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Abstract

Cell-cell communication (CCC) is a dynamic process which governs and coordinates diverse
biological functions. The popularity of single-cell and spatially-resolved transcriptomics has
recently sparked an array of computational methods that model CCC to be developed. My
thesis describes the development of LIANA+ - an all-in-one framework for the inference of
CCC from single-cell and spatial (multi-) omics data. In the first chapter of my thesis, I
summarise the current state of the CCC field and state my motivation for the development of
LIANA. In the second chapter, I describe the initial study that led to the development of the
first iteration of LIANA. I also show that the choice of CCC method and resource can impact
biological insights. In the third chapter, I evaluate CCC methods using alternative data
modalities, and show that most CCC methods are generally coherent with those. In the final
chapter, I summarise the current challenges of the CCC field and I showcase how the
modularity of LIANA+ provides a comprehensive answer to those. I further see LIANA+ as a
step towards modelling host-microbiome interactions, with already some pilots in place.

Zusammenfassung

Die Zell-Zell-Kommunikation (CCC) ist ein dynamischer Prozess, der verschiedene
biologische Funktionen steuert und koordiniert. Die Popularität der Single-cell und
Spatially-resolved Transcriptomics hat in letzter Zeit zur Entwicklung einer Reihe von
Computational Methoden geführt, die CCC modellieren. Meine Dissertation beschreibt die
Entwicklung von LIANA+ - einem All-in-One Framework für die Inferenz von CCC aus
Einzelzell- und räumlichen (Multi-)Omics-Daten. Im ersten Kapitel meiner Arbeit fasse ich
den aktuellen Stand des CCC-Feldes zusammen und erkläre meine Motivation für die
Entwicklung von LIANA. Im zweiten Kapitel beschreibe ich die erste Studie, die zur
Entwicklung der ersten Iteration von LIANA führte. Ich zeige auch, dass die Wahl der
CCC-Methode und -Ressource die biologischen Erkenntnisse beeinflussen kann. Im dritten
Kapitel bewerte ich CCC-Methoden unter Verwendung alternativer Datenmodalitäten und
zeige, dass die meisten CCC-Methoden im Allgemeinen mit diesen kohärent sind. Im letzten
Kapitel fasse ich die aktuellen Herausforderungen im Bereich CCC zusammen und zeige
auf, wie die Modularität von LIANA+ eine umfassende Antwort auf diese Herausforderungen
bietet. Darüber hinaus sehe ich LIANA+ als einen Schritt in Richtung der Modellierung von
Wirt-Mikrobiom-Interaktionen, für die es bereits einige Pilotprojekte gibt.
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Chapter 1: Systematic Cell-cell Communication inference
enabled by high-throughput omics data

Cell-cell communication (CCC) is a process in which cells emit and react to stimuli from their
cellular niche, as well as from themselves. CCC spans diverse cell types, molecular layers,
and spatial scales, encompassing both structural interactions, such as those mediated by
cell adhesion molecules, as well as signalling events facilitated by various secreted
molecules. The signalling molecules themselves include heteromeric protein receptors,
integrins, extracellular matrix proteins, metabolites, and ions 1. Thus, CCC represents a
multifaceted and dynamic system coordinating many biological processes, such as
apoptosis and cell migration, and is consequently essential in homeostasis and disease 1.
CCC is further interlinked with intracellular signalling, as external signalling molecules are
commonly thought to induce a downstream response (Figure 1), such as canonical
pathways and downstream transcription regulators in the cells receiving the signal, or target
cells. In turn, this alters the internal state of the target cells, potentially further propagating
this alteration to their niche or microenvironment.

Figure 1. Simplistic overview of CCC (intercellular) events and their propagation to
intracellular response.
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Transcriptomics-enabled Systems-level CCC inference

Traditionally, the direct measurement of CCC required specialised biochemical assays,
including co-immunoprecipitation, proximity labelling, and yeast two-hybrid screening 1. Yet,
these technologies are not always applicable in vivo and are relatively low-throughput 1. To
address these limitations, and driven by the rapid developments of transcriptomics data,
specifically single-cell transcriptomics data, computational methods have emerged to infer
CCC across thousands of cells and genes. Thus, enabling the study of CCC at the systems
level 1,2. The emergence of these methods and their popularity has in turn played a role in a
currently-ongoing paradigm shift in the single-cell field. A shift away from investigating which
types of cells are present, but rather focusing on the coordination and dependencies among
them 2,3. As a consequence, CCC inference from single-cell data is now becoming a routine
approach, with an ever-increasing plethora of methods 1,2.
When considering protein-mediated CCC inference from single-cell data, early methods
could be classified as those that predict CCC interactions alone, referred to as
ligand-receptor inference methods 4–6, and those that further predict CCC-mediated
intracellular response 7,8. Regardless of their task, most methods rely on information about
the interacting proteins, obtained from prior knowledge resources 9. In the case of
ligand-receptor methods, the interactions are commonly represented by heteromeric protein
complexes, as different subunit combinations can induce distinct responses 4,6. The methods
which further infer intracellular signalling also require additional information such as
intracellular protein-protein interaction network and/or gene regulatory interactions 7,8.
Despite methodological diversity, the multifaceted and dynamic nature of CCC has often
been represented in a tabular format which comprises an interaction of two proteins, the
corresponding genes of which are expressed, or changed, in source and target cell types
(Figure 2).

Figure 2. Typical tabular representation of CCC inference output. Ligand-receptor
interactions, informed by prior knowledge, assigned a score reflecting the relative
importance of the interaction between a source and target cell type.
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Assumptions and Limitations

Every computational representation is an oversimplification of biological reality, hence the
generation of systems-level of CCC unsurprisingly comes with certain assumptions and
limitations. First, CCC methods typically work with single-cell transcriptomics data, and
hence assume that co-expression of genes that encode proteins reflects intercellular
interactions 9. Such an assumption inherently implies that all events leading up to the
interaction, including protein translation, processing, secretion, and diffusion, have occurred
1,9 (Figure 3). Moreover, due to the almost exclusive use of transcriptomics data, other
modes of CCC, such as small molecule signalling, have been typically neglected 9. Similarly,
transcriptomics data captures only a snapshot of expression at a specific sampling site; thus,
long-range signalling events, such as endocrine signalling and system gradients like
calcium, are not directly captured 9. Nevertheless, there were some attempts to infer
metabolite-mediated CCC events from transcriptomics data 10–13. Yet, such inference is
limited by the challenges of estimating metabolite abundance from gene expression 14. Also,
recent methods have emerged to model external signals, even if they were not measured in
the data 15.
While clustering cells into biologically-meaningful groups is a common heuristic in the
single-cell field, also used by many CCC methods, in reality CCC events occur among
individual cells within a community. Therefore, any interactions inferred between cell types
are influenced by the cell type annotation process 16. To address this issue another set of
tools predicts communication at the individual cell level, or meta-cell level 16,17.

Figure 3. Limitations of CCC inference from transcriptomics data

Promises and Challenges of Emerging Technologies
When inferring CCC, it is noteworthy that many interactions depend on direct contact, while
others are driven by secreted molecules, the effect of which diminishes over distances due
to diffusion and absorption 18. Yet, all the aforementioned approaches rely on transcriptome
information from dissociated cells, and hence lack information about cellular neighbours. In
recent years, a set of spatial omics technologies have emerged which enable
high-throughput measurements while also providing physical proximities 19,20. As such,
spatial technologies offer a promising opportunity to predict CCC, in a manner informed by
the spatial proximity of cells and molecules.

Nevertheless, spatially-resolved technologies currently exhibit a trade-off between
observation (spot) resolution and feature (e.g. gene) coverage 19. Most single-cell resolution
technologies, constrained by this trade-off, permit the measurement of only tens to hundreds
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of features, providing a limited view for the systems-level inference of CCC 19. Therefore,
CCC inference from such data is typically focused on the quantification of cell group
co-localization, or cellular neighbourhoods 21,22.
On the contrary, spatial technologies, such as the commercially-available 10x Visium
platform 23, provide transcriptome-wide coverage, yet they are constrained in a resolution 19,
and each spatial location often includes transcripts from multiple cells from various groups.
Despite this limitation, some spatially-informed methods have used such data to infer
ligand-receptor interactions between cell types, under the assumption that each spot
corresponds to a single cell type 24,25, or by making use of cell type fractions per spot 26,27 - as
inferred by cell deconvolution 28. Another approach is to bypass cell-type identities
altogether, and instead directly quantify the spatial relationships between proteins alone 29,30.
Moreover, some of the spatially-informed CCC methods identify the specific locations at
which interactions occur 17,30–32, while others summarise spatial dependencies across the
whole slide 26,33 (Figure 4).

Figure 4. Schematic representation of A) spatially-resolved data, being modelled as a B)
local interaction and C) spatial dependency across the slide.

Single-cell, and to an extent spatial, transcriptomics data is defined by its large feature
space, along with a continuously growing number of cells (observations) being sampled. Yet,
a third dimension of complexity is driven by a surge in sample numbers due to the
generation of “cross-conditional” atlases, encompassing patient cohorts with contexts, such
as diverse disease severity states, or time points 3,34. This complexity has thus prompted the
emergence of many approaches to obtain disease-relevant insights from single-cell data
3,34–36. Similarly, there are also many diverse approaches that disentangle intercellular
insights across contexts, which for the sake of simplicity one can classify as
hypothesis-driven 7,37,38 and hypothesis-free categories 6,16,39.
Another emerging axis of complexity is the expansion of feature-space by recent single-cell
and spatial multi-omics technologies 20. However, the vast majority of CCC methods are
focused on inferring interactions from a single modality, typically transcriptomics 1,2,9, with few
methods considering multi-omics data 40. Consequently, in order to transform such complex
data into biologically-meaningful hypotheses, contemporary CCC methods are expected to
address these emerging challenges (Figure 5).
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Figure 5. Modelling cell-cell communication from multi-sample single-cell omics data using
prior knowledge

Motivation for an All-in-one Framework

While anticipated to provide a more informed view of CCC events, emerging technologies
also prompt methodological developments - mostly done via publishing new tools. This is
reflected by the ever-growing number of tools for the analysis of single-cell data which, at the
time of writing, stands above 1,600 according to https://www.scrna-tools.org/ 41, of which >
100 are CCC inference tools 42. This large number of tools, combined with sporadic
development and often questionable coding practices, creates challenges for researchers
when choosing the tool for their analysis. An issue that is further exacerbated by the lack of
gold standard and standardised platform for benchmarking novel methods in the CCC field.
In this thesis, I describe my attempt to evaluate and subsequently standardise contemporary
CCC inference into a single, user-friendly framework - LIANA+, which at the time of
submission of my thesis encompasses the vast majority of the aforementioned
developments.
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Chapter 2: Cell-cell Communication Inference from
Single-cell RNA-Seq Data: a Comparison of Methods and
Resources

This chapter is a preliminary and modified version of a preprint, which at the time of writing
served as a comparative overview of the cell-cell communication inference field from
single-cell transcriptomics data 43. In this work, I describe the conceptualisation and initial
usage of a framework which will later become LIANA (https://github.com/saezlab/liana) and
subsequently LIANA+.

An edited and revised version of this work was later published at Nature Communications:
“Comparison of methods and resources for cell-cell communication inference from single-cell
RNA-Seq data” 9. Explicit permission was granted by the editorial board of Nature
Communication to adapt and use any text and figures presented here. All figures in this
section are shared under CC licence 9,43.

1. Introduction
The growing availability of single-cell RNA sequencing (scRNA-Seq) data has enhanced our
understanding of the cellular heterogeneity of tissues. Moreover, spatially-resolved
transcriptomics has recently emerged as a technology to measure gene expression while
preserving the spatial organisation of cells 44. These advancements have in turn led to an
increased interest in the development of tools for cell-cell communication (CCC) inference.
CCC typically refers to interactions between secreted ligands and plasma membrane
receptors. This picture can be broadened to include secreted enzymes, extracellular matrix
proteins, transporters, and interactions that require the physical contact between cells, such
as cell-cell adhesion proteins and gap junctions 45. For simplicity, all of these events involving
protein-protein interactions are referred to as CCC. CCC events are essential for
homeostasis, development, and disease, and their estimation is becoming a routine
approach in scRNA-seq data analysis 46.

A number of computational tools have emerged that can be classified as those that predict
CCC interactions alone 4,6,47–54, and those that estimate intracellular pathway activities related
to CCC 7,8,55–57. This work focuses on the former (Table 1). Typically, using gene expression
information obtained by scRNA-Seq, cells are clustered according to their gene expression
profiles and cell type identities are assigned to the clusters based on known cell-type
markers. Then, CCC tools are used to predict intercellular crosstalk between any pair of
clusters, one cluster being the source and the other the target of a CCC event. CCC events
are thus typically represented as a one-to-one interaction between ‘transmitter’ and
‘receiver’ proteins, expressed by the source and target cell clusters, respectively. The
information about transmitter-receiver binding is extracted from diverse sources of prior
knowledge. Every tool has two major components: a resource of prior knowledge on CCC
(interactions), and a method to estimate CCC from the known interactions and the dataset at
hand. Most tools have been published as the combination of one resource and one method,
but in principle any resource could be combined with any method.
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Despite the aforementioned common premises to explore CCC events, each tool uses a
different method, such as permutation of cluster labels, regularizations, and scaling, to
prioritise interactions according to the input datasets (Table 1). In turn, these different
approaches result in diverse scoring systems that are difficult to compare and evaluate. The
difficulties are further exacerbated by the lack of an appropriate gold standard to benchmark
the performance of CCC methods 2,46. Nevertheless, different strategies have been used to
indirectly evaluate the methods’ performance, including a presumed correlation between
CCC activity and spatial adjacency 6,8, recovering the effect of receptor gene knockouts 8,
robustness to subsampling 6, agreement with proteomics 53, simulated scRNA-Seq data 50,
and the agreement among methods 6,8,51,53.

The available prior knowledge resources, largely composed of ligand-receptor, extracellular
matrix, and adhesion interactions, are typically distinct but often show partial overlap 45,58.
Some of these resources also provide additional details for the interactions such as
information about protein complexes 4,6,45,59,60, subcellular localisation 6,45, and classification
into signalling pathways and categories 6,59 (Supp. Table 2). CCC resources are often
manually curated and/or built from other resources, with varying proportions of expert
curation and literature support 45,58. Some databases gather and harmonise the information
contained in the individual resources 45. Despite the fact that CCC inference is constrained
by the prior knowledge used, the impact of resource choice is largely unexplored. It thus
remains unclear how the choice of resource and method affects the results and thereby the
biological interpretation of CCC inferred from the scRNA-seq data.

Here, I systematically describe the comparison of all combinations of 15 resources and 6
CCC methods (Figure 1). First, I report the degree of overlap among resources and whether
certain resources are biassed toward specific biological terms, such as pathways. Then, I
show how different combinations of resources and methods influence CCC inference, by
decoupling the methods from their corresponding resources.
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Figure 1. LIANA: a Cell-Cell Communication Framework (adapted from Dimitrov et al., 2022
9).
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Table 1. The tools included in the framework.
Each tool uses a resource and a method with specific score(s). Each method considers
expression at the cell cluster level, and all of the scoring systems presented here are based
on the expression of transmitters and receiver genes in the source and target cells,
respectively.

Tool Resource Methods’ scoring systems

CellChat6 CellChatDB 1) Probability - based on the expression of differentially expressed transmitter and receiver
genes and their mediators, calculated with the law of mass action

2) P-values† - significance identified via permutation of cell cluster labels and recalculating
the probabilities for each cell pair and each transmitter-receiver interaction

Squidpy#61

(CellPhoneDB 4,62,63)
OmniPath or
CellPhoneDB

1) Truncated Mean - average expression of transmitter and receivers, the minimum
expression (by default) of heteromeric complex of subunits

2) P-values† - significance identified via permutation of cell cluster labels to determine a
null distribution of means for each receiver-transmitter interaction

Connectome51 Ramilowski 1) weight_norm - derived via the product (by default) of the normalised expression of
transmitter and receiver genes

2) weight_scale† - derived from the function (mean, by default) of the z-scores of the
transmitter and the receiver, scaled according to cell cluster specificity

iTALK * 48 iTALK 1) Expression logFC mean - required to make the scores of iTALK comparable to the other
methods, and based on the differentially expressed transmitter and receiver genes between
clusters.
* Since the adaptation of logFC deviated from the intended usage of iTALK, iTALK was later
replaced with a simple logFC mean method.

NATMI52 ConnectomeDB2020 1) Mean-expression edge weight - transmitter and receiver gene expression product

2) Specificity-based edge weight† - the mean expression of the transmitter and receiver
are divided by the sum of the means of the same transmitters/receivers across all cell
clusters

SingleCellSignalR53

(SCA)
LRdb 1) LRScore - a regularised score calculated using the squared expression of the transmitter

and receiver (sqTRE) divided by sum of the mean of the count matrix and sqTRE

† Explicitly measures cell-cluster specific communication (referred as “cluster-specific measures”)
# The re-implementation of the CellPhoneDB method was run using ‘Squidpy’, even though Squidpy is a spatial transcriptomics framework
with a much broader range of functionalities.

2. Results

2.1 Resource Uniqueness and Overlap
To investigate the lineages of CCC resources, information about the origins of each resource
were manually gathered. Many of these resources share the same original data sources,
including general biological databases such as KEGG 64,65, Reactome 66, and STRING 67

(Figure 2). Moreover, interactions from Guide to Pharmacology 68, CellPhoneDB 4, and in
particular Ramilowski 69, were incorporated into subsequently published resources. All these
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resources are integrated into OmniPath’s CCC resource 45, along with additional CCC
interactions from other sources (e.g. SIGNOR 70, Adhesome 71, SignaLink 72, and others). A
filtered version of OmniPath was also included (4.1 Methods).

As a consequence of their common origins, limited uniqueness across the resources was
observed, with mean percentages of 4.6 unique receivers, 5.3 unique transmitters, and
16.8% unique interactions, for all resources (Figure 2B; Supp. Table 2). OmniPath and
CellChatDB 6 had the largest degree of uniqueness, with 4, 16, and 46% for OmniPath and
17, 12, and 50% for CellChatDB in terms of receivers, transmitters, and interactions,
respectively. Despite the low uniqueness among the resources, the pairwise overlap
between them varied (Figure 2C; Supp. Figure 1). Particularly high similarity was observed
between CellTalkDB 58, ConnectomeDB 52, talklr 73, iTALK* 48, LRdb 53, and Ramilowski
(Figure 2C). The aforementioned resources, together with OmniPath, contained on average
more than 65% the interactions present in the other resources (Supp. Figure 2), largely
explained by each including a large proportion (>80%) of the interactions from Ramilowski.
Heteromeric complex-containing CellChatDB, CellPhoneDB and Baccin 60 showed limited
similarity with other resources, as each included ~45% of the interactions present in any
other resource, on average. The smaller resources ICELLNET 54, Guide to Pharmacology,
HMPR 74 and Kirouac2010 75 were most dissimilar with the remainder of the resources and
included on average only 21, 28, 17, and 7% of the interactions present in the other
resources, respectively. The similarity among the resources was generally higher when
considering transmitters, and receivers in particular (Supp. Figures 1&2).

In summary, these results indicated that due to the common origins of the resources, many
of the transmitters, receivers, and interactions are not unique to any single resource. Yet,
different resources include varying proportions of the collective CCC prior knowledge.
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Figure 2. Dependencies and overlap between CCC resources. A) The lineages of CCC interaction
database knowledge. General biological knowledge databases, CCC-dedicated resources used in this
work, Literature curation, resources included in iTALK, and OmniPath are in blue, magenta, yellow,
cyan, and green respectively. Arrows show the data transfers between resources. B) Shared and
Unique Interactions, Receivers and Transmitters. C) Similarity between the interactions from different
resources (Jaccard Index).

2.2 Resource Prior Knowledge Bias
Since CCC inference methods rely on prior knowledge to estimate intercellular
communication events, the choice of resource and any potential bias in it is expected to
impact the results. I therefore describe whether the resources are biassed to specific
subcellular locations or functional categories when compared to the collective knowledge
contained in all of the resources.
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2.2.1 Subcellular Localisation
Protein subcellular localisation annotations were obtained from OmniPath 45, which
combines this information from 20 resources. Then these annotations were matched to
receivers and transmitters from each resource with the aim to assess the localisation profile
of different resources. On average 90% of transmitters and 79% of receivers were annotated
as secreted and transmembrane proteins, respectively (Supp. Figure 3). Localisations of
transmitters and receivers were further used to categorise the interactions as secreted or
direct-contact signalling, under the assumption that interactions between transmitters
annotated as secreted and receivers annotated as membrane-bound represent secreted
signalling events. On the contrary, an interaction between two membrane-bound proteins
was assumed to be a direct-contact interaction. Building on these assumptions, I observed
that all resources were predominantly (74% on average) composed of interactions
associated with secreted signalling, while direct-contact signalling constituted a substantially
smaller (16% on average) proportion of interactions (Figure 3A; Supp. Figure 4).
Interactions categorised as neither secreted nor direct-contact were labelled as ‘Other’ and
made up the remainder of the interactions. The proportions of secreted and direct-contact
signalling varied between resources, as some of them, such as Baccin, ConnectomeDB,
CellPhoneDB, HPMR, and OmniPath had an over-representation of direct-contact signalling
when compared to the collective, while the opposite was noted for the case of secreted
signalling (Figure 3B). Direct contact interactions were particularly under-represented in
Guide to Pharmacology (4%), which was more focused on secreted signalling (87%).
CellChatDB showed an overrepresentation of interactions matched to the category Other - a
result consistent with the inclusion of interaction mediators within the database.

These results suggested that localisations of transmitters and receivers were largely
uniformly distributed and that secreted signalling was predominant across all resources, with
some differences between the relative abundances of secreted and direct-contact signalling.

2.2.2 Functional Term Enrichment
To examine whether specific pathways and biological functions are unevenly represented in
specific resources, interactions, receivers and transmitters from each resource were
matched to pathways and functional categories from SignaLink 72 and NetPath 76.

I saw that the Receptor tyrosine kinase (RTK), JAK/STAT, TGF, and WNT pathways covered
the largest proportions of interactions matched to SignaLink, with analogous results
observed for receivers and transmitters (Supp. Figure 5). The interactions from Ramilowski,
ConnectomeDB, LRdb, iTALK and talklr showed a similar pattern, which can be explained by
the high overlap of these resources. On the contrary, interactions associated with innate
immune pathways and T-cell receptor categories were under-represented in Guide to
Pharmacology, Baccin2019, EMBRACE, Kirouac2010, ICELLNET, CellPhoneDB, and HMPR
(Figure 3C). The innate immune pathway category was also diminished in OmniPath. In
contrast, when using NetPath instead of SignaLink to define the T-cell receptor pathway, the
under-representation in Baccin2019 and OmniPath was not observed, and an
over-representation was instead noted for ICELLNET and CellPhoneDB (Figure 3D;
Supp. Figure 6). Moreover, a considerable over-representation was observed for the RTK
pathway in OmniPath. The Signalink WNT pathway was under-represented in ICELLNET
and Guide to Pharmacology, while for the NetPath WNT pathway this was only true for

18

https://sciwheel.com/work/citation?ids=10728846&pre=&suf=&sa=0
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#fig_genesets
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#fig_genesets
https://sciwheel.com/work/citation?ids=917637&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=631471&pre=&suf=&sa=0
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#fig_genesets
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#fig_genesets


Guide to Pharmacology. In contrast, CellChat showed a relative abundance for both the
SignaLink and NetPath WNT pathways.

Figure 3. Localisation and Functional term abundance in CCC resources. A) Number and B)
Relative abundance of signalling categories based on OmniPath-derived protein locations (OP-L) by
resource. Relative abundance of C) SignaLink and D) NetPath annotations matched to interactions
from each resource.

2.3 Agreement in CCC predictions using a Colorectal Cancer dataset
To examine the agreement between CCC methods and the importance of resources, I
developed a framework to decouple tools from their inbuilt resources (LIANA). I used an
annotated colorectal cancer (CRC) scRNA-Seq dataset 77 with 65,362 cells from a
heterogeneous cohort of 23 Korean CRC patients. I focused on the interactions between
tumour cells subclassified by their resemblance of CRC consensus molecular subtypes
(CMS) and immune cells from tumour samples (Supp. Table 3), reasoning that this subset of
cell types represents a complex example where CCC events are known to have an important
role. In addition to the 15 CCC resources reported in the descriptive resource analysis
(Supp. Table 1), I also included the default or inbuilt resource for each of the tools, if
available (Table 1), as well as a reshuffled control resource (4.3 Framework).

2.3.1 Interaction overlap
I then used each method-resource combination to infer CCC interactions, assuming that
different methods should generally agree on the most relevant CCC events for the same
resource and expression data. To measure the agreement between method-resource
combinations, I examined the overlap between the 500 highest ranked interactions as
predicted by each method. Whenever available, author recommendations were used to filter
out the false-positive interactions (4.4 Method-Resource Specifics). This analysis showed

19

https://sciwheel.com/work/citation?ids=8958396&pre=&suf=&sa=0
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#sut_res
https://docs.google.com/document/d/1i5q6s0DEpSDMdQsrbBdDWOJaAZjq5DWpT6GzqNZIzyQ/edit#tab_met


considerable differences in the interactions predicted by each of the methods regardless of
the resource used, as the mean Jaccard index per resource ranged from 0.01 to 0.06 (mean
= 0.024) when using different methods. These large discrepancies in the results were further
supported by the pairwise comparisons between methods using the same resource, with
mean Jaccard indices ranging from 0.063 (CellChat-SingleCellSignalR) to 0.110
(Connectome-NATMI). The overlap among the top predicted interactions was slightly higher
when using the same method but with different resources, as Jaccard indices ranged from
0.113 to 0.203 per method (mean = 0.167) (Supp. Figure 7). Consequently, the highest
ranked interactions for each method-resource combination largely showed stronger
clustering by method than resource (Figure 4), with similar results observed when
considering the highest ranked 100, 250, and 1000 interactions (Supp. Figure 8). In
particular, method-resource combinations involving Squidpy, SingleCellSignalR, and
Connectome clustered exclusively by method, suggesting that overlap is predominantly seen
when using the same method regardless of the resource. The combinations involving NATMI
also clustered by method, with the only exceptions being the Kirouac2010 75 and ICELLNET
59 resources, which were the smallest resources (Supp. Table 2).

These results suggested that the overlap between methods when using the same resource
was low. In the revised version of this work, I showed that these results were consistent
across six different datasets 9. Hence, my results indicated that both the method and the
resource had a considerable impact on the predicted interactions.

Figure 4. Overlap in the 500 highest ranked CCC interactions between different combinations of
methods and resources. Method-resource combinations were clustered according to binary (Jaccard
index) distances. SCA refers to the SingleCellSignalR method.

2.3.2 Communicating cell types
Next, I examined whether the discrepancies observed between the methods stem from the
differences in the cell types inferred as most active in terms of CCC interactions. To this end,
I used the 500 highest ranked interactions to examine the cell type activities, defined as the
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proportion of interactions per cell type, separately as a source and a target of CCC events
(Figure 5). The results largely reiterated our observations from the CCC interaction overlap
analysis above, as each method largely clustered by itself, regardless of the resource used,
including the reshuffled resource. These results were further supported by the average
interaction ranks per communicating cell type pairs also grouping by method (Supp. Figure
9).

I reasoned that the observed disagreement in regards to the most actively communicating
cell types was likely caused by the methods’ distinct approaches to handle cell cluster
specificity. I thus performed a complementary analysis using the alternative,
non-cell-type-specific (magnitude) scoring systems of the methods. The higher agreement
when using magnitude scores, instead of specificity, suggested that different specificity
approaches are in part responsible for the observed disagreement (Supp. Note 2;
Supp. Figure 10).

The analysis of activities per cell type largely reiterated the results from the interaction
overlap analysis, particularly as each method largely clustered by itself, regardless of the
resource. As a consequence, the disagreement between the methods in which cell types are
the most active can have a major impact on the biological interpretation of CCC
communication predictions.

Figure 5. Activity per Cell type, inferred as the proportion of interaction edges that stem from Source
Cell clusters or lead to Target Cell clusters in the highest ranked interactions.
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3. Discussion
The growing interest in CCC inference has led to the recent emergence of multiple methods
and prior knowledge resources to study intercellular crosstalk. To shed light on the impact of
the choice of method and resource on the inference of CCC events, I built a framework to
systematically combine 15 resources and 6 methods. Using this framework I described in
detail the content of the different resources and to estimate cell-cell communication from
scRNA-Seq in a colon cancer case study. The results from our work suggested that both the
method and resource can considerably impact CCC inference.

Despite their common origins, different resources cover varying proportions of the collective
prior knowledge. Particularly, a large share of the observed overlap among resources
stemmed from the inclusion of Ramilowski 69 into other resources. Moreover, across the
resources, the WNT, RTK, T-cell receptor and Innate immune pathways, among others, were
present in varying proportions. The high abundance of interactions associated with the RTK
pathway in OmniPath could be due to the ~1,600 expert curated RTK ligand-receptor
interactions from SIGNOR 70 and the large size of RTK pathway in SignaLink 72. The results
presented here highlight an inherent limitation of knowledge-based inference, and hence of
CCC methods, as any prior knowledge resource has its own biases and only represents a
limited proportion of biological actuality. Consequently, these inherent limitations should be
kept in mind for the interpretation of CCC predictions.

As a further step, I carried out a systematic analysis of the impact of resources and methods
on CCC inference results using a public colorectal cancer dataset 77, and found that both
resources and methods had a considerable effect on the predicted interactions, with the
impact of methods outweighing that of the resource.
A potential explanation for the disagreement among the methods were the distinct
approaches they use to identify the most relevant interactions (Table 1). A common
assumption among the methods is that cluster-specific interactions are more informative
than those related to multiple clusters 4,6,51,52. An experimental proof of this assumption and
an evaluation of the distinct approaches is yet to be carried out. By focusing on the
cluster-specific interactions in the dataset, these methods report the most
specifically-interacting cell types 53, rather than the most actively communicating ones.
Hence, the predicted CCC events typically do not capture processes that are common
between multiple cell types. Collectively, these results suggest that the common practice to
highlight the most actively communicating cell clusters based on the CCC inference 77,78

should be considered with caution.

The disagreement between the methods possibly highlights certain limitations of the CCC
inference methods. In particular, CCC events are mainly predicted based on the average
gene expression at the cluster or cell type/state level. Such an assumption inherently
suggests that gene expression is informative of the activity of transmitters and receivers.
However, gene expression provided by scRNA-Seq is typically limited to protein-coding
genes and the cells within the dataset, and hence does not capture secreted signalling
events driven by non-protein molecules or long-distance endocrine signalling events.
Further, CCC inference from scRNA-Seq data assumes that the product of the gene
expression of a transmitter and a receiver is a good proxy for their joint activity, and thus
does not consider any of the processes preceding transmitter-receiver interactions, including
protein translation and processing, secretion, and diffusion.
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The results presented here highlight the need to establish a benchmark to comprehensively
assess the predictive power of CCC methods. However, a gold standard for benchmarking is
currently not available and the biological ground truth is largely unknown 2,46. The field needs
to identify experimental settings capable of establishing the biological ground truth. So far,
intercellular interactions were mainly supported by the spatial colocalization of proteins and
the functional deregulation of intracellular signalling 1, as well as the physical-interaction of
cell types 79. Yet these approaches are only applicable for the post-hoc and indirect
validation of CCC interactions. Thus, until an experimental gold standard becomes available,
simulated datasets might be used instead. However, any in silico benchmark is by definition
only a simplified approximation of reality, with its own biases 80. To our knowledge,
appropriate benchmarks for resources and methods used in CCC inference are yet to be
defined, although some proposals exist 2. In a direction similar to these proposals, I carried
out some evaluations 9, presented in Chapter 3.

Considerable efforts have been made to develop CCC inference, and further advancements
will be key for the systems-level analysis of single-cell data. This will likely further increase
by the rapidly emerging spatial transcriptomics 44 and single-cell proteomics 81, and the future
applications of CCC inference approaches to interspecies communication 82,83.
Acknowledging the limitations of my work, it pointed at the interpretation inconsistencies that
could arise as a consequence of the method and resource of choice.

4. Methods

4.1. Descriptive analysis of resources
The connections between resources shown in the dependency plot were manually gathered
from the publications and the web pages of each CCC resource. The CCC resources used in
the analyses were queried from the OmniPath database 45. The contents of the resources
are identical to their original formats, apart from minor processing differences (Supp. Table
1). The OmniPath CCC resource is a composite resource which contains interactions from
all of the CCC dedicated resources compared here, along with some additional resources45.
OmniPath’s interactions were filtered according to the following criteria: i) we (co-authors
and I) only retained interactions with literature references, ii) we kept interactions only where
the receiver protein was plasma membrane transmembrane or peripheral according to at
least 30% of the localisation annotations, and iii) we only considered interactions between
single proteins (interactions between complexes are also available in OmniPath).
OmniPath’s intra- and intercellular components are both available via the OmnipathR
package (https://github.com/saezlab/OmnipathR).

We defined unique and shared interactions, receivers and transmitters between the CCC
resources if they could be found in only one or at least two of the resources, respectively. We
used pheatmap 84 to generate the heatmaps.

To identify uneven distributions of transmitters, receivers, and interactions toward biological
terms or protein localisations, we used Fisher's exact test to compare each individual
resource to the collection of all the resources. We obtained protein localisations from
OmniPath which collects this information from 20 databases45. Then we kept consensus
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protein localisations where at least 50% of the annotations agreed. We classified CCC
interactions using the localisation combinations of proteins involved in the interactions, which
included secreted, plasma membrane peripheral and transmembrane proteins. Interactions,
receivers and transmitters were independently matched to the 10 pathways from SignaLink
72, and the 15 largest categories from and NetPath 76. Each of the aforementioned general
functional annotation databases was also obtained via OmniPath. In case of signalling
pathway databases (SignaLink and NetPath), we focused on the enrichment of annotations
matched to interactions. Annotation matches for transmitters and receivers were examined
independently using the aforementioned functional annotation databases Our approach
allowed the same protein or interaction to be matched to multiple pathways or functional
categories from the same database.
To enable a comparison of annotations across resources, we expanded protein complexes
from Baccin2019 60, CellChatDB 6, CellPhoneDB 4, and ICELLNET 52.

4.2. Single-cell Transcriptomics data
The processed single cell RNA-Seq data 77 for 23 Korean colorectal cancer patients is
available at GSE132465. The analysis presented here focused on the CCC interactions
between colorectal cancer subtypes and immune cells, and the remainder of cell types,
including unknown immune cell subtypes, were filtered out. This resulted in a subset of 18
cell types and 42,544 cells. I kept the original subtype labels, reformatted the names to work
with each CCC method (Supp. Table 3), and sparsified the counts into a Seurat 85 object.

The labelled scRNA-Seq data for pancreatic islet 86 and cord blood mononuclear cells 87

were obtained via SeuratData, normalised with Seurat 85, and used for CCC inference
without any further formatting and filtering.

4.3. Framework
For the method-resource comparison, I used Seurat 85,86 objects which were converted into
the appropriate data format when calling each method. I used the recommended conversion
method or wrapper whenever available.

The resources were obtained from OmniPath and then converted to the appropriate format
for each method. A reshuffled version of ConnectomeDB2020 was generated with BiRewire
88 and referred to as the reshuffled control resource. Each tool was run with its default or
inbuilt resource, except Squidpy. The Default resource of Squidpy’s ligrec function is
OmniPath, which is already part of our benchmark set. The LIANA framework enabling the
use of any resource and method combination is available at https://github.com/saezlab/liana.

4.4. Overlap Analysis
To compare the overlap between the interactions predicted by each method-resource
combination, as a default I kept the 500 highest ranked interactions. I also considered the
highest ranked 100, 250, and 1000 interactions. In the case of ties, I considered all ties. I
then generated a presence-absence matrix of predicted interactions with method-resource
combinations. These matrices were subsequently used to calculate Jaccard indices and to
cluster the results.
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Activity per cell type was calculated using the highest ranked 500 hits for each
method-resource combination. Cell type activity represented the proportion of interactions
(or edges) that stem from or lead to a Source or Target cell type, respectively. In other
words, a Source cell with a high cell type activity, in the broadest terms, can be inferred as
an active ‘secretor of ligands’. I used the z-normalised average interaction rank for each
possible combination of communicating cell types to estimate the cell pair ranks for each
method-resource combinations. These patterns of pairwise communication activities I
presented in a PCA plot. I created the heatmaps with pheatmap 84 (v1.0.12), using binary
distances for the overlap heatmaps and euclidean distances for the other heatmaps.

Connectome, NATMI, and iTALK* do not provide an explicit threshold to control for false
positives and the highest ranking 500 hits were kept for each without any preceding filtering.
For methods where a threshold was proposed by the authors, as in the case of CellChat,
Squidpy, and SingleCellSignalR, I first filtered their results accordingly and the highest
ranked interactions were obtained afterwards. Further, I used cluster-specific interaction
measures for each method whenever available (Table 1).

The same analysis was also carried out using the cluster-unspecific measures from each
method. The scaling done in Connectome (weight_scale) and NATMI (Specificity-based
edge weight), and in particular the cluster label permutation of CellChat (p-values) and
CellPhoneDB (p-values), explicitly reflect cell-cluster specific communication, thus I used
their alternative measures. SingleCellSignalR and iTALK* provide a single measure each
and were hence excluded from this analysis.

Some methods, namely CellChat 6 and the CellPhoneDB algorithm 4, as well as resources,
such as Baccin, CellChatDB, CellPhoneDB, and ICELLNET, take protein complexes into
account. This largely complicates the conversion of the resources and hence the comparison
with methods and resources which do not consider complexes. Furthermore, CellChat, and
hence CellChatDB, goes a step further than other methods and resources, as it considers
interaction mediator molecules, which are absent in the remainder of the resources 6. Thus,
even though any resource can be used with any method, some combinations put certain
methods at a disadvantage.

4.5. Method Specifics
4.5.1 CellChat
CellChat was run using default settings with 1000 permutations and the gene expression
diffusion-based smoothing process was omitted. CellChat returned a number of significant
interactions with p-values of 0 ranging from 221 to 12,208 depending on the resource (2,988
with its inbuilt resource), these made a considerable proportion of the significant hits (p-value
<= 0.05), as they ranged from 237 to 12,971 (3,041 with its inbuilt resource). As such,
because obtaining the highest ranked interactions based on p-values was infeasible,
CellChat results were filtered according to p-values (p-value <= 0.05) and the highest
probability scores were instead used in the method-resource analysis.

4.5.2 Connectome
Connectome was run with its default settings using a Seurat object with processed gene
expression counts. Results were filtered for differentially expressed genes (p-value <= 0.05),
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as identified via a Wilcoxon test, and Connectome’s scaled weights were used in the
method-resource analysis.

4.5.3 iTALK
iTALK was run with its default settings using the ‘DEG’ option which returns corrected
p-values and logFold changes for each gene. Then transmitters and receivers with q-value
<= 0.05 were kept. A differential expression product was calculated using z-scores of
transmitters and receivers and subsequently used in the method-resource analysis.

4.5.4 SingleCellSignalR
SingleCellSignalR was run with the processed gene counts, considering differentially
expressed genes with a log2 fold change threshold of 1.5 or above. The highest LRscores
which passed the recommended threshold of 0.5 were used in the method-resource
comparison. The number of interactions predicted by SingleCellSignalR ranged between 159
to 7,240 (LRscore >= 0.5). The source code of SingleCellSignalR was modified to work with
external resources (available at https://github.com/CostaLab/SingleCellSignalR_v1).

4.5.5 NATMI
NATMI’s implementation is command-line based, thus a system command was invoked via
R that calls the NATMI python module and passes the appropriate command line arguments.
NATMI was run with its default settings using the processed gene expression matrix,
converted from Seurat, and the specificity-based edge weights were used in the
method-resource comparison. NATMI’s lrc2p resource was used as the default.

4.5.6 Squidpy
Squidpy is called via reticulate 89 (https://rstudio.github.io/reticulate/) and the Seurat object is
converted to anndata 90 (https://anndata.readthedocs.io/) format in Python. The
CellPhoneDB algorithm implementation was run via the Squidpy framework with 10,000
permutations, threshold of cells expressing transmitters and receivers of 0.1, and the
minimum component expression was considered for complexes. For the method-resource
comparison, I used the rank of p-values (p-value <= 0.05). Squidpy’s number of significant
hits ranged between 60 to 2,927 depending on the resource.
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Supplementary Materials
Supplementary Figure S1. Jaccard Indices of A) Receivers and B) Transmitters from different
resources.

A) Receivers

B) Transmitters
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Supplementary Figure S2. A) Interactions B) Receivers and C) Transmitters present in
each resource when taken from the rest of the resources. Note these plots are asymmetric
and represent the % of interactions from the resources on the X axis found in each resource
on the Y axis.

A)

B)
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C)
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Supplementary Figure S3. Numbers and Percentages of Subcellular locations annotations
of Receivers (A-B) and Transmitters (C-D) for each CCC resource. S, P and T stand for
Secreted, Peripheral plasma membrane, and Transmembrane plasma membrane proteins,
respectively.
A) B)

C) D)

Supplementary Figure S4. Percentages per Signalling category according to OmniPath
locations (OP-L) for each CCC resource.
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Supplementary Figure S5. Number of Interactions, Receivers and Transmitters, Enrichment
Scores for their Receivers and Transmitters (D-E), and the Percentages of Interactions,
Receivers and Transmitters (F-H) matched to the SignaLink database per resource.
A) B)

C) D)

E) F)

G) H)
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Supplementary Figure S6. Number of matches to A) Interactions, B) Receivers and C)
Transmitters, Enrichment Scores for their Receivers and Transmitters (D-E), and the
Percentages of Interactions, Receivers and Transmitters (F-H) matched to the NetPath
database per resource.
A) B)

C) D)

E) F)

G) H)
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Supplementary Figure S7. Jaccard indices for the 500 highest ranked interactions obtained
from each method-resource combination.
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Supplementary Figure S8. Overlap in the A) 100, B) 250, and C) 1000 highest ranked CCC
interactions between different combinations of methods and resources. Method-resource
combinations were clustered according to binary (Jaccard index) distances. SCA refers to
the SingleCellSignalR method.
A)

B)
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C)

Supplementary Figure S9. PCA of normalised average interaction rank frequencies per cell
pair
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Supplementary Figure S10. Communication agreement among Magnitude-focused
scores. A) Overlap in 500 highest ranked interactions between different combinations of
methods and resources. B) Similarity among the highest ranked interactions for each
method-resource combination, as measured by Jaccard index. C) Activity per Cell type,
inferred as the proportion of interaction edges that stem from Source Cell types or lead to
Target Cell types in the highest ranked interactions.
A)
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B)

C)
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Supplementary table 1. Description of existing resources for measuring cell–cell
communication.

Resource Further curation Sources Interactions*

Baccin2019(a)60 Murine identifiers (only), Multimeric
complexes

Ramilowski2015, KEGG reactome
database, Literature

1978 (1418)

CellChatDB6 Multimeric complexes, 229 signaling
pathway families, agonists and
antagonists, co-receptors,
localisations, Murine identifiers

KEGG, Literature 2551 (2551)

CellPhoneDB4,62,63 Multimeric complexes, intercellular
communication roles

Guide2Pharma, I2D, IMEx,
InnateDB, IntAct, MatrixDB, MINT,
UniProt, Literature

1397 (1312)

CellTalkDB58 Murine identifiers STRING, Literature 3398 (3390)

ConnectomeDB202052 - Ramilowski2015, CellphoneDB,
Baccin2019, LRdb, ICELLNET,
Literature

2293 (2264)

EMBRACE(a)91 Murine identifiers Ramilowski2015 1710 (1489)

Guide2Pharma(b)68 - Literature 740 (662)

HPMR74 - PubMed, GenBank 527 (461)

ICELLNET59 Multimeric complexes,

Signalling families,
Cytokine-focus

STRING, Ingenuity, BioGRID,
Reactome, CellPhoneDB

380 (371)

iTALK (c) 48 Ligand categories Ramilowski2015, HPMR,
IUPHAR-DB, Graeber2001,
Griffith2014, Cameron2003,
Zhou2017, Auslander2018

2648 (2565)

Kirouac201075 - Literature, COPE 270 (150)

LRdb53 - cellsignal.com, Ramilowski2015,
Guide2Pharma, HPMR, HPRD,
Reactome, UniProt, Literature

3251 (3226)

Ramilowski201569 - DLRP, HPMR, IUPHAR, HPRD,
STRING, Literature

1894 (1888)
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talklr73 - - 2422 (2411)

OmniPath#45 Combines data from more than 100
resources and contains protein-protein
and gene regulatory interactions,
enzyme-PTM relationships, multimeric
complexes, protein annotations, and a
CCC-dedicated composite DB

Composite resource combining all
of the CCC dedicated resources
listed here, along with some
additional interactions.

6103

# All the resources above were retrieved from the OmniPath database (https://omnipathdb.org/). We also refer to the composite
CCC resource presented here as OmniPath. The OmniPath presented in the analyses we filtered according to: i) we only retained
interactions with literature references, ii) we kept interactions only where the receiver protein was plasma membrane
transmembrane or peripheral according to at least 30% of the localisation annotations, and iii) we only considered interactions
between single proteins

* The number of original interactions for each CCC dedicated resource covered in OmniPath is shown in brackets.

(a) Translated from murine identifiers to human, which accounts for the lower number of obtained interactions.

(b) Kept only the unique human-annotated interactions between transmitter and receiver proteins.

(c) Duplicates present in the original resource were excluded when imported via OmniPath
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Supplementary table 2. Unique and shared Transmitters, Receivers, and interactions
in each resource. Unique and shared interactions, receivers and transmitters between the
CCC resources. Interactions were considered unique if they could be found in only one
resource.
Resource Transmitters Receivers Interactions

Baccin2019 10.29% 7.98% 10.52%

CellChatDB 11.73% 17.17% 50.29%

CellPhoneDB 5.55% 14.31% 15.27%

CellTalkDB 3.70% 6.93% 6.28%

ConnDB2020 7.41% 6.04% 9.14%

EMBRACE 1.16% 0.00% 3.42%

GuidePharm 0.69% 0.41% 5.89%

HPMR 10.56% 4.67% 15.84%

ICELLNET 1.38% 2.53% 3.64%

iTALK 0.00% 0.00% 0.08%

Kirouac2010 2.84% 0.00% 9.33%

LRdb 0.88% 0.00% 1.61%

OmniPath 16.28% 4.29% 45.70%

Ramilowski 0.00% 0.00% 0.00%

talklr 0.00% 0.00% 0.00%

Total 5.30% 4.57% 16.77%
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Supplementary table 3. Formatted Korean CRC data set cell type counts and full names.
Cell type Cell subtype Complete Name Cell Count

B cells CD19CD20 B B cells_CD19+CD20+ 2,049

T cells CD4 T cells CD4+ T cells 3,980

T cells CD8 T cells CD8+ T cells 4,647

Myeloids cDC Conventional Dendritic Cells 353

Epithelial cells CMS1 Consensus Molecular Subtype 1 1,201

Epithelial cells CMS2 Consensus Molecular Subtype 2 10,771

Epithelial cells CMS3 Consensus Molecular Subtype 3 5,486

Epithelial cells CMS4 Consensus Molecular Subtype 4 11

T cells gamma delta T cells γδ T cells 219

B cells IgA Plasma IgA+ Plasma Cells 180

B cells IgG Plasma IgG+ Plasma 1,661

T cells NK cells Natural Killer Cells 948

Myeloids Pro-inflammatory Pro-inflammatory Macrophages 2,325

Myeloids Proliferating Proliferating Macrophages 165

T cells Regulatory T cells Regulatory T cells 2,943

Myeloids SPP1 SPP1+ Macrophages 3,096

T cells T follicular helper cells T follicular helper cells 548

T cells T helper 17 cells T helper 17 cells 1,961

41



Supplementary Note 1. Cluster Specificity and Method Dissimilarity

As a consequence of the disagreement between methods in regards to the most actively

communicating cell types, I reasoned that a possible cause was the different approaches

used to assign cell cluster specificity to the interactions. To this end, I conducted the same

analyses presented in the main text, but instead using the measures from each method

which do not explicitly reflect the cell-type specific communication (i.e. Squidpy means;

unfiltered CellChat probabilities; Connectome.weight.norm; NATMI.edge.avg.expr) (Table 1).
Since SingleCellSignalR and iTALK provide a single scoring system, they were excluded

from this analysis. I observed an increase in the agreement between methods

(Supp. Figure 10A), as the mean Jaccard index when using the same resource with

different methods ranged from 0.277 to 0.618 (mean = 0.404) (Supp. Figure 10B). The
overlap between these methods when using the same resource was hence considerably

higher than that observed when using cluster-specific measures (mean = 0.0247). On the

contrary, the mean Jaccard index per method when using the same resource remained

relatively unchanged when compared to the scoring systems that reflect cell cluster specific

communication (0.118 for non-specific measures versus 0.167 for specific). Moreover,

analogously to the agreement analysis, I used the cluster-unspecific measures to estimate

the active cell types. As a result, methods were observed to largely agree in terms of the

most active cell types (Supp. Figure 10C). Thus, this analysis suggests that the distinct

approaches used to assign cell cluster specificity to the interactions explain some of the

disagreement between methods for our dataset. Furthermore, when using the

cluster-unspecific measures, the differences in resources were the main source of

dissimilarity between the results.
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Chapter 3: Evaluating Cell-cell Communication Inference
from Single-cell Transcriptomics Data Using Alternative
Modalities

This chapter serves as a snapshot of LIANA’s development focusing on the evaluations
done for its publication in Nature Communication 9. Here, I also present my contribution
towards the formalisation of the same benchmarks into the OpenProblems live
benchmarking platform (https://github.com/openproblems-bio/openproblems; Luecken,
Gigante, Burkhardt et al., In prep.). The text and figures in this chapter were written and
generated by me - Daniel Dimitrov.
Explicit permission was granted by the editorial board of Nature Communication to adapt
and use any text and figures presented here. All figures in this section are shared under CC
licence 9,43.

Background

The increased interest in modelling how cells interact from single-cell transcriptomics has
drawn many computational biologists to develop tools for CCC inference 1,2. Naturally, this
prompts users to wonder which one generates the most reliable hypotheses; particularly, as I
and others showed that the agreement between tools is limited, depending on both the
resource 9 and method 9,92,93 used. Yet, the evaluation of CCC tools is hampered by the
absence of a gold standard 1,2, or more specifically the lack of a wide-spread,
high-throughput technology capable of capturing CCC complexity as inferred from single-cell
transcriptomics. Moreover, the comparison of the tools is challenging, as each comes with its
own diverse scoring function(s) with distinct assumptions and preprocessing steps. To this
end, I designed and developed LIANA to standardise the calling, resource, and output format
of each method.
To evaluate the different methods, I used alternative data modalities, devised into three
distinct tasks with the following complimentary information and assumptions (Figure 1;
Methods):

● Source-target task; cell types in close proximity, as inferred from spatial
transcriptomics data 23, were anticipated to preferentially interact with each other over
non-adjacent cell types

● Ligand-Target task; interactions which involve cytokine ligands were anticipated to
reflect downstream cytokine signalling events, inferred in the target cell types 94

● Target-Receptor task; receptors inferred to be involved in CCC events were
anticipated to correspond to cell-surface receptor protein abundance, as measured
via dual-modality CITE-Seq data 87

For each task, I used multiple datasets, each with its own a-priori-defined assumed truth.
Then after running LIANA, metrics such as the area under the receiver operating curve
(AUROC), area under the precision recall curve (AUPRC) or standard odds ratios are
calculated (Figure 1; Methods).
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Figure 1. CCC evaluation schematic of three tasks with different types of assumed truth, pre-defined
by the dataset at hand (1). For each dataset, we infer CCC interactions using LIANA (2), followed by
the evaluation of each method-dataset combination by standardised metrics (3).

Main

Agreement with Cell-surface Protein Expression (Target-Receptor Task)

I used seven CITE-Seq datasets, each providing transcriptome-wide reads, along with the
measurement of up to 106 antibody-tagged, surface proteins, to evaluate the agreement
between CCC predictions and protein specificity (Methods).
I saw that all methods performed better than a random baseline when predicting CCC events
associated with the most specifically-expressed proteins (Figure 2). NATMI 52, Connectome
5, and logFC performed best when considering both AUROC and AUPRC metrics - largely
anticipated as the scoring functions of these methods explicitly model the specificity of
ligand-receptor gene expression across cell types (Figure 2). CellPhoneDB 4 and CellChat 6

showed comparable performance with LIANA’s consensus and the Crosstalk scores 8 when
using their p-values alone (Figure 2B), and worse performance when using their composite
scores (Figure 2A; Supp. table 1) - comparable to SingleCellSignalR 53. SingleCellSignalR
was the only method which does not explicitly model cell-type specificity, and as largely
anticipated, performed worse than the other methods (in this task which reflected protein
specificity) but still better than random.
Overall, this task showed that CCC predictions from single-cell transcriptomics data agree
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with protein abundance, suggesting that expression is a reliable proxy for predicting CCC
events at the protein level.

Figure 2. Agreement with cell-surface protein specificity (adapted from Dimitrov et al., 2022 9). A)
CellChat and CellPhoneDB’s composite scores, and B) their p-values (specificity scores) alone; see
Supp. table 1 for details.
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Agreement with Cytokine Activities (Ligand-Target task)

To show the association between CCC predictions and active cytokines, I inferred cytokine
activities in HER2+ and triple negative (TNBC) breast cancer subtype atlases 95 using
cytokine signalling signatures 94 (Methods). I found a generally positive association between
highly-ranked interactions and cytokine signalling (Figure 3). Specifically, all methods
showed an enrichment of interactions with matched active cytokines when considering
high-rank ranges, generally converging towards random as the number of interactions
increased. In the TNBC subtype, all methods were enriched in the high-rank ranges. On the
contrary, for the HER2+ subtype CellPhoneDB, CellChat, logFC, and SingleCellSignalR
exhibited a negative or lack of association with cytokine activities at low ranks, but showed a
positive association as the ranks considered increased. NATMI, Connectome, and the
Crosstalk scores performed consistently across rank ranges across both subtypes (Figure
3).
These findings indicated that interactions identified as relevant by all methods generally
aligned with cytokine activities, supporting the anticipated agreement between CCC and
downstream intracellular signalling.

Figure 3. Odds ratios of interactions with matching active cytokines across a range between 100 and
10,000 interactions. Baseline (odds ratio of 1) represented by dashed horizontal line; vertical line
represents the truncated ranges for some methods with inbuilt filtering steps - e.g. empirical p-value
(adapted from Dimitrov et al., 2022 9).

Agreement with Cell-type Colocalization (Source-Target task)

Next, I evaluated the methods' predictive performance by incorporating spatial information
with the assumption that colocalized cell populations are more likely to interact. Hence,
interactions prioritised by the different methods should be enriched among cell types in close
proximity. The assumed truth (i.e. colocalized cell types) was generated with 10x Visium
slides, matching the mouse brain cortex 96 and TNBC atlases 95, used to infer the interactions
(Methods).
Overall, I saw a positive association between highly-ranked CCC interactions and
colocalized cell types (Figure 4). This association was more consistent in the mouse brain
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dataset, where all methods, except the Crosstalk scores, had an overrepresentation of
interactions between colocalized cell types in the highly-ranked interaction ranges. In the
TNBC atlas, only the consensus and LogFC methods had a consistent association with cell
type adjacency (Figure 4).
In summary, these results supported the agreement between interactions prioritised by most
methods and neighbouring cell types in the structured brain tissue. This association was also
present, albeit less consistent, in the TNBC atlas. Hence, our results suggest that inferred
CCC events partly reflected the enrichment of interactions between physically-adjacent cell
types.

Figure 4. Odds ratios of interactions between colocalized cell types across a range between 100 and
10,000 (adapted from Dimitrov et al., 2022 9). Baseline (odds ratio of 1) represented by dashed
horizontal line.
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Formalised and Open Benchmarks

Building on the colocalization (Source-Target) and cytokine activity (Ligand-Target)
benchmarks shown above, we set up easily reproducible, interpretable, and open
benchmark tasks in the OpenProblems platform. We focused on the datasets for each task,
thought to better encode biologically-relevant signals. We further reformulated the tasks
such that they account for the ‘partial’ assumed truth in the benchmarks. In other words, we
aggregate the results from each method according to the information available in the
benchmark datasets. For example, in the Ligand-Target task, we aggregated all interactions
by the ‘ligand’ protein and ‘target’ cell type columns, such that there is only one prediction
per assumed truth instance; using max- and sum-aggregation for each method. We
additionally calculate ‘True’ and ‘Random’ baselines as references (Methods).

In the Ligand-Target (cytokine activity) task, methods were generally close to or worse than
random when considering AUPRC (Supp. Fig. 1). However, all methods performed well
according to the odds ratio metric (Figure 5), with CellPhoneDB and LIANA’s magnitude
rank performing best.
In the Source-Target (colocalization) task all methods were notably better than random for
both AUPRC and odds ratio metrics. CellPhoneDB and LIANA’s magnitude rank had the
highest odds ratios, followed by NATMI, LIANA’s specificity rank, and log2FC (Figure 5).
When considering AUPRC, LogFC and NATMI did better than CellPhoneDB and the
magnitude rank (Supp. Fig. 1).

As before, we saw that methods generally performed better than a random baseline in both
tasks (Figure 5). Yet, here we saw that magnitude-focused scoring functions generally
outperformed those that focus on the specificity of the interactions across cell types. In
particular, LIANA’s magnitude rank aggregate and CellPhoneDB had the best performance in
both tasks (Figure 5).

In summary, while our results confirm that CCC methods generally capture
biologically-relevant information, these evaluations represent only approximations of
biological reality.
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A)

B)

Figure 5. Min-maxed, sigmoid-transformed odds ratios for the A) Ligand-Target and B) Source-Target
tasks, respectively. We consider the top 5% of interactions predicted by each method. Methods were
ranked according to the aggregation function with the best performance.
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Methods

Tasks Setting

In the Receptor-Target task, the abundance of receptor (cell-surface) proteins in target cell
types was z-transformed across all cell types. Then receptors with abundance z-scores >=
1.645 are treated specifically-abundant, or the positive class. All other receptors were
treated as the negative class when calculating the metrics. This task was not formalised in
the OpenProblems benchmark, as its outcome was largely anticipated, better reflecting the
nature of the scoring functions, rather than necessarily biologically-relevant performance.

In the Source-Target task, cell type deconvolution proportions per spot from 10x Visium
slides were used to identify colocalized cell types. I used the SPOTlight 97 deconvolution
method to spatially map the cell types present in an annotated scRNAseq atlases onto
matching 10x Visium slides. Then, Pearson correlation coefficients were calculated for each
cell type pair and z-scaled. Then cell type pairs with z-scaled correlations > = 1.645 were
considered as colocalized, while the rest were thought to be non-colocalised. In other words,
colocalized and non-colocalized cell types were treated as the positive and negative class,
respectively. For the OpenProblems benchmark, we used only the murine brain dataset 96,
while in Dimitrov et al., 2022 9 I also considered the TNBC subtype atlas 95.

In the Ligand-Target task, I used downstream cytokine activities inferred for each cell type as
assumed truth. Specifically, I inferred cytokine activities using CytoSig’s high-quality
signatures 94, together with the multivariate linear regression via decoupleR 98 for every cell
type at the pseudobulk level in each single-cell atlas. I considered cytokine signatures with
positive regression t-values and FDR-corrected p-value = < 0.05 in the target cell types as
active, while the remainder were considered as inactive. In this subtask, active and inactive
cytokines in the target cell types were treated as the positive and negative class,
respectively. For the OpenProblems benchmark, I used only the TNBC subtype 95, while for
Dimitrov et al., 2022 9 I also considered the HER2+ subtype.

Five CCC methods were included in both OpenProblems benchmark tasks, along with
specificity and expression magnitude rank aggregates. All of which were run as natively
implemented in LIANA and used its consensus ligand-receptor resource. I considered only
interactions for which of both the ligand and receptor, and any of their subunits, were
expressed in at least 10% of the source and target cell types. For heteromeric complexes, I
considered the arithmetic mean expression of the members for all methods, except
CellPhoneDB, for which I used the minimum member expression. We additionally defined
‘True’ and ‘Random’ baselines, generated by copying the solutions of the data or a random
selection of interactions, respectively.

In the benchmarks as done in Dimitrov et al., 2022 9, I included seven methods, along with
the consensus of their predictions (Supp. Table 1). The original implementations for NATMI,
SingleCellSignalR, and CellChat were called via LIANA with their default settings 9, while the
remainder of the methods were re-implemented natively and used LIANA’s preprocessing
steps 9.
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Metrics

In the OpenProblems benchmark we considered 0.05 of is the number of all assumed truth
interactions to calculate odds ratios which were then sigmoid-transformed. To generate the
figures both AUPRC and Odds ratios were minmaxed together with the ‘True’ and ‘Random’
baselines.
In the benchmarks as done in Dimitrov et al., 2022, odds ratios were not
sigmoid-transformed, while AUPRC/AUROC metrics were calculated with the yardstick 99

package. In this case we did not (sum- or max-) aggregate the inferred CCC predictions
according to their columns with the ground truth, nor did we minmax the metrics.

Data Availability
The processed and annotated Human Breast Cancer single-cell atlas 95 is available via the
GEO accession number: GSE176078. The filtered breast cancer 10x Visium slides are
available at https://zenodo.org/record/4739739.

Spatial transcriptomics datasets (10x Visium slides) on sagittal adult mouse brain anterior
and posterior slices were obtained from SeuratData, available at
https://github.com/satijalab/seurat-data, under the dataset name of `stxBrain`. The single-cell
data (Allen Brain Atlas 96; GSE71585) used for the cell type deconvolution was obtained as a
Seurat object, accessible at
https://www.dropbox.com/s/cuowvm4vrf65pvq/allen_cortex.rds?dl=1

Processed and annotated murine spleen-lymph CITE-Seq datasets 100 are available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150599..

Publicly available CITE-Seq datasets were obtained from 10X Genomics, accessible under
the list of datasets at https://tinyurl.com/10xCITEseq. Datasets used here include:

https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_prote
in_v3_nextgem
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_prote
in_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_prote
in_v3
https://www.10xgenomics.com/resources/datasets/10-k-cells-from-a-malt-tumor-gene-expres
sion-and-cell-surface-protein-3-standard-3-0-0

Code Availability
The OpenProblems CCC task and an in-depth task description is available at:
https://github.com/openproblems-bio/openproblems/tree/main/openproblems/tasks/_cell_cell
_communication

The code for the Dimitrov et al., 2022 9 benchmarks is available at
https://github.com/saezlab/ligrec_decouple
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Supplementary Material
Supplementary table 1. Scoring settings used to evaluate and compare the methods
(adapted from Dimitrov et al., 2022 9).

Method Composite# Specificity Magnitude

CellChat Probability
(Filtered by p-value

< 0.05) p-values alone Probability

CellPhoneDBv2
Truncated
Mean

(Filtered by p-value
< 0.05) p-values alone Truncated Mean

Connectome weight_scale weight_scale weight_norm

Crosstalk Scores Crosstalk score Crosstalk score -

logFC Mean logFC Mean logFC Mean -

NATMI Specificity-based edge weight Specificity-based edge weight Mean-expression edge weight

SingleCellSignalR LRscore LRscore LRscore

# Unless explicitly mentioned, the composite method settings were used.
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Supplementary Figure 1. Minmax AUPRC for the A) Ligand-Target and B) Source-Target tasks.
Methods were ranked according to the aggregation function with the best performance.

A)

B)
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Chapter 4: LIANA+: an all-in-one cell-cell communication
framework

Since the time of writing this chapter, parts of the work presented were submitted to Biorxiv
32 (https://www.biorxiv.org/content/10.1101/2023.08.19.553863v1.abstract), and is currently
under revision for publication. In this work, I extended LIANA to provide an all-in-one solution
to contemporary cell-cell communication inference from single-cell and spatial (multi-) omics
data. In the version presented here, I focus on applications that showcase the synergy
between components from LIANA+. The text in this chapter was written by me. All figures in
this section are shared under CC licence.

LIANA+: Visual abstract
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1. Background
Cell-cell communication (CCC) inference has recently emerged as a major component of the

analysis of single-cell and spatially-resolved transcriptomics data 1,42. Many computational

tools have been developed for this purpose, each contributing valuable ideas and

developments.

The simplest class of CCC inference methods are those that infer protein-protein interactions

from dissociated single-cell transcriptomics data, commonly referred to as ligand-receptor

interaction inference methods 4–6,59. Moreover, there are CCC tools that combine intercellular

communication with intracellular signalling 7,8,16,101,102. All methods are based on multiple

assumptions, including the assumption that gene co-expression between dissociated cells,

or groups of cells, reflects CCC within tissues 9.

In contrast to dissociated single-cell data, spatially-resolved omics technologies preserve

tissue architecture and are thus thought to better reflect the intercellular events that occur

within tissues. As a consequence, multiple methods that utilise spatial information have been

developed to study CCC 2,42. Typically, these methods infer relationships between proteins
26,27 or cell types (cellular neighbourhoods) 21,22. Spatially-informed methods differ in the scale

at which interactions are inferred, as some infer relationships globally, summarising them

across slides as a whole 26,27,33, while others do so locally at the individual cell or spot

locations within a slide 29,30,103,104.

The majority of both single-cell and spatially-informed CCC methods have focused on

protein-mediated interactions, predominantly using transcriptomics data 1,9, and only few

methods infer CCC from multi-omics data 40. As a consequence of the almost exclusive use

of transcriptomics data, other modes of intercellular signalling, such as small molecule

signalling, have been typically ignored 9. Recent methods have attempted to infer

metabolite-mediated CCC events, again from transcriptomics data 10–13, but such inference

remains largely limited by the challenges of predicting metabolite abundance from gene

expression 14. Emerging multi-omics technologies 105 are anticipated to provide a more

informed view of CCC events, thus in turn prompting the development of new tools.

While early methods analysed CCC in individual samples or single-condition atlases,

increasing sample numbers and experimental design complexity have prompted various

strategies to extract differential CCC insights. These strategies include methods that (1)

consider each interaction independently 29,37,38,106, (2) make use of dimensionality reduction to

perform pairwise comparisons between conditions 6,107, or (2) model all variables, samples

and cell types simultaneously 39. Approaches (2) and (3) can be thought of as modelling

coordinated CCC events, and I refer to such orchestrated interactions as ‘intercellular

programmes’ from here on.
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Regardless of the task at hand, CCC methods typically rely on pre-existing knowledge 1,9.

Thus, extensive effort has been put into curating and extending prior knowledge, with a

focus on gathering protein- 4,6,45 and, to a lesser extent, metabolite-mediated CCC 10,12,13,108.

In addition, in some resources, the interactions are further associated with pathways 6 or

transcriptional regulators 7,109, leading to multiple discordant databases and potential

inconsistencies caused solely by the choice of resource 9.

Finally, all these developments have been led by different groups, using various syntaxes,

and most CCC tools are typically designed for a specific purpose.

Here, we (co-authors and I) introduce LIANA+ as a comprehensive framework that expands

intercellular inference to cross-conditional and multi-omics data (Fig. 1; Supp. Table 1).
LIANA+ unifies contemporary methods and prior knowledge, providing nine methods for the

inference of CCC from single-cell transcriptomics (Fig. 1A) and eight methods for the

inference of global and local relationships in spatially-resolved data (Fig. 1B), all of which
are applicable to multi-omics data. We further supplement the single-cell and spatial

methods in LIANA+ with different strategies to extract deregulated CCC events in both

hypothesis-free and hypothesis-driven manner (Fig. 1C). Moreover, CCC events can be

connected to intracellular signalling events via the use of (Fig. 1D) a causal subnetwork

search, which also makes use of a rich prior knowledge base (Fig. 1E). All components in
LIANA+ use standardised input and output formats, utilising the scverse ecosystem

infrastructure 110 (Supp. Fig. S1). This enables interoperability with external packages and

facilitates the straightforward extensions of contemporary CCC approaches.

To highlight the flexibility of LIANA+, I applied it to a recent spatially-resolved

metabolome-transcriptome dataset, where I modelled global dopamine-mediated CCC

events and identified their corresponding subregions of interaction in murine Parkonson’s

disease model data. I also showcase the scope of our framework by jointly analysing

dissociated single-nucleus and spatially-resolved human heart data with a complex

cross-conditional experimental design. In this analysis, I identify intercellular programmes

and corresponding intracellular signalling driving fibrosis in ischemic heart regions and cell

types.

LIANA+ is an extendable, scverse-compliant 110, open-source framework built of synergistic

modules, available at https://github.com/saezlab/liana-py, readily applicable to a wide range

of single-cell, spatial, multi-omics datasets, with any experimental design.
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Figure 1. LIANA+ Framework Overview. A) LIANA+ natively re-implements eight ligand-receptor methods to
infer interactions from single-cell transcriptomics data, along with a flexible consensus. B) LIANA+ enables
multi-view learning as well as eight local metrics to respectively capture global and local interactions from
spatially-resolved omics data. (*) For Moran’s R I adapted both the global and local versions as in SpatialDM 29;
for spatially-weighted Spearman correlation, I re-implemented also a masked version as in scHOT 111; and for the
spatially-weighted product, I additionally provide a max-normalised version. C) LIANA+ includes diverse
strategies to identify deregulated CCC events across conditions, ranging from differential CCC analysis with
PyDESeq2 112,113 for hypothesis-driven exploration to more extensive, unsupervised approaches like
Tensor-cell2cell 39, Non-negative matrix factorization, and MOFA+ 114 for hypothesis-free exploration. D) LIANA+
connects intercellular interactions to intracellular signalling pathways, providing a holistic view of signalling. E)
LIANA+ is built on a rich knowledge base - OmniPath 45 and BioCypher 115 - which comprise different
ligand-receptor, metabolite-mediated, and annotation databases; alongside intracellular knowledge such as
signalling pathways and transcription factors. Finally, all components (A-E) of LIANA+ are applicable to both
dissociated single-cell and spatially-resolved multi-omics data.
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2. Main
2.1 LIANA+ enables the modelling of CCC from Spatially-Resolved Data across
distinct modalities
As a consequence of the diverse array of spatial omics technologies and the wide range of

molecules and resolutions they encompass, diverse computational approaches are required

to make most of the data. In this context, LIANA+ includes several strategies to flexibly

analyse CCC from diverse spatially-resolved technologies.

2.1.1 LIANA+ jointly models global associations across modalities

LIANA+ adapts our recent multi-view modelling approach to learn spatial relationships

across distinct types of features or spatial contexts (represented as views) 33. This enables

the inference of complex relationships, such as those between ligand expressions and

pathways 33 or cell types and pathways 116,117, jointly modelling any combination of views.

Using such joint modelling, here, I learn relationships from combinations of modalities and

technologies.

To showcase the ability of LIANA+ to model interactions from multi-omics data, I applied it to

a recent murine Parkinson’s disease model dataset that captures spatially-resolved

metabolome and transcriptome measurements 118 (Fig. 2A). Briefly, three mice were

subjected to unilateral 6-hydroxydopamine-induced lesions in one hemisphere while the

other remained intact 118 (Fig. 2B).
A particular challenge of this dataset is that, while transcriptome and metabolome

measurements were quantified on the same slides, the observations derived from each

technology corresponded to distinct spatial locations (Fig. 2A). To this end, I extended our

multi-view modelling approach to handle multi-omics datasets with discordant observations

(Methods).

I inferred the metabolites’ spatial relationships with brain-specific metabolite receptors and

cell types (Fig. 2C; Methods). Specifically, I jointly modelled metabolite peak intensities

using cell type proportions and receptors as predictor views, with the predictions from each

view being combined post-hoc; allowing us to estimate joint performance of the predictor

views, along with the individual contribution of each view (Methods). I carried out this

process while also masking according to the lesioned and intact hemispheres on each slide

(Fig. 2B&C; Methods). I saw that several metabolite peaks were explained relatively well by

the joint model (R2 > 0.5), including Dopamine and its derivative 3-Methoxytyramine, among

other potentially deregulated, but unannotated, metabolite peaks (Supp. Fig. S3A).
Focusing on Dopamine, I saw a large difference in explained variance between the intact (R2

= 0.535) and lesioned hemispheres (R2≈0; Fig. 2D; Supp. Fig. S4A), which is expected due
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to the absence of dopamine in the striatum of the lesioned hemisphere 118 (Supp. Fig.
S4A-C). Looking further into the intact hemisphere, I saw that the cell type view explained a

higher proportion of variance than the receptor view (Fig. 2E; Methods), implying that

Dopamine signalling in this region was more closely associated with the signatures of

specific cell types than the expression of brain-specific metabolite receptors. I noted similar

contributions for per view the remainder of the well-explained metabolite peaks (Supp. Fig.
S3B).
Specifically, in the intact striatum, I found that the three best predictors of Dopamine (Median

t-value >= 3) were dorsal medium spiny neurons (MSN) 1 and 2 119, and the Drd2 dopamine

receptor (Fig. 2F). Notably, Dopamine's relationship with its predictors differed notably

between intact and lesioned hemispheres: MSN1 (P-value=0.024), MSN2 (P-value=0.004),

and Drd2 (P-value=0.08) (Supp. Fig. S3C-E). The association of Dopamine with the MSN1

cell state corroborated the findings of the original publication 118, while LIANA+ highlighted

the interactions of Dopamine with MSN2 and its canonical receptor, which was not

previously reported. Thus, our findings captured a broader picture encompassing both D1-

and D2-type MSNs 119.

2.1.2 LIANA+ infers local interactions at the individual spot or cell locations

The approach described in section 2.1.1 models global spatial relationships - i.e. it considers

all spots to infer a single value per interaction across the slide. As such, it provides summary

statistics for each interaction in a slide, but does not provide information about the region or

locations where the interactions occur. To complement identified global relationships in

LIANA+, I implemented eight metrics to identify local interactions at the individual spot or cell

location. Such bivariate metrics have previously been used to identify spatial co-expression

patterns between genes across spatial 25,111 and pseudotime 111 contexts, and recently in the

context of ligand-receptor interactions 29,103,104. In brief, LIANA+ includes (i) four

spatially-weighted variants of commonly used similarity metrics (Cosine similarity, Pearson

and Spearman correlation, and Jaccard index); (ii) a masked version of Spearman

correlation 111; (iii) simple spatially-weighted products; and (iv) a local extension of univariate

spatial clustering measures such as Moran’s I 31,120 (Methods). I evaluated the performance

of these metrics in two separate tasks, and decided to use Spatially-weighted Cosine as the

default local metric in LIANA+, due to its simplicity, interpretability, and consistent

performance (Supp. Fig. S2; Supp. Note 1).
Using spatially-weighted Cosine similarity, I focused on identifying the specific locations at

which putative interactions with Dopamine occurred. I saw that, as anticipated, the

interactions of Dopamine and Drd2, highlighted above by the global multi-view learning

approach, occurred only within the intact striatum regions (Fig. 2G), which was further
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corroborated by low permutation P-values (Fig. 2H) and a positive association (category)

between the two variables (Fig. 2I) in the intact hemisphere. With similar results for MSN1

and MSN2 cell states (Supp. Fig. S4E&F). Interestingly, our analysis revealed an

asymmetry in signalling components, as while the interaction between Drd2 and Dopamine

was present in the intact hemisphere, Drd2 was expressed in the striatum of both intact and

lesioned hemispheres (Supp. Fig. S4A-D).
In conclusion, LIANA+ demonstrates robust applicability in identifying spatially-informed

interactions, mediated by a variety of agents, and pinpoints the specific regions where these

interactions take place. Moreover, our work illustrates LIANA+'s flexibility in innovatively

integrating and extending existing elements into novel applications, as demonstrated by

modelling metabolite-mediated CCC across modalities.

60

https://docs.google.com/document/d/19NRUUsK84vAKmoRkfseKF96_wCKHnWQvYPqxl72F3cY/edit#fig_sma
https://docs.google.com/document/d/19NRUUsK84vAKmoRkfseKF96_wCKHnWQvYPqxl72F3cY/edit#fig_sma
https://docs.google.com/document/d/19NRUUsK84vAKmoRkfseKF96_wCKHnWQvYPqxl72F3cY/edit#suf_sma
https://docs.google.com/document/d/19NRUUsK84vAKmoRkfseKF96_wCKHnWQvYPqxl72F3cY/edit#suf_sma


Figure 2. A) Spatially-resolved transcriptomics and metabolomics captured on the same slide via joint 10X

Visium and MALDI-MSI yield distinct matrices with different observation locations. B) Parkinson’s model mice

annotated for striatum in intact and lesioned hemispheres. C) Multi-view modelling of metabolite peaks with

brain-specific receptors and inferred cell type proportions. D) Variance explained (R2) for Dopamine, jointly

modelled by receptor and cell type views in the intact and lesioned hemispheres. The central line within each box

marks the median, with the box hinges representing the first and third quartiles. The whiskers extend up to 1.5

times the interquartile range above and below the box hinges. E) Contributions of each view to the modelling of

dopamine with 95% confidence intervals. F) Dopamine predictors ranked according to median importance

(y-axis; ordinary least squares t-values), with names shown for the top 3 predictors: Drd2, and Medium Spiny

Neurons (MSN) 1/2. Local interactions between Dopamine and its canonical Drd2 receptor as measured by

spatially-weighted Cosine similarity (G), its corresponding permutation p-values (H), and categories (I). Figure
panels showcase slide B1 from experiment V11L12-109 119.
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2.2 LIANA+ Combines Dissociated Single-cell with Spatial Data to identify deregulated
Intercellular and Intracellular Signalling across Conditions
As the number of samples and experimental design complexity in single-cell and spatial

datasets continue to increase, generalizable methods are required to analyse CCC across

conditions. To address this, LIANA+ natively re-implements nine ligand-receptor methods for

the scalable inference of CCC from dissociated single-cell data (Fig. 1A; Supp. Table 2),
coupling them with factorization approaches to analyse CCC across conditions (Fig. 1C). In
addition enabling applications with Tensor-cell2cell, as previously demonstrated 39,121, I

propose an alternative unsupervised approach that leverages the flexibility of the MOFA+

framework 114 (Methods; Supp. Note 2). With a distinguishing feature of adapting MOFA+

being that I obtain interaction importances per cell type pair (view) rather than their global

importance across all cell types 39,121. Using five public cross-conditional atlases

(Supp. Table 3), I show that, regardless of the ligand-receptor method, both Tensor-cell2cell

and MOFA+ capture intercellular programmes that separate samples according to different

conditions (Supp. Fig. S5; Supp. Note 2).
Moreover, in line with current best practices 122,123 LIANA+ utilises differential expression

analysis 112,113 to enable the targeted (hypothesis-driven) exploration of CCC across

conditions (Methods). Briefly, LIANA+ combines prior knowledge with differential statistics,

calculated at the pseudobulk 122,123 level, to identify interactions, the ligands and/or receptors

of which, are deregulated across cell type pairs 37 (Methods).

Finally, CCC events commonly initiate or emanate from intracellular processes.

Consequently, leveraging a comprehensive knowledge base LIANA+ provides various

strategies to investigate them (Fig. 1D&E). Our framework enables the annotation of

ligand-receptor interactions to relevant pathways. Moverover, it provides a causal

subnetwork search to link CCC events of interest to downstream intracellular signalling

(Supp. Fig. S6; Supp. Note 3).
To demonstrate the synergistic nature of LIANA+'s components, I analysed a

cross-conditional dataset integrating single-nucleus and spatial transcriptomics data. This

dataset comprised 29 single-nucleus and 28 10X Visium spatial samples from myogenic,

fibrotic, and ischemic heart regions following myocardial infarction 117 (Fig. 3A). Using this

data, the role of myofibroblasts and macrophages was previously highlighted in the fibrotic

process, characterised by the synthesis of extracellular matrix proteins for scar tissue

formation 117. Here, I further elucidate the intercellular and corresponding intracellular

signalling mechanisms facilitating cardiac tissue repair and remodelling.
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2.2.1 LIANA+ extracts Disease-specific Communication Patterns from Spatial Transcriptomics
Data

To identify shared intercellular programmes across the different conditions, I first inferred

local ligand-receptor interactions using spatially-weighted Cosine similarity for each of the 28

spatial transcriptomics slides. Then I concatenated the resulting interactions across all

samples and applied non-negative Matrix Factorization (NMF) (Methods). As suggested by

an automatic elbow selection procedure, NMF revealed five disease-relevant intercellular

programmes (factors), with each resulting in factor scores per observation (spot), along with

associated interaction loadings (Fig. 3B). I saw that Factors 1, 2, 5 were significantly

enriched in ischemic samples, Factor 4 was enriched in fibrotic and downregulated in

(healthy) myogenic samples, while Factor 3 was positively associated with the myogenic

condition (Fig. 3C).
To elucidate the biological processes associated with the identified factors, I assessed

whether ligand-receptor interactions were enriched in particular pathways 124 (Fig. 3D;
Methods). I noted that interactions in both the ischemia-associated Factor 4 and the

fibrosis-associated Factor 5 were enriched in TGFβ signalling interactions - a well-known

driver of fibrosis 125. On the other hand, both Factors 4 and 5, as well as

myogenic-associated Factor 3, were negatively associated with pro-inflammatory pathways

such as TNFα and NFKβ, and the PI3K pathway. Moreover, I saw that interactions from

ischemia-associated factors 1, 2 were enriched in Hypoxia, EGFR, MAPK, and JAK-STAT

pathways, reflecting anticipated inflammatory patterns in ischemic regions 126 (Fig. 3D).
Consistent with expectations, ischemia-associated Factor 1 localised to ischemic regions

(Fig. 3E). Notably, among the top 30 interactions, were several integrins (ITGB1, ITGAV,

ITGA5, and ITGA7) interacting with profibrotic (FN1, SPP1) genes 117,127 and matrix

glycoproteins (TNC, THBS1) (Supp. Fig. S7A). Interactions with TNC aligned well with its

reported RNA and protein levels in early myocardial infarction stages 128 - concurrent with the

largely early-onset of the samples in our data 117. FN1 was reported as a marker of

myofibroblasts 117, while SPP1 117 FN1 129, or both 127 as markers of pro-fibrotic macrophages.

Moreover, THBS1 and ITGB1 were recently implicated in a self-amplifying, immune-cell

recruitment loop, including FN1+ THBS1-expressing macrophages 129.

Overall the identified intercellular programmes aligned well with literature. Thus, I

hypothesise that the interactions identified within ischemic regions, specifically those

between FN1 and SPP1 with ITGB1-containing complexes (Fig. 3F&G), are potential drivers
of pro-fibrotic response.
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2.2.2 LIANA+ extracts Condition-specific Communication Patterns from Dissociated Single-cell
data

Identifying co-localised genes from spatially-resolved data can help us pinpoint relevant

interactions driving disease; yet it remains limited by the feature-resolution trade-off in most

contemporary spatial technologies 19,20. Current spatial technologies either capture multiple

cells within spots, relying on deconvolution to identify cell type frequencies within them, or

they capture a limited fraction of molecules 19,20. On the contrary, CCC events inferred from

dissociated data show weak correspondence with the spatial colocalization 9, pointing to an

anticipated high false positive rate.

Motivated by the recent emergence of a technology capable of measuring full transcriptome

single-nuc data, while also preserving spatial information 130, I updated our previous

evaluation that used cell type colocalization as assumed truth 9 (Supp. Note 4; Methods).
Similarly, I saw weak association of ligand-receptor interactions predicted in a

spatially-uninformed manner and the colocalization of their ligands, receptors, and cell types.

Moreover, regardless of the method, performance was only marginally better than random

(Supp. Fig. S8; Supp. Note 4).
To enhance the accuracy of our analysis and reduce false positives, I incorporated spatial

information, derived from the spatial transcriptomics data, into ligand-receptor predictions

from the single-nucleus data. Specifically, I considered interactions only if they were

identified as condition-relevant by the NMF analysis in section 2.2.1, and if they occurred

between cell type pairs observed to co-localise (Supp. Fig. S7B; Methods). Then, I inferred
ligand-receptor interactions with LIANA+ for each of the 29 single-nucleus samples, followed

by factorisation with MOFA+ on the obtained ligand-receptor interactions across all cell type

pairs and all samples (Fig. 3H; Methods). This unsupervised analysis identified a factor

(Factor 1), the sample loadings of which were significantly different across the conditions

(P-value < 0.0001; Fig. 3I). Within the same factor, interactions with fibroblasts were

prominent sources of CCC, including the fibroblast-to-myeloid axis (R2 = 25.3%) (Fig. 3J),
also concurrent with spatial association between the two cell types (Supp. Fig. S7B). These
findings underscore fibroblasts and myeloid cells as key actors in ischemic tissue states,

highlighting their role both as drivers and targets in the fibrotic process.

In a similar application, I also used MOFA+ to identify intercellular programmes driving

response to acute kidney injury in single-cell dissociated data, and further supported in

spatial transcriptomics (Supp. Fig. S9; Supp. Note 5).

2.2.3 LIANA+ identifies deregulated intercellular and intracellular signalling events

To elucidate specific ligand-receptor interactions deregulated in ischemia, I performed

differential expression analysis, using the myogenic and fibrotic states as baseline
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references. (Fig. 3K; Methods). Focusing on fibroblast-to-myeloid signalling and the

associated interactions identified by the unsupervised analyses in sections 2.2.1 and 2.2.2, I

observed a high degree of concordance with deregulated interactions (Fig. 3L). Notably,
THBS1 and TNC were significantly deregulated (FDR < 0.05) in fibroblasts and myeloid

cells, respectively, while SPP1, THBS1, and FN1 were deregulated in both (Fig. 3L).
Additionally, two ITGB1-containing integrin complexes interacting with FN1 and SPP1 were

upregulated in myeloid cells (Fig. 3L).
Building on these findings, I delved into the intracellular signalling within myeloid cells

triggered by the FN1/SPP1 and ITGA5&ITGB1 integrin complex interactions (Fig. 3K). This
focus was motivated by the reported role of these genes in fibrosis 117,127,129; their

co-deregulation in myeloid and fibrotic cell types (Fig. 3L); as well as the

fibroblast-to-myeloid signalling axis highlighted by both the MOFA+ latent space (Fig. 3I) and
spatial analysis (Supp. Fig. S7B). Using a signed and directed prior knowledge network, I

computed a family of sign-consistent subnetworks linking the upregulation of FN1/SPP1 and

ITGA5&ITGB1 with deregulated downstream TFs (Fig. 3K; Methods). This revealed a

putative signalling network involving kinases MAPK1 and MAPK14, and TF co-regulators

ATM, EP300, and YAP (Fig. 3M). Specifically, these regulatory proteins were predicted to

up-regulate SMAD1/3 TFs, key members of canonical TGFβ superfamily signalling 131; as

well as the down-regulated FOXO3 - recently implicated in TGF-β regulated myofibroblast

differentiation via the inhibition of SMAD3 132.

In summary, our analysis revealed insights of intercellular and intracellular events linked to

the establishment of the myofibroblast phenotype and recruitment of pro-fibrotic SPP1+

macrophages in myocardial infarction 117. As such, I demonstrate that LIANA+ offers a

complete suite to identify novel disease-related communication patterns, along with diverse

strategies to interpret the underlying biological processes.
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Figure 3. A) Sampling sites for human myocardial infarction single-nucleus and spatial transcriptomics data. B) Overview of
NMF (Non-negative matrix factorization) applied to local interactions inferred for each location/observation across multiple
slides. C) log2-transformed Odds ratios representing the enrichment or depletion of each of the factors inferred by NMF in the
fibrotic, ischemic, and myogenic labels. D) Pathway enrichment of NMF ligand-receptor loadings using pathway annotations
from the PROGENy 124 resource. Asterisks indicate FDR-corrected p-values <0.05. E) NMF Factor 1 scores per observation.
Spatially-weighted Cosine similarity of F) FN1 and G) SPP1 with the ITGA5_ITGB1 complex, respectively; in a selected
(ACH0014) sample. H) Procedure to decompose ligand-receptor interactions inferred at the cell type level from dissociated
single-cell data samples, using standard ligand-receptor methods (such as those in Figure 1C), into factors and corresponding
feature sets. I) MOFA+ Factor scores following ligand-receptor score decomposition with one-way ANOVA P-value across
ischemic, fibrotic, and myogenic samples. The central line within each box marks the median, with the box hinges representing
the first and third quartiles. The whiskers extend up to 1.5 times the interquartile range above and below the box hinges.
Outliers are depicted as individual hollow points beyond the whiskers. J) MOFA+ Factor 1 variance explained across cell type
pairs (views). Abbreviations used include AD for Adipocytes, CM for Cardiomyocytes, EN for Endothelial cells, FB for
Fibroblasts, PC for Pericytes, PR for Proliferating cells, VM for Vascular smooth muscle cells, NE for Neuronal cells, MY for
Myeloid cells, MA for Mast cells, and LY for Lymphoid cells. K) The procedure used to identify deregulated intercellular and
intracellular signalling events, includes the combination of differential statistics (in this case from a contrast between samples
from ischemic versus the rest) with prior knowledge of ligand-receptors and TF regulons to identify deregulated intercellular
interactions and TFs across the conditions. Followed by a network optimisation approach to identify sign-coherent subnetworks
linking the deregulated ligand-receptor interactions and TFs. L) Interactions of interest deregulated in Fibroblast and Myeloid
cell types with FDR <0.05 marked with an asterisk. M) Sign-coherent signalling network emanating from FN1 and SPP1 via
integrin complex ITGA5_ITGB1 and propagating down to transcription factors deregulated in Myeloid cells in ischemia. N)
Corresponding legend for the network figure shown in M); TF is an abbreviation of Transcription Factor.
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3. Discussion
As our ability to quantify molecules at scale increases, so does the demand for

comprehensive methods to generate biological insights. Building on flexible and efficient

infrastructure 110 and a rich biological knowledge base 45,115, LIANA+ expands previous

methodological developments, redefining them into synergistic components, to enable

flexible and novel CCC analyses from single-cell and spatial (multi-)omics data.

Single-cell technologies capture cellular heterogeneity at an unprecedented scale, yet during

the dissociation process information about tissue architecture is lost. As a consequence, and

as highlighted by our work, spatially-agnostic CCC inference is susceptible to high rates of

false positives. Conversely, spatial technologies preserve tissue context, yet they either

provide limited resolution since each spot captures multiple cells, or measure a relatively low

number of genes 19,20. Therefore, if spatially resolved-data is available, its integration with

dissociated data is recommended to minimise false positives and offset the current

limitations of both technologies. Here, I demonstrate the synergistic nature of LIANA+ by

adopting such a strategy to myocardial infarction data. Specifically, I incorporate spatial

information of both ligand-receptor and cell type pair interactions to identify novel

ischemia-related intra- and intercellular signalling events, coherent across both

single-nucleus and spatially-resolved transcriptomics data.

Moreover, the distinct components of our framework are also complementary when applied

to a single technology. For example, I use spatially-informed multi-view modelling 33 to

summarise spatial relationships across the whole slide, and combine it with local spatial

metrics to pinpoint interactions at the individual spot/cell level. As showcased by an

application using metabolome-transcriptome 118 multi-omics data, LIANA+ summarises CCC

interactions relevant for the whole slide, and also identifies the specific subregions within

which interactions occur.

Thus, our findings demonstrate that the flexibility and synergy between components of our

framework enable unique analyses for the identification of CCC events across a wide range

of technologies.

CCC is a multicellular process involving coordinated CCC events across multiple cell types

(intercellular programmes). In line with methods that use factorisation approaches to identify

gene expression patterns coordinated across cell types 3,34,35, similar approaches were used

to identify intercellular programmes across samples 39. While each of the ligand-receptor

methods in LIANA+ is typically applied to a single slide or sample, I combine them with

factorisations to enable the unsupervised identification of intercellular programmes in

multi-sample and multi-condition datasets 39,114,121. Here, I combined NMF with
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spatially-informed local interaction metrics to identify cross-conditional intercellular

programmes that arise following myocardial infarction 117. Similarly, by repurposing MOFA+
114, I identified intercellular programmes that highlight the fibroblast-myeloid cell signalling

axis as major drivers of fibrosis. Thus, in addition to identifying condition-relevant

intercellular patterns, such approaches can also serve as hypothesis-generation tools in

CCC. While here each factorization technique is presented with a specific application, they

are interchangeable and could be replaced by alternative approaches 133–135.

Moreover, LIANA+ enables deregulated CCC to be identified using simple differential

expression analysis. While such an approach requires a specific hypothesis a priori and

focuses on a single interaction at a time, it is a straightforward and interpretable alternative

that can also complement the more complex unsupervised approaches. While I combine

unsupervised factorisation with targeted differential analysis to uncover interactions

potentially deregulated in ischemia, each approach can also be used independently,

depending on the specific objectives and the nature of the dataset at hand.

Intercellular signalling events frequently initiate or are initiated by intracellular signal

transduction pathways, thus functioning as intertwined networks of concerted signalling

between and within cells. LIANA+ connects intercellular signalling to downstream events by

combining analysis enrichment 98 and network inference 136 methods with existing knowledge

resources 45. First, it enables the annotation of ligand-receptor interactions to specific

contexts, such as pathways, and the subsequent enrichment testing of such annotations.

Second, our framework enables the inference of causal networks, which I use here to link

CCC and transcription factors deregulated in ischemia. To our knowledge, this is the only

approach that considers the sign of signalling and deregulation of inter- and intracellular

signalling, thus providing networks better aligned with existing prior knowledge. Though in

addition to our such sign-consistent network search, the flexibility of LIANA+ also enables

other network approaches to be incorporated 7,8,16,101,102.

The methods implemented in LIANA+ have a number of limitations. First, they use prior

knowledge, which is limited, often exhibiting biases and a trade-off between coverage and

quality 7,9,137. Most curation efforts have been focused on annotating ligand-receptor

interactions 4,6, and additional prior knowledge efforts are needed in particular for the

inference of CCC beyond protein-mediated events. Moreover, contextualising prior

knowledge to specific cell types, tissues, or disease can help to reduce erroneous

predictions. As an example, we developed and used MetalinksDB 138, a comprehensive

resource for the inference of metabolite-mediated CCC, here customised to brain-specific

metabolites. Second, CCC from dissociated single-cell data remains limited to the
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co-expression of communication partners, and this co-expression at the transcript level may

not translate to the protein level, let alone imply a functional interaction 9. Likewise, while

spatially-resolved data is a step further from its dissociated counterparts, it is limited to the

co-localization of molecules. Finally, while I showed the ability of LIANA+ to generate CCC

insights across a range of technologies, along with some preliminary evaluations, systematic

benchmarks of CCC methods are still pending. Similarly to the evaluations presented in our

work, others also exist but they too remain limited to the use of orthogonal modalities such

as spatial data 9,93 or downstream signalling 9. As emerging technologies 139–141 which provide

bona fide CCC events, become measurable at scale and widely available, LIANA+ will serve

as a facilitator for such benchmarks and comparisons. Therefore, like all individual CCC

methods, including those implemented in our framework, LIANA+ remains a tool for

hypothesis generation, requiring validation experiments.

Overall, LIANA+ generalises the multifaceted aspects of cell-cell communication inference

into synergistic components. These components can be combined in various ways, and their

configurations can be tailored to address diverse and emerging questions and datasets.

Given the modularity of LIANA+, new methods can be integrated into the framework and

immediately tap into the established ecosystem of methods and resources, benefiting from

enhanced compatibility and interoperability. I further hope that LIANA+ will be used as a

versatile tool for the study of CCC driven by diverse mediators, beyond protein-mediated and

metabolite-mediated interactions, expanding the range of CCC events that could be studied,

such as host-microbiome interactions 142–144. Thus, LIANA+ not only stands as a

comprehensive and scalable tool for studying communication events but also serves as a

catalyst for future developments in the field.
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4. Methods
Bivariate Spatially-informed Metrics

Common notations:

and are vectors of two variables for spots (or cells) ,

and is the mean of the variable values,

is a spatial proximity weight matrix indicating the degree of spatial association

between spots and .

Inspired by scHOT 111, I implemented local weighted variants of common similarity metrics,

such as Pearson and Spearman correlation:

,

where summation is performed over and , are ranks of and for spot .

A second masked version of Spearman correlation, as proposed and default approach in

scHOT, was also implemented; where I consider , only for spots with non-zero .

Moreover, I provide weighted Jaccard and Cosine similarity metrics:

where:

and are vectors of the same length, binarized by setting values > 0 to 1, to signify

presence or absence of a read out.

As well as a simple spatially-weighted product (as in NICHES 17) and a max-normalised

product as a scale invariant metric:
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where and are the spatially-weighted vectors of and respectively

I adapted bivariate Global and local Moran's R, extensions of Moran’s I 120, from SpatialDM
31; both of which are measures of spatial co-occurrence.

Local Moran’s R is defined as:

In contrast to Local Moran’s R, Global Moran’s R infers the co-clustering of two variables

globally, and is defined as:

When working interactions, the members of which contain heteromeric complexes, I

consider the minimum expression of complex members per spot. Any interactions, the

members of which are not expressed in at least 10% (by default) of the spots are excluded.

Local Score Categories
Inspired by GeoDa 145, I categorise local bivariate associations according to the magnitude

and sign of the two variables. If spatially-weighted variables are non-negative (e.g. gene

expression) then they are z-transformed. Then for each spot , I categorise interactions

according to the sign of the spatially-weighted variables (v) involved in the interaction - i.e.

as positive, negative or neither:

Then to obtain a category for the interaction, I combine the sign of the two variables (x and

y). If both variables are positive (high-high), then the interaction is positive (1); if one variable

is positive (high) and the other negative (low) then the interaction is negative (-1); if both

variables are negative (low-low), or either variable is neither (e.g. equals to 0), then the
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interaction is labelled as “neither” (0). The latter enables us to distinguish relationships

where both variables are highly-abundant (high-high) from those where both values are

lowly-abundant (low-low).

For statistical testing of local metrics, I use spot label permutations to generate a Null

distribution against which empirical local p-values are computed.

I provide a detailed tutorial on the bivariate metrics at:

https://liana-py.readthedocs.io/en/latest/notebooks/bivariate.html

Learning Spatial Relationships across Multi-views
To learn multivariate interactions in space that go beyond bivariate metrics, we

re-implemented MISTy’s multi-view learning approach 33. Our multi-view approach jointly

models different spatial and functional aspects of the data, such that it can fit any number of

views, and each view can contain any number of variables. As shown in this work, one can

use it to jointly model different combinations of RNA expression, cell type proportions, or

metabolite peak intensities.

In LIANA+, multi-view objects are represented as subclasses of MuData 146, modified to

ensure the correct format of the views and corresponding spatial connectivities. Each

multi-view structure has an intrinsic view (intraview) that contains the target variables of

interest for each spatial location. The other views can be considered as “extra” views,

composed solely of predictor variables. Predictor variables can also represent a

transformation of the variables within the intraview taking into account a specific spatial

context, as well as other categories of variables.

We additionally enable the use of different single-view modelling approaches. By default, the

models are based on random forests and can capture complex non-linear relationships.

Here, we also implemented linear models. For both random forests and linear models, we

use the implementations available from scikit-learn 147.

Once the multi-view structure is defined, each target is modelled by predictors from each

view independently. As such, for each target we obtain (1) relationship statistics

(‘importances’) for each of the predictors from the distinct views; (2) the relative ‘contribution’

of each view to the joint prediction of each target (3); as well as the goodness of fit (e.g. R2)

of the model.

(1) The statistics for each predictor, signifying its importance in the prediction of a given

target variable, are calculated depending on the modelling approach. For random forests, we

use the reduction of variance explained that can be attributed to each predictor across all

regression trees. For linear models, which were used throughout this manuscript, we use the

ordinary least squares t-statistics of the estimated parameters under the zero value null

hypothesis. The independent view-specific predictions are combined by a cross-validated
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linear meta-model 33 to obtain the contributions of view-specific models (2), along with the

goodness of fit of the overall model, for each target variable (3). In particular, we can discern

between the contribution of the intraview, modelled as the intrinsic variability among target

variables within the same cells/spots, from the joint predictive contribution of “extra” views,

which encode spatial information.

We further implemented a masking procedure according to observation/spot labels (e.g.

regions or conditions) within the same slide; essentially masking each view according to

labels assigned to observations in the intra view. Prior to masking, we spatially-weigh each

of the extra views.

To facilitate the use of our multi-view learning approach, I provide in depth tutorials on how to

generate and model custom and predefined multi-view structures:

https://liana-py.readthedocs.io/en/latest/notebooks/misty.html.

Estimation of Spatial Connectivities
As in MISTy 33, spatial connectivity weights are calculated using families of radial basis:

, Gaussian , linear , and exponential kernels

; where w is a weight matrix of shape n x n, dij is the Euclidean

distance between cells or spots i and j, l is a parameter controlling the shape, or bandwidth.

We additionally provide a cutoff parameter below which spatial connectivities are set to zero.

When working with multi-modal spatial technologies, the different modalities of which have

observations with distinct locations, spatial connectivity weights can be estimated according

to a reference coordinate system. Essentially, this enables the application of our MISTy

across any number of views, regardless of their dimensions.

In this context, let and represent the data matrices from two distinct

modalities. These matrices have the shapes and respectively. Here, and

represent the number of observations in each modality with , while and

denote the number of features or dimensions specific to each modality. The spatial

connectivity weights are captured in a matrix , which quantifies the spatial

proximity between each observation in ( ) to each observation in ( ).

The alignment of these modalities is achieved through the following transformation:

In this equation, represents the transformed version of , with a new shape of
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, aligning with the observation space of while maintaining the unique

feature dimensions of the modality.

Similarly, to enable the calculation of local metrics that necessitate a calculation of a

covariance between features from the modalities prior to spatial weighting or transformation,

I used linear grid interpolation as implemented in scipy 148. This method interpolates one

matrix to the reference coordinate space - typically the modality with a lower number of

observations.

Throughout the manuscript, unless otherwise specified, I used Gaussian weights with a

bandwidth of 150, and a cutoff of 0.1, and the diagonal (self to self) was set to 0 for MISTy

and 1 for the local scores. For both product and normalised product, I additionally apply

L1-normalisation to the weights. This adjustment accounts for the variability in the number of

neighbours across different spots, implicitly accounted for by the remainder of the local

metrics.

Programmatically the calculation of spatial connectivities mirrors Squidpy’s

spatial_neighbors function, and thus spatial connectivities can be easily replaced with

Squidpy’s neighbourhood graphs 149.

Ligand-Receptor Pathway Enrichment
To perform ligand-receptor pathway enrichment, I first convert gene set (pathway) resources,

represented as weighted bipartite graphs where each gene belongs to a gene set, into

ligand-receptor sets. Specifically, I assign a weight to each ligand-receptor interaction, based

on the mean weight of the ligands and receptors involved in the interaction, also taking into

account the presence of heteromeric subunits. Moreover, I assign a given ligand-receptor

interaction to a specific gene set (or pathway), only if all members of the interaction are part

of the gene set, and in the case of weighted resources are additionally sign-consistent.

Finally, once a ligand-receptor resource is generated, I use decoupler-py to perform

enrichment with univariate linear regression 98.

In this manuscript, I used the PROGENy resource 124 to assign pathway annotations to

ligand-receptor interactions. In contrast to classic pathway gene sets, PROGENy contains

consensually-regulated targets of pathway perturbations 124, not genes thought to be

members of the pathways. However, this resource-conversion procedure is applicable to any

resource, including undirected resources, such as GO terms for which all members of a

gene set will be assigned a weight of 1.
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Hypothesis testing for deregulated CCC across Conditions
To enable hypothesis testing for CCC, similarly to the strategy implemented in MultiNicheNet
37, I first generate pseudobulk profiles by summing raw expression counts for each sample

and cell type with the decoupler-py package 98. After filtering low quality genes in (e.g.

considering minimum expression in terms of total counts and samples in which the gene is

expressed), I perform differential analysis for each cell type independently with DESeq2113,

as implemented in PyDESeq2 112.

Once feature statistics per cell type are generated, I transform those into a dataframe of

interaction statistics by joining them to a selected ligand-receptor resource, while additionally

calculating average feature expression and expression proportions per cell type, based on a

user-provided AnnData object 150. Similarly to any other method in LIANA+, interactions

expressed in less than 10% (by default) of the cells per cell type are filtered, considering the

individual members of heteromeric complexes.

A detailed tutorial is available at:

https://liana-py.readthedocs.io/en/latest/notebooks/targeted.html

Sign-consistent Intracellular Networks
By combining CCC predictions with prior knowledge networks of intracellular signalling, it is

possible to recover putative causal networks linking CCC events to transcription factors. To

accomplish this, we used CORNETO 151 - a Python package that unifies network inference

problems from prior knowledge - to implement a modified version of the integer linear

programming (ILP) formulation implemented in CARNIVAL 152.

This modified version of CARNIVAL 152 takes four distinct inputs: (1) a prior knowledge graph

(PKN) of signed protein-protein interactions, where nodes are proteins and edges are

activating or inhibitory interactions; continuous and signed (2) starting (input) nodes and (3)

end (output) node values, with negative values indicating downregulation and positive values

indicating upregulation. In addition, we take (4) values for the rest of the nodes in the graph

[0, 1] (e.g. gene expression proportions), with higher values incurring less penalty than

genes with lower values when the gene is included in the inferred network. Then, a

subnetwork, optimised for sparsity, is extracted from the PKN which connects the input

(starting) nodes to the output (end) nodes, taking into account both the directionality and

sign of interaction.

The resulting inferred network is a directed acyclic graph that connects the (2) input nodes to

the (3) end nodes (e.g. receptor to transcription factors), including the values for each edge

and node of the graph indicating if the node is upregulated (+1), or downregulated (-1). A

node nc in the graph can be upregulated only if there is at least one selected parent node np
such that np is upregulated and there is an activating edge between np and nc, or np is
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inhibited and there is an inhibitory edge between np and nc. Similarly, a node nc can be

downregulated if there is a parent node np downregulated with an activating edge between np
and nc, or if a parent node np is upregulated and there is an inhibitory edge between np and

nc.

These rules are encoded using linear constraints and continuous/binary variables to define a

Mixed ILP problem, which is a particular type of a combinatorial problem with linear

constraints. The optimization problem is defined as:

where is a vector of binary variables for each node in the PKN indicating whether the

node is upregulated ( ) or not; is a vector of binary variables for each node in

the PKN indicating whether node in the PKN is downregulated ( ) or not; is a

vector of values for measured nodes (input nodes and output nodes), where positive values

are upregulated species and negative values are downregulated species. For example,

can be estimated as fold change, t-statistic or any other score indicating difference in activity

in a protein in the PKN between two conditions.;

In this modified version of CARNIVAL, we additionally introduce - a vector of penalties to

penalise the inclusion of protein nodes in the resulting inferred network, according to (4)

node weights [0, 1] in the (1) PKN. We introduce specifically to discretise

highly-expressed from lowly-expressed genes, thus accounting for the differences in

drop-out rates across cell types in single-cell data.

We set to (1 as default) and (0.01 as default) according to a

threshold (0.1) by default:

Linear constraints impose conditions on the variables of the ILP problem. For example, a

node cannot be upregulated and downregulated at the same time ( ). The

problem includes other variables and linear constraints to guarantee that the final networks

valid solutions are acyclic networks and that the rules explained before are respected.

Additional information about the formulation can be found in Liu et al. (2019) 136 .
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I show the inference of sign-consistent networks downstream of deregulated CCC events,

identified using differential expression analysis with PyDESeq2 112 here:

https://liana-py.readthedocs.io/en/latest/notebooks/targeted.html

NMF on ligand-receptor local scores
A utility function was implemented that takes an AnnData object 150 as input and uses

Scikit-learn’s NMF implementation to factorise the input matrix into two matrices of

dimensions k, n and k, d; where d is the number of features, n is the number of observations

(cells); and k is the number of components (factors). To estimate k, I additionally provide an

heuristic elbow selection procedure, in which the optimal component number (k) is chosen

from a sequential range of components using elbow selection as implemented in the kneedle

package 153. Selection of optimal k is based on the mean absolute reconstruction error.

LIANA+ in multimodal single-cell & spatial data
To enable the inference of CCC across modalities, the methods implemented in LIANA+

accept MuData objects 146 as input. These provide essential functionalities to load and store

multimodal data 146, and can be thought of as an extension of AnnData objects 150, which are

the default input of LIANA+ when working with unimodal single-cell or spatial data.

Feature level transformations such as z-scoring or min-max scaling are used to transform

features within omics and across omics to a comparable scale to facilitate integration.

Intercellular Communication Factorization with Tensor-cell2cell and MOFA+
Inspired by the CCC factorization approach proposed in Tensor-cell2cell 39 and building on

our recent application of MOFA+ to dissociated cross-condition atlases 3, I use the

ligand-receptor inference methods from LIANA+ across each sample independently, and

then transform this into a multi-view structure of cell type pairs (views), each represented by

samples and the ligand-receptor interaction scores in each. To build the multi-view structure,

I use the MuData format 146, and only views with at least 20 (by default) interactions in at

least 3 (by default) samples are kept. Moreover, I exclude samples if they have less than 10

interactions (by default) and interactions are considered only if they are present in at least

50% of the samples (by default). Then I use the MOFA+ statistical framework 114 to

decompose the variance of the ligand-receptor scores across samples into intercellular

communication programmes.

Tutorials on extracting intercellular programmes from single-cell dissociated data with

MOFA+ and Tensor-cell2cell are available at:

https://liana-py.readthedocs.io/en/latest/notebooks/mofatalk.html

https://liana-py.readthedocs.io/en/latest/notebooks/liana_c2c.html
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LIANA+’s Prior Knowledge Component
All components of LIANA+ rely on existing biological knowledge. As such, LIANA+ draws

from OmniPath’s rich database of ligand-receptor resources 45, providing access to 15

different resources, along with a consensus resource. To increase the flexibility of our CCC

workflows, the knowledge in LIANA+ can be further expanded by leveraging BioCypher,

which provides utilities for the modular and reproducible representation of knowledge 115. For

instance, I used Metalinks 138,154 - a comprehensive and customisable resource of

metabolite-protein interactions, additionally incorporating annotations such as tissues,

pathways and diseases.

Spot Calling using Local metrics
To benchmark how well each local score in LIANA+ preserves biological information, I

devised spot classification and regression tasks. In the spot classification task, I used four

public breast cancer 10X Visium slides 95, with annotations labelled as malignant (containing

“cancer” in their annotation) or non-malignant spots (any other spot). For each slide, I

calculate local ligand-receptor scores using the local metrics in LIANA+. Then for each local

metric, I trained and evaluated Random Forest Classifiers, with 100 estimators, using a

Stratified K-Fold cross-validation strategy (k=10). AUROC and weighted F1 were calculated

on the test sets, and their average across the folds was used in visualisations.

In the regression task, I used a public dataset with 28 10x Visium slides from left-ventricle

heart tissues to compare how well different local metrics capture cell-type specific

ligand-receptor events. In particular, I checked how well do the local scores LIANA+ predict

cell type proportions per spot, inferred using cell2location 28 as done in Kuppe et al., 2022 117.

I used a Random Forest Regressor, with 100 estimators, utilising a K-fold cross-validation

training strategy (k=5), and calculated the variance explained (R2) and root mean squared

error for each score. All classification and regression tasks were performed through

Scikit-learn (v.1.3.2).

For the inference of ligand-receptor interactions throughout this work, I used LIANA’s

consensus resource - a resource combining the curated ligand-receptor resources in

OmniPath 45.

Spatial Colocalisation Evaluation
To benchmark how well each ligand-receptor method in LIANA+ captures potential

interactions, I used five processed and recently published spatially-informed single-nuc

RNA-seq datasets 130.

Making use of spatial information for each dataset, I estimated Global Moran’s R using

LIANA+ to generate the assumed ground truth - i.e. ligand-receptors and cell types seen to
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be colocalized better than random (Moran’s R > 0 and FDR <0.05). Then I ran all

ligand-receptor methods in LIANA+ without taking spatial information into account.

AUROC was calculated for the whole distribution of each ligand-receptor method’s scoring

functions. To calculate Balanced Accuracy and Normalised F1 (see below), I used false

positive filtering thresholds as suggested by each of the methods’ authors (if available). For

CellPhoneDB, CellChat, and Geometric Mean, interactions with p-values below 0.05 were

filtered. For CellChat, I only kept interactions for which both ligand and receptor p-values

were also under 0.05. Similarly, for Connectome and log2FC, interactions were kept only if

both ligand and receptor p-values were under 0.05 and had a positive scaled weight or

log-fold change, respectively. For SingleCellSignalR, I considered ligand-receptor

interactions with LRscores above 0.6. For LIANA’s Rank Aggregate I kept only those with a

magnitude rank < 0.05. Since NATMI and scSeqComm don’t necessarily suggest a

threshold, were deemed kept if they were within the top 5% of the specificity weight and inter

score distributions, respectively. Similarly, when considering the individual scoring functions

for each method, I considered only the top 5% for each as positive predictions across all

methods.

where observed is the F1 score for the actual

ligand-receptor predictions, while permuted was generated by permuting the predictions 100

times.

where TP stands for True Positives,

TN is for True Negatives, FP for False Positives, and FN for False Negatives.

Sample Label Classification
For the condition classification task, building on a similar approach 39, I used public,

pre-processed, cross-conditional atlases (Supp. Table 3), each selected such that they

include more than five samples per condition following preprocessing. To ensure that only

high-quality samples were used in each of the atlases, I removed any samples with less than

1,000 cells or z-transformed total counts above or below a z-score of 3 and -2, respectively.

In the Carraro et al. dataset 155, I kept samples with more than 700 cells. Moreover, only cell

types found in at least 5 samples and with at least 20 cells in each individual sample were

considered. To ensure that the samples were balanced between the conditions, if either

condition had a sample ratio higher than 1.5 x the number of samples in the other condition,

then the overrepresented condition was subsampled to the number of samples in the
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underrepresented one. Each dataset was normalised to 10,000 total counts per cell and

log1p-transformed.

Subsequent to preprocessing, I inferred ligand-receptor interactions at the cell-type level

using the homogenised methods in LIANA+, independently for each sample. Any

interactions not expressed in at least 10% of the cells in both source and receiver cell types

were filtered.

Then the output from LIANA+ was converted to the structures used by the factorization

approaches employed by MOFA+ and Tensor-cell2cell - a multi-view and a 4D tensor,

respectively. For running both factorisation approaches, I consider interactions only if they

were present in 33% of the samples, and any interactions missing in a sample were

assumed to be biologically-meaningful and assigned as zero. For all datasets, I decomposed

the CCC events into 10 factors, except Reichart et al 156, which was decomposed into 20

factors due to its larger sample size.

Using the factor scores for each method-factorization approach combination I then

performed a classification task, similar to the one from Armingol et al. 39. Specifically, a

Random Forest Classifier, with 100 estimators, was trained and evaluated on the sample

factor scores computed for each score-factorization combination, utilising a Stratified

K-Folds cross-validation strategy (k=3), performed over 5 seeds. Then the mean Area Under

the Receiver-Operator Curve (AUROC) and weighted F1 scores were then calculated on

testing set’s the probabilities and label predictions, respectively.

Analysis of Spatially-resolved Multi-omics Data from Murine Parkinson’s disease
model
I obtained a pre-processed data set of three murine brain sections following

6-hydroxydopamine perturbation in one hemisphere 118; with joint metabolite and

transcriptome measurements generated with MALDI-MSI and 10X Visium technologies,

respectively. I processed the metabolite and count matrices for each slide separately,

applying standard log1p normalisation and standard quality control measures to the gene

expression data. For the metabolite intensities, I used total count normalisation followed by

z-transformation. The observations of two modalities were manually aligned following the

identification of tissue-containing observations for the metabolome data, using a procedure

similar to the original publication 118. Cell type proportions were inferred using Tangram’s cell

cluster level approach 157 with default parameters and an annotated single-cell data as

reference 119.

Following the alignment of the two modalities, I modelled metabolite peaks (intraview) with

cell type proportions and brain-specific receptors as predictors (extra views). I bypassed

modelling the intraview - i.e. I did not model each metabolite peak by the remainder of the
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peaks (as done by default), since I was interested solely in the predictive performance of the

extra views (receptors and cell types). I focused on the intersection of the top 250

highly-variable metabolites (targets) across the three slides, and excluded any predictors

with little-to-no variation - i.e. genes not within the top 12500 highly-variable genes; and cell

types with a coefficient of variation below the 20th percentile. Brain-specific receptors were

obtained from MetalinksDB 158, customised to include only metabolites found in the brain or

cerebrospinal fluid. Finally, I used spatially-weighted Cosine similarity on the z-transformed

matrices of each modality to estimate the local scores and their corresponding P-values and

categories. For all analyses I used a bandwidth of 1,000 with a cutoff of 0.1 to calculate the

spatial connectivities.

Analysis of Human Myocardial Infarction
Following basic filtering and standard log1p-normalisation, I estimated ligand-receptor local

scores using spatially-weighted Cosine similarity on each of the 28 processed 10X Visium

transcriptomics slides 117. I considered interactions whose members were expressed in at

least 10% of the spots. Then I concatenated the resulting ligand-receptor AnnData objects

(slides), and kept only those interactions present in at least 10 of the slides. Subsequently, I

decomposed the concatenated object with NMF. I used Fisher’s exact test to examine

whether specific condition labels were enriched when considering samples with average

factor scores above the 75th quantile.

Pathway activities of ligand-receptor interaction loadings were calculated using linear

regression 98 and sets of ligand-receptor pathways, annotated using the PROGENy pathway

resource 124 with all genes.

I used a pre-processed dataset of 29 single-nuc samples from the same publication 159. Raw

gene counts were normalised to 10,000 total counts per cell and log1p-transformed. I

inferred ligand-receptor interactions per sample using LIANA’s magnitude rank aggregate - a

consensus of multiple magnitude-focused scores (Supp. Table 2), considering only

interactions with all members expressed in at least 10% of the cells per cell type. I further

inferred ligand-interactions only if they were deemed as condition-relevant in the spatial

analysis - i.e. those with at least one standard deviation above the mean per NMF factor.

Moreover, I considered cell type pairs to interact, only if they had a strong spatial relationship

across all 10X Visium slides (target R2 > 0.05; median t-value > 1.645); as per a misty run

predicting each cell type (inferred with cell2location 28) by the remainder. Then I decomposed

the obtained ligand-receptor interactions from the dissociated data with MOFA+, considering

interactions with at least 15 interactions in 30% of the samples, and views with at least 10

samples. Any missing interaction values were filled with zeroes.
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For hypothesis-testing I generated a pseudobulk profiles for cell type using decoupler-py,

considering only genes with at least 10 counts across each of the samples or at least 20

counts in total, a large_n of 5, and expressed in at least 10% of the samples 98. Then within

each profile I performed differential expression analysis with PyDeSeq2112,113, contrasting

ischemic samples versus the rest - i.e. I treated fibrotic and myogenic samples as baseline

references. The output statistics were then converted into a single dataframe of

ligand-receptor differential statistics using LIANA+, keeping only interactions all members of

which (including complex subunits) were expressed in at least 10% of the cells in source and

target cell types.

Then I estimated TF activities using the Wald statistics from PyDeSeq2 with univariate linear

regression 98 and CollecTRI 160. For the inference of the downstream signalling events, I

obtained OmniPath’s protein-protein interaction network, considering interactions with

consensus direction and a curation effort >= 3. Then using CORNETO (v0.9.1-alpha.5), I

inferred the plausible causal networks propagating via the interaction between FN1/SPP1

and ITGA5&ITGB1, down to all TFs identified as significantly deregulated (FDR <0.05) in

myeloid cells. I used gene proportions with a cutoff of 0.1, such that nodes above the cutoff

were assigned a penalty of 1, and those below a penalty of 0.01. An edge penalty of 0.02

was also used, and to ensure ILP space was thoroughly explored the problem was solved

100 times, each time introducing small amounts of uniform noise. I used the Gurobi 161 solver

under an academic licence. Then the acyclic subnetworks obtained by each iteration were

concatenated, such that edges from any solution were kept, and the network union was

visualised with CytoScape 162.

Analysis of Murine Acute Kidney Injury Data
I first filtered the preprocessed single-cell dataset, with pre-annotated cell types, to only

those cell types with at least 15 cells in at least 10 samples; additionally excluding urothelial

cells as they are not expected to communicate with most of the other cell types in the kidney.

Following total count and log1p normalisation, I inferred ligand-receptor interactions using

LIANA’s consensus method (Supp. Table 2), excluding any interactions not expressed in at

least 10% of the cells in both the source and target cell types. Then I transformed the

resulting ligand-receptor interactions into views representing cell type pairs, keeping only

those interactions present in at least 25% of the samples, views with at least 15 interactions

and at least 5 views. Finally, I decomposed those views into 5 factors using MOFA+. Kruskal

Wallis test was performed on the sample loadings for Factor 1.

For the spatial data, I filtered the preprocessed 10x slides, such that only spots with at least

400 genes expressed and genes expressed in at least 5 spots were kept. I additionally

excluded any spot outliers according to mitochondrial, ribosomal and total count content,
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using comparable but slide-specific thresholds. Then for the interactions of interest identified

in the dissociated datasets, I calculated local cosine similarity and global Moran’s R.

Data Availability
Processed myocardial infarction single-nucleus and 10X Visium data was downloaded from

the Human Cell Atlas

(https://data.humancellatlas.org/explore/projects/e9f36305-d857-44a3-93f0-df4e6007dc97),

also available via Zenodo at https://zenodo.org/records/6578047.

Processed breast cancer 10× Visium slides 95 (GSE176078;

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE176078) were obtained via

https://zenodo.org/record/4739739.

Spatially-resolved metabolome-transcriptome data118 was obtained from

https://data.mendeley.com/datasets/w7nw4km7xd/1, also available under GEO repository

accession number GSE232910.

Annotated single-cell mouse brain data 119, used for reference for deconvolution, was

obtained from http://mousebrain.org/adolescent/, with GEO accession number GSE178265.

Single-nuc 163 and spatially-resolved 164 mouse kidney injury datasets were obtained via

GEO accession numbers: GSE139107

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139107) and GSE182939

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182939), respectively.

Code Availability
LIANA+ is available at https://github.com/saezlab/liana-py, along with detailed tutorials

describing the distinct components presented here (https://liana-py.readthedocs.io). LIANA+

is regularly released on Github and stable versions are released on PyPI

(https://pypi.org/project/liana/). The code for the analyses presented in this manuscript is

available at https://github.com/saezlab/lianaplus_manuscript.
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Appendix
Supplementary table 1. Feature comparison of selected CCC tools.

LIANA+ LIANA
CellPho
neDB

CellC
hat

Multi
-Nich
eNet

Tensor-ce
ll2cell Scriabin

Spati
alDM

COM
MOT NCEM

Single-cell (Dissociated) Inference

Group-based LR
9 methods +
Consensus

6 methods +
Consensus ✓ ✓ ✓ ✓ x x x x

Group-free LR x x x x x x ✓ x x x

Spatial Inference

Global

Bivariate ✓ x x x x x x ✓ x ✓

Multi-view ✓ x x x x x x x x ✓

Local

Bivariate ✓ x x x x x x ✓ x x

Multi-variate x x x x x x x x ✓ x

Multi-condition

DEA-Based ✓ x ✓ x ✓ x x x x x

Hypothesis-free ✓ x x ✓ x ✓ ✓ *1 x x

Multimodal

Handles
multimodal data ✓ x x x x x x x x x

Knowledge

Protein-mediate
d LR

15 Resources
+ Consensus

15 Resources
+ Consensus ✓ ✓ ✓ ✓

LIANA's
Resorces ✓ ✓ ✓

Metabolite-medi
ated LR ✓ x ✓ x x x x x x x

LR Pathway
Annotations *2 x x ✓ x ✓ x ✓ x x

Downstream
Signalling ✓ x x x

✓(e
xten
sive) x

✓ (via
NicheNet

) x x x

Misc

Language Python R Python R R Python R
Pyth
on

Pyth
on

Pytho
n

*1 SpatialDM uses z-scores across samples to find differentially deregulated LRs, other tools utilise factorization
approaches for hypothesis-free multi-condition analysis

*2 LIANA provides a flexible function to annotate interactions according to any pathway gene set
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Supplementary table 2. Single-cell ligand-receptor methods implemented in LIANA+

Method* Magnitude Specificity

CellPhoneDBv2 4 CellPhoneDBv2’s cell
label permutation
approach; See ρ

Geometric Mean See ρ

CellChat† 6

where Kh = 0.5 by default and
L* & R* are aggregated using
Tuckey's Trimean function.

See ρ

SingleCellSignalR 53

where is the mean of theµ
expression matrix 𝑀

-

NATMI 52

Connectome 5

where is the z-score of𝑧
the expression matrix 𝑀

LogFC‡ -

ScSeqComm
(intercellular scores only) 102

Where is the CDF of a
normal distribution, μ is the
mean, σ is the standard

deviation, and n is the number
of observations

-

LIANA’s Consensus# Uses all of the above, except Geometric mean,
independently for both magnitude and specificity

Shared Notation:
is the k-th ligand-receptor interaction𝑘
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- expression of ligand L; - expression of receptor R; See Ѫ𝐿 𝑅
- cell cluster𝐶
- cell group i𝑖
- cell group j𝑗
- a library-size normalised and log1p-transformed gene expression matrix𝑀
- normalised gene expression vector𝑋

Permutations to calculate specificity:

; where is the number of𝑃
permutations, and and are ligand and receptor expressions aggregated by group (cluster)𝐿 * 𝑅 *
using fun; arithmetic mean for CellPhoneDB and Geometric Mean, and Tuckey’s TriMean for

CellChat:

# Consensus

First, a normalised rank matrix[0,1] is generated separately for magnitude and specificity as:

where is the number of ranked score vectors, is the length of each score vector (number of𝑚 𝑛
interactions), is the rank of the j-th element (interaction) in the i-th score rank vector, and𝑟𝑎𝑛𝑘

𝑖𝑗

is the maximum rank in the i-th rank vector.𝑚𝑎𝑥(𝑟𝑎𝑛𝑘
𝑖
)

For each normalised rank vector , we then ask how probable it is to obtain , where𝑟 𝑟𝑛𝑢𝑙𝑙
(𝑘)

<=  𝑟
(𝑘)

is a rank vector generated under the null hypothesis. The RobustRankAggregate method 165𝑟𝑛𝑢𝑙𝑙
(𝑘)

expresses the probability as through a beta distribution. This entails that we𝑟𝑛𝑢𝑙𝑙
(𝑘)

<=  𝑟
(𝑘)

β
𝑘,𝑛

(𝑟)

obtain probabilities for each score vector as:𝑟

where we take the minimum probability for each interaction across the score vectors, and we apply aρ
Bonferroni multi-testing correction to the P-values by multiplying them by .𝑛

Notes:

Δ Some differences are expected with the original implementations largely due to different
preprocessing steps which LIANA+ harmonised across the different methods. Specifically, LIANA+
considers the minimum score (e.g. average expression) for complex subunits, while some methods
consider the mean, geometric mean, or simply do not account for complexes at all.

† The original CellChat implementation also uses information of mediator proteins and pathways,
which are specific to the CellChat resource. To enable CellChat’s scores to be resource-agnostic
we do not utilise this information
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Ѫ While we refer to the genes as ligands and receptors for simplicity, these can represent the gene
expression also of membrane-bound or extracellular-matrix proteins, as well as heteromeric
complexes for which the minimum expression across subunits is used.

‡ 1-vs-rest cell group log2FC for each gene is calculated as

* LIANA considers interactions as occurring only if both the ligand and receptor, as well as all of
their subunits, are expressed above a certain proportion of cells in both clusters involved in the
interaction (0.1 by default). This can be formulated as an indicator function as follows:
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Supplementary table 3. Cross-conditional atlases used in the sample classification task

88

Dataset Organ Samples‡ Condition Reference Data URL

Kuppe heart 23 Cardiac Infarction 117
https://cellxgene.cziscience.com/collections/8191c283-

0816-424b-9b61-c3e1d6258a77

Reichart heart 126 Cardiomyopathies 156
https://cellxgene.cziscience.com/collections/e75342a8-

0f3b-4ec5-8ee1-245a23e0f7cb

Carraro lung 16 Cystic fibrosis 155
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE150674

Haberman
n lung 18 Pulmanory Fibrosis 166

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G
SE135893

Velmeshev brain 38 Autism Spectrum Disorder 167
https://codeocean.com/capsule/9737314/tree/v2;
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA434002/

‡ Following quality control and included in the classification
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Supplementary Note 1. Spot calling Evaluation

First, I evaluated the ability of the spatially-weighted local metrics to classify malignant and

non-malignant spots in four breast cancer slides 95 (Methods). All scoring functions did well

at classifying malignancy (AUROC > 0.9; weighted F1 > 0.85; Supp. Fig. S2A-B).
Spatially-informed Jaccard, Cosine, and the products had slightly higher AUROCs (average

≈ 0.95) and F1 scores (average > 0.88) than other methods across the slides, generally

followed by weighted Pearson and Spearman correlations, masked Spearman correlation,

and finally bivariate Moran’s R (Supp. Fig. S2A-B).
Second, using 28 spatial transcriptomics slides from myogenic, ischemic, and fibrotic heart

tissue upon myocardial infarction 117, I evaluated the ability of local ligand-receptor scores to

recover cell type proportions (Methods). I noted that the spatially-weighted products, along

with Cosine and Jaccard similarities, had slightly higher predictive performance in ischemic

(R2 > 0.32) and fibrotic tissues (R2 > 0.27) than the rest of the metrics, while Moran’s R did

best in myogenic slide (R2 ≈ 0.13) (Supp. Fig. S2C); with similar results also observed in

terms of Root Mean Squared Error.

In summary, all spatially-informed local scores in LIANA+ preserved the biological signal of

gene expression. Yet, our results suggested that spatially-weighted products, Jaccard, and

Cosine similarities, which performed best in both the regression and classification tasks

(albeit marginally better than other methods), might all be most suitable as a default local

scoring function. Since Cosine Similarity is bound between -1 and +1, and it does not require

the data to be binarized, I chose it as the default metric - used throughout the manuscript.

Nevertheless, the other scoring metrics are likely suited better for other tasks. For example,

spatially-weighted Jaccard index should be well suited for categorical or binary data.

Spearman correlation should be more relevant when inferring relationships between ordinal,

ranked, or non-linear variables. Similarly, metrics such as Moran’s R, or the simple and

normalised products, are useful in cases in which there is no overlap between the two

variables (e.g. one-hot encodings), as they weigh the spatially- variables prior to examining

any covariance between them. Thus, the choice of metric should take in consideration the

data and task at hand.
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Supplementary Note 2. Combinations of ligand-receptors with MOFA+ and Tensor-cell2cell

evaluated using Sample Label Classification.

In contrast to our hypothesis-testing approach, and those proposed by other methods 29,37,106,

unsupervised, or higher-order dimensionality reduction approaches, can simultaneously

model CCC events across samples and cell types 39. As a consequence, rather than

considering each interaction on its own, these approaches capture and summarise

coordinated interactions into intercellular programmes. Moreover, these approaches also

inform us about the most relevant cell types or interactions that separate the samples

according to some condition, along with summaries of model performance, such as the

amount of variance explained or reconstruction error.

Recently, I aligned Tensor-cell2cell and LIANA to enable the user-friendly inference of

context-specific CCC patterns with any method or resource from the latter 121. Here, I

showcase the use of an alternative unsupervised approach leveraging the MOFA+

framework 114.

This approach inherits the efficiency and flexibility of MOFA+ to enable factor analysis of

CCC interactions by modelling pairs of cell groups as views. As such, it enables feature

flexibility across the cell type pairs, and provides ligand-receptor importances per cell type

pair and factor. Moreover, it allows the simultaneous decomposition of the input data and

alignment with additional covariates 133, as also proposed by a recent CCC decomposition

approach 168.

To evaluate the ability of both Tensor-cell2cell and MOFA+ in identifying intercellular

programmes that distinguish samples from different conditions, I set up a classification task

(Methods). I used five public cross-conditional atlases from the human heart, lung, and brain

(Supp. Table 3), combining each of the ligand-receptor methods in LIANA+ with both

dimensionality reductions (Supp. Fig. S5A).
In each dataset, I inferred interactions independently for each sample using the scoring

functions from each ligand-receptor method in LIANA+, utilising magnitude-based scores if

provided (Supp. Table 2). Then, I used MOFA+ and Tensor-cell2cell to decompose the

ligand-receptor output, obtained per sample (Supp. Fig. S5A). Using a binary classification

setup, I calculated AUROC and F1 for each method-factorisation combination to examine

well each classified condition (Supp. Fig. S5A; Methods).
I saw that all combinations performed better than random in most datasets (Supp. Fig.
S5B), with log2FC (AUROC=0.89) with the expression average of ligand-receptor means

(CellPhoneDB; AUROC=0.87) performing best when combined with MOFA+; while the rest

of the methods had an AUROC ≈ 0.8, except CellChat (AUROC=0.62); though this does not

necessarily reflect the performance of the CellChat. When combined with Tensor-cell2cell,

methods showed slightly higher variance; with the product (AUROC=0.84) and Rank
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Aggregate (LIANA’s consensus; AUROC=0.82) having the highest AUROCs, while the rest

of the methods‘ AUROCs ranged between 0.69 and 0.76, except SingleCellSignallR

(AUROC=0.6). I also saw similar results when using weighted F1 (Supp. Fig. S5C).
Moreover, methods showed on average higher AUROCs when combined with MOFA+ than

Tensor-cell2cell. With the exceptions of CellChat which performed better when combined

with Tensor-cell2cell, and the Carraro dataset on which methods combined with

Tensor-cell2cell showed better performance. This potentially reflects an intrinsic difference of

the regularizations used between the two approaches. Specifically as MOFA+ attempts to

enforce orthogonality 114, while the non-negative tensor component analysis (PARAFAC)

used by Tensor-cell2cell, which can be thought of as a higher-order extension of NMF 39,

does not.

Overall, our results show that both Tensor-cell2cell and MOFA+ consistently capture

condition-relevant intercellular patterns, regardless of the ligand-receptor method at hand.
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Supplementary Note 3. LIANA+ leverages a rich knowledge base to link CCC events to

intracellular signalling.

Leveraging knowledge from OmniPath 45 and BioCypher 115 (Supp. Fig. S6A), LIANA+
provides access to both protein-mediated and metabolite-mediated 158 ligand-receptor

interactions, which can be further annotated and contextualised to pathways, disease, or

locations of interest (Supp. Fig. S6B). Such annotations can also be used to perform

downstream enrichment analysis on the output of any implemented CCC methods. For

example, in section 2.2 I used enrichment analysis 98 to identify active pathways 124

associated with ligand-receptor loadings from ischemic and fibrotic heart regions 117.

In addition, LIANA+ can infer signalling networks to link identified CCC events to

downstream intracellular signalling pathways and transcription factors. In contrast to existing

network methods used in the CCC field 7,8, our approach considers the direction of

deregulation for nodes of interest. Specifically, it evaluates the sign of deregulation

(activation or inhibition) in ligands, receptors, and transcription factors, alongside the

signalling pathways linking them. To do so, I incorporate knowledge of protein-protein

interactions (activating or inhibiting), ligand-receptor interactions, and transcription factors

with their targets (Supp. Fig. S6A; Methods). Then a network-optimisation approach 136,151

(Supp. Fig. S6C) is used to identify causal paths that connect deregulated CCC events

(input nodes) with active transcription factors (output nodes) (Supp. Fig. S6D; Methods). It is
further noteworthy that the approach implemented here is not bound specifically to linking

protein-mediated CCC interactions to TFs, but can be flexibly applied to find links between

any set of nodes, including such between metabolites and downstream signalling 152, or vice

versa.

As such, LIANA+ provides a comprehensive suite to decipher and interpret intracellular

signalling related to CCC.
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Supplementary Note 4. Evaluation of ligand-receptor methods using spatially-resolved,

transcriptome-wide single-cell RNA-Seq data

I used the recent slide-tags technology 130 to compare ligand-receptor methods’ performance
9. In contrast to our previous work 9, and that of others 93,169, which relied on the integration

of matched spatial and single-cell RNA-Seq data, this technology enables the inference of

ligand-receptor interaction and generation of assumed truth using the same data. Moreover,

rather than using solely the colocalization of cell types alone 9, here I additionally take into

account the colocalization of ligand-receptor interactions (Methods).

Using this setting I compared CellPhoneDB 4, CellChat 6, Connectome 5, NATMI 52,

SingleCellSignalR 53, scSeqComm 102, log2FC, Geometric Mean, and LIANA’s consensus

(Rank Aggregate) across five slide-tag datasets 130. First, I generated AUROC curves, and

saw that the individual scoring functions of most methods performed marginally better than

random (AUROC > 0.5), with inter-dataset variance being too high to suggest which method

works best (Supp. Fig. S8A).
Next, I evaluated the effectiveness of the false positive filtering thresholds suggested by

each method (if available; Methods). To account for the unequal class distributions, I used

Balanced Accuracy to compare the methods. I again saw that the methods' performances

were closely aligned with random (Supp. Fig. S8B). Finally, as done by a previous

benchmark 93, I computed F1 scores, but saw a notable correlation with the number of

interactions retained by each method (Spearman’s rho = 0.765). Moreover, the varied

filtering processes across methods result in each predicting a distinct set of interactions,

thereby further limiting the effectiveness of this metric. As such, I opted to use a normalised

F1 score which considered the random outcome anticipated for each method (Methods).

Using these normalised F1 scores, I again saw that the methods and their individual scores

(when capped at the 95th quantile) performed only slightly better than randomly (Supp. Fig.
S8C&D).

Taken together, I saw that methods generally exceeded random performance, albeit

marginally. Yet, the large variance across datasets and methods limited our ability to suggest

the method that works best. Moreover, such a setting can only suggest which interactions

are unlikely to occur, but remains limited as expression co-localisation does not necessitate

interaction. Instead, our evaluation suggests that regardless of method, ligand-receptor

interaction inference, uninformed of spatial location, is anticipated to result in high false

positive rates. Thus, our results highlight the need for supporting information 9.
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Supplementary Note 5. LIANA+ enables joined CCC single-cell and spatial analysis

To jointly study CCC events in dissociated and spatially-resolved data, I used LIANA+ with

two public datasets of mouse acute kidney injury (AKI) model 163,164. Both datasets employed

a time course experimental design, in which murine kidneys were sequenced following

bilateral ischemia-reperfusion injury (Supp. Fig. S9A).
First, using a single-nucleus AKI atlas (n=24) 163, I inferred potential ligand-receptor

interactions between groups of cells at the sample level and decomposed the interactions

with MOFA+ into a set of factors (Methods), with the aim to identify deregulated intercellular

programmes associated with kidney injury. After quality control (Methods), I analysed CCC

interactions across 88 cell type pairs and saw that Factor 1 separated early acute time points

from the rest (Kruskal-Wallis P-value = 0.0069; Supp. Fig. S9B). Sample factor scores

associated in Factor 1 were highest at the 12 hour time point, earlier than previously CCC

results in a similar mouse model by Li et al., 2022 170. Factor 1 explained on average 13.5%

of the variability (R2) of ligand-receptor interactions across cell-type pairs, with Fibroblasts

being involved in the several cell type pairs with variances explained > 30%, including their

interaction as potential sources of communication with Proximal tubule epithelia (R2 = 52.7%;

Supp. Fig. S9C). Fibroblasts were also the recipient cell type with the highest mean

variance explained (average R2 = 23.5%; Supp. Fig. S9C), likely associated with their

potential role in mediating the repair process following kidney injury 171.

Within the top 15 interactions associated with Factor 1 (Supp. Fig. S9D), I noted several

potential interactions that involved Spp1 and Tnc, known to contribute to extracellular-matrix

remodelling and tissue repair 172,173. Other extracellular-matrix interactions, such as Slit2 and

Robo1/2, as well as Lama2 & Dag1, were negatively associated with Factor 1 (Supp. Fig.
S9D). Thus, Factor 1 potentially represents an intercellular response related to the disruption
of the extracellular matrix and its remodelling.

To see if the interactions found between groups of dissociated cells are also captured in

spatially-resolved data, I inferred potential interactions using LIANA+’s spatial component in

five 10x Visium slides from the same AKI model 164. I saw that the interactions between Spp1

and the Itgav/Itgb1 integrin complex increased both in spatial coverage, as well as

co-clustering (Moran's R) albeit low, subsequent AKI (Supp. Fig. S9E); in line with findings

from Li et al., 2022 in dissociated single-cell data 170. Specifically, I saw that in the control

slide, the interaction was localised mostly in a specific part of the kidney, the medulla, while

subsequent to kidney injury the interaction was ubiquitous across the whole kidney, coherent

with its ubiquitous Factor 1 loadings (Supp. Fig. S9D).
In summary, using LIANA+ I identified in a hypothesis-free manner intercellular programmes

potentially involved in early response to AKI in dissociated single-cell data, and supported

those using independent spatial transcriptomics samples.
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Supplementary Figure S1. LIANA+ accepts inputs as unimodal (AnnData) or multimodal
(MuData) data objects together with optional prior knowledge resource and/or spatial
information. These are then transformed into dataframes of aggregated interaction results or
statistics at the individual spot- or cell-level.
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Supplementary Figure S2. A) AUROC and B) weighted F1 when using local metrics to
classify malignant spots in breast cancer data; C) R-squared and D) RMSE when using local
metrics to predict cell type proportions in heart data. The line in the boxplots represents the
median with hinges showing the first and third quartiles and the whiskers extend up to 1.5
times the interquartile range above and below the box hinges.
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Supplementary Figure S3. A) Top 10 metabolite peaks with highest variance explained
(R2). B) Relative contributions of views (receptors and cell types) when jointly predicting
metabolite peak intensities. C-E) Differences between lesioned and intact hemispheres in
Dopamine’s canonical Drd2 receptor, and medium spiny neuron (MSN) cell states 1 and 2.
P-values were calculated with one-sided paired t-tests.
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Supplementary Figure S4. A) Lesioned and Intact hemispheres; B) Striatum annotations;
C) Dopamine Peak intensities; D) Drd2 receptor normalised expression levels. Interactions
between Dopamine and Medium Spiny Neuron cell states E) 1 and F) 2. All panels show
slide B1 from experiment V11L12-109.
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Supplementary Figure S5. A) Classification setup to evaluate the ability of ligand-receptor

methods, combined with Tensor-cell2cell and MOFA+ to separate conditions from

multi-condition atlases in an unsupervised manner. B) Average area under the

receiver-operator curve (AUROC) and C) weighted F1 score.
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Supplementary Figure S6. LIANA+ makes use of A) prior knowledge 45,115 to B) annotate
interactions according to e.g. pathways, disease, or location. Similarly, it uses this prior
knowledge to infer putative causal (sign-coherent) signalling networks 136,151, emanating from
ligand-receptor interactions down to active transcription factors. The transcription factor
activities are themselves estimated making use of generalistic regulon prior knowledge 160

and enrichment analysis 98.
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Supplementary Figure S7. A) Top 30 interactions (with "FN1", "TNC', 'THBS1', and 'SPP1
as ligands) in Factor 1 identified using NMF on local ligand-receptor metrics in
spatially-resolved 10X visium heart samples. B) MISTy importances (Median t-value)
modelling cell type interactions from 10X visium slides. Cell type interactions with Median
t-value > 1.645 and R2 > 5% are marked with X. Abbreviations used include AD for
Adipocytes, CM for Cardiomyocytes, EN for Endothelial cells, FB for Fibroblasts, PC for
Pericytes, PR for Proliferating cells, VM for Vascular smooth muscle cells, NE for Neuronal
cells, MY for Myeloid cells, MA for Mast cells, and LY for Lymphoid cells.
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Supplementary Figure S8. Comparison of ligand-receptor inference methods using the
spatial colocalisation of cell types and ligand-receptors as assumed truth. Each method and
its individual scoring functions are represented by a different colour. A) Quantifies the
performance of each methods’ individual scoring functions using the Area Under the
Receiver Operating Characteristic Curve (AUROC). B) Balanced Accuracy for each method
filtered according to its suggested false positive filtering thresholds. C) and D) measure
normalised F1 score following filtering for each score and method, respectively. For each
metric, a score of 0.5, denoted by the dashed red line, indicates random performance. Both
NATMI and Connectome use expression products (Product*) as a measure of magnitude
strength. The central line in cyan within each box marks the median, with the box hinges
representing the first and third quartiles. The whiskers extend up to 1.5 times the
interquartile range above and below the box hinges. Outliers are depicted as individual
diamond-shaped points beyond the whiskers.
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Supplementary Figure S9. A) Experimental design of a murine AKI model 163,164. B)
Distribution of Factor 1 sample scores at different time points following AKI. The line in the
boxplots represents the median with hinges showing the first and third quartiles and
whiskers extending 1.5 above and below the interquartile range. C) Variance explained by
pairs of cell groups (views). D) Interaction loadings associated with Factor 1. E) Spatial
Clustering (Global Moran’s R) and Coverage (mean Cosine similarity) of Spp1&Itgav_Itgb1
across conditions. F) Spatially-weighted Cosine similarity of Spp1 and the Itgav/Itgb1
complex in Control, 4 and 12 hours after injury.
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