| (subnormal numbers) the available values decrease rapidly which limits the
accuracy of gradients in this range.

However, float16 is not inherently incapable of representing the range of gradient val-
ues. As indicated by Figure 2.18, if the gradients were shifted to the right toward the
representable range of float16, everything would work fine. This is the core idea behind
loss scaling: before backpropagation, we scale the loss which in turn scales the resulting
gradients and shifts them into the representable range of float16. Prior to applying the
weight updates, we reverse the scaling to ensure the weights are updated with the correct
values. After this unscaling, it is possible to carry out gradient-related operations, such as
gradient clipping, which do not demand further adjustments if applied after the unscaling.
The concept of training with loss scaling is illustrated in Figure 2.19.
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Figure 2.17: Basic principle of autocasting. If an operation is considered numerically stable in
float16 (e.g., matrix multiplication), autocasting casts the inputs to float16 and the
result will be float16 as well. Other operations (like summation of values) are known
to require higher precision and hence cast their inputs to float32 and also produce
float32 outputs. The behavior of common operations in an autocasting environment
is listed in the PyTorch documentation [222].
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Figure 2.18: Distribution of gradients in neural network training without loss scaling in com-

parison with the representable range of float16. The segmentation network was
trained with float32 precision without autocasting and the gradients were recorded
for every layer. The histograms use a bin width of 1 and please note the logarithmic
scale on the 𝘹-axis. For the gradients and the float16 numbers, first the absolute
value and then the binary logarithm were taken and only finite values were kept.
The segmentation network is a hyperspectral image model with the same setup as
described in Section 5.2.1. Per default (without loss scaling, see Figure 2.19), the
gradients become very small and fall outside the representable range of float16 so
that it would be inadvisable to train the same network with float16 without further
adjustments.

There is no single scaling factor that is suitable for every neural network training. This
necessitates the scaling factor to be variable over the course of training time so that it can
be adjusted as needed to prevent infinite values. Typically, it is initialized with a large
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Figure 2.19: Concept of mixed precision training with loss scaling. The forward pass and the
calculation of the loss are performed in an autocasting environment, i.e., some
operations are performed with float16 precision. Then, the loss is scaled so that the
resulting gradients in the backward pass are shifted to the representable range of
float16. The backward pass does not run in an autocasting environment but the
operations remember the used type from the forward pass and the same type is
used when performing the backward operations [221]. After the backward pass, the
weight updates are unscaled and if no infinite values occur (no inf or nan values),
they get applied and the next iteration continues. Otherwise, the weights remain
unchanged and the scaling factor is adjusted so that infinite values are avoided in
the next iteration.

value and if infinite values arise, the factor is increased [222]. As illustrated in Figure 2.19,
the scaling factor may undergo updates after each training epoch.

In Figure 2.20, we see the same gradient distribution as before but this time the training
was conducted with loss scaling and mixed precision. The loss scaling successfully shifted
the gradients into the representable range of float16.

The relative error of the gradients, both with and without loss scaling, is visualized in
Figure 2.21. We can observe, and this was already evident from Figure 2.18, that the errors
are quite substantial without loss scaling. What is more, around 5% of the gradients
would become zero in float16 precision without loss scaling. When we employ loss
scaling, however, the errors are drastically reduced.

Network Comparison
Ultimately, mixed precision training must fulfill three promises: faster training, less
memory usage and maintaining a similar level of accuracy. Figure 2.22 presents the
results of training a segmentation network with float32 and mixed precision settings

42



2.3 Deep Learning

2 40 2 30 2 20 2 10 20 210 220

value

0.0

0.5

1.0

1.5

# 
gr

ad
ie

nt
s

1e9

network gradients
(with loss scaling)

float16 numbers

0

500

1000

1500

2000

# 
nu

m
be

rs

Figure 2.20: Distribution of gradients in neural network training with loss scaling in comparison
with the representable range of float16. The segmentation network was trained
with float16 precision with autocasting and the gradients were recorded for every
layer. The histograms use a bin width of 1 and please note the logarithmic scale on
the 𝘹-axis. For the gradients and the float16 numbers, first the absolute value and
then the binary logarithm were taken and only finite values were kept. The segmen-
tation network is a hyperspectral image model with the same setup as described in
Section 5.2.1. By scaling the loss prior to backpropagation (cf. Figure 2.19), we can
effectively shift the resulting gradients in the representable range of float16.

evaluating these three criteria. As we can see, float16 has shorter epoch times and requires
less memory all while maintaining a similar level of segmentation accuracy.
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Figure 2.21: Comparison of the relative error of gradients from networks with and without loss
scaling. The relative error |float16(𝛿) − 𝛿|/𝛿 is computed for every gradient 𝛿 in the
network by casting the gradient to float16 and comparing the error to the actual
value (again using float64 to represent the true value of the gradients). Values
of ±1 indicate that the corresponding gradient is zero in float16. Please note the
logarithmic scale on the 𝘺-axis. Each histogram uses 101 equally-sized bins (101
instead of 100 for symmetry of positive and negative values).
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Figure 2.22: Comparison of segmentation networks trained with different precision settings.
Networks trained with mixed precision are faster to train and require less memory
while maintaining similar segmentation accuracy compared to networks trained
with float32 precision. The error bars in the network throughput diagram show
the standard deviation (SD) across three repetitions of the experiment (the SD is
very small). There is no SD in the memory usage diagram because it does not
change across repetitions. Each boxplot shows the interquartile range (IQR) with
the median (solid line) and mean (dotted line). The whiskers extend up to 1.5 times
of the IQR. Each point represents the aggregated class-level performance. The
segmentation networks are hyperspectral image models. The measurement of the
network throughout follows the setup of Section 5.2.1 (RQ2). The (peak) memory
usage and the segmentation accuracy (measured via the dice similarity coefficient
(DSC)) are obtained while averaging three seed networks with the setup described
in Section 5.3.1 (RQ3).
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Related Work 3
The primary objective of this thesis is surgical scene segmentation with hyperspectral
images. In this chapter, we discuss related work that aligns with this goal. As evidenced by
Figure 3.1, both surgical scene segmentation as well as medical HSI are areas of increasing
interest as indicated by the rising number of publications each year in these fields.
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Figure 3.1: Number of publications per year in the surgical scene segmentation and medical
hyperspectral imaging fields. The years range from 1975 (including) to 2023 (includ-
ing). The data for this chart was obtained on January 9, 2024 from Digital Science’s
Dimensions platform, available at app.dimensions.ai [95].

In the following, we discuss related work for our spectral analysis (RQ1) in Section 3.1, our
efficient data loading pipeline (RQ2) in Section 3.2, our segmentation networks (RQ3) in
Section 3.3 and our analysis on domain shifts (RQ4) in Section 3.4. The chapter concludes
in Section 3.5 with a discussion on how the related work impacts this thesis.
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Table 3.1: Summary of basic information about publications that analyzed spectral characteristics
of visceral organs (see text for details).

publication year wavelength range # channels # subjects # classes

Zheng et al. [252] 2015 600 nm–800 nm 100 3 3
Leavesley et al. [126] 2016 390 nm–450 nm 12 4 2
Zhang et al. [250] 2017 470 nm–700 nm 8 3 4

Baltussen et al. [17] 2019 400 nm–1700 nm 360 32 3
Maktabi et al. [143] 2019 500 nm–1000 nm 100 11 2

Hu et al. [96] 2019 410 nm–910 nm 200 30 2
Zhang et al. [249] 2022 376 nm–1038 nm 128 8 2

3.1 Spectral Organ Fingerprints

Spectral organ fingerprints have found applications in computer-assisted decision-making
and automated organ identification1 [40]. On the one hand, some studies focused on
specific biological pigments such as hemoglobin, melanin and porphyrin in spectral data
but they did not analyze spectral characteristics across different organs [225, 238]. On
the other hand, other works that analyzed spectral characteristics of tissues are not
without their own limitations, as highlighted by the following list of relevant publications
concerning the discrimination of visceral organs. A summary of basic information about
these publications is provided in Table 3.1.

• Zheng et al. detected cervical intraepithelial neoplasia using spectral data from
three patients [252]. They categorized the data into three groups: normal tissue, in-
flammation and high-grade lesions. An analysis based on second-order derivatives
was performed demonstrating that in vivo and noninvasive detection of cervical
neoplasia without acetic acid is technically feasible. Furthermore, they discovered
that only three specific wavelengths (620 nm, 696 nm and 772 nm) are required for
tissue classification with optimal separability. However, they did not perform any
automated differentiation, used only a small sample size and did not include the
near-infrared range of the spectrum.

• Leavesley et al. conducted an analysis using data from four patients and an animal
study to detect cancerous colon tissue [126]. They measured changes in the fluo-
rescence excitation spectrum that occur in tandem with colonic adenocarcinoma.
Their findings revealed significant spectral differences between normal and cancer-
ous tissues. However, they used a custom hyperspectral imaging device, a narrow
wavelength range of 390 nm–450 nm, a limited sample size and did not present any
automated classification results.

1This section is based on [215].
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• Zhang et al. used multispectral data from ex-vivo porcine organs (obtained from
a butcher) in a laparoscopic surgery setting to distinguish between four different
tissue types: liver, gallbladder, colon, and kidney [250]. By leveraging spatial and
spectral features, they achieved an accuracy of 98.4 % and they highlighted the
superior performance of multispectral imaging data over RGB data. However, their
study was limited by the use of ex-vivo material, a custom multispectral imaging
device and the chosen channels were not broad enough to represent real RGB
images.

• Baltussen et al. combined two different HSI cameras and acquired ex-vivo data
from 32 patients to yield samples from healthy, fat and colorectal cancer tissue [17].
They focussed on real-time classification and achieved a classification accuracy of
88 %. However, they used cross-section slices which is not possible to obtain during
intraoperative surgery, employed a custom HSI setting and used only ex-vivo data.

• Maktabi et al. utilized HSI recordings to classify malignant from healthy tissue of
oncologic esophageal resectates from 11 patients [143]. They evaluated the perfor-
mance of four different supervised machine learning algorithms and found that a
support vector machine (SVM) yielded the best results. However, the untouched
test set comprised only two patients (one patient with only cancerous tissue and an-
other patient with both cancerous and normal tissue) and they achieved relatively
poor classification results of 63 % sensitivity and 69% specificity.

• Hu et al. distinguished between cancerous and normal gastric tissue using micro-
scopic hyperspectral images from 30 patients with gastric cancer [96]. In total,
their spectral database amounts to 28 542 spectral samples. They employed three-
dimensional convolutional neural networks for spatio-spectral feature combination
and yielded a classification accuracy of 97.57 %. However, their study was limited
to the use of ex-vivo material and a custom HSI system.

• Zhang et al. differentiated between normal and necrotic small bowel tissue in
animal experiments comprising eight rats [249]. They compared six different
supervised classification algorithms and found that the spectral samples could be
well separated. However, only two small regions per rat were considered, a custom
HSI device was employed and the sample size was limited.

In conclusion, previous studies provided initial evidence of spectral organ fingerprints
but they fall short in conducting systematic, large-scale analyses with a greater number
of in-vivo organs and a standard hyperspectral imaging system (except for [143]) with a
wide enough spectral range. For instance, as highlighted by Table 3.1, the current state of
the art does not distinguish between more than four different organ classes. However, it
is necessary to overcome these limitations to conclude whether organs feature unique
spectral fingerprints.
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3.2 Efficient Training of Hyperspectral Segmentation
Networks

The acceleration of training and inference of deep learning models is a widely discussed
topic with a plethora of resources, performance guides, and libraries available [167, 127,
224]. It is important to note that bottlenecks can occur at any stage of the training
pipeline and a slowdown at one step can negatively impact all subsequent steps. There
are numerous potential performance enhancements on the GPU side, such as mixed
precision training for more efficient hardware utilization (cf. Section 2.3.2), the prevention
of (implicit) synchronization points between the central processing unit (CPU) and
GPU [224] or automatic graph optimizations (e.g., through the latest advancements in
torch.compile [223]). Here, our focus is on the data loading aspect as this is the most
critical component for training HSI segmentation networks.

Efficient data loading is so crucial since it is the first step of the pipeline and if this step is
slow, it determines the runtime of everything that follows, i.e., the actual computations
on the GPU. Moreover, the process is highly dependent on the application domain (e.g.,
whether we deal with images, text, or tabular data), the environmental conditions (e.g.,
loading data from remote storage vs. loading data from a local solid-state drive (SSD))
and the task to be solved (e.g., the dataset size plays a crucial role and whether the data
fits into the system cache). This has led to the introduction of various libraries, research
projects and storage formats targeted at improving the data loading process for their
specific needs [4, 154, 167]. Here, we will highlight an example from the general computer
vision community.

Fast Forward Computer Vision (FFCV) is a popular library by Leclerc et al. that optimizes
the training pipeline by avoiding data bottlenecks [127]. It introduces a novel data
storage format for enhanced indexability and faster access, optimizes caching schemes,
offloads tasks to the CPU and employs just-in-time (JIT) compiled data augmentations.
They benchmarked training setups on the ImageNet dataset [55] and achieved accuracy
comparable to baseline models in half of the time. However, FFCV is designed for RGB
images and does not utilize efficient compression formats nor does it support GPU
augmentations or optimized memory transfer to the GPU via pinned memory.

In conclusion, while there are numerous strategies to optimize the data loading pipeline,
the most efficient solution depends on the specific application, environmental conditions
and the downstream task. What is more, none of the current solutions are targeted at
the specific needs of HSI data. Unfortunately, what is efficient for one domain may not
necessarily be efficient for another. For instance, offloading tasks to the CPU can be
advantageous when processing RGB images but this might not hold true when processing
HSI data due to the high dimensionality of the data and the resulting need for massively
parallel computations. As a result, efficient training of HSI segmentation networks
necessitates manual optimizations of the data loading pipeline.
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3.3 Surgical Scene Segmentation

For the specific task of surgical scene segmentation with hyperspectral images, only a
limited number of works exist2. Therefore, we initially explore the field of surgical scene
segmentation with RGB images. HSI also has various applications beyond the medical
field which is why we review the work in the non-medical domain before we elaborate
on the medical applications.

Surgical Scene Segmentation With RGB Data
In recent years, surgical scene segmentation with RGB data has found several applications,
particularly in minimally invasive procedures such as cataract and colorectal surgeries
[81, 142, 187]. However, the primary focus has been on the segmentation of medical
instruments, driven by numerous challenges in this field (e.g., the CATARACTS challenge
for automatic tool segmentation in cataract surgery [8] or EndoVis challenges [210] like
the Robust Medical Instrument Segmentation challenge in laparoscopic surgery [142,
190]). Organ segmentation has been less explored, with a few studies either limiting
their scope to specific organ classes [74, 70] or, more commonly, investigating full scene
segmentation [111, 10, 139, 194]. The datasets used in these studies vary greatly in terms of
annotation sparsity and the number of classes considered. The models typically process
video frames of different sizes (e.g., 512 × 512 in [125] or 960 × 540 (width, height) in [194]).

Organ segmentation in open surgery has been less frequently addressed likely due to
the greater complexity and variability of the surgical scene as well as the challenges
associated with image acquisition. To the best of our knowledge, only the study of
Gong et al. has examined deep learning-based organ segmentation on RGB images in
open surgery where they investigated segmentation performance under various imaging
conditions, such as changes in lighting or distance, using RGB images from 130 patients
and found that these factors significantly affect the image scores. [79]

Previous research has highlighted numerous significant obstacles in automatic surgical
scene segmentation with RGB data. These include a high degree of variability in tissue
appearance across different subjects (e.g., [44, 74]) and within individual images (e.g.,
due to occlusions or deformations [153]) as well as inconsistencies in image acquisition
[140]. The incorporation of additional spectral information could be instrumental in
overcoming these challenges since spectral imaging can encode extra clinical information
(e.g., tissue parameters like oxygenation) and has additional features that could aid in
situations with limited context [68].

Segmentation With Hyperspectral Data Outside the Medical Field
Spectral imaging is utilized in a variety of domains such as biochemistry, agriculture,
archaeology and, notably, remote sensing [114, 177]. The generalizability of existing

2This section is based on [198].
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studies is often compromised due to the small size of the datasets which typically consist
of only one or two sparsely annotated images and the fact that training and testing are
conducted on the same data [9, 159, 161, 172]. The application of deep learning-based
semantic scene segmentation is generally hindered by the scarcity of available annotations
since training data is sparse and labels often only cover several discrete pixels rather
than entire images [229]. However, given the high dimensionality of the data, large
datasets are necessary to prevent overfitting [254]. As a result of these constraints, most
segmentation tasks in these fields resort to pixel-based classification (e.g., [161]) and the
few existing patch-based or image-based segmentation approaches run a high risk of
train-test leakage since no disjoint datasets are used [162].

From a methodological perspective, a variety of spatial and spectral features have been
proposed with different fusion methods (e.g., the weighted z-score normalized fusion
method presented in [108]). Deep learning-based models have also been employed,
utilizing one-dimensional spectral networks [107], two-dimensional spatial networks
[246, 243] and three-dimensional spatio-spectral networks [88]. However, it is worth
noting that three-dimensional convolutions have not consistently proven to be beneficial
[177, 144].

It is evident from these works that research on small datasets provides severe challenges,
especially when it comes to accurately validating the algorithms. This requests the need
of carefully designed experiments on sufficiently large datasets.

Segmentation With Hyperspectral Data Inside the Medical Field
There are only a handful of papers that tackle a biomedical segmentation problem using
spectral data with deep learning [115]. Therefore, we also include approaches that employ
non-deep learning techniques in the following list. A summary of basic information
about these publications can be found in Table 3.2.

• Akbari et al. collected 7 HSI images of abdominal organs from a single pig. They
annotated 5 organs (spleen, colon, small intestine, bladder, peritoneum) in these
images and conducted pixel-based organ classification using learning vector quan-
tization [118] of compressed spectra [6]. However, due to the limited size of the
dataset (which only includes one individual) and the unclear separation between
training and testing data, a further evaluation on an independent test set involving
a larger number of individuals has yet to be conducted.

• The HELICoiD project [64] explored the potential of HSI in distinguishing between
tumorous and healthy brain tissue in neurosurgery patients. The complete dataset,
which is publicly available, consists of 36 HSI images acquired by combining
two HSI systems from 22 patients [66]. Sparse annotations of 4 classes (tumor
tissue, normal brain tissue, blood vessels, and background) were generated by
merging manual expert segmentations based on pathological findings with 𝑘-means
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Table 3.2: Summary of basic information about publications that tackle biomedical segmentation
problems (see text for details).

publication year wavelength range # channels # subjects # classes

Akbari et al. [6] 2008 900 nm–1700 nm 320 1 5
Fabelo et al. [64] 2016 400 nm–1700 nm 998 22 4
Ravì et al. [180] 2017 400 nm–1700 nm 998 18 2
Fabelo et al. [65] 2018 400 nm–1700 nm 998 22 4
Fabelo et al. [63] 2019 400 nm–1700 nm 998 16 4
Moccia et al. [153] 2018 470 nm–700 nm 8 7 6
Garifullin et al. [71] 2018 380 nm–780 nm 30 ? 3

Trajanovski et al. [227] 2021 400 nm–1700 nm 640 14 2
Cervantes-Sanchez et al. [32] 2021 500 nm–1000 nm 100 7 4

Lotfy et al. [134] 2023 468 nm–790 nm 109 30 3

clustering. Pixels from small clusters were discarded due to potential annotation
errors. Several studies arose from this dataset:

– Ravì et al. trained a Semantic Texton Forest [204, 109] on a subset of the
HELICoiD dataset which included 33 HSI brain images from 18 patients.
These images were embedded with a modified version of the 𝑡-distributed
stochastic neighbor approach (𝑡-SNE) [138] to segment tumorous and healthy
brain tissue [180]. However, the performance analysis was carried out on the
validation dataset (used for hyperparameter tuning).

– Fabelo et al. introduced a multi-class semantic segmentation approach that
fused a segmentation prediction from a supervised pixel-based SVM classifier
with a segmentation prediction obtained through unsupervised clustering
[65]. Quantitative validation of the segmentations could only be performed
for the SVM classifier due to the sparsity of the annotations. Further, the
separation between training, validation and testing data remains unclear.

– Fabelo et al. used a subset of 26 HSI brain images from 16 patients (6 with
grade IV glioblastoma and 10 with normal brain tissue) to compare baseline
SVM-based methods with a pixel-based deep neural network and a two-
dimensional CNN classifier on small 11 × 11 patches [63]. They found that
both deep learning-based methods had similar performance and surpassed
the SVM-based methods. However, the performance analysis was conducted
on the validation dataset (used for hyperparameter tuning).

• Moccia et al. collected 57 multispectral imaging (MSI) images from 7 pigs during
hepatic laparoscopic surgery [153]. They transformed the organ segmentation
task into a classification problem by training an SVM on hand-crafted textural and
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spectral features from automatically segmented superpixels. The model was used
to classify 6 organs: liver, gallbladder, spleen, diaphragm, intestine, and abdominal
wall. They demonstrated that the classification accuracy using their MSI data
was higher than the accuracy achieved when using only three selected channels.
However, the chosen channels were not broad enough to represent an RGB image.

• Garifullin et al. conducted an analysis of 55 retinal images using a MSI device
and segmented three types of tissue (vessels, optic disc, and macula) [71]. They
employed SegNet [16] and Dense-FCN [106] models and compared MSI with RGB
data. However, their findings did not conclusively favor any particular model or
modality.

• Trajanovski et al. conducted a segmentation of healthy and cancerous tongue tissue
in 14 histopathological HSI images using an in-house dataset of 14 patients with
each patient contributing one image [227]. Building upon their previous work
[228], they evaluated several pixel-based networks, networks based on patches of
size 256 × 256 and hybrid networks that used a combination of full pixel spectra
and patches with a reduced number of channels as input. They discovered that a
U-Net architecture [189] based on patches yielded the best results for their specific
segmentation task. However, since the performance analysis was carried out on the
validation dataset (which was also used for hyperparameter tuning), an evaluation
on a hold-out test set has yet to be conducted.

• Cervantes-Sanchez et al. examined 18 images from 7 patients undergoing hepatic
surgery and 21 images from 7 patients undergoing thyroid surgery using HSI. They
generated sparse, circular-shaped annotations for 4 organs (liver, bile duct, artery
and portal vein) in hepatic surgeries and 3 organs (thyroid, parathyroid and muscle)
in thyroid surgeries [32]. They evaluated the effectiveness of several machine
learning methods (logistic regression [52], SVM [25], multilayer perceptron [87],
and U-Net [189]) for automatic segmentation of the annotated organ classes using
either single pixels or small 8 × 8 patches. However, the evaluation was only
conducted on the sparse annotations and the validation dataset (which was also
used for tuning hyperparameters). As such, a comprehensive evaluation on fully
semantically annotated images and a hold-out test set has yet to be conducted.

• Lotfy et al. collected 49 HSI images from 30 patients to segment head and neck
cancer with three classes: tumor, healthy tissue, and background. They computed
superpixels using the simple linear iterative clustering (SLIC) algorithm [1] and
classified them using a CNN. To maintain the spatial relationship between super-
pixels, they introduced a graph neural network (GNN) [193] where they connected
neighboring superpixels using the corresponding CNN features while treating
the problem as a graph node classification task. Their evaluation demonstrated
that the GNN approach outperformed a pure CNN approach due to the additional
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spatial information. However, a comparison with larger patches or an image-based
approach has yet to be conducted.

In summary, there have been initial promising results in the field. However, evaluations
are often not comprehensive, use only sparse annotations and lack important standards,
such as untouched test sets. As evidenced by Table 3.2, the publication landscape is
highly heterogenous with a wide range of custom devices (except for [32]) with different
wavelength ranges which limits the reproducibility of the results while the frequent use
of small datasets questions the generalizability of the findings. To this end, there has been
no work on fully semantic scene segmentation with HSI data focussing on all important
organs occurring during open surgery.

3.4 Domain Shifts in Surgical Hyperspectral Imaging

In this thesis, one of our primary objectives is to analyze the robustness of our models in
the face of geometrical domain shifts3. There have been reports of significant variations
across subjects, locations (such as clinics) and even measurements taken at different time-
points while analyzing spectral data [105]. However, this topic is largely unexplored in
the field of surgical scene segmentation. To the best of our knowledge, we are only aware
of the work by Kitaguchi et al. who demonstrated that surgical instrument segmentation
algorithms struggle to adapt to unfamiliar types of surgeries that incorporate known
instruments in a new context. [117]

A significant contribution we make is the introduction of a novel data augmentation
method aimed at enhancing context generalization. While the use of data augmenta-
tions is prevalent in the deep learning field [203], we are interested in identifying the
types of augmentations most commonly utilized by the community for surgical scene
segmentation tasks, especially since we conduct a validation study comparing various
topology-aware augmentation methods. To this end, we reviewed 34 publications in the
field of surgical scene segmentation and analyzed the augmentations that they employed.
The papers we reviewed are listed in Table 3.3 and the augmentations used are illustrated
in Figure 3.2.

In the field of surgical scene segmentation, the community predominantly employs
affine and perspective augmentations, with only a handful of instances where kernel
augmentations such as sharpening or blurring are used. Elastic augmentations are
even less common. Notably, topology-aware augmentations like CutMix [247] are not
widely adopted, possibly because they were initially designed for classification rather
than segmentation tasks. This limited use of diverse topology-aware augmentation
techniques could be a contributing factor to why these networks are significantly affected

3This section is based on [202].
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Table 3.3: Overview of employed data augmentations from 34 selected publications in the field
of surgical scene segmentation. For each publication, it is denoted whether they use
(✓) or do not use (✗) affine (rotation, scaling, etc.) or perspective augmentations,
kernel augmentations (sharpening or blurring), elastic augmentations or whether this
information is not stated (?).

publication year affine or perspective kernel elastic

Akbari et al. [6] 2008 ? ? ?
Al-Surmi et al. [217] 2014 ? ? ?
Collins et al. [44] 2015 ? ? ?
Gibson et al. [74] 2017 ? ? ?
Ravì et al. [180] 2017 ✓ ✗ ✗

Fabelo et al. [65] 2018 ? ? ?
Garifullin et al. [71] 2018 ✓ ✗ ✗

Moccia et al. [153] 2018 ? ? ?
Shvets et al. [205] 2018 ? ? ?
Allan et al. [11] 2019 ✓ ✓ ✗

Fabelo et al. [63] 2019 ✓ ✗ ✗

Fu et al. [70] 2019 ✓ ✗ ✗

Islam et al. [102] 2019 ✓ ✓ ✗

Kadkhodamohammadi et al. [111] 2019 ? ? ?
Laves et al. [125] 2019 ✓ ✗ ✗

Trajanovski et al. [228] 2019 ✓ ✗ ✗

Allan et al. [10] 2020 ✓ ✗ ✗

Madad Zadeh et al. [139] 2020 ? ? ?
Maqbool et al. [146] 2020 ✓ ✗ ✗

Pakhomov and Navab [169] 2020 ✓ ✗ ✗

Pakhomov et al. [170] 2020 ? ? ?
Scheikl et al. [194] 2020 ✓ ✓ ✗

Cervantes-Sanchez et al. [32] 2021 ? ? ?
Deng et al. [56] 2021 ? ? ?
Gong et al. [79] 2021 ✓ ✗ ✗

Kong et al. [121] 2021 ✓ ✗ ✗

Roß et al. [190] 2021 ✓ ✓ ✓

Trajanovski et al. [227] 2021 ✓ ✗ ✗

Kitaguchi et al. [117] 2022 ✓ ✗ ✗

Seidlitz et al. [198] 2022 ✓ ✗ ✗

Wang et al. [231] 2022 ✓ ✓ ✗

Kolbinger et al. [120] 2023 ✓ ✗ ✗

Lotfy et al. [134] 2023 ✓ ✓ ✗

Luo et al. [136] 2023 ✓ ✗ ✗
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not stated

affine or perspective

+kernel

+kernel+elastic

Figure 3.2: Visualization of the different employed data augmentations from the 34 selected
publications in the field of surgical scene segmentation (cf. Table 3.3). Each square
in the waffle chart represents one publication and visualizes which augmentations
were used: only affine (rotation, scaling, etc.) or perspective augmentations, addi-
tional kernel augmentations (sharpening or blurring), additional kernel and elastic
augmentations or whether this information is not stated.

by geometrical domain shifts. It emphasizes the necessity for a method that enhances
the robustness of these networks against such domain shifts.

3.5 Conclusion

In conclusion, there is a noticeable lack of research on semantic scene segmentation in
open surgery, particularly in the context of medical HSI. The datasets used in existing
studies are relatively small and the challenges posed by the high variability of surgical
scenes and the inherent complexity, such as non-standardized image acquisition, inter-
subject variability and complex three-dimensional relationships between multiple soft
tissues (e.g., geometrical distortions like overlapping tissue, shadowing or deformations)
[79], are yet to be fully addressed. [198]

RQ1: While the literature does address the differentiation between various organs inter-
esting for surgical procedures, it is typically restricted to a limited number of classes
or small datasets. More precisely, the HSI datasets in the related work include a
maximum of 36 images from 22 subjects [66] and are annotated with up to 6 organ
classes [153]. It is yet to be determined whether organs can still be differentiated
when a larger number of classes and a larger dataset are employed. Additionally, it
remains unclear whether the variability observed in the spectral data is a result of
the organs being studied or specific acquisition conditions. Moreover, there is a
noticeable absence of large public datasets in the community, particularly those
containing many images from various subjects and a variety of tissue types.

RQ2: Numerous strategies exist for improving the efficiency of neural network training.
While this is also true for the part of the pipeline that concerns data loading, no
existing solution is targeted at the specific needs of HSI data. A solution taking
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into account the high dimensionality of the data and the large image sizes has yet
to be developed.

RQ3: In the related work on organ segmentation using spectral data, models have been
developed based on superpixels [153], patches [71, 63, 32, 227] and pixels [6, 63].
However, the ideal granularity of the data in terms of segmentation performance
or the number of training subjects required remains undetermined. Moreover, no
previous work has demonstrated a clear advantage of spectral data over RGB data
for deep learning-based surgical scene segmentation. Further, a study on a larger
dataset with hundreds of semantically annotated images is yet to be conducted.
[198]

RQ4: The literature has largely neglected the crucial issue of robustness of HSI segmen-
tation networks against domain shifts such as those introduced by new surgeries,
geometrical distortions or species changes. The impact of such domain shifts on
the segmentation performance is yet to be determined. In the field of surgical scene
segmentations, the community typically relies on a small set of default augmenta-
tions that are easily applicable to segmentation tasks. However, the adoption of
topology-aware augmentations is not widespread.

We aim to fill these gaps in the literature by means of our research questions (cf. Sec-
tion 1.2), a special focus on open surgery in contrast to minimally invasive surgery and
datasets of unprecedented size. To this end, we are the first to present fully semantic
scene segmentation networks that can differentiate between 19 classes occurring during
open surgery, can be trained efficiently and are robust against contextual domain shifts.
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Materials and Methods 4
This chapter introduces the materials that we work with in this thesis and the methods
we used to analyze them. We will address the methodological challenges originating from
the research question of Figure 1.2 which will be the foundation for the results presented
in Chapter 5.

In Section 4.1, we start with a detailed presentation of our HSI datasets with an overview of
the camera system, a description of the annotation process, our preprocessing pipeline and
statistics about the datasets. Our classification network used to classify individual spectra
(RQ1) is presented in Section 4.2. The performance optimizations that we employ to train
our deep HSI networks efficiently (RQ2) are described in Section 4.3. A presentation of
our segmentation networks (RQ3) follows in Section 4.4 including the architectures for
the different spatial granularities and modalities as well as our training setup. Finally, in
Section 4.5, we present our solution to the problem of deteriorated performance when
applying machine learning networks to geometrical OOD data (RQ4).

4.1 Hyperspectral Datasets

This section describes the datasets used in this thesis in detail1. This includes legal aspects,
the hardware system, the data acquisition process and the annotation procedure as well
as our default preprocessing all described in Section 4.1.1. In general, our experiments
are based on three hyperspectral datasets: the tissue atlas dataset (Section 4.1.2) which
contains polygon annotations and the semantic porcine dataset (Section 4.1.3) as well as
semantic human dataset (Section 4.1.4) with fully annotated images. Example images are
shown in Figure 4.1 and general features about the datasets (distribution of organ sizes
and visualization of common organ locations in the images) are described in Section 4.1.5.

1This section is based on [198, 215, 214].
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Figure 4.1: Example images and corresponding segmentation masks from the tissue atlas, se-
mantic porcine and semantic human datasets. Images of the heart show visible
artifacts from the acquisition process of the line scanning device (cf. Section 2.2) due
to the heartbeat (best viewed while zooming into the figure).

4.1.1 Data Acquisition and Preprocessing

Here, we present some legal aspects of our datasets, the HSI camera system we employed,
our data acquisition process as well as our default preprocessing step.
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Ethics
The HSI animal data was acquired at the Heidelberg University Hospital after approval by
the Committee on Animal Experimentation of the regional council Baden-Württemberg
in Karlsruhe, Germany (G-161/18 and G-262/19). Animals were handled according to
the German laws for animal use and care and in accordance with the directives of the
European Community Council (2010/63/EU).

The HSI human data was acquired during the SPACE trial (SPectrAl Characterization of
organs and tissuEs during surgery) at the Heidelberg University Hospital after approval
by the Ethics Committee of the Medical Faculty of Heidelberg University, Heidelberg,
Germany (S-459/2020). The trial was conducted in accordance with the ethical principles
of the Declaration of Helsinki [240] and the principles of Good Clinical Practice [100].
Reporting of the trial complied with the recommendations of the Consolidated Standards
of Reporting Trials (CONSORT) guideline [155]. The SPACE trial was registered with
Research Registry (researchregistry6281) on November 23, 2020.

HSI Camera System
The HSI data was acquired using the Tivita® Tissue camera system (Diaspective Vision
GmbH, Am Salzhaff, Germany). This system operates in a push-broom manner, capturing
hyperspectral images with an approximate spectral resolution of 5 nm within the spectral
range of 500 nm to 1000 nm. This results in datacubes of dimension 480 × 640 × 100
corresponding to height, width and number of spectral channels. The camera images
an area of roughly 20 × 30 cm. A built-in distance calibration system, consisting of two
light marks that overlap when the distance is correct, ensures an imaging distance of
about 50 cm. The image acquisition process takes approximately seven seconds. Besides
the HSI datacubes, the camera also computes tissue parameter images (TPI) from the
HSI datacubes, which include oxygenation (tissue oxygen saturation (StO2)), perfusion
(near-infrared perfusion index (NPI)), water content (tissue water index (TWI)), lipid
content (tissue lipid index (TLI)) and hemoglobin content (tissue hemoglobin index (THI)
and organ hemoglobin index (OHI)). Additionally, RGB images are reconstructed from
the HSI data by combining spectral channels that capture red, green, and blue light. The
camera is shown in Figure 1.1 and Figure 1.6 gives an example for the reconstructed RGB
image and TPI associated with an HSI datacube. More technical details on the hardware
can be found in [94, 122, 76].

Data Acquisition
To avoid spectral distortion from straylight, all other light sources were turned off during
image capture, and window blinds were closed. Motion artifacts were minimized by
(1) mounting the camera on a swivel arm and ensuring the camera system remained
stationary during image capture, thus eliminating camera motion, and (2) capturing
images from static scenes with no surgeon-induced object movements. As a result, any
motion artifacts would only be due to natural causes like respiration and heartbeat (e.g.,
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visible in the heart example images of Figure 4.1). The camera perspectives were selected
to provide a clear view of all organs of interest in the scene.

Non-physiological tissues are not part of this thesis. However, animals were never solely
used to capture images of physiological tissue but instead were always a byproduct of a
primary study. For example, if a primary study about kidney clamping was conducted,
images of physiological tissue were taken before the clamping, i.e., before the primary
study began. As a result, there is no fixed acquisition protocol across all animal experi-
ments and therefore no fixed number of images per animal and no fixed set of recorded
organs, camera perspectives or situs (layout of the organs relative to each other). A
notable exception is the standardized recordings from the tissue atlas dataset, which were
acquired according to the protocol of Figure 4.3.

This choice of image acquisition also reflects real-world surgeries where it is impractical
to capture a fixed number of images from a predefined set of camera perspectives and situs
per subject as no two surgeries are identical. Tissues could undergo various complications
that change their state, such as inflammation or tissue trauma reflecting the need for
situation-specific images.

To mitigate the impact of sensor noise and to transition the acquired HSI data from
radiance to reflectance, the raw HSI datacubes were automatically calibrated using pre-
recorded white and dark calibration files (cf. Equation 2.1) by the camera system, as
outlined in [94]. Calibration of the camera was performed before each surgery by taking
a new white and dark image to compensate for various sources of signal distortion, such
as attenuation effects of the light source [68, 38]. The calibration step is also detailed in
Section 2.2.

Preprocessing
After the HSI cubes were exported from the camera system, we L1-normalized each pixel
spectrum to compensate for multiplicative illumination changes that could occur due to
variations in the measurement distance, for instance. That is, the HSI data is preprocessed
via 𝒔∗ = 𝒔‖𝒔‖1 (4.1)

with 𝒔∗ denoting the L1-normalized and 𝒔 the reflectance spectrum from the camera. This
operation is repeated for every pixel in the image separately. We are only working with
L1-normalized spectra throughout this thesis.

4.1.2 Tissue Atlas Dataset

An overview of the tissue atlas dataset is given in Figure 4.2 and example images are
shown in Figure 4.1. In total, this dataset contains 9057 from 46 subjects (see Section 4.1.1
for a description of the data acquisition procedure). The images are annotated with 20
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classes with a variable number of polygon annotations per image. Part of this dataset
comprises the standardized recordings (cf. Figure 4.3) which contains 5756 from 11 and is
used to systematically study the effect of subject, situs, angle, repetition and annotation
factors.

Medical experts created 17 775 organ annotations on the reconstructed RGB images using
the HyperGUI tool [149]. Annotations were verified by two other medical experts. In the
case of conflicts, annotations were repeated collectively with all annotators agreeing on
the final annotation.

For the subset of standardized recordings, two additional medical experts annotated the
already verified 5758 annotations for analysis of the annotation effect of the (inherently
random) polygon annotations. Additionally, the medical experts who annotated the first
round of polygon annotations re-classified the polygon annotations (deciding about the
organ given an annotation) achieving an intra-rater agreement of 100 %. An independent
secondary medical expert achieved an inter-rater agreement of 99.5 % (27 of 5758 were
misclassified) for this task.

The non-semantic annotation process was carried out using a multi-point selection tool.
Areas for polygon selection were chosen while excluding any regions with artifacts such
as tissue kinking, illumination shadows, peripheral areas, superficial blood vessels and
fat, contamination with dyes or body fluids like bile fluid, previous manipulations like
contusion or abrasion, and potential perfusion impairments like thrombosis. The goal
was to select only the most representative regions, ensuring that the analyzed pixels were
always fully representative of the organ of interest. As a result, there may be additional
neighboring pixels that could have been selected, but were not, based on the annotator’s
discretion and the principle of not including any erroneous or non-representative pixels.
If there were multiple potential regions separated by the aforementioned artifacts, the
largest and most representative area was chosen.

4.1.3 Semantic Porcine Dataset

An overview of the semantic porcine dataset is given in Figure 4.4 and example images are
shown in Figure 4.1. In total, this dataset contains 506 from 20 subjects (see Section 4.1.1
for a description of the data acquisition procedure). All images are fully semantically
annotated with 19 classes, i.e., every pixel in the image is assigned a label. For each organ,
between 32 and 405 images from 5 to 20 subjects were acquired.

The semantic annotation process was carried out by two different medical experts using
vector annotation tools via the annotation platform SuperAnnotate (SuperAnnotate,
Sunnyvale, USA) [3]. For consistent labeling, all annotations were revised by the same
medical expert.

63



4 Materials and Methods

st
om

ac
h

sm
al

l b
ow

el
co

lo
n

liv
er

ga
llb

la
dd

er
pa

nc
re

as
ki

dn
ey

sp
le

en
bl

ad
de

r
om

en
tu

m
lu

ng
he

ar
t

ca
rt

ila
ge

bo
ne

sk
in

m
us

cl
e

pe
rit

on
eu

m
m

aj
or

 v
ei

n
ki

dn
ey

 w
ith

G
er

ot
a'

s 
fa

sc
ia

bi
le

 fl
ui

d

label name

P041
P042
P043
P044
P045
P046
P047
P048
P049
P050
P051
P052
P053
P054
P055
P056
P057
P058
P059
P060
P061
P062
P063
P064
P065
P066
P067
P068
P069
P070
P071
P072
P074
P076
P085
P086
P087
P088
P089
P090
P091
P092
P093
P094
P095
P096

su
bj

ec
t n

am
e

1 2 2 3 3 2 2 3 14 2
3 3 3 3 3 4 2 4 2 11
6 6 6 6 6 6 12 6 10 21 22

3 2 2 5 33 23
8 2 18 11 5 2 9 3 8 9 7 14
6 19 11 13 2 14 20 12
11 17 11 12 2 15 7
10 17 15 9 2 11 6 9
8 18 16 3 5 6 2 12 4 14 22
12 20 15 16 9 5 2 18 7 2 26 18
4 14 15 11 2 18 6 24
13 19 17 14 4 17 17 24
11 8 18 11 3 18 6 12 24 6

2 2 6
8 24 17 8 5 2 17 28

6 6 6
10 19 15 16 4 5 2 15 4 10 23 2 20
13 8 59 56 13 20 16 61 8 21 18 21 20 34 59 15 15
2 13 15 11 5 5 4 3 12 9 6 3 17
6 28 21 27 5 8 6 16 42 5 14 14 14 13 20 13 11 5 6 18
3 16 13 9 8 11 6 10 6 6
21 30 19 19 12 5 16 10 21 8 12 27 20 18 23 20 10 8
2 9 1 2 4 9 5 6 8 6 6 4
4 13 6 8 4 3 9 4 9 7 17 6 6 3
2 4 2 2 2 9
1 2 2 7
16 31 17 16 5 5 6 20 8 11 6
10 13 13 7 6 13 7 8

10 14 10 7 5 10 10
15 16 10 16 16 9 5 15 10 12 7
13 9 5 6 5 7 5 7 8
3 23 16 20 7 11 19 11 15 3 6 11 4 8

2 2
8 30 22 17 16 7 14 27 6
12 26 24 43 7 12 2 26 6 9 13 12 10 40 9 21 6 15 12
70 104 74 117 46 36 50 36 92 62 61 39 39 199 76 111 35 36
80 111 106 93 42 39 42 95 40 48 28 37 155 36 112 18 36
36 105 105 130 36 51 44 107 73 43 62 58 35 36 179 62 165 42 36 38
52 98 88 112 44 42 36 87 60 43 50 36 54 72 251 48 380 36 18 38
64 109 49 74 36 37 38 89 58 41 14 9 36 147 36 294 36

20 14 36 10 6 36 17 36 56 48 36 36 28 140 36 36 37
72 110 88 91 36 36 39 112 47 35 45 64 60 36 177 57 200 37 39 36
93 125 93 94 36 36 39 89 51 52 50 63 66 50 141 48 129 37 18 36
55 97 103 108 36 36 42 84 37 50 62 53 70 54 141 45 89 36 38 35
50 84 125 98 41 36 38 111 54 42 96 50 51 67 107 36 129 37 37
36 111 73 92 45 42 41 95 60 51 36 54 60 64 106 63 66 36 37

0

50

100

150

200

250

300

350

# 
im

ag
es

Figure 4.2: Overview of the tissue atlas dataset. 9057 images from 46 subjects have polygon
annotations for 20 classes. Each cell denotes the number of images for the respective
label and subject. The 11 italic highlighted subjects from P086 to P096 encompass
the subset of 5756 standardized recordings. Figure 4.1 shows example images and
annotations for this dataset.
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Figure 4.3: Image acquisition protocol for the standardized recordings of the tissue atlas dataset
(a subset of Figure 4.2). For each organ, there are recordings in 8 subjects (across
11 subjects in total) at 4 different situs (layout of the organs relative to each other),
from 3 different angles with 3 repetitions. Every image was annotated by 3 medical
experts. This figure was adapted from [214].

The 19 classes include two thoracic organs (heart, lung), eight abdominal organs (stomach,
small bowel, colon, liver, gallbladder, pancreas, kidney, spleen), and one pelvic organ
(bladder). For the kidney, images were captured both before and after the removal
of Gerota’s fascia, and these were labeled as kidney with Gerota’s fascia and kidney,
respectively. Additional annotations were made for subcutaneous fat, skin and muscle
tissue, as well as omentum, peritoneum, and major veins. Any pixels associated with
inorganic objects (e.g., cloth, compresses, foil, tubes, metallic objects, and gloves) were
labeled as background. This label is found on every image, and the annotated areas cover,
on average, 47 % (standard deviation (SD) 24%) of an image. Pixels were also labeled as
ignore if it was unclear to which organ they belonged or if they were part of an organic
object other than the 18 organ classes. This label is found in 221 out of 506 images, and on
average, the annotated areas cover 2 % (SD 3%) of the pixels in these 221 images. These
ignore pixels were later excluded from our analysis.
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Figure 4.4: Overview of the semantic porcine dataset. 506 images from 20 subjects have fully
semantical annotations for 19 classes. Each cell denotes the number of images for
the respective label and subject. Figure 4.1 shows example images and annotations
for this dataset.

Imbalances in the number of images per class occurred because some organs naturally
appear more frequently in the field of view of other organs. For instance, the liver is
always present in images of the gallbladder, but the gallbladder is not always visible
in all liver images. The number of animals per organ varied due to differences in the
surgical procedure performed. For example, opening the thorax is a highly invasive
and challenging surgical procedure associated with significant mortality and extended
surgery time. Therefore, it was only performed on 8 out of 20 subjects, making heart and
lung HSI data unavailable for the remaining 12 subjects.

4.1.4 Semantic Human Dataset

The semantic human dataset contains 777 images from 230 subjects (see Section 4.1.1 for
a description of the data acquisition procedure) and is fully annotated with 16 classes.
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An overview of the dataset is shown in Table 4.12 and example images are shown in
Figure 4.1.

Table 4.1: Dataset statistics of the semantic human dataset. For each class, the number of
subjects and the number of images which show this class are displayed. Figure 4.1
shows example images and annotations for this dataset.

label name # subjects # images

stomach 122 299
small bowel 132 328
colon 123 289
liver 144 443
gallbladder 38 124
pancreas 41 93
kidney 48 127
spleen 19 45
omentum 143 448
lung 10 51
skin 113 327
muscle 37 77
subcutaneous fat 89 271
peritoneum 51 133
major vein 11 27
background 230 775

The semantic annotation process was carried out by a group of medical experts using the
Medical Imaging Interaction Toolkit (MITK) [220]. For consistent labeling, all annotations
were revised by the same medical expert.

Similar to the semantic porcine dataset, the ignore label was used for unsure objects or
classes not listed in Table 4.1 and ignored in our analysis. This label is found in 731 out of
777 images, and on average, the annotated areas cover 10 % (SD 8%) of the pixels in these
731 images. This ratio is higher than for the porcine dataset because the human dataset
is harder to annotate and some classes have been excluded either because they do not
contain enough samples (bladder, heart and kidney with Gerota’s fascia) or because the
class does not exist in the semantic porcine dataset (e.g., visceral fat). We only included
classes that occur in at least 6 subjects so that we could split them across five folds and
an independent test set.

2We do not show a heatmap for this dataset because there are way too many subjects to show on a single
page.
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4.1.5 Dataset Features

Here, we compare our dataset with respect to common features, namely the distribution
of organ sizes and a heatmap of common organ locations in the images. Both features
are based on the annotated regions in the datasets.

Organ Sizes
Organs differ in their size, length and form and this is also reflected in the annotations. In
terms of the number of pixels, there are substantial differences across organs as shown in
Figure 4.5 for all datasets. Inside each dataset, classes like stomach, colon or skin usually
occupy a large part of an image compared to smaller organs like gallbladder, pancreas or
major vein.

Organs in the semantic porcine dataset contain approximately 201 % more annotated
pixels than the organs in the tissue atlas dataset on average. This is due to the regions
that are omitted in the polygon annotations. Further, relative to other classes in the
dataset, small bowel and colon contain more pixels than stomach in the semantic porcine
dataset whereas this effect is reversed in the tissue atlas dataset.

In the semantic human dataset, some classes like small bowel, colon or spleen contain
fewer pixels compared to the semantic porcine dataset. For other classes like muscle or
omentum it is the other way around.

Location Maps
In theory, an organ could be positioned everywhere in an image. However, in practice,
there are regions where an organ is more likely to be located than others depending on
the preference during surgery and the constraints of the camera system (e.g., due to the
necessary overlapping of the distance markers). This is also reflected in the annotations.
Figure 4.6, Figure 4.7 and Figure 4.8 show location maps for each label for the tissue atlas,
semantic porcine and semantic human dataset, respectively.

For the tissue atlas dataset, annotated organs are usually located in the center of the
image revealing that the annotators mainly selected organs with a good view. This is also
amplified by the standardized recordings (cf. Figure 4.3) where each organ was explicitly
prepared to be imaged (e.g., by exposing the organ for a good view and placing the
distance markers on the organ center).

In contrast, the location maps of the semantic datasets are more diverse and show a
more realistic distribution of the organs in the images. There was no freedom for the
annotators in the choice of which pixels were going to be annotated since every pixel
in all images received a label. Some organs like heart, kidney or major vein have typical
locations in the image whereas other organs like small bowel, peritoneum or omentum
are more spread out.

68



4.1 Hyperspectral Datasets

0.0

0.5

1.0

1.5

nu
m

be
r 

of
 p

ix
el

s

1e5

tissue atlas dataset

0.0

0.5

1.0

1.5

nu
m

be
r 

of
 p

ix
el

s

1e5

semantic porcine dataset

st
om

ac
h

sm
al

l b
ow

el
co

lo
n

liv
er

ga
llb

la
dd

er
pa

nc
re

as
ki

dn
ey

sp
le

en
bl

ad
de

r
om

en
tu

m
lu

ng

he
ar

t
ca

rt
ila

ge
bo

ne

sk
in

m
us

cl
e

su
bc

ut
an

eo
us

 fa
t

pe
rit

on
eu

m
m

aj
or

 v
ei

n
ki

dn
ey

 w
ith

G
er

ot
a'

s 
fa

sc
ia

bi
le

 fl
ui

d

label name

0.0

0.5

1.0

1.5

nu
m

be
r 

of
 p

ix
el

s

1e5

semantic human dataset

Figure 4.5: Distribution of the number of annotated pixels across all images for each organ and
dataset. Each boxplot shows the interquartile range (IQR) with the median (solid
line) and mean (dotted line). The whiskers extend up to 1.5 times of the IQR. Outliers
and the background class are not shown for brevity.

69



4 Materials and Methods

location map segmentation RGB location map segmentation RGB

Figure 4.6: Location maps of the images in the tissue atlas dataset. The location maps show
a heatmap of the positions for the annotated pixels for each label, i.e., it denotes
where usually labels are located in an image. The exemplary RGB and segmentation
images are representatives of their respective classes chosen to have a maximum
overlap with the global location map.
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location map segmentation RGB location map segmentation RGB

Figure 4.7: Location maps of the images in the semantic porcine dataset. The location maps
show a heatmap of the positions for the annotated pixels for each label, i.e., it denotes
where usually labels are located in an image. The exemplary RGB and segmentation
images are representatives of their respective classes chosen to have a maximum
overlap with the global location map.

The location maps for the semantic porcine and semantic human datasets are similar for
classes like colon, lung or gallbladder but show different locations for classes like spleen,
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location map segmentation RGB location map segmentation RGB

Figure 4.8: Location maps of the images in the semantic human dataset. The location maps
show a heatmap of the positions for the annotated pixels for each label, i.e., it denotes
where usually labels are located in an image. The exemplary RGB and segmentation
images are representatives of their respective classes chosen to have a maximum
overlap with the global location map.

major vein or muscle. This could be due to different surgical procedures or different
visibilities of an organ.
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Figure 4.9: Deep learning pipeline for spectrum classification. Based on a pre-processed hyper-
spectral image and corresponding polygon annotation, the median spectrum across
all spectra of the annotation is computed (channel-wise) and fed into a spectrum
classification network which assigns the annotated area to one of the 20 organ
classes.

4.2 Spectral Organ Fingerprints

An overview of our deep learning pipeline for the classification of individual spectra
is shown in Figure 4.93. Using the corresponding polygon annotation, we compute the
median spectrum by computing the median of all normalized reflectance values per
channel. This 100-dimensional median spectrum is input to the convolutional spectrum
network which predicts one of the 20 organ classes.

Network and Training Setup
The deep learning model consists of three convolutional layers (with 64 filters in the
first layer, 32 in the second, and 16 in the third), followed by two fully connected layers
(with 100 neurons in the first and 50 in the second layer). All five layers have batch-
normalized activations and a final linear layer was used to compute the class logits. Each
convolutional layer applies a one-dimensional convolution to the spectral domain with a
kernel size of 5 and is followed by an average pooling layer with a kernel size of 2. The
two fully connected layers apply dropout with a probability of 𝑝 to their activations. All
non-linear layers utilize the exponential linear unit (ELU) [42] as the activation function
(cf. Section 2.3.1).

We selected this architecture because it offers a straightforward yet efficient method
for analyzing spectral data. The convolution operations focus on the local structure of
the spectra and we employed a relatively small kernel size and stacked three layers to
expand the receptive field while maintaining computational efficiency [218]. The two
fully connected layers make a final decision based on the global context. The benefit of
this approach is that it merges local and global information gathering while remaining
computationally efficient, as the entire network only utilizes 34 300 trainable weights.

3This section is based on [215].
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We trained 10 000 000 samples per epoch for 10 epochs with a batch size of 𝑁. For a
standard computer vision task operating on full images (as also done in Section 4.4), such
an epoch size would be way too large as it would take very long (in the scale of years) to
train corresponding networks. However, for our spectrum classification task, this epoch
size is not a problem because here a single sample consists of a 100-dimensional spectrum
(e.g., compared to a model that operates on full HSI data cubes where a single sample has
a dimension of 480 × 640 × 100 (height, width and number of channels)).

The softmax function was utilized to calculate the posterior probability for each class.
We employed the Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.999) [116] with an exponential decay
of the learning rate (decay rate of 𝛾 and initial learning rate of 𝜂) and the multiclass
cross-entropy loss function.

Class Imbalances
The tissue atlas dataset is highly imbalanced in terms of number of samples (median spec-
tra) per class (cf. Figure 4.2 and Figure 4.10). To account for this, we optionally weighted
the loss function based on the number of training samples per class and sampled spectra
for the batches either randomly or through oversampling to ensure each organ class had
an equal chance of being sampled. Loss function weighting and oversampling have the
similar effect of increasing the importance of underrepresented classes, either by showing
corresponding samples more often during training (oversampling) or by increasing the
update step for those classes during backpropagation (loss function weighting).

For both cases, we need a weight 𝑤𝑖 for each class 𝑖 which is based on the number of
samples 𝑐𝑖 in the training data for that class. In the case of the loss function, we define
this weight with the help of the softmax function as

𝑤 softmin𝑖 = 𝑒𝜆⋅𝑐𝑖∑𝑛𝑗=1 𝑒𝜆⋅𝑐𝑗 . (4.2)

𝑛 denotes the total number of classes and 𝜆 is the temperature parameter of the soft-
max function which we empirically set to 𝜆 = −2. Since 𝜆 < 0, we effectively make
Equation 4.2 a softmin function (the most underrepresented class yields the highest
weight).

For oversampling, our goal is to see each class equally often during training. That is, a
class that occurs with a ratio of 𝑐𝑖/𝑛 should be sampled with a ratio independent of 𝑐𝑖. To
achieve this, we define the weight as𝑤 inverse𝑖 = 1∑𝑛𝑗=1 1𝑐𝑗 ⋅ 1𝑐𝑖 . (4.3)
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The ratio 1/𝑐𝑖 makes the sampling independent of the current class4 and the prefactor
converts the weights to a valid probability distribution. We are using this weight as a
condition for our random sampling procedure, i.e., each class is sampled proportional to𝑤 inverse𝑖 .

Equation 4.2 leads to a softened version of the class probabilities compared to Equation 4.3.
This allows us to control the effect of the loss weighting. Figure 4.10 compares both
weighting schemes for the training data of the tissue atlas dataset.
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Figure 4.10: Class imbalances in the tissue atlas dataset and class weighting schemes. The
class weighting schemes (bottom) are based on the number of samples, i.e., median
spectra, (top) and are defined in Equation 4.2 (softmin) and Equation 4.3 (inverse).

4Since 𝑐𝑖𝑛 ⋅ 1∑𝑛𝑗=1 1𝑐𝑗 ⋅ 1𝑐𝑖 = 𝑛∑𝑛𝑗=1 1𝑐𝑗 is a constant for all classes.
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Hyperparameter Search
We performed an extensive hyperparameter search on the validation split of the tissue
atlas dataset (cf. Figure 5.1 in Section 5.1.1). The details are presented in Table 4.2. The
spectrum network is defined by these optimal hyperparameters and all the results shown
in Section 5.1 are based on them.

Table 4.2: Specification and results of the hyperparameter search for the spectrum classification
network.

hyperparameter optimum search space

dropout probability 𝑝 0.2 𝑝 ∈ {0.1, 0.2}
learning rate 𝜂 0.0001 𝜂 ∈ {0.001, 0.0001}
decay of the learning rate 𝛾 0.9 𝛾 ∈ {0.75, 0.9, 1.0}
batch size 𝑁 20 000 𝑁 ∈ {20 000, 40 000}
weighted loss function included included/not included
oversampling not included included/not included

4.3 Efficient Training of Hyperspectral Segmentation
Networks

We had to train hundreds of deep neural networks for this thesis. This includes not only
the networks for the results shown but also all the networks trained during development.
When we implemented our deep neural networks, our goal was not only a good segmen-
tation performance but also a rapid training workflow. This was especially challenging
for our HSI data since the images are large but the processing in our network (U-Net
[189] with EfficientNet B5 encoder [219]) is relatively fast which leads to data loading
bottlenecks as shown in Figure 4.11. In this section, we describe how we dealt with this
problem5.

As a first step, we analyzed the data loading pipeline in detail (Figure 4.12) and identified
four bottlenecks: (①) no usage of data compression and (②) an inefficient data type
both concerning the data storage format and leading to large file sizes, (③) huge data
processing effort on the CPU and (④) an inefficient memory transfer to the GPU involving
unnecessary copies of the data. Subsequently, we developed four different counter-
strategies to tackle these bottlenecks. The first two strategies (blosc and fp16) are based
on the data storage format and the last two strategies (gpu-aug and ring-buffer ) concern
the data processing and memory transfer. Each strategy is explained in more detail below.

5This section is based on [198, 201].
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Figure 4.11: Effect of inefficient data loading in high-throughput model training. In this example,
the preparation of a new batch 𝘣𝘪 on the central processing unit (CPU) takes relatively
long compared to the processing of the batch 𝘣𝘪 on the graphics processing unit
(GPU) (e.g., when using large images but small models) leading to idle times of the
GPU. This figure was adapted from [201].
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Figure 4.12: Causes of inefficient data loading in high-throughput model training. Per default,
images I𝘪 are loaded from the solid-state drive (SSD) and processed to batches 𝘣𝘪 on
the central processing unit (CPU) (including data augmentation) before they are
transferred to the graphics processing unit (GPU) via the random-access memory
(RAM). Along this path, we discovered several bottlenecks which we tackled by
optimizing the data storage format (① and ②), reducing the processing effort on the
CPU (③) and tuning the memory transfer to the GPU (④). This figure was adapted
from [201].

Data Storage
The raw HSI data is stored in tensors of shape 480×640×100 (height, width and number of
channels) with float32 values leading to file sizes of approximately 117MiB per image6.
To reduce the demand on the SSD, we compressed the data cubes. Compression is a first
and obvious step but not always beneficial. If the compression algorithm used is very
slow in decompression, the benefit of reduced file size may be suspended by increased

6MiB denotes mebibytes and 1MiB is composed of 220 bytes.
77



4 Materials and Methods

decompression times and high CPU load. Depending on the hardware, this may even be
slower than loading uncompressed data.

To avoid this problem we are using the blosc meta compressor [21] which focuses on fast
decompression times. blosc does not invent a new compression format but rather serves
as a meta compressor where the user can select between different compression formats.
Further, it employs some tricks to speed up the decompression process like chunking the
data into blocks that fit into the cache of the CPU. As compression format, we are using
the zstd [43] algorithm which is targeted at real-time compression scenarios and thus is
designed for fast decompression. This reduces the file size to approximately 86MiB per
image.

To further reduce the loading effort on the SSD, we quantize the data by changing the data
type from float32 to float16. This is not a lossless step as full information retrieval
is not possible anymore. However, we found that the information loss is negligible for
our HSI data. This reduces the file size further to approximately 35MiB per image.

Data Processing
We employ data augmentations while training our networks (cf. Section 4.4) and this
turns out to be one of the most time-consuming steps in our data loading pipeline. The
reason behind this lies in the 100 spectral channels which necessitate repeating numerous
operations for each channel (e.g., resampling in affine transformations). This is inefficient
on the CPU because of the limiting parallelization capabilities compared to the GPU.
Hence, we moved the data augmentation to the GPU using the Kornia library [185]. This
has three advantages: (1) the data augmentation is now performed in a highly parallel
manner which is more efficient compared to the CPU augmentations, (2) the GPU has
work to do reducing its idle times and (3) we free resources on the CPU which can be
used to load data.

Memory Transfer
The final counter-strategy optimizes the memory transfer from the RAM to the GPU. Per
default, this uses paged memory which requires additional memory copies and is hence
inefficient. To avoid this, we use pinned memory which is non-swappable and can hence
be used to directly transfer data from the RAM to the GPU without additional copies of
the data (see Figure 4.13 for details).

Allocation of pinned memory requires device synchronization between the host (applica-
tion and graphics driver running on the CPU) and the GPU [47]. If this happens regularly
during training, it can slow down the training because the host and the GPU have to wait
for each other on all synchronization points destroying the asynchronous nature of the
GPU [224].

To avoid this problem, we propose to use a shared, fixed and pinned memory ring buffer
(Figure 4.14). This buffer is initialized at the beginning of the training and hence requires
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Figure 4.13: Concept of pinned memory in comparison to paged memory. In the example, batch
data consisting of 6 memory pages 𝘱𝘪 have previously been loaded into the random-
access memory (RAM) and should now be transferred to the graphics processing
unit (GPU). Per default, data has to pass the central processing unit (CPU) on
transfers from the RAM to the GPU because some memory pages may have been
swapped out by the operating system and need to be loaded back in again from
the solid-state drive (SSD) by the graphics driver. In the example on the left side,
memory page 𝘱1 is currently transferred to the GPU from the driver-managed
memory region (this region may also be pinned but is usually much smaller so that
not all the data can be transferred at once), 𝘱3 is moved to the memory region which
is managed by the graphics driver, 𝘱4 is loaded from disk because it was swapped
out by the operating system previously and 𝘱5 is processed next by the CPU. If
using pinned memory (right side), memory pages 𝘱𝘪 are non-swappable and data
can hence be directly moved from the RAM to the GPU. This figure was adapted
from [201].

synchronization only once during training. It resides in shared memory so that each
worker can directly load batches into the buffer and it is allocated as pinned memory.
The workers re-use existing memory locations when they are free again after successful
transfer to the GPU.

It is worth noting that pinned memory allocations should be treated with care since every
pinned memory region cannot be used by the operating system anymore (it is exclusively
reserved for the task inside the allocating application). Too many small pinned memory
allocations can further lead to memory fragmentations if no large enough continuous
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Figure 4.14: Concept of the shared, fixed and pinned memory ring buffer. While using a fixed
(initialized during training start), shared (accessible by all workers) and pinned
memory location (cf. Figure 4.13), unnecessary memory transfers can be avoided.
Every batch 𝘣𝘪 consists of 3 images I𝘪 which are stored in multiple memory pages𝘱𝘪 (the memory pages are not shown in the figure). In the example, batch 𝘣1 is
currently transferred to the graphics processing unit (GPU), worker1 copies image
I9 and worker2 copies image I11 to the buffer. Memory locations of successfully
transferred batches (like 𝘣1 in the example) are going to be re-used by the workers.
This figure was adapted from [201].

memory region remains for the operating system. Hence, it is advisable to use only a
minimal number of shared, fixed and pinned memory ring buffers (e.g., only for the image
data and the corresponding labels) and ensure that enough system memory is available
after the initialization phase. [86, 48]

Collaborative Batch Filling
The concept of the shared, fixed and pinned memory ring buffer is not only applicable
to the image model but also to smaller spatial granularities like patches or superpixels.
However, in these cases, it is also advantageous if the workers operate collaboratively on
a batch, i.e., if every worker contributes one part of the batch (e.g., via a set of patches or
superpixels). This concept is visualized in Figure 4.15.

With the collaborative setting, we can increase randomness across images in one batch
since each batch now contains parts from multiple images (controlled by the number of
used workers). This brings the batch distribution closer to the real data distribution which
is usually beneficial for training neural networks. Additionally, the memory footprint is
constant in this setting and only depends on the number of used workers. In contrast, if
workers fill batches independently from each other, the number of images that contribute
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Figure 4.15: Application of the shared, fixed and pinned memory ring buffer for smaller spatial
granularities. All workers contribute equally to every batch 𝘣𝘪 to ensure batch parts
(here patches) arise from a large variety of different images. In this example, the
three workers prepare the patches P10, P11 and P12 on the central processing unit
(CPU) filling up the batch 𝘣4. The batch 𝘣1 is currently transferred to the graphics
processing unit (GPU). The images I𝘪 are assigned disjunct to the workers and are
re-shuffled after every epoch for increased image variation. This loading scheme is
used for the pixel, superpixel and patch granularities. This figure was adapted from
[198].

to a batch is limited in practice because holding multiple images per worker in memory
would significantly increase the memory footprint.

4.4 Surgical Scene Segmentation of Hyperspectral
Images

An overview of our deep learning pipeline for the segmentation of HSI data using different
spatial granularities is shown in Figure 4.167. In general, our decisions regarding model
architectures and training setup were largely influenced by our comparative study of
different modalities and spatial granularities. We strived to maintain consistent model and
training parameters across different spatial granularities and modalities where feasible
(for instance, identical hyperparameters, data splits or a comparable number of pixels
per epoch). We deliberately refrained from individual parameter tuning for each model

7This section is based on [198].

81



4 Materials and Methods

and stuck to the default settings whenever possible to guarantee a fair comparison and
minimize computational expenses.

c=100
w

=6
40

h
=

48
0

raw input

c=100
w

=6
40

h
=

48
0

pre-processed

input

image

c=100 w
=6

4h
=

64

patch

c=100 w
=3

2h
=

32

superpixel

c=
10

0

pixel spectrum

network input

16
9

16
18

32

22
32

44
64

48

64

96 19 ...50 ...100 ...144

spectrum network

U-Net

512 ...19

convolution layer batch normalization layer pooling layer

upscaling layer skip input

logits layer

fully connected layer

w=640

h
=

48
0

w=1

h
=

1

w=64

h
=

64

network output

w=640

h
=

48
0

w=640

h
=

48
0

w=640

h
=

48
0

aggregation

Figure 4.16: Deep learning pipeline for segmentation of hyperspectral imaging (HSI) data for
different spatial granularities. For pixel-based classification, every spectrum of
the pre-processed input is fed individually into a spectrum classification network
to predict one of the 19 classes. For superpixel-based classification, superpixels
are computed based on the RGB image, a minimum enclosing bounding box is
fit while replacing pixels outside the superpixel with zeros and then the box is
reshaped to a fixed superpixel cube. Then, each superpixel cube is fed into the
encoder of the spectrum segmentation network followed by a classification head.
For patch-based segmentation, the pre-processed input is split into patches of
fixed size and then each patch is fed into the spectrum segmentation network.
The individual predictions of the pixel, superpixel and patch-based networks are
aggregated yielding a prediction map for the complete image. For image-based
segmentation, the pre-processed input is fed into the segmentation network yielding
a prediction for each pixel. This figure was adapted from [198].

Input Modalities
We wanted to explore the potential advantages of using HSI data over RGB and TPI
data for fully automated organ segmentation via neural networks. For simplicity, we
will refer to these different types of input data as input modalities, even though they
were all captured with the same camera and are based on the same data. This reflects
the possibility that future applications leveraging semantic scene segmentation could
be based on RGB images from a standard camera, preprocessed HSI images from an
HSI camera provider, or raw HSI spectra. We trained neural networks separately on all
three input modalities for all examined spatial granularity levels. The camera system
provided RGB data reconstructed from the HSI data. To evaluate the organ segmentation
performance on processed HSI data, we stacked the corresponding StO2, NPI, TWI, and
THI images, resulting in a 480 × 640 × 4 (height, width and number of channels) TPI cube
that served as the model input.
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Pixel-Based Segmentation
The smallest spatial granularity of the input data involves using individual pixel spectra,
which results in input feature vectors of length 𝑐 = 100 for HSI input data, 𝑐 = 4 for
TPI input data, and 𝑐 = 3 for RGB input data. For HSI input data, we are using the
same spectrum classification network as for our tissue atlas dataset classification task
(cf. Section 4.2). For TPI and RGB input data, it is not possible to have convolutional
operations across channels due to the small channel size. Instead, the network comprises
three fully connected layers with 200 neurons in the first, 100 neurons in the second,
and 50 neurons in the third layer. The ELU [42] is used as an activation function (cf.
Section 2.3.1) and batch normalization is applied to all outputs from all layers except
pooling layers. The class logits are computed by a final linear layer and the maximum
value determines the predicted class. The cross-entropy (CE) loss function is used for
model optimization during training.

The architecture is designed to aggregate local information from neighboring spectral
bands and global information across the entire spectrum while maintaining a small
network size of only 34 275 weights for HSI, 27 819 weights for TPI, and 27 619 weights
for RGB input data, thereby ensuring computational efficiency.

To obtain a segmentation map for an image, we predict a class label for each pixel in the
image and then project the resulting labels back to the original image locations.

Superpixel-Based Segmentation
Superpixels are low spatial granularity regions that conform to local boundaries, en-
closing pixels with similar characteristics. Similar to pixel-wise organ segmentation,
the unsupervised clustering of superpixels transforms the organ segmentation task into
a superpixel-wise organ classification task. This is based on the assumption that all
pixels within a superpixel belong to the same organ class, as superpixels are expected
to lie within the local boundaries of an organ. Superpixels are created using the SLIC
algorithm on the reconstructed RGB data [1]. Before clustering, the image is smoothed
with a Gaussian kernel of width 3, and then 1000 segments are computed in 10 iterations
while adaptively changing the per-superpixel compactness parameter (SLICO mode). A
minimum enclosing bounding box is computed for each superpixel and areas outside
the superpixel are replaced with zeros. To standardize the input shape, superpixels are
resized via bilinear interpolation to the shape 32 × 32 × 𝑐. The number of channels 𝑐
depends on the input modality (𝑐 = 100 for HSI, 𝑐 = 4 for TPI and 𝑐 = 3 for RGB input
data).

The resized superpixel cubes are fed into an EfficientNet B5 encoder [219] pretrained on
the ImageNet dataset [55] using the Segmentation Models PyTorch library of Yakubovskiy
[242]. This encoder was chosen for its good performance, low number of parameters,
low memory footprint, and fast computation times. The encoder network’s output is
passed to a classification head consisting of a fully connected layer with 19 neurons for
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calculating the class logits. Thus, the superpixel network shares the same architecture
(mainly the encoder) as the segmentation networks for the image and patch-based models
while employing only minor modifications.

Not all pixels within a superpixel may belong to the same organ class, possibly due to
inconsistencies at the organ border. To address this, we introduced fuzzy labels, assigning
a label vector with the length corresponding to the 19 classes of our semantic segmentation
task. The fuzzy label vector records the relative frequency of each class label based on
the labels from the pixels inside the superpixel. The Kullback-Leibler divergence [123]
between fuzzy labels and the softmax output is used as a loss function during training.

During inference, the maximum value of the logits vector determines the predicted class
label and this label is assigned to every pixel position of the superpixel. Predictions of all
pixels from all superpixels are combined to produce a segmentation map for an image.

Patch-Based Segmentation
Patches are low spatial granularity regions extracted from images based on a fixed shape.
They are typically easier to generate and more compatible with neural networks than
superpixels, mainly due to their rectangular shape aligning with the rectangular kernel
shapes of convolutional neural networks. To capture varying degrees of granularity,
we extract patches of two different shapes: 32 × 32 × 𝑐 and 64 × 64 × 𝑐. These sizes act
as intermediate steps between the superpixel and the image model in terms of spatial
granularity (cf. Table 4.3). We use patch sizes that are powers of two to seamlessly
integrate them with encoder architectures that halve the input shape multiple times.
The number of patches generated per image equals the number of patches that could be
generated via a grid-based tiling, e.g., 48032 ⋅ 64032 = 15 ⋅ 20 = 300 patches per image for the
patch_32 granularity.

The patches are fed into a U-Net [189] with an EfficientNet B5 encoder [219] pretrained
on the ImageNet [55] dataset (similar to the superpixel network). During training, Dice
loss [151] and CE loss are calculated based on all valid pixels8 in the batch and equally
weighted to compute the final loss. While each misclassified pixel contributes equally to
the CE loss, misclassified pixels belonging to an organ class with a smaller image area
contribute more to the Dice loss than misclassified pixels belonging to a bigger-sized
class (e.g., background). The weighted sum of both loss terms allows the network to
leverage the respective advantages of both loss functions.

During inference, images are divided into a grid of non-overlapping patches of the
corresponding patch size. If an image dimension is not an integer multiple of the patch
dimension (e.g., for the patch_64 granularity: 480/64 = 7.5), the missing image regions
are zero-padded. For each patch, the network produces a segmentation map for the patch.
The segmentation maps of all patches of one image are combined to create an image

8Pixels from the ignore class are not considered valid and are excluded from the loss calculation.
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segmentation map. Segmentations belonging to previously zero-padded image regions
are removed.

Table 4.3: Epoch and batch sizes for the spatial granularity models. The names patch_64 and
patch_32 refer to models with the input shapes 32 × 32 × 𝘤 and 64 × 64 × 𝘤, respectively
(𝘤 number of channels). # pixels refers to the number of pixels of a single input sample
for a model.

spatial granularity # pixels epoch size batch size

image 307 200 500 5
patch_64 4096 37 632 336
patch_32 1024 150 528 1176
superpixel ≈ 300 500 760 1560
pixel 1 153 608 400 118 800

Image-Based Segmentation
Images provide the highest level of spatial granularity and are used directly without
any modifications to the image dimensions. This means the input tensors have a shape
of 480 × 640 × 𝑐. Similar to the patch-based segmentation, the images are fed into an
EfficientNet B5 [219] powered U-Net [189] pretrained on the ImageNet [55] dataset. Both
Dice [151] and CE loss are equally weighted to compute the loss function.

Training Setup
To enhance the size and variety of the training data, thereby improving convergence,
generalization, and robustness on out-of-distribution samples, data augmentation is
frequently used in computer vision [28]. Across all spatial granularities, we augment
the training data with the help of the Kornia library [185] on the image level, i.e., before
extracting smaller spatial granularities like pixels, superpixels, or patches. Images are
shifted (shift factor limit: 0.0625), scaled (scaling factor limit: 0.1), rotated (rotation
angle limit: ± 45°), and flipped (horizontally and vertically). We set the probability of
applying an augmentation to 𝑝 = 0.5 to minimize the computational costs associated
with extensive data augmentations.

All models utilize the Adam [116] optimization algorithm (𝛽1 = 0.9, 𝛽2 = 0.999) and an
exponential learning rate scheme (initial learning rate: 𝜂 = 0.001, learning rate decay𝛾 = 0.99). Training is conducted over 100 epochs with stochastic weight averaging [103]
applied. To ensure a consistent training procedure across models, the training budget
should be the same for all models. Therefore, one epoch is defined as processing 500
training images for image-based segmentation. For pixel-, superpixel-, and patch-based
segmentation, the total number of extracted pixels for eachmethod is approximately equal
to the total number of pixels in 500 images. This results in a certain number of samples
per epoch for each granularity (cf. epoch size column of Table 4.3). The approximation
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is necessary because the epoch size must be divisible by the batch size to allow every
worker in the data loader to contribute equally to each batch (cf. Section 4.3).

Optimal batch size recommendations vary (e.g., [208, 112]). While smaller batch sizes can
potentially accelerate the learning process [156], larger batches better represent the real
population, potentially leading to more stable gradients and improved batch statistics
[101]. As a compromise, we maximized the batch size while opting for a large number of
epochs to counteract a potentially slower learning process. In practice, the batch size is
limited by the available GPU memory and depends on the network and the dimensions
of the input. We determined the maximum batch size per model, resulting in larger
batch sizes for smaller input spatial granularities. Table 4.3 provides an overview of the
resulting epoch and batch sizes.

During training, every model from the respective training fold was evaluated after each
epoch on the corresponding validation set. The dice similarity coefficient (DSC) was
calculated while considering the hierarchical structure of the data (cf. Figure 5.13). The
final validation score was obtained by averaging the DSC values of the three validation
pigs, and this score was also used to determine the best model across all epochs per fold.

To mitigate overfitting, dropout regularization is utilized for the fully connected layers in
the pixel models and in the superpixel classification head, with the dropout probability
set to 𝑝 = 0.1.
Hardware and Variability
Training of neural networks involves various sources of variation, some ofwhich are easier
to control than others (e.g., seeding vs. hardware influences) [174]. In our comparative
study, where we aim to fairly compare different spatial granularities and modalities, it is
crucial to minimize these sources of variation.

While achieving perfectly reproducible results often comes at the expense of extended
training times (e.g., by resorting to deterministic operations or a single homogeneous
hardware infrastructure; which can be inefficient) [174], we implemented several mea-
sures to reduce variation: we controlled the weight initialization of the networks, the
initialization of the workers responsible for data loading (which also impacts data aug-
mentation due to the seeds of the workers) and the sequence in which training samples
are presented to the network for the modalities (e.g., corresponding spatial models for
different modalities receive patches from the same spatial locations and in the same
order). To achieve this, we set a seed for the network initialization and the data loaders
and standardized the number of workers on each data loader to 12 across all experiments.
However, due to the need for efficient execution of numerous training runs for this study,
we did not enforce deterministic operations and utilized our in-house cluster infrastruc-
ture, which comprises an inhomogeneous hardware infrastructure with various GPUs
(e.g., NVIDIA® GeForce RTX™ 2080 Ti or NVIDIA® DGX™ A100).
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Additionally, in order to understand the variation introduced by the randomness of the
training process, we retrained our image HSI model five times with different seeds. We
compared the results of those networks and analyzed the coherence of the predictions on
the pixel level, i.e., where in the image are pixels that yield the same prediction across all
five seed networks and where are pixels with different predictions. That is, given the
network outputs (class labels) 𝑙𝑠𝑥,𝑦 at position (𝑥, 𝑦) for seed network 𝑠 ∈ {1, 2, 3, 4, 5}, we
compute the prediction coherence map (PCM) for an image as

PCM𝑥,𝑦 = {0 if 𝑙1𝑥,𝑦 = 𝑙2𝑥,𝑦 = 𝑙3𝑥,𝑦 = 𝑙4𝑥,𝑦 = 𝑙5𝑥,𝑦1 else
(4.4)

PCMs are used in Section 5.3 in the discussion about network variability and the ensem-
bling effect. Examples are shown in Figure 5.24.

4.5 Domain Shifts in Surgical Hyperspectral Imaging

In this section, we describe our approach to tackle geometric domain shifts in the con-
text of surgical scene segmentation based on the segmentation networks described in
Section 4.49. Our approach operates on the premise that geometric domain shifts can po-
tentially be mitigated through application-specific data augmentation techniques. Hence,
instead of modifying the network architecture of our segmentation methods, we introduce
a new surgical-inspired data augmentation technique.

The concept of our data augmentation technique is based on the idea of transplanting or-
gans from one image to another thus forcing the network to detect classes independent of
their surroundings. This augmentation, which we call organ transplantation, is illustrated
in Figure 4.17. Given a batch of 𝑛 images, we randomly select 𝑁 images from the batch
(depending on the probability parameter 𝑝 of applying the augmentation) where selected
classes should be transplanted from. For each of the 𝑁 images (the donors), we randomly
select a class and place all pixels that belong to this class into another image (the acceptor).
We always copy the spectra and the corresponding segmentation mask. This way, a class
is placed in an unusual context while keeping texture and shape consistent. A detailed
description of the augmentation technique is given in Algorithm 4.1.

Our augmentation has been inspired by the image-mixing augmentation CutPas. Origi-
nally, CutPas was proposed for object detection [61] and it has since been adapted for
instance segmentation [73] and for generating low-cost datasets through image synthesis
from a small number of real-world images in surgical instrument segmentation [231].

9This section is based on [202].
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input batch

image features segmentation masks

output batch

Figure 4.17: Concept of the organ transplantation augmentation. Given a batch of 𝘯 images
where 𝘕 images are considered for transplantation (here 𝘯 = 𝘕 = 2, i.e., a proba-
bility of applying the augmentation of 𝘱 = 1), image features and corresponding
segmentations of random classes are transplanted between images in the batch.
Here, the stomach is transplanted from the first to the second and the spleen is
transplanted from the second to the first image. This figure was adapted from [202].

Algorithm 4.1: Detailed description of the organ transplantation augmentation. The function
randlabel(𝘹) returns a random value from the unique values of the input 𝘹.
Copying of the input is necessary since an image may be an acceptor and donor
at the same time.

Input: Input batch consisting of images I1, … , I𝘯 with corresponding segmentation masks
L1, … , L𝘯; Probability 𝘱 ∈ [0; 1] of applying the augmentation to an image.

Output: Output batch of augmented images I′1, … , I′𝘯 with corresponding segmentation masks
L′1, … , L′𝘯.

1: I′𝘪 ← I𝘪, L′𝘪 ← L𝘪 ∀𝘪 = 1, … , 𝘯 ▷ Copy input.
2: 𝘕 ← ⌊𝘱 ⋅ 𝘯⌋ ▷ Number of donor images.
3: for 𝘥 = 1, … , 𝘕 do
4: 𝘢 ← 𝘥 − 1 ▷ Make image left of the donor the acceptor.
5: 𝘭 ← randlabel(L𝘥) ▷ Select a random class label from the donor.
6: 𝒫 ← {𝒑 | L𝘥(𝒑) = 𝘭} ▷ Set of pixel coordinates for the donor label.
7: I′𝘢(𝒫 ) ← I𝘥(𝒫 ) ▷ Transfer image features from the donor to the acceptor.
8: L′𝘢(𝒫 ) ← L𝘥(𝒫 ) ▷ Transfer label information from the donor to the acceptor.
9: end for
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Experiments and Results 5
In this chapter, we will show our spectral analysis and the results from our classification
and segmentation networks. The general structure and order of the experiments follow
the process introduced in Figure 1.2. We start with the analysis on the spectra level,
present our open-data concept and explain how we effectively train our networks before
we move from the spectra to the image level. Further, we show the effect of different
domain shifts and present a solution for contextual shifts.

In Section 5.1, we present the results of our spectral analysis (RQ1). Section 5.2 shows
the effectiveness of our data loading performance improvements (RQ2). In Section 5.3,
we present how we utilize the information contained in the spectra in our segmentation
networks (RQ3). The systematic analysis of domain shifts (RQ4) is the topic of Section 5.4
and concerns the impact of subject, species and context domains. This includes our data
augmentation method to maintain performance on geometrical OOD data.

Each section includes details about our experimental setup, i.e., how we designed and
evaluated our experiments including our data splits for training, validation and test-
ing (using the datasets described in Section 4.1), the employed metrics as well as our
aggregation scheme.

All sections include a presentation and interpretation of the results. Detailed experiment-
specific discussions and a meta-level discussion with all the findings of this thesis can be
found in Chapter 6.

5.1 Spectral Organ Fingerprints

This section covers our fundamental analysis of utilizing the spectral information con-
tained in our hyperspectral datasets described in Section 4.11. Our goal of this study
was to find unique spectral fingerprints for different organ classes and to discriminate
the spectra via a machine learning model. After some details about our experimental

1This section is based on [215].
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design in Section 5.1.1, this includes the results for our classification task based on median
spectra (Section 5.1.2) as well as our open data efforts (Section 5.1.3).

5.1.1 Experimental Setup

The median spectra classification task is trained and evaluated on the tissue atlas dataset
(see Section 4.1.2). This section outlines how we split the data for training, validation and
testing as well as the employed evaluation metrics.

Splits
Prior to network training, we split the dataset into a training and a hold-out test set with
3765 images from 38 subjects and 5292 images from 8 subjects, respectively. These 8 test
subjects were randomly selected from the subset of standardized recordings with the only
criterion that every class should be represented in the training and test split by at least
one subject from the standardized recordings. With more than 8 subjects, this criterion
could not be fulfilled anymore. We used the test subjects only after we finalized the
network architecture and tuned all hyperparameters. The training set is further split into
38 folds for leave-one-subject-out cross-validation. All splits are visualized in Figure 5.1.

Metrics
We used the micro-averaged accuracy to assess the performance of our machine learning
model. This means that all samples from all classes contribute equally to the metric
score. To account for the imbalance in the number of samples per class of the tissue atlas
dataset, we additionally computed the macro-averaged sensitivity (recall), specificity and
F1 score. In these cases, scores were computed independently for each class and then the
class-level scores were averaged. [184, 141, 183]

In all cases, we respect the hierarchical structure of the data and compute metrics first for
each subject before averaging across subjects (cf. Figure 5.13). The validation accuracy is
computed for each fold, i.e., for one subject, and then the results are aggregated across
all folds by averaging the subject-level accuracies. To compute the predictions on the
hold-out test set, we ensemble the predictions from all 38 networks (one for each fold) by
averaging the logits vectors from all folds independently for each sample. We take the
class with the highest probability as the final prediction.

5.1.2 Analysis of Spectral Organ Fingerprints

This section shows the results of the spectral analysis using the tissue atlas dataset by
means of descriptive visualizations and results from our classification task.

Figure 5.2 shows the median spectra across all subjects for all 20 organ classes of the
tissue atlas dataset. Whereas the fingerprints of some organs look similar (e.g., small
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Figure 5.1: Overview of the 𝘬-fold structure of the tissue atlas dataset. The heatmap visualizes
the assignment of the images from the tissue atlas dataset to the different splits used
for training, validation and testing (each row denotes one fold and each column one
image). Validation and test borders are always at subject boundaries. A leave-one-
out-cross-validation structure is employed with one subject in the validation split
per fold. Subjects from the standardized recordings are shown on the right, have
significantly more images and constitute the test set.
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bowel and stomach), other organs are clearly distinguishable (e.g., spleen and skin). The
SD across subjects is rather low for most organs indicating that the median spectra are
similar across subjects. The gallbladder is an exception with a high SD among subjects.
Across all organs, the SD is higher toward the near-infrared range of the spectrum (e.g.,
in the area above 950 nm) which could be explained by increasing noise in this area (see
also Figure 2.7).
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Figure 5.2: Spectral fingerprints of 20 organ classes in the tissue atlas. For each organ, the
median spectra (solid line) hierarchically aggregated to the subject level as well
as the standard deviation (shaded area) across subjects is shown. This figure was
adapted from [215].
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The 100-dimensional hyperspectral data of the tissue atlas is shown in a low-dimensional
uniform manifold approximation and projection (UMAP) in Figure 5.3. It shows that
classes like bile fluid, spleen or omentum form highly isolated clusters with the neighbor-
hood being mainly comprised of spectra from the same class. Other classes like pancreas,
colon or muscle are more mixed with other classes.
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Figure 5.3: Visualization of the spectral neighborhood with uniform manifold approximation
and projection (UMAP) as a non-linear dimensionality reduction tool of the tissue
atlas. Each point represents the median spectrum of one polygon annotation for one
organ in one image from one subject. The location of organ name boxes is based on
the centroid of the projected class distribution. This figure was adapted from [215].

For the machine learning task, we classified individual median spectra per image and
annotation in one of the 20 organ classes with the help of our spectrum classification
network described in Section 4.2. We achieved a micro-averaged accuracy of 95.4 % (SD
3.6 %), a macro-averaged sensitivity, specificity and F1 score of 93.0 % (SD 6.3 %), 99.7 %
(SD 0.2 %), and 92.3 % (SD 6.5 %), respectively. Figure 5.4 shows a confusion matrix of
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the results. With 16 out of 20 classes, the majority of the organs achieved an average
sensitivity of ≥ 90% (numbers on the diagonal). Exceptions are heart, gallbladder, major
vein and stomach which are mainly confused with kidney, bladder, bone and small bowel,
respectively.

5.1.3 HeiPorSPECTRAL: Open Dataset for Surgical Hyperspectral
Imaging

For the scientific community, it is tremendously important to have public datasets accessi-
ble for research. This is especially true for the field of HSI where only a few small datasets
were available previously [66, 97]. To improve upon this status quo, we published the
standardized recordings of the tissue atlas dataset under the name HeiPorSPECTRAL.
This section covers technical aspects of our dataset publishing process2.

Website
We made the dataset available through our website shown in Figure 5.5. The landing page
gives basic information about the dataset, various visualizations (also detailed below),
download and usage information, structure of the dataset and answers to frequently
asked questions. The dataset complies with the FAIR principles [237] and does not have
any access restrictions.

One of our primary goals was to make the access and usage of the dataset as easy as
possible. For this, we developed the open source hyperspectral tissue classification (HTC)
framework (github.com/IMSY-DKFZ/htc [200]) which is a Python package that can
be used to work with the data (Figure 5.6). This is the same framework that we also
used for our other studies (spectral fingerprint classification, data loading performance
optimizations, surgical scene segmentation and context generalization) and hence not
only contains a lot of example code but also ships with the pretrained models from
our segmentation tasks. This allows users to directly use the data and models in their
machine-learning tasks.

One of the first steps when working with a new dataset is to do exploratory data analysis
(EDA) [45] to get a basic feeling about the data and its structure. To ease this process,
we provided various visualizations all accessible and viewable on our website. Notable
examples include interactive visualizations for every image (Figure 5.7) and profile pages
for every organ with aggregated information about the dataset (Figure 5.8).

Technical Validation
For a dataset in general but especially when making it publicly available, it is crucial
to ensure that the data is of high quality and accurately represents what it is meant to

2This section is based on [214].
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Figure 5.4: Confusion matrix of the spectral classification task on the test set (tissue atlas
dataset). The matrix depicts how median spectra from the reference class get clas-
sified. That is, every (𝘪, 𝘫)-th entry shows the percentage of median spectra from
class 𝘪 that get classified as class 𝘫 (on average). Values < 0.1% are not shown for
brevity. The matrix is row-normalized based on the median spectra from all images
of one subject and then these matrices are averaged across subjects. The number in
brackets denotes the standard deviation across subjects respecting the hierarchical
structure of the data. Numbers on the diagonal denote the recall (sensitivity). This
figure was adapted from [215].

measure. In our case, this means that our spectral data indeed measures (normalized)
reflectances. For this, we compare colorchecker measurements of our HSI system with a
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Welcome to the HeiPorSPECTRAL dataset! Here you can find 5756 hyperspectral imaging (HSI) cubes of

20 physiological organ classes across 11 pigs annotated by 3 medical experts. For each organ, there are

about 36 recordings per pig: 4 different intraoperative situations ( situs ) were imaged from 3 different

angles ( angle ) for 3 times ( repetition ). The HSI cubes were acquired with the Tivita® Tissue camera

system from Diaspective Vision. Each data cube has the dimensions (480, 640, 100) = (height, width,

channels) with the 100 non-overlapping spectral channels being in the range from 500 nm to 1000 nm at a

spectral resolution of around 5 nm. This repository contains the raw data, related metadata as well as the

preprocessed files. The figures from the paper and example visualizations for each image are available at

https://figures.heiporspectral.org/.

 More details can be found in our publication: Studier-Fischer, A., Seidlitz, S., Sellner, J. et al.

HeiPorSPECTRAL - the Heidelberg Porcine HyperSPECTRAL Imaging Dataset of 20 Physiological

Organs. Sci Data 10, 414 (2023). https://doi.org/10.1038/s41597-023-02315-8
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supplementary figures).
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Figure 5.5: Landing page of the HeiPorSPECTRAL website (heiporspectral.org).
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We recommend using the data with the htc framework, which offers:

a pipeline to efficiently load and process the HSI cubes, annotations and metadata.

a framework to train neural networks on the data, including the implementation of several classification

and segmentation models.

simple usage of pre-trained models.

Installation (example for Unix-based systems):

# Make the dataset available

export PATH_Tivita_HeiPorSPECTRAL=/mnt/nvme_4tb/HeiPorSPECTRAL

# Install the htc package

pip install imsy-htc

As a teaser, this is how you can use the  htc  framework to read a data cube, corresponding annotation and

parameter images:

import numpy as np

from htc import DataPath, LabelMapping

# You can load every image based on its unique name

path = DataPath.from_image_name('P086#2021_04_15_09_22_02')

# HSI cube format: (height, width, channels)

print(path.read_cube().shape)

# (480, 640, 100)

# Annotated region of the selected annotator

mask = path.read_segmentation("polygon#annotator1")

print(mask.shape)

# (480, 640)

# Additional meta information about the image

print(path.meta("label_meta"))

# {'spleen': {'situs': 1, 'angle': 0, 'repetition': 1}}

# Tivita parameter images are available as well

sto2 = path.compute_sto2()

print(sto2.shape)

# (480, 640)

# Example: average StO2 value of the annotated spleen area for annotator1

# The dataset_settings.json file defines the global name to index mapping

spleen_index = LabelMapping.from_path(path).name_to_index("spleen")

print(round(np.mean(sto2[mask == spleen_index]), 2))

# 0.44

Usage

Figure 5.6: Usage example of the HeiPorSPECTRAL dataset using the hyperspectral tissue clas-
sification (HTC) framework (github.com/IMSY-DKFZ/htc [200]). The example
is from the HeiPorSPECTRAL website (heiporspectral.org/#usage).
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Figure 5.7: Interactive figure for an example image with a stomach annotation from the HeiPor-
SPECTRAL dataset (figures.heiporspectral.org/view_organs/01_stom
ach). These views are available for all images of the dataset and allow interactive
visualization of the different annotations, median spectra visualization, overview of
the available metadata as well as a navigation pane which can be used to search for
specific images (here to search for all images with a measurement angle of −25°).
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Figure 5.8: Example of an organ profile page with aggregated information of the entire HeiPor-
SPECTRAL dataset for the small bowel class (figures.heiporspectral.org/l
abel_profiles). Based on the median value per polygon annotation, hierarchical
aggregation happened from annotations over images to subjects. (a) Exemplary RGB
image with corresponding polygon annotation. (b) Distribution of subject-level func-
tional parameter values. Each boxplot shows the interquartile range (IQR) with the
median (black solid line), mean (white circle) and outliers (rhombus). The whiskers
extend up to 1.5 times of the IQR. (c-f) Subject-level median spectra curves (solid
lines) and standard deviations (shaded areas) for absorbance, reflectance as well as
first and second order derivatives thereof. (g-l) Tissue parameter images for the
example image. These profile pages are available for all of the 20 organ classes.
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spectrometer3 in Figure 5.9 and found good agreement. Deviations exist mainly in the
near-infrared range of the spectrum and for very dark colors. Repeated measurements
on separate days with our HSI system led to very similar results.

This finding is not only important for the users of the HeiPorSPECTRAL dataset but also
for the other results of this thesis in general as all the datasets described in Section 4.1
were acquired with the same HSI system. The deviations in the near-infrared range could
explain the lesser significance of that range for organ differentiation (Figure 5.29) as well
as the observed increased SDs of that range (Figure 5.2).

5.2 Efficient Training of Hyperspectral Segmentation
Networks

This section highlights the improvements from our counter-strategies (cf. Section 4.3)
when included in the training of a segmentation network4. Section 5.2.1 outlines how
we ensure a fair comparison comparison and Section 5.2.2 shows the results of our
benchmarking.

5.2.1 Experimental Setup

We used a Docker [148] container to benchmark the different counter-strategies presented
in Section 4.3 in an isolated environment. We trained an image-based segmentation
network for 5 epochs and used a batch size of 6. During one epoch, we iterated over all
506 images of the semantic porcine dataset (including training and testing images). After
each epoch, the system cache of Linux was cleared which ensures that images always
have to be loaded from disk and are never cached from memory. We disabled stochastic
weight averaging (SWA) to measure only the time of normal training epochs without
additional aggregation steps employed by SWA [103]. No checkpoints were saved. We
only measured the time for operating on the batches excluding pre- and post-initialization
steps before and after the training epoch. We repeated the experiment three times and
are reporting the mean and SD of the measured times. The hardware utilization was
measured with the help of the nvidia-smi tool [50]. Counter-strategies were added
additively to avoid benchmarking all possible combinations of strategies.

3For comparison, we L1 normalized the spectra of our HSI system and the spectra of the spectrometer.
The normalized spectra from the spectrometer were further scaled by a factor of 11.31 to account for the
different number of channels between the two systems (1131 instead of 100 channels for the spectrometer
in the range between 500 nm and 1000 nm).

4This section is based on [201].
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Figure 5.9: Spectral comparison of the Tivita® Tissue (Diaspective Vision GmbH, Am Salzhaff,
Germany) camera with a point spectrometer (Ocean Insight HR2000+; light source:
Tungsten Halogen lightsource Ocean Insight HL-2000 (formerly Ocean Optics; Or-
lando, Florida, US)). (a) Example image of the ColorChecker Classic® board from
x-rite (Grand Rapids, Michigan, US) composed of 24 standardized color chips. (b)
Comparison of median spectra (solid lines) of the spectrometer and two days of
hyperspectral imaging (HSI) recordings for each of the 24 color chips. The shaded
area shows the standard deviation across 100 and 13 repeated measurements for the
spectrometer and HSI data, respectively. This figure was adapted from [214].
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We trained the networks on a local computer with an AMD Ryzen™ 9 7950X CPU,
an NVIDIA® GeForce RTX™ 4090 GPU, a 4 TB Seagate FireCuda® 530 SSD and 64GB
Kingston FURY™ Beast DDR5 RAM running on an Ubuntu 22.04 system. From the
software side, we used PyTorch 2.1 with CUDA® 12.1, Python 3.11 and NVIDIA® driver
535.129.03. It was ensured that no heavy task was running in the background while the
benchmark was executed.

The speed of the SSD plays an important role in this benchmark as higher read speeds
can compensate for inefficient data storage formats to some extent. To account for this,
we repeated the measurements twice, once without any limitation on the SSD bandwidth
and once while limiting the read speeds of the SSD to 1000MB/s via Docker runtime
configuration arguments.

5.2.2 Benchmarking Data Loading Strategies

This section shows the results from our benchmarking of the different data loading
strategies by means of time measurements and hardware utilization.

Figure 5.10 shows that we can reduce the training time with every added strategy with
a total speedup in training time of 3.6 and 2.4 for the limited (read speed of the SSD
limited to 1000MB/s) and unlimited (no constraints on the read speed of the SSD) case,
respectively. The improvement in the limited scenario is higher for blosc and fp16 than
for the other counter-strategies indicating the importance of efficient data formats when
not enough bandwidth is available (as may be the case in cluster environments).

In all cases, the SD across the three repetitions of the experiment is very low indicating
that the results are stable. This can mainly be attributed to our experimental setup (cf.
Section 5.2.1) which ensures a minimal impact of unwanted side effects (e.g., clearing of
the Linux system cache).

Similarly, the utilization also improves while making use of our counter-strategies (Fig-
ure 5.11) with an almost saturated performance when all counter-strategies are used.
The wave-form shape of the utilization curves (e.g., in the original case) is a direct
manifestation of the idle times of the GPU as sketched in Figure 4.11.

5.3 Surgical Scene Segmentation of Hyperspectral
Images

The main objectives of the studies in this section were to explore the appropriate repre-
sentation of HSI data in terms of segmentation performance, the effect of the size of the
training data and an analysis of the inherent variability in our networks as well as the
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Figure 5.10: Benchmarking results of different data loading strategies. The input/output (I/O)
speed limit constrains the read speed of the solid-state drive (SSD) during the
experiment. The error bars show the standard deviation across three repetitions of
the experiment. The loading strategies are applied additively from left to right (e.g.,
fp16 also includes blosc compression). This figure was adapted from [201].
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Figure 5.11: Hardware utilization of different data loading strategies without read speed limita-
tions. The shaded area shows the standard deviation of the graphics processing unit
(GPU) utilization across three repetitions of the experiment. The loading strategies
are applied additively from left to right (e.g., fp16 also includes blosc compression).
This figure was adapted from [201].

effect of ensembling5. Section 5.3.1 starts with the details about our experimental design
and Section 5.3.2 shows the results of our segmentation networks.

5This section is based on [198].
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5.3.1 Experimental Setup

Our segmentation networks are trained and evaluated on the semantic porcine dataset.
This section outlines how we split the data for training, validation and testing as well as
the employed evaluation metrics, our algorithm ranking procedure, how we assessed the
quality of our reference annotations and the details of our training size experiment.

Splits
We divided the dataset, which includes 506 images from 20 subjects, into a training set of
340 images from 15 subjects and a separate test set of 166 images from 5 subjects. The test
subjects were randomly chosen while ensuring that each organ class was represented
in both the training and test sets. We performed 𝑘-fold cross-validation on the training
set with 𝑘 = 5. The folds were created to maximize the number of organ classes across
validation folds. We refer to the conventional validation set obtained for each fold, which
consists of three subjects not seen during training, as validation_unknown. Further, we
created a second validation set, validation_known, by removing one random image from
each of the 12 subjects included in each of the five training sets. This validation set
consists of 12 unseen images (per fold) from known subjects. The splitting details are
visualized in Figure 5.12.

images (dashed lines at subject borders)
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Figure 5.12: Overview of the 𝘬-fold structure of the semantic porcine dataset. The heatmap
visualizes the assignment of the images from the semantic porcine dataset to the
different splits used for training, validation and testing (each row denotes one
fold and each column one image). The validation set is further divided into two
sets, one with images from training subjects (validation_known) and one with
subjects that are not part of the training set (validation_unknown). Borders for the
validation_unknown and testing splits are always at subject boundaries. A 𝘬 = 5
cross-validation structure is employed with three subjects in the validation split per
fold.

By comparing the model’s performance on the two validation sets, we could estimate its
generalization capabilities toward unseen surgeries. This includes changes due to inter-
subject variability in addition to context-related changes (e.g., variations in the performed
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surgery, surgical phase during acquisition, and visible instruments) and imaging-related
changes (e.g., different imaging perspectives). The latter two sources of variation may
also be present across different images of the same surgery but may be more pronounced
across different surgeries.

We did not use the test set during model development. Only after we finalized the model
architectures and parameters based on the performance on the validation set, did we
evaluate the segmentation performance on the hold-out test data set by averaging the
softmax values to ensemble the network predictions from all folds.

Metrics
Given that individual validation metrics may not capture all clinical requirements [244,
184, 141, 183], we used several validation metrics, each with their own strengths and
limitations, to provide a more comprehensive assessment of model performance. Namely,
we used the DSC as an overlap-based measure, the average surface distance (ASD) as a
distance-based measure and the normalized surface dice (NSD) as a boundary-overlap-
based measure with special consideration to annotation uncertainty.

Similar to the classification task, we respect the hierarchical structure of the data and
aggregate the per class and image scores first to the image and then to the subject level (see
Figure 5.13). The subject-level scores (for all metrics) served as input to our visualizations
and model rankings.

The DSC [57], a widely used validation metric for biomedical segmentation tasks, mea-
sures the overlap between a predicted object segmentation and the corresponding refer-
ence segmentation. It is computed for each class 𝑖 with the set of predicted pixels 𝒫 𝑖

PRE
and reference pixels 𝒫 𝑖

REF for that class via:

DSC𝑖 = 2 ⋅ |𝒫 𝑖
PRE ∩ 𝒫 𝑖

REF||𝒫 𝑖
PRE| + |𝒫 𝑖

REF| . (5.1)

DSC values are in the range [0; 1]. A value of 0 indicates no overlap between the predicted
and reference segmentation for the class, or the class is present in the image but not
predicted. A value of 1 denotes a perfect overlap between the prediction and the reference
segmentation for a class. The DSC is highly sensitive to the object size and insensitive to
the object shape [184].

It is worth noting that any binary segmentation task can be viewed as a pixel-wise
classification task and then the DSC is equivalent to the F1-score [183]. Moreover, the
DSC is closely related to the intersection over union (IoU) [104], a commonly used
validation metric in the general computer vision machine learning community. We used
the MONAI framework [31] to compute the DSC.

Boundary-distance-based metrics evaluate the dissimilarity between the predicted seg-
mentation and reference segmentation based on the distances between their boundaries.
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Unlike overlap-based metrics, these metrics are insensitive to the object size but sensi-
tive to the object shape. An example is the ASD [91] which calculates the average of
all distances between pixels on the predicted object segmentation border ℬ𝑖

PRE and its
nearest neighbor on the reference segmentation border ℬ𝑖

REF for a class 𝑖. In this study,
we used the symmetric version of the ASD, which computes the set of nearest neighbor
distances 𝒟 𝑖

PRE again, but with the roles of the predicted and reference segmentation
reversed, resulting in 𝒟 𝑖

REF. All the obtained distance values are then averaged to yield
an average distance value ASD𝑖 for each class

ASD𝑖 = ∑𝑑∈𝒟 𝑖
PRE

𝑑 + ∑𝑑′∈𝒟 𝑖
REF

𝑑 ′
|𝒟 𝑖

PRE| + |𝒟 𝑖
REF| . (5.2)

One drawback of the ASD is that it is unbounded, producing values in the range [0; ∞[,
with 0 indicating an exactmatch of object boundaries. Therefore, ASD values are generally
more difficult to interpret. Additionally, special consideration must be given to missed
classes (classes present in the reference annotations but not predicted), as there is no
natural limit [184]. In this study, we set the ASD value for a missed class to the maximum
ASD obtained for the other classes on the same image. This approach introduces a
potentially high and image-dependent penalty if a class cannot be predicted in an image
(cf. Section 6.3).

The NSD [165] quantifies the proportion of a segmentation boundary that is accurately
predicted, considering a threshold 𝜏 that signifies the clinically acceptable pixel deviation.
Essentially, it measures the fraction of the segmentation boundary that would need to be
adjusted to correct for segmentation inaccuracies. Rather than using a single universal
threshold 𝜏, we employed a class-specific threshold 𝜏 𝑖 for each class 𝑖 acknowledging
the varying annotation difficulty across different classes (for instance, a class with a
distinct boundary like the liver is simpler to annotate precisely than a class with an
indistinct boundary such as the omentum). We modified the NSD, originally designed for
3D segmentation maps, to suit our 2D segmentation maps6. Instead of dealing with 3D
segmentation surfaces, we focused on 2D segmentation boundaries. For all pixels on the
predicted segmentation boundary of class 𝑖, ℬ𝑖

PRE, we calculated the nearest-neighbor
distances to the reference segmentation boundaryℬ𝑖

REF, yielding a set of distances𝒟 𝑖
PRE.

We then identified the subset 𝒟 ′𝑖
PRE of distances in 𝒟 𝑖

PRE that are less than or equal to the
acceptable deviation 𝜏 𝑖. 𝒟 ′𝑖

PRE = {𝑑 ∈ 𝒟 𝑖
PRE | 𝑑 ≤ 𝜏 𝑖}. (5.3)

The entire process was symmetrically carried out for ℬ𝑖
REF, resulting in 𝒟 𝑖

REF and 𝒟 ′𝑖
REF.

For each class present in both the predicted and reference segmentation, the NSD𝑖 was

6Our implementation can now also be found in the MONAI framework [31].
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subsequently calculated as:

NSD𝑖 = |𝒟 ′𝑖
PRE| + |𝒟 ′𝑖

REF||𝒟 𝑖
PRE| + |𝒟 𝑖

REF| (5.4)

The NSD produces values within the range [0; 1]. A value of 0 signifies that either the
boundary is entirely incorrect, with all distances exceeding the acceptable deviation 𝜏 𝑖,
or that the class exists in the image but has not been predicted7. A value of 1 is achieved
if there is no need to adjust the segmentation boundary, as all deviations are within the
acceptable threshold 𝜏 𝑖.
One of the significant challenges with the NSD is establishing the class-specific thresholds𝜏 𝑖 (see also discussion in Section 6.3). To address this, 20 randomly chosen images (one
image per subject, ensuring all classes are represented by at least two images) were
re-annotated by another medical expert. Similar to the ASD, we calculated distances
between the boundaries of the original annotation and the re-annotation for each class 𝑖 in
each image 𝑘 and averaged the results to derive the image- and class-specific threshold 𝜏 𝑖𝑘.
If a class was annotated in only one of the two corresponding images, no distances could
be calculated and the corresponding structure was disregarded (this point is also picked
up in Section 6.3). We determined the class-specific distance threshold 𝜏 𝑖 by averaging
the 𝜏 𝑖𝑘 for the set of images ℐ 𝑖 where the class 𝑖 is present and 𝜏 𝑖𝑘 could be calculated:𝜏 𝑖 = 1|ℐ 𝑖| ∑𝑘 ∈ℐ 𝑖 𝜏 𝑖𝑘. (5.5)

Ranking
We examined the model ranking and its stability to two variability sources: sampling
variability and variability due to the metric choice. The ranking analyses were conducted
according to [236] and the model ranking was established as follows: For each model, we
computed the average of the 5 per-subject metric values and ranked the models based
on these mean metric values. To evaluate the ranking stability concerning different
validation metrics, we performed the ranking separately for each metric and compared
the results. To evaluate the model ranking’s stability concerning sampling variability,
we repeatedly performed rankings on 1000 bootstrap samples. Each bootstrap sample
comprised 5 cases randomly selected with replacement from the set of 5 test cases (one
metric value for each subject in the test set). We first averaged metric values across all 5
test cases and then determined each model’s rank based on this aggregate resulting in
1000 ranks for each model (one rank per bootstrap sample).

7The opposite case, where a class was predicted which does not exist in the image, does not yield a value
of 0. This is because the NSD𝑖 (or any of our employed metrics) is only calculated for classes 𝑖 which
exist in the reference image. Instead, the misprediction decreases the score of other classes (depending
on where the misprediction happened and which classes in the reference image are located there).
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Hierarchical Aggregation
The HSI datasets used in this thesis are composed of a natural hierarchical structure of
subjects which are composed of one or more images with one or more classes. To account
for the hierarchical nature of the data (following [93, 141]), we compute all metric values
for each image and class and then aggregate the values while respecting the hierarchy.
Metric values can be anything from accuracy, over NSD to confusion matrices. The
general concept is visualized in Figure 5.13 for the two primary targets subject-level
scores and class-level scores.

Subject-level scores indicate how well a single subject performs, e.g., how well images
from this subject can be segmented. That is, on average, given an image from this subject,
how well can a neural network segment the image? In visualizations (e.g., boxplot), the
shown data points correspond to the individual subjects in the test set. Subject-level
scores are a general performance indicator of a system that does not take the class
distribution across images into account, i.e., the scores highly depend on the visible
classes in the scene.

In our HSI datasets, there are very inhomogeneous class distributions across images due
to the different surgical scenes being viewed. This is also reflected in the dataset statistics
in Figure 4.2 (tissue atlas dataset) and Figure 4.4 (semantic porcine dataset). Therefore,
class-level metric scores are also very useful and indicate how well a neural network can
handle this class. In visualizations (e.g., boxplot), the shown data points correspond to
the individual classes.

Rater Variability
The quality of data, including the available reference annotations, is vital for any deep
learning algorithm. Previous studies have shown that the variability between different hu-
man raters can be substantial [110]. To measure the quality of our reference annotations,
we used the same set of re-annotated images as used to determine the NSD thresholds
mentioned earlier and the annotations of the second medical expert for inter-rater estima-
tions. Furthermore, the medical expert who initially annotated our dataset re-annotated
the same set of 20 images to estimate the intra-rater variability. In both scenarios, we
compared the re-annotations with the original annotation per image and calculated our
three evaluation metrics. Unlike the comparison of model predictions, we did not use
pixels that the new annotator assigned to the ignore class (for instance, pixels for which
an annotator was uncertain) because it is valid to state uncertainty and this should not
be penalized as misprediction. In other words, we computed the union of ignored pixels
in the reference and re-annotated segmentation maps, and those pixels were disregarded.

Training Size Experiment
To investigate the performance of various models depending on the amount of training
data available, we randomly selected 𝑛 subjects from the set of 15 training subjects without
replacement and adjusted 𝑛 from 1 to 14. The models were trained solely on the images
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Figure 5.13: Visualization of the hierarchical aggregation schemes of metric scores as they
are used throughout this thesis. Based on the metric scores (e.g., dice similarity
coefficient (DSC) or normalized surface dice (NSD)) per class and image, scores can
either be aggregated toward subject-level scores (left part) or toward class-level
scores (right part) by averaging across the hierarchy. For the left part, class-level
scores are first aggregated to image-level scores per subject and then aggregated to
subject-level scores based on all images per subject. For the right part, scores from
different images of the same class are aggregated to class-level scores per subject
and then to class-level scores by aggregating across all subjects.

of the 𝑛 sampled subjects without 𝑘-folds, while the performance was assessed on the
usual test split of Figure 5.12 but only for 8 classes and without ensembling. These 8
classes (stomach, small bowel, colon, liver, spleen, skin, peritoneum and background) are
the set of classes for which images are available for all 15 training subjects. This design
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choice prevents the issue of sampling a subject during training that does not contain
any of the target classes which would not yield indicative results for this experiment. To
enhance the stability of the results toward subject sampling variability, we repeated the
experiment 5 times with different random subject selections.

5.3.2 Analysis of Segmentation Networks

This section shows the results from our study about modalities and spatial granularities
on the semantic porcine dataset by means of various performance comparisons and
analyses of the segmentation networks.

Segmentation Performance
Figure 5.14 illustrates the performance of the pixel-based, superpixel-based, patch-based
(denoted as patch_32 for an input shape of 32 × 32 × 𝑐 and patch_64 for an input shape of64 × 64 × 𝑐) and image-based segmentation models for all three modalities separately for
our three validation metrics DSC, NSD and ASD. Although the performance differences
for various spatial granularities are less noticeable for HSI data than for RGB and TPI
data, a consistent trend is evident across all modalities and validation metrics: the larger
the spatial granularity of the input data, the superior the segmentation performance.

These results suggest the use of the image HSI model for its superior performance and
this is indeed what we focused on in our follow-up studies (e.g., context experiments).
However, there may be a benefit in using smaller granularities if larger batch sizes are
required as suggested by Table 4.3. In addition to the benefits of smoother gradients
and improved batch statistics usually attributed to larger batch sizes [101], it may also
be advantageous to have a batch distribution more similar to the training distribution.
For instance, confounders in HSI data could potentially lead to an overestimation of
machine learning performance [58]. However, some promising techniques to achieve
confounder-invariant representations (e.g., metadata normalization [135]) require large
batch sizes and would thus be more suitable for a pixel-based model rather than an
image-based model.

Comparing the different modalities, we can observe that the average segmentation
performance on HSI data consistently outperforms the performance on RGB and TPI
data. The performance gap is most significant in pixel-based segmentation, decreases
with increasing spatial granularity, and is smallest in image-based segmentation. This
could be because the model can leverage additional information from the spatial context,
compensating for the lack of detail in the spectral dimension. However, the smaller
performance gap for the increased spatial context might also be due to the quality of
the expert annotations provided, as the performance of our HSI models approaches the
inter-rater variability.
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Figure 5.14: Model segmentation performance of different spatial granularities and modalities
(RGB, tissue parameter images (TPI) and hyperspectral imaging (HSI)). The dashed
line and the shaded area denote the mean and standard deviation of the inter-rater
performance. Each boxplot shows the interquartile range (IQR) with the median
(solid line) and mean (dotted line). The whiskers extend up to 1.5 times of the IQR.
Each point represents the performance of one test subject. This figure was adapted
from [198].
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In terms of the comparison between TPI and RGB data, we observed that in most instances,
a model based on TPI data performs better than the same model based on RGB data.
This suggests that the manually derived TPI data contains information relevant to the
segmentation task.

Remarkably, the performance of the image-based HSI segmentation model is consistently
comparable to the predictions of a second human expert for all validation metrics, on
average. For the inter-rater annotations, we achieved a DSC of 0.89 (SD 0.07), an NSD
of 0.80 (SD 0.08), and an ASD of 4.88 (SD 5.33). The intra-rater annotations are better
on all three metrics with a DSC of 0.91 (SD 0.05), an NSD of 0.82 (SD 0.06), and an
ASD of 4.74 (SD 5.04). Across all 20 images, there were 8 instances in the inter-rater
and 6 instances in the intra-rater agreement evaluation where classes not annotated in
the reference segmentation map were newly assigned to an image. In the inter-rater
and intra-rater agreement evaluation, classes annotated in the reference segmentation
map were missing in the re-annotations 7 and 4 times, respectively. Differences in the
ignore class occurred for 14 and 14 out of the 20 images in the inter-rater and intra-rater
comparison, respectively. In total, 34 063 px and 37 397 px for the inter-rater and intra-
rater case, respectively, the label ignore was assigned in the re-annotation but a label had
been assigned in the reference annotation or vice-versa.

Ranking
In Figure 5.15, we present the stability of the ranking considering the sampling variability
for the DSC (results for the NSD and ASD are available in Figure B.1 and Figure B.2,
respectively). The bootstrapped ranking is relatively consistent, with the first and last
two ranks being quite distinct (over 90 % of bootstraps resulting in the same rank) for all
metrics. In the case of the boundary-distance-based metrics, the number of models with
a clear ranking is even higher, and for the NSD, all ranks fluctuate by a maximum of ±1
rank around the median.

To evaluate the stability of the ranking regarding different validation metrics, rankings
for the three metrics were compared as shown in Figure 5.16. Across all modalities and
metrics, the ranking of the spatial granularities is consistently (from best to worst): image,
patch_64, patch_32, superpixel and pixel. Therefore, more context invariably enhances
the segmentation performance regardless of the modality and metric. A model using HSI
data consistently ranks higher than the same model using TPI and RGB data in terms of
sampling and metric stability. Generally, rankings for the different metrics closely align:
The image-based segmentation of HSI data always ranks first, while the last five ranks
are consistently occupied by superpixel#TPI, superpixel#RGB, pixel#HSI, pixel#TPI and
pixel#RGB (from best to worst).

The most significant difference in ranking across metrics is observed for the super-
pixel#HSI model, which achieves rank 6 for the ASD compared to rank 9 and 10 for the
DSC and NSD, respectively. This could be due to the ASD metric’s sensitivity to bound-
aries. While the superpixel boundaries align very well with the reference segmentation,
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64 646432 3232 1 11

Figure 5.15: Uncertainty-aware ranking of the different granularities and modalities based on
bootstrap sampling on the test set using the dice similarity coefficient (DSC). The
area of each blob is proportional to the relative frequency that the corresponding
algorithm achieved the respective rank across 1000 bootstrap samples (concept from
[236]). Each bootstrap sample consists of 5 hierarchically aggregated subject-level
DSC metric values. The lines encompass the 95% quartile of the bootstrap results
while the cross and the diamond denote the median and mean rank, respectively.
Ranking results for the normalized surface dice (NSD) and average surface distance
(ASD) can be found in Figure B.1 and Figure B.2, respectively. This figure was
adapted from [198].
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Figure 5.16: Ranking stability for the different granularities and modalities across the three
metrics dice similarity coefficient (DSC), normalized surface dice (NSD) and average
surface distance (ASD) on the test set. Each line visualizes how the ranking of an
algorithm changes when different metrics are used. This figure was adapted from
[198].

with an average lower limit for the ASD of 2.91 (SD 0.74) if all superpixels were correctly
classified (cf. Figure 6.5), we observed from the sample predictions in Figure 5.19 that
sharp vertical and horizontal edges can appear in the patch-based predictions. These are
a result of our chosen aggregation method, where an image segmentation prediction is
composed of non-overlapping patches. The resulting incomplete and scattered bound-
aries are particularly penalized by boundary-distance metrics such as the ASD while
well-matching boundaries are rewarded (refer to Figure 5.16).
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Misclassifications
Figure 5.17 presents the confusion matrix for the best model (image model on the HSI
modality) evaluated on the test set. For 8 out of the 19 classes, on average, more than
95% of the pixels were accurately identified. The recall was lowest for major vein, with
only 57.1 % of the pixels correctly identified. Confusion matrices for the image model
on the TPI and RGB modalities are displayed in Figure B.3 and Figure B.4, respectively.
For a direct comparison of the label-specific performance between the three modalities
on the image model, Figure 5.18 illustrates the recall stratified by label and modality.
Image-based segmentation of HSI data performs better or is on par with TPI and RGB
data for all classes with the exception of the pancreas and major vein.

The largest confusion of 32.2 % occurs between peritoneum and major vein. This can be
attributed to the proximity of these two organs and the limited training data available for
major vein, as it was only imaged in 32 images (cf. Figure 4.4) and the visible parts are
generally small (cf. Figure 4.5), averaging 4192 px (SD 3621 px). Other classes that are often
misclassified are either difficult to annotate due to indistinct boundaries (e.g., omentum,
peritoneum, subcutaneous fat) or unclear distinction (e.g., kidney with Gerota’s fascia and
peritoneum). Most of the misclassifications in the confusion matrix occur between classes
that are located next to each other in the images (e.g., stomach instead of omentum and vice
versa, heart instead of lung and vice versa, liver instead of gallbladder, background instead
of skin, etc.) which could be due to errors in the predicted segmentation boundaries. This
hypothesis is supported by the segmentation examples in Figure 5.19.

Example Predictions
Figure 5.19 shows example predictions for the five spatial granularities on the HSI data.
Images corresponding to the 5 % quantile, 50 % quantile, and 95 % quantile were chosen
based on the image DSC averaged across all five models, representing examples of
poor, intermediate, and good segmentation performances, respectively. For pixel-based
segmentation, boundaries appear more fragmented and dispersed compared to other
models since no contextual information is included. In some patch-based segmentation
examples, sharp vertical and horizontal edges can be seen where adjacent patches meet
since we explicitly designed the patches to be non-overlapping during inference (this
point is also picked up in Section 6.3). For superpixel-based segmentation, edges appear
jagged due to misclassified superpixels near organ boundaries.

Training Course
We trained each of our models for 100 epochs and calculated validation scores after each
training epoch. In Figure 5.30, we can see how the average DSC changes over training
time for all spatial granularities and modalities.

There are notable differences among modalities: the DSC exhibited a relatively smooth
change for TPI and RGB data, while the training for HSI data was more noisy. This is
particularly true for the pixel model, while the imagemodel’s trainingwas onlymarginally
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Figure 5.17: Confusionmatrix of the image granularity and hyperspectral imaging (HSI)modality
on the test set. The matrix depicts how pixels from the reference class get classified.
That is, every (𝑖, 𝑗)-th entry shows the percentage of pixels from class 𝑖 that get
classified as class 𝑗 (on average). Values < 0.1% are not shown for brevity. The
matrix is row-normalized based on the pixels from all images of one subject and
then these matrices are averaged across subjects. The number in brackets denotes
the standard deviation across subjects. Numbers on the diagonal denote the recall
(sensitivity). Confusion matrices for the tissue parameter images (TPI) and RGB
modality can be found in Figure B.3 and Figure B.4, respectively. This figure was
adapted from [198].

noisier. This may be due to the larger input feature dimension of HSI data (100 channels)
compared to the other modalities (4 and 3 channels for TPI and RGB data, respectively).
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Figure 5.18: Recall of the image model stratified by label and modality. Scores are based on the
test set and shown for the hyperspectral imaging (HSI), tissue parameter images
(TPI) and RGB modalities. Each boxplot shows the interquartile range (IQR) with
the median (solid line) and mean (dotted line). The whiskers extend up to 1.5 times
of the IQR. Each point represents the performance of one test subject. This figure
was adapted from [198].

Furthermore, training converged more quickly for the TPI and RGB modalities, whereas
HSI gained more from extended training durations.

Training Size Experiment
One potential advantage of using input data with smaller spatial granularity is the
availability of more training samples. For instance, one image equates to 307 200 training
samples for pixel-based segmentation but only one training sample for image-based
segmentation (Table 4.3). Figure 5.20 illustrates the progression of the different metrics
with the number of training subjects for different spatial granularities. For all examined
numbers of training subjects, the performance of image-based segmentation on HSI is
either comparable or superior to the performance of other granularities.

We can observe a decreased SD range of the metrics with an increasing number of training
subjects. However, this should be cautiously interpreted because subjects were always
sampled without replacement which inevitably increases the overlap of selected subjects
across random selections in runs with a higher number of training subjects due to the
limited number of 15 available training subjects. For instance, when randomly selecting
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Figure 5.19: Example predictions for the different spatial granularities of the hyperspectral
imaging (HSI) modality. For each prediction, scores for the dice similarity coefficient
(DSC), average surface distance (ASD) and normalized surface dice (NSD) are shown.
Images are selected based on the 𝘲% quantile of the DSC averaged across all five
granularities (DSC𝘲). This figure was adapted from [198].
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Figure 5.20: Segmentation performance for all spatial granularities on the test set as a function
of the number of training subjects (hyperspectral imaging modality). The solid line
shows the average performance and the shaded area one standard deviation across
5 runs with different selections of subjects. This figure was adapted from [198].
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two different sets of subjects (each of size 14) out of the 15 training subjects without
replacement, these two sets differ only by one subject.

Network Variability and the Effect of Ensembling
All the previous results were reported on the test set with ensembling and we always
used the same seed during training for minimal variability as detailed in Section 4.4. To
gauge the extent of the inherent randomness during training, we retrained the image HSI
model five times with different seeds. This allows us to analyze the controlled source of
variation. In this section, these results as well as our analysis are presented in detail and
we elaborate on how variability is connected with ensembling.

Figure 5.21 shows the distribution of subject-level metric scores of the five seed runs
for all metrics. Generally, the variations between the seed runs are low. The DSC
was found to range between [min;max] = [0.88; 0.89] (SD 0.01), the NSD was within[0.76; 0.78] (SD 0.01), and the ASD was within [6.40; 7.93] (SD 0.63) on the test set with
ensembling. Therefore, the variability inherent in the network training is smaller than
the inter-subject variability (based on the SDs) with scores of 0.89 (SD 0.07), 0.80 (SD
0.08) and 4.88 (SD 5.33) for the DSC, NSD and ASD, respectively.

Regarding network variability, the fact that the scores on the test set are based on an
ensemble of five networks, each trained on individual folds (refer to Section 5.3.1 for
details), is important. We created this ensemble by averaging the individual softmax
predictions which naturally reduces the networks’ variability [59, 175]. In contrast,
the predictions on the validation set are not averaged but are taken “as is” from the
networks. However, the validation and test splits are, by definition, based on disjoint
parts of the dataset so a comparison of those two splits alone is only an indirect indication
of the ensemble effect. Therefore, we compare the performance for each organ not
only on the test and validation splits but also the scores on the test set for each fold
network individually, i.e., without ensembling. Figure 5.22, Figure B.5 and Figure B.6
show distributions of the organ scores and Figure 5.23, Figure B.7 and Figure B.8 list the
min-max ranges8 for the DSC, NSD and ASD, respectively.

We observe that the variability is generally higher on the test set without ensembling (T1
to T5) than with ensembling (T) but also the variability on the validation set (V) is higher
than on the test set with ensembling. For all metrics, the average min-max range across
classes is always lowest for the test set with ensembling (e.g., the last line in Figure 5.23
for the DSC). This indicates that the ensemble effect is indeed reducing the networks’
variability.

8We are considering the min-max range here instead of the SD because when comparing the performance
of different networks (e.g., due to different hyperparameter settings), every outlier matters. Comparisons
based on the distribution of performance scores (via different seeds) may be costly and hence are not
always feasible.
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Figure 5.21: Network variability across five different seed runs on the test set. The hyperspectral
image model was trained five times with different seeds for an estimation of the
variability inherent in the training process (e.g., due to different weight initialization,
batch sampling, etc.). Each boxplot shows the interquartile range (IQR) with the
median (solid line) and mean (dotted line). The whiskers extend up to 1.5 times of
the IQR. Each point represents the performance of one test subject.
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Figure 5.22: Network variability across five different seed runs (hyperspectral image model)
stratified by organ for different splits using the dice similarity coefficient (DSC).
V refers to the validation scores (validation_unknown split), T to the test scores
with ensembling and T1 to T5 to the test scores without ensembling for each of the
networks from the five folds of Figure 5.12. Each boxplot shows the interquartile
range (IQR) with the median (solid line) and mean (dotted line). The whiskers
extend up to 1.5 times of the IQR. Each point represents the aggregated class-level
DSC score of one seed run. Figure B.5 and Figure B.6 show the results for the
normalized surface dice (NSD) and average surface distance (ASD), respectively.
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Figure 5.23: Min-max ranges across five different seed runs stratified by organ for different
splits using the dice similarity coefficient (DSC). V refers to the validation scores
(validation_unknown split), T to the test scores with ensembling and T1 to T5 to
the test scores without ensembling for each of the networks from the five folds
of Figure 5.12. The last line denotes the average across all classes per split. The
hyperspectral image model was trained five times and the difference between the
highest and lowest DSC score across the five runs is computed independently for
each of the splits. Figure B.7 and Figure B.8 show the results for the normalized
surface dice (NSD) and average surface distance (ASD), respectively.
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The variability on the test set without ensembling tends to be higher than on the validation
set across all metrics. This could be due to the different subjects in those sets. However,
it is worth noting that the selection of subjects is random so it is possible that this effect
could be reversed with a different selection of subjects.

Moreover, the results vary significantly across different organs. Some organs exhibit a
very low variability across all splits (e.g., small bowel), other organs have a high variability
in general (e.g., major vein) and there are organs with a high variability on splits without
ensembling but a low variability with ensembling (e.g., gallbladder ).

The trends are also not consistent across metrics. For instance, kidney has a high vari-
ability across all splits for the NSD but not for the DSC. Compared to the other splits,
the variability for skin is high for the NSD on the test set with ensembling but low for
the DSC. Overall, the average variability across all organs and splits is 0.08 (SD 0.08) for
the DSC, 0.09 (SD 0.06) for the NSD and 9.79 (SD 14.04) for the ASD.

Generally, the variability of our networks without ensembling is quite high which can
lead to extreme min-max ranges like 0.37 DSC on the validation split for the kidney
class. The high variability on the validation set is especially important as this is the
only split evaluated during development (the test set is only considered at the end after
all model decisions have been made). This is particularly relevant when comparing
the performance of different methods as it can be challenging to determine whether a
change is due to modifications of the method or merely a result of the inherent network
variability. However, as our results demonstrate, at least the test set with ensembling
does not suffer from such high variabilities.

Further, it is worth noting that the test scores with ensembling generally tend to be higher
than validation scores or test scores without ensembling emphasizing the importance of
our fold ensembling. This is true for many organs, such as the major vein, but it is not a
consistent trend across all metrics. For instance, organs like the skin or gallbladder have
higher DSC and NSD scores on the validation split than on all the testing splits. However,
when it comes to the ASD, test scores are almost always superior to validation scores.

Of special interest are the pixels where at least one of the five networks disagrees. For
this, we computed PCMs (Equation 4.4) and show examples for three images from the test
set in Figure 5.24. We can see that the networks agree on most pixels and only disagree
on a few pixels and those are often located in the vicinity of segmentation boundaries.
On average across all images in the test set, 3.20 % (SD 2.18 %) of the pixels in an image
have incoherent predictions.

Boundary pixels are an interesting case as we also received feedback from our expert
annotators that it is very hard to draw the boundary between classes. This is amplified
by the fact that the spatial image resolution is with 480 × 640 (width, height) rather low
and the reconstructed RGB images, which are used for annotating, do not exhibit the

124



5.3 Surgical Scene Segmentation of Hyperspectral Images

RGB

DSC₀₅ DSC₅₀ DSC₉₅

annotation

PCM

Figure 5.24: Example prediction coherencemaps (PCMs) of five different seed runs. For the same
example images as shown in Figure 5.19, network PCMs (Equation 4.4) are shown
in the last row. Gray indicates that the hyperspectral image networks predicted
the same label and black denotes pixels with different predicted labels, i.e., where
at least one of the networks disagrees. The segmentation colorbar (second row) is
the same as in Figure 5.19.

same sharpness as natural images. Hence, mispredictions near the boundary would not
be surprising.

To analyze the boundary effect further, we computed the distance for each incoherent
pixel to the nearest segmentation boundary. Figure 5.25 shows the cumulative probability
distribution of those pixels stratified by class and for all classes. With a boundary range
of, say, 6 px (3 px to each side), 39 % of all incoherencies across all classes are explained by
boundary pixels. However, the distribution varies heavily among classes. For the same
defined boundary range of 3 px, 80 % of all liver incoherencies are explained by boundary
pixels while only 18 % of all omentum incoherencies are explained by boundary pixels.
This indicates that the effect of unclear boundaries is more pronounced for some classes
than for others which is also in line with the results of Figure 6.3.
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Figure 5.25: Cumulative distribution of border distances from pixels with incoherent network
predictions based on five different seed runs. (a)General concept where we compute
the distance to the nearest border (defined by the segmentation map) for each pixel
in the image and define pixels within the vicinity of 3 px as border pixels, i.e., a
maximum range of 6 px across both sides. Only incoherent pixels as defined by
the prediction coherence map (PCM) (Equation 4.4) are considered (ignored border
distances are shown transparent). (b) Cumulative distribution of border distances
from all pixels with incoherent predictions based on five different seed runs of the
hyperspectral image model stratified by class and for all classes.
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5.4 Domain Shifts in Surgical Hyperspectral Imaging

If a network is evaluated on data from a different domain than the training domain, the
performance may deteriorate due to OOD data. The extent of this deterioration depends
on how large this domain shift is, i.e., the extent of OOD for the network and the respective
downstream task. The main goal of the experiments in this section is therefore to
understand the effect of different domain shifts and assess the generalizability capabilities
of our segmentation networks. We are taking a closer look at three fundamental domains:
the subject domain (both on the spectra and on the image level), the context domain
(impact of neighborhood changes) and the species domain (transfer of our results from
pigs to humans) in Section 5.4.2, Section 5.4.3 and Section 5.4.4, respectively. The context
domain section also covers the results from our data augmentation approach to tackle
geometric domain shifts. Details about the design of our experiments are described in
Section 5.4.1.

5.4.1 Experimental Setup

The setup of the subject and species domain experiments follows the same procedure
as the segmentation experiments (cf. Section 5.3.1). A notable difference is that for the
species domain, we aggregate toward class-level scores instead of subject-level scores
(cf. Figure 5.13), use the splitting of Figure 5.26 and show only validation results. The
remainder of this section describes the details of the context experiments9.

Validation Strategy for the Context Domain
For our context experiments, we used our existing segmentation network described in
Section 4.4 and compared different augmentation schemeswith respect to the performance
on geometrical OOD scenarios. An overview of our validation strategy is presented in
Figure 5.27.

Datasets and Splits
To evaluate the performance under geometric domain shifts and to assess the enhance-
ments provided by our augmentation technique, we considered the following geometrical
OOD scenarios:

(I) Isolated organs: During surgeries, abdominal linens are often used to safeguard
soft tissues and organs, control excessive bleeding and absorb blood and secretions.
Certain surgeries (e.g., enteroenterostomy) may necessitate isolating a single organ
[235]. In such instances, it is crucial to accurately identify an organ without any
contextual information from neighboring organs.

9This section is based on [202].
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Figure 5.26: Overview of the 𝘬-fold structure of the semantic human dataset. The heatmap
visualizes the assignment of the images from the semantic human dataset to the
different splits used for training, validation and testing (each row denotes one fold
and each column one image). Validation and test borders are always at subject
boundaries. A 𝘬 = 5 cross-validation structure is employed with 40, 36, 36, 33 and
30 subjects in the validation split for the folds fold_0, fold_1, fold_2, fold_3 and
fold_4, respectively.

(II) Organ resections: In resection procedures, parts or even the whole organ are excised,
necessitating the identification of surrounding organs despite the absence of usual
neighbors.

(III) Occlusions: Large portions of the surgical site can be obscured by the surgical
procedure itself, introducing OOD neighbors (e.g., gloved hands). Despite this, the
non-occluded parts of the surgical site must be correctly identified.

The semantic porcine dataset does not contain images of isolated or resected classes.
Therefore, we created four new datasets by manipulating existing images in two ways:
(1) For each image and class, we removed all pixels that do not belong to this class either
by setting all reflectance values to zero (isolation_zero) or by replacing them with spectra
from an image which only shows blue cloth (isolation_bgr) and (2) for each image and
class, we removed the class either by setting all reflectance values of the class to zero
(isolation_zero) or by replacing them with spectra from an image which only shows blue
cloth (isolation_bgr).

With (1) we estimate how well the segmentation networks perform when confronted
with a class without any context and with (2) we analyze the performance of classes if
certain neighbors are missing. We are using an image of blue cloth as a proxy for the
background class (which often contains blue cloth) to study the effect of the replaced
values since background is a class known during training but the network never saw
reflectance values which only contained zero values.
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Figure 5.27: Validation strategy for the geometrical out-of-distribution (OOD) experiments. The
context augmentations are evaluated on three different OOD scenarios (isolation,
resection and occlusion) comprising six different datasets in total. Four of the
datasets are manipulated versions of the semantic dataset (isolation_zero, isola-
tion_bgr, removal_zero and removal_bgr) and the remaining two show real-world
OOD images (isolation_real and occlusion). The validation_unknown split (cf. Fig-
ure 5.12) of the two italic shaped datasets (isolation_zero and isolation_bgr ) served
as validation datasets during method development while the other datasets were
used as untouched test sets. This figure was adapted from [202].

In addition to our manipulated datasets, we also included a real-world isolation dataset
(isolation_real) which is based on 94 images from 25 subjects of the tissue atlas dataset
showing classes in isolation. These images are also semantically annotated.

For the occlusion scenario, we are also using the semantic porcine dataset but separated it
in a different way: we are using the same splits as in Figure 5.12 but we removed all images
that contain occlusions (e.g., gloves) from the training data of the folds constituting the
no-occlusion dataset. From the 340 training images, 271 images remain after this step.
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Similarly, the test split was separated into an occlusion dataset (73 images from 4 subjects)
with images that contain occlusions and a no-occlusion dataset (93 images from 5 subjects)
of images without occlusions.

During development, we only used the validation splits of the original, isolation_zero
and isolation_bgr datasets. We included the original dataset to ensure that we maintain
our segmentation performance on in-distribution images. All remaining datasets (ma-
nipulated and real) served as hold-out test sets and we evaluated the performance on
those datasets only after we finalized our method. Additionally, we also evaluated the
performance on the test splits of the original, isolation_zero and isolation_bgr datasets in
the end.

An example image for each dataset is shown in Figure 5.27. The usage of the different
datasets for training, validation and testing, whether it is a real or manipulated dataset
and whether it is an in-distribution or OOD dataset is summarized in Table 5.1.

Table 5.1: Distribution of training (second column), validation (third column) and test (fourth
column) datasets across our three geometric out-of-distribution (OOD) scenarios (first
column). The training was solely performed on real data (r), whereas OOD validation
was only performed on manipulated datasets (m). Testing was performed on both in-
distribution (✗) and OOD data (✓). If the same dataset appears for training, validation
or testing, they were always used with different splits without subject-level overlap
(see Figure 5.12 for details).

scenario training validation testing type OOD?

isolations (I) original original original r ✗

isolations (I) original isolation_zero isolation_zero m ✓

isolations (I) original isolation_bgr isolation_bgr m ✓

isolations (I) original — isolation_real r ✓

resections (II) original — original r ✗

resections (II) original — removal_zero m ✓

resections (II) original — removal_bgr m ✓

occlusions (III) no-occlusion — no-occlusion r ✗

occlusions (III) no-occlusion — occlusion r ✓

Augmentations
We compared the baseline segmentation network (cf. Section 4.4) with our organ trans-
plantation augmentation described in Section 4.5 together with five additional topology-
aware augmentations that could potentially improve the performance on geometrical
OOD images. All augmentations are visualized in Figure 5.27.

As additional augmentations, we included the noise augmentations Hide-and-Seek [207]
and Random Erasing [253] which black out parts of the image either based on a grid of

130



5.4 Domain Shifts in Surgical Hyperspectral Imaging

patches or a rectangular region, thereby generating artificial class occlusions. Rather
than obscuring, the image-mixing methods Jigsaw [37] and CutMix [247] transfer regions
from one part of an image to another via a grid of patches or a rectangular region,
respectively. We tailored these image-mixing augmentations to our segmentation task
by also duplicating and inserting the corresponding segmentation masks. As a result,
in addition to occluding the underlying surgical site, image parts appear in atypical
surroundings. Finally, we included an elastic transformation augmentation [206] as a
way to distort the local neighborhood in an image.

Augmentations have many hyperparameters to tune. To limit the computational effort for
our comparative study, we only tuned the probability 𝑝 of applying an augmentation to
an image. We optimized each augmentation via a grid search with 𝑝 ∈ {0.2, 0.4, 0.6, 0.8, 1}.
For our batch size of 5, this corresponds to applying the augmentation to 1, 2, 3, 4 or 5
images per batch. We selected the optimal probability based on the best average DSC
score on the validation split of the original, isolation_zero and isolation_bgr datasets to
ensure that the augmentation works on both in-distribution as well as OOD data. The
resulting optimal probability values for each augmentation are listed in Table 5.2

Table 5.2: Optimal probability of applying an augmentation based on the grid search results.

augmentation optimal probability 𝑝
elastic 0.6
Hide-and-Seek 1
Random Erasing 0.4
Jigsaw 0.8
CutMix 1
organ transplantation 0.8

Metrics
We are using the DSC as an overlap-based measure and the NSD as a boundary-overlap-
based measure with special consideration to annotation uncertainty to compare the
performance of the different augmentation schemes (similar to our segmentation task, cf.
Section 5.3.1). However, we are aggregating toward class-level scores instead of subject-
level scores since our scenarios are more targeted at specific classes and we are interested
in the change of class-level scores.

In general, when we compare the performance (e.g., in boxplots), one point corresponds
to the score of one class. The class removal experiments require special attention since
we yield multiple scores per class (one per removed neighbor). We still want to compare
the results from the removal experiment with the other experiments on a class level so
we take the minimum of all available scores per class corresponding to the segmentation
performance when the most important neighbor is missing. This concept is visualized in
Figure 5.28.
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Figure 5.28: Visualization of the aggregation scheme of metric scores for the removal scenario.
For each removed neighbor, we yield one score per image and remaining class. To
reduce to a final score per class, we take the minimum of all available scores for that
class corresponding to the segmentation performance when the most important
neighbor is missing. After this step, the usual hierarchical aggregation of Figure 5.13
is applied.

5.4.2 Subject Domain

Surgery is a complex and unique process that can vary depending on the individual, the
type of surgical procedure or the surgeon who performs it. Therefore, it is crucial to
understand how subject-specific variations affect the data that we use for our downstream
task of tissue discrimination. In this section, we examine the influence of the subject
domain on the spectra and the image level10.

10This section is based on [198, 215].
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Spectra Level
We analyzed the generalizability of our spectra via the standardized recordings of the
tissue atlas dataset and a generalized linear mixed-effect model [196]. The decomposition
of the median spectra into the different factors organ, image, subject, repetition and angle
(cf. Figure 4.3) is shown in Figure 5.29. The factors image, repetition and angle are not
directly related to the subject domain but are included in the analysis for comparison
purposes.
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Figure 5.29: Sources of variation of hyperspectral imaging (HSI) data from the tissue atlas.
For each factor, the explained variance in reflectance is computed using a gen-
eralized linear mixed-effect model as described in [196] independently for each
wavelength. The shaded areas denote the 95% pointwise confidence interval based
on 500 bootstrap samples. The numbers in brackets represent the median across all
wavelengths. This figure was adapted from [215].

We can see that the organ factor explains most of the variance in the data. This indicates
that the spectral fingerprints are indeed representatives of the different organs and this
result is also in agreement with the good classification results of Section 5.1.2. Across
spectral channels, the explained variance varies and is lowest (and the confidence inter-
val largest) in the near-infrared range (e.g., in the area above 950 nm) of the recorded
spectrum. This coincides with the observation of a higher SD across subjects in this area
(cf. Figure 5.2) and could also be attributed to the increased noise there (cf. Figure 5.2 and
Figure 2.7).

The image effect (layout of the organs relative to each other) is the second most important
factor in the model. This means that different organ surfaces do impact the spectra
significantly. This observation could be attributed to inhomogeneous surface structures,
blood vessels or fibrosis within each organ.

133



5 Experiments and Results

Different angles and subjects have only a minor impact on the spectra. This indicates
that the spectral fingerprints are robust to changes in the measurement angle and across
subjects. At least on the spectral level, this indicates that there is good generalizability
across subjects which is an important prerequisite for the application of HSI in the
operating room.

Image Level
Even though the average explained variance of individuals on the spectra is with 2.3 %
very low, subjects still might have a larger impact on the segmentation performance on
the image level with its varying geometries. To get an initial measure of the generalization
capabilities, we compared the segmentation performance on the validation set consisting
of unseen subjects validation_unknown with the performance on the validation set made
up of unseen images from seen subjects validation_known (cf. Section 5.3.1).

Figure 5.30 shows the average DSC on validation_unknown and validation_known, taking
into account the hierarchical structure of the data, for the 5 different levels of spatial
granularity across all 100 epochs during training. Performance is generally superior
for validation_known. For all modalities, the performance difference between valida-
tion_known and validation_unknown is smallest for the pixel-based segmentation which
is in accordance with our previous results of Figure 5.29.

We can see that the impact of individuals on the image level is higher than on the
spectra level (e.g., 0.10 difference in DSC on average between validation_unknown and
validation_known for the image HSI model). However, it is worth noting that the semantic
porcine dataset is not standardized and contains varying images and situs per subject.

5.4.3 Context Domain

Our segmentation networks are based on two-dimensional convolutional operations and
hence are sensitive to changes in the local neighborhood. In our context experiments
(described in Section 5.4.1), we analyzed the neighborhood relation of the classes in the
semantic porcine dataset and our segmentation performance with respect to changes in
the neighborhood of classes11. Further, we present the results of our organ transplan-
tation augmentation method introduced in Section 4.5 for improving the segmentation
performance and a comparison to other common topology-aware augmentation methods

Neighborhood Relation
The neighborhood relation of our classes is characterized by the porcine anatomy. How-
ever, not every anatomic neighbor is also visible in all images due to occlusions, surgical
procedures or resections. To understand the neighborhood relation of the semantic

11This section is based on [202].
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Figure 5.30: Generalization error over training time via comparison of dice similarity coefficient
(DSC) values (subject-level averages) from the two validation sets defined in Fig-
ure 5.12. This figure was adapted from [198].
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porcine dataset, we computed the class neighborhood matrix shown in Figure 5.31 which
shows the spatial relation between classes on the test set. Some classes like the gallbladder
have very dominant neighbors (liver ) while other classes like the stomach have a more
balanced neighborhood relation to several classes. Nearly every class has a strong neigh-
borhood relation to the background class which is not surprising as the background class
is the largest class in terms of pixels and comprises abdominal linen, medical instruments
or gloves. This motivates our manipulated datasets isolation_bgr and removal_bgr where
we explicitly alter the relation to the background class.

Effect of the Neighborhood on the Segmentation Performance
Classes with a common neighbor may be more likely to fail if that neighbor is missing
in the image. This effect of removed classes on the segmentation network is shown
in Figure 5.32. The performance of the gallbladder drops by 63% in DSC if the liver is
missing in the image, i.e., if the most common neighbor is missing. Strong negative effects
can also be observed for major vein (if peritoneum is missing), bladder (if background
or small bowel are missing) and kidney with Gerota’s fascia (if peritoneum is missing).
However, in the majority of (removed neighbor, affected class) cases, the effect of a
missing neighbor is only minor, indicating that missing neighbors mainly impact the
segmentation performance of some classes. This is in line with Figure 5.31 which reveals
that some organs are never neighbors to each other so the network never learned to rely
on this non-existent relationship.

If classes are shown in isolation, the effect on the segmentation network is more severe
as shown in Figure 5.33 (baseline performance). Beginning with high DSC values of 0.86
(SD 0.10) for HSI and 0.83 (SD 0.10) for RGB data on in-distribution data, the performance
experiences, depending on the dataset, a decrease by 21 %–45% for HSI and by 30%–46%
for RGB data.

For occluded classes, the effect on the segmentation performance is less drastic. In this
case, the performance when evaluating on the OOD dataset (occlusion) drops by 5% for
HSI and by 10 % for RGB data.

Organ Transplantation Augmentation
As depicted in Figure 5.33 (DSC) and Figure B.10 (NSD), the organ transplantation aug-
mentation effectively addresses geometric domain shifts for both HSI and RGB modalities.
The HSI modality consistently delivers superior results compared to RGB suggesting
that spectral information is vital in situations with limited context. The performance
enhancement relative to the baseline varies for HSI from 9%–90% (DSC) and 16 %–96%
(NSD) and for RGB from 9%–67% (DSC) and 15 %–79% (NSD).

The greatest benefit on OOD data is observed for isolated classes (isolation_zero, iso-
lation_bgr and isolation_real) while the smallest improvement is observed for situs
occlusions (occlusion). For isolated organs, the performance enhancement on manipu-
lated data is with a DSC increase by 57 % (HSI) and 61 % (RGB) similar to that on real data
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Figure 5.31: Class neighborhood matrix for the semantic porcine dataset on the test split. The(𝘪, 𝘫)-th entry shows how many boundary pixels the class 𝘪 shares with the class 𝘫 (on
average). The matrix is row-normalized yielding the percentage of boundary pixels
from the observed class that are shared with the other classes. The normalization
is based on the neighbor pixel counts from all images of one subject and then these
matrices are averaged across subjects. Non-boundary pixels are discarded for this
analysis, i.e., the area pixels inside of an organ are not considered. Values < 0.1 are
not shown for clarity.
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Figure 5.32: Change in performance of the image network upon encountering class removals
(hyperspectral imaging modality on the removal_zero dataset). The (𝘪, 𝘫)-th entry
shows the change in dice similarity coefficient (DSC) of the 𝘫-th class when the 𝘪-th
class is removed from the images. Values |𝛥DSC < 0.01| are not shown for clarity.
This figure was adapted from [202].
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Figure 5.33: Segmentation performance using the dice similarity coefficient (DSC) for six geo-
metrical out-of-distribution (OOD) datasets and two in-distribution datasets (high-
lighted in bold) comparing the baseline network with a network trained with the
organ transplantation augmentation. Results for the hyperspectral imaging (HSI)
(top) and RGB (bottom) modalities are shown. See Section 5.4.1 for a description of
scenarios. Each boxplot shows the interquartile range (IQR) with the median (solid
line) and mean (dotted line). The whiskers extend up to 1.5 times of the IQR. Each
point represents the aggregated class-level performance. Results for the normalized
surface dice (NSD) are shwon in Figure B.10. This figure was adapted from [202].

with a DSC increase by 50% (HSI) and 46% (RGB). When faced with situs occlusions, the
most significant DSC improvement for HSI is achieved for the classes pancreas (283 %)
and stomach (69 %). The organ transplantation augmentation even marginally improves
the average class performance on in-distribution data from 0.86 (SD 0.10) (original) to
0.91 (SD 0.15) (no-occlusion).
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Augmentation Comparison
A comparison of our organ transplantation augmentation to other topology-aware aug-
mentations is shown in Figure 5.34 (DSC) and Figure B.9 (NSD). Across all six OOD
datasets, the only consistent ranking is that the organ transplantation augmentation
consistently ranks first and the baseline typically ranks last.

In general, image-mixing augmentations (organ transplantation, CutMix and Jigsaw)
surpass noise augmentations (Random Erasing and Hide-and-Seek). The noise augmenta-
tions achieve better generalization performance in the scenarios in which image parts are
blacked out (isolation_zero and removal_zero) compared to the other scenarios. Augmen-
tations that randomly select rectangles typically rank higher than similar augmentations
that use a grid structure (e.g., CutMix vs. Jigsaw). Using elastic transformations yields
better results than the baseline but cannot outperform any of the other augmentation
techniques on average.

Example Predictions
Figure 5.35 shows example predictions for the six OOD datasets using the baseline model
and the organ transplantation augmentation for the HSI modality. The predictions from
the isolated scenarios improve from a very poor to a reasonably good segmentation
performance. For the resection scenarios, the prediction of the gallbladder improves
drastically.

5.4.4 Species Domain

The domain transfer between species is arguably the biggest challenge. Here, we make
a descriptive comparison between pigs and humans based on media spectra. Further,
we present initial results for transfer learning with networks evaluated on the semantic
human dataset using different options to make use of the porcine data.

Figure 5.36 compares median spectra from the semantic human and semantic porcine
datasets for the 16 classes which the two datasets have in common. The general curve of
the spectra is similar, however, there are notable differences between the species. For
instance, the normalized reflectance values tend to be higher around 700 nm and lower
around 900 nm for humans compared to pigs for some classes.

For transfer learning, it is important that spectra from one class are more similar to
spectra from the same class of the other species than to other classes. To analyze this
point further, we computed for each human median spectrum the nearest neighbor across
the porcine median spectra and compared the corresponding labels. The results are
shown in Figure 5.37.

We can see on the diagonal that in most of the cases, the nearest neighbor of a human
median spectra has a different class than the original human class. The best matches are
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OT: Organ
Transplantation

CM: CutMix JI: Jigsaw EL: ElasticHS: Hide-and-
Seek

RE: Random
Erasing

BA: Baseline
(a�ine)

overall rank:

Figure 5.34: Uncertainty-aware ranking of the seven evaluated augmentation methods on the
six geometric out-of-distribution datasets using the dice similarity coefficient (DSC).
Consistently across all datasets, the organ transplantation augmentation ranks first
whereas the baseline typically ranks last. The area of each blob is proportional to the
relative frequency that the corresponding algorithm achieved the respective rank
across 1000 bootstrap samples (concept from [236]). Each bootstrap sample consists
of 19 hierarchically aggregated class-level DSC metric values. The lines encompass
the 95% quartile of the bootstrap results while the cross and the diamond denote
the median and mean rank, respectively. Results for the normalized surface dice
are in Figure B.9. This figure was adapted from [202].
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baselineRGB organ transplantation annotation

Figure 5.35: Example predictions comparing the baseline network with the organ transplantation
augmentation on all out-of-distribution (OOD) datasets using the hyperspectral
imaging (HSI) modality. For each prediction, scores for the dice similarity coefficient
(DSC) and normalized surface dice (NSD) are shown. Images are selected based
on the maximum difference in DSC scores between the baseline and the organ
transplantation augmentation networks for each dataset.
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Figure 5.36: Comparison of spectral fingerprints for the semantic porcine and semantic human
datasets stratified by the 16 classes which the two datasets have in common. For
each organ, the median spectra (solid line) hierarchically aggregated to the subject
level as well as the standard deviation (shaded area) across subjects is shown for
each species.
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Figure 5.37: Nearest neighbor classmatrix for the semantic porcine and semantic human datasets
based on media spectra comparisons from all annotated regions. For every human
median spectrum 𝘴𝘩 with corresponding class 𝘤𝘪, we searched for the nearest neighbor𝘴𝘱 across all pig median spectra with corresponding class 𝘤𝘫. Shown is the confusion
matrix across all human (𝘤𝘪’s) and pig labels (𝘤𝘫’s). The (𝘪, 𝘫)-th entry shows how
many of the human median spectra from the 𝘪-th class have a nearest neighbor
across the pig median spectra with the 𝘫-th class. The matrix is row-normalized
highlighting how the median spectra from a human class are distributed across
nearest neighbor pig classes. Values < 0.1% are not shown for clarity.
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achieved for the classes skin, background and subcutaneous fat. For many other classes,
however, the agreement is rather low. For example, human kidney spectra are closer
to porcine small bowel spectra than to porcine kidney spectra. This indicates that the
spectral fingerprints of the two species are not very similar and hence transfer learning
is challenging.

Our transfer learning results are shown in Figure 5.38. We always evaluated on the
semantic human dataset and we are comparing networks that are trained only on the
semantic porcine dataset, only on the semantic human dataset, pretrained on the semantic
porcine dataset and further finetuned on the semantic human dataset and jointly trained
on the semantic porcine and semantic human datasets.

Firstly, the pigs network (network with the organ transplantation augmentation trained
on the semantic porcine dataset) achieves very poor DSC scores for all classes except for
background and skin indicating that the porcine data does not contain enough information
to distinguish classes in human images.

Secondly, a network trained on the human data, even though outperforms the pig network,
has still relatively low scores for many classes (e.g., pancreas, peritoneum or muscle).
Compared with our results on the porcine data (cf. Figure 5.33), this indicates that
tissue discrimination is a much harder task on human images than on porcine images.
Concretely, the average DSC across the 16 classes shown in Figure 5.38 on the semantic
porcine dataset (validation_unknown split of Figure 5.12) is 0.81 (SD 0.14) whereas on the
semantic human dataset (validation split of Figure 5.26) the score is 0.71 (SD 0.19). The
former score is from our network trained on the semantic porcine dataset and the latter
score is from a network trained on the semantic human dataset. In both cases, the organ
transplantation augmentation was used.

Thirdly, adding the porcine data to the training process has only a minor impact on the
class DSC scores neither via pretraining nor via joint training. Some classes improve
slightly (e.g., pancreas) while others deteriorate a bit (e.g., lung). What is more, the classes
with a slight improvement exhibit still a very poor performance. These results indicate
that the data distributions between the two species are too different so that the network
cannot learn anything useful from the porcine data. This is also in agreement with the
neighbor analysis of Figure 5.37.
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Figure 5.38: Segmentation performance on the semantic human dataset using the dice similarity
coefficient (DSC). We compare the segmentation performance for four different
networks all evaluated on the validation split of the semantic human dataset: pigs
(network trained on the semantic porcine dataset), humans (network trained only on
the semantic human dataset), humans pretrained (pretrained pig network further
finetuned on the semantic human dataset) and humans+pigs (network trained
jointly on the semantic human and semantic porcine datasets). In all cases, the
network including the organ transplantation augmentation was used. Each boxplot
shows the interquartile range (IQR) with the median (solid line) and mean (dotted
line). The whiskers extend up to 1.5 times of the IQR. Each point represents the
performance of one class.
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Discussion 6
In this chapter, we will discuss the results presented in Chapter 5. In Section 6.1, we
pick up some details about our spectral analysis task (RQ1). Section 6.2 discusses our
counter-strategies for efficient training of HSI networks (RQ2) and Section 6.3 is dedicated
to our segmentation networks (RQ3). We reason about the impact of the domain shifts in
Section 6.4 (RQ4), including a discussion about the species gap. Finally, in Section 6.5,
we elaborate on device details, discuss our surgical setting and extend our view on non-
healthy tissue types (pathologies) which have not been the target of this thesis but are
nevertheless important for future applications.

6.1 Spectral Organ Fingerprints

In our median spectra analysis (RQ1), our objective was to determine whether different
organs exhibit unique spectral fingerprints. The key insights from this analysis are
twofold:

1. Each organ features indeed a distinct spectral fingerprint that can be automatically
classified with high accuracy.

2. The primary source of variability arises from the organ itself, rather than image
acquisition conditions such as the situs, the camera angle or repetitive measure-
ments.

In the following, we discuss specific aspects of our machine learning task. General aspects
like generalization to the species domain and challenges toward the transition to clinical
practice are discussed in Section 6.4 and Section 6.5, respectively.

In our spectra classification network, we used two hyperparameters for tackling class
imbalances: a weighted loss function and oversampling. The result of the grid search
suggested the use of a weighted loss function but no oversampling (cf. Table 4.2). However,
the grid search is only based on the maximum accuracy values on the validation split and
does not indicate the relevance of the hyperparameters. For this, Figure 6.1 gives more
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insights for all hyperparameters and Figure 6.2 especially for the two class imbalance
hyperparameters.

Firstly, we can see that the differences in accuracy are rather low between grid search
runs indicating that none of the selected hyperparameters have a huge effect. Secondly,
there is no clear tendency for both of the class imbalance hyperparameters to improve
or degrade the accuracy consistently. There are runs including a weighted loss function
with low and high accuracies and the same is true for oversampling. What is more, the
SD across subjects is higher than the differences between (neighboring) training runs
weakening the importance of the grid search further.

In summary, the grid search was not the most important ingredient for the underlying
classification task and a different selection of hyperparameters works similarly well. This
suggests that addressing class imbalances has a limited impact even though the dataset is
highly imbalanced.

6.2 Efficient Training of Hyperspectral Segmentation
Networks

With RQ2, we wanted to know how we can efficiently train segmentation networks for
spectral data. The key insights are twofold:

1. With the help of our proposed counter-strategies, HSI networks can be trained
efficiently with high GPU utilization and reduced training times.

2. Countermeasures are especially important in environments with input/output (I/O)
limitations (e.g., limited disk read speed).

In the following, we discuss specific aspects of our counter-strategies including remarks
on when they should be used, how they can be applied and important considerations to
bear in mind.

Our counter-strategies are specifically tailored to our application area, which is charac-
terized by a high number of spectral channels, and may not yield the same benefits when
applied to other areas. For instance, augmentations on the GPU are only advantageous
when the CPU is the bottleneck and the GPU has free resources. This is particularly
true for HSI data where a significant portion of time is dedicated to data loading and
preprocessing while only a small fraction of time is spent on the model’s image process-
ing. Conversely, in other areas such as medical 3D imaging, the GPU often becomes the
bottleneck due to the time it takes for the model to process the 3D images. In these cases,
it may be more beneficial to offload some of the work to the CPU.

One of the main advantages of our counter-strategies is that they can be used indepen-
dently from each other. For instance, one might choose to employ compression without
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Figure 6.1: Impact of the hyperparameters from the grid search of the tissue atlas classification
task. For each hyperparameter, the impact is shown in (b) as the distribution of
differences in accuracy between the worst and the best run for each combination
where only the respective hyperparameter changes. This concept is explained in (a)
using the dropout hyperparameter as an example. Each row comprises two training
runs (because only two dropout combinations are tested) where all hyperparameters
except for dropout remain fixed and the maximum difference between those two runs
is computed. This is repeated for every combination of remaining hyperparameters
(e.g., in the second row with a different learning rate) to obtain all difference values
for the dropout hyperparameter constituting the foundation for the dropout box plot.
The same procedure is used for the remaining hyperparameters. Each boxplot shows
the interquartile range (IQR) with the median (solid line) and mean (dotted line).
The whiskers extend up to 1.5 times of the IQR. Outliers are shown as black points.
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Figure 6.2: Results for the class imbalance hyperparameters from the grid search of the tissue
atlas dataset classification task. The mean accuracy across subjects on the validation
split is sorted and plotted for each training run. The color highlights whether the loss
weighting function of Equation 4.2 was used and the symbols denote the usage of
oversampling during training. Both approaches target class imbalances. The size of
the points corresponds to the standard deviation (SD) across subject-level accuracy
values.

resorting to GPU augmentations. This flexibility enables the evaluation of each counter-
strategy separately for specific use cases, retaining only those that effectively reduce the
training time.

Concerning our proposed shared, fixed, and pinned memory ring buffer, it is important to
consider the potential issues of blocked memory allocation: Pinned memory regions are
exclusively reserved for the application and are inaccessible to the operating system or
other tasks (even inside the same application). This exclusivity can lead to complications
that are further impacted by other processing steps. For instance, if other stages in
the pipeline require the allocation of large amounts of memory, reserving a significant
memory portion for the ring buffer may not be advisable. Therefore, this strategy should
always be implemented holistically while taking the entire pipeline into account.
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6.3 Surgical Scene Segmentation of Hyperspectral
Images

With RQ3, we wanted to know the optimal spatial granularity and modality for semantic
scene segmentation in surgical hyperspectral imaging. The key insights are as follows:

1. Segmentation performance improves with larger spatial granularity across various
validation metrics and modalities.

2. HSI outperforms TPI and RGBmodalities for all granularities and validationmetrics.

3. The performance of our HSI image model is comparable or better than every
other model across all studied number of training subjects and is on par with the
performance of a secondary medical expert.

In this section, we discuss specific aspects of our work, including differences compared
to our classification task, the implications of the metrics we used, the impact of the
learning rate hyperparameter, the performance limit of our superpixel approach, aspects
of our model comparison and limitations arising from our annotations1. Generalization
aspects of our models are discussed in Section 6.4 and technical and clinical challenges
are discussed in Section 6.5.

From Classification to Segmentation
Our classification task is considerably simpler than our segmentation task since it relies
solely on polygon annotations that explicitly use mainly clear regions of an organ. It is
also based on median spectra which reduces noise and enhances the distinction between
classes. This difference in complexity is further illustrated in the location maps of
Figure 4.6 (classification) and Figure 4.7 (segmentation). Organs in the tissue atlas are
typically centrally located and have a clear view whereas organs in the segmentation
dataset are located across the entire image. The segmentation network is tasked with
predicting a class for every pixel, regardless of noise, imperfect views or visibility of only
small structures. This task, while more challenging, provides a more accurate reflection
of surgical reality and the future needs for autonomous robotic surgery.

In both tasks, we observed that performance significantly varies across different classes.
However, the classes with the lowest performance are not the same for the two tasks.
For classification, the classes with the lowest performance are gallbladder, heart, and
major vein. In contrast, for segmentation, the classes with the lowest performance are
omentum, major vein, and kidney with Gerota’s fascia. Interestingly, for classes like the
heart, segmentation appears to be easier than classification. This could be attributed to
the fact that the segmentation network has access to the surrounding context and the
heart is often located near the lung (cf. Figure 5.31), which can be detected quite well. The

1This section is based on [198].
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poor performance of major vein (especially in the segmentation task) could be explained
by its small size as shown in Figure 4.5.

Metrics
In line with the recommendations of segmentation challenges, we employed more than
one metric to assess our results and to conduct our ranking [12, 190]. We utilized an
overlap-based measure (DSC), a distance-based measure (ASD), and a boundary-overlap-
based measure with special consideration to annotation uncertainty (NSD). Each metric
examines specific attributes of the predicted segmentation map and a model may favor a
particular metric. For instance, the pixel model excels under the DSC metric while the
superpixel model performs optimally under the ASD (cf. Figure 5.16). Therefore, only a
combination of multiple metrics can provide insights into a model’s overall performance.

A specific design decision that impacts all metrics is how to handle cases where classes
are missing in the prediction. Evaluation frameworks like MONAI typically return nan or
inf values in such situations, leaving the user to decide how to aggregate those. While
this is less of an issue for the DSC and NSD metrics as they have defined limits, the
approach to handling missing classes is a critical design decision for the ASD which
is unbounded. There are several alternatives, such as completely disregarding these
instances or applying a fixed penalty that might depend on the image diagonal. We chose
to assign the maximum distance of the other classes to missing classes, which imposes
a penalty without creating outliers. However, this approach has the drawback that the
value for the missing class is dependent on the prediction of the other classes in the
image.

The use of the NSD necessitates the establishment of a (class-specific) threshold which
requires re-annotations of a subset of the images by at least one additional human
annotator [165]. This subset is typically small relative to the size of the dataset (for
instance, 20 of 506 images in our case) as obtaining annotations for more images or from
multiple annotators is often impractical. Therefore, the thresholds largely depend on
this subset and any errors in these annotations significantly impact the results. Missing
classes in the re-annotation are also an issue, as corresponding distances cannot be
calculated, meaning this part of an image does not contribute to the threshold. In the
original formulation, this problem did not arise as an annotation was created separately
for each known class [165]. However, in our case, the annotators were unaware of which
classes were present in the image.

Another challenge is the decision of the aggregation function for the class distances
per label. For each image pair annotated by both experts, we calculated the distances
between the two annotations for each class, applied an aggregation function, and then
averaged the aggregated values across subjects and classes (taking into account the
hierarchical structure). In Figure 6.3, we present several thresholds 𝜏 𝑜 derived from
different aggregation functions.
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Figure 6.3: Potential thresholds for the normalized surface dice (NSD) metric by using different
aggregation functions. Input to the aggregation functions are the class-wise distances
between two expert annotations. The error bars indicate 0.25 standard deviation
across subjects of the aggregated distance values. The threshold for the mean
aggregation corresponds to the thresholds used in this thesis. This figure was
adapted from [198].

Firstly, we observe significant variation across classes, e.g., with large differences between
the two annotations for peritoneum and small deviations for bladder. Additionally, some
classes exhibit high variations across subjects (for instance, the SD for the mean aggrega-
tion in the case of skin is 2.5 times higher than the mean itself). This emphasizes that
determining the boundary for each class is not equally challenging. Generally, the agree-
ment between our two expert annotations is rather low, suggesting that even for medical
experts the decision of which pixel belongs to which class is neither straightforward nor
unambiguous.
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Secondly, the choice of the aggregation function significantly influences the thresholds.
In their original work, Nikolov & Blackwell & Zverovitch et al. used the 95 % quantile
of the distances [165] but this resulted in very high thresholds even above 80 px in our
case. Therefore, we opted to use the mean, which yields more moderate distances always
below 20 px. However, it is important to note that other aggregation methods like the
median or another quantile could also have been viable options.

Hyperparameters
For our segmentation models, we opted for default parameters whenever feasible and kept
all parameters consistent across algorithms (such as learning rate) or chose them based
on the same criteria (like memory usage for batch size). However, hyperparameters can
influence model performance and given the varying input sizes and network architectures,
it is possible that our hyperparameter settings are not ideal for all algorithms. To identify
the optimal set of hyperparameters for each algorithm, a large number of training runs
would be necessary. Considering that training all our 15 algorithms (five models and three
modalities) for all five folds already took about 292 h GPU training time2 for a single
hyperparameter setting, comprehensive hyperparameter tuning would entail extremely
high resource costs.

To illustrate the potential influence of our design choice on the algorithm ranking, we
conducted a small hyperparameter search with the learning rate as an example. We chose
the learning rate because it is widely regarded as one of the most crucial hyperparameters
[156]. For each algorithm, we trained two additional networks: one with a lower learning
rate of 𝜂−1 = 0.0001 and another with a higher learning rate of 𝜂+1 = 0.01 compared
to the default learning rate of 𝜂0 = 0.001. For each algorithm, we identified its optimal
learning rate which is the learning rate among 𝜂−1, 𝜂+1, and 𝜂0 that produced the highest
average DSC on the validation data. After this, we repeated the overall ranking across
algorithms (Figure 5.15) on the test data but this time instead of using a single fixed
learning rate, we selected the network corresponding to the optimal learning rate for
each algorithm. Except for the pixel-based models, the optimal learning rate was the same
as the default learning rate for all algorithms. However, even for the pixel-based models,
the average improvement in the DSC was only minor (< 0.007 for all pixel models). This
results in an overall ranking that is identical to that in Figure 5.15 (same sorting of the
algorithms on the 𝑥-axis) and there are only minor differences in the ranking across the
different bootstrap samples as can be seen in Figure 6.4. This reinforces the validity of
our study results, even without extensive algorithm-specific hyperparameter tuning.

Superpixels
Our superpixel classification approach is based on two primary assumptions: (1) super-
pixels comprise homogeneous regions where every pixel within a superpixel belongs to
the same class, and (2) superpixel boundaries align with organ boundaries rather than

2Equivalent to roughly 32 kg of CO2 if trained on an NVIDIA® GeForce RTX™ 2080 Ti GPU [124].
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Figure 6.4: Ranking differences across bootstrap samples when optimizing the learning rate.
For each algorithm, networks were retrained with a lower (𝜂−1 = 0.0001) and a
higher (𝜂+1 = 0.01) learning rate compared to the default learning rate 𝜂0 = 0.001.
The optimal learning rate 𝜂 was selected according to the highest average dice
similarity coefficient (DSC) on the validation set for each algorithm. The ranking
was repeated across all algorithms based on the networks with the optimal learning
rate 𝜂 instead of the default learning rate 𝜂0. The heatmap shows how many of
the 1000 bootstrap samples yield a different ranking of 𝛥rank ranks when using the
learning rate optimized networks compared to the default networks of Figure 5.15.
The sorting of the algorithms on the 𝘹-axis from best to worst was not affected by
the learning rate and hence did not change compared to Figure 5.15. Values of 0 are
not shown for clarity. This figure was adapted from [198].

intersecting them. We assessed these assumptions and established a performance limit for
our superpixel model by assigning the modal value of all pixel labels within a superpixel
as the superpixel label. This method directly incorporates the annotation labels, thereby
serving as a performance limit for our model.

In Figure 6.5, we present the results of the performance limit for various metrics on
the test set. The performance limit is closest to a perfect segmentation for the ASD,
with an average of 2.91 (SD 0.74), followed by the DSC and NSD with average values
of 0.92 (SD 0.03) and 0.74 (SD 0.04), respectively. The ASD is notably low and has a
small SD because the distances between the annotation and performance limit are limited
by the superpixel size and since each superpixel contains approximately 300 px, large
distances are improbable (with √300 ≈ 17.32 px). For DSC and NSD, the gap to a perfect
segmentation is larger, suggesting that the superpixels do not perfectly align with the
annotations which is primarily due to the borders between classes. It is possible that
either the superpixels or the annotations (or both) are not positioned at the “true organ
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border” and any deviation results in a reduced overlap (DSC) or the need to adjust some
superpixel borders to align with the annotation (NSD). The NSD is lower than the DSC
because the acceptable threshold 𝜏 𝑜 is very low for some organs (cf. Figure 6.3), so pixels
with minor deviations already affect the NSD.

There exists a discrepancy between the performance limit and our model predictions
across all metrics with average scores of 0.82 (SD 0.06), 16.51 (SD 9.23), and 0.61 (SD
0.09) for the DSC, ASD, and NSD, respectively. Assuming the superpixel features are
sufficiently discriminative, this suggests potential for improvement in our superpixel
model. This is further emphasized by our design choices aimed at ensuring comparability
across models and modalities without specific optimizations for a single model (e.g., when
we introduced augmentations, we applied them to all models). However, the image HSI
model is not significantly behind the performance limit of Figure 6.5 (with average values
of 0.90 (SD 0.04), 6.19 (SD 3.20), 0.80 (SD 0.07) for the DSC, ASD, and NSD, respectively),
implying that further investment in the development of the superpixel model yield limited
gains.

Model Comparison
Our models were designed with the aim of maximizing comparability which involved
similar design choices like the same U-Net architecture or a similar epoch size. This was
crucial for our comparison as we intended the input size and modality to be the primary
sources of variation, rather than model-specific design choices.

Similarly, we refrained from applying any post-processing to the network output even
though certain models like the pixel model could potentially benefit from such operations,
such as morphological operations. For inference, we limited the spatial context of each
model to its defined input size. For instance, the patches that the patch_32 model
encounters during inference are explicitly non-overlapping to prevent the spatial context
from exceeding a resolution of 32 × 32 which would complicate comparisons across
different spatial resolutions (e.g., superpixel vs. patch_32). However, as seen in Figure 5.19,
this design choice can lead to visible artifacts, such as at patch borders in the patch-based
segmentation.

Annotations
We observed that our segmentation networks are approaching the level of inter-rater
variability. What is more, the average DSC of the inter-rater performance is only 0.89
(SD 0.07). This suggests that the quality of annotation is also limited which could be
attributed to the difficulty of identifying organs even for medical experts. This limitation
natually sets boundaries for the performance of our networks and also future applications
since it is likely that datasets from other domains (e.g., species domain) exhibit similar
limitations.

This suggests that future applications should investigate this problem, for instance by
re-annotating the data or label unclear structures as invalid. This could align with a
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Figure 6.5: Performance limit of the superpixel approach by taking into account the reference
annotations. (a) The label for each superpixel is determined by taking the mode
of the annotated pixels inside the superpixel. (b) Comparison of the performance
limit with the hyperspectral superpixel model for the three metrics dice similarity
coefficient (DSC), average surface distance (ASD) and normalized surface dice (NSD).
Each boxplot shows the interquartile range (IQR) with the median (solid line) and
mean (dotted line). The whiskers extend up to 1.5 times of the IQR. Each point
represents the performance of one test subject. This figure was adapted from [198].
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human-in-the-loop paradigm with a continuing improvement of the network and a
reduction in the number of problematic cases. Similarly, it could be worthwhile to
adopt an active learning approach where the network selects the most suitable samples
for annotation either from the pool of unlabeled data (which we possess but have not
presented in this thesis) or the pool of partially annotated data (e.g., tissue atlas dataset).

6.4 Domain Shifts in Surgical Hyperspectral Imaging

In our domain generalization assessment (RQ4), our objective was to identify relevant
domain shifts that affect the segmentation performance and we wanted to know whether
we can compensate for them. The key insights from this assessment are as follows:

1. The subject domain has a minor impact on the segmentation performance with the
effect being more pronounced at the image level than at the median pixel level.

2. Contextual shifts deteriorate the segmentation performance but this issue can be
addressed by our proposed organ transplantation augmentation.

3. The species domain has a significant impact on the segmentation performance
with the performance on human data being notably lower than on porcine data.

In the following, we discuss specific aspects of our domain generalization assessment
including remarks on the subject domain, the effectiveness of our proposed organ trans-
plantation augmentation3 and the challenges posed by the species domain.

Subject Domain
The subject domain encompasses variations due to individual differences but also those
related to the surgery performed. Factors such as the type of surgery, the surgeon or the
surgical setting can all affect the appearance of the organs. It is important to note that
we did not separate these effects, but given the minor impact of the subject domain, this
is not an issue. However, if it is observed that the subject domain has a more significant
impact in other scenarios, it might be worth investigating these factors separately.

Context Domain
Our organ transplantation augmentation offers a straightforward, network-independent
solution to improve performance on geometrical OOD data. In addition to its effectiveness
and computational efficiency, we perceive a significant benefit in its potential to lessen
the amount of actual OOD data needed during training. Throughout the development
process, we exclusively worked on the validation splits of manipulated datasets, keeping
all real data as untouched test sets. This implies that all optimizations were carried out on

3This part is based on [202].
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manipulated datasets but were still effective on real datasets. This is particularly crucial
when real data is scarce or difficult to obtain. This was, for example, the case in our organ
resection scenarios which would have necessitated an impractical number of animals
when we had only used real data.

Species Domain
As observed in Figure 5.38, particularly, organs like pancreas, peritoneum, and muscle
exhibit poor performance. This suggests that it is significantly more difficult to segment
human tissue than porcine tissue.

One possible explanation for this could be the difference in data acquisition environments.
The porcine data was collected in a controlled setting while the human data was gathered
in a real-world setting as found “in the wild”. For instance, the subset of standardized
recordings in the tissue atlas dataset would not be feasible with human subjects.

Further, real-world surgeries are typically less controlled and more hectic which often
leaves no time to capture the perfect image or to prepare organs for optimal visibility.
This often results in bloody images as can be seen in the example images of Figure 4.1.
Additionally, human tissue is usually covered more in fat, since patients undergoing
surgery are typically older, adding another layer of complexity to the task.

We observed that incorporating porcine data into the training process did not significantly
enhance the performance on human data, regardless of whether pretraining or joint
training was used. This could be attributed to several factors.

Firstly, the species gap might be too large as we are transitioning from young, healthy
pigs to older, sick humans who are undergoing surgery for a reason. Even though we only
annotated healthy tissue, it is possible that side effects from diseases or complications
during surgery may be visible in the images.

Secondly, the species could be too different with the spectra being too dissimilar. This
is evident in the median spectra comparison of Figure 5.36 and especially the neighbor
comparison of Figure 5.37. For almost all classes, the nearest pig spectrum to a human
spectrum belongs to a different class than the observed human class. This inevitably
confuses the neural network because it should learn that samples belong to a certain
class but then there is contradicting information in the training data. The only classes
with a somewhat good neighbor agreement, skin and background, are also the classes
that already perform well on human data alone.

Thirdly, human images are generally more bloody and the organs are often covered
in visceral fat compared to porcine organs. This could pose challenges for automatic
segmentation [10], especially if the covering layer is thicker than the penetration depth
of the light (several millimeters [248]).
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6.5 Technical and Clinical Challenges in Hyperspectral
Imaging

In the following, we discuss important aspects that should be taken into account before
our work is moved to clinical practice. We discuss the limitations of our camera system
(Section 6.5.1), the differences betweenminimally invasive and open surgery (Section 6.5.2)
and the importance of non-healthy tissue types (pathologies) within the realm of surgical
scene segmentation (Section 6.5.3).

6.5.1 Hardware Limitations

The HSI camera, depicted in Figure 1.1, used for capturing the images for our datasets,
plays a crucial role as the resulting data forms the foundation for all the results of this
thesis. In this section, we will discuss the limitations of our camera system and how it
compares to conventional RGB systems.

Limitations of Our Camera System
The main advantage of our HSI camera system is that it is commercially available and
medically certified to be used during surgery [214]. However, despite significant advance-
ments in HSI systems, they are neither as widespread nor as mature as RGB cameras.
There are also practical challenges and limitations associated with HSI systems which
can impact the resulting images.

Firstly, our HSI camera, particularly when compared to RGB cameras, has a relatively
long acquisition time of approximately seven seconds. This limitation restricts the
system to still objects and precludes the possibility of providing instant feedback on the
current state of the scene. Organs with natural movement, such as the heart, inevitably
exhibit visible artifacts (cf. Figure 4.1). These lengthy feedback loops pose a particular
problem in surgical settings where the scene is constantly changing and surgeons need
to respond quickly to these changes. For instance, in the case of continuous kidney
perfusion monitoring during a clamping procedure, a scenario where it has recently been
demonstrated that a MSI camera can monitor at video rate, our used system would not
be suitable [14].

Secondly, the spatial resolution of the HSI camera with 480 × 640 pixels (height, width)
is relatively low compared to modern RGB cameras (e.g., 4K video imaging with 2160 ×3840 pixels (height, width) [140]). This limitation restricts the level of detail in the
captured organ images which could be crucial for distinguishing between classes (e.g.,
differentiating small vessel structures would be nearly impossible). This lower resolution
also complicates the annotation process since annotators have to work with less visible

160



6.5 Technical and Clinical Challenges in Hyperspectral Imaging

structures of the organs. This was a challenge that our annotators highlighted in their
feedback.

Thirdly, the reconstructed RGB images do not match the quality of actual RGB images
due to limited sharpness and color differences. The color discrepancies primarily stem
from the limited blue spectrum that the HSI camera does not capture. This results in
organs or objects displaying colors that differ from their real-life appearances and this
could potentially cause confusion. See Figure 6.6 for a comparison of an exemplarily real
RGB image and a reconstructed RGB image from our HSI camera.

real RGB reconstructed RGB

400 500 600 700 800 900 1000

wavelength [nm]
400 500 600 700 800 900 1000

wavelength [nm]

Figure 6.6: Comparison of a real vs. a reconstructed RGB image from our hyperspectral imaging
(HSI) system. The real RGB image was take with an Apple® iPhone® 12 Mini. On
the bottom of each image, the captured wavelength range by each system is shown
(the systems are insensitive to light denoted by the white areas).

Fourthly, the HSI camera does not offer a live view during image acquisition. This
necessitates blind alignment of the camera and if the view is not as expected, the image
has to be retaken. This can make the operation with the camera challenging, especially
in the high-stress environment of real-world surgeries.

Fifthly, when capturing an image with the HSI camera, all other lights in the room must
be switched off and ideally, all windows should be covered since the camera is supposed to
be only used with the built-in light source and there is not autoexposure mechanism. This
requirement can be not only inconvenient but sometimes impractical to incorporate into
the clinical workflow, for instance, if it is not possible to completely cover the windows
due to patient safety. Additionally, it is not always feasible to entirely turn off external
light sources, such as monitors, for every image taken.
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Sixthly, the HSI camera has a fixed focal length and lacks zoom capabilities. All images
must be taken with an imaging distance of about 50 cm and there is no autofocus. While it
is possible to swap the lens for one with a different focal length, this is a time-consuming
process as the lenses must be manually exchanged and the sharpness adjusted with many
test measurements. This adjustment can only be made before surgery, not during, and
only if enough time is available before the surgery (for the HSI data of this thesis, always
the same lens was used). Therefore, the decision on which lens to use must take into
account the expected organs of interest. However, as we have observed in Figure 4.5,
organ sizes vary greatly making it impossible to find a lens that is optimal for all organs.
This, in turn, may impact the segmentation performance since classes like major vein,
which are represented by only a few pixels, become challenging for both the classification
and segmentation tasks.

Seventhly, the HSI camera can still be considered a prototype and is not yet ready
for production. For example, there are instances where the image acquisition fails,
necessitating to retake the image or even to restart the camera system. Regrettably, there
are also occasions where images are not correctly stored and are consequently lost. This
issue is the reason why two images are missing from the subset of standardized recordings
of the tissue atlas dataset, i.e., only 5758 annotations instead of 4 ⋅ 3 ⋅ 3 ⋅ 20 ⋅ 8 = 5760
annotations (4 situs, 3 angles, 3 repetitions, 20 organs across 8 subjects).

However, despite these challenges, we demonstrated that themeasured reflectance spectra
are largely accurate (cf. Figure 5.9), even though there are differences for some colors and
wavelength ranges. This suggests that our measurements were not entirely erroneous,
that the data collected is still valuable and that our results still provide meaningful insights.
What is more, HSI is a rapidly evolving field and advancements are anticipated in future
implementations.

RGB vs. Hyperspectral Imaging
Our segmentation networks showed only a minor improvement of HSI compared to
RGB on full images (cf. Figure 5.14). However, when we utilized a more realistic dataset,
one that includes geometrical OOD shifts for example, the disparity between RGB and
HSI became more pronounced (cf. Figure 5.33). This aligns with the finding that the
performance enhancement of HSI is more significant for smaller spatial granularities
where limited context is available. It is worth noting that there might be other scenarios
of OOD shifts where HSI proves more advantageous than RGB (e.g., segmentation of
ischemic regions or detection of pathologies).

In general, when selecting the optimal imaging modality for scene segmentation, it is
important to weigh the various pros and cons of HSI camera systems. Beyond the capacity
to differentiate tissue classes, HSI systems capture detailed spectral information that
provides additional benefits in surgical guidance. For instance, they can reveal functional
tissue information such as the perfusion state, or assist in diagnosing diseased tissue [68,
251].
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6.5.2 Minimally Invasive vs. Open Surgery

Surgical scene segmentation plays a crucial role in both minimally invasive and open
surgery. In this thesis, our primary focus is on open surgery. These two surgical settings
are quite distinct, resulting in images that do not look the same. In minimally invasive
surgery, the perspective of the organ is different (not always from the top), the lighting
conditions are more controlled and distances are more diverse. In general, minimally
invasive surgery is less affected by straylight due to the closed-body situation.

Despite the lighting and view differences, our results have the potential to be equally
applicable to minimally invasive surgery at the spectra level since the underlying tissue
remains the same. However, at the image level, it is unlikely that our segmentation
networks will yield the same performance out of the box as they do on our datasets
from open surgeries since the networks may be confused by the different views and
compositions. In such cases, additional training data is likely necessary.

In general, it might be easier to first deploy HSI in a minimally invasive setting given
that camera systems are already an integral part of robot-based navigation. A logical
next step could be to incorporate an HSI camera in place of an RGB camera in one of the
existing surgical robots. Given that it is possible to reconstruct RGB from HSI images,
this modification could be transparent to the surgeon.

6.5.3 Pathologies

In this thesis, our focus was on healthy tissue samples. However, in clinical reality, organs
are not always healthy. There might be instances of ischemic organs, inflammation or
other pathologies. For example, a cirrhotic liver differs from a healthy one exhibiting
distinct spectral characteristics. While detecting these states themselves is important
(e.g., identifying tumors, especially if they are not immediately apparent or even invisible
to the human eye), it is equally crucial to maintain segmentation performance in the
presence of these states. For instance, an organ should be detected irrespective of its
perfusion state.

While there is existing research that identifies pathologies with HSI (see [68, 251] for an
overview), these studies typically concentrate on individual pathologies and do not offer
a comprehensive view that encompasses both healthy tissue and a range of pathologies
simultaneously. However, such a holistic view is crucial for the development of surgical
guidance systems as it is expected that networks should provide comprehensive infor-
mation about the observed tissue that could assist surgeons. In contrast, our work has
taken the initial steps toward providing such a holistic perspective, as we have already
conducted analyses on a variety of different tissue classes.
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In our research, we extensively utilized a porcine model which yielded significant insights
and promising results for future applications. However, it is important to note that
the porcine model, or animal models in general, have limitations in their ability to
represent the diverse range of human pathologies and the implied ethical considerations.
Consequently, achieving high segmentation performance on human data is a crucial step
not only in its own right but also for advancing toward the detection of pathologies.

Future annotations of the data, particularly human data, should therefore consider the
inclusion of hierarchical labels to mark pathologies. Naturally, this will require modifica-
tions to the network architecture and the training procedure to enable the prediction of
more than one entity.

In general, our analysis of organ spectra, including spectral fingerprints and segmentation
networks, lays the foundation for future research, although it needs to be expanded to
encompass additional pathological states. Fortunately, our work in the context domain
is not dependent on the tissue state, allowing the results to be directly applicable to
pathologies. Similarly, our efficient training scheme, which is solely targeted at the data
type rather than the data content, holds the same applicability.
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This thesis made significant progress in the field of autonomous robotic surgery through
the development of fully automatic semantic scene segmentation on HSI data. While
acknowledging that complications following surgery are an important problem and that
the visual discrimination of tissue types presents a significant challenge for surgeons,
we initially demonstrated the potential of HSI and its role in addressing this issue (RQ1).
Following this, we tackled problems that hinder the extensive use of HSI in clinical
applications. These include the inefficiency of training deep learning models on HSI data
(RQ2), a lack of understanding regarding the optimal spatial and spectral granularity for
semantic scene segmentation in surgical HSI (RQ3) and the impact of important domain
shifts on the segmentation performance (RQ4).

In the following sections, we will discuss our contributions and provide a perspective
on future work. Specifically, in Section 7.1, we will revisit the research questions that
were introduced in Section 1.2, evaluate the extent to which we have addressed them
and reference the corresponding disseminations. Finally, Section 7.2 discusses the impact
of our work and gives an outlook on future challenges and opportunities in the field of
surgical scene segmentation with HSI.

7.1 Summary of Contributions

RQ1: Do different organs feature unique spectral fingerprints?
We demonstrated the potential of HSI for the discrimination of tissue types by pioneering
a large-scale analysis of organ spectra with an HSI database of unprecedented size
consisting of 9057 images from 46 subjects annotated with 20 classes. We identified
distinct spectral fingerprints for each organ and, with the help of our spectra classification
network, we were able to classify them with an average accuracy of 95.4 % (SD 3.6 %).
We further showed with the help of a linear mixed model (LMM) that the primary source
of variability in our median spectra arises from the organ itself and not from image
acquisition conditions like the situs, the camera angle or repetitive measurements. These
findings led to a journal publication in Scientific Reports in 2022 [215].
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We made a significant contribution to the HSI community by releasing a large-scale
dataset of healthy tissue samples. To ensure ease of use, we provided accompanying
visualizations and a Python package to load and process the data. Our technical validation
further confirmed the validity of our measured spectra. What is more, we launched a
website for this dataset with usage instructions and interactive visualization which can
be accessed at heiporspectral.org. The Python framework hyperspectral tissue
classification (HTC) [200] which can be used together with the dataset not only includes
code to load and process the data but also serves as a repository for all the code related
to the remaining results of this thesis, including our deep learning pipeline, pretrained
models, and reproducibility instructions for all our experiments. The HSI dataset is
accompanied by a journal publication in Scientific Data in 2023 [214].

RQ2: How can we train deep hyperspectral imaging networks efficiently?
We were the first to demonstrate that the default training of deep neural networks on
HSI data results in poor GPU utilization and extended training times. We managed to
significantly improve the GPU utilization and reduce training times by implementing
four independent counter-strategies of varying complexity: compression, quantization,
GPU data augmentations and a shared, fixed and pinned memory ring buffer. We showed
that these strategies can be combined, resulting in a speedup of up to 3.6. I presented
these findings to a wide machine learning community at the PyTorch Conference in 2023
[201].

RQ3: What is the optimal spatial and spectral granularity for semantic scene
segmentation in surgical hyperspectral imaging?
We were the first to conduct a systematic analysis of the optimal modality and spatial
granularity for semantic scene segmentation with HSI data. Our findings revealed that
HSI is superior to both RGB and TPI across all spatial granularities. Moreover, the
advantage of HSI increases with decreased spatial granularity. In our study, our image
HSI model consistently ranked first, achieving an average DSC of 0.90 (SD 0.04) and
reaching inter-rater variability with an average DSC of 0.89 (SD 0.07). We also evaluated
our models in scenarios with limited training data and found that the image HSI model
outperformed the other models in these cases as well. This work was published in the
Medical Image Analysis journal in 2022 [198]. Further, it was accepted as a long abstract at
the International Conference on Information Processing in Computer-Assisted Interventions
in 2022, where I orally presented the work to an expert audience [197].

RQ4: Which are relevant domain shifts affecting the segmentation performance
and can we compensate for them?
We pioneered a comprehensive evaluation of the generalizability of our networks against
important surgical domain shifts. For this, we analyzed the performance of our networks
when faced with OOD data arising from different individuals (subject domain), changes

166

https://heiporspectral.org


7.2 Impact and Outlook

in the neighborhood of an organ (context domain) and when moving from porcine to
human data (species domain).

Our findings indicated that the subject domain had only a minor impact on both the spec-
tra and image levels, with the latter having a more significant effect. The dissemination
of our analysis on the subject domain aligns with RQ1 and RQ3 (see above) on the spectra
and image levels, respectively.

While the impact of the subject domain was minor in our case, the opposite is true
for the context domain: We were the first to highlight the importance of contextual
information in surgical scene segmentation and how segmentation networks struggle
with geometrical OOD data. What is more, we provided the community with a simple,
network-independent solution to enhance performance on geometrical OOD data which
is now also available to the general computer vision community via the Kornia library
[185]. We could show that our organ transplantation augmentation effectively addresses
the issue of deteriorated performance on geometrical OOD data and ranks first compared
to other topology-aware augmentations. Furthermore, we showed that these types of
problems are ideally suited for working on manipulated data during development while
preserving real data as untouched test sets. Our analysis of the problem and our solution
were published and presented by me as a poster at the International Conference on Medical
Image Computing and Computer Assisted Intervention conference in 2023 [202]. This work
also earned me the STudent-Author Registration (STAR) Award and the Young Scientist
Award.

Similarly drastic as the context domain is the impact of the species domain when the
porcine model is evaluated on human data. However, even though we compared various
techniques to incorporate porcine data during training, we found that the porcine data is
of limited help and that the performance on human data is substantially more challenging
than on porcine data. Our findings regarding the species domain have not yet been
published elsewhere but we are currently preparing a manuscript to present these results
to a broader audience.

7.2 Impact and Outlook

This thesis represents a pioneering step toward surgical scene segmentation with HSI and
lays the foundation for exciting new applications and research directions. We advanced
the field by providing new tools, methods and datasets. Our spectral analysis toolbox
(e.g., LMMs) is also applicable to other HSI tasks where spectra comparison and variation
decomposition are required. Our public HeiPorSPECTRAL dataset can already be used
by others. The tricks we used to train deep neural networks faster could be beneficial not
only for developers working with HSI data but also for other areas where data loading is
a bottleneck (the code for our counter-strategies is available online [200]). Our findings
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on the optimal modality and spatial granularity are valuable for anyone in the field
processing HSI data with segmentation networks. To this end, our pretrained models
are not limited to the HSI community but can also be utilized by researchers working on
surgical RGB data, thanks to our trained RGB models. Our analysis of different domain
shifts offers crucial insights into the failure modes of segmentation networks operating on
HSI data. These insights are applicable to other tasks in the field. For instance, the species
gap is of interest for every study using animal HSI data. Finally, our organ transplantation
augmentation is by no means restricted to HSI data since it can be used for arbitrary
spectral resolutions (including RGB data) and may even find applications outside the
medical domain.

Beyond these immediate applications, our work raises new questions and opens up new
challenges. Some of these are described in more detail below.

Uncertainties
In this thesis, we focused solely on class-level prediction scores from the network for our
evaluation. However, with this decision, we are completely ignoring the uncertainty of
the network, i.e., instances where the network is (or should be) unsure about its prediction
(a hint on this is given by the PCMs shown in Figure 5.24). These uncertainties are crucial
in practice and for the acceptance of an autonomous system since it is preferable to
acknowledge what we do not know rather than always predicting something.

Unfortunately, uncertainties present their own set of challenges and complexities. For
instance, one cannot simply interpret softmax values as probabilities as this requires
network calibration, a process that is not without its own challenges [83, 92, 173, 72, 78].
Therefore, future research should explore how to integrate calibrated uncertainties into
our segmentation networks.

Other Domains
In our generalizability assessment, we took into account the subject, context, and species
domains due to their significance in medical imaging. However, it is important to note
that there are other domains that also hold relevance for surgical scene segmentation.

For instance, it is unlikely that different HSI devices will measure exactly the same spectra
and differences are to be expected. The extent of these differences depends on the device
shift. However, since HSI is a novel technique with rapidly evolving hardware, changes
are anticipated in the future. In the context of HSI (as compared to RGB cameras), changes
and future developments are expected in two main areas:

1. In the spatial domain, differences like spatial resolution or zoom level may arise due
to varying focal lengths leading to a change in the observed organ sizes. Further,
we have seen in Figure 4.7 that the organs in our datasets have common locations
in the image (often in the center) but this may be different in other datasets.
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2. In the spectral domain, there are additional degrees of freedom, such as the num-
ber of channels, the wavelength range, or the spectral resolution. Furthermore,
the light source, one of the most significant influencing factors for HSI images,
could also have an impact (e.g., LED vs. halogen light sources) [15]. In practice,
changes are unlikely to occur incrementally (e.g., a change in the light source
and the zoom level might happen simultaneously) but it will be crucial to acquire
data with disentangled factors to understand each effect and develop appropriate
countermeasures.

Another domain to consider is the type of surgery performed. Our results focused on
open surgery but minimally invasive surgery is also crucial, especially as more surgeries
are being performed in this manner [195]. From an HSI perspective, these two types of
surgeries are significantly different with distinctions such as static images vs. videos,
different light sources and varying views on the organ of interest. Ideally, insights gained
from one type of surgery should be transferable to the other. However, this is a complex
step, and it might be wise to address the other issues first so that the impact of inevitable
changes (like device changes) is reduced.

Pathologies
As elaborated in Section 6.5.3, incorporating pathologies is vital for future applications.
For an application to be beneficial during surgeries, it needs to identify tissues irrespective
of the presence of pathologies (e.g., ischemic organs) and it needs to detect pathologies
on its own (e.g., tumors). This holistic perspective is essential to offer real-world benefits.

Clinical Translation
Ultimately, the long-term consequences of this thesis, after addressing the discussed
limitations and previously presented new challenges, should be to apply our findings to
clinical practice. It is crucial that new applications are seamlessly integrated into the
surgical workflow so that they are accepted by the surgeons and can be implemented
at minimal cost. For this to happen, camera providers and researchers should play
together while always keeping the clinical side in the loop ensuring that the application
is developed in line with practical surgical needs.

The focus of the camera providers should be to develop HSI systems that provide spatial
and spectral resolutions comparable to currently employed RGB cameras. Both criteria
are currently not met by our used HSI camera (cf. Section 4.1) as the spatial resolution
is too low and the spectral resolution does not contain blue colors so that the resulting
reconstructed RGB images differ in their visual appearance (cf. Section 6.5.1).

On the research side, we need to demonstrate that such a holistic application is possible.
This application should not only include our segmentation networks (enhanced with
pathology and uncertainty information) but also incorporate other HSI associated ap-
plications, such as perfusion estimation (cf. Figure 1.1). Further, the application must be
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real-time ready which necessitates that the inference of our segmentation networks is
sufficiently fast to avoid becoming a bottleneck. Finally, we need to confirm through
prospective studies that such an application indeed offers tangible benefits to both sur-
geons and patients.

Closing
Overall, this thesis represents an important first step toward surgical scene segmentation
with HSI for autonomous robotic surgery. I acknowledge that I have not resolved all the
issues in this area and perhaps even raised more questions than I have answered and
uncovered more new problems than I solved. Arguably, gaining an understanding of
these problems is valuable in its own right. In the end, I hope that my contributions to
this field will prove beneficial for future research and aid in advancing the field.

With this, we have come to the end of my thesis and there is only one open question left:

How much wood could a woodchuck chuck if a woodchuck could chuck wood? 1

1You: A woodchuck could chuck no amount of wood since a woodchuck can’t chuck wood.
Me: But if a woodchuck could chuck and would chuck some amount of wood, what amount of wood would
a woodchuck chuck?
You: Even if a woodchuck could chuck wood, and even if a woodchuck would chuck wood, should a woodchuck
chuck wood?
Me: A woodchuck should chuck if a woodchuck could chuck wood, as long as a woodchuck would chuck
wood.
You: Oh. Shut up.
From Ron Gilbert’s adventure game “Monkey Island 2: LeChuck’s Revenge”.

170



Own Contributions and
Publications

A
This thesis waswritten in the division of IntelligentMedical Systems (IMSY) at the German
Cancer Research Center (DKFZ) in Heidelberg as part of the Helmholtz Information
& Data Science School for Health (HIDSS4Health). The division is headed by Lena
Maier-Hein, who is also the first supervisor of this thesis and my data science principal
investigator (PI). This is an interdisciplinary thesis and during my tenure at the DKFZ, I
was closely collaborating with the Department of General, Visceral, and Transplantation
Surgery at the Heidelberg University Hospital and here with the group of my life science
PI Felix Nickel.

This chapter gives an overview of my contributions to the research questions presented
in this thesis (Section A.1) and presents a list of all of my publications (Section A.2).

A.1 Own Contributions

In the following, I clarify my most significant contributions to each of the research ques-
tions presented in this thesis. During my time at the division of IMSY, I also supervised
various bachelor and master students and the resulting theses are summarized below as
well.

RQ1: Do different organs feature unique spectral fingerprints?
The work for this research question was published in [215]. For this project, my main
contribution was to implement and evaluate the machine learning models.

Our open data efforts are part of this research question and were published in [214]. I took
on the task of creating the website for the dataset, the organ profiles and the interactive
visualizations. Additionally, I was responsible for organizing and structuring the dataset
and creating the data repository. I also published the corresponding hyperspectral tissue
classification (HTC) framework for our work.
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RQ2: How can we train deep hyperspectral imaging networks efficiently?
The work for this research question was published in [201]. I identified the bottlenecks in
data loading and implemented the appropriate solutions to address these issues. Further-
more, I conducted benchmarks on the different data loading solutions to evaluate their
performance and effectiveness. Additionally, I designed and developed the shared, fixed
and pinned memory ring buffer for the image model as well as for the smaller spatial
granularities.

RQ3: What is the optimal spatial and spectral granularity for semantic scene
segmentation in surgical hyperspectral imaging?
The work for this research question was published in [198, 197]. I implemented the
patch and image models used in our comparison of spatial granularities and modalities. I
extended our HTC framework by including the code for all our experiments, pretrained
models and reproducibility instructions.

RQ4: Which are relevant domain shifts affecting the segmentation performance
and can we compensate for them?
For this research question, we evaluated the effect of subject, context and species domain
shifts on the segmentation performance.

For the subject domain, I designed the experiment for the generalization analysis on the
image-level. The work on the subject domain was published in [215] (spectra-level) and
[198] (image-level).

For the context domain, I analyzed the drop in performance of geometrical OOD data
using manipulated datasets to aid our investigation (as part of a supervised bachelor
thesis, see below). Further, I analyzed the neighborhood relationship between organs in
the dataset. I conducted the comparative study with other topology-aware augmentation
methods, created the ranking of the results and performed the literature review about
commonly used augmentations. I extended our HTC framework by including the code
for all our experiments, pretrained models and reproducibility instructions. Our work on
the context domain was published in [202]

For the species domain, I took on the recruitment of the annotators. I created the
descriptive visualizations, the nearest neighbor matrix and the comparison of machine
learning models with different inclusions of the porcine data. The work on the species
domain has not yet been published.

Supervised Theses
I co-supervised the bachelor thesis of Oskar Weinfurtner, titled Variational Autoencoders
for Generalizability in Organ Classification on Hyperspectral Images. As part of this work,
we adapted the “Domain Invariant Variational Autoencoders” [99] to our semantic porcine
dataset, paying special attention to the subject domain. Although we were able to get the
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method working on a simplified simulated task, it did not yield any advantages on our
real-world HSI dataset. Furthermore, the method failed to deliver satisfactory results on
other tasks (e.g., species domain) as well.

I supervised the master thesis of Mozzam Motiwala, which was titled Hyperspectral Image
Segmentation Using Weakly Supervised Learning. The primary goal of our work was
to leverage image-level labels (i.e., a list of organ names for each image) in order to
enhance the performance of our segmentation models. We aimed to achieve this with
the assistance of class activation maps to guide the segmentation process. However,
we encountered challenges as the classification task itself proved to be difficult and the
overlap between the class activation maps and the segmentation masks was rather low.

I co-supervised the bachelor thesis of Alessandro Motta, which was titled Context Im-
portance in Organ Segmentation with Hyperspectral Imaging. As part of this work, we
analyzed the neighbor relationship between organs and the importance of context for
the segmentation of organs with the help of manipulated datasets. This work laid the
foundation for our research questions RQ4 (context domain).

I supervised the master thesis of Fabian Wolf with the title Self-Supervised Learning for
Medical Hyperspectral Image Segmentation. The primary objective of our work was to
leverage the vast amount of unlabeled HSI data that we have (even though it was not
used in this thesis), through self-supervised learning approaches. However, we had to
conclude that either these methods were not sufficiently effective on our HSI tasks or
that our datasets were too small for these approaches since we were unable to improve
our segmentation performance. Furthermore, we observed that vision transformers [60],
which are often used in self-supervised learning, did not perform well on our HSI data.

A.2 Own Publications

In this section, I list all of the publications which I (co-)authored. This includes peer-
reviewed journal publications and conference proceedings, preprints, poster and oral
presentations as well as software releases.

First Author Publications
1. Silvia Seidlitz, Jan Sellner, Jan Odenthal, Berkin Özdemir, Alexander Studier-

Fischer, Samuel Knödler, Leonardo Ayala, Tim J. Adler, Hannes G. Kenngott, Minu
Tizabi, Martin Wagner, Felix Nickel, Beat P. Müller-Stich, and Lena Maier-Hein.
“Robust deep learning-based semantic organ segmentation in hyperspectral images”.
In: Medical Image Analysis 80 (Aug. 2022), p. 102488. issn: 1361-8415. doi: 10.
1016/j.media.2022.102488
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Figure B.1: Uncertainty-aware ranking of the different granularities and modalities based on
bootstrap sampling on the test set using the normalized surface dice (NSD). The
area of each blob is proportional to the relative frequency that the corresponding
algorithm achieved the respective rank across 1000 bootstrap samples (concept from
[236]). Each bootstrap sample consists of 5 hierarchically aggregated subject-level
NSD metric values. The lines encompass the 95% quartile of the bootstrap results
while the cross and the diamond denote the median and mean rank, respectively.
Ranking results for the dice similarity coefficient (DSC) and average surface distance
(ASD) can be found in Figure 5.15 and Figure B.2, respectively. This figure was
adapted from [198].
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Figure B.2: Uncertainty-aware ranking of the different granularities and modalities based on
bootstrap sampling on the test set using the average surface distance (ASD). The
area of each blob is proportional to the relative frequency that the corresponding
algorithm achieved the respective rank across 1000 bootstrap samples (concept from
[236]). Each bootstrap sample consists of 5 hierarchically aggregated subject-level
ASD metric values. The lines encompass the 95% quartile of the bootstrap results
while the cross and the diamond denote the median and mean rank, respectively.
Ranking results for the dice similarity coefficient (DSC) and normalized surface
dice (NSD) can be found in Figure 5.15 and Figure B.1, respectively. This figure was
adapted from [198].
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Figure B.3: Confusion matrix of the image granularity and tissue parameter images (TPI) modal-
ity on the test set. The matrix depicts how pixels from the reference class get
classified. That is, every (𝑖, 𝑗)-th entry shows the percentage of pixels from class 𝑖
that get classified as class 𝑗 (on average). Values < 0.1% are not shown for brevity.
The matrix is row-normalized based on the pixels from all images of one subject
and then these matrices are averaged across subjects. The number in brackets
denotes the standard deviation across subjects. Numbers on the diagonal denote
the recall (sensitivity). Confusion matrices for the hyperspectral imaging (HSI) and
RGB modality can be found in Figure 5.17 and Figure B.4, respectively. This figure
was adapted from [198].

182



st
om

ac
h

sm
al

l b
ow

el
co

lo
n

liv
er

ga
llb

la
dd

er
pa

nc
re

as
ki

dn
ey

sp
le

en
bl

ad
de

r
om

en
tu

m
lu

ng

he
ar

t
sk

in
m

us
cl

e
su

bc
ut

an
eo

us
 fa

t
pe

rit
on

eu
m

m
aj

or
 v

ei
n

ki
dn

ey
 w

ith
G

er
ot

a'
s 

fa
sc

ia
ba

ck
gr

ou
nd

predicted

stomach

small bowel

colon

liver

gallbladder

pancreas

kidney

spleen

bladder

omentum

lung

heart

skin

muscle

subcutaneous fat

peritoneum

major vein
kidney with

Gerota's fascia
background

re
fe
re
nc

e

84.6%
(11.2%)

5.0%
(6.9%)

0.5%
(0.9%)

1.4%
(0.6%)

1.5%
(2.0%)

0.3%
(0.5%)

0.2%
(0.4%)

3.8%
(1.3%)

0.4%
(0.6%)

0.1%
(0.3%)

0.6%
(1.1%)

0.3%
(0.7%)

1.1%
(1.1%)

0.2%
(0.3%)

97.7%
(1.0%)

0.6%
(0.2%)

0.2%
(0.2%)

0.2%
(0.1%)

0.7%
(0.5%)

2.6%
(2.5%)

96.5%
(2.9%)

0.2%
(0.4%)

0.4%
(0.3%)

0.2%
(0.2%)

0.3%
(0.3%)

97.2%
(1.3%)

0.1%
(0.1%)

1.1%
(1.8%)

0.9%
(0.5%)

1.0%
(1.5%)

6.4%
(3.8%)

90.4%
(3.2%)

2.1%
(3.4%)

0.3%
(0.2%)

2.7%
(0.7%)

96.6%
(0.8%)

0.3%
(0.2%)

0.4%
(0.4%)

4.2%
(2.9%)

93.8%
(3.3%)

0.4%
(0.3%)

0.9%
(0.9%)

0.2%
(0.2%)

0.2%
(0.1%)

0.7%
(0.5%)

0.3%
(0.3%)

18.4%
(24.0%)

0.1%
(0.2%)

78.1%
(26.7%)

0.9%
(1.0%)

0.2%
(0.3%)

0.3%
(0.4%)

0.9%
(0.7%)

1.0%
(1.2%)

12.8%
(23.5%)

0.2%
(0.3%)

0.1%
(0.2%)

83.5%
(23.2%)

0.3%
(0.4%)

1.8%
(0.8%)

9.5%
(3.1%)

9.1%
(3.1%)

1.5%
(1.9%)

0.9%
(0.8%)

0.2%
(0.4%)

0.3%
(0.5%)

1.1%
(0.8%)

73.4%
(10.2%)

0.2%
(0.4%)

3.1%
(5.9%)

0.2%
(0.4%)

0.6%
(0.7%)

0.3%
(0.5%)

0.4%
(0.6%)

82.7%
(18.9%)

11.7%
(14.9%)

2.8%
(2.1%)

0.2%
(0.2%)

1.8%
(1.2%)

0.1%
(0.2%)

2.7%
(1.7%)

96.1%
(1.9%)

0.4%
(0.5%)

0.6%
(0.2%)

83.0%
(21.2%)

0.4%
(0.6%)

2.8%
(3.1%)

0.5%
(0.8%)

13.3%
(18.6%)

0.4%
(0.4%)

3.8%
(2.7%)

1.8%
(0.4%)

0.8%
(0.4%)

85.0%
(11.8%)

4.9%
(4.8%)

1.5%
(1.5%)

2.0%
(1.5%)

1.3%
(2.2%)

1.1%
(0.8%)

0.5%
(0.6%)

0.9%
(1.2%)

5.9%
(10.3%)

0.3%
(0.6%)

2.5%
(1.4%)

3.6%
(4.2%)

75.5%
(11.8%)

5.8%
(1.8%)

2.6%
(1.2%)

0.8%
(1.2%)

2.8%
(2.5%)

0.4%
(0.4%)

1.2%
(0.9%)

0.1%
(0.2%)

0.5%
(0.6%)

1.0%
(1.5%)

0.4%
(0.5%)

3.0%
(4.7%)

0.2%
(0.3%)

7.0%
(5.4%)

76.3%
(18.2%)

0.1%
(0.2%)

0.9%
(1.4%)

5.2%
(4.1%)

6.7%
(5.4%)

1.6%
(1.6%)

1.1%
(1.1%)

0.3%
(0.3%)

0.2%
(0.0%)

15.3%
(1.4%)

50.0%
(7.6%)

24.8%
(14.5%)

1.1%
(1.1%)

2.3%
(0.9%)

6.6%
(6.5%)

5.0%
(3.3%)

0.4%
(0.4%)

0.1%
(0.1%)

2.6%
(2.0%)

80.0%
(7.6%)

1.7%
(1.6%)

0.2%
(0.2%)

99.4%
(0.4%)

0 20 40 60 80
%

Figure B.4: Confusion matrix of the image granularity and RGB modality on the test set. The
matrix depicts how pixels from the reference class get classified. That is, every(𝑖, 𝑗)-th entry shows the percentage of pixels from class 𝑖 that get classified as class 𝑗
(on average). Values < 0.1% are not shown for brevity. The matrix is row-normalized
based on the pixels from all images of one subject and then these matrices are
averaged across subjects. The number in brackets denotes the standard deviation
across subjects. Numbers on the diagonal denote the recall (sensitivity). Confusion
matrices for the hyperspectral imaging (HSI) and tissue parameter images (TPI)
modality can be found in Figure 5.17 and Figure B.3, respectively. This figure was
adapted from [198].
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Figure B.5: Network variability across five different seed runs (hyperspectral image model)
stratified by organ for different splits using the normalized surface dice (NSD). V
refers to the validation scores (validation_unknown split), T to the test scores with
ensembling and T1 to T5 to the test scores without ensembling for each of the
networks from the five folds of Figure 5.12. Each boxplot shows the interquartile
range (IQR) with the median (solid line) and mean (dotted line). The whiskers extend
up to 1.5 times of the IQR. Each point represents the aggregated class-level NSD
score of one seed run. Figure 5.22 and Figure B.6 show the results for the dice
similarity coefficient (DSC) and average surface distance (ASD), respectively.
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Figure B.6: Network variability across five different seed runs (hyperspectral image model)
stratified by organ for different splits using the average surface distance (ASD).
V refers to the validation scores (validation_unknown split), T to the test scores
with ensembling and T1 to T5 to the test scores without ensembling for each of the
networks from the five folds of Figure 5.12. Each boxplot shows the interquartile
range (IQR) with the median (solid line) and mean (dotted line). The whiskers extend
up to 1.5 times of the IQR. Each point represents the aggregated class-level ASD
score of one seed run. Figure 5.22 and Figure B.5 show the results for the dice
similarity coefficient (DSC) and normalized surface dice (NSD), respectively.
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Figure B.7: Min-max ranges across five different seed runs stratified by organ for different
splits using the normalized surface dice (NSD). V refers to the validation scores
(validation_unknown split), T to the test scores with ensembling and T1 to T5 to
the test scores without ensembling for each of the networks from the five folds
of Figure 5.12. The last line denotes the average across all classes per split. The
hyperspectral image model was trained five times and the difference between the
highest and lowest NSD score across the five runs is computed independently for
each of the splits. Figure 5.23 and Figure B.8 show the results for the dice similarity
coefficient (DSC) and average surface distance (ASD), respectively.
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Figure B.8: Min-max ranges across five different seed runs stratified by organ for different
splits using the average surface distance (ASD). V refers to the validation scores
(validation_unknown split), T to the test scores with ensembling and T1 to T5 to
the test scores without ensembling for each of the networks from the five folds
of Figure 5.12. The last line denotes the average across all classes per split. The
hyperspectral image model was trained five times and the difference between the
highest and lowest ASD score across the five runs is computed independently for
each of the splits. Figure 5.23 and Figure B.7 show the results for the dice similarity
coefficient (DSC) and normalized surface dice (NSD), respectively.
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Figure B.9: Uncertainty-aware ranking of the seven evaluated augmentation methods on the
six geometric out-of-distribution datasets using the normalized surface dice (NSD).
Consistently across all datasets, the organ transplantation augmentation ranks first
whereas the baseline typically ranks last. The area of each blob is proportional to the
relative frequency that the corresponding algorithm achieved the respective rank
across 1000 bootstrap samples (concept from [236]). Each bootstrap sample consists
of 19 hierarchically aggregated class-level NSD metric values. The lines encompass
the 95% quartile of the bootstrap results while the cross and the diamond denote
the median and mean rank, respectively. Results for the dice similarity coefficient
are in Figure 5.34. This figure was adapted from [202].
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Figure B.10: Segmentation performance using the normalized surface dice (NSD) for six geo-
metrical out-of-distribution (OOD) datasets and two in-distribution datasets (high-
lighted in bold) comparing the baseline network with a network trained with the
organ transplantation augmentation. Results for the hyperspectral imaging (HSI)
(top) and RGB (bottom) modalities are shown. See Section 5.4.1 for a description
of scenarios. Each boxplot shows the interquartile range (IQR) with the median
(solid line) and mean (dotted line). The whiskers extend up to 1.5 times of the IQR.
Each point represents the aggregated class-level performance. Results for the dice
similarity coefficient (DSC) are shwon in Figure 5.33. This figure was adapted from
[202].
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𝑡-SNE 𝑡-distributed stochastic neighbor approach

StO2 tissue oxygen saturation

ASD average surface distance

CE cross-entropy

CNN convolutional neural network

CPU central processing unit

DKFZ German Cancer Research Center

DSC dice similarity coefficient

EDA exploratory data analysis

ELU exponential linear unit

FFCV Fast Forward Computer Vision

GNN graph neural network

GPU graphics processing unit

HIDSS4Health Helmholtz Information & Data Science School for Health

HSI hyperspectral imaging

HTC hyperspectral tissue classification

I/O input/output

IMSY Intelligent Medical Systems

IoU intersection over union

IQR interquartile range

JIT just-in-time

LeakyReLU leaky rectified linear unit

LED light-emitting diode
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List of Acronyms

LMM linear mixed model

MITK Medical Imaging Interaction Toolkit

MSI multispectral imaging

NPI near-infrared perfusion index

NSD normalized surface dice

OHI organ hemoglobin index

OOD out-of-distribution

PCM prediction coherence map

PI principal investigator

RAM random-access memory

ReLU rectified linear unit

RQ research question

SD standard deviation

SLIC simple linear iterative clustering

SSD solid-state drive

SVM support vector machine

SWA stochastic weight averaging

tanh tangens hyperbolicus

THI tissue hemoglobin index

TLI tissue lipid index

TPI tissue parameter images

TWI tissue water index

UMAP uniform manifold approximation and projection
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